Stéphane Maag

Catherine Dubois

Bernhard Rumpe

Achim D Brucker

Safouan Taha

Burkhart Wolff

Romain Aïssat

Thibaut Balabonski

Sergio Bezzecchi

Etienne Borde

Frédéric Boulanger

Marina Egea

Abderrahmane Feliachi

Marie-Claude Gaudel

Martin Gogolla

Fateh Guenab

Antoine Jaouën

Chantal Keller

Ali Koudri

Zheng Li

Delphine Longuet

Yakoub Nemouchi

Nghia Huu

Hai Nguyen

Laurent Nguyen Van

Valentin Pautet

Smail Perrelle

Elie Rahmoun

Safouan Soubiran

Benoît Taha

Frédéric Valiron

Makarius Voisin

Burkhart Wenzel

Laurent Wolff

Lina Wouters

Fatiha Zaïdi, ..., FSF, VALS Ye

Keywords: Object-oriented Data Structures, Path Expressions, Featherweight OCL, Null, Invalid, Formal Semantics, Isabelle, Reflection, UML, OCL

Je souhaiterais naturellement adresser à Burkhart Wolff, mon directeur de thèse mes sincères remerciements. Depuis le début de ce doctorat, ses conseils et ses encouragements m'ont permis de faire grandement évolué ces travaux de thèse, jusqu'à terminer sereinement ce manuscrit. Je suis très fier du résultat, à mon avis, il a réussi à me transmettre les bonnes bases pour bien continuer, en le félicitant, j'aimerais le remercier avant tout ! Merci à l'ensemble des membres du jury ! Merci à Catherine Dubois et Bernhard Rumpe mes deux rapporteurs de thèse qui ont attentivement examiné les travaux de cette thèse et donné leurs avis favorables

Introduction

Reproduction of goods and objects in assembly lines has lead to major turning points throughout centuries in mankind history. As a well-known wonder of the Anciant World, we only cite the Great Pyramid of Giza, still internally composed of an estimated two million of smaller blocks. The total assembling took decades of manual work. Following the first and second Industrial Revolutions, constructions by hand, be it collaborative, have become all the more assisted by machines to save labour and workforce. Computers are at the heart of recent major inventions, to assist mankind when conceiving objects, to appropriately control machines and automate other technical artifacts of our lives. With the gigantic amount of calculations that can be routinely handled in recent calculators, this resulted a modern form of industrial revolution: the "Information Age", as called by science historians.

Objects we daily encounter and manipulate have certain properties and characteristics that must precisely be taken into account in form of a model before they can be treated by a computer. Indeed, objects are the basis of much larger concepts in many intellectual domains: ranging from abstract objects to concrete objects, biological animated objects, physical objects in experimental sciences, or as opposed to subjects in philosophy, if not mentioning objects of desire. Because building a car does not require the same chemical components as that of a train, models include as fundamental information the characteristic of manipulated objects, called attributes, as well as the operations or set of actions that objects are supposed to support or not.

The sub-discipline of informatics treating the design, the programming and the analysis of computer systems interacting with objects of the real world is called embedded systems. It is most relevant in domains where objects are embedding one or more (physical) computing objects. Examples are avionics, railway and automotive systems, medical devices like pace-makers, but can also be found in multifunction smartphone technology.

As example, consider the excerpt Figure 1.1 drawn from a system specification, by courtesy of Alstom, that we heavily abstracted for the purpose of this presentation. From this quite exemplary system design document used in industrial practice, one can draw for the corresponding model the following information: there are trains (with the orientation as attribute) containing doors (with an index number, besides the possibility to be opened or closed). Element orientation

[...] Train doors indexing for a single unit train:

The convention for RSD indexing on a single unit train is the following: In the single train element reference (oriented in the direction E2 → E1):

• Side A (left) has odd indexes,

• Side B (right) has even indexes,

• Index N°1 corresponds to the first doors (closest to the element front extremity E1) on the left,

• Index N°2 corresponds to the first doors (closest to the element front extremity E1) on the right.

.] Train doors indexing for a multiple unit train:

The convention for RSD indexing on a multiple unit train is the same as for a single unit train, but for the reference which is the whole train, with the orientation of the train performing the process.

Figure 1.2: A train in a platform

Later on, the system design document of Figure 1.2 continues to describe the geometry of a train located in a platform of a railway station, and under which condition both match (which is an operation in the sense above). Thus, security critical operations like "open_doors" can be modelled, analysed and implemented in the train control system.

From the above said, one can conclude two observations:

1. It would be hopeless and useless to represent all properties of objects in a corresponding model that a computer can handle: in the railway network, if the goal is to estimate the number of running trains, including only locomotives and magnetic trains, then trains running on different networks or with other characteristics have to be ignored, so the color, number of wheels, and weight are for instance irrelevant. Thus, models are necessarily deliberately conceived as abstractions of the physical world, implying that in one system, one may actually have several abstractions of one physical object a system has to deal with.

2. The notion of object as modelling entity comes with the notion of a class. Objects belonging to a class have a number of attributes and characteristics in common, and this allows operations to work uniformly on them, i. e. in a type safe manner. (The notion of type and type-safeness will be substantially refined in the subsequent chapters.) Moreover, even classes have a number of attributes and characteristics in common: the class of doors could be divided into several subclasses: manual doors, automatic doors, emergency doors, etc... It is desirable that this particular relationship between classes, called inheritance, is technically supported in models which are organized in this object-oriented way.

Object-oriented modelling has seen its birth in the late sixties in the context of programming languages for computers, i. e. specific formal languages that are suited to be processed and executed by computers. The language Simula [START_REF] Dahl | SIMULA -an algol-based simulation language[END_REF] is usually seen as the ancestor of this development, which led over languages such as Smalltalk [START_REF] Kay | The early history of smalltalk[END_REF] to the current mainstream languages Java [AGH00] and C++ [START_REF] Stroustrup | C++ programming language[END_REF] to recent offsprings such as Scala [START_REF] Odersky | An overview of the scala programming language[END_REF] and Swift [App16].

The growing influence of these languages in informatics raised the need of languages, that are not necessarily executable on a computer. Rather, the emphasis is again on modelling: modelling embedded systems, as well as the possibility to analyse systems and programs before they are actually implemented. This way, languages can be used to analyse if critical operations (like "open_doors") can actually be described in an unambiguous way and does not lead to undesired consequences.

Describing critical operations in an unambiguous way is all the more easy if the language rejects the possibility to form absurd sentences, where for example critical operations and non-critical operations are considered in a sentence as equivalent. This is especially fundamental for modelling languages, which are evolving in many forms to appropriately capture the description of new phenomena, and to enounce problems in a more suitable context than another. The generalization goes to languages supporting mathematical shapes and geometry, languages used to assert properties on objects of the real world, and simply speaking human communication languages, whenever they are dealing with logical sentences.

CHAPTER 1. INTRODUCTION

To determine the truth of a logical sentence, one can exploit a particular class of software for this task: a proving system comes with some specialized utilities to perform logical reasoning, so to fundamentally prove theorems as in mathematics. Their ability to state theorems depends on a small core environment, or logical framework, which is small enough to be understood by logicians. Pragmatically, higher-order logic (HOL) is built on top of the small core, and constitutes one of the many variations of object-logics enabling to tackle modern problems in mathematics.

Logical frameworks are particularly suitable to be extended with new objectlogics, depending on the domain-specific problem one is encountering during the modelling activity. Logically safe extensionality has been a key feature of interactive theorem proving (ITP) systems in the HOL family, which goes back to the influential LCF system in 1979 [START_REF] Michael | Edinburgh LCF: A Mechanised Logic of Computation[END_REF]. This goal motivated key principles like correctness by construction for primitive inferences in a fairly small kernel, flexible programmability in userspace via ML protecting this kernel by its type discipline, and top-level command interaction allowing for the development of layers of commands over this kernel. The principle of extensionality is still maintained in ITP systems like Coq [BC04] and Isabelle [START_REF] Nipkow | Isabelle's logic: HOL[END_REF], which offer an own, more high-level command language interface such as Gallina (Coq) [START_REF] Gérard | The gallina specification language: A case study[END_REF] and Isar (Isabelle) [START_REF] Wenzel | Isabelle/Isar -a versatile environment for human-readable formal proof documents[END_REF]. Extensionality leveraged the scalability of the definitional principles of the LCF approach, paving the way for specific support of specification constructs for, e. g., datatypes or recursive function definitions.

Support implementations for such constructs are called packages. (To our knowledge, the term was first used for a datatype package described in Thomas F. Melham's work [Mel91].) A package takes a piece of (abstract) syntax, for example the following datatype command defines natural numbers in Isabelle/HOL: datatype Nat = 0 | Suc Nat This datatype triggers the generation of a datatype theory, i. e., a collection of definitions and logical rules, which are HOL theorems. This datatype comprises the declaration of the type Nat, the constants 0 and the inductive closure of naturals formed with the successor Suc, as well as the rules 0 = Suc x (distinctness), Suc y = Suc x =⇒ y = x (injectivity), induction etc., with one word: the Peano axioms. In our system of reference Isabelle/HOL, this datatype theory is automatically generated from the syntax above, together with a number of rules allowing for efficient code generation or automatic proof support. These datatype theories are in many systems like Spec # [START_REF] Barnett | The Spec # programming system: An overview[END_REF], Dafny [START_REF] Koenig | Getting started with Dafny: A guide[END_REF], ACSL [BCF + 13], or JML [LPC + 13] generated as a collection of declarations and axiomatisations of its rules; in contrast, Isabelle/HOL, following the tradition of LCF-like systems like HOL Light [START_REF] Harrison | HOL Light Tutorial[END_REF] and HOL4 [START_REF] Norrish | The HOL System Tutorial[END_REF], derives these rules by defining the constructors 0 and Suc as functions on a Lisp-like S-Expression universe [START_REF] Mccarthy | LISP 1.5 programmer's manual[END_REF], i. e., by giving the constructors a denotational semantics rich enough to serve as a model for the datatype theories.

Writing packages is a highly complex task which is mastered only by a handful of engineers behind the different HOL systems. In this thesis, however, we address the issues of building packages to support, by a series of packages, an entire formal method behind a domain specific language L (we will describe after), beyond the necessary prerequisite of getting its semantics right. We aim at building tools that provide a domain specific formal environment of development for the embedded language, so that domain experts of L have to only acquaint a semantically sound subset of L to use the resulting tool. Simultaneously, other domain experts could be interested to practice automated reasoning on L by only programming with the theorem prover where the tool is relying on. To this end, we demonstrate what technical mechanisms and abstractions of the Isabelle framework can be combined to the construction of such multidisciplinary tool. The choice of the Isabelle framework is also due to its rapid evolution in the last ten years, which might influence other systems to use similar mechanisms (for example, the Paral-ITP Isabelle/Coq project1 [START_REF] Barras | Asynchronous processing of coq documents: From the kernel up to the user interface[END_REF]).

In this thesis, we instantiate the resulting formal method tool, to address in parallel a key problem of defining formal semantics for object-oriented programming languages and specification languages semantics, namely the representation of the underlying object-oriented datatype theory. By objectoriented datatype theory, we mean a set of rules related with the foundation of object-oriented languages, like class definitions as in the following Java code: These class definitions must be semantically represented in a "background theory" in systems like Spec # , JML, or Dafny. This formal theory reflecting the semantics of this code will comprise the type declaration A, C1 and C2, definitions of constructor functions must be given (representing the effect of object creation as in C1 c = new C1();) as well as cast operations (such as A a = (A) c) that can change the static type of an object to make it acceptable to interfaces requiring an A object; these coercions are usually inserted by the compiler (as in A d = c;) but have to be declared and defined for a formal treatment in a verification environment. Moreover, there are operations that test the dynamic type of an object, i. e., the type under which it is dynamically created. 2 In Java, this test is written d instanceof C1 which will thus yield true, while the static type of d is of course A. Together with the accessor (or destructor) functions to fields in objects like d.s, this results in a quite rich theory, with logical rules like: (X instanceof C1) ⇐⇒ (X instanceof C2) or ((C1)(A)Y) = Y , i. e., "an object Y cast up and down again semantically equals to itself." Here, Y is a free variable, for which a Milner style type-inference will infer the type C1 since the logical equality _ = _ has type α ⇒ α ⇒ bool. This "upcast downcast" property is vital in object-oriented datatype theories, e. g., for the implementation of generics in Java. In the following code:

ArrayList <A > elements = new ArrayList < >(); elements . add (c); 14 CHAPTER 1. INTRODUCTION c is not only cast up to A, but to Object and casts back to A again during the access, so elements.get(i) has the static type A. It turns out that objectoriented datatype theories are amazingly complex for fairly small class systems.

Contributions

As a basis for this work, we demonstrate for a particular formal method how in the Isabelle framework a formal method tool can be constructed. We developed a machine checked semantics for a large fragment of the Object Constraint Language OCL [Obj12] in the interactive theorem prover Isabelle/HOL [START_REF] Nipkow | Isabelle's logic: HOL[END_REF]. The result, called HOL-OCL 2.0 (which is a successor of HOL-OCL [START_REF] Achim | HOL-OCL -A Formal Proof Environment for UML/OCL[END_REF][START_REF] Achim | Semantic issues of OCL: Past, present, and future[END_REF][START_REF] Achim | HOL-OCL: Experiences, consequences and design choices[END_REF]), supports OCL specifications over UML class models using a textual notation. HOL-OCL 2.0 as a tool is based on a library defining its core semantic concepts called Featherweight OCL [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF], which also serves as basis for the ongoing OCL 2.5 standardisation at the OMG. Our formalisation already helped to find inconsistencies, e.g. in the semantics of the logical connectives, that are fixed in the last update of the standard. The opportunity to influence the standardisation of an object-oriented language that is widely used in industry is not the only motivation for choosing UML/OCL as basis for our work. We understand UML/OCL as a representative of a large family of object-oriented languages and, thus, our work provides a generic technique for formalising object-oriented languages as well as insights into properties of object-oriented systems in general. In particular, UML/OCL provides 1. a statically typed object model, offering a fairly "conventional" objectoriented datatype theory;

2. associations, two state interpretations of paths, and the distinction between strict and non-strict exceptional elements;

3. a compromise between an object-oriented specification and a programming language, that can be easily compiled to other members of the objectoriented language family.

Our tool HOL-OCL 2.0 addresses the fragment in UML concerned with objectoriented data modelling. HOL-OCL 2.0 comes with a number of specialized packages, for instance the Class Model Package to set up the underlying objectoriented datatype theory, or the Invariant & Operation Package supporting a formal contract language to define methods issued from a class model. Its design pursues several objectives, namely:

1. providing an environment for studying the semantics of the embedded language (e. g., UML/OCL); this formal semantics is currently part of an initiative to provide a new "Annex A" for the semantic definition of OCL 2.5 [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF],

2. providing an environment for proving properties over artefacts expressed in this domain specific language (are invariants consistent? are method contracts implementable?), and 3. providing an environment for animation, code-and test case generation for models expressed in UML/OCL.

CONTRIBUTIONS

To this end, we propose a new method to develop packages in an ITP system: instead of writing a package in the sole implementation language, the aforementioned objectives have suggested us to take even more advantage of the overall capacities of the ITP system. Our implementation comprises the development of the core packaging function in HOL, the use of a code generator to convert it to the meta-language of the ITP system, and the use of specific binding to command level syntax. Thus, the resulting tool reuses the infrastructure of the ITP platform, such as the asynchronous front-end Prover IDE, code and documentation generation facilities, and, last but not least, automated and interactive proof support. In more detail, we provide:

1. A model (or abstract syntax) of (a part of) the Isabelle API. This model has been published during this thesis [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF] and can be potentially reused by developers of other packages.

2. A model (or abstract syntax) of (a part of) UML/OCL. A simplified version of this model has been partly published in the same document [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF], together with a functional working example.

3. A "compiler" mapping UML/OCL class diagrams to Isabelle/HOL definitions and Isabelle/Isar proofs (this part is not yet published but the present thesis will give a more detailed overview of its content).

Thus, similar to conventional datatype packages, a component is built that derives the lemmas of an "object-oriented datatype theory" from a class model.

Being the basis for more abstract proofs from the problem domain, they allow for formal code verification, refinement and test generation techniques that UML models usually lack.

As consequence, our work can be seen as a major case study for our technique to develop packages. From the work done, it can be safely concluded that fairly large and complex packages can be implemented this way, without neither a sensible penalty with respect to efficiency nor to loss of interactivity: the Prover IDE continuous build and continuous check workflow handles as usual (without interruptions) all proof activities in the background.

HOL-OCL 2.0: A Formal Method Tool for UML/OCL

We introduce UML/OCL by a small example of a class model together with its class invariants and a method contract in OCL. Figure 1.3 describes a set of clients owning bank accounts in different banks using a textual representation that we share with other tools such as USE [START_REF] Gogolla | USE: A UMLbased specification environment for validating UML and OCL[END_REF]. Each account is either a Current account or a Savings account, and belongs to exactly one bank and one client. Clients younger than 25 years are allowed to overdraft by 250 e. Moreover, the balance of a savings account must be between 0 and max.

First, to enable OCL users to use HOL-OCL 2.0 for analysing UML/OCL specifications, details of the actual embedding need to be hidden as many as possible behind a suitable user interface. We use the flexibility of Isabelle's Isar language [START_REF] Wenzel | Isabelle/Isar -a versatile environment for human-readable formal proof documents[END_REF] as well as the extensionality of the Isabelle/jEdit Prover IDE to achieve this goal. Figure 1.5 shows the user interface of HOL-OCL 2.0 that is based on the Isabelle/jEdit Prover IDE. A domain expert can easily define (in the red frame of Figure 1.5) a UML/OCL model similar as Figure 1. 4 1.3, as well as use the standard Isar commands for theorems and proofs over this UML/OCL specification. Even the automatically UML/OCL level type information is accessible to the user by hovering over sub-expressions. Here, not only the encoded HOL types are shown, our implementation is able to show the actual OCL types which hides the complexity of the actual embedding from the users of HOL-OCL 2.0 . Clicking on operations inside OCL expressions allows for the navigation into their semantic definitions in the library.

Second, to enable a high-degree of automation as well as a user friendly syntax for defining UML/OCL models, instances of models, or proof obligation, we implement in HOL-OCL 2.0 the following packages:

• Class Model Package for declaring a UML data model, i. e., classes, associations, aggregations, enumerations.

• Invariant & Operation Package for declaring, in the context of an already 1.1. CONTRIBUTIONS (* in deep-mode: the generated content can be inspected *)

Figure 1.5: The HOL-OCL 2.0 system (user interface) defined class model, OCL class invariants and operation contracts.

• Instance Package for declaring class instances, i. e., objects.

• State Package for grouping objects together in a common state.

• Transition Package for transition properties over a pair of pre-and poststate.

For example, after defining our exemplary data model using the Class Model Package (recall Figure 1. Since the Instance command is tightly connected with the typing engine of Isabelle, it becomes possible to infer most of the OCL types without explicit type annotations. For the case of Instance, even the inference of multiplicities is fully automatic (and respect the bidirectional sense): after the type-checking stage, CHAPTER 1. INTRODUCTION we does not have that "C1 .c_accounts is equal to Set{ S1 }", instead, we have correctly that it is equal to Set{ S1 , A1 }, since C1 appears as an "owner" of A1.

Besides definitions, HOL-OCL 2.0 packages also prove various user-defined properties (lemmata) over the UML/OCL model. In our example, the Class Model Package already proved that down casting an object X from the topmost class OclAny to Savings does yield an error if X is not a subtype of Account: lemma assumes τ |= X.oclIsUndefined() assumes τ |= X.oclIsKindOf (Account) shows τ |= (X :: •OclAny).oclAsType(Savings).oclIsInvalid()

Organization of this Thesis

(Chapter 2) After a more detailed high-level introduction into the formal framework Isabelle in which this work is done, (Chapter 3) we give an introduction on object-oriented modelling in UML/OCL and provide an in-depth comparison of UML/OCL to other object-oriented languages such as Eiffel or JML.

Then, we present the main contributions of our work:

(Chapter 4) we introduce our tool for UML/OCL, namely HOL-OCL 2.0, with an emphasis on Featherweight OCL, its semantic foundation, (Chapter 5) we reveal its technical architecture and implementation based on the Isabelle framework, (Chapter 6) we provide several means to practice meta theorem proving and interactive generations in HOL-OCL 2.0, (Chapter 7) we construct the object-oriented datatype theory inside HOL, and instantiate the resulting formal semantics issued from the tool. We give a method to describe sub-typing semantically and embed it into languages with Milner-style type inference.

(Chapter 8) Finally, from an end-user perspective, we evaluate our system in a collection of medium-sized case studies, with a discussion of cornercases and consequences resulting from semantic decisions, in particular with regard to the two exception elements invalid and null, and (Chapter 9) discuss our lessons learned from following two different implementation strategies for building a formal UML/OCL tool based on Isabelle/HOL.

C h a p t e r 2 Background: The Isabelle Framework

A Gentle Introduction to Isabelle

Isabelle [START_REF] Nipkow | Isabelle/HOL-A Proof Assistant for Higher-Order Logic[END_REF] is a generic theorem prover. New object-logics can be introduced by specifying their syntax and natural deduction inference rules. Among many logics, Isabelle supports First-Order Logic (FOL), Zermelo-Fraenkel set theory, and for instance Church's Higher-Order Logic (HOL).

The core language of Isabelle is a typed λ-calculus providing a uniform term language T in which all logical entities are represented:1

T ::= C | V | λ V. T | T T
where:

• C is the set of constant symbols like operators on pairs "fst" or "snd".

Isabelle's syntax engine supports mixfix notation for terms. "(_ =⇒ _) A B" or "(_ + _) A B" can be parsed and respectively printed as "A =⇒ B" or "A + B".

• V is the set of variable symbols like x, y, z. . . Variables standing in the scope of a λ-operator are called bound variables, all others are free variables.

• λ V. T is called a λ-abstraction, like as example the identity function λ x. x. A λ-abstraction forms a scope for the variable V .

• T T is called an application.

These concepts are not at all Isabelle specific and can be found in many modern programming languages ranging from Haskell [HHJW07] over Python [vR07] to Java.

Terms are associated to types by a set of type inference rules, similar to the Hindley-Milner type system [Hin69, [START_REF] Milner | A theory of type polymorphism in programming[END_REF][START_REF] Damas | Principal type-schemes for functional programs[END_REF]. Only terms for which a type can be inferred are considered as legal input to the Isabelle system, such terms 20 CHAPTER 2. BACKGROUND: THE ISABELLE FRAMEWORK are typed terms. The type τ of typed terms can be inductively defined:

2 τ ::= T V | T V :: Ξ | τ ⇒ τ | (τ, . . . , τ) T C
• T V is the set of type variables like α, β, . . . The syntactic categories V and T V are disjoint, thus x is a possible type variable.

• Ξ is a set of type-classes [WB89] like "ord", "order", "linorder". . . This feature in the Isabelle type system is inspired by Haskell type classes. A type class constraint such as α :: order expresses that the type variable α may range over any type that has the algebraic structure of a partial ordering (as it is configured in the Isabelle/HOL library).

• The type τ 1 ⇒ τ 2 denotes the total function space from τ 1 to τ 2 .

• T C is a set of type constructors like "(α) list" or "(α) tree". Again, Isabelle's syntax engine supports mixfix notation for type terms: e. g. cartesian products α × β are understood as (α, β) prod. Also null-ary typeconstructors like "() bool", "() nat" and "() int" are possible, although the parentheses of nullary type constructors are usually omitted.

In the following, to designate elements in T V , we will usually omit the quote " " symbol in front of lowercase Greek letters. Isabelle accepts also the notation t :: τ as type assertion in the term language, where t :: τ means "t is required to have the type τ ". The type of typed terms can contain free type variables, like in the types of x and y when the system is automatically inferring this term x + y = y + x. By convention, free type variables are implicitly universally quantified.

An environment providing Ξ, T C and a map from constant symbols C to types (built over these Ξ and T C) is called a global context. It provides a kind of signature or a mechanism to construct the syntactic material of a logical theory.

The most basic (built-in) global context of Isabelle provides just a language to construct logical rules. More concretely, it provides a constant declaration for the (built-in) meta-level implication _ =⇒ _ allowing to form constructs like A 1 =⇒ • • • =⇒ A n =⇒ A n+1 , which are viewed as a rule of the form "from assumptions A 1 to A n , infer conclusion A n+1 " and which is written in Isabelle syntax as: A 1 ; . . . ; A n =⇒ A n+1 or also usually seen as:

A 1 • • • A n A n+1
Moreover, the built-in meta-level quantification Forall(λ x. E x), pretty-printed and parsed as x. E x, captures the usual side-constraints "x must not occur free in the assumptions" for quantifier rules. Meta-quantified variables can be considered as "fresh" free variables. Meta-level quantification leads to a generalization of Horn-clauses of the form:

x 1 , . . . , x m . A 1 ; . . . ; A n =⇒ A n+1

2 Our presentation is again slightly different than the Isabelle implementation to improve readability.

HIGHER-ORDER LOGIC (HOL)

Isabelle supports forward and backward reasoning on rules. For backwardreasoning, a proof-state can be initialized in a given global context and further transformed during the proof. For example, a proof of φ, using the Isabelle/Isar [START_REF] Wenzel | Isabelle/Isar -a versatile environment for human-readable formal proof documents[END_REF] language, will look as follows in Isabelle: lemma label : φ apply (case_tac [. . .]) apply simp_all done (In this document, we will sometimes simply abbreviate Isabelle/Isar as Isar.) This proof script instructs the Isabelle system to prove φ by case distinction followed by a simplification of all resulting proof states ("The simplifier" is described in section 9.3 in the manual [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF]). Such a proof state is a sequence of generalized Horn-clauses (called subgoals) φ 1 , . . . , φ n with a goal φ. Proof states are usually represented in mathematical textbooks as: label : φ 1. φ 1 . . .

n. φ n

Subgoals and goals may be extracted from the proof state into theorems of the form φ 1 ; . . . ; φ n =⇒ φ at any time.

By extending global contexts with theorems, axioms and proofs, we get at the end a theory which has been constructed step by step. Beyond the basic mechanism of extending a global context with raw types (with type constructors, type class, constant definitions, or axioms), Isabelle offers a number of commands that allow for more complex extensions of theories in a logically safe way, i. e., by directly avoiding the use of axioms. In this document, we will use the same colour for commands as they appear in Isabelle/jEdit. Although commands appear most of the time in blue: "lemma", "datatype", "theory"; certain commands are also rendered in red like apply or done. However to simplify the presentation, in this document, the colour of commands can merely be considered as a syntactic indication with no particular meaning (i. e., in the source code, commands are essentially seemingly built).3

Higher-Order Logic (HOL)

Higher-Order Logic (HOL) [Chu40, And02] is a classical logic based on a simple type system. Isabelle/HOL is a theory extension of the basic Isabelle core language with operators and the seven axioms of HOL. Together with large libraries, the overall constitutes an implementation of HOL. (Thus we will sometimes simply abbreviate Isabelle/HOL by HOL in this document.) Isabelle/HOL provides the usual logical connectives like _ ∧ _, _→_, ¬_ as well as the object logical quantifiers ∀x. P x and ∃x. P x. In contrast to FOL, quantifiers may range over arbitrary types, including total functions f :: τ 1 ⇒ τ 2 . HOL is centered around CHAPTER 2. BACKGROUND: THE ISABELLE FRAMEWORK extensional equality _ = _ :: α ⇒ α ⇒ bool. Extensional equality means that two functions f and g are equal if and only if they are point-wise equal. This is captured by the rule: (x. f x = g x) =⇒ f = g. HOL is more expressive than FOL, since among many other things, induction schemes can be expressed inside the logic. For example, the standard induction rule on natural numbers in HOL: P 0 =⇒ (x. P x =⇒ P (x + 1)) =⇒ P x is just an ordinary rule in Isabelle which is in fact a proven theorem in the theory of natural numbers. This example exemplifies an important design principle of Isabelle: theorems and rules are technically the same, paving the way to derived rules and automated decision procedures based on them. This has the consequence that these procedures are consequently sound by construction with respect to their logical aspects (they may be incomplete or failing, though).

On the one hand, Isabelle/HOL can be viewed as a functional programming language like SML [START_REF] Milner | The definition of standard ML: revised[END_REF] or Haskell, by reading Isabelle/HOL definitions as one is reading any declarations in a functional programming language, i. e. by omitting the reading of Isar proof scripts. Conversely, type definitions in a functional programming language can be viewed as formulae part of the specification language of Isabelle/HOL. Generally in this document, we will simply abbreviate elements belonging to the Isabelle/Isar language or the Isabelle/HOL language as just Isabelle/Isar_HOL (or Isar_HOL).

Isabelle/HOL offers support for a particular methodology to extend given theories in a logically safe way: a theory extension is conservative if the provability of a formula in the extended theory is the same as in the original theory. Then the consistency of an extended theory depends on the consistency of the original one. Conservative extensions apply to different families of definitions: constant definitions, type definitions, datatype definitions, primitive recursive definitions and well founded recursive definitions.

Embedding a language L into an object-logic like HOL consists to assimilate the largest possible subset of L as integral constituent of the object-logic. Consequently, the aim is to maximize the support of L in an unambiguous way, assuming the trust one might have on the object-logic. Trust also depends on how embeddings are performed. Deep embedding and shallow embedding are seen as the two possible complementary method of embedding for a language [BGG + 93]. Generally, using shallow embeddings for a formal specification or programming language in HOL is by no means a new technique [JS94, ACM94, BRW03, BW09]. Over the years, a substantial body of languages and tools have been developed along this line, which have seen substantial applications-we cite only the current flagships of this development Isabelle/SIMPL [START_REF] Schirmer | A sequential imperative programming language syntax, semantics, hoare logics and verification environment[END_REF] and the seL4 verification project [KAE + 10].

Some Libraries and Operations of Isabelle/HOL

Isabelle/HOL provides a large collection of theories like sets, lists, orderings, and various arithmetic theories. Theories only contain rules derived from conservative definitions. As an example of conservative extension, the library includes the type constructor τ ⊥ := ⊥| _ :: α that assigns to each type τ a type τ ⊥ disjointly extended by the exceptional element ⊥. The function _ :: α ⊥ ⇒ α is the inverse of _ (it is unspecified for ⊥). Partial functions α β are defined as functions α ⇒ β ⊥ supporting the usual concepts of domain "dom _" and range "ran _".

As another example, typed sets are conservatively built in the Isabelle libraries on top of the kernel of HOL as functions to bool. Consequently, the constant definitions for membership is as follows:4 Isabelle's syntax engine is instructed to accept the notation {x | P } for Collect (λ x. P) and the notation s ∈ S for member s S. As it can be inferred from the example, constant definitions are axioms that introduce a fresh constant symbol (which must not be based on a recursive expression, or having free variables). This type of axiom is logically safe since it works like an abbreviation. The syntactic side conditions of so-introduced axioms are mechanically checked.

Then it becomes straightforward to express the usual operations on sets as conservative extensions too, like for example _ ∪ _, _ ∩ _ ::

α set ⇒ α set ⇒ α set.
Similarly, a set of logical rules are "compiled" from the following statements, which introduce the types option and list: datatype α option = None | Some α datatype α list = Nil ("[]") | Cons α "α list" (infixr "#" 65)

Here "[]" or "_#_" are an alternative syntax for Nil or Cons a l. Moreover, the commands syntax and translations [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF] can additionally (recursively) define [a, b, c] as an alternative syntax for a#b#c#[]. Besides the constructors None, Some, [] and Cons, there is the matching operation to conditionally return a term by case analysis provided a general term x, whose type has been defined with datatype, as example:

case x of None ⇒ F | Some a ⇒ G a
The datatype package automatically derives a set of properties in front of each command datatype [BW99, BHL + 14, BDP + 16]. One way to understand this command is to view it as a kind of macro (albeit its syntax is inspired by functional programming languages), which generates a number of constant definitions and theorems from the type declaration option or list. So the generated lemmas are also implicitly proved in the background, this command constructs a model of the constructors and derive its properties:

(case [] of [] ⇒ F | (a#r) ⇒ G a r) = F (case b#t of [] ⇒ F | (a#r) ⇒ G a r) = G b t [] = a#t
-distinctness (a = [] =⇒ P) =⇒ (x t. a = x#t =⇒ P) =⇒ P -exhaust P [] =⇒ (a t. P t =⇒ P (a#t)) =⇒ P x -induct CHAPTER 2. BACKGROUND: THE ISABELLE FRAMEWORK Besides datatype, other packages are natively present when starting Isabelle. For example the fun command serves to define well-founded recursive functions [Kra06,[START_REF] Krauss | Defining Recursive Functions in Isabelle/HOL[END_REF]. Thus, we may define the sort operation on linearly ordered lists as follows: Similar as datatype, the fun command can again be seen as a kind of macro: a conservative construction is implied; the derivation of the equations ins x[] = [x] and ins x(y#ys) = if x < y then x#y#ys else y#(ins xys) is done automatically involving a termination proof (most of the time automatically proved for basic functions). This involved construction assures logical safeness: in general, just adding axioms for recursive equations causes inconsistency for non-terminating functions. The resulting equations can now be used in the Isabelle simplifier.

The library of Isabelle/HOL constitutes a comfortable basis for defining the OCL library or embed a specification language. In particular, Isabelle manages a set of executable types and operators, i. e., types and operators for which a compilation to external languages is possible, using codegeneration [Haf09, [START_REF] Haftmann | Code generation via higherorder rewrite systems[END_REF][START_REF] Haftmann | Code generation from Isabelle theories[END_REF]. The supported external languages in Isabelle for code-generation are currently Haskell, OCaml [LDF + 14], Scala and SML. As one example, arithmetic types such as int are appropriately optimized to be executed fast depending on the chosen external language. Datatypes and recursive functions are as well supported to be executed in these external languages (assuming their definitions contain only executable operators).

Another mean to do executions in Isabelle is to use the value command (whose functioning resembles to how code-generation works) [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF]. Then, after typing value "3 + 7" in Isabelle/jEdit [Wen12, Wen16c], we will get 10 as result. Generally value can work with many ground expressions (with no free variables). So most of OCL ground terms are in fact executable in Isabelle, due to prior special setups in the Featherweight OCL library.

How this Thesis was Generated from Isabelle/HOL Theories

Isabelle, as a framework for building formal tools [WW07, Wen09, Wen14], provides the means for generating formal documents. With formal documents (such as the one the reader is reading) we refer to documents that are machine generated with a process ensuring certain formal guarantees. In particular, all the textual content manipulating definitions, formulae, . . . , types are checked for consistency during the document generation. For writing documents, Isabelle supports the embedding of informal texts using a L A T E X based markup language within the theory files. One other alternative to embed informal documents is to directly write L A T E X code in usual "_.tex" files, and then link them with the formal content generated by Isabelle. Generally, by manually inspecting the source code of Isabelle theory files, one

HOW THIS THESIS WAS GENERATED FROM ISABELLE/HOL THEORIES 27

can have a clear estimation of the size of informal texts versus formal texts of a given project. Many similar recommendations regarding certification practices can be found for example in a recent LRI's technical report [START_REF] Nemouchi | Isabelle in certification processes[END_REF]. In this document, all the formal contents are respectively situated in:

• Section 8.2, Appendix A: the Appendix version is a version where proofs are displayed.

• Appendix B, Appendix C

• Appendix D

• Appendix E, Appendix F, Appendix G, Appendix H

• Appendix I, Appendix J Everything else was "informally" written by hand. This does not mean however that the formal contents have also been written by hand, in particular Appendix B and Appendix C were generated. As remark, not all formal contents have been included in the present thesis, otherwise we would obtain a document exceeding 1000 pages (and without counting the size of generated content like Appendix B and Appendix C). Still, to ensure consistencies of certain informal parts, Isabelle supports the use of antiquotations within informal texts, that refer to the formal parts and that are checked while generating the actual document as PDF. For example, in an informal text, the antiquotation "@{thm OclN ot_not}" will instruct Isabelle to abort the generation with an error in case no OCL theorems with the name OclN ot_not were found, otherwise the system will replace the antiquotation with the actual theorem, i. e. "not (not X) = X" (as it is the case here). So one can notice at this point that the size of informal content also depends on the size of the (expanded) generated content.

We illustrate the approach: Figure 2.1 shows the jEdit-based development environment of Isabelle. At the bottom, we have an excerpt of one of the core theories of this thesis, mixing both informal texts and formal texts (with some antiquotations in the informal texts), whereas at the top we have a "true" informal content in L A T E X. Figure 2.2 shows only two superimposed windows, offering different views on the generated PDF document, where in particular all corresponding antiquotations have been correctly resolved.

C h a p t e r 3 Background: UML/OCL

UML/OCL and its Semantics

Object-oriented, class-based constraint or generally behavioral specification languages, such as ACSL, JML, or Spec # are domain-specific logical languages used to express properties (usually in the form of contracts, invariants of classes as well as pre-conditions and post-conditions of methods) on the manipulated models, e. g., object-oriented data models or object graphs. These object-oriented data models are usually defined in an object-oriented modelling or programming language. For example, OCL [Obj12] allows to express constraints over data models defined in UML [Obj11b] while the Java Modeling Language (JML) is employed to specify constraints over Java programs. In the following, we will introduce UML/OCL as an example of an object-oriented specification language and, thereafter, will briefly compare with other specification languages, such as ACSL, JML, or Spec # .

UML/OCL as OO Specification Languages

The Unified Modelling Language (UML) [Obj11a, Obj11b] is one of the most widely used diagrammatic object-oriented modelling language in industry. Besides a number of widely popular visualisation formats for some aspects of an "UML Model," it offers a normed abstract-syntax (defined by the "UML Meta-Model") processed by several IDE's; the language and tool-support is particularly suited for defining domain-specific (sub)-languages. UML is defined in an open process by the Object Management Group (OMG), i. e., an industry consortium. For some parts of the language formal analysis tools are available based on an OMG standardised or tool-vendor specific formal semantics. While UML is mostly known as diagrammatic modelling language (e. g., visualizing class models), it also comprises a textual language, called Object Constraint Language (OCL) [Obj12]. OCL is a textual annotation language, originally conceived as a three-valued logic, that turns substantial parts of UML into a formal language. Unfortunately the semantics of this specification language, captured in the "Annex A" (originally, based on the work of Mark Richters [START_REF] Richters | A Precise Approach to Validating UML Models and OCL Constraints[END_REF]) of the OCL standard leads to different interpretations of corner cases. Many of these corner cases had been subject to formal analysis since more than nearly fifteen years (for 29 CHAPTER 3. BACKGROUND: UML/OCL example [LTW14, BLTW13, BKLW10, BW02b, CKM + 02, MC99, HCH + 98]).

At its origins [START_REF] Richters | A Precise Approach to Validating UML Models and OCL Constraints[END_REF]Obj97], OCL was conceived as a strict semantics for undefinedness (e. g., denoted by the element invalid1), with the exception of the logical connectives of type Boolean that constitute a three-valued propositional logic. At its core, OCL comprises four layers:

1. Operators (e. g., _ and _, _ + _) on built-in data structures such as Boolean, Integer, or typed sets (Set(_)).

2. Operators on the user-defined data model (e. g., defined as part of a UML class model) such as accessors, type casts and tests.

3. Arbitrary, user-defined, side-effect-free methods called queries, 4. Specification for invariants on states and contracts for operations to be specified via pre-and post-conditions.

Motivated by the need for aligning OCL closer with UML, recent versions of the OCL standard [Obj06, Obj12] added a second exception element. While the first exception element invalid has a strict semantics, null has a non strict semantic interpretation. Unfortunately, this extension results in several inconsistencies and contradictions. These problems are reflected in difficulties to define interpreters, code-generators, specification animators or theorem provers for OCL in a uniform manner and resulting incompatibilities of various tools.

For the OCL community, the semantics of invalid and null as well as many related issues resulted in the challenge to define a consistent version of the OCL standard that is well aligned with the recent developments of the UML. A syntactical and semantical consistent standard requires a major revision of both the informal and formal parts of the standard. To discuss the future directions of the standard, several OCL experts met in November 2013 in Aachen to discuss possible mid-term improvements of OCL, strategies of standardization of OCL within the OMG, and a vision for possible long-term developments of the language [BCC + 13]. During this meeting, a Request for Proposals (RFP) for OCL 2.5 was finalized and meanwhile proposed. In particular, this RFP requires that the future OCL 2.5 standard document shall be generated from a machinechecked source. This will ensure • the absence of syntax errors,

• the consistency of the formal semantics,

• a suite of corner-cases relevant for OCL tool implementors.

As a basis of this work, we develop in this thesis HOL-OCL 2.0 in Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL-A Proof Assistant for Higher-Order Logic[END_REF] 2 . HOL-OCL 2.0 comes with a machine-checked library formalizing a core language of OCL, called Featherweight OCL [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF] 3 . The semantic theory of Featherweight OCL is based on a "shallow embedding" and focuses on a formal treatment of the key-elements of OCL (rather than a full treatment of all operators and thus, a "complete" implementation). In contrast to full OCL, it comprises just the logic captured in Boolean, the basic datatypes Void, Integer, Real and String, the collection types Set, Pair, Sequence and Bag. The generic construction principle of class models is also supported [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF] 4 , we will precisely demonstrate in Chapter 5 how to generate this type-safe construction, with respective instantiations in Chapter 7, Appendix B and Appendix C. The formal semantics developed in Featherweight OCL is intended to be a proposal for the standardization process of OCL 2.5, which should ultimately replace parts of the mandatory part of the standard document [Obj12] as well as replace completely its informative "Annex A."

The semantic definitions are in large parts executable, namely the essence of Set, Pair, Sequence and Bag constructions (as remark, HOL is a classical logic where some parts could be not constructively defined). The first goal of its construction is consistency, i. e., it should be possible to apply logical rules and/or evaluation rules for OCL in an arbitrary manner always yielding the same result. Moreover, except in pathological cases, this result should be unambiguously defined, i. e., represent a value.

To motivate the need for logical consistency and also the magnitude of the problem, we focus on one particular feature of the language as example: Tuples. Recall that tuples (in other languages known as records) are n-ary Cartesian products with named components, where the component names are used also as projection functions: the special case Pair{x:First, y:Second} stands for the usual binary pairing operator Pair{true, null} and the two projection functions x.First() and x.Second(). For a developer of a compiler or proof-tool (based on, say, a connection to an SMT solver designed to animate OCL contracts) it would be natural to add the rules Pair{X, Y}.First() = X and Pair{X, Y}.Second() = Y to give pairings the usual semantics. At some place, the OCL Standard requires the existence of a constant symbol invalid and requires all operators to be strict. To implement this, the developer might be tempted to add a generator for corresponding strictness axioms, producing among hundreds of other rules Pair{invalid, Y} = invalid, Pair{X, invalid} = invalid, invalid.First() = invalid, invalid.Second() = invalid, etc. Unfortunately, this "natural" axiomatization of pairing and projection together with strictness is already inconsistent. One can derive: Pair{true, invalid}.First()= invalid.First() = invalid and:

Pair{true, invalid}.First()= true which then results in the absurd logical consequence that invalid = true. Obviously, we need to be more careful on the side-conditions of our rules. And obviously, only a mechanized check of these definitions, following a rigorous CHAPTER 3. BACKGROUND: UML/OCL methodology, can establish strong guarantees for logical consistency of the OCL language. This leads us to our second goal of this document: it should not only be usable by logicians, but also by developers of compilers and proof-tools. For this end, we derive from the Isabelle framework, many definitions and logical rules for formal interactive and automated proofs on UML/OCL specifications. These logical rules are necessary for execution rules and test-cases to reveal potential corner-cases related with the semantics the implementors are defining.

OCL is an annotation language for UML models, in particular class models allowing for specifying data and operations on them. As such, it is a typed object-oriented language. This means that it is-like Java or C++-based on the concept of a static type, that is the type that the type-checker infers from a UML class model and its OCL annotation, as well as a dynamic type, that is the type at which an object is dynamically created5 . Types are not only a means for efficient compilation and a support of separation of concerns in programming, there are of fundamental importance for our goal of logical consistency: it is impossible to have sets that contain themselves, i. e., to state Russell's paradox in OCL typed set-theory. Moreover, object-oriented typing means that types can be in sub-typing relation; technically speaking, this means that any object X can be cast with the operator (_ :: C i).oclAsType(C j) from one class types C i to another class types C j , and under particular conditions (to be later described), these casts are semantically lossless: (X :: C i).oclAsType(C j).oclAsType(C i) = X Furthermore, object-oriented means that operations and object-types can be grouped to classes on which an inheritance relation can be established; the latter induces a sub-type relation between the corresponding types.

Here is a feature-list of Featherweight OCL:

• it specifies key built-in types such as Boolean, Void, Integer, Real and String as well as generic types such as Pair(T,T'), Sequence(T), Bag(T) and Set(T).

• it defines the semantics of the operations of these types in denotational form (to be explained in Chapter 4), and thus in an unambiguous (and in Isabelle/HOL executable or animatable) way.

• it develops the theory of these definitions, i. e., the collection of lemmas and theorems that can be proven from these definitions.

• all types in Featherweight OCL contain the elements null and invalid; including in particular the Boolean type, so we obtain a four-valued logic. Consequently, Featherweight OCL contains the derivation of the logic of OCL.

• collection types may contain null (so Set{null} is a defined set) but not invalid (Set{invalid} is just invalid).

• With respect to the static types, Featherweight OCL is a strongly typed language in the Hindley-Milner tradition. So the explicit usage of casts are needed whenever for example one attempts to apply an attribute a to an object X :: C i , and where a has been defined in C j (so not in C i). On the other hand, one can also assume there is a pre-processing to automatically introduce these explicit conversions (i. e., to remove the need to write .oclAsType(_)).6

• Featherweight OCL types may be arbitrarily nested. For example, the expression Set{Set{1,2}} = Set{Set{2,1}} is legal and true.

• All object types are represented in an object universe 7 . The universe construction also gives semantics to type casts, dynamic type tests, as well as functions such as allInstances(), or oclIsNew(). The object universe construction is conceptually described and demonstrated at an example.

• As part of the OCL logic, Featherweight OCL develops the theory of equality in UML/OCL. This includes the standard equality, which is a computable strict equality using the object references for comparison, and the not necessarily computable logical equality, which expresses the Leibniz principle that "equals may be replaced by equals" in OCL terms.

• Technically, Featherweight OCL is a semantic embedding into a powerful semantic meta-language and environment, namely Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL-A Proof Assistant for Higher-Order Logic[END_REF].

It is a so-called shallow embedding in HOL; this means that types in OCL are mapped one-to-one to types in Isabelle/HOL. Ill-typed OCL specifications can therefore not be represented in Featherweight OCL and a type in Featherweight OCL contains exactly the values that are possible in OCL.

A Running Example for UML/OCL

The Unified Modelling Language (UML) [Obj11a, Obj11b] comprises a variety of model types for describing static (e. g., class models, object models) and dynamic (e. g., state-machines, activity graphs) system properties. One of the more prominent model types of the UML is the class model (visualized as class diagram) for modelling the underlying data model of a system in an object-oriented manner.

Throughout this document, we will use a small example describing a set of flights and their passengers, being clients with reservations or staff onboard. The journey of a client may be a sequence of flights, each one departing from the city of arrival of the previous one. The client must have a reservation on all the flights composing his journey. The passengers of a flight are the clients having reservation for this flight and the staff working onboard. A flight cannot have more clients onboard than the number of seats.

Figure 3.1 shows the UML class diagram of this particular flight example. supported by our HOL-OCL 2.0 tool as well as the USE tool [START_REF] Richters | OCL: Syntax, semantics, and tools[END_REF]). This example contains the major constructs in UML class models: classes and inheritance hierarchies, collection annotations and cardinalities on association ends, (self) associations and (self) aggregations, along which navigations are possible.

We model persons and flights as classes Person and Flight, as we would do in Java. 8 Classes can have attributes (e. g. the number of seats) as well as associations to other classes. Associations allow us to model relations between objects. For example, we model the relation of being a passenger as an association between the classes Person and Flight. Overall, associations in UML are very similar to relations in entity-relationship (ER) models [Che76] and as relations in ER models, UML associations are equipped with multiplicities. The multiplicity * of the association end flights models that each instance of the class, i. e. each object Person can be associated to arbitrary many (including zero) instances of the class Flight (a person can be no passenger at all or a passenger of one or several flights). An association may be more than a simple relation between classes when these classes participate in a whole/part relationship [START_REF] Barbier | The whole-part relationship in the unified modeling language: A new approach[END_REF]: such an association is called an aggregation and is depicted by an unfilled diamond. In the example, a flight is associated to a sequence of reser-Figure 3.3: Modelling flight reservations in HOL-OCL 2.0: OCL part vations by an aggregation, meaning that this sequence is part of the description of a flight, as the number of seats is.

Many object-oriented programming languages, such as Java, do not support associations (or relations) as first-class citizens: associations are usually represented as if they were aggregations, by collection type attributes for the association ends together with additional constraints that need to ensure the consistency of the objects taking part in the association. Besides associations, UML supports the inheritance relation between classes (also called generalization): in the example, the class Client is a sub-class (sub-type) of the class Person (superclass).

Such data models (as Figure 3.2) are, usually, not precise enough: our data model would allow flights with zero or even a negative number of seats. Objectoriented constraint languages allow to refine such data models and, thus, to avoid such unwanted states. We can use a simple class invariant to state that flights need to have a positive number of seats:

Context f : Flight

Inv A : f . seats > 0

We can also use operation contracts to specify operations' behaviour in terms of pre-and post-conditions. For example, for a client to cancel a reservation, this client must own the reservation (pre-condition). When the cancellation is done, this client does not have a reservation for this flight anymore (post-condition).

The construct @pre does a referencing in the pre-state (like \old in JML and OldValue in Spec #).

OCL is a four-valued logic with quantifiers, supporting the non-strict exception element null and the strict exception element invalid. Moreover, OCL supports a rich library of built-in datatypes including integers and typed sets.

In our Isabelle/HOL formalisation, HOL-OCL 2.0, we can express such invariants and contracts using a slightly different syntax for the context specification.

Figure 3.3 additionally shows a number of OCL constraints for our flight example. For instance, the first two constraints respectively state that the number of reservations must not exceed the number of seats; and the passengers taking a flight are exactly equal to those who have reserved the flight.

C h a p t e r 4 Semantic Layers of Featherweight OCL

The semantic theory of Featherweight OCL is organized in several semantic layers. The following three layers will provide a "minimal" core semantics of built-in data-structures, so to support in particular the OCL type Boolean.

• The first layer, called the denotational semantics comprises a set of definitions of the operators of the language. Presented as definitional axioms inside Isabelle/HOL, this part assures the logically consistency of the overall construction. The denotational definitions of types, constants and operations, and OCL contracts represent the "gold standard" of the semantics.

• The second layer, called logical layer, is derived from the former and centered around the notion of validity of an OCL formula P . For a statetransition from pre-state σ to post-state σ , a validity statement is written (σ, σ) P . Its major purpose is to logically establish facts (lemmas and theorems) about the denotational definitions.

• The third layer, called algebraic layer, also derived from the former layers, tries to establish algebraic laws of the form P = P ; such laws are amenable to equational reasoning and also help for automated reasoning and codegeneration. For an implementor of an OCL compiler, these consequences are of most interest.

Then come the next semantic layers covering construction of UML class models, composed of:

• the state layer describing state-related operations like allInstances(), and

• the object-oriented datatype layers giving semantics to UML class models over this, comprising the theory of accessors, type casts and tests.

For space reasons, we will restrict ourselves in this document to a few operators and make a traversal through all five layers to give a high-level description of our formalization. Especially, the details of the semantic construction for sets, sequences, bags are excluded from a presentation here, but can all be found in our associated formalization [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF]. Similarly, the semantics of UML/OCL operations and invariants is further made precise in that document.

CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL

Denotational Semantics of Types

Definition "UML/OCL types": The syntactic material for type expressions, called TYPES(C, E), is inductively defined as follows:

• C ⊆ TYPES(C, E) are object types.

• E ⊆ TYPES(C, E) are enumerate types. Enumerate types are basically sum types: a form of Isabelle datatype without polymorphic parameters.

• Void, Boolean, Integer, Real, String are base types T base ⊆ TYPES(C, E).

• Sequence m (X), Set m (X), and Pair(X,Y) are collection types in TYPES(C, E) if X, Y ∈ TYPES(C, E).

These collection types are particular dependent types [SU06]: the multiplicity m is a list of intervals constraining the size of the corresponding sequence or set. An interval [i min ..i max] is composed of two lifted naturals nat of the form (nat ⊥ × nat ⊥) where the bottom element is conventionally represented as a star "*", this additional element means an arbitrary allowed number. For a sequence or set to be classified as welltyped, it must exist one interval in the list m such that i min ≤ s ≤ i max , with s the size of the sequence or set.

Whenever m evaluates to the interval *1 , the multiplicity information can be omitted and in this case we will just write Sequence(X) and Set(X).

A syntactic sugar is provided for building arbitrary tuples:

(X 1 , • • • ,X n) is a shorthand for Pair(X 1 , • • • Pair(X n-2 ,Pair(X n-1 ,X n)) • • •) for n ≥ 2.
Types in tuples can be preceded with additional labelling variables (x 1 :X 1 , • • • ,x n :X n) where x 1 , • • • , x n are labels for naming individuals of the respective types X 1 , • • • , X n . These labels are typically used when defining UML/OCL contracts.

• X:Y are functional types in TYPES(C, E) if X, Y ∈ TYPES(C, E).

Like tuples, (x:X):Y is an additional syntax for describing functional types, where x is a stamped label. Functional types mainly appear together with tuples when writing UML/OCL contracts. Depending on the context, in positions where no ambiguities with tuples occur, functional types can be shorten to (x 1 :X 1 , • • • ,x n :X n) (where n ≥ 1), in this case the absent type Y has the same semantics as Void.

As another notation, we can use X->Y to represent functional types. Thus (X 1 , • • • ,X n)->Y can be used without labelling names (as this does not conflict with tuples).

We define TYPES 0 (C, E) as the smallest subset of TYPES(C, E) built without using functional types in all recursive calls. In the following, TYPES 0 (C, E) and TYPES(C, E) will be respectively shorten to TYPES 0 and TYPES.

DENOTATIONAL SEMANTICS OF TYPES

The OCL core language is composed of 1. operators on built-in data structures such as Boolean, Integer or Set(_), 2. operators of the user-defined data model such as accessors, type casts and tests, and 3. user-defined, side-effect-free methods.

Conceptually, an OCL expression in general and Boolean expressions in particular (i. e. formulae) depends on a pair (σ, σ) of pre-and post-states. Featherweight OCL as semantic theory is organised as a "shallow embedding." Besides the use of higher-order abstract syntax, this means that types of UML/OCL are represented by types in Isabelle/HOL in an injective way, and that the semantic representation of operators will respect this mapping. For example, logical equality of HOL (_ = _) coincides to semantic equivalence of OCL; the operations not or _and_ with their OCL type Boolean -> Boolean resp. (Boolean,Boolean) -> Boolean are represented in Featherweight OCL by not :: A Boolean ⇒ A Boolean resp. _and_ :: A Boolean ⇒ A Boolean ⇒ A Boolean, where A Boolean is a type synonym for a HOL type different from, say, A Integer (both introduced in the next paragraph). Thus, Featherweight OCL cannot represent ill-typed OCL expressions, having the consequence that type-related side-conditions can be completely omitted in all derived rules of this language, be it in the OCL library or a given datatype theory, which is vital for their usability in proofs and symbolic executions.

The recent versions of the OMG standard require all OCL types to possess explicit invalid and null elements, a decision that has major consequences for its logic and data theories. To uniformly represent this phenomenon in Featherweight OCL, we use type classes as in Haskell supported in Isabelle. Parametric polymorphic type variables α can be respectively constrained via type classes α :: bot or α :: null to types containing a bottom element, called bot, and an additional other element (different than bot), called null (where classes are marked by underlining throughout this document). Using the option type written _ ⊥ (the None-constructor is written ⊥ and the Some-constructor _) it is possible to "double lift" types via (τ ⊥) ⊥ and identify ⊥ with the bot-element of the class, and ⊥ with the null-element. Thus, any doubly lifted type is an instance of the type class null. Since any OCL expression of type T may contain accessors to objects living in a pre and a post state, they represent valuations depending from these two states yielding the representation type τ T in HOL. This motivates the type synonym:

V A (τ T) ≡ (A) state ×(A) state ⇒ τ T :: null that is used to construct the types for OCL expressions (the precise form of "(A) state" will be discussed in Section 4.5).

By double-lifting bool and int, which are the standard types from HOL, we declare the following abbreviations:

Denotational Semantics of Constants and Operations

Recall that _ = _ :: α ⇒ α ⇒ bool is the logical equality of HOL. By using a shallow embedding of OCL in HOL, logical equality becomes then accessible to OCL terms as a mean to express semantic equivalence. If we want to emphasise definitions, we will use _ ≡ _ for logical equality as alternative notation. As a further notational convenience following common use in mathematical textbooks, we use the notation I _ mimicking a semantic interpretation function separating concrete syntax of a language to be defined from other constructs defining their semantics. Since a shallow embedding of OCL in HOL is used (higher-order-syntax, operators defined by constant definitions, injective type representation), I _ is just the identity function. In Isabelle theories, this particular presentation of definitions paves the way for an automatic check that the underlying equation has the form of an axiomatic definition and is therefore logically safe. The generic constants invalid and null together with the non-strict tests for invalid and null required by the OMG standard are now defined as follows:

I invalid :: V A (α :: bot) τ = bot ::α I null :: V A (α :: null) τ = null ::α where bot and null are the two elements provided when defining the type classes bot and null. For the concrete Boolean-type, we define similarly the boolean constants true and false as well as the fundamental tests for definedness and validity (generically defined for all types): On this basis, one can define the core logical operators not and and as follows:

I not X τ = (case I X τ of ⊥ ⇒ ⊥ | ⊥ ⇒ ⊥ | x ⇒ ¬x) I X and Y τ = (case I X τ of ⊥ ⇒ (case I Y τ of ⊥ ⇒ ⊥ | ⊥ ⇒ ⊥ | True ⇒ ⊥ | False ⇒ False) | ⊥ ⇒ (case I Y τ of ⊥ ⇒ ⊥ | ⊥ ⇒ ⊥ | True ⇒ ⊥ | False ⇒ False) | True ⇒ (case I Y τ of ⊥ ⇒ ⊥ | ⊥ ⇒ ⊥ | y ⇒ y) | False ⇒ False)
These non-strict operations are used to define the other logical connectives in the usual classical way:

X or Y ≡ not ((not X) and (not Y)) X implies Y ≡ (not X) or Y
For reasons of conciseness, we will write δ X for not(X.oclIsUndefined()) and υ X for not(X.oclIsInvalid()) throughout this document.

The default semantics for an OCL library operator is strict semantics; this means that the result of an operation f is invalid if one of its arguments is invalid or null. The definition of the addition for integers as default variant reads as follows:

I X + Y τ = if I δ X τ = I true τ ∧ I δ Y τ = I true τ then I X τ + I Y τ else ⊥
where the operator "+" on the left-hand side of the equation denotes the OCL addition of type (Integer,Integer)->Integer while the "+" on the right-hand side of the equation of type [int, int] ⇒ int denotes the integer-addition from the HOL library.

Logical Layer

The topmost goal of the logic for OCL is to define the validity statement:

(σ, σ) P
where σ is the pre-state and σ the post-state of the underlying system and P is a formula, i. e., an OCL expression of type Boolean. Informally, a formula P is valid if and only if its evaluation in (σ, σ) (i. e., τ for short) yields true. Formally this means: τ |= P ≡ (I P τ = I true τ) CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL On this basis, classical, two-valued inference rules can be established for reasoning over the logical connectives, the different notions of equality, definedness and validity. The core inference rules are:

• Boolean: τ true ¬(τ false) ¬(τ invalid) ¬(τ null)

• not:

τ not P =⇒ ¬(τ P)
• and: τ P and Q =⇒ τ P τ P and Q =⇒ τ Q

• or:

τ P =⇒ τ P or Q τ Q =⇒ τ P or Q • if . . . then . . . else . . . endif: τ P =⇒ I if P then B 1 else B 2 endif τ = I B 1 τ τ not P =⇒ I if P then B 1 else B 2 endif τ = I B 2 τ
or equivalently:

τ P =⇒ (if P then B 1 else B 2 endif) τ = B 1 τ τ not P =⇒ (if P then B 1 else B 2 endif) τ = B 2 τ
• δ _ and υ _:

τ P =⇒ τ δ P τ δ X =⇒ τ υ X
By the latter two properties, it can be inferred that any valid property P (so for example, a valid invariant) is defined, which allows to infer for terms composed by strict operations that their arguments and finally the variables occurring in it are valid or defined.

The mandatory part of the OCL standard refers to an equality (written X = Y or X <> Y for its negation), which is intended to be a strict operation (thus: invalid = Y evaluates to invalid) and which uses the references of objects in a state when comparing objects, similarly to C++ or Java. In order to avoid confusions, we will use the following notations for equality:

1. The symbol _ = _ remains to be reserved to the HOL equality, i. e., the equality of our semantic meta-language, 2. The symbol _ _ will be used for the strong logical equality, which follows the general logical principle that "equals can be replaced by equals," 2 and is at the heart of the OCL logic, 3. The symbol _ . = _ is used for the strict referential equality, i. e., the equality the mandatory part of the OCL standard refers to by the "_ = _" symbol.

The strong logical equality is a polymorphic concept which is defined using polymorphism for all OCL types by:

I X Y τ ≡ I X τ = I Y τ It enjoys nearly the laws of a congruence: τ (X X) τ (X Y) =⇒ τ (Y X) τ (X Y) =⇒ τ (Y Z) =⇒ τ (X Z) cp P =⇒ τ (X Y) =⇒ τ (P X) =⇒ τ (P Y)
where the predicate cp stands for context-passing, a property that is true in Featherweight OCL for all pure OCL expressions (but not arbitrary mixtures of OCL and HOL):

cp P ≡ ∃f. ∀X τ. I P X τ = I f (I X τ) τ
The necessary side-calculus for establishing cp can be fully automated; the reader interested in the details is referred to the machine-checked formalization [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF].

The strong logical equality of Featherweight OCL gives rise to a number of further rules and derived properties, that clarify the role of strong logical equality and the Boolean constants in OCL specifications:

τ δ X ∨ τ X invalid ∨ τ X null (τ A invalid) = (τ not (υ A)) (τ A null) = (τ υ A and not (δ A)) (τ A true) = (τ A) (τ A false) = (τ not A) (τ not (δ X)) = (¬ τ δ X) (τ not (υ X)) = (¬ τ υ X)
Thus with these rules, one can convert an OCL formula represented in its four-valued world into a representation that is classically two-valued, and let the processing with standard SMT solvers such as CVC3 [START_REF] Barrett | Cvc3[END_REF] or Z3 [START_REF] Mendonça De Moura | Z3: An efficient SMT solver[END_REF]. δ-closure rules for all logical connectives have the following format (for example):

τ δ X =⇒ (τ not X) = (¬(τ X)) τ δ X =⇒ τ δ Y =⇒ (τ X and Y) = ((τ X) ∧ (τ Y)) τ δ X =⇒ τ δ Y =⇒ (τ X implies Y) = ((τ X) -→ (τ Y))
With the conjunction of these rules (comprising the above mentioned case distinction: τ δ X ∨ τ X invalid ∨ τ X null), we can automatically proceed to the simplification of a formula by case analysis, in order to quickly reach a contradiction, whenever we know that a variable X is invalid or null. For example, we can infer from an invariant τ X .

= Y -3 that we have 44

CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL τ X . = Y -3 ∧ τ δ X ∧ τ δ Y .
We call the latter formula the δ-closure of the former. Now, we can convert a formula like τ X > 0 or 3 * Y > X * X into the equivalent formula τ X > 0 ∨ τ 3 * Y > X * X and thus internalize the four-valued logic of OCL, as if we have a classical (and more tool-conform) logic.

Algebraic Layer

Based on the logical layer, we build a system with simpler rules which are amenable to automated reasoning. We restrict ourselves to pure equations on OCL expressions.

Our denotational definitions on not and and can be re-formulated in the following ground equations:

• υ _: as well as the dual equalities for _ or _ and the De Morgan rules. This wealth of algebraic properties makes the understanding of the logic easier, and enables automated analysis: for example, by computing the DNF of some invariant systems (by term-rewriting techniques) which are a prerequisite for δ-closures.

υ invalid = false υ null = true υ true = true υ false = true • δ _: δ invalid = false δ null = false δ true = true δ false = true
The above equations explain the behaviour for the most important non-strict operations. The clarification of the exceptional behaviours is of key importance for a semantic definition of the standard and the major deviation point from HOL-OCL [START_REF] Achim | HOL-OCL -A Formal Proof Environment for UML/OCL[END_REF][START_REF] Achim | The HOL-OCL book[END_REF] to HOL-OCL 2.0 as presented here.

States Layer and Well Formed States

As detailed in Section 4.1, all OCL operations discussed so far represent special valuations V A (_) depending from a pair of pre state and post state, both of the form "(A) state". As a first approximation, a state can be thought of as a polymorphic array, where the polymorphic value A represents the place where an object (of type A) can be dynamically stored. The index of the array is the object identifiers: we assume an enumerable type for object identifiers "oid" used for defining states (where the type oid is an abbreviation of the type nat representing HOL natural numbers). Since a UML/OCL state consists of a partial map of oids to object representations and a representation of the associations, it is natural to model it with the command record [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF]: record (A) state = heap :: oid A assocs :: oid oid list list list Moreover, we can join an inverse operation "OidOf :: A ⇒ oid" to retrieve the oid of an object, but the function OidOf particularly depends on A, which explicit form will be discussed in the next section. However, we will require well-formed states (WFF), where all oids in all assocs are actually contained in the domain of the heap and furthermore the oids stored in object representations are actually their references in the memory, i. e. that there is a "one-to-one" correspondence between object representations and oids:

definition WFF τ = ∀obj ∈ ran(heap(fst τ)). heap(fst τ)(OidOf obj) = obj ∧ ∀obj ∈ ran(heap(snd τ)). heap(snd τ)(OidOf obj) = obj
This condition is also mentioned in the OMG's specifications [Obj12, Annex A] and goes back to Richters [START_REF] Richters | A Precise Approach to Validating UML Models and OCL Constraints[END_REF]; however, we state this condition as a constraint on states for some logical rules rather than a global axiom. It can, therefore, not be taken for granted that an oid makes sense both in pre-and post-states of OCL expressions.

As a polymorphic concept, the strong logical equality _ _ does not have to be redefine again. This relation also applies on objects, so two objects are equal if their denotations are semantically equal. We formally proved that within well-formed states and for valid objects, the referential equality _ . = _ coincides with strong logical equality [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF]. This justifies that the former can be used for the latter for efficiency reasons.

A Denotational Space for Class Models: The Naïve Attempt

We turn now to the issue of giving a more detailed semantics for a class model. The theory of states can be developed generically once and for all; however, the key point is that we need a common type A for the set of all possible object representations. Object representations model "a piece of typed memory," i. e., a kind of record comprising administration information and the information for all attributes of an object; here, the primitive types as well as collections over them are stored directly in the object representations, class types and collections over them are represented by oid's (respectively lifted collections over them). So a (typed) universe of object representations which will be a concrete instance of the type variable A has to be constructed for a concrete class model. In a shallow embedding which must represent UML types one-to-one by HOL types, there are two fundamentally different ways to construct such a set of object representations, which we call an object universe A:

1. an object universe can be constructed from a given class model, leading to closed world semantics, and 2. an object universe can be constructed for a given class model and all its extensions by new classes added into the leaves of the class hierarchy, leading to an open world semantics.

For the sake of simplicity, the present semantics of HOL-OCL 2.0 chose the first option, while HOL-OCL [START_REF] Achim | An extensible encoding of object-oriented data models in HOL[END_REF] used an involved construction allowing the latter.

A naïve attempt to construct A would look like this: the class type C i induced by a class will be the type of such an object representation:

C i := (oid×A i1 ו • •× A i k)
where the types A i1 , . . . , A i k are the attribute types (including inherited attributes) with class types substituted by oid. The function OidOf projects the first component, the oid, out of an object representation. Then the object universe will be constructed by the type definition:

A := C 1 + • • • + C n .
It is possible to define constructors, accessors, and the referential equality on this object universe. However, the treatment of type casts and type tests cannot be faithful with common object-oriented semantics, be it in UML or Java: casting up along the class hierarchy can only be implemented by loosing information, such that casting up and casting down will not give the required identity. Whenever C k < C i and X is valid, we would like to obtain instead:

X.oclIsTypeOf(C k) implies X.oclAsType(C i).oclAsType(C k) . = X
To overcome this limitation, we need to slightly revise how class types are fundamentally built. However, instead of providing at present the solution, we will do it later in Chapter 7. This is because in any case both the naïve construction presented here and our new solution can nevertheless not be done directly in HOL: both constructions involve quantifications and iterations over the "set of types". Rather, a meta-level construction is needed.

Such meta-level construction is required for building the object-oriented datatype theory. Like for a datatype package in other HOL-systems, the semantics for class models can be given by a datatype theory, i. e., a conservative theory extension consisting of a number of conservative definitions for accessor-, cast-and type-tests, and automated tactic proofs establishing a number of rules for these operations. Besides the usual laws on casting and dynamic typing, these operations are designed to reflect the strictness principles with respect to null and invalid. To provide an infra-structure for these definitions, the generic "meta-tool" provided in Chapter 5 will not only perform the necessary meta-level constructions required to setup the object universe A, but also generally any constructions requiring to reach a suitable meta-level of expressivity (irrespective of languages being embedded into HOL).

Finally, equipped with this meta-tool, we will recover our semantical investigation on class types in Chapter 7, with together the resulting properties of object navigation.

A Comparison to Related Work

There is a large variety of implementations that use a fragment of the OCL syntax and compile it together with some extensions (temporal logic, dynamic-logic. . .) more or less directly to some tool (Maude, ASM, KodKod, Prolog. . .); it is characteristic for these approaches that a direct, efficient reuse of existing tools and the possibility to experiment with class models is a more important concern than compliance to the OCL standard.

In this thesis, we address UML/OCL in the sense of the discussion in the OCL group and major compiler implementations [Dre16, Pap16] which drive the OCL standard's evolution and to which this work contributes a formalisation of the forthcoming OCL 2.5 proposal [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF]. Besides compilers, there is a number of great animation tools, mostly based on older 3-valued versions of the UML/OCL standard, USE, Kodkod or OCLexec [RG02, KG12, KK08] just to cite a few. The present work, however, attempts to provide foundations for deductive methods, be it for symbolic evaluation methods necessary for test case generation or verification methods based on interactive or automated proof.

Restricting us to the category of more or less standard compliant, deduction oriented methods, we see HOL-OCL [START_REF] Achim | An extensible encoding of object-oriented data models in HOL[END_REF], which is also based on Isabelle/HOL and with which consequently our work has a lot in common; however, besides technical differences in the front-end, HOL-OCL uses three-valued logic and a simpler data model for associations, which are compiled to aggregations. On the other hand, the object universe construction of HOL-OCL uses an involved construction representing "holes" in the universe by polymorphic variables, thus leveraging a kind of modular "open-world" semantics; our approach remains in the simpler "closed-world" interpretation of class models. Avoiding these The OCL2FOL + -project [START_REF] Dania | OCL2FOL+: coping with undefinedness[END_REF][START_REF] Arjona | Validation of a security metamodel for the development of cloud applications[END_REF] is to our knowledge the first deduction-based tool that uses the same logics as used in our work, but targets via a clever compilation an SMT-solver and enables automated deduction tools for UML/OCL in the security domain; this approach provides first evidence that tackling with a standard-conform semantics is indeed feasible and promising. The fear that the use of a multi-valued logics results in inherent efficiency problems is at least not justifiable on theoretic grounds [H 94]. They generate an axiomatisation of the object-oriented datatype theories, while we automatically derive them from a denotational model to ensure logical consistency-thus, our work is a semantic foundation for their approach in this respect.

In the following, we focus on deductive verification approaches for objectoriented data theories in a wider sense.

Eiffel

Eiffel [START_REF] Meyer | Object-oriented Software Construction[END_REF] pioneered the idea of class invariants adapting this concept going back to Dijkstra, Floyd, and Hoare in the 1960's to object-oriented languages, and popularised the idea of pre-and post-conditions to a "design-by-contract" methodology. Eiffel is a remarkable exception to the other languages, as the contract language was part of its design right from the beginning. The contract specifications are part of the Eiffel language specification and are supported by all Eiffel development tools. The Eiffel specification language is a two-valued logic that provides an explicit definedness (non-null) test: _ /= Void. This kind of test needs to be stated explicitly to ensure that no void references are accessed (while OCL can handle this implicitly, see previous section). Moreover, Eiffel requires exceptions to be handled explicitly, i. e., well-defined behaviour in case an exception is thrown. OCL handles this implicitly, but for the only exception invalid.

In the following, we will briefly introduce other, rather widely used, contract or behavioural interface specification languages. Figure 4.1 introduces them with a very simple example: specifying the invariant from our example that the number of seats is positive.

JML

The Java Modeling Language (JML) [LPC + 13] is a constraint language for Java which is, for example, supported by the ESC/Java2 tool [START_REF] Rustan | ESC/Java user's manual[END_REF], which allows for both runtime checking of assertions and static verification.

The logic of JML is two-valued. As in Eiffel, exceptions are explicitly modelled and declared and the language provides an explicit definedness test. The actual burden of writing definedness tests is reduced significantly by making non-null types the default. Only types that are explicitly declared as "nullable" need to be checked for definedness.

Spec #

Spec # [BLS05] is a constraint language for C # that, for example, is supported by the program verification environment Boogie [START_REF] Barnett | The Spec # programming system: An overview[END_REF].

Overall, Spec # is very similar to JML. The main difference is that non-null types are not the default, but supported by a type inference. The logic is, again, two-valued and exceptions need to be modelled explicitly.

ACSL and VCC

The ANSI/ISO C Specification Language (ACSL) [BCF + 13] and VCC [START_REF] Böhme | HOL-Boogie-an interactive prover for the Boogie program-verifier[END_REF] are interface specification languages for C that are supported by Frama-C [BCF + 13] and Visual Studio [CDH + 09]. Users can write assertions, data invariants, and behavioural contracts over C programs.

The logics of ACSL and VCC are two-valued; via particular predicates, regions of valid memory have to be specified explicitly in contracts to ensure that no invalid references are accessed. As conversions to byte-level representations of memory are possible, data invariants are particularly tricky to formulate-a complication necessary to verify machine-level C code. As C does not support exceptions, ACSL and VCC do not either. The less abstract memory model does not include inheritance and subtyping. Later versions of VCC also support a refined concept of memory ownership that allows for verifying concurrent C programs [CDH + 09], whereas OCL is strictly sequential (methods are atomic actions).

The Object-Logic Theory Generator

Reproduction, as a terminology, has been firstly employed (to our knowledge) by Klaus Aehlig and Felix Joachimski to characterize the idempotence property that certain λ-terms are exhibiting: when converting them back and forth, between their initial syntactic representation to another representation qualified as "semantic", then back to their previous syntactic representation [AJ04]. These particular endomorphic conversions are feasible because the semantic denotation of programs is expressed with the help of functions, and functions naturally appear in λ-terms. The idea of exploiting this technique to compute the normal form of λ-terms (if such normal form exists) is called normalization by evaluation and has been deeply investigated both theoretically and practically over years [START_REF] Martin-Löf | An intuitionistic theory of types: predicative part[END_REF]BS91] (the reader interested in the details is referred to some lecture notes [START_REF] Danvy | Type-directed partial evaluation[END_REF][START_REF] Dybjer | Normalization and partial evaluation[END_REF]).

In the present work, the term reproduction will still be related with the notion of "some semantics to be preserved", but we will use it slightly differently: by thinking about a partial ordering, instead of an idempotence property for example. For the moment, reproduction can be simply understood as copy or duplication, the implying interplay between syntax and semantics will be made further clear along the document. More precisely, this chapter is focusing on the reproduction of particular λ-terms, namely editing sessions ("duplication of editing sessions"). This concerns the ability of the Isabelle framework to write an embedding function supporting a language L inside this framework, and the ability of the framework to immediately provide means to edit in L afterwards. In Isabelle, we characterize this ability as dynamic because the overall reproduction is performed without leaving the editing session of the one used to write the embedding. A technical cloning illusion will happen when crossing the ML layer (being at the foundation of the Isabelle system), but the overall approach can nevertheless be considered as part of the Isabelle framework. As a reproductive process, one has at the end the possibility to edit in Isar_HOL or L at the same time. So previous embedded languages can be utilized to embed one next language L using the same process, with the so-augmented capacities of the underlying editor, and inheriting from the existing theorem proving infrastructure.

The objective of this chapter is to detail the key components implementing the reproduction process, so that one can ultimately alternate between L and

Isar_HOL as First Language (if not Meta)

The Isabelle framework integrates an optimized environment for the development of specifications and proofs. The environment is initially configured to be edited by default in the Isar_HOL language, because Isar is specialized to support the writing of tactic methods for resolving proofs, and HOL comes with a rich library of mathematic operations. Figure 5.1 presents a window of a running Isabelle session (e. g., in Isabelle 2015). Normally the background is completely white, the color yellow and three sine waves have been added here just for this presentation. User-interaction to Isabelle is document oriented, i. e. each file belonging to a session is annotated by the prover while editing it as usual like in any modern IDE. Annotations can consist, for example, in:

• colors (the underlying white indicates that Isabelle checked these commands and executed them without error),

• types (to be explored by tool-tips via the hovering gesture),

ISAR_HOL AS FIRST LANGUAGE (IF NOT META)

53

• or values associated to computations inside these commands (displayed in a separate "output window" when pointing to them, the output window will have a certain role to play in Chapter 6).

Although collaborative editions are asynchronously supported [Wen14, RL14], we have depicted the position of three red cursors just for the example. In Isabelle/jEdit there is (by default) only one cursor with no number inside. On the other hand, the grey color appearing around quoted terms (like "a ≤ pi∧pi ≤ b") is automatically added by Isabelle/jEdit, its purpose is to highlight HOL content from the environment where the user usually poses theorems and proofs irrespective of a particular logic. Indeed, as a logical framework, Isabelle offers a small logical core-engine that can be reused by a variety of logics [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF] such as first-order logics (FOL), constructive-type theory (CTT) and Church's higher-order logics (HOL), which is also the basis of this work. Consequently the framework can be globally seen as a kind of meta-proving environment, where all terms are specially belonging to a particular logical language. In addition, some facilities are also provided to lighten various aspects of terms from the underlying logic. For instance, at the position of the cursor 1, the term arc_cos is coloured in blue meaning that it is a free variable, whereas starting from position 2, it appears in black (like Ln and csqrt) since it has meanwhile been defined and accepted as a definition or function (and in this context an "HOL function"). Additionally, the variable z is in green as being bound inside the definition; on the other hand the letter i is just a syntactic abbreviation, characterized by its light blue color. Finally the definition of arc_cos depends on some libraries related with multivariate analysis, again in HOL, as made precise in the header. At the end, the last command find_theorems displays various information about theorems, for example the number of currently proved theorems at the precise position where this command is written. Various refinement criteria allow furthermore to fine grain control the searching engine, for instance to discard or explicitly filter particular patterns in the names of theorems. In Isabelle/jEdit, the associated display where the result of these informations are shown is usually located in a separate sub-window, the output window (not represented in the picture), whose purpose is to inform about the state of the current proving environment or to guide users in real time with informative messages depending on the position of the cursor. Indeed as a read-only buffer, refreshment of the output window is automatically triggered (by default) as soon as the cursor is moving from one command to another one in the editing window.1 Globally, theorems shown by find_theorems do not directly mention themselves if they have been proved in HOL or in other object-logics. However, a theory file can more generally be seen in Isabelle as a particular container embedding multiple languages, and we will particularly take advantage of its flexibility to support new (specification) languages. Hence in the example, we are showing four languages: "Language 1", "Language 2", "Language 3", and a set of commands part of the more general language "Isar_HOL", represented by the white sine wave (and as side remark also comprising the yellow frame).

CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

Instead of starting from null, lines of evolution have motivated us to imagine the birth of the formal method tool presented in this thesis, as a reproductive process, where not only has the tool been built inside the proving system Isabelle, but also brought up as a particular extension of this system, then inheriting the deductive capacities of the framework and its editing environment, thus the name meta-tool. More precisely, we use the type "L ⇒ Isar_HOL" to represent the process by which one can extend Isabelle to support a new language L. For the moment, this function can be thought of as a shallow embedding from L to Isar_HOL. Then, the methodology to support the programming and proving activity in L in the framework can basically be summarized as follows:

• provided an arbitrary sentence in L,

• it suffices to compute the result of L ⇒ Isar_HOL (this function is called translation function or embedding function),

• to obtain at the end a piece of code written in Isar_HOL to be natively processed by Isabelle (representing the initial sentence in L).

On the one hand, one particularity of this work is that we are mainly emphasizing the notion of object-logic theory: during the embedding, any newly language L becomes understood as an object-logic, coming with a theory, a set of definitions and proved theorems (due to the wide range of expressions that can be represented in the output Isar_HOL). On the other hand, following the idea of practising formal methods with many languages, we are now going to generalize the above methodology and reason with a family of languages L 1 • • • L n . Similarly as L, this family represents a set of functions acting as extensions on the Isabelle framework, so they are of the form L 1 ⇒ Isar_HOL, . . . , L n ⇒ Isar_HOL. However, we also include the possibility to extend one language from another language: L i ⇒ L j (for any i and j, equal or not), this is particularly useful if for example L j ⇒ Isar_HOL has already been defined. Figure 5.2 pictures a sequential chain of embeddings without firstly focusing on how the reproductive processes behind the grey arrows are linking the whole chain of embeddings. The presented file is divided into four parts, representing the incremental evolution of the editing activity growing from the top to the bottom. Instead of drawing rectangular cursors like in Figure 5.1, here the notion of sessions is particularly emphasized this time by using three sine waves in pink to separate the four blocks of code. Internally a session is represented by some purely functional data-structure describing the state of the editing environment (comprising logical definitions, proofs, text documentation, etc). As a first approximation, a session can be thought of as a list containing all encountered Isar_HOL commands until the actual position of the cursor, with the addition that the semantical consistency of sessions is moreover guaranteed: by checking that all commands are well-typed before their adding to the list. Thus sessions are heavily varying during the editing activity: if the cursor is moving up, the list behind the session will be adjusted accordingly by removing some (well-typed) elements, and if the cursor is moving down, previous deleted elements will be added back. So this allows for example commands like find_theorems to return a consistent result depending on any positions where the cursor could be, no matter where it is called on the file. As remark, to be precise, the session S2 should normally extend S1, similarly for S3 which should extend S2 and S1,

L1 L1 + L2 L1 + L2 + L3 L2 L1 L3 L2 L1 Isar_HOL L1 L2 L3 Isar_HOL Isabelle session session S3 session S4 session S2 session S1 theory imports keywords begin end […] […] […]
Figure 5.2: The evolution of the reproduction process (sequential embedding) etc. However by abuse of language, instead of using four continuous vertical lines starting at the same point on the left, we have four lines following each other sequentially. In Figure 5.2, after embedding L 1 in session S1, i. e. after defining a translation process from L 1 to Isar_HOL, it becomes possible starting from S2 to program in L 1 . The four vertical arrows on the right mention the possibility or not to program in a particular language, so Isar_HOL can (at least) be used from S1 to S4, L 1 is supported from S2 to S4, L 2 is supported from S3 to S4, etc. Consequently when defining the semantics of L 2 in S2, this semantics can actually be written in either L 1 or Isar_HOL. Similarly, when defining the semantics of L 3 in S3, this semantics can actually be written in either L 2 , L 1 or Isar_HOL.

Isabelle + L1 L2 L1 Isabelle + L1 + L2 L3 L2 Isabelle L1 Isar_HOL Isabelle + L1 + L2 + L3 session S1 session S2 session S3 session S4 L1 L2 L2 L1 L2 L2 L2 Isar_HOL L2 Isar_HOL L1 Isar_HOL L1 L1
More abstractly, we use cylinders in Figure 5.3 to emphasize that sessions are part of the dynamic editing activity which occurs in RAM memory. Moreover, we generalize the way how a new language can be embedded to some language parent, by considering the graph induced by the inverse relation of _ ⇒ _. At each session S n , the embedding of L n in Isar_HOL can be performed by naively checking if for all nodes m ≤ n, there is a path strongly connecting Isar_HOL to L m . So for instance in session S 2 , any combinations of the form L i ⇒ L j are possible as long as the strongly connecting condition is respected. That includes all L i ⇒ L j involving at least L 2 in L i or L j as represented in the box. Additionally, all relations coming from S1 can also be inherited to connect any paths in S2, such as L 1 ⇒ L 1 and Isar_HOL ⇒ L 1 . Again, while not mentioned, the relation Isar_HOL ⇒ Isar_HOL can also appear to connect any paths. In the same spirit, the embedding of L 3 can rely on any combinations of L 1 , L 2 and Isar_HOL. Similarly for S 4 , the editor is ready to consider the embedding of a possibly new language L 4 , or continue as usual the theorem proving activity with all or any combinations of L 1 , L 2 , L 3 and Isar_HOL.

As remark, the presented embedding has been defined sequentially, in the sense that several grey arrows were involved one after another one. A similar result can be obtained with another style of embedding, depicted in Figure 5.4, which is more compact as it treats simultaneously the embedding of all L 1 , L 2 and L 3 into Isar_HOL as a particular "sum type". In this case only one grey arrow occurs. This is particularly relevant if the grey arrow has a certain cost that cumulative executions would avoid. Both programming styles are nevertheless equivalent: any combinations of the form L i ⇒ L j are possible to be defined in both cases (as long as the above naive strongly connecting condition is fulfilled). Otherwise said, we finally obtain at the end a similar session S 4 as in the sequential reproductive process.

The next sections are now devoted to reveal in more detail the implementation of the reproduction process behind the grey arrows and to present as well how to define the embedding functions.

Readability and Efficiency in Package Management

As observed in Figure 5.1, the management of dependencies among theories is completely carried out by writing the specific list of theories to import when starting a theory document (with the keyword imports). By maximizing the list of theories to import, one is typically tuning how parallel the Isabelle system is

READABILITY AND EFFICIENCY IN PACKAGE MANAGEMENT 57

L1 + L2 + L3 L3 L1 + L2 + L3 Isar_HOL L1 + L3 L2 + Isar_HOL Isabelle session session S4 theory imports keywords begin end […] […] […] Isabelle L1 + L2 + L3 Isar_HOL Isabelle + L1 + L2 + L3 session S4
Figure 5.4: The evolution of the reproduction process (simultaneous embedding)

going to process the overall collection of documents. Obviously, a system with multi-core processors are better exploited when treating several unrelated theories in parallel.2 On the other hand, separation of concerns generally contributes to reduce the effort of building a complex system or algorithm, by dividing a non-trivial task on smaller components easier to test and prove for example. In the present work, we will assimilate such components to packages [Mel91].

A package comes with a sequence of commands. Since commands are all defined in the respective Isabelle theory documents being imported3 , without loss of generality, we can approximate a package as a theory defining at least one command. So if one user misses to import the appropriate theory, errors naturally appear in front of all encountered unknown commands as usual. For the particular case of a theorem proving system like Isabelle, (most) commands in packages have all the more the property to generate a number of theorems. For example, whereas lemma usually produces one theorem, after writing datatype α LIST = NIL | CONS "α" "α LIST", we obtain 94 newly generated theorems in Isabelle 2016. However in Isabelle, commands are serving diverse purposes, for example:

• (HOL item) besides the possibility to generate theorems,

• (Isar item) commands also appear used during the proof of a theorem, since they serve to instruct how far to advance a particular proof with specialized tactics. (In Figure 5.1, the command using advances to the middle of the proof, then the command by concludes the proof.)

The conjunction of these two facts suggests us to observe that the development of Isabelle packages to support a domain-specific language L can somehow be made generic by considering the whole type Isar + HOL (where _ + _ represents the sum type similar as Figure 5.4). More precisely, we estimate the function L ⇒ Isar_HOL enough abstract for covering at the same time:

• packaging functions of the form L ⇒ HOL for commands generating theorems, and

• packaging functions of the form L ⇒ Isar for commands solving proofs.

Thus "developing an L-package" amounts to define a function of the form L ⇒ Isar_HOL. However in the present work,

• (HOL item) certain singular features of UML/OCL have motivated us to further generalize the concept of Isabelle packages (among others, the support of multiplicity outranging the expressivity scope of HOL, the incremental encoding of classes, etc., Chapter 6 will give further details), and

• (Isar item) the vast range of normalizing techniques (like normalization by evaluation) has incited us to determine how well UML/OCL formulae could be efficiently and automatically discharged in Isar proofs, for instance with automated theorem proving techniques like decision procedures (which are elaborated tactics, able to recognize theorems from a decidable theory).

So in order to uniformly satisfy both constraints, we are now asking if there could exist a "universal framework" unifying both at the same time the practices of developing packages on the one side (where the reasoning logic can be made arbitrarily large), and developing decision procedures on the other side. At first sight, developing an L-package could seem to be more general than developing a decision procedure for a particular logic, for example Presburger arithmetic (P A). This is because in decision procedure one has to write, at least, a function of type f m ⇒ f m for a particular type f m representing formulas (e. g., P A). Then, provided a complex expression of type f m, the principle is to simplify it and obtain at the end an equal expression: a certain "normal form" easier to reason with (like in normalization by evaluation).

However, even if packages are usually presented as embedding functions of the form A ⇒ B, nothing prevents to introduce instead a slightly general type "(A + B) ⇒ (A + B)" (in reality only an expression of type A will be provided in input, and for the moment we only expect to obtain an expression in B). For the case of HOL-OCL 2.0 packages, "A = abstract syntax of UML/OCL", and "B = abstract syntax of Isar_HOL" the set of Isar_HOL definitions and lemmas automatically derived in output by the HOL-OCL 2.0 packages. The resulting objective is then to support (UML/OCL + Isar_HOL) ⇒ (UML/OCL + Isar_HOL). Thus, similarly as a decision procedure, one can consider UML/OCL as a formal logical system, and as well Isar_HOL as a kind of superlogic (where a definition of superlogic can be found for example in the work of David A. Basin, Manuel

READABILITY AND EFFICIENCY IN

PACKAGE MANAGEMENT 59 τ X.oclAsType(C i) X τ invalid .oclAsType(C i) invalid τ null .oclAsType(C i) null τ ((X :: C i).oclAsType(C j) .oclAsType(C i) X) τ (X :: OclAny).oclAsType(OclAny) X τ δ X =⇒ τ X.oclAsType(C j) .oclAsType(C i) X τ X.oclIsTypeOf(C j) =⇒ τ δ X =⇒ τ not(υ X.oclAsType(C i)) τ invalid .oclIsTypeOf(C i) invalid τ null .oclIsTypeOf(C i) true τ (X :: C i).oclIsTypeOf(C j) =⇒ τ (X :: C i).oclIsKindOf(C i) (τ (X :: C j) . = X) = (τ if υ X then true else invalid endif) τ (X :: C j) . = Y =⇒ τ Y . = X τ (X :: C j) . = Y =⇒ τ Y . = Z =⇒ τ X . = Z . . .
C i < C j)
Clavel and José Meseguer [START_REF] Basin | Reflective metalogical frameworks[END_REF]), which incidentally already includes HOL. Ultimately, the idea can be pursued further by extending the process into (P A + UML/OCL + Isar_HOL) ⇒ (P A + UML/OCL + Isar_HOL), for a logic P A not already subsumed by HOL for example. By presenting packaging functions as decision procedures, we have now the required ingredients to implement a generic platform intending to ease both the implementation of decision procedures as well as packages in Isabelle/HOL, so to tend towards a kind of "Object-Logic Package Manager".

As an example of realistic domain-specific problems supported by HOL-OCL 2.0, we refer to the set of definitions, lemmas and corresponding proofs currently generated by our UML/OCL Class Model Package (analysed in Chapter 7, and listed in Appendix B and Appendix C). A UML class model underlying a given OCL invariant or operation contract produces several implicit operations which become accessible via appropriate OCL syntax. In more details, the fragment of UML/OCL class models contains:

• classes consisting of typed attributes and their inheritance relation,

• associations and aggregations between classes,

• class invariants (from the OCL contract language), and • operations on classes (from the OCL contract language). From a class model, the Class Model Package generates a set of Isar_HOL commands comprising: CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

• type definitions for each class names C 1 , . . . , C n sorted according to the inheritance relation,

• accessors _.allInstances() returning the set of all object instances existing at some time in the state of a system,

• definitions of accessors (destructors) for each attribute of a class, dereferenced in the pre-state (e. g., _.age @pre),

• definitions of accessors (destructors) for each attribute of a class, dereferenced in the post-state (e. g., _.age),

• for each class name C, tests of the form _.oclIsTypeOf(C) testing the dynamic type of an object, i. e., the type under which it was dynamically created,

• for each class name C, tests of the form _.oclIsKindOf(C) testing if the dynamic type of the given object belongs to one subtype of C,

• for each class name C, definitions of cast of the form _.oclAsType(C) always preserving the dynamic type of its argument (irrespective of C),

• for each class name C, there is an instance of the overloaded referential equality (written _ . = _),

• and finally all properties setting up the object-oriented datatype theory. A non-exhaustive overview is provided in Figure 5.5, and Chapter 7 is specially dedicated to the explanation of these properties.

These definitions refer to a typed denotational model, the object universe. In the algebraic layer, UML/OCL has an own type discipline providing basic types such as Boolean, Integer and String as well as collection types such as Set(X) and Sequence(X) (i. e., lists). While a one-to-one shallow mapping of the basic and collection types has been established in HOL (detailed in Chapter 4 [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF]), the part dealing with class types (via a denotational object universe A) requires another formalizing strategy. This is because notions like "sets of classes" make only sense on the syntactic level in HOL, where in this setting "classes" are considered as first-class citizen elements (so constants but not types). A meta-level construction is thus unavoidable to process class-models, for ideally obtaining an automated treatment as smooth as a regular one-to-one shallow mapping in HOL (hence the need of using higher expressive constructs like packages to implement such meta-level construction).

In previous work, given a particular example of class models in input, a formalization of the corresponding Isabelle definitions, lemmas and proofs has been performed by hand (namely, by manually writing by hand the examples of "Employee Analysis Model" and "Employee Design Model" in the associated formalization [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF]). In the present work, we generalize one step further: from an arbitrary class-model, definitions and above listed properties are automatically derived, like the usual deriving obtained when executing packages for datatypes, records or quotients in HOL systems.

Fortunately or unfortunately, after deriving such properties, the next step is to execute them: what happens if at run-time the execution of a given package does not seem to terminate? Can we precisely locate which tactic is being

READABILITY AND EFFICIENCY IN PACKAGE MANAGEMENT 61

performing the expensive computation? For the case of a simple lemma (which generates one theorem), Isabelle/jEdit is particularly suitable to experiment step by step which tactics to apply, undo some operations, as well as interchange the tactics being edited, since the editor has been optimized in many ways for a smooth prototyping of proofs, and accordingly treat tactics as atomic actions. On the other hand, the act of generating properties is different than a simple edition. Although the datatype package already generates hundreds of theorems (for some basic example like "LIST"), UML/OCL object-oriented semantics has a surprisingly rich theory: the Flight example of Figure 3.1 leads to more than 2000 theorems. In case an "apparent" non-terminating computation is arising, it becomes then quickly desirable to know if this non-terminating computation comes from the incapacity of the generator to generate some code or comes from the execution of what has been generated. This is particularly relevant whenever the code behind the generation is implementing non-trivial algorithms, is resembling to a realistic compiler (e. g., counting more than 10000 lines of code [Ler09], like in HOL-OCL 2.0), and whenever the generated tactics are resolving non-trivial theorems (e. g., the proofs of cast operations or lemmas related with _.oclIsKindOf(_) presented in Chapter 7).

Generally, in terms of readability, mathematical proofs are especially valuable, as soon as one becomes convinced that all assumptions and axiomatizations employed can indeed be ethically invoked. So having the possibility to read and study which lemmas was generated and how they are proved will permit for example to judge the pertinence of an object-logic theory with more conviction. Furthermore, in case a theory document is generated, erroneous introduced assumptions (if any) will have the possibility to regularly occur in several related theorems, so chances to detect such irregularities become multiple according to the number of bloc of related theorems.

To sum up, the next sections will focus the attention on the following points:

• Efficiency: How to maximize the maintainability and portability of (large) packaging functions of the form "L ⇒ Isar_HOL"? Can we benefit from substantial performance improvements similar as what one may get with decision procedures?

• Readability: How to readably inspect the contents of generated proofs and tactics being executed by the above point, so to potentially inherit from the readability of Isar (and HOL) [Wen99, BW01, WW02]?

• Provability: In terms of trusted computing base, how far can we mechanically relate the two above points, i. e., is "the readable code that makes us convinced" really equal to "the efficient code that will be executed"? Can we prove the termination of the generation process (including all type-checking stages for example) or establish properties related to the translation (like semantic preservation)? To which extent are we able to predict that a generated Isar_HOL content is well-typed (or well-proved), without actually the need to run the type-checker? Can we minimize its use, provided one has a reason to believe that the well-typing of a theory document can be incrementally preserved, like the preservation of a semantics implied by a reproductive partial ordering?

The Apparatus of the Reproduction Process

The standard solution for increasing the expressiveness of a supported typesystem or object-logic in Isabelle (e. g. HOL, required by class-models or HOLbased decision procedures) is to implement the needed constructions inside a more expressive meta-layer. This is generally performed by first accessing the layer where this object-logic is being simulated or has been defined, in our case its source code. ML has the property to be a suitable Turing complete layer where HOL is implemented on top (the overall architecture follows the LCFprinciple [START_REF] Michael | Edinburgh LCF: A Mechanised Logic of Computation[END_REF]). As such, the framework offers the possibility to "drive" the core engine by user programmed ML code in a logically safe way. However, although it is unavoidable at the end to compute particular Turing complete expressions (including the parsing of arbitrary Turing complete languages), several reasons have incited the present work to not restrict the entire construction of the packages to the sole use of ML, but to take advantage of all sub-components made available by the framework.

Knowledge of the internals. More than ten years ago, Amine Chaieb and Tobias Nipkow observed that programming proof decision procedures in LCFstyle in ML was disadvantageous compared to an HOL-based approach [CN05]. Despite noticeable improvements on communication technologies between the logical language HOL and the meta-language ML [WC07], they argued that "it requires intimate knowledge of the internals of the underlying theorem prover (which makes it very unportable)" and "there is no way to check at compile type if the proofs will really compose (which easily leads to run time failure and thus incompleteness)." While this remark was done in the context of decision procedures and not packages (which are perhaps an easier task), we believe that the reproduction process to be presented in this section is applicable to both, as sketched in Section 5.2. Programming with the ML library is different than programming with the usual Isabelle commands one is entering in Isabelle/jEdit. For a person only familiar with the Isabelle commands, this requires a certain effort before being familiar with the organisation of the ML library and how it is functioning.

As shown in Figure 5.6, the Turing completeness of ML allows to simulate the execution of arbitrary commands, like lemma (occurring on top). So, for the particular case of commands, code of commands written in ML can be equivalently expressed in Isar_HOL (without the use of ML): this is one property coming from the architecture of the framework based on LCF. However reciprocally, starting from a set of Isar_HOL commands, writing an equivalent same counterpart in the sole use of ML becomes longer to achieve. This is because Isar_HOL already allows to concisely express what would express an expanded ML term: in the ML source, free or bound variables are not coloured distinguishably (e. g., instinctively, how many times is l_apply used in the picture?), functions receive additional arguments, the theory contextual environment is made explicit, monadic programming style [Mog91] becomes particularly involved... Additionally, these constraints must be multiply taken into account when the purpose is not only generating one lemma, but especially thousand proven ones. Moreover, inside one lemma, various combinations of tactics must again be multiply taken As remark, Isar_HOL has been designed to precisely write human-readable proof texts and enhance the presentation of theories. This is then perhaps one reason why the Archive of Formal Proofs (AFP)4 contains minimal ML code compared to the code base involving only Isar_HOL (those without ML constructs). Generally, maintaining ML code base can require a certain effort (e. g., in HOL-OCL [START_REF] Achim | HOL-OCL -A Formal Proof Environment for UML/OCL[END_REF]), even when Isar tactics are involved (e. g., in the seL4 project [KAE + 10]), and generally in major domain-specific proof languages [START_REF] Matichuk | An isabelle proof method language[END_REF].

Maintenance of the internals. Besides the need to acquaint some knowledge with the ML library organization, maintaining ML code depending on the library would become all the more easy if this task can be at most minimized. By regrouping together all the code that are depending on the library in a common place behind an abstract interface, then the maintaining task will be only restricted to the code behind this interface, and this task can in parallel be delegated to (potentially other) persons already familiar with the ML internals. Indeed in Isabelle, as in many actively developed interactive systems, updates concerning the content of its source code in ML have the possibility to happen more frequently than, for example, modifications of its own Isar_HOL grammar 64 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR language. This is especially relevant when such updates do not affect the overall semantics of the language, or only a part occurring outside the subset where the implementor of L has a current interest.

At the same time, for the simple purpose of writing a packaging function of the form "L ⇒ Isar_HOL", one may be only interested on concentrating on one suitable Isar_HOL interface, without knowing in detail which internal language is implementing this interface, as long as certain requirements concerning this Isar_HOL interface is respected.

A Meta-Model for the Isabelle API.

Since the early inception of HOL-OCL 2.0, we have opted in this thesis to appropriately exploit several technical characteristics of the Isabelle framework in order to rule out the aforementioned issues of maintainability, portability and compositionality of proofs.

On the one hand, having an abstract API representing as closely as possible the Isar_HOL language would ease users already familiar with Isar_HOL to develop Isabelle packages, and to ideally incite experts of L to analyze consistencies of packages related with L. On the other hand, the design of such abstract API has to be carefully performed. This is because both the constructions of the API and the packaging function L ⇒ Isar_HOL are fundamentally related with the requirements mentioned at the end of Section 5.2: namely, the properties of efficiency, readability and provability.

Fortunately, the flexibility to embed many languages in Isar_HOL is due to a combination of major features provided by the associated framework. These features notably comprise the editing engine and all surrounding technologies made available by the framework to practice programming activities and proving activities in a large sense. Following the Curry-Howard isomorphism (also called Curry-De Bruijn-Howard isomorphism) [START_REF] Haskell | Combinatory Logic[END_REF][START_REF] De Bruijn | A survey of the project Automath[END_REF][START_REF] Howard | The formulae-as-types notion of constructions[END_REF], we see the framework as a "meta" semantic container able to connect multiple logics with multiple languages together, as illustrated by the variety of object-logics in Isabelle, and the range of domain specific languages already formalized and submitted to the AFP.

In our novel approach, we are taking advantage of all sub-components of Isabelle (comprising Isar, HOL and ML). The approach is a particular combination of the following steps:

• We define an abstract syntax of our DSL in input in HOL (in the parlance of researchers in UML and Model-driven Architecture (MDA), this is a "meta-model" of UML). We shape our UML meta-model according to our first needs and refrain from completeness or full compatibility to existing standards.

• We define an abstract syntax of (an aspect) of the Isabelle kernel API in HOL [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF]. Again, we deliberately privileged as a first modelling highlevel abstractions over completeness.

• We define a translation between the former and the latter "UML/OCL ⇒ Isar_HOL" (called "meta-translation"), still in HOL (to target provability requirements), which comprises the generation of declarations, definitions in terms of denotational constructions, and tactic proofs. The overall schema we are following is depicted in Figure 5.7.

Source Syntax: The UML/OCL Meta-Model

We define meta-models of the compiler using the Isabelle datatype or record. We present as example just (the entry-point of) the UML/OCL class meta model (which may resemble to the Toy meta-model of our formalization [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF], but this last contains lots of simplifications) As an example, we take the first two class definitions shown in Figure 3.2 and present them in this abstract syntax datatype (the term command just typechecks it for presentation purposes):

term [Class "Flight" [("seats", UmlTyInteger), ("from", UmlTyString), ("to", UmlTyString)] "OclAny", Class "Reservation"[("id", UmlTyInteger)

] "OclAny", [. . .]]

Target Syntax: The Isabelle Meta-Model

Our abstract syntax of the Isabelle API supports the representation of • types, terms (with syntax-declaration elements),

• elements for tactics and Isar high-level proof methods, and 5 OclAny is added by the compiler as a super class inherited by all other classes.

CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

• Isabelle outer commands (like datatype, lemma, locale, . . .)

Here the manipulation of the monadic editing environment (like global context and proof context) becomes implicit: we aim to be as close as when one is editing in Isabelle/jEdit. This slight abstraction of the "real" internal interfaces might both enhance usability and portability. As an example of abstraction, we did not need polymorphic datatypes for the Class Model Package, so our current version of meta-model for datatype looks as follows: As remark, since these two datatypes are Isabelle datatypes, we can proceed as above and present them together in a general term: term [Datatype "hol_datatype" [("Datatype", [TyVar "string" , let list = λ x. TyApp "list" [x] in list (TyPair (TyVar "string") (list (TyVar "hol_ty")))])],

Datatype "hol_theory" (List. map (map_pair id (λ a. [TyVar a]))

[("Theory_datatype" , "hol_datatype"), ("Theory_definition" , "hol_definition"),

[...]]), [...]]

Two Strategies of Code Generation

After having defined one single translation in HOL of some meta-model to this Isabelle model, we can choose at present two scenarios of exploitation. They are complementary from a certain perspective, if not equivalent: the result of this translation (so the generated Isar_HOL commands) can be either immediately executed (bottom of Figure 5.7), or converted to a string in concrete Isar_HOL syntax that can be stored in a file to be executed step by step for presentation purposes (top of Figure 5.7). Both scenarios use two different variants of codegeneration inside Isabelle/HOL: namely, code-reflection and code-exportation.

The Reflection Scenario

The principle of compiling a formula with computational content to code, evaluating it, and re-introducing the result in derivations over the formula is called reflection. In the general domain of meta-reasoning, reflection has been a wellknown concept ranging from the area of logic to programming languages, e. g., in 3-Lisp [START_REF] Cantwell | Reflections and semantics in a procedural language[END_REF][START_REF] Cantwell | Reflection and semantics in lisp[END_REF] -a pointer to a general survey can also be provided here [Cos02]. There is meanwhile a large body of publications on this technique often applied in interactive theorem proving systems (as non-exhaustive list, we can cite some of them [BM79, Wey80, ACHA90, Bas93, Har95, Bou97, VGPA00, CN05]), where a universal axiomatizing approach has already been brought [START_REF] Manuel | Axiomatizing reflective logics and languages[END_REF].

After reflecting the initial HOL translation function, we obtain an equivalent ML function which is automatically added in the ML environment of the running system. Thus this function can be used as any other ML function:

1. we bind to its input a parser reading tokens from the Isabelle/jEdit editing window. The parser is connected to the Isar_HOL syntax engine (e. g., to support UML/OCL syntax), so that one can write usual UML/OCL command names (Class, Association, Instance, etc.) in Isabelle/jEdit and trigger the execution of the ML reflected function in return.

2. then we map its output (i. e. the ML reflected API model of Isar_HOL) to the own Isabelle's ML interface of Isar_HOL.

Finally, the combination of both forms a way to implement new packages in Isabelle/HOL, as any other Isabelle packages, but here we are also relying on potential optimisations made by the code generation (like decision procedures implemented in HOL). The construction directly benefits from an implicit "shallow" integration in Isabelle/jEdit, with many associated functionalities: for example, syntax annotations (or "constant bindings") become available as usual. Then a click on an accessor in some OCL formula will let the Isabelle/jEdit interface "jumps" to the corresponding definition inside a class model definition. Obviously, the generated code is still checked by the Isabelle kernel, then assuring the correctness of the underlying constructions as in any other package. We call this scenario of execution, the "shallow (reflection) mode".

The Exportation Scenario

For readably present the generated content and debugging purposes (this partly addresses the aforementioned issue of "intimate knowledge of the internals"), it is convenient to observe the generated declarations by several means: e. g., having a file containing the generated HOL definitions and Isar proofs, and execute them on a step by step basis by hand. The exportation scenario resembles to the above reflection scenario, except that no bindings happen between the Isar_HOL meta-model (presented in this thesis [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF]) and the Isabelle's ML interface of Isar_HOL. We write instead a pretty-printing function from this Isar_HOL meta-model to string, so that this string can be ultimately saved to file, called the "deep-certificate". Besides ML, the pretty-printing process and saving to file can actually be performed in Haskell, OCaml, or Scala since these processes do not use the Isabelle's ML interface of Isar_HOL. So in this scenario of execution, called the "deep (exportation) mode", the generated Isar_HOL content is not evaluated, but only represented as a string.

Unifying Both Scenarios

However a little work is still needed here for the exportation scenario to be used as smoothly as in the reflection scenario, i. e., in an interactive setting where the language in input is the UML/OCL language one is entering in the editor.

Then Chapter 6 will pave the way for an automated treatment, by unifying with a special command "generation_syntax" the two presented scenarios, i. e., allowing to choose in Isabelle/jEdit between the reflection or exportation without changing the UML/OCL expressions provided in input.

ML Antiquotations (I): Static Embedding into System Runtime

We close the section by detailing certain noticeable functionalities related with ML commands, that have been used when performing reflection and the definition of new Isar_HOL commands. As suggested in Figure 5.6, in modern Isabelle, ML code can be arbitrarily mixed with any other commands in the editor. Via code antiquotations [WC07, Wen16a], ML extensions can be programmed comfortably, since unlimited accesses to the own source of Isabelle are granted within Isabelle/-jEdit (at run-time). Thus, by approximating with a certain "meta" perspective the code generation as an identity function, one can start some programming or proving activity in the full Isabelle framework (with any interleaving of Isar, HOL and ML), to later refine the same activity in ML.

In order to demonstrate the relevant technical features, we present a screenshot in Figure 5.8 showing a session based on Isabelle/HOL that consists of the only file Scratch.thy. As usual, we retrieve the header mentioning theory and the "imports M ain" clause ("M ain" is a synonym for HOL) and then a sequence of commands: datatype, fun, declare, ML. . . Isabelle sessions can be extended by By unusually inversing the color of this theory file, we can better explain the effect of the ML command. Figure 5.9 shows a content resembling to Figure 5.8, but tokens are here described as a list of repetitive blocks of two elements: one blue command, immediately followed by a green area (which can optionally be empty depending on the parsing policy of the blue command). As remark, only comments or informative messages can be written outside a theory: e. g. for comments, we typically use the command text, which can occur before the command theory and after the command end (although its color is green in the picture, end can be assimilated as a blue command).

In Figure 5.9 the largest white color in background has the meaning to specially denote ML programs. This is to accentuate that, at any positions, ML programs has the possibility to be interleaved with syntactic blue and green blocks. Indeed, Isabelle itself is built on top of an ML execution environment, and in fact, Isabelle is a collection of modules implemented in ML and added into the ML environment of execution. So blue and green blocks can be thought of as abbreviating internal ML code, so that the global file is basically nothing but an entire ML top-level. Thus any blue block (together with its following green part) can be simulated with a corresponding piece of code appropriately written in ML. For example, it is possible to replace an entire theory file Example.thy with an equivalent one, mostly coded in ML, so that other files importing Example.thy (with "imports") would not know the percentage between 0 and 100% of ML fragments contained in Example.thy without a closer inspection inside the file Example.thy. Historically, ML itself was developed as a meta-language and an execution environment for theorem provers similar to Isabelle [START_REF] Michael | Edinburgh LCF: A Mechanised Logic of Computation[END_REF][START_REF] Gordon | From LCF to HOL: a short history[END_REF].

In principle, the ML command just gives access to the underlying ML execution environment: ML{ * 3 + 4 * } compiles "3 + 4", executes it, and optionally displays the result in the output window. However, when so-called code-antiquotations [WC07] such as @{code NIL} are used, the process is more involved because ML antiquotations implicitly refer to values declared "at Isar_HOL side". Concretely, an additional processing step is needed to resolve the appropriate dependencies before the ML code can be compiled. declare [[ML_source_trace]] activates an option to inspect in detail the resulting ML code in the output window. For example, the two antiquotations NIL and height generate among other the following ML code (for clarity reasons, certain names of variables have been slightly renamed afterwards):

structure Generated_Code = struct datatype nat = Zero_nat | Suc of nat ; datatype list = NIL | CONS of nat * list ; fun height NIL = Zero_nat | height (CONS (x, t)) = Suc (height t)
; end This ML code looks close to the one we have defined at Isar_HOL side (where instead we used datatype and fun). Finally during the compilation, antiquotations are automatically replaced with their corresponding values: val NIL = Generated_Code.NIL val height = Generated_Code.height This makes "height NIL" efficiently executable in the context of the compiled code -no symbolic representation is any longer involved.

As remark, instead of using antiquotations, one can also invoke the command code_reflect to explicitly perform the process of reflection on some particular given constants [Haf09, [START_REF] Haftmann | Code generation via higherorder rewrite systems[END_REF][START_REF] Haftmann | Code generation from Isabelle theories[END_REF].

ML Antiquotations (II): Defining New Isar_HOL Commands

The new command Term we are adding in Figure 5.8 and Figure 5.9 relies on the command ML to interact with the own source code of Isabelle, and to get access to Outer_Syntax.command further located in the source. The "Isar" component of Isabelle handling the blue commands, occurring in the "outer syntax" space [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF][START_REF] Wenzel | The Isabelle/Isar Implementation[END_REF], is in fact reconfigurable. Outer_Syntax.command takes a keyword as argument as well as one associated code to later execute whenever encountering the keyword. It ultimately binds both arguments so that the keyword can immediately be used afterwards like any other command (or any function ready to be applied). The use of Term as a keyword is possible since we have priorly declared in the header "keywords T erm". As pointed in Figure 5.9, the space where Term can be employed as a keyword is delimited between theory and end. Although the new command Term (with an uppercase "T") has been built based on the code of the existing command term (with a lowercase "t"), generally, any command from the Isar_HOL core API is accessible inside the ML scope. So it is as well possible to implement Term for it to have the same semantics as any other chosen command: namely datatype, fun, theory, or generally any existing Isar_HOL commands (including ML). However as a bootstrapping issue, while Term can be implemented with the code of theory (for it to have the same semantics as the command theory), after doing so, one will never have the possibility to call Term. This is because all user-defined commands (like Term) must be precisely called inside theory and end (and theory can not be called inside itself). This remark is not restricted to theory, but generally applies for all keywords having the possibility to occur outside theory, like text.

Properties of the Reproduction Process

Summing up, the construction presented in Figure 5.7 provides a generic principle to extend Isabelle with packages. To enable the prover to conceive its future object-logic, the reproduction of editing sessions basically requires three ingredients:

1. formal meta-construction,

code reflection,

and own kernel binding.

Then to perform the translation "UML/OCL ⇒ Isar_HOL", the implementation has capitalized on resources of the full Isabelle framework, i. e. Isar + HOL together, with some fragments in ML. This is to precisely benefit from a number of advantages.

Edition versus Generation

There is a subtle difference between the API presented in this thesis [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF], and the native interface of ML signatures of Isar_HOL as implemented in the original source of Isabelle. While we see them as complementary, they are serving different objectives, and then they are differently optimized: the interface in ML optimally targets means to obtain reactive and asynchronous editions of Isar_HOL documents, whereas the presented API in this work optimally targets means to obtain correct and massive generations of Isar_HOL documents.

• (editions of Isar_HOL documents) For example in Figure 5.10, the four commands are differently instantiated: their parsers are all different, taking different arguments in input, and each command needs to call a precise piece of code, thus making all commands achieving different functionalities (at least the four presented in the figure). So at the end, these commands or monadic combinators will be linearly assembled like a stream data-structure, and potential errors are appropriately optimized to happen at run-time.

• (generations of Isar_HOL documents) On the other hand, the Isar_HOL API presented in this thesis is precisely designed to abstract the internal functioning of commands, and provide a kind of grammar indicating at prototyping time which commands can be called (or generated) after or inside which ones. Ultimately, the aim is to minimize grammatical errors: for example datatype can not be called just after opening a proving scope like lemma. Similarly, after typing datatype, it is not expected to immediately type sledgehammer, or qed before beginning a proof. In the same spirit, when generating tactics, the Isar_HOL meta-model in HOL would treat the left parenthesis proof with the right parenthesis qed as a single constructor, so that one does not have to remember the number of left parenthesis opened until now, to be closed by one right "qed", and the right one. In By defining the translation in HOL, and using Isabelle/HOL as "implementation language" itself, one immediately profits from a premium access to verified libraries. As pointed by the manual describing object-logics of Isabelle [START_REF] Paulson | Isabelle's Logics[END_REF]:

"HOL is currently the best developed Isabelle object-logic, including an extensive library of (concrete) mathematics, and various packages for advanced definitional concepts (like (co-)inductive sets and types, well-founded recursion etc.). The distribution also includes some large applications."

Possible relevant libraries for the translation are among other: the formalised red black tree theory, infrastructures on list, pair, monad, or the one defining transitive closures for expressing inheritance relation, plus diverse libraries on λ-calculus from the AFP that can constitute sound foundations for both metamodels: both have to manipulate terms and types. Furthermore, one can profit of the possibility to prove properties over the compiler within the native flexible Isar_HOL language, in a large sense: semantic preserving HOL-based compilations, or correctness properties in HOL-based decision procedures for instance.

Generally, the framework can serve to incrementally build constructive functions, i. e., irrespective of the notion of "a particular theorem to prove". Since the complete compiler has to be ultimately executed, its internal component aims to be built favouring the constructive subset of classical logic. Instead of writing a single block of definition, that same definition we are defining can in fact be incrementally constructed with lemma and a final intuitionistic extract.

For the case of HOL-OCL 2.0 packages, proofs are actually diversely covered ranging from the termination proofs of the compilation functions (which we provided alongside with our construction, they are mandatorily required when defining arbitrary Isabelle/HOL functions), or different studies concerning the implementations of the object-oriented data-structures (detailed with generation_semantics in Chapter 6).

The check of the non-emptiness of all datatypes being defined are then covered. From a syntactic point of view, defining a datatype in ML can be as concise as defining a datatype in Isabelle/HOL. From a semantic point of view, both approaches follow different consistencies checking [START_REF] Gunter | Why we can't have sml-style datatype declarations in HOL[END_REF]: number of lemmas are automatically derived in Isabelle to assure the well-formedness of the data-structures being defined [TPB12, BHL + 14]. Thus, one can take advantage of this additional guarantee when defining the full meta-model of UML/OCL in Isabelle/HOL (and this meta-model has a certain size). In particular we will see in future chapters that a meta-model for UML/OCL must be rich enough to capture the description of classes, associations, instances, transitions, invariants... Not only are these additional lemmas proved by the datatype package of Isabelle, but associated folding recursive definitions are automatically provided in order to deeply fold the data-structures being defined. These folding definitions will be used to facilitate various pretty-printing operations to string (in Chapter 6).

Parallel Related Theorem Proving

Because writing a short sequence of tactics can be more rewarding than a long one, generating proofs solving a class of theorems can be as well more rewarding than generating proofs for solving only one. We present for instance a tactic function in HOL in Figure 5.11. For the moment, we can just note that this figure is well-typed in Isabelle (and only depending on M ain), more detailed explanations about what this tactic is solving will be provided in Section 7.5. Although this tactic function might resemble as any usual definitions of tactics, e. g. in Coq's Ltac [START_REF] Delahaye | A tactic language for the system coq[END_REF] or Isabelle's Eisbach [START_REF] Matichuk | An isabelle proof method language[END_REF], here we are not solving just one theorem but a set of "related" theorems at the same time with this single function. 6 Otherwise said, one can for example use our approach to define an HOL function, solving a set of theorems, where each theorem is itself solved by some tactics in Eisbach (which has been designed to write short sequence of tactics). On the other hand, in our approach, solving a class of theorems is not mandatory: one can also generate a set of tactics for solving only one theorem.

Finally, even if Figure 5.11 seems to have been written in one shot (i. e. with no interactive theorem proving facilities), the debugging of this high-level construction by alternatively inspecting the deep-certificate turned out to be an extremely useful technique, especially when combined with the ability to typecheck a set of related theorems at the same time in parallel, natively provided in Isabelle [START_REF] Wenzel | Parallel proof checking in Isabelle/Isar[END_REF][START_REF] David | Efficient parallel programming in poly/ml and isabelle/ml[END_REF]Wen14].

Meta Theoretical Properties

The presented construction allows to generate certain properties over syntactic and static sanity of the generated functions and models, such as: "if no context errors in the Class Package syntax occur, it can be assured that all generated names for accessors are distinct". In particular, we have taken advantage of the type system of HOL to do some extra type-checking and term rejections. For example, the checking of free or bound variables in the new command Instance

definition typecheck Instance _extra_variables_on_rhs = (λ F 2 F 1 R 21 R 11 C 2 C 1 S 1 . (F 1 , M on, F 1 , R 21 , F 1 , R 11 , F 1 , F 1))
Here, whenever M on has not been earlier defined in the code, we would automatically get an error, this error being raised by the definition command itself.

As remark, since we apply the code generator of Isabelle to generate code, which will again generate definitions and proofs (obtaining at the end some meta-level code whose results will be checked by the logical core engine), the general reproductive process can not be approximated in the precise sense of the word as a simple act of (syntactic) reflection or exportation, rather a tool construction by meta-level modelling not involving additional trust (except the understanding one might have on Isabelle generated theories, and associated arising trust).

Generally, the particular relation between rewriting logic [START_REF] Meseguer | Conditioned rewriting logic as a united model of concurrency[END_REF] and type theory [ML84] has already been deeply investigated, for example by Mark-Oliver Stehr [START_REF] Stehr | Towards a unified language based on equational logic, rewriting logic, and type theory[END_REF]. In parallel in the present work, a comparison can also be approached with Pure Type Systems (PTS) [START_REF] Barendregt | Introduction to generalized type systems[END_REF] where inference rules (typically abstraction and application) are reused several times but differ on the nature of the folded (or quantified) sort (which can be a type or a kind). Similarly, having Isabelle/HOL as a back-end of itself shows that Isabelle/HOL (seen as a pure calculus system without considering potential non-terminating aspects from the ML layer) can be reused to fold itself through one deep embedding iteration. In term of expressivity, while one first iteration already allows to express types as first class citizen, comparatively to dependent types, no limitation on the number of iteration does actually occur as constraint.

While the typing of PTS crosses all sorts of hierarchy as a single entity, no particular assumption on well-formedness is initially performed when deeply embedding syntax trees (by default, additional proofs should be brought). However meta-considering Isabelle in itself does not restrict the calculus system to inner syntactic expressions (or object-logic expressions). Since the complete language is covered, HOL can as well be used for generating Isar_HOL tactics (at the meta level, the process of generating tactics is guaranteed to be terminating, whereas their execution may not).

Slightly more challenging, our technique can in principle be adapted to prove meta-theoretic properties such as: "if the class model is well-formed, the generated code will be well-typed with respect to HOL types". When complemented by a semantic model of the Isabelle/HOL API, it is even conceivable to extend our approach by true completeness proofs assuring that the evaluation of the various deep-certificates will not fail. However, this is a very ambitious task (not yet implemented) that appears feasible only for simple rewrite-oriented proofs or for the checking of simple proof-objects. We nevertheless consider the overall construction of the reproductive process as a major step into this direction.

Meta Theorem Proving in HOL-OCL 2.0

The embedding function L ⇒ Isar_HOL, described as a packaging function in the previous Chapter 5, becomes now interactively considered inside the editor Isabelle/jEdit. Due to the approach consisting to sequentially embed a chain of languages L 1 • • • L n , one could even obtain at the end an infrastructure supporting the modelling of Ouroboros programs [START_REF] Soto Andrade | Ouroboros avatars: A mathematical exploration of self-reference and metabolic closure[END_REF] (which are mutually generating programs [Kle38, Cut80]: e. g., P 1 written in L 1 which produces in output a program P 2 in L 2 so that the execution of P 2 yields exactly P 1 in its turn1). The present work will nevertheless be regarded as an antagonist work for several reasons. The aim of successive embeddings presented here is to merely not form cycles, we imagine the reproduction process as a one way process, growing in many directions as a genealogical tree. In particular, several running modes of animation respectively illustrating Figure 5.7 will be presented for the construction to avoid cycles at run-time depending on the running mode. Whereas the deep exportation mode will delay the loading or load step-by-step the semantics of a given piece of code in L, the shallow reflection mode will execute at full speed the semantics of this piece of code.

Precisions will also be provided on the limitation of such embedding and which symbols are needed or not to delimit the enclosing scope of the embedded languages. This is for programmers and computers to unambiguously know if a given piece of code has to be understood belonging to L 1 , L 2 , or somewhat else.

Modelling in deep and Executing in shallow

To animate the semantics of some piece of code written in L, we integrate in the jEdit-based Prover IDE of Isabelle a special command, called generation_syntax, to fine-grained select which behaviour in Figure 5.7 to execute when encountering that piece of code. Furthermore, in order to determine if a given piece of code in Isabelle/jEdit has to be understood as a piece of code belonging to L or Isar_HOL, we introduce the terminology of meta-commands. By metacommands, we precisely designate any Isabelle commands satisfying all the following conditions: As remark about the two drawn Isabelle sessions in output, here the names of certain constants might need to be prefixed with "Generated" in one case, and prefixed with nothing in the other case. To be rigorous, the "exact" similarity only occurs when we compare the (end of the) deep-certificate with the (end of the) file in shallow-mode. Then we must also assume that both files have the same name and import similar ancestor theories. For instance, the previously defined command Term will not be called as a metacommand, because it does not use the reflected translation of of animating mode, either deep, shallow or any elaborated combinations that can concur at the same time. In particular the fastest semantics is obtained with an empty list: when it is set, only minimal syntactic checks are supposed to occur afterwards. Figure 6.1 establishes as general idea or conjecture the equality relation of sessions between deep and shallow. Starting from a language L embedded into Isar_HOL, and a piece of code written in L, the piece of code can exhibit two symmetric behaviours depending on if deep is given to generation_syntax or shallow. These two behaviours reflect exactly the two ways to export the meta-translation presented in Figure 5.7.

• In particular, deep can take additional parameters to specify which intermediate languages to use for generating the deep-certificate "Generated.thy" in the hard disk (among Haskell, OCaml, Scala, or SML). Then, at any time in deep-mode, one call of generation_syntax deep flush_all will perform as side effect the saving of the generated Isar_HOL commands associated to the piece of code written in L, by invoking the respective compiler of the chosen intermediate language (several intermediate languages can also be chosen in parallel).

Because all meta-commands are considered or possibly reconsidered again for the generation, we can obtain at the end several well-typed generated theories which are related by a particular relation of partial ordering. For example, Figure 6.2 shows an increasing ordering of three well-typed generated elements. As remark, the smallest element of this relation could be a not empty file: whenever we immediately call generation_syntax deep flush_all, just after setting a file in deep-mode, the emptiness of the resulting generated theories actually depends on how the embedding from L to Isar_HOL has been defined. In particular, interleaving of modes can occur among any chains of embedding. For example, Figure 5.2 does not precise if the three grey arrows are similarly all executing in shallow-mode, or all executing some extracted deep-certificate each time (assuming we firstly forget that this figure represents a single file). deep generally aims to complement shallow because the former can be assimilated as a process producing at the end a formal specification which can be visually inspected. Later, the formal specification can serve as a certificate to justify the execution of shallow. Given a deep-certificate and a theory file in exclusive shallow-mode, running both sessions in parallel (in separate Isabelle/-jEdit processes) allows to inspect and potentially detect a non-terminating tactic, that task can be harder without having at hand a deep-mode (it would mean to only debug in shallow-mode).

Irrespective of the running mode (deep or shallow), generation_syntax takes further arguments to influence the semantics of generated contents, this is performed with the keyword generation_semantics. However this is just a slight influence, for example concerning optimizations we might have on the choice of data-structures used to model certain datatypes. So noticeable differences for , List.map (fn s => (To_binding "", s_of_rawty s)) l) , NoSyn)) l) , (To_binding "", To_binding "")) , [])])) *} Figure 6.3: The implementation of datatype has meanwhile changed end-users would only concern the global resources of the computer, time privileged over space, or vice versa. At the time of writing, design and analysis are such possible options to explicitly state that definitions of classes should be understood and compiled as "aggregations" or "associations" (these notions will be precisely detailed in Chapter 7). 3 Other options have been studied to fine-grain adjust the cost of operations related to accessors on objects and casts:

• one option to optimize the accessing of objects in O(1), at the cost of performing casts in O(n),

• and vice versa, one option to optimize casts in O(1), at the cost of performing the accessing of objects in O(n).

We have experimented several medium-sized samples by hand. In particular Chapter 7 will further mention the implementation details relating both datastructures.

Besides influencing the semantics of the embedded L with generation_semantics, generation_syntax can produce several variations of Isar_HOL theories, mostly to ease prototyping. For instance, we have added the keyword SORRY to explicitly disable the generation of all proofs, irrespective of the presence of sorry [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF] or not in proofs initially intended to be generated. More conceptually, between Isabelle 2014 and Isabelle 2015, the algorithmic implementation of datatypes has fundamentally changed: datatype was renamed to old_datatype [START_REF] Berghofer | Inductive datatypes in HOL -lessons learned in formal-logic engineering[END_REF], whereas datatype_new renamed to datatype [BHL + 14]. Since the Isar_HOL meta-model in HOL stands as an abstract interface of Isar_HOL commands (as presented in Section 5.3), changing one supported implementation to another one is relatively transparent. Faster for deep than shallow, because for shallow a look at the source code of Isabelle is finally needed to find the respective Isar_HOL entry-point (located after the parsing expressions, as in Figure 6.3). For deep, a change in Isar_HOL syntax normally only implies a modification in the pretty-printer. To be rigorous, a long term project would prove or evaluate more formally the consequences of successive upgrades of Isar_HOL commands (like datatype). deep-certificates are intended to stand as static witness irrespective of Isabelle versions, while on the other hand modifications in deep-certificates are nevertheless necessary to be aligned with Isabelle and well-typed.

Testing deep-Certificates Before Checking Proofs

As enhancement, we further optimize the generation of deep-certificates. Figure 6.4 participates to the designing objective of Figure 6.1, by detailing a testing activity automatically performed when generating in several intermediate languages: we have programmed the system to check at run-time that all deepcertificates are similar (by performing syntactic comparisons). As soon as we give Haskell, OCaml, Scala, and SML in a list to deep as argument, generation_syntax will immediately proceed to the code exportation of the meta-translation function, without knowing yet which arguments will need to be translated. Then the first occurrence of generation_syntax creates four versions of the metatranslation, in four respective directories. The optimization consists to precompile these generated functions to object code so that they are all ready to be linked and applied with future incoming meta-commands. Future incoming meta-commands are supposed to heavily change during experimentations, whereas the main meta-translation function is exported once and for all. So it will just remain to compile the "tiny" set of meta-commands associated to each invocation of generation_syntax deep flush_all, then link the overall as last step before the ultimate execution.

However this optimization only works on languages allowing to break the typing inference mechanism. Indeed, the current Isabelle 2016 does not include commands to extract code to functors (only ground modules). This leads to two scenarios:

• For efficiency reasons, one call to unsafeCoerce in Haskell, and one call to Obj.magic in OCaml are executed to link and apply together "Function.hs" and "Argument.hs", respectively "function.ml" and "argument.ml". Similar optimizations are not yet implemented for Scala and are only half implemented for the SML target (which basically performs a step of marshalling to string in Isabelle/ML, the incremental compilation with object code is not yet implemented).

• For safety reasons, we can disable all optimizations: it suffices to extract all the meta-compiler together with the respective arguments in front of each incoming meta-commands every time, then the overall needs to be newly compiled every time. This is the current implemented behaviour for Scala. For Haskell, OCaml and SML, it was also the default behaviour in certain previous versions of the current project, so that functionality can be restored if needed. As remark, a potential restoration of previous functionalities can simultaneously concur with the existing compiling schemes: for example we can have several active modes of compilation for Haskell, OCaml and SML, for compiling in bytecode and in native-code at the same time. This would all the more increase the testing activity for the benefit of not only respective compilers, but also code serializing function. In particular, we identified syntactic issues concerning the code generation of Isabelle to OCaml and Scala. These issues have been signalled, and fixed for the release of Isabelle 2016 4,5 . However on the other hand, Scala issues turned to be somehow useful for cleaning the meta-compiler: ghost (unused) functions was in certain conditions not correctly extracted in Scala (in this case, an error was explicitly raised).

TESTING

In a determined attempt to combine efficiency and safety, we propose a third optimizing scenario. The new option self, represented in Figure 6.5, can be alternatively used in the list of target languages given to deep, besides the SML target for example. The target self resembles to the target SML: they ultimately perform the generation of the deep-certificate to the hard disk. Whereas for SML the 6.3. HIGHER-ORDER META-COMMANDS 85 meta-translation function (in "Function.ML") and incoming meta-commands (in "Argument.ML") have to be extracted after generation_syntax (and have to be repeatedly extracted for Argument.ML), for self nothing is extracted and all operations prior to the writing of the deep-certificate fully occur in RAM. Indeed, the environment of the Isabelle process running the implementation of generation_syntax already contains the reflected meta-translation function, since the reflection step occurs before the definition of generation_syntax. So for the case of the self target, it is enough to just execute the reflected metatranslation function from L to Isar_HOL, and pretty-print the resulting value to string, then to a file. 6 In particular, comparing with the target SML, we are saving here one fork of Isabelle process. However again, the arguments in favor or against an efficient execution particularly apply here as when we explained Figure 6.1: one possibility to justify what has been executed in RAM is to readably inspect the extracted function Function.ML (or Argument.ML), this is what the sole use of self as target can not provide. The code generator of Isabelle allowing to either export (with export_code) or reflect (with code_reflect) are nevertheless internally relying on a common algorithm, or same trusted computing base.

Higher-Order Meta-Commands

Besides meta-commands generating Isar_HOL commands, the collection of multiple HOL embedding presented in Figure 5.3, from one arbitrary language to another one, has implicitly suggested the notion of considering meta-commands as first-class citizen in HOL: so "meta-commands generating meta-commands". In deep-mode, this is particularly not a danger for meta-commands to generate themselves, whereas for shallow the recursion might not terminate. Indeed, the iterating process chaining the collection of multiple HOL embedding is defined recursively in ML just after the reflection step. However this does not mean that the chaining function itself, situated at ML side, can not be preliminary used in Isabelle/HOL before the reflection step, as the declaration of arbitrary constants is feasible with consts [Wen16b] 7 , associated with abstract instantiations in ML with code_printing [START_REF] Haftmann | Code generation from Isabelle theories[END_REF]. As a side note, this is how we have defined a pretty-printing process in HOL involving polymorphic cartouches [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF]. 8 Moreover, as the Turing completeness of ML has mainly been profited just for defining this chaining function (besides Isar_HOL binding and parsing from L), we think it is the sole recursive function in the meta-compiler whose termination looks not straightforward to prove, but the setting seems already ready for such proof: to be potentially written in the same HOL level as the HOL level of the meta-compiler.

Generally, for meta-commands to generate themselves, the meta-tool must priorly support a form of automated call to generation_syntax beforehand, so 6 Technically, we could have syntactically called this target "the target shallow" instead of "the target self". However for clarity reasons, we refrain to do so in this document.

7 As remark, the type system can be weaken by mistake with "consts magic :: α ⇒ β". As mentioned in the reference manual of Isabelle, for nearly ten years now [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF][START_REF] Nemouchi | Isabelle in certification processes[END_REF]: "It is at the discretion of the user to avoid malformed theory specifications!" 8 In the implementation, the translation on meta-models makes use of optional portions of ML code (and abbreviations) that can all be removed. The translation does not depend on the printing process which happens afterwards, as shown in that one can know which semantics to give to the newly created meta-commands. However this is not enough, the general compiling environment of Isabelle (behind the notion of session, and comprising the history of meta-commands) are changing throughout the interactive evaluations, so in certain situations the environment must also be taken into account and propagated when meta-commands are generating themselves. For example, Figure 6.6 shows an example where the environment is propagated across many levels of meta-generations. Figure 6.6 divides the universe, seen as a semantic tower, into a set of disjoint partition, or semantic floor. (To our knowledge, the terminology "infinite (reflective) tower" in the domain of reflection came from the works of Brian Cantwell Smith [START_REF] Cantwell | Reflections and semantics in a procedural language[END_REF][START_REF] Cantwell | Reflection and semantics in lisp[END_REF]. Moreover, some noticeable characteristics of the "ground floor" of such towers have been presented for example by Bas R. Steunebrink and Jürgen Schmidhuber [START_REF] Bas | Towards an actual gödel machine implementation: A lesson in self-reflective systems[END_REF].) In the picture, the floor 3 is empty but the process can in principle be further continued. By reading from top to bottom, we start with a normal file in deep-mode, such as the one presented in Figure 6.1. Then after a step of deep-generation, the file Generated.thy finally appears in floor 1, with particularly inside a set of meta-commands. However to respect the commutative property of Figure 6.1, not only has this generated file the property to be well-typed, but we have automatically set it to be generated in shallow-mode (by default). Having an option in generation_syntax to force the generation towards a deep-file would be feasible as well. In the picture, after manually changing the mode of this file to deep, we extract a new theory Generated2.thy in floor 2. Let's assume this time it has inside zero meta-command.

As a design decision, and contrarily to Generated.thy, it is perfectly fine for the theory Generated2.thy to be not well-typed, precisely if Generated.thy contains Isar_HOL commands interleaved with L, just after generation_syntax. This is because these generated Isar_HOL commands are intentionally not copied (or not produced any more) when the generation occurs from Generated.thy to Generated2.thy. As another possible choice, we could have chosen to explicitly do the copy but this assumes to transmit along particular information for Generated.thy to know what to copy. So it means to generate a code to dynamically modify the Isabelle environment and editing session, so that the environment of the meta-compiler can dynamically be modified as well. Generally, this modification must occur not only when jumping from floor i to floor i + 1, but an arbitrary floor n would generally need to know which Isar_HOL commands were generated from floor 1 to floor n -1, so ultimately speaking, the knowledge of all generated Isar_HOL commands irrespective of floors. As remark and optimization privileging space than time, instead of propagating and remembering a set of (generated) Isar_HOL commands potentially large, the shorter list of meta-commands generating these Isar_HOL commands can be considered for the transmission.

• However, even if transmitting such information can have a certain cost, this kind of propagation of the environment across floors has been implemented, but not for all meta-commands. In practice in UML/OCL, we have not encountered serious situations where the (potential) failure of Generated2.thy would be an issue. Currently, the propagation has been implemented for only few meta-commands, i. e. those generating Isar_HOL commands (no meta-commands), that are particularly all situ-ated before the first call to generation_syntax. For instance this includes meta-commands related with the Class Model Package: Class, Association, Composition, Aggregation; but this can also include meta-commands from the Instance Package, because in certain circumstances generation_syntax does not have to be immediately triggered after the Class Model Package. In Figure 6.6, code 1 (respectively code 2) represents the position where such generated code would occur. In particular code 1 is here equal to code 2, and generally, the generation of code 1 is automatically planned to be continued and repeated (at the beginning of generated files) following the creation of new semantic floors.

Generally, the transmission has been implemented for at least this particular case because in Generated.thy the generated content appearing after generation_syntax could sometimes contain zero Isar_HOL command. So this implies in this case that Generated2.thy would always be fully welltyped, thus we maximize situations where files are respecting Figure 6.1.

• Besides forcing the transmission for all meta-commands (particularly including those generating Isar_HOL commands situated after generation_syntax), there is another solution to overcome the limitation of the design decision. Instead of generating Isar_HOL commands, the solution would be to generate Isar_HOL' meta-commands, where Isar_HOL' has been bijectively mapped from all Isar_HOL command, by adding in their name at least one arbitrary symbol somewhere, so that all Isar_HOL' are syntactically all different from any regular Isar_HOL command. For example, we can introduce the following meta-commands which do not conflict with existing commands: datatype', definition', lemma', ML', etc. . . (Section 6.5 will particularly detail how to find suitable new names)

Consequently, by using this technique, all deep-generated theories in all floors would be well-typed. However in the last floor, it would just remain to explicitly perform once more an additional step of generation from Isar_HOL' meta-commands to retrieve their associated Isar_HOL forms (to not say normal forms).

• As remark, while Generated2.thy could be not well-typed, it does not mean that all Generated.thy, having Isar_HOL commands after generation_syntax, will generate not well-typed file! In particular such Isar_HOL commands could have been written by hand or could be completely unrelated with the success or failure of Generated2.thy. Lemmas and proofs can most of the time be qualified as having such unrelated profile, in case their content are mostly involving pure computation not affecting the global context of Isabelle.

To effectively transmit our contextual information (with particularly the list of meta-commands generating Isar_HOL commands), we have used the Isar_HOL command setup [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF], so that the global environment of Isabelle can be modified on the fly. However in certain circumstances, the command setup must be explicitly forced between some particular interleaving of two meta-commands C1 and C2, especially when C1 only generates Isar_HOL commands, so zero meta-command, and when C2 generates at least one meta-command (among potential Isar_HOL commands). Without an explicit use of setup, after C1, the code generated by C2 would normally have no way to detect that some Isar_HOL code has been generated or not, precisely by C1. Consequently, one solution for C2, before generating its first meta-command, is to generate setup. In particular, this setup will increase the knowledge of C2 by instructing it of the existence of all Isar_HOL commands generated by C1.

Generally, generating meta-commands allows to perform various extensions on the language L being embedded, without altering the semantics of a particular command in L. This is the picture we had when imagining a stack of semantic floors as a set of layers of a PTS in Section 5.3. For example, the UML/OCL metacommand Transition usually only takes "bound variables" as parameters (not arbitrary λ-terms), so something like "Transition σ 1 σ 2 ". However the semantics of Transition was extended to mimic the support of some particular terms not restricted to variables. This extension was implemented by executing some steps of "ζ-rewriting rules" [START_REF]The Coq proof assistant reference manual[END_REF] operating on an upper meta-layer of semantic floor abstracting the floor where the semantics of Transition should usually be held accountable for. As an example of execution trace, we present a sequence of steps rewriting until normal form:

Transition [• • •] σ 2 State σ 1 = [• • •] Transition σ 1 σ 2 Instance X = • • • State σ 1 = [X] Transition σ 1 σ 2
where "• • •" represents a complex expression, normally only understood by Instance, and where σ 1 and X are fresh invented names. The particularity of the construction is that "• • •" becomes implicitly supported by State and Transition as well, without having to program it, modulo some steps of metacommands generating meta-commands. In the same spirit, "[•••]" becomes also supported by State. As optimization, one can also implement a new keyword "nf" for metacommands to know that they are acting as normal form meta-commands, and raise an error whenever one or several "• • •" are given as arguments. So it means in fact to consider the following rewriting steps:9

Transition [• • •] σ 2 State σ 1 = [• • •] Transition (nf) σ 1 σ 2 Instance X = • • • State (nf) σ 1 = [X] Transition (nf) σ 1 σ 2

Lazy Meta-Commands

In Isabelle, the responsivity of the editing engine globally participates to the interactive animation of the framework. Events occurring during the edition are continuously happening under various forms: pop-ups, diagnostic messages in the output window, asynchronous underlining of warning and errors. These suggest additional ideas to further align the meta-tool with the reactivity of Isabelle. In this part, we are going to all the more refine the animating aspect of the commutative diagram of Figure 6.1. Instead of visualizing L as a continuous text, we will describe the semantical effect of deep to the atomic level of metacommands (thus similar properties will also hold for shallow). In Figure 6.2 we briefly saw that generation_syntax deep flush_all can be alternated among any meta-commands when experimenting a file in deep-mode. More precisely, for any generation_syntax deep flush_all being able to fold all meta-commands since the beginning, we needed to globally store all encountered meta-commands in the contextual environment of the meta-compiler. By generalizing the possibility to access this data-structure for any meta-commands (apart for generation_syntax), we obtain a new dimensional aspect in theorem proving, involving dynamic recomputation of meta-commands: namely "lazy meta-commands". Meta-commands are then getting grouped into two categories, depending on if they should be understood as supporting laziness or not. To emphasize that laziness is a dimensional feature independent of the default animating mode (deep or shallow), Figure 6.7 considers the activation of both deep and shallow at the same time. To simplify, we can restrict our presentation to only three meta-commands: lazy representing lazy meta-commands, strict standing as non lazy meta-commands, and id a form of exception meta-command to be described later.

Native Isar_HOL commands resemble to the family of strict because their side-effects are immediately visible and rendered, as soon as the asynchronous engine of the prover has a reason to require an effective evaluation. On the other hand, lazy meta-commands are specially skipped and their semantics are always getting frozen, irrespective of the prover. However they are not meaningless since lazy meta-commands impact incoming strict and id meta-commands.

• For example in Figure 6.7, lines 3-5 have been randomly permuted, because they are lazily declaring the variables a, b and c. So they are all ignored until we reach the next non lazy meta-command, like strict.

• At the position of cursor 1, the evaluation of strict X = {a} will automatically force the evaluation of previous encountered lazy meta-commands.

As remark, if we suppose line 3 removed, one could obtain either an error at cursor 1 or no particular errors: this is a simple design decision, depending on how the semantics of strict has been implemented during the embedding of L into Isar_HOL. In particular, the implementor can explicitly choose to raise an error, warning or nothing.

• Intuitively, line 7 gets evaluated as usual, since the previous metacommand was also strict.

• After another switching to lazy mode, cursor 3 needs to reconsider the evaluation of the entire set of meta-commands, as when we were at cursor 1. However as another design decision, strict could first consider the declarations of a, b, c and d together, before treating X and Y . Generally for any meta-command C, any permutating scenario happening before C can be considered, as long as the partial ordering of Figure 6.2 is respected by the implementation at any editing position, hence always producing an ordered increasing theories of well-typed elements.

• Because as any Isar_HOL command, ML can be generated, one can generate Isabelle/ML warnings or errors at cursors 4 and 5, since for example Z has already been defined at cursor 3. However, while in principle such errors can be directly raised in deep-mode, one design decision can delay the incoming of errors in deep-mode to the next semantic floor, i. e. generating errors to be triggered only when evaluated. By comparing with shallow, this would tend to consider the deep-mode as an experimenting framework where errors are minimized, thus inciting to do there arbitrary prototyping.

Besides the meta-commands lazy and strict, id is an example of meta-command where laziness can dynamically be parameterized with options situated in green areas, so "id lazy" stands for laziness, "id strict" as non-lazy. "id none" is an identity function combinator, where no effects are produced irrespective of the status of the previous command.

To better examine in deep-mode the list of Isar_HOL commands generated by a particular meta-command, we integrate in the meta-compiler a functionality to display in the output window the generated code associated to a meta-command, as illustrated in Figure 6.8. What to display in the output window is dynamically computed since for instance syntactically similar instructions, like lines 9-11, can actually generate different Isar_HOL commands (contrarily to line 10 and 11, line 9 has to take into account the history of all previous meta-commands, then includes itself). So the output window varies differently depending on the movement of the cursor when browsing the entire theory document. In addition, we augment the interactivity of the overall by mimicking the proof reconstruction tool sledgehammer [PS07, MP08, PB10, Bla16], so generated definitions and lemmas associated to a particular meta-command can be selectively inserted • Besides a simple insertion, we imagine concurrently feasible (with a particular combination of keyboard) for a click to modify and replace the command where the cursor is situated. This would in a certain sense close the bootstrapping reproduction process, allowing to do in place, in full HOL, an upgrade of arbitrary code by means of meta-programming, and serve to complement the edition in Isabelle/jEdit. For example, one can manually type a huge λ-term and work on it by performing particular automatic editing operations. These operations are intended to be "fully" programmed in HOL (e. g. the renaming operation on all occurrences of a bound variable).

• Generally, in case the generated piece of content, chosen to be clicked in the output window, is embedding a setup command, then the current running global context of the editor would be transparently swapped (assuming the update function given to setup disregards its argument, containing the 6.5. OBFUSCATED META-COMMANDS 93 state of the editing context). This is one way to travel across semantic floors using a depth-first exploration strategy, compared to the breadthfirst strategy natively offered by generation_syntax deep flush_all. For the depth-first jump from one floor to another floor to not cause hazardous errors, we recommend to begin the experimentations with the deep-mode alone as side-effects would start minimized.

Finally, we come to the generalization of the laziness property to higher-order meta-commands. For example for each lazy meta-command C, we can define a new meta-command C', where C' is C but with an explicit flag to set the laziness or force the execution. So if the flag is meant to force the generation, C' would generate C and just after id strict; otherwise C' would only generate C.

• On the one hand, it suffices to natively force the execution of all C', for the output window to completely behave as fully animated in front of all meta-commands. So inside a theory file, the laziness property can be made imperceptible, i. e. each meta-command of a given file can be transformed into a non-lazy meta-command.

• On the other hand, in practice the laziness property can be implemented, for certain higher-order meta-commands, but without the need to cross the barrier of meta-commands generating meta-commands.

For example in UML/OCL, laziness was required for Associationclass which aims to lazily generate what is lazily generated by both Class and Association. In the meta-tool, the code of Associationclass has been turned into an implicit lazy construction: a construction purely implemented in one level of HOL, without involving meta-constructions. Thus in deep-mode, the resulting effect of Associationclass (when encountering a next strict meta-command) is not to syntactically display both Class and Association in the output window, but the output window will show the code generated by both Class and Association. On the other hand, the termination is immediately guaranteed since it is a construction in pure HOL.

Finally, we estimate our monadic construction enough abstract for it to be generalized to any lazy meta-commands requiring to generate metacommands which are all non-lazy.

To conclude, laziness can be particularly useful to abstract end-users from certain characteristics of the languages being embedded: in UML/OCL, this allows us to incrementally declare classes at any editing position in the prover (declarations of classes are lazy) [START_REF] Tuong | A meta-model for the isabelle API. Archive of Formal Proofs[END_REF]. End-users would not know if the underlying logic is following an open-world or closed-world assumption, unless by monitoring the space and time consumed by resources at run-time. This is one drawback, the evaluation of a complete theory might have a certain cost, when laziness frequently occurs among non lazy meta-commands. Nevertheless, in USE all classes must normally be declared at the beginning of the file, before other expressions.

syntax "_OclForallSeq" :: "[(','α::null) Sequence, _, _] ⇒ _"

("(_)->forAll'(_|_')") syntax "_OclForallSet" :: "[(','α::null) Set , _, _] ⇒ _" ("(_)->forAll'(_|_')") term "X->forAll(x|P x)" (* ERROR: X is ambiguously parsed as a set and as a sequence at the same time *)

term "(X :: (','α::null) Sequence)->forAll(x|P x)" (* X is a sequence *) term "(X :: (','α::null) Set)->forAll(x|P x)" (* X is a set *)

Figure 6.9: Syntactic ambiguities because of similar notations

Obfuscated Meta-Commands

For supporting the rather rich concrete syntax of OCL in a flexible and standard conform manner, the parser-combinator-based infrastructure of Isabelle prior to version 2014 is not powerful enough. For example, one needs to write self .x (note the space in front of the accessor) instead of self.x. Moreover, the operation definitions of the library [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF] need to make a compromise between readability and logical precision. For example, to facilitate type checking and avoid spurious errors during typing, the overloaded collection type OCL operation X->forAll(x|P (x)) has to be represented more precisely by the concrete instance X->forAll Set (x|P (x)), and usually implicit type coersions between sub-and supertype have to be written explicitly. Similarly, notations of OCL number and certain data-structures can happen to be slightly differently represented in HOL, depending on the range of symbols already used or available in Isabelle/jEdit. As illustration, we show a situation where an ambiguity error is expected to be raised in Figure 6.9, especially when the typing information is omitted.

To enable the writing of OCL expressions with a simpler and standard conform concrete syntax, we integrate a specific parser and type checker for OCL that was developed as part of su4sml [START_REF] Achim | An MDA framework supporting OCL[END_REF] (and which is also used by HOL-OCL). The su4sml type inference injects type casts automatically and is implemented in SML using standard parser generator tools (i. e., ml-lex and ml-yacc). As su4sml is implemented in SML, it can directly be called from within the Isabelle/ML layer. Moreover, since version 2014, Isabelle supports a mechanism for defining dedicated parsers for domain specific languages, called cartouches [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF] 10 , which we can plug su4sml into. Thus, even within logical HOL formulae, standard 6.5. OBFUSCATED META-COMMANDS 95 OCL syntax becomes possible, for example:

term "(λ one. ‹self.clients->forAll(x|x.age>25)->size()› . = one) ‹1›"

where the text between the ‹• • • ›-markers (i. e. "U+2039"11 and "U+203A"12) is handled by the su4sml parser and type inference. More generally, besides OCL, this mechanism can be used to nest arbitrary languages, provided the symbols "‹" and "›" are themselves not lexically present in the language being nested (balanced blocks of "‹" and "›" symbols are nevertheless permitted inside cartouches). The same remark holds for the quote symbol """ (i. e. "U+0022" 13), which is impossible to write in certain circumstances: assuming one has to delimit a string with this symbol, the writing becomes not possible inside cartouches particularly if the outermost enclosing delimiters of the overall expression are two """ (as it is the case in the example, which is of the form term " • • • "). To overcome this limitation, Isabelle supports an alternative writing, i. e. where the outermost expression is of the form term‹ • • • ›, so for example term ‹(λ s. ‹ • • • › . = s) ‹"string"››. However this alternative writing is not enabled by default in Isabelle 2016: one has to redefine the command term in order to modify its parser to accept a cartouche as argument. In Isabelle 2014 and previous versions, such redefinitions of commands were permitted: e. g., definition could declare datatypes and datatype could declare definitions. However starting from Isabelle 2015 we obtain an error instead of a warning, so one solution is to manually introduce a not existing name, like the fresh name term'. Using this technique, we get the desired expression: term' ‹(λ s. ‹ • • • › . = s) ‹"string"››. At this point, the flexibility to nest arbitrary languages with cartouches appears enough for supporting OCL expressions, assuming one is using a recent version of Isabelle. Still, the presented technique does not mention how to proceed whenever, beyond OCL, the enclosing language L in cartouches has already reserved "‹" or "›" in its own syntax, or some escaping symbols which happen to be in potential conflict with Isabelle syntax (which can comprise for instance """ and any symbols listed in the manual [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF]). In particular, the meta-translation process of Chapter 5 explicitly manipulates the Isar_HOL meta-model, and concurrently we estimate feasible to take advantage of cartouches to enhance the readability of the translation and its presentation (by syntactically embedding the manipulated Isar_HOL language itself in special delimiting cartouches). Further investigations become then necessary to determine if conflicting symbols and delimiters of cartouches can syntactically be substituted with other symbols inside HOL expressions, or be made temporarily invisible whenever this is a relevant solution. To this end, we are now examining in more detail the range of symbols natively present in Isabelle.

As pointed in the manual of reference, symbols supported in Isabelle is potentially infinite [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF], but their rendering are left to front-end tools (e. g., Isabelle/jEdit). Still, the final rendering is affected by external constraints. For example, although Isabelle/jEdit natively supports Unicode, the rendering of Unicode characters does not generally depend on the editing software drawing fonts, but on the original font specification where several characters could look identi- Figure 6.10: The genesis of commands as a half well-typed file cal. As example, the Unicode characters "U+0430"14 and "a" (i. e. "U+0061"15) are classified in the same set of confusing characters by http://unicode.org, this is the same for the character "U+041C"16 and "M" (i. e. "U+004D"17). So the code shown in Figure 6.10 is only half well-typed in Isabelle 2016 because fun and end have already been defined earlier -in the real source code of Isabelle. On the other hand, datatype and ML have also already been defined in the source of Isabelle, but no errors are raised here because in this example the words datatype and ML are actually masking several symbols from the Cyrillic alphabet instead of the Latin alphabet, and their associated glyphs look similar as both originating from the Greek alphabet. However, since equal glyphs might only be available in limited occurrences for a particular symbol, we have to get into a more uniform solution to cover all situations where it is desirable to have an "unlimited" number of abbreviations (and hence which are all looking close). This would permit to uniformly represent on the one hand UML/OCL collection operations on sets, sequences and bags, and on syntax "_OclForallSeq" :: "[(','α::null) Sequence, _, _] ⇒ _"

("(_)->forAll'(_|_')")

syntax "_OclForallSet" :: "[(','α::null) Set , _, _] ⇒ _" ("(_)->forAll'(_|_')")

term "X->forAll(x|P x)" (* X is a sequence *) term "X->forAll(x|P x)" (* X is a set *) term "[X->forAll(x|P x),
X->forAll(x|P x)]" (* ERROR: X can not be a set and a sequence at the same time *) the other hand, regroup together arithmetic operations on integers and reals for instance. By examining the range of Unicode characters available in Isabelle, we have naturally retained our attention on two exception elements of the Unicode characters: invalid and null. In the domain of fonts, whereas "the meaning" of invalid will be detailed in Appendix K, null has generally the property to be an invisible symbol having a length of zero. Since at least 2009, this symbol can be used in Isabelle/jEdit like any whitespace at any string positions, thus also in the name of any commands and meta-commands. Then it becomes straightforward to add this invisible symbol to overload particular OCL operations, without having instead to search for particular representatives of equal glyphs. As example, in Figure 6.11, the two notations "_->forAll Set (_|_)" and "_->forAll Seq (_|_)" have been renamed, by replacing the string " Set ", respectively " Seq ", with two different null-strings. If we have written similar notations (or similar null-strings), errors are only expected to be raised when ambiguities are detected, as mentioned in Figure 6.9. However we are here in a different situation. In Figure 6.11, all abbreviations introduced with syntax (and notation) [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF] are all different because they contain all different numbers of null symbol concatenated with itself. In particular, this is why the three introduced notations for StrongEq, StrictRefEq and not_equal are all different (besides having in common one extra symbol "=" of equality). As illustrated in the figure, invisible symbols do not mean weakening in the typing inference: the third term is not well typed because we are trying to consider at the same time X as a set and as a sequence. As summary, we point certain similarities and differences between the introduction of abbreviations with Unicode characters and the use of cartouches. On the one hand, because ML is used to set up cartouches, one can program cartouches to parse and support Turing complete languages. This assumes nevertheless to know where the entry-points of the commands being redefined are located, as it is required for example to implement term' (such entry-points resemble to Figure 5.6). On the other hand, independently of cartouches, there are several commands in Isabelle to attach particular concrete syntax or notations to any manipulated constants or types (for the purpose of defining basic abbreviations), namely notation, syntax, translations, and also similar counterpart for abbreviations denoting types: type_notation, etc. Not significant lines of ML code are required, e. g., it is quite easy to introduce null in an abbreviation, as shown in Figure 6.11. Such so-introduced notations are immediately taking effect, so with this technique one can dynamically change the name of any constants, types or any meta-commands. Still, the arbitrary reconfiguration of Isar_HOL commands require some cares [START_REF] Nemouchi | Isabelle in certification processes[END_REF].

notation StrongEq (infixl " =" 30) (* ≜ *) notation StrictRefEq (infixl " =" 30) (* ≐ *) term "(X = Y) = (X ≜ Y)" term "(X = Y) = (X ≐ Y)"
Warning: In this document, both symbols invalid and null have not been used in this thesis and in the associated source code (only as example in Figure 6.11 and in Appendix K). Furthermore, unless it is explicitly explained in the text, all characters are understood as plain ASCII letters. This holds for Isar_HOL commands, and more generally for the entire source code of the project accompanying this thesis. 18 Generally, the inspection of the source (in Isabelle/jEdit) can already reveal the presence of characters outside the ASCII range: when defining keywords, the use of quotes around keywords are normally mandatory, except for particular combinations of ASCII where this is optional. In Figure 6.10, we nevertheless chose to quote all the four keywords. So quotes can sometimes signal the presence of non-ASCII characters.

More generally, besides the use of cartouches in the meta-translation itself from L to Isar_HOL, one can also examine the possibility to propagate the editing environment context when editing the meta-translation, so that for example the colouring could be propagated inside cartouches in real-time, even if Isar_HOL is embedded in cartouches. Although the termination of higher-order metacommands has to be manually brought, we would be nevertheless closer to the practice of "multi-stage programming in Isabelle".

Object-Oriented Datatype Theories

In the following, we will refine the concepts of a user-defined data-model implied by a class-model (visualized by a class-diagram) as well as the notion of "(A :: object) state" used in Chapter 4 to much more detail (and also detail the concept of object). UML class models represent in a compact and visual manner quite complex, object-oriented datatypes with a surprisingly rich theory. In this chapter, this theory is made explicit and corner cases are pointed out.

Class Models

Our abstract syntax-called a class model following UML terminologyrepresents complex, object-oriented datatypes in a compact and viewable manner. Over such a class model, OCL invariants for states and OCL operation contracts for state transitions can be defined.

HOL

Definition "Class model (user interface)":

A class model is a four-tuple (C, <, PreAttrib, PreAssoc, mode) where:

• C is a set of class names written as {C 1 , . . . , C n }. To each class name a datatype in OCL is associated,

• "_ < _" is a non-reflexive partial inheritance relation on classes, "_ < + _" its transitive closure, and "_ < * _" its reflexive transitive closure. "_ > _", "_ > + _", and "_ > * _" are their respective associated symmetric relations. As additional abbreviation, we introduce "X <> * Y " for "X < * Y and X > * Y ".

• PreAttrib(C i) is a set of attributes associated to class C i . Each attribute a ∈ PreAttrib(C i) declares two families of accessors, denoted by X. a :: C i ⇒ A and X. a @pre ::) is initially intended by the user to be processed as an aggregation or not (in this case as an association). However this indication is not final: the option mode described below will also affect how the pair (rn from , rn to) will be processed, i. e., in conjunction with the value of ty. Like attributes a above, all role names declare two families of accessors, denoted by X. a :: C i ⇒ S j (C j) and X. a @pre :: C i ⇒ S j (C j) if a = rn to . If the multiplicity associated to a evaluates to 1, both function types are C i ⇒ C j . For a = rn from we exchange i and j: both function types are

C i ⇒ A where A ∈ TYPES 0 , • PreAssoc(C i , C j) (Si,
C j ⇒ S i (C i).
• mode is an option to explicitly override how certain attributes and role names will be considered, to force them to be treated as associations or aggregations. Three values are possible for mode: design, analysis, or a default behaviour left to the meta-tool when nothing is provided. The conditions where these values have their effects are now detailed in the next definition.

Throughout the document, we will only consider finite class models with at least one element, called OclAny, the superclass of all classes: C i < * OclAny (for all C i).

Internally, the meta-tool will consider another intermediate version of the definition of class models. This version serves to further optimize the previous one and prepare for the separate treatments of associations and aggregations. In particular, one can represent class model in this intermediate version as a tree to enable a convenient folding of the global data-structure of classes. This is also where we will decide once for all how attributes and role names will be processed, i. e., as associations or aggregations. Indeed, a key idea of defining the semantics of UML and extensions like SecureUML [START_REF] Achim | A model transformation semantics and analysis methodology for SecureUML[END_REF] is to translate certain diagrammatic UML features into a combination of more elementary features of UML and OCL expressions [START_REF] Gogolla | Expressing UML class diagrams properties with OCL[END_REF]. For example, associations (i. e., relations on objects) can be implemented in specifications at the design level by aggregations, i. e., collection-valued class attributes together with OCL constraints expressing the multiplicity; and conversely, certain forms of aggregations can be simulated with associations.

HOL

Definition "Class model (internal representation)":

Besides the previous definition, class models can be simplified as (C, <, Attrib ∪ Assoc), where the contents of Attrib and Assoc will depend on mode (described earlier). Attrib represents all attributes and role names intending to be considered by the meta-tool as aggregation relations, and Assoc represents all attributes and role names intending to be considered by the meta-tool as association relations. The definition proceeds by case analysis on mode.

If mode = design, then Attrib(C i) is defined as the union of the following items:

• attributes a in PreAttrib(C i) • role names a in {(_, _, a, _) ←-PreAssoc(C i , _) (_,_) } 7.1. CLASS MODELS 103 • role names a in {(_, a, _, _) ←-PreAssoc(_, C i) (_,_) } and Assoc(C i) = {}.
Otherwise if mode = design, we introduce a subset A(C i) ⊆ PreAttrib(C i) such that Attrib(C i) is defined as the union of:

• attributes a in PreAttrib(C i) which are not in A(C i) • role names a in {(_, _, a, Aggregation) ←-PreAssoc(C i , _) (_,_) } • role names a in {(_, a, _, Aggregation) ←-PreAssoc(_, C i) (_,_) }
and Assoc(C i) the union of:

• A(C i) • role names a in {(_, _, a, Association) ←-PreAssoc(C i , _) (_,_) } • role names a in {(_, a, _, Association) ←-PreAssoc(_, C i) (_,_) }
If mode = analysis, then A(C i) is defined as the union of:

• attributes a of the form X. a ::

C i ⇒ C j in PreAttrib(C i)
• attributes a of the form X. a ::

C i ⇒ S j (C j) in PreAttrib(C i)
otherwise, if nothing is set for mode, we take by default A(C i) = {}.

Finally, even if we have regrouped Attrib and Assoc together as Attrib∪Assoc, the meta-tool will still keep the types of all attributes and role names stored next to attributes. This is to later decide, when having to process on an arbitrary a ∈ Attrib ∪ Assoc, if a is actually an attribute or a role name (so to know its type, either X. a :: C i ⇒ A or X. a ::

C i ⇒ S j (C j)).
The definition of a class model gives rise to a number of induced operations which constitute the class model signature. • for all attributes a, role names a and class name C j ∈ C such that X. a :: C j ⇒ A and X. a @pre :: C j ⇒ A are well-formed for A ∈ TYPES 0 , the two families (mentioned in the definition of class models) are exactly all expressions of the form:

1. X. a ::

C i ⇒ A 2. X. a @pre :: C i ⇒ A for all C i ∈ C such that C i < * C j ,
• each class name C i ∈ C declares two projector functions to the set of all objects in a state: C i .allInstances() and C i .allInstances@pre(),

• for each pair C i , C j ∈ C, there is a cast operation of type C i ⇒ C j that can change the static type of an object of type C i : (X :: C i). oclAsType(C j),

CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

• for each pair C i , C j ∈ C, there are two dynamic type tests:

-(X :: C i). oclIsTypeOf(C j) testing the dynamic type and -(X :: C i). oclIsKindOf(C j) testing one subtype of the dynamic type,

• for each class name C i ∈ C there is an instance of the overloaded referential equality (written _ . = _).

Note on n-ary associations

Given the fact that there is at present no consensus on the semantics of n-ary associations (for particularly n ≥ 3), the following will mainly focus on situations where n = 2, on binary associations. A definition of class models supporting arbitrary n-ary associations can nevertheless be given by changing the above PreAssoc item with a more general version:

HOL

Definition "Class model (user interface, generalized form)":

A class model is a five-tuple (C, <, PreAttrib, PreAssoc n , mode) where:

• C is [. . . same line as "Class model" . . .] • _ < _ is [. . . same line as "Class model" . . .] • PreAttrib(C i) is [. . . same line as "Class model" . . .] • mode is [. . . same line as "Class model" . . .] • For n ≥ 2, PreAssoc n is a set of n-ary relations of the form (n , l rn , ty).
The tuple consists of a (unique) association name n , a set of role names l rn of cardinal n and a tag ty ∈ {Association, Aggregation}.

1. Each pair of different role names (C i , S i , rn from) and (C j , S j , rn to) in l rn declare two families of accessors, denoted by X. a :: C i ⇒ S j (C j) and X. a @pre ::

C i ⇒ S j (C j) if a = rn to where S i , S j ∈ {Sequence m , Set m },
and where the pair (rn from , rn to) will be processed by the meta-tool as an aggregation depending on ty. If the multiplicity associated to a evaluates to 1, both function types are C i ⇒ C j . For a = rn from we exchange i and j: both function types are C j ⇒ S i (C i).

2. More generally, for all (proper) non-empty subsets l rn from ⊂ l rn and {(C j , S j , rn to)} ⊆ (l rn \l rn from), if l rn from of cardinal k has at least two elements, we declare two families of accessors of the form

(X 1 , • • • , X k). a :: S i1 (C i1) ⇒ • • • ⇒ S i k (C i k) ⇒ S j (C j) (X 1 , • • • , X k). a @pre :: S i1 (C i1) ⇒ • • • ⇒ S i k (C i k) ⇒ S j (C j) for all k-permutations [(C i1 , S i1 , rn from1), • • • , (C i k , S i k , rn from k)] of l rn from .
For n ≥ 3, the type inference becomes no more decidable for expressions of the form X. a :: _ ⇒ • • • ⇒ _ ⇒ S j (C j) (for example an ambiguity relies in deciding if the type of an expression would be

C i1 ⇒ S j (C j) or C i2 ⇒ S j (C j),
and particularly whenever C i1 = C i2). One solution is to manually explicitly indicate which role names are involved, in particular these new syntaxes are used in HOL-OCL 2.0:

"X. a /* rn from1 • • • rn to */ :: _ ⇒ S j (C j)" or "X. a /* rn from2 • • • rn to */ :: _ ⇒ S j (C j)".
The semantical problem for n-ary associations is to determine if we should only restrict to item "1." (this is what is currently implemented in HOL-OCL 2.0) or also include item "2." in the definition.

Running Example

The class model of the flight reservation example is the following tuple (C, <, PreAttrib, PreAssoc, mode) where:

• C = {Person, Client, Staff, Flight, Reservation, OclAny} • < = {(Staff, Person), (Client, Person), (Person, OclAny), (Reservation, OclAny), (Flight, OclAny)} • PreAttrib(Person) = {name} PreAttrib(Flight) = {seats, from, to} PreAttrib(Reservation) = {id} PreAttrib(Client) = {address} PreAttrib(Staff) = {} PreAttrib(OclAny) = {}
In particular, we have PreAttrib(Client) = {name, address} and PreAttrib(Staff) = {name}, because all inherited attributes (including name)

are not yet processed at this moment, they will be accordingly computed later by the meta-tool.

• PreAssoc(Person, Flight) (Set,Set) = {(i 1 , passengers, flights, Association)} PreAssoc(Client, Reservation) (Set,Set) = {(i 2 , client, cl_res, Association)} PreAssoc(Flight, Reservation) (Set,Sequence) = {(i 3 , flight, fl_res, Aggregation)} PreAssoc(Reservation, Reservation) (Set,Set) = {(i 4 , next, prev, Association)}
where i 1 , i 2 , i 3 , i 4 can be arbitrarily chosen, but have to be all different integers, e. g., respectively 0, 1, 2 and 3.

• mode can be arbitrarily chosen, e. g., we set it to be N one.

For the attribute seats of Flight we have the two operations _. seats :: Flight ⇒ Integer and _. seats @pre :: Flight ⇒ Integer. For the association between Client and Reservation, we have the two operations _. the corresponding operations in the pre-state). As remark, OclAny has not been manually defined in Figure 3.2 because the meta-tool will implicitly include it.

As mentioned earlier, Featherweight OCL as semantic theory is organized as a "shallow embedding," which means that operators of the library and the datatype theory are represented by operators in Isabelle/HOL, such type representation of OCL types is one-to-one1 .

Inheriting from Isabelle/HOL a strong static type discipline in the sense of Hindley-Milner types, Featherweight OCL has no "syntactic subtyping." In contrast, subtyping can be expressed semantically in Featherweight OCL; by adding suitable casts which do have a formal semantics, subtyping becomes an issue of the front-end that can make implicit type coercions explicit. Our perspective on subtyping shifts the emphasis on the semantic properties of casting, and the necessary universe of object representations (induced by a class model) that allows to establish them.

A Denotational Space for Class Models

As a pre-requisite of a denotational semantics for operations induced by a class model, we need an object universe A in which these operations can be defined denotationally and from which the necessary properties can be derived.

We represent objects with a type class object, they are identified with an object id (oid) under which it is referenced in the state, and OidOf ::(α::object) ⇒ oid particularly returns the oid of any object. Objects are statically typed with class types, and under some additional conditions it is possible to approximate the equality on object representations by the equality of their references, i. e. by the referential equality. This section details now the cast of objects along the inheritance relation _ < * _, in particular how to cast an object X of static type D up and down again in a semantically lossless way, whenever D < * C:

(X :: D).oclAsType(C).oclAsType(D) = X Figure 7
.1 presents the situation and sketches a solution: object representations need optional object extensions which remember the necessary information for consecutive up-down-casts to be idempotent. In addition, since object representations are designed to "live in a state", the type oid will also be included in the definition of class types. This gives rise to the following inductive definitions of class types C i and class type extensions C iext .

A DENOTATIONAL SPACE FOR CLASS MODELS

meta

Definition "Class type extensions (privileging accessors over casts)": Let C i be a class with a possibly empty set of immediate subclasses C j1 , . . . , C jm (C j l < C i). Then

• the class type extension

C iext associated to C i is a i1 ⊥ ו • •×a i h ⊥ ×(C j1ext + • • •+C jmext) ⊥
(C j l < C i). Then • the class type C ity for C i is oid × a i1 ⊥ × • • • × a in ⊥ × (C j1ext + • • • + C jmext) ⊥
where a i k ranges over the inherited and local attribute types of C i and C j l ext ranges over all class type extensions of immediate subclasses

C j l of C i .
Recall that this construction cannot be done in Featherweight OCL itself since it involves quantifications and iterations over the "set of class types". Then one can precisely use here the meta-tool detailed in Chapter 5 to overcome this limitation.

With respect to our semantic construction, which above all is intended to be type-safe, this has the following consequences:

• there is a generic theory of states, which must be formulated independently from a concrete object universe,

• there is a principle of translation (captured by the inductive scheme for class type extensions and class types above) that converts a given class model into a concrete object universe,

• there are fixed principles to derive the semantic theory of any concrete object universe, called the object-oriented datatype theory.

For class type and class type extension, this means to generate A by the following scheme of Isabelle datatype definitions:

CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES meta datatype C iext' = mk Ci_Cj 1 C j1ext where C j1 < C i | • • • • • • • • • | mk Ci_Cj m C jmext where C jm < C i datatype C iext = mk Ci a i1 ⊥ • • • a i h ⊥ C iext' ⊥ where a i1 • • • a i h are owned datatype C ity = mk' Ci oid a i h+1 ⊥ • • • a in ⊥ C iext where a i h+1 • • • a in are inherited datatype A = in C k C kty | . . . | in C l C lty
The presented definitions of class types extensions and class types form the fundamental basis for some more involved operations on objects, such as accessor operations and cast operations. However as a design decision and due to our particular encoding, it becomes more efficient to apply attribute operations (X ::

C i). a than cast
(C j l < + C i).
• Then the class type extension

C iext2 associated to C i is oid × a i1 ⊥ × • • • × a i k ⊥ + C j1ty2 + • • • + C jmty2
where a i h ranges over the inherited attribute types of C i (not local ones) and C j l ty2 ranges over all class types of arbitrary subclasses C j l of C i .

• Then the class type

C ity2 for C i is C iext2 × a i1 ⊥ × • • • × a i l ⊥
where a in ranges over the local attributes of C i (not inherited ones) and C iext2 is the class type extension associated to C i .

These definitions of class types extensions and class types look as being mutually recursive, however they are not actually: the meta-tool will implement these definitions by following a particular order of generation: from leaves first to the root as last node (which is OclAny). For example, the definition of class types of C j l will be generated before the definition of class types extensions of C i .

As implementation remark, in the meta-tool all datatype encoding of class type extensions (i. e., C iext and C iext2) and class types (i. e., C ity and C ity2) have been formalized.2 However to simplify the rest of the document, we will only take C iext and C ity as main definitions of class type extensions and class types (this choice is arbitrary). On the other hand, the formalization will consider C iext2 and C ity2 as definitions (e. g., in the generated code shown in Appendix B, C iext2 and

DENOTATIONAL SEMANTICS OF ACCESSORS ON OBJECTS AND ASSOCIATIONS 109

C ity2 are respectively named tyEX T Ci and ty Ci , the generated code associated to C iext and C ity are present but not displayed in this present document).

Running Example

We

Person ty = oid × Person ext = oid × string ⊥ × Person ext' ⊥ = oid × string ⊥ × Client ext ⊥ = oid × string ⊥ × string ⊥ ⊥
In UML terminology (resp. in Java terminology), these are objects with dynamic type (resp. actual type) Client ty and static type (resp. apparent type) Person ty .

Denotational Semantics of Accessors on Objects and Associations

Our choice to use a shallow embedding of OCL in HOL, thus having an injective mapping from OCL types to HOL types, results in type-safety of Featherweight OCL. Arguments and results of accessors are based on type-safe object representations and not oids. This implies the following scheme for an accessor:

1. The evaluation and extraction phase: the oid is extracted from the object representation.

2. The dereferencing phase. The oid is interpreted in the pre-or post-state.

3. The selection phase. The corresponding attribute is extracted from the object representation.

CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

The evaluation and extraction phase. If the argument evaluation results in an object representation, the oid is extracted; if not, invalid is reported.

HOL definition eval_extract X f = (λ τ. case X τ of ⊥ ⇒ invalid τ propagating the exception | ⊥ ⇒ invalid τ dereferencing a null value | obj ⇒ f (OidOf obj) τ)
The de-referencing phase ("heap" case or Attrib(C i) case). The oid is interpreted in the pre-or post-state, the resulting object is converted to the expected format. The exceptional case of nonexistence in the state yields invalid.

For each class C i , we have:

meta definition deref_oid Ci fst_snd f oid = (λ τ. case heap (fst_snd τ) oid of in Ci obj ⇒ f obj τ | _ ⇒ invalid τ)
The operation yields undefined if oid is not interpretable in the state or referencing an object representation not conforming to the expected type.

The de-referencing phase ("assocs" case or Assoc(C i) case). In complement to general HOL notations, like for instance f • g ≡ λ x. f (g x), we first introduce several shorthands for readability. Each association (n, rn from , rn to) ∈ Assoc(C i , C j) (Si,Sj) can refer to the association name n from a particular role name rn from and rn to in input:

meta definition n_assoc rnfrom = n definition n_assoc rnto = n
As additional aliases, we define definition in_pre_state = fst (for first component), definition in_post_state = snd (for second component) and definition reconst_basetype = id (for identity function). Following Section 4.5, we now encode binary associations as a set of pairs of the form (rn from , rn to). Given a particular role name rn, the retrieval of the associated rn from or rn to is performed symmetrically (either: first component to second or second component to first). The following definitions describe the accessing of such role names: HOL definition deref_assocs_list to_from oid S = concat (map (in_post_state • to_from) (filter (λ p. List. member (in_pre_state (to_from p)) oid) S))

DENOTATIONAL SEMANTICS OF ACCESSORS ON OBJECTS AND ASSOCIATIONS 111

definition deref_assocs_base pre_post to_from assoc_oid f oid = (λ τ. case assocs (pre_post τ) assoc_oid of

S ⇒ f (deref_assocs_list to_from oid S) τ | _ ⇒ invalid τ) meta definition deref_assocs rn fst_snd f = (deref_assocs_base fst_snd switch 2 _ X n_assoc rn f) • OidOf
We provide for every pair all possible permutation functions: switch 2 _01 and switch 2 _10. While switch 2 _01 is basically the identity function; switch 2 _10 swaps the first component with the second one: as a consequence, if rn occurs at an rn to position, we set as convention X = 01; otherwise X = 10.

The selection phase. The corresponding attribute is extracted from the object representation. For each class C i in the class model with at least one attribute, and each attribute a in this class, the selection phase is of this form:

• for inherited attributes a returning a base type:

meta definition select Ci_a f = (λ mk' Ci oid • • • ⊥ • • • _ ⇒ null | mk' Ci oid • • • a • • • _ ⇒ f (λ x _. x) a)
• for owned attributes a returning a base type:

meta definition select Ci_a f = (λ mk' Ci _ • • • (mk Ci • • • ⊥ • • •) ⇒ null | mk' Ci _ • • • (mk Ci • • • a • • •) ⇒ f (λ x _. x) a)
• for attributes a returning a "set" of object type (for "sequence" it is similar):

meta definition select set a f = X a • foldl OclIncluding set mt set • map (f (λ x _. x))
If the multiplicity of a allows to return at least two elements, X a = id; otherwise we optimise by picking the only element with X a = OclANY set , which is the Hilbert's -operator. In particular, null is returned whenever the "set" is empty. The re-construction phase. The resulting value has to be embedded in the adequate HOL type. If an attribute has the type of an object (not value), it is represented by an optional (set of) oid, which must be converted via dereferencing in one of the states to produce an object representation again. The exceptional case of nonexistence in this state must be treated.

CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

Let _.getB be an owned accessor of class C j yielding a value of base type A ∈ T base . Then its definition for every class C i < * C j is of the form4 : meta overloading _.getB ::

C i ⇒ A begin definition X.getB = eval_extract X (deref_oid Ci in_post_state (select Ci_getB reconst_basetype)) end
Let _.getO be an owned accessor of class C j yielding a value of object type C k (or Set(C k) depending on the returned type of select set getO). Then its definition for every class C i < * C j is of the form:

meta overloading _.getO :: C i ⇒ C k (or Set(C k) depending on select set getO) begin definition X.getO = eval_extract X (deref_oid Ci in_post_state (deref_assocs getO in_post_state (select set getO (deref_oid C k in_post_state)))) end
The variant for an accessor yielding a TYPES 0 is omitted here; its construction follows by the application of the principles of the former two. The respective variants _. a @pre are produced when in_post_state is replaced by in_pre_state. Note on Multiplicities For an accessor returning a value of object type, situations of wrong multiplicities can statically be detected by a type-checking process (performed once). So no further checks are required during the access here, but only when object instances will be built (particularly with Instance in Section 8.2). Otherwise, the classical rules to convert multiplicities to invariants bounding the size of the collection types normally apply [START_REF] Achim | Extending OCL with null-references[END_REF].

Running Example

The de-referencing operation instantiated for the class Person is clear and will not be given here. We focus on the select functions:

HOL (generated) definition select Person_name f = (λ mk' Person _ (mk Person ⊥ _) ⇒ null | mk' Person _ (mk Person s _) ⇒ f (λ x _. x) s) definition select set flights f = id • foldl OclIncluding set mt set • map (f (λ x _. x))
which gives the top-level definitions:

HOL (

Tests for Types and Casts

As a consequence of our decision to consider subtyping an issue to be solved by a static type checker, the semantic treatment of casts and dynamic types lie in the heart of the concept of object-orientedness of Featherweight OCL. We reduce subtyping to castability, and type tests allow for specifying exactly the semantics of operation calls. Although OCL has no constructors inside the language, objects can be constructed in HOL and can be specified via OCL operation contracts. The problem needs therefore to be solved that objects have an implicit dynamic ("actual") type, which is invariant under cast; whereas the returned static type (statically inferable, "apparent") of an object can differ from its type before cast.

First, let us consider dynamic type tests of the form X.oclIsTypeOf(C j). To implement a similar syntax in Featherweight OCL, we declare for each class C j of the class model a constant X.oclIsTypeOf(C j) of a too large type α ⇒ Boolean. These constants will be defined by a family of concrete instances for class pairs

C i , C j . meta overloading begin definition (X :: C i).oclIsTypeOf(C j) ≡ (λ τ. case X τ of ⊥ ⇒ invalid τ | ⊥ ⇒ true τ | mk' Ci _ • • • (mk Ci _ • • • ⊥) ⇒ true τ if C i = C j | mk' Ci _ • • • (mk Ci _ • • • mk Ci_Cj _) ⇒ true τ if C i > C j | _ ⇒ X.oclAsType(C i).oclIsTypeOf(C j) τ if (1) | _ ⇒ false τ) if (*) end
where (1) stands for "C i > C j and C i > + C j ", in this case we are computing C i such that C i > + C i > C j (like the definition of oclAsType below);

(*) stands for "C i = C j and not (1), or there exists

C h such that C h < + C i ." 5
We now define a family of casts for any pairs C i , C j .

114

CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES meta overloading begin definition (X ::

C i).oclAsType(C j) ≡ (λ τ. case X τ of ⊥ ⇒ invalid τ | ⊥ ⇒ null τ | X ⇒ X if (1) | mk' Ci oid a 1 • • • a n X ⇒ mk' Cj oid A inh (mk Cj A own mk Cj _Ci X) if (2) | _ ⇒ X.oclAsType(C j).oclAsType(C j) τ if (3) | mk' Ci oid A inh (mk Ci A own mk Ci_Cj X) ⇒ mk' Cj oid a 1 • • • a n X if (4) | _ ⇒ X.oclAsType(C i).oclAsType(C j) τ if (5) | _ ⇒ invalid τ) if (*) end (1) if C i = C j ,
we are returning the same object. As optimisation, the pattern matching is not required for behaving as an identity function.

(2) if C i < C j , we are up casting. Then we compute the set of attributes A own (owned) and

A inh (inherited) such that {a 1 , • • • , a n } = A own A inh (disjoint union). (3) if C i < C j and C i < + C j , we are up casting. Then we compute C j such that C i < + C j < C j . (4) if C i > C j , we are down casting. Then we compute the merging {a 1 , • • • , a n } such that A own A inh = {a 1 , • • • , a n }.
(5) if C i > C j and C i > + C j , we are down casting. Then we compute C i such that

C i > + C i > C j . (*) if C i > C j or C i <> * C j ,
we are raising an exception when the down cast of (4) operates on an unexpected type, or if we have a situation of incomparability.

While conditions from (1) to (5) are all disjoint, the last condition (*) applying for (4) is not redundant: whenever we have C i > C j , several patterns always exist for C i . Finally as completeness, condition (*) is also needed whenever all conditions from (1) to (5) are not satisfied. As remark, conditions (*) and (5) are not present together at the same time but since (5) calls (4) internally, then (5) eventually reaches (*). Although clauses (3) and (5) seem recursive, they are not actually, we are calling other overloaded definitions. As a consequence, when generating these definitions with the meta-tool, this implies a particular order of generation to follow. For example, to execute (3), we must have priorly defined both (_ :: C i).oclAsType(C j) and (_ :: C j).oclAsType(C j). Here the intermediate class C j is arbitrary, we could have chosen as in (5) one C j such that C i < C j < + C j (as long as at least one decrementing step of _ < _ is involved and corresponding overloadings already defined).

As one key-property of the object universe construction, the preservation of up down casting is directly implied by the definition, for all C i < * C j : meta lemma ((X ::

C i).oclAsType(C j).oclAsType(C i)) = X
Both definitions make tests and casts strict and neutral or idempotent on null: meta lemma (invalid ::

C i).oclIsTypeOf(C j) = invalid lemma (null :: C i).oclAsType(C j) = null lemma (invalid :: C i).oclAsType(C j) = invalid lemma (null :: C i).oclIsTypeOf(C j) = true
This is a slight deviation from the standard: null as argument should in general yield invalid. Since null is usually considered as one unique constant appearing in all types, we have technically one polymorphic constant null. To mimic the desired effect, the last equation is required. Another issue is that casts yield null for a null-argument (with the right static type). Since casts can appear everywhere, this is to avoid non intuitive effects. Consider the case that X and Y have a distinct class type C i and C j . Then the OCL term

HOL term X . = null and Y . = null and X . = Y is either false or invalid, since X . = Y is translated to X.oclAsType(C j) . = Y or X . = Y .oclAsType(C i)
and thus to invalid if we apply, as required by the OCL standard, the rule null.oclAsType(_) = invalid.

Besides the lemmas on strictness and null-preservation, the relative position of C i and C j (in C i .oclIsTypeOf(C j)) reveals opposite consequences:

1. The type testing from a class C i to a larger class C j is always false. More precisely, for all classes

C i < + C j or C i <> * C j : meta lemma τ |= δ X =⇒ τ |=((X :: C i).oclIsTypeOf(C j)) false
2. When reversing the inheritance relation between C i and C j , as soon as a large class C i does belong to the type of a small class C j , the casting to C j fails for all its subclasses. For all

C i > * C j > + C k (or whenever C i <> * C j): meta lemma τ |= δ X =⇒τ |=(X :: C i).oclIsTypeOf(C j) =⇒τ |= υ (X.oclAsType(C k))
Altogether, these lemmas of type tests, casts, and their corner cases to definedness and null constitute the key properties of the object-universe construction, part of the object-oriented datatype theory.

Running Example

We instantiate the generic definitions for our example. For dynamic type tests, this leads to this concrete instance of the definition:

HOL (generated)
overloading begin definition (X ::

OclAny).oclIsTypeOf(Person) ≡ (λ τ. case X τ of ⊥ ⇒ invalid τ | ⊥ ⇒ true τ | mk' OclAny _ (mk OclAny mk OclAny_Person _) ⇒ true τ | _ ⇒ false τ) end
For type casting, we similarly illustrate on a down casting example:

HOL (generated) overloading begin definition (X :: OclAny).oclAsType(Person) ≡ (λ τ. case X τ of ⊥ ⇒ invalid τ | ⊥ ⇒ null τ | mk' OclAny oid (mk OclAny mk OclAny_Person X) ⇒ mk' Person oid X | _ ⇒ invalid τ) end
In particular, we obtain the required casting properties:

HOL (generated) lemma τ |= δ X =⇒ τ |=(X :: OclAny).oclIsTypeOf(OclAny) =⇒ τ |= υ (X.oclAsType(Person))
lemma ((X :: Person).oclAsType(OclAny).oclAsType(Person)) = X

Tests for Kinds and Casts

While oclIsTypeOf (D) precisely checks if the dynamic type of an object is D, the operator oclIsKindOf(D) relaxes the query by only checking if that dynamic type belongs to one subtype of D. Given the fact that we assume closedworld semantics, a simple way to define the overloaded oclIsKindOf operation is by the disjunction: meta overloading begin definition (X ::

C i).oclIsKindOf(C j) ≡ X.oclIsTypeOf(C j) or X.oclIsKindOf(C k1) or • • • or X.oclIsKindOf(C kn) end

TESTS FOR KINDS AND CASTS

117

where C k1 , . . . , C kn are all the immediate subclasses of

C j (C k l < C j).
This leads to the usual rules of definedness and validity: for all classes C i and C j ,

meta lemma τ |= υ X=⇒ τ |= δ (X :: C i).oclIsKindOf(C j) lemma τ |= δ X =⇒ τ |= δ (X :: C i).oclIsKindOf(C j)
1. Contrasting with the similar lemma of the previous section for oclIsTypeOf, the kind checking from a class C i to a larger class C j is always true. More precisely, for all classes

C i < * C j : meta lemma τ |= δ X =⇒ τ |= (X :: C i).oclIsKindOf(C j)
We separate the proof of this lemma in two cases, depending on if C i = C j or C i < + C j because the proof of the latter will use the proof of the former in its own proof.

meta proof If C i = C j ,
we begin by unfolding the definition of (X ::

C i).oclIsKindOf(C i).
Then we obtain an expression of the form A 1 orA 2 or . . . orA n . Due to the abbreviation priority of XorY , the expression becomes actually understood as ((A 1 orA 2)or . . . orA n). This has an importance since we are going to unfold all expressions A k , with A k of the form (_ :: _).oclIsKindOf(_). However the unfolding of A k can only be performed in front of a state τ . So we apply at the same time the rule cp-OclOr everywhere, i. e. (A k1 or A k2) τ = ((λ _. A k1 τ) or (λ _. A k2 τ))τ in front of all expressions A k . Since we are (arbitrarily) proceeding from left to right, it means to generate a list of substitution of the form:

apply        subst (1) cp-OclOr, [. . .], subst (2 1) cp-OclOr, [. . .], subst (3 2 1) cp-OclOr, [. . .],
. . .

subst (n -1 n -2 . . . 1) cp-OclOr, [. . .]       
where [. . .] corresponds to the piece of tactics unfolding the corresponding (_ :: _).oclIsKindOf(_) expression. At the end, we only obtain a general expression of the form (((B 1 or B 2) or . . .) or B m) with all B l of the form (_ :: _).oclIsTypeOf(_). Thus the proof terminates with apply

          auto simp: cp-OclOr[symmetric] foundation16 bot-option-def OclIsT ypeOf -C m1 -C i . . . OclIsT ypeOf -C m N -C i split: option.split ty ext -C m1 .split . . . ty ext -C m N .split ty-C m1 .split . . . ty-C m N .split          
where OclIsT ypeOf -C j -C i is the definition of (_ :: C i).oclIsTypeOf(C j), ty-C i .split and ty ext -C i .split are respectively the splitting rules of class types and class type extensions of C i , and the set of all C m N represents the subtree of C i . At the end, whenever auto leaves some pending goals, the following simplification rule will ultimately terminate the proof: apply simp-all add: f alse-def true-def OclOr-def OclAnd-def OclN ot-def ? qed meta proof If C i < + C j , we begin as above, by unfolding the definition of (X ::

C i).oclIsKindOf(C j).
So by definition, we exactly obtain

X.oclIsTypeOf(C j) or X.oclIsKindOf(C k1) or • • • or X.oclIsKindOf(C kn)
However, since we are generically generating this "meta"-proof from bottom to top for an increasing set of C i and C j , then it means we have already proved at some time in the past that (X ::

C i).oclIsKindOf(C k l) for exactly one C k l among C k1 . . . C kn .
So it suffices to retrieve the name of this previously proved lemma. In particular, that name depends on if C i = C kn (in this case, we refer to the proof above) or not. qed 2. When reversing the inheritance relation between C i and C j , we obtain the following property characterising an "unfolding" definition of oclIsKindOf. For all

C i > + C j and {C kn | C j > * C kn }: meta lemma 1: τ |= δ X =⇒ τ |= (X :: C i).oclIsKindOf(C j) =⇒ τ |= X.oclIsTypeOf(C k1)∨ • • • ∨ τ |= X.oclIsTypeOf(C kn)
On the other hand, as soon as a large class C i does not belong to the kind of a small class C j , the casting to C j fails for all its subclasses. For all

C i > + C j > * C k : meta lemma 2: τ |= δ X =⇒ τ |= (X :: C i).oclIsKindOf(C j) =⇒ τ |= υ X.oclAsType(C k)
We prove this theorem by introducing an intermediate lemma performing an exhaustive case distinction, as illustrated in Figure 7.2: for all

C i > + C j , let K = {C kn | C i > * C kn > + C j } such that we can construct {C lm | (C k ∈ K) > (C lm ∈ (K ∪ {C j }))}, then: C j set of C k nodes (has at least 1 node) C i set of C l nodes (can be empty) Figure 7.2: Example of nodes C i , C j , set of C k and set of C l following the hypothesis of the lemma meta lemma 2': τ |= δ X =⇒ τ |= (X :: C i).oclIsKindOf(C j) =⇒ τ |= X.oclIsTypeOf(C k1)∨ • • • ∨ τ |= X.oclIsTypeOf(C kn) ∨ τ |= X.oclIsKindOf(C l0)∨ • • • ∨ τ |= X.oclIsKindOf(C lm) meta proof
We prove lemma 1 by first unfolding the expression (X :: C i).oclIsKindOf(C j): this leads to two cases depending on the number of immediate subclasses of C j .

If C j does not have immediate subclasses, then the proof is immediately finished since the unfolding gives exactly (X ::

C i).oclIsTypeOf(C j).
Otherwise, if C j has m ≥ 1 immediate subclasses, we refine the soobtained goal by m steps of elim-resolution rule because by definition of (X :: C i).oclIsKindOf(C j), we have an expression of the form ((((X ::

C i).oclIsTypeOf(C j) or A 1) or . . .) or A m).
In particular, we repetitively apply m sequences of erule (foundation26 [. . .]), where foundation26 represents the rule

τ |= δ P =⇒ τ |= δ Q =⇒ τ |= P or Q =⇒ (τ |= P =⇒ R) =⇒ (τ |= Q =⇒ R) =⇒ R
and "[. . .]" designates the expression providing the proof of τ |= δP and τ |= δQ for foundation26 [. . .] to be of the form

τ |= P or Q =⇒ (τ |= P =⇒ R) =⇒ (τ |= Q =⇒ R) =⇒ R
However, following the binary structure of (((. . . orA 1)or . . .)orA m), the proof expression "[. . .]" needs to be assembled as a binary tree as well. Then, we use at each node the operator def ined-or-I :

τ |= δ X =⇒ τ |= δ Y =⇒ τ |= δ (X orY)
to chain the corresponding branches. We finally repeat this construction m times since we have m sequences of erule (foundation26 [. . .]) to build:

• Step number m: we build the proof of τ |= δ P and τ |= δ Q, where P = ((((X ::

C i).oclIsTypeOf(C j) or A 1) or . . .) or A m-1) and Q = A m .
•

Step number m -1: we build the proof of τ |= δ P and τ |= δ Q, where P = ((((X ::

C i).oclIsTypeOf(C j) or A 1) or . . .) or A m-2) and Q = A m-1 .
• . . .

•

Step number 1: we build the proof of τ |= δ P and τ |= δ Q, where P = (X ::

C i).oclIsTypeOf(C j) and Q = A 1 .
After applying all these sequences of erule, we finally obtain m + 1 subgoals where the first is fast discharged since we have (X :: C i).oclIsTypeOf(C j) in both the assumption and the conclusion.

The remaining m subgoals uses the fact that we are generically generating this "meta"-proof from bottom to top for an increasing set of C i and C j . So we terminate by calling m times drule with the name of the adequate meta-proof (each drule becomes followed by a blast). qed Because the proof of lemma 2 uses the proof of lemma 2', we are first showing how to resolve this last. meta proof We prove lemma 2' by generating a list of tactics to sequentially apply: Figure 5.11 displays a recursive function aux depth in HOL which precisely returns this list of tactics. At the beginning of the figure, we have included a minimal datatype modelling tactics, it has specially been simplified for this presentation. Then comes the mutually recursive functions aux depth and aux breadth . In input, the function aux depth takes a tree data-structure, like the one shown in Figure 7.2. By convention, we assume that the tree initially given to aux depth is truncated, where its root will represent C i . This is without loss of generality since the result of type testing and kind testing only depends on nodes occurring in the subtree of C i . More precisely, the subtree given to aux depth is represented as an ordered list and contains all elements of K sorted according to the relation _ < _ (where

K = {C kn | C i > * C kn > + C j },
and where the first element of the list is C i). In particular, the type of aux depth is:

(α × (β × bool) list) list ⇒ (α, α × β list) T.

tactic list, and each element of the list in input is a pair where

• the first component α represents one node n of K,

• and the second component (β × bool) list contains as a list the collection of (immediate) subtrees β of n. In addition, the special boolean bool indicates if the root of the subtree β is in K ∪ {C j } or not. So there is always only one element in the list which has an associated boolean equals to T rue.

As convention, we assume that this list of subtrees is sorted with the same order we have used when declaring class type and class type extensions. This is important since the order of tactics we will generate depends on the structure of declarations of class type and class type extensions.

Before detailing the tactics generated by aux depth , we begin the proof of lemma 2' by adding as hypothesis the rule τ |= (X :: C i).oclIsKindOf(C i) which has just been proved earlier in a previous lemma, and will name this rule H i . This rule H i has a central role here, as each recursive call of aux depth is going to unfold the definition of (_ :: _).oclIsKindOf(_). Consequently, we will cross during the overall proof a family of rules H class of the form H class : τ |= X.oclIsKindOf(class).

At the beginning, aux depth first proceeds with a case distinction on the given list (representing K). Initially, this list is not empty since K is initially supposed to be not empty.

The other case in aux depth concerns the unfolding of H class : X.oclIsKindOf(class), this is precisely the purpose of T.simp_only, which takes as argument the name class of the current class to unfold. After the unfolding, we obtain by definition

X.oclIsTypeOf(class) or X.oclIsKindOf(class 1) or • • • or X.oclIsKindOf(class n)
where class 1 , • • • , class n are all the immediate subclasses of class (class l < class). The next step of the proof suspends the treatment of aux depth by letting aux breadth continue the generation of the proof. aux breadth will particularly recursively fold the list of immediate subtrees l breadth of class. The new version of l depth (in green) is also given as argument to aux breadth , for aux depth to resume the processing later. As remark, we reverse l breadth before calling aux breadth since this last will generate tactics in reverse order.

In the recursive body of aux breadth , we retrieve the generation of a repetitive sequence of elim-resolution rule, this is similar as the proof of lemma 1 above. In particular the arguments given to T.erule will be the information needed to generate the appropriate sequences of erule (foundation26 [. . .]).

After having generated the consecutive list of T.erule, the next tactic T.simp breadth (i. e. simp or blast) will discharge the case where (X :: C i).oclIsTypeOf(C j) appears in both the assumption and the conclusion, similarly as the same situation in lemma 1 above.

Ultimately, we have two cases depending on the situation of class0.

• If class0 is in K ∪ {C j }, we continue to generate the list of tactics with aux depth whenever l depth = {}. After reaching the end of l depth , we will have class0 equal to C j . So it suffices to call T.simp depth_1 , which will use the rule τ |= (X :: C i).oclIsKindOf(C j), from the initial hypothesis of this lemma, to contradict with the rule H j also present in the hypothesis. For each new subgoal, whenever we have as assumption a rule of the form τ |= (X :: C i).oclIsKindOf(C lm) (where C lm comes from the lemma 2'), we use drule applied with lemma 1.

• If class0 is not in K ∪ {C j },
At the end, we obtain as hypothesis a rule of the form A 1 ∨A 2 ∨ . . . ∨A j where all A k are of the form τ |= (X :: C i).oclIsTypeOf(C k), with particularly C k < + C i . So we retrieve for each A k the corresponding solving lemma from Section 7.4 (namely τ |= δ X =⇒ τ |=(X ::

C i).oclIsTypeOf(C k) =⇒ τ |= υ (X.oclAsType(C k)))
, and terminate with "auto simp :" applied with this list of lemmas. qed

Running Example

For our example, we obtain the following definition:

HOL (generated) overloading begin definition X.oclIsKindOf(Person) ≡ X.oclIsTypeOf(Person) or X.oclIsKindOf(Staff) or X.oclIsKindOf(Client) end

Access to the Global State

The operation allInstances builds the collection of all the instances of a given class in a state. With a little trick it is possible to define the global accessor on the state in a universal, generic (class model independent) way:

HOL definition _.allInstances() :: V A (A :: object ⇒ (C ty) ⊥) ⇒ Set(C) where (H.allInstances()) τ = Abs_Set base Some ' ((H τ ' ran(heap(in_post_state τ))) -{⊥}) meta definition C iA = (λ in Cj X ⇒ ((λ _. X) :: C j).oclAsType(C i)) definition C i τ X = (case C iA X τ of X ⇒ X | _ ⇒ ⊥)
In our running example, this boils down to the following definitions:

HOL (generated) definition Person A = (λ in Person X ⇒ ((λ _. X) :: Person).oclAsType(Person) | in Flight X ⇒ ((λ _. X) :: Flight).oclAsType(Person) | . . . X ⇒ ((λ _. X) :: . . .).oclAsType(Person) | in OclAny X ⇒ ((λ _. X) :: OclAny).oclAsType(Person)) definition Person τ X = (case Person A X τ of X ⇒ X | _ ⇒ ⊥)

A COMPARISON TO RELATED WORK

123

It is easy to prove on the basis of these definitions, that our global accessors have "isKindOf"-semantics for any

C i < * C j : meta lemma τ |= C i .allInstances()->forAll(X|X.oclIsKindOf(C j))
whereas the equivalent lemma for "isTypeOf"-semantics is only verified for

C i such that ∃C h . C h < + C i : meta lemma τ |= C i .allInstances()->forAll(X|X.oclIsTypeOf(C i))
since we also prove for the others

C i (such that ∃C h . C h < + C i): meta lemma ∃τ 1 . τ 1 |= C i .allInstances()->forAll(X|X.oclIsTypeOf(C i)) lemma ∃τ 2 . τ 2 |= C i .allInstances()->forAll(X|X.oclIsTypeOf(C i))
We found out that the current Annex A of the OMG standard actually defines the latter, while the mandatory part of the standard apparently favours the former. This inconsistency of the most recent standard (i. e., 2.4) is still to be resolved in a future version of the standard. We strongly suggest the oclIsKind-variant as it easily allows to use an additional type-selector construct in cases where the exact type set is required; this is not possible the other way round.

A Comparison to Related Work

Type and Kind Tests

Our formal semantics of OCL defines null.oclIsKindOf(C) to be true for all types C. This is on contrast to programming languages such as Java (and thus JML) or C # (and thus Spec #) which defines this to be false. While this decision is reasonable for a programming language as it avoids additional null-checks in case distinctions, it complicates verification as (X :: Set(D))->forAll(X|X.oclIsKindOf (D)) would no longer be universally true.

Associations

Besides OCL, none of the mainstream object-oriented modelling languages supports associations (as relations) between objects and navigation over them as a first-class concept. This paves the way to a particular modelling methodology that is appealing to users. We consider it an advantage to have mathematical relations as an important concept both in real world scenarios as well as in the formal verification presented in this "user-friendly" way.

Equality

ACSL is the only language that has strong equality, simply since it has explicit pointers and no exception elements ("deep equality" has to be defined by hand). All other languages of our comparison know some form of strict equality. Both JML and Spec # have null = null, while null <= null interestingly yields f alse in Spec # ... Since JML and Spec # have explicit exception objects, they have a more concrete, more programming-oriented treatment of exceptional behaviour compared to invalid in OCL; this is also reflected in its equality.

Global Access

The operation allInstances() allowing for the access to the collection of all instances in the current state is a fairly original concept in UML/OCL reflecting its heritage from database modelling. In principle, its effect can be modelled in JML, Spec # in ghost-fields, which can also be used to model "sets of reachable objects" in a recursive data structure. However, if they cannot be constructed incrementally together with "ghost-code", this approach comes to a limit, since the use of recursive predicates is typically discouraged for methodological reasons (automated verification typically breaks down, being unable to provide some form of induction proofs).

Framing Conditions

All languages considered here have provided solutions to the problem, that the content of the post-state must be constrained to be equal to the pre-state in most cases; just the small portion of the memory that is updated by the function (to be specified) can be altered. A vast literature has been developed to address this problem ranging from region-like approaches as in ACSL, ownership approaches (one object or thread "owns" a set of other objects) as in Spec # to separation logics. Featherweight OCL proposes a oclIsModifiedOnly() predicate that states the set of objects that can change; all objects not in this set are identical between pre-and post-state. There is currently no solution and consensus in the community how to tackle associations.

Exceptional Behaviour

There is the possibility not to treat exceptions, let them occur as a consequence of illegal divisions 1/0, de-referencing null (as in null.name) or illegal oids (in pointers). Then, operations on them are underspecified. To exclude this, invariants and pre-conditions must be strengthened to permit reasoning only on specified behaviour (ACSL). The other extreme is specification and reasoning over explicit exceptions (Spec # , JML). OCL is in between these two extremes, having basically one exception invalid reflected in the logic. If we do not mention them in a pre-condition or an invariant, this leads typically to implicitly assume that they are excluded.

Case Study

Corner Cases of Path Expressions

In this section, we illustrate the definitions of the previous section on a concrete example.

Corner Cases of Objects and Accessors

By loading Figure 8.1 in HOL-OCL 2.0, we can check arbitrary OCL path expressions. For instance, we have (σ, σ) |= C1.address . = "Saint-Malo", since Bertha will not be invalid nor null in "Saint-Malo" in the post-state (moreover the type of "Saint-Malo" belongs to T base , so it is defined every time, independently of states). Before her move, we also have (σ, σ) |= C1.address @pre . = "Miami" since Bertha was defined at "Miami" in the pre-state. Similarly for Arthur, we have (σ, σ) |= C2.cl_res . = Set{R21,R22} since R21 and R22 will be all the reservations of the defined Arthur in the post-state, while (σ, σ) |= C2.cl_res @pre . = Set{R21} since Arthur was defined in the pre-state and he ordered only one reservation R21 at that time.

We have a particular case with R22 which will have no following reservation in the post-state: (σ, σ) |= R22.next . = null. Trying to de-reference a null association end yields an invalid value at any time, so (σ, σ) |= υ R22.next.id. As another invalid error, since R22 did not occur in the pre-state, its dereferencing in this state necessarily fails: (σ, σ) |= υ R22.id @pre, and (σ, σ) |= υ R22.flight @pre. Let us point out that any empty association end yields null, even when the multiplicity is *. For instance F2 had no reservation in the pre-state, therefore (σ, σ) |= F2.fl_res @pre . = null. In the USE tool for instance, F2.fl_res @pre is the empty set of reservations.

More complex expressions lead to other cases that are well-defined although not always intuitive. A path expression involving both the pre and the post-state is for instance R11.client @pre .address. The client which reserved R11 in the pre-state was Bertha, but her address will be "Saint-Malo" in the post-state:

(σ, σ) |= R11.client @pre .address . = "Saint-Malo"
Similarly for the path expression R22.prev.client @pre: in the post-state, the preceding flight of R22 will be R21, but its client in the pre-state was Arthur:

(σ, σ) |= R22.prev.client @pre . = C2
Since R22 did not exist in the pre-state, we also have that (σ, σ) |= R22.prev.next @pre . = null and ∀σ . (σ, σ) |= υ R22.prev @pre .next.

Corner Cases of Types, Kinds and Casts

Now we consider an arbitrary state τ , since objects in states are not consulted for performing membership operations on type and kind, as well as (pure) casts.

We also suppose having an object P of dynamic type Person (with P defined).

As demonstrated in Section 7.4, casting an instance of Client up to Person, then down to Client again returns the original object:

τ |= C1.oclAsType(Person).oclAsType(Client) . = C1
However, casting an instance of Person down to Client is not possible if this instance is not a cast up of an instance of Client: τ |= υ P.oclAsType(Client).

We also saw in Section 7.4 that the oclIsTypeOf operator checks the dynamic type of an object while oclIsKindOf performs a weak form of dynamic check. This leads to the following properties (where P = Person and C = Client):

τ |= P .oclIsTypeOf(P) . = true τ |= P .oclIsKindOf(P) . = true τ |= P .oclIsTypeOf(C) . = false τ |= P .oclIsKindOf(C) . = false τ |= C1.oclIsTypeOf(P) . = false τ |= C1.oclIsKindOf(P) . = true τ |= C1.oclIsTypeOf(C) . = true τ |= C1.oclIsKindOf(C) . = true
As expected, casting an instance of Client up to Person does not return an object of dynamic type Person:

τ |= C1.oclAsType(Person).oclIsTypeOf(Person) . = false
In Section 7.6, the definition of allInstances() explicitly manipulates the post-state in τ given as parameter. By including the object P in σ (the righthand state of

Specification Analysis of the Flight Model

In this section, we implement in Isabelle and HOL-OCL 2.0 the methodology of consistency analysis of specifications [START_REF] Achim | Semantics, calculi, and analysis for object-oriented specifications[END_REF], instantiated here to the Flight Model example. All the code presented in the following has been generated, proofs are moreover not shown: the extended version with proofs can be inspected in Appendix A.

Two State Instances of the Class Model

The creation of (typed) object instances is performed in HOL-OCL 2.0 with the command Instance: The notion of object instances comes before that of states. Currently, we have only created the object instances S1, C1, C2, R11, R21, F1 and F2. They will need to be "registered" in a state later. Instance verifies that all objects being created are respecting the multiplicities declared above in classes (in the bidirectional sense). For example, after the type-checking stage, we have correctly that R21 .client ∼ = Set{C2 }, since R21 appears as one reservation of C2, and where "X ∼ = Y " stands as a synonym for

∀ τ . τ |= δ X -→ τ |= δ Y -→ τ |= X Y. 1
As remark, the order of attributes and objects declarations is not important: mutually recursive constructions become de-facto supported. As illustration, we can include here the text displayed in the output window after evaluating the above Instance (we have manually pasted the text from the output window in Isabelle/jEdit):

S1 .flights ∼ = Set{ F1 } C1 .flights ∼ = Set{ F1 } C1 .cl-res ∼ = Set{ R11 } C2 .flights ∼ = Set{ F1 } 130 CHAPTER 8. CASE STUDY C2 .cl-res ∼ = Set{ R21 } R11 .flight ∼ = Set{ F1 } R11 .client ∼ = Set{ C1 } R11 .prev ∼ = Set{} R11 .next ∼ = Set{} R21 .flight ∼ = Set{ F1 } R21 .client ∼ = Set{ C2 } R21 .prev ∼ = Set{} R21 .next ∼ = Set{} F1 .passengers ∼ = Set{ S1 , C1 , C2 } F1 .fl-res ∼ = Set{ R11 , R21 } F2 .passengers ∼ = Set{} F2 .fl-res ∼ = Set{}
We can check that S1 indeed exists and has the expected OCL type. State

σ 1 = [S1 , C1 , C2 , R11 , R21 , F1 , F2]
This generates a number of theorems from it, e. g.:

σ. (σ 1 , σ) |= Staff .allInstances@pre() Set{S1 } σ. (σ 1 , σ) |= Client .allInstances@pre() Set{C1 ,C2 } σ. (σ 1 , σ) |= Reservation .allInstances@pre() Set{R11 ,R12 } σ. (σ 1 , σ) |= Flight .allInstances@pre() Set{F1 ,F2 } At this point, it
is not yet sure that σ 1 will be used in the pre-state or poststate. In any case, the above command also generates the following symmetric lemmas:

σ. (σ, σ 1) |= Staff .allInstances() Set{S1 } σ. (σ, σ 1) |= Client .allInstances() Set{C1 ,C2 } σ. (σ, σ 1) |= Reservation .allInstances() Set{R11 ,R12 } σ. (σ, σ 1) |= Flight .allInstances() Set{F1 ,F2 }
Because all these lemmas are stated under the precondition that all object instances are defined entities, lemmas generated by State are actually proved in a particular locale [START_REF] Ballarin | Locales: A module system for mathematical theories[END_REF][START_REF] Ballarin | Tutorial to Locales and Locale Interpretation[END_REF] state-σ 1 . Thus the header of state-σ 1 regroups these (mandatory) definedness assumptions, that have to be all satisfied before being able to use the rules defined in its body.

The next statement illustrates Chapter 6. It shows for instance that object instances can also be generated by State on the fly. Fresh variables are created meanwhile if needed, like σ 2 -object1.

State σ 2 = [S1 , ([C1 with-only name = Bertha, address = Saint-Malo , flights = F1 , cl-res = R11] :: Client) , ([C2 with-only name = Arthur,address = Valen- cia,flights=[F1 ,F2],cl-res=[self 4 ,self 7]]::Client) , R11 , ([R21 with-only id = 98765 , flight = F1 , next = self 7] :: Reservation) , F1 , F2 , ([id = 19283 , flight = F2] :: Reservation)]
Similarly as with Instance, we can paste in the following what is currently being displayed in the output window (where "/ * 8 * /" means the object having an oid equal to 8).

2 σ 2 -object1 .flights ∼ = Set{ / * 8 * / } σ 2 -object1 .cl-res ∼ = Set{ / * 6 * / } σ 2 -object2 .flights ∼ = Set{ / * 8 * / , / * 9 * / } σ 2 -object2 .cl-res ∼ = Set{ σ 2 -object4 , σ 2 -object7 } σ 2 -object4 .flight ∼ = Set{ / * 8 * / } σ 2 -object4 .client ∼ = Set{ σ 2 -object2 } σ 2 -object4 .prev ∼ = Set{} σ 2 -object4 .next ∼ = Set{ σ 2 -object7 } σ 2 -object7 .flight ∼ = Set{ / * 9 * / } σ 2 -object7 .client ∼ = Set{ σ 2 -object2 } σ 2 -object7 .prev ∼ = Set{ σ 2 -object4 } σ 2 -object7 .next ∼ = Set{}
Note that there is a mechanism to reference objects via the (invented) keyword self (it has no particular relation with the one used in Chapter 6), which takes a number designating the index of a particular object instance occurring in the list of declarations (the index starts with 0 as first position).

Similarly as for state-σ 1 , we obtain another locale called state-σ 2 , representing the post-state of Figure 8.1.

The Transition command relates the two states together.

Transition σ 1 σ 2

The first state is intended to be understood as the pre-state, and the second state as the post-state. In particular, we do not obtain similar proved theorems if we write Transition σ 1 σ 2 or Transition σ 2 σ 1 (assuming σ 1 and σ 2 are different). Generally, Transition establishes for a pair of a pre-and a post state (i.e. a state transition) that a number of crucial properties are satisfied. For instance, the well-formedness of the two given states is proven:

WFF (σ 1 , σ 2).
Furthermore, for each object X additional lemmas are generated to situate X as an object existing in σ 1 , σ 2 , both, or in any permutations of σ 1 and σ 2 . Such lemmas typically resemble as:

• (σ 1 , σ 2) |= X .oclIsNew(), or • (σ 1 , σ 2) |= X .oclIsDeleted(), or • (σ 1 , σ 2) |= X .oclIsAbsent(), or • (σ 1 , σ 2) |= X .oclIsMaintained()
where the latter only means that the oid of X exists both in σ 1 and σ 2 , in particular the values of the attribute fields of X have also not changed.

As completeness property, we can state the following lemma covering all disjunction case (for any X and τ) [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF]:

τ |= δ X =⇒ τ |= X .oclIsNew() ∨ τ |= X .oclIsDeleted() ∨ τ |= X .oclIsMaintained() ∨ τ |= X .oclIsAbsent()
Finally Transition proceeds as State: it builds a new locale, called transition-σ 1 -σ 2 , by particularly instantiating the two locales state-σ 1 and state-σ 2 .

The following lemma establishes that the generated object presentations (like S1 = (λ-. S1 S taf f), C1 = (λ-. C1 C lient), etc.) satisfy the requirements of the locale state-σ 1 . In particular, it has to be shown that the chosen object representations are defined and have distinct oids. Proving this lemma gives access to the already defined properties in this locale. lemma σ 1 : state-interpretation-σ 1 τ proof This instance proof goes analogously. lemma σ 2 : state-interpretation-σ 2 τ proof The latter proof gives access to the locale transition-σ

1 -σ 2 . lemma σ 1 -σ 2 : pp-σ 1 -σ 2 τ proof
For convenience, one can introduce the empty state here definition σ 0 :: A state where σ 0 = state.make Map.empty Map.empty so that the following abbreviations can be written

definition σ t1 = transition-σ 1 -σ 2 .σ 1 oid3 oid4 oid5 oid6 oid7 oid8 oid9 S1 (σ 0 , σ 0) C1 (σ 0 , σ 0) C2 (σ 0 , σ 0) R11 (σ 0 , σ 0) 8.2. SPECIFICATION ANALYSIS OF THE FLIGHT MODEL 133 R21 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) definition σ t2 = transition-σ 1 -σ 2 .σ 2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10 S1 (σ 0 , σ 0) σ 2 -object1 (σ 0 , σ 0) σ 2 -object2 (σ 0 , σ 0) R11 (σ 0 , σ 0) σ 2 -object4 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) σ 2 -object7 (σ 0 , σ 0) definition σ s1 = state-σ 1 .σ 1 oid3 oid4 oid5 oid6 oid7 oid8 oid9 S1 (σ 0 , σ 0) C1 (σ 0 , σ 0) C2 (σ 0 , σ 0) R11 (σ 0 , σ 0) R21 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) definition σ s2 = state-σ 2 .σ 2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10 S1 (σ 0 , σ 0) σ 2 -object1 (σ 0 , σ 0) σ 2 -object2 (σ 0 , σ 0) R11 (σ 0 , σ 0) σ 2 -object4 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) σ 2 -object7 (σ 0 , σ 0)
Both formats are, fortunately, equivalent; this means that for these states, we can access properties from both state and transition locales, in which the object representations are "wired" in the same way.

lemma σ t1 -σ s1 : σ t1 = σ s1 proof lemma σ t2 -σ s2 : σ t2 = σ s2 proof
The next lemma becomes a shortcut of the one generated by Transition, but explicitly instantiated.

lemma WFF (σ t1 , σ t2) proof lemma F1-val-seatsATpre: (σ s1 , σ) |= F1 .seats@pre «120 » proof lemma F1-val-seatsATpre : σ s1 |= pr e F1 .seats@pre «120 » proof lemma F2-val-seatsATpre: (σ s1 , σ) |= F2 .seats@pre «370 » proof lemma F2-val-seatsATpre : σ s1 |= pr e F2 .seats@pre «370 » proof CHAPTER 8. CASE STUDY lemma F1-val-seats: (σ, σ s2) |= F1 .seats «120 » proof lemma F1-val-seats : σ s2 |= post F1 .seats «120 » proof lemma F2-val-seats: (σ, σ s2) |= F2 .seats «370 » proof lemma F2-val-seats : σ s2 |= post F2 .seats «370 » proof lemma C1-valid: (σ s1 , σ) |= (υ C1) proof lemma R11-val-clientATpre: (σ s1 , σ) |= R11 .client@pre C1 proof

Annotations of the Class Model in OCL

Subsequently, we state a desired class invariant for Flight's in the usual OCL syntax:

Context f : Flight Inv A : 0 < int (f .seats) Inv B : f .fl-res ->size S eq () ≤ int (f .seats) Inv C : f .passengers ->select S et (p | p .oclIsTypeOf (Client)) . = ((f .fl-res)->collect S eq (c | c .client .oclAsType(Person))->asSet S eq ())

Model Analysis: A satisfiability proof of the invariants

We wish to analyse our class model and show that the entire set of invariants can be satisfied, i. e. there exist legal states that satisfy all constraints imposed by the class invariants.

lemma Flight-consistent: ∃ τ . Flight-Aat-pre τ ∧ Flight-A τ proof Context r: Reservation Inv A : 0 < int (r .id) Inv B : r .next <> null implies (r .flight .to . = r .next .flight .from) Inv C : r .next <> null implies (r .client . = r .next .client) Context Client :: book (f : Flight) Pre : f .passengers ->excludes S et (self .oclAsType(Person))
and (f .fl-res ->size S eq () < int (f .seats))

Post: f .passengers . = (f .passengers@pre ->including S et (self .oclAsType(Person)))

and

(let r = self .cl-res ->select S et (r | r .flight . = f)->any S et () in (r

Proving the Implementability of Operations

An operation contract is said to be non-blocking, if and only if there exist input and input states where the pre-condition is satisfied. Moreover, a contract is said to be implementable, if and only if for all inputs satisfying the pre-condition output data exists that satisfies the post-condition.

definition cancel pr e :: (•Client) ⇒ (•Reservation) ⇒ •Boolean base where cancel pr e self r ≡ (r .client@pre) . = self definition cancel post :: (•Client) ⇒ (•Reservation) ⇒ (•Void base) ⇒ •Boolean base where cancel post self r result ≡ self .cl-res->select S et (res|res .flight . = r .flight@pre)->isEmpty S et () lemma cancel nonblocking : ∃ self r σ. (σ, σ) |= (cancel pr e self
∃ σ result. ((σ, σ) |= δ self) -→ ((σ, σ) |= υ r) -→ ((σ, σ) |= (cancel post self r result)) proof
As remark, the pre-condition σ |= pr e cancel pr e self r has not been used; in the special case of the operation "cancel", the post-condition is satisfiable for arbitrary defined and valid input, even input that does not satisfy the precondition. end

Mega Theorem Proving: Kilo in Practice, Giga in View

At this point, the reader is perhaps convinced that this is an impressing stunt, but may have remaining doubts about its practical value. While there are other projects supporting our experience that code generation in Isabelle is a maturing technology producing reasonably efficient code for tools (e. g. [ELN + 14]), the question remains to be settled if the generated code is sufficiently controllable in an interactive setting ("no blobs making the IDE freeze") and scales well enough to relevant examples.

To this end, we study the following scaling scenario: we implement a new package called "the Tree Package", which is internally (lazily) calling the Class Model Package to generate a sample of class models, where each class model is arranged as a tree, and we run an experiment over the key parameters of this sample. In particular in all class models, every class will exactly inherit from one class (using the _ < _ relation), except OclAny standing as the only root.

Generated and Proved Theorems

We present Figure 8.2 a table reporting the number of theorems associated to each tested class model. Numbers of generated theorems are indicated by powers of 1000 (so Kilo and Mega). The class models we are measuring can be uniquely identified by pairs (X, Y) where X is the exact number of subclasses of every class having at least one subclass; and Y is the depth of the inheritance tree (without OclAny).3 Only two components are needed for a unique identification, because we are only considering perfect trees, i. e. where all leaf nodes are at the same depth. In particular, for space reasons, the inheritance tree depicted in Figure 8.2 is not a perfect tree but just shows what X and Y are representing. Class-models appear sorted in the table according to the following priority: For instance, class models in the row [(30, 1), (5, 2), (2, 4), (1, 30)] are sorted in increasing order by depth, all having 31 classes (c = 30, OclAny counts for 1).

8.3. MEGA THM. PROVING: KILO IN PRACTICE, GIGA IN VIEW 137 c depth 1 depth 2 depth 3 depth 4 depth 5 depth c 12 (c, 1) 11K (3, 2) 12K (1, c) 14K 14 (c, 1) 16K (2, 3) 17K (1, c) 20K 20 (c, 1) 39K (4, 2) 39K (1, c) 52K 30 (c, 1) 115K (5, 2) 115K (2, 4) 121K (1, c) 155K 39 (c, 1) 240K (3, 3) 240K (1, c) 330K 42 (c, 1) 294K (6, 2) 288K (1, c) 409K 56 (c, 1) 661K (7, 2) 649K (1, c) 964K 62 (c, 1) 882K (2, 5) 907K (1, c) 1.3M 72 (c, 1) 1.3M (8, 2) 1.3M (1, c) 2M 84 (c, 1) 2.1M (4, 3) 2.1M (1, c) 3.3M 90 (c, 1) 2.5M (9, 2) 2.5M (1, c) 4.2M (x,

CHAPTER 8. CASE STUDY

With only OclAny as class, we generate 151 definitions and theorems (thm's); by adding another class, it reaches 335 thm's. Since generated theorems may occur in the Isabelle simplifier-set as hints, it becomes desirable to have at the same time more theorems, short and quick proofs whenever applicable. As an extreme example, we chose c = 90 where the generation of the deep-certificate consists of nearly 4 million of thm's (loading it in Isabelle to check it, however, is unfeasible at the time of writing and with the computer used before this thesis was released). Note that in these artificial class models we have 2 (n 2) casts, so there is an inherent combinatorial explosion in the generation process.

As a side remark, the presented table is not trying to reach an arbitrary maximal number of theorems, it would suffice to produce otherwise simpler lines of the form meta lemma a n : "x n = T rue =⇒ x n " by simp for several increasing n. Instead, the presented table is mainly reporting the number of UML/OCL generated theorems to not only compare the performance of (X, Y) versus (Y, X), but to also serve as a point of reference for various future improvements. One can indirectly observe for example the number of theorems the own packages of Isabelle are performing, since the generation also relies on underlying Isabelle packages, like datatype. Besides, certain design decisions regarding the semantics of UML/OCL could also be easily monitored: e. g., would the generation be affected if we implement casts in O(1) versus casts in O(n)? By comparison, the simple fact of starting Isabelle 2016 already provides 17133 theorems in HOL, whereas for Isabelle 2015 we get 15688 theorems. On the one hand, whenever we are modelling a class model with at least 15 classes (where c = 14), one can expect to type-check a theory with a density comparatively similar (or at least similar) to what we obtain by typing all HOL for example. On the other hand, a rich object-logic can be considered as usable, as soon as it can be compiled at least once (or as soon as one has a strong evidence that it can be correctly compiled, by following the principle developed in Chapter 5). So the table is also reporting the minimum value of c where, after this value, one would need to manually disable the generation of too large theorems, depending one's own desired targeted performance. In the table all theorems we have implemented (until now) are set to be fully generated by default, so 15 (or c = 14) is a relative value that can be increased as well as decreased: by manually adjusting which theorems actually need to be generated. Finally, this adjustment also depends on the domain-specific problems one is attempting to resolve, and the desired proving policy: e. g., automated theorem proving, interactive theorem proving, etc.

Note that, since all theorem names are also generated, they differ only in the names of classes involved, e. g. "down_cast_kind X _from_Y _to_Z", with X, Y and Z varying over class names. Thus, searching particular patterns with find_theorems resembles to many other Isabelle packages (e. g., like datatype).

Last, Figure 8.3 is similar as Figure 8.2 except that it measures the disk usage of Isabelle deep-certificates 4 : all sizes are not estimated, but really provided by 8.3. MEGA THM. PROVING: KILO IN PRACTICE, GIGA IN VIEW 139 the operating system. So they are indicated in a power of 1024 bytes (Kilo, Mega, Giga). The question whether it was easy or not to generate all these files is now discussed in the next subsection.

Time and Space to Generate deep-Certificates

Besides the constraint of a high number of theorems, time or space for the generation is also a criteria to consider as enhancement. Below, we present the time used for producing one deep-certificate on a computer with 4 cores5 , e. g. for the pair (2, 2), using all target intermediate languages. We also list the size of the respective source code extracted by each target language (where for OCaml and Isabelle/ML, the extraction of type signatures has been deactivated by hand, with a minor patch in the source code of Isabelle): By comparison, the pair (2, 2) does not have lazy meta-commands in its associated deep-certificate. Finally the resources needed to generate the deep-certificate of the pair (1, 56) are 9G of RAM memory and 1 min; for c = 90 we used 28G and 7 min. However these benchmarks were performed in 2014 without using the self-mode. In 2016, we obtain almost similar performances for time, for instance (1, 30) costs 4 sec. For space, performances have been improved, e. g., with the self-mode, the generation of (1, 56) only consumes less than 1G of RAM and 1 min, for c = 90 also 1G of RAM.

conducting our benchmark, and compare a hundred of classes.

CHAPTER 8. CASE STUDY

All results in this subsection only concern generation not typing, resources needed for loading and typing these lemmas in Isabelle/jEdit will be detailed in the next subsection.

Typing a deep-Certificate versus Typing in shallow-Mode

This subsection stands as a pre-requisite for the subsection detailing the numbers of generated theorems in Figure 8.2, because an Isabelle file becomes recognized as a set of theorems, only after being type-checked by the system. We confront the two strategies of Figure 6.1, namely the resources needed for the type-checker of Isabelle to reach

• the end of a deep-certificate,

• versus the end of the associated file in shallow-mode.

Semantically speaking, these two typing require the core library of Featherweight OCL [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF] yet allocating 1394M.

The typing of the deep-certificate for the pair (3, 2) (where c = 12) runs in 3 min 44 sec and 436M memory. Its pre-processing in Isabelle/jEdit takes about 18% of that time, and the remaining 82% represents to complete proofs checking.

Independently, the loading of the same pair (3, 2) in shallow-mode runs in 3 min 04 sec and 485M memory, takes less than 1% of pre-processing time. Contrasting with the deep-certificate, the shallow-mode depends on the entire meta-tool project (of size 1066M), which is moreover reflected with a certain cost from Isabelle/HOL to Isabelle/ML: 40s and an increase of 414M.

We notice here that the code reflection of Isabelle seems to make only use of at most one single core. However the meta-tool needs to be reflected only once, so this can be an advantage with a lot of class models in parallel in the same editor when experimenting in shallow. On the contrary in deep, each certificate consumes generally a high pre-processing time no matter files in parallel. The pre-processing is fast in shallow because of generally few meta-commands, whereas for the deep the cost comes from the high number of Isar_HOL commands already generated. We still believe it feasible to separate these Isar_HOL commands into separate Isabelle theory files, instead of one single theory file, because certain theorems are actually not related together. Then we could count on the native parallelism support of Isabelle to improve the overall performance.

C h a p t e r 9 Conclusion

A Summary on Related Work

On the one hand, HOL-OCL 2.0 presented in this thesis shares similarities with its predecessor HOL-OCL [START_REF] Achim | Semantics, calculi, and analysis for object-oriented specifications[END_REF][START_REF] Achim | HOL-OCL -A Formal Proof Environment for UML/OCL[END_REF][START_REF] Achim | An extensible encoding of object-oriented data models in HOL[END_REF]. The latter is also based on a shallow embedding of UML class models and OCL into Isabelle/HOL. However, HOL-OCL is based on a "hand-coded" series of packages (instead of a generated, reflection-based approach) implemented for an older version of Isabelle/HOL and uses the old Proof General user interface that limits a UML/OCL specific user experience. Moreover, HOL-OCL 2.0 complies to the latest OCL standard which, in particular, supports a four valued logic instead of a three valued logic used in older versions.

On the other hand, while presented ideas have similarities with the way one can apply Isabelle to build a family of formal method tools [START_REF] Wenzel | Building formal method tools in the Isabelle/Isar framework[END_REF], there had been dramatic improvements in the last eight years of the Isabelle platform that encouraged us to a re-implementation emphasising recent technologies. These improvements consist most notably in:

• pervasive parallelism in the prover kernel, which enables us to profit from the computer power of recent multi-core hardware,

• dramatic improvements on the code generation, paving the way to develop tactic code for logical components (or "packages") in the full Isabelle framework, with unlimited switches between HOL and the ML layer in Isabelle/jEdit, and

• new front-end technologies like Isabelle's Prover IDE which allow for new paradigms in user interaction and theory exploration.

The idea to use ML for supporting datatype theories is in itself very old and deeply linked from the very beginning with theorem proving environments such as Edinburgh LCF, HOL4, HOL Light, Isabelle and Coq.

In relation with Coq, some similarities might exist between certain parts of the SimSoC-Cert project 1 [SMTB11, Shi13] and certain parts of the present work. In SimSoC-Cert, there is a particular tool taking as input the reference 142 CHAPTER 9. CONCLUSION manuals of several vendor's processors, for example the SH4 manual [START_REF]SH-4 Software Manual, Renesas 32-Bit RISC[END_REF], and generating in output either a Coq certificate that is intended to be readably inspected, or a C file that can be further compiled for an efficient execution (compared to a native execution in Coq). Since our approach in this thesis intends to be generic, e. g., can serve to support decision procedures, or the construction of arbitrary packages (as soon as one can write a datatype representing some domain-specific language, and a constructive embedding function from this datatype to Isar_HOL), we believe the methodology of SimSoC-Cert to generate some certificates for the certification of processors' simulators can be as well transposed here. However, although SimSoC-Cert took advantage of the Coq type-system (in particular dependent types) to ease the pretty-printing process of a Coq certificate, there are in SimSoC-Cert no common platform combining both the deep-mode and the shallow-mode at the same time, also no meta-model of Coq in Coq that has been used as target's certificate (e. g., CoqInCoq [START_REF] Barras | Coq in coq[END_REF][START_REF] Barras | Sets in coq, coq in sets[END_REF]). Instead, the CompCert C meta-model in Coq has been employed to provide many other advantages [Ler09], like among other a convenient compiling infrastructure targeting assembly code, associated with a large library of verified code. Besides, all the code in the SH4 manual are not shown in textual OCL but with a C-like syntax, that can be made quickly acceptable for CompCert's input. As another difference with the present work, when SimSoC-Cert was implemented, there was to our knowledge no easy facilities to mix OCaml code with Coq code inside a same editing environment without leaving the editing session, or to modify the source code of Coq in the (highest) IDE session at run-time (i. e., something similar as the Isabelle command ML, and the implicit code reflection mechanism integrated in the system of ML's antiquotations to refer to Isar_HOL values [WC07]).

The application to object-oriented datatype theories is also not new-earlier works in this line can be cited for example [START_REF] Wenzel | Type classes and overloading in higher-order logic[END_REF]. In contrast to HOL-OCL [START_REF] Achim | Extensible universes for object-oriented data models[END_REF], we applied these techniques to UML under closed world assumption for a standard-conform 4-valued logics for OCL, which is seen as the semantic framework for DSL's. This is particularly important and challenging since heterogeneous system specifications need to be combined in a seamless way, and since semantically correct tools have to be developed for these language combinations.

As a summary of Section 4.7, we would like to emphasise the following points:

• There are several compilers attempting a standard-conform semantics for UML/OCL, but few verification tools addressing the problems arising from a four-valued logics with two exceptional elements in all types with different strictness behaviour;

• The closest related work in this category are HOL-OCL [START_REF] Achim | An extensible encoding of object-oriented data models in HOL[END_REF] (interactive proof) and OCL2FOL + [DC13, ADEM14] (automated proof); our work uses either a different semantic model reflecting the recent standard or goes for a less axiomatic approach;

• While object-oriented specification languages supporting null are quite common [BCF + 13, Mey97, LPC + 13, BLS05], none of them provides a strict exception element for modelling exceptions as first-class citizen. The implicit handling of strict and non-strict exceptional elements in OCL al-lows for a particular concise specification style avoiding explicit tests for memory;

• Notably, both JML and Spec # limit null elements to class types and provide a type system supporting non-null types. In the case of JML, the non-null types are even chosen as the default types [CR05]. While non-null types can partly be simulated by non-null cardinalities, full support of non-null types clearly simplify specifications drastically, as many cases resulting in potential invalid states (e. g., de-referencing a null) are already ruled out by the type system.

Conclusion and Future Work

We presented HOL-OCL 2.0, based on a core library Featherweight OCL, a formal, machine checked semantics for UML/OCL in Isabelle/HOL. HOL-OCL 2.0 comprises a meta-tool to construct semantic based tools for textual domain specific languages. The meta-tool fundamentally relies on the code generator of Isabelle, and Isabelle theories, to define a model-transformation in Isabelle/Isar_HOL from a UML meta-model (class-models, plus OCL invariants and contracts) to an Isar_HOL meta-model. Compared to conventional implementations of codegenerators for OCL, the resulting meta-tool is clearly not competitive in terms of compilation size of models, on the other hand, we argue that this comparison is unfair since these tools do not bother to construct the underlying semantic theory of UML and OCL in HOL in order to allow formal proofs over it. Our tool is unique that it actually provides two ways to load the number of theorems resulting from class-models: natively at run-time, with a straight interaction with the kernel of Isabelle (in shallow-mode); or as an Isabelle certificate to be loaded afterwards like an object-logic (in deep-mode).

Based on a library with operations for basic and collection types that contain the exception elements invalid and null, HOL-OCL 2.0 allows for the specifications of programs based on object-oriented data structures. Our work makes this notion precise and allows for a comparison to other object-oriented specification languages such as Eiffel, Spec # or JML. A particular feature of our approach is that the datatype theories are constructed from axiomatic definitions over a constructed typed object universe, which allows for the automatic derivation of the entire set of rules guaranteeing logical consistency.2 Since the HOL-OCL 2.0 environment dynamically instantiates and discharges such rules during the object-oriented modelling activity (for instance typically those presented in Chapter 7), our approach is, as we believe, relevant for other object-oriented verification methods which axiomatize their underlying theory and therefore raise the question of trust in their foundations.

Due to parallelization techniques inherited from Isabelle, HOL-OCL 2.0-for which we still see a large potential for optimisations-remains fairly usable in an interactive setting for medium-sized class-models. Automatic generation with proofs of the datatype theory is, as our implementation shows, still feasible in an interactive use: for the running Flight example 2301 definitions and lemmas are generated in 1 second in deep-mode, while their proofs asynchronously terminate in shallow-mode 2 minutes later (in a background thread). Still, unrelated lemmas can be selectively activated or deactivated: by default all are proved.

It is our ultimate goal to complement HOL-OCL 2.0 by the most common behavioural model types of the UML, namely textually presented state machines and sequence diagrams. The resulting environment could serve as a demonstrator for formal techniques for UML and a bridge to industrial partners active in the embedded systems domain.

Our work on HOL-OCL 2.0 stands in the context of a standardisation initiative using formal methods for UML/OCL. In particular, a formal semantics for a core-language based on denotational semantic definitions has been developed in this thesis. The body of rules for interactive and automated proof techniques has been derived by means of interactive theorem proving, pushing at the same time the frontiers of meta theorem proving and mega theorem proving. Since the approach can guarantee logical consistency, not only for thousands of generated rules, but precisely the foundational core-library of Featherweight OCL in itself, our experience can be re-used for other standardisation efforts of "real" programming languages, or at least provide further evidence that this kind of work is nowadays absolutely feasible and worth the effort. A large number of "issues" have been detected, both inconsistencies or formal gaps, and our proposals to resolve them consistently finally found their way in the standardisation process. Ultimately, we aim at providing a machine-checked formal semantics that can be included in the OCL standard, i. e., replacing the current Annex A. This effort may stimulate tool-development, as a clarified semantics helps to develop, for example, optimised schemes of compilation of four-valued OCL logics to recent SMT solvers.

A p p e n d i x

A

The Flight Model (Modelled by Hand)

Two State Instances of the Class Model

The creation of (typed) object instances is performed in HOL-OCL 2.0 with the command Instance: The notion of object instances comes before that of states. Currently, we have only created the object instances S1, C1, C2, R11, R21, F1 and F2. They will need to be "registered" in a state later. Instance verifies that all objects being created are respecting the multiplicities declared above in classes (in the bidirectional sense). For example, after the type-checking stage, we have correctly that R21 .client ∼ = Set{C2 }, since R21 appears as one reservation of C2, and where "X ∼ = Y " stands as a synonym for

∀ τ . τ |= δ X -→ τ |= δ Y -→ τ |= X Y. 1
As remark, the order of attributes and objects declarations is not important: mutually recursive constructions become de-facto supported. As illustration, we can include here the text displayed in the output window after evaluating the above Instance (we have manually pasted the text from the output window in Isabelle/jEdit):

S1 .flights ∼ = Set{ F1 } C1 .flights ∼ = Set{ F1 } C1 .cl-res ∼ = Set{ R11 } C2 .flights ∼ = Set{ F1 } C2 .cl-res ∼ = Set{ R21 } R11 .flight ∼ = Set{ F1 } R11 .client ∼ = Set{ C1 } R11 .prev ∼ = Set{} R11 .next ∼ = Set{} R21 .flight ∼ = Set{ F1 } R21 .client ∼ = Set{ C2 } R21 .prev ∼ = Set{} R21 .next ∼ = Set{} F1 .passengers ∼ = Set{ S1 , C1 , C2 } F1 .fl-res ∼ = Set{ R11 , R21 } F2 .passengers ∼ = Set{} F2 .fl-res ∼ = Set{}
We can check that S1 indeed exists and has the expected OCL type. State

σ 1 = [S1 , C1 , C2 , R11 , R21 , F1 , F2]
This generates a number of theorems from it, e. g.:

σ. (σ 1 , σ) |= Staff .allInstances@pre() Set{S1 } σ. (σ 1 , σ) |= Client .allInstances@pre() Set{C1 ,C2 } σ. (σ 1 , σ) |= Reservation .allInstances@pre() Set{R11 ,R12 } σ. (σ 1 , σ) |= Flight .allInstances@pre() Set{F1 ,F2 } At this point, it
is not yet sure that σ 1 will be used in the pre-state or post-state. In any case, the above command also generates the following symmetric lemmas:

σ. (σ, σ 1) |= Staff .allInstances() Set{S1 } σ. (σ, σ 1) |= Client .allInstances() Set{C1 ,C2 } σ. (σ, σ 1) |= Reservation .allInstances() Set{R11 ,R12 } σ. (σ, σ 1) |= Flight .allInstances() Set{F1 ,F2 }
Because all these lemmas are stated under the precondition that all object instances are defined entities, lemmas generated by State are actually proved in a particular locale [START_REF] Ballarin | Locales: A module system for mathematical theories[END_REF][START_REF] Ballarin | Tutorial to Locales and Locale Interpretation[END_REF] state-σ 1 . Thus the header of state-σ 1 regroups these (mandatory) definedness assumptions, that have to be all satisfied before being able to use the rules defined in its body.

The next statement illustrates Chapter 6. It shows for instance that object instances can also be generated by State on the fly. Fresh variables are created meanwhile if needed, like σ 2 -object1. Similarly as with Instance, we can paste in the following what is currently being displayed in the output window (where "/ * 8 * /" means the object having an oid equal to 8).

2 σ 2 -object1 .flights ∼ = Set{ / * 8 * / } σ 2 -object1 .cl-res ∼ = Set{ / * 6 * / } σ 2 -object2 .flights ∼ = Set{ / * 8 * / , / * 9 * / } σ 2 -object2 .cl-res ∼ = Set{ σ 2 -object4 , σ 2 -object7 } σ 2 -object4 .flight ∼ = Set{ / * 8 * / } σ 2 -object4 .client ∼ = Set{ σ 2 -object2 } σ 2 -object4 .prev ∼ = Set{} σ 2 -object4 .next ∼ = Set{ σ 2 -object7 } σ 2 -object7 .flight ∼ = Set{ / * 9 * / } σ 2 -object7 .client ∼ = Set{ σ 2 -object2 } σ 2 -object7 .prev ∼ = Set{ σ 2 -object4 } σ 2 -object7 .next ∼ = Set{}
Note that there is a mechanism to reference objects via the (invented) keyword self (it has no particular relation with the one used in Chapter 6), which takes a number designating the index of a particular object instance occurring in the list of declarations (the index starts with 0 as first position).

Similarly as for state-σ 1 , we obtain another locale called state-σ 2 , representing the post-state of Figure 8.1.

The Transition command relates the two states together.

Transition

σ 1 σ 2
The first state is intended to be understood as the pre-state, and the second state as the post-state. In particular, we do not obtain similar proved theorems if we write Transition σ 1 σ 2 or Transition σ 2 σ 1 (assuming σ 1 and σ 2 are different). Generally, Transition establishes for a pair of a pre-and a post state (i.e. a state transition) that a number of crucial properties are satisfied. For instance, the well-formedness of the two given states is proven: WFF (σ 1 , σ 2). Furthermore, for each object X additional lemmas are generated to situate X as an object existing in σ 1 , σ 2 , both, or in any permutations of σ 1 and σ 2 . Such lemmas typically resemble as:

• (σ 1 , σ 2) |= X .oclIsNew(), or • (σ 1 , σ 2) |= X .oclIsDeleted(), or • (σ 1 , σ 2) |= X .oclIsAbsent(), or • (σ 1 , σ 2) |= X .oclIsMaintained()
where the latter only means that the oid of X exists both in σ 1 and σ 2 , in particular the values of the attribute fields of X have also not changed.

As completeness property, we can state the following lemma covering all disjunction case (for any X and τ) [START_REF] Achim | Featherweight OCL: A proposal for a machine-checked formal semantics for OCL 2.5. Archive of Formal Proofs[END_REF]:

τ |= δ X =⇒ τ |= X .oclIsNew() ∨ τ |= X .oclIsDeleted() ∨ τ |= X .oclIsMaintained() ∨ τ |= X .oclIsAbsent()
Finally Transition proceeds as State: it builds a new locale, called transition-σ 1 -σ 2 , by particularly instantiating the two locales state-σ 1 and state-σ 2 .

The following lemma establishes that the generated object presentations (like S1 = (λ-. S1 S taf f), C1 = (λ-. C1 C lient), etc.) satisfy the requirements of the locale state-σ 1 . In particular, it has to be shown that the chosen object representations are defined and have distinct oids. Proving this lemma gives access to the already defined properties in this locale.

-object-σ 1 -σ 2)+)
The latter proof gives access to the locale transition-σ 1 -σ 2 .

lemma

σ 1 -σ 2 : pp-σ 1 -σ 2 τ by(simp add: pp-σ 1 -σ 2 -def , default, simp add: pp-oid-σ 1 -σ 2 , (simp add: pp-object-σ 1 -σ 2)+, (simp add: pp-oid-σ 1 -σ 2)+)
For convenience, one can introduce the empty state here definition σ 0 :: A state where σ 0 = state.make Map.empty Map.empty so that the following abbreviations can be written

definition σ t1 = transition-σ 1 -σ 2 .σ 1 oid3 oid4 oid5 oid6 oid7 oid8 oid9 S1 (σ 0 , σ 0) C1 (σ 0 , σ 0) C2 (σ 0 , σ 0) R11 (σ 0 , σ 0) R21 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) definition σ t2 = transition-σ 1 -σ 2 .σ 2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10 S1 (σ 0 , σ 0) σ 2 -object1 (σ 0 , σ 0) σ 2 -object2 (σ 0 , σ 0) R11 (σ 0 , σ 0) σ 2 -object4 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) σ 2 -object7 (σ 0 , σ 0) definition σ s1 = state-σ 1 .σ 1 oid3 oid4 oid5 oid6 oid7 oid8 oid9 S1 (σ 0 , σ 0) C1 (σ 0 , σ 0) C2 (σ 0 , σ 0) R11 (σ 0 , σ 0) R21 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) definition σ s2 = state-σ 2 .σ 2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10 S1 (σ 0 , σ 0) σ 2 -object1 (σ 0 , σ 0) σ 2 -object2 (σ 0 , σ 0) R11 (σ 0 , σ 0) σ 2 -object4 (σ 0 , σ 0) F1 (σ 0 , σ 0) F2 (σ 0 , σ 0) σ 2 -object7 (σ 0 , σ 0)
Both formats are, fortunately, equivalent; this means that for these states, we can access properties from both state and transition locales, in which the object representations are "wired" in the same way.

lemma σ t1 -σ s1 : σ t1 = σ s1 unfolding σ t1 -def σ s1 -def apply(subst transition-σ 1 -σ 2 .σ 1 -def) by(rule σ 1 -σ 2 [simplified pp-σ 1 -σ 2 -def], simp) lemma σ t2 -σ s2 : σ t2 = σ s2 unfolding σ t2 -def σ s2 -def apply(subst transition-σ 1 -σ 2 .σ 2 -def) by(rule σ 1 -σ 2 [simplified pp-σ 1 -σ 2 -def], simp)
The next lemma becomes a shortcut of the one generated by Transition, but explicitly instantiated.

lemma WFF (σ t1 , σ t2) unfolding σ t1 -σ s1 σ t2 -σ s2 σ s1 -def σ s2 -def apply(rule transition-σ 1 -σ 2 .basic-σ 1 -σ 2 -wff) apply(rule σ 1 -σ 2 [simplified pp-σ 1 -σ 2 -def]) by(simp-all add: pp-oid-σ 1 -σ 2 pp-object-σ 1 -σ 2 oid-of-A-def oid-of-ty S taf f -def oid-of-ty C lient -def oid-of-ty Reser v ation -def oid-of-ty F lig ht -def S1 S taf f -def C1 C lient -def C2 C lient -def R11 Reser v ation -def R21 Reser v ation -def F1 F lig ht -def F2 F lig ht -def σ 2 -object1 C lient -def σ 2 -object2 C lient -def σ 2 -object4 Reser v ation -def σ 2 -object7 Reser v ation -def) lemma F1-val-seatsATpre: (σ s1 , σ) |= F1 .seats@pre «120 » proof(simp add: UML-Logic.foundation22 k-def) show F1 .seats@pre (σ s1 , σ) = 120 proof -note S1 = σ 1 [simplified state-interpretation-σ 1 -def , of (σ 0 , σ 0)] show ?thesis apply(simp add: dot F lig ht --seatsat-pre F1-def deref-oid F lig ht -def in-pre-state-def F1 F lig ht -def oid-of-ty F lig ht -def oid8-def) apply(subst (8) σ s1 -def , simp add: state-σ 1 .σ 1 -def [OF S1], simp add: pp-oid-σ 1 -σ 2) apply(simp add: select F lig ht --seats-def F1-def F1 F lig ht -def) by(simp add: reconst-basetype-def) qed qed lemma F1-val-seatsATpre : σ s1 |= pr e F1 .seats@pre «120 » by(simp add: OclValid-at-pre-def F1-val-seatsATpre) lemma F2-val-seatsATpre: (σ s1 , σ) |= F2 .seats@pre «370 » proof(simp add: UML-Logic.foundation22 k-def) show F2 .seats@pre (σ s1 , σ) = 370 proof -note S1 = σ 1 [simplified state-interpretation-σ 1 -def , of (σ 0 , σ 0)]
show ?thesis apply(simp add: dot F lig ht --seatsat-pre F2-def deref-oid F lig ht -def in-pre-state-def F2 F lig ht -def oid-of-ty F lig ht -def oid9-def) apply(subst (8) σ s1 -def , simp add: state-σ 1 .σ 1 -def [OF S1], simp add: pp-oid-σ 1 -σ 2) apply(simp add: select F lig ht --seats-def F2-def F2 F lig ht -def) by(simp add: reconst-basetype-def) qed qed lemma F2-val-seatsATpre : σ s1 |= pr e F2 .seats@pre «370 » by(simp add: OclValid-at-pre-def F2-val-seatsATpre)

lemma F1-val-seats: (σ, σ s2) |= F1 .seats «120 » proof(simp add: UML-Logic.foundation22 k-def) show F1 .seats (σ, σ s2) = 120 proof -note S2 = σ 2 [simplified state-interpretation-σ 2 -def , of (σ 0 , σ 0)] show ?thesis apply(simp add: dot F lig ht --seats F1-def deref-oid F lig ht -def in-post-state-def F1 F lig ht -def oid-of-ty F lig ht -def oid8-def) apply(subst (8) σ s2 -def , simp add: state-σ 2 .σ 2 -def [OF S2], simp add: pp-oid-σ 1 -σ 2) apply(simp add: select F lig ht --seats-def F1-def F1 F lig ht -def) by(simp add: reconst-basetype-def) qed qed lemma F1-val-seats : σ s2 |= post F1 .seats «120 » by(simp add: OclValid-at-post-def F1-val-seats) lemma F2-val-seats: (σ, σ s2) |= F2 .seats «370 » proof(simp add: UML-Logic.foundation22 k-def) show F2 .seats (σ, σ s2) = 370 proof -note S2 = σ 2 [simplified state-interpretation-σ 2 -def , of (σ 0 , σ 0)] show ?thesis apply(simp add: dot F lig ht --seats F2-def deref-oid F lig ht -def in-post-state-def F2 F lig ht -def oid-of-ty F lig ht -def oid9-def) apply(subst (8) σ s2 -def , simp add: state-σ 2 .σ 2 -def [OF S2], simp add: pp-oid-σ 1 -σ 2) apply(simp add: select F lig ht --seats-def F2-def F2 F lig ht -def) by(simp add: reconst-basetype-def) qed qed lemma F2-val-seats : σ s2 |= post F2 .seats «370 » by(simp add: OclValid-at-post-def F2-val-seats) lemma C1-valid: (σ s1 , σ) |= (υ C1) by(simp add: OclValid-def C1-def) lemma R11-val-clientATpre: (σ s1 , σ) |= R11 .client@pre C1 proof(simp add: foundation22) have C1-deref-val: (σ s1 , σ) |= deref-oid C lient fst reconst-basetype 4 C1 proof(simp add: foundation22) show deref-oid C lient fst reconst-basetype 4 (σ s1 , σ) = C1 (σ s1 , σ) proof -note S1 = σ 1 [simplified state-interpretation-σ 1 -def , of (σ 0 , σ 0)] show ?thesis apply(simp add: deref-oid C lient -def) apply(subst (8) σ s1 -def , simp add: state-σ 1 .σ 1 -def [OF S1], simp add: pp-oid-σ 1 -σ 2) by(simp add: reconst-basetype-def C1-def) qed qed show R11 .client@pre (σ s1 , σ) = C1 (σ s1 , σ) proof -note S1 = σ 1 [simplified state-interpretation-σ 1 -def , of (σ 0 , σ 0)] show ?thesis apply(simp add: dot Reser v ation -1---clientat-pre R11-def deref-oid Reser v ation -def in-pre-state-def R11 Reser v ation -def oid-of-ty Reser v ation -def oid6-def) apply(subst (8) σ s1 -def , simp add: state-σ 1 .σ 1 -def [OF S1], simp add: pp-oid-σ 1 -σ 2) apply(simp add: deref-assocs Reser v ation -1---client-def deref-assocs-def oid Reser v ation -1---client-def) apply(subst (3) σ s1 -def , simp add: state-σ 1 .σ 1 -def [OF S1] map-of-list-def oid C lient -0---flights-def oid S taf f -0---flights-def oid C lient -0---cl-res-def) apply(simp add: switch 2 -01-def switch 2 -10-def choose-0-def choose-1-def deref-assocs-list-def pp-oid-σ 1 -σ 2 R11-def R11 Reser v ation -def oid-of-ty Reser v ation -def List.member-def) apply(simp add: select Reser v ation --client-def select-object-any S et -def select-object S et -def) apply(subgoal-tac (let s = Set{deref-oid C lient fst reconst-basetype 4 } in if s->size S et () 1 then s->any S et () else ⊥ endif) (σ s1 , σ) = C1 (σ s1 , σ)) apply(subgoal-tac Set{deref-oid C lient fst reconst-basetype 4 } = select-object
((σ t1 , σ t2) |= Flight .allInstances@pre()->forAll S et (self | Flight .allInstances@pre()->forAll S et (f |0 < int f .seats@pre))) = ((σ t1 , σ t2) |= Flight .allInstances@pre() Set{} or Flight .allInstances@pre()->forAll S et (f | 0 < int f .seats@pre)) by(simp add: StrongEq-L-subst3 [OF -forall-trivial[simplified Let-def],
where

P = λx. x]) also have ... = ((σ t1 , σ t2) |= ((Set{F1 , F2 } Set{}) or (Set{F1 , F2 }->forAll S et (f | 0 < int f .seats@pre)))) unfolding Flight-def apply(subst StrongEq-L-subst3 [where x=OclAsType F lig ht -A .allInstances@pre()],
simp, simp add:

σ t1 -def σ t1 -σ s1 [simplified σ t1 -def σ s1 -def]) apply(rule StrictRefEq S et .StrictRefEq-vs-StrongEq [THEN iffD1 , OF --state-σ 1 .σ 1 -OclAllInstances-at-pre-exec-Flight [OF σ 1 [simplified state-interpretation-σ 1 -def], simplified Flight-def]])
) have ((σ t1 , σ t2) |= Flight .allInstances()->forAll S et (self | Flight .allInstances()->forAll S et (f |0 < int f .seats))) = ((σ t1 , σ t2) |= Flight .allInstances() Set{} or Flight .allInstances()->forAll S et (f | 0 < int f .seats)) by(simp add: StrongEq-L-subst3 [OF -forall-trivial[simplified Let-def],
where

P = λx. x]) also have ... = ((σ t1 , σ t2) |= Set{F1 ,F2 } Set{} or Set{F1 ,F2 }->forAll S et (f | 0 < int f .seats)) unfolding Flight-def apply(subst StrongEq-L-subst3 [where x = OclAsType F lig ht -A .allInstances()],
simp, simp add:

σ t2 -def σ t2 -σ s2 [simplified σ t2 -def σ s2 -def]) apply(rule StrictRefEq S et .StrictRefEq-vs-StrongEq [THEN iffD1 , OF --state-σ 2 .σ 2 -OclAllInstances-at-post-exec-Flight [OF σ 2 [simplified state-interpretation-σ 2 -def], simplified Flight-def]]) apply(rule OclAllInstances-at-post-valid) apply(simp add: F1-def F2-def) by(simp add: OclAsType F lig ht -A-def)+ also have ... = ((σ t1 , σ t2) |= Set{F1 , F2 } Set{} or (0 < int (F2 .seats)) and (0 < int (F1 .seats))) apply(simp, simp add: OclValid-def , subst (1 2) cp-OclOr, subst cp-OclIf , subst (1 2 3) cp-OclAnd,

Proving the Implementability of Operations

An operation contract is said to be non-blocking, if and only if there exist input and input states where the pre-condition is satisfied. Moreover, a contract is said to be implementable, if and only if for all inputs satisfying the pre-condition output data exists that satisfies the post-condition. As remark, the pre-condition σ |= pr e cancel pr e self r has not been used; in the special case of the operation "cancel", the post-condition is satisfiable for arbitrary defined and valid input, even input that does not satisfy the pre-condition.

) |= δ self) -→ ((σ, σ) |= υ r) -→ ((σ, σ) |= (cancel post self r result)) proof - def σ ≡ (| heap = K in C lient (mk C lient (mkEX T C lient 0 None) None) , assocs = Map.empty (oid C lient -0---cl-res → []) |) have self-definition: τ . τ |= δ self =⇒ ∃ ta xa x. self τ = mk C lient (mkEX T C lient ta xa) x apply(simp add:OclValid-def defined-def true-def false-def split: split-if-asm) proof -fix τ show self τ = ⊥ τ ∧ self τ = null τ =⇒ ∃ ta xa x. self τ = mk C lient (mkEX T C lient ta xa) x apply(case-tac self τ , simp add: bot-option-def bot-fun-def , simp) proof -fix a show a = ⊥ τ ∧ a = null τ =⇒ self τ = a =⇒ ∃ ta xa x. a = mk C lient (mkEX T C lient ta xa) x apply(case-tac a, simp add: null-fun-def null-option-def bot-option-def , simp) proof -fix aa show aa = ⊥ τ ∧ aa = null τ =⇒ self τ = aa =⇒ a = aa =⇒ ∃ ta xa x. aa = mk C lient (mkEX T C lient ta xa) x apply(case-tac aa, simp) proof -fix x1 x2 show self τ = mk C lient x1 x2 =⇒ ∃ ta xa. x1 = mkEX T C lient ta xa by(case-tac x1 , simp) qed qed qed qed have self-empty: (σ, σ) |= δ self =⇒ (σ, σ) |= (self .cl-res Set{}) apply(drule self-definition, elim exE) apply(simp add: OclValid-def StrongEq-def dot C lient -0---cl-res) apply(simp add: deref-oid C lient -def in-post-state-def , subst (8) σ -def) apply(simp add: Let-def K-def oid-of-option-def deref-assocs C lient -0---cl-res-def deref-assocs-def) apply(subst (3) σ -def , simp add: select C lient --cl-res-def) by(simp add: oid-of-ty C lient -def deref-assocs-list-def switch 2 -01-def select-object S et -def select-object-

B

The Flight Model (Generated Theory, Floor 1)

This chapter has been generated from Appendix A (by discarding all the Isar_HOL commands of Appendix A and only keeping its meta-commands). theory Flight-Model-generated imports ../src/UML-Main ../src/compiler/Static ../src/compiler/Generator-dynamic begin

B.1 Enum

datatype ty-enum W eek = constr M on | constr T ue | constr W ed | constr T hu | constr F r i | constr S at | constr S un
definition oid-of-ty C lient -def : oid-of = (λ mk C lient t -⇒ (case t of (mkEX T C lient (t) (-)) ⇒ t)) instance .. end instantiation ty S taf f :: object begin definition oid-of-ty S taf f -def : oid-of = (λ mk S taf f t ⇒ (case t of (mkEX T S taf f (t) (-)) ⇒ t)) instance .. end
T O clAny (t)) ⇒ t | (mkEX T O clAny -F lig ht (t)) ⇒ (oid-of (t)) | (mkEX T O clAny -C lient (t)) ⇒ (oid-of (t)) | (mkEX T O clAny -S taf f (t)) ⇒ (oid-of (t)) | (mkEX T O clAny -P er son (t)) ⇒ (oid-of (t)) | (mkEX T O clAny -Reser v ation (t)) ⇒ (oid-of (t)))) instance .. end instantiation A :: object begin definition oid-of-A-def : oid-of = (λ in F lig ht Flight ⇒ oid-of Flight | in C lient Client ⇒ oid-of Client | in S taf f Staff ⇒ oid-of
| ⊥ ⇒ (null (τ)) | (mk O clAny ((mkEX T O clAny -F lig ht (Flight)))) ⇒ Flight | -⇒ (invalid (τ)))) end overloading OclAsType F lig ht ≡ (OclAsType F lig ht ::(•Staff) ⇒ -) begin definition OclAsType F lig ht -Staff : (x::•Staff) .oclAsType(Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType F lig ht ≡ (OclAsType F lig ht ::(•Person) ⇒ -) begin definition OclAsType F lig ht -Person : (x::•Person) .oclAsType(Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType F lig ht ≡ (OclAsType F lig ht ::(•Client) ⇒ -) begin definition OclAsType F lig ht -Client : (x::•Client) .oclAsType(Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType F lig ht ≡ (OclAsType F lig ht ::(•Reservation) ⇒ -) begin definition OclAsType F lig ht -Reservation : (x::•Reservation) .oclAsType(Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType C lient ≡ (OclAsType C lient ::(•Client) ⇒ -) begin definition OclAsType C lient -Client : (x::•Client) .oclAsType(Client) ≡ x end overloading OclAsType C lient ≡ (OclAsType C lient ::(•Person) ⇒ -) begin definition OclAsType C lient -Person : (x::•Person) .oclAsType(Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | (mk P er son ((mkEX T P er son-C lient (Client))) (-)) ⇒ Client | -⇒ (invalid (τ))))
| ⊥ ⇒ (null (τ)) | (mk O clAny ((mkEX T O clAny -C lient (Client)))) ⇒ Client | -⇒ (invalid (τ)))) end overloading OclAsType C lient ≡ (OclAsType C lient ::(•Staff) ⇒ -) begin definition OclAsType C lient -Staff : (x::•Staff) .oclAsType(Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType C lient ≡ (OclAsType C lient ::(•Reservation) ⇒ -) begin definition OclAsType C lient -Reservation : (x::•Reservation) .oclAsType(Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType C lient ≡ (OclAsType C lient ::(•Flight) ⇒ -) begin definition OclAsType C lient -Flight : (x::•Flight) .oclAsType(Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType S taf f ≡ (OclAsType S taf f ::(•Staff) ⇒ -) begin definition OclAsType S taf f -Staff : (x::•Staff) .oclAsType(Staff) ≡ x end overloading OclAsType S taf f ≡ (OclAsType S taf f ::(•Person) ⇒ -) begin definition OclAsType S taf f -Person : (x::•Person) .oclAsType(Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | (mk P er son ((mkEX T P er son-S taf f (Staff))) (-)) ⇒ Staff | -⇒ (invalid (τ)))) end overloading OclAsType S taf f ≡ (OclAsType S taf f ::(•OclAny) ⇒ -) begin definition OclAsType S taf f -OclAny : (x::•OclAny) .oclAsType(Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | (mk O clAny ((mkEX T O clAny -S taf f (Staff)))) ⇒ Staff | -⇒ (invalid (τ)))) end overloading OclAsType S taf f ≡ (OclAsType S taf f ::(•Client) ⇒ -) begin definition OclAsType S taf f -Client : (x::•Client) .oclAsType(Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType S taf f ≡ (OclAsType S taf f ::(•Reservation) ⇒ -) begin definition OclAsType S taf f -Reservation : (x::•Reservation) .oclAsType(Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType S taf f ≡ (OclAsType S taf f ::(•Flight) ⇒ -) begin definition OclAsType S taf f -Flight : (x::•Flight) .oclAsType(Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ))))
| ⊥ ⇒ (null (τ)) | Flight ⇒ (mk O clAny ((mkEX T O clAny -F lig ht (Flight)))))) end overloading OclAsType O clAny ≡ (OclAsType O clAny ::(•Client) ⇒ -) begin definition OclAsType O clAny -Client : (x::•Client) .oclAsType(OclAny) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | Client ⇒ (mk O clAny ((mkEX T O clAny -C lient (Client))))))
| ⊥ ⇒ (null (τ)) | Reservation ⇒ (mk O clAny ((mkEX T O clAny -Reser v ation (Reservation)))))) end definition OclAsType F lig ht -A = (λ (in F lig ht (Flight)) ⇒ Flight | -⇒ None) definition OclAsType Reser v ation-A = (λ (in Reser v ation (Reservation)) ⇒ Reservation | (in O clAny ((mk O clAny ((mkEX T O clAny -Reser v ation (Reservation)))))) ⇒ Reservation | -⇒ None) definition OclAsType O clAny -A = Some o (λ (in O clAny (OclAny)) ⇒ OclAny | (in F lig ht (Flight)) ⇒ (mk O clAny ((mkEX T O clAny -F lig ht (Flight)))) | (in C lient (Client)) ⇒ (mk O clAny ((mkEX T O clAny -C lient (Client)))) | (in S taf f (Staff)) ⇒ (mk O clAny ((mkEX T O clAny -S taf f (Staff)))) | (in P
•OclAny)))::•Client) .oclAsType(Client))))) by(rule cpI1 , simp) lemma cp-OclAsType C lient -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclAsType(Client))))) by(rule cpI1 , simp) lemma cp-OclAsType C lient -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclAsType(Client))))) by(rule cpI1 , simp) lemma cp-OclAsType C lient -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclAsType(Client))))) by(rule cpI1 , simp) lemma cp-OclAsType C lient -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclAsType(Client))))) by(rule cpI1 ,
•Flight)))::•Person) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Person) lemma cp-OclAsType S taf f -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclAsType(Staff))))) by(rule cpI1 , simp) lemma cp-OclAsType S taf f -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclAsType(Staff)))))
by(rule cpI1 , simp) lemma cp-OclAsType S taf f -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclAsType(Staff))))) by(rule cpI1 , simp) lemma cp-OclAsType S taf f -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclAsType(Staff))))) by(rule cpI1 , simp) lemma cp-OclAsType S taf f -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclAsType(Staff))))) by(rule cpI1 , simp) lemma cp-OclAsType S taf f -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclAsType(Staff))))) by(rule cpI1 , simp) lemma cp-OclAsType S taf f -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Flight) lemma cp-OclAsType S taf f -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclAsType(Staff))))) by(rule ((p ((x::

•Flight)))::•Flight) .oclAsType(Flight))))) by(rule cpI1 , simp) lemmas[simp,code-unfold] = cp-OclAsType C lient -Client-Client cp-OclAsType C lient -Reservation-Client cp-OclAsType C lient -OclAny-Client cp-OclAsType C lient -Person-Client cp-OclAsType C lient -Staff-Client cp-OclAsType C lient -Flight-Client cp-OclAsType C lient -Client-Reservation cp-OclAsType C lient -Reservation-Reservation cp-OclAsType C lient -OclAny-Reservation cp-OclAsType C lient -Person-Reservation cp-OclAsType C lient -Staff-Reservation cp-OclAsType C lient -Flight-Reservation cp-OclAsType C lient -Client-OclAny cp-OclAsType C lient -Reservation-OclAny cp-OclAsType C lient -OclAny-OclAny cp-OclAsType C lient -Person-OclAny cp-OclAsType C lient -Staff-OclAny cp-OclAsType C lient -Flight-OclAny cp-OclAsType C lient -Client-Person cp-OclAsType C lient -Reservation-Person cp-OclAsType C lient -OclAny-Person cp-OclAsType C lient -Person-Person cp-OclAsType C lient -Staff-Person cp-OclAsType C lient -Flight-Person cp-OclAsType C lient -Client-Staff cp-OclAsType C lient -Reservation-Staff cp-OclAsType C lient -OclAny-Staff cp-OclAsType C lient -Person-Staff cp-OclAsType C lient -Staff-Staff cp-OclAsType C lient -Flight-Staff cp-OclAsType C lient -Client-Flight cp-OclAsType C lient -Reservation-Flight cp-OclAsType C lient -OclAny-Flight cp-OclAsType C lient -Person-Flight cp-OclAsType C lient -Staff-Flight cp-OclAsType C lient -Flight-Flight cp-OclAsType Reser v ation-Client-Client cp-OclAsType Reser v
cp-OclAsType S taf f -Client-Client cp-OclAsType S taf f -Reservation-Client cp-OclAsType S taf f -OclAny-Client cp-OclAsType S taf f -Person-Client cp-OclAsType S taf f -Staff-Client cp-OclAsType S taf f -Flight-Client cp-OclAsType S taf f -Client-Reservation cp-OclAsType S taf f -Reservation-Reservation cp-OclAsType S taf f -OclAny-Reservation cp-OclAsType S taf f -Person-Reservation cp-OclAsType S taf f -Staff-Reservation cp-OclAsType S taf f -Flight-Reservation cp-OclAsType S taf f -Client-OclAny cp-OclAsType S taf f -Reservation-OclAny cp-OclAsType S taf f -OclAny-OclAny cp-OclAsType S taf f -Person-OclAny cp-OclAsType S taf f -Staff-OclAny cp-OclAsType S taf f -Flight-OclAny cp-OclAsType S taf f -Client-Person cp-OclAsType S taf f -Reservation-Person cp-OclAsType S taf f -OclAny-Person cp-OclAsType S taf f -Person-Person cp-OclAsType S taf f -Staff-Person cp-OclAsType S taf f -Flight-Person cp-OclAsType S taf f -Client-Staff cp-OclAsType S taf f -Reservation-Staff cp-OclAsType S taf f -OclAny-Staff cp-OclAsType S taf f -Person-Staff cp-OclAsType S taf f -Staff-Staff cp-OclAsType S taf f -Flight-Staff cp-OclAsType S taf f -Client-Flight cp-OclAsType S taf f -Reservation-Flight cp-OclAsType S taf f -OclAny-Flight cp-OclAsType S taf f -Person-Flight cp-OclAsType S taf f -Staff-Flight cp-OclAsType S taf f -Flight-Flight cp-OclAsType F lig ht -Client-Client cp-OclAsType F lig ht -Reservation-Client cp-OclAsType F lig ht -OclAny-Client cp-OclAsType F lig ht -Person-Client cp-OclAsType F lig ht -Staff-Client cp-OclAsType F lig ht -Flight-Client cp-OclAsType F lig ht -Client-Reservation cp-OclAsType F lig ht -Reservation-Reservation cp-OclAsType F lig ht -OclAny-Reservation cp-OclAsType F lig ht -Person-Reservation cp-OclAsType F lig ht -Staff-Reservation cp-OclAsType F lig ht -Flight-Reservation cp-OclAsType F lig ht -Client-OclAny cp-OclAsType F lig ht -Reservation-OclAny cp-OclAsType F lig ht -OclAny-OclAny cp-OclAsType F lig ht -Person-OclAny cp-OclAsType F lig ht -Staff-OclAny cp-OclAsType F lig ht -Flight-OclAny cp-OclAsType F lig ht -Client-Person cp-OclAsType F lig ht -Reservation-Person cp-OclAsType F lig ht -OclAny-Person cp-OclAsType F lig ht -Person-Person cp-OclAsType F lig ht -Staff-Person cp-OclAsType F lig ht -Flight-Person cp-OclAsType F lig ht -Client-Staff cp-OclAsType F lig ht -Reservation-Staff cp-OclAsType F lig ht -OclAny-Staff cp-OclAsType F lig ht -Person-Staff cp-OclAsType F lig ht -Staff-Staff cp-OclAsType F lig ht -Flight-Staff cp-OclAsType F lig ht -Client-Flight cp-OclAsType F lig ht -Reservation-Flight cp-OclAsType F lig ht -OclAny-Flight cp-OclAsType F lig ht -Person-Flight cp-OclAsType F lig ht -Staff-Flight cp-OclAsType F lig ht -Flight-Flight

Execution with Invalid or Null as Argument

•Flight) .oclAsType(Flight)) = null by(simp) lemmas[simp,code-unfold] = OclAsType C lient -Client-invalid OclAsType C lient -Reservation-invalid OclAsType C lient -OclAny-invalid OclAsType C lient -Person-invalid OclAsType C lient -Staff-invalid OclAsType C lient -Flight-invalid OclAsType C lient -Client-null OclAsType C lient -Reservation-null OclAsType C lient -OclAny-null OclAsType C lient -Person-null OclAsType C lient -Staff-null OclAsType C lient -Flight-
S taf f -Client-invalid OclAsType S taf f -Reservation-invalid OclAsType S taf f -OclAny-invalid OclAsType S taf f -Person-invalid OclAsType S taf f -Staff-invalid OclAsType S taf f -Flight-invalid OclAsType S taf f -Client-null OclAsType S taf f -Reservation-null OclAsType S taf f -OclAny-null OclAsType S taf f -Person-null OclAsType S taf f -Staff-null OclAsType S taf f -Flight-null OclAsType F lig ht -Client-invalid OclAsType F lig ht -Reservation-invalid OclAsType F lig ht -OclAny-invalid OclAsType F lig ht -Person-invalid OclAsType F lig ht -Staff-invalid OclAsType F lig ht -Flight-invalid OclAsType F lig ht -Client-null OclAsType F lig ht -Reservation-null OclAsType F lig ht -OclAny-null OclAsType F lig ht -Person-null OclAsType F lig ht -Staff-null OclAsType F lig ht -Flight-null

Validity and Definedness Properties

lemma OclAsType S taf f -Staff-const : (const ((X::•Staff))) =⇒ (const (X .oclAsType(Staff))) by(simp add: const-def , (metis (no-types) OclAsType S taf f -Staff prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType S taf f -Flight-const : (const ((X::•Flight))) =⇒ (const (X .oclAsType(Staff)))
by(simp add: const-def , (metis (no-types) OclAsType S taf f -Flight prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType F lig ht -Client-const : (const ((X::•Client))) =⇒ (const (X .oclAsType(Flight))) by(simp add: const-def , (metis (no-types) OclAsType F lig ht -Client prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType F lig ht -Reservation-const : (const ((X::•Reservation))) =⇒ (const (X .oclAsType(Flight))) by(simp add: const-def , (metis (no-types) OclAsType F lig ht -Reservation prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType F lig ht -OclAny-const : (const ((X::•OclAny))) =⇒ (const (X .oclAsType(Flight))) by(simp add: const-def , (metis (no-types) OclAsType F lig ht -OclAny prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType F lig ht -Person-const : (const ((X::•Person))) =⇒ (const (X .oclAsType(Flight))) by(simp add: const-def , (metis (no-types) OclAsType F lig ht -Person prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType F lig ht -Staff-const : (const ((X::•Staff))) =⇒ (const (X .oclAsType(Flight))) by(simp add: const-def , (metis (no-types) OclAsType F lig ht -Staff prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?)

lemma OclAsType F lig ht -Flight-const : (const ((X::•Flight))) =⇒ (const (X .oclAsType(Flight))) by(simp add: const-def , (metis (no-types) OclAsType F lig ht -Flight prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemmas[simp,code-unfold] = OclAsType C lient -Client-const OclAsType C lient -Reservation-const OclAsType C lient -OclAny-const OclAsType C lient -Person-const OclAsType C lient -Staff-const OclAsType C lient -Flight-const
OclAsType S taf f -Client-const OclAsType S taf f -Reservation-const OclAsType S taf f -OclAny-const OclAsType S taf f -Person-const OclAsType S taf f -Staff-const OclAsType S taf f -Flight-const OclAsType F lig ht -Client-const OclAsType F lig ht -Reservation-const OclAsType F lig ht -OclAny-const OclAsType F lig ht -Person-const OclAsType F lig ht -Staff-const OclAsType F lig ht -Flight-const

B.5 Class Model: OclIsTypeOf

Definition consts OclIsTypeOf F lig ht :: α ⇒ Boolean ((-) .oclIsTypeOf (Flight)) consts OclIsTypeOf C lient :: α ⇒ Boolean ((-) .oclIsTypeOf (Client)) consts OclIsTypeOf S taf f :: α ⇒ Boolean ((-) .oclIsTypeOf (Staff)) consts OclIsTypeOf P er son :: α ⇒ Boolean ((-) .oclIsTypeOf (Person)) consts OclIsTypeOf Reser v ation :: α ⇒ Boolean ((-) .oclIsTypeOf (Reservation)) consts OclIsTypeOf O clAny :: α ⇒ Boolean ((-) .oclIsTypeOf (OclAny))
overloading OclIsTypeOf .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf O clAny -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf O clAny -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf O clAny -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsTypeOf (OclAny))))) by(rule .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Reservation) lemma cp-OclIsTypeOf F lig ht -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -OclAny) lemma cp-OclIsTypeOf F lig ht -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -OclAny, simp only: cp-OclIsTypeOf F lig ht -Reservation-OclAny) lemma cp-OclIsKindOf F lig ht -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsKindOf (Flight))))) by(simp only: ((λx. (((p ((x:: ((λx. (((p ((x:: ((λx. (((p ((x:: ((λx. (((p ((x:

| ⊥ ⇒ (true (τ)) | (mk O clAny ((mkEX T O clAny -C lient (-)))) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf C lient ≡ (OclIsTypeOf C lient ::(•Staff) ⇒ -) begin definition OclIsTypeOf C lient -Staff : (x::•Staff) .oclIsTypeOf (Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf C lient ≡ (OclIsTypeOf C lient ::(•Reservation) ⇒ -) begin definition OclIsTypeOf C lient -Reservation : (x::•Reservation) .oclIsTypeOf (Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf C lient ≡ (OclIsTypeOf C lient ::(•Flight) ⇒ -) begin definition OclIsTypeOf C lient -Flight : (x::•Flight) .oclIsTypeOf (Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf S taf f ≡ (OclIsTypeOf S taf f ::(•Staff) ⇒ -)
| ⊥ ⇒ (true (τ)) | (mk O clAny ((mkEX T O clAny -S taf f (-)))) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf S taf f ≡ (OclIsTypeOf S taf f ::(•Client) ⇒ -) begin definition OclIsTypeOf S taf f -Client : (x::•Client) .oclIsTypeOf (Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ))))
•Flight)))::•Flight) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp) lemmas[simp,code-unfold] = cp-OclIsTypeOf C lient -Client-Client cp-OclIsTypeOf C lient -Reservation-Client cp-OclIsTypeOf C lient -OclAny-Client cp-OclIsTypeOf C lient -Person-Client cp-OclIsTypeOf C lient -Staff-Client cp-OclIsTypeOf C lient -Flight-Client cp-OclIsTypeOf C lient -Client-Reservation cp-OclIsTypeOf C lient -Reservation-Reservation cp-OclIsTypeOf C lient -OclAny-Reservation cp-OclIsTypeOf C lient -Person-Reservation cp-OclIsTypeOf C lient -Staff-Reservation cp-OclIsTypeOf C lient -Flight-Reservation cp-OclIsTypeOf C lient -Client-OclAny cp-OclIsTypeOf C lient -Reservation-OclAny cp-OclIsTypeOf C lient -OclAny-OclAny cp-OclIsTypeOf C lient -Person-OclAny cp-OclIsTypeOf C lient -Staff-OclAny cp-OclIsTypeOf C lient -Flight-OclAny cp-OclIsTypeOf C lient -Client-Person cp-OclIsTypeOf C lient -Reservation-Person cp-OclIsTypeOf C lient -OclAny-Person cp-OclIsTypeOf C lient -Person-Person cp-OclIsTypeOf C lient -Staff-Person cp-OclIsTypeOf C lient -Flight-Person cp-OclIsTypeOf C lient -Client-Staff cp-OclIsTypeOf C lient -Reservation-Staff cp-OclIsTypeOf C lient -OclAny-Staff cp-OclIsTypeOf C lient -Person-Staff cp-OclIsTypeOf C lient -Staff-Staff cp-OclIsTypeOf C lient -Flight-Staff cp-OclIsTypeOf C lient -Client-Flight cp-OclIsTypeOf C lient -Reservation-Flight cp-OclIsTypeOf C lient -OclAny-Flight cp-OclIsTypeOf C lient -Person-Flight cp-OclIsTypeOf C lient -Staff-Flight cp-OclIsTypeOf C lient -Flight-Flight cp-OclIsTypeOf Reser v ation-Client-Client cp-OclIsTypeOf Reser v

ation-Reservation-Client cp-OclIsTypeOf Reser v ation-OclAny-Client cp-OclIsTypeOf Reser v ation-Person-Client cp-OclIsTypeOf Reser v ation-Staff-Client cp-OclIsTypeOf Reser v ation-Flight-Client cp-OclIsTypeOf Reser v ation-Client-Reservation cp-OclIsTypeOf Reser v ation-Reservation-Reservation cp-OclIsTypeOf Reser v ation-OclAny-Reservation cp-OclIsTypeOf Reser v ation-Person-Reservation cp-OclIsTypeOf Reser v ation-Staff-Reservation cp-OclIsTypeOf Reser v ation-Flight-Reservation cp-OclIsTypeOf Reser v ation-Client-OclAny cp-OclIsTypeOf Reser v ation-Reservation-OclAny cp-OclIsTypeOf Reser v ation-OclAny-OclAny cp-OclIsTypeOf Reser v ation-Person-OclAny cp-OclIsTypeOf Reser v ation-Staff-OclAny cp-OclIsTypeOf Reser v ation-Flight-OclAny

cp-OclIsTypeOf Reser v ation-Client-Person cp-OclIsTypeOf Reser v ation-Reservation-Person cp-OclIsTypeOf Reser v ation-OclAny-Person cp-OclIsTypeOf Reser v ation-Person-Person cp-OclIsTypeOf Reser v ation-Staff-Person cp-OclIsTypeOf Reser v ation-Flight-Person cp-OclIsTypeOf

Reser v ation-Client-Staff cp-OclIsTypeOf Reser v ation-Reservation-Staff cp-OclIsTypeOf Reser v ation-OclAny-Staff cp-OclIsTypeOf Reser v ation-Person-Staff cp-OclIsTypeOf Reser v ation-Staff-Staff cp-OclIsTypeOf Reser v ation-Flight-Staff cp-OclIsTypeOf Reser v ation-Client-Flight cp-OclIsTypeOf Reser v ation-Reservation-Flight cp-OclIsTypeOf Reser v ation-OclAny-Flight cp-OclIsTypeOf Reser v ation-Person-Flight cp-OclIsTypeOf Reser v ation-Staff-Flight cp-OclIsTypeOf Reser v ation-Flight-Flight cp-OclIsTypeOf O clAny -Client-Client cp-OclIsTypeOf O clAny -Reservation-Client cp-OclIsTypeOf O clAny -OclAny-Client cp-OclIsTypeOf O clAny -Person-Client cp-OclIsTypeOf O clAny -Staff-Client cp-OclIsTypeOf O clAny -Flight-Client cp-OclIsTypeOf O clAny -Client-Reservation cp-OclIsTypeOf O clAny -Reservation-Reservation cp-OclIsTypeOf O clAny -OclAny-Reservation cp-OclIsTypeOf O clAny -Person-Reservation cp-OclIsTypeOf O clAny -Staff-Reservation cp-OclIsTypeOf O clAny -Flight-Reservation cp-OclIsTypeOf O clAny -Client-OclAny cp-OclIsTypeOf O clAny -Reservation-OclAny cp-OclIsTypeOf O clAny -OclAny-OclAny cp-OclIsTypeOf O clAny -Person-OclAny cp-OclIsTypeOf O clAny -Staff-OclAny cp-OclIsTypeOf O clAny -Flight-OclAny cp-OclIsTypeOf O clAny -Client-Person cp-OclIsTypeOf O clAny -Reservation-Person cp-OclIsTypeOf O clAny -OclAny-Person cp-OclIsTypeOf O clAny -Person-Person cp-OclIsTypeOf O clAny -Staff-Person cp-OclIsTypeOf O clAny -Flight-Person cp-OclIsTypeOf O clAny -Client-Staff cp-OclIsTypeOf O clAny -Reservation-Staff cp-OclIsTypeOf O clAny -OclAny-Staff cp-OclIsTypeOf O clAny -Person-Staff cp-OclIsTypeOf O clAny -Staff-Staff cp-OclIsTypeOf O clAny -Flight-Staff cp-OclIsTypeOf O clAny -Client-Flight cp-OclIsTypeOf O clAny -Reservation-Flight cp-OclIsTypeOf O clAny -OclAny-Flight cp-OclIsTypeOf O clAny -Person-Flight cp-OclIsTypeOf O clAny -Staff-Flight cp-OclIsTypeOf O clAny -Flight-
cp-OclIsTypeOf S taf f -Client-Client cp-OclIsTypeOf S taf f -Reservation-Client cp-OclIsTypeOf S taf f -OclAny-Client cp-OclIsTypeOf S taf f -Person-Client cp-OclIsTypeOf S taf f -Staff-Client cp-OclIsTypeOf S taf f -Flight-Client cp-OclIsTypeOf S taf f -Client-Reservation cp-OclIsTypeOf S taf f -Reservation-Reservation cp-OclIsTypeOf S taf f -OclAny-Reservation cp-OclIsTypeOf S taf f -Person-Reservation cp-OclIsTypeOf S taf f -Staff-Reservation cp-OclIsTypeOf S taf f -Flight-Reservation cp-OclIsTypeOf S taf f -Client-OclAny cp-OclIsTypeOf S taf f -Reservation-OclAny cp-OclIsTypeOf S taf f -OclAny-OclAny cp-OclIsTypeOf S taf f -Person-OclAny cp-OclIsTypeOf S taf f -Staff-OclAny cp-OclIsTypeOf S taf f -Flight-OclAny cp-OclIsTypeOf S taf f -Client-Person cp-OclIsTypeOf S taf f -Reservation-Person cp-OclIsTypeOf S taf f -OclAny-Person cp-OclIsTypeOf S taf f -Person-Person cp-OclIsTypeOf S taf f -Staff-Person cp-OclIsTypeOf S taf f -Flight-Person cp-OclIsTypeOf S taf f -Client-Staff cp-OclIsTypeOf S taf f -Reservation-Staff cp-OclIsTypeOf S taf f -OclAny-Staff cp-OclIsTypeOf S taf f -Person-Staff cp-OclIsTypeOf S taf f -Staff-Staff cp-OclIsTypeOf S taf f -Flight-Staff cp-OclIsTypeOf S taf f -Client-Flight cp-OclIsTypeOf S taf f -Reservation-Flight cp-OclIsTypeOf S taf f -OclAny-Flight cp-OclIsTypeOf S taf f -Person-Flight cp-OclIsTypeOf S taf f -Staff-Flight cp-OclIsTypeOf S taf f -Flight-Flight cp-OclIsTypeOf F lig ht -Client-Client cp-OclIsTypeOf F lig ht -Reservation-Client cp-OclIsTypeOf F lig ht -OclAny-Client cp-OclIsTypeOf F lig ht -Person-Client cp-OclIsTypeOf F lig ht -Staff-Client cp-OclIsTypeOf F lig ht -Flight-Client cp-OclIsTypeOf F lig ht -Client-Reservation cp-OclIsTypeOf F lig ht -Reservation-Reservation cp-OclIsTypeOf F lig ht -OclAny-Reservation cp-OclIsTypeOf F lig ht -Person-Reservation cp-OclIsTypeOf F lig ht -Staff-Reservation cp-OclIsTypeOf F lig ht -Flight-Reservation cp-OclIsTypeOf F lig ht -Client-OclAny cp-OclIsTypeOf F lig ht -Reservation-OclAny cp-OclIsTypeOf F lig ht -OclAny-OclAny cp-OclIsTypeOf F lig ht -Person-OclAny cp-OclIsTypeOf F lig ht -Staff-OclAny cp-OclIsTypeOf F lig ht -Flight-OclAny cp-OclIsTypeOf F lig ht -Client-Person cp-OclIsTypeOf F lig ht -Reservation-Person cp-OclIsTypeOf F lig ht -OclAny-Person cp-OclIsTypeOf F lig ht -Person-Person cp-OclIsTypeOf F lig ht -Staff-Person cp-OclIsTypeOf F lig ht -Flight-Person cp-OclIsTypeOf F lig ht -Client-Staff cp-OclIsTypeOf F lig ht -Reservation-Staff cp-OclIsTypeOf F lig ht -OclAny-Staff cp-OclIsTypeOf F lig ht -Person-Staff cp-OclIsTypeOf F lig ht -Staff-Staff cp-OclIsTypeOf F lig ht -Flight-Staff cp-OclIsTypeOf F lig ht -Client-Flight cp-OclIsTypeOf F lig ht -Reservation-Flight cp-OclIsTypeOf F lig ht -OclAny-Flight cp-OclIsTypeOf F lig ht -Person-Flight cp-OclIsTypeOf F lig ht -Staff-Flight cp-OclIsTypeOf F lig ht -Flight-Flight

Execution with Invalid or Null as Argument

lemmas[simp,code-unfold] = OclIsTypeOf C lient -Client-invalid OclIsTypeOf C lient -Reservation-invalid OclIsTypeOf C lient -OclAny-invalid OclIsTypeOf C lient -Person-invalid OclIsTypeOf C lient -Staff-invalid OclIsTypeOf C lient -Flight-invalid OclIsTypeOf C lient -Client-null OclIsTypeOf C lient -Reservation-null OclIsTypeOf C lient -OclAny-null OclIsTypeOf C lient -Person-null OclIsTypeOf C lient -Staff-null OclIsTypeOf C lient -Flight-

null OclIsTypeOf Reser v ation-Client-invalid OclIsTypeOf Reser v ation-Reservation-invalid OclIsTypeOf Reser v ation-OclAny-invalid OclIsTypeOf Reser v ation-Person-invalid OclIsTypeOf Reser v ation-Staff-invalid OclIsTypeOf Reser v ation-Flight-invalid OclIsTypeOf Reser v ation-Client-nul l OclIsTypeOf Reser v ation-Reservation-nul l OclIsTypeOf Reser v ation-OclAny-nul l OclIsTypeOf Reser v ation-Person-nul l OclIsTypeOf Reser v ation-Staff-nul l OclIsTypeOf Reser v ation-Flight-nul l OclIsTypeOf

O clAny -Client-invalid OclIsTypeOf O clAny -Reservation-invalid OclIsTypeOf O clAny -OclAny-invalid OclIsTypeOf O clAny -Person-invalid OclIsTypeOf O clAny -Staff-invalid OclIsTypeOf O clAny -Flight-invalid OclIsTypeOf O clAny -Client-null OclIsTypeOf O clAny -Reservation-null OclIsTypeOf O clAny -OclAny-null OclIsTypeOf O clAny -Person-null OclIsTypeOf O clAny -Staff-null OclIsTypeOf O clAny -Flight-
l OclIsTypeOf S taf f -Client-invalid OclIsTypeOf S taf f -Reservation-invalid OclIsTypeOf S taf f -OclAny-invalid OclIsTypeOf S taf f -Person-invalid OclIsTypeOf S taf f -Staff-invalid OclIsTypeOf S taf f -Flight-invalid OclIsTypeOf S taf f -Client-null OclIsTypeOf S taf f -Reservation-null OclIsTypeOf S taf f -OclAny-null OclIsTypeOf S taf f -Person-null OclIsTypeOf S taf f -Staff-null OclIsTypeOf S taf f -Flight-null OclIsTypeOf F lig ht -Client-invalid OclIsTypeOf F lig ht -Reservation-invalid OclIsTypeOf F lig ht -OclAny-invalid OclIsTypeOf F lig ht -Person-invalid OclIsTypeOf F lig ht -Staff-invalid OclIsTypeOf F lig ht -Flight-invalid OclIsTypeOf F lig ht -Client-null OclIsTypeOf F lig ht -Reservation-null OclIsTypeOf F lig ht -OclAny-null OclIsTypeOf F lig ht -Person-null OclIsTypeOf F lig ht -Staff-null OclIsTypeOf F lig ht -Flight-null

Validity and Definedness Properties

assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Flight))) by(rule OclIsTypeOf F lig ht -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf F lig ht -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Flight))) by(rule OclIsTypeOf F lig ht -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf F lig ht -Client-defined :
OclIsKindOf F lig ht -Staff , simp only: cp-OclIsTypeOf F lig ht -Flight-Staff) lemma cp-OclIsKindOf F lig ht -OclAny-Staff : (cp (p)) =⇒ (cp
•OclAny)))::•Staff) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Staff , simp only: cp-OclIsTypeOf F lig ht -OclAny-Staff) lemma cp-OclIsKindOf F lig ht -Staff-Staff : (cp (p)) =⇒ (cp
•Staff)))::•Staff) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Staff , simp only: cp-OclIsTypeOf F lig ht -Staff-Staff) lemma cp-OclIsKindOf F lig ht -Person-Staff : (cp (p)) =⇒ (cp
•Person)))::•Staff) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Staff , simp only: cp-OclIsTypeOf F lig ht -Person-Staff) lemma cp-OclIsKindOf F lig ht -Client-Staff : (cp (p)) =⇒ (cp
simp only: cp-OclIsKindOf F lig ht -Reservation-Reservation) lemmas[simp,code-unfold] = cp-OclIsKindOf C lient -Client-Client cp-OclIsKindOf C lient -Reservation-Client cp-OclIsKindOf C lient -OclAny-Client cp-OclIsKindOf C lient -Person-Client cp-OclIsKindOf C lient -Staff-Client cp-OclIsKindOf C lient -Flight-Client cp-OclIsKindOf C lient -Client-Reservation cp-OclIsKindOf C lient -Reservation-Reservation cp-OclIsKindOf C lient -OclAny-Reservation cp-OclIsKindOf C lient -Person-Reservation cp-OclIsKindOf C lient -Staff-Reservation cp-OclIsKindOf C lient -Flight-Reservation cp-OclIsKindOf C lient -Client-OclAny cp-OclIsKindOf C lient -Reservation-OclAny cp-OclIsKindOf C lient -OclAny-OclAny cp-OclIsKindOf C lient -Person-OclAny cp-OclIsKindOf C lient -Staff-OclAny cp-OclIsKindOf C lient -Flight-OclAny cp-OclIsKindOf C lient -Client-Person cp-OclIsKindOf C lient -Reservation-Person cp-OclIsKindOf C lient -OclAny-Person cp-OclIsKindOf C lient -Person-Person cp-OclIsKindOf C lient -Staff-Person cp-OclIsKindOf C lient -Flight-Person cp-OclIsKindOf C lient -Client-Staff cp-OclIsKindOf C lient -Reservation-Staff cp-OclIsKindOf C lient -OclAny-Staff cp-OclIsKindOf C lient -Person-Staff cp-OclIsKindOf C lient -Staff-Staff cp-OclIsKindOf C lient -Flight-Staff cp-OclIsKindOf C lient -Client-Flight cp-OclIsKindOf C lient -Reservation-Flight cp-OclIsKindOf C lient -OclAny-Flight cp-OclIsKindOf C lient -Person-Flight cp-OclIsKindOf C lient -Staff-Flight cp-OclIsKindOf C lient -Flight-Flight cp-OclIsKindOf Reser v ation-Client-Client cp-OclIsKindOf Reser v ation-Reservation-Client cp-OclIsKindOf Reser v ation-OclAny-Client cp-OclIsKindOf Reser v ation-Person-Client cp-OclIsKindOf Reser v ation-Staff-Client cp-OclIsKindOf Reser v ation-Flight-Client cp-OclIsKindOf Reser v ation-Client-Reservation cp-OclIsKindOf Reser v ation-Reservation-Reservation cp-OclIsKindOf Reser v ation-OclAny-Reservation cp-OclIsKindOf Reser v ation-Person-Reservation cp-OclIsKindOf Reser v ation-Staff-Reservation cp-OclIsKindOf Reser v ation-Flight-Reservation cp-OclIsKindOf Reser v ation-Client-OclAny cp-OclIsKindOf
cp-OclIsKindOf Reser v ation-Staff-Person cp-OclIsKindOf Reser v ation-Flight-Person cp-OclIsKindOf Reser v ation-Client-Staff cp-OclIsKindOf Reser v ation-Reservation-Staff cp-OclIsKindOf Reser v ation-OclAny-Staff cp-OclIsKindOf Reser v ation-Person-Staff cp-OclIsKindOf Reser v ation-Staff-Staff cp-OclIsKindOf Reser v ation-Flight-Staff cp-OclIsKindOf Reser v ation-Client-Flight cp-OclIsKindOf Reser v ation-Reservation-Flight cp-OclIsKindOf Reser v ation-OclAny-Flight cp-OclIsKindOf Reser v ation-Person-Flight cp-OclIsKindOf Reser v ation-Staff-Flight cp-OclIsKindOf Reser v ation-Flight-Flight cp-OclIsKindOf O clAny -Client-Client cp-OclIsKindOf O clAny -Reservation-Client cp-OclIsKindOf O clAny -OclAny-Client cp-OclIsKindOf O clAny -Person-Client cp-OclIsKindOf O clAny -Staff-Client cp-OclIsKindOf O clAny -Flight-Client cp-OclIsKindOf O clAny -Client-Reservation cp-OclIsKindOf O clAny -Reservation-Reservation cp-OclIsKindOf O clAny -OclAny-Reservation cp-OclIsKindOf O clAny -Person-Reservation cp-OclIsKindOf O clAny -Staff-Reservation cp-OclIsKindOf O clAny -Flight-Reservation cp-OclIsKindOf O clAny -Client-OclAny cp-OclIsKindOf O clAny -Reservation-OclAny cp-OclIsKindOf O clAny -OclAny-OclAny cp-OclIsKindOf O clAny -Person-OclAny cp-OclIsKindOf O clAny -Staff-OclAny cp-OclIsKindOf O clAny -Flight-OclAny cp-OclIsKindOf O clAny -Client-Person cp-OclIsKindOf O clAny -Reservation-Person cp-OclIsKindOf O clAny -OclAny-Person cp-OclIsKindOf O clAny -Person-Person cp-OclIsKindOf O clAny -Staff-Person cp-OclIsKindOf O clAny -Flight-Person cp-OclIsKindOf O clAny -Client-Staff cp-OclIsKindOf O clAny -Reservation-Staff cp-OclIsKindOf O clAny -OclAny-Staff cp-OclIsKindOf O clAny -Person-Staff cp-OclIsKindOf O clAny -Staff-Staff cp-OclIsKindOf O clAny -Flight-Staff cp-OclIsKindOf O clAny -Client-Flight cp-OclIsKindOf O clAny -Reservation-Flight cp-OclIsKindOf O clAny -OclAny-Flight cp-OclIsKindOf O clAny -Person-Flight cp-OclIsKindOf O clAny -Staff-Flight cp-OclIsKindOf O clAny -Flight-
cp-OclIsKindOf S taf f -Client-Client cp-OclIsKindOf S taf f -Reservation-Client cp-OclIsKindOf S taf f -OclAny-Client cp-OclIsKindOf S taf f -Person-Client cp-OclIsKindOf S taf f -Staff-Client cp-OclIsKindOf S taf f -Flight-Client cp-OclIsKindOf S taf f -Client-Reservation cp-OclIsKindOf S taf f -Reservation-Reservation cp-OclIsKindOf S taf f -OclAny-Reservation cp-OclIsKindOf S taf f -Person-Reservation cp-OclIsKindOf S taf f -Staff-Reservation cp-OclIsKindOf S taf f -Flight-Reservation cp-OclIsKindOf S taf f -Client-OclAny cp-OclIsKindOf S taf f -Reservation-OclAny cp-OclIsKindOf S taf f -OclAny-OclAny cp-OclIsKindOf S taf f -Person-OclAny cp-OclIsKindOf S taf f -Staff-OclAny cp-OclIsKindOf S taf f -Flight-OclAny cp-OclIsKindOf S taf f -Client-Person cp-OclIsKindOf S taf f -Reservation-Person cp-OclIsKindOf S taf f -OclAny-Person cp-OclIsKindOf S taf f -Person-Person cp-OclIsKindOf S taf f -Staff-Person cp-OclIsKindOf S taf f -Flight-Person cp-OclIsKindOf S taf f -Client-Staff cp-OclIsKindOf S taf f -Reservation-Staff cp-OclIsKindOf S taf f -OclAny-Staff cp-OclIsKindOf S taf f -Person-Staff cp-OclIsKindOf S taf f -Staff-Staff cp-OclIsKindOf S taf f -Flight-Staff cp-OclIsKindOf S taf f -Client-Flight cp-OclIsKindOf S taf f -Reservation-Flight cp-OclIsKindOf S taf f -OclAny-Flight cp-OclIsKindOf S taf f -Person-Flight cp-OclIsKindOf S taf f -Staff-Flight cp-OclIsKindOf S taf f -Flight-Flight cp-OclIsKindOf F lig ht -Client-Client cp-OclIsKindOf F lig ht -Reservation-Client cp-OclIsKindOf F lig ht -OclAny-Client cp-OclIsKindOf F lig ht -Person-Client cp-OclIsKindOf F lig ht -Staff-Client cp-OclIsKindOf F lig ht -Flight-Client cp-OclIsKindOf F lig ht -Client-Reservation cp-OclIsKindOf F lig ht -Reservation-Reservation cp-OclIsKindOf F lig ht -OclAny-Reservation cp-OclIsKindOf F lig ht -Person-Reservation cp-OclIsKindOf F lig ht -Staff-Reservation cp-OclIsKindOf F lig ht -Flight-Reservation cp-OclIsKindOf F lig ht -Client-OclAny cp-OclIsKindOf F lig ht -Reservation-OclAny cp-OclIsKindOf F lig ht -OclAny-OclAny cp-OclIsKindOf F lig ht -Person-OclAny cp-OclIsKindOf F lig ht -Staff-OclAny cp-OclIsKindOf F lig ht -Flight-OclAny cp-OclIsKindOf F lig ht -Client-Person cp-OclIsKindOf F lig ht -Reservation-Person cp-OclIsKindOf F lig ht -OclAny-Person cp-OclIsKindOf F lig ht -Person-Person cp-OclIsKindOf F lig ht -Staff-Person cp-OclIsKindOf F lig ht -Flight-Person cp-OclIsKindOf F lig ht -Client-Staff cp-OclIsKindOf F lig ht -Reservation-Staff cp-OclIsKindOf F lig ht -OclAny-Staff cp-OclIsKindOf F lig ht -Person-Staff cp-OclIsKindOf F lig ht -Staff-Staff cp-OclIsKindOf F lig ht -Flight-Staff cp-OclIsKindOf F lig ht -Client-Flight cp-OclIsKindOf F lig ht -Reservation-Flight cp-OclIsKindOf F lig ht -OclAny-Flight cp-OclIsKindOf F lig ht -Person-Flight cp-OclIsKindOf F lig ht -Staff-Flight cp-OclIsKindOf F lig ht -Flight-Flight
C lient -Reservation OclIsTypeOf C lient -Reservation-null) lemma OclIsKindOf C lient -Flight-invalid : ((invalid::•Flight) .oclIsKindOf (Client)) = invalid by(simp only: OclIsKindOf C lient -Flight OclIsTypeOf C lient -Flight-invalid) lemma OclIsKindOf C lient -Flight-null : ((null::•Flight) .oclIsKindOf (Client)) = true by(simp only: OclIsKindOf C lient -Flight OclIsTypeOf C lient -Flight-null) lemma OclIsKindOf S taf f -Staff-invalid : ((invalid::•Staff) .oclIsKindOf (Staff)) = invalid by(simp only: OclIsKindOf S taf f -Staff OclIsTypeOf S taf f -Staff-invalid) lemma OclIsKindOf S taf
OclIsKindOf S taf f -OclAny OclIsTypeOf S taf f -OclAny-null) lemma OclIsKindOf S taf f -Client-invalid : ((invalid::•Client) .oclIsKindOf (Staff)) = invalid by(simp only: OclIsKindOf S taf f -Client OclIsTypeOf S taf f -Client-invalid) lemma OclIsKindOf S taf f -Client-null : ((null::•Client) .oclIsKindOf (Staff)) = true by(simp only: OclIsKindOf S taf f -Client OclIsTypeOf S taf f -Client-null) lemma OclIsKindOf S taf f -Reservation-invalid : ((invalid::•Reservation) .oclIsKindOf (Staff)) = invalid by(simp only: OclIsKindOf S taf f -Reservation OclIsTypeOf S taf f -Reservation-invalid) lemma OclIsKindOf S taf f -Reservation-null : ((null::•Reservation) .oclIsKindOf (Staff)) = true by(simp only: OclIsKindOf S taf f -Reservation OclIsTypeOf S taf f -Reservation-null) lemma OclIsKindOf S taf f -Flight-invalid : ((invalid::•Flight) .oclIsKindOf (Staff)) = invalid by(simp only: OclIsKindOf S taf f -Flight OclIsTypeOf S taf f -Flight-invalid) lemma OclIsKindOf S taf f -Flight-null : ((null::•Flight) .oclIsKindOf (Staff)) =
•Person) .oclIsKindOf (OclAny)) = true OclIsKindOf F lig ht -Person-invalid OclIsKindOf F lig ht -Staff-invalid OclIsKindOf F lig ht -Flight-invalid OclIsKindOf F lig ht -Client-null OclIsKindOf F lig ht -Reservation-null OclIsKindOf F lig ht -OclAny-null OclIsKindOf F lig ht -Person-null OclIsKindOf F lig ht -Staff-null OclIsKindOf F lig ht -Flight-null

Validity and Definedness Properties

lemma OclIsKindOf F lig ht -Flight-defined :

assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOf F lig ht -Flight, rule OclIsTypeOf F lig ht -Flight-defined[OF isdef]) lemma OclIsKindOf F lig ht -OclAny-defined :

assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOf F lig ht -OclAny, rule OclIsTypeOf F lig ht -OclAny-defined[OF isdef]) lemma OclIsKindOf F lig ht -Staff-defined : lemma OclIsKindOf F lig ht -Flight-defined :

assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Flight)))

by(simp only: OclIsKindOf

F lig ht -Staff , rule OclIsTypeOf F lig ht -Staff-defined[OF isdef]) lemma OclIsKindOf F lig ht -Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Flight))) by(simp only: OclIsKindOf F lig ht -Person, rule OclIsTypeOf F lig ht -Person-defined[OF isdef]) lemma OclIsKindOf F lig ht -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Flight))) by(simp only: OclIsKindOf F lig ht -Client, rule OclIsTypeOf F lig ht -Client-defined[OF isdef]) lemma OclIsKindOf F lig ht -Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Flight)))

by(simp only: OclIsKindOf

by(simp only: OclIsKindOf

C lient -OclAny, rule OclIsTypeOf C lient -OclAny-defined[OF isdef]) lemma OclIsKindOf C lient -Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Client)))

by(simp only: OclIsKindOf

C lient -Staff , rule OclIsTypeOf C lient -Staff-defined[OF isdef]) lemma OclIsKindOf C lient -Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Client)))

by(simp only: OclIsKindOf

C lient -Reservation, rule OclIsTypeOf C lient -Reservation-defined[OF isdef]) lemma OclIsKindOf C lient -Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Client)))

by(simp only: OclIsKindOf

C lient -Flight, rule OclIsTypeOf C lient -Flight-defined[OF isdef]) lemma OclIsKindOf S taf f -Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Staff)))

by(simp only: OclIsKindOf

S taf f -Staff , rule OclIsTypeOf S taf f -Staff-defined[OF isdef]) lemma OclIsKindOf S taf f -Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Staff)))

by(simp only: OclIsKindOf

S taf f -Person, rule OclIsTypeOf S taf f -Person-defined[OF isdef]) lemma OclIsKindOf S taf f -OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Staff)))

by(simp only: OclIsKindOf

S taf f -OclAny, rule OclIsTypeOf S taf f -OclAny-defined[OF isdef]) lemma OclIsKindOf S taf f -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Staff)))

by(simp only: OclIsKindOf

S taf f -Client, rule OclIsTypeOf S taf f -Client-defined[OF isdef]) lemma OclIsKindOf S taf f -Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Staff))) by(simp only: OclIsKindOf S taf f -Reservation, rule OclIsTypeOf S taf f -Reservation-defined[OF isdef]) lemma OclIsKindOf S taf f -Flight-defined :
assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Flight))) by(rule OclIsKindOf F lig ht -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf F lig ht -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Flight)))
by(rule OclIsKindOf F lig ht -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf F lig ht -Staff-defined :

assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Flight))) by(rule OclIsKindOf F lig ht -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf F lig ht -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Flight))) by(rule OclIsKindOf F lig ht -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf F lig ht -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Flight))) by(rule OclIsKindOf F lig ht -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf F lig ht -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Flight))) by(rule OclIsKindOf F lig ht -Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf C lient -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Client))) by(rule OclIsKindOf C lient -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf C lient -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Client))) by(rule OclIsKindOf C lient -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf C lient -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Client))) by(rule OclIsKindOf C lient -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf C lient -Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Client))) by(rule OclIsKindOf C lient -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf C lient -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Client))) by(rule OclIsKindOf C lient -Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf C lient -Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Client))) by(rule OclIsKindOf C lient -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf S taf f -Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Staff))) by(rule OclIsKindOf S taf f -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf S taf f -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Staff))) by(rule OclIsKindOf S taf f -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf S taf f -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Staff))) by(rule OclIsKindOf S taf f -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf S taf f -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Staff))) by(rule OclIsKindOf S taf f -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf S taf f -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Staff))) by(rule OclIsKindOf S taf f -Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf S taf f -Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Staff))) by(rule OclIsKindOf S taf f -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf P er son-Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Person)))

by(rule

by(rule

OclIsKindOf O clAny -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf O clAny -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (OclAny))) by(rule OclIsKindOf O clAny -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf O clAny -Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (OclAny))) by(rule OclIsKindOf O clAny -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf O clAny -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (OclAny))) by(rule OclIsKindOf O clAny -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf O clAny -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (OclAny))) by(rule OclIsKindOf O clAny -Reservation-defined[OF isdef [THEN foundation20]])
Up Down Casting lemma actual-eq-static F lig ht : using actual-eq-static O clAny [OF isdef unfolding OclAllInstances-at-pre-def by(rule unfolding consts dot-1---passengersat-pre :: (A, α) val ⇒ Set-Person ((-) .passengers@pre) consts dot--seats :: (A, α) val ⇒ Integer ((-) .seats) consts dot--seatsat-pre :: (A, α) val ⇒ Integer ((-) .seats@pre) consts dot--from :: (A, α) val ⇒ String ((-) .from) consts dot--fromat-pre :: (A, α) val ⇒ String ((-) .from@pre) consts dot--to :: (A, α) val ⇒ String ((-) .to) consts dot--toat-pre :: (A, α) val ⇒ String ((-) .to@pre) consts dot--fl-res :: (A, α) val ⇒ Sequence-Reservation ((-) .fl -res) consts dot--fl-resat-pre :: (A, α) val ⇒ Sequence-Reservation ((-) .fl -res@pre) consts dot-0---cl-res :: (A, α) val ⇒ Set-Reservation ((-) .cl -res) consts dot-0---cl-resat-pre :: (A, α) val ⇒ Set-Reservation ((-) .cl -res@pre) consts dot--address :: (A, α) val ⇒ String ((-) .address) consts dot--addressat-pre :: (A, α) val ⇒ String ((-) .address@pre) consts dot-0---flights :: (A, α) val ⇒ Set-Flight ((-) .flights) consts dot-0---flightsat-pre :: (A, α) val ⇒ Set-Flight ((-) .flights@pre) consts dot--name :: (A, α) val ⇒ String ((-) .name) consts dot--nameat-pre :: (A, α) val ⇒ String ((-) .name@pre) consts dot-0---prev ::

assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Flight) .oclIsKindOf (Flight
(A, α) val ⇒ •Reservation ((-) .prev) consts dot-0---prevat-pre :: (A, α) val ⇒ •Reservation ((-) .prev@pre) consts dot-1---next :: (A, α) val ⇒ •Reservation ((-) .next) consts dot-1---nextat-pre :: (A, α) val ⇒ •Reservation ((-) .next@pre) consts dot-1---client :: (A, α) val ⇒ •Client ((-) .client) consts dot-1---clientat-pre :: (A, α) val ⇒ •Client ((-)
.client@pre) consts dot--id :: (A, α) val ⇒ Integer ((-) .id) consts dot--idat-pre :: (A, α) val ⇒ Integer ((-) .id@pre) consts dot--date :: (A, α) val ⇒ Week ((-) .date) consts dot--dateat-pre :: (A, α) val ⇒ Week ((-) .date@pre) consts dot--flight :: lemma dot F lig ht -1---passengersat-pre-invalid : (invalid::•Flight) .passengers@pre = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht -1---passengersat-pre-null : (null::•Flight) .passengers@pre = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def) lemma dot F lig ht --seatsat-pre-invalid : (invalid::•Flight) .seats@pre = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht --seatsat-pre-null : (null::•Flight) .seats@pre = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def) lemma dot F lig ht --fromat-pre-invalid : (invalid::•Flight) .from@pre = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht --fromat-pre-null : (null::•Flight) .from@pre = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def) by(simp add: defined-split) lemma defined-mono-dot F lig ht --fl-resat-pre : τ |= (δ ((X::•Flight) .fl-res@pre)) =⇒ τ |= (δ (X)) by(simp add: defined-split) lemma defined-mono-dot Reser v ation--idat-pre : τ |= (δ ((X::•Reservation) .id@pre)) =⇒ τ |= (δ (X))

Representation in States

apply(insert def-dot, simp add: dot Reser v ation-0---prev is-represented-in-state-def select Reser v ation--prev-def deref-oid Reser v ation-def in-post-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)

prooffix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-post-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis qed qed qed qed apply-end(simp-all) qed lemma is-repr-dot Reser v ation-1---nextat-pre : assumes def-dot: τ |= (δ ((X::•Reservation) .next@pre)) shows (is-represented-in-state (in-pre-state) (X .next@pre) (Reservation) (τ)) apply(insert defined-mono-dot Reser v ation-1---nextat-pre[OF def-dot, simplified foundation16]) apply(case-tac (X (τ)), simp add: bot-option-def)

prooffix a0 show (X (τ)) = (Some (a0)) =⇒ ?thesis when (X (τ)) = null apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)

prooffix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis apply(case-tac (heap ((in-pre-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def) apply(insert def-dot, simp add: dot Reser v ation-1---nextat-pre is-represented-in-state-def select Reser v ation--next-def deref-oid Reser v ation-def in-pre-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm) prooffix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-pre-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis prooffix aaa show (case aaa of (in Reser v ation (obj)) ⇒ (reconst-basetype (obj) (τ))

| -⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-pre-state (τ))) (e)) = (Some (aaa)) =⇒ ?t apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def) apply(rule exI

•Reservation) .client@pre)) shows (is-represented-in-state (in-pre-state) (X .client@pre) (Client) (τ))
apply(insert defined-mono-dot Reser v ation-1---clientat-pre[OF def-dot, simplified foundation16]) apply(case-tac (X (τ)), simp add: bot-option-def)

prooffix a0 show (X (τ)) = (Some (a0)) =⇒ ?thesis when (X (τ)) = null apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)

prooffix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis apply(case-tac (heap ((in-pre-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def) apply(insert def-dot, simp add:

dot Reser v ation-1---clientat-pre is-represented-in-state-def select Reser v ation--client-def deref-oid Reser v ation-def in-pre-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm) proof -fix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-pre-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis apply(insert def-dot[simplified foundation16], auto simp: dot Reser v ation-1---clientat-pre is-represented-in-state-def deref-oid Reser v ation-def bot-option-def null-option-def)
apply(case-tac b, simp-all add: invalid-def bot-option-def) apply(simp add: deref-assocs Reser v ation-1---client-def deref-assocs-def) apply(case-tac (assocs ((in-pre-state (τ))) (oid Reser v ation-1---client)), simp add: invalid-def bot-option-def , simp add: select Reser v ation--client-def) prooffix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsType C lient -A) ' (ran ((heap ((in-pre-state (τ)))))) let ?sel-any = (select-object-any S et ((deref-oid C lient (in-pre-state) (reconst-basetype)))) show ((?sel-any) (typeoid) (τ)) = (Some ((Some (r)))) =⇒ ?t prooffix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa)))) apply(insert that, drule select-object-any-exec S et[simplified foundation22], erule exE) prooffix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oid C lient (in-pre-state) (reconst-basetype) (e) (τ)) apply(insert that, simp add: deref-oid C lient -def) apply(case-tac (heap ((in-pre-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)

prooffix aaa show (case aaa of (in C lient (obj)) ⇒ (reconst-basetype (obj) (τ))

| -⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-pre-state (τ))) (e)) = (Some (aaa)) =⇒ ?t apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def) unfolding OclAllInstances-at-pre-def by(rule σ 1 -OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all) unfolding OclAllInstances-at-pre-def by(rule σ 1 -OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all) | ShallB-str s ⇒ @@ s @@ | ShallB-self -⇒ (* object-oid *) | ShallB-list l ⇒ [@@ String-concatWith , (List.map str-of-data-shallow l) @@]) e definition map-inst-single-self f = map-instance-single (map-prod id (map-prod id

definition (typecheck-instance-bad-head-on-lhs-F2-F1-R21-R11-C2-C1-S1 (F2) (F1) (R21) (R11) (C2) (C1) (S1)) = () definition typecheck-instance-extra-variables-on-rhs-F2-F1-R21-R11-C2-C1-S1 = (λF2 F1 R21 R11 C2 C1 S1 . (F1 , Mon , F1 , R21 , F1 , R11 , F1 , F1)) definition oid3 = 3 definition oid4 = 4 definition oid5 = 5 definition oid6 = 6 definition oid7 = 7 definition oid8 = 8 definition oid9 = 9 definition S1 S taf f = (mk S taf f ((mkEX T S taf f (oid3) (Merlin)))) definition (S1 ::•Staff) = ((λ-. S1 S taf f)) definition C1 C lient = (mk C lient ((mkEX T C lient (oid4) (Bertha))) (Miami)) definition (C1 ::•Client) = ((λ-. C1 C lient)) definition C2 C lient = (mk C lient ((mkEX T C lient (oid5) (Arthur))) (Valencia)) definition (C2 ::•Client) = ((λ-. C2 C lient)) definition R11 Reser v
= [id = 19283 , flight = F2] State[shallow] σ 2 = [S1 , σ 2 -object1 , σ 2 -object2 , R11 , σ 2 -object4 , F1 , F2 , σ 2 -object7]
lemma σ 1 -OclAllInstances-generic-exec-Staff : assumes [simp]: (Staff ((in S taf f (S1 S taf f)))) = None blast,
ML (Ty .check ([]) (error(s))) end definition (state-interpretation-σ 1 (τ)) = (state-σ 1 (oid3) (oid4) (oid5) (oid6) (oid7) (oid8) (oid9) ((S1 (τ))) (S1) ((C1 (τ))) (C1) ((C2 (τ))) (C2) ((R11 (τ))) (R11) ((R21 (τ))) (R21) ((F1 (τ))) (F1) ((F2 (τ))) (F2)) C.2 Instance definition (typecheck-instance-bad-head-on-lhs-σ 2 -object7-σ 2 -object4-σ 2 -object2-σ 2 -object1 (σ 2 -object7) (σ 2 -object4) (σ 2 -object2) (σ 2 -object1)) = () definition typecheck-instance-extra-variables-on-rhs-σ 2 -object7-σ 2 -object4-σ 2 -object2-σ 2 -object1 = (λσ 2 -object7 σ 2 -object4 σ 2 -object2 σ 2 -object1 . (F2 , R21 , F1 , C2 , F2 , F1 , C1 , R11 , F1)) definition oid10 = 10 definition σ 2 -object1 C lient = (mk C lient ((mkEX T C lient (oid4) (Bertha))) ((let c = char-of-nat in CHR S # CHR a # CHR i # CHR n # CHR t # c 045 # CHR M # CHR a # CHR l # CHR o # []))) definition (σ 2 -object1 ::•Client) = ((λ-. σ 2 -object1 C lient)) definition σ 2 -object2 C lient = (mk C lient ((mkEX T C lient (oid5) (Arthur))) (Valencia)) definition (σ 2 -object2 ::•Client) = ((λ-. σ 2 -object2 C lient)) definition σ 2 -object4 Reser v ation = (mk Reser v ation ((mkEX T Reser v ation (oid7))) (98765) (None) (oid8
-object4 .client ∼ = Set{ σ 2 -object2 }) , (META.Writeln , σ 2 -object4 .prev ∼ = Set{}) , (META.Writeln , σ 2 -object4 .next ∼ = Set{ σ 2 -object7 }) , (META.Writeln , σ 2 -object7 .flight ∼ = Set{ / * 9 * / }) , (META.Writeln , σ 2 -object7 .client ∼ = Set{ σ 2 -object2 }) , (META.Writeln , σ 2 -object7 .prev ∼ = Set{ σ 2 -object4 }) , (META.Writeln , σ 2 -object7 .next ∼ = Set{})]) (error(s))) C.
(pp-σ 1 -σ 2 (τ)) = (transition-σ 1 -σ 2 (oid3) (oid4) (oid5) (oid6) (oid7) (oid8) (oid9) (oid10) ((S1 (τ))) (S1) ((σ 2 -object1 (τ))) (σ 2 -object1) ((C1 (τ))) (C1) ((σ 2 -object2 (τ))) (σ 2 -object2) ((C2 (τ))) (C2) ((R11 (τ))) (R11) ((σ 2 -object4 (τ))) (σ 2 -object4) ((R21 (τ))) (R21) ((F1 (τ))) (F1) ((F2 (τ))) (F2) ((σ 2 -object7 (τ))) (σ 2 -object7)) lemmas pp-oid-σ 1 -σ 2 = oid3-def oid4-def oid5-def oid6-def oid7-def oid8-def oid9-def oid10-def lemmas pp-object-σ 1 -σ 2 = S1-def σ 2 -object1-def C1-def σ 2 -object2-def C2-def R11-def σ 2 -object4-def R21-def F1-def F2-def σ 2 -object7-def lemmas pp-object-ty-σ 1 -σ 2 = S1 S taf f -def σ 2 -object1 C lient -def C1 C lient -def σ 2 -object2 C lient -def C2 C lient -def R11 Reser v ation-def
As remark in ignore-meta-header, META-class-raw and META-ass-class do not occur, even if the associated meta-commands will be put at the beginning when generating files during the reordering step. This is because some values for which ignore-meta-header returns False can exist just before meta-commands associated to META-class-raw or META-ass-class. local-setup embedding-fun-info @{const-name print-iskindof-up-d-cast} local-setup embedding-fun-info @{const-name print-allinst-def-id} local-setup embedding-fun-info @{const-name print-allinst-lemmas-id} local-setup embedding-fun-info @{const-name print-allinst-astype} local-setup embedding-fun-info @{const-name print-allinst-exec} local-setup embedding-fun-info @{const-name print-allinst-istypeof-pre} local-setup embedding-fun-info @{const-name print-allinst-istypeof } local-setup embedding-fun-info @{const-name print-allinst-iskindof-eq} local-setup embedding-fun-info @{const-name print-allinst-iskindof-larger} local-setup embedding-fun-info @{const-name print-access-oid-uniq-ml} local-setup embedding-fun-info @{const-name print-access-oid-uniq} local-setup embedding-fun-info @{const-name print-access-eval-extract} local-setup embedding-fun-info @{const-name print-access-choose-ml} local-setup embedding-fun-info @{const-name print-access-choose} local-setup embedding-fun-info @{const-name print-access-deref-oid} local-setup embedding-fun-info @{const-name print-access-deref-assocs} local-setup embedding-fun-info @{const-name print-access-select} local-setup embedding-fun-info @{const-name print-access-select-obj} local-setup embedding-fun-info @{const-name print-access-dot-consts} local-setup embedding-fun-info @{const-name print-access-dot} local-setup embedding-fun-info @{const-name print-access-dot-lemmas-id} local-setup embedding-fun-info @{const-name print-access-dot-cp-lemmas} local-setup embedding-fun-info @{const-name print-access-dot-lemma-cp} local-setup embedding-fun-info @{const-name print-access-dot-lemmas-cp} local-setup embedding-fun-info @{const-name print-access-lemma-strict} local-setup embedding-fun-info @{const-name print-access-def-mono} local-setup embedding-fun-info @{const-name print-access-is-repr} local-setup embedding-fun-info @{const-name print-access-repr-allinst} local-setup embedding-fun-info @{const-name print-examp-def-st-defs} local-setup embedding-fun-info @{const-name print-astype-lemmas-id2 } local-setup embedding-fun-info @{const-name print-enum} local-setup embedding-fun-info @{const-name print-examp-instance-defassoc-typecheck-var} local-setup embedding-fun-info @{const-name print-examp-instance-defassoc} local-setup embedding-fun-info @{const-name print-examp-instance} local-setup embedding-fun-info @{const-name print-examp-instance-defassoc-typecheck} local-setup embedding-fun-info @{const-name print-examp-oclbase} local-setup embedding-fun-info-f1 @{const-name Floor1-examp.print-examp-def-st-typecheck-var} local-setup embedding-fun-info-f1 @{const-name Floor1-examp.print-examp-def-st1 } local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-locale} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st2 } local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-dom} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-dom-lemmas} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-perm} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-allinst} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-defassoc-typecheck} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-def-interp} local-setup embedding-fun-info-f1 @{const-name Floor1-examp.print-transition} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-locale} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-interp} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-def-state} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-wff } local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-where} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-def-interp} local-setup embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-lemmas-oid} local-setup embedding-fun-info-f1 @{const-name Floor1-ctxt.print-ctxt} local-setup embedding-fun-info-f2 @{const-name Floor2-ctxt.print-ctxt-pre-post} local-setup embedding-fun-info-f2 @{const-name Floor2-ctxt.print-ctxt-inv} local-setup embedding-fun-info-f2 @{const-name Floor2-ctxt.print-ctxt-thm} local-setup embedding-fun-info @{const-name print-meta-setup-def-state} local-setup embedding-fun-info @{const-name print-meta-setup-def-transition} Otherwise as an extra check, one can also overload polymorphic cartouches in Init to really check that all the given constructor exists at the time of editing (similarly as writing @{term ...}, when it is embedded in a text command). definition of-string-gen s-flatten s-st0 s-st a b s = b (let s = textstr-of-str (λc. (@@ s-flatten @@ @@ c @@)) (λChar n1 n2 generation-syntax sets the behavior of all incoming meta-commands. By default, without firstly writing generation-syntax, meta-commands will only print in output what they have parsed, this is similar as giving to generation-syntax a non-empty list having only syntax-print as elements (on the other hand, nothing is printed when an empty list is received). Additionally syntax-print can be followed by an integer indicating the printing depth in output, similar as declaring ML-print-depth with an integer, but the global option syntax-print is restricted to meta-commands. Besides the printing of syntaxes, several options are provided to further analyze the semantics of languages being embedded, and tell if their evaluation should occur immediately using the shallow mode, or to only display what would have been evaluated using the deep mode (i.e., to only show the generated Isabelle content in the output window).

Assembling Translations

Isabelle Syntax

Since several occurrences of deep, shallow or syntax-print can appear in the parameterizing list, for each meta-command the overall evaluation respects the order of events given in the list (from head to tail). At the time of writing, it is only possible to evaluate this list sequentially: the execution stops as soon as one first error is raised, thus ignoring remaining events.

generation-syntax deep flush-all performs as side effect the writing of all the generated Isabelle contents to the hard disk (all at the calling time), by iterating the saving for each deep mode in the list. In particular, this is only effective if there is at least one deep mode earlier declared.

As a side note, target languages for the deep mode currently supported are: Haskell, OCaml, Scala and SML. So in principle, all these targets generate the same Isabelle content and exit correctly. However, depending on the intended use, exporting with some targets may be more appropriate than other targets:

• For efficiency reasons, the meta-compiler has implemented a particular optimization for accelerating the process of evaluating incoming meta-commands. By default in Haskell and OCaml, the meta-compiler (at HOL side) is exported only once, during the generation-syntax step. Then all incoming meta-commands are considered as arguments sent to the exported meta-compiler. As a compositionality aspect, these arguments are compiled then linked together with the (already compiled) meta-compiler, but this implies the use of one call of unsafeCoerce in Haskell and one Obj.magic statement in OCaml (otherwise another solution would be to extract the meta-compiler as a functor). Similar optimizations are not yet implemented for Scala and are only half-implemented for the SML target (which basically performs a step of marshalling to string in Isabelle/ML).

• For safety reasons, it simply suffices to extract all the meta-compiler together with the respective arguments in front of each incoming meta-commands everytime, then the overall needs to be newly compiled everytime. This is the current implemented behavior for Scala. For Haskell, OCaml and SML, it was also the default behavior in a prototyping version of the compiler, as a consequence one can restore that functionality for future versions.

The keyword self is another option to call the own reflected meta-compiler, and execute the full generation without leaving the own Isabelle process being executed. Concerning the semantics of generated contents, if lemmas and proofs are generated, SORRY allows to explicitly skip the evaluation of all proofs, irrespective of the presence of sorry or not in generated proofs. In any cases, the semantics of sorry has not been overloaded, e.g., red background may appear as usual.

Finally generation-semantics is a container for specifying various options for varying the semantics of languages being embedded. For example, design and analysis are two options for specifying how the modelling of objects will be represented in the Toy Language. Similarly, this would be a typical place for options like eager or lazy for choosing how the evaluation should happen... The possibility to embed an arbitrary language L in Isabelle depends on the capacity of the proving system to parse new syntax and reconfigure commands, so that most keywords of L can be represented in the system. In this part, we detail certain flexibility of the framework by particularly presenting how to type the invalid and null characters in Isabelle/jEdit. As illustration, Figure K.1 is exactly similar as Figure 5.8 except that all commands have been syntactically renamed.

I.2 All Meta Commands of UML/OCL

Despite the similarity between "U+0435"1 and "e" (i. e. "U+0065"2), here theory and lemma have not been overloaded using particular equal glyphs like in Section 6.5: datatype was renamed into "theory Scratch3⏎⏎theory ‹", and fun renamed into "›⏎⏎lemma" (where we represent the newline symbol by "⏎"). So spaces can occur in the name of commands at any positions. Not only have commands been renamed but green syntactic entities are also flexible (i. e., the portions of code that can be divided inside each green area of Figure 5.9). For example, after theory, imports is usually written before keywords, but it is in the source code where the order is established, and such modifications can be easily experimented with the command ML for example. As another example, the need to write "end" at the end of the theory does not depend on the presence or not of the keyword begin at the beginning of the theory: even if the color of this last appears in green in Isabelle/jEdit, "end" has been internally defined with Outer_Syntax.command in the source of Isabelle. Additionally Figure K.1 also shows that one can replace green keywords by other green keywords: as example where is replaced by assumes, and "|" by shows. Even if the color of "|" is black, it can be considered as a green entity (so do all other entities which are not commands).

Since names of commands can include certain interleaving of white spaces, one possibility to detect the boundaries of a command is to hover with the mouse over a visible part of that command, and observe a lighten continuous region appearing in the background. For instance, by doing so, we can observe "\includegraphics" is a single word with particularly no white spaces around it. After \includegraphics, the two cartouches are not blue: they do not belong to Since these two cartouches are following each other closely (without apparent white spaces), the number of arguments of \includegraphics is not clear. As it could be attentively noticed, it is sure that \includegraphics does not take four arguments since there is a measurable dot in blue separating "height a + height b = height b + height a" with the content occurring before this dot. The current size of the command " • " has in fact been visually attained by combining several special effects:

• The glyph of the symbol "•" (i. e. "U+22C5"3) has one of the smallest number of non-null pixels among other glyphs.

• The special symbol "⇩" (i. e. "U+21E9"4) acts as an operator. It can be applied in front of most symbols, and only at most one time in the current version of Isabelle. As side effect, it attempts to reduce the given typographic text to the subscript level (each symbol of the given text has to be applied one by one because this operator only takes one symbol as argument). In the picture, it is prefixed one time to "•" (without intercalating any white spaces).

353

More generally, whereas "⇩" has a proper meaning in Isabelle/jEdit (among other special symbols which can for example portray a juxtaposed letter in superscript or in bold), there are many symbols in Unicode acting as an operator, perhaps independently of the own rendering of the editing software, thus also many symbols affecting the preceding or succeeding symbol across font families. As example, " ֹ " (i. e. "U+05B9" 5) is a suffix operator which draws a dot on the position of the neighbour symbol as follows: "012_ֹ _56". Consequently, this dot can only be perceived if no neighbours are overlapping and accidentally hiding the dot. Variations of "U+05B9" actually exist in numerous forms: symbols drawing a dot on the top, or drawing a dot on the bottom. Ultimately, this leads the following part to answer why \includegraphics is resembling to a meta-command. As a matter of fact, we precisely focus on variations of symbols depicting the absence of pixels, i. e. symbols expressing white spaces. Several evidences seem to indicate that the TrueType file format 6 and OpenType 7 had early taken into account the notion of invalidity, but also the notion of nullity 8,9 . Although invalidity is required to state which symbol to use by default when an encountered code-point does not have an associated known glyph registered, the presence of null is related to some algorithmic considerations in the domain of typesetting: in typography, null is assimilated as a completely blank symbol having a width equal to zero 10 . Historically, the font currently loaded by default in Isabelle/jEdit has as ancestor a font close to the group "Bitstream Vera" 11 . The last version 1.10 dates back from 2003 12 . At that time, Unicode characters was not natively integrated in Bitstream Vera, so it is not incorrect for non-Unicode fonts to support a range of code-point different than the actual Unicode range. Non-Unicode ranges could then be smaller, for Bitstream Vera, it was (an approximated size of) 0xFFFF characters. However the presence of invalid and null in Bitstream Vera may have been originated from specifications of the TrueType file format. invalid and null have been respectively located there at positions 0x10000 and 0x10001, while their respective glyphs might have also appeared in other positions: for example in Unicode, "U+0000" seems to also designate null. Due to the support of Unicode in Isabelle/jEdit, a copy of the Bitstream Vera font was taken and extended to support a wider range of characters (the increase was up to approximately 0x10FFFF characters). However, as side effect occurring during the extension, Isabelle has kept preserved at their respective positions the glyphs of both invalid and null. So invalid and null have always existed at positions 0x10000 and 0x10001 since at least 2009 (although 0x10000 and 0x10001 are normally reserved for other symbols in Unicode). 13 To conclude, ML actually bien logiques qu'algébriques des structures orientées objets résultant des modèles de classes.

Étant donné que notre construction est réduite à une séquence d'extension conservative de théorie, notre approche peut garantir la correction logique du langage entier considéré, et fournit une méthodologie pour étendre formellement des langages à domaine spécifique.

Mots-clés

Structures de données orientés objets, Chemins d'expression, Featherweight OCL, Null, Invalid, Sémantique formelle, Isabelle, Réflexion, UML, OCL.

Résumé

Nous avons présenté HOL-OCL 2.0, basé sur une librairie coeur Featherweight OCL, une sémantique pour UML/OCL formellement vérifiée par machine en Isabelle/HOL. HOL-OCL 2.0 comprend un méta-outil pour construire des outils sémantiques adaptés pour des langages à domaines spécifiques textuels. Le méta-outil s'appuie fondamentalement sur le générateur de code d'Isabelle, ainsi que sur les théories d'Isabelle, pour définir une transformation de modèle en Isabelle/Isar_HOL depuis un méta-modèle d'UML (modèles de classes, plus invariants OCL et contrats) vers un méta-modèle d'Isar_HOL. En comparaison avec les implémentations conventionnelles de générateurs de code pour OCL, le méta-outil résultant n'est clairement pas compétitif en termes de tailles de modèles compilées, dans un certain sens, nous argumentons que cette comparaison n'est pas équitable puisque ces outils ne s'occupent pas à construire la théorie sémantique sous-jacente d'UML et OCL en HOL de manière à pouvoir y bâtir par dessus des preuves formelles. Notre outil est unique parce qu'il produit effectivement deux manières de charger les productions de théorèmes résultant des modèles de classes: de manière native au moment de l'exécution, avec une interaction directe avec le noyau d'Isabelle (en shallow-mode); ou comme un certificat Isabelle à charger par la suite comme un logique-objet (en deep-mode).

Construit à partir d'une librairie d'opérations pour types de base et types collections prenant en charge les éléments d'exception invalid et null, HOL-OCL 2.0 permet la spécification de programmes basés sur des structures de données orientés objets. Notre travail en précise la notion et apporte une comparaison avec d'autres langages de spécification orientés objets tels que Eiffel, Spec # ou JML. Comme innovation particulière, notre approche concerne les théories de types de données, qui sont construites à partir de définitions axiomatiques et élaborées autour d'un univers d'objets typés, permettant la dérivation automatique de la totalité de ces règles et garantissant la consistance logique de l'ensemble.1 Étant donné que l'environnement d'HOL-OCL 2.0 instancie dynamiquement et décharge ces règles durant l'activité de modélisation orientée objet (typiquement celles présentées dans Chapitre 7), notre approche est, comme nous le pensons, pertinente pour d'autres méthodes de vérifications orientées objets qui axiomatisent leurs théories sous-jacentes, et donc soulèvent des questions sur la portée de l'ensemble.

Dues aux techniques de parallélisation héritées d'Isabelle, HOL-OCL 2.0pour lequel nous voyons encore un large potentiel d'optimisations-reste raisonnablement utilisable dans un contexte interactif pour des modèles de classes de taille moyenne. Comme le montre notre implémentation, la génération automatique avec preuves de théorie de types de données s'intègre aisément dans un milieu interactif: en reprenant l'exemple Flight étudié, 2301 définitions et lemmes sont générés en 1 seconde en deep-mode, alors que leurs preuves terminent de manière asynchrone en shallow-mode 2 minutes plus tard (dans un RÉSUMÉ fil d'exécution d'arrière plan). Encore une fois, les lemmes non-dépendant les uns des autres peuvent être activés ou désactivés: par défaut ils sont tous prouvés.

Il s'agit de notre but ultime de complémenter HOL-OCL 2.0 avec les types modèles comportementaux d'UML les plus communs, notamment les présentations textuelles de machines à état et diagrammes de séquences. L'environnement résultant pourrait servir comme démonstrateur de techniques formels pour UML et avantager les partenaires industriels actifs dans le domaine des systèmes embarqués.

Notre travail sur HOL-OCL 2.0 se situe dans le cadre d'une initiative de normalisation impliquant les méthodes formelles pour UML/OCL. En particulier, une sémantique formelle a été développée dans cette thèse pour un sous-ensemble du langage basé sur des définitions sémantiques dénotationnelles. L'ensemble des règles, nécessaires aux différentes techniques de preuves interactives et automatiques, a été dérivé avec un assistant de preuve interactif, apportant en même temps des éléments clés pour prouver des méta-lemmes et méga-lemmes. Étant donné que notre approche peut garantir leurs consistances logiques, non seulement pour les milliers de théorèmes générés, mais précisément pour le fondement de la librarie coeur de Featherweight OCL en lui-même, nous estimons que cette expérience peut servir à des efforts similaires de normalisation de langages de programmation "réels", ou au moins montrer que ce type de travail est de nos jours absolument réalisable avec des bénéfices notables. Un nombre de points problématiques ont été détectés, aussi bien des incohérences que des lacunes formelles, et nos propositions pour les résoudre correctement ont finalement été reçues dans le processus de normalisation. En définitive, nous tenons à fournir une sémantique formellement vérifiée par machine pour être incluse au sein du document standard d'OCL, c.-à-d., remplacer l'actuel Annexe A. Cet effort tend par la suite à stimuler le développement d'outils spécifique, vu qu'une sémantique clarifiée favorise le développement, par exemple, de schémas de compilations optimisées acceptant une logique OCL quatre valuées vers de récents solveurs SMT. Résumé : Les langages de spécifications basés et orientés objets (comme UML/OCL, JML, Spec # , ou Eiffel) permettent la création et destruction, la conversion et tests de types dynamiques d'objets statiquement typés. Par dessus, les invariants de classes et les opérations de contrat peuvent y être exprimés; ces derniers représentent les éléments clés des spécifications orientées objets. Une sémantique formelle des structures de données orientées objets est complexe: des descriptions imprécises mènent souvent à différentes interprétations dans les outils qui en résultent. Dans cette thèse, nous démontrons comment dériver un environnement de preuves moderne comme un méta-outil pour la définition et l'analyse de sémantique formelle de langages de spécifications orientés objets. Étant donné une représentation d'un langage particulier plongé en Isabelle/HOL, nous construisons pour ce langage un environnement étendu d'Isabelle, à travers une méthode de génération de code particulière, qui implique notamment plusieurs variantes de génération de code. Le résultat supporte l'édition asynchrone, la vérification de types, et les activités de déduction formelle, tous "hérités" d'Isabelle. En application de cette méthode, nous obtenons un outil de modélisation orienté objet pour du UML/OCL textuel. Nous intégrons également des idiomes non nécessairement présent dans UML/OCL-en d'autres termes, nous développons un support pour des dialectes d'UML/OCL à domaine spécifique. En tant que construction méta, nous définissons un métamodèle d'une partie d'UML/OCL en HOL, un méta-modèle d'une partie de l'API d'Isabelle en HOL, et une fonction de traduction entre eux en HOL. Le méta-outil va alors exploiter deux procédés de générations de code pour produire soit du code raisonnablement efficace, soit du code raisonnablement lisible. Cela fournit donc deux modes d'animations pour inspecter plus en détail la sémantique d'un langage venant d'être plongé: en chargeant à vitesse réelle sa sémantique, ou simplement en retardant à un autre niveau "méta" l'expérimentation précédente pour un futur instant de typage en Isabelle, que ce soit pour des raisons de performances, de tests ou de prototypages. Remarquons que la génération de "code raisonnablement efficace", et de "code raisonnablement lisible" incluent la génération de code tactiques qui prouvent une collection de théorèmes formant une théorie de types de données orientés objets d'un modèle dénotationnel: étant donné un modèle de classe UML/OCL, les preuves des propriétés pertinentes aux conversions, tests de types, constructeurs et sélecteurs sont traitées automatiquement. Cette fonctionnalité est similaire aux paquets de théories de types de données présents au sein d'autres prouveurs de la famille HOL, à l'exception que certaines motivations ont conduit ce travail présent à programmer des tactiques hautniveaux en HOL lui-même. Ce travail prend en compte les plus récentes avancées du standard d'UML/OCL 2.5. Par conséquent, tous les types UML/OCL ainsi que les types logiques distinguent deux éléments d'exception différents: invalid (exception) et null (élément non-existant). Cela entraîne des conséquences sur les propriétés aussi bien logiques qu'algébriques des structures orientées objets résultant des modèles de classes. Étant donné que notre construction est réduite à une séquence d'extension conservative de théorie, notre approche peut garantir la correction logique du langage entier considéré, et fournit une méthodologie pour étendre formellement des langages à domaine spécifique. Abstract: Object-based and object-oriented specification languages (like UML/OCL, JML, Spec # , or Eiffel) allow for the creation and destruction, casting and test for dynamic types of statically typed objects. On this basis, class invariants and operation contracts can be expressed; the latter represent the key elements of object-oriented specifications. A formal semantics of object-oriented data structures is complex: imprecise descriptions can often imply different interpretations in resulting tools. In this thesis we demonstrate how to turn a modern proof environment into a meta-tool for definition and analysis of formal semantics of object-oriented specification languages. Given a representation of a particular language embedded in Isabelle/HOL, we build for this language an extended Isabelle environment by using a particular method of code generation, which actually involves several variants of code generation. The result supports the asynchronous editing, type-checking, and formal deduction activities, all "inherited" from Isabelle. Following this method, we obtain an object-oriented modelling tool for textual UML/OCL. We also integrate certain idioms not necessarily present in UML/OCL-in other words, we develop support for domain-specific dialects of UML/OCL. As a meta construction, we define a meta-model of a part of UML/OCL in HOL, a meta-model of a part of the Isabelle API in HOL, and a translation function between both in HOL. The meta-tool will then exploit two kinds of code generation to produce either fairly efficient code, or fairly readable code. Thus, this provides two animation modes to inspect in more detail the semantics of a language being embedded: by loading at a native speed its semantics, or just delay at another "meta"-level the previous experimentation for another type-checking time in Isabelle, be it for performance, testing or prototyping reasons. Note that generating "fairly efficient code", and "fairly readable code" include the generation of tactic code that proves a collection of theorems forming an object-oriented datatype theory from a denotational model: given a UML/OCL class model, the proof of the relevant properties for casts, type-tests, constructors and selectors are automatically processed. This functionality is similar to the datatype theory packages in other provers of the HOL family, except that some motivations have conducted the present work to program high-level tactics in HOL itself. This work takes into account the most recent developments of the UML/OCL 2.5 standard. Therefore, all UML/OCL types including the logic types distinguish two different exception elements: invalid (exception) and null (non-existing element). This has far-reaching consequences on both the logical and algebraic properties of object-oriented data structures resulting from class models. Since our construction is reduced to a sequence of conservative theory extensions, the approach can guarantee logical soundness for the entire considered language, and provides a methodology to soundly extend domain-specific languages.

Université Paris-Saclay

Figure

 Figure 1.1: Train element

Figure 1

 1 Figure 1.4: A simple class model capturing a bank account

 5), we can use the Instance command provided by the Instance Package for defining objects over this class model: 3 Instance S1 :: Account = ([max = 2000] :: Savings) and C1 :: Client = [c_accounts = S1, banks = B1] and A1 :: Account = [id = 250, owner = C1] and B1 :: Bank = [b_accounts = [S1, A1]] This command generates a set of definitions using the appropriate definitions in terms of the Featherweight OCL library: definition S1 Account = mk Savings (mk EX T Savings oid3 None None) 2000 definition S1 = ((λ _. S1 Account) :: •Savings).oclAsType(Account)

 α ⇒ bool) ⇒ α set -set comprehension where Collect S ≡ S definition member :: α ⇒ α set ⇒ bool -membership test where member s S ≡ Ss

 α :: linorder, α list] ⇒ α list where ins x [] = [x] ins x (y#ys) = if x < y then x#y#ys else y#(ins x ys) fun sort ::(α :: linorder) list ⇒ α list where sort [] = [] sort(x#xs) = ins x (sort xs)

Figure 2

 2 Figure 2.1: The Isabelle/jEdit environment

Figure 3 .CHAPTERFigure 3 Figure 3 . 2 :

 3332 Figure 3.1: A simple class model capturing flight reservations.

type_synonym

 Boolean base := bool ⊥ ⊥ type_synonym Integer base := int ⊥ ⊥ 40 CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL As a consequence of these type definitions, we have the elements ⊥, ⊥ , True , False in the carrier-set of Boolean base . The type A Boolean used above is therefore an abbreviation for V A ((bool ⊥) ⊥), the type A Integer stands for V A ((int ⊥) ⊥): type_synonym Boolean A := V A (Boolean base) type_synonym Integer A := V A (Integer base)

I

 true :: A Boolean τ = True :: bool I false :: A Boolean τ = False :: bool I X.oclIsUndefined() τ = (if I X τ ∈ {bot, null} then I true τ else I false τ) I X.oclIsInvalid() τ = (if I X τ = bot then I true τ else I false τ)

(

 invalid and true) = invalid (invalid and false) = false (invalid and null) = invalid (invalid and invalid) = invalid null: (null and true) = null (null and false) = false (null and null) = null (null and invalid) = invalid true: (true and true) = true (true and false) = false (true and null) = null (true and invalid) = invalid false: (false and true) = false (false and false) = false (false and null) = false (false and invalid) = false 4.5. STATES LAYER AND WELL FORMED STATES 45 On this core, the structure of a conventional lattice arises: X and X = X X and Y = Y and X X and (Y and Z) = X and Y and Z false and X = false X and false = false true and X = X X and true = X

 Figure 4.1: The Flight class with the invariants on seats in various languages

Figure 5 . 1 :

 51 Figure 5.1: One editing window of Isabelle/jEdit after loading a theory file

Figure 5 . 3 :

 53 Figure 5.3: The evolution of the reproduction process (sequential embedding)

Figure 5 . 5 :

 55 Figure 5.5: Some generated and proved algebraic properties (here C i < C j)

 Figure 5.6: Knowledge of ML's library required

 datatype hol_datatype = Datatype string (* name of the datatype *) (string (* name *) * hol_ty list) list (* constructor *) All commands are finally regrouped together in a general entry-point [TW15]: datatype hol_theory = Theory_datatype hol_datatype | Theory_definition hol_definition | Theory_lemma hol_lemma | [. . .]

theoryFigure 5 . 8 :

 58 Figure 5.8: Defining new commands on the fly: the new Term command

 Figure 5.9: Isabelle session seen as a gigantic ML top-level

Figure 5 .

 5 Figure 5.11: Parameterizing which theorem to solve with a list of tactics as complete answer

Figure 6 . 1 :

 61 Figure 6.1: Commutative diagram linking deep with shallow

Figure 6 . 2 :

 62 Figure 6.2: Incremental generations in deep

Figure 6 . 5 :

 65 Figure 6.5: External target versus internal target in deep

FigureFigure 6 . 6 :

 66 Figure 6.6: Multiple floors of generations in deep

Figure 6 . 7 :

 67 Figure 6.7: Rearranging the control flow of the prover

 Figure 6.11: null is null (invisible)

meta

 Definition "Class model signature":The signature associated to a class model (C, <, _) is the following:

Figure 7 . 1 :

 71 Figure 7.1: Casting in Universes.

 Figure 8.1 shows two states (two object diagrams) instantiating Figure 3.1: before and after a reservation made by Arthur for a flight between Miami and Ottawa. Two reservations link clients Arthur and Bertha to flight F1 from Valencia to Miami, with a staff Merlin onboard. After Arthur's reservation for flight F2, a new reservation links him to this flight. Moreover, his two reservations are part of the same journey therefore they are linked in order. Both states satisfy the invariants stated in Figure 3.3.

Figure 8 . 1 :

 81 Figure 8.1: Two system states for the model of Figure 3.1.

 Figure 8.1), we obtain the following property for class Client: ∀σ. (σ, σ) |= Client.allInstances() . = Set{C1,C2}. For class Person, allInstances() returns all the instances of Person and of its child classes, while casting the latter up to Person, so that the result is a set of instances of Person: ∀σ. (σ, σ) |= Person.allInstances() . = Set{P, C1.oclAsType(Person),C2.oclAsType(Person),S1.oclAsType(Person)}

Instance

 S1 :: Staff = [name = Merlin , flights = F1] and C1 :: Client = [name = Bertha , address = Miami , flights = F1 , cl-res = R11] and C2 :: Client = [name = Arthur , address = Valencia , flights = F1 , cl-res = R21] and R11 :: Reservation = [id = 12345 , flight = F1 , date = Mon] and R21 :: Reservation = [id = 98765 , flight = F1] and F1 :: Flight = [seats = 120 , from = Valencia , to = Miami] and F2 :: Flight = [seats = 370 , from = Miami , to = Ottawa]

 term S1 ::• Staff Once objects are constructed with Instance, it becomes possible to regroup them together into a state. This is what the next command State is doing by creating a state named σ 1 , corresponding to the pre-state of Figure 8.1.

Figure 8

 8 Figure 8.2: Number of generated theorems, measured by a minus of two find_theorems for c ≤ 14. Otherwise numbers are estimated from the size of associated deep-certificates.

Figure 8 . 3 :

 83 Figure 8.3: Size of generated deep-certificates as stored in the file system, all provided by the operating system (independently of Isabelle)

 Instance S1 :: Staff = [name = Merlin , flights = F1] and C1 :: Client = [name = Bertha , address = Miami , flights = F1 , cl-res = R11] and C2 :: Client = [name = Arthur , address = Valencia , flights = F1 , cl-res = R21] and R11 :: Reservation = [id = 12345 , flight = F1 , date = Mon] and R21 :: Reservation = [id = 98765 , flight = F1] and F1 :: Flight = [seats = 120 , from = Valencia , to = Miami] and F2 :: Flight = [seats = 370 , from = Miami , to = Ottawa]

 term S1 ::• Staff Once objects are constructed with Instance, it becomes possible to regroup them together into a state. This is what the next command State is doing by creating a state named σ 1 , corresponding to the pre-state of Figure 8.1.

State σ 2

 2 = [S1 , ([C1 with-only name = Bertha, address = Saint-Malo , flights = F1 , cl-res = R11] :: Client) , ([C2 with-only name = Arthur,address = Valencia,flights=[F1 ,F2],cl-res=[self 4 ,self 7]]::Client) , R11 , ([R21 with-only id = 98765 , flight = F1 , next = self 7] :: Reservation) , F1 , F2 , ([id = 19283 , flight = F2] :: Reservation)]

 endA p p e n d i x

 type-synonym Week base = ty-enum W eek ⊥ ⊥ type-synonym A Weekgener ic = (A, Week base) val overloading StrictRefEq ≡ (StrictRefEq:: A Weekgener ic ⇒ -) begin definition StrictRefEq W eek : (x:: A Weekgener ic) . = y ≡ (λτ . if (((υ (x))) (τ)) = (true (τ)) ∧ (((υ (y))) (τ)) = (true (τ)) then ((x y) (τ)) else (invalid (τ))) end definition Mon = (λ-. (constr M on::ty-enumW eek)) definition Tue = (λ-. (constr T ue::ty-enumW eek)) definition Wed = (λ-. (constr W ed::ty-enumW eek)) definition Thu = (λ-. (constr T hu ::ty-enum W eek)) definition Fri = (λ-. (constr F r i ::ty-enum W eek)) definition Sat = (λ-. (constr S at::ty-enumW eek)) definition Sun = (λ-. (constr S un::ty-enumW eek))

 Staff | in P er son Person ⇒ oid-of Person | in Reser v ation Reservation ⇒ oid-of Reservation | in O clAny OclAny ⇒ oid-of OclAny) instance .. end B.3 Class Model: Instantiation of the Generic Strict Equality overloading StrictRefEq ≡ (StrictRefEq::(•Flight) ⇒ -⇒ -) begin definition StrictRefEq O bj ect-F lig ht : (x::•Flight) . = y ≡ StrictRefEq O bj ect x y end overloading StrictRefEq ≡ (StrictRefEq::(•Client) ⇒ -⇒ -) begin definition StrictRefEq O bj ect-C lient : (x::•Client) . = y ≡ StrictRefEq O bj ect x y end overloading StrictRefEq ≡ (StrictRefEq::(•Staff) ⇒ -⇒ -) begin definition StrictRefEq O bj ect-S taf f : (x::•Staff) . = y ≡ StrictRefEq O bj ect x y end overloading StrictRefEq ≡ (StrictRefEq::(•Person) ⇒ -⇒ -) begin definition StrictRefEq O bj ect-P er son : (x::•Person) . = y ≡ StrictRefEq O bj ect x y end overloading StrictRefEq ≡ (StrictRefEq::(•Reservation) ⇒ -⇒ -) begin definition StrictRefEq O bj ect-Reser v ation : (x::•Reservation) . = y ≡ StrictRefEq O bj ect x y end overloading StrictRefEq ≡ (StrictRefEq::(•OclAny) ⇒ -⇒ -) begin definition StrictRefEq O bj ect-O clAny : (x::•OclAny) . = y ≡ StrictRefEq O bj ect x y end lemmas[simp,code-unfold] = StrictRefEq O bj ect-F lig ht StrictRefEq O bj ect-C lient StrictRefEq O bj ect-S taf f StrictRefEq O bj ect-P er son StrictRefEq O bj ect-Reser v ation StrictRefEq O bj ect-O clAny B.4 Class Model: OclAsType Definition consts OclAsType F lig ht :: α ⇒ •Flight ((-) .oclAsType (Flight)) consts OclAsType C lient :: α ⇒ •Client ((-) .oclAsType (Client)) consts OclAsType S taf f :: α ⇒ •Staff ((-) .oclAsType (Staff)) consts OclAsType P er son :: α ⇒ •Person ((-) .oclAsType (Person)) consts OclAsType Reser v ation :: α ⇒ •Reservation ((-) .oclAsType (Reservation)) consts OclAsType O clAny :: α ⇒ •OclAny ((-) .oclAsType (OclAny)) overloading OclAsType F lig ht ≡ (OclAsType F lig ht ::(•Flight) ⇒ -) begin definition OclAsType F lig ht -Flight : (x::•Flight) .oclAsType(Flight) ≡ x end overloading OclAsType F lig ht ≡ (OclAsType F lig ht ::(•OclAny) ⇒ -) begin definition OclAsType F lig ht -OclAny : (x::•OclAny) .oclAsType(Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))

 end overloading OclAsType C lient ≡ (OclAsType C lient ::(•OclAny) ⇒ -) begin definition OclAsType C lient -OclAny : (x::•OclAny) .oclAsType(Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))

 end overloading OclAsType P er son ≡ (OclAsType P er son::(•Person) ⇒ -) begin definition OclAsType P er son-Person : (x::•Person) .oclAsType(Person) ≡ x end overloading OclAsType P er son ≡ (OclAsType P er son::(•OclAny) ⇒ -) begin definition OclAsType P er son-OclAny : (x::•OclAny) .oclAsType(Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | (mk O clAny ((mkEX T O clAny -P er son (Person)))) ⇒ Person | -⇒ (invalid (τ)))) end overloading OclAsType P er son ≡ (OclAsType P er son::(•Client) ⇒ -) begin definition OclAsType P er son-Client : (x::•Client) .oclAsType(Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | Client ⇒ (mk P er son ((mkEX T P er son-C lient (Client))) (None)))) end overloading OclAsType P er son ≡ (OclAsType P er son::(•Staff) ⇒ -) begin definition OclAsType P er son-Staff : (x::•Staff) .oclAsType(Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | Staff ⇒ (mk P er son ((mkEX T P er son-S taf f (Staff))) (None)))) end overloading OclAsType P er son ≡ (OclAsType P er son::(•Reservation) ⇒ -) begin definition OclAsType P er son-Reservation : (x::•Reservation) .oclAsType(Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType P er son ≡ (OclAsType P er son::(•Flight) ⇒ -) begin definition OclAsType P er son-Flight : (x::•Flight) .oclAsType(Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType Reser v ation ≡ (OclAsType Reser v ation::(•Reservation) ⇒ -) begin definition OclAsType Reser v ation-Reservation : (x::•Reservation) .oclAsType(Reservation) ≡ x end overloading OclAsType Reser v ation ≡ (OclAsType Reser v ation::(•OclAny) ⇒ -) begin definition OclAsType Reser v ation-OclAny : (x::•OclAny) .oclAsType(Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | (mk O clAny ((mkEX T O clAny -Reser v ation (Reservation)))) ⇒ Reservation | -⇒ (invalid (τ)))) end overloading OclAsType Reser v ation ≡ (OclAsType Reser v ation::(•Staff) ⇒ -) begin definition OclAsType Reser v ation-Staff : (x::•Staff) .oclAsType(Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType Reser v ation ≡ (OclAsType Reser v ation::(•Person) ⇒ -) begin definition OclAsType Reser v ation-Person : (x::•Person) .oclAsType(Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType Reser v ation ≡ (OclAsType Reser v ation::(•Client) ⇒ -) begin definition OclAsType Reser v ation-Client : (x::•Client) .oclAsType(Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType Reser v ation ≡ (OclAsType Reser v ation::(•Flight) ⇒ -) begin definition OclAsType Reser v ation-Flight : (x::•Flight) .oclAsType(Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | -⇒ (invalid (τ)))) end overloading OclAsType O clAny ≡ (OclAsType O clAny ::(•OclAny) ⇒ -) begin definition OclAsType O clAny -OclAny : (x::•OclAny) .oclAsType(OclAny) ≡ x end overloading OclAsType O clAny ≡ (OclAsType O clAny ::(•Flight) ⇒ -) begin definition OclAsType O clAny -Flight : (x::•Flight) .oclAsType(OclAny) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))

 end overloading OclAsType O clAny ≡ (OclAsType O clAny ::(•Staff) ⇒ -) begin definition OclAsType O clAny -Staff : (x::•Staff) .oclAsType(OclAny) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | Staff ⇒ (mk O clAny ((mkEX T O clAny -S taf f (Staff)))))) end overloading OclAsType O clAny ≡ (OclAsType O clAny ::(•Person) ⇒ -) begin definition OclAsType O clAny -Person : (x::•Person) .oclAsType(OclAny) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (null (τ)) | Person ⇒ (mk O clAny ((mkEX T O clAny -P er son (Person)))))) end overloading OclAsType O clAny ≡ (OclAsType O clAny ::(•Reservation) ⇒ -) begin definition OclAsType O clAny -Reservation : (x::•Reservation) .oclAsType(OclAny) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))

 er son (Person)) ⇒ (mk O clAny ((mkEX T O clAny -P er son (Person)))) | (in Reser v ation (Reservation)) ⇒ (mk O clAny ((mkEX T O clAny -Reser v ation (Reservation))))) lemmas[simp,code-unfold] = OclAsType F lig ht -Flight OclAsType C lient -Client OclAsType S taf f -Staff OclAsType P er son-Person OclAsType Reser v ation-Reservation OclAsType O clAny -OclAny Context Passing lemma cp-OclAsType C lient -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclAsType(Client))))) by(rule cpI1 , simp) lemma cp-OclAsType C lient -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclAsType(Client)))))by(rule cpI1 , simp) lemma cp-OclAsType C lient -OclAny-Client : (cp (p)) =⇒ (cp((λx. (((p ((x::

 simp add: OclAsType C lient -Reservation) lemma cp-OclAsType C lient -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Reservation) lemma cp-OclAsType C lient -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Reservation) lemma cp-OclAsType C lient -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Reservation) lemma cp-OclAsType C lient -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Reservation) lemma cp-OclAsType C lient -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Reservation) lemma cp-OclAsType C lient -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -OclAny) lemma cp-OclAsType C lient -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -OclAny) lemma cp-OclAsType C lient -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -OclAny) lemma cp-OclAsType C lient -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -OclAny) lemma cp-OclAsType C lient -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -OclAny) lemma cp-OclAsType C lient -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -OclAny) lemma cp-OclAsType C lient -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Person) lemma cp-OclAsType C lient -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Person) lemma cp-OclAsType C lient -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Person) lemma cp-OclAsType C lient -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Person) lemma cp-OclAsType C lient -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Person) lemma cp-OclAsType C lient -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Person) lemma cp-OclAsType C lient -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Staff) lemma cp-OclAsType C lient -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Staff) lemma cp-OclAsType C lient -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Staff) lemma cp-OclAsType C lient -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Staff) lemma cp-OclAsType C lient -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Staff) lemma cp-OclAsType C lient -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Staff) lemma cp-OclAsType C lient -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Flight) lemma cp-OclAsType C lient -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Flight) lemma cp-OclAsType C lient -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Flight) lemma cp-OclAsType C lient -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Flight) lemma cp-OclAsType C lient -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Flight) lemma cp-OclAsType C lient -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclAsType(Client))))) by(rule cpI1 , simp add: OclAsType C lient -Flight) lemma cp-OclAsType Reser v ation-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Client) lemma cp-OclAsType Reser v ation-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Client) lemma cp-OclAsType Reser v ation-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Client) lemma cp-OclAsType Reser v ation-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Client) lemma cp-OclAsType Reser v ation-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Client) lemma cp-OclAsType Reser v ation-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Client) lemma cp-OclAsType Reser v ation-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclAsType(Reservation))))) by(rule cpI1 , simp) lemma cp-OclAsType Reser v ation-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclAsType(Reservation))))) by(rule cpI1 , simp) lemma cp-OclAsType Reser v ation-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclAsType(Reservation))))) by(rule cpI1 , simp) lemma cp-OclAsType Reser v ation-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclAsType(Reservation))))) by(rule cpI1 , simp) lemma cp-OclAsType Reser v ation-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclAsType(Reservation))))) by(rule cpI1 , simp) lemma cp-OclAsType Reser v ation-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclAsType(Reservation))))) by(rule cpI1 , simp) lemma cp-OclAsType Reser v ation-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-OclAny) lemma cp-OclAsType Reser v ation-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-OclAny) lemma cp-OclAsType Reser v ation-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-OclAny) lemma cp-OclAsType Reser v ation-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-OclAny) lemma cp-OclAsType Reser v ation-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-OclAny) lemma cp-OclAsType Reser v ation-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-OclAny) lemma cp-OclAsType Reser v ation-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Person) lemma cp-OclAsType Reser v ation-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Person) lemma cp-OclAsType Reser v ation-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Person) lemma cp-OclAsType Reser v ation-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Person) lemma cp-OclAsType Reser v ation-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Person) lemma cp-OclAsType Reser v ation-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Person) lemma cp-OclAsType Reser v ation-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Staff) lemma cp-OclAsType Reser v ation-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Staff) lemma cp-OclAsType Reser v ation-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Staff) lemma cp-OclAsType Reser v ation-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Staff) lemma cp-OclAsType Reser v ation-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Staff) lemma cp-OclAsType Reser v ation-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Staff) lemma cp-OclAsType Reser v ation-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Flight) lemma cp-OclAsType Reser v ation-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Flight) lemma cp-OclAsType Reser v ation-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Flight) lemma cp-OclAsType Reser v ation-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Flight) lemma cp-OclAsType Reser v ation-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Flight) lemma cp-OclAsType Reser v ation-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclAsType(Reservation))))) by(rule cpI1 , simp add: OclAsType Reser v ation-Flight) lemma cp-OclAsType O clAny -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Client) lemma cp-OclAsType O clAny -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Client) lemma cp-OclAsType O clAny -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Client) lemma cp-OclAsType O clAny -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Client) lemma cp-OclAsType O clAny -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Client) lemma cp-OclAsType O clAny -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Client) lemma cp-OclAsType O clAny -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Reservation) lemma cp-OclAsType O clAny -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Reservation) lemma cp-OclAsType O clAny -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Reservation) lemma cp-OclAsType O clAny -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Reservation) lemma cp-OclAsType O clAny -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Reservation) lemma cp-OclAsType O clAny -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Reservation) lemma cp-OclAsType O clAny -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclAsType(OclAny))))) by(rule cpI1 , simp) lemma cp-OclAsType O clAny -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclAsType(OclAny))))) by(rule cpI1 , simp) lemma cp-OclAsType O clAny -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclAsType(OclAny))))) by(rule cpI1 , simp) lemma cp-OclAsType O clAny -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclAsType(OclAny))))) by(rule cpI1 , simp) lemma cp-OclAsType O clAny -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclAsType(OclAny))))) by(rule cpI1 , simp) lemma cp-OclAsType O clAny -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclAsType(OclAny))))) by(rule cpI1 , simp) lemma cp-OclAsType O clAny -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Person) lemma cp-OclAsType O clAny -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Person) lemma cp-OclAsType O clAny -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Person) lemma cp-OclAsType O clAny -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Person) lemma cp-OclAsType O clAny -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Person) lemma cp-OclAsType O clAny -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Person) lemma cp-OclAsType O clAny -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Staff) lemma cp-OclAsType O clAny -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Staff) lemma cp-OclAsType O clAny -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Staff) lemma cp-OclAsType O clAny -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Staff) lemma cp-OclAsType O clAny -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Staff) lemma cp-OclAsType O clAny -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Staff) lemma cp-OclAsType O clAny -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Flight) lemma cp-OclAsType O clAny -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Flight) lemma cp-OclAsType O clAny -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Flight) lemma cp-OclAsType O clAny -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Flight) lemma cp-OclAsType O clAny -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Flight) lemma cp-OclAsType O clAny -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclAsType(OclAny))))) by(rule cpI1 , simp add: OclAsType O clAny -Flight) lemma cp-OclAsType P er son-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Client) lemma cp-OclAsType P er son-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Client) lemma cp-OclAsType P er son-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Client) lemma cp-OclAsType P er son-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Client) lemma cp-OclAsType P er son-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Client) lemma cp-OclAsType P er son-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Client) lemma cp-OclAsType P er son-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Reservation) lemma cp-OclAsType P er son-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Reservation) lemma cp-OclAsType P er son-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Reservation) lemma cp-OclAsType P er son-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Reservation) lemma cp-OclAsType P er son-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Reservation) lemma cp-OclAsType P er son-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Reservation) lemma cp-OclAsType P er son-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-OclAny) lemma cp-OclAsType P er son-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-OclAny) lemma cp-OclAsType P er son-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-OclAny) lemma cp-OclAsType P er son-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-OclAny) lemma cp-OclAsType P er son-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-OclAny) lemma cp-OclAsType P er son-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-OclAny) lemma cp-OclAsType P er son-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclAsType(Person))))) by(rule cpI1 , simp) lemma cp-OclAsType P er son-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclAsType(Person))))) by(rule cpI1 , simp) lemma cp-OclAsType P er son-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclAsType(Person))))) by(rule cpI1 , simp) lemma cp-OclAsType P er son-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclAsType(Person))))) by(rule cpI1 , simp) lemma cp-OclAsType P er son-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclAsType(Person))))) by(rule cpI1 , simp) lemma cp-OclAsType P er son-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclAsType(Person))))) by(rule cpI1 , simp) lemma cp-OclAsType P er son-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Staff) lemma cp-OclAsType P er son-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Staff) lemma cp-OclAsType P er son-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Staff) lemma cp-OclAsType P er son-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Staff) lemma cp-OclAsType P er son-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Staff) lemma cp-OclAsType P er son-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Staff) lemma cp-OclAsType P er son-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Flight) lemma cp-OclAsType P er son-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Flight) lemma cp-OclAsType P er son-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Flight) lemma cp-OclAsType P er son-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Flight) lemma cp-OclAsType P er son-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Flight) lemma cp-OclAsType P er son-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclAsType(Person))))) by(rule cpI1 , simp add: OclAsType P er son-Flight) lemma cp-OclAsType S taf f -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Client) lemma cp-OclAsType S taf f -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Client) lemma cp-OclAsType S taf f -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Client) lemma cp-OclAsType S taf f -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Client) lemma cp-OclAsType S taf f -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Client) lemma cp-OclAsType S taf f -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Client) lemma cp-OclAsType S taf f -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Reservation) lemma cp-OclAsType S taf f -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Reservation) lemma cp-OclAsType S taf f -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Reservation) lemma cp-OclAsType S taf f -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Reservation) lemma cp-OclAsType S taf f -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Reservation) lemma cp-OclAsType S taf f -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Reservation) lemma cp-OclAsType S taf f -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -OclAny) lemma cp-OclAsType S taf f -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -OclAny) lemma cp-OclAsType S taf f -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -OclAny) lemma cp-OclAsType S taf f -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -OclAny) lemma cp-OclAsType S taf f -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -OclAny) lemma cp-OclAsType S taf f -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -OclAny) lemma cp-OclAsType S taf f -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Person) lemma cp-OclAsType S taf f -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Person) lemma cp-OclAsType S taf f -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Person) lemma cp-OclAsType S taf f -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Person) lemma cp-OclAsType S taf f -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Person) lemma cp-OclAsType S taf f -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::

 cpI1 , simp add: OclAsType S taf f -Flight) lemma cp-OclAsType S taf f -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Flight) lemma cp-OclAsType S taf f -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Flight) lemma cp-OclAsType S taf f -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Flight) lemma cp-OclAsType S taf f -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclAsType(Staff))))) by(rule cpI1 , simp add: OclAsType S taf f -Flight) lemma cp-OclAsType F lig ht -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Client) lemma cp-OclAsType F lig ht -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Client) lemma cp-OclAsType F lig ht -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Client) lemma cp-OclAsType F lig ht -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Client) lemma cp-OclAsType F lig ht -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Client) lemma cp-OclAsType F lig ht -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Client) lemma cp-OclAsType F lig ht -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Reservation) lemma cp-OclAsType F lig ht -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Reservation) lemma cp-OclAsType F lig ht -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Reservation) lemma cp-OclAsType F lig ht -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Reservation) lemma cp-OclAsType F lig ht -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Reservation) lemma cp-OclAsType F lig ht -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Reservation) lemma cp-OclAsType F lig ht -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -OclAny) lemma cp-OclAsType F lig ht -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -OclAny) lemma cp-OclAsType F lig ht -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -OclAny) lemma cp-OclAsType F lig ht -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -OclAny) lemma cp-OclAsType F lig ht -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -OclAny) lemma cp-OclAsType F lig ht -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -OclAny) lemma cp-OclAsType F lig ht -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Person) lemma cp-OclAsType F lig ht -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Person) lemma cp-OclAsType F lig ht -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Person) lemma cp-OclAsType F lig ht -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Person) lemma cp-OclAsType F lig ht -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Person) lemma cp-OclAsType F lig ht -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Person) lemma cp-OclAsType F lig ht -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Staff) lemma cp-OclAsType F lig ht -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Staff) lemma cp-OclAsType F lig ht -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Staff) lemma cp-OclAsType F lig ht -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Staff) lemma cp-OclAsType F lig ht -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Staff) lemma cp-OclAsType F lig ht -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclAsType(Flight))))) by(rule cpI1 , simp add: OclAsType F lig ht -Staff) lemma cp-OclAsType F lig ht -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclAsType(Flight))))) by(rule cpI1 , simp) lemma cp-OclAsType F lig ht -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclAsType(Flight))))) by(rule cpI1 , simp) lemma cp-OclAsType F lig ht -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclAsType(Flight))))) by(rule cpI1 , simp) lemma cp-OclAsType F lig ht -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclAsType(Flight))))) by(rule cpI1 , simp) lemma cp-OclAsType F lig ht -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclAsType(Flight))))) by(rule cpI1 , simp) lemma cp-OclAsType F lig ht -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (

 ation-Reservation-Client cp-OclAsType Reser v ation-OclAny-Client cp-OclAsType Reser v ation-Person-Client cp-OclAsType Reser v ation-Staff-Client cp-OclAsType Reser v ation-Flight-Client cp-OclAsType Reser v ation-Client-Reservation cp-OclAsType Reser v ation-Reservation-Reservation cp-OclAsType Reser v ation-OclAny-Reservation cp-OclAsType Reser v ation-Person-Reservation cp-OclAsType Reser v ation-Staff-Reservation cp-OclAsType Reser v ation-Flight-Reservation cp-OclAsType Reser v ation-Client-OclAny cp-OclAsType Reser v ation-Reservation-OclAny cp-OclAsType Reser v ation-OclAny-OclAny cp-OclAsType Reser v ation-Person-OclAny cp-OclAsType Reser v ation-Staff-OclAny cp-OclAsType Reser v ation-Flight-OclAny cp-OclAsType Reser v ation-Client-Person cp-OclAsType Reser v ation-Reservation-Person cp-OclAsType Reser v ation-OclAny-Person cp-OclAsType Reser v ation-Person-Person cp-OclAsType Reser v ation-Staff-Person cp-OclAsType Reser v ation-Flight-Personcp-OclAsType Reser v ation-Client-Staff cp-OclAsType Reser v ation-Reservation-Staff cp-OclAsType Reser v ation-OclAny-Staff cp-OclAsType Reser v ation-Person-Staff cp-OclAsType Reser v ation-Staff-Staff cp-OclAsType Reser v ation-Flight-Staff cp-OclAsType Reser v ation-Client-Flight cp-OclAsType Reser v ation-Reservation-Flight cp-OclAsType Reser v ation-OclAny-Flight cp-OclAsType Reser v ation-Person-Flight cp-OclAsType Reser v ation-Staff-Flight cp-OclAsType Reser v ation-Flight-Flight cp-OclAsType O clAny -Client-Client cp-OclAsType O clAny -Reservation-Client cp-OclAsType O clAny -OclAny-Client cp-OclAsType O clAny -Person-Client cp-OclAsType O clAny -Staff-Client cp-OclAsType O clAny -Flight-Client cp-OclAsType O clAny -Client-Reservation cp-OclAsTypeO clAny -Reservation-Reservation cp-OclAsType O clAny -OclAny-Reservation cp-OclAsType O clAny -Person-Reservation cp-OclAsType O clAny -Staff-Reservation cp-OclAsType O clAny -Flight-Reservation cp-OclAsType O clAny -Client-OclAny cp-OclAsType O clAny -Reservation-OclAny cp-OclAsType O clAny -OclAny-OclAny cp-OclAsType O clAny -Person-OclAny cp-OclAsType O clAny -Staff-OclAny cp-OclAsType O clAny -Flight-OclAny cp-OclAsType O clAny -Client-Person cp-OclAsType O clAny -Reservation-Person cp-OclAsType O clAny -OclAny-Person cp-OclAsType O clAny -Person-Person cp-OclAsType O clAny -Staff-Person cp-OclAsType O clAny -Flight-Person cp-OclAsType O clAny -Client-Staff cp-OclAsType O clAny -Reservation-Staff cp-OclAsType O clAny -OclAny-Staff cp-OclAsType O clAny -Person-Staff cp-OclAsType O clAny -Staff-Staff cp-OclAsType O clAny -Flight-Staff cp-OclAsType O clAny -Client-Flight cp-OclAsType O clAny -Reservation-Flight cp-OclAsType O clAny -OclAny-Flight cp-OclAsType O clAny -Person-Flight cp-OclAsType O clAny -Staff-Flight cp-OclAsType O clAny -Flight-Flight cp-OclAsType P er son-Client-Client cp-OclAsType P er son-Reservation-Client cp-OclAsType P er son-OclAny-Client cp-OclAsType P er son-Person-Client cp-OclAsType P er son-Staff-Client cp-OclAsType P er son-Flight-Client cp-OclAsType P er son-Client-Reservation cp-OclAsType P er son-Reservation-Reservation cp-OclAsType P er son-OclAny-Reservation cp-OclAsType P er son-Person-Reservation cp-OclAsType P er son-Staff-Reservation cp-OclAsType P er son-Flight-Reservation cp-OclAsType P er son-Client-OclAny cp-OclAsType P er son-Reservation-OclAny cp-OclAsType P er son-OclAny-OclAny cp-OclAsType P er son-Person-OclAny cp-OclAsType P er son-Staff-OclAny cp-OclAsType P er son-Flight-OclAny cp-OclAsType P er son-Client-Person cp-OclAsType P er son-Reservation-Person cp-OclAsType P er son-OclAny-Person cp-OclAsType P er son-Person-Person cp-OclAsType P er son-Staff-Person cp-OclAsType P er son-Flight-Person cp-OclAsType P er son-Client-Staff cp-OclAsType P er son-Reservation-Staff cp-OclAsType P er son-OclAny-Staff cp-OclAsType P er son-Person-Staff cp-OclAsType P er son-Staff-Staff cp-OclAsType P er son-Flight-Staff cp-OclAsType P er son-Client-Flight cp-OclAsType P er son-Reservation-Flight cp-OclAsType P er son-OclAny-Flight cp-OclAsType P er son-Person-Flight cp-OclAsType P er son-Staff-Flight cp-OclAsType P er son-Flight-Flight

lemma

 OclAsType C lient -Client-invalid : ((invalid::•Client) .oclAsType(Client)) = invalid by(simp) lemma OclAsType C lient -Reservation-invalid : ((invalid::•Reservation) .oclAsType(Client)) = invalid by(rule ext, simp add: OclAsType C lient -Reservation bot-option-def invalid-def) lemma OclAsType C lient -OclAny-invalid : ((invalid::•OclAny) .oclAsType(Client)) = invalid by(rule ext, simp add: OclAsType C lient -OclAny bot-option-def invalid-def) lemma OclAsType C lient -Person-invalid : ((invalid::•Person) .oclAsType(Client)) = invalid by(rule ext, simp add: OclAsType C lient -Person bot-option-def invalid-def) lemma OclAsType C lient -Staff-invalid : ((invalid::•Staff) .oclAsType(Client)) = invalid by(rule ext, simp add: OclAsType C lient -Staff bot-option-def invalid-def) lemma OclAsType C lient -Flight-invalid : ((invalid::•Flight) .oclAsType(Client)) = invalid by(rule ext, simp add: OclAsType C lient -Flight bot-option-def invalid-def) lemma OclAsType C lient -Client-null : ((null::•Client) .oclAsType(Client)) = null by(simp) lemma OclAsType C lient -Reservation-null : ((null::•Reservation) .oclAsType(Client)) = null by(rule ext, simp add: OclAsType C lient -Reservation bot-option-def null-fun-def null-option-def) lemma OclAsType C lient -OclAny-null : ((null::•OclAny) .oclAsType(Client)) = null by(rule ext, simp add: OclAsType C lient -OclAny bot-option-def null-fun-def null-option-def) lemma OclAsType C lient -Person-null : ((null::•Person) .oclAsType(Client)) = null by(rule ext, simp add: OclAsType C lient -Person bot-option-def null-fun-def null-option-def) lemma OclAsType C lient -Staff-null : ((null::•Staff) .oclAsType(Client)) = null by(rule ext, simp add: OclAsType C lient -Staff bot-option-def null-fun-def null-option-def) lemma OclAsType C lient -Flight-null : ((null::•Flight) .oclAsType(Client)) = null by(rule ext, simp add: OclAsType C lient -Flight bot-option-def null-fun-def null-option-def) lemma OclAsType Reser v ation-Client-invalid : ((invalid::•Client) .oclAsType(Reservation)) = invalid by(rule ext, simp add: OclAsType Reser v ation-Client bot-option-def invalid-def) lemma OclAsType Reser v ation-Reservation-invalid : ((invalid::•Reservation) .oclAsType(Reservation)) = invalid by(simp) lemma OclAsType Reser v ation-OclAny-invalid : ((invalid::•OclAny) .oclAsType(Reservation)) = invalid by(rule ext, simp add: OclAsType Reser v ation-OclAny bot-option-def invalid-def) lemma OclAsType Reser v ation-Person-invalid : ((invalid::•Person) .oclAsType(Reservation)) = invalid by(rule ext, simp add: OclAsType Reser v ation-Person bot-option-def invalid-def) lemma OclAsType Reser v ation-Staff-invalid : ((invalid::•Staff) .oclAsType(Reservation)) = invalid by(rule ext, simp add: OclAsType Reser v ation-Staff bot-option-def invalid-def) lemma OclAsType Reser v ation-Flight-invalid : ((invalid::•Flight) .oclAsType(Reservation)) = invalid by(rule ext, simp add: OclAsType Reser v ation-Flight bot-option-def invalid-def) lemma OclAsType Reser v ation-Client-nul l : ((null::•Client) .oclAsType(Reservation)) = null by(rule ext, simp add: OclAsType Reser v ation-Client bot-option-def null-fun-def null-option-def) lemma OclAsType Reser v ation-Reservation-nul l : ((null::•Reservation) .oclAsType(Reservation)) = null by(simp) lemma OclAsType Reser v ation-OclAny-nul l : ((null::•OclAny) .oclAsType(Reservation)) = null by(rule ext, simp add: OclAsType Reser v ation-OclAny bot-option-def null-fun-def null-option-def) lemma OclAsType Reser v ation-Person-nul l : ((null::•Person) .oclAsType(Reservation)) = null by(rule ext, simp add: OclAsType Reser v ation-Person bot-option-def null-fun-def null-option-def) lemma OclAsType Reser v ation-Staff-nul l : ((null::•Staff) .oclAsType(Reservation)) = null by(rule ext, simp add: OclAsType Reser v ation-Staff bot-option-def null-fun-def null-option-def) lemma OclAsType Reser v ation-Flight-nul l : ((null::•Flight) .oclAsType(Reservation)) = null by(rule ext, simp add: OclAsType Reser v ation-Flight bot-option-def null-fun-def null-option-def) lemma OclAsType O clAny -Client-invalid : ((invalid::•Client) .oclAsType(OclAny)) = invalid by(rule ext, simp add: OclAsType O clAny -Client bot-option-def invalid-def) lemma OclAsType O clAny -Reservation-invalid : ((invalid::•Reservation) .oclAsType(OclAny)) = invalid by(rule ext, simp add: OclAsType O clAny -Reservation bot-option-def invalid-def) lemma OclAsType O clAny -OclAny-invalid : ((invalid::•OclAny) .oclAsType(OclAny)) = invalid by(simp) lemma OclAsType O clAny -Person-invalid : ((invalid::•Person) .oclAsType(OclAny)) = invalid by(rule ext, simp add: OclAsType O clAny -Person bot-option-def invalid-def) lemma OclAsType O clAny -Staff-invalid : ((invalid::•Staff) .oclAsType(OclAny)) = invalid by(rule ext, simp add: OclAsType O clAny -Staff bot-option-def invalid-def) lemma OclAsType O clAny -Flight-invalid : ((invalid::•Flight) .oclAsType(OclAny)) = invalid by(rule ext, simp add: OclAsType O clAny -Flight bot-option-def invalid-def) lemma OclAsType O clAny -Client-null : ((null::•Client) .oclAsType(OclAny)) = null by(rule ext, simp add: OclAsType O clAny -Client bot-option-def null-fun-def null-option-def) lemma OclAsType O clAny -Reservation-null : ((null::•Reservation) .oclAsType(OclAny)) = null by(rule ext, simp add: OclAsType O clAny -Reservation bot-option-def null-fun-def null-option-def) lemma OclAsType O clAny -OclAny-null : ((null::•OclAny) .oclAsType(OclAny)) = null by(simp) lemma OclAsType O clAny -Person-null : ((null::•Person) .oclAsType(OclAny)) = null by(rule ext, simp add: OclAsType O clAny -Person bot-option-def null-fun-def null-option-def) lemma OclAsType O clAny -Staff-null : ((null::•Staff) .oclAsType(OclAny)) = null by(rule ext, simp add: OclAsType O clAny -Staff bot-option-def null-fun-def null-option-def) lemma OclAsType O clAny -Flight-null : ((null::•Flight) .oclAsType(OclAny)) = null by(rule ext, simp add: OclAsType O clAny -Flight bot-option-def null-fun-def null-option-def) lemma OclAsType P er son-Client-invalid : ((invalid::•Client) .oclAsType(Person)) = invalid by(rule ext, simp add: OclAsType P er son-Client bot-option-def invalid-def) lemma OclAsType P er son-Reservation-invalid : ((invalid::•Reservation) .oclAsType(Person)) = invalid by(rule ext, simp add: OclAsType P er son-Reservation bot-option-def invalid-def) lemma OclAsType P er son-OclAny-invalid : ((invalid::•OclAny) .oclAsType(Person)) = invalid by(rule ext, simp add: OclAsType P er son-OclAny bot-option-def invalid-def) lemma OclAsType P er son-Person-invalid : ((invalid::•Person) .oclAsType(Person)) = invalid by(simp) lemma OclAsType P er son-Staff-invalid : ((invalid::•Staff) .oclAsType(Person)) = invalid by(rule ext, simp add: OclAsType P er son-Staff bot-option-def invalid-def) lemma OclAsType P er son-Flight-invalid : ((invalid::•Flight) .oclAsType(Person)) = invalid by(rule ext, simp add: OclAsType P er son-Flight bot-option-def invalid-def) lemma OclAsType P er son-Client-nul l : ((null::•Client) .oclAsType(Person)) = null by(rule ext, simp add: OclAsType P er son-Client bot-option-def null-fun-def null-option-def) lemma OclAsType P er son-Reservation-nul l : ((null::•Reservation) .oclAsType(Person)) = null by(rule ext, simp add: OclAsType P er son-Reservation bot-option-def null-fun-def null-option-def) lemma OclAsType P er son-OclAny-nul l : ((null::•OclAny) .oclAsType(Person)) = null by(rule ext, simp add: OclAsType P er son-OclAny bot-option-def null-fun-def null-option-def) lemma OclAsType P er son-Person-nul l : ((null::•Person) .oclAsType(Person)) = null by(simp) lemma OclAsType P er son-Staff-nul l : ((null::•Staff) .oclAsType(Person)) = null by(rule ext, simp add: OclAsType P er son-Staff bot-option-def null-fun-def null-option-def) lemma OclAsType P er son-Flight-nul l : ((null::•Flight) .oclAsType(Person)) = null by(rule ext, simp add: OclAsType P er son-Flight bot-option-def null-fun-def null-option-def) lemma OclAsType S taf f -Client-invalid : ((invalid::•Client) .oclAsType(Staff)) = invalid by(rule ext, simp add: OclAsType S taf f -Client bot-option-def invalid-def) lemma OclAsType S taf f -Reservation-invalid : ((invalid::•Reservation) .oclAsType(Staff)) = invalid by(rule ext, simp add: OclAsType S taf f -Reservation bot-option-def invalid-def) lemma OclAsType S taf f -OclAny-invalid : ((invalid::•OclAny) .oclAsType(Staff)) = invalid by(rule ext, simp add: OclAsType S taf f -OclAny bot-option-def invalid-def) lemma OclAsType S taf f -Person-invalid : ((invalid::•Person) .oclAsType(Staff)) = invalid by(rule ext, simp add: OclAsType S taf f -Person bot-option-def invalid-def) lemma OclAsType S taf f -Staff-invalid : ((invalid::•Staff) .oclAsType(Staff)) = invalid by(simp) lemma OclAsType S taf f -Flight-invalid : ((invalid::•Flight) .oclAsType(Staff)) = invalid by(rule ext, simp add: OclAsType S taf f -Flight bot-option-def invalid-def) lemma OclAsType S taf f -Client-null : ((null::•Client) .oclAsType(Staff)) = null by(rule ext, simp add: OclAsType S taf f -Client bot-option-def null-fun-def null-option-def) lemma OclAsType S taf f -Reservation-null : ((null::•Reservation) .oclAsType(Staff)) = null by(rule ext, simp add: OclAsType S taf f -Reservation bot-option-def null-fun-def null-option-def) lemma OclAsType S taf f -OclAny-null : ((null::•OclAny) .oclAsType(Staff)) = null by(rule ext, simp add: OclAsType S taf f -OclAny bot-option-def null-fun-def null-option-def) lemma OclAsType S taf f -Person-null : ((null::•Person) .oclAsType(Staff)) = null by(rule ext, simp add: OclAsType S taf f -Person bot-option-def null-fun-def null-option-def)lemma OclAsType S taf f -Staff-null : ((null::•Staff) .oclAsType(Staff)) = null by(simp) lemma OclAsType S taf f -Flight-null : ((null::•Flight) .oclAsType(Staff)) = null by(rule ext, simp add: OclAsType S taf f -Flight bot-option-def null-fun-def null-option-def) lemma OclAsType F lig ht -Client-invalid : ((invalid::•Client) .oclAsType(Flight)) = invalid by(rule ext, simp add: OclAsType F lig ht -Client bot-option-def invalid-def) lemma OclAsType F lig ht -Reservation-invalid : ((invalid::•Reservation) .oclAsType(Flight)) = invalid by(rule ext, simp add: OclAsType F lig ht -Reservation bot-option-def invalid-def) lemma OclAsType F lig ht -OclAny-invalid : ((invalid::•OclAny) .oclAsType(Flight)) = invalid by(rule ext, simp add: OclAsType F lig ht -OclAny bot-option-def invalid-def) lemma OclAsType F lig ht -Person-invalid : ((invalid::•Person) .oclAsType(Flight)) = invalid by(rule ext, simp add: OclAsType F lig ht -Person bot-option-def invalid-def) lemma OclAsType F lig ht -Staff-invalid : ((invalid::•Staff) .oclAsType(Flight)) = invalid by(rule ext, simp add: OclAsType F lig ht -Staff bot-option-def invalid-def) lemma OclAsType F lig ht -Flight-invalid : ((invalid::•Flight) .oclAsType(Flight)) = invalid by(simp) lemma OclAsType F lig ht -Client-null : ((null::•Client) .oclAsType(Flight)) = null by(rule ext, simp add: OclAsType F lig ht -Client bot-option-def null-fun-def null-option-def) lemma OclAsType F lig ht -Reservation-null : ((null::•Reservation) .oclAsType(Flight)) = null by(rule ext, simp add: OclAsType F lig ht -Reservation bot-option-def null-fun-def null-option-def) lemma OclAsType F lig ht -OclAny-null : ((null::•OclAny) .oclAsType(Flight)) = null by(rule ext, simp add: OclAsType F lig ht -OclAny bot-option-def null-fun-def null-option-def) lemma OclAsType F lig ht -Person-null : ((null::•Person) .oclAsType(Flight)) = null by(rule ext, simp add: OclAsType F lig ht -Person bot-option-def null-fun-def null-option-def) lemma OclAsType F lig ht -Staff-null : ((null::•Staff) .oclAsType(Flight)) = null by(rule ext, simp add: OclAsType F lig ht -Staff bot-option-def null-fun-def null-option-def) lemma OclAsType F lig ht -Flight-null : ((null::

lemma

 OclAsType P er son-Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclAsType(Person))) using isdef by(auto simp: OclAsType P er son-Client foundation16 null-option-def bot-option-def) lemma OclAsType P er son-Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclAsType(Person))) using isdef by(auto simp: OclAsType P er son-Staff foundation16 null-option-def bot-option-def) lemma OclAsType O clAny -Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclAsType(OclAny))) using isdef by(auto simp: OclAsType O clAny -Flight foundation16 null-option-def bot-option-def) lemma OclAsType O clAny -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclAsType(OclAny))) using isdef by(auto simp: OclAsType O clAny -Client foundation16 null-option-def bot-option-def) lemma OclAsType O clAny -Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclAsType(OclAny))) using isdef by(auto simp: OclAsType O clAny -Staff foundation16 null-option-def bot-option-def) lemma OclAsType O clAny -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclAsType(OclAny))) using isdef by(auto simp: OclAsType O clAny -Person foundation16 null-option-def bot-option-def) lemma OclAsType O clAny -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclAsType(OclAny))) using isdef by(auto simp: OclAsType O clAny -Reservation foundation16 null-option-def bot-option-def) Up Down Casting lemma up O clAny -down F lig ht -cast0 : assumes isdef : τ |= (δ (X)) shows τ |= (((X::•Flight) .oclAsType(OclAny)) .oclAsType(Flight)) X using isdef by(auto simp: OclAsType O clAny -Flight OclAsType F lig ht -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T F lig ht .split ty F lig ht .split) lemma up P er son-downC lient -cast0 : assumes isdef : τ |= (δ (X)) shows τ |= (((X::•Client) .oclAsType(Person)) .oclAsType(Client)) X using isdef by(auto simp: OclAsType P er son-Client OclAsType C lient -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T C lient .split ty C lient .split) lemma up O clAny -down C lient -cast0 : assumes isdef : τ |= (δ (X)) shows τ |= (((X::•Client) .oclAsType(OclAny)) .oclAsType(Client)) X using isdef by(auto simp: OclAsType O clAny -Client OclAsType C lient -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T C lient .split ty C lient .split) lemma up P er son-downS taf f -cast0 : assumes isdef : τ |= (δ (X)) shows τ |= (((X::•Staff) .oclAsType(Person)) .oclAsType(Staff)) X using isdef by(auto simp: OclAsType P er son-Staff OclAsType S taf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T S taf f .split ty S taf f .split) lemma up O clAny -down S taf f -cast0 : assumes isdef : τ |= (δ (X)) shows τ |= (((X::•Staff) .oclAsType(OclAny)) .oclAsType(Staff)) X using isdef by(auto simp: OclAsType O clAny -Staff OclAsType S taf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T S taf f .split ty S taf f .split) lemma up O clAny -down P er son-cast0 : assumes isdef : τ |= (δ (X)) shows τ |= (((X::•Person) .oclAsType(OclAny)) .oclAsType(Person)) X using isdef by(auto simp: OclAsType O clAny -Person OclAsType P er son-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) lemma up O clAny -down Reser v ation-cast0 : assumes isdef : τ |= (δ (X)) shows τ |= (((X::•Reservation) .oclAsType(OclAny)) .oclAsType(Reservation)) X using isdef by(auto simp: OclAsType O clAny -Reservation OclAsType Reser v ation-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T Reser v ation.split ty Reser v ation.split) lemma up O clAny -down F lig ht -cast : shows (((X::•Flight

 lemma down F lig ht -up O clAny -cast : assumes def-X: X = ((Y ::•Flight) .oclAsType(OclAny)) shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Flight)) .oclAsType(OclAny)) . = X)) apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp) by(rule foundation25 , simp add: def-X up O clAny -down F lig ht -cast StrictRefEq O bj ect-sym) lemma down C lient -up P er son-cast : assumes def-X: X = ((Y ::•Client) .oclAsType(Person)) shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Client)) .oclAsType(Person)) . = X)) apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp) by(rule foundation25 , simp add: def-X up P er son-downC lient -cast StrictRefEq O bj ect-sym) lemma down C lient -up O clAny -cast : assumes def-X: X = ((Y ::•Client) .oclAsType(OclAny)) shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Client)) .oclAsType(OclAny)) . = X)) apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp) by(rule foundation25 , simp add: def-X up O clAny -down C lient -cast StrictRefEq O bj ect-sym) lemma down S taf f -up P er son-cast : assumes def-X: X = ((Y ::•Staff) .oclAsType(Person)) shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Staff)) .oclAsType(Person)) . = X)) apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp) by(rule foundation25 , simp add: def-X up P er son-downS taf f -cast StrictRefEq O bj ect-sym) lemma down S taf f -up O clAny -cast : assumes def-X: X = ((Y ::•Staff) .oclAsType(OclAny)) shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Staff)) .oclAsType(OclAny)) . = X)) apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp) by(rule foundation25 , simp add: def-X up O clAny -down S taf f -cast StrictRefEq O bj ect-sym) lemma down P er son-upO clAny -cast : assumes def-X: X = ((Y ::•Person) .oclAsType(OclAny)) shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Person)) .oclAsType(OclAny)) . = X)) apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp) by(rule foundation25 , simp add: def-X up O clAny -down P er son-cast StrictRefEq O bj ect-sym) lemma down Reser v ation-upO clAny -cast : assumes def-X: X = ((Y ::•Reservation) .oclAsType(OclAny)) shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Reservation)) .oclAsType(OclAny)) . = X)) apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp) by(simp add: const-def , (metis (no-types) OclAsType P er son-Client prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType P er son-Reservation-const : (const ((X::•Reservation))) =⇒ (const (X .oclAsType(Person))) by(simp add: const-def , (metis (no-types) OclAsType P er son-Reservation prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType P er son-OclAny-const : (const ((X::•OclAny))) =⇒ (const (X .oclAsType(Person))) by(simp add: const-def , (metis (no-types) OclAsType P er son-OclAny prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType P er son-Person-const : (const ((X::•Person))) =⇒ (const (X .oclAsType(Person))) by(simp add: const-def , (metis (no-types) OclAsType P er son-Person prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType P er son-Staff-const : (const ((X::•Staff))) =⇒ (const (X .oclAsType(Person))) by(simp add: const-def , (metis (no-types) OclAsType P er son-Staff prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType P er son-Flight-const : (const ((X::•Flight))) =⇒ (const (X .oclAsType(Person))) by(simp add: const-def , (metis (no-types) OclAsType P er son-Flight prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType S taf f -Client-const : (const ((X::•Client))) =⇒ (const (X .oclAsType(Staff))) by(simp add: const-def , (metis (no-types) OclAsType S taf f -Client prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType S taf f -Reservation-const : (const ((X::•Reservation))) =⇒ (const (X .oclAsType(Staff))) by(simp add: const-def , (metis (no-types) OclAsType S taf f -Reservation prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType S taf f -OclAny-const : (const ((X::•OclAny))) =⇒ (const (X .oclAsType(Staff))) by(simp add: const-def , (metis (no-types) OclAsType S taf f -OclAny prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType S taf f -Person-const : (const ((X::•Person))) =⇒ (const (X .oclAsType(Staff))) by(simp add: const-def , (metis (no-types) OclAsType S taf f -Person prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?)

 F lig ht ≡ (OclIsTypeOf F lig ht ::(•Flight) ⇒ -) begin definition OclIsTypeOf F lig ht -Flight : (x::•Flight) .oclIsTypeOf (Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk F lig ht ((mkEX T F lig ht (-))) (-) (-) (-) (-)) ⇒ (true (τ)))) end overloading OclIsTypeOf F lig ht ≡ (OclIsTypeOf F lig ht ::(•OclAny) ⇒ -) begin definition OclIsTypeOf F lig ht -OclAny : (x::•OclAny) .oclIsTypeOf (Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))| ⊥ ⇒ (true (τ)) | (mk O clAny ((mkEX T O clAny -F lig ht (-)))) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf F lig ht ≡ (OclIsTypeOf F lig ht ::(•Staff) ⇒ -) begin definition OclIsTypeOf F lig ht -Staff : (x::•Staff) .oclIsTypeOf (Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf F lig ht ≡ (OclIsTypeOf F lig ht ::(•Person) ⇒ -) begin definition OclIsTypeOf F lig ht -Person : (x::•Person) .oclIsTypeOf (Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ))))end overloading OclIsTypeOf F lig ht ≡ (OclIsTypeOf F lig ht ::(•Client) ⇒ -) begin definition OclIsTypeOf F lig ht -Client : (x::•Client) .oclIsTypeOf (Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf F lig ht ≡ (OclIsTypeOf F lig ht ::(•Reservation) ⇒ -) begin definition OclIsTypeOf F lig ht -Reservation : (x::•Reservation) .oclIsTypeOf (Flight) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf C lient ≡ (OclIsTypeOf C lient ::(•Client) ⇒ -) begin definition OclIsTypeOf C lient -Client : (x::•Client) .oclIsTypeOf (Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk C lient ((mkEX T C lient (-) (-))) (-)) ⇒ (true (τ)))) end overloading OclIsTypeOf C lient ≡ (OclIsTypeOf C lient ::(•Person) ⇒ -) begin definition OclIsTypeOf C lient -Person : (x::•Person) .oclIsTypeOf (Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk P er son ((mkEX T P er son-C lient (-))) (-)) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf C lient ≡ (OclIsTypeOf C lient ::(•OclAny) ⇒ -) begin definition OclIsTypeOf C lient -OclAny : (x::•OclAny) .oclIsTypeOf (Client) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))

 begin definition OclIsTypeOf S taf f -Staff : (x::•Staff) .oclIsTypeOf (Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk S taf f ((mkEX T S taf f (-) (-)))) ⇒ (true (τ)))) end overloading OclIsTypeOf S taf f ≡ (OclIsTypeOf S taf f ::(•Person) ⇒ -) begin definition OclIsTypeOf S taf f -Person : (x::•Person) .oclIsTypeOf (Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk P er son ((mkEX T P er son-S taf f (-))) (-)) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf S taf f ≡ (OclIsTypeOf S taf f ::(•OclAny) ⇒ -) begin definition OclIsTypeOf S taf f -OclAny : (x::•OclAny) .oclIsTypeOf (Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))

 end overloading OclIsTypeOf S taf f ≡ (OclIsTypeOf S taf f ::(•Reservation) ⇒ -) begin definition OclIsTypeOf S taf f -Reservation : (x::•Reservation) .oclIsTypeOf (Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf S taf f ≡ (OclIsTypeOf S taf f ::(•Flight) ⇒ -) begin definition OclIsTypeOf S taf f -Flight : (x::•Flight) .oclIsTypeOf (Staff) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf P er son ≡ (OclIsTypeOf P er son::(•Person) ⇒ -) begin definition OclIsTypeOf P er son-Person : (x::•Person) .oclIsTypeOf (Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk P er son ((mkEX T P er son (-))) (-)) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf P er son ≡ (OclIsTypeOf P er son::(•OclAny) ⇒ -) begin definition OclIsTypeOf P er son-OclAny : (x::•OclAny) .oclIsTypeOf (Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk O clAny ((mkEX T O clAny -P er son (-)))) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf P er son ≡ (OclIsTypeOf P er son::(•Client) ⇒ -) begin definition OclIsTypeOf P er son-Client : (x::•Client) .oclIsTypeOf (Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf P er son ≡ (OclIsTypeOf P er son::(•Staff) ⇒ -) begin definition OclIsTypeOf P er son-Staff : (x::•Staff) .oclIsTypeOf (Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf P er son ≡ (OclIsTypeOf P er son::(•Reservation) ⇒ -) begin definition OclIsTypeOf P er son-Reservation : (x::•Reservation) .oclIsTypeOf (Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf P er son ≡ (OclIsTypeOf P er son::(•Flight) ⇒ -) begin definition OclIsTypeOf P er son-Flight : (x::•Flight) .oclIsTypeOf (Person) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf Reser v ation ≡ (OclIsTypeOf Reser v ation::(•Reservation) ⇒ -) begin definition OclIsTypeOf Reser v ation-Reservation : (x::•Reservation) .oclIsTypeOf (Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk Reser v ation ((mkEX T Reser v ation (-))) (-) (-) (-)) ⇒ (true (τ)))) end overloading OclIsTypeOf Reser v ation ≡ (OclIsTypeOf Reser v ation::(•OclAny) ⇒ -) begin definition OclIsTypeOf Reser v ation-OclAny : (x::•OclAny) .oclIsTypeOf (Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | (mk O clAny ((mkEX T O clAny -Reser v ation (-)))) ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf Reser v ation ≡ (OclIsTypeOf Reser v ation::(•Staff) ⇒ -) begin definition OclIsTypeOf Reser v ation-Staff : (x::•Staff) .oclIsTypeOf (Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf Reser v ation ≡ (OclIsTypeOf Reser v ation::(•Person) ⇒ -) begin definition OclIsTypeOf Reser v ation-Person : (x::•Person) .oclIsTypeOf (Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf Reser v ation ≡ (OclIsTypeOf Reser v ation::(•Client) ⇒ -) begin definition OclIsTypeOf Reser v ation-Client : (x::•Client) .oclIsTypeOf (Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ)) | ⊥ ⇒ (true (τ)) | -⇒ (false (τ)))) end overloading OclIsTypeOf Reser v ation ≡ (OclIsTypeOf Reser v ation::(•Flight) ⇒ -) begin definition OclIsTypeOf Reser v ation-Flight : (x::•Flight) .oclIsTypeOf (Reservation) ≡ (λτ . (case (x (τ)) of ⊥ ⇒ (invalid (τ))| (in F lig ht (Flight)) ⇒ (((((λx -. x)) (Flight))::•Flight) .oclIsTypeOf (Reservation))) definition OclIsTypeOf O clAny -A = (λ (in O clAny (OclAny)) ⇒ (((((λx -. x)) (OclAny))::•OclAny) .oclIsTypeOf (OclAny)) | (in F lig ht (Flight)) ⇒ (((((λx -. x)) (Flight))::•Flight) .oclIsTypeOf (OclAny)) | (in C lient (Client)) ⇒ (((((λx -. x)) (Client))::•Client) .oclIsTypeOf (OclAny)) | (in S taf f (Staff)) ⇒ (((((λx -. x)) (Staff))::•Staff) .oclIsTypeOf (OclAny)) | (in P er son (Person)) ⇒ (((((λx -. x)) (Person))::•Person) .oclIsTypeOf (OclAny)) | (in Reser v ation (Reservation)) ⇒ (((((λx -. x)) (Reservation))::•Reservation) .oclIsTypeOf (OclAny))) lemmas[simp,code-unfold] = OclIsTypeOf F lig ht -Flight OclIsTypeOf C lient -Client OclIsTypeOf S taff -Staff OclIsTypeOf P er son-Person OclIsTypeOf Reser v ation-Reservation OclIsTypeOf O clAny -OclAny Context Passing lemma cp-OclIsTypeOf C lient -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsTypeOf (Client))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf C lient -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsTypeOf (Client))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf C lient -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsTypeOf (Client))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf C lient -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsTypeOf (Client))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf C lient -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsTypeOf (Client))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf C lient -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsTypeOf (Client))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf C lient -Client-Reservation : (cp (p)) =⇒ (cp ((λx.(((p ((x::•Client)))::•Reservation) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Reservation) lemma cp-OclIsTypeOf C lient -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Reservation) lemma cp-OclIsTypeOf C lient -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Reservation) lemma cp-OclIsTypeOf C lient -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Reservation) lemma cp-OclIsTypeOf C lient -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Reservation) lemma cp-OclIsTypeOf C lient -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Reservation) lemma cp-OclIsTypeOf C lient -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -OclAny) lemma cp-OclIsTypeOf C lient -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -OclAny) lemma cp-OclIsTypeOf C lient -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -OclAny) lemma cp-OclIsTypeOf C lient -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -OclAny) lemma cp-OclIsTypeOf C lient -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -OclAny) lemma cp-OclIsTypeOf C lient -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -OclAny) lemma cp-OclIsTypeOf C lient -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Person) lemma cp-OclIsTypeOf C lient -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Person) lemma cp-OclIsTypeOf C lient -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Person) lemma cp-OclIsTypeOf C lient -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Person) lemma cp-OclIsTypeOf C lient -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Person) lemma cp-OclIsTypeOf C lient -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Person) lemma cp-OclIsTypeOf C lient -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Staff) lemma cp-OclIsTypeOf C lient -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Staff) lemma cp-OclIsTypeOf C lient -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Staff) lemma cp-OclIsTypeOf C lient -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Staff) lemma cp-OclIsTypeOf C lient -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Staff) lemma cp-OclIsTypeOf C lient -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Staff) lemma cp-OclIsTypeOf C lient -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Flight) lemma cp-OclIsTypeOf C lient -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Flight) lemma cp-OclIsTypeOf C lient -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Flight) lemma cp-OclIsTypeOf C lient -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Flight) lemma cp-OclIsTypeOf C lient -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Flight) lemma cp-OclIsTypeOf C lient -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsTypeOf (Client))))) by(rule cpI1 , simp add: OclIsTypeOf C lient -Flight) lemma cp-OclIsTypeOf Reser v ation-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Client) lemma cp-OclIsTypeOf Reser v ation-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Client) lemma cp-OclIsTypeOf Reser v ation-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Client) lemma cp-OclIsTypeOf Reser v ation-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Client) lemma cp-OclIsTypeOf Reser v ation-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Client) lemma cp-OclIsTypeOf Reser v ation-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Client) lemma cp-OclIsTypeOf Reser v ation-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf Reser v ation-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf Reser v ation-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf Reser v ation-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf Reser v ation-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf Reser v ation-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf Reser v ation-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-OclAny) lemma cp-OclIsTypeOf Reser v ation-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny).oclIsTypeOf (Reservation)))))

 ::•Person)))::•Staff) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Staff) lemma cp-OclIsTypeOf Reser v ation-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Staff) lemma cp-OclIsTypeOf Reser v ation-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Staff) lemma cp-OclIsTypeOf Reser v ation-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Flight) lemma cp-OclIsTypeOf Reser v ation-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Flight) lemma cp-OclIsTypeOf Reser v ation-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Flight) lemma cp-OclIsTypeOf Reser v ation-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Flight) lemma cp-OclIsTypeOf Reser v ation-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Flight) lemma cp-OclIsTypeOf Reser v ation-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsTypeOf (Reservation))))) by(rule cpI1 , simp add: OclIsTypeOf Reser v ation-Flight) lemma cp-OclIsTypeOf O clAny -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Client) lemma cp-OclIsTypeOf O clAny -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Client) lemma cp-OclIsTypeOf O clAny -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Client) lemma cp-OclIsTypeOf O clAny -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Client) lemma cp-OclIsTypeOf O clAny -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Client) lemma cp-OclIsTypeOf O clAny -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Client) lemma cp-OclIsTypeOf O clAny -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Reservation) lemma cp-OclIsTypeOf O clAny -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Reservation) lemma cp-OclIsTypeOf O clAny -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Reservation) lemma cp-OclIsTypeOf O clAny -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Reservation) lemma cp-OclIsTypeOf O clAny -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Reservation) lemma cp-OclIsTypeOf O clAny -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Reservation) lemma cp-OclIsTypeOf O clAny -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf O clAny -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny)

 cpI1 , simp) lemma cp-OclIsTypeOf O clAny -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf O clAny -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Person) lemma cp-OclIsTypeOf O clAny -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Person) lemma cp-OclIsTypeOf O clAny -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Person) lemma cp-OclIsTypeOf O clAny -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Person) lemma cp-OclIsTypeOf O clAny -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Person) lemma cp-OclIsTypeOf O clAny -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Person) lemma cp-OclIsTypeOf O clAny -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Staff) lemma cp-OclIsTypeOf O clAny -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Staff) lemma cp-OclIsTypeOf O clAny -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Staff) lemma cp-OclIsTypeOf O clAny -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Staff) lemma cp-OclIsTypeOf O clAny -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Staff) lemma cp-OclIsTypeOf O clAny -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Staff) lemma cp-OclIsTypeOf O clAny -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Flight) lemma cp-OclIsTypeOf O clAny -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Flight) lemma cp-OclIsTypeOf O clAny -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Flight) lemma cp-OclIsTypeOf O clAny -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Flight) lemma cp-OclIsTypeOf O clAny -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Flight) lemma cp-OclIsTypeOf O clAny -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsTypeOf (OclAny))))) by(rule cpI1 , simp add: OclIsTypeOf O clAny -Flight) lemma cp-OclIsTypeOf P er son-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Client) lemma cp-OclIsTypeOf P er son-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Client) lemma cp-OclIsTypeOf P er son-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Client) lemma cp-OclIsTypeOf P er son-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Client) lemma cp-OclIsTypeOf P er son-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Client) lemma cp-OclIsTypeOf P er son-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Client) lemma cp-OclIsTypeOf P er son-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Reservation) lemma cp-OclIsTypeOf P er son-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Reservation) lemma cp-OclIsTypeOf P er son-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Reservation) lemma cp-OclIsTypeOf P er son-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Reservation) lemma cp-OclIsTypeOf P er son-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Reservation) lemma cp-OclIsTypeOf P er son-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Reservation) lemma cp-OclIsTypeOf P er son-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-OclAny) lemma cp-OclIsTypeOf P er son-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-OclAny) lemma cp-OclIsTypeOf P er son-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-OclAny) lemma cp-OclIsTypeOf P er son-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-OclAny) lemma cp-OclIsTypeOf P er son-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-OclAny) lemma cp-OclIsTypeOf P er son-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-OclAny) lemma cp-OclIsTypeOf P er son-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsTypeOf (Person))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf P er son-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsTypeOf (Person))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf P er son-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsTypeOf (Person))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf P er son-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsTypeOf (Person))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf P er son-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsTypeOf (Person))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf P er son-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsTypeOf (Person))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf P er son-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Staff) lemma cp-OclIsTypeOf P er son-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Staff) lemma cp-OclIsTypeOf P er son-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Staff) lemma cp-OclIsTypeOf P er son-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Staff) lemma cp-OclIsTypeOf P er son-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Staff) lemma cp-OclIsTypeOf P er son-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Staff) lemma cp-OclIsTypeOf P er son-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Flight) lemma cp-OclIsTypeOf P er son-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Flight) lemma cp-OclIsTypeOf P er son-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Flight) lemma cp-OclIsTypeOf P er son-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Flight) lemma cp-OclIsTypeOf P er son-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Flight) lemma cp-OclIsTypeOf P er son-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsTypeOf (Person))))) by(rule cpI1 , simp add: OclIsTypeOf P er son-Flight) lemma cp-OclIsTypeOf S taf f -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Client) lemma cp-OclIsTypeOf S taf f -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Client) lemma cp-OclIsTypeOf S taf f -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Client) lemma cp-OclIsTypeOf S taf f -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Client) lemma cp-OclIsTypeOf S taf f -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Client) lemma cp-OclIsTypeOf S taf f -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Client) lemma cp-OclIsTypeOf S taf f -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Reservation) lemma cp-OclIsTypeOf S taf f -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Reservation) lemma cp-OclIsTypeOf S taf f -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Reservation) lemma cp-OclIsTypeOf S taf f -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Reservation) lemma cp-OclIsTypeOf S taf f -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Reservation) lemma cp-OclIsTypeOf S taf f -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Reservation) lemma cp-OclIsTypeOf S taf f -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -OclAny) lemma cp-OclIsTypeOf S taf f -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -OclAny) lemma cp-OclIsTypeOf S taf f -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -OclAny) lemma cp-OclIsTypeOf S taf f -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -OclAny) lemma cp-OclIsTypeOf S taf f -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -OclAny) lemma cp-OclIsTypeOf S taf f -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -OclAny) lemma cp-OclIsTypeOf S taf f -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Person) lemma cp-OclIsTypeOf S taf f -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Person) lemma cp-OclIsTypeOf S taf f -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Person) lemma cp-OclIsTypeOf S taf f -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Person) lemma cp-OclIsTypeOf S taf f -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Person) lemma cp-OclIsTypeOf S taf f -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Person) lemma cp-OclIsTypeOf S taf f -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf S taf f -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf S taf f -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf S taf f -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf S taf f -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf S taf f -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf S taf f -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Flight) lemma cp-OclIsTypeOf S taf f -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Flight) lemma cp-OclIsTypeOf S taf f -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Flight) lemma cp-OclIsTypeOf S taf f -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Flight) lemma cp-OclIsTypeOf S taf f -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Flight) lemma cp-OclIsTypeOf S taf f -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsTypeOf (Staff))))) by(rule cpI1 , simp add: OclIsTypeOf S taf f -Flight) lemma cp-OclIsTypeOf F lig ht -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Client) lemma cp-OclIsTypeOf F lig ht -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Client) lemma cp-OclIsTypeOf F lig ht -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Client) lemma cp-OclIsTypeOf F lig ht -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Client) lemma cp-OclIsTypeOf F lig ht -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Client) lemma cp-OclIsTypeOf F lig ht -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Client) lemma cp-OclIsTypeOf F lig ht -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Reservation) lemma cp-OclIsTypeOf F lig ht -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Reservation) lemma cp-OclIsTypeOf F lig ht -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Reservation) lemma cp-OclIsTypeOf F lig ht -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Reservation) lemma cp-OclIsTypeOf F lig ht -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Reservation) lemma cp-OclIsTypeOf F lig ht -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation)

 (((p ((x::•Reservation)))::•OclAny) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -OclAny) lemma cp-OclIsTypeOf F lig ht -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -OclAny) lemma cp-OclIsTypeOf F lig ht -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -OclAny) lemma cp-OclIsTypeOf F lig ht -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -OclAny) lemma cp-OclIsTypeOf F lig ht -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -OclAny) lemma cp-OclIsTypeOf F lig ht -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Person) lemma cp-OclIsTypeOf F lig ht -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Person) lemma cp-OclIsTypeOf F lig ht -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Person) lemma cp-OclIsTypeOf F lig ht -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Person) lemma cp-OclIsTypeOf F lig ht -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Person) lemma cp-OclIsTypeOf F lig ht -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Person) lemma cp-OclIsTypeOf F lig ht -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Staff) lemma cp-OclIsTypeOf F lig ht -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Staff) lemma cp-OclIsTypeOf F lig ht -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Staff) lemma cp-OclIsTypeOf F lig ht -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Staff) lemma cp-OclIsTypeOf F lig ht -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Staff) lemma cp-OclIsTypeOf F lig ht -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp add: OclIsTypeOf F lig ht -Staff) lemma cp-OclIsTypeOf F lig ht -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf F lig ht -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf F lig ht -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf F lig ht -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf F lig ht -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsTypeOf (Flight))))) by(rule cpI1 , simp) lemma cp-OclIsTypeOf F lig ht -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::

lemma

 OclIsTypeOf C lient -Client-invalid : ((invalid::•Client) .oclIsTypeOf (Client)) = invalid by(rule ext, simp add: bot-option-def invalid-def) lemma OclIsTypeOf C lient -Reservation-invalid : ((invalid::•Reservation) .oclIsTypeOf (Client)) = invalid by(rule ext, simp add: OclIsTypeOf C lient -Reservation bot-option-def invalid-def) lemma OclIsTypeOf C lient -OclAny-invalid : ((invalid::•OclAny) .oclIsTypeOf (Client)) = invalid by(rule ext, simp add: OclIsTypeOf C lient -OclAny bot-option-def invalid-def) lemma OclIsTypeOf C lient -Person-invalid : ((invalid::•Person) .oclIsTypeOf (Client)) = invalid by(rule ext, simp add: OclIsTypeOf C lient -Person bot-option-def invalid-def) lemma OclIsTypeOf C lient -Staff-invalid : ((invalid::•Staff) .oclIsTypeOf (Client)) = invalid by(rule ext, simp add: OclIsTypeOf C lient -Staff bot-option-def invalid-def) lemma OclIsTypeOf C lient -Flight-invalid : ((invalid::•Flight) .oclIsTypeOf (Client)) = invalid by(rule ext, simp add: OclIsTypeOf C lient -Flight bot-option-def invalid-def) lemma OclIsTypeOf C lient -Client-null : ((null::•Client) .oclIsTypeOf (Client)) = true by(rule ext, simp add: bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf C lient -Reservation-null : ((null::•Reservation) .oclIsTypeOf (Client)) = true by(rule ext, simp add: OclIsTypeOf C lient -Reservation bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf C lient -OclAny-null : ((null::•OclAny) .oclIsTypeOf (Client)) = true by(rule ext, simp add: OclIsTypeOf C lient -OclAny bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf C lient -Person-null : ((null::•Person) .oclIsTypeOf (Client)) = true by(rule ext, simp add: OclIsTypeOf C lient -Person bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf C lient -Staff-null : ((null::•Staff) .oclIsTypeOf (Client)) = true by(rule ext, simp add: OclIsTypeOf C lient -Staff bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf C lient -Flight-null : ((null::•Flight) .oclIsTypeOf (Client)) = true by(rule ext, simp add: OclIsTypeOf C lient -Flight bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf Reser v ation-Client-invalid : ((invalid::•Client) .oclIsTypeOf (Reservation)) = invalid by(rule ext, simp add: OclIsTypeOf Reser v ation-Client bot-option-def invalid-def) lemma OclIsTypeOf Reser v ation-Reservation-invalid : ((invalid::•Reservation) .oclIsTypeOf (Reservation)) = invalid by(rule ext, simp add: bot-option-def invalid-def) lemma OclIsTypeOf Reser v ation-OclAny-invalid : ((invalid::•OclAny) .oclIsTypeOf (Reservation)) = invalid by(rule ext, simp add: OclIsTypeOf Reser v ation-OclAny bot-option-def invalid-def) lemma OclIsTypeOf Reser v ation-Person-invalid : ((invalid::•Person) .oclIsTypeOf (Reservation)) = invalid by(rule ext, simp add: OclIsTypeOf Reser v ation-Person bot-option-def invalid-def) lemma OclIsTypeOf Reser v ation-Staff-invalid : ((invalid::•Staff) .oclIsTypeOf (Reservation)) = invalid by(rule ext, simp add: OclIsTypeOf Reser v ation-Staff bot-option-def invalid-def) lemma OclIsTypeOf Reser v ation-Flight-invalid : ((invalid::•Flight) .oclIsTypeOf (Reservation)) = invalid by(rule ext, simp add: OclIsTypeOf Reser v ation-Flight bot-option-def invalid-def) lemma OclIsTypeOf Reser v ation-Client-nul l : ((null::•Client) .oclIsTypeOf (Reservation)) = true by(rule ext, simp add: OclIsTypeOf Reser v ation-Client bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf Reser v ation-Reservation-nul l : ((null::•Reservation) .oclIsTypeOf (Reservation)) = true by(rule ext, simp add: bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf Reser v ation-OclAny-nul l : ((null::•OclAny) .oclIsTypeOf (Reservation)) = true by(rule ext, simp add: OclIsTypeOf Reser v ation-OclAny bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf Reser v ation-Person-nul l : ((null::•Person) .oclIsTypeOf (Reservation)) = true by(rule ext, simp add: OclIsTypeOf Reser v ation-Person bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf Reser v ation-Staff-nul l : ((null::•Staff) .oclIsTypeOf (Reservation)) = true by(rule ext, simp add: OclIsTypeOf Reser v ation-Staff bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf Reser v ation-Flight-nul l : ((null::•Flight) .oclIsTypeOf (Reservation)) = true by(rule ext, simp add: OclIsTypeOf Reser v ation-Flight bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf O clAny -Client-invalid : ((invalid::•Client) .oclIsTypeOf (OclAny)) = invalid by(rule ext, simp add: OclIsTypeOf O clAny -Client bot-option-def invalid-def) lemma OclIsTypeOf O clAny -Reservation-invalid : ((invalid::•Reservation) .oclIsTypeOf (OclAny)) = invalid by(rule ext, simp add: OclIsTypeOf O clAny -Reservation bot-option-def invalid-def) lemma OclIsTypeOf O clAny -OclAny-invalid : ((invalid::•OclAny) .oclIsTypeOf (OclAny)) = invalid by(rule ext, simp add: bot-option-def invalid-def) lemma OclIsTypeOf O clAny -Person-invalid : ((invalid::•Person) .oclIsTypeOf (OclAny)) = invalid by(rule ext, simp add: OclIsTypeOf O clAny -Person bot-option-def invalid-def) lemma OclIsTypeOf O clAny -Staff-invalid : ((invalid::•Staff) .oclIsTypeOf (OclAny)) = invalid by(rule ext, simp add: OclIsTypeOf O clAny -Staff bot-option-def invalid-def) lemma OclIsTypeOf O clAny -Flight-invalid : ((invalid::•Flight) .oclIsTypeOf (OclAny)) = invalid by(rule ext, simp add: OclIsTypeOf O clAny -Flight bot-option-def invalid-def) lemma OclIsTypeOf O clAny -Client-null : ((null::•Client) .oclIsTypeOf (OclAny)) = true by(rule ext, simp add: OclIsTypeOf O clAny -Client bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf O clAny -Reservation-null : ((null::•Reservation) .oclIsTypeOf (OclAny)) = true by(rule ext, simp add: OclIsTypeOf O clAny -Reservation bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf O clAny -OclAny-null : ((null::•OclAny) .oclIsTypeOf (OclAny)) = true by(rule ext, simp add: bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf O clAny -Person-null : ((null::•Person) .oclIsTypeOf (OclAny)) = true by(rule ext, simp add: OclIsTypeOf O clAny -Person bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf O clAny -Staff-null : ((null::•Staff) .oclIsTypeOf (OclAny)) = true by(rule ext, simp add: OclIsTypeOf O clAny -Staff bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf O clAny -Flight-null : ((null::•Flight) .oclIsTypeOf (OclAny)) = true by(rule ext, simp add: OclIsTypeOf O clAny -Flight bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf P er son-Client-invalid : ((invalid::•Client) .oclIsTypeOf (Person)) = invalid by(rule ext, simp add: OclIsTypeOf P er son-Client bot-option-def invalid-def) lemma OclIsTypeOf P er son-Reservation-invalid : ((invalid::•Reservation) .oclIsTypeOf (Person)) = invalid by(rule ext, simp add: OclIsTypeOf P er son-Reservation bot-option-def invalid-def) lemma OclIsTypeOf P er son-OclAny-invalid : ((invalid::•OclAny) .oclIsTypeOf (Person)) = invalid by(rule ext, simp add: OclIsTypeOf P er son-OclAny bot-option-def invalid-def) lemma OclIsTypeOf P er son-Person-invalid : ((invalid::•Person) .oclIsTypeOf (Person)) = invalid by(rule ext, simp add: bot-option-def invalid-def) lemma OclIsTypeOf P er son-Staff-invalid : ((invalid::•Staff) .oclIsTypeOf (Person)) = invalid by(rule ext, simp add: OclIsTypeOf P er son-Staff bot-option-def invalid-def) lemma OclIsTypeOf P er son-Flight-invalid : ((invalid::•Flight) .oclIsTypeOf (Person)) = invalid by(rule ext, simp add: OclIsTypeOf P er son-Flight bot-option-def invalid-def) lemma OclIsTypeOf P er son-Client-nul l : ((null::•Client) .oclIsTypeOf (Person)) = true by(rule ext, simp add: OclIsTypeOf P er son-Client bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf P er son-Reservation-nul l : ((null::•Reservation) .oclIsTypeOf (Person)) = true by(rule ext, simp add: OclIsTypeOf P er son-Reservation bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf P er son-OclAny-nul l : ((null::•OclAny) .oclIsTypeOf (Person)) = true by(rule ext, simp add: OclIsTypeOf P er son-OclAny bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf P er son-Person-nul l : ((null::•Person) .oclIsTypeOf (Person)) = true by(rule ext, simp add: bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf P er son-Staff-nul l : ((null::•Staff) .oclIsTypeOf (Person)) = true by(rule ext, simp add: OclIsTypeOf P er son-Staff bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf P er son-Flight-nul l : ((null::•Flight) .oclIsTypeOf (Person)) = true by(rule ext, simp add: OclIsTypeOf P er son-Flight bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf S taf f -Client-invalid : ((invalid::•Client) .oclIsTypeOf (Staff)) = invalid by(rule ext, simp add: OclIsTypeOf S taf f -Client bot-option-def invalid-def) lemma OclIsTypeOf S taf f -Reservation-invalid : ((invalid::•Reservation) .oclIsTypeOf (Staff)) = invalid by(rule ext, simp add: OclIsTypeOf S taf f -Reservation bot-option-def invalid-def) lemma OclIsTypeOf S taf f -OclAny-invalid : ((invalid::•OclAny) .oclIsTypeOf (Staff)) = invalid by(rule ext, simp add: OclIsTypeOf S taf f -OclAny bot-option-def invalid-def) lemma OclIsTypeOf S taf f -Person-invalid : ((invalid::•Person) .oclIsTypeOf (Staff)) = invalid by(rule ext, simp add: OclIsTypeOf S taf f -Person bot-option-def invalid-def) lemma OclIsTypeOf S taf f -Staff-invalid : ((invalid::•Staff) .oclIsTypeOf (Staff)) = invalid by(rule ext, simp add: bot-option-def invalid-def) lemma OclIsTypeOf S taf f -Flight-invalid : ((invalid::•Flight) .oclIsTypeOf (Staff)) = invalid by(rule ext, simp add: OclIsTypeOf S taf f -Flight bot-option-def invalid-def) lemma OclIsTypeOf S taf f -Client-null : ((null::•Client) .oclIsTypeOf (Staff)) = true by(rule ext, simp add: OclIsTypeOf S taf f -Client bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf S taf f -Reservation-null : ((null::•Reservation) .oclIsTypeOf (Staff)) = true by(rule ext, simp add: OclIsTypeOf S taf f -Reservation bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf S taf f -OclAny-null : ((null::•OclAny) .oclIsTypeOf (Staff)) = true by(rule ext, simp add: OclIsTypeOf S taf f -OclAny bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf S taf f -Person-null : ((null::•Person) .oclIsTypeOf (Staff)) = true by(rule ext, simp add: OclIsTypeOf S taf f -Person bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf S taf f -Staff-null : ((null::•Staff) .oclIsTypeOf (Staff)) = true by(rule ext, simp add: bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf S taf f -Flight-null : ((null::•Flight) .oclIsTypeOf (Staff)) = true by(rule ext, simp add: OclIsTypeOf S taf f -Flight bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf F lig ht -Client-invalid : ((invalid::•Client) .oclIsTypeOf (Flight)) = invalid by(rule ext, simp add: OclIsTypeOf F lig ht -Client bot-option-def invalid-def) lemma OclIsTypeOf F lig ht -Reservation-invalid : ((invalid::•Reservation) .oclIsTypeOf (Flight)) = invalid by(rule ext, simp add: OclIsTypeOf F lig ht -Reservation bot-option-def invalid-def) lemma OclIsTypeOf F lig ht -OclAny-invalid : ((invalid::•OclAny) .oclIsTypeOf (Flight)) = invalid by(rule ext, simp add: OclIsTypeOf F lig ht -OclAny bot-option-def invalid-def) lemma OclIsTypeOf F lig ht -Person-invalid : ((invalid::•Person) .oclIsTypeOf (Flight)) = invalid by(rule ext, simp add: OclIsTypeOf F lig ht -Person bot-option-def invalid-def) lemma OclIsTypeOf F lig ht -Staff-invalid : ((invalid::•Staff) .oclIsTypeOf (Flight)) = invalid by(rule ext, simp add: OclIsTypeOf F lig ht -Staff bot-option-def invalid-def) lemma OclIsTypeOf F lig ht -Flight-invalid : ((invalid::•Flight) .oclIsTypeOf (Flight)) = invalid by(rule ext, simp add: bot-option-def invalid-def) lemma OclIsTypeOf F lig ht -Client-null : ((null::•Client) .oclIsTypeOf (Flight)) = true by(rule ext, simp add: OclIsTypeOf F lig ht -Client bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf F lig ht -Reservation-null : ((null::•Reservation) .oclIsTypeOf (Flight)) = true by(rule ext, simp add: OclIsTypeOf F lig ht -Reservation bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf F lig ht -OclAny-null : ((null::•OclAny) .oclIsTypeOf (Flight)) = true by(rule ext, simp add: OclIsTypeOf F lig ht -OclAny bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf F lig ht -Person-null : ((null::•Person) .oclIsTypeOf (Flight)) = true by(rule ext, simp add: OclIsTypeOf F lig ht -Person bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf F lig ht -Staff-null : ((null::•Staff) .oclIsTypeOf (Flight)) = true by(rule ext, simp add: OclIsTypeOf F lig ht -Staff bot-option-def null-fun-def null-option-def) lemma OclIsTypeOf F lig ht -Flight-null : ((null::•Flight) .oclIsTypeOf (Flight)) = true by(rule ext, simp add: bot-option-def null-fun-def null-option-def)

 assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Flight))) by(rule OclIsTypeOf F lig ht -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf F lig ht -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Flight))) by(rule OclIsTypeOf F lig ht -Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf C lient -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Client))) by(rule OclIsTypeOf C lient -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf C lient -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Client))) by(rule OclIsTypeOf C lient -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf C lient -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Client))) by(rule OclIsTypeOf C lient -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf C lient -Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Client))) by(rule OclIsTypeOf C lient -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf C lient -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Client))) by(rule OclIsTypeOf C lient -Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf C lient -Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Client))) by(rule OclIsTypeOf C lient -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf S taf f -Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Staff))) by(rule OclIsTypeOf S taf f -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf S taf f -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Staff))) by(rule OclIsTypeOf S taf f -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf S taf f -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Staff))) by(rule OclIsTypeOf S taf f -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf S taf f -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Staff))) by(rule OclIsTypeOf S taf f -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf S taf f -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Staff))) by(rule OclIsTypeOf S taf f -Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf S taf f -Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Staff))) by(rule OclIsTypeOf S taf f -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf P er son-Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Person))) by(rule OclIsTypeOf P er son-Person-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf P er son-OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Person))) by(rule OclIsTypeOf P er son-OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf P er son-Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Person))) by(rule OclIsTypeOf P er son-Client-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf P er son-Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Person))) by(rule OclIsTypeOf P er son-Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf P er son-Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Person))) by(rule OclIsTypeOf P er son-Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf P er son-Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Person))) by(rule OclIsTypeOf P er son-Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf Reser v ation-Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Reservation))) by(rule OclIsTypeOf Reser v ation-Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf Reser v ation-OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Reservation)))by(rule OclIsTypeOf Reser v ation-OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf Reser v ation-Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Reservation))) by(rule OclIsTypeOf Reser v ation-Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf Reser v ation-Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Reservation))) by(rule OclIsTypeOf Reser v ation-Person-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf Reser v ation-Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Reservation)))by(rule OclIsTypeOfReser v ation-Client-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf Reser v ation-Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Reservation))) by(rule OclIsTypeOf Reser v ation-Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf O clAny -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (OclAny))) by(rule OclIsTypeOf O clAny -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf O clAny -Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (OclAny)))by(ruleOclIsTypeOf O clAny -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf O clAny -Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (OclAny))) by(rule OclIsTypeOf O clAny -Client-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf O clAny -Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (OclAny))) by(rule OclIsTypeOf O clAny -Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf O clAny -Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (OclAny)))by(ruleOclIsTypeOf O clAny -Person-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf O clAny -Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (OclAny))) by(rule OclIsTypeOf O clAny -Reservation-defined[OF isdef [THEN foundation20]]) Up Down Casting lemma actualType F lig ht -larger-staticType O clAny : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Flight) .oclIsTypeOf (OclAny)) false using isdef by(auto simp: OclIsTypeOf O clAny -Flight foundation22 foundation16 null-option-def bot-option-def) lemma actualType F lig ht -larger-staticType S taf f : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Flight) .oclIsTypeOf (Staff)) false using isdef by(auto simp: OclIsTypeOf S taf f -Flight foundation22 foundation16 null-option-def bot-option-def) lemma actualType F lig ht -larger-staticType P er son : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Flight) .oclIsTypeOf (Person)) false using isdef by(auto simp: OclIsTypeOf P er son-Flight foundation22 foundation16 null-option-def bot-option-def) lemma actualType F lig ht -larger-staticType C lient : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Flight) .oclIsTypeOf (Client)) false using isdef by(auto simp: OclIsTypeOf C lient -Flight foundation22 foundation16 null-option-def bot-option-def) lemma actualType F lig ht -larger-staticType Reser v ation : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Flight) .oclIsTypeOf (Reservation)) false using isdef by(auto simp: OclIsTypeOf Reser v ation-Flight foundation22 foundation16 null-option-def bot-option-def) lemma actualType C lient -larger-staticType P er son : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Client) .oclIsTypeOf (Person)) false using isdef by(auto simp: OclIsTypeOf P er son-Client foundation22 foundation16 null-option-def bot-option-def) lemma actualType C lient -larger-staticType O clAny : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Client) .oclIsTypeOf (OclAny)) false using isdef by(auto simp: OclIsTypeOf O clAny -Client foundation22 foundation16 null-option-def bot-option-def) lemma actualType C lient -larger-staticType S taf f : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Client) .oclIsTypeOf (Staff)) false using isdef by(auto simp: OclIsTypeOf S taf f -Client foundation22 foundation16 null-option-def bot-option-def) lemma actualType C lient -larger-staticType Reser v ation : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Client) .oclIsTypeOf (Reservation)) false using isdef by(auto simp: OclIsTypeOf Reser v ation-Client foundation22 foundation16 null-option-def bot-option-def) lemma actualType C lient -larger-staticType F lig ht : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Client) .oclIsTypeOf (Flight)) false using isdef by(auto simp: OclIsTypeOf F lig ht -Client foundation22 foundation16 null-option-def bot-option-def) lemma actualType S taf f -larger-staticType P er son : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Staff) .oclIsTypeOf (Person)) false using isdef by(auto simp: OclIsTypeOf P er son-Staff foundation22 foundation16 null-option-def bot-option-def) lemma actualType S taf f -larger-staticType O clAny : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Staff) .oclIsTypeOf (OclAny)) false using isdef by(auto simp: OclIsTypeOf O clAny -Staff foundation22 foundation16 null-option-def bot-option-def) lemma actualType S taf f -larger-staticType C lient :assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Staff) .oclIsTypeOf (Client)) false using isdef by(auto simp: OclIsTypeOf C lient -Staff foundation22 foundation16 null-option-def bot-option-def) lemma actualType S taf f -larger-staticType Reser v ation : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Staff) .oclIsTypeOf (Reservation)) false using isdef by(auto simp: OclIsTypeOf Reser v ation-Staff foundation22 foundation16 null-option-def bot-option-def) lemma actualType S taf f -larger-staticType F lig ht : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Staff) .oclIsTypeOf (Flight)) false using isdef by(auto simp: OclIsTypeOf F lig ht -Staff foundation22 foundation16 null-option-def bot-option-def) lemma actualType P er son-larger-staticTypeO clAny : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Person) .oclIsTypeOf (OclAny)) false using isdef by(auto simp: OclIsTypeOf O clAny -Person foundation22 foundation16 null-option-def bot-option-def) lemma actualType P er son-larger-staticTypeReser v ation : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Person) .oclIsTypeOf (Reservation)) false using isdef by(auto simp: OclIsTypeOf Reser v ation-Person foundation22 foundation16 null-option-def bot-option-def) lemma actualType P er son-larger-staticTypeF lig ht : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Person) .oclIsTypeOf (Flight)) false using isdef by(auto simp: OclIsTypeOf F lig ht -Person foundation22 foundation16 null-option-def bot-option-def) lemma actualType Reser v ation-larger-staticTypeO clAny : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Reservation) .oclIsTypeOf (OclAny)) false using isdef by(auto simp: OclIsTypeOf O clAny -Reservation foundation22 foundation16 null-option-def bot-option-def) lemma actualType Reser v ation-larger-staticTypeS taf f : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Reservation) .oclIsTypeOf (Staff)) false using isdef by(auto simp: OclIsTypeOf S taf f -Reservation foundation22 foundation16 null-option-def bot-option-def) lemma actualType Reser v ation-larger-staticTypeP er son : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Reservation) .oclIsTypeOf (Person)) false using isdef by(auto simp: OclIsTypeOf P er son-Reservation foundation22 foundation16 null-option-def bot-option-def) lemma actualType Reser v ation-larger-staticTypeC lient : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Reservation) .oclIsTypeOf (Client)) false using isdef by(auto simp: OclIsTypeOf C lient -Reservation foundation22 foundation16 null-option-def bot-option-def) lemma actualType Reser v ation-larger-staticTypeF lig ht : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Reservation) .oclIsTypeOf (Flight)) false using isdef by(auto simp: OclIsTypeOf F lig ht -Reservation foundation22 foundation16 null-option-def bot-option-def) lemma down-cast-type O clAny -from-OclAny-to-Flight : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Flight)) invalid using istyp isdef apply(auto simp: OclAsType F lig ht -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclValid-def false-def true-def) lemma down-cast-type S taf f -from-OclAny-to-Flight : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Staff)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Flight)) invalid using istyp isdef apply(auto simp: OclAsType F lig ht -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf S taf f -OclAny OclValid-def false-def true-def) lemma down-cast-type P er son-from-OclAny-to-Flight : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Flight)) invalid using istyp isdef apply(auto simp: OclAsType F lig ht -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf P er son-OclAny OclValid-def false-def true-def) lemma down-cast-type C lient -from-OclAny-to-Flight : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Client)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Flight)) invalid using istyp isdef apply(auto simp: OclAsType F lig ht -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf C lient -OclAny OclValid-def false-def true-def) lemma down-cast-type Reser v ation-from-OclAny-to-Flight : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Reservation)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Flight)) invalid using istyp isdef apply(auto simp: OclAsType F lig ht -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf Reser v ation-OclAny OclValid-def false-def true-def) lemma down-cast-type P er son-from-Person-to-Client : assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclValid-def false-def true-def) lemma down-cast-type O clAny -from-OclAny-to-Client : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclValid-def false-def true-def) lemma down-cast-type P er son-from-OclAny-to-Client : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf P er son-OclAny OclValid-def false-def true-def) lemma down-cast-type S taf f -from-Person-to-Client : assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Staff)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclIsTypeOf S taf f -Person OclValid-def false-def true-def) lemma down-cast-type Reser v ation-from-Person-to-Client : assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Reservation)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclIsTypeOf Reser v ation-Person OclValid-def false-def true-def) lemma down-cast-type F lig ht -from-Person-to-Client : shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclIsTypeOf F lig ht -Person OclValid-def false-def true-def) lemma down-cast-type S taf f -from-OclAny-to-Client : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Staff)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf S taf f -OclAny OclValid-def false-def true-def) lemma down-cast-type Reser v ation-from-OclAny-to-Client : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Reservation)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf Reser v ation-OclAny OclValid-def false-def true-def) lemma down-cast-type F lig ht -from-OclAny-to-Client : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Flight)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid using istyp isdef apply(auto simp: OclAsType C lient -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf F lig ht -OclAny OclValid-def false-def true-def) lemma down-cast-type P er son-from-Person-to-Staff : assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclValid-def false-def true-def) lemma down-cast-type O clAny -from-OclAny-to-Staff : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclValid-def false-def true-def) lemma down-cast-type P er son-from-OclAny-to-Staff : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf P er son-OclAny OclValid-def false-def true-def) lemma down-cast-type C lient -from-Person-to-Staff : assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Client)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclIsTypeOf C lient -Person OclValid-def false-def true-def) lemma down-cast-type Reser v ation-from-Person-to-Staff : assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Reservation)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclIsTypeOf Reser v ation-Person OclValid-def false-def true-def) lemma down-cast-type F lig ht -from-Person-to-Staff : assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Flight)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEX T P er son.split ty P er son.split) by(simp add: OclIsTypeOf F lig ht -Person OclValid-def false-def true-def) lemma down-cast-type C lient -from-OclAny-to-Staff : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Client)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf C lient -OclAny OclValid-def false-def true-def) lemma down-cast-type Reser v ation-from-OclAny-to-Staff : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Reservation)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf Reser v ation-OclAny OclValid-def false-def true-def) lemma down-cast-type F lig ht -from-OclAny-to-Staff : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Flight)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid using istyp isdef apply(auto simp: OclAsType S taf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOfF lig ht -OclAny OclValid-def false-def true-def) lemma down-cast-type O clAny -from-OclAny-to-Person : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Person)) invalid using istyp isdef apply(auto simp: OclAsType P er son-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclValid-def false-def true-def) lemma down-cast-type Reser v ation-from-OclAny-to-Person : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Reservation)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Person)) invalid using istyp isdef apply(auto simp: OclAsType P er son-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf Reser v ation-OclAny OclValid-def false-def true-def) lemma down-cast-type F lig ht -from-OclAny-to-Person : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Flight)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Person)) invalid using istyp isdef apply(auto simp: OclAsType P er son-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf F lig ht -OclAny OclValid-def false-def true-def) lemma down-cast-type O clAny -from-OclAny-to-Reservation : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Reservation)) invalid using istyp isdef apply(auto simp: OclAsType Reser v ation-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclValid-def false-def true-def) lemma down-cast-type S taf f -from-OclAny-to-Reservation : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Staff)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Reservation)) invalid using istyp isdef apply(auto simp: OclAsType Reser v ation-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf S taf f -OclAny OclValid-def false-def true-def) lemma down-cast-type P er son-from-OclAny-to-Reservation : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Reservation)) invalid using istyp isdef apply(auto simp: OclAsType Reser v ation-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf P er son-OclAny OclValid-def false-def true-def) lemma down-cast-type C lient -from-OclAny-to-Reservation : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Client)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Reservation)) invalid using istyp isdef apply(auto simp: OclAsType Reser v ation-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf C lient -OclAny OclValid-def false-def true-def) lemma down-cast-type F lig ht -from-OclAny-to-Reservation : assumes istyp: τ |= ((X::•OclAny) .oclIsTypeOf (Flight)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Reservation)) invalid using istyp isdef apply(auto simp: OclAsType Reser v ation-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEX T O clAny .split ty O clAny .split) by(simp add: OclIsTypeOf F lig ht -OclAny OclValid-def false-def true-def)ConstB.6 Class Model: OclIsKindOfDefinition consts OclIsKindOf F lig ht :: α ⇒ Boolean ((-) .oclIsKindOf (Flight)) consts OclIsKindOf C lient :: α ⇒ Boolean ((-) .oclIsKindOf (Client)) consts OclIsKindOf S taf f :: α ⇒ Boolean ((-) .oclIsKindOf (Staff)) consts OclIsKindOf P er son :: α ⇒ Boolean ((-) .oclIsKindOf (Person)) consts OclIsKindOf Reser v ation :: α ⇒ Boolean ((-) .oclIsKindOf (Reservation)) consts OclIsKindOf O clAny :: α ⇒ Boolean ((-) .oclIsKindOf (OclAny))overloading OclIsKindOf F lig ht ≡ (OclIsKindOf F lig ht ::(•Flight) ⇒ -) begin definition OclIsKindOf F lig ht -Flight : (x::•Flight) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight)) end overloading OclIsKindOf F lig ht ≡ (OclIsKindOf F lig ht ::(•OclAny) ⇒ -) begin definition OclIsKindOf F lig ht -OclAny : (x::•OclAny) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight)) end overloading OclIsKindOf F lig ht ≡ (OclIsKindOf F lig ht ::(•Staff) ⇒ -) begin definition OclIsKindOf F lig ht -Staff : (x::•Staff) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight)) end overloading OclIsKindOf F lig ht ≡ (OclIsKindOf F lig ht ::(•Person) ⇒ -) begin definition OclIsKindOf F lig ht -Person : (x::•Person) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight)) end overloading OclIsKindOf F lig ht ≡ (OclIsKindOf F lig ht ::(•Client) ⇒ -) begin definition OclIsKindOf F lig ht -Client : (x::•Client) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight)) end overloading OclIsKindOf F lig ht ≡ (OclIsKindOf F lig ht ::(•Reservation) ⇒ -) begin definition OclIsKindOf F lig ht -Reservation : (x::•Reservation) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight)) end overloading OclIsKindOf C lient ≡ (OclIsKindOf C lient ::(•Client) ⇒ -) begin definition OclIsKindOf C lient -Client : (x::•Client) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client)) end overloading OclIsKindOf C lient ≡ (OclIsKindOf C lient ::(•Person) ⇒ -) begin definition OclIsKindOf C lient -Person : (x::•Person) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client)) end overloading OclIsKindOf C lient ≡ (OclIsKindOf C lient ::(•OclAny) ⇒ -) begin definition OclIsKindOf C lient -OclAny : (x::•OclAny) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client)) end overloading OclIsKindOf C lient ≡ (OclIsKindOf C lient ::(•Staff) ⇒ -) begin definition OclIsKindOf C lient -Staff : (x::•Staff) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client)) end overloading OclIsKindOf C lient ≡ (OclIsKindOf C lient ::(•Reservation) ⇒ -) begin definition OclIsKindOf C lient -Reservation : (x::•Reservation) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client)) end overloading OclIsKindOf C lient ≡ (OclIsKindOf C lient ::(•Flight) ⇒ -) begin definition OclIsKindOf C lient -Flight : (x::•Flight) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client)) end overloading OclIsKindOf S taf f ≡ (OclIsKindOf S taf f ::(•Staff) ⇒ -) begin definition OclIsKindOf S taf f -Staff : (x::•Staff) .oclIsKindOf (Staff) ≡ (x .oclIsTypeOf (Staff)) end overloading OclIsKindOf S taf f ≡ (OclIsKindOf S taf f ::(•Person) ⇒ -) begin definition OclIsKindOf S taf f -Person : (x::•Person) .oclIsKindOf (Staff) ≡ (x .oclIsTypeOf (Staff)) end overloading OclIsKindOf S taf f ≡ (OclIsKindOf S taf f ::(•OclAny) ⇒ -) begin definition OclIsKindOf S taf f -OclAny : (x::•OclAny) .oclIsKindOf (Staff) ≡ (x .oclIsTypeOf (Staff)) end overloading OclIsKindOf S taf f ≡ (OclIsKindOf S taf f ::(•Client) ⇒ -) begin definition OclIsKindOf S taf f -Client : (x::•Client) .oclIsKindOf (Staff) ≡ (x .oclIsTypeOf (Staff)) end overloading OclIsKindOf S taf f ≡ (OclIsKindOf S taf f ::(•Reservation) ⇒ -) begin definition OclIsKindOf S taf f -Reservation : (x::•Reservation) .oclIsKindOf (Staff) ≡ (x .oclIsTypeOf (Staff)) end overloading OclIsKindOf S taf f ≡ (OclIsKindOf S taf f ::(•Flight) ⇒ -) begin definition OclIsKindOf S taf f -Flight : (x::•Flight) .oclIsKindOf (Staff) ≡ (x .oclIsTypeOf (Staff)) end overloading OclIsKindOf P er son ≡ (OclIsKindOf P er son::(•Person) ⇒ -) begin definition OclIsKindOf P er son-Person : (x::•Person) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff)) or (x .oclIsKindOf (Client)) end overloading OclIsKindOf P er son ≡ (OclIsKindOf P er son::(•OclAny) ⇒ -) begin definition OclIsKindOf P er son-OclAny : (x::•OclAny) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff)) or (x .oclIsKindOf (Client)) end overloading OclIsKindOf P er son ≡ (OclIsKindOf P er son::(•Client) ⇒ -) begin definition OclIsKindOf P er son-Client : (x::•Client) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff)) or (x .oclIsKindOf (Client)) end overloading OclIsKindOf P er son ≡ (OclIsKindOf P er son::(•Staff) ⇒ -) begin definition OclIsKindOf P er son-Staff : (x::•Staff) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff)) or (x .oclIsKindOf (Client)) end overloading OclIsKindOf P er son ≡ (OclIsKindOf P er son::(•Reservation) ⇒ -) begin definition OclIsKindOf P er son-Reservation : (x::•Reservation) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff)) or (x .oclIsKindOf (Client)) end overloading OclIsKindOf P er son ≡ (OclIsKindOf P er son::(•Flight) ⇒ -) begin definition OclIsKindOf P er son-Flight : (x::•Flight) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff)) or (x .oclIsKindOf (Client)) end overloading OclIsKindOf Reser v ation ≡ (OclIsKindOf Reser v ation::(•Reservation) ⇒ -) begin definition OclIsKindOf Reser v ation-Reservation : (x::•Reservation) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation)) end overloading OclIsKindOf Reser v ation ≡ (OclIsKindOf Reser v ation::(•OclAny) ⇒ -) begin definition OclIsKindOf Reser v ation-OclAny : (x::•OclAny) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation)) end overloading OclIsKindOf Reser v ation ≡ (OclIsKindOf Reser v ation::(•Staff) ⇒ -) begin definition OclIsKindOf Reser v ation-Staff : (x::•Staff) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation)) end overloading OclIsKindOf Reser v ation ≡ (OclIsKindOf Reser v ation::(•Person) ⇒ -) begin definition OclIsKindOf Reser v ation-Person : (x::•Person) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation)) end overloading OclIsKindOf Reser v ation ≡ (OclIsKindOf Reser v ation::(•Client) ⇒ -) begin definition OclIsKindOf Reser v ation-Client : (x::•Client) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation)) end overloading OclIsKindOf Reser v ation ≡ (OclIsKindOf Reser v ation::(•Flight) ⇒ -) begin definition OclIsKindOf Reser v ation-Flight : (x::•Flight) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation)) end overloading OclIsKindOf O clAny ≡ (OclIsKindOf O clAny ::(•OclAny) ⇒ -) begin definition OclIsKindOf O clAny -OclAny : (x::•OclAny) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x .oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight)) end overloading OclIsKindOf O clAny ≡ (OclIsKindOf O clAny ::(•Flight) ⇒ -) begin definition OclIsKindOf O clAny -Flight : (x::•Flight) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x .oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight)) end overloading OclIsKindOf O clAny ≡ (OclIsKindOf O clAny ::(•Client) ⇒ -) begin definition OclIsKindOf O clAny -Client : (x::•Client) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x .oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight)) end overloading OclIsKindOf O clAny ≡ (OclIsKindOf O clAny ::(•Staff) ⇒ -) begin definition OclIsKindOf O clAny -Staff : (x::•Staff) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x .oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight)) end overloading OclIsKindOf O clAny ≡ (OclIsKindOf O clAny ::(•Person) ⇒ -) begin definition OclIsKindOf O clAny -Person : (x::•Person) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x .oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight)) end overloading OclIsKindOf O clAny ≡ (OclIsKindOf O clAny ::(•Reservation) ⇒ -) begin definition OclIsKindOf O clAny -Reservation : (x::•Reservation) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x .oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight)) end definition OclIsKindOf F lig ht -A = (λ (in F lig ht (Flight)) ⇒ (((((λx -. x)) (Flight))::•Flight) .oclIsKindOf (Flight)) | (in O clAny (OclAny)) ⇒ (((((λx -. x)) (OclAny))::•OclAny) .oclIsKindOf (Reservation)) | (in S taf f (Staff)) ⇒ (((((λx -. x)) (Staff))::•Staff) .oclIsKindOf (Reservation)) | (in P er son (Person)) ⇒ (((((λx -. x)) (Person))::•Person) .oclIsKindOf (Reservation)) | (in C lient (Client)) ⇒ (((((λx -. x)) (Client))::•Client) .oclIsKindOf (Reservation)) | (in F lig ht (Flight)) ⇒ (((((λx -. x)) (Flight))::•Flight) .oclIsKindOf (Reservation))) definition OclIsKindOf O clAny -A = (λ (in O clAny (OclAny)) ⇒ (((((λx -. x)) (OclAny))::•OclAny) .oclIsKindOf (OclAny)) | (in F lig ht (Flight)) ⇒ (((((λx -. x)) (Flight))::•Flight) .oclIsKindOf (OclAny)) | (in C lient (Client)) ⇒ (((((λx -. x)) (Client))::•Client) .oclIsKindOf (OclAny)) | (in S taf f (Staff)) ⇒ (((((λx -. x)) (Staff))::•Staff) .oclIsKindOf (OclAny)) | (in P er son (Person)) ⇒ (((((λx -. x)) (Person))::•Person) .oclIsKindOf (OclAny)) | (in Reser v ation (Reservation)) ⇒ (((((λx -. x)) (Reservation))::•Reservation) .oclIsKindOf (OclAny))) lemmas[simp,code-unfold] = OclIsKindOf F lig ht -Flight OclIsKindOf C lient -Client OclIsKindOf S taf f -Staff OclIsKindOf P er son-Person OclIsKindOf Reser v ation-Reservation OclIsKindOf O clAny -OclAny Context Passing lemma cp-OclIsKindOf F lig ht -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Flight, simp only: cp-OclIsTypeOf F lig ht -Flight-Flight) lemma cp-OclIsKindOf F lig ht -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Flight, simp only: cp-OclIsTypeOf F lig ht -OclAny-Flight) lemma cp-OclIsKindOf F lig ht -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Flight, simp only: cp-OclIsTypeOf F lig ht -Staff-Flight) lemma cp-OclIsKindOf F lig ht -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Flight, simp only: cp-OclIsTypeOf F lig ht -Person-Flight) lemma cp-OclIsKindOf F lig ht -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Flight, simp only: cp-OclIsTypeOf F lig ht -Client-Flight) lemma cp-OclIsKindOf F lig ht -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Flight, simp only: cp-OclIsTypeOf F lig ht -Reservation-Flight) lemma cp-OclIsKindOf F lig ht -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -OclAny, simp only: cp-OclIsTypeOf F lig ht -Flight-OclAny) lemma cp-OclIsKindOf F lig ht -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -OclAny, simp only: cp-OclIsTypeOf F lig ht -OclAny-OclAny) lemma cp-OclIsKindOf F lig ht -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -OclAny, simp only: cp-OclIsTypeOf F lig ht -Staff-OclAny) lemma cp-OclIsKindOf F lig ht -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -OclAny, simp only: cp-OclIsTypeOf F lig ht -Person-OclAny) lemma cp-OclIsKindOf F lig ht -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -OclAny, simp only: cp-OclIsTypeOf F lig ht -Client-OclAny) lemma cp-OclIsKindOf F lig ht -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny)

 :•Client)))::•Staff) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Staff , simp only: cp-OclIsTypeOf F lig ht -Client-Staff) lemma cp-OclIsKindOf F lig ht -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Staff , simp only: cp-OclIsTypeOf F lig ht -Reservation-Staff) lemma cp-OclIsKindOf F lig ht -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Person, simp only: cp-OclIsTypeOf F lig ht -Flight-Person) lemma cp-OclIsKindOf F lig ht -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Person, simp only: cp-OclIsTypeOf F lig ht -OclAny-Person) lemma cp-OclIsKindOf F lig ht -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Person, simp only: cp-OclIsTypeOf F lig ht -Staff-Person) lemma cp-OclIsKindOf F lig ht -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Person, simp only: cp-OclIsTypeOf F lig ht -Person-Person) lemma cp-OclIsKindOf F lig ht -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Person, simp only: cp-OclIsTypeOf F lig ht -Client-Person) lemma cp-OclIsKindOf F lig ht -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Person, simp only: cp-OclIsTypeOf F lig ht -Reservation-Person) lemma cp-OclIsKindOf F lig ht -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Client, simp only: cp-OclIsTypeOf F lig ht -Flight-Client) lemma cp-OclIsKindOf F lig ht -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Client, simp only: cp-OclIsTypeOf F lig ht -OclAny-Client) lemma cp-OclIsKindOf F lig ht -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Client, simp only: cp-OclIsTypeOf F lig ht -Staff-Client) lemma cp-OclIsKindOf F lig ht -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Client, simp only: cp-OclIsTypeOf F lig ht -Person-Client) lemma cp-OclIsKindOf F lig ht -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Client, simp only: cp-OclIsTypeOf F lig ht -Client-Client) lemma cp-OclIsKindOf F lig ht -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Client, simp only: cp-OclIsTypeOf F lig ht -Reservation-Client) lemma cp-OclIsKindOf F lig ht -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Reservation, simp only: cp-OclIsTypeOf F lig ht -Flight-Reservation) lemma cp-OclIsKindOf F lig ht -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Reservation, simp only: cp-OclIsTypeOf F lig ht -OclAny-Reservation) lemma cp-OclIsKindOf F lig ht -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Reservation, simp only: cp-OclIsTypeOf F lig ht -Staff-Reservation) lemma cp-OclIsKindOf F lig ht -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Reservation, simp only: cp-OclIsTypeOf F lig ht -Person-Reservation) lemma cp-OclIsKindOf F lig ht -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Reservation, simp only: cp-OclIsTypeOf F lig ht -Client-Reservation) lemma cp-OclIsKindOf F lig ht -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsKindOf (Flight))))) by(simp only: OclIsKindOf F lig ht -Reservation, simp only: cp-OclIsTypeOf F lig ht -Reservation-Reservation) lemma cp-OclIsKindOf C lient -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Client, simp only: cp-OclIsTypeOf C lient -Client-Client) lemma cp-OclIsKindOf C lient -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Client, simp only: cp-OclIsTypeOf C lient -Person-Client) lemma cp-OclIsKindOf C lient -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Client, simp only: cp-OclIsTypeOf C lient -OclAny-Client) lemma cp-OclIsKindOf C lient -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Client, simp only: cp-OclIsTypeOf C lient -Staff-Client) lemma cp-OclIsKindOf C lient -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Client, simp only: cp-OclIsTypeOf C lient -Reservation-Client) lemma cp-OclIsKindOf C lient -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Client, simp only: cp-OclIsTypeOf C lient -Flight-Client) lemma cp-OclIsKindOf C lient -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Person, simp only: cp-OclIsTypeOf C lient -Client-Person) lemma cp-OclIsKindOf C lient -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Person, simp only: cp-OclIsTypeOf C lient -Person-Person) lemma cp-OclIsKindOf C lient -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Person, simp only: cp-OclIsTypeOf C lient -OclAny-Person) lemma cp-OclIsKindOf C lient -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Person, simp only: cp-OclIsTypeOf C lient -Staff-Person) lemma cp-OclIsKindOf C lient -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsKindOf (Client)))))by(simp only: OclIsKindOfC lient -Person, simp only: cp-OclIsTypeOf C lient -Reservation-Person) lemma cp-OclIsKindOf C lient -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Person, simp only: cp-OclIsTypeOf C lient -Flight-Person) lemma cp-OclIsKindOf C lient -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -OclAny, simp only: cp-OclIsTypeOf C lient -Client-OclAny) lemma cp-OclIsKindOf C lient -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -OclAny, simp only: cp-OclIsTypeOf C lient -Person-OclAny) lemma cp-OclIsKindOf C lient -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -OclAny, simp only: cp-OclIsTypeOf C lient -OclAny-OclAny) lemma cp-OclIsKindOf C lient -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -OclAny, simp only: cp-OclIsTypeOf C lient -Staff-OclAny) lemma cp-OclIsKindOf C lient -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -OclAny, simp only: cp-OclIsTypeOf C lient -Reservation-OclAny) lemma cp-OclIsKindOf C lient -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -OclAny, simp only: cp-OclIsTypeOf C lient -Flight-OclAny) lemma cp-OclIsKindOf C lient -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Staff , simp only: cp-OclIsTypeOf C lient -Client-Staff) lemma cp-OclIsKindOf C lient -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Staff , simp only: cp-OclIsTypeOf C lient -Person-Staff) lemma cp-OclIsKindOf C lient -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Staff , simp only: cp-OclIsTypeOf C lient -OclAny-Staff) lemma cp-OclIsKindOf C lient -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Staff , simp only: cp-OclIsTypeOf C lient -Staff-Staff) lemma cp-OclIsKindOf C lient -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Staff , simp only: cp-OclIsTypeOf C lient -Reservation-Staff) lemma cp-OclIsKindOf C lient -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Staff , simp only: cp-OclIsTypeOf C lient -Flight-Staff) lemma cp-OclIsKindOf C lient -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Reservation, simp only: cp-OclIsTypeOf C lient -Client-Reservation) lemma cp-OclIsKindOf C lient -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Reservation, simp only: cp-OclIsTypeOf C lient -Person-Reservation) lemma cp-OclIsKindOf C lient -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Reservation, simp only: cp-OclIsTypeOf C lient -OclAny-Reservation) lemma cp-OclIsKindOf C lient -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Reservation, simp only: cp-OclIsTypeOf C lient -Staff-Reservation) lemma cp-OclIsKindOf C lient -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Reservation, simp only: cp-OclIsTypeOf C lient -Reservation-Reservation) lemma cp-OclIsKindOf C lient -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Reservation, simp only: cp-OclIsTypeOf C lient -Flight-Reservation) lemma cp-OclIsKindOf C lient -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Flight, simp only: cp-OclIsTypeOf C lient -Client-Flight) lemma cp-OclIsKindOf C lient -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Flight, simp only: cp-OclIsTypeOf C lient -Person-Flight) lemma cp-OclIsKindOf C lient -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Flight, simp only: cp-OclIsTypeOf C lient -OclAny-Flight) lemma cp-OclIsKindOf C lient -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Flight, simp only: cp-OclIsTypeOf C lient -Staff-Flight) lemma cp-OclIsKindOf C lient -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Flight, simp only: cp-OclIsTypeOf C lient -Reservation-Flight) lemma cp-OclIsKindOf C lient -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsKindOf (Client))))) by(simp only: OclIsKindOf C lient -Flight, simp only: cp-OclIsTypeOf C lient -Flight-Flight) lemma cp-OclIsKindOf S taf f -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Staff , simp only: cp-OclIsTypeOf S taf f -Staff-Staff) lemma cp-OclIsKindOf S taf f -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Staff , simp only: cp-OclIsTypeOf S taf f -Person-Staff) lemma cp-OclIsKindOf S taf f -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Staff , simp only: cp-OclIsTypeOf S taf f -OclAny-Staff) lemma cp-OclIsKindOf S taf f -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Staff , simp only: cp-OclIsTypeOf S taf f -Client-Staff) lemma cp-OclIsKindOf S taf f -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Staff , simp only: cp-OclIsTypeOf S taf f -Reservation-Staff) lemma cp-OclIsKindOf S taf f -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Staff , simp only: cp-OclIsTypeOf S taf f -Flight-Staff) lemma cp-OclIsKindOf S taf f -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Person, simp only: cp-OclIsTypeOf S taf f -Staff-Person) lemma cp-OclIsKindOf S taf f -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Person, simp only: cp-OclIsTypeOf S taf f -Person-Person) lemma cp-OclIsKindOf S taf f -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Person, simp only: cp-OclIsTypeOf S taf f -OclAny-Person) lemma cp-OclIsKindOf S taf f -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Person, simp only: cp-OclIsTypeOf S taf f -Client-Person) lemma cp-OclIsKindOf S taf f -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Person, simp only: cp-OclIsTypeOf S taf f -Reservation-Person) lemma cp-OclIsKindOf S taf f -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Person, simp only: cp-OclIsTypeOf S taf f -Flight-Person) lemma cp-OclIsKindOf S taf f -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -OclAny, simp only: cp-OclIsTypeOf S taf f -Staff-OclAny) lemma cp-OclIsKindOf S taf f -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -OclAny, simp only: cp-OclIsTypeOf S taf f -Person-OclAny) lemma cp-OclIsKindOf S taf f -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -OclAny, simp only: cp-OclIsTypeOf S taf f -OclAny-OclAny) lemma cp-OclIsKindOf S taf f -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -OclAny, simp only: cp-OclIsTypeOf S taf f -Client-OclAny) lemma cp-OclIsKindOf S taf f -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) by(simp only: OclIsKindOf S taf f -OclAny, simp only: cp-OclIsTypeOf S taf f -Reservation-OclAny) lemma cp-OclIsKindOf S taf f -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -OclAny, simp only: cp-OclIsTypeOf S taf f -Flight-OclAny) lemma cp-OclIsKindOf S taf f -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Client, simp only: cp-OclIsTypeOf S taf f -Staff-Client) lemma cp-OclIsKindOf S taf f -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Client, simp only: cp-OclIsTypeOf S taf f -Person-Client) lemma cp-OclIsKindOf S taf f -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Client, simp only: cp-OclIsTypeOf S taf f -OclAny-Client) lemma cp-OclIsKindOf S taf f -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Client, simp only: cp-OclIsTypeOf S taf f -Client-Client) lemma cp-OclIsKindOf S taf f -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Client, simp only: cp-OclIsTypeOf S taf f -Reservation-Client) lemma cp-OclIsKindOf S taf f -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Client, simp only: cp-OclIsTypeOf S taf f -Flight-Client) lemma cp-OclIsKindOf S taf f -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Reservation, simp only: cp-OclIsTypeOf S taf f -Staff-Reservation) lemma cp-OclIsKindOf S taf f -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Reservation, simp only: cp-OclIsTypeOf S taf f -Person-Reservation) lemma cp-OclIsKindOf S taf f -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Reservation, simp only: cp-OclIsTypeOf S taf f -OclAny-Reservation) lemma cp-OclIsKindOf S taf f -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Reservation, simp only: cp-OclIsTypeOf S taf f -Client-Reservation) lemma cp-OclIsKindOf S taf f -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Reservation, simp only: cp-OclIsTypeOf S taf f -Reservation-Reservation) lemma cp-OclIsKindOf S taf f -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Reservation, simp only: cp-OclIsTypeOf S taf f -Flight-Reservation) lemma cp-OclIsKindOf S taf f -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Flight, simp only: cp-OclIsTypeOf S taf f -Staff-Flight) lemma cp-OclIsKindOf S taf f -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Flight, simp only: cp-OclIsTypeOf S taf f -Person-Flight) lemma cp-OclIsKindOf S taf f -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Flight, simp only: cp-OclIsTypeOf S taf f -OclAny-Flight) lemma cp-OclIsKindOf S taf f -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Flight, simp only: cp-OclIsTypeOf S taf f -Client-Flight) lemma cp-OclIsKindOf S taf f -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Flight, simp only: cp-OclIsTypeOf S taf f -Reservation-Flight) lemma cp-OclIsKindOf S taf f -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsKindOf (Staff))))) by(simp only: OclIsKindOf S taf f -Flight, simp only: cp-OclIsTypeOf S taf f -Flight-Flight) lemma cp-OclIsKindOf P er son-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Person-Person) by(simp only: cp-OclIsKindOf S taf f -Person-Person, simp only: cp-OclIsKindOf C lient -Person-Person) lemma cp-OclIsKindOf P er son-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-OclAny-Person) by(simp only: cp-OclIsKindOf S taf f -OclAny-Person, simp only: cp-OclIsKindOf C lient -OclAny-Person) lemma cp-OclIsKindOf P er son-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Client-Person) by(simp only: cp-OclIsKindOf S taf f -Client-Person, simp only: cp-OclIsKindOf C lient -Client-Person) lemma cp-OclIsKindOf P er son-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Staff-Person) by(simp only: cp-OclIsKindOf S taf f -Staff-Person, simp only: cp-OclIsKindOf C lient -Staff-Person) lemma cp-OclIsKindOf P er son-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person

 by(simp only: cp-OclIsKindOf S taf f -Person-Reservation, simp only: cp-OclIsKindOf C lient -Person-Reservation) lemma cp-OclIsKindOf P er son-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-OclAny-Reservation) by(simp only: cp-OclIsKindOf S taf f -OclAny-Reservation, simp only: cp-OclIsKindOf C lient -OclAny-Reservation) lemma cp-OclIsKindOf P er son-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Client-Reservation) by(simp only: cp-OclIsKindOf S taf f -Client-Reservation, simp only: cp-OclIsKindOf C lient -Client-Reservation) lemma cp-OclIsKindOf P er son-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Staff-Reservation) by(simp only: cp-OclIsKindOf S taf f -Staff-Reservation, simp only: cp-OclIsKindOf C lient -Staff-Reservation) lemma cp-OclIsKindOf P er son-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Reservation-Reservation) by(simp only: cp-OclIsKindOf S taf f -Reservation-Reservation, simp only: cp-OclIsKindOf C lient -Reservation-Reservation) lemma cp-OclIsKindOf P er son-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Flight-Reservation) by(simp only: cp-OclIsKindOf S taf f -Flight-Reservation, simp only: cp-OclIsKindOf C lient -Flight-Reservation) lemma cp-OclIsKindOf P er son-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Person-Flight) by(simp only: cp-OclIsKindOf S taf f -Person-Flight, simp only: cp-OclIsKindOf C lient -Person-Flight) lemma cp-OclIsKindOf P er son-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-OclAny-Flight) by(simp only: cp-OclIsKindOf S taf f -OclAny-Flight, simp only: cp-OclIsKindOf C lient -OclAny-Flight) lemma cp-OclIsKindOf P er son-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Client-Flight) by(simp only: cp-OclIsKindOf S taf f -Client-Flight, simp only: cp-OclIsKindOf C lient -Client-Flight) lemma cp-OclIsKindOf P er son-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Staff-Flight) by(simp only: cp-OclIsKindOf S taf f -Staff-Flight, simp only: cp-OclIsKindOf C lient -Staff-Flight) lemma cp-OclIsKindOf P er son-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Reservation-Flight) by(simp only: cp-OclIsKindOf S taf f -Reservation-Flight, simp only: cp-OclIsKindOf C lient -Reservation-Flight) lemma cp-OclIsKindOf P er son-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsKindOf (Person))))) apply(simp only: OclIsKindOf P er son-Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-Flight-Flight) by(simp only: cp-OclIsKindOf S taf f -Flight-Flight, simp only: cp-OclIsKindOf C lient -Flight-Flight) lemma cp-OclIsKindOf Reser v ation-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Reservation, simp only: cp-OclIsTypeOf Reser v ation-Reservation-Reservation) lemma cp-OclIsKindOf Reser v ation-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Reservation, simp only: cp-OclIsTypeOf Reser v ation-OclAny-Reservation) lemma cp-OclIsKindOf Reser v ation-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Reservation, simp only: cp-OclIsTypeOf Reser v ation-Staff-Reservation) lemma cp-OclIsKindOf Reser v ation-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Reservation, simp only: cp-OclIsTypeOf Reser v ation-Person-Reservation) lemma cp-OclIsKindOf Reser v ation-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Reservation, simp only: cp-OclIsTypeOf Reser v ation-Client-Reservation) lemma cp-OclIsKindOf Reser v ation-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Reservation, simp only: cp-OclIsTypeOf Reser v ation-Flight-Reservation) lemma cp-OclIsKindOf Reser v ation-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-OclAny, simp only: cp-OclIsTypeOf Reser v ation-Reservation-OclAny) lemma cp-OclIsKindOf Reser v ation-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-OclAny, simp only: cp-OclIsTypeOf Reser v ation-OclAny-OclAny) lemma cp-OclIsKindOf Reser v ation-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-OclAny, simp only: cp-OclIsTypeOf Reser v ation-Staff-OclAny) lemma cp-OclIsKindOf Reser v ation-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-OclAny, simp only: cp-OclIsTypeOf Reser v ation-Person-OclAny) lemma cp-OclIsKindOf Reser v ation-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-OclAny, simp only: cp-OclIsTypeOf Reser v ation-Client-OclAny) lemma cp-OclIsKindOf Reser v ation-Flight-OclAny : (cp (p)) =⇒ (cp ((λx.(((p ((x::•Flight)))::•OclAny) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-OclAny, simp only: cp-OclIsTypeOf Reser v ation-Flight-OclAny) lemma cp-OclIsKindOf Reser v ation-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Staff , simp only: cp-OclIsTypeOf Reser v ation-Reservation-Staff) lemma cp-OclIsKindOf Reser v ation-OclAny-Staff ::•OclAny)))::•Staff) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Staff , simp only: cp-OclIsTypeOf Reser v ation-OclAny-Staff) lemma cp-OclIsKindOf Reser v ation-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Staff , simp only: cp-OclIsTypeOf Reser v ation-Staff-Staff) lemma cp-OclIsKindOf Reser v ation-Person-Staff ::•Person)))::•Staff) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Staff , simp only: cp-OclIsTypeOf Reser v ation-Person-Staff) lemma cp-OclIsKindOf Reser v ation-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Staff , simp only: cp-OclIsTypeOf Reser v ation-Client-Staff) lemma cp-OclIsKindOf Reser v ation-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Staff , simp only: cp-OclIsTypeOf Reser v ation-Flight-Staff) lemma cp-OclIsKindOf Reser v ation-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Person, simp only: cp-OclIsTypeOf Reser v ation-Reservation-Person) lemma cp-OclIsKindOf Reser v ation-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Person, simp only: cp-OclIsTypeOf Reser v ation-OclAny-Person) lemma cp-OclIsKindOf Reser v ation-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Person, simp only: cp-OclIsTypeOf Reser v ation-Staff-Person) lemma cp-OclIsKindOf Reser v ation-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Person, simp only: cp-OclIsTypeOf Reser v ation-Person-Person) lemma cp-OclIsKindOf Reser v ation-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Person, simp only: cp-OclIsTypeOf Reser v ation-Client-Person) lemma cp-OclIsKindOf Reser v ation-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Person, simp only: cp-OclIsTypeOf Reser v ation-Flight-Person) lemma cp-OclIsKindOf Reser v ation-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Client, simp only: cp-OclIsTypeOf Reser v ation-Reservation-Client) lemma cp-OclIsKindOf Reser v ation-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Client, simp only: cp-OclIsTypeOf Reser v ation-OclAny-Client) lemma cp-OclIsKindOf Reser v ation-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Client, simp only: cp-OclIsTypeOf Reser v ation-Staff-Client) lemma cp-OclIsKindOf Reser v ation-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Client, simp only: cp-OclIsTypeOf Reser v ation-Person-Client) lemma cp-OclIsKindOf Reser v ation-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Client, simp only: cp-OclIsTypeOf Reser v ation-Client-Client) lemma cp-OclIsKindOf Reser v ation-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Client, simp only: cp-OclIsTypeOf Reser v ation-Flight-Client) lemma cp-OclIsKindOf Reser v ation-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Flight, simp only: cp-OclIsTypeOf Reser v ation-Reservation-Flight) lemma cp-OclIsKindOf Reser v ation-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Flight, simp only: cp-OclIsTypeOf Reser v ation-OclAny-Flight) lemma cp-OclIsKindOf Reser v ation-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Flight, simp only: cp-OclIsTypeOf Reser v ation-Staff-Flight) lemma cp-OclIsKindOf Reser v ation-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Flight, simp only: cp-OclIsTypeOf Reser v ation-Person-Flight) lemma cp-OclIsKindOf Reser v ation-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Flight, simp only: cp-OclIsTypeOf Reser v ation-Client-Flight) lemma cp-OclIsKindOf Reser v ation-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsKindOf (Reservation))))) by(simp only: OclIsKindOf Reser v ation-Flight, simp only: cp-OclIsTypeOf Reser v ation-Flight-Flight) lemma cp-OclIsKindOf O clAny -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•OclAny) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -OclAny) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -OclAny-OclAny) by(simp only: cp-OclIsKindOf Reser v ation-OclAny-OclAny, simp only: cp-OclIsKindOf P er son-OclAny-OclAny, simp only: cp-OclIsKindOf F lig ht -OclAny-OclAny) lemma cp-OclIsKindOf O clAny -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•OclAny) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -OclAny) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Flight-OclAny) by(simp only: cp-OclIsKindOf Reser v ation-Flight-OclAny, simp only: cp-OclIsKindOf P er son-Flight-OclAny, simp only: cp-OclIsKindOf F lig ht -Flight-OclAny) lemma cp-OclIsKindOf O clAny -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•OclAny) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -OclAny) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Client-OclAny) by(simp only: cp-OclIsKindOf Reser v ation-Client-OclAny, simp only: cp-OclIsKindOf P er son-Client-OclAny, simp only: cp-OclIsKindOf F lig ht -Client-OclAny) lemma cp-OclIsKindOf O clAny -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•OclAny) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -OclAny) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Staff-OclAny) by(simp only: cp-OclIsKindOf Reser v ation-Staff-OclAny, simp only: cp-OclIsKindOf P er son-Staff-OclAny, simp only: cp-OclIsKindOf F lig ht -Staff-OclAny) lemma cp-OclIsKindOf O clAny -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•OclAny) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -OclAny) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Person-OclAny) by(simp only: cp-OclIsKindOf Reser v ation-Person-OclAny, simp only: cp-OclIsKindOf P er son-Person-OclAny, simp only: cp-OclIsKindOf F lig ht -Person-OclAny) lemma cp-OclIsKindOf O clAny -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•OclAny) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -OclAny) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Reservation-OclAny) by(simp only: cp-OclIsKindOf Reser v ation-Reservation-OclAny, simp only: cp-OclIsKindOf P er son-Reservation-OclAny, simp only: cp-OclIsKindOf F lig ht -Reservation-OclAny) lemma cp-OclIsKindOf O clAny -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Flight) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -OclAny-Flight) by(simp only: cp-OclIsKindOf Reser v ation-OclAny-Flight, simp only: cp-OclIsKindOf P er son-OclAny-Flight, simp only: cp-OclIsKindOf F lig ht -OclAny-Flight) lemma cp-OclIsKindOf O clAny -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Flight) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Flight-Flight) by(simp only: cp-OclIsKindOf Reser v ation-Flight-Flight, simp only: cp-OclIsKindOf P er son-Flight-Flight, simp only: cp-OclIsKindOf F lig ht -Flight-Flight) lemma cp-OclIsKindOf O clAny -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Flight) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Client-Flight) by(simp only: cp-OclIsKindOf Reser v ation-Client-Flight, simp only: cp-OclIsKindOf P er son-Client-Flight, simp only: cp-OclIsKindOf F lig ht -Client-Flight) lemma cp-OclIsKindOf O clAny -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Flight) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Staff-Flight) by(simp only: cp-OclIsKindOf Reser v ation-Staff-Flight, simp only: cp-OclIsKindOf P er son-Staff-Flight, simp only: cp-OclIsKindOf F lig ht -Staff-Flight) lemma cp-OclIsKindOf O clAny -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Flight) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Person-Flight) by(simp only: cp-OclIsKindOf Reser v ation-Person-Flight, simp only: cp-OclIsKindOf P er son-Person-Flight, simp only: cp-OclIsKindOf F lig ht -Person-Flight) lemma cp-OclIsKindOf O clAny -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Flight) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Flight) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Reservation-Flight) by(simp only: cp-OclIsKindOf Reser v ation-Reservation-Flight, simp only: cp-OclIsKindOf P er son-Reservation-Flight, simp only: cp-OclIsKindOf F lig ht -Reservation-Flight) lemma cp-OclIsKindOf O clAny -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Client) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Client) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -OclAny-Client) by(simp only: cp-OclIsKindOf Reser v ation-OclAny-Client, simp only: cp-OclIsKindOf P er son-OclAny-Client, simp only: cp-OclIsKindOf F lig ht -OclAny-Client) lemma cp-OclIsKindOf O clAny -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Client) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Client) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Flight-Client) by(simp only: cp-OclIsKindOf Reser v ation-Flight-Client, simp only: cp-OclIsKindOf P er son-Flight-Client, simp only: cp-OclIsKindOf F lig ht -Flight-Client) lemma cp-OclIsKindOf O clAny -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Client) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Client) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Client-Client) by(simp only: cp-OclIsKindOf Reser v ation-Client-Client, simp only: cp-OclIsKindOf P er son-Client-Client, simp only: cp-OclIsKindOf F lig ht -Client-Client) lemma cp-OclIsKindOf O clAny -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Client) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Client) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Staff-Client) by(simp only: cp-OclIsKindOf Reser v ation-Staff-Client, simp only: cp-OclIsKindOf P er son-Staff-Client, simp only: cp-OclIsKindOf F lig ht -Staff-Client) lemma cp-OclIsKindOf O clAny -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Client) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Client) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Person-Client) by(simp only: cp-OclIsKindOf Reser v ation-Person-Client, simp only: cp-OclIsKindOf P er son-Person-Client, simp only: cp-OclIsKindOf F lig ht -Person-Client) lemma cp-OclIsKindOf O clAny -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Client) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Client) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Reservation-Client) by(simp only: cp-OclIsKindOf Reser v ation-Reservation-Client, simp only: cp-OclIsKindOf P er son-Reservation-Client, simp only: cp-OclIsKindOf F lig ht -Reservation-Client) lemma cp-OclIsKindOf O clAny -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Staff) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Staff) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -OclAny-Staff) by(simp only: cp-OclIsKindOf Reser v ation-OclAny-Staff , simp only: cp-OclIsKindOf P er son-OclAny-Staff , simp only: cp-OclIsKindOf F lig ht -OclAny-Staff) lemma cp-OclIsKindOf O clAny -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Staff) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Staff) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Flight-Staff) by(simp only: cp-OclIsKindOf Reser v ation-Flight-Staff , simp only: cp-OclIsKindOf P er son-Flight-Staff , simp only: cp-OclIsKindOf F lig ht -Flight-Staff) lemma cp-OclIsKindOf O clAny -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Staff) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Staff) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Client-Staff) by(simp only: cp-OclIsKindOf Reser v ation-Client-Staff , simp only: cp-OclIsKindOf P er son-Client-Staff , simp only: cp-OclIsKindOf F lig ht -Client-Staff) lemma cp-OclIsKindOf O clAny -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Staff) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Staff) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Staff-Staff) by(simp only: cp-OclIsKindOf Reser v ation-Staff-Staff , simp only: cp-OclIsKindOf P er son-Staff-Staff , simp only: cp-OclIsKindOf F lig ht -Staff-Staff) lemma cp-OclIsKindOf O clAny -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Staff) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Staff) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Person-Staff) by(simp only: cp-OclIsKindOf Reser v ation-Person-Staff , simp only: cp-OclIsKindOf P er son-Person-Staff , simp only: cp-OclIsKindOf F lig ht -Person-Staff) lemma cp-OclIsKindOf O clAny -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Staff) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Staff) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Reservation-Staff) by(simp only: cp-OclIsKindOf Reser v ation-Reservation-Staff , simp only: cp-OclIsKindOf P er son-Reservation-Staff , simp only: cp-OclIsKindOf F lig ht -Reservation-Staff) lemma cp-OclIsKindOf O clAny -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Person) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -OclAny-Person) by(simp only: cp-OclIsKindOf Reser v ation-OclAny-Person, simp only: cp-OclIsKindOf P er son-OclAny-Person, simp only: cp-OclIsKindOf F lig ht -OclAny-Person) lemma cp-OclIsKindOf O clAny -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Person) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Flight-Person) by(simp only: cp-OclIsKindOf Reser v ation-Flight-Person, simp only: cp-OclIsKindOf P er son-Flight-Person, simp only: cp-OclIsKindOf F lig ht -Flight-Person) lemma cp-OclIsKindOf O clAny -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Person) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Client-Person) by(simp only: cp-OclIsKindOf Reser v ation-Client-Person, simp only: cp-OclIsKindOf P er son-Client-Person, simp only: cp-OclIsKindOf F lig ht -Client-Person) lemma cp-OclIsKindOf O clAny -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Person) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Staff-Person) by(simp only: cp-OclIsKindOf Reser v ation-Staff-Person, simp only: cp-OclIsKindOf P er son-Staff-Person, simp only: cp-OclIsKindOf F lig ht -Staff-Person) lemma cp-OclIsKindOf O clAny -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Person) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Person-Person) by(simp only: cp-OclIsKindOf Reser v ation-Person-Person, simp only: cp-OclIsKindOf P er son-Person-Person, simp only: cp-OclIsKindOf F lig ht -Person-Person) lemma cp-OclIsKindOf O clAny -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Person) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Person) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Reservation-Person) by(simp only: cp-OclIsKindOf Reser v ation-Reservation-Person, simp only: cp-OclIsKindOf P er son-Reservation-Person, simp only: cp-OclIsKindOf F lig ht -Reservation-Person) lemma cp-OclIsKindOf O clAny -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•OclAny)))::•Reservation) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -OclAny-Reservation) by(simp only: cp-OclIsKindOf Reser v ation-OclAny-Reservation, simp only: cp-OclIsKindOf P er son-OclAny-Reservation, simp only: cp-OclIsKindOf F lig ht -OclAny-Reservation)lemma cp-OclIsKindOf O clAny -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Flight)))::•Reservation) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Flight-Reservation) by(simp only: cp-OclIsKindOf Reser v ation-Flight-Reservation, simp only: cp-OclIsKindOf P er son-Flight-Reservation, simp only: cp-OclIsKindOf F lig ht -Flight-Reservation) lemma cp-OclIsKindOf O clAny -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Client)))::•Reservation) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Client-Reservation) by(simp only: cp-OclIsKindOf Reser v ation-Client-Reservation, simp only: cp-OclIsKindOf P er son-Client-Reservation, simp only: cp-OclIsKindOf F lig ht -Client-Reservation) lemma cp-OclIsKindOf O clAny -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Staff)))::•Reservation) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Staff-Reservation) by(simp only: cp-OclIsKindOf Reser v ation-Staff-Reservation, simp only: cp-OclIsKindOf P er son-Staff-Reservation, simp only: cp-OclIsKindOf F lig ht -Staff-Reservation) lemma cp-OclIsKindOf O clAny -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Person)))::•Reservation) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Person-Reservation) by(simp only: cp-OclIsKindOf Reser v ation-Person-Reservation, simp only: cp-OclIsKindOf P er son-Person-Reservation, simp only: cp-OclIsKindOf F lig ht -Person-Reservation) lemma cp-OclIsKindOf O clAny -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::•Reservation)))::•Reservation) .oclIsKindOf (OclAny))))) apply(simp only: OclIsKindOf O clAny -Reservation) apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf O clAny -Reservation-Reservation) by(simp only: cp-OclIsKindOf Reser v ation-Reservation-Reservation, simp only: cp-OclIsKindOf P er son-Reservation-Reservation,

 f -Staff-null : ((null::•Staff) .oclIsKindOf (Staff)) = true by(simp only: OclIsKindOf S taf f -Staff OclIsTypeOf S taf f -Staff-null) lemma OclIsKindOf S taf f -Person-invalid : ((invalid::•Person) .oclIsKindOf (Staff)) = invalid by(simp only: OclIsKindOf S taf f -Person OclIsTypeOf S taf f -Person-invalid) lemma OclIsKindOf S taf f -Person-null : ((null::•Person) .oclIsKindOf (Staff)) = true by(simp only: OclIsKindOf S taf f -Person OclIsTypeOf S taf f -Person-null) lemma OclIsKindOf S taf f -OclAny-invalid : ((invalid::•OclAny) .oclIsKindOf (Staff)) = invalid by(simp only: OclIsKindOf S taf f -OclAny OclIsTypeOf S taf f -OclAny-invalid) lemma OclIsKindOf S taf f -OclAny-null : ((null::•OclAny) .oclIsKindOf (Staff)) = true by(simp only:

lemma

 OclIsKindOf P er son-Reservation-invalid : ((invalid::•Reservation) .oclIsKindOf (Person)) = invalid by(simp only: OclIsKindOf P er son-Reservation OclIsTypeOf P er son-Reservation-invalid OclIsKindOf S taf f -Reservation-invalid OclIsKindOf C lient -Reservation-invalid, simp) lemma OclIsKindOf P er son-Reservation-nul l : ((null::•Reservation) .oclIsKindOf (Person)) = true by(simp only: OclIsKindOf P er son-Reservation OclIsTypeOf P er son-Reservation-nul l OclIsKindOf S taf f -Reservation-null OclIsKindOf C lient -Reservation-null, simp) lemma OclIsKindOf P er son-Flight-invalid : ((invalid::•Flight) .oclIsKindOf (Person)) = invalid by(simp only: OclIsKindOf P er son-Flight OclIsTypeOf P er son-Flight-invalid OclIsKindOf S taf f -Flight-invalid OclIsKindOf C lient -Flight-invalid, simp) lemma OclIsKindOf P er son-Flight-nul l : ((null::•Flight) .oclIsKindOf (Person)) = true by(simp only: OclIsKindOf P er son-Flight OclIsTypeOf P er son-Flight-nul l OclIsKindOf S taf f -Flight-null OclIsKindOf C lient -Flight-null, simp) lemma OclIsKindOf Reser v ation-Reservation-invalid : ((invalid::•Reservation) .oclIsKindOf (Reservation)) = invalid by(simp only: OclIsKindOf Reser v ation-Reservation OclIsTypeOf Reser v ation-Reservation-invalid) lemma OclIsKindOf Reser v ation-Reservation-nul l : ((null::•Reservation) .oclIsKindOf (Reservation)) = true by(simp only: OclIsKindOf Reser v ation-Reservation OclIsTypeOf Reser v ation-Reservation-nul l) lemma OclIsKindOf Reser v ation-OclAny-invalid : ((invalid::•OclAny) .oclIsKindOf (Reservation)) = invalid by(simp only: OclIsKindOf Reser v ation-OclAny OclIsTypeOf Reser v ation-OclAny-invalid) lemma OclIsKindOf Reser v ation-OclAny-nul l : ((null::•OclAny) .oclIsKindOf (Reservation)) = true by(simp only: OclIsKindOf Reser v ation-OclAny OclIsTypeOf Reser v ation-OclAny-nul l) lemma OclIsKindOf Reser v ation-Staff-invalid : ((invalid::•Staff) .oclIsKindOf (Reservation)) = invalid by(simp only: OclIsKindOf Reser v ation-Staff OclIsTypeOf Reser v ation-Staff-invalid) lemma OclIsKindOf Reser v ation-Staff-nul l : ((null::•Staff) .oclIsKindOf (Reservation)) = true by(simp only: OclIsKindOf Reser v ation-Staff OclIsTypeOf Reser v ation-Staff-nul l) lemma OclIsKindOf Reser v ation-Person-invalid : ((invalid::•Person) .oclIsKindOf (Reservation)) = invalid by(simp only: OclIsKindOf Reser v ation-Person OclIsTypeOf Reser v ation-Person-invalid) lemma OclIsKindOf Reser v ation-Person-nul l : ((null::•Person) .oclIsKindOf (Reservation)) = true by(simp only: OclIsKindOf Reser v ation-Person OclIsTypeOf Reser v ation-Person-nul l) lemma OclIsKindOf Reser v ation-Client-invalid : ((invalid::•Client) .oclIsKindOf (Reservation)) = invalid by(simp only: OclIsKindOf Reser v ation-Client OclIsTypeOf Reser v ation-Client-invalid) lemma OclIsKindOf Reser v ation-Client-nul l : ((null::•Client) .oclIsKindOf (Reservation)) = true by(simp only: OclIsKindOf Reser v ation-Client OclIsTypeOf Reser v ation-Client-nul l) lemma OclIsKindOf Reser v ation-Flight-invalid : ((invalid::•Flight) .oclIsKindOf (Reservation)) = invalid by(simp only: OclIsKindOf Reser v ation-Flight OclIsTypeOf Reser v ation-Flight-invalid) lemma OclIsKindOf Reser v ation-Flight-nul l : ((null::•Flight) .oclIsKindOf (Reservation)) = true by(simp only: OclIsKindOf Reser v ation-Flight OclIsTypeOf Reser v ation-Flight-nul l) lemma OclIsKindOf O clAny -OclAny-invalid : ((invalid::•OclAny) .oclIsKindOf (OclAny)) = invalid by(simp only: OclIsKindOf O clAny -OclAny OclIsTypeOf O clAny -OclAny-invalid OclIsKindOf Reser v ation-OclAny-invalid OclIsKindOf P er son-OclAny-invalid OclIsKindOf F lig ht -OclAny-invalid, simp) lemma OclIsKindOf O clAny -OclAny-null : ((null::•OclAny) .oclIsKindOf (OclAny)) = true by(simp only: OclIsKindOf O clAny -OclAny OclIsTypeOf O clAny -OclAny-null OclIsKindOf Reser v ation-OclAny-nul l OclIsKindOf P er son-OclAny-nul l OclIsKindOf F lig ht -OclAny-null, simp) lemma OclIsKindOf O clAny -Flight-invalid : ((invalid::•Flight) .oclIsKindOf (OclAny)) = invalid by(simp only: OclIsKindOf O clAny -Flight OclIsTypeOf O clAny -Flight-invalid OclIsKindOf Reser v ation-Flight-invalid OclIsKindOf P er son-Flight-invalid OclIsKindOf F lig ht -Flight-invalid, simp) lemma OclIsKindOf O clAny -Flight-null : ((null::•Flight) .oclIsKindOf (OclAny)) = true by(simp only: OclIsKindOf O clAny -Flight OclIsTypeOf O clAny -Flight-null OclIsKindOf Reser v ation-Flight-nul l OclIsKindOf P er son-Flight-nul l OclIsKindOf F lig ht -Flight-null, simp) lemma OclIsKindOf O clAny -Client-invalid : ((invalid::•Client) .oclIsKindOf (OclAny)) = invalid by(simp only: OclIsKindOf O clAny -Client OclIsTypeOf O clAny -Client-invalid OclIsKindOf Reser v ation-Client-invalid OclIsKindOf P er son-Client-invalid OclIsKindOf F lig ht -Client-invalid, simp) lemma OclIsKindOf O clAny -Client-null : ((null::•Client) .oclIsKindOf (OclAny)) = true by(simp only: OclIsKindOf O clAny -Client OclIsTypeOf O clAny -Client-null OclIsKindOf Reser v ation-Client-nul l OclIsKindOf P er son-Client-nul l OclIsKindOf F lig ht -Client-null, simp) lemma OclIsKindOf O clAny -Staff-invalid : ((invalid::•Staff) .oclIsKindOf (OclAny)) = invalid by(simp only: OclIsKindOf O clAny -Staff OclIsTypeOf O clAny -Staff-invalid OclIsKindOf Reser v ation-Staff-invalid OclIsKindOf P er son-Staff-invalid OclIsKindOf F lig ht -Staff-invalid, simp) lemma OclIsKindOf O clAny -Staff-null : ((null::•Staff) .oclIsKindOf (OclAny)) = true by(simp only: OclIsKindOf O clAny -Staff OclIsTypeOf O clAny -Staff-null OclIsKindOf Reser v ation-Staff-nul l OclIsKindOf P er son-Staff-nul l OclIsKindOf F lig ht -Staff-null, simp) lemma OclIsKindOf O clAny -Person-invalid : ((invalid::•Person) .oclIsKindOf (OclAny)) = invalid by(simp only: OclIsKindOf O clAny -Person OclIsTypeOf O clAny -Person-invalid OclIsKindOf Reser v ation-Person-invalid OclIsKindOf P er son-Person-invalid OclIsKindOf F lig ht -Person-invalid, simp) lemma OclIsKindOf O clAny -Person-null : ((null::

 F lig ht -Reservation, rule OclIsTypeOf F lig ht -Reservation-defined[OF isdef]) lemma OclIsKindOf C lient -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Client))) by(simp only: OclIsKindOf C lient -Client, rule OclIsTypeOf C lient -Client-defined[OF isdef]) lemma OclIsKindOf C lient -Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Client))) by(simp only: OclIsKindOf C lient -Person, rule OclIsTypeOf C lient -Person-defined[OF isdef]) lemma OclIsKindOf C lient -OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Client)))

 assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Staff))) by(simp only: OclIsKindOf S taf f -Flight, rule OclIsTypeOf S taf f -Flight-defined[OF isdef]) lemma OclIsKindOf P er son-Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Person))) by(simp only: OclIsKindOf P er son-Person, rule defined-or-I [OF defined-or-I [OF OclIsTypeOf P er son-Person-defined[OF isdef], OF OclIsKindOf S taf f -Person-defined[OF isdef]], OF OclIsKindOf C lient -Person-defined[OF isdef]]) lemma OclIsKindOf P er son-OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Person))) by(simp only: OclIsKindOf P er son-OclAny, rule defined-or-I [OF defined-or-I [OF OclIsTypeOf P er son-OclAny-defined[OF isdef], OF OclIsKindOf S taf f -OclAny-defined[OF isdef]], OF OclIsKindOf C lient -OclAny-defined[OF isdef]]) lemma OclIsKindOf P er son-Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Person))) by(simp only: OclIsKindOf P er son-Client, rule defined-or-I [OF defined-or-I [OF OclIsTypeOf P er son-Client-defined[OF isdef], OF OclIsKindOf S taf f -Client-defined[OF isdef]], OF OclIsKindOf C lient -Client-defined[OF isdef]]) lemma OclIsKindOf P er son-Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Person))) by(simp only: OclIsKindOf P er son-Staff , rule defined-or-I [OF defined-or-I [OF OclIsTypeOf P er son-Staff-defined[OF isdef], OF OclIsKindOf S taf f -Staff-defined[OF isdef]], OF OclIsKindOf C lient -Staff-defined[OF isdef]]) lemma OclIsKindOf P er son-Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Person))) by(simp only: OclIsKindOf P er son-Reservation, rule defined-or-I [OF defined-or-I [OF OclIsTypeOf P er son-Reservation-defined[OF isdef], OF OclIsKindOf S taf f -Reservation-defined[OF isdef]], OF OclIsKindOf C lient -Reservation-defined[OF isdef]]) lemma OclIsKindOf P er son-Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Person))) by(simp only: OclIsKindOf P er son-Flight, rule defined-or-I [OF defined-or-I [OF OclIsTypeOf P er son-Flight-defined[OF isdef], OF OclIsKindOf S taf f -Flight-defined[OF isdef]], OF OclIsKindOf C lient -Flight-defined[OF isdef]]) lemma OclIsKindOf Reser v ation-Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Reservation))) by(simp only: OclIsKindOf Reser v ation-Reservation, rule OclIsTypeOf Reser v ation-Reservation-defined[OF isdef]) lemma OclIsKindOf Reser v ation-OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Reservation))) by(simp only: OclIsKindOf Reser v ation-OclAny, rule OclIsTypeOf Reser v ation-OclAny-defined[OF isdef]) lemma OclIsKindOf Reser v ation-Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Reservation))) by(simp only: OclIsKindOf Reser v ation-Staff , rule OclIsTypeOf Reser v ation-Staff-defined[OF isdef]) lemma OclIsKindOf Reser v ation-Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Reservation))) by(simp only: OclIsKindOf Reser v ation-Person, rule OclIsTypeOf Reser v ation-Person-defined[OF isdef]) lemma OclIsKindOf Reser v ation-Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Reservation))) by(simp only: OclIsKindOf Reser v ation-Client, rule OclIsTypeOf Reser v ation-Client-defined[OF isdef]) lemma OclIsKindOf Reser v ation-Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Reservation))) by(simp only: OclIsKindOf Reser v ation-Flight, rule OclIsTypeOf Reser v ation-Flight-defined[OF isdef]) lemma OclIsKindOf O clAny -OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (OclAny)))by(simp only: OclIsKindOf O clAny -OclAny, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -OclAny-defined[OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined[OF isdef]], OF OclIsKindOf P er son-OclAny-defined[OF isdef]], OF OclIsKindOf F lig ht -OclAny-defined[OF isdef]]) lemma OclIsKindOf O clAny -Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (OclAny))) by(simp only: OclIsKindOf O clAny -Flight, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -Flight-defined[OF isdef], OF OclIsKindOf Reser v ation-Flight-defined[OF isdef]], OF OclIsKindOf P er son-Flight-defined[OF isdef]], OF OclIsKindOf F lig ht -Flight-defined[OF isdef]]) lemma OclIsKindOf O clAny -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (OclAny))) by(simp only: OclIsKindOf O clAny -Client, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -Client-defined[OF isdef], OF OclIsKindOf Reser v ation-Client-defined[OF isdef]], OF OclIsKindOf P er son-Client-defined[OF isdef]], OF OclIsKindOf F lig ht -Client-defined[OF isdef]]) lemma OclIsKindOf O clAny -Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (OclAny))) by(simp only: OclIsKindOf O clAny -Staff , rule defined-or-I [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -Staff-defined[OF isdef], OF OclIsKindOf Reser v ation-Staff-defined[OF isdef]], OF OclIsKindOf P er son-Staff-defined[OF isdef]], OF OclIsKindOf F lig ht -Staff-defined[OF isdef]]) lemma OclIsKindOf O clAny -Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (OclAny))) by(simp only: OclIsKindOf O clAny -Person, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -Person-defined[OF isdef], OF OclIsKindOf Reser v ation-Person-defined[OF isdef]], OF OclIsKindOf P er son-Person-defined[OF isdef]], OF OclIsKindOf F lig ht -Person-defined[OF isdef]]) lemma OclIsKindOf O clAny -Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (OclAny))) by(simp only: OclIsKindOf O clAny -Reservation, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -Reservation-defined[OF isdef], OF OclIsKindOf Reser v ation-Reservation-defined[OF isdef]], OF OclIsKindOf P er son-Reservation-defined[OF isdef]], OF OclIsKindOf F lig ht -Reservation-defined[OF isdef]])

 OclIsKindOf P er son-Person-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf P er son-OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Person))) by(rule OclIsKindOf P er son-OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf P er son-Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Person))) by(rule OclIsKindOf P er son-Client-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf P er son-Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Person))) by(rule OclIsKindOf P er son-Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf P er son-Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Person))) by(rule OclIsKindOf P er son-Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf P er son-Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Person))) by(rule OclIsKindOf P er son-Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf Reser v ation-Reservation-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Reservation) .oclIsKindOf (Reservation))) by(rule OclIsKindOf Reser v ation-Reservation-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf Reser v ation-OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (Reservation))) by(rule OclIsKindOf Reser v ation-OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf Reser v ation-Staff-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Staff) .oclIsKindOf (Reservation))) by(rule OclIsKindOf Reser v ation-Staff-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf Reser v ation-Person-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Person) .oclIsKindOf (Reservation))) by(rule OclIsKindOf Reser v ation-Person-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf Reser v ation-Client-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Client) .oclIsKindOf (Reservation))) by(rule OclIsKindOf Reser v ation-Client-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf Reser v ation-Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (Reservation))) by(rule OclIsKindOf Reser v ation-Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf O clAny -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsKindOf (OclAny))) by(rule OclIsKindOf O clAny -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsKindOf O clAny -Flight-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•Flight) .oclIsKindOf (OclAny)))

 lemma not-OclIsKindOf C lient -then-Person-OclIsTypeOf-others-unfold : assumes isdef : (τ |= (δ (X))) assumes iskin: (τ |= ((X::•Person) .oclIsKindOf (Client))) shows (τ |= ((X::•Person) .oclIsTypeOf (Client))) using iskin apply(simp only: OclIsKindOf C lient -Person) done lemma not-OclIsKindOf C lient -then-OclAny-OclIsTypeOf-others-unfold : assumes isdef : (τ |= (δ (X))) assumes iskin: (τ |= ((X::•OclAny) .oclIsKindOf (Client))) shows (τ |= ((X::•OclAny) .oclIsTypeOf (Client))) using iskin apply(simp only: OclIsKindOf C lient -OclAny) done lemma not-OclIsKindOf S taf f -then-Person-OclIsTypeOf-others-unfold : assumes isdef : (τ |= (δ (X))) assumes iskin: (τ |= ((X::•Person) .oclIsKindOf (Staff))) shows (τ |= ((X::•Person) .oclIsTypeOf (Staff))) using iskin apply(simp only: OclIsKindOf S taf f -Person) done lemma not-OclIsKindOf S taf f -then-OclAny-OclIsTypeOf-others-unfold : assumes isdef : (τ |= (δ (X))) assumes iskin: (τ |= ((X::•OclAny) .oclIsKindOf (Staff))) shows (τ |= ((X::•OclAny) .oclIsTypeOf (Staff))) using iskin apply(simp only: OclIsKindOf S taf f -OclAny) done lemma not-OclIsKindOf P er son-then-OclAny-OclIsTypeOf-others-unfold : assumes isdef : (τ |= (δ (X))) assumes iskin: (τ |= ((X::•OclAny) .oclIsKindOf (Person))) shows ((τ |= ((X::•OclAny) .oclIsTypeOf (Person))) ∨ ((τ |= ((X::•OclAny) .oclIsTypeOf (Client))) ∨ (τ |= ((X::•OclAny) .oclIsTypeOf (Staff)))))

 lemma not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others-unfold : assumes isdef : (τ |= (δ (X))) assumes iskin: (τ |= ((X::•OclAny) .oclIsKindOf (Reservation))) shows (τ |= ((X::•OclAny) .oclIsTypeOf (Reservation))) using iskin apply(simp only: OclIsKindOf Reser v ation-OclAny) done lemma not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Flight)) assumes isdef : τ |= (δ (X)) shows (τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X::•OclAny) .oclIsKindOf (Person)) ∨ τ |= ((X::•OclAny) .oclIsKindOf (Reservation))))

 lemma not-OclIsKindOf C lient -then-OclAny-OclIsTypeOf-others : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Client)) assumes isdef : τ |= (δ (X)) shows (τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X::•OclAny) .oclIsTypeOf (Person)) ∨ (τ |= ((X::•OclAny) .oclIsKindOf (Reservation)) ∨ (τ |= ((X::•OclAny) .oclIsKindOf (Flight)) ∨ τ |= ((X::•OclAny) .oclIsKindOf (Staff))))))

 lemma not-OclIsKindOf S taf f -then-OclAny-OclIsTypeOf-others : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Staff)) assumes isdef : τ |= (δ (X)) shows (τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X::•OclAny) .oclIsTypeOf (Person)) ∨ (τ |= ((X::•OclAny) .oclIsKindOf (Reservation)) ∨ (τ |= ((X::•OclAny) .oclIsKindOf (Flight)) ∨ τ |= ((X::•OclAny) .oclIsKindOf (Client))))))

 lemma down-cast-kind P er son-from-OclAny-to-Staff : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid apply(insert not-OclIsKindOf P er son-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type O clAny -from-OclAny-to-Staff , simp only: , simp only: isdef) apply(drule not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type Reser v ation-from-OclAny-to-Staff , simp only: , simp only: isdef) apply(drule not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type F lig ht -from-OclAny-to-Staff , simp only: , simp only: isdef) done lemma down-cast-kind Reser v ation-from-OclAny-to-Reservation : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Reservation)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Reservation)) invalid apply(insert not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type O clAny -from-OclAny-to-Reservation, simp only: , simp only: isdef) apply(drule not-OclIsKindOf P er son-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(auto simp: isdef down-cast-type S taf f -from-OclAny-to-Reservation down-cast-type P er son-from-OclAny-to-Reservation down-cast-type C lient -from-OclAny-to-Reservation) apply(drule not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type F lig ht -from-OclAny-to-Reservation, simp only: , simp only: isdef) doneConstB.7 Class Model: OclAllInstancesdefinition Flight = OclAsType F lig ht -A definition Client = OclAsType C lient -A definition Staff = OclAsType S taf f -A definition Person = OclAsType P er son-A definition Reservation = OclAsType Reser v ation-A definition OclAny = OclAsType O clAny -A lemmas[simp,code-unfold] = Flight-def Client-def Staff-def Person-def Reservation-def OclAny-def lemma OclAsType O clAny -A-some : (OclAsType O clAny -A (x)) = None by(simp add: OclAsType O clAny -A-def) lemma OclAllInstances-generic O clAny -exec : shows (OclAllInstances-generic (pre-post) (OclAny)) = (λτ . (Abs-Set base (Some ' OclAny ' (ran ((heap ((pre-post (τ))))))))) prooflet ?S1 = (λτ . OclAny ' (ran ((heap ((pre-post (τ))))))) show ?thesis prooflet ?S2 = (λτ . ((?S1) (τ)) -{None}) show ?thesis proofhave B: (τ . ((?S2) (τ)) ⊆ ((?S1) (τ))) by(auto) show ?thesis proofhave C : (τ . ((?S1) (τ)) ⊆ ((?S2) (τ))) by(auto simp: OclAsType O clAny -A-some) show ?thesis apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf O clAny -OclAny) by(insert equalityI [OF B, OF C], simp) qed qed qed qed lemma OclAllInstances-at-post O clAny -exec : shows (OclAllInstances-at-post (OclAny)) = (λτ . (Abs-Set base (Some ' OclAny ' (ran ((heap ((snd (τ))))))))) unfolding OclAllInstances-at-post-def by(rule OclAllInstances-generic O clAny -exec) lemma OclAllInstances-at-pre O clAny -exec : shows (OclAllInstances-at-pre (OclAny)) = (λτ . (Abs-Set base (Some ' OclAny ' (ran ((heap ((fst (τ)))))))))unfolding OclAllInstances-at-pre-def by(rule OclAllInstances-generic O clAny -exec)OclIsTypeOf lemma ex-ssubst : (∀ x ∈ B. (s (x)) = (t (x))) =⇒ (∃ x ∈ B. (P ((s (x))))) = (∃ x ∈ B. (P ((t (x))))) by(simp) lemma ex-def : x ∈ Some ' (X -{None}) =⇒ (∃ y. x = y) by(auto) lemma Flight-OclAllInstances-generic-OclIsTypeOf F lig ht : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Flight))) (OclIsTypeOfF lig ht)) apply(simp add: OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Flight)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static F lig ht [simplified OclValid-def , simplified OclIsKindOf F lig ht -Flight]) apply(drule ex-def , erule exE, simp) by(simp) lemma Flight-OclAllInstances-at-post-OclIsTypeOf F lig ht : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Flight))) (OclIsTypeOf F lig ht))unfolding OclAllInstances-at-post-def by(rule Flight-OclAllInstances-generic-OclIsTypeOf F lig ht) lemma Flight-OclAllInstances-at-pre-OclIsTypeOf F lig ht :shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Flight))) (OclIsTypeOf F lig ht))unfolding OclAllInstances-at-pre-def by(rule Flight-OclAllInstances-generic-OclIsTypeOf F lig ht) lemma Client-OclAllInstances-generic-OclIsTypeOf C lient : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)(Client))) (OclIsTypeOf C lient))apply(simp add: OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Client)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static C lient [simplified OclValid-def , simplified OclIsKindOf C lient -Client]) apply(drule ex-def , erule exE, simp)by(simp) lemma Client-OclAllInstances-at-post-OclIsTypeOf C lient : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsTypeOf C lient)) unfolding OclAllInstances-at-post-def by(rule Client-OclAllInstances-generic-OclIsTypeOf C lient) lemma Client-OclAllInstances-at-pre-OclIsTypeOf C lient : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsTypeOf C lient)) unfolding OclAllInstances-at-pre-def by(rule Client-OclAllInstances-generic-OclIsTypeOf C lient) lemma Staff-OclAllInstances-generic-OclIsTypeOf S taf f : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Staff))) (OclIsTypeOf S taf f)) apply(simp add: OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Staff)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static S taf f [simplified OclValid-def , simplified OclIsKindOf S taf f -Staff]) apply(drule ex-def , erule exE, simp) by(simp) lemma Staff-OclAllInstances-at-post-OclIsTypeOf S taf f : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff))) (OclIsTypeOf S taf f))unfolding OclAllInstances-at-post-def by(ruleStaff-OclAllInstances-generic-OclIsTypeOf S taf f) lemma Staff-OclAllInstances-at-pre-OclIsTypeOf S taf f : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff))) (OclIsTypeOf S taf f))unfolding OclAllInstances-at-pre-def by(rule Staff-OclAllInstances-generic-OclIsTypeOf S taf f) lemma Person-OclAllInstances-generic-OclIsTypeOf P er son1 :assumes [simp]: (x. (pre-post ((x , x))) = x) shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Person))) (OclIsTypeOf P er son))) apply(rule exI [where x = τ 0], simp add: τ 0 -def OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) by(simp) lemma Person-OclAllInstances-at-post-OclIsTypeOf P er son1 : shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsTypeOf P er son)))unfolding OclAllInstances-at-post-def by(rule Person-OclAllInstances-generic-OclIsTypeOf P er son1 , simp) lemma Person-OclAllInstances-at-pre-OclIsTypeOf P er son1 :shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsTypeOf P er son)))unfolding OclAllInstances-at-pre-def by(rule Person-OclAllInstances-generic-OclIsTypeOf P er son1 , simp) lemma Person-OclAllInstances-generic-OclIsTypeOf P er son2 :assumes [simp]: (x. (pre-post ((x , x))) = x) shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Person))) (OclIsTypeOf P er son)))))prooffix oid a show ?thesis prooflet ?t0 = (state.make ((Map.empty (oid → (in P er son ((mk P er son ((mkEXT P er son-S taf f (a))) (None))))))) (Map.empty)) show ?thesis apply(rule exI [where x = (?t0 , ?t0)], simp add: OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def OclAsType P er son-A-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) by(simp add: state.make-def OclNot-def) qed qed lemma Person-OclAllInstances-at-post-OclIsTypeOf P er son2 : shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsTypeOf P er son))))) unfolding OclAllInstances-at-post-def by(rule Person-OclAllInstances-generic-OclIsTypeOf P er son2 , simp) lemma Person-OclAllInstances-at-pre-OclIsTypeOf P er son2 : shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsTypeOf P er son))))) unfolding OclAllInstances-at-pre-def by(rule Person-OclAllInstances-generic-OclIsTypeOf P er son2 , simp) lemma Reservation-OclAllInstances-generic-OclIsTypeOf Reser v ation : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Reservation))) (OclIsTypeOf Reser v ation)) apply(simp add: OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Reservation)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static Reser v ation[simplified OclValid-def , simplified OclIsKindOf Reser v ation-Reservation]) apply(drule ex-def , erule exE, simp) by(simp) lemma Reservation-OclAllInstances-at-post-OclIsTypeOf Reser v ation : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Reservation))) (OclIsTypeOf Reser v ation)) unfolding OclAllInstances-at-post-def by(rule Reservation-OclAllInstances-generic-OclIsTypeOf Reser v ation) lemma Reservation-OclAllInstances-at-pre-OclIsTypeOf Reser v ation : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Reservation))) (OclIsTypeOf Reser v ation)) unfolding OclAllInstances-at-pre-def by(rule Reservation-OclAllInstances-generic-OclIsTypeOf Reser v ation) lemma OclAny-OclAllInstances-generic-OclIsTypeOf O clAny 1 : assumes [simp]: (x. (pre-post ((x , x))) = x) shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (OclAny))) (OclIsTypeOf O clAny))) apply(rule exI [where x = τ 0], simp add: τ 0 -def OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) by(simp) lemma OclAny-OclAllInstances-at-post-OclIsTypeOf O clAny 1 : shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-post (OclAny))) (OclIsTypeOf O clAny))) unfolding OclAllInstances-at-post-def by(rule OclAny-OclAllInstances-generic-OclIsTypeOf O clAny 1 , simp) lemma OclAny-OclAllInstances-at-pre-OclIsTypeOf O clAny 1 : shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (OclAny))) (OclIsTypeOf O clAny))) unfolding OclAllInstances-at-pre-def by(rule OclAny-OclAllInstances-generic-OclIsTypeOf O clAny 1 , simp) lemma OclAny-OclAllInstances-generic-OclIsTypeOf O clAny 2 : assumes [simp]: (x. (pre-post ((x , x))) = x) shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-generic (pre-post) (OclAny))) (OclIsTypeOf O clAny))))) prooffix oid a show ?thesis prooflet ?t0 = (state.make ((Map.empty (oid → (in O clAny ((mk O clAny ((mkEX T O clAny -Reser v ation (a))))))))) (Map.empty)) show ?thesis apply(rule exI [where x = (?t0 , ?t0)], simp add: OclValid-def del: OclAllInstances-generic-def) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def OclAsType O clAny -A-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) by(simp add: state.make-def OclNot-def) qed qed lemma OclAny-OclAllInstances-at-post-OclIsTypeOf O clAny 2 : shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-post (OclAny))) (OclIsTypeOf O clAny))))) unfolding OclAllInstances-at-post-def by(rule OclAny-OclAllInstances-generic-OclIsTypeOf O clAny 2 , simp) lemma OclAny-OclAllInstances-at-pre-OclIsTypeOf O clAny 2 : shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-pre (OclAny))) (OclIsTypeOf O clAny))))) unfolding OclAllInstances-at-pre-def by(rule OclAny-OclAllInstances-generic-OclIsTypeOf O clAny 2 , simp) OclIsKindOf lemma Flight-OclAllInstances-generic-OclIsKindOf F lig ht : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Flight))) (OclIsKindOf F lig ht)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf F lig ht -Flight) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Flight)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static F lig ht [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Flight-OclAllInstances-at-post-OclIsKindOf F lig ht : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Flight))) (OclIsKindOf F lig ht))unfolding OclAllInstances-at-post-def by(rule Flight-OclAllInstances-generic-OclIsKindOf F lig ht) lemma Flight-OclAllInstances-at-pre-OclIsKindOf F lig ht :shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Flight))) (OclIsKindOf F lig ht))unfolding OclAllInstances-at-pre-def by(rule Flight-OclAllInstances-generic-OclIsKindOf F lig ht) lemma Client-OclAllInstances-generic-OclIsKindOf C lient : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)(Client))) (OclIsKindOf C lient)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf C lient -Client) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Client)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static C lient [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Client-OclAllInstances-at-post-OclIsKindOf C lient : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsKindOf C lient)) unfolding OclAllInstances-at-post-def by(rule Client-OclAllInstances-generic-OclIsKindOf C lient) lemma Client-OclAllInstances-at-pre-OclIsKindOf C lient : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsKindOf C lient)) unfolding OclAllInstances-at-pre-def by(rule Client-OclAllInstances-generic-OclIsKindOf C lient) lemma Staff-OclAllInstances-generic-OclIsKindOf S taf f : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Staff))) (OclIsKindOf S taf f)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf S taf f -Staff) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Staff)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static S taf f [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Staff-OclAllInstances-at-post-OclIsKindOf S taf f : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff))) (OclIsKindOf S taf f)) unfolding OclAllInstances-at-post-def by(rule Staff-OclAllInstances-generic-OclIsKindOf S taf f) lemma Staff-OclAllInstances-at-pre-OclIsKindOf S taf f : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff))) (OclIsKindOf S taf f)) unfolding OclAllInstances-at-pre-def by(rule Staff-OclAllInstances-generic-OclIsKindOf S taf f) lemma Person-OclAllInstances-generic-OclIsKindOf P er son : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Person))) (OclIsKindOf P er son)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf P er son-Person) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Person)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static P er son[simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Person-OclAllInstances-at-post-OclIsKindOf P er son : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsKindOf P er son)) unfolding OclAllInstances-at-post-def by(rule Person-OclAllInstances-generic-OclIsKindOf P er son) lemma Person-OclAllInstances-at-pre-OclIsKindOf P er son : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsKindOf P er son)) unfolding OclAllInstances-at-pre-def by(rule Person-OclAllInstances-generic-OclIsKindOf P er son) lemma Reservation-OclAllInstances-generic-OclIsKindOf Reser v ation : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Reservation))) (OclIsKindOf Reser v ation)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf Reser v ation-Reservation) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Reservation)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static Reser v ation[simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Reservation-OclAllInstances-at-post-OclIsKindOf Reser v ation : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Reservation))) (OclIsKindOf Reser v ation)) unfolding OclAllInstances-at-post-def by(rule Reservation-OclAllInstances-generic-OclIsKindOf Reser v ation) lemma Reservation-OclAllInstances-at-pre-OclIsKindOf Reser v ation : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Reservation))) (OclIsKindOf Reser v ation)) unfolding OclAllInstances-at-pre-def by(rule Reservation-OclAllInstances-generic-OclIsKindOf Reser v ation) lemma OclAny-OclAllInstances-generic-OclIsKindOf O clAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (OclAny))) (OclIsKindOf O clAny)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf O clAny -OclAny) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actual-eq-static O clAny [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma OclAny-OclAllInstances-at-post-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (OclAny))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-post-def by(rule OclAny-OclAllInstances-generic-OclIsKindOf O clAny) lemma OclAny-OclAllInstances-at-pre-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (OclAny))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-pre-def by(rule OclAny-OclAllInstances-generic-OclIsKindOf O clAny) lemma Flight-OclAllInstances-generic-OclIsKindOf O clAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Flight))) (OclIsKindOf O clAny)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf O clAny -Flight) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actualKind F lig ht -larger-staticKind O clAny [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Flight-OclAllInstances-at-post-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Flight))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-post-def by(rule Flight-OclAllInstances-generic-OclIsKindOf O clAny) lemma Flight-OclAllInstances-at-pre-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Flight))) (OclIsKindOf O clAny))

 OclAllInstances-at-post-def by(rule Client-OclAllInstances-generic-OclIsKindOf P er son) lemma Client-OclAllInstances-at-pre-OclIsKindOf P er son : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsKindOf P er son)) unfolding OclAllInstances-at-pre-def by(rule Client-OclAllInstances-generic-OclIsKindOf P er son) lemma Client-OclAllInstances-generic-OclIsKindOf O clAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Client))) (OclIsKindOf O clAny)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf O clAny -Client) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actualKind C lient -larger-staticKind O clAny [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Client-OclAllInstances-at-post-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsKindOf O clAny))unfolding OclAllInstances-at-post-def by(rule Client-OclAllInstances-generic-OclIsKindOf O clAny) lemma Client-OclAllInstances-at-pre-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-pre-def by(rule Client-OclAllInstances-generic-OclIsKindOf O clAny) lemma Staff-OclAllInstances-generic-OclIsKindOf P er son : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Staff))) (OclIsKindOf P er son)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf P er son-Staff) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Person)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actualKind S taf f -larger-staticKind P er son[simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Staff-OclAllInstances-at-post-OclIsKindOf P er son : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff))) (OclIsKindOf P er son)) unfolding OclAllInstances-at-post-def by(rule Staff-OclAllInstances-generic-OclIsKindOf P er son) lemma Staff-OclAllInstances-at-pre-OclIsKindOf P er son : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff))) (OclIsKindOf P er son)) unfolding OclAllInstances-at-pre-def by(rule Staff-OclAllInstances-generic-OclIsKindOf P er son) lemma Staff-OclAllInstances-generic-OclIsKindOf O clAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Staff))) (OclIsKindOf O clAny)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf O clAny -Staff) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actualKind S taf f -larger-staticKind O clAny [simplified OclValid-def]) apply(drule ex-def , erule exE, simp)by(simp) lemma Staff-OclAllInstances-at-post-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-post-def by(rule Staff-OclAllInstances-generic-OclIsKindOf O clAny) lemma Staff-OclAllInstances-at-pre-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-pre-def by(rule Staff-OclAllInstances-generic-OclIsKindOf O clAny) lemma Person-OclAllInstances-generic-OclIsKindOf O clAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Person))) (OclIsKindOf O clAny)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf O clAny -Person) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actualKind P er son-larger-staticKindO clAny [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Person-OclAllInstances-at-post-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-post-def by(rule Person-OclAllInstances-generic-OclIsKindOf O clAny) lemma Person-OclAllInstances-at-pre-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-pre-def by(rule Person-OclAllInstances-generic-OclIsKindOf O clAny) lemma Reservation-OclAllInstances-generic-OclIsKindOf O clAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Reservation))) (OclIsKindOf O clAny)) apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf O clAny -Reservation) apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def]) apply(simp only: OclAllInstances-generic-def) apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def) apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))]) apply(intro ballI actualKind Reser v ation-larger-staticKindO clAny [simplified OclValid-def]) apply(drule ex-def , erule exE, simp) by(simp) lemma Reservation-OclAllInstances-at-post-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Reservation))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-post-def by(rule Reservation-OclAllInstances-generic-OclIsKindOf O clAny) lemma Reservation-OclAllInstances-at-pre-OclIsKindOf O clAny : shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Reservation))) (OclIsKindOf O clAny)) unfolding OclAllInstances-at-pre-def by(rule Reservation-OclAllInstances-generic-OclIsKindOf O clAny) B.8 Class Model: The Accessors Definition ML val oidFlight-1-passengers = 2 ML val oidClient-0-cl-res = 1 ML val oidClient-0-flights = 2 ML val oidStaff-0-flights = 2 ML val oidPerson-0-flights = 2 ML val oidReservation-0-prev = 0 ML val oidReservation-1-next = 0 ML val oidReservation-1-client = 1 definition oid F lig ht -1---passengers = 2 definition oid C lient -0---cl-res = 1 definition oid C lient -0---flights = 2 definition oid S taf f -0---flights = 2 definition oid P er son-0---flights = 2 definition oid Reser v ation-0---prev = 0 definition oid Reser v ation-1---next = 0 definition oid Reser v ation-1---client = 1 definition eval-extract x f = (λτ . (case x τ of obj ⇒ (f ((oid-of (obj))) (τ)) | -⇒ invalid τ)) definition in-pre-state = fst definition in-post-state = snd definition reconst-basetype = (λx -. x) definition reconst-basetype V oid x = Abs-Void base o (reconst-basetype (x)) ML val switch2-01 = (fn [x0 , x1] => (x0 , x1)) ML val switch2-10 = (fn [x0 , x1] => (x1 , x0)) definition switch 2 -01 = (λ [x0 , x1] ⇒ (x0 , x1)) definition switch 2 -10 = (λ [x0 , x1] ⇒ (x1 , x0)) definition deref-assocs pre-post to-from assoc-oid f oid = (λτ . (case (assocs ((pre-post (τ))) (assoc-oid)) of S ⇒ (f definition select F lig ht --passengers = select-object S et definition select C lient --cl-res = select-object S et definition select C lient --flights = select-object S et definition select S taf f --flights = select-object S et definition select P er son--flights = select-object S et definition select Reser v ation--prev = select-object-any S et definition select Reser v ation--next = select-object-any S et definition select Reser v ation--client = select-object-any S et consts dot-1---passengers :: (A, α) val ⇒ Set-Person ((-) .passengers)

 (A, α) val ⇒ •Flight ((-) .flight) consts dot--flightat-pre :: (A, α) val ⇒ •Flight ((-) .flight@pre) overloading dot-1---passengers ≡ (dot-1---passengers::(•Flight) ⇒ -) begin definition dot F lig ht -1---passengers : (x::•Flight) .passengers ≡ (eval-extract (x) ((deref-oid F lig ht (in-post-state) ((deref-assocs F lig ht -1---passengers (in-post-state) ((select F lig ht --passengers ((deref-oid P er son (in-post-state) (reconst-basetype)))))))))) end overloading dot--seats ≡ (dot--seats::(•Flight) ⇒ -) begin definition dot F lig ht --seats : (x::•Flight) .seats ≡ (eval-extract (x) ((deref-oid F lig ht (in-post-state) ((select F lig ht --seats (reconst-basetype)))))) end overloading dot--from ≡ (dot--from::(•Flight) ⇒ -) begin definition dot F lig ht --from : (x::•Flight) .from ≡ (eval-extract (x) ((deref-oid F lig ht (in-post-state) ((select F lig ht --from (reconst-basetype)))))) end overloading dot--to ≡ (dot--to::(•Flight) ⇒ -) begin definition dot F lig ht --to : (x::•Flight) .to ≡ (eval-extract (x) ((deref-oid F lig ht (in-post-state) ((select F lig ht --to (reconst-basetype)))))) end overloading dot--fl-res ≡ (dot--fl-res::(•Flight) ⇒ -) begin definition dot F lig ht --fl-res : (x::•Flight) .fl-res ≡ (eval-extract (x) ((deref-oid F lig ht (in-post-state) ((select F lig ht --fl-res((select-object S eq ((deref-oid Reser v ation (in-post-state) (reconst-basetype)))))))))) end overloading dot-1---passengersat-pre ≡ (dot-1---passengersat-pre::(•Flight) ⇒ -)begin definition dot F lig ht -1---passengersat-pre : (x::•Flight) .passengers@pre ≡ (eval-extract (x) ((deref-oid F lig ht (in-pre-state) ((deref-assocs F lig ht -1---passengers (in-pre-state) ((select F lig ht --passengers ((deref-oid P er son (in-pre-state) (reconst-basetype)))))))))) end overloading dot--seatsat-pre ≡ (dot--seatsat-pre::(•Flight) ⇒ -) begin definition dot F lig ht --seatsat-pre : (x::•Flight) .seats@pre ≡ (eval-extract (x) ((deref-oid F lig ht (in-pre-state)((select F lig ht --seats (reconst-basetype))))))end overloading dot--fromat-pre ≡ (dot--fromat-pre::(•Flight) ⇒ -) begin definition dot F lig ht --fromat-pre : (x::•Flight) .from@pre ≡ (eval-extract (x) ((deref-oid F lig ht (in-pre-state)((select F lig ht --from (reconst-basetype))))))end overloading dot--toat-pre ≡ (dot--toat-pre::(•Flight) ⇒ -) begin definition dot F lig ht --toat-pre : (x::•Flight) .to@pre ≡ (eval-extract (x) ((deref-oid F lig ht (in-pre-state) ((select F lig ht --to(reconst-basetype))))))end overloading dot--fl-resat-pre ≡ (dot--fl-resat-pre::(•Flight) ⇒ -) begin definition dot F lig ht --fl-resat-pre : (x::•Flight) .fl-res@pre ≡ (eval-extract (x) ((deref-oid F lig ht (in-pre-state)((select F lig ht --fl-res ((select-object S eq ((deref-oid Reser v ation (in-pre-state) (reconst-basetype)))))))))) end overloading dot-0---cl-res ≡ (dot-0---cl-res::(•Client) ⇒ -) begin definition dot C lient -0---cl-res : (x::•Client) .cl-res ≡ (eval-extract (x) ((deref-oid C lient (in-post-state) ((deref-assocs C lient -0---cl-res (in-post-state) ((select C lient --cl-res ((deref-oid Reser v ation (in-post-state) (reconst-basetype))))))))))end overloading dot--address ≡ (dot--address::(•Client) ⇒ -) begin definition dot C lient --address : (x::•Client) .address ≡ (eval-extract (x) ((deref-oid C lient (in-post-state) ((select C lient --address (reconst-basetype)))))) end overloading dot-0---cl-resat-pre ≡ (dot-0---cl-resat-pre::(•Client) ⇒ -) begin definition dot C lient -0---cl-resat-pre : (x::•Client) .cl-res@pre ≡ (eval-extract (x) ((deref-oid C lient (in-pre-state) ((deref-assocs C lient -0---cl-res (in-pre-state) ((select C lient --cl-res ((deref-oid Reser v ation (in-pre-state) (reconst-basetype))))))))))end overloading dot--addressat-pre ≡ (dot--addressat-pre::(•Client) ⇒ -) begin definition dot C lient --addressat-pre : (x::•Client) .address@pre ≡ (eval-extract (x) ((deref-oid C lient (in-pre-state)((select C lient --address (reconst-basetype))))))end overloading dot-0---flights ≡ (dot-0---flights::(•Person) ⇒ -) begin definition dot P er son-0---flights : (x::•Person) .flights ≡ (eval-extract (x) ((deref-oid P er son (in-post-state) ((deref-assocs P er son-0---flights (in-post-state) ((select P er son--flights ((deref-oidF lig ht (in-post-state) (reconst-basetype)))))))))) end overloading dot--name ≡ (dot--name::(•Person) ⇒ -)begin definition dot P er son--name : (x::•Person) .name ≡ (eval-extract (x) ((deref-oid P er son (in-post-state) ((select P er son--name(reconst-basetype)))))) end overloading dot-0---flightsat-pre ≡ (dot-0---flightsat-pre::(•Person) ⇒ -)begin definition dot P er son-0---flightsat-pre : (x::•Person) .flights@pre ≡ (eval-extract (x) ((deref-oid P er son (in-pre-state) ((deref-assocs P er son-0---flights (in-pre-state) ((select P er son--flights ((deref-oidF lig ht (in-pre-state) (reconst-basetype))))))))))end overloading dot--nameat-pre ≡ (dot--nameat-pre::(•Person) ⇒ -) begin definition dot P er son--nameat-pre : (x::•Person) .name@pre ≡ (eval-extract (x) ((deref-oid P er son (in-pre-state) ((select P er son--name (reconst-basetype)))))) end overloading dot-0---prev ≡ (dot-0---prev::(•Reservation) ⇒ -) begin definition dot Reser v ation-0---prev : (x::•Reservation) .prev ≡ (eval-extract (x) ((deref-oid Reser v ation (in-post-state) ((deref-assocs Reser v ation-0---prev (in-post-state) ((select Reser v ation--prev ((deref-oid Reser v ation (in-post-state) (reconst-basetype)))))))))) end overloading dot-1---next ≡ (dot-1---next::(•Reservation) ⇒ -) begin definition dot Reser v ation-1---next : (x::•Reservation) .next ≡ (eval-extract (x) ((deref-oid Reser v ation (in-post-state) ((deref-assocs Reser v ation-1---next (in-post-state) ((select Reser v ation--next ((deref-oid Reser v ation (in-post-state) (reconst-basetype)))))))))) end overloading dot-1---client ≡ (dot-1---client::(•Reservation) ⇒ -) begin definition dot Reser v ation-1---client : (x::•Reservation) .client ≡ (eval-extract (x) ((deref-oid Reser v ation (in-post-state) ((deref-assocs Reser v ation-1---client (in-post-state) ((select Reser v ation--client ((deref-oid C lient (in-post-state) (reconst-basetype)))))))))) end overloading dot--id ≡ (dot--id::(•Reservation) ⇒ -) begin definition dot Reser v ation--id : (x::•Reservation) .id ≡ (eval-extract (x) ((deref-oid Reser v ation (in-post-state) ((select Reser v ation--id (reconst-basetype)))))) end overloading dot--date ≡ (dot--date::(•Reservation) ⇒ -) begin definition dot Reser v ation--date : (x::•Reservation) .date ≡ (eval-extract (x) ((deref-oid Reser v ation (in-post-state) ((select Reser v ation--date (reconst-basetype)))))) end overloading dot--flight ≡ (dot--flight::(•Reservation) ⇒ -) begin definition dot Reser v ation--flight : (x::•Reservation) .flight ≡ (eval-extract (x) ((deref-oid Reser v ation (in-post-state) ((select Reser v ation--flight ((deref-oid F lig ht (in-post-state) (reconst-basetype)))))))) end overloading dot-0---prevat-pre ≡ (dot-0---prevat-pre::(•Reservation) ⇒ -) begin definition dot Reser v ation-0---prevat-pre : (x::•Reservation) .prev@pre ≡ (eval-extract (x) ((deref-oid Reser v ation (in-pre-state) ((deref-assocs Reser v ation-0---prev (in-pre-state) ((select Reser v ation--prev ((deref-oid Reser v ation (in-pre-state) (reconst-basetype)))))))))) end overloading dot-1---nextat-pre ≡ (dot-1---nextat-pre::(•Reservation) ⇒ -) begin definition dot Reser v ation-1---nextat-pre : (x::•Reservation) .next@pre ≡ (eval-extract (x) ((deref-oid Reser v ation (in-pre-state) ((deref-assocs Reser v ation-1---next (in-pre-state) ((select Reser v ation--next ((deref-oid Reser v ation (in-pre-state) (reconst-basetype)))))))))) end overloading dot-1---clientat-pre ≡ (dot-1---clientat-pre::(•Reservation) ⇒ -) begin definition dot Reser v ation-1---clientat-pre : (x::•Reservation) .client@pre ≡ (eval-extract (x) ((deref-oid Reser v ation (in-pre-state) ((deref-assocs Reser v ation-1---client (in-pre-state) ((select Reser v ation--client ((deref-oid C lient (in-pre-state) (reconst-basetype)))))))))) end overloading dot--idat-pre ≡ (dot--idat-pre::(•Reservation) ⇒ -) begin definition dot Reser v ation--idat-pre : (x::•Reservation) .id@pre ≡ (eval-extract (x) ((deref-oid Reser v ation (in-pre-state) ((select Reser v ation--id (reconst-basetype)))))) end overloading dot--dateat-pre ≡ (dot--dateat-pre::(•Reservation) ⇒ -) begin definition dot Reser v ation--dateat-pre : (x::•Reservation) .date@pre ≡ (eval-extract (x) ((deref-oid Reser v ation (in-pre-state) ((select Reser v ation--date (reconst-basetype)))))) end overloading dot--flightat-pre ≡ (dot--flightat-pre::(•Reservation) ⇒ -) begin definition dot Reser v ation--flightat-pre : (x::•Reservation) .flight@pre ≡ (eval-extract (x) ((deref-oid Reser v ation (in-pre-state) ((select Reser v ation--flight ((deref-oid F lig ht (in-pre-state) (reconst-basetype)))))))) end overloading dot-0---flights ≡ (dot-0---flights::(•Client) ⇒ -) begin definition dot C lient -0---flights : (x::•Client) .flights ≡ (eval-extract (x) ((deref-oid C lient (in-post-state)((deref-assocs C lient -0---flights (in-post-state) ((select C lient --flights ((deref-oid F lig ht (in-post-state) (reconst-basetype)))))))))) end overloading dot--name ≡ (dot--name::(•Client) ⇒ -) begin definition dot C lient --name : (x::•Client) .name ≡ (eval-extract (x) ((deref-oid C lient (in-post-state) ((select C lient --name (reconst-basetype))))))end overloading dot-0---flightsat-pre ≡ (dot-0---flightsat-pre::(•Client) ⇒ -) begin definition dot C lient -0---flightsat-pre : (x::•Client) .flights@pre ≡ (eval-extract (x) ((deref-oid C lient (in-pre-state)((deref-assocs C lient -0---flights (in-pre-state) ((select C lient --flights ((deref-oid F lig ht (in-pre-state) (reconst-basetype)))))))))) end overloading dot--nameat-pre ≡ (dot--nameat-pre::(•Client) ⇒ -) begin definition dot C lient --nameat-pre : (x::•Client) .name@pre ≡ (eval-extract (x) ((deref-oid C lient (in-pre-state) ((select C lient --name (reconst-basetype)))))) end overloading dot-0---flights ≡ (dot-0---flights::(•Staff) ⇒ -) begin definition dot S taf f -0---flights : (x::•Staff) .flights ≡ (eval-extract (x) ((deref-oid S taf f (in-post-state) ((deref-assocs S taf f -0---flights (in-post-state) ((select S taf f --flights ((deref-oid F lig ht (in-post-state) (reconst-basetype))))))))))end overloading dot--name ≡ (dot--name::(•Staff) ⇒ -) begin definition dot S taf f --name : (x::•Staff) .name ≡ (eval-extract (x) ((deref-oid S taf f (in-post-state) ((select S taf f --name (reconst-basetype)))))) end overloading dot-0---flightsat-pre ≡ (dot-0---flightsat-pre::(•Staff) ⇒ -) begin definition dot S taf f -0---flightsat-pre : (x::•Staff) .flights@pre ≡ (eval-extract (x) ((deref-oid S taf f (in-pre-state) ((deref-assocs S taf f -0---flights (in-pre-state) ((select S taf f --flights ((deref-oid F lig ht (in-pre-state) (reconst-basetype)))))))))) end overloading dot--nameat-pre ≡ (dot--nameat-pre::(•Staff) ⇒ -) begin definition dot S taf f --nameat-pre : (x::•Staff) .name@pre ≡ (eval-extract (x) ((deref-oid S taf f (in-pre-state)((select S taf f --name (reconst-basetype)))))) end lemmas dot-accessor = dot F lig ht -1---passengers lemmas[simp,code-unfold] = cp-dot F lig ht -1---passengers cp-dot F lig ht --seats cp-dot F lig ht --from cp-dot F lig ht --to cp-dot F lig ht --fl-res cp-dot F lig ht -1---passengersat-pre cp-dot F lig ht --seatsat-pre cp-dot F lig ht --fromat-pre cp-dot F lig ht --toat-pre cp-dot F lig ht --fl-resat-pre cp-dot C lient -0---cl-res cp-dot C lient --address cp-dot C lient -0---cl-resat-pre cp-dot C lient --addressat-pre cp-dot P er son-0---flights cp-dot P er son--name cp-dot P er son-0---flightsat-pre cp-dot P er son--nameat-pre cp-dot Reser v ation-0---prev cp-dot Reser v ation-1---next cp-dot Reser v ation-1---client cp-dot Reser v ation--id cp-dot Reser v ation--date cp-dot Reser v ation--flight cp-dot Reser v ation-0---prevat-pre cp-dot Reser v ation-1---nextat-pre cp-dot Reser v ation-1---clientat-pre cp-dot Reser v ation--idat-pre cp-dot Reser v ation--dateat-pre cp-dot Reser v ation--flightat-pre cp-dot C lient -0---flights cp-dot C lient --name cp-dot C lient -0---flightsat-pre cp-dot C lient --nameat-pre cp-dot S taf f -0---flights cp-dot S taf f --name cp-dot S taf f -0---flightsat-pre cp-dot S taf f --nameat-preExecution with Invalid or Null as Argumentlemma dot F lig ht -1---passengers-invalid : (invalid::•Flight) .passengers = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht -1---passengers-null : (null::•Flight) .passengers = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def) lemma dot F lig ht --seats-invalid : (invalid::•Flight) .seats = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht --seats-null : (null::•Flight) .seats = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def) lemma dot F lig ht --from-invalid : (invalid::•Flight) .from = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht --from-null : (null::•Flight) .from = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def) lemma dot F lig ht --to-invalid : (invalid::•Flight) .to = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht --to-null : (null::•Flight) .to = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def) lemma dot F lig ht --fl-res-invalid : (invalid::•Flight) .fl-res = invalid by(rule ext, simp add: dot-accessor bot-option-def invalid-def) lemma dot F lig ht --fl-res-null : (null::•Flight) .fl-res = invalid by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def)

 lemma defined-mono-dot F lig ht -1---passengers : τ |= (δ ((X::•Flight) .passengers)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht -1---passengers-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht -1---passengers-null) by(simp add: defined-split) lemma defined-mono-dot F lig ht --seats : τ |= (δ ((X::•Flight) .seats)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --seats-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht --seats-null) by(simp add: defined-split) lemma defined-mono-dot F lig ht --from : τ |= (δ ((X::•Flight) .from)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --from-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht --from-null) by(simp add: defined-split) lemma defined-mono-dot F lig ht --to : τ |= (δ ((X::•Flight) .to)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --to-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to))) and τ = τ and x = X and y = null], simp by(simp add: defined-split) lemma defined-mono-dot F lig ht --toat-pre : τ |= (δ ((X::•Flight) .to@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --toat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht --toat-pre-null)

 apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --fl-resat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht --fl-resat-pre-null) by(simp add: defined-split) lemma defined-mono-dot C lient -0---cl-res : τ |= (δ ((X::•Client) .cl-res)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot C lient -0---cl-res-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res))) and τ = τ and x = X and y = null], simp add: foundation16 dot C lient -0---cl-res-null) by(simp add: defined-split) lemma defined-mono-dot C lient --address : τ |= (δ ((X::•Client) .address)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot C lient --address-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address))) and τ = τ and x = X and y = null], simp add: foundation16 dot C lient --address-null) by(simp add: defined-split) lemma defined-mono-dot C lient -0---cl-resat-pre : τ |= (δ ((X::•Client) .cl-res@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot C lient -0---cl-resat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot C lient -0---cl-resat-pre-null) by(simp add: defined-split) lemma defined-mono-dot C lient --addressat-pre : τ |= (δ ((X::•Client) .address@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot C lient --addressat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot C lient --addressat-pre-null) by(simp add: defined-split) lemma defined-mono-dot P er son-0---flights : τ |= (δ ((X::•Person) .flights)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot P er son-0---flights-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y = null], simp add: foundation16 dot P er son-0---flights-nul l) by(simp add: defined-split) lemma defined-mono-dot P er son--name : τ |= (δ ((X::•Person) .name)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot P er son--name-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y = null], simp add: foundation16 dot P er son--name-nul l) by(simp add: defined-split) lemma defined-mono-dot P er son-0---flightsat-pre : τ |= (δ ((X::•Person) .flights@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot P er son-0---flightsat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot P er son-0---flightsat-pre-nul l) by(simp add: defined-split) lemma defined-mono-dot P er son--nameat-pre : τ |= (δ ((X::•Person) .name@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot P er son--nameat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot P er son--nameat-pre-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation-0---prev : τ |= (δ ((X::•Reservation) .prev)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation-0---prev-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation-0---prev-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation-1---next : τ |= (δ ((X::•Reservation) .next)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation-1---next-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation-1---next-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation-1---client : τ |= (δ ((X::•Reservation) .client)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation-1---client-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation-1---client-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation--id : τ |= (δ ((X::•Reservation) .id)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation--id-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation--id-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation--date : τ |= (δ ((X::•Reservation) .date)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation--date-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation--date-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation--flight : τ |= (δ ((X::•Reservation) .flight)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flight))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation--flight-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flight))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation--flight-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation-0---prevat-pre : τ |= (δ ((X::•Reservation) .prev@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation-0---prevat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation-0---prevat-pre-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation-1---nextat-pre : τ |= (δ ((X::•Reservation) .next@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation-1---nextat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation-1---nextat-pre-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation-1---clientat-pre : τ |= (δ ((X::•Reservation) .client@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation-1---clientat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation-1---clientat-pre-nul l)

 qed apply-end(simp add: foundation16 bot-option-def null-option-def) qed qed qed qed apply-end(simp-all) qed lemma is-repr-dot Reser v ation-1---next : assumes def-dot: τ |= (δ ((X::•Reservation) .next)) shows (is-represented-in-state (in-post-state) (X .next) (Reservation) (τ)) apply(insert defined-mono-dot Reser v ation-1---next[OF def-dot, simplified foundation16]) apply(case-tac (X (τ)), simp add: bot-option-def)prooffix a0 show (X (τ)) = (Some (a0)) =⇒ ?thesis when (X (τ)) = null apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)prooffix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis apply(case-tac (heap ((in-post-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def) apply(insert def-dot, simp add:dot Reser v ation-1---next is-represented-in-state-def select Reser v ation--next-def deref-oid Reser v ation-def in-post-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)prooffix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-post-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesisapply(insert def-dot[simplified foundation16], auto simp: dot Reser v ation-1---next is-represented-in-state-def deref-oid Reser v ation-def bot-option-def null-option-def) apply(case-tac b, simp-all add: invalid-def bot-option-def) apply(simp add: deref-assocs Reser v ation-1---next-def deref-assocs-def) apply(case-tac (assocs ((in-post-state (τ))) (oid Reser v ation-1---next)), simp add: invalid-def bot-option-def , simp add: select Reser v ation--next-def) prooffix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsType Reser v ation-A) ' (ran ((heap ((in-post-state (τ)))))) let ?sel-any = (select-object-any S et ((deref-oid Reser v ation (in-post-state) (reconst-basetype)))) show ((?sel-any) (typeoid) (τ)) = (Some ((Some (r)))) =⇒ ?t prooffix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa)))) apply(insert that, drule select-object-any-exec S et[simplified foundation22], erule exE) prooffix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oid Reser v ation (in-post-state) (reconst-basetype) (e) (τ)) apply(insert that, simp add: deref-oid Reser v ation-def) apply(case-tac (heap ((in-post-state (τ))) (e)), simp add: invalid-def bot-option-def , simp) prooffix aaa show (case aaa of (in Reser v ation (obj)) ⇒ (reconst-basetype (obj) (τ)) | -⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-post-state (τ))) (e)) = (Some (aaa)) =⇒ ?t apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def) apply(rule exI [where x = (in Reser v ation (r))], simp add: OclAsType Reser v ation-A-def Let-def reconst-basetype-def split: split-if-asm) by(rule) qed apply-end((blast)+) qed apply-end(simp add: foundation16 bot-option-def null-option-def) qed qed qed qed apply-end(simp-all) qed lemma is-repr-dot Reser v ation-1---client : assumes def-dot: τ |= (δ ((X::•Reservation) .client))

 [where x = (in Reser v ation (r))], simp add: OclAsType Reser v ation-A-def Let-def reconst-basetype-def split: split-if-asm) by(rule) qed apply-end((blast)+) qed apply-end(simp add: foundation16 bot-option-def null-option-def) qed qed qed qed apply-end(simp-all) qed lemma is-repr-dot Reser v ation-1---clientat-pre : assumes def-dot: τ |= (δ ((X::

 ation = (mk Reser v ation ((mkEX T Reser v ation (oid6))) (12345) (constr M on) (oid8)) definition (R11 ::•Reservation) = ((λ-. R11 Reser v ation)) definition R21 Reser v ation = (mk Reser v ation ((mkEX T Reser v ation (oid7))) (98765) (None) (oid8)) definition (R21 ::•Reservation) = ((λ-. R21 Reser v ation)) definition F1 F lig ht = (mk F lig ht ((mkEX T F lig ht (oid8))) (120) (Valencia) (Miami) (None)) definition (F1 ::•Flight) = ((λ-. F1 F lig ht)) definition F2 F lig ht = (mk F lig ht ((mkEX T F lig ht (oid9))) (370) (Miami) (Ottawa) (None)) definition (F2 ::•Flight) = ((λ-. F2 F lig ht)) ML (Ty .check ([(META.Writeln , S1 .flights ∼ = Set{ F1 }) , (META.Writeln , C1 .flights ∼ = Set{ F1 }) , (META.Writeln , C1 .cl-res ∼ = Set{ R11 }) , (META.Writeln , C2 .flights ∼ = Set{ F1 }) , (META.Writeln , C2 .cl-res ∼ = Set{ R21 }) , (META.Writeln , R11 .flight ∼ = Set{ F1 }) , (META.Writeln , R11 .client ∼ = Set{ C1 }) , (META.Writeln , R11 .prev ∼ = Set{}) , (META.Writeln , R11 .next ∼ = Set{}) , (META.Writeln , R21 .flight ∼ = Set{ F1 }) , (META.Writeln , R21 .client ∼ = Set{ C2 }) , (META.Writeln , R21 .prev ∼ = Set{}) , (META.Writeln , R21 .next ∼ = Set{}) , (META.Writeln , F1 .passengers ∼ = Set{ S1 , C1 , C2 }) , (META.Writeln , F1 .fl-res ∼ = Set{ R11 , R21 }) , (META.Writeln , F2 .passengers ∼ = Set{}) , (META.Writeln , F2 .fl-res ∼ = Set{})]) (error(s))) B.11 State (Floor 1) definition (typecheck-state-bad-head-on-lhs-σ 1 (σ 1)) = () definition typecheck-state-extra-variables-on-rhs-σ 1 = (F2 , F1 , R21 , R11 , C2 , C1 , S1) generation-syntax [shallow] setup (Generation-mode.update-compiler-config ((K (let open META in Compiler-env-config-ext (true, NONE, Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 10)), I ((Code-Numeral.Nat 0), (Code-Numeral.Nat 0)), Gen-default, SOME (OclClass ((META.SS-base (META.ST OclAny)), nil, uncurry cons (OclClass ((META.SS-base (META.ST Reservation)), uncurry cons (I ((META.SS-base (META.ST prev)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 2), (Code-Numeral.Nat 2), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0)), SOME (Mult-nat ((Code-Numeral.Nat 1)))), nil), SOME ((META.SS-base (META.ST next))), nil, ()), (META.SS-base (META.ST Reservation)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 1), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0)), SOME (Mult-nat ((Code-Numeral.Nat 1)))), nil), SOME ((META.SS-base (META.ST prev))), nil, ()), (META.SS-base (META.ST Reservation)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST next)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 2), (Code-Numeral.Nat 2), Ocl-ty-class-node-ext ((Code-Numeral.Nat 1), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0)), SOME (Mult-nat ((Code-Numeral.Nat 1)))), nil), SOME ((META.SS-base (META.ST prev))), nil, ()), (META.SS-base (META.ST Reservation)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0)), SOME (Mult-nat ((Code-Numeral.Nat 1)))), nil), SOME ((META.SS-base (META.ST next))), nil, ()), (META.SS-base (META.ST Reservation)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST client)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 1), (Code-Numeral.Nat 2), Ocl-ty-class-node-ext ((Code-Numeral.Nat 1), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST cl-res))), nil, ()), (META.SS-base (META.ST Reservation)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 1)), NONE), nil), SOME ((META.SS-base (META.ST client))), nil, ()), (META.SS-base (META.ST Client)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST id)), OclTy-base-integer), uncurry cons (I ((META.SS-base (META.ST date)), OclTy-enum ((META.SS-base (META.ST Week)))), uncurry cons (I ((META.SS-base (META.ST flight)), OclTy-object (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Flight))), nil))), nil)))))), nil), uncurry cons (OclClass ((META.SS-base (META.ST Person)), uncurry cons (I ((META.SS-base (META.ST flights)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 0), (Code-Numeral.Nat 2), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST passengers))), nil, ()), (META.SS-base (META.ST Person)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 1), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST flights))), nil, ()), (META.SS-base (META.ST Flight)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST name)), OclTy-base-string), nil)), uncurry cons (OclClass ((META.SS-base (META.ST Staff)), nil, nil), uncurry cons (OclClass ((META.SS-base (META.ST Client)), uncurry cons (I ((META.SS-base (META.ST cl-res)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 1), (Code-Numeral.Nat 2), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 1)), NONE), nil), SOME ((META.SS-base (META.ST client))), nil, ()), (META.SS-base (META.ST Client)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 1), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST cl-res))), nil, ()), (META.SS-base (META.ST Reservation)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST address)), OclTy-base-string), nil)), nil), nil))), uncurry cons (OclClass ((META.SS-base (META.ST Flight)), uncurry cons (I ((META.SS-base (META.ST passengers)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 0), (Code-Numeral.Nat 2), Ocl-ty-class-node-ext ((Code-Numeral.Nat 1), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST flights))), nil, ()), (META.SS-base (META.ST Flight)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST passengers))), nil, ()), (META.SS-base (META.ST Person)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST seats)), OclTy-base-integer), uncurry cons (I ((META.SS-base (META.ST from)), OclTy-base-string), uncurry cons (I ((META.SS-base (META.ST to)), OclTy-base-string), uncurry cons (I ((META.SS-base (META.ST fl-res)), OclTy-collection (Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST fl-res))), uncurry cons (Sequence, nil), ()), OclTy-object (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil)))), nil))))), nil), nil))))), uncurry cons (META-instance (OclInstance (uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST S1))), SOME ((META.SS-base (META.ST Staff))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Merlin)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1))))), nil))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST C1))), SOME ((META.SS-base (META.ST Client))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Bertha)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST address)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST cl-res)), ShallB-str ((META.SS-base (META.ST R11))))), nil))))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST C2))), SOME ((META.SS-base (META.ST Client))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Arthur)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST address)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST cl-res)), ShallB-str ((META.SS-base (META.ST R21))))), nil))))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R11))), SOME ((META.SS-base (META.ST Reservation))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST id)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 12345)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flight)), ShallB-str ((META.SS-base (META.ST F1))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST date)), ShallB-str ((META.SS-base (META.ST Mon))))), nil)))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R21))), SOME ((META.SS-base (META.ST Reservation))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST id)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 98765)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flight)), ShallB-str ((META.SS-base (META.ST F1))))), nil))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST F1))), SOME ((META.SS-base (META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST seats)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 120)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST from)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST to)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), nil)))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST F2))), SOME ((META.SS-base (META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST seats)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 370)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST from)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST to)), ShallB-term (OclDefString ((META.SS-base (META.ST Ottawa)))))), nil)))), ()), nil))))))))), uncurry cons (META-enum (OclEnum ((META.SS-base (META.ST Week)), uncurry cons ((META.SS-base (META.ST Mon)), uncurry cons ((META.SS-base (META.ST Tue)), uncurry cons ((META.SS-base (META.ST Wed)), uncurry cons ((META.SS-base (META.ST Thu)), uncurry cons ((META.SS-base (META.ST Fri)), uncurry cons ((META.SS-base (META.ST Sat)), uncurry cons ((META.SS-base (META.ST Sun)), nil))))))))), uncurry cons (META-association (Ocl-association-ext (OclAssTy-association, OclAssRel (uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0)), SOME (Mult-nat ((Code-Numeral.Nat 1)))), nil), SOME ((META.SS-base (META.ST next))), nil, ())), uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0)), SOME (Mult-nat ((Code-Numeral.Nat 1)))), nil), SOME ((META.SS-base (META.ST prev))), nil, ())), nil))), ())), uncurry cons (META-association (Ocl-association-ext (OclAssTy-association, OclAss-Rel (uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Client))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 1)), NONE), nil), SOME ((META.SS-base (META.ST client))), nil, ())), uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST cl-res))), nil, ())), nil))), ())), uncurry cons (META-association (Ocl-association-ext (OclAssTy-aggregation, OclAssRel (uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Flight))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 1)), NONE), nil), SOME ((META.SS-base (META.ST flight))), nil, ())), uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST fl-res))), uncurry cons (Sequence, nil), ())), nil))), ())), uncurry cons (META-association (Ocl-association-ext (OclAssTy-association, OclAssRel (uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Person))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST passengers))), nil, ())), uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Flight))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-star, NONE), nil), SOME ((META.SS-base (META.ST flights))), nil, ())), nil))), ())), uncurry cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Staff))), uncurry cons (uncurry cons (OclTyCore-pre ((META.SS-base (META.ST Person))), nil), nil)), nil, nil, false, ())), uncurry cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Client))), uncurry cons (uncurry cons (OclTyCore-pre ((META.SS-base (META.ST Person))), nil), nil)), uncurry cons (I ((META.SS-base (META.ST address)), OclTy-base-string), nil), nil, false, ())), uncurry cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Person))), nil), uncurry cons (I ((META.SS-base (META.ST name)), OclTy-base-string), nil), nil, false, ())), uncurry cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), uncurry cons (I ((META.SS-base (META.ST id)), OclTy-base-integer), uncurry cons (I ((META.SS-base (META.ST date)), OclTy-object (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Week))), nil))), nil)), nil, false, ())), uncurry cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Flight))), nil), uncurry cons (I ((META.SS-base (META.ST seats)), OclTy-base-integer), uncurry cons (I ((META.SS-base (META.ST from)), OclTy-base-string), uncurry cons (I ((META.SS-base (META.ST to)), OclTy-base-string), nil))), nil, false, ())), nil))))))))))), uncurry cons (I ((META.ST F2), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST F2))), SOME ((META.SS-base (META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST seats)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 370)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST from)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST to)), ShallB-term (OclDefString ((META.SS-base (META.ST Ottawa)))))), nil)))), ()), Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 9)))), uncurry cons (I ((META.ST F1), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST F1))), SOME ((META.SS-base (META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST seats)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 120)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST from)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST to)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), nil)))), ()), Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 8)))), uncurry cons (I ((META.ST R21), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R21))), SOME ((META.SS-base (META.ST Reservation))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST id)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 98765)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flight)), ShallB-str ((META.SS-base (META.ST F1))))), nil))), ()), Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 7)))), uncurry cons (I ((META.ST R11), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R11))), SOME ((META.SS-base (META.ST Reservation))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST id)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 12345)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flight)), ShallB-str ((META.SS-base (META.ST F1))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST date)), ShallB-str ((META.SS-base (META.ST Mon))))), nil)))), ()), Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 6)))), uncurry cons (I ((META.ST C2), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST C2))), SOME ((META.SS-base (META.ST Client))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Arthur)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST address)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST cl-res)), ShallB-str ((META.SS-base (META.ST R21))))), nil))))), ()), Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 5)))), uncurry cons (I ((META.ST C1), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST C1))), SOME ((META.SS-base (META.ST Client))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Bertha)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST address)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST cl-res)), ShallB-str ((META.SS-base (META.ST R11))))), nil))))), ()), Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 4)))), uncurry cons (I ((META.ST S1), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST S1))), SOME ((META.SS-base (META.ST Staff))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Merlin)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1))))), nil))), ()), Oids ((Code-Numeral.Nat 0), (Code-Numeral.Nat 3), (Code-Numeral.Nat 3)))), nil))))))), nil, true, false, I (uncurry cons ((META.ST dot--flightat-pre), uncurry cons ((META.ST dot--dateat-pre), uncurry cons ((META.ST dot--idat-pre), uncurry cons ((META.ST dot-1---clientat-pre), uncurry cons ((META.ST dot-1---nextat-pre), uncurry cons ((META.ST dot-0---prevat-pre), uncurry cons ((META.ST dot--nameat-pre), uncurry cons ((META.ST dot-0---flightsat-pre), uncurry cons ((META.ST dot--addressat-pre), uncurry cons ((META.ST dot-0---cl-resat-pre), uncurry cons ((META.ST dot--fl-resat-pre), uncurry cons ((META.ST dot--toat-pre), uncurry cons ((META.ST dot--fromat-pre), uncurry cons ((META.ST dot--seatsat-pre), uncurry cons ((META.ST dot-1---passengersat-pre), nil))))))))))))))), uncurry cons ((META.ST dot--flight), uncurry cons ((META.ST dot--date), uncurry cons ((META.ST dot--id), uncurry cons ((META.ST dot-1---client), uncurry cons ((META.ST dot-1---next), uncurry cons ((META.ST dot-0---prev), uncurry cons ((META.ST dot--name), uncurry cons ((META.ST dot-0---flights), uncurry cons ((META.ST dot--address), uncurry cons ((META.ST dot-0---cl-res), uncurry cons ((META.ST dot--fl-res), uncurry cons ((META.ST dot--to), uncurry cons ((META.ST dot--from), uncurry cons ((META.ST dot--seats), uncurry cons ((META.ST dot-1---passengers), nil)))))))))))))))), uncurry cons ((META.ST Sequence-Person), uncurry cons ((META.ST Set-Person), uncurry cons ((META.ST Sequence-Flight), uncurry cons ((META.ST Set-Flight), uncurry cons ((META.ST Sequence-Client), uncurry cons ((META.ST Set-Client), uncurry cons ((META.ST Sequence-Reservation), uncurry cons ((META.ST Set-Reservation), nil)))))))), I (NONE, false), ()) end)))) State[shallow] σ 1 = [S1 , C1 , C2 , R11 , R21 , F1 , F2] B.12 State (Floor 1) definition (typecheck-state-bad-head-on-lhs-σ 2 (σ 2)) = () definition typecheck-state-extra-variables-on-rhs-σ 2 = (F2 , F2 , F1 , R21 , F1 , R11 , C2 , F2 , F1 , C1 , R11 , F1 , S1) Instance σ 2 -object1 :: Client = [C1 with-only name = Bertha, address = Saint-Malo, flights = F1 , cl-res = R11] and σ 2 -object2 :: Client = [C2 with-only name = Arthur, address = Valencia, flights = [F1 , F2], cl-res = [self 2 , self 3]] and σ 2 -object4 :: Reservation = [R21 with-only id = 98765 , flight = F1 , next = self 3] and σ 2 -object7 :: Reservation

] f : Flight Inv A : (λ self f . (0 < int (f .seats)))Inv B : (λ self f . (f .fl-res ->size S eq () ≤ int (f .seats))) Inv C : (λ self f . (f .passengers ->select S et(p | p .oclIsTypeOf (Client)) . = ((f .fl-res)->collect S eq (c | c .client .oclAsType(Person))->asSet S eq ())))B.15 Context (Floor 1)Context[shallow] r : Reservation Inv A : (λ self r. (0 < int (r .id)))by(rule σ 1 -OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all)lemma σ 1 -OclAllInstances-at-pre-exec-Flight :assumes [simp]: (Flight ((in S taf f (S1 S taf f)))) = None assumes [simp]: (Flight ((in C lient (C1 C lient)))) = None assumes [simp]: (Flight ((in C lient (C2 C lient)))) =None assumes [simp]: (Flight ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (Flight ((in Reser v ation (R21 Reser v ation)))) = None assumes [simp]: (Flight ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (Flight ((in F lig ht (F2 F lig ht)))) = None shows (σ 1 , st) |= (OclAllInstances-at-pre (Flight)) . = Set{F1 , F2 } unfolding OclAllInstances-at-pre-def by(rule σ 1 -OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all) lemma σ 1 -OclAllInstances-generic-exec-Client : assumes [simp]: (Client ((in S taf f (S1 S taf f)))) = None assumes [simp]: (Client ((in C lient (C1 C lient)))) = None assumes [simp]: (Client ((in C lient (C2 C lient)))) = None assumes [simp]: (Client ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (Client ((in Reser v ation (R21 Reser v ation)))) = None assumes [simp]: (Client ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (Client ((in F lig ht (F2 F lig ht)))) = None assumes [simp]: (a. (pre-post ((mk (a)))) = a) shows (mk (σ 1)) |= (OclAllInstances-generic (pre-post) (Client)

lemma σ 1

 1 -OclAllInstances-at-post-exec-Client :assumes [simp]: (Client ((in S taf f (S1 S taf f)))) = None assumes [simp]: (Client ((in C lient (C1 C lient)))) = None assumes [simp]: (Client ((in C lient (C2 C lient)))) = None assumes [simp]: (Client ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (Client ((in Reser v ation (R21 Reser v ation)))) = None assumes [simp]: (Client ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (Client ((in F lig ht (F2 F lig ht)))) = None shows (st , σ 1) |= (OclAllInstances-at-post (Client)) . = Set{C1 , C2 }unfolding OclAllInstances-at-post-def by(rule σ 1 -OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all) lemma σ 1 -OclAllInstances-at-pre-exec-Client : assumes [simp]: (Client ((in S taf f (S1 S taf f)))) = None assumes [simp]: (Client ((in C lient (C1 C lient)))) = None assumes [simp]: (Client ((in C lient (C2 C lient)))) = None assumes [simp]: (Client ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (Client ((in Reser v ation (R21 Reser v ation)))) = None assumes [simp]: (Client ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (Client ((in F lig ht (F2 F lig ht)))) = None shows (σ 1 , st) |= (OclAllInstances-at-pre (Client)) . = Set{C1 , C2 }

lemma σ 1

 1 -OclAllInstances-at-post-exec-Reservation : assumes [simp]: (Reservation ((in S taf f (S1 S taf f)))) = None assumes [simp]: (Reservation ((in C lient (C1 C lient)))) = None assumes [simp]: (Reservation ((in C lient (C2 C lient)))) = None assumes [simp]: (Reservation ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (Reservation ((in Reser v ation (R21 Reser v ation)))) = None assumes [simp]: (Reservation ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (Reservation ((in F lig ht (F2 F lig ht)))) = None shows (st , σ 1) |= (OclAllInstances-at-post (Reservation)) . = Set{R11 , R21 }unfolding OclAllInstances-at-post-def by(rule σ 1 -OclAllInstances-generic-exec-Reservation, simp-all only: assms, simp-all)lemma σ 1 -OclAllInstances-at-pre-exec-Reservation : assumes [simp]: (Reservation ((in S taf f (S1 S taf f)))) = None assumes [simp]: (Reservation ((in C lient (C1 C lient)))) = None assumes [simp]: (Reservation ((in C lient (C2 C lient)))) = None assumes [simp]: (Reservation ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (Reservation ((in Reser v ation (R21 Reser v ation)))) = None assumes [simp]: (Reservation ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (Reservation ((in F lig ht (F2 F lig ht)))) = None shows (σ 1 , st) |= (OclAllInstances-at-pre (Reservation)) . = Set{R11 , R21 }unfolding OclAllInstances-at-pre-def by(rule σ 1 -OclAllInstances-generic-exec-Reservation, simp-all only: assms, simp-all) lemma σ 1 -OclAllInstances-generic-exec-OclAny : assumes [simp]: (OclAny ((in S taf f (S1 S taf f)))) = None assumes [simp]: (OclAny ((in C lient (C1 C lient)))) = None assumes [simp]: (OclAny ((in C lient (C2 C lient)))) = None assumes [simp]: (OclAny ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (OclAny ((in Reser v ation (R21 Reser v ation)))) = None assumes [simp]: (OclAny ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (OclAny ((in F lig ht (F2 F lig ht)))) = None assumes [simp]: (λ-. (OclAny ((in S taf f (S1 S taf f))))) = ((((λ-. S1 S taf f)::•Staff)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in C lient (C1 C lient))))) = ((((λ-. C1 C lient)::•Client)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in C lient (C2 C lient))))) = ((((λ-. C2 C lient)::•Client)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in Reser v ation (R11 Reser v ation))))) = ((((λ-. R11 Reser v ation)::•Reservation)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in Reser v ation (R21 Reser v ation))))) = ((((λ-. R21 Reser v ation)::•Reservation)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in F lig ht (F1 F lig ht))))) = ((((λ-. F1 F lig ht)::•Flight)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in F lig ht (F2 F lig ht))))) = ((((λ-. F2 F lig ht)::•Flight)) .oclAsType(OclAny)) assumes [simp]: (a. (pre-post ((mk (a)))) = a) shows (mk (σ 1)) |= (OclAllInstances-generic (pre-post) (OclAny)

)) definition (σ 2 -object4 ::•Reservation) = ((λ-. σ 2 -object4 Reser v ation)) definition σ 2 -object7 Reser v ation = (mk Reser v ation ((mkEX T Reser v ation (oid10))) (19283) (None) (oid9)) definition (σ 2 -object7 ::•Reservation) = ((λ-. σ 2 -object7 Reser v ation)) ML (Ty .check ([(META.Writeln , σ 2 -object1 .flights ∼ = Set{ / * 8 * / }) , (META.Writeln , σ 2 -object1 .cl-res ∼ = Set{ / * 6 * / }) , (META.Writeln , σ 2 -object2 .flights ∼ = Set{ / * 8 * / , / * 9 * / }) , (META.Writeln , σ 2 -object2 .cl-res ∼ = Set{ σ 2 -object4 , σ 2 -object7 }) , (META.Writeln , σ 2 -object4 .flight ∼ = Set{ / * 8 * / }) , (META.Writeln , σ 2

lemma σ 2

 2 -OclAllInstances-at-post-exec-OclAny : assumes [simp]: (OclAny ((in S taf f (S1 S taf f)))) = None assumes [simp]: (OclAny ((in C lient (σ 2 -object1 C lient)))) = None assumes [simp]: (OclAny ((in C lient (σ 2 -object2 C lient)))) = None assumes [simp]: (OclAny ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (OclAny ((in Reser v ation (σ 2 -object4 Reser v ation)))) = None assumes [simp]: (OclAny ((in F lig ht (F1 F lig ht)))) = None assumes [simp]: (OclAny ((in F lig ht (F2 F lig ht)))) = None assumes [simp]: (OclAny ((in Reser v ation (σ 2 -object7 Reser v ation)))) = None assumes [simp]: (λ-. (OclAny ((inS taf f (S1 S taf f))))) = ((((λ-. S1 S taf f)::•Staff)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in C lient (σ 2 -object1 C lient))))) = ((((λ-. σ 2 -object1 C lient)::•Client)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in C lient (σ 2 -object2 C lient))))) = ((((λ-. σ 2 -object2 C lient)::•Client)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in Reser v ation (R11 Reser v ation))))) = ((((λ-. R11 Reser v ation)::•Reservation)) .oclAsType(OclAny)) Reser v ation (σ 2 -object4 Reser v ation))))) = ((((λ-. σ 2 -object4 Reser v ation)::•Reservation)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in F lig ht (F1 F lig ht))))) = ((((λ-. F1 F lig ht)::•Flight)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in F lig ht (F2 F lig ht))))) = ((((λ-. F2 F lig ht)::•Flight)) .oclAsType(OclAny)) Reser v ation (σ 2 -object7 Reser v ation))))) = ((((λ-. σ 2 -object7 Reser v ation)::•Reservation)) .oclAsType(OclAny)) shows (st , σ 2) |= (OclAllInstances-at-post (OclAny)) . = Set{S1 .oclAsType(OclAny) , σ 2 -object1 .oclAsType(OclAny) , σ 2 -object2 .oclAsType(OclAny) , R11 .oclAsType(OclAny) , σ 2 -object4 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2 .oclAsType(OclAny) , σ 2 -object7 .oclAsType(OclAny)} unfolding OclAllInstances-at-post-def by(rule σ 2 -OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all) lemma σ 2 -OclAllInstances-at-pre-exec-OclAny : assumes [simp]: (OclAny ((in S taf f (S1 S taf f)))) = None assumes [simp]: (OclAny ((in C lient (σ 2 -object1 C lient)))) = None assumes [simp]: (OclAny ((in C lient (σ 2 -object2 C lient)))) = None assumes [simp]: (OclAny ((in Reser v ation (R11 Reser v ation)))) = None assumes [simp]: (oid-of (S1 S taf f)) = oid3 shows (state-σ 1 .

definition

 Ctxt-fun-ty-out ctxt = (case Ctxt-fun-ty ctxt of OclTy-arrow -t ⇒ Some t | -⇒ None) definition map-pre-post f = Ctxt-clause-update (L.map (λ Ctxt-pp ctxt ⇒ Ctxt-pp (Ctxt-expr-update (L.map (λ T-pp pref (OclProp-ctxt n e) ⇒ T-pp pref (OclProp-ctxt n (f pref ctxt e)) | x ⇒ x)) ctxt) | x ⇒ x)) definition fold-pre-post f ctxt = List.fold (λ Ctxt-pp ctxt ⇒ f (rev (List.fold (λ T-pp pref (OclProp-ctxt n e) ⇒ Cons (pref , n, e) | -⇒ id) (Ctxt-expr ctxt) [])) ctxt | -⇒ id) (Ctxt-clause ctxt) definition map-invariant f-inv = Ctxt-clause-update (L.map (λ Ctxt-pp ctxt ⇒ Ctxt-pp (Ctxt-expr-update (L.map (λ T-invariant ctxt ⇒ T-invariant (f-inv ctxt)| x ⇒ x)) ctxt) | Ctxt-inv ctxt ⇒ Ctxt-inv (f-inv ctxt))) definition fold-invariant f-inv ctxt = List.fold (λ Ctxt-pp ctxt ⇒ List.fold (λ T-invariant ctxt ⇒ f-inv ctxt | -⇒ id) (Ctxt-expr ctxt) | Ctxt-inv ctxt ⇒ f-inv ctxt) (Ctxt-clause ctxt) definition fold-invariant inva = rev (fst (fold-invariant (λ(T-inv -(OclProp-ctxt tit inva)) ⇒ λ (accu, n). ((let tit = case tit of None ⇒ String.of-nat n | Some tit ⇒ tit in (tit, inva)) # accu , Suc n)) inva ([], 0)))fun remove-binding where remove-binding e = (λ OclTy-collection m ty ⇒ OclTy-collection m (remove-binding ty) | OclTy-pair ty1 ty2 ⇒ OclTy-pair (remove-binding ty1) (remove-binding ty2) | OclTy-binding (-, ty) ⇒ remove-binding ty | OclTy-arrow ty1 ty2 ⇒ OclTy-arrow (remove-binding ty1) (remove-binding ty2) | x ⇒ x) e (OclClass r (case lookup rbt r of Some l ⇒ l)) ((λf0 f l. let l = List.map f0 l in if list-ex (λ None ⇒ True | -⇒ False) l then None else Some (f (List.map-filter id l))) (class-unflat-aux rbt rbt-inv (insert r () rbt-cycle)) id (l)) | -⇒ None)) by pat-completeness auto termination proofhave arith-diff : a1 a2 (b :: Nat.nat). a1 = a2 =⇒ a1 > b =⇒ a1 -(b + 1) < a2 -b by arith have arith-less: (a:: Nat.nat) b c. b ≥ max (a + 1) c =⇒ a < b by arith have rbt-length: rbt-cycle r v. RBT .lookup rbt-cycle r = None =⇒ length (RBT .keys (RBT .insert r v rbt-cycle)) = length (RBT .keys rbt-cycle) + 1 apply(subst (1 2) distinct-card[symmetric], (rule distinct-keys)+) apply(simp only: lookup-keys[symmetric], simp) by (metis card-insert-if domIff finite-dom-lookup) have rbt-fold-union : ab a x k. dom (λb. if b = ab then Some a else k b) = {ab} ∪ dom k by(auto)have rbt-fold-union : l rbt-inv a. dom (RBT .lookup (List.fold (λ(k, -). RBT .insert k a) l rbt-inv)) = dom (map-of l) ∪ dom (RBT .lookup rbt-inv) apply(rule-tac P = λrbt-inv . dom (RBT .lookup (List.fold (λ(k, -). RBT .insert k a) l rbt-inv)) =dom (map-of l) ∪ dom (RBT .lookup rbt-inv) in allE, simp-all) apply(induct-tac l, simp, rule allI) apply(case-tac aa, simp) apply(simp add: rbt-fold-union) done have rbt-fold-union: rbt-cycle rbt-inv a.dom (RBT .lookup (RBT .fold (λk -. RBT .insert k a) rbt-cycle rbt-inv)) = dom (RBT .lookup rbt-cycle) ∪ dom (RBT .lookup rbt-inv) apply(simp add: fold-fold) apply(subst (2) map-of-entries[symmetric]) apply(rule rbt-fold-union) done have rbt-fold-eq: rbt-cycle rbt-inv a b. dom (RBT .lookup (RBT .fold (λk -. RBT .insert k a) rbt-cycle rbt-inv)) = dom (RBT .lookup (RBT .fold (λk -. RBT .insert k b) rbt-inv rbt-cycle))by(simp add: rbt-fold-union Un-commute)let ?len = λx. length (RBT .keys x) let ?len-merge = λrbt-cycle rbt-inv. ?len (RBT .fold (λk -. RBT .insert k []) rbt-cycle rbt-inv)have rbt-fold-large: rbt-cycle rbt-inv. ?len-merge rbt-cycle rbt-inv ≥ max (?len rbt-cycle) (?len rbt-inv) apply(subst (1 2 3) distinct-card[symmetric], (rule distinct-keys)+) apply(simp only: lookup-keys[symmetric], simp) apply(subst (1 2) card-mono, simp-all) apply(simp add: rbt-fold-union)+ done have rbt-fold-eq: rbt-cycle rbt-inv r a.RBT .lookup rbt-inv r = Some a =⇒ ?len-merge (RBT .insert r () rbt-cycle) rbt-inv = ?len-merge rbt-cycle rbt-inv apply(subst (1 2) distinct-card[symmetric], (rule distinct-keys)+) apply(simp only: lookup-keys[symmetric]) apply(simp add: rbt-fold-union) by (metis Un-insert-right insert-dom) show ?thesis x0 rbt)) xs (x0 , rbt))) l RBT .empty) RBT .empty const-oclany) definition class-unflat x = (case class-unflat x of None ⇒ OclClass const-oclany [] [] | Some tree ⇒ tree) fun nb-class where nb-class e = (λ OclClass --l ⇒ Suc (List.fold (op + o nb-class) l 0)) e definition apply-optim-ass-arity ty-obj v = (if TyObj-ass-arity ty-obj ≤ 2 then None else Some v) definition is-higher-order = (λ OclTy-collection --⇒ True | OclTy-pair --⇒ True | -⇒ False) definition parse-ty-raw = (λ OclTy-raw s ⇒ if s = int then OclTy-base-integer else OclTy-raw s | x ⇒ x) definition is-sequence = list-ex (λ Sequence ⇒ True | -⇒ False) o TyCollect fun str-of-ty where str-of-ty e = (λ OclTy-base-void ⇒ Void | OclTy-base-boolean ⇒ Boolean | OclTy-base-integer ⇒ Integer | OclTy-base-unlimitednatural ⇒ UnlimitedNatural | OclTy-base-real ⇒ Real | OclTy-base-string ⇒ String | OclTy-object (OclTyObj (OclTyCore-pre s) -) ⇒ s (* | OclTy-object (OclTyObj (OclTyCore ty-obj) -) *) | OclTy-collection t ocl-ty ⇒ (if is-sequence t then S.flatten [Sequence(, str-of-ty ocl-ty,)] else S.flatten [Set(, str-of-ty ocl-ty,)]) | OclTy-pair ocl-ty1 ocl-ty2 ⇒ S.flatten [Pair(, str-of-ty ocl-ty1 , , , str-of-ty ocl-ty2 ,)] | OclTy-binding (-, ocl-ty) ⇒ str-of-ty ocl-ty | OclTy-class-syn s ⇒ s | OclTy-enum s ⇒ s | OclTy-raw s ⇒ S.flatten [´ , s, ´]) e definition ty-void = str-of-ty OclTy-base-void definition ty-boolean = str-of-ty OclTy-base-boolean definition ty-integer = str-of-ty OclTy-base-integer definition ty-unlimitednatural = str-of-ty OclTy-base-unlimitednatural definition ty-real = str-of-ty OclTy-base-real definition ty-string = str-of-ty OclTy-base-string definition pref-ty-enum s = ty-enum @@ String.isub s definition pref-ty-syn s = ty-syn @@ String.isub s definition pref-constr-enum s = constr @@ String.isub s fun str-hol-of-ty-all where str-hol-of-ty-all f b e = (λ OclTy-base-void ⇒ b unit | OclTy-base-boolean ⇒ b bool | OclTy-base-integer ⇒ b int | OclTy-base-unlimitednatural ⇒ b nat | OclTy-base-real ⇒ b real | OclTy-base-string ⇒ b string | OclTy-object (OclTyObj (OclTyCore-pre s) -) ⇒ b const-oid | OclTy-object (OclTyObj (OclTyCore ty-obj) -) ⇒ f (b var-ty-list) [b (TyObj-name ty-obj)] | OclTy-collection -ty ⇒ f (b var-ty-list) [str-hol-of-ty-all f b ty] | OclTy-pair ty1 ty2 ⇒ f (b var-ty-prod) [str-hol-of-ty-all f b ty1 , str-hol-of-ty-all f b ty2] | OclTy-binding (-, t) ⇒ str-hol-of-ty-all f b t | OclTy-class-syn s ⇒ b (pref-ty-syn s) | OclTy-enum s ⇒ b (pref-ty-enum s) | OclTy-raw s ⇒ b s) e definition print-infra-type-synonym-class-set-name name = Set-@@ name definition print-infra-type-synonym-class-sequence-name name = Sequence-@@ name fun get-class-hierarchy-strict-aux where get-class-hierarchy-strict-aux dataty l-res = (List.fold (λ OclClass name l-attr dataty ⇒ λ l-res. get-class-hierarchy-strict-aux dataty (OclClass name l-attr dataty # l-res)) dataty l-res) definition get-class-hierarchy-strict d = get-class-hierarchy-strict-aux d [] fun get-class-hierarchy -aux where get-class-hierarchy -aux l-res (OclClass name l-attr dataty) = (let l-res = OclClass name l-attr dataty # l-res in case dataty of [] ⇒ rev l-res | dataty ⇒ List.fold (λx acc. get-class-hierarchy -aux acc x) dataty l-res) definition get-class-hierarchy = get-class-hierarchy -aux [] definition get-class-hierarchy e = L.map (λ OclClass n l -⇒ (n, l)) (get-class-hierarchy e) definition get-class-hierarchy-sub = (λ None ⇒ [] | Some next-dataty ⇒ get-class-hierarchy next-dataty) definition get-class-hierarchy-sub = (λ None ⇒ [] | Some next-dataty ⇒ get-class-hierarchy next-dataty) datatype position = EQ | LT | GT | UN fun fold-less-gen where fold-less-gen f-gen f-jump f l = (case l of x # xs ⇒ λacc. fold-less-gen f-gen f-jump f xs (f-gen (f x) xs (f-jump acc)) | [] ⇒ id) definition fold-less2 = fold-less-gen List.fold E.2 Translation of AST definition var-in-pre-state = in-pre-state definition var-in-post-state = in-post-state definition var-at-when-hol-post = definition var-at-when-hol-pre = at-pre definition var-at-when-ocl-post = definition var-at-when-ocl-pre = @pre datatype a tmp-sub = Tsub a record a inheritance = Inh :: a Inh-sib :: (a × a list (* flat version of the 1st component *)) list Inh-sib-unflat :: a list datatype a tmp-inh = Tinh a datatype a tmp-univ = Tuniv a definition of-inh = (λTinh l ⇒ l) definition of-linh = L.map Inh definition of-linh-sib l = L.flatten (L.map snd (L.flatten (L.map Inh-sib l))) definition of-sub = (λTsub l ⇒ l) definition of-univ = (λTuniv l ⇒ l) definition map-inh f = (λTinh l ⇒ Tinh (f l)) definition map-linh f cl = (| Inh = f (Inh cl) , Inh-sib = L.map (map-prod f (L.map f)) (Inh-sib cl) , Inh-sib-unflat = L.map f (Inh-sib-unflat cl) |) fun fold-class-gen-aux where fold-class-gen-aux l-inh f accu (OclClass name l-attr dataty) = (let accu = f (λs. s @@ String.isub name) name l-attr (Tinh l-inh) (Tsub (get-class-hierarchy-strict dataty)) (* order: bfs or dfs (modulo reversing) *) dataty accu in case dataty of [] ⇒ accu | -⇒ fst (List.fold (λ node (accu, l-inh-l, l-inh-r).

(

 fold-class-gen-aux ((| Inh = OclClass name l-attr dataty , Inh-sib = L.flatten (L.map (L.map (λl. (l, get-class-hierarchy l))) [l-inh-l, tl l-inh-r]) , Inh-sib-unflat = L.flatten [l-inh-l, tl l-inh-r] |) # l-inh) f accu node , hd l-inh-r # l-inh-l , tl l-inh-r)) dataty (accu, [], dataty))) definition fold-class-gen f accu expr = (let (l-res, accu) = fold-class-gen-aux [] (λ isub-name name l-attr l-inh l-subtree next-dataty (l-res, accu). let (r, accu) = f isub-name name l-attr l-inh l-subtree next-dataty accu in (r # l-res, accu)) ([], accu) expr in (L.flatten l-res, accu)) definition map-class-gen f = fst o fold-class-gen (λ isub-name name l-attr l-inh l-subtree last-d. λ () ⇒ (f isub-name name l-attr l-inh l-subtree last-d, ())) () definition add-hierarchy f x = (λisub-name name ----. f isub-name name (Tuniv (L.map fst (get-class-hierarchy x)))) definition add-hierarchy f x = (λisub-name name ----. f isub-name name (Tuniv (get-class-hierarchy x))) definition add-hierarchy f x = (λisub-name name l-attr ---. f isub-name name (Tuniv (get-class-hierarchy x)) l-attr) definition add-hierarchy f x = (λisub-name name l-attr l-inh -next-dataty. f isub-name name (Tuniv (get-class-hierarchy x)) l-attr (map-inh (L.map (λ OclClass -l -⇒ l) o of-linh) l-inh) next-dataty)definition add-hierarchy f x = (λisub-name name l-attr l-inh l-subtree -. f isub-name name (Tuniv (get-class-hierarchy x))l-attr (map-inh (L.map (λ OclClass -l -⇒ l) o of-linh) l-inh) l-subtree) definition add-hierarchy f = (λisub-name name l-attr l-inh l-subtree. f isub-name name l-attr (of-inh l-inh) (of-sub l-subtree))definition map-class f = map-class-gen (λisub-name name l-attr l-inh l-subtree next-dataty. [f isub-name name l-attr l-inh (Tsub(L.map (λ OclClass n --⇒ n) (of-sub l-subtree))) next-dataty])definition map-class f = map-class-gen (λisub-name name l-attr l-inh l-subtree next-dataty. [f isub-name name l-attr l-inh l-subtree next-dataty]) definition fold-class f = fold-class-gen (λisub-name name l-attr l-inh l-subtree next-dataty accu. let (x, accu) = f isub-name name l-attr (map-inh of-linh l-inh) (Tsub (L.map (λ OclClass n --⇒ n) (of-sub l-subtree))) next-dataty accu in ([x], accu)) definition map-class-gen-h f x = map-class-gen (add-hierarchy f x) x definition map-class-gen-h f x = map-class-gen (add-hierarchy f x) x definition map-class-gen-h f x = map-class-gen (add-hierarchy f x) x definition map-class-gen-h f x = map-class-gen (add-hierarchy f x) x definition map-class-gen-h f x = map-class-gen (add-hierarchy (λisub-name name l-inherited l-attr l-inh l-subtree. f isub-name name l-inherited l-attr l-inh (Tsub (L.map (λ OclClass n--⇒ n) (of-sub l-subtree)))) x) x definition map-class-gen-h f x = map-class-gen (add-hierarchy f) x definition map-class-h f x = map-class (add-hierarchy f x) x definition map-class-h f x = map-class (add-hierarchy f x) x definition map-class-h f x = map-class (add-hierarchy f x) x definition map-class-h f x = map-class (add-hierarchy f x) x definition map-class-h f x = map-class (add-hierarchy f x) x definition map-class-h f x = map-class (add-hierarchy f) x definition map-class-arg-only f = map-class-gen (λ isub-name name l-attr ---. case l-attr of [] ⇒ [] | l ⇒ f isub-name name l) definition map-class-arg-only f = map-class-gen (λ isub-name name l-attr l-inh l-subtree -. case filter (λ OclClass -[] -⇒ False | -⇒ True) (of-linh (of-inh l-inh)) of [] ⇒ [] | l ⇒ f isub-name name (l-attr, Tinh l, l-subtree))definition map-class-arg-only0 f1 f2 u = map-class-arg-only f1 u @@@@ map-class-arg-only f2 u definition map-class-arg-only-var0 = (λf-expr f-app f-lattr isub-name name l-attr. L.flatten (L.flatten (L.map (λ(var-in-when-state, dot-at-when, attr-when). L.flatten (L.map (λ l-attr. L.map (λ(attr-name, attr-ty). f-app isub-name name (var-in-when-state, dot-at-when) attr-ty (λs. s @@ String.isup attr-name) (λs. f-expr s [case case attr-ty of OclTy-object (OclTyObj (OclTyCore ty-obj) -) ⇒ apply-optim-ass-arity ty-obj print (L.map (map-linh m-base-attr) l-inh) (f-base-attr l-subtree) next-dataty in L.flatten [f (L.flatten (L.map (λ (l-hierarchy, l). L.map (λ OclClass h-name --⇒ print-astype name h-name h-name) l) [(GT , of-linh l-inh)])) , f (L.flatten (L.map (λ (l-hierarchy, l). L.map (λ (h-name, hh-name). print-astype name h-name hh-name) (f-less2 (L.map (λ OclClass n --⇒ n) l))) [(GT , of-linh l-inh)])) , f (L.flatten (L.map (λ (l-hierarchy, l). L.flatten (L.map (λ OclClass h-name --⇒ L.map (λ OclClass sib-name --⇒ print-astype name sib-name h-name) (of-linh-sib l-inh)) l)) [(GT , of-linh l-inh)]))]))definition m-class-gen3 base-attr f print = (let m-base-attr = λ OclClass n l b ⇒ OclClass n (base-attr l) b ; f-base-attr = L.map m-base-attr in map-class-gen-h (λisub-name name nl-attr l-inh l-subtree next-dataty. let print-astype = print (L.map (map-linh m-base-attr) l-inh) (f-base-attr l-subtree) next-dataty in f (L.flatten (let l-tree = L.map (λ(cmp,l). (cmp, f-base-attr l)) [(EQ, [OclClass name nl-attr next-dataty]) , (GT , of-linh l-inh) , (LT , l-subtree) , (UN , of-linh-sib l-inh)] in (λf . L.flatten (L.map (λ (l-hierarchy, l). L.map (f l-hierarchy) l) l-tree)) (λ l-hierarchy1 . λ OclClass h-name hl-attr hb ⇒ (λf . L.flatten (L.map (λ (l-hierarchy, l). L.map (f l-hierarchy) l) l-tree)) (λ l-hierarchy2 . λ OclClass hh-name hhl-attr hhb ⇒ print-astype name h-name hh-name)))))) definition m-class-default = (λ---. id) definition m-class base-attr f print = m-class-gen2 base-attr f (λ---. print) definition m-class3-GE base-attr f print = m-class-gen3-GE base-attr f (λ---. print) definition m-class base-attr print = m-class base-attr m-class-default (λ l-hierarchy x0 x1 . [print l-hierarchy x0 x1]) definition map-class-nupl2 -inh f = List.map-filter id o (m-class id (λcompare (-, name, -). λ OclClass h-name --⇒ if compare = GT then Some (f name h-name) else None))definition map-class-nupl2 -inh-large f = List.map-filter id o (m-class id (λcompare (-, name, -). λ OclClass h-name --⇒ if compare = GT | compare = UN then Some (f name h-name) else None)) definition map-class-nupl2 -inh f = List.map-filter id o (m-class-gen2 id m-class-default (λ l-inh --compare (-, name, -). λ OclClass h-name -h-subtree ⇒ [if compare = GT then Some (f name h-name (L.map (λx. (x, List.member (of-linh l-inh) x)) h-subtree)) else None])) definition map-class-nupl2l -inh-gen f = List.map-filter id o (m-class-gen2 id m-class-default (λ l-inh l-subtree -compare (-, name, -). λ OclClass h-name --⇒ [if compare = GT then Some (f l-subtree name (fst (List.fold (λx. λ (l, True, prev-x) ⇒ (l, True, prev-x) | (l, False, prev-x) ⇒ case Inh x of OclClass n -next-d ⇒ ((x, L.map (λ OclClass n l next-d ⇒ (OclClass n l next-d, n = prev-x)) next-d) # l , n = h-name , n)) l-inh ([], False, name)))) else None])) definition map-class-nupl2l -inh f = map-class-nupl2l -inh-gen (λx l. f x l) definition map-class-nupl3 -LE -inh f = L.flatten o map-class-nupl2l -inh-gen (λl-subtree x l. L.map (λname-bot. f name-bot x l) (x # L.map (λ OclClass n --⇒ n) l-subtree)) definition map-class-nupl3 -GE-inh = m-class3-GE id id definition map-class-inh l-inherited = L.map (λ OclClass -l -⇒ l) (of-inh (map-inh of-linh l-inherited)) definition find-inh name class = (case fold-class (λ-name0 -l-inh --accu. Pair () (if accu = None & name name0 then Some (L.map (λOclClass n --⇒ n) (of-inh l-inh)) else accu)) None class of (-, Some l) ⇒ l)end E.3 OCL Meta-Model aka. AST definition of OCL (II) theory Meta-UML-extended imports ../../compiler-generic/Init begin Type Definition datatype internal-oid = Oid nat datatype internal-oids = Oids nat nat nat datatype ocl-def-base = OclDefInteger string | OclDefReal string (* integer digit (left) *) × string (* integer digit (right) *) | OclDefString string datatype ocl-data-shallow = ShallB-term ocl-def-base | ShallB-str string | ShallB-self internal-oid | ShallB-list ocl-data-shallow list datatype a ocl-list-attr = OclAttrNoCast a | OclAttrCast string a ocl-list-attr a record ocl-instance-single = Inst-name :: string option Inst-ty :: string option Inst-attr-with :: string (* name *) option Inst-attr :: (((string (* pre state *) × string (* post state *)) option (* state used when ocl-data-shallow is an object variable (for retrieving its oid) *) × string (* name *) × ocl-data-shallow) list) (* inh and own *) ocl-list-attr datatype ocl-instance = OclInstance ocl-instance-single list datatype ocl-def-base-l = OclDefBase ocl-def-base list datatype a ocl-def-state-core = OclDefCoreAdd ocl-instance-single | OclDefCoreBinding a datatype ocl-def-state = OclDefSt string string (* name *) ocl-def-state-core list datatype ocl-def-pp-core = OclDefPPCoreAdd string (* name *) ocl-def-state-core list | OclDefPPCoreBinding string datatype ocl-def-transition = OclDefPP string option ocl-def-pp-core ocl-def-pp-core option datatype ocl-class-tree = OclClassTree nat nat Object ID Management definition oidInit = (λ Oid n ⇒ Oids n n n) definition oidSucAssoc = (λ Oids n1 n2 n3 ⇒ Oids n1 (Succ n2) (Succ n3)) definition oidSucInh = (λ Oids n1 n2 n3 ⇒ Oids n1 n2 (Succ n3)) definition oidGetAssoc = (λ Oids -n -⇒ Oid n) definition oidGetInh = (λ Oids --n ⇒ Oid n) definition oidReinitAll = (λOids n1 --⇒ Oids n1 n1 n1) definition oidReinitInh = (λOids n1 n2 -⇒ Oids n1 n2 n2) Operations of Fold, Map, ..., on the Meta-Model definition ocl-instance-single-empty = (| Inst-name = None, Inst-ty = None, Inst-attr-with = None, Inst-attr = OclAttrNoCast [] |) fun map-data-shallow-self where map-data-shallow-self f e = (λ ShallB-self s ⇒ f s | ShallB-list l ⇒ ShallB-list (List.map (map-data-shallow-self f) l) | x ⇒ x) e fun map-list-attr where map-list-attr f e = (λ OclAttrNoCast x ⇒ OclAttrNoCast (f x) | OclAttrCast c-from l-attr x ⇒ OclAttrCast c-from (map-list-attr f l-attr) (f x)) e definition map-instance-single f ocli = ocli (| Inst-attr := map-list-attr (L.map f) (Inst-attr ocli) |) fun fold-list-attr where fold-list-attr cast-from f l-attr accu = (case l-attr of OclAttrNoCast x ⇒ f cast-from x accu | OclAttrCast c-from l-attr x ⇒ fold-list-attr (Some c-from) f l-attr (f cast-from x accu)) definition inst-ty0 ocli = (case Inst-ty ocli of Some ty ⇒ Some ty | None ⇒ (case Inst-attr ocli of OclAttrCast ty --⇒ Some ty | -⇒ None)) definition inst-ty ocli = (case inst-ty0 ocli of Some ty ⇒ ty) definition fold-instance-single f ocli = fold-list-attr (inst-ty0 ocli) (λ Some x ⇒ f x) (Inst-attr ocli) definition fold-instance-single f ocli = fold-list-attr (Inst-ty ocli) f (Inst-attr ocli) definition str-of-def-base = (λ OclDefInteger -⇒ Integer | OclDefReal -⇒ Real | OclDefString -⇒ String) fun str-of-data-shallow where str-of-data-shallow e = (λ ShallB-term b ⇒ str-of-def-base b

F

 definition map2-ctxt-term f = (let f-prop = λ OclProp-ctxt n prop ⇒ OclProp-ctxt n (f prop) ; f-inva = λ T-inv b prop ⇒ T-inv b (f-prop prop) in λ META-ctxt Floor2 c ⇒ META-ctxt Floor2 (Ctxt-clause-update (L.map (λ Ctxt-pp pp ⇒ Ctxt-pp (Ctxt-expr-update (L.map (λ T-pp pref prop ⇒ T-pp pref (f-prop prop) | T-invariant inva ⇒ T-invariant (f-inva inva))) pp) | Ctxt-inv l-inv ⇒ Ctxt-inv (f-inva l-inv))) c) | x ⇒ x) definition compiler-env-config-more-map f ocl = compiler-env-config.extend (compiler-env-config.truncate ocl) (f (compiler-env-config.more ocl))definition compiler-env-config-empty output-disable-thy output-header-thy oid-start design-analysis sorry-dirty = compiler-env-config.make output-disable-thy output-header-thy oid-start(0 , 0) design-analysis None [] [] [] False False ([], []) [] sorry-dirty definition compiler-env-config-reset-no-env env = compiler-env-config-empty (D-output-disable-thy env) (D-output-header-thy env) (oidReinitAll (D-ocl-oid-start env)) (D-ocl-semantics env) (D-output-sorry-dirty env) (| D-input-meta := D-input-meta env |)The META Meta-Model (II)Type DefinitionFor bootstrapping the environment through the jumps to another semantic floor, we additionally consider the environment as a Meta-Model.datatype boot-generation-syntax = Boot-generation-syntax generation-semantics-ocl datatype boot-setup-env = Boot-setup-env compiler-env-config datatype all-meta = META-semi--theories semi--theories| META-boot-generation-syntax boot-generation-syntax | META-boot-setup-env boot-setup-env | META-all-meta-embedding all-meta-embeddingAs remark, the Isabelle Meta-Model represented by semi--theories can be merged with the previous META Meta-Model all-meta-embedding. However a corresponding parser and printer would then be required. Extending the Meta-Model locale O begin definition i x = META-semi--theories o Theories-one o x definition datatype = i Theory-datatype definition type-synonym = i Theory-type-synonym definition type-notation = i Theory-type-notation definition instantiation = i Theory-instantiation definition overloading = i Theory-overloading definition consts = i Theory-consts definition definition = i Theory-definition definition lemmas = i Theory-lemmas definition lemma = i Theory-lemma definition axiomatization = i Theory-axiomatization definition section = i Theory-section definition text = i Theory-text definition text-raw = i Theory-text-raw definition ML = i Theory-ML definition setup = i Theory-setup definition thm = i Theory-thm definition interpretation = i Theory-interpretation end lemmas [code] = O.i-def O.datatype-def O.type-synonym-def O.type-notation-def O.instantiation-def O.overloading-def O.consts-def O.definition-def O.lemmas-def O.lemma-def O.axiomatization-def O.section-def O.text-def O.text-raw-def O.ML-def O.setup-def O.thm-def O.interpretation-def locale O begin definition datatype = Theory-datatype definition type-synonym = Theory-type-synonym definition type-notation = Theory-type-notation definition instantiation = Theory-instantiation definition overloading = Theory-overloading definition consts = Theory-consts definition definition = Theory-definition definition lemmas = Theory-lemmas definition lemma = Theory-lemma definition axiomatization = Theory-axiomatization definition section = Theory-section definition text = Theory-text definition ML = Theory-ML definition setup = Theory-setup definition thm = Theory-thm definition interpretation = Theory-interpretation end lemmas [code] = O .datatype-def O .type-synonym-def O .type-notation-def O .instantiation-def O .overloading-def O .consts-def O .definition-def O .lemmas-def O .lemma-def O .axiomatization-def O .section-def O .text-def O .ML-def O .setup-def O .thm-def O .interpretation-def Operations of Fold, Map, ..., on the Meta-Modeldefinition map-semi--theory f = (λ META-semi--theories (Theories-one x) ⇒ META-semi--theories (Theories-one (f x)) | META-semi--theories (Theories-locale data l) ⇒ META-semi--theories (Theories-locale data (L.map (L.map f) l)) | x ⇒ x)endA p p e n d i xHOL-OCL 2.0: Translating Meta-ModelsFor space reasons, we will skip the presentation of all packaging functions and only present their final assembling. (As detailed in Section 5.3, a packaging function is a mapping between two meta-models.)F.1 General Environment for the Translation: Conclusiontheory Core imports core/Floor1-enum core/Floor1-infra core/Floor1-astype core/Floor1-istypeof core/Floor1-iskindof core/Floor1-allinst core/Floor1-access core/Floor1-examp core/Floor2-examp core/Floor1-ctxt core/Floor2-ctxt beginPreliminaries datatype a embedding-fun = Embedding-fun-info string a | Embedding-fun-simple a datatype (a, b) embedding = Embed-theories (a ⇒ b ⇒ all-meta list × b) embedding-fun list | Embed-locale (a ⇒ b ⇒ all-meta list × b) embedding-fun list a ⇒ b ⇒ semi--locale × b (a ⇒ b ⇒ semi--theory list × b) list (a ⇒ b ⇒ all-meta list × b) embedding-fun list type-synonym a embedding = (a, compiler-env-config) embedding definition L-fold f = (let f-locale = λloc-data l. f (Embedding-fun-simple (λa b. let (loc-data, b) = loc-data a b ; (l, b) = List.fold (λf0 . λ(l, b) ⇒ let (x, b) = f0 a b in (x # l, b)) l ([], b) in ([META-semi--theories (Theories-locale loc-data (rev l))], b))) in λ Embed-theories l ⇒ List.fold f l | Embed-locale l-th1 loc-data l-loc l-th2 ⇒ List.fold f l-th2 o f-locale loc-data l-loc o List.fold f l-th1) Preliminaries: Setting Up Aliases Names ML local fun definition s = (#2 oo Specification.definition-cmd (NONE, ((@{binding }, []), s))) true fun def-info lhs rhs = definition (lhs ^= @{const-name Embedding-fun-info} (^rhs ^) rhs) fun name-print x = String.implode (case String.explode (Long-Name.base-name x) of #p :: #r :: #i :: #n :: #t :: #-:: l => l

 definition section-aux n s = start-map (λ-. [O.section (Section n s)]) definition section = section-aux 0 definition subsection = section-aux 1 definition subsubsection = section-aux 2 definition txt f = Embedding-fun-simple (start-map O.text o (λn-thy design-analysis. [Text (f n-thy design-analysis)])) definition txt-raw f = Embedding-fun-simple (start-map O.text-raw o (λn-thy design-analysis. [Text-raw (f n-thy design-analysis)])) definition txt s = txt (λ--. s) definition txt = txt o S.flatten definition txt d s = txt (λ -. λ Gen-only-design ⇒ S.flatten (s) | -⇒) (of-list a b (of-ocl-collection b)) (f a b)) definition of-ocl-ty-class-node a b f = ocl-ty-class-node-rec (ap4 a (b (ext ocl-ty-class-node-ext)) (of-nat a b) (of-ocl-multiplicity a b (K of-unit)) (of-string a b) (f a b)) definition of-ocl-ty-class a b f = ocl-ty-class-rec(ap6 a (b (ext ocl-ty-class-ext)) (of-string a b) (of-nat a b) (of-nat a b) (of-ocl-ty-class-node a b (K of-unit)) (of-ocl-ty-class-node a b (K of-unit)) (f a b))definition of-ocl-ty-obj-core a b = rec-ocl-ty-obj-core(ap1 a (b OclTyCore-pre) (of-string a b)) (ap1 a (b OclTyCore) (of-ocl-ty-class a b (K of-unit)))definition of-ocl-ty-obj a b = rec-ocl-ty-obj(ap2 a (b OclTyObj) (of-ocl-ty-obj-core a b) (of-list a b (of-list a b (of-ocl-ty-obj-core a b))))definition of-ocl-ty a b = (λf1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 .rec-ocl-ty f1 f2 f3 f4 f5 f6 f7(K o f8) (λ--. f9) (f10 o map-prod id snd) (λ--. f11) f12 f13 f14 f15) (b OclTy-base-void) (b OclTy-base-boolean) (b OclTy-base-integer) (b OclTy-base-unlimitednatural) (b OclTy-base-real) (b OclTy-base-string) (ap1 a (b OclTy-object) (of-ocl-ty-obj a b)) (ar2a (b OclTy-collection) (of-ocl-multiplicity a b (K of-unit))) (ar2 a (b OclTy-pair) id) (ap1 a (b OclTy-binding) (of-pair a b (of-option a b (of-string a b)) id)) (ar2 a (b OclTy-arrow) id) (ap1 a (b OclTy-class-syn) (of-string a b)) (ap1 a (b OclTy-enum) (of-string a b)) (ap1 a (b OclTy-raw) (of-string a b)) definition of-ocl-association-type a b = rec-ocl-association-type (b OclAssTy-native-attribute) (b OclAssTy-association) (b OclAssTy-composition) (b OclAssTy-aggregation) definition of-ocl-association-relation a b = rec-ocl-association-relation (ap1 a (b OclAssRel) (of-list a b (of-pair a b (of-ocl-ty-obj a b) (of-ocl-multiplicity a b (K of-unit)))))definition of-ocl-association a b f = ocl-association-rec(ap3 a (b (ext ocl-association-ext)) (of-ocl-association-type a b) (of-ocl-association-relation a b) (f a b)) definition of-ocl-ctxt-prefix a b = rec-ocl-ctxt-prefix (b OclCtxtPre) (b OclCtxtPost) definition of-ocl-ctxt-term a b = (λf0 f1 f2 . rec-ocl-ctxt-term f0 f1 (co1 K f2)) (ap2 a (b T-pure) (of-pure-term a b) (of-option a b (of-string a b))) (ap2 a (b T-to-be-parsed) (of-string a b) (of-string a b)) (ar2 a (b T-lambda) (of-string a b)) definition of-ocl-prop a b = rec-ocl-prop (ap2 a (b OclProp-ctxt) (of-option a b (of-string a b)) (of-ocl-ctxt-term a b)) definition of-ocl-ctxt-term-inv a b = rec-ocl-ctxt-term-inv (ap2 a (b T-inv) (of-bool b) (of-ocl-prop a b)) definition of-ocl-ctxt-term-pp a b = rec-ocl-ctxt-term-pp (ap2 a (b T-pp) (of-ocl-ctxt-prefix a b) (of-ocl-prop a b)) (ap1 a (b T-invariant) (of-ocl-ctxt-term-inv a b)) definition of-ocl-ctxt-pre-post a b f = ocl-ctxt-pre-post-rec (ap4 a (b (ext ocl-ctxt-pre-post-ext)) (of-string a b) (of-ocl-ty a b) (of-list a b (of-ocl-ctxt-term-pp a b)) (f a b)) definition of-ocl-ctxt-clause a b = rec-ocl-ctxt-clause (ap1 a (b Ctxt-pp) (of-ocl-ctxt-pre-post a b (K of-unit))) (ap1 a (b Ctxt-inv) (of-ocl-ctxt-term-inv a b)) definition of-ocl-ctxt a b f = ocl-ctxt-rec (ap4 a (b (ext ocl-ctxt-ext)) (of-list a b (of-string a b)) (of-ocl-ty-obj a b) (of-list a b (of-ocl-ctxt-clause a b)) (f a b)) definition of-ocl-class a b = (λf0 f1 f2 f3 . rec-ocl-class (ap3 a f0 f1 f2 f3)) (b OclClass) (of-string a b) (of-list a b (of-pair a b (of-string a b) (of-ocl-ty a b))) (of-list a b snd) definition of-ocl-class-raw a b f = ocl-class-raw-rec (ap5 a (b (ext ocl-class-raw-ext)) (of-ocl-ty-obj a b) (of-list a b (of-pair a b (of-string a b) (of-ocl-ty a b))) (of-list a b (of-ocl-ctxt-clause a b)) (of-bool b) (f a b))definition of-ocl-ass-class a b = rec-ocl-ass-class (ap2 a (b OclAssClass) (of-ocl-association a b (K of-unit)) (of-ocl-class-raw a b (K of-unit))) definition of-ocl-class-synonym a b = rec-ocl-class-synonym (ap2 a (b OclClassSynonym) (of-string a b) (of-ocl-ty a b)) definition of-ocl-enum a b = rec-ocl-enum (ap2 a (b OclEnum) (of-string a b) (of-list a b (of-string a b))) end lemmas [code] = Parse.of-ocl-ctxt-clause-def Parse.of-ocl-ctxt-def Parse.of-ocl-class-def Parse.of-ocl-class-raw-def Parse.of-ocl-ass-class-def Parse.of-ocl-class-synonym-def Parse.of-ocl-enum-def end G.2 Instantiating the Parser of OCL (II) theory Parser-UML-extended imports Meta-UML-extended ../../compiler-generic/meta-isabelle/Parser-init begin Building Recursors for Records definition ocl-instance-single-rec0 f ocl = f (Inst-name ocl) (Inst-ty ocl) (Inst-attr-with ocl) (Inst-attr ocl) definition ocl-instance-single-rec f ocl = ocl-instance-single-rec0 f ocl (ocl-instance-single.more ocl) lemma [code]: ocl-instance-single.extend = (λocl v. ocl-instance-single-rec0 (co4 (λf . f v) ocl-instance-single-ext) ocl) by(intro ext, simp add: ocl-instance-single-rec0-def ocl-instance-single.extend-def co4-def K-def) lemma [code]: ocl-instance-single.make = co4 (λf . f ()) ocl-instance-single-ext by(intro ext, simp add: ocl-instance-single.make-def co4-def) lemma [code]: ocl-instance-single.truncate = ocl-instance-single-rec (co4 K ocl-instance-single.make) by(intro ext, simp add: ocl-instance-single-rec0-def ocl-instance-single-rec-def ocl-instance-single.truncate-def ocl-instance-single.make-def co4-def K-def) Main context Parse begin definition of-internal-oid a b = rec-internal-oid (ap1 a (b Oid) (of-nat a b)) definition of-internal-oids a b = rec-internal-oids (ap3 a (b Oids) (of-nat a b) (of-nat a b) (of-nat a b)) definition of-ocl-def-base a b = rec-ocl-def-base (ap1 a (b OclDefInteger) (of-string a b)) (ap1 a (b OclDefReal) (of-pair a b (of-string a b) (of-string a b))) (ap1 a (b OclDefString) (of-string a b)) definition of-ocl-data-shallow a b = rec-ocl-data-shallow (ap1 a (b ShallB-term) (of-ocl-def-base a b)) (ap1 a (b ShallB-str) (of-string a b)) (ap1 a (b ShallB-self) (of-internal-oid a b)) (ap1 a (b ShallB-list) (of-list a b snd)) definition of-ocl-list-attr a b f = (λf0 . co4 (λf1 . rec-ocl-list-attr f0 (λs -a rec. f1 s rec a)) (ap3 a)) (ap1 a (b OclAttrNoCast) f) (b OclAttrCast) (of-string a b) id f definition of-ocl-instance-single a b f = ocl-instance-single-rec (ap5 a (b (ext ocl-instance-single-ext)) (of-option a b (of-string a b)) (of-option a b (of-string a b)) (of-option a b (of-string a b)) (of-ocl-list-attr a b (of-list a b (of-pair a b (of-option a b (of-pair a b (of-string a b) (of-string a b))) (of-pair a b (of-string a b) (of-ocl-data-shallow a b))))) (f a b)) definition of-ocl-instance a b = rec-ocl-instance (ap1 a (b OclInstance) (of-list a b (of-ocl-instance-single a b (K of-unit)))) definition of-ocl-def-base-l a b = rec-ocl-def-base-l (ap1 a (b OclDefBase) (of-list a b (of-ocl-def-base a b))) definition of-ocl-def-state-core a b f = rec-ocl-def-state-core (ap1 a (b OclDefCoreAdd) (of-ocl-instance-single a b (K of-unit))) (ap1 a (b OclDefCoreBinding) f) definition of-ocl-def-state a b = rec-ocl-def-state (ap2 a (b OclDefSt) (of-string a b) (of-list a b (of-ocl-def-state-core a b (of-string a b)))) definition of-ocl-def-pp-core a b = rec-ocl-def-pp-core (ap1 a (b OclDefPPCoreAdd) (of-list a b (of-ocl-def-state-core a b (of-string a b)))) (ap1 a (b OclDefPPCoreBinding) (of-string a b)) definition of-ocl-def-transition a b = rec-ocl-def-transition (ap3 a (b OclDefPP) (of-option a b (of-string a b)) (of-ocl-def-pp-core a b) (of-option a b (of-ocl-def-pp-core a b))) definition of-ocl-class-tree a b = rec-ocl-class-tree (ap2 a (b OclClassTree) (of-nat a b) (of-nat a b)) end lemmas [code] = Parse.of-internal-oid-def Parse.of-internal-oids-def Parse.of-ocl-def-base-def Parse.of-ocl-data-shallow-def Parse.of-ocl-list-attr-def Parse.of-ocl-instance-single-def Parse.of-ocl-instance-def Parse.of-ocl-def-base-l-def Parse.of-ocl-def-state-core-def Parse.of-ocl-def-state-def Parse.of-ocl-def-pp-core-def Parse.of-ocl-def-transition-def Parse.of-ocl-class-tree-def end G.3 Instantiating the Parser of META theory Parser-META imports Meta-META Parser-UML Parser-UML-extended begin definition of-compiler-env-config a b f = compiler-env-config-rec (ap15 a (b (ext compiler-env-config-ext)) (of-bool b) (of-option a b (of-pair a b (of-string a b) (of-pair a b (of-list a b (of-string a b)) (of-string a b)))) (of-internal-oids a b) (of-pair a b (of-nat a b) (of-nat a b)) (of-generation-semantics-ocl a b) (of-option a b (of-ocl-class a b)) (of-list a b (of-all-meta-embedding a b)) (of-list a b (of-pair a b (of-string base a b) (of-pair a b (of-ocl-instance-single a b (K of-unit)) (of-internal-oids a b)))) (of-list a b (of-pair a b (of-string base a b) (of-list a b (of-pair a b (of-internal-oids a b) (of-ocl-def-state-core a b (of-pair a b (of-string a b) (of-ocl-instance-single a b (K of-unit)))))))) (of-bool b) (of-bool b) (of-pair a b (of-list a b (of-string base a b)) (of-list a b (of-string base a b))) (of-list a b (of-string base a b)) (of-pair a b (of-option a b (of-generation-lemma-mode a b)) (of-bool b)) (f a b)) end lemmas [code] = Parse.of-ocl-flush-all-def Parse.of-floor-def Parse.of-all-meta-embedding-def Parse.of-generation-semantics-ocl-def Parse.of-generation-lemma-mode-def Parse.of-compiler-env-config-defG.4 Finalizing the ParserIt should be feasible to invent a meta-command (e.g., datatype) to automatically generate the previous recursors in Parse.

locale

 Parse-Isabelle begin definition Of-Pair = Pair definition Of-Nil = Nil definition Of-Cons = Cons definition Of-None = None definition Of-Some = Some definition of-pair a b f1 f2 = (λf . λ(c, d) ⇒ f c d) (ap2 a (b Of-Pair) f1 f2) definition of-list a b f = (λf0 . rec-list f0 o co1 K) (b Of-Nil) (ar2 a (b Of-Cons) f) definition of-option a b f = rec-option (b Of-None) (ap1 a (b Of-Some) f) definition of-unit b = case-unit (b ()) definition of-bool where of-bool b = case-bool (b True) (b False) definition of-nibble b = rec-nibble NibbleF) definition of-char a b = rec-char (ap2 a (b Char) (of-nibble b) (of-nibble b))

 ⇒ s-st0 (S.flatten [(, Char , of-nibble id n1 , , of-nibble id n2 ,)])) (λc. s-st (S.flatten [(, c,)])) s in S.flatten [(, s,)]) definition of-string = of-string-gen Init.S.flatten (λs. S.flatten [(Init.ST0 , s,)]) (λs. S.flatten [(Init.abr-string.SS-base (Init.string base .ST , s,))]) definition of-string base a b s = of-string-gen Init.String base .flatten (λs. S.flatten [(Init.ST0-base , s,)]) (λs. S.flatten [(Init.string base .ST , s,)]) a b (String base .to-String s) definition of-nat where of-nat a b = b o String.of-natural end sublocale Parse-Isabelle < Parse id Parse-Isabelle.of-string Parse-Isabelle.of-string base Parse-Isabelle.of-nat Parse-Isabelle.of-unit Parse-Isabelle.of-bool Parse-Isabelle.Of-Pair Parse-Isabelle.Of-Nil Parse-Isabelle.Of-Cons Parse-Isabelle.Of-None Parse-Isabelle.Of-Some done context Parse-Isabelle begin definition compiler-env-config a b = of-compiler-env-config a b (λ a b. of-pair a b (of-list a b (of-all-meta-embedding a b)) (of-option a b (of-string a b))) end definition isabelle-of-compiler-env-config = Parse-Isabelle.compiler-env-config lemmas [code] = Parse-Isabelle.Of-Pair-def Parse-Isabelle.Of-Nil-def Parse-Isabelle.Of-Cons-def Parse-Isabelle.Of-None-def Parse-Isabelle.Of-Some-def (of-ocl-data-shallow v)) l))) (Inst-attr ocli)) s-right) definition of-ocl-instance -= (λ OclInstance l ⇒ Instance %s (String-concat and (L.map of-ocl-instance-single l))) definition of-ocl-def-state-core l = String-concat , (L.map (λ OclDefCoreBinding s ⇒ To-string s | OclDefCoreAdd ocli ⇒ of-ocl-instance-single ocli) l) definition of-ocl-def-state -(floor :: (* polymorphism weakening needed by code-reflect *) String.literal) = (λ OclDefSt n l ⇒ State%s %s = [%s] floor (To-string n) (of-ocl-def-state-core l)) definition of-ocl-def-pp-core = (λ OclDefPPCoreBinding s ⇒ To-string s | OclDefPPCoreAdd l ⇒ [%s] (of-ocl-def-state-core l)) definition of-ocl-def-transition -(floor :: (* polymorphism weakening needed by code-reflect *) String.literal) = (λ OclDefPP n s-pre s-post ⇒ Transition%s %s%s%s floor (case n of None ⇒ | Some n ⇒ %s = (To-string n)) (of-ocl-def-pp-core s-pre) (case s-post of None ⇒ | Some s-post ⇒ %s (of-ocl-def-pp-core s-post))) end lemmas [code] = Print.To-oid-def Print.of-ocl-def-base-def Print.of-ocl-instance-single-def Print.of-ocl-instance-def Print.of-ocl-def-state-core-def Print.of-ocl-def-state-def Print.of-ocl-def-pp-core-def Print.of-ocl-def-transition-def Print.of-ocl-list-attr.simps Print.of-ocl-data-shallow.simps end H.3 Instantiating the Printer for META theory Printer-META imports Parser-META ../../compiler-generic/meta-isabelle/Printer-Isabelle Printer-UML-extended begin context Print begin definition of env -section env = (if D-output-disable-thy env then λ-. else of-section env) definition of env -semi--theory env = (λ Theory-section section-title ⇒ of env -section env section-title | x ⇒ of-semi--theory env x) definition of env -semi--theories env = (λfprintf1 . List-iterM (fprintf1 %s) l)) end definition write-file0 = Print.write-file0 (String.implode o String.to-list) (ToNat integer-of-natural) definition write-file = Print.write-file (String.implode o String.to-list) (ToNat integer-of-natural) lemmas [code] = Print.write-file0-def Print.write-file-def H.5 Miscellaneous: Garbage Collection of Notations no-type-notation natural (nat) no-type-notation abr-string (string) end A p p e n d i x I HOL-OCL 2.0: Syntax Diagrams of Commands I.1 Main Setup of Meta Commands generation-syntax : theory → theory generation_syntax

 Class : theory → theory Abstract-class : theory → theoryInstancebinding uml_type except that type_object can not contain quantified names.I.4 UML/OCL: Lazy Identity CombinatorEnd : theory → theory A p p e n d i xKDefining Isar_HOL syntax "from null"

theory

 Figure K.1: Syntactically renaming commands of Figure 5.8

 Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Titre : Construction de Logiques-Objet Sémantiquement Correct pour des Langages à Domaines Spécifiques Basés sur UML/OCL Mots Clés : Structures de données orientés objets, Chemins d'expression, Featherweight OCL, Null, Invalid, Sémantique formelle, Isabelle, Réflexion, UML, OCL.

Title:

 Constructing Semantically Sound Object-Logics for UML/OCL Based Domain-Specific Languages Keywords: Object-oriented Data Structures, Path Expressions, Featherweight OCL, Null, Invalid, Formal Semantics, Isabelle, Reflection, UML, OCL.

 Figure 1.3: A simple class model with OCL constraints capturing a bank account.

				CHAPTER 1. INTRODUCTION
	Class Bank						
	Attributes name	: String			
	Class Client						
	Attributes clientname : String			
		address	: String			
		age	: Integer			
	Class Account						
	Attributes id	: Integer			
		balance	: Currency			
	Class Savings < Account					
	Attributes max	: Currency			
	Client 1..* clients clientname : String age : Integer address : String	owner 1	accounts 1..*	Account balance : Real id : Integer	accounts 1..*	bank 1	Bank 1..* banks name : String
			Savings		Current		
		max : Real	overdraft : Real		
							using the

 We provide for the above Isabelle API a common infrastructure to generate Isabelle parsable text (targeting readability), as well as to generate Isabelle interpretable code (targeting efficiency). The interpretable code relies on a code-generation setup reflecting HOL terms to ML terms. Then at ML side, we can perform the parsing in input from UML/OCL syntax, and the binding in output to the own native Isabelle kernel in ML.

	pretty-print the deep embedding of Isar_HOL	in Haskell export (in Haskell, OCaml, Scala or SML)	UML/OCL in Isabelle.thy
	UML/OCL Meta-Model	Model transf. in HOL Isabelle	Isar_HOL Meta-Model	in ML	apply & output to static file in HOL Isabelle + UML/OCL
	evaluate the shallow representation of	reflect (into ML the compiler of Isabelle)	bind to Isar in ML: dynamic loading in editor
	Isar_HOL in ML			
	Figure 5.7: Building packages in Isabelle/HOL: targeting readability, efficiency
	and provability requirements	
	•				

] generation_syntax deep flush_all generation_syntax deep flush_all end

	deep-CERTIFICATES BEFORE CHECKING PROOFS CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0 83
		generation_syntax	
		[deep [in SML module_name M […]
		, in self]]
		L theory generation_syntax Isar_HOL […] begin [deep [in Haskell , in OCaml , in Scala , in SML Run.thy Function.ML module_name M] […] module_name M module_name M SML SML reflected readability vs. efficiency
		Argument.ML	L L	
	Haskell	OCaml theory all different Generated imports […]	Scala	SML
		begin		
	Function.hs	function.ml			Function.ML
	Main.hs	main.ml end		[…]	Run.thy
	Argument.hs	argument.ml	All.scala	Argument.ML
		theory	
		Generated imports […]	
		begin	
		all similar	
		end		
	Figure 6.4: Multiple targets of generations in deep

lazy strict id end qXirvk uzcBtKk afq vhgLp Au ZqR ZoHHBhjetW KSy

	theory generation_ syntax lazy	[…] begin [deep […]]	nJsL apX FpKIpx oCpZgmHSqI cFf qXirvk uzcBtKk vhgLp Au ZqR	afq
	strict		ZoHHBhjetW	KSy
	id		dJ pAqhwdIMOf z
	end		HBWT srzWd	vr Sk
	theory	[…] begin		
	generation_ syntax	[deep […]]		
	Figure 6.8: Inserting meta-commands from the output window
	from the output window, by clicking on a chosen piece of content. The integra-
	tion of this click-insert behaviour actually leads to various kind of programming
	scenarios.			

 Sj) is a set of binary relations of the form (n, rn from , rn to , ty) between two classes C i and C j where S i , S j ∈ {Sequence m , Set m }. The tuple consists of a (unique) association name n, two role names rn to and rn from and finally a command ty ∈ Aggregation} that indicates if the pair (rn from , rn to

	102	CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES
		{Association,

 where a i k ranges over the local attribute types of C i (not inherited ones) and C j l ext ranges over all class type extensions of immediate subclasses C j l of C i .Here, A + B denotes the sum type for the types A and B, such that (C j1ext + • • • + C jmext) ⊥ constructsthe "potential alternative of one of the type extensions C j1ext to C jmext ." As a consequence of the definition of class type extensions, we can now define class types (which depend on class type extensions):

meta

Definition "Class types (privileging accessors over casts)": Let C i be a class with a possibly empty set of immediate subclasses C j1 , . . . , C jm

 show the definitions of class types and class type extensions of Client and Person from Figure 3.2. The construction of the universe comprises the following datatype definitions: 3 Client oid string ⊥ Client ext datatype Person ext' = mk Person_Staff Staff ext | mk Person_Client Client ext datatype Person ext = mk Person string ⊥ Person ext' ⊥ datatype Person ty = mk' Person oid Person ext datatype A = in Flight Flight ty | in Client Client ty | in Staff Staff ty | in Person Person ty | in Reservation Reservation ty | in OclAny OclAny ty Here, oid × string ⊥ × string ⊥ ⊥ is (the only) optional extension that represents Client objects cast to Person:

	HOL (generated)		
	datatype Client ext datatype Client ty	= mk Client = mk'	string ⊥

 Person ⇒ Set(Flight) begin definition X.flights = eval_extract X (deref_oid Person in_post_state (deref_assocs flights in_post_state (select set flights (deref_oid Flight in_post_state)))) end

generated) overloading _.name :: Person ⇒ Integer begin definition X.name = eval_extract X (deref_oid Person in_post_state (select Person_name reconst_basetype)) end overloading _.flights ::

 we call T.simp depth_2 (i. e. simp or blast) to explicitly use the current H class0 , which is present in both the assumption and the conclusion.

	122	CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES
	qed	

meta

proof To prove lemma 2, we use lemma 2' by repeatedly eliminating all its disjunction after inserting it.

 This part corresponds to the writing in Isabelle of the code shown in Figure3.2.As remark, we are checking for example that the constant id already exists, and that one can also use this name in the following attribute: no conflict will happen.

	128 8.2. SPECIFICATION ANALYSIS OF THE FLIGHT MODEL CHAPTER 8. CASE STUDY 129
	Class Model Association reservations
	Between Client	[1]
		Role client
	Class Flight Reservation [*]
	Attributes Role cl-res
	seats : Integer End
	from : String
	to : String Association connection
	End Between Reservation [0 . . 1]
		Role next
	lemma id = (λx. x) Reservation [0 . . 1]
	proof	Role prev
	End	
	In complement to Figure 3.2, we define an enumeration type.
	Class Reservation
	Attributes
	id : Integer
	date : Week
	End	
	Class Person
	Attributes
	name : String
	End	
	Class Client < Person
	Attributes
	address : String
	End	
	Class Staff < Person
	End	
	Association passengers
	Between Person	[*]
		Role passengers
		Flight	[*]
		Role flights
	End	
	Aggregation flights
	theory Between Flight	[1]
	Flight-Model Role flight
	imports	Reservation [*]
	../src/UML-OCL Role fl-res Sequence-
	End	
	begin	

Enum Week

[Mon, Tue, Wed, Thu, Fri, Sat, Sun] End!

 This chapter is exactly similar as Section 8.2, except that proofs are displayed.As remark, we are checking for example that the constant id already exists, and that one can also use this name in the following attribute: no conflict will happen.

	End	
	Association passengers
	Between Person	[*]
	Role passengers
	Flight	[*]
	Role flights
	End	
	Aggregation flights
	Between Flight	[1]
	Role flight
	Reservation [*]
	Role fl-res Sequence-
	End	
	Association reservations
	Between Client	[1]
	Role client
	Reservation [*] Role cl-res Flight-Model theory imports End
	../src/UML-OCL Association connection
	Between Reservation [0 . . 1] begin Role next
	Reservation [0 . . 1] Class Model Role prev
	End	
	Class Flight In complement to Figure 3.2, we define an enumeration type.
	Attributes Enum Week seats : Integer [Mon, Tue, Wed, Thu, Fri, Sat, Sun] from : String to : String End!
	End	
	lemma id = (λx. x)
	by (rule id-def)	
	Class Reservation	
	Attributes	
	id : Integer	
	date : Week	
	End	
	Class Person	
	Attributes	
	name : String	
	End	
	Class Client < Person
	Attributes	
	address : String
	End	
	Class Staff < Person

This part corresponds to the writing in Isabelle of the code shown in Figure

3

.2.

of the Class Model in OCL Subsequently

 , we state a desired class invariant for Flight's in the usual OCL syntax:We wish to analyse our class model and show that the entire set of invariants can be satisfied, i. e. there exist legal states that satisfy all constraints imposed by the class invariants.lemma Flight-consistent: ∃ τ . Flight-Aat-pre τ ∧ Flight-A τ proof (rule-tac x=(σ t1 , σ t2) in exI , rule conjI)The following auxiliary fact establishes that τ |= δ S =⇒ τ |= S->forAll S et (X |P) (S Set{} or P) from the library is applicable since OclAsType F lig ht -A .allInstances@pre() is indeed defined.

	4])
	apply(simp only: Let-def)
	apply(simp add: select-object-def)
	apply(simp only: Let-def)
	apply(subst cp-OclIf , subst OclSize-singleton[simplified OclValid-def])
	apply(subst cp-valid)
	using C1-deref-val[simplified OclValid-def StrongEq-def true-def]

Set{} UML-Set.OclIncluding id (deref-oid C lient fst reconst-basetype) [apply(simp, subst cp-valid[symmetric], simp add: C1-valid[simplified OclValid-def]) using C1-deref-val[simplified OclValid-def StrongEq-def true-def] by(subst cp-OclIf [symmetric], simp) qed qed Annotations Context f : Flight Inv A : 0 < int (f .seats) Inv B : f .fl-res ->size S eq () ≤ int (f .seats) Inv C : f .passengers ->select S et (p | p .oclIsTypeOf (Client)) . = ((f .fl-res)->collect S eq (c | c .client .oclAsType(Person))->asSet S eq ()) Model Analysis: A satisfiability proof of the invariants have forall-trivial: τ P. let S = OclAsType F lig ht -A .allInstances@pre() in (τ |= (S->forAll S et (X |P) (S Set{} or P))) unfolding Let-def by(rule OclForall-body-trivial, rule OclAllInstances-at-pre-defined) show Flight-Aat-pre (σ t1 , σ t2) proofhave * : (σ t1 , σ t2) |= (0 < int (F1 .seats@pre)) apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F1-val-seatsATpre, simplified σ t1 -σ s1 [symmetric]],simp) by(simp add: OclInt0) have * * : (σ t1 , σ t2) |= (0 < int (F2 .seats@pre)) apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F2-val-seatsATpre, simplified σ t1 -σ s1 [symmetric]],simp) by(simp add: OclInt0) Now we calculate: have

 True by(simp,rule foundation25 , simp add: foundation10 * * *) finally show ?thesis unfolding Flight-Aat-pre-def by simp qed next Analogously for the first part, the following auxiliary fact establishes that τ |= δ S =⇒ τ |= S->forAll S et (X |P) (S Set{} or P) from the library is applicable since OclAsType F lig ht -A .allInstances() is indeed defined.

	have forall-trivial: τ P. let S = OclAsType F lig ht -A .allInstances() in
	(τ |= (S->forAll S et (X |P) (S	Set{} or P)))
	by(simp add: Let-def , rule OclForall-body-trivial, rule OclAllInstances-at-post-defined)
	show Flight-A (σ t1 , σ t2)	
	proof -	
	have * : (σ t1 , σ	
	apply(rule OclAllInstances-at-pre-valid)
	apply(simp add: F1-def F2-def)	

by(simp add: OclAsType F lig ht -A-def)+ also have ... = ((σ t1 , σ t2) |= Set{F1 , F2 } Set{} or (0 < int (F2 .seats@pre)) and (0 < int (F1 .seats@pre))) apply(simp, simp add:

OclValid-def , subst (1 2) cp-OclOr, subst cp-OclIf , subst (1 2 3) cp-OclAnd, subst cp-OclIf) by(simp add: F1-def F2-def OclIf-def) also have ... = t2) |= 0 < int F1 .

seats apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F1-val-seats, simplified σ t2 -σ s2 [symmetric]],simp) by(simp add: OclInt0) have * * : (σ t1 , σ t2) |= 0 < int F2 .seats apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F2-val-seats, simplified σ t2 -σ s2 [symmetric]],simp) by(simp add: OclInt0

B.2 Class Model: The Construction of the Object Universe datatype

 tyEX T F lig ht = mkEX T F lig ht oid datatype ty F lig ht = mk F lig ht tyEX T F lig ht int option string option string option oid list option datatype tyEX T C lient = mkEX T C lient oid string option datatype ty C lient = mk C lient tyEX T C lient string option datatype tyEX T S taf f = mkEX T S taf f oid string option datatype ty S taf f = mk S taf f tyEX T S taf f datatype tyEX T P er son = mkEX T P er son-S taf f ty S taf f | mkEX T P er son-C lient ty C lient | mkEX T P er son oid datatype ty P er son = mk P er son tyEX T P er son string option datatype tyEX T Reser v ation = mkEX T Reser v ation oid datatype ty Reser v ation = mk Reser v ation tyEX T Reser v ation int option ty-enum W eek option oid option = in F lig ht ty F lig ht | in C lient ty C lient | in S taf f ty S taf f | in P er son ty P er son | in Reser v ation ty Reser v ation | in O clAny ty O clAny type-synonym Void = A Void type-synonym Boolean = A Boolean type-synonym Integer = A Integer type-synonym Real = A Real type-synonym String = A String type-synonym α val = (A, α) val type-notation val (•(-)) type-synonym Flight = ty F lig ht ⊥ ⊥ type-synonym Client = ty C lient ⊥ ⊥ type-synonym Staff = ty S taf f ⊥ ⊥ type-synonym Person = ty P er son ⊥ ⊥

datatype tyEX T O clAny = mkEX T O clAny -Reser v ation ty Reser v ation | mkEX T O clAny -P er son ty P er son | mkEX T O clAny -S taf f ty S taf f | mkEX T O clAny -C lient ty C lient | mkEX T O clAny -F lig ht ty F lig ht | mkEX T O clAny oid datatype ty O clAny = mk O clAny tyEX T O clAny datatype A type-synonym Reservation = ty Reser v ation ⊥ ⊥ type-synonym OclAny = ty O clAny ⊥ ⊥ type-synonym Sequence-Person = (A, ty P er son option option Sequence base) val type-synonym Set-Person = (A, ty P er son option option Set base) val type-synonym Sequence-Flight = (A, ty F lig ht option option Sequence base) val type-synonym Set-Flight = (A, ty F lig ht option option Set base) val type-synonym Sequence-Client = (A, ty C lient option option Sequence base) val type-synonym Set-Client = (A, ty C lient option option Set base) val type-synonym Sequence-Reservation = (A, ty Reser v ation option option Sequence base) val type-synonym Set-Reservation = (A, ty Reser v ation option option Set base) val type-synonym Week = A Weekgener ic instantiation ty F lig ht :: object begin definition oid-of-ty F lig ht -def : oid-of = (λ mk F lig ht t ----⇒ (case t of (mkEX T F lig ht (t)) ⇒ t)) instance .. end instantiation ty C lient :: object begin

 instantiation ty P er son :: object begin definition oid-of-ty P er son-def : oid-of = (λ mk P er son t -⇒ (case t of (mkEX T P er son (t)) ⇒ t

	| (mkEX T P er son-C lient (t)) ⇒ (oid-of (t))
	| (mkEX T P er son-S taf f (t)) ⇒ (oid-of (t)))) instance .. end instantiation ty Reser v ation :: object
	begin definition oid-of-ty Reser v ation-def : oid-of = (λ mk Reser v ation t ---⇒ (case t of (mkEX T Reser v ation (t)) ⇒ t)) instance .. end instantiation ty O clAny :: object

begin definition oid-of-ty O clAny -def : oid-of = (λ mk O clAny t ⇒ (case t of (mkEX

 null OclAsType Reser v ation-Client-invalid OclAsType Reser v ation-Reservation-invalid OclAsType Reser v ation-OclAny-invalid OclAsType Reser v ation-Person-invalid OclAsType Reser v ation-Staff-invalid OclAsType Reser v ation-Flight-invalid OclAsType Reser v ation-Client-nul l OclAsType Reser v ation-Reservation-nul l OclAsType Reser v ation-OclAny-nul l OclAsType Reser v ation-Person-nul l OclAsType Reser v ation-Staff-nul l OclAsType Reser v ation-Flight-nul l OclAsType O clAny -Client-invalid OclAsType O clAny -Reservation-invalid OclAsType O clAny -OclAny-invalid OclAsType O clAny -Person-invalid OclAsType O clAny -Staff-invalid OclAsType O clAny -Flight-invalid OclAsType O clAny -Client-null OclAsType O clAny -Reservation-null OclAsType O clAny -OclAny-null OclAsType O clAny -Person-null OclAsType O clAny -Staff-null OclAsType O clAny -Flight-null OclAsType P er son-Client-invalid OclAsType P er son-Reservation-invalid OclAsType P er son-OclAny-invalid OclAsType P er son-Person-invalid OclAsType P er son-Staff-invalid OclAsType P er son-Flight-invalid OclAsType P er son-Client-nul l OclAsType P er son-Reservation-nul l OclAsType P er son-OclAny-nul l OclAsType P er son-Person-nul l OclAsType P er son-Staff-nul l OclAsType P er son-Flight-nul l OclAsType

 OclAsType Reser v ation-Client-const OclAsType Reser v ation-Reservation-const OclAsType Reser v ation-OclAny-const OclAsType Reser v ation-Person-const OclAsType Reser v ation-Staff-const OclAsType Reser v ation-Flight-const OclAsType O clAny -Client-const OclAsType O clAny -Reservation-const OclAsType O clAny -OclAny-const OclAsType O clAny -Person-const OclAsType O clAny -Staff-const OclAsType O clAny -Flight-const OclAsType P er son-Client-const OclAsType P er son-Reservation-const OclAsType P er son-OclAny-const OclAsType P er son-Person-const OclAsType P er son-Staff-const OclAsType P er son-Flight-const

 by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf C lient -Flight split: option.split tyEX T F lig ht .split ty F lig ht .split) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf O clAny -Staff split: option.split tyEX T S taf f .split ty S taf f .split)

	lemma OclIsTypeOf O clAny -Person-defined : lemma OclIsTypeOf P er son-Reservation-defined : assumes isdef : τ |= (υ (X))
	assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (OclAny)))
	lemma OclIsTypeOf C lient -Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Client))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf C lient -Reservation split: option.split tyEX T Reser v ation.split shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Person))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf O clAny -Person split: option.split tyEX T P er son.split by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf P er son-Reservation split: option.split tyEX T Reser v ation.split ty Reser v ation.split) ty P er son.split) lemma OclIsTypeOf O clAny -Reservation-defined : lemma OclIsTypeOf P er son-Flight-defined : assumes isdef : τ |= (υ (X))
	ty Reser v ation.split) assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Person))) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (OclAny))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) lemma OclIsTypeOf C lient -Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Client))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf O clAny -Reservation split: option.split tyEX T Reser v ation.split by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf P er son-Flight split: option.split tyEX T F lig ht .split ty Reser v ation.split)
	apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) ty F lig ht .split) lemma OclIsTypeOf Reser v ation-Reservation-defined : assumes isdef : τ |= (υ (X)) lemma OclIsTypeOf F lig ht -Flight-defined :
	shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Reservation))) assumes isdef : τ |= (δ (X))
	apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Flight)))
	lemma OclIsTypeOf C lient -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Client))) ty P er son.split) ty O clAny .split) lemma OclIsTypeOf O clAny -Flight-defined : lemma OclIsTypeOf P er son-OclAny-defined : assumes isdef : τ |= (υ (X))
	apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (OclAny))) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf C lient -Client split: option.split tyEX T C lient .split ty C lient .split) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Person))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf O clAny -Flight split: option.split tyEX T F lig ht .split
	ty F lig ht .split)

lemma OclIsTypeOf F lig ht -Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Flight))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf F lig ht -Flight split: option.split tyEX T F lig ht .split ty F lig ht .split) lemma OclIsTypeOf F lig ht -OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Flight))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf F lig ht -OclAny split: option.split tyEX T O clAny .split ty O clAny .split) lemma OclIsTypeOf F lig ht -Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Flight))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf F lig ht -Staff split: option.split tyEX T S taf f .split ty S taf f .split) lemma OclIsTypeOf F lig ht -Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Flight))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf F lig ht -Person split: option.split tyEX T P er son.split ty P er son.split) lemma OclIsTypeOf F lig ht -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Flight))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf F lig ht -Client split: option.split tyEX T C lient .split ty C lient .split) lemma OclIsTypeOf F lig ht -Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Flight))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf F lig ht -Reservation split: option.split tyEX T Reser v ation.split ty Reser v ation.split) lemma OclIsTypeOf C lient -Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Client))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf C lient -Person split: option.split tyEX T P er son.split ty P er son.split) lemma OclIsTypeOf C lient -OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Client))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf C lient -OclAny split: option.split tyEX T O clAny .split ty O clAny .split) lemma OclIsTypeOf C lient -Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Client))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf C lient -Staff split: option.split tyEX T S taf f .split ty S taf f .split) lemma OclIsTypeOf S taf f -Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Staff))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf S taf f -Staff split: option.split tyEX T S taf f .split ty S taf f .split) lemma OclIsTypeOf S taf f -Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Staff))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf S taf f -Person split: option.split tyEX T P er son.split ty P er son.split) lemma OclIsTypeOf S taf f -OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Staff))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf S taf f -OclAny split: option.split tyEX T O clAny .split ty O clAny .split) lemma OclIsTypeOf S taf f -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Staff))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf S taf f -Client split: option.split tyEX T C lient .split ty C lient .split) lemma OclIsTypeOf S taf f -Reservation-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Reservation) .oclIsTypeOf (Staff))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf S taf f -Reservation split: option.split tyEX T Reser v ation.split ty Reser v ation.split) lemma OclIsTypeOf S taf f -Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Staff))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf S taf f -Flight split: option.split tyEX T F lig ht .split ty F lig ht .split) lemma OclIsTypeOf P er son-Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Person))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf P er son-Person split: option.split tyEX T P er son.split by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf P er son-OclAny split: option.split tyEX T O clAny .split ty O clAny .split) lemma OclIsTypeOf P er son-Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Person))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf P er son-Client split: option.split tyEX T C lient .split ty C lient .split) lemma OclIsTypeOf P er son-Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Person))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf P er son-Staff split: option.split tyEX T S taf f .split ty S taf f .split) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf Reser v ation-Reservation split: option.split tyEX T Reser v ation.split ty Reser v ation.split) lemma OclIsTypeOf Reser v ation-OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Reservation))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf Reser v ation-OclAny split: option.split tyEX T O clAny .split ty O clAny .split) lemma OclIsTypeOf Reser v ation-Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (Reservation))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf Reser v ation-Staff split: option.split tyEX T S taf f .split ty S taf f .split) lemma OclIsTypeOf Reser v ation-Person-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Person) .oclIsTypeOf (Reservation))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf Reser v ation-Person split: option.split tyEX T P er son.split ty P er son.split) lemma OclIsTypeOf Reser v ation-Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (Reservation))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf Reser v ation-Client split: option.split tyEX T C lient .split ty C lient .split) lemma OclIsTypeOf Reser v ation-Flight-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Flight) .oclIsTypeOf (Reservation))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf Reser v ation-Flight split: option.split tyEX T F lig ht .split ty F lig ht .split) lemma OclIsTypeOf O clAny -OclAny-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (OclAny))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf O clAny -OclAny split: option.split tyEX T O clAny .split lemma OclIsTypeOf O clAny -Client-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Client) .oclIsTypeOf (OclAny))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(auto simp: cp-defined[symmetric] bot-option-def OclIsTypeOf O clAny -Client split: option.split tyEX T C lient .split ty C lient .split) lemma OclIsTypeOf O clAny -Staff-defined : assumes isdef : τ |= (υ (X)) shows τ |= (δ ((X::•Staff) .oclIsTypeOf (OclAny))) apply(insert isdef [simplified foundation18], simp only: OclValid-def , subst cp-defined) by(rule OclIsTypeOf F lig ht -Flight-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf F lig ht -OclAny-defined : assumes isdef : τ |= (δ (X)) shows τ |= (δ ((X::•OclAny) .oclIsTypeOf (Flight))) by(rule OclIsTypeOf F lig ht -OclAny-defined[OF isdef [THEN foundation20]]) lemma OclIsTypeOf F lig ht -Staff-defined :

Execution with Invalid or Null as Argument

 OclIsKindOf F lig ht -Person-null : ((null::•Person) .oclIsKindOf (Flight)) = true by(simp only: OclIsKindOf F lig ht -Person OclIsTypeOf F lig ht -Person-null) lemma OclIsKindOf F lig ht -Client-invalid : ((invalid::•Client) .oclIsKindOf (Flight)) = invalid by(simp only: OclIsKindOf F lig ht -Client OclIsTypeOf F lig ht -Client-invalid) lemma OclIsKindOf F lig ht -Client-null : ((null::•Client) .oclIsKindOf (Flight)) = true by(simp only: OclIsKindOf F lig ht -Client OclIsTypeOf F lig ht -Client-null) lemma OclIsKindOf F lig ht -Reservation-invalid : ((invalid::•Reservation) .oclIsKindOf (Flight)) = invalid by(simp only: OclIsKindOf F lig ht -Reservation OclIsTypeOf F lig ht -Reservation-invalid) lemma OclIsKindOf F lig ht -Reservation-null : ((null::•Reservation) .oclIsKindOf (Flight)) = true by(simp only: OclIsKindOf F lig ht -Reservation OclIsTypeOf F lig ht -Reservation-null) lemma OclIsKindOf C lient -Client-invalid : ((invalid::•Client) .oclIsKindOf (Client)) = invalid by(simp only: OclIsKindOf C lient -Client OclIsTypeOf C lient -Client-invalid) lemma OclIsKindOf C lient -Client-null : ((null::•Client) .oclIsKindOf (Client)) = true by(simp only: OclIsKindOf C lient -Client OclIsTypeOf C lient -Client-null) lemma OclIsKindOf C lient -Person-invalid : ((invalid::•Person) .oclIsKindOf (Client)) = invalid by(simp only: OclIsKindOf C lient -Person OclIsTypeOf C lient -Person-invalid) lemma OclIsKindOf C lient -Person-null : ((null::•Person) .oclIsKindOf (Client)) = true by(simp only: OclIsKindOf C lient -Person OclIsTypeOf C lient -Person-null) lemma OclIsKindOf C lient -OclAny-invalid : ((invalid::•OclAny) .oclIsKindOf (Client)) = invalid by(simp only: OclIsKindOf C lient -OclAny OclIsTypeOf C lient -OclAny-invalid) lemma OclIsKindOf C lient -OclAny-null : ((null::•OclAny) .oclIsKindOf (Client)) = true by(simp only: OclIsKindOf C lient -OclAny OclIsTypeOf C lient -OclAny-null)

	lemma OclIsKindOf F lig ht -Flight-invalid : ((invalid::•Flight) .oclIsKindOf (Flight)) = invalid by(simp only: OclIsKindOf F lig ht -Flight OclIsTypeOf F lig ht -Flight-invalid) lemma OclIsKindOf F lig ht -Flight-null : ((null::•Flight) .oclIsKindOf (Flight)) = true by(simp only: OclIsKindOf F lig ht -Flight OclIsTypeOf F lig ht -Flight-null) lemma OclIsKindOf F lig ht -OclAny-invalid : ((invalid::•OclAny) .oclIsKindOf (Flight)) = invalid by(simp

only: OclIsKindOf F lig ht -OclAny OclIsTypeOf F lig ht -OclAny-invalid) lemma OclIsKindOf F lig ht -OclAny-null : ((null::•OclAny) .oclIsKindOf (Flight)) = true by(simp only: OclIsKindOf F lig ht -OclAny OclIsTypeOf F lig ht -OclAny-null) lemma OclIsKindOf F lig ht -Staff-invalid : ((invalid::•Staff) .oclIsKindOf (Flight)) = invalid by(simp only: OclIsKindOf F lig ht -Staff OclIsTypeOf F lig ht -Staff-invalid) lemma OclIsKindOf F lig ht -Staff-null : ((null::•Staff) .oclIsKindOf (Flight)) = true by(simp only: OclIsKindOf F lig ht -Staff OclIsTypeOf F lig ht -Staff-null) lemma OclIsKindOf F lig ht -Person-invalid : ((invalid::•Person) .oclIsKindOf (Flight)) = invalid by(simp only: OclIsKindOf F lig ht -Person OclIsTypeOf F lig ht -Person-invalid) lemma lemma OclIsKindOf C lient -Staff-invalid : ((invalid::•Staff) .oclIsKindOf (Client)) = invalid by(simp only: OclIsKindOf C lient -Staff OclIsTypeOf C lient -Staff-invalid) lemma OclIsKindOf C lient -Staff-null : ((null::•Staff) .oclIsKindOf (Client)) = true by(simp only: OclIsKindOf C lient -Staff OclIsTypeOf C lient -Staff-null) lemma OclIsKindOf C lient -Reservation-invalid : ((invalid::•Reservation) .oclIsKindOf (Client)) = invalid by(simp only: OclIsKindOf C lient -Reservation OclIsTypeOf C lient -Reservation-invalid) lemma OclIsKindOf C lient -Reservation-null : ((null::•Reservation) .oclIsKindOf (Client)) = true by(simp only: OclIsKindOf

 true by(simp only: OclIsKindOf S taf f -Flight OclIsTypeOf S taf f -Flight-null) lemma OclIsKindOf P er son-Client-nul l : ((null::•Client) .oclIsKindOf (Person)) = true by(simp only: OclIsKindOf P er son-Client OclIsTypeOf P er son-Client-nul l OclIsKindOf S taf f -Client-null OclIsKindOf C lient -Client-null, simp) lemma OclIsKindOf P er son-Staff-invalid : ((invalid::•Staff) .oclIsKindOf (Person)) = invalid by(simp

	only:	OclIsKindOf P er son-Staff	OclIsTypeOf P er son-Staff-invalid	OclIsKindOf S taf f -Staff-invalid
	OclIsKindOf C lient -Staff-invalid, simp) lemma OclIsKindOf P er son-Staff-nul l : ((null::•Staff) .oclIsKindOf (Person)) = true by(simp only: OclIsKindOf P er son-Staff OclIsTypeOf P er son-Staff-nul l	OclIsKindOf S taf f -Staff-null
	OclIsKindOf C lient -Staff-null, simp)		
	lemma OclIsKindOf P er son-Person-invalid : ((invalid::•Person) .oclIsKindOf (Person)) = invalid by(simp only: OclIsKindOf P er son-Person OclIsTypeOf P er son-Person-invalid OclIsKindOf S taf f -Person-invalid
	OclIsKindOf C lient -Person-invalid, simp) lemma OclIsKindOf P er son-Person-nul l : ((null::•Person) .oclIsKindOf (Person)) = true by(simp only: OclIsKindOf P er son-Person OclIsTypeOf P er son-Person-nul l	OclIsKindOf S taf f -Person-null
	OclIsKindOf C lient -Person-null, simp) lemma OclIsKindOf P er son-OclAny-invalid : ((invalid::•OclAny) .oclIsKindOf (Person)) = invalid by(simp

only: OclIsKindOf P er son-OclAny OclIsTypeOf P er son-OclAny-invalid OclIsKindOf S taf f -OclAny-invalid OclIsKindOf C lient -OclAny-invalid, simp) lemma OclIsKindOf P er son-OclAny-nul l : ((null::•OclAny) .oclIsKindOf (Person)) = true by(simp only: OclIsKindOf P er son-OclAny OclIsTypeOf P er son-OclAny-nul l OclIsKindOf S taf f -OclAny-null OclIsKindOf C lient -OclAny-null, simp) lemma OclIsKindOf P er son-Client-invalid : ((invalid::•Client) .oclIsKindOf (Person)) = invalid by(simp only: OclIsKindOf P er son-Client OclIsTypeOf P er son-Client-invalid OclIsKindOf S taf f -Client-invalid OclIsKindOf C lient -Client-invalid, simp)

 OclIsKindOf S taf f -Person, simp only: OclIsKindOf C lient -Person) apply(auto simp: cp-OclOr[symmetric] foundation16 bot-option-def OclIsTypeOf C lient -Person OclIsTypeOf S taf f -Person split: option.split tyEX T P er son.split ty P er son.split tyEX T C lient .split ty C lient .split tyEX T S taf f .split ty S taf f .split) OclIsKindOf Reser v ation-OclAny, simp only: OclIsKindOf P er son-OclAny, subst (4 3 2 1) cp-OclOr, subst (5 4 3 2 1) cp-OclOr, simp only: OclIsKindOf S taf f -OclAny, simp only: OclIsKindOf C lient -OclAny, simp only: OclIsKindOf F lig ht -OclAny) apply(auto simp: cp-OclOr[symmetric] foundation16 bot-option-def OclIsTypeOf F lig ht -OclAny OclIsTypeOf C lient -OclAny OclIsTypeOf S taf f -OclAny OclIsTypeOf P er son-OclAny OclIsTypeOf Reser v ation-OclAny split: option.split tyEX T O clAny .split ty O clAny .split tyEX T F lig ht .split ty F lig ht .split tyEX T C lient .split ty C lient .split tyEX T S taf f .split ty S taf f .split tyEX T P er son.split ty P er son.split tyEX T Reser v ation.split ty Reser v ation.split) by(rule foundation25 , rule foundation25 , rule actualKind C lient -larger-staticKind P er son[OF isdef]) lemma actualKind S taf f -larger-staticKind P er son : by(rule foundation25 , rule foundation25 , rule actual-eq-static S taf f [OF isdef]) lemma actualKind S taf f -larger-staticKind O clAny : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Staff) .oclIsKindOf (OclAny)) apply(simp only: OclIsKindOf O clAny -Staff) by(rule foundation25 , rule foundation25 , rule actualKind S taf f -larger-staticKind P er son[OF isdef]) lemma actualKind P er son-larger-staticKindO clAny :

	by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def)?)
	lemma actualKind F lig ht -larger-staticKind O clAny :
	assumes isdef : τ |= (δ (X))
	shows τ |= ((X::•Flight) .oclIsKindOf (OclAny))
	apply(simp only: OclIsKindOf O clAny -Flight) by(rule foundation25 , rule actual-eq-static F lig ht [OF isdef]) lemma actualKind C lient -larger-staticKind P er son :
	assumes isdef : τ |= (δ (X))
	shows τ |= ((X::•Client) .oclIsKindOf (Person))
	apply(simp only: OclIsKindOf P er son-Client) by(rule foundation25 , rule actual-eq-static C lient [OF isdef]) lemma actualKind C lient -larger-staticKind O clAny :
	assumes isdef : τ |= (δ (X))
	shows τ |= ((X::•Client) .oclIsKindOf (OclAny))
	apply(simp only: OclIsKindOf O clAny -Client)
	assumes isdef : τ |= (δ (X))
	shows τ |= ((X::•Staff) .oclIsKindOf (Person))
	apply(simp only: OclIsKindOf P er son-Staff)
	assumes isdef : τ |= (δ (X))
	shows τ |= ((X::•Person) .oclIsKindOf (OclAny))
	apply(simp only: OclIsKindOf O clAny -Person) by(rule foundation25 , rule foundation25 , rule actual-eq-static P er son[OF isdef]) lemma actualKind Reser v ation-larger-staticKindO clAny :
	assumes isdef : τ |= (δ (X))
	shows τ |= ((X::•Reservation) .oclIsKindOf (OclAny))
	apply(simp only: OclIsKindOf O clAny -Reservation) by(rule foundation25 , rule foundation25 , rule foundation25 , rule actual-eq-static Reser v ation[OF isdef])
	lemma not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others-unfold :
	assumes isdef : (τ |= (δ (X)))
	assumes iskin: (τ |= ((X::•OclAny) .oclIsKindOf (Flight)))
	shows (τ |= ((X::•OclAny) .oclIsTypeOf (Flight))) using iskin
	apply(simp only: OclIsKindOf F lig ht -OclAny)
	done
	by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def)?) lemma actual-eq-static Reser v ation :
	assumes isdef : τ |= (δ (X))
	shows τ |= ((X::•Reservation) .oclIsKindOf (Reservation))
	apply(simp only: OclValid-def , insert isdef)
	apply(simp only: OclIsKindOf Reser v ation-Reservation)

)) apply(simp only: OclValid-def , insert isdef) apply(simp only: OclIsKindOf F lig ht -Flight) apply(auto simp: foundation16 bot-option-def split: option.split tyEX T F lig ht .split ty F lig ht .split) by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def)?) lemma actual-eq-static C lient : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Client) .oclIsKindOf (Client)) apply(simp only: OclValid-def , insert isdef) apply(simp only: OclIsKindOf C lient -Client) apply(auto simp: foundation16 bot-option-def split: option.split tyEX T C lient .split ty C lient .split) by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def)?) lemma actual-eq-static S taf f : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Staff) .oclIsKindOf (Staff)) apply(simp only: OclValid-def , insert isdef) apply(simp only: OclIsKindOf S taf f -Staff) apply(auto simp: foundation16 bot-option-def split: option.split tyEX T S taf f .split ty S taf f .split) by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def)?) lemma actual-eq-static P er son : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•Person) .oclIsKindOf (Person)) apply(simp only: OclValid-def , insert isdef) apply(simp only: OclIsKindOf P er son-Person, subst (1) cp-OclOr, subst (2 1) cp-OclOr, simp only: apply(auto simp: foundation16 bot-option-def split: option.split tyEX T Reser v ation.split ty Reser v ation.split) by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def)?) lemma actual-eq-static O clAny : assumes isdef : τ |= (δ (X)) shows τ |= ((X::•OclAny) .oclIsKindOf (OclAny)) apply(simp only: OclValid-def , insert isdef) apply(simp only: OclIsKindOf O clAny -OclAny, subst (1) cp-OclOr, subst (2 1) cp-OclOr, subst (3 2 1) cp-OclOr, simp only:

 -OclAny-defined [OF isdef]], OF OclIsKindOf C lient -OclAny-defined [OF isdef]]) apply(erule foundation26 [OF OclIsTypeOf P er son-OclAny-defined [OF isdef], OF OclIsKindOf S taf f -OclAny-defined [OF is-

	using iskin					
	apply(simp only: OclIsKindOf P er son-OclAny)			
	apply(erule	foundation26 [OF	defined-or-I [OF	OclIsTypeOf P er son-OclAny-defined [OF	isdef],	OF
	OclIsKindOf S taf f def]])					
	apply(simp)					
	apply(drule not-OclIsKindOf S taf f -then-OclAny-OclIsTypeOf-others-unfold[OF isdef], blast)		
	apply(drule not-OclIsKindOf C lient -then-OclAny-OclIsTypeOf-others-unfold[OF isdef], blast)		
	done					

 using actual-eq-static O clAny [OF isdef] apply(simp only: OclIsKindOf O clAny -OclAny) apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]], OF OclIsKindOf F lig ht -OclAny-defined [OF isdef]]) OF OclIsKindOf Reser v ation-OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]]) apply(erule foundation26 [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF -Person-defined [OF isdef]], OF OclIsKindOf C lient -Person-defined [OF isdef]]) apply(erule foundation26 [OF OclIsTypeOf P er son-Person-defined [OF isdef], OF OclIsKindOf S taf f -Person-defined [OF is-

	apply(erule	foundation26 [OF	defined-or-I [OF	OclIsTypeOf O clAny -OclAny-defined [OF	isdef],	
	isdef]])					
	apply(simp)					
	apply(simp)					
	apply(simp only: OclIsKindOf P er son-OclAny)			
	apply(erule	foundation26 [OF	defined-or-I [OF	OclIsTypeOf P er son-OclAny-defined [OF	isdef],	OF
	OclIsKindOf S taf f -OclAny-defined [OF isdef]], OF OclIsKindOf C lient -OclAny-defined [OF isdef]])		
	apply(erule foundation26 [OF OclIsTypeOf P er son-OclAny-defined [OF isdef], OF OclIsKindOf S taf f -OclAny-defined [OF is-
	def]])					
	apply(simp)					
	apply(simp)					
	apply(simp add: iskin)					
	apply(simp)					
	done					
	lemma not-OclIsKindOf S taf f -then-Person-OclIsTypeOf-others :			
	assumes iskin: ¬ τ |= ((X::•Person) .oclIsKindOf (Staff))			
	assumes isdef : τ |= (δ (X))				
	shows (τ |= ((X::•Person) .oclIsTypeOf (Person)) ∨ τ |= ((X::•Person) .oclIsKindOf (Client)))		
	using actual-eq-static P er son[OF isdef]				
	apply(simp only: OclIsKindOf P er son-Person)			
	apply(erule	foundation26 [OF	defined-or-I [OF	OclIsTypeOf P er son-Person-defined [OF	isdef],	OF
	OclIsKindOf S taf f def]])					
	apply(simp)					
	apply(simp add: iskin)					
	apply(simp)					
	done					

 -OclAny-defined [OF isdef]], OF OclIsKindOf C lient -OclAny-defined [OF isdef]]) apply(erule foundation26 [OF OclIsTypeOf P er son-OclAny-defined [OF isdef], OF OclIsKindOf S taf f -OclAny-defined [OF is-[OF defined-or-I [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]], OF OclIsKindOf F lig ht -OclAny-defined [OF isdef]]) OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]]) apply(erule foundation26 [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]]) apply(erule foundation26 [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type O clAny -from-OclAny-to-Flight, simp only: , simp only: isdef) apply(drule not-OclIsKindOf P er son-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) OclIsKindOf C lient -then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type O clAny -from-OclAny-to-Client, simp only: , simp only: isdef) apply(rule down-cast-type P er son-from-OclAny-to-Client, simp only: , simp only: isdef) apply(drule not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type Reser v ation-from-OclAny-to-Client, simp only: , simp only: isdef) apply(drule not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type F lig ht -from-OclAny-to-Client, simp only: , simp only: isdef) apply(drule not-OclIsKindOf S taf f -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type S taf f -from-OclAny-to-Client, simp only: , simp only: isdef) done OclIsKindOf S taf f -then-Person-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type P er son-from-Person-to-Staff , simp only: , simp only: isdef) apply(drule not-OclIsKindOf C lient -then-Person-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type C lient -from-Person-to-Staff , simp only: , simp only: isdef) done lemma down-cast-kind S taf f -from-OclAny-to-Staff : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Staff)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid apply(insert not-OclIsKindOf S taf f -then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type O clAny -from-OclAny-to-Staff , simp only: , simp only: isdef) apply(rule down-cast-type P er son-from-OclAny-to-Staff , simp only: , simp only: isdef) apply(drule not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type Reser v ation-from-OclAny-to-Staff , simp only: , simp only: isdef) apply(drule not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type F lig ht -from-OclAny-to-Staff , simp only: , simp only: isdef) apply(drule not-OclIsKindOf C lient -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type C lient -from-OclAny-to-Staff , simp only: , simp only: isdef) done OclIsKindOf P er son-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type O clAny -from-OclAny-to-Person, simp only: , simp only: isdef) apply(drule not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type Reser v ation-from-OclAny-to-Person, simp only: , simp only: isdef) apply(drule not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type F lig ht -from-OclAny-to-Person, simp only: , simp only: isdef) done lemma down-cast-kind P er son-from-OclAny-to-Client : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid apply(insert not-OclIsKindOf P er son-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type O clAny -from-OclAny-to-Client, simp only: , simp only: isdef) apply(drule not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type Reser v ation-from-OclAny-to-Client, simp only: , simp only: isdef) apply(drule not-OclIsKindOf F lig ht -then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type F lig ht -from-OclAny-to-Client, simp only: , simp only: isdef) done

	apply(simp)			
	apply(simp add: iskin)			
	apply(simp)			
	done lemma not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others :		
	assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Reservation))			
	assumes isdef : τ |= (δ (X))			
	shows (τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X::•OclAny) .oclIsKindOf (Person)) ∨ τ |= ((X::•OclAny)
	.oclIsKindOf (Flight))))			
] apply(simp only: OclIsKindOf O clAny -OclAny) apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]], OF OclIsKindOf F lig ht -OclAny-defined [OF isdef]]) apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]]) apply(erule foundation26 [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF isdef]]) apply(simp) apply(simp) apply(simp only: OclIsKindOf P er son-OclAny) apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOf P er son-OclAny-defined [OF isdef], OF OclIsKindOf S taf f def]]) apply(simp) apply(simp add: iskin) apply(simp) apply(simp) done lemma not-OclIsKindOf P er son-then-OclAny-OclIsTypeOf-others : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Person)) assumes isdef : τ |= (δ (X)) shows (τ |= ((X::•OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X::•OclAny) .oclIsKindOf (Reservation)) ∨ τ |= ((X::•OclAny) .oclIsKindOf (Flight)))) using actual-eq-static O clAny [OF isdef] apply(simp only: OclIsKindOf O clAny -OclAny) using actual-eq-static O clAny [OF isdef] apply(simp only: OclIsKindOf O clAny -OclAny) apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-OclAny-defined [OF isdef]], OF OclIsKindOf P er son-OclAny-defined [OF isdef]], OF OclIsKindOf F lig ht -OclAny-defined [OF isdef]]) apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOf O clAny -OclAny-defined [OF isdef], OF OclIsKindOf Reser v ation-isdef]]) apply(simp) apply(simp add: iskin) apply(simp) apply(simp) done lemma down-cast-kind F lig ht -from-OclAny-to-Flight : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Flight)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Flight)) invalid apply(insert not-apply(auto simp: isdef down-cast-type S taf f -from-OclAny-to-Flight down-cast-type P er son-from-OclAny-to-Flight down-cast-type C lient -from-OclAny-to-Flight) apply(drule not-OclIsKindOf Reser v ation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type Reser v ation-from-OclAny-to-Flight, simp only: , simp only: isdef) done lemma down-cast-kind C lient -from-Person-to-Client : assumes iskin: ¬ τ |= ((X::•Person) .oclIsKindOf (Client)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid apply(insert not-OclIsKindOf C lient -then-Person-OclIsTypeOf-others[OF iskin, OF isdef], elim disjE) apply(rule down-cast-type P er son-from-Person-to-Client, simp only: , simp only: isdef) apply(drule not-OclIsKindOf S taf f -then-Person-OclIsTypeOf-others-unfold[OF isdef]) apply(rule down-cast-type S taf f -from-Person-to-Client, simp only: , simp only: isdef) done lemma down-cast-kind C lient -from-OclAny-to-Client : assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Client)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Client)) invalid apply(insert not-lemma down-cast-kind S taf f -from-Person-to-Staff : assumes iskin: ¬ τ |= ((X::•Person) .oclIsKindOf (Staff)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Staff)) invalid assumes iskin: ¬ τ |= ((X::•OclAny) .oclIsKindOf (Person)) assumes isdef : τ |= (δ (X)) shows τ |= (X .oclAsType(Person)) invalid apply(insert not-lemma down-cast-kind P er son-from-OclAny-to-Person : apply(insert not-
	apply(erule foundation26 [OF defined-or-I apply(erule foundation26 [OF defined-or-I [OF	OclIsTypeOf O clAny -OclAny-defined [OF	isdef],	OF
	OclIsKindOf Reser v ation-isdef]])			
	apply(simp)			

 Flight-OclAllInstances-generic-OclIsKindOf O clAny) lemma Client-OclAllInstances-generic-OclIsKindOf P er son : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)

	(Client))) (OclIsKindOf P er son))
	apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf P er son-Client)
	apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def])
	apply(simp only: OclAllInstances-generic-def)
	apply(subst (1 2 3) Abs-Set base -inverse, simp add: bot-option-def)
	apply(subst (1 2 3) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Person)) (τ))) and t = (λ-. (true (τ)))])
	apply(intro ballI actualKind C lient -larger-staticKind P er son[simplified OclValid-def])
	apply(drule ex-def , erule exE, simp)
	by(simp) lemma Client-OclAllInstances-at-post-OclIsKindOf P er son :
	shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsKindOf P er son))

 prooffix aaa show (case aaa of (in Reser v ation (obj)) ⇒ (reconst-basetype (obj) (τ)) -tac aaa, auto simp: invalid-def bot-option-def image-def ran-def) apply(rule exI [where x = (in Reser v ation (r))], simp add: OclAsType Reser v ation-A-def Let-def reconst-basetype-def split: split-if-asm)

	apply(insert	def-dot[simplified	foundation16],	auto	simp:	dot Reser v ation-0---prev	is-represented-in-state-def
	deref-oid Reser v ation-def bot-option-def null-option-def)			
	apply(case-tac b, simp-all add: invalid-def bot-option-def)			
	apply(simp add: deref-assocs Reser v ation-0---prev-def deref-assocs-def)	
	apply(case-tac (assocs ((in-post-state (τ))) (oid Reser v ation-0---prev)), simp add: invalid-def bot-option-def , simp add: se-
	lect Reser v ation--prev-def) proof -fix r typeoid	let ?t = (Some ((Some (r)))) ∈ (Some o OclAsType Reser v ation-A) ' (ran ((heap ((in-post-state
	(τ))))))						
	let ?sel-any = (select-object-any S et ((deref-oid Reser v ation (in-post-state) (reconst-basetype)))) show ((?sel-any) (typeoid)
	(τ)) = (Some ((Some (r)))) =⇒ ?t				
	proof -fix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))
	apply(insert that, drule select-object-any-exec S et[simplified foundation22], erule exE) proof -fix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oid Reser v ation
	(in-post-state) (reconst-basetype) (e) (τ))				
	apply(insert that, simp add: deref-oid Reser v ation-def)			
	apply(case-tac (heap ((in-post-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)
	| -⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-post-state (τ))) (e)) = (Some (aaa)) =⇒ ?t
	apply(caseby(rule) qed						
	apply-end((blast)+)						

9 Class Model: Towards the Object Instances

 apply(rule exI [where x = (in C lient (r))], simp add: OclAsType C lient -A-def Let-def reconst-basetype-def split: split-if-asm)

	by(rule) qed
	apply-end((blast)+)
	qed
	apply-end(simp add: foundation16 bot-option-def null-option-def)
	qed qed qed qed
	apply-end(simp-all)
	lemmas [simp,code-unfold] = state.defs
	const-ss
	lemmas[simp,code-unfold] = OclAsType F lig ht -OclAny
	OclAsType F lig ht -Staff
	OclAsType F lig ht -Person
	OclAsType F lig ht -Client
	OclAsType F lig ht -Reservation
	OclAsType C lient -Person
	OclAsType C lient -OclAny
	OclAsType C lient -Staff
	OclAsType C lient -Reservation
	OclAsType C lient -Flight
	OclAsType S taf f -Person
	OclAsType S taf f -OclAny
	OclAsType S taf f -Client
	OclAsType S taf f -Reservation
	OclAsType S taf f -Flight
	OclAsType P er son-OclAny
	OclAsType P er son-Client
	OclAsType P er son-Staff
	OclAsType P er son-Reservation
	OclAsType P er son-Flight
	OclAsType Reser v ation-OclAny
	OclAsType Reser v ation-Staff
	OclAsType Reser v ation-Person
	OclAsType Reser v ation-Client
	OclAsType Reser v ation-Flight
	OclAsType O clAny -Flight
	OclAsType O clAny -Client
	OclAsType O clAny -Staff
	OclAsType O clAny -Person
	OclAsType O clAny -Reservation
	B.10 Instance

qed B.

) . = Set{C1 , C2 } apply(subst perm-σ 1) apply(simp only: state.make-def C1-def C2-def) apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, simp, rule const-StrictRefEq S et-including, simp, simp, simp)

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, simp, rule const-StrictRefEq S et-empty, simp) apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, simp, rule const-StrictRefEq S et-empty, simp) apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, simp, rule const-StrictRefEq S et-empty, simp) apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, simp, rule const-StrictRefEq S et-empty, simp) apply(rule state-update-vs-allInstances-generic-empty) by(simp-all only: assms, (simp-all add: OclAsType C lient -A-def)?)

 simp, rule const-StrictRefEq S et-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def

	bot-fun-def bot-option-def)
	apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
	assms, simp, rule const-StrictRefEq S et-empty, simp)
	apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
	assms, simp, rule const-StrictRefEq S et-empty, simp)
	apply(rule state-update-vs-allInstances-generic-empty) by(simp-all only: assms, (simp-all add: OclAsType Reser v ation-A-def)?)

 Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp, [symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsTypeO clAny -Flight, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) , blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(rule state-update-vs-allInstances-generic-empty) OclAny ((in F lig ht (F1 F lig ht))))) = ((((λ-. F1 F lig ht)::•Flight)) .oclAsType(OclAny)) assumes [simp]: (λ-. (OclAny ((in F lig ht (F2 F lig ht))))) = ((((λ-. F2 F lig ht)::•Flight)) .oclAsType(OclAny)) shows (σ 1 , st) |= (OclAllInstances-at-pre (OclAny)).

) .oclAsType(OclAny) , R11 .oclAsType(OclAny) , R21 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2 .oclAsType(OclAny)} . = Set{S1 .oclAsType(OclAny) , C1 .oclAsType(OclAny) , C2 apply(subst perm-σ 1) apply(simp only: state.make-def S1-def C1-def C2-def R11-def R21-def F1-def F2-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client assumes [simp]: (λ-. (OclAny ((in Reser v ation (R21 Reser v ation))))) = ((((λ-. R21 Reser v ation)::•Reservation)) .oclAsType(OclAny)) assumes [simp]: (λ-. (= Set{S1 .oclAsType(OclAny) , C1 .oclAsType(OclAny) , C2 OclAsType O clAny -.oclAsType(OclAny)) .oclAsType(OclAny) , R11 .oclAsType(OclAny) , R21 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2 .oclAsType(OclAny)}

rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assmsapply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms

3 State (Floor 2)

 -object1 C lient :: ty C lient fixes σ 2 -object1 :: •Client assumes σ 2 -object1-def : σ 2 -object1 = (λ-. σ 2 -object1 C lient) fixes σ 2 -object2 C lient :: ty C lient fixes σ 2 -object2 :: •Client assumes σ 2 -object2-def : σ 2 -object2 = (λ-. σ 2 -object2 C lient) fixes R11 Reser v ation :: ty Reser v ation fixes R11 :: •Reservation assumes R11-def : R11 = (λ-. R11 Reser v ation) fixes σ 2 -object4 Reser v ation :: ty Reser v ationonly: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms, blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) , blast, simp, rule const-StrictRefEq S et-including, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client OclAsType O clAny -Client OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp del: OclAsType O clAny -Staff OclAsType O clAny -Client

	locale state-σ 2 = fixes oid3 :: nat fixes oid4 :: nat fixes oid5 :: nat fixes oid6 :: nat fixes oid7 :: nat fixes oid8 :: nat fixes oid9 :: nat fixes oid10 :: nat assumes distinct-oid: (distinct ([oid3 , oid4 , oid5 , oid6 , oid7 , oid8 , oid9 , oid10])) fixes S1 S taf f :: ty S taf f fixes S1 :: •Staff assumes S1-def : S1 = (λ-. S1 S taf f) OclAsType O clAny -Reservation OclAsType O clAny -Reservation OclAsType O clAny -Flight OclAsType O clAny -Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric])?, OclAsType O clAny -Flight simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def) fixes σ 2 OclAsType O clAny -Client apply(rule state-update-vs-allInstances-generic-empty)

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assmsby(simp-all only: assms, (simp-all add: OclAsType O clAny -A-def)?)

 σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (S1)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def S1-def OclIsMaintained-def OclValid-def oid-of-option-def) -σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (R21)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def R21-def OclIsMaintained-def OclValid-def oid-of-option-def)by((metis distinct-oid distinct-length-2-or-more)?)lemma oid7 σ 1 σ 2 -σ 2 -OclIsMaintained : assumes [simp]: (oid-of (σ 2 -object4 Reser v ation)) = oid7 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (σ 2 -object4))apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def σ 2 -object4-def OclIsMaintained-def OclValid-def oid-of-option-def)

	by((metis distinct-oid distinct-length-2-or-more)?)
	lemma oid8 σ 1 σ 2 -σ 1 -OclIsMaintained :
	assumes [simp]: (oid-of (F1 F lig ht)) = oid8
	shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (F1))
	apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def F1-def OclIsMaintained-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?)
	lemma oid8 σ 1 σ 2 -σ 2 -OclIsMaintained :
	assumes [simp]: (oid-of (F1 F lig ht)) = oid8
	shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (F1))
	apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def F1-def OclIsMaintained-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?)
	by((metis distinct-oid distinct-length-2-or-more)?)
	lemma oid6 σ 1 σ 2 -σ 1 -OclIsMaintained :
	assumes [simp]: (oid-of (R11 Reser v ation)) = oid6
	shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (R11))
	apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def R11-def OclIsMaintained-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?)

by((metis distinct-oid distinct-length-2-or-more)?) lemma oid3 σ 1 σ 2 -σ 2 -OclIsMaintained : assumes [simp]: (oid-of (S1 S taf f)) = oid3 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (S1))

apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def S1-def OclIsMaintained-def OclValid-def oid-of-option-def)

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid4 σ 1 σ 2 -σ 1 -OclIsMaintained : assumes [simp]: (oid-of (C1 C lient)) = oid4 shows (state-σ 1 .σ 1 ,

state-σ 2 .σ 2) |= (OclIsMaintained (C1)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def C1-def OclIsMaintained-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid4 σ 1 σ 2 -σ 2 -OclIsMaintained : assumes [simp]: (oid-of (σ 2 -object1 C lient)) = oid4 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (σ 2 -object1)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def σ 2 -object1-def OclIsMaintained-def OclValid-def oid-of-option-def)

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid5 σ 1 σ 2 -σ 1 -OclIsMaintained : assumes [simp]: (oid-of (C2 C lient)) = oid5 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (C2)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def C2-def OclIsMaintained-def OclValid-def oid-of-option-def)

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid5 σ 1 σ 2 -σ 2 -OclIsMaintained : assumes [simp]: (oid-of (σ 2 -object2 C lient)) = oid5 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (σ 2 -object2)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def σ 2 -object2-def OclIsMaintained-def OclValid-def oid-of-option-def) lemma oid6 σ 1 σ 2 -

σ 2 -OclIsMaintained : assumes [simp]: (oid-of (R11 Reser v ation)) = oid6 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (R11)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def R11-def OclIsMaintained-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?) lemma oid7 σ 1 σ 2 -σ 1 -OclIsMaintained : assumes [simp]: (oid-of (R21 Reser v ation)) = oid7 shows (statelemma oid9 σ 1 σ 2 -σ 1 -OclIsMaintained : assumes [simp]: (oid-of (F2 F lig ht)) = oid9 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (F2)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def F2-def OclIsMaintained-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?) lemma oid9 σ 1 σ 2 -σ 2 -OclIsMaintained : assumes [simp]: (oid-of (F2 F lig ht)) = oid9 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsMaintained (F2)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def F2-def OclIsMaintained-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?) lemma oid10 σ 1 σ 2 -σ 2 -OclIsNew : assumes [simp]: (oid-of (σ 2 -object7 Reser v ation)) = oid10 shows (state-σ 1 .σ 1 , state-σ 2 .σ 2) |= (OclIsNew (σ 2 -object7)) apply(simp add: state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def σ 2 -object7-def OclIsNew-def OclValid-def oid-of-option-def) by((metis distinct-oid distinct-length-2-or-more)?) end definition

http://paral-itp.lri.fr/

In the Java documentation, the dynamic type is called "actual type" in contrast to the static type referred as "apparent type".

This command is not present as such in USE, instead it manipulates objects and instances with a special imperative language.

In the Isabelle implementation, there are actually two further variants, they are irrelevant for this presentation and can be therefore omitted.

Although the command end is normally rendered in green, to avoid potential confusions we will depict it in black and in bold format, mostly in Chapter 5 and Chapter 6: so "end".

To increase readability, we use a slightly simplified presentation. The complete details can be inspected in $ISABELLE_HOME/src/HOL/Set.thy (in Isabelle version 2016).

In earlier versions of the OCL standard, this element was called OclUndefined.

The development version of HOL-OCL 2.0 can be inspected online: https://projects. brucker.ch/hol-testgen/log/trunk/hol-testgen/add-ons/Featherweight-OCL.

The updated machine-checked version is maintained by the Isabelle Archive of Formal Proofs (AFP), see also the Bitbucket repository https://bitbucket.org/isa-afp/afp-devel and its list of maintainers https://bitbucket.org/isa-afp/profile/members.

Again, the updated machine-checked version is maintained by the Isabelle Archive of Formal Proofs.

As side-effect free language, OCL has no object-constructors, but with OclIsNew(), the effect of object creation can be expressed in a declarative way.

The details of such a pre-processing are present in HOL-OCL[START_REF] Achim | An Interactive Proof Environment for Objectoriented Specifications[END_REF] and can be similarly adapted for Featherweight OCL.

following the tradition of HOL-OCL[START_REF] Achim | An extensible encoding of object-oriented data models in HOL[END_REF]

For sake of simplicity, we assume that the same flight on different dates is in fact represented by different instances of the class Flight, without explicitly modelling this by an attribute of type Date.

The interval * is a shortcut for [*..*]. We will abbreviate intervals [i min ..imax] by a single i min if we have i min = imax.

Strong logical equality is also referred as "Leibniz"-equality.

One can also open several instances of output windows to keep the results of different cursor positions actively displayed. This is performed by manually deactivating the automatic refreshment option in each instance.

In Isabelle, theories are forming a directed acyclic graph.[START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF]

After bootstrapping Isabelle, it is always assumed that a theory imports at least one other theory.

An Isabelle public repository with formalizations: http://www.isa-afp.org/

The set contains theorems particularly related, because this function takes the full universe of UML/OCL classes in input and covers all situations: leaf nodes, root node...

https://en.wikipedia.org/w/index.php?title=Quine_(computing)

Without loss of generality, we will see in Chapter 7 that class models considered in this thesis always have at least one class ("OclAny") automatically added by default.

As a third option, when nothing is specified, the meta-compiler will accordingly treat all respective notions, so both "aggregations" and "associations".

In HOL-OCL 2.0, we syntactically use the option "[shallow]" instead of "(nf)".

http://unicode.org/cldr/utility/character.jsp?a=2039

http://unicode.org/cldr/utility/character.jsp?a=203A

http://unicode.org/cldr/utility/character.jsp?a=0022

http://unicode.org/cldr/utility/character.jsp?a=0430

http://unicode.org/cldr/utility/character.jsp?a=0061

http://unicode.org/cldr/utility/character.jsp?a=041C

http://unicode.org/cldr/utility/character.jsp?a=004D

Acknowledgments: The inspection of the range of Unicode symbols performed here was partly motivated by certain discussions arisen in the "Isabelle Club". Isabelle Club is a group meeting biweekly held at the LRI: https://modhel.lri.fr/IsabelleClub/.

By slight abuse of language, arguments in parenthesis of the test and cast operations are always class names not types, e. g.: ((X :: Staff).oclAsType(Person).oclAsType(Staff)) = X

For the moment, this comprises the generation of the respective datatype definitions, and all conversion functions between C ity and C ity2 . It remains to furthermore generate the equivalence proof between C ity and C ity2 for all C i .

The re-construction phase. Converting oids or value representations containing oids back to object representations and values (sets, sequences. . .) containing object representations.3 In this chapter, the complete detail of each "Running Example" associated to the construction we are generating can be fully inspected in Appendix B and Appendix C.

We use an ad-hoc overloading mechanism for defining a family of functions, parameterised over C i .

Isabelle does not accept definitions where redundant clauses in the pattern matching are written (and already covered by preceding clauses).

Although such rule schemata may be explicitly generated by Instance (for most OCL expressions), they can also not be: at the time of writing, the complete type-checking process is at least fully executed from an extracted HOL function (as one consequence, the type-checking process terminates). This is feasible because for the moment, Instance only accepts "grounds objects" as arguments (the reader is referred to its syntax diagram detailed in Appendix I).

As future work, it is plan for Instance to support the writing of arbitrary OCL expressions, including the assignment of potentially infinite collection types (for example "a set of sequence of bag of objects"). In particular, besides the cardinality of the manipulated collection types, the sole information required for checking multiplicities appears to be the oid of objects.

The Tree Package comes with the higher-order meta-command Tree, which precisely takes X and Y as arguments.

For equity reason, all names of all classes have been chosen to have the same length. For instance, with 4 bytes and an alphabet of 26 letters, we had enough fresh names for correctly

We assume that the meta-tool has already been reflected before measuring each listed time. As remark, one can observe that most functions of the meta-translation ofFigure D.3 are unrelated, so they can be split into several files in parallel, e. g., in the picture simultaneous processing can normally treat up to 10 files at the same time.

https://gforge.inria.fr/projects/simsoc-cert/

Our two examples Appendix B and Appendix C sketch how this construction can be captured by an automated process.

Although such rule schemata may be explicitly generated by Instance (for most OCL expressions), they can also not be: at the time of writing, the complete type-checking process is at least fully executed from an extracted HOL function (as one consequence, the type-checking process terminates). This is feasible because for the moment, Instance only accepts "grounds objects" as arguments (the reader is referred to its syntax diagram detailed in Appendix I).

As future work, it is plan for Instance to support the writing of arbitrary OCL expressions, including the assignment of potentially infinite collection types (for example "a set of sequence of bag of objects"). In particular, besides the cardinality of the manipulated collection types, the sole information required for checking multiplicities appears to be the oid of objects.

assumes istyp: τ |= ((X::•Person) .oclIsTypeOf (Flight)) assumes isdef : τ |= (δ (X))

.oclIsKindOf (Staff)))))

apply((rule cpI2 [where f = op or], (rule allI)+, rule cp-OclOr)+) apply(simp only: cp-OclIsTypeOf P er son-OclAny-Staff)

apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation--idat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation--idat-pre-nul l)

http://unicode.org/cldr/utility/character.jsp?a=0435

http://unicode.org/cldr/utility/character.jsp?a=0065

http://unicode.org/cldr/utility/character.jsp?a=22C5

http://unicode.org/cldr/utility/character.jsp?a=21E9

Nos deux exemples Annexe B et Annexe C esquissent comment cette construction peut être effectuée par un processus automatique.

Remerciements

(in O clAny ((mk O clAny ((mkEX T O clAny -F lig ht (Flightλ (in S taf f (Staff)) ⇒ Staff | (in P er son ((mk P er son ((mkEX T P er son-S taf f (Staff))) (-)))) ⇒ Staff | (in O clAny ((mk O clAny ((mkEX T O clAny -S taf f (Staff)))))) ⇒ Staff | -⇒ None) definition OclAsType P er son-A = (λ (in P er son (Person)) ⇒ Person | (in O clAny ((mk O clAny ((mkEX T O clAny -P er son (Person)))))) ⇒ Person | (in C lient (Client)) ⇒ (mk P er son ((mkEX T P er son-C lient (Client))) (None)) | (in S taf f (Staff)) ⇒ (mk P er son ((mkEX T P er son-S taf f (Staff))) (None)) by(rule foundation25 , simp add: def-X up O clAny -down Reser v ation-cast StrictRefEq O bj ect-sym) Const lemma OclAsType C lient -Client-const : (const ((X::•Client))) =⇒ (const (X .oclAsType(Client))) by(simp add: const-def , (metis (no-types) OclAsType C lient -Client prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType C lient -Reservation-const : (const ((X::•Reservation))) =⇒ (const (X .oclAsType(Client))) by(simp add: const-def , (metis (no-types) OclAsType C lient -Reservation prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType C lient -OclAny-const : (const ((X::•OclAny))) =⇒ (const (X .oclAsType(Client))) by(simp add: const-def , (metis (no-types) OclAsType C lient -OclAny prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType C lient -Person-const : (const ((X::•Person))) =⇒ (const (X .oclAsType(Client))) by(simp add: const-def , (metis (no-types) OclAsType C lient -Person prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType C lient -Staff-const : (const ((X::•Staff))) =⇒ (const (X .oclAsType(Client))) by(simp add: const-def , (metis (no-types) OclAsType C lient -Staff prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType C lient -Flight-const : (const ((X::•Flight))) =⇒ (const (X .oclAsType(Client))) by(simp add: const-def , (metis (no-types) OclAsType C lient -Flight prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType Reser v ation-Client-const : (const ((X::•Client))) =⇒ (const (X .oclAsType(Reservation))) by(simp add: const-def , (metis (no-types) OclAsType Reser v ation-Client prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType Reser v ation-Reservation-const : (const ((X::•Reservation))) =⇒ (const (X .oclAsType(Reservation))) by(simp add: const-def , (metis (no-types) OclAsType Reser v ation-Reservation prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType Reser v ation-OclAny-const : (const ((X::•OclAny))) =⇒ (const (X .oclAsType(Reservation))) by(simp add: const-def , (metis (no-types) OclAsType Reser v ation-OclAny prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType Reser v ation-Person-const : (const ((X::•Person))) =⇒ (const (X .oclAsType(Reservation))) by(simp add: const-def , (metis (no-types) OclAsType Reser v ation-Person prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType Reser v ation-Staff-const : (const ((X::•Staff))) =⇒ (const (X .oclAsType(Reservation))) by(simp add: const-def , (metis (no-types) OclAsType Reser v ation-Staff prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType Reser v ation-Flight-const : (const ((X::•Flight))) =⇒ (const (X .oclAsType(Reservation))) by(simp add: const-def , (metis (no-types) OclAsType Reser v ation-Flight prod.collapse bot-option-def invalid-def null-fun-def null-option-def)?) lemma OclAsType O clAny -Client-const : (const ((X::•Client))) =⇒ (const (X .oclAsType(OclAny))) by(simp add: const-def , (metis (no-types) OclAsType O

OclIsKindOf P er son-Reservation-nul l OclIsKindOf F lig ht -Reservation-null, simp)

null OclIsKindOf P er son-Client-invalid OclIsKindOf P er son-Reservation-invalid OclIsKindOf P er son-OclAny-invalid OclIsKindOf P er son-Person-invalid OclIsKindOf P er son-Staff-invalid OclIsKindOf P er son-Flight-invalid OclIsKindOf P er son-Client-nul l OclIsKindOf P er son-Reservation-nul l OclIsKindOf P er son-OclAny-nul l OclIsKindOf P er son-Person-nul l OclIsKindOf P er son-Staff-nul l OclIsKindOf P er son-Flight-nul

address dot C lient -0---cl-resat-pre dot C lient --addressat-pre dot P er son-0---flights dot P er son--name dot P er son-0---flightsat-pre dot P er son--nameat-pre dot Reser v ation-0---prev dot Reser v ation-1---next dot Reser v ation-1---client dot Reser v ation--id dot Reser v ation--date dot Reser v ation--flight dot Reser v ation-0---prevat-pre dot Reser v ation-1---nextat-pre dot Reser v ation-1---clientat-pre dot Reser v ation--idat-pre dot Reser v ation--dateat-pre dot Reser v ation--flightat-pre dot C lient -0---flights dot C lient --name dot C lient -0---flightsat-pre dot C lient --nameat-pre dot S taf f -0---flights dot S taf f --name dot S taf f -0---flightsat-pre dot S taf f --nameat-pre

r . client = c Post : c . cl_res -> select (res | res . flight = r . flight@pre) -> isEmpty () 4 http://isabelle.in.tum.de/repos/isabelle/rev

add: foundation16 dot F lig ht --to-null) by(simp add: defined-split) lemma defined-mono-dot F lig ht --fl-res : τ |= (δ ((X::•Flight) .fl-res)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --fl-res-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht --fl-res-null) by(simp add: defined-split) lemma defined-mono-dot F lig ht -1---passengersat-pre : τ |= (δ ((X::•Flight) .passengers@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht -1---passengersat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht -1---passengersat-pre-null) by(simp add: defined-split) lemma defined-mono-dot F lig ht --seatsat-pre : τ |= (δ ((X::•Flight) .seats@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --seatsat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht --seatsat-pre-null) by(simp add: defined-split) lemma defined-mono-dot F lig ht --fromat-pre : τ |= (δ ((X::•Flight) .from@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot F lig ht --fromat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot F lig ht --fromat-pre-null) by(simp add: defined-split) lemma defined-mono-dot Reser v ation--dateat-pre : τ |= (δ ((X::•Reservation) .date@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot Reser v ation--dateat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot Reser v ation--dateat-pre-nul l) by(simp add: defined-split) lemma defined-mono-dot Reser v ation--flightat-pre : τ |= (δ ((X::•Reservation) .flight@pre)) =⇒ τ |= (δ (X)) by(simp add: defined-split) lemma defined-mono-dot C lient -0---flightsat-pre : τ |= (δ ((X::•Client) .flights@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot C lient -0---flightsat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot C lient -0---flightsat-pre-null) by(simp add: defined-split) lemma defined-mono-dot C lient --nameat-pre : τ |= (δ ((X::•Client) .name@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot C lient --nameat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot C lient --nameat-pre-null) by(simp add: defined-split) lemma defined-mono-dot S taf f -0---flights : τ |= (δ ((X::•Staff) .flights)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot S taf f -0---flights-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y = null], simp add: foundation16 dot S taf f -0---flights-null) by(simp add: defined-split) lemma defined-mono-dot S taf f --name : τ |= (δ ((X::•Staff) .name)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot S taf f --name-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y = null], simp add: foundation16 dot S taf f --name-null) by(simp add: defined-split) lemma defined-mono-dot S taf f -0---flightsat-pre : τ |= (δ ((X::•Staff) .flights@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot S taf f -0---flightsat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot S taf f -0---flightsat-pre-null) by(simp add: defined-split) lemma defined-mono-dot S taf f --nameat-pre : τ |= (δ ((X::•Staff) .name@pre)) =⇒ τ |= (δ (X)) apply(case-tac τ |= (X invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y = invalid], simp add: foundation16 dot S taf f --nameat-pre-invalid) apply(case-tac τ |= (X null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y = null], simp add: foundation16 dot S taf f --nameat-pre-null) by(simp add: defined-split) lemma is-repr-dot Reser v ation-0---prev : assumes def-dot: τ |= (δ ((X::•Reservation) .prev)) shows (is-represented-in-state (in-post-state) (X .prev) (Reservation) (τ)) apply(insert defined-mono-dot Reser v ation-0---prev[OF def-dot, simplified foundation16]) apply(case-tac (X (τ)), simp add: bot-option-def)

prooffix a0 show (X (τ)) = (Some (a0)) =⇒ ?thesis when (X (τ)) = null apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)

prooffix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis apply(case-tac (heap ((in-post-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def)

shows (is-represented-in-state (in-post-state) (X .client) (Client) (τ)) apply(insert defined-mono-dot Reser v ation-1---client[OF def-dot, simplified foundation16]) apply(case-tac (X (τ)), simp add: bot-option-def)

prooffix a0 show (X (τ)) = (Some (a0)) =⇒ ?thesis when (X (τ)) = null apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)

prooffix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis apply(case-tac (heap ((in-post-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def) apply(insert def-dot, simp add: dot Reser v ation-1---client is-represented-in-state-def select Reser v ation--client-def deref-oid Reser v ation-def in-post-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm) prooffix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-post-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis apply(insert def-dot[simplified foundation16], auto simp: dot Reser v ation-1---client is-represented-in-state-def deref-oid Reser v ation-def bot-option-def null-option-def) apply(case-tac b, simp-all add: invalid-def bot-option-def) apply(simp add: deref-assocs Reser v ation-1---client-def deref-assocs-def) apply(case-tac (assocs ((in-post-state (τ))) (oid Reser v ation-1---client)), simp add: invalid-def bot-option-def , simp add: select Reser v ation--client-def) prooffix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsType C lient -A) ' (ran ((heap ((in-post-state (τ)))))) let ?sel-any = (select-object-any S et ((deref-oid C lient (in-post-state) (reconst-basetype)))) show ((?sel-any) (typeoid) (τ)) = (Some ((Some (r)))) =⇒ ?t prooffix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa)))) apply(insert that, drule select-object-any-exec S et[simplified foundation22], erule exE) prooffix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oid C lient (in-post-state) (reconst-basetype) (e) (τ)) apply(insert that, simp add: deref-oid C lient -def) apply(case-tac (heap ((in-post-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)

prooffix aaa show (case aaa of (in C lient (obj)) ⇒ (reconst-basetype (obj) (τ))

| -⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-post-state (τ))) (e)) = (Some (aaa)) =⇒ ?t apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def) apply(rule exI [where x = (in C lient (r))], simp add: OclAsType C lient -A-def Let-def reconst-basetype-def split: split-if-asm) by(rule) qed apply-end((blast)+) qed apply-end(simp add: foundation16 bot-option-def null-option-def) qed qed qed qed apply-end(simp-all) qed lemma is-repr-dot Reser v ation-0---prevat-pre : assumes def-dot: τ |= (δ ((X::•Reservation) .prev@pre)) shows (is-represented-in-state (in-pre-state) (X .prev@pre) (Reservation) (τ))

apply(insert defined-mono-dot Reser v ation-0---prevat-pre[OF def-dot, simplified foundation16]) apply(case-tac (X (τ)), simp add: bot-option-def)

prooffix a0 show (X (τ)) = (Some (a0)) =⇒ ?thesis when (X (τ)) = null apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)

prooffix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis apply(case-tac (heap ((in-pre-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def) apply(insert def-dot, simp add: dot Reser v ation-0---prevat-pre is-represented-in-state-def select Reser v ation--prev-def deref-oid Reser v ation-def in-pre-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm) prooffix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-pre-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis apply(insert def-dot[simplified foundation16], auto simp: dot Reser v ation-0---prevat-pre is-represented-in-state-def deref-oid Reser v ation-def bot-option-def null-option-def) apply(case-tac b, simp-all add: invalid-def bot-option-def) apply(simp add: deref-assocs Reser v ation-0---prev-def deref-assocs-def) apply(case-tac (assocs ((in-pre-state (τ))) (oid Reser v ation-0---prev)), simp add: invalid-def bot-option-def , simp add: select Reser v ation--prev-def) prooffix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsType Reser v ation-A) ' (ran ((heap ((in-pre-state

let ?sel-any = (select-object-any S et ((deref-oid Reser v ation (in-pre-state) (reconst-basetype)))) show ((?sel-any) (typeoid) (τ)) = (Some ((Some (r)))) =⇒ ?t prooffix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))

apply(insert that, drule select-object-any-exec S et[simplified foundation22], erule exE)

prooffix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oid Reser v ation (in-pre-state) (reconst-basetype) (e) (τ)) apply(insert that, simp add: deref-oid Reser v ation-def) apply(case-tac (heap ((in-pre-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)

prooffix aaa show (case aaa of (in Reser v ation (obj)) ⇒ (reconst-basetype (obj) (τ))

| -⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-pre-state (τ))) (e)) = (Some (aaa)) =⇒ ?t apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def) apply(rule exI [where x = (in Reser v ation (r))], simp add: OclAsType Reser v ation-A-def Let-def reconst-basetype-def split: split-if-asm) by(rule) qed B.17 Context (Floor 1)

B.19 Context (Floor 1)

type-synonym Set-Integer = (A, Integer base Set base) val consts dot--connections :: (A, α) val ⇒ (Set-Integer) ((-) .connections ()) consts dot--connectionsat-pre :: (A, α) val ⇒ (Set-Integer) ((-) .connections@pre ()) Context[shallow] Reservation :: connections () : Set(Integer)

C

The Flight Model (Generated Theory, Floor 2)

This chapter has been generated from Appendix B. For space reasons, all the code occurring at the beginning similar as Appendix B has implicitly been skipped, i. e., we have explicitly removed by hand the piece of code which is propagated across floors in Figure 6.6. However this code actually existed and was correctly evaluated for the Isabelle system being able to generate this PDF document without errors. In addition, we also do not display the generated code associated to each command Context situated at the end of Appendix B, because the end of Appendix B is mixing Isar_HOL commands with meta-commands (we would otherwise obtain a not well-typed file as explained in Figure 6

apply(simp add: σ 1 -def) apply(subst (1) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (2) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (1) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (3) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (2) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (1) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (4) by(simp) by(simp-all only: assms, (simp-all add: OclAsType S taf f -A-def)?)

.oclAsType(OclAny) , C1 .oclAsType(OclAny) , C2 .oclAsType(OclAny) , R11 .oclAsType(OclAny) , R21 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2 .oclAsType(OclAny)}

unfolding OclAllInstances-at-post-def by(rule σ 1 -OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all) lemma σ 1 -OclAllInstances-at-pre-exec-OclAny :

apply(subst (4) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (3) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (2) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (1) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (5) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (4) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (3) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (2) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (1) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (6) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (5) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (4) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (3) fun-upd-twist, metis distinct-oid distinct-length-2-or-more) apply(subst (2) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)

unfolding OclAllInstances-at-post-def by(rule σ 2 -OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all) lemma σ 2 -OclAllInstances-at-pre-exec-Flight :

unfolding OclAllInstances-at-pre-def by(rule σ 2 -OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all)

unfolding OclAllInstances-at-post-def by(rule σ 2 -OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all) lemma σ 2 -OclAllInstances-at-pre-exec-Client :

unfolding OclAllInstances-at-pre-def by(rule σ 2 -OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all)

unfolding OclAllInstances-at-post-def by(rule σ 2 -OclAllInstances-generic-exec-Staff , simp-all only: assms, simp-all)

unfolding OclAllInstances-at-pre-def by(rule σ 2 -OclAllInstances-generic-exec-Staff , simp-all only: assms, simp-all) unfolding OclAllInstances-at-pre-def by(rule σ 2 -OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all)

C.4 Transition (Floor 2)

locale transition-σ 1 -σ 2 = fixes oid3 :: nat fixes oid4 :: nat fixes oid5 :: nat fixes oid6 :: nat fixes oid7 :: nat fixes oid8 :: nat fixes oid9 :: nat fixes oid10 :: nat assumes distinct-oid: (distinct ([oid3 , oid4 , oid5 , oid6 , oid7 , oid8 , oid9 , oid10])) fixes S1 S taf f :: ty S taf f fixes S1 ::

proofhave [simp]: oid3 = oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid3 = oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid3 = oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid3 = oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid3 = oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid3 = oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid3 = oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid4 = oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid4 = oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid4 = oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid4 = oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid4 = oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid4 = oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid4 = oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid5 = oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid5 = oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid5 = oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid5 = oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid5 = oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid5 = oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid5 = oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid6 = oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid6 = oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid6 = oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid6 = oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid6 = oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid6 = oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid6 = oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid7 = oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid7 = oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid7 = oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid7 = oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid7 = oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid7 = oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid7 = oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid8 = oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid8 = oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid8 = oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid8 = oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid8 = oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid8 = oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid8 = oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid9 = oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid9 = oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid9 = oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid9 = oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid9 = oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid9 = oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid9 = oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid10 = oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid10 = oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid10 = oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid10 = oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid10 = oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid10 = oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis proofhave [simp]: oid10 = oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis by(auto simp: WFF-def state-σ 1 .σ 1 -def state-σ 2 .σ 2 -def) qed All figures of this chapter have been generated from the respective graphs internally generated by the command thy_deps [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF]. Figure D.1 is producing at the end one generated file, but two green boxes are depicted because the overall theories imported by this generated file depends on if it is expected for this file to generate another file or not. So we basically have two situations:

• "model generated (1)" represents the case where the file we are generating does not contain metacommands (so no dependencies are set to the main entry-point of the meta-tool),

• whereas "model generated (2)" depends on all components of the meta-tool for itself to be able to generate another model, or just call particular type-checking functions defined in the library of the meta-tool.

E.1 OCL Meta-Model aka. AST definition of OCL (I)

theory Meta-UML imports ../../compiler-generic/meta-isabelle/Meta-Pure ../Init-rbt begin

Type Definition

A Basic Meta-Model

The following basic Meta-Model is an empty Meta-Model.

Most of the Meta-Model we have defined (in particular those defined in UML) can be used in exceptional situations for requiring an eager or lazy interactive evaluation of already encountered Meta-Models. This is also the case for this basic Meta-Model.

The META Meta-Model (I)

Meta-Models can be seen as arranged in a semantic tower with several floors. By default, Floor1 corresponds to the first level we are situating by default, then a subsequent meta-evaluation would jump to a deeper floor, to Floor2, then Floor3... It is not mandatory to jump to a floor superior than the one we currently are. The important point is to be sure that all jumps will ultimately terminate.

Most of the following constructors are preceded by an additional floor field, which explicitly indicates the intended associated semantic to consider during the meta-embedding to Isabelle. In case no floor is precised, we fix it to be Floor1 by default.

Main Compiling Environment

The environment constitutes the main data-structure carried by all monadic translations. | -=> error print expected) fun name x = PRINT-^name-print x fun name1 x = floor1-PRINT-^name-print x fun name2 x = floor2-PRINT-^name-print x in fun embedding-fun-info rhs = def-info (name rhs) rhs fun embedding-fun-simple rhs = definition (name rhs ^= @{const-name Embedding-fun-simple} ^(^rhs ^)) fun embedding-fun-info-f1 rhs = def-info (name1 rhs) rhs fun embedding-fun-simple-f1 rhs = definition (name1 rhs ^= @{const-name Embedding-fun-simple} ^(^rhs ^)) fun embedding-fun-info-f2 rhs = def-info (name2 rhs) rhs fun embedding-fun-simple-f2 rhs = definition (name2 rhs ^= @{const-name Embedding-fun-simple} ^(^rhs ^)) fun emb-info rhs = def-info (Long-Name.base-name rhs ^inf o) rhs fun emb-simple rhs = definition (Long-Name.base-name rhs ^simple ^= @{const-name Embedding-fun-simple} ^(^rhs ^)) end local-setup embedding-fun-info @{const-name print-infra-enum-synonym} local-setup embedding-fun-info @{const-name print-latex-infra-datatype-class} local-setup embedding-fun-info @{const-name print-infra-datatype-class} local-setup embedding-fun-info @{const-name print-infra-datatype-universe} local-setup embedding-fun-info @{const-name print-infra-type-synonym-class} local-setup embedding-fun-info @{const-name print-infra-type-synonym-class-higher} local-setup embedding-fun-info @{const-name print-infra-type-synonym-class-rec} local-setup embedding-fun-info @{const-name print-infra-enum-syn} local-setup embedding-fun-info @{const-name print-infra-instantiation-class} local-setup embedding-fun-info @{const-name print-infra-instantiation-universe} local-setup embedding-fun-info @{const-name print-instantia-def-strictrefeq} local-setup embedding-fun-info @{const-name print-instantia-lemmas-strictrefeq} local-setup embedding-fun-info @{const-name print-astype-consts} local-setup embedding-fun-info @{const-name print-astype-class} local-setup embedding-fun-info @{const-name print-astype-from-universe} local-setup embedding-fun-info @{const-name print-astype-lemmas-id} local-setup embedding-fun-info @{const-name print-astype-lemma-cp} local-setup embedding-fun-info @{const-name print-astype-lemmas-cp} local-setup embedding-fun-info @{const-name print-astype-lemma-strict} local-setup embedding-fun-info @{const-name print-astype-lemmas-strict} local-setup embedding-fun-info @{const-name print-astype-defined} local-setup embedding-fun-info @{const-name print-astype-up-d-cast0 } local-setup embedding-fun-info @{const-name print-astype-up-d-cast} local-setup embedding-fun-info @{const-name print-astype-d-up-cast} local-setup embedding-fun-info @{const-name print-astype-lemma-const} local-setup embedding-fun-info @{const-name print-astype-lemmas-const} local-setup embedding-fun-info @{const-name print-istypeof-consts} local-setup embedding-fun-info @{const-name print-istypeof-class} local-setup embedding-fun-info @{const-name print-istypeof-from-universe} local-setup embedding-fun-info @{const-name print-istypeof-lemmas-id} local-setup embedding-fun-info @{const-name print-istypeof-lemma-cp} local-setup embedding-fun-info @{const-name print-istypeof-lemmas-cp} local-setup embedding-fun-info @{const-name print-istypeof-lemma-strict} local-setup embedding-fun-info @{const-name print-istypeof-lemmas-strict} local-setup embedding-fun-info @{const-name print-istypeof-defined} local-setup embedding-fun-info @{const-name print-istypeof-defined } local-setup embedding-fun-info @{const-name print-istypeof-up-larger} local-setup embedding-fun-info @{const-name print-istypeof-up-d-cast} local-setup embedding-fun-info @{const-name print-iskindof-consts} local-setup embedding-fun-info @{const-name print-iskindof-class} local-setup embedding-fun-info @{const-name print-iskindof-from-universe} local-setup embedding-fun-info @{const-name print-iskindof-lemmas-id} local-setup embedding-fun-info @{const-name print-iskindof-lemma-cp} local-setup embedding-fun-info @{const-name print-iskindof-lemmas-cp} local-setup embedding-fun-info @{const-name print-iskindof-lemma-strict} local-setup embedding-fun-info @{const-name print-iskindof-lemmas-strict} local-setup embedding-fun-info @{const-name print-iskindof-defined} local-setup embedding-fun-info @{const-name print-iskindof-defined } local-setup embedding-fun-info @{const-name print-iskindof-up-eq-asty} local-setup embedding-fun-info @{const-name print-iskindof-up-larger} local-setup embedding-fun-info @{const-name print-iskindof-up-istypeof-unfold} local-setup embedding-fun-info @{const-name print-iskindof-up-istypeof } definition thy-def-state = (λ Floor1 ⇒ Embed-theories | Some (name, fic-import, fic-import-boot) ⇒ ([theory %s imports %s begin (To-string name) (of-semi--term (term-binop (L.map Term-string (fic-import @@@@ (if D-output-header-force env 1 but is invisible: we have redefine the command ML to be the ghost symbol "U+10001" 14 , also known as null.

As one corollary, since any non-empty appending of null with itself always produces in Isabelle/jEdit a shape similar as the empty string, to be strict, we need to give more precision about the number of symbols U+10001 we have actually used to overload the command ML. Indeed, one can use this feature to create an army of commands which are at the same time all different and all invisible. Moreover, the hovering with the mouse in this case is unable to detect null, and more generally any (non-empty) repetition of null. 15,16 The last two commands end and find_theorems in Figure K.1 have been syntactically defined by inserting a number of symbols null somewhere. This is one way to visually give the impression that permutations of commands seem possible (even if we are using a version of Isabelle after 2014). As remark, parsing errors normally prevent the juxtaposition of two arbitrary commands, for example if these two commands only contain characters from the ASCII set. So it suffices to insert a non usual symbol inside one of these two commands (not necessarily at the beginning or the end, somewhere in the middle is accepted). This is how one can juxtapose end and find_theorems together (i. e. "endfind_theorems") to give the illusion of having a single command, even if at run-time at least two commands will be executed.

Finally as exercise, it would remain to determine how feasible one can dynamically change the color of blue commands to green (so that find_theorems would appear in green), be it for an entire word or for some particular sub-words, such as invalid and null.

known as null, is represented with the invalid shape because "U+0000" is deactivated.

14 http://unicode.org/cldr/utility/character.jsp?a=10001 15 In Isabelle/jEdit one can rely on other mechanisms to visualize the space occupied by commands, for instance the vertical bar on the left, usually used to collapse commands, can indicate their presence. However nothing is drawn if the command only occupies a single line or contains certain unusual characters... 16 When applying the "⇩" operator in front of null, we obtain a shape having a positive width: the invisible property becomes lost.

Abstract

Les langages de spécifications basés et orientés objets (comme UML/OCL, JML, Spec # , ou Eiffel) permettent la création et destruction, la conversion et tests de types dynamiques d'objets statiquement typés. Par dessus, les invariants de classes et les opérations de contrat peuvent y être exprimés; ces derniers représentent les éléments clés des spécifications orientées objets. Une sémantique formelle des structures de données orientées objets est complexe: des descriptions imprécises mènent souvent à différentes interprétations dans les outils qui en résultent.

Dans cette thèse, nous démontrons comment dériver un environnement de preuves moderne comme un méta-outil pour la définition et l'analyse de sémantique formelle de langages de spécifications orientés objets. Étant donné une représentation d'un langage particulier plongé en Isabelle/HOL, nous construisons pour ce langage un environnement étendu d'Isabelle, à travers une méthode de génération de code particulière, qui implique notamment plusieurs variantes de génération de code. Le résultat supporte l'édition asynchrone, la vérification de types, et les activités de déduction formelle, tous "hérités" d'Isabelle.

En application de cette méthode, nous obtenons un outil de modélisation orienté objet pour du UML/OCL textuel. Nous intégrons également des idiomes non nécessairement présent dans UML/OCL-en d'autres termes, nous développons un support pour des dialectes d'UML/OCL à domaine spécifique.

En tant que construction méta, nous définissons un méta-modèle d'une partie d'UML/OCL en HOL, un méta-modèle d'une partie de l'API d'Isabelle en HOL, et une fonction de traduction entre eux en HOL. Le méta-outil va alors exploiter deux procédés de générations de code pour produire soit du code raisonnablement efficace, soit du code raisonnablement lisible. Cela fournit donc deux modes d'animations pour inspecter plus en détail la sémantique d'un langage venant d'être plongé: en chargeant à vitesse réelle sa sémantique, ou simplement en retardant à un autre niveau "méta" l'expérimentation précédente pour un futur instant de typage en Isabelle, que ce soit pour des raisons de performances, de tests ou de prototypages.

Remarquons que la génération de "code raisonnablement efficace", et de "code raisonnablement lisible" incluent la génération de code tactiques qui prouvent une collection de théorèmes formant une théorie de types de données orientés objets d'un modèle dénotationnel: étant donné un modèle de classe UML/OCL, les preuves des propriétés pertinentes aux conversions, tests de types, constructeurs et sélecteurs sont traitées automatiquement. Cette fonctionnalité est similaire aux paquets de théories de types de données présents au sein d'autres prouveurs de la famille HOL, à l'exception que certaines motivations ont conduit ce travail présent à programmer des tactiques haut-niveaux en HOL lui-même.

Ce travail prend en compte les plus récentes avancées du standard d'UML/OCL 2.5. Par conséquent, tous les types UML/OCL ainsi que les types logiques distinguent deux éléments d'exception différents: invalid (exception) et null (élément non-existant). Cela entraîne des conséquences sur les propriétés aussi