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R ésum é en franc ¸ais

Cette partie pr ésente un r ésum é en franc ¸ais de la th èse, et en reprend les él éments cl és. Le lecteur voulant approfondir un sujet particulier est invit é à consulter les chapitres correspondants.

Contexte

Introduction

Le domaine du calcul haute performance s'adresse aux machines massivement parall èles utilis ées pour les applications ayant trait à la simulation num érique. Cette discipline et les moyens de calcul associ és sont apparus lors de la Seconde Guerre Mondiale, avec notamment le fameux projet Manhattan, dans le but de concevoir la premi ère bombe atomique. De nos jours, de nombreux projets d'envergure sont men és à l'aide de la simulation num érique, dont voici quelques exemples:

• Dans le domaine de l'astrophysique, DEUS (Dark Energy Universe Simulation) vise à estimer l'impact de l' énergie noire dans l'univers.

• Le projet The Human Brain Project est une initiative europ éenne visant à simuler le cerveau humain, en mod élisant ses processus biologiques.

Cependant, ces applications requi èrent des capacit és de calcul cons équentes. C'est ainsi que les supercalculateurs ont émerg é dans le but d'aider les scientifiques à mener à bien leurs simulations. Les premiers supercalculateurs sont apparus dans les ann ées 1960, avec le CDC-6600. Dans les ann ées 1970, Seymour Cray fonde Cray Research et une nouvelle famille d'ordinateurs parall èles, en premier lieu le Cray-1. La puissance d'un superordinateur est estim é par le nombre de calculs en virgule flottante qu'il est capable d'effectuer par seconde (FLOP). Si les premi ères machines parall èles d éveloppaient seulement quelques m égaflops, en 2001, la machine Earth Simulator affichait 40 t éraflops. Aujourd'hui, les supercalculateurs sont compos és d'armoires reli ées en r éseau rapide, et sont capables de d évelopper une puissance de calcul de l'ordre du p étaflop (10 15 op érations par seconde). Cependant, la communaut é scientifique a aujourd'hui les yeux riv és sur l'Exascale (10 18 op érations par seconde).

Les processeurs actuels sont équip és de plusieurs coeurs de calcul, obligeant les programmeurs à rendre leurs codes parall èles. De plus, les processeurs graphiques (GPUs), à l'origine destin és à l'interfac ¸age entre le syst ème et l'utilisateur, puis d édi és au rendu graphique dans le contexte des jeux vid éos, sont d ésormais utilis és pour effectuer du calcul. Ces tendances ont influenc é l' évolution des supercalculateurs. Ainsi, originellement compos és de syst èmes à m émoire distribu ée, les machines actuelles int ègrent de plus en plus d'unit és de calcul à l'int érieur d'un noeud physique.

Les architectures parall èles se sont également complexifi ées: dans les syst èmes dits UMA (Uniform Memory Access), les unit és de calcul partagent un m ême bus pour acc éder à la m émoire centrale. Mais la multiplication des coeurs a conduit à saturer la bande passante disponible. Ceci a oblig é les constructeurs à concevoir des syst èmes plus complexes, tels les architectures NUMA (figure 1.1). Dans ce type d'architectures, on d éfinit comme bloc de base l'ensemble constitu é d'un processeur reli é à un banc m émoire local: on appelle cet ensemble un noeud NUMA. La localit é des donn ées constitue une caract éristique importante pour ce type d'architecture, et peut fortement influencer les performances des applications. En effet, la latence d'acc ès à une donn ée peut être tr ès variable selon que cette donn ée se situe dans un banc m émoire local ou alors dans un banc m émoire appartenant à un noeud NUMA distant. Ce ph énom ène est appel é l'effet NUMA.

Pour programmer ces machines et les exploiter au mieux, plusieurs mod èles de programmation ont ét é conc ¸us, et peuvent être r épartis entre plusieurs familles:

• Mod èles à passage de messages, tel que MPI (Message Passing Interface)

• PGAS (Partitioned Global Address Space)

• Mod èles à base de threads: Posix Threads, OpenMP

• Mod èles à base de t âches: Cilk MPI est le mod èle principalement utilis é pour parall éliser les applications à travers les clusters de calcul. Cependant, avec l' évolution des supercalculateurs et la diminution de la quantit é de m émoire disponible par coeur, la librairie MPI montre de plus en plus de limites concernant le passage à l' échelle des codes de calcul.

C'est pourquoi les scientifiques cherchent d ésormais à coupler MPI avec un mod èle adapt é aux machines à m émoire partag ée. OpenMP, mod èle à base de threads, est un choix privil égi é car consid ér é comme un standard. De plus, il supporte les langages C, C++ et Fortran. Cependant, combiner MPI et OpenMP, mod èles munis de paradigmes et de s émantiques diff érents, est loin d' être une t âche ais ée.

Mod èle hybride MPI+OpenMP

Nous pr ésentons ainsi une taxonomie d écrivant les diff érentes mani ères de combiner ces deux mod èles, à travers deux principaux aspects: la granularit é du code et le placement (figure 1.2).

Au niveau du code, diff érentes granularit és sont possibles s'agissant du m élange de MPI et de OpenMP: o ù Ttot, Tseq, Tcomm, Tcompute et P sont respectivement le temps total d'ex écution, la partie s équentielle, le temps pass é dans les communications, le temps pass é dans le calcul et le nombre de threads OpenMP.

Plusieurs inconv énients sont à noter concernant cette approche. Tout d'abord, quand des boucles parall èles sont ex écut ées, deux niveaux de parall élisme sont imbriqu és: l'un avec MPI et le second avec OpenMP. Mais en dehors des boucles parall èles, nous perdons un niveau de parall élisme. De plus, les coeurs utilis és par les threads OpenMP deviennent alors inactifs.

Troisi èmement, le support OpenMP est susceptible d' être acc éd é de mani ère tr ès fr équente dans ce mode, car OpenMP est utilis é uniquement pour parall éliser les boucles, structures potentiellement nombreuses dans le code.

Parall élisme à gros grain. Dans ce mode, on ouvre une ou plusieurs r égions parall èles OpenMP. Cette approche est susceptible d'offrir plus de parall élisme avec OpenMP. Cependant, il est possible que ces r égions parall èles contiennent des appels à des primitives MPI, ce qui reviendrait alors pour une fonction MPI donn ée, à faire un appel par thread OpenMP de chaque t âche MPI. Pour r ésoudre ce probl ème, deux variantes du parall élisme à gros grain sont possibles: Process-to-process communications et Thread-to-thread communications. Avec la variante Process-to-process, on s'assure qu'un appel à une fonction MPI donn ée est effectu ée par t âche MPI à l'aide de constructions critiques telles que #pragma omp single ou #pragma omp critical. Dans la variante Thread-to-thread, on parall élise les communications en utilisant plusieurs threads. Et ce faisant, il est alors possible de recouvrir les communications MPI avec du calcul.

Le placement d écrit diff érentes mani ères de r épartir les t âches MPI et les threads OpenMP au sein d'un noeud de calcul. Le premier mode, Fully hybrid, utilise MPI pour les communications inter-noeuds et remplit les coeurs du noeud de calcul avec des threads OpenMP. Avec l'approche Mixed Hybrid, plusieurs t âches MPI sont lanc ées par noeud de calcul. Il est possible de surcharger les coeurs avec des t âches MPI ou des threads OpenMP (c'est le mode Oversubsribed Mixed).

Suite à l' étude de la taxonomie du mod èle hybride MPI+OpenMP, nous pr ésentons diff érents probl èmes freinant le passage à l' échelle des codes MPI+OpenMP:

• Fr équence d'acc ès à la couche OpenMP dans le mode à grain fin

• Sous-utilisation des coeurs de calcul en dehors des constructions OpenMP, toujours concernant le parall élisme à grain fin

• Complexit é des codes MPI+OpenMP dans une approche à gros grain

• N écessit é de pouvoir analyser les performances des codes hybrides pour permettre le passage à l' échelle

Contributions 1.2.1 Supports ex écutifs OpenMP pour les codes MPI+OpenMP

Tout d'abord, consid érant le mod èle OpenMP comme étant situ é en haut de la pile logicielle, il est n écessaire d'avoir de bonnes performances au niveau du support ex écutif d'OpenMP. Ainsi, nous nous concentrons sur le surco ût induit par les entr ées et sorties dans le moteur d'ex écution depuis l'application, à savoir lorsqu'on entre et sort d'une r égion parall èle, respectivement.

Ceci nous am ène à nous int éresser à l'optimisation des support ex écutifs OpenMP pour les codes hybrides MPI+OpenMP et en environnement NUMA. Il s'agit d'obtenir un surco ût minimal d'une part dans un contexte o ù les coeurs de calcul sont partag és entre les t âches MPI et les threads OpenMP, donc l'espace pour chaque équipe OpenMP peut varier. D'autre part, le parall élisme hi érarchique induit par les syst èmes NUMA doit être pris en compte, notamment les effets NUMA associ és. Nous pouvons illustrer l'impact des effets NUMA sur le surco ût d'un support ex écutif OpenMP en prenant l'exemple de l'activation des threads lors de l'ouverture d'une r égion parall èle. Dans une impl émentation dite centralis ée, le thread Master doit r éveiller lui-m ême tous les autres threads. Si le co ût pour activer un thread est minime si celui-ci se trouve sur le m ême socket que le thread Master, il devient important si le thread à r éveiller se situe sur un socket distant. Il est donc important d'utiliser des m écanismes adapt és en environnement NUMA.

Cependant, plusieurs contributions ont propos é des optimisations concernant les supports ex écutifs OpenMP, suivant plusieurs directions:

• Impl émentation des threads OpenMP: Pour d émarrer leur ex écution rapidement ou effectuer un ordonnancement efficace, une impl émentation l ég ère des threads peut constituer une piste int éressante. Par exemple, une contribution introduit le concept de microVP, impl ément é dans le support MPC. Ces microVPs ordonnancent des threads l égers appel és microthreads, utilisant la pile du microVP.

• Placement hi érarchique des threads: ForestGOMP propose une repr ésentation hi érarchique des threads, via son outils BubbleSched. Les threads appartenant à une équipe OpenMP sont regroup és au sein d'une m ême bulle, et la bulle est éclat ée suivant la topologie NUMA.

• Affinit é m émoire: Le placement des threads peut évoluer durant l'ex écution d'une application parall èle. Cependant, il est important de s'int éresser aux interactions entre un thread et les donn ées acc éd ées par ce thread (lecture ou écriture). Il peut alors s'av érer pertinent de migrer les donn ées afin de les garder le plus proche possible du thread en question.

Parmi ces diff érentes pistes, nous nous sommes concentr és sur comment int égrer la topologie NUMA dans la repr ésentation des threads. Cependant, pour un nombre r éduit de threads OpenMP, l'arbre topologique ne convient peut-être pas, et un arbre plat (avec une racine et une feuille par thread) est sans doute la forme d'arbre la plus adapt ée. A contrario, pour un grand nombre de threads, un arbre profond tel un arbre binaire permet de minimiser la contention d ûe à l'activation des threads à chaque étage.

Arbre adaptatif

Notre premi ère contribution consiste en un arbre adaptatif, dont la forme change au cours de l'ex écution de l'application. Nous construisons un arbre topologique, et l'utilisons en fonction du nombre de threads demand é. Le principe est le suivant: nous utilisons un sous-arbre de l'arbre topologique si le nombre de threads demand és peut être contenu dans ce sous-arbre. Dans ce cas, nous d éplac ¸ons la racine initialement plac ée en haut de l'arbre topologique à la racine du sous-arbre.

Le m écanisme d'arbre adaptatif est transparent pour les impl émentations des constructions OpenMP telles que l'activation et la synchronisation des threads. Celles-ci prennent simplement en compte la racine retourn ée par l'algorithme de court-circuit.

Exp érimentations

L'arbre adaptatif a ét é impl ément é au sein de la version 2.5.0 du framework MPC. La forme initiale de l'arbre suit la topologie mat érielle, à l'aide de l'outil HWLOC (HardWare LOCality).

Algorithm 1 Bypassing

Require: tree, numthreads 1: node ← tree.root 2: while node.typechildren = LEAF and numthreads ≤ node.children [0].maxindex do 3:

node ← node.children[0] 4: end while 5: tree.newroot ← node 6: return tree.newroot Cette approche a ét é évalu ée sur deux configurations mat érielles: 1 noeud compos é de 4 processeurs Nehalem EX X7550 à 2 GHz (Tera-100), totalisant 32 coeurs de calcul 1 second noeud Bull Coherency Switch contenant 16 processeurs Intel Xeon E7-4800, avec un total de 128 coeurs de calcul.

Nous avons compar é le surco ût du support OpenMP de MPC utilisant l'approche adaptative, tout d'abord par rapport à d'autres formes d'arbres dans le m ême support, puis par rapport aux supports OpenMP des compilateurs GCC 4.4.4 et ICC 12.1. Ces comparaisons ont ét é effectu ées sur les deux configurations mat érielles pr ésent ées, et en se focalisant sur l'activation des threads dans une r égion parall èle et leur synchronisation dans le cas d'une barri ère OpenMP.

Nous nous sommes servis de la suite de microbenchmarks EPCC pour estimer le surco ût du support MPC.

Les exp érimentations d écrites suivantes ont ét é men ées sur le noeud large contenant 128 coeurs. Nous montrons tout d'abord que l'arbre adaptatif permet un surco ût inf érieur aux autres formes d'arbres (4-32, 4-4-8), concernant l'activation des threads, sur une plage de 1 à 128 threads lanc és. La forme d'arbre 4-32, m ême si elle offre de bonnes performances jusqu' à 8 threads, devient inefficace au-del à car les threads ne peuvent plus être contenus dans un seul socket, et cette forme d'arbre ne respecte pas la topologie. La forme d'arbre 4-4-8 fournit de bonnes performances sur toute la plage de threads car elle suit la topologie mat érielle, mais demeure moins comp étitive que l'arbre adaptatif jusqu' à 8 threads.

Toujours avec la m ême configuration mat érielle, nous obtenons de bons r ésultats par rapport à d'autres supports OpenMP. Les performances obtenues avec la librairie libGOMP de GCC 4.4.4 sont largement en dec ¸à de celles de MPC et de ICC 12.1. Sur 128 threads, nous obtenons un surco ût de 8 microsecondes environ avec MPC et l'arbre adaptatif activ é, contre 39 microsecondes environ avec ICC 12.1.

Etude des op érations collectives dans un contexte hybride MPI+OpenMP

D'autres goulets d' étranglements que le surco ût des supports ex écutifs OpenMP ont ét é identifi és, freinant le passage à l' échelle des codes MPI+OpenMP, telles que le ratio des parties s équentielle et communication dans le temps total d'ex écution, ou la sous-utilisation des coeurs de libre en mode Masterlonly (figure 1.4).

Ces aspects nous ont conduit à nous int éresser aux op érations collectives MPI, et notamment les op érations relatives aux r éductions. L'optimisation des op érations collectives MPI fait l'objet d'intenses recherches, desquelles nous avons d égag é deux axes: l'utilisation de la m émoire partag ée et l'exploitation de la topologie mat érielle et r éseau sous-jacents. Exploiter la topologie r éseau et mat érielle est une autre mani ère d'optimiser les op érations collectives. Il peut par exemple s'agir de concevoir des algorithmes ayant connaissance de la topologie r éseau, en utilisant des sous-communicateurs. Par ailleurs, le framework HierKNEM inclut des algorithmes permettant de s éparer les communications inter-noeud des communications intra-noeud.

Hybridisation de l'op ération collective MPI Allreduce

Notre seconde contribution se concentre sur l'op ération collective Allreduce et consiste à d écouper les vecteurs de l'op ération Allreduce en plusieurs blocs, à l'aide des coeurs de libres. Ainsi, chaque thread OpenMP a en charge d'effectuer l'op ération sur un sous-ensemble du vecteur de d épart (figure 1.5).

La cons équence principale de l'algorithme consiste à dupliquer les appels au support ex écutif de MPI, mais le motif de communication demeure le m ême pour tous les appels: tous les rangs MPI effectuent une r éduction vers un m ême rang MPI destination, la t âche MPI destination effectue la r édution, puis diffuse le r ésultat vers toutes les autres t âches. La raison est que les threads OpenMP poss èdent une copie du m ême communicateur d'entr ée, avec un ordre des t âches MPI identiques. Ceci peut g én érer de la contention et du d és équilibre.

Pour pallier à ce d éfaut, nous proposons une technique compl émentaire, appel ée Rank Shifting. Celle-ci consiste à donner un r ôle diff érent à chaque thread OpenMP, en effectuant un d écalage au niveau du sous-communicateur. Par exemple, le thread de rank 0 aura une copie identique du communicateur de d épart. En revanche, le thread de rang 1 fera un d écalage de telle sorte que le premier rang MPI dans son sous-communicateur sera celui de rang 1, et ainsi de suite pour les autres threads OpenMP. Dans le cas o ù il y a plus de threads que de t âches MPI et que nous arrivons au dernier rang MPI, nous effectuons une rotation de sorte à revenir à la premi ère t âche MPI. Cette technique permet donc de r é équilibrer les communications entre t âches MPI.

Les algorithmes pr ésent és ont ét é impl ément és dans un wrapper, qui capture les appels à MPI Allreduce via l'interface PMPI. Ce wrapper est compil é en tant que librairie partag ée et pr écharg é à l'aide de la variable d'environnement LD_PRELOAD, lorsque l'on ex écute une application. Gr âce à cette approche, 

Exp érimentations

Nous avons dans un premier temps évalu é l'hybridisation de la collective MPI Allreduce sur la suite Intel MPI Benchmarks 3.2, sur quatre noeud large contenant 128 coeurs de calculs, avec une t âche MPI par noeud.

Une premi ère exp érimentation a consist é à observer le gain de l'hybridisation sur le framework MPC. Nous obtenons la plus grosse acc él ération en utilisant 8 threads pour l'hybridisation (gain de 2,57), sur une taille de message de 16Mo. La m éthode du Rank Shifting sur cette hybridisation apporte une acc él ération additionnelle de 18,6%. En testant l'hybridisation de la collective avec le support IntelMPI, nous obtenons une acc él ération maximale de 2,55 avec 90 threads, par rapport aux r ésultats sans hybridisation avec IntelMPI.

Nous avons dans un second temps évalu é notre approche avec une application hybride MPI+OpenMP: MC. Il s'agit d'un code simulatant des d éplacements al éatoires de particules, bas é sur des m éthodes de Monte Carlo. OpenMP est utilis é pour parall éliser les boucles de calcul. Les particules se d éplacent sur un domaine unidimensionnel, r épliqu é sur chaque t âche MPI. L'application contient une op ération collective MPI Allreduce, servant à mettre à jour l' état du maillage à chaque it ération de la simulation.

Nous avons tout d'abord mesur é le temps d'ex écution de MC avec diff érents supports ex écutifs: MPC, IntelMPI et BullxMPI. Les noeuds de calcul sont int égralement remplis quand les boucles OpenMP sont ex écut és. Nous obtenons les meilleures performances avec BullxMPI.

Nous avons ensuite mesur é les temps d'ex écution de MC avec les m êmes supports ex écutifs, mais en appliquant l'hybridisation de MPI Allreduce. L'hybridisation n'est pas applicable avec BullxMPI, car celui-ci ne supporte pas le niveau de multithreading MPI_THREAD_MULTIPLE. Pour MPC, nous obtenons la meilleure performance avec 8 threads, performance encore am élior ée en appliquant la m éthode du Rank Shifting (acc él ération totale de 5.29 par rapport à MPC sans hybridisation). Avec IntelMPI, la 

Op érations collectives unifi ées

Nous revenons au parall élisme à gros grain dans le contexte du mod èle hybride, et soulignons la complexit é de mise en oeuvre de cette approche. OpenMP peut être utilis é dans une optique SPMD (Single Program Multiple Data), ou à m émoire distribu ée. A chaque thread OpenMP est assign é un sousdomaine à calculer. Il est possible d'effectuer des op érations collectives telles que diffusion ou r éduction en utilisant OpenMP avec ce mode-ci. Si l'on se replace dans un contexte hybride, et couplons MPI avec OpenMP dans un mode SPMD, nous pouvons r éfl échir aux moyens de concevoir des op érations collectives impliquant aussi bien des t âches MPI que des threads OpenMP.

Le fait de concevoir des collective mettant en jeu aussi bien des t âches MPI que des threads OpenMP implique une forte coop ération entre le support MPI et celui de OpenMP.

Nous motivons notre approche à l'aide d'une preuve de concept, qui est une barri ère unifi ée, synchronisant toutes les t âches MPI et tous les threads de toutes les équipes OpenMP.

Nous commenc ¸ons par d écrire une impl émentation de la barri ère unifi ée à l'aide de constructions existantes MPI et OpenMP (figure 1.6). Pour synchroniser l'ensemble des t âches MPI et des threads OpenMP, une premi ère barri ère OpenMP est n écessaire, puis un appel à MPI Barrier() et une seconde barri ère OpenMP. Cependant, en examinant l'ex écution de cette barri ère, nous constatons que des optimisations sont possibles. Pour une meilleure compr éhension, nous allons d écomposer chaque barri ère OpenMP en deux semi-barri ères: la premi ère semi-barri ère se charge de synchroniser les threads, et la seconde semi-barri ère lib ère les threads afin qu'ils continuent leur ex écution.

A la fin de la premi ère barri ère OpenMP, un seul thread ex écute la barri ère MPI alors que les autres threads continuent leur ex écution et commencent à ex écuter la seconde barri ère OpenMP. Ils se retrouvent donc à la fin de la semi-barri ère à attendre le dernier thread.

Notre contribution concernant cette partie consiste donc à proposer une version optimis ée de la barri ère unifi ée, proposant un appel à une seule fonction, et impl ément ée au niveau du support ex écutif. Dans cette version optimis ée, nous effectuons une premi ère semi-barri ère OpenMP (figure 1.7). Puis le dernier thread arriv é appelle une barri ère MPI (figure 1.8), puis nous effectuons la seconde semibarri ère OpenMP (figure 1.9). Cette conception fonctionne avec toute impl émentation de la barri ère MPI.

Nous avons impl ément é une version optimis ée de cette barri ère unifi ée dans le framework MPC, cette librairie offrant une vision commune entre les t âches MPI et les threads OpenMP. L'id ée est 

Exp érimentations

Pour valider notre approche, nous avons compar é les performances de notre barri ère unifi ée optimis ée avec une impl émentation classique d'une barri ère unifi ée. Pour ce faire, nous avons modifi é la suite de microbenchmarks EPCC, et avons effectu é des exp érimentations sur un noeud large BCS contenant 128 coeurs de calcul, en testant diff érents ratios de t âches MPI et de threads OpenMP, de telle sorte de remplir le noeud de calcul.

Avec la barri ère unifi ée optimis ée, nous obtenons la meilleure acc él ération avec une configuration avec 2 t âches MPI et 64 threads OpenMP par t âche. Nous expliquons ce r ésultat du fait que notre version optimis ée économise un appel à une barri ère OpenMP enti ère, ce qui a pour cons équence de gagner un temps significatif avec un grand nombre de threads. En revanche, nous avons une acc él ération n égligeable avec 64 t âches MPI et 2 threads OpenMP par équipe. Nous estimons qu'avec cette configuration, nous passons la majorit é du temps dans la barri ère MPI, et l'optimisation sur les barri ères OpenMP a donc peu d'incidence sur le temps total d'ex écution. L'analyse de performance des applications parall èles peut être d écompos ée en trois étapes:

Analyse des performances des codes MPI+OpenMP au niveau applicatif et du support d'ex écution

• Instrumentation: Une premi ère étape consiste à instrumenter l'application à analyser, à savoir ins érer des sondes soit dans le code source, soit dans l'ex écutable ou bien encore dans le support d'ex écution.

• Mesure: La seconde étape permet de mesurer diff érentes parties de l'application cible à l'aide de l'instrumentation effectu ée. Plusieurs techniques sont r épandues lors de cette étape, telles que le profilage, permettant par exemple de mesurer le temps pass é dans des fonctions, ou bien le trac ¸age, consistant à suivre l'ex écution de diff érentes parties de l'application au fil du temps.

• Analyse: La derni ère étape permet d'effectuer une analyse des faiblesses de l'application à partir des mesures effectu ées, et comprend des fonctionnalit és permettant de visualiser les mesures effectu ées.

Nous nous focalisons maintenant sur l' étape d'instrumentation et examinons de quoi nous avons besoin pour instrumenter des codes MPI+OpenMP. Des outils d'instrumentation existent pour les codes MPI tels que PMPI. Les év énements fournis par OMPT sont associ és aux constructions OpenMP, et sont g én éralement utilis és par paire: une paire d' év énements pour les r égion parall èles ou encore les boucles OpenMP. Voici quelques exemples d' év énements associ és à des constructions OpenMP:

On trouve diverses contributions proposant des langages pour instrumenter les codes

• ompt_event_parallel_begin / ompt_event_parallel_end • ompt_event_loop_begin / ompt_event_parallel_end
Ces év énements, ins ér és dans un support d'OpenMP, permettent à l'outil de prendre connaissance de l'activit é des threads OpenMP, à quel moment ils ex écutent des constructions, etc. La fac ¸on dont OMPT s'interface avec l'outil est la suivante: OMPT est d émarr é à l'initialisation du support OpenMP et arr êt é à la terminaison de ce dernier. Pour initialiser l'outil, la norme propose une fonction ompt_initialize, qui doit être impl ément é aussi bien du c ôt é du support que celui de l'outil. Une fois OMPT initialis é, l'outil enregistre des callbacks relatifs aux év énements susceptibles de l'int éresser, et OMPT doit notifier l'outil lorsque des év énements enregistr és par ce dernier sont rencontr és.

Nous pr ésentons ici notre derni ère contribution, à savoir l'impl émentation de l'outil d'instrumentation OMPT dans le support ex écutif MPC, puis son évaluation sur des application MPI+OpenMP.

Les év énements OMPT li és aux principales constructions OpenMP ont ét é impl ément és dans la version 2.5.0 du support MPC.

Il est à noter que, puisque la majorit é des év énements est fournie par paires (une pour l'entr ée dans une construction OpenMP et une pour la sortie), des fonctions d'entr ée et de sortie sont requises pour ins érer ces év énements. Cependant, Il n'y a pas de fonction g én ér ée pour la construction #pragma omp loop schedule(static), et une seule fonction est g én ér ée pour #pragma omp single: la fonction retourne 0 ou 1 selon que le thread courant ex écute la construction ou non.

Ces probl èmes nous ont pouss é à modifier l'interface de GCC avec le support d'ex écution afin de g én érer les fonctions requises, permettant l'insertion des év énements OMPT li és à ces deux constructions.

Une fois l'outil OMPT impl ément é dans le support MPC, nous nous sommes dans un premier temps concentr és sur une étude sur les boucles OpenMP et comment il est possible de les optimiser à l'aide de OMPT. Nous avons donc repris l'application MPI+OpenMP MC, en nous focalisant sur les boucles OpenMP, en étudiant comment il était possible d'optimiser les boucles en r églant la politique d'ordonnancement et la taille des blocs.

Nous avons tout d'abord compar é les politiques d'ordonnancement statique et dynamique pour une boucle d'une fonction donn ée, et avons observ é un ralentissement tr ès important lorsque l'on passe de la politique statique à la politique dynamique. Plusieurs raisons peuvent expliquer ce ralentissement:

• Dans la norme OpenMP, lorsqu'aucune taille de bloc est sp écifi ée avec la politique d'ordonnancement statique, la boucle est divis ée en autant de blocs que de threads. Ce cas implique un minimum d'intervention du support ex écutif, alors que pour la politique d'ordonnancement dynamique, chaque thread choisit un bloc de taille 1 à ex écuter, et ceci jusqu' à l'ex écution compl ète de la boucle. Dans ce dernier cas, le support d'ex écution est plus sollicit é que pour la politique statique.

• La politique d'ordonnancement dynamique autorise un équilibrage de travail entre les threads. Aussi, nombre de supports ex écutifs OpenMP impl émentent des algorithmes de vol de travail. Il est possible qu'un mauvaise impl émentation du vol de travail g êne le travail des threads, ou g én ère de la contention au niveau des communication.

Par ailleurs, nous nous servons de OMPT afin de d éterminer de mani ère empirique la meilleure combinaison entre la politique d'ordonnancement et la taille de blocs en terme de performances. Nous comparons les performances des boucles avec les supports MPC OpenMP et Intel OpenMP.

Enfin, nous pouvons utiliser OMPT afin d'estimer le surco ût du support OpenMP de MPC, à l'aide de la paire d' év énements ompt_event_implicit_task_begin / ompt_event_implicit_task_end. Le surco ût est d éduit en comparant le temps pass é dans une r égion parall èle et celui pass é dans une t âche implicite, puisqu'il s'agit du temps mis pour r éveiller les threads.

Conclusion et perspectives

Cette th èse s'est int éress ée à diff érents aspects du mod èle hybride MPI+OpenMP, et s'est focalis ée sur les limitations venant avec ce mod èle, emp êchant le passage à l' échelle des codes parall èles. Nous avons pr ésent é des contributions proposant des solutions à ces freins:

• Arbre adaptatif: Afin de r épondre au besoin d'efficacit é des supports ex écutifs OpenMP dans un contexte hybride, notre premi ère contribution a consist é proposer un arbre adaptatif permettant d'optimiser l'activation et la synchronisation des threads en environnement NUMA, et sur un large spectre de threads.

• Hybridisation de l'op ération collective MPI Allreduce: Nous avons propos é une m éthode permettant d'acc él érer l'op ération collective MPI Allreduce, en utilisant les threads OpenMP et ainsi r éutilisant les coeurs de calcul inactifs. Cette contribution r épond une limitation rencontr ée avec le parall élisme à grain fin.

• Op érations collectives unifi ées: Nous avons introduit le concept d'op érations collectives unifi ées, ceci afin d'assurer une meilleure coop ération entre MPI et OpenMP utilis é dans le mode SPMD. Nous motivons notre approche avec une preuve de concept, la barri ère unifi ée.

• Impl émentation et évaluation de l'outil d'instrumentation OMPT: Enfin, nous nous concentrons sur l'analyse de performance des codes MPI+OpenMP et proposons une impl émentation de l'outil d'instrumentation OMPT, ainsi que son évaluation sur une application MPI+OpenMP, en ciblant les boucles OpenMP.

Nous terminons en abordant quelques axes de r éflexion concernant le mod èle hybride.

Tout d'abord, il est à noter que les architectures parall èles devraient être de plus en plus h ét érog ènes, les noeuds de calcul accueillant des acc él érateurs mat ériels, citons par exemple le processeur Intel Xeon Phi. De par les caract éristiques de ces processeurs sp écialis és, les mod èles de programmation ont évolu é, avec l'apparition de CUDA, du mod èle OpenACC puis de l' évolution du standard OpenMP vers la r évision 4, fournissant des directives permettant de d éporter des calcul vers un GPU par exemple. Cependant, la prochaine étape de notre point de vue consiste à pouvoir ex écuter des codes MPI+OpenMP sur ces GPUs. Ainsi, le mod èle hybride MPI+OpenMP devrait évoluer suivant deux axes:

• Optimisation des couches MPI et OpenMP pour les architectures manycore • Evolution de la taxonomie hybride pour les environnements h ét érog ènes

Travaux futurs à court terme

Optimisation du support ex écutif OpenMP en environnment Manycore. Nous avons propos é des techniques afin de r éduire le surco ût des supports ex écutifs OpenMP pour des processeurs traditionnels. Il est possible d'adapter notre contribution pour les architectures manycore. Nous prenons l'exemple du processeur Intel Xeon Phi et étudions quel arbre serait le mieux adapt é afin de minimiser le surco ût du support d'OpenMP. Un arbre respectant la topologie mat érielle serait compos é de autant de noeuds par coeur, et chaque noeud aurait quatre enfants (un par hyperthread). Cependant, les mod èles actuels du Xeon contiennent de 60 à 70 coeurs de calcul. Activer les threads suivant un arbre contenant 60 enfants pourrait conduire à de la contention. Ainsi, se tourner vers des arbres de plus grande profondeur serait peut-être plus pertinent. Par ailleurs nous aimerions pouvoir effectuer une hybridisation automatique en pr édisant quel serait le nombre de threads n écessaires pour garantir la meilleure acc él ération, en s'appuyant sur un mod èle de performance, se basant sur des crit ères tels que la longueur du vecteur ou bien la topologie mat érielle. D'autre part, la technique du Rank Shifting ne prend pas en compte la topologie mat érielle. Nous voudrions optimiser cette technique en évaluant diff érentes distances de d écalage.

Optimisation des op érations collectives MPI à l'aide de threads

Op érations collectives unifi ées. Concernant les op érations collectives unifi ées, nous avons motiv é notre approache par une preuve de concept, la barri ère unifi ée. Nous aimerions appliquer l'approche à d'autres op érations collectives, telles que la r éduction.

En dehors des op érations collectives, nous aimerions également concevoir une op ération assurant le travail des communications MPI à l'int érieur d'une r égion parall èle OpenMP, de sorte qu'elle ne soit appel ée qu'une fois par t âche MPI.

Analyse de performances de codes hybrides à l'aide de OMPT. Au sujet de notre derni ère contribution concernant l'analyse de performance des codes hybrides MPI+OpenMP, nous nous sommes servis de l'impl émentation de l'outil OMPT afin de guider l'optimisation des boucles OpenMP. Le ralentissement observ é lors d'une étude de cas, en passant d'un ordonnancement statique à un ordonnancement dynamique, nous a pouss é à r éfl échir sur le r ôle jou é par le support ex écutif dans les performances des boucles. Malheureusement, les év énements propos és par OMPT ne nous permettent d'estimer que partiellement l'efficacit é du support d'ex écution.

Perspectives à long terme

Lors de cette th èse, nous nous sommes concentr és sur certaines probl ématiques rencontr ées lorsque l'on cherche à combiner deux mod èles de programmation parall èle.

Empilement de mod èles. Nous voudrions maintenant étudier l'imbrication de N mod èles et identifier les probl ématiques associ ées. Pour cela, nous reprenons notre exemple de barri ère unifi ée, et d écrivons comme elle se d éroulerait avec N mod èles imbriqu és. Tout d'abord, le mod èle M n-1 effectuer un semi-barri ère, et le mod èle appelant effectue à son tour une semi-barri ère. Nous continuons ainsi jusqu' à ce que le mod èle M 0 effectue une barri ère compl ète. Une fois la barri ère compl ète effectu ée, les mod èles imbriqu és effectuent chacun une semi-barri ère dans la direction oppos ée, jusqu' à atteindre le mod èle M n-1 .

Ordonnancement des t âches MPI et des threads OpenMP.

Tout au long de cette th èse, nous avions propos é des contributions se basant sur le fait que les t âches MPI et les threads OpenMP sont distribu és de mani ère statique sur les coeurs de calcul. Cependant, avec l'introduction des op érations collectives MPI non bloquantes depuis MPI-3, un coeur de calcul utilis é pour effectuer des communications peut être r éutilis é pour effectuer des calculs, avant que la communication ne soit termin ée.

Ce cas conduit au probl ème de l'ordonnancement des flux d'ex écution sur les coeurs, et conduit à faire des choix entre privil égier les communications et les calculs.

Part I

Context

Chapter 2

Introduction on High Performance Computing

This chapter introduces the field of High Performance Computing coming with the advent of supercomputers, as a support to numerical applications. We will then see how to program these supercomputers with their underlying parallel architectures, what are the challenges coming with these architectures, and how we will take them up.

High Performance Computing for numerical simulation

In this part, we will talk about Numerical Simulation as a tool allowing to understand phenomena in various domains. This field was first used in research community and was then adopted by the industry as a mean to reduce costs. But Numerical Simulation aims at solving more and more complex mathematical equations and compute infrastructures had evolve to provide the necessary power.

Numerical simulation for physic models

Numerical codes aim at understanding phenomena from the real world, by reproducing them with the help of simulation. This field was introduced with the emergence of computer sciences, during World War II: scientists wanted to control the process of nuclear detonations. This project was as fundamental for the outcome of the war as secret, and was named Manhattan project. Computers were very useful tools to obtain these results. For decades, military needs drove the reasearch in this field, but it also grew for the benefit of other fields, such as physics, biology or medicine.

Here are some examples of such numerical applications:

• In astrophysics, DEUS (Dark Energy Universe Simulation [START_REF] Rasera | Introducing the Dark Energy Universe Simulation Series (DEUSS)[END_REF]) aims at getting more knowledge about the imprints of dark energy into the universe

• Understanding how human brain works has always been a fascinating subject. The Human Brain Project [START_REF] Markram | Introducing the human brain project[END_REF], a European initiative, aims at constructing realistic simulations of the humain brain, by modeling its biological processes.

But designing realistic simulation requires a long process, and various skills. Figure 2.1 gives a description of the process about numerical simulation. Starting from the real world and a physic phenomenon, physicists try to design a model describing this phenomenon using equations, which often are Partial Derived Equations. Once this model and its equations have been correctly established, these equations need to be analysed and solved. Computers can be used for this step, but the equations have to be expressed in an understandable way. Numerical scientists then design algorithms in order to solve these equations. Moreover, in most numerical codes, instead of calculating an exact solution to the input equation, which is time consuming, we try to find an approximate solution. Several techniques such as Finite Element Method [START_REF] Dhatt | Finite Element Method[END_REF] or Monte Carlo methods are available to obtain Nowadays, with the help of computer sciences which spread in companies and personal lifes, Numerical Simulation and High Performance Computing are more and more adopted by industry, in fields such as aeronautics, automobile or finance. Indeed, they are seen as tools helping the design of products by reducing both the risks and the duration of development.

But Numerical codes are very demanding of computational cycles and memory resources. The increasing data necessary to perform simulations, and the need to reduce their duration, encourage research community and industries to seek for more compute power and adopt supercomputers.

Parallel machines to support numerical simulation

But performing simulations requires a huge amount of computational capabilities. This is why a special kind of computers emerged in order to help scientists. First supercomputers appeared in the 1960s, with the CDC-6600 computer [START_REF] Thornton | The cdc 6600 project[END_REF]. In the early 1970s, Seymour Cray founded Cray Research and created a new family of supercomputers, starting with the Cray-1 [START_REF] Russell | The cray-1 computer system[END_REF]. The website TOP500 lists the 500 most powerful machines in the world [4]: their performances are estimated by counting the number of floating point operations per second (flops). Performance of machines in this ranking is measured using the benchmark suite Linpack [START_REF] Dongarra | The linpack benchmark: Past, present, and future. concurrency and computation: Practice and experience[END_REF], which computes a linear system containing n equations, and leads a solution using Gauss pivoting. Figure 2.2 shows the evolution of the computation capabilities of the most powerful machines, and compares the evolutions between the first and the last computers in the list of Top500. If Cray-1 supercomputer could develop only 138 megaflops, lots of progress have been done since this time. In 2001, the japanese machine Earth Simulator reached 40 teraflops and was designed for studying global climate models [START_REF] Habata | Hardware system of the earth simulator[END_REF]. Nowadays, current supercomputers are composed of clusters, interconnected by high-speed networks. They reach a compute power of several petaflops (10 15 floating operations per second), and TOP500 ranking is currently dominated by a chinese machine, Tianhe-2 which reaches more than 30 petaflops and accounts for more than three million cores (Figure 2.3). But as soon as the Petascale barrier was passed, scientists immediately started to seek for the next step.

Parallel architectures and Memory organization

The last Section introduced supercomputers, from their advent to those encountered nowadays. Starting from the necessity to provide compute power for numerical simulations, efforts in Research&Development have been made to increase capabilities of supercomputers. Thus, in the last Section we focused on the evolution of High Performance machines, from the Cray-1 to Tianhe-2.

In this Section, we get more insight into those machines, describing the different elements composing supercomputers, and how they are organized. We will start from the evolution of microprocessors, its different kinds, and continue with the memory organization. We will see that current supercomputers are more and more parallel.

From sequential to multicore machines

Since their introduction in the late 1960s, microprocessors saw their frequency increase at a constant pace. Following their evolution, Gordon Moore formulated a law, stating that the number of transistors integrated inside a chip would double approximately every second years. Consequently, processor frequency increases (Figure 2.4). This law applied until 2004 when processors frequency reached 3GHz. But clock frequency increased thermal dissipation until reaching a limit: heat could not be sufficiently dissipated. The thermal wall led processor designers to take other directions, like multiplying compute units inside the same socket.

Intel introduced the Core microarchitecture after the Pentium 4, after observing thermal effects would be too high. AMD1 followed this trend, with its processor Athlon 64 X2. Meanwhile, processor designers proposed several hardware implementations to provide parallel execution of the compute workflow, inside a single compute core. Instruction Level Parallelism (ILP) allowed accelerating execution of one single instruction, using pipelining: one single instruction is split into steps, and these steps are executed simultanously by different units, which are always kept busy. Superscalar architectures allow execution of several instructions in the same clock tic.

Heterogeneous architectures

In addition to CPUs, another device, the Graphic Processing Unit, provides compute capabilities. GPUs were originally used as drivers to display the interface of the computer on screens. With the advent of video games and tridimensional display, rendering was delegated to the GPU. After being dedicated to graphic purpose, GPUs started to interest scientists for parallel computations, when these processors started to include more and more compute cores, and were able to provide massive parallelism.

They then started to be used in order to accelerate computations, and hardware evolved from being specialized in graphic pipelining to be used for numerical applications, thanks to their compute power. This use is known as General Purpose Graphic Processing Unit (GPGPU), and GPU manufacturers started to propose programming models to exploit them for this purpose. Nowadays, GPUs such as Geforce brand from Nvidia or Radeon from AMD gather thousands of small compute cores executing simpler instructions than those coming with current CPUs.

From 2010, Intel introduced a new line of processors, called Many Integrated Core Architecture, renamed Xeon Phi in 2012 [START_REF] Jeffers | Intel Xeon Phi Coprocessor High Performance Programming[END_REF]. This processor follows the development of Larrabee microprocessor [START_REF] Seiler | Larrabee: A many-core x86 architecture for visual computing[END_REF]. In its first version, it contained 61 compute cores, organized following a ring topology. It also embedded an operating system, run by one of its cores. This architecture is compatible with x86/64 instruction set, and thus provides a portability for applications designed for CPUs. This kind of processors provided capabilities for massive parallelism, and started to be integrated in modern supercomputers.

Sony, Toshiba and IBM introduced the Cell microprocessor in 2005 [START_REF] Kahle | Introduction to the cell multiprocessor[END_REF]. Its development had started in 2001. The architecture of the Cell combined two kinds of compute cores: the Power Processor Element (PPE) and the Synergistic Processor Elements (SPE). The Cell microprocessor was embedded in the PlayStation 3, developed by Sony, and also equipped the Roadrunner computer [START_REF] Barker | Entering the petaflop era: The architecture and performance of roadrunner[END_REF].

Such architectures, by providing massive parallelism, can be considered as alternatives to CPUs or be combined with them. But for sure, hardware accelerators will be more and more integrated in future supercomputers.

Memory hierarchy

In order to ensure execution of the application, nowadays computers include the central memory, also called RAM (Random Access Memory). The role of this memory system is to store the data needed during the execution of the application, and to feed the CPU as data are required. This memory is reset when the computer is turned off or rebooted. But as CPUs and central memory are separated, the time to retrieve data is expensive and can impact performances. Indeed, if the execution time is mainly used to load data, the CPU will suffer from under utilization. In a more general way, computational resources need data to work properly, and applications have a constant need of data storage. But memory resources come with constraints which are their cost, the latency to access to the memory system and their capacity. These constraints established a memory organization which is depicted on Figure 2.5. We classify memory blocks starting from the peak of the triangle, from the lowest latency to the biggest. All these memories have different functions. On top of the memory hierarchy, we find the processor registers, located inside a CPU. These registers are faster than any other memory components but also the most expensive to build. When instructions are executed by the processor, data associated to these instructions are temporarily stored in the registers.

To limit accesses from the CPU to the central memory, manufacturers designed smaller memories named caches, and located them near the processors. The latency to access these caches is smaller than the one for central memory, but due to their reduced size, only a subset of data can be contained. This is why only the most frequently used data are placed into caches. Different algorithms are used to decide how to fill caches. Current CPUs contain different levels of caches (L1, L2, L3) which are imbricated. L1 and L2 caches are dedicated to each core, whereas L3 cache is shared between several cores. These local memories have a size increasing following their distance to the cores. They are used in the following manner: when a core needs a data to process, it first requests this data to L1 cache. If this data is contained by this memory, then the core executes it: this is called a cache hit. If this is not the case, then it is considered as a cache miss and data is sought in cache L2. We continue this process until cache L3. At last, if the required data could not be found in any local memory, then the CPU has to retrieve it in the central memory. We see that CPU caches were designed to avoid accesses to the central memory as much as possible. It is also to be noted that different types of cache memory are available: L1, L2, and L3.

At the bottom of memory hierarchy, we find hard drives which are consistent memories. This means data remain in these drives when the computer is turned off.

To summarize, the memory hierarchy has been established to hide latencies from computational resources to memories as much as possible. But this hierarchy implies higher programming efforts for an efficient use of these resources. In the field of High Performance Computing, memory is organized following various directions. But we can distinguish two main families of parallel systems (Figure 2.6):

Distributed memory systems and shared memory systems

• Distributed memory systems: In this topology, CPUs are interconnected via a network, and have their own memory system. This kind of system implies, for the programmer, to take care of where the data is located. Indeed, if a required data is located on a remote memory, the programmer has to explicitly take this data. The main bottleneck of distributed memory systems is the network. We find this type of memory organization with Grid Computing [START_REF] Berman | Grid Computing: Making the Global Infrastructure a Reality[END_REF].

• Shared memory systems: Also called Symmetric Multiprocessor (SMP), this model includes several CPUs sharing a same memory bank, on which they access in a concurrent way. Execution flows have then access to the entire memory on a transparent manner. So programming this kind of architecture is simpler than distributed memory systems, as the programmer doesn't have to explicitly copy data from a CPU to another. But this model includes several drawbacks: memory contention can appear when two many compute units share the same memory bus. Secondly, coherency has to be maintained by the processors: when a data is updated by a compute core, all other units have to be informed about this update. One example of current shared memory system is the Bull Coherency Switch node, containing 128 cores, dispatched in four modules, each module containing 4 8-core CPUs.

From UMA to NUMA architectures

In shared memory systems, different architectures coexist to define access from the processors to the memory. Uniform Memory Access is one type of shared memory architecture, where all processors access to a same physical memory via a memory bus (Figure 2.7). This architecture provides equal access to the memory to processors, which means the latency of accessing the memory system is constant whatever their location. But when multiple compute units share the same bus to access resources, memory traffic is increased, and thus the memory bus becomes saturated. Thus, with the multiplication of cores per compute node, this kind of architecture represents a bottleneck for high performance applications.

Non Uniform Memory Access

The UMA architectures proved to be insufficient with the multiplication of cores. This is why hardware manufacturers designed more sophisticated shared memory systems. ccNUMA architecture is one of them [START_REF] Lameter | Numa (non-uniform memory access): An overview[END_REF]. It consists of giving each CPU its own memory, in order to solve memory contention.

Figure 2.8 depicts a basic example of ccNUMA architecture, containing four CPUs, each CPU being composed of four compute cores and having a direct access to a dedicated memory, which solves the problem of contention described in UMA systems. Thus, each CPU and its memory are considered as a block called NUMA node. CPUs are interconnected via a bus (QPI2 for Intel or HyperTransport for AMD). All processors can access to remote memories, and in the user's point of view, NUMA architectures are considered as shared memory systems. And even if memories are separated, cache coherency has to be maintained across the shared memory. But accessing data on distant memories implies additional latencies. Let's take the example of the CPU 2, wanting to access the memory bank located on NUMA node 1. It will have to go through the bus interconnecting sockets before reaching the remote memory. Since this bus offers a lower bandwidth than the one provided between a CPU and its own memory, accessing remote memories becomes more expensive. We all these additional latencies NUMA effects. 

Challenges of Exascale era

As supercomputers provides performance on the order of the Petaflop since 2010, they are expected to reach the Exascale frontier by 2020. But adding more cores will not be enough to reach this step. Thus, HPC scientists already started to describe characteristics of future supercomputers. But these new architectures will come with numerous challenges. These challenges are detailed by several papers [START_REF] Dongarra | The international exascale software project roadmap[END_REF][START_REF] Mcmorrow | Technical Challenges of Exascale Computing[END_REF].

• Energy: The cost of electricity becomes a non negligible part of total costs involved in exploiting High Performance machines, and this ratio should continue to increase. Introduced in 2001, the Earth Simulator computer [START_REF] Habata | Hardware system of the earth simulator[END_REF] reached 40 teraflops for a power consumption of 3.2 megawatts. Now, Tianhe-2, the most powerful computer since 2014, requires 17 megawatts for a performance peak reaching 33 petaflops. Thus, power constraints influence the design of the next generation of supercomputers. A new ranking, Green500 [START_REF] Wu-Chun Feng | The green500 list: Encouraging sustainable supercomputing[END_REF], lists the most energy-efficient computers.

• Memory wall: As scientific codes need both computational cycles and memory to execute, both constraints have to be considered. But memory may become the most limiting factor of applications performance, since there is an increasing discrepancy between evolutions of compute resources and memory. One way to compare both resources was to measure the number of bytes per flop. For a while, one byte of memory or more was available per flop. But this ratio started to decrease whith the transition from mono-core to multicore, in 2004. Then this ratio is around 0.1.

• Reliability: High performance machines are equipped with thousands of components: compute cores, memory, hard drives, . . . The probability of encountering a failure increases with the size of the supercomputer. We define the MTBF3 [START_REF] Torell | Mean time between failure: Explanation and standards[END_REF] as the mean frequency of a hardware fault. It is thus critical for scientific applications to tolerate such faults and make them resilient. Strategies exist to make applications resilient from this constraint such as Checkpoint / Restart [START_REF] Carlos | Current practice and a direction forward in checkpoint/restart implementations for fault tolerance[END_REF].

• Heterogeneity: Hardware accelerators spread in the field of High Performance Computing and were first used as prototypes. They now start to be integrated in current machines: US computer Stampede includes Xeon Phi co processors [START_REF] Fang | An empirical study of intel xeon phi[END_REF]. Their compute units are more and more diverse and smarter ways to efficiently program them are required.

Programming models

Programming model

.9: From the programming model to the language, from the language to the program We saw that current supercomputers were massively parallel, with several imbrications of compute and memory resources. These machines are then more and more complex to program, and in order to efficiently exploit them, scientists introduced models to abstract from the compute resources and leverage available parallelism. We define parallel programming models as ways to express parallelism inside applications. These programming models have to be compatible with a language, which comes with a compiler and a runtime. The language is then compiled or interpreted in order to run on the target machine. We illustrate this chain with Figure 2.9.

Various programming models have emerged as parallel machines evolved, and they follow different paradigms. They can be oriented on distributed memory systems, such computers interconnected by a network, and making them work together.

Message Passing models

Early efforts to express parallelism in programs led to the design of processes which are instances of a program, allowing the share of computational resources. A process contains everything needed for executing a program: its own address space, a set of instructions, and a context. Processes were implemented in Unix systems and are the building blocks of Message Passing models. They communicate through pipes, allowing cooperations between the programs over networks.

Message passing models are now able to communicate using simpler techniques. [35]) is a standard library using message passing paradigm. It was introduced in 1991. It is designed for distributed memory machines, as it allows communications between remote machines. The model involves processes running concurrently and parallelizing application. Communications between processes have to be made explicitly by the user. MPI is now widely adopted for scientific codes, and supports C/C++ and Fortran languages. The standard proposes following features:

MPI (Message Passing Interface

• Point-to-point communications: MPI includes primitives to enable communications between MPI processes by explicitly giving their ranks.

• Collective communications: MPI also allows performing operations such as gathering or reducing data of a set of tasks. For this purpose, it provides structures called communicators to establish the number of processes involved into these operations.

The standard has be revised through its 1.3 version and MPI-2. MPI-3 standard [START_REF]MPI: A Message-Passing Interface Standard Version 3[END_REF] introduced Non Blocking Collectives, allowing asynchronous communications between processes [START_REF] Hoefler | Implementation and performance analysis of non-blocking collective operations for mpi[END_REF]. where a process can execute other work while a Collective operation is being processed, instead of waiting its termination.

Numerous implementations of MPI are available, such as OpenMPI [START_REF] Graham | OpenMPI: A flexible high performance MPI[END_REF], MPICH2 [START_REF] Gropp | Mpich2: A new start for mpi implementations[END_REF], MVAPICH2 [START_REF] Liu | High performance rdma-based mpi implementation over infiniband[END_REF], IntelMPI or MPC (Multi-Processor Computing) [START_REF] Marc P Érache | Mpc-mpi: An mpi implementation reducing the overall memory consumption[END_REF].

To parallelize computations using MPI model, the Domain decomposition method is often used. Starting from a defined domain containing the problem to solve, this domain is split into parts called subdomains, which are allocated to each MPI task. Each task can then compute its part on a concurrent manner.

Partitioned Global Address Space

When using MPI, it is necessary to specify data transfers. PGAS4 is a programming models enabling a global address space which is partitioned. This model allows a transparent access to data, whatever they are located on the local node or on a remote one.

Several languages are based on PGAS model: 5 [105] extends C language and provides a uniform model for both shared and distributed memory systems.

• UPC
• Co-Array Fortran [START_REF] Numrich | Co-array fortran for parallel programming[END_REF] extends Fortran language and adds a syntax to describe parallel operations.

• Chapel [START_REF] Chamberlain | Parallel programmability and the chapel language[END_REF] was developed by Cray since 2003 and provides a higher level way to express parallelism.

Thread-based models

After the advent of processes, lightweight processes appeared, also called threads, which consists in a set of instructions, but do not have their own memory. A thread can be included in a process and can share memory with other threads. Models reying on threads are adapted to shared memory systems, as no data duplication is required for communications between threads. Such models appear to be interesting in the field of High Performance Computing, as they give access to more and more cores per compute node, implying increasing amount of available shared memory. However, they can only be used within a single compute node. Following are the main examples of Thread-based models.

POSIX Threads [START_REF] Butenhof | Programming with POSIX Threads[END_REF] also know as pthreads is a standard allowing management of user-level threads. This is part of the POSIX standard (Portable Operating System Interface) which is oriented to Unix systems. Pthreads provide functions for thread creation and termination, and synchronization of threads. This interface allows parallelizing codes in shared-memory environment.

OpenMP 2.5 [START_REF] Chandra | Parallel Programming in OpenMP[END_REF] is the de facto standard programming model for shared memory machines, relying on threads. It has been introduced in 1997 by the Architecture Review Board, and defines directives allowing parallelizing blocks of source codes. The main directives provided by OpenMP consist in opening a parallel region for parts of the code, distributing loops between threads, synchronizing threads, . . . . OpenMP also offers features for load balancing regarding loops, and allows tuning visibility of variables implied in parallel regions. Its execution model works following a Fork/Join mechanism. Since its 2.5 revision, OpenMP supports C/C++ and Fortran languages. OpenMP is currently supported by compilers and runtimes such as GCC with libGOMP library, Intel OpenMP runtime which was recently open sourced, MPC or OpenUH [START_REF] Liao | Openuh: An optimizing, portable openmp compiler[END_REF].

Task parallelism

Thread-based models fit to parallelize codes involving structures such as loops, as iteration space is known. But even if some models such as OpenMP include features to correct imbalance, they lack of flexibility and are not adapted for some kinds of data structures. This is the case for linked lists where the size is not known until reaching the end of the list. A last paradigm exist. It can bring flexibility, by declaring tasks associated to a block of instructions or to a function. It is in charge of the runtime to schedule encountered tasks.

In the following paragraphs, we present several Task-based languages:

Cilk [START_REF] Blumofe | Cilk: An efficient multithreaded runtime system[END_REF] appeared in 1994 and was developed at the MIT. It relies on a Fork/Join mechanism and can express threads and tasks with the help of key words. Tasks are linked together by ancestorship. Cilk runtime also includes work stealing scheduler in order to ensure load balancing when executing tasks.

It supports C and C++ languages.

Intel TBB [START_REF] Reinders | Intel Threading Building Blocks[END_REF] is a template library written in C++ and introduced in 2006 by Intel. It allows task parallelism.

OpenMP 3.0 [START_REF] Ayguad É | The design of openmp tasks[END_REF] appeared in 2008 and enriched OpenMP standard by offering the possibility for the user to add explicit tasks in OpenMP parallel regions, that can be associated to a block or a function call. It offers more flexibility to parallel codes.

Limitations of the MPI model

MPI standard has been massively adopted to parallelize numerical codes. Indeed, it is roughly the only message passing model able to work on distributed machines. Classic use of MPI is to bind one MPI task per compute core. But the evolution of supercomputers challenge MPI libraries, as it is more and more complex to reach scalability on millions of cores. We will see in this section the limitations encountered when using MPI on numerical codes. When studying parallel architectures, we noticed that compute and memory resources tend to evolve at different paces, implying an increasing discrepancy between them. Consequently, amount of memory per compute core should continue to decrease. These trends limit scalability of high performance codes and challenge classic ways to program supercomputers. However, more and more data are needed to perform larger simulations.

Memory footprint, load imbalance and inadequation with the underlying topology are such barriers from performance scalability of MPI codes.

Adequation with underlying topology

With the multiplication of compute units inside nodes and the advent of NUMA architectures, current machines include several levels of parallelism and shared memory. Current nodes contain from 10 to 100 cores per node, and this number should be much higher at exascale horizon, it is critical to efficiently exploit implied shared memory to allow MPI based applications to scale on numerous tasks. Moreover, with the advent of NUMA architectures, compute nodes are organized following a hierarchical way, and this hierarchy is driven by the location of cores relatively to the memory banks. Thus, affinities between compute cores have to be taken into account.

But MPI is a flat model as it has no semantics to take the underlying topology or the characteristics of the architecture into account. Thus, it cannot efficiently exploit hierarchical parallelism, and MPI tasks are distributed on the cores regardless of their organization. At last, since MPI doesn't know if two processes are on the same node or on distant nodes, it cannot make difference between intra-node and inter-node communications. The domain decomposition method splits the domain into subdomains, and each MPI task is given a subdomain and processes it. But to process subdomains, additional data are required, which are located on the edges of its neighbor subdomains. These are called ghost cells or halo cells, and need to be exchanged between MPI tasks at each time step of the simulation.

Memory scalability of domain decomposition method using MPI model

Replicating ghost cells in each subdomain implies memory overhead. Since we observed that memory was a limiting factor from reaching high performance, this overhead can prevent from enabling scalability of MPI codes when launching hundreds or thousands of MPI tasks, considering all cores are fully populated.

Problems with load balancing

When writing an MPI application, problem domain is split and equally assigned to MPI tasks. We then assume that all tasks will have the same amount of work to process. This is actually not the case, as all tasks do not run at the same speed. Also, some kinds of applications generate load imbalance. This is the case of ones enabling Adaptive Mesh Refinement algorithm [START_REF] Berger | Local adaptive mesh refinement for shock hydrodynamics[END_REF]. In this kind of codes, some parts of the mesh are refined during execution, increasing precision on these parts. This algorithm can be used for meteorological codes for example, where local phenomena require more compute power. Thus, tasks do not have equal amount of work, which causes imbalance between them. Several techniques are used to correct this imbalance, like exchanging parts of meshes between processes, even if they are complex to implement. But MPI standard does not provide features to correct such as imbalance.

Optimization of MPI for shared memory

With the multiplication of cores in a single compute node, amount of available shared memory also increases. But there is no difference between intra-node and inter-node communications in MPI standard. For example, in classic implementations of MPI, two memory copies are usually required and two processes located on the same compute node want to communicate data: the sender process performs the first copy on the shared memory, and the receiver process copies back from the shared memory to its internal structures.

But some implementations propose optimizations at several levels for intra-node communications. At first, we can split MPI implementations into two main categories:

• Process-based MPI: Each MPI rank is an OS process, with its own private memory. This approach allows easier inter-node communications, and avoid some synchronization between MPI ranks. But it presents limitations when MPI ranks have to communicate inside a node, as two memory copies are generally involved in a local communication: the sender first copies from its private memory the data to a pool on the shared memory, and the receiver copies back to its private memory.

• Thread-based MPI: MPI ranks are implemented as OS threads, which share the same address space, excepted the stack and the heap which are private for each rank. But global variables are shared between ranks, which leads to corrupting application state. This problem is solved by privatizing these variables to each thread. MPC is one example of thread-based MPI runtime.

HMPI [START_REF] Friedley | Hybrid mpi: Efficient message passing for multi-core systems[END_REF] aims at cumulating advantages of both solutions: optimized for shared memory hardware and providing peak performances for both inter-node and intra-node commmunications. MPI ranks are implemented using OS processes, but the heap segment is shared between them. It is built on top of any MPI library and explores one-copy mechanisms.

Other solutions are investigated to optimize communications between local MPI ranks. KNEM [START_REF] Goglin | Knem: A generic and scalable kernel-assisted intra-node mpi communication framework[END_REF] and LiMIC [START_REF] Jin | Limic: Support for high-performance mpi intra-node communication on linux cluster[END_REF] are kernel modules optimizing intra-node communications by implementing a single-copy data transfer between local processes (processes located on the same node). They are respectively implemented in OpenMPI and MVAPICH libraries.

In this section, we exposed several limitations of MPI model. At first, the MPI model is not adequate with the hierarchical parallelism of current architectures as it does not take into account underlying topology or load imbalance in its semantics. Another problem of this model is its memory footprint. While some MPI runtimes propose optimizations to reduce memory footprint in shared memory systems, one copy at least is required for communications inside a compute node. As available shared memory should continue to increase, it is necessary to exploit it efficiently. This trend advocates to mix MPI with a programming model relying on the shared memory paradigm. Several programming models suited for shared memory models have been presented, and do not require data duplications within compute nodes.

Hybrid programming models

We took into account the hardware trends in the field of High Performance computing, which are:

• the multiplication of cores inside a single compute node, which increases available shared memory.

• the hierarchical parallelism on current supercomputers

• the smaller and smaller availability of memory per compute core On the one hand, these characteristics challenge numerical codes to scale on high performance machines. On the other hand, we showed that MPI model, due to its semantics, presented limitations and could not meet all these hardware constraints. Another solution is to mix MPI with another model able to efficiently exploit the shared memory.

We define Hybrid programming by combining several programming models with different paradigms: Message passing model mixed threads or mixed with tasks. Resources are then shared between the two models. Since MPI is the most popular and widely used in High Performance codes, it is considered as the first ingredient in Hybrid programming. The advantage of this solution is to overcome limitations of MPI by using a model adapted to shared memory systems. But even if the most intuitive solution is to use Message Passing model for inter-node communications and let the other one perform intra-node computations, we will see that it is not always the best solution. Thus, candidates for the additional are: OpenMP, POSIX, Cilk, TBB or PGAS languages.

Combining MPI with OpenMP is interesting because both models are standards, and are supported in numerous runtimes. Moreover, OpenMP is the most elected model to tune MPI-based legacy codes. We will therefore focus on this model in this thesis.

Dissertation Outline

We established that combining MPI and OpenMP models was a promising solution to efficiently exploit current and future supercomputers. In this thesis, we will study hybrid MPI+OpenMP codes at several levels, from the application to the runtime levels, and via tools dedicated to performance analysis:

• In Chapter 2, we will present a taxonomy describing the different kinds of available combinations of MPI and OpenMP. We will then mention the bottlenecks preventing hybrid codes from reaching scalability.

• We will focus in Chapter 3 on the overhead encountered in OpenMP runtimes and then will present our first contribution, allowing to reduce this overhead in the context of hybrid programming, where compute resources are shared between MPI tasks and OpenMP threads.

• Chapter 4 will be dedicated to MPI Collective operations and how to optimize them in an hybrid context. In the second part, we will propose a concept unifying collective operations using both MPI and OpenMP.

• At last, we tackle the aspects of performance analysis on MPI+OpenMP codes in Chapter 5, and introduce OpenMP Tools API as last block to instrument hybrid codes.

Chapter 3

Focus on hybrid model MPI+OpenMP

In Chapter 2, we enumerated the limitations of MPI, and introduced hybrid MPI+X programming, studying several shared memory and task based models as candidates for X. In this chapter, we motivate the advent of MPI+OpenMP model as a solution for code scalability and study encountered problematics by combining MPI with the OpenMP model. Following sections will describe advantages of this model, show how it is structured through an extended taxonomy, defining various code granularities and thread placements. We will also see that good cooperation between MPI and OpenMP is necessary inside runtimes to take advantage of hybrid programming. Then we will focus on encountered bottlenecks in MPI+OpenMP codes, preventing to obtain code scalability. At last, we will present contributions of this thesis, that aim at tackling enumerated bottlenecks.

Defining MPI+OpenMP programming model

MPI was traditionally adopted by scientists to parallelize numerical codes. Indeed, as a standard, it was the most obvious programming model to exploit distributed memory machines. But, as shared memory systems started to be disseminated on supercomputers, MPI more and more appeared to show limitations. So OpenMP was adopted to be mixed with it inside parallel codes, in order to leverage such shared memory systems. The principle is to start from MPI based codes and augment them by adding OpenMP constructs at specific points of the code. As a result, compute resources are shared between MPI tasks and OpenMP threads. However, several directions are available to mix both models. At first, choices have to be made about how to augment MPI codes with OpenMP, what we call code granularity: insert OpenMP on loops or parallelize larger portions. Then, we have to decide how resources are shared between MPI tasks and OpenMP threads (e.g placement). Even if reserving OpenMP for compute node and using MPI only for inter-node communications may be the most intuitive choice, it is not always the most best mixing. Do we reserve compute nodes to OpenMP and use MPI only for communications ? Is it interesting to use only MPI in some cases ? Tradeoffs have to be found, and several mixing flavors exist, which will be described below through an extended taxonomy.

Advantages and issues of hybrid MPI+OpenMP model

In this section we list the benefits we can get from switching pure MPI and Hybrid model, and the shortcomings of this switch.

Adequation between programming model and hardware

Current machines are no longer considered as distributed. They are composed of shared memory systems, and, with the emergence of NUMA architectures, exhibit hierarchical parallelism. MPI can be considered as a flat model: it is unaware of shared memory within compute nodes, and doesn't express any hierarchical parallelism in its semantics, independently of its implementation. At user's level, it doesn't make difference between intra-node and inter-node communications.

The hybrid model, by adding a level of parallelism, provides a more efficient mapping of the underlying topology. Moreover, OpenMP, as a shared-memory model, allows avoiding intra-node communications.

Reduce memory footprint

Several researches showed that switching from pure MPI to Hybrid provided a memory gain between 80% to 480% with some benchmarks [START_REF] Anastasios | Mixed mode programming on hector[END_REF]. In [START_REF] Idomura | Performance evaluations of gyrokinetic eulerian code gt5d on massively parallel multi-core platforms[END_REF], authors observed that, for a Real World application, it allowed to reduce memory footprint by 50% with 4 threads, and 60% with 8 threads, on 4,096 cores. By simply allowing to exploit shared memory, the use of the Hybrid model can significantly save memory, at different levels.

Halo cells.

As seen in Chapter 1, MPI model, using the domain decomposition method, allows to parallelize computations as each MPI task computes its own sub-domain. But it requires exchanges of neighbor cells to perform computations, increasing memory footprint by a factor corresponding to the number of MPI tasks involved in the code execution. As memory is shared when using the OpenMP model, no neighbor cells need to be exchanged within an OpenMP team since domain decomposition doesn't apply. Internal structures. We saw that the MPI model generally needs to perform two memory copies when transmitting messages between tasks inside a node. Even if several MPI implementations proposed optimizations to reduce the number of copies, MPI imposed memory overhead due to its semantics. This problem is solved with OpenMP, where data are directly accessed with read and write operations. Also, some internal buffers and global constants implemented in MPI runtimes, that are duplicated for efficiency purposes, have a non negligible memory footprint as the number of tasks increases. Hence, reducing the number of MPI tasks allows to save memory footprint. 

Better load balancing

Load imbalance between MPI tasks can have several causes:

• Bad distribution of work between tasks

• Load imbalance generated by irregular applications, such AMR codes (Adaptive Mesh Refinement) [START_REF] Dinshaw | Highly parallel structured adaptive mesh refinement using parallel language-based approaches[END_REF] MPI standard doesn't provide any easy interface to correct load imbalance, even if some techniques are possible at user's level. And manually correcting the load imbalance generates some communication overhead. OpenMP proposes an easy interface to correct load imbalance via scheduling policies coming with loop constructs, such as dynamic or guided [START_REF] Hager | Communication characteristics and hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes[END_REF]. Since OpenMP 3.0 version and the introduction of explicit tasks, load balancing can be done in a more dynamic way. But it is limited to compute nodes with any version of OpenMP.

Drawbacks

But augmenting MPI codes with a different programming model means adding a level of parallelism, and this implies difficulties.

First, as on pure MPI mode, all compute resources were busy during the whole execution time, provided that all the cores were fully populated with MPI tasks. But with hybrid programming, resources are shared between MPI tasks and OpenMP threads, consequently only a fraction of cores is used outside OpenMP parallel regions, depending on the mixing flavor. It happens for example when performing MPI communications, outside OpenMP constructs. This leads to a waste of computational resources. Secondly, as less MPI tasks are involved in hybrid codes than with pure MPI applications, less internode communications are performed and then, the network bandwidth is under exploited. Moreover, mixing different models with different paradigms is challenging for both MPI and OpenMP runtimes, and requires them to be aware of each other. It increases code complexity, and it is therefore very easy to introduce bugs. But Hybrid programming proposes different schemes or code granularities: codes can be augmented either by adding OpenMP constructs in an incremental way or using one single OpenMP parallel region, and go through a redesign of the application. Thus complexity of hybrid programming depends on the chosen code granularity. [START_REF] Carribault | Enabling low-overhead hybrid mpi/openmp parallelism with mpc[END_REF], illustrates an extended taxonomy for MPI+OpenMP applications. We describe in this section this taxonomy, following two main parameters, i.e. different code granularities and placements of MPI tasks and OpenMP threads.

Taxonomy of hybrid MPI+OpenMP model

Granularity of OpenMP

Starting from pure MPI codes, different ways exist to hybridize these codes.

Fine-grain parallelism. Fine-grain parallelism is the incremental approach when augmenting MPI codes [START_REF] Cappello | Mpi versus mpi+openmp on ibm sp for the nas benchmarks[END_REF]. It consists in parallelizing existing loops by using pragma omp parallel for construct, which combines omp parallel and omp for constructs. To get speedup with Fine-Grain parallelism, we have to identify hotspots, portions of the code with big execution time. This granularity allows hybridizing application without much increasing the code complexity. 

MPI + SPMD OpenMP

Each OpenMP thread computes its sub domain 
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T tot = T seq + T comm + T compute P (3.1)
where Ttot, Tseq, Tcomm and Tcompute are respectively total execution time, sequential time, time spent in communications and time dedicated to computations. Fine-grain approach presents several limitations. Indeed, since the only component of Ttot that can be accelerated is Tcompute, the maximum speedup to be obtained is

1 + tcompute tseq + tcomm (3.2)
So scalability of hybrid code with fine grain approach is limited. Secondly, this approach leads to a waste of computational resources, because when performing sequential code, cores dedicated to OpenMP are idle (Figure 3.3).

At last, as a big number of loops can exist in numerical codes, a huge number of OpenMP constructs are then requested. Thus, the high number of enters/exits inside OpenMP runtime may generate overhead due to the cost of activating and synchronizing threads. This overhead is added to sequential time, and at last, global execution time.

We can consider the Masteronly approach [START_REF] Hager | Communication characteristics and hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes[END_REF] as an extension of Fine-Grain approach, where MPI calls are done outside OpenMP constructs.

Coarse-grain parallelism. The other approach to hybridize MPI codes, Coarse-Grain, consists in opening one OpenMP parallel region at the beginning of the program, just after launching MPI tasks, and terminating it at the end of the application. MPI functions are then inserted inside this OpenMP parallel region. This approach overcomes some limitations of the Fine-Grain approach. At first, since OpenMP threads are executed during almost all execution time, sequential time is decreased, as it With the process-to-process configuration, since MPI primitives are called inside OpenMP parallel region, synchronization constructs such omp single or omp master are required to ensure they are called only once. But, by serializing calls to MPI primitives inside OpenMP parallel regions, we lose a level of parallelism, and the potential benefits of Coarse-grain approach are lowered. These constructs imply additional overhead due to those critical constructs. Moreover, since during these MPI calls one single thread is used, only a fraction of network bandwidth is used [START_REF] Rabenseifner | Communication and optimization aspects of parallel programming models on hybrid architectures[END_REF]. At last, these portions cannot be neglected since communications are performed in these critical sections. So the main limitation is Tcomm, referring to communications.

Another drawback of the Coarse-Grain approach is that it increases the code complexity, especially with thread-to-thread mode. It is no longer incremental, unlike the Fine-Grain approach, and implies redesigning the application.

Another issue is the sub-utilization of computational resources when MPI communications are performed.

A solution to reduce the ratio of Tcomm, which is proposed with the other variant under Coarse-grain approach, and is called thread-to-thread communications, consists in splitting off calls to MPI primitives using OpenMP threads. Depending on their rank, some OpenMP threads are used to perform MPI communications, and the others are dedicated to computations. An example of thread-to-thread variant is parallelizing exchanges of halo cells with threads. One constraint is that other OpenMP threads performing computations don't need halo data, since communications and computations are done in a parallel way. This variant allows to keep the cores active when performing MPI communications, and overlap communications with computations.

But as it performs concurrent calls to the MPI layer, it requires the highest level of multithreading support. And it implies a much higher complexity of the code as this variant is very intrusive. MPI + SPMD OpenMP. SPMD 1 is a programming style achieving parallelism in a distributed manner, in that each task processes its own data independently. It can be enabled with OpenMP but requires modifications from a classic OpenMP program. With SPMD, work is distributed at hand between OpenMP threads, and each one computes on its sub-domain. As loops are generally targeted to enable parallelism, they drive the translation into SPMD style. Unlike common OpenMP codes where arrays are shared between threads and accessed in a concurrent way, arrays are privatized with SPMD programming and split into sub-parts, and computations are spread among threads, in order to maximize data locality [START_REF] Liu | Improving the performance of openmp by array privatization[END_REF]. Additional structures are inserted when results need to be shared.

OpenMP behaves here as a distributed memory model, like MPI. Let's take a basic example of a loop to be parallelized. The second version of the example shows how the loop is split between OpenMP threads using the proper directive. The last version, called SPMD OpenMP, performs a manual distribution of the code to the threads. For this purpose, each OpenMP rank is computed, then lower and upper bounds are deduced following each OpenMP rank. It is to be noted first, that other implementations exist to achieve parallelism in an SPMD way, second, that is it requires to completely redesign code as this mode is very intrusive.
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With SPMD style, iterations are manually split between threads. SPMD programming has been studied in literature. In [START_REF]Performance comparison of mpi and three openmp programming styles on shared memory multiprocessors[END_REF], authors present a SPMD version of NAS benchmarks, derived from the MPI version. Experiments show this approach gives better performances.

For example, reduction feature cannot be used any more to reduce a variable inside a loop. This operation has to be done manually.

If we come back to our taxonomy, MPI can be coupled with SPMD OpenMP programming. We consider this combination as a particular case of Coarse-Grain approach with thread-to-thread version. The difference is that OpenMP is used as a distributed model. In this mode, distribution of work can be seen as nested: domain is split between MPI tasks, and sub-domains are again spread among OpenMP threads. Then both models enable a same paradigm consisting in distributed memory style, in a hierarchical level. While high performance can be reached using this flavor, it is the most complex to implement.

Thread Placement

Beside code granularity, Placement is an important factor in MPI+OpenMP taxonomy. We describe here the different mix between MPI tasks and OpenMP threads inside a compute node, their advantages and limitations regarding code performance and resource exploitation.

As depicted in Figure 3.2 and in order to formalize the different combinations, number of MPI tasks, OpenMP threads are identified with symbols. M refers to the number of MPI tasks, Ti the number of OpenMP threads, and Ci the number of cores allocated for the ith process.

The first mode Fully Hybrid exploits only one MPI task per node (M = 1 ). The other cores of the node are populated with OpenMP threads. It only exploits MPI for inter-node communications, reserving all node for computations. Fully Hybrid mode implies limitations in that network cannot be saturated with one single MPI task per node. With Mixed Hybrid mode, several MPI tasks are launched inside compute node (M > 1 ), with one OpenMP team per task. This leads to a better use of network bandwidth. Simple Mixed is derived from Mixed Hybrid as cores inside compute node are shared between MPI tasks and OpenMP threads, and are fully populated. It is also possible to oversubscribe resources with Oversubscribed Mixed mode. In Alternating style, cores are used either by MPI tasks or by OpenMP threads, depending on MPI rank. With Fully Mixed combination, all cores of the node are reserved for each MPI task. A single core can be shared by several OpenMP threads. Figure 3.5 exposes a hardware view of different hybrid combinations.

Overlapping between communications and computations

Keeping all the compute resources active along the code execution is critical for code scalability. But we saw that exploiting all cores at any time was complex due to the different paradigms involving MPI and OpenMP. For example, Masteronly approach implies a sub-utilization of resources outside OpenMP parallel regions and a sub-utilization of network bandwidth. Moreover, when MPI communications are performed (e.g with MPI Collective), only a subset of cores is involved, letting other cores idle. This type of MPI operation is called Blocking Collective as code execution is suspended until termination of communications. However, MPI-3 standard revision introduced non blocking Collectives, where the execution can continue before communications have terminated [START_REF] Hoefler | Implementation and performance analysis of non-blocking collective operations for mpi[END_REF].

We talk about overlapping when MPI communications are recovered with computations [START_REF] Hager | Communication characteristics and hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes[END_REF], reducing Tcomm component of the total execution time. Exposed taxonomy showed different ways to overlap communications. First, splitting off communications with OpenMP threads allowed communications and computations to progress in a parallel way. Secondly, oversubscribing resources with OpenMP threads or using the core either for MPI tasks or threads would ensure that no core remains idle. 

Requirements of MPI runtimes

With our extended taxonomy, we introduced various schemes with different code granularities and ways to share resources between MPI and OpenMP. But mixing such models with different paradigms is not only tricky at user's level but also requests features from the runtimes. On the one hand, performing concurrent calls to MPI layer implies the underlying runtime to be thread safe. But several levels of thread safety are available. On the other hand, the placement of MPI tasks and OpenMP threads requests good cooperation between both runtimes.

Thread support

MPI standard defined different levels of multithreading support which can be enabled when initializing MPI. These levels are described as follows, from the most restrictive to the most permissive:

• MPI_THREAD_SINGLE: A single thread is allowed per MPI process

• MPI_THREAD_FUNNELED: Only the process that initialized can perform MPI calls

• MPI_THREAD_SERIALIZE: A process can be multi-threaded, but only one thread at a time can call MPI

• MPI_THREAD_MULTIPLE: A process can be multi-threaded, and multiple threads can simultaneously call MPI functions. It is the MPI runtime responsibility to synchronize concurrent calls to MPI functions MPI_THREAD_MULTIPLE is the most constraining level in term of thread safety. This level is required in mixing modes such as thread-to-thread communications in Coarse-Grain approach. Indeed, as MPI primitives are inserted in OpenMP constructs, this scheme implies concurrent calls to MPI layer, whereras process-to-process variant only needs MPI_THREAD_FUNNELED level. But to support this multithreading level, MPI runtimes need to be tuned, and ensuring thread safety at MPI_THREAD_MULTIPLE level inside MPI runtime is not free as it requires considering many parts of the runtime [START_REF] Gropp | Thread-safety in an mpi implementation: Requirements and analysis[END_REF]. Moreover, this mode adds some overhead [START_REF] Thakur | Test suite for evaluating performance of mpi implementations that support mpi thread multiple[END_REF]. Several MPI implementations support MPI_THREAD_MULTIPLE level such IntelMPI, MPC, or MPICH2 [START_REF] Gropp | Mpich2: A new start for mpi implementations[END_REF].

Interoperability between MPI and OpenMP

Exposed taxonomy highlighted different challenges when switching from pure MPI to Hybrid model. Sharing resources between both models covering all mixing combinations described on the one hand, and spawning parallel regions on the other hand, requires a smart cooperation between both models.

A first requirement is to cover all hybrid combinations described in placement part of taxonomy, including oversubscribing (i.e. share same cores between both models). Secondly, placement of MPI tasks and OpenMP threads has to be done following hardware topology. At last, a good cooperation is required in order to ensure fair CPU share between both models.

Topology view for thread placement. To efficiently share compute resources between MPI and OpenMP, a careful distribution of MPI tasks and OpenMP threads is necessary.

This placement requires that both models have a common view of underlying topology. But when MPI and OpenMP runtimes are distinct, each model has its own view of hardware topology, and is not aware of the other model. This case is likely to give a sub-optimal placement.

With MPC, MPI and OpenMP are implemented inside the same runtime, ensuring a good cooperation between them. MPI tasks are distributed in a sparse manner, keeping each task as far as possible from its neighbors, and reserving a set of cores for it. Then, as a task spawned a parallel region, the set of cores is populated with OpenMP threads related to this task, threads being distributed following a compact strategy. If, for example, we execute a code launching 4 MPI tasks on a machine equipped with 4 sockets (i.e. NUMA nodes), each task will be spawned on a socket, and each task will spawn its OpenMP threads inside the socket. This set, gathering the task and its OpenMP team, is called Hybrid instance.

Policies for thread placement can be chosen with each programming model. But the model on the top is not aware of policy chosen by the underlying model.

Cooperation between MPI and OpenMP.

Since OpenMP is the top model in runtime stacking, MPI is in charge of activating its related OpenMP team. For a complete integration, MPI has to launch OpenMP threads in an efficient way. So optimizations have been done in MPC framework to improve spawn of OpenMP threads. Thus, a polling method has been implemented, which consists for OpenMP threads to wait for a value to be updated before starting their execution.

Identify bottlenecks in hybrid programming

The study of the Hybrid model and its various combinations through taxonomy helped us to identify its strengths and weaknesses. We list here the different bottlenecks that can prevent from good scalability of MPI+OpenMP codes.

Overhead of OpenMP runtimes

We recall here how overhead can be encountered in OpenMP runtimes, illustrated by Figure 3.6. OpenMP runtime is called when an OpenMP directive, associated to a parallel region, is encountered. The runtime is exited when the code associated to the parallel region has finished to be executed. But differences have to be made between the execution time of the runtime and the execution time of parallel threads execute their tasks. The reason is that, while executing the parallel region, the Master thread has to create itself other threads and these have to synchronize before they are terminated. These operations, which are know as Fork and Join mechanisms, need time to be executed. This time corresponds to the overhead, and can be added to sequential time. This overhead is amplified in Fine-Grain approach due to frequent calls to the OpenMP layer. We illustrate this point in Figure 3.7, showing a code as a simplified example of Fine grained code with loop level parallelism. This example allows us to understand why reducing overhead of OpenMP is critical to reach performances. We can see that, after initializing MPI tasks, we encounter an iteration loop to ensure the progression of simulation. Within the iteration, we have another loop parallelized with OpenMP construct. Consequently, OpenMP runtime will be entered and exited niter times, and the generated overhead will be as important as niter is high. Since there is only few room to optimize compute time, it is critical to maintain it as minimal as possible. Indeed, this overhead can be considered as additional sequential time. But an overhead can also be observed in Coarse-Grain approach, as OpenMP constructs are required to maintain memory coherency of MPI communications. Frequent calls to OpenMP layer performed in Fine-Grain approach lead us to study the performance of OpenMP runtimes, especially for Fork/Join mechanisms.

Performance penalties due to NUMA environment. NUMA architectures are now available on current supercomputers and exhibit hierarchical topology. Since OpenMP threads need to communicate at some points of the program such as the beginning of parallel region or the synchronization points, NUMA effects can be encountered when threads are not located on a same socket. These effects can introduce additional overhead to OpenMP runtimes, this is why the underlying topology has to be taken into account. As mentioned previously, the need of efficiency of OpenMP, especially when entering and exiting parallel regions, implies to adapt algorithms implementing those operations to hierarchical parallelism exposed by such memory organizations.

Space dedicated to OpenMP vary.

With the Hybrid Programming, we introduced the Thread Placement, providing a formalism defining how computational resources inside a compute node can be shared between MPI tasks and OpenMP threads. For example, depending on Placement and on the number of MPI tasks inside compute node, the available cores for each OpenMP team will vary, from entire node to only a socket. So mechanisms for thread management have to be implemented in a flexible way to keep minimal overhead, whatever the number of allocated cores.

Lack of parallelism and resource usage

The study of this taxonomy showed that sequential part of the code (i.e. outside OpenMP constructs) and communications may represent an important part of the execution time. This shortcoming especially appears with the Masteronly approach, where the code is sequential outside OpenMP parallel regions, meaning only MPI applies. We saw communications represented a non negligible percentage of this part. This shortcoming was highlighted in Fine-Grain approach, but also with Coarse-Grain scheme, as MPI communications are serialized. A code with an important sequential part present several issues:

• use of only a subset of resources

• limited speedup and scalability of codes

We have to look for optimizations in order to reuse idle cores. We can tackle this bottleneck by optimizing the sequential part as much as possible and focusing on MPI primitives (e.g. Collective operations).

Complexity of Hybrid MPI+OpenMP codes

MPI and OpenMP present different paradigms and different interfaces: MPI provides a set of functions to perform communications whereas OpenMP comes with a set of directives for work distribution or synchronization. Then mixing both models is likely to complexify code and introduce bugs. The cost of having an optimized code, using all resources as much as possible, is heavy. The best example is the thread-to-thread communications mode, where MPI and OpenMP are strongly interleaved. These difficulties are real obstacles to going Hybrid. Yet, OpenMP and MPI propose similar features such as synchronization and reduction, but these are provided with different semantics.

Also, at runtime level, in MPC framework MPI and OpenMP implementations interact for launching OpenMP threads, but no cooperation is done for specific features such as synchronization or reduction.

Mix MPI and SPMD OpenMP. SPMD programming style used with OpenMP has been presented as behaving like a distributed memory model. Then, when coupling SPMD with MPI, programmer had to deal with 2 nested distributed memory models and a hierarchical domain decomposition. But no cooperation was done between MPI and OpenMP for the case when tasks of the application need to be synchronized.

Performance analysis of MPI+OpenMP codes

Ensuring scalability of parallel codes is a difficult task and it requires identifying potential performance issues. This task is made even more complex as these issues can come from the application or the runtime. We also highlighted how mixing two models with different paradigms can introduce bugs and bottlenecks. To reach high performance with parallel codes, tools are often required in order to detect bottlenecks, via different kinds of performance analysis such as profiling or tracing. But those tools rely on interfaces to be plugged to programming models. Some interfaces come with MPI such as PMPI [START_REF]MPI profiling interface[END_REF]. Starting from MPI codes and hybridizing them can lead to unexpected pitfalls, or performances can be lower than expected. Detecting such pitfalls can be cumbersome, so the performance analysis of hybrid codes is even more necessary. But some blocks miss to ensure good profiling of such codes, especially interfaces dedicated to OpenMP. The performance analysis of hybrid codes can be very complex, and with the increase of code complexity, tools are necessary to profile both models. MPI standard comes with several APIs such PMPI for performance analysis. But there is a lack of standard tool coming with OpenMP.

Thesis contributions

Section 3.5 helped identifying bottlenecks related to hybrid model that may prevent from scalability and viability of hybrid codes. We introduce here our contributions, aiming at tackling the previously described difficulties. The goal of this thesis will be to solve bottlenecks of the studied programming styles, chosen by the programmer. 

Reduce overhead of OpenMP runtimes in the context of fine grain parallelism in MPI+OpenMP model

MPI + SPMD OpenMP

Each OpenMP thread computes its sub domain We saw in Section 3.5 that the OpenMP layer was likely to be frequently accessed in Fine-Grain mode, generating overhead. But as synchronization constructs are also required in Coarse-Grain style, optimization of the OpenMP layer is also desirable in this case. We introduce here our first contribution, tackling one of the issues encountered with Fine-Grain parallelism and, to a lesser extend, with Coarse-Grain, as highlighted on Figure 3.8: the optimization of OpenMP runtimes, focusing on the creation of threads and their synchronization. In order to reduce this overhead, we describe in the next chapter a new design of an OpenMP runtime meeting constraints encountered on MPI+OpenMP codes, i.e the need of performance on a large spectrum of threads. Then, we describe challenges raised by NUMA architectures, and we show how our design meets these challenges by relying on a tree structure in order to fit underlying topology, and to use it, for example, for thread activation and synchronization. At last, we introduce our contribution, the Adaptive tree, which is a tree whose shape automatically
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Fine-Grain Approach

Coarse-Grain Approach 

MPI + SPMD OpenMP

Each OpenMP thread computes its sub domain 

Study Collective operations in a hybrid context

In Chapter 5, we propose a global study about MPI collective operations, targeting several bottlenecks.

Hybridization of Collective operations.

In our second contribution, we target the problem of sequential component of the total execution time and we search for a better use of compute resources during this time. This problem is especially encountered with Masteronly approach (Figure 3.9). So, we analyze what parts of sequential component can be optimized, which leads to focus on MPI collectives. We then investigate literature about optimization of MPI Collectives, through multiple directions: rely either on shared memory or on network topology. We also study different kinds of MPI collectives through their characteristics and discuss how we can hybridize them with OpenMP threads. At last, our contribution is focused on MPI_Allreduce and we propose a portable way to optimize this collective with the help of OpenMP threads, and using different algorithms.

Introduce unified collectives. In the third contribution, we tackle the problem of code complexity when mixing models with different semantics. We target Coarse Grain approach (Figure 3.10), and give guidelines to simplify semantics of the Hybrid model, especially when performing MPI communications in a thread safe way.

In the case of MPI + SPMD pattern, we introduce collectives unifying both models, such as reduction. A global barrier is presented as a proof of concept, synchronizing both MPI tasks and OpenMP threads.

Code Granularity Fine-Grain Approach

Coarse-Grain Approach 
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Standard performance analysis of OpenMP codes

In the last part of this thesis, we study eligible tools for performance analysis targeting OpenMP codes.

We then describe the newly introduced OpenMP Tools API (OMPT [START_REF] Huck | Integrated measurement for cross-platform openmp performance analysis[END_REF]): this describes an interface compatible with the OpenMP standard, and is dedicated to performance analysis. This API provides a set of events dedicated to OpenMP constructs and is to be interfaced between OpenMP runtime and tools for performance analysis. It covers all OpenMP constructs and can be used to identify bottlenecks in OpenMP codes and runtimes. We consider this interface as the last arrow to enable a good profiling of hybrid codes. Then, we describe the implementation of this API into MPC framework.

At last, we study performance analysis using our implementation of OMPT, oriented for both runtimes and hybrid codes, and with the help of TAU, a tool dedicated to performance analysis.

Part II

Contributions

Chapter 4

OpenMP runtimes for MPI+OpenMP applications

Due to its Fork/Join mechanisms, OpenMP implies overheads when starting and terminating threads. The reason is that threads have to be created and activated for parallel execution. Regarding these considerations, runtimes implementing OpenMP model propose optimizations to minimize these overheads as much as possible. In this chapter, we expose on the one hand constraints on OpenMP runtimes implied in hybrid applications, and on the other hand challenges encountered by NUMA systems on OpenMP constructs. Then we describe a NUMA-aware design of our OpenMP runtime, and subsequently our contribution.

Constraints on OpenMP runtime in hybrid MPI+OpenMP codes

As the top model in hybrid MPI+OpenMP codes, OpenMP is likely to be frequently entered and exited. Moreover, the taxonomy related to hybrid MPI+OpenMP described in last chapter exposes different mixings between MPI and OpenMP, and different code granularities. Constraints on OpenMP runtime in hybrid context are then twofold:

• OpenMP constructs are frequently called

• Space for OpenMP vary among compute node

These constraints can consequently lead to non negligible overheads which can impact performances of applications. They will be detailed in the following sub-sections.

Need of efficient mechanisms for OpenMP constructs

The taxonomy related to hybrid MPI+OpenMP exposed different granularities when mixing MPI and OpenMP. Depending on these granularities, OpenMP runtime will be stressed in different manners. With fine-grain parallelism, code is likely to perform frequent calls to constructs such as omp parallel region and its combined version omp parallel for. In this configuration, it is critical to be able to enter and exit OpenMP layer on a fast manner. Moreover, efforts have to be focused on threads activation and synchronization when designing OpenMP runtimes. These constraints advocate for a lightweight runtime. Since we encounter large parallel regions with coarse grain parallelism, we have a lower number of threads activations. We put the stress on constructs inside OpenMP parallel region, such as OpenMP loops, barrier or single constructs. Moreover, in oversubscribing configurations, cores are shared between OpenMP threads, or between MPI tasks and OpenMP theads. We then need to be able to perform fast context switches between threads.

Need of a flexible runtime

In chapter 2, several levels of thread placement were described. For example, in mixed hybrid configuration, compute node is shared between OpenMP teams. Thus, depending on granularity of thread placement, space available for OpenMP can vary, from the entire node to a socket. These constraints have to be taken into account by OpenMP runtimes and advocate for efficient runtimes for only few threads and numerous threads. These considerations lead to design runtimes allowing flexible handling of threads.

Impacts of NUMA effects on OpenMP runtimes

Even if, in a hardware point of view, memory units are separated and dedicated to a processor, ccNUMA architectures are considered as shared memory systems at user's level. However, due to their characteristics, inter-sockets communications are expensive in terms of latency. Such latencies are called NUMA effects. These NUMA effects can be encountered when threads located on different NUMA nodes need to interact, or if a thread has to access data on a remote node. To avoid these penalties, a special care has to be taken in the area where data are accessed. We call this data locality. With the problem of data locality comes the problem of memory affinity, i.e. the relationship between threads and data. Memory affinity is enabled when threads and related data are located on the same NUMA node, and thus remote accesses are avoided. Taking NUMA characteristics and data locality into account is critical for scalability of OpenMP codes, and consequently MPI+OpenMP codes. Then, we have to keep in mind NUMA effects and data locality when designing OpenMP runtimes. A flat representation of threads is no longer sufficient to leverage such architectures. We illustrate the problem of threads interactions by taking the example of basic operations in OpenMP such as threads activation and thread synchronization in the following sub-section.

Impact on OpenMP constructs: thread activation and thread synchronization

The basic operations with OpenMP are to activate threads when beginning a parallel region and to synchronize them on a barrier (Fork and Join mechanisms). A classic implementation of thread activation is, for the thread Master (thread of rank 0), to wake itself the other OpenMP threads. We can call this implementation a centralized approach (Figure 4.1). We consider OpenMP threads are equally dispatched on all available cores on the compute node, among all NUMA nodes. If we can assume that activating threads is only fast if all threads are on the same NUMA node, then, activating threads dispatched on all NUMA nodes can be time consuming. The explanation is that the Master thread has to flip variables to launch execution of the entire OpenMP team. Considering that the variables relative to each thread are located on memory banks near their respective NUMA nodes, master thread will have to perform remote access, encountering NUMA penalties. The centralized approach relies on the fact that a single thread is in charge of the entire work of thread activation, which leads to contention. Moreover, by ignoring data locality previously presented, NUMA effects are likely to be encountered, and additional overheads are encountered.

The same problem occurs for thread synchronization. With the centralized approach, master thread increments a counter as threads reach the barrier. When all threads have reached the barrier, the Master thread sets a flag and all threads are free to continue their execution.

Problem of memory affinity

Beside the problem of threads interaction encountered with OpenMP constructs, a thread also interacts with data during its execution, for example accessing and writing an array. If we assume that data are allocated near threads (on the same node) when starting the application, thread placement may evolve during execution. This case is encountered with irregular applications such as AMR codes(Adaptive Mesh Refinement), in which the memory pattern evolves.

Related Work

Lightweight OpenMP runtimes. Hybrid codes are designed in a way parallel regions can often be entered and exited, or cores are shared between OpenMP threads. So there is a need to create threads that are able to quickly start their execution. This leads to study contributions proposing light implementations of OpenMP threads. [START_REF] Engler | Filaments: Efficient support for fine-grain parallelism[END_REF] describes a new kind of threads named Filaments, supporting efficient execution of fine grained codes. In [START_REF] Carribault | Enabling low-overhead hybrid mpi/openmp parallelism with mpc[END_REF], authors introduce, inside the runtime MPC (Multi Processor Computing), a new kind of OpenMP threads named microVP (micro Virtual Processor). These microVPs schedule their own microthreads, which can be considered as lazy threads. This implementation allows faster context switches, since microthreads don't have their own stack but microVP ones. Stacks are created on-the-fly at scheduling points (such as barriers). This design achieves a lightweight implementation of OpenMP runtime and ensures good integration within MPI+OpenMP context.

Thread handling and placement in NUMA environment. Some papers focused on optimizing main OpenMP constructs. [START_REF] Nanjegowda | Scalability evaluation of barrier algorithms for openmp[END_REF] proposes several implementations of the OpenMP barrier in the OpenUH compiler, describing several algorithms, such as tree, dissemination, or tournament. Experiments revealed that tournament ensured best scalability of the OpenMP barrier.

In [START_REF] Broquedis | ForestGOMP: an efficient OpenMP environment for NUMA architectures[END_REF], authors present ForestGOMP, an OpenMP runtime which extends the libGOMP library, and propose optimizations for NUMA environments. Indeed, it introduces a hierarchical representation of threads, via a component named BubbleSched, which gathers threads belonging to an OpenMP team in bubbles, and dispatchs them among underlying topology. To target irregular applications, some work stealing algorithms are also proposed to dynamically move threads from a core to another, for load balancing purposes.

Memory Affinity

In order to control memory affinity between threads and data, ForestGOMP also proposes data migration via its memory manager MaMI1 . This component proposes new memory policies like next-touch, which is a generalization of first-touch memory policy: when a thread accesses data on a remote node, data are moved inside the memory system near the thread.

Some other contributions also focus on how to ensure memory affinity in a NUMA context and for OpenMP codes. In [START_REF] Pousa Ribeiro | Improving memory affinity of geophysics applications on numa platforms using minas[END_REF], authors present Minas, a framework providing explicit or automatic tuning to control memory affinity. Minas contains several components for ensuring memory affinity:

• MAi (Memory Affinity interface) is an API providing data allocation and placement. It implements some memory policies following different data distributions (bind, cyclic and random). Minas first presents alternative memory pattern policies than first-touch policy, implemented in Linux systems: next-touch policy, which allows data movement to close threads. These memory policies deal with both regular and irregular applications.

• MApp is a preprocessor performing source-to-source transformations to insert specific functions belonging to MAi API.

• A third component named Numarch retrieves machine informations, ensuring Minas to offer hardware abstraction and code portability.

NUMA aware runtime

The characteristics of NUMA architectures and impacts on OpenMP runtime described in the previous section lead us to design a hierarchical representation of threads inside OpenMP runtimes. This work has been implemented in MPC framework and is built on top of the lightweight implementation of OpenMP threads mentioned in [START_REF] Carribault | Enabling low-overhead hybrid mpi/openmp parallelism with mpc[END_REF]. It can also be compared to the contribution made with Forest-GOMP, as it also relies on a hierarchical structure. However, as we will see, it is also oriented towards Hybrid context where MPI and OpenMP are mixed.

Hierarchical tree

Our hierarchical representation of threads consists of a balanced tree, containing a root, nodes and leaves. Threads will be mapped on this tree. To illustrate our design, we can take the example of a machine equipped with 4 processors, each containing 8 cores and coming with its memory bank. This example is depicted on Figure 4.2. If we build a tree following hardware topology, it will consist in 4 nodes, each node representing a NUMA node, and having 8 leaves in its sub-tree. The tree has a total of 32 leaves. Let's then consider an OpenMP team of 32 threads, fully populating the machine, and let's see how these threads are mapped on this tree. The Master thread (thread of rank 0) will be placed on the tree root, on the top left node and top left leaf. Threads of rank 8, 16, and 24 will be placed on the other nodes and top left leaves inside their respective sub-trees.

The Hierarchical data structure allows to delegate part of the activation and synchronization work to those threads located on intermediate nodes. We describe these mechanisms in the following subsections.

Application to thread activation and thread synchronization

Whereas the centralized approach previously described consisted in having all the OpenMP threads activated by the Master thread, our approach allows to delegate parts of the thread activation, as illustrated in Figure 4.2.

Algorithm 2 Hierarchical thread activation

Require: tree 1: node ← tree.root 2: while node = LEAF do 3:

wait on node.exec = 1

4:

for i := 0 to node.nbchildren do The principle of thread activation using hierarchical tree, depicted in Algorithm 2, operates as follows: the thread of rank 0 is waiting on the tree root and wakes the threads located on children nodes. Once awaken, these threads are polling on their nodes and take in charge the activation of threads located on their children nodes. This operation is repeated in a recursive way until reaching the tree leaves. As soon as a thread is activated, it starts its execution. As depicted on Figure 4.2, the Master thread (ranked 0) is waiting on the tree root as well as on the left intermediate node, and on the top left leaf. In a similar manner, the threads located on other internal nodes are also broadcasted on each left leaf of respective sub-trees.

We detail the process of thread activation by following its different steps. For better understanding, nodes where threads are waiting for execution are colored in red and those where threads are executing or activating other threads are colored in green.

Figure 4.3 describes the first step of thread activation. We start from the root of the tree with the thread ranked 0. The first job of thread 0 is to wake its children which are thread 8, thread 16 and thread 24. The wakening operation consists in updating value of a flag to 1 in order to inform children threads to start their execution.

Once the threads located on children nodes are awaken, they wake the threads located on the leaves, in their own sub-trees. This is the second step of thread activation process (Figure 4.4. While threads located on intermediate leaves activates their children leaves, the Master thread located on the tree root, switches location from the root to the node located on its left. Algorithm 3 describes the implementation of the OpenMP barrier using a hierarchical tree. Each node of the tree has an intermediate barrier to synchronize threads belonging to its sub-tree. To synchronize all threads relative to its sub-tree, the node contains a counter barrier allowing to know how many of its threads have reached this barrier. Each time a thread reaches the barrier, it increments the counter, until its value equals the number of expected threads stored in the sub-tree. We have to make sure this counter is incremented in an atomic way since it is accessed in a concurrent way. When the expected number of threads has reached the intermediate barrier, a flag related to this node named barrier_done is activated, and the last thread having reached this barrier continues to higher stages. Consequently, we climb the tree in a recursive way until reaching the tree root and its global barrier. Once root is reached, all nodes are informed that the global barrier is reached, and each thread goes down to its leaf through relative nodes and continues its execution.

By using a hierarchical tree taking into account underlying topology, we improve the data locality and reduce the contention by decoupling the work of Fork / Join mechanisms. 

Explore different tree shapes

Flat tree In the previous part, we took the example of a tree following hardware topology, as we call it topology tree. This solution seems to be the most intuitive tree shape, as it adheres to hierarchical architecture and optimizes data locality. However, for a small number of threads, centralized algorithm presented in Section 4.2 is an efficient way for thread activation and synchronization, as it is straightforward. We call this approach flat tree (depicted on the left part of Figure 4.7): we deal with a one level tree, with a single thread in charge of activating or synchronizing all other threads. The overhead is minimal for these operations. n.barrierdone = node.barrierdone + 1 22: end while Deep tree At the opposite, for a large number of threads, we can investigate trees deeper than the topology tree, in order to expose more parallelism. Indeed, by increasing the depth of the tree, we increase the number of steps and decrease the number of threads to deal with, which allows to lower the contention at each level. The binary tree is the deepest tree we can study. Since each node degree is minimal, it allows the smallest contention when it needs to deal with its children. But the drawback is that the global overhead increases due to the number of implied steps. These considerations lead to find a tradeoff between exposing parallelism and limiting the number of steps, depending on the number of threads we have to handle. 

Handle tree shapes in a dynamic way

We saw that the tree shape is likely to influence performances, depending on the number of launched threads. Furthermore, some codes, as they perform OpenMP parallel regions, require less OpenMP threads than launched at the beginning of the execution. Thus, the number of used OpenMP threads is likely to change during execution time, and we need to dynamically adapt the tree shape. The difficulty here is twofold: elect the best tree shape to ensure best possible performances, and be able to change it in a dynamic way, with low additional overhead.

Contribution: Adaptive tree

In the last section, we described our design of NUMA-aware OpenMP runtime, consisting in a hierarchical tree where OpenMP threads are mapped, and used to wake or synchronize OpenMP team. The need to keep a minimal overhead for few threads and numerous threads drove to study different tree shapes. But as the number of threads involved in parallel codes can change during their execution, there is a need to tune tree shape in a dynamic manner. Thus, we introduce here our concept of adaptive tree: we build a topology tree, mapping the underlying topology, and exploit it depending on the number of launched threads. Our contribution, extracted from [START_REF] Aur Èle Mah Éo | Adaptive openmp for large numa nodes[END_REF], consists in only using a subset of the whole tree when all threads can be contained in this subset. We later present our mechanism to bypass the tree when possible.

Bypassing the tree

In the previous sub-section, we saw there was no unique solution for best tree shape. The need of handling tree shape in a dynamic manner according to the number of launched threads lead us to change the tree shape during execution. Our contribution consists in an adaptive tree, whose the exploitation depends on the number of launched threads during the execution. The principle is the following: we use only a sub-tree provided it can contain all the threads. We do this by comparing the number of launched threads with the number of available cores on the machine. If the number of threads can be contained inside a sub-tree, we set the root on top of this sub-tree.

Algorithm 4 Bypassing

Require: tree, numthreads node ← node.children[0] 4: end while 5: tree.newroot ← node 6: return tree.newroot Algorithm 4 describes how Adaptive tree works through what we call a Bypassing mechanism. We start at the tree root, and take it as the current root. The algorithm then compares the number of launched threads with the total number of leaves in the sub-tree of the top left child node of the tree (given by the field maxindex). If the number of threads is lower or equal to the number of leaves, then the child node located at the top left becomes the root. This process is recursively repeated until reaching the leaves. At the end, Algorithm 4 returns the new computed root.
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NUMANode P#0 (32GB) The tree depicted on Figure 4.9 maps the underlying topology of the node. We can apply the bypassing algorithm to this configuration. The current node is the root of this tree. We start by considering the top left sub-tree, framed in a dashed rectangle. We compare the number of launched threads with the total number of leaves contained by this sub-tree. Since the sub-tree gathers a total of 32 leaves, then we tag the top left child node as the root. Again, we repeat this operation by examining its own top left sub-tree, in plain rectangle, and test if the number of its children exceeds or is equal to the number of threads. This time, the number of threads and leaves match. So we can place current root on the root of the top left sub-tree.
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Apply bypassing to thread activation and thread synchronization

The mechanisms of thread activation and synchronization remain the same. The only difference is that bypassing algorithm returns a different root. So the thread activation and synchronization take the root returned by the bypassing algorithm as an input, and are therefore constrained inside the deduced sub-tree.

In order to make clear how bypassing algorithm works, we illustrate the concept with a code (Figure 4.10) involving several consecutive OpenMP parallel regions. Each region is launched with a different number of threads. Inside the runtime, the bypassing algorithm will be executed as soon as the parallel region is encountered. The first encountered parallel region is launched with 128 threads, which corresponds to the total number of available threads. So the computed root of the algorithm will be the real root of the tree. This computed root applies to the algorithms of parallel region and barrier. Once the first parallel region is passed, the computed root is reset. Consequently, all trees will be used and all threads will be activated.

When encountering the second parallel region, 32 threads are required. The Bypassing algorithm computes the new root and tags the left child node as the new root: all its leaves can contain the requested threads (Figure 4.11). So only the threads contained in the left sub-tree are waiting to be activated.

At the end of the parallel region, the barrier applies only on this sub-tree. The third parallel region is to be launched with 8 threads. Starting from the tree root, we recursively cross the tree and take the top left node of the smallest sub-tree as the root. We then launch the parallel region.

But the flexibility provided by the Bypassing approach allows to go back to a big number of threads (i.e. last parallel region).

This example showed that our bypassing algorithm offered a flexible way to efficiently launch OpenMP constructs with varying numbers of threads, and on consecutive parallel regions. The computed root is reset when the parallel construct is finished. This approach allows to minimize the impact for thread activation and synchronization implementations. The main advantage with the Bypassing algorithm is that this approach is transparent for thread activation and barrier: the algorithms just have to take the input root into account, as a starting point or as a limit.

Implementation

Hierarchical tree, thread activation and synchronization, and Adaptive tree have been implemented in MPC 2.5.0. To be able to build the topology tree, we needed to know about underlying topology. So we used HWLOC library (Hardware LOCality). This library allowed to discover the hardware topology and therefore to build our tree in a recursive way. The tree was built once at the beginning of the application execution, when first encountering an OpenMP parallel region. Each time a parallel region is encountered, the Bypassing algorithm was executed and returned a new computed root. This computed root was taken as the input for thread activation and synchronization.

Experimental results

We evaluated the adaptive tree on two hardware configurations:

• one 32-core node composed of 4 processors Nehalem EX X7550 clocked at 2.00 GHZ (Tera-100 supercomputer)

• a 128-core Bull Coherency Switch node containing 16 processors Intel Xeon E7-4800. These processors are dispatched on 4 modules linked with a BCS interconnect system, each composed of 4 NUMA nodes (Curie supercomputer)

EPCC microbenchmarks

First experiments were performed on EPCC [START_REF] Bull | Measuring synchronisation and scheduling overheads in openmp[END_REF], a suite of microbenchmarks the goal of which is to estimate overhead of OpenMP constructs. We focused on omp parallel and omp barrier constructs, and compared our approach with other tree shapes and OpenMP runtimes. Different OpenMP runtimes were compared:

• ICC 12.1

• GCC 4.6.1 on 32-core node

• GCC 4.4.4 on 128-core node

• MPC 2.5.0 GCC compiler includes libGOMP library. The different tree shapes compared with the adaptive tree were a "4-8" tree, a flat tree on the 32-core node, a "4-4-8" tree and a "4-32" tree on the large node. On the first hardware configuration, we compared performances between a flat tree, a topology tree and our adaptive tree, with MPC. We notice that on 32-core node, the flat tree performs best with a few threads but performances fall with more than 16 threads. The "4-8" tree and adaptive tree have similar performances on 32-core node. We observe GCC performs poorly on all configurations, especially with a large number of threads, probably due to 

Discussion about hierarchical work stealing

Some applications are called irregular due to their sparsity. Such applications cause load imbalance between threads, in the case of OpenMP applications. Load imbalance is an obstacle to scalability of codes, and some techniques enable to correct it, in particular work stealing. Work stealing corrects imbalance by allowing idle threads to look for compute work to be executed by other threads. There are opportunities for work stealing with OpenMP loops and OpenMP tasks. OpenMP loops OpenMP standard allows, via constructs like #pragma omp for, to split their iteration space involved in loops into chunks, to be dispatched on threads and executed. There is also a possibility to tune granularity of chunks. Several scheduling policies such as static and dynamic are described to schedule chunks on threads. Whereas static policy doesn't allow correcting load imbalance, dynamic policy gives room for work stealing. This is why OpenMP runtimes propose features such as work stealing to correct this imbalance. When a thread has no more chunks to execute and becomes idle, he looks for other chunks to execute in the neighbor threads.

OpenMP tasks OpenMP 3.0 revision introduced the concept of explicit tasks. Developers can express these explicit tasks via #pragma omp task construct, as soon as this feature is supported by OpenMP runtime. This task is associated with a function or a portion of code. A thread encountering this construct is in charge of executing the associated task before reaching a scheduling point. Thus, during execution time, several tasks related to a thread are likely to be waiting for execution. There are different possible implementations to store OpenMP tasks waiting for execution. Examples of implementations are a pool of tasks shared by all threads or a private queue for each thread.

In the following sub-sections, we will study different strategies and implementations of work stealing.

Strategies for work stealing

Work stealing strategies have been widely investigated and numerous algorithms have been proposed in the literature. Emergence of NUMA architectures lead to perform work stealing in a hierarchical way. In [START_REF] Clet-Ortega | Evaluation of openmp task scheduling algorithms for large NUMA architectures[END_REF], the authors adopt a hierarchical representation of OpenMP task scheduling and adapt work stealing strategies to this representation. [START_REF] Seung-Jai Min | Hierarchical Work Stealing on Manycore Clusters[END_REF] introduces HotSLAW, a task library proposing several work stealing mechanisms such as:

• Hierarchical Victim Selection: steals from the nearest neighbor and gradually climbs locality hierarchy.

• Hierarchical Chunk Selection: tunes chunk size to steal depending on the distance between the thief thread and the victim thread Another contribution extracted from [START_REF] James Dinan | Scalable work stealing[END_REF] enables a technique to split task queues between victim and thief threads. This technique allows a scalability of work stealing on 8,192 cores.

Implementations of hierarchical work stealing

We investigated several designs for work stealing, relying on hierarchical structure previously presented.

A first implementation of hierarchical work stealing is to store the entire tree (e.g nodes and leaves) in a stack. To parse the tree, the thread has to pop the stack.

An alternate design allows to avoid parsing the tree.

Algorithm 5 Compute index

Require: DEP T H, nbleaves, treeShape[DEP T H], threadP os[DEP T H]

1: for i := 0 to DEP T H do 2:

absP os[i] ← 0 iter ← iter + 1 18: end while 19: return currentP os As described in Algorithm 5, it consists, for each thread, in starting from the leaf of current thread and in parsing all leaves by beginning with the next leaf. The algorithm takes three parameters as input: the tree depth, the tree shape as an array, and the thread position relative to the tree. The tree shape (i.e the number of children at each level) is stored in an array the size of which corresponds to the tree depth. Another array, threadPos contains the path from the tree root to the location of the current thread, and is used to compute the next targeted leaf, modulo the tree shape. This process is iterated until parsing all leaves. This algorithm gives each thread a unique parsing in order to avoid contention, and first explores the neighbors first, before looking for other works to steal.

With Figure 4.17 we take an example of a balanced tree and apply the algorithm to it. The depth of the given tree is equal to 3 and its shape can be expressed as treeShape = 3,2,3 . Let's consider the current thread is located on the second upper sub-tree, its second sub-tree and on the second leaf. We will apply the algorithm to this thread. Its location following the tree is thus given as threadPos = 1,1,1 . The location of this thread is marked with an arrow. When starting the algorithm, absPos is initialized to 0,0,0 and currentPos is set to 1,1,1. The ordering of the parsing is tagged with the numbers below the leaves. The algorithm then iterates through the leaves and the first step is the last leaf of the sub-tree (step 1). For the next step, currentPos is computed taking into account absPos and modulo treeShape , then it is gives 1,1,0. So on step 2, the current thread looks after the first leaf of the sub-tree. On the following step, we parsed the entire starting sub-tree, the next leaf to be visited is the second one of the neighbor sub-tree, wich is included in the containing sub-tree. After iterating through this sub-tree, the current thread parses the top right sub-tree, starting by the second leaf, which is still computed following absPos and treeShape . When finishing the algorithm, absPos equals treeShape . We can also use the Adaptive tree for Work Stealing purposes and combine it with the Compute Index algorithm. Let's apply the Bypassing algorithm to the left sub-tree (Figure 4.18) and run the Compute Index algorithm again. The value of treeShape will be 2,3. The current thread is located on the second lowest sub-tree, on the second branch ( threadPos = 1,1 ). absPos and currentPos are respectively initialized to 0,0 and 1,1. Then, the algorithm parses all leaves like in the first case, but it only applies for the given sub-tree.

Conclusion

The goal of this chapter was to highlight constraints on OpenMP runtimes encountered in hybrid MPI+OpenMP codes, and running on NUMA architectures. We presented a state-of-the art design to take into account hierarchical parallelism implied by NUMA systems, with application to most encountered OpenMP constructs such as thread activation and barrier. We introduced our first contribution, the Adaptive tree, that offers a flexible way to reduce the overhead of OpenMP runtime, through its Bypassing algorithm. We demonstrated through several examples that Bypassing algorithm was transparent to other features such as thread activation, synchronization or Work stealing algorithms. This contribution was implemented inside MPC runtime and experiments showed this approach was a promising solution to meet previously enumerated constraints. At last, we discussed about features coming with OpenMP implementations such as Work stealing and impacts of hierarchical topology on Work stealing.

Chapter 5

Study Collective operations in hybrid MPI+OpenMP context

In Chapter 4, we identified the overhead of OpenMP runtimes as a limiting factor of scalability in hybrid MPI+OpenMP codes, following Fine Grain pattern. We then presented a design in order to reduce this overhead on NUMA architectures.

But other issues have been highlighted and are other bottlenecks for hybrid applications. These issues are such:

• Ratio of sequential and communication parts in total execution, for Fined Grained codes

• How to reuse idle cores outside OpenMP parts, in Masteronly codes

• Problem of code complexity with coarse grained applications, and reduce programming effort In this chapter, we conduct a global study of collective operations, starting by focusing on existing MPI Collectives and describe different ways to optimize them in Masteronly mode. We then introduce hybridization of such collective operations by exploiting idle cores and idle OpenMP threads, and see how we could apply the state-of-the-art optimizations with threads. After, we introduce our contribution consisting in optimizing MPI_Allreduce with OpenMP threads, following several techniques.

In the second part of the chapter, we recall characteristics of Coarse grained codes and see how to propose common constructs between MPI and OpenMP in order to alleviate the programming effort in this pattern. By recalling combination between MPI and OpenMP SPMD, we propose unified constructs coordinating both MPI tasks and OpenMP threads. We introduce a unified barrier as a proof of concept, synchronizing MPI tasks and OpenMP threads, and show its performances againts a regular implementation of this feature.

Tackle the problem of sequential time in Fine Grain pattern: Focus on MPI collectives

When studying the taxonomy of Hybrid model in Section 3.3 of Chapter 3, we listed the drawbacks of Fine Grain approach:

• The first one is the difficulty to maintain the compute cores active during the whole execution time. Indeed, all compute units are busy only when OpenMP threads are launched. This is particularly true with Masteronly style. Figure 5.1 illustrates this shortcoming with a code launched with 4 MPI tasks and a total of 16 OpenMP threads, and compares occupation of compute cores, inside and outside OpenMP parts. In the last case, only a subset of cores is used, which leads to a loss of parallelism.

• The second shortcoming is that sequential and communication components (i.e. when only executing MPI code outside OpenMP constructs) are far from being negligible. For example, the authors in [START_REF] Rabenseifner | Communication and optimization aspects of parallel programming models on hybrid architectures[END_REF] showed that communications in this hybrid scheme could reach 15% of global execution time.

As sequential and communication times are such obstacles to the scalability hybrid codes, we studied how to minimize them, and have looked for elements that could be optimized.

MPI Collectives are good candidates for optimization because they are well encountered in high performance codes and are often concerned by communications by involving multiple MPI ranks at the same time. Moreover, they represent a non negligible percentage of total execution time, and consequently in sequential time. To illustrate this point, we studied an hybrid MPI + OpenMP application simulating interactions between particles with a Monte Carlo algorithm, involving multiple MPI_Allreduce operations [START_REF] Dureau | Hybrid parallelism models for neutron monte-carlo solver in an AMR framework[END_REF]. We launched it with 4 MPI tasks and 128 OpenMP threads per team, on a representative configuration of 4 Bull Coherency Switch 128-core nodes, on the Curie supercomputer. The time spent in such collective represents more than 50% of the global execution time of the application.

In the next section, we study the state-of-the-art optimizations of MPI collectives, using shared memory systems and network topology.

Related Work on optimizing MPI collectives and reduction collectives

We expose in this section the state-of-the-art regarding optimizations of MPI collectives, with a focus on reduction collectives. These optimizations take advantage of two aspects: (i) shared memory available in current compute nodes, and (ii) underlying topology including network topology.

Exploit shared memory

Shared memory has been strongly exploited to design powerful algorithms implementing MPI collectives. In [START_REF] Rabenseifner | Optimization of collective reduction operations[END_REF], the authors improve the collective operations of MPICH runtime, and present new algorithms for Reduction operations. Two algorithms are presented to implement Allreduce collective: Recursive Halving and Doubling, and Binary Blocks. With both algorithms, Allreduce operation is actually decomposed in 2 operations: Reduce_scatter and Allgather. Reduce_scatter is an irregular collective, which performs a regular reduce operation, but, instead of sending the result to the root like allreduce, it scatters it among processes. With Recursive Halving and Doubling algorithm, the input vectors are recursively halved and one half of the vector is sent to the neighbor process. At each step, the distance between neighbor processes is doubled. When each process has a reduced element, Reduce_scatter operation is achieved. Then an Allgather operation is performed by recursively concatenating elements, but the distance between neighbor processes is recursively halved. This algorithm implies an overhead when the number of MPI processes is not a power of 2. The Binary Blocks algorithm reduces the load imbalance implied by the Recursive Halving and Doubling algorithm when the number of MPI tasks is not a power of 2. Indeed, it splits MPI processes into power of 2 chunks. HMPI [START_REF] Friedley | Hybrid mpi: Efficient message passing for multi-core systems[END_REF][START_REF] Li | NUMA-aware shared-memory collective communication for MPI[END_REF], presented in Section 2.5 of Chapter 2, optimizes Allreduce collective with several algorithms. On algorithm, Tiled Reduce-Broadcast, splits input vectors into multiple chunks and each MPI task reduces a chunk into a temporary buffer. Tiling is used only within sockets. Then temporary buffers are reduced between sockets. This algorithm shows good performances for large vectors.

The article [START_REF] Amith | MPI collectives on modern multicore clusters: Performance optimizations and communication characteristics[END_REF] presents two variants of the same algorithm to parallelize Allreduce through shared memory. In the first flavor, each process starts by dividing its own block of elements into several subblocks (one sub-block per process available on the node). Then the ith process on the node reduces the ith block of each MPI rank, storing the intermediate result into block 0. The second flavor optimizes the memory traffic by shifting the work of each process in a cyclical way.

In [START_REF] Antonio | Improving collectives by user buffer relocation[END_REF] the problem of double copy between MPI processes is mentioned, and this problem is solved by allocating a buffer for communications between processes. MPI Reduce collective is implemented by splitting buffers in chunks, on which processes perform operations

Rely on topology

Other contributions highlight the importance of having knowledge about the topology and separate intranode from inter-node communications, by specifying sub-communicators and electing leaders.

The authors in [START_REF] Kandalla | Designing topology-aware collective communication algorithms for large scale infiniband clusters: Case studies with scatter and gather[END_REF] discuss about exploiting the network topology to design topology-aware algorithms for two MPI collectives: Scatter and Gather. These algorithms involve sub-communicators, created at MPI initialization, gathering processes according to their position in the topology hierarchy. These optimizations allow to improve these collectives by almost 54%.

Other contributions focus on separating inter-and intra-node communications. In [START_REF] Ma | HierKNEM: An adaptive framework for kernel-assisted and topology-aware collective communications on many-core clusters[END_REF], the HierKNEM framework includes algorithms for MPI_Bcast and MPI_Reduce, using hierarchical layers, and one-sided primitives. [104] introduces some methodologies to separate inter-node from intra-node communications, using sub-communicators. The authors also use a cache blocking technique which consists in tiling the message and storing it in L1 or L2 cache, evaluating different segment sizes.

In [START_REF] Kandalla | Designing multi-leader-based allgather algorithms for multi-core clusters[END_REF], considering one single leader per node as a limitation, the authors propose a multi-leader approach, a maximum of one per socket, and several implementations, including one exploiting shared memory. This approach leads to a performance improvement of 60% for small messages, and 70% for medium-sized messages.

The article [START_REF] Kandalla | Designing optimized mpi broadcast and allreduce for many integrated core (mic) infiniband clusters[END_REF] exposes encountered problematics when executing MPI collectives in heterogeneous environment, including Many Integrated Cores (MIC) co-processors [START_REF]Intel MIC architecture[END_REF]. Especially, it identifies a bottleneck between MIC and network adapter. Then, authors introduce a framework decoupling execution of MPI collectives in heterogeneous environment. An example is described with the implementation of MPI_Bcast collective, where different aspects are considered, as communications between MIC and CPU, intra-node and inter-node communications. For intra-MIC communications, they present several algorithms to implement reduction, and one with a tree-based approach, using OpenMP threads. Those threads distribute the work for the computational part of the reduction.

Discussion about hybridization of MPI collectives

Previous Related Work showed different techniques to optimize MPI Collective operations, with a focus on reduction operations. One of the techniques consisted in decoupling communications whether they happen inside or between nodes.

In this section we describe how we can take advantage of the Hybrid model to accelerate the work made by Collective operations, and how we apply encountered techniques using them. We define hybridization of Collective operations by using idle cores to split work done by such operations. This can be done following multiple directions, which have been explored in some Related Work:

• Use threads to separate inter node from intra node communications • Split messages

• Parallelize both communications and computations

The following sub-sections describe these different flavors using several algorithms, which can apply to both rooted and non rooted MPI collectives.

Split communicators with threads

MPI Collectives such MPI_Bcast, MPI_Gather, MPI_Allgather or MPI_Scatter are purely communications oriented, as they do not perform computations in their data. Then, all we can do with spare cores is to parallelize communications between MPI tasks. Some Related Work showed that separating inter-node from intra-node communications was a promising way to optimize Collectives.

Algorithm 6 Split intra-node and inter-node communications

Require: message, size, nbN odes, nbP rocsOnN ode, communicator, M P IRank, numthreads, threadRank end if 18: end for Algorithm 6 depicts how we can use threads to separate communications within a node from communications between nodes. In the first part of the algorithm, we create one communicator per node, localComm, and another communicator, distantComm, gathering each leader of each node. The leader of each node, masterRank, is computed depending on the current rank, and the number of MPI ranks per node. In the second part, depending on the MPI rank, we search whether it is a local communication or an inter-node communication. We parallelize this part using 2 threads.

Algorithm 7 Split communications between nodes

Require: nbN odes, numthreads, nbP rocs, communicator, M P IRank The number of involved MPI tasks is divided into blocks by the number of launched threads, in order to create as many sub-communicators as there are threads. We then fill sub-communicators using computed blocks. Then we perform communications inside a parallel loop.

This algorithm allows to use more threads than the previous one.

Message tiling and parallelizing computations using threads

As a case study, we developed a code to validate the approach of using OpenMP threads to optimize MPI_Broadcast collective. We separate inter node from intra node communications. We saw in [START_REF] Ma | HierKNEM: An adaptive framework for kernel-assisted and topology-aware collective communications on many-core clusters[END_REF], that tiling was used for a better use of caches. We can also add that messages exchanged between MPI tasks are bigger in hybrid context due to bigger sub-domains. So this technique can be promising.

Algorithm 8 Hybridize collective with numthreads given

Require: sendbuf f er ≥ 0, recvbuf f er ≥ 0, numelements, numthreads ≥ 0 1: size ← numelements numthreads * datasize 2: if numelements mod numthreads = 0 then 3:

for i = 0 → numthreads do 4:
collective(sendbuf f er + i * size, recvbuf f er + i * size, numelements numthreads , communicator)

5:
end for 6: else 7: collective(sendbuf f er, recvbuf f er, numelements, communicator) {Parallel communications} 8: end if Algorithm 8 describes this technique. The call to the collective is surrounded by a loop, and numthreads calls are performed, numthreads being the number of involved OpenMP threads. Each thread computes an offset and deduces a chunk of sendbuffer and recvbuffer. Each thread performs the collective operation with its chunk. This algorithm is also interesting for collectives performing computations such as reduction collectives (MPI_Reduce and MPI_Allreduce). Inded, threads are then used to parallelize reduction.

We will base our contribution on this algorithm.

Contribution: Use OpenMP threads to optimize MPI Allreduce

In Related work, we observed in [START_REF] Amith | MPI collectives on modern multicore clusters: Performance optimizations and communication characteristics[END_REF] some techniques to parallelize Allreduce collective by decomposing input vectors with the help of other MPI tasks. In the last section, we studied how to use threads to optimize collectives, by separating for example inter-node from intra-node communications. Our contribution is extracted from [START_REF] Aur Èle Mah Éo | Optimizing collective operations in hybrid applications[END_REF] and extends beyond [START_REF] Amith | MPI collectives on modern multicore clusters: Performance optimizations and communication characteristics[END_REF] using OpenMP threads.

Hybrid Allreduce approach

Our approach of hybridizing Allreduce consists in splitting the vectors of a MPI_Allreduce operation in multiple chunks so that each available core will be in charge of reducing one chunk. Thus, each OpenMP thread would process a subset of the input vector by performing a smaller MPI reduction, leading to the parallelization of the computational and communication parts of the whole operation with independent operations. Figure 5.2 depicts the example of an application running on a computational node containing four 4-core processors for a total of 16 cores. Let us consider now a parallel MPI + OpenMP application running with 4 MPI processes. Considering that MPI processes should be dispatched among the whole node, the regular approach would be to place one of these processes per multicore processor, letting 4 cores per MPI rank to launch an OpenMP parallel region. The left part of Figure 5.2 illustrates the behavior of the application when performing an Allreduce communication outside any OpenMP region. Because this operation is not done inside a parallel block, only 4 cores will help processing this operation. It leads to a total of 12 idle cores. Our solution is described on the right part of this figure: it shows how the spare cores are used when performing an hybrid MPI_Allreduce operation. We can see that for each MPI rank, 4 OpenMP threads are launched, each working on its subset of the initial vector, and thus all cores of the node are active.

The algorithm presented in Figure 5.3 describes how this new version of MPI_Allreduce is done with OpenMP. Let numthreads be the number of OpenMP threads defined when running the application. The first step is to take care of the communicator to allow multiple threads to perform sub-reductions. The input communicator comm is duplicated in numthreads identical sub-communicators, so that each thread can have its own. This is done inside the manage_comms function. But duplicating the input communicator each time MPI_Allreduce is called may imply a large overhead: therefore we implemented a cache to keep the sub-communicators available. We motivate this optimization by observing a repeating pattern in current scientific codes, meaning the same communicators are reused with different calls of MPI collectives. Indeed, in numerous high performance applications, a main loop is performed to iterate physical system and MPI collectives are called at each iteration of this loop, using identical communicators. The principle of this cache is quite simple: the captured communicator is split into sub-communicators and stored. If the communicator for the next reduction operation is identical, the previous subcommunicators are used, avoiding additional duplication. Note this algorithm depicts a cache of size 1, but more optimized structures can be used to cache multiple main communicators. After dealing with communicators, the initial vector is split into numthreads chunks, each thread computes its offset based on the vector size, and then works on its chunk. This is done with a simple parallel for directive with a static schedule. Finally, instead of doing one call to MPI_Allreduce, our approach performs numthreads smaller reductions. The algorithm tries to balance the charge among threads. If the number of elements to reduce cannot be divided by the number of threads, we straighten the remaining elements between them.

Rank Shifting

The main effect of the algorithm Figure 5.5 is to duplicate the calls to the MPI runtime (as many calls to MPI_Allreduce as the number of OpenMP threads within a team) with exactly the same configuration. To illustrate this behavior, let us consider a very simple implementation of MPI_Allreduce structured in 3 steps: (i) each MPI task sends its data to a destination MPI task, (ii) this destination task performs the whole reduction of the received data and (iii) it broadcasts the final results to all MPI processes involved in the input communicator. In such a case, our approach will allow parallel execution of the main reduction within the destination task, but the communication pattern remains the same. Indeed, instead of performing one reduction, the algorithm will spawn multiple smaller reductions, but the underlying MPI library will eventually perform the same communications to send data to the destination task, on the same core. The reason is that each thread has a copy of the same input communicator, with the same ordering of MPI ranks. So all threads in a team have the same behavior when performing reduction. Thus this scheme is likely to generate memory contention and lead to communication imbalance, as all data involved in reduction are sent to a same NUMA node.

To tackle this issue, a second technique consists in giving a different role to each thread, by shifting their rank in sub-communicators.

Figure 5.4 explains this technique by describing behavior of MPI ranks involved in a reduction. It shows how the ordering of communicator implied in the reduction impacts the operation. We have here 4 MPI tasks, each containing a vector of elements. In the first example, the communicator contains the ranks of the tasks, starting from 0. So the task of rank 0 will be the root, and will reduce the value. If we shift the ordering of the communicator to the left, then the task of rank 1 will be the root. A rotation is performed so that rank 0 is the last one in the communicator. We run through the example, until the last case (where the first number in the communicator is 3). Then all tasks reduce to the rank 3. This example is relevant for our case because it addresses the first part of an Allreduce operation.

Thus each thread belonging to the same team will have a different rank inside their communicator. It can be seen as the extension to hybrid of the cyclical algorithm proposed by [START_REF] Amith | MPI collectives on modern multicore clusters: Performance optimizations and communication characteristics[END_REF].

We illustrate this approach with Figure 5.5 exposing the same hardware configuration as Figure 5.2. In this example, each thread, with OpenMP rank equal to 0, will perform the same sub-reduction as the one on the right part of Figure 5.2. But the second thread of each team (those with OpenMP rank equal to 1) will use the second MPI rank as destination of their sub-reduction. We continue with this approach until we reach the last MPI rank. If the number of threads exceeds the number of MPI tasks, we do a MPI Comm lastcomm ; i n t initcomm = 0 ; i n t rank , m p i s i z e ; The rank shifting appears inside the manage_comms function of the algorithm in Figure 5.3: when creating a sub-communicator for each OpenMP thread, we shift the target MPI rank, modulo the total number of MPI ranks, and store the result in a key. Thus, at the end of this function, each thread has its own communicator and each thread belonging to the same OpenMP team will have a different MPI rank inside their own communicator. Figure 5.6 illustrates the updated version of the manage_comms function.

Implementation

We implemented the algorithms of Figure 2 and 4 in a wrapper, which captures the calls to MPI_Allreduce collectives using the MPI Profiling Interface (PMPI [START_REF]MPI profiling interface[END_REF]). This wrapper is compiled as a shared library and preloaded using LD_PRELOAD environment variable when running the target hybrid application. With this approach, our implementation is independent from any MPI implementation and works with all OpenMP implementations and MPI runtimes. The only requirement is related to the thread-level support in the target MPI library: in our wrapper, the calls to the MPI library are performed inside OpenMP regions, as depicted in Figure 2, it therefore requires the highest multithreading support level MPI_THREAD_MULTIPLE. Moreover our design guarantees a full support of regular types, derived data types, and communicators passed to the MPI Allreduce collective.

Experimental environment

We evaluated our concept on the Curie supercomputer, with the following hardware configurations: the first configuration consists in 4 Bull Coherency Switch nodes, containing each 16 8-core CPU Nehalem-EX, clocked at 2.27GHZ. These processors are distributed on 4 modules, each containing 4 sockets. The second hardware environment is composed of 8 nodes, containing each 2 8-core CPU Sandy Bridge clocked at 2.7GHZ.

Experiments were performed on micro benchmarks and one real-world application (MC), using In-telMPI 4.1.3.048, MPC 2.4.1 (Multi Processor Computing [START_REF] Carribault | Enabling low-overhead hybrid mpi/openmp parallelism with mpc[END_REF]) and BullxMPI 1.1.16.6 (based on Open MPI 1.5.4.a1 [START_REF] Graham | OpenMPI: A flexible high performance MPI[END_REF]) libraries. Notice that the first ones (IntelMPI and MPC) both support the required MPI_THREAD_MULTIPLE multithreading level with Infiniband network while BullxMPI does not. For the OpenMP part, we used Intel OpenMP for IntelMPI (with the KMP_AFFINITY variable set to compact to keep the threads as close as possible) and the OpenMP runtime integrated to MPC for the experiments with MPC.

Microbenchmarks

We first consider the Intel MPI Benchmarks (IMB [START_REF]Intel MPI benchmarks[END_REF]) suite 3.2, which measures the time spent in MPI operations, for various message sizes. Because our target is an hybrid application performing MPI collective communications outside OpenMP region, we selected the message size on a range between 1MB and 16MB. 5.3). The most efficient combination is reached with 8 OpenMP threads leading to a speedup of 2.57 against regular implementation of MPI_Allreduce on a 16 MB message. This result can be explained because the size of the smallest NUMA node is 8. With more than 8 threads, we have penalties dues to OpenMP inter-socket communications and MPI NUMA effects.

Figure 5.8 shows the same experiment with the best thread configuration (8 threads) and rank shifting. In this test, the MPI rank of each OpenMP thread in the corresponding sub-communicator is shifted by 1 (see algorithm Figure 5.6). It provides an additional speedup of 18,6%.

The best hybrid configuration with IntelMPI is obtained with 90 OpenMP threads which leads to a speedup of 2.55 × compared to regular MPI_Allreduce (see Figure 5.9). This large number of threads can be explained by the fact that the Intel OpenMP implementation is well optimized for multicore processors.

Figure 5.10 summarizes the results with MPC, BullxMPI and IntelMPI within the same hardware configuration. Furthermore, this graph plots the best combination for MPC (8 OpenMP threads with shifted ranks) and IntelMPI (90 OpenMP threads). The best performance is reached by MPC providing a speed up of 41% against IntelMPI and 3.75 × compared to the reference MPI implementation BullxMPI.

Real World application

The second test case, MC, is extracted from [START_REF] Dureau | Hybrid parallelism models for neutron monte-carlo solver in an AMR framework[END_REF]. MC is an hybrid MPI + OpenMP application solving the transport equation for neutronics, using Monte Carlo methods. The application is launched on an Adaptive Mesh Refinement grid. The code works on an unidimensional domain, which is replicated among MPI processes. It also contains an iterative loop where the system is computed and updated, and lasts as long as particles exist on the domain. An MPI Allreduce collective is performed to update the number of available particles at each step. We tested our hybrid approach on this MPI_Allreduce collective operation, each MPI task containing a 128KB vector. We conducted our experiments on the same configuration as for the micro benchmark, we fully populated the nodes with OpenMP threads, Figure 5.11 depicts comparative execution times of the MC application, with 4 MPI tasks launched on 4 large nodes, on all MPI libraries. With MPC, using 8 OpenMP threads provides the best performance for the hybrid MPI_Allreduce. But an additional speedup of 68% is achievable by applying rank shifting (5 th bar on Figure 9), which gives a total speedup of 5.29. For IntelMPI, the best combination is obtained with 9 threads, leading to a speedup of 3.54. The lowest execution time is reached with MPC (3.9 better than OpenMPI) by performing hybrid MPI_Allreduce with 8 threads and appying a rank shifting.

Figure 5.12 presents the same study on eight 16-core nodes, with 1 MPI task per node. Once again, even if the total execution time of the application is larger with MPC, parallelizing the MPI_Allreduce collective operation with 8 threads leads to the best performance among the other configurations. Indeed, the performance increase is around 81% and shifting the rank gives an additional improvement of 41%. Similarly with IntelMPI, our approach is able to reduce the execution time from 242 seconds to 147 seconds using 8 threads for the hybrid MPI_Allreduce part. In all the test cases, no additional speedup could be obtained for IntelMPI by coupling rank shifting with the best optimizations of MPI Allreduce.

Conclusion and future work about optimizing MPI collectives

With this approach, we investigated the topic of optimizing MPI collectives in hybrid applications. We proposed a way to extend existing optimizations, targeting MPI + OpenMP applications, to parallelize the computational and communication parts, using spare cores. Experimental results showed a 2.57 speedup on micro benchmarks and a speedup of 5.29 on a real world application. Furthermore, this approach is portable to any MPI implementation which provides the support of MPI_THREAD_MULTIPLE 

Designing common constructs between MPI and OpenMP

The hybrid taxonomy introduced in Chapter 3 described different programming styles, including Coarse grain parallelism. While providing better performances than Fine Grain approach by a better exploitation of resources, it requires more programming effort, and is prone to bugs. Indeed, it is the responsibility of the programmer to launch both MPI tasks and OpenMP threads, and to ensure that MPI functions are called only once using synchronization directives.

In this section, we discuss opportunities for designing constructs mixing MPI and OpenMP features, in coarse grained codes. We then focus on codes mixing MPI and OpenMP, using SPMD method, and we show how common constructs can be relevant in this case.

We mentioned in Chapter 2 that PGAS languages mixed several paradigms for parallelizing computations, and included Collective operations in [6] for example. But to the best of our knowledge, no investigation has been made about designing common constructs implying different parallel programming models.

Need of simpler constructs with Coarse Grain parallelism. Coarse Grain parallelism, while overcoming limitations of Fine Grain approach, requires special care for code correctness. Examples of this specific attention can be to call functions or directives to start MPI tasks and OpenMP threads, or to surround MPI calls by OpenMP blocks, or else to use threads to split point to point or collective communications, etc. Moreover, since a single OpenMP parallel region is open in this mode, MPI tasks and OpenMP threads are launched approximately at the same time. But they both require their own constructs to launch tasks and threads. Consequently, there are some opportunities to simplify the code and reduce the risks of introducing bugs. These examples call for a new language proposing features such as launching MPI tasks and threads at the same time, calling MPI primitives in a thread safe way, etc. This supposes to transfer such work as ensuring the correctness of the code and as activating MPI and OpenMP from the developer to the runtime. We will consider that with the Coarse Grain approach, different paradigms co-exist, by mixing distributed memory parallelism with shared memory parallelism.

Cooperation between MPI and OpenMP SPMD programming. SPMD fashion, introduced in Hybrid taxonomy of chapter 2, describes a special kind of parallelism, as it allows to use OpenMP following a distributed memory paradigm. In a way similar to MPI, each thread computes its work in an independent manner. But this mode prevents from using regular OpenMP constructs. For example, when we want to perform a reduction using SPMD technique, instead of using the proper clause reduction combined with parallel loops, each thread computes a local reduction. These local reductions are then accumulated in a shared variable. Some contributions in the literature show OpenMP can be used to implement features traditionally proposed by MPI. For example, in [START_REF]Performance comparison of mpi and three openmp programming styles on shared memory multiprocessors[END_REF] the authors introduce different versions of NAS benchmarks, including one implemented with SPMD fashion, and being derived from MPI version. Operations such as point-to-point, reduction, or All-to-All are implemented with OpenMP and SPMD programming. To implement All-to-All operations with OpenMP, a global shared array is used.

A pure MPI version of the reduction is implemented using MPI_Allreduce, and is compared to others using OpenMP, including one implemented following SPMD fashion. They build the SPMD OpenMP version from pure MPI version of NAS Benchmarks. So with SPMD programming, we are able to implement some operations traditionally performed by MPI. This contribution shows we can use OpenMP with SPMD programming to implement operations such All-to-All, Gather or Broadcast, traditionnally implemented by MPI collectives.

If we go back to MPI + SPMD OpenMP mode, we observe that both models can do these operations at the same time, but without cooperation between them. For example, each model would perform a reduction operation using the same patterns, but without sharing the results between MPI ranks and OpenMP threads. So, beyond reducing the code complexity, it would be of strong interest for the programmer to use constructs implementing the mentioned operations, and implying both MPI and OpenMP at particular steps of code execution. i n t main ( i n t argc , char * * argv ) { M P I I n i t (& argc , &argv ) ; i n t i t e r ; i n t s i z e = 100;

/ * I t e r a t i o n l o o p * / f o r ( i t e r = 0 ; i t e r < n i t e r ; i t e r ++) { #pragma omp p a r a l l e l { i n t a [ 1 0 0 ] ; i n t myOMPRank = omp get thread num ( ) ; i n t nbOMPThreads = omp get num threads ( ) ; i n t nbnLoc = n / nbOMPThreads ; i n t iDeb = 1 + myOMPRank * nbnLoc ; What we learn from this contribution advocates for common constructs simplifying these operations and gathering both MPI and OpenMP. Indeed, combining MPI with OpenMP using SPMD programming will result in executing models with same paradigms and similar algorithms.

i n t i F i n = iDeb + nbnLoc -1 ; i f (myOMPRank == nbOMPThreads -1 ) i F i n = n ; / * Code * / f o r ( i = iDeb ; i < i F i n ; i ++) { a i n [ i ] = a i n [ i ] + a * n i t

Prerequisites in runtimes.

Designing constructs involving MPI tasks and threads in an application imply gathering MPI calls and OpenMP blocks inside the same function. Strong cooperation of both models are then required at runtime level.

For example, when considering Coarse Grain parallelism, a programmer has to handle multiple paradigms within the same code, like ensuring thread safety when calling MPI functions, or managing communications with several threads. Simplifying this kind of programming would consist, for the runtime, to take in charge serialization of MPI calls. In this case, we need to guarantee that the corresponding MPI internal is called with a single OpenMP thread, inside the runtime. To be able to design this kind of constructs, MPI and OpenMP can be implemented inside their own runtime. But it is necessary for each model to access the API one from the other. Most vendors propose separate implementations of MPI and OpenMP. This is the case of IntelMPI and Intel OpenMP runtimes. The ideal case is provided with MPC. Indeed, this framework offers a very easy way to design such constructs as it implements MPI and OpenMP inside the same runtime. This framework ensures a good cooperation between the different models. Thus it is simple to extend existing constructs.

The most convenient case is to have both MPI and OpenMP implemented inside the same runtime, so that we have a common view of both models.

Contribution: Unified collectives in runtime

In the previous section, we recalled characteristics coming with Coarse-Grained codes, and focused on the problematics when combining MPI and OpenMP used the following SPMD fashion. We observed that there was a need to simplify this kind of codes on the one hand, and a lack of cooperation between MPI and OpenMP for collective operations, on the other hand. To the best of our knowledge, no common constructs mixing different programming models have been proposed yet.

We introduce here our concept of unified collectives, which consists in proposing common constructs for MPI and OpenMP achieving traditional MPI collective operations. Examples of these collectives are: 
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14: Example of unified Allreduce operation

Let's start by describing a specific example with Allreduce operation. We take the case of an application running 4 MPI tasks, each containing a team of 4 OpenMP threads, as depicted on Figure 5.14. The Step 0 is the initial stage. Each OpenMP thread has computed a local reduction. At step 1, each MPI rank computes a temporary reduction from all local ones of its OpenMP team. At the end of the operation, Master threads of all OpenMP teams have their variables Or, 1r, 2r and 3r updated with computed temporary reduction. At step 2, all MPI ranks perform a global reduction (as would be done by MPI_Reduce()) starting from values of Or, 1r, 2r and 3r. At the end of the global reduction, the MPI task of rank 0 contains the global reduction R. In step 3, the root MPI task broadcasts the result of the reduction to all MPI tasks. Step 2 and 3 describe a classic MPI_Allreduce operation, so that these steps can be fused. In the last step, the reduced value R is shared between all OpenMP threads of each team. The Allreduce operation is finished.

This example showed how MPI ranks and OpenMP threads could cooperate to perform global operation, combining basic operations.

Case study of unified barrier in hybrid MPI+OpenMP context

We presented unified collectives in order to perform global operations implying all tasks, with the example of the reduction. To show the feasibility of this contribution, we present here a proof of concept which is a unified barrier. Unified barrier consists in synchronizing at the same time all MPI tasks and all OpenMP threads of each team, with a single construct.

The goal of our prototype is to perform this synchronization with one single directive, and compare it with a regular synchronization, i.e. a barrier implying MPI tasks and threads with traditional constructs. Algorithm 5.15 describes a global barrier involving regular MPI and OpenMP constructs. In an OpenMP parallel region, several MPI tasks are launched, each executing a team of threads. We first encounter an OpenMP barrier synchronizing all threads. To make sure only one OpenMP thread of each team executesMPI_Barrier(), the call to MPI_Barrier() is surrounded by a #pragma omp single. An implicit barrier is done for each OpenMP team at the end of single construct.

But these synchronization points do not ensure that all threads of all MPI ranks are synchronized at the same time. To understand this, let's consider all threads of a single team. They will all execute single construct, and the first thread encountering the construct will go inside and will execute MPI_Barrier(). Other threads will wait at the barrier terminating single construct. But what happens in the case the threads within the same team are distant from each other ? All teams will not finish implicit OpenMP barrier at the same time, so the global barrier is not respected. Consequently, we have to insert an additional OpenMP barrier before executing single construct, in order to ensure that all threads are well balanced before executing MPI_Barrier().

We saw that implementing a unified barrier with regular constructs is not straightforward and offers room to introduce bugs. We propose here to replace this complex implementation by a single function call which is our optimized hybrid barrier.

Implementation

We chose to develop our optimized hybrid barrier inside MPC framework, because it offered a very convenient way to mix MPI and OpenMP internals inside the same function. We implemented it starting from current implementation of OpenMP barrier. n.barrierdone = node.barrierdone + 1 23: end while Algorithm 9 is based on another one, from OpenMP barrier presented in Chapter 4. It describes the implementation of our optimized global barrier. This algorithm, initially implementing the barrier in a hierarchical manner, is also tuned to synchronize MPI tasks. We insert a call to MPI_Barrier at a specific point of the algorithm, and ensure that one single thread executes this function. To explain how we chose the location to call MPI barrier, let's remind the hierarchical implementation. Each thread, when entering the barrier, will climb the tree by encountering intermediate barriers when reaching nodes. When the root is reached, only one thread is executing the algorithm at this point. Thus, this thread calls MPI_Barrier(), all threads cross the tree to the leaves and continue their execution.

To understand the exposed algorithm, let's detail the different stages of the algorithm of our unified barrier. We take here the example of 2 MPI tasks and 2 OpenMP teams containing each 8 threads, encountering the global barrier.

At first stage (Figure 5.16), the threads of each OpenMP team encounter the barrier relative to each team. Then, they climb the tree until reaching the tree root.

Once the last thread of each team reached the tree root, they call the MPI barrier (Figure 5.17), and wait until MPI barrier finishes its job.

When MPI barrier is done, calling OpenMP threads go down inside their respective tree, freeing other threads until reaching the leaves, and threads continue their execution (Figure 5.18). 

Experiments

To validate our concept of hybrid barrier, we used EPCC microbenchmarks and added new tests, one executing an hybrid barrier involving regular MPI and OpenMP constructs as well as our optimized version calling the associated construct. We compared both versions on the Curie supercomputer, on one 128-core Bull Coherency Switch node. The range of launched MPI tasks varied from 2 to 64, populating other cores with OpenMP threads. Figure 5.19 presents the performances of our optimized unified barrier against the regular one. We gain speedup on all configurations, but we observe that performances of both versions are somehow similar with 64 MPI tasks, whereas the biggest difference of performances is seen with 2 MPI tasks.

In order to analyse the results, we described the different components of regular and optimized versions of the unified barrier through a timeline, in figure 5. [START_REF] Broquedis | ForestGOMP: an efficient OpenMP environment for NUMA architectures[END_REF]. With the regular one, each OpenMP team has to pass a first OpenMP barrier. We assume there is a small overhead due to #pragma omp single construct, and then, we call the MPI barrier. At last, all OpenMP teams have to pass the last OpenMP barrier related to single construct. But with the optimized unified barrier, OpenMP threads have just to pass half of the barrier before reaching the tree root. Then one thread executes MPI barrier, and all pass the other half of the tree. So, when analysing general performances, it is not suprising that our optimized construct gives better performances, since optimized barrier avoids the call of an additional OpenMP barrier. We also assume that time spent in MPI barrier increases with the number of involved tasks in the barrier, and that its cost is bigger than the one of OpenMP barrier, even if the MPI barrier was optimized for shared memory in MPC. This is why, with 2 MPI tasks and 64 OpenMP threads, we observe the biggest discrepancy between the two versions. Indeed, this configuration highlights the advantages of our version against the regular one. But if we consider the configuration involving 64 MPI tasks and 2 OpenMP threads, Furthermore, if we assume that calling an MPI barrier is much more expensive than an OpenMP barrier, the optimization of our concept can be neglected regarding the cost of MPI_Barrier with 64 tasks.

Conclusion and Future work about Unified Collectives

We recalled characteristics of Coarse grained codes, and especially MPI mixed with OpenMP used in a SPMD style. While this pattern gives better performances than Fine grained model, one shortcoming is the complexity of programming applications with such modes. We highlighted the behavior of OpenMP in SPMD approach and its similarities with MPI, each OpenMP thread having a particular role. Literature showed it was possible to design collectives involving pure OpenMP codes. We then introduced constructs gathering both MPI tasks and OpenMP threads for collective operations traditionally encountered with MPI. An example of such unified constructs was given with Allreduce operation. We showed the feasibility of Unified Collectives by giving the example of hybrid barrier. This proof of concept consisted of synchronizing all threads and all MPI ranks with one single directive, implemented inside the MPC runtime. Its implementation was very simple, thanks to MPC framework, and gave speedup against a regular implementation of MPI+OpenMP barrier.

Conclusion of studying Collective operations in hybrid context

In this chapter, we tackled various issues preventing from reaching high performances in Hybrid programming, including:

• Idle cores in Fine Grain scheme, outside OpenMP regions

• Part of sequential and communications components in total execution time

• Complexity of code in Coarse Grain approach

• Necessity of cooperation between OpenMP and MPI in SPMD programming

We gave solutions to these shortcomings by conducting a global study of collective operations, for different purposes. We first investigated optimization of MPI collectives and applied several techniques for Hybrid programming, in order to reuse idle cores and reduce communication time. We then studied characteristics of SPMD programming using OpenMP and common operations between MPI and OpenMP.

Our contributions were twofold:

• Optimize performances of regular MPI collectives in the context of Fine Grain parallelism by reusing inactive threads outside OpenMP constructs. Our contribution on parallelizing MPI_Allreduce operation with threads showed promising results. It should be extended by investigating deeper presented techniques, and should address other MPI collectives (reduction, MPI Broadcast, etc). At last, activating OpenMP threads inside the runtime instead of within a wrapper would allow to parallelize the collective in a transparent way for the developer.

• Introduce unified collectives which consist in making MPI ranks and OpenMP threads work together in collective operations. This contribution is relevant in SPMD programming style where the programming effort is the most important. Our optimized unified barrier as proof of this concept allowed to gain speedup compared to the regular unified barrier. With these constructs, we seek out to reduce the programming effort in the SPMD pattern and to make the runtime take in charge operations such as synchronizing the calls to MPI primitives or splitting off the MPI calls with threads. This could lead to a new language mixing models with different paradigms.

Chapter 6

Analyze performance of MPI+OpenMP applications at user level and runtime level

The hybrid taxonomy introduced in Chapter 3 highlighted the complexity of hybrid codes. Depending on the various programming configurations, the performance pitfalls can be of various natures, and may come from both the application side or the runtime side. Moreover, due to the mix of the two programming models, they are difficult to isolate. Having proper tools to detect such pitfalls is critical to enable hybrid programming.

In this chapter, we focus on the performance bottlenecks that can exist in hybrid codes, we introduce performance analysis as a research field, and we detail its different components. We then present existing tools targeting both MPI and OpenMP codes. Afterwards, we focus on the instrumentation part and look for ways to instrument both models. If MPI proposes a standard API via MPI_T for high performance codes, this was not the case for OpenMP. Then, we present the newly introduced OpenMP Tools API, included in the OpenMP standard, and its features enabling an instrumentation of OpenMP codes and an insight in OpenMP runtimes. At last, we present our contribution, which first consists first in the implementation of OMPT inside the MPC framework, and then in analyzing the performances of hybrid MPI+OpenMP application using two different implementations of OpenMP Tools, including ours.

Scalability of high performance codes

We estimate performance of High Performance codes by their scalability, in other words how they can take advantage of numerous compute cores. But it is hard to reach scalability on massively parallel machines, as the current supercomputers approximately reach one million core counts. These difficulties can come, for a large part, from the characteristics of these machines: their hardware topology, the multiple levels of parallelism, their network latency, etc. Optimizing parallel codes to efficiently exploit such architectures is a long and difficult process, and the performance bottlenecks have to be identified. These bottlenecks of parallel codes can be:

• Limited extensibility of algorithms implemented in applications As we can observe in this list, the performance pitfalls are numerous and can come from various directions. Limitations can come from both application or runtime level.

Moreover, adding OpenMP pragmas inside MPI codes means adding another level of parallelism, and establish coexistence between two runtimes. This leads to increase potential bottlenecks. These are then difficult to pinpoint and require some expertise.

Performance tools are necessary to get insight of parallel codes and runtimes.

Overview of performance analysis infrastructure

The previous section showed the difficulties encountered by the developers to track potentiel bottlenecks in numerical codes, which revealed the necessity to use proper tools for performance analysis.

Measurement overhead. Events allow to observe the behavior of the targeted code, and to measure performance of key parts. The selection and the number of these events depend on the performance resolution the user wants to enable. But instrumenting parallel codes is not free and can insert a bias in measuring, as instrumentation represents a performance intrusion. And the bigger the number of inserted events in instrumented code is, the higher the probability is to alter behavior of applications. This is called performance perturbation ( [START_REF] Malony | Event-based performance perturbation: A case study[END_REF]). But most performance tools provide techniques to reduce the measurement overhead.

Analysis

The role of the analysis component is to enable an empirical performance evaluation of high performance applications, and to display it. Depending on the tools, features coming with the analysis part can be more or less rich, and include a large set of hints in order to characterize the studied codes. At first, outputs from measurement component such as profile and trace data are merged to build a comprehensive view of the application behavior. With some tools, databases are also included to compare different executions of the same application. For example, the Performance Data Management Framework (PerfDMF) [START_REF] Huck | Design and implementation of a parallel performance data management framework[END_REF] allows storing, querying and analyzing performance data from multiple executions or application versions. At last, several utilities are proposed for display purpose. Vampir [START_REF] Nagel | Vampir: Visualization and analysis of mpi resources[END_REF] allows to display traces of MPI based applications. It also offers statistic features. CUBE [START_REF] Song | An algebra for cross-experiment performance analysis[END_REF] is a performance analyzer relying on a data model and provides performance metrics. Other examples are Paraprof [START_REF] Bell | Paraprof: A portable, extensible, and scalable tool for parallel performance profile analysis[END_REF] or Jumpshot [START_REF] Zaki | Toward scalable performance visualization with jumpshot[END_REF].

Existing performance tools for hybrid codes

Several performance tools gather numerous features and kinds of instrumentations, measurements, and analysis capabilities, among those described in the previous sub-section.

Presentation of TAU. TAU (Tuning and Analysis Utilities [START_REF] Shende | Characterizing I/O performance using the TAU performance system[END_REF]) provides the full chain (instrumentation, measurement and analysis) for performance analysis of hybrid MPI+OpenMP codes. This tool is able to be plugged to various interfaces such OPARI2, or OMPT, an interface which will be studied later. So we see that various instrumentation techniques available such as source to source or binary instrumentations. TAU also includes several measurement techniques such as profiling and tracing. It can also rely on hardware performance counters. At last, it comes with several tools such as paraprof or jumpshot for visualization purposes.

Scalasca. Scalasca [START_REF] Geimer | The scalasca performance toolset architecture[END_REF] is another example of performance tool, able to analyze hybrid codes. This tool proposes several analysis features such as runtime summarization by accumulating statistics and postmortem analysis with the help of event traces. For visualization purposes, Scalasca comes with Cube.

Prerequisites in instrumenting MPI+OpenMP codes

Performance bottlenecks of hybrid codes can come from numerous directions, as difficulties to write efficient applications are leveraged by the mixing of different programming models. In order to have a full observation of hybrid codes, it is necessary to have tools that are able to instrument both MPI and OpenMP codes.

Instrumentation of MPI codes. MPI Tool Information Interface (MPI_T) offers a standardized mechanism to gain information from MPI runtimes. It was introduced with MPI 3.0 revision and works through PMPI interface [START_REF]MPI profiling interface[END_REF]. MPI_T communicates with the MPI runtime through control and performance variables. Control variables allow tuning operations such as eager limits, or the selection of algorithms implementing collectives. With performance variables, the user can get information such as memory consumption of MPI library.

Instrumentation of OpenMP codes. As standard interfaces are available to instrument MPI codes, this was not the case with OpenMP codes until recently. Different approaches exist for OpenMP instrumentation at different levels. The next section exposes the related work concerning the existing tools to instrument OpenMP codes.

Related Work about OpenMP tools for performance analysis

As mentioned in the previous section, different methods exist for instrumenting OpenMP codes.

[57] presents a binary instrumentation methodology to monitor runtime events, integrating the MAQAO performance tool into Score-P [START_REF] Dieter An Mey | Score-P: A unified performance measurement system for petascale applications[END_REF]. It introduces a new interface named SMOMP, which provides a set of probe functions for OpenMP regions.

Still within MAQAO, the authors in [START_REF] Barthou | Performance tuning of x86 openmp codes with MAQAO[END_REF] describe features consisting in inserting probes at the instruction level of the codes for static analysis of OpenMP codes.

In [START_REF] Huck | Integrated measurement for cross-platform openmp performance analysis[END_REF], the authors compare different approaches to instrument OpenMP codes:

• A first method, OpenMP Pragma And Region Instrumentor (OPARI) [START_REF] Mohr | Design and prototype of a performance tool interface for openmp[END_REF], is a source-to-source translator which locates the OpenMP constructs and inserts instrumentation via the POMP interface. POMP OpenMP Performance Monitoring Interface was also introduced in [START_REF] Mohr | Design and prototype of a performance tool interface for openmp[END_REF] and defines a portable API for performance tools. Opari is then able to provide tools for OpenMP activity, but without any insight inside the runtimes. At last, source instrumentation is likely to generate some overhead and prevent compiler optimizations.

• A second approach, built into OpenUH compiler, is introduced, OpenMP Runtime API [START_REF] Itzkowitz | An openmp runtime api for profiling[END_REF], commonly known as Collector API, and allows performance tools to interact with OpenMP runtimes. Callbacks are to be registered for event transitions in the runtime, and thus get insight into it. ORA is supported by TAU.

• The authors also present a method consisting in a library interposed between the application and libGOMP, the runtime library coming with GCC [START_REF]GCC, the GNU Compiler Collection[END_REF]. This technique is possible via a utility coming with TAU, which generates libraries.

• At last, their paper describes OpenMP Tools API (OMPT), which provides a set of events and states. It is based on the same principle than ORA but provides more events. It is integrated in the OpenMP standard.

OMPT takes advantage of these different approaches: it can be considered as a superset of ORA, since more events are provided for tools. Moreover, it is now integrated into the OpenMP standard. In the next section, we will study this instrumentation tool, its features and how we can take advantage of it to measure both application and runtime performances.

OpenMP Tools API

We recall the need of a standardized interface in order to analyze the performance of OpenMP codes. Starting from the observation of a gap between OpenMP applications and the behavior of OpenMP implementations, the OpenMP Architecture Review Board introduced OMPT as an extension of the OpenMP standard. OMPT (OpenMP Tools API [START_REF] Eichenberger | Ompt: An openmp tools application programming interface for performance analysis[END_REF]) is an Application Programming Interface, oriented towards performance analysis. This API was defined to provide the measurement of OpenMP applications and mirror the behavior of OpenMP runtimes. For this purpose, it collects performance measurements for tools, and provides a set of events and states.

Events are associated to OpenMP constructs, and are, for most part, organized according to begin/end pairs: they have to be placed from creation to completion of associated OpenMP constructs. Also they are split into two classes: mandatory or optional, and are notified when threads encounter OpenMP constructs such as parallel regions. Performance tools are then able to build profilings and tracings, based on these events. But to receive them, the tools have to interact with the runtimes via OMPT also describes some states of the runtime, referring to the state information of the executing thread, whether the current thread is executing serial code or parallel code, or is idle. . . . These states are implemented as variables which are updated in accordance the evolution of the current thread, and are not linked to any temporal information. They can be used for sampling techniques for example.

At last, OMPT provides unique identifiers to threads, parallel regions, and tasks, and also provides some inquiry functions to get these identifiers.

Thus, this API is able to feed the tools with thread activites and status, for profiling, tracing or sampling purposes.

Unlike other instrumenters like OPARI2 which performs source-to-source transformations, OMPT is to be implemented inside OpenMP runtimes. It is thus not visible from the source code but can require changes inside the compiler if the ABI1 supported by the runtime does not fit the OMPT events. We will detail this last point later.

Targeted OpenMP constructs and provided events

Events provided by OMPT cover all OpenMP constructs and are classified into two categories: mandatory and optional. The most common provided events are ompt_event_thread_begin / ompt_event_thread_end which notify when a thread is created and terminated.

Here is a list of the main events provided by OMPT, with the corresponding OpenMP constructs:

• Creation and termination of threads: ompt_event_thread_begin / ompt_event_thread_end

• Creation and termination of parallel regions: ompt_event_parallel_begin / ompt_event_parallel_end

• Entering and exiting a parallel loop: ompt_event_loop_begin / ompt_event_loop_end Figure 6.3 presents the example of an OpenMP parallel region and shows where related event callbacks have to be inserted. For a better understanding, we listed a user code, but in a real case, callbacks should be inserted in the runtime code. We see that a parallel region is open, and the callback related to ompt_event_parallel_begin is placed at the beginning of the parallel region, while the one related to ompt_event_parallel_end is placed just before the closing bracket. These callbacks have to be executed by the master thread, in charge of creating and terminating the parallel region.

A pair of events is also provided and has to be used when the current thread starts executing its associated code and when exiting it.

OMPT also supplies events in order to measure how much time a given thread waits inside a construct (like barriers, or OpenMP locks).

At last, some events are available to get insight of the runtime. One of these provided events defines an implicit task as the code associated to a parallel region, which corresponds to the code We show where the event pair regarding the implicit task has to be inserted with Figure 6.4. To explain the interest of this event pair, we listed the skeleton of an implementation of an OpenMP parallel region inside a runtime. The parallel region is implemented by the function omp_start_parallel_region, coming with arguments such as the number of threads, and a pointer to the code inside the parallel region. The callbacks associated to the implicit tasks surround the call to the code func.

How OMPT Works

Now we evocated the different features proposed by OpenMP Tools, let's describe how it interacts with the runtime and the performance tools. Figure 6.5 describes the chain composed of the application running with the OpenMP runtime, the implementation of OMPT, a performance tool, and the interactions between all these components. The runtime implements OpenMP directives of the application and supports its execution. OMPT implementation can be considered as part of the runtime: data structures defined by OMPT have to be implemented inside it and be linked to runtime structures. Hooks (e.g., event callbacks) have to be inserted inside it, in the proper locations. These hooks are used to know when targeted OpenMP constructs are encountered. When a tool wants to be plugged to the OpenMP runtime, it has to communicate through the OMPT API. So events are then notified to the plugged tool. To receive events from the runtime, the tool has first to register callbacks. To retrieve informations such as thread identifiers, the tool has to call the corresponding inquiry functions. Once callbacks have been registered, the runtime has to notify the events associated to callbacks to the tool. Initialization of OMPT and interactions between runtime and tool are described in Figure 6.6. OMPT is started when runtime is initialized and is turned off at runtime termination. The API defines a function ompt_intialize for tool initialization. The prototype of this function is as follows:

Runtime Runtime Initialization

End runtime initialization

extern "C" { int ompt_initialize(ompt_function_lookup_t lookup, const char *runtime_version, unsigned int ompt_version); } One of the arguments coming with ompt_initialize function is a callback named lookup allowing the tool to query pointers. These pointers will be used by the tool to interrogate the runtime.

Both runtime and tool provide an implementation of ompt_initialize function, but runtime has to implement it with a weak symbol, whereas the one at tool side must be as strong symbol. This means that the tool-supplied implementation of the function overrides the runtime one. If ompt_intialize returns 0, the OpenMP runtime does not need to maintain state information and won't perform any callback.

The tool's implementation of ompt_initialize follows two main steps:

• Query function pointers by calling lookup function. These pointers are necessary for the tool to register callbacks and get information such as thread identifiers via inquiry functions.

• Register callbacks to receive notifications of events, using ompt_set_callback function For example, to obtain a pointer to get the identifier of current thread, the lookup function has to be used as follows: ompt_interface_fn_t ompt_get_thread_id_ptr = lookup("ompt_get_thread_id")

The return code of the function at runtime side is overriden.

Procedure frames. Along its lifetime, any thread switches from the user space to the runtime space: when it encounters a parallel region, the Master thread enters in the runtime, activates the slave threads and executes the body of the region. It then exits the runtime to execute the user's procedure. OMPT distinguishes user's procedures from runtime procedures by dividing the thread execution into procedure frames. For that purpose, OMPT standard defines a structure containing pointers to these procedure frames, associated to the current thread. This structure is updated whether the current thread enters or exits the runtime. Figure 6.7 illustrates this approach with a code containing nested parallel regions, and executed by 2 threads. Code A, B and C are respectively the initial task (sequential), the code executing the outer parallel region, and the one executing inner parallel region. The user's view of the code execution and the call stacks of threads are compared. When the first thread encounters the outer parallel region, it calls the routine associated with OpenMP parallel region and enters in the runtime to create a new parallel region. A frame f2 is created and corresponds to the runtime routine called by frame f1. The field reenter_runtime_frame is set to frame f2 and the ompt_frame_t structure is labeled r1.

Before exiting the runtime and starting the implicit task associated to the parallel region "b", the field exit_runtime_frame is set to f4.

The second thread starts from frame f3, and is first idle, as shown with the frame f6. When thread 2 is able to execute its work, it enters frame 7. Before exiting the runtime to execute its implicit task associated to code B, field exit_runtime_frame of ompt_frame_t (labeled r3) is set to frame f7.

At last, when thread 2 encounters parallel region "c", the runtime fills reenter_runtime_frame of the structure labeled r3 to frame f9, which is the first frame to be executed after the implicit task associated to code B. Before invoking the implicit task associated to code C, the field exit_runtime_frame of structure labeled r4 is set to frame f11.

We can see how pointers of the frame structure are maintainted, in order to distinguish frames dedicated to user's procedures from those for OpenMP runtime routines. In the last part, we rely on some OMPT events to estimate the efficiency of the MPC runtime. This contribution will show how we can use OMPT to detect bottlenecks of the application, and estimate the efficiency of the OpenMP runtimes.

Implementation inside MPC framework

We implemented OMPT standard inside MPC 2.5.0 and tested it with performance-evaluation tool TAU. Most provided events were added inside the runtime, excepted those related to nested parallelism:

To easily enable and disable OMPT support inside the framework, we defined the macro OMPT_SUPPORT.

This allowed to eliminate any overhead when not using OMPT.

Our implementation was tested with the performance tool TAU, which proposes proper interface to communicate with OMPT. It is to be noted that entry and exit functions are required in the runtime to insert pairs of events, for constructs such as parallel regions or parallel loops. Thus technical issues appeared when inserting some events related to OpenMP loop and pragma omp single constructs. Since MPC runtime is tied to GCC ABI for runtime internals, there is no generated internal for pragma omp for construct with static scheduling, whereas there are some with this construct coming with dynamic scheduling. For pragma omp single construct, GCC generates one single routine mpcomp_do_single() function. This function returns 0 or 1 whether the current thread executes code associated to the construct or not. These issues required to modify the interface of GCC compiler to generate the functions mpcomp_static_loop_begin() and mpcomp_static_loop_end() for OpenMP loops with static scheduling, and the function mpcomp_end_single() to permit the insertion of the terminating event related to pragma omp single construct.

Guiding OpenMP loops tuning using OMPT

Our first study with OMPT is purely oriented towards performance analysis of the MC application. As we parallelized existing loops with the combined construct pragma omp parallel for, we wanted to know if we would encounter some load imbalance or if we would get the best performances with a static scheduling. In this part, we then conducted an empirical study of OpenMP loops by tuning the scheduling policy and the chunk size. We then launched the hybrid version of the MC code, using 1 MPI task and 16 OpenMP threads, and generated profilings of various combinations of the loops. On the one hand we notice the version with static scheduling that the loop is well balanced. On the other hand, we observe a huge slowdown when switching to dynamic scheduling: the maximum execution time with static scheduling is around 64 seconds whereas it is 421 seconds with dynamic scheduling, which is approximatively 6.6 × slower.

There can be multiple reasons explaining such a big gap:

• Static scheduling vs dynamic scheduling: In static loops, the iteration space is split between threads, when no chunk size is specified. This policy is then straightforward for the runtime and ensures a minimal overhead. This is thus the best option when the application is well balanced as we can see in this case. Rather, when choosing dynamic policy, each thread gets a chunk, executes it and requests another one until depleting available chunks. We are in the case where no chunk size is defined, so the default is 1, which corresponds to one iteration. This policy involves more work from the runtime, and thus more overhead.

• Work stealing: While static scheduling forbids the use of work stealing, such technique is possible with other scheduling policies. But different strategies exist to steal work, which are more or less efficient according to the hardware topology or load imbalance. We saw in Chapter 3 that too aggressive strategies could interfere with the inter-socket bandwidth and disturb compute work, which leads to penalize performances.

To summarize, several reasons can explain such performance penalties with a dynamic policy, but more insight is required to analyze those results. Unfortunately, OMPT doesn't provide enough coverage to understand the runtime behavior when executing loops. Figures 6.12 and 6.13 expose the profiling of the parallel loop in the absorption function, scheduled with static policies, running with MPC and Intel OpenMP. We show here how performances evoluate by increasing the chunk size, and how OMPT can help us to find the best optimization. We start from the reference times from Figures 6.10 and 6.11, where maximum times to execute loops were 64 seconds for MPC and 83 seconds for Intel OpenMP, and we try to reduce these times by increasing chunk sizes by a factor 2 at each step. With MPC, we can see that, when running loops with a chunk size 25600, we execute the loops with a maximum time of around 58 seconds, but at a cost of strong imbalance. With Intel OpenMP, a chunk size of 100 gives a maximum time of approximately 53 seconds, with gives a speedup of 60%.

We show with Figures 6.14 and 6.15 the profiling of the same loop, still with MPC and Intel OpenMP, but with a dynamic scheduling. We recall that the maximum times with dynamic scheduling were respectively 318 seconds and 417 seconds with MPC and Intel OpenMP. With MPC, we show different flavors of tuned loops with a chunk size varying from 400 to 3200 iterations. The best result with MPC is obtained with a chunk size of 1600 iterations: maximum time is around 101 seconds, which represents a speedup of 3.16 ×. With Intel OpenMP, we reach best performances by tuning chunk size at 800, with a maximum time of approximately 87 seconds (speedup of 4.79 ×). Chunk size is increased following the different sub-figures, from 400 to 3200. We can see that minimal execution time is reached with a chunk size of 1600: the maximum execution time reaches approximately 100 seconds, whereas it was 421 seconds without specifying a chunk size (e.g, chunk size equal to 1). We then gained a speedup of 4.21.

We see with these examples that OMPT, coupled with TAU, can help us to tune parallel loops in order to obtain the best performances, through successive optimizations. Our observations are the following:

• Dynamic scheduling is far from being the best scheduling policy against static one and can give surprising slow downs. • An increasing chunk size can give huge speedups, especially when coupled with dynamic scheduling. We explain this observation by the fact that when the chunk size is increased, the pool of chunks to be executed is reduced, then each thread has less work to do. Consequently, the overhead implied in the runtime is lowered.

Estimate overhead of OpenMP runtimes

Whereas we could characterize an OpenMP code and optimize its loops using OMPT and profiling tool, we will demonstrate here that we can get a better use of this interface and estimate the overhead of the runtime. Indeed, the event pair ompt_event_implicit_task_begin and ompt_event_implicit_task_end allows to separate the body of parallel regions from threads activation and synchronizations.

We can see in Figure 6.16 the inclusive execution time of the different components of the MC application (on the first sub-figure). Orange bars represent the time spent between the event pair relative to the OpenMP parallel regions. Green bars next to the orange ones correspond to the time spent in implicit tasks. The overhead of the runtime can be estimated in several ways: either by the exclusive time of the OpenMP parallel region, or by substracting the execution time of the parallel region from the one of the implicit task. In the last sub-figure we can see that the exclusive time associated to the parallel region is 87 milliseconds, which corresponds to the interval between the moments when the master thread executes the runtime procedure associated to the region construct and when it starts executing associated an implicit task. This interval corresponds to the overhead of the runtime, and has to be compared with the duration of the parallel region (second sub-figure). We can then deduce that this overhead represents 0.013% of the execution of the parallel region.

The runtime overhead could be estimated with MPC only, since no event related to implicit tasks 

Conclusion

In this chapter, we started by depicting the various bottlenecks to be encountered in hybrid codes. The origins of these bottlenecks are from both application and runtime sides, and are therefore difficult to identify. Thus, sophisticated tools are necessary to troubleshoot MPI+OpenMP codes. We then presented an overview of the field of performance analysis and focused on the instrumentation layer. Whereas MPI standard includes primitives for performance measurement, this was not the case for OpenMP until recently. OpenMP Tools API was shortly integrated to OpenMP standard and we then described this instrumentation tool. In our contribution, we implemented OMPT in MPC framework and were then able to instrument OpenMP and hybrid codes, and measure them thanks to TAU performance tool. OMPT helped us driving loop optimizations, by tuning scheduling policy and chunk size.

From our point of view, OMPT can interest both application developers and runtime designers, as it allows isolating bottlenecks from both origins. We saw application and runtime are strongly interlaced, especially in nested parallel codes: switches from code to runtime are frequent. OMPT tackles this aspect with several features. For example, the pair of events related to the implicit tasks allows separating the work spent in activating OpenMP threads and the work dedicated to computations. These events so proved to be very useful to estimate the runtime overhead. Moreover, by proposing procedure frames, user's procedures and runtime procedures are separated.

But procedure frames don't give an exact view of interactions between application and runtime. Indeed, this structure assumes threads executing their implicit tasks (i.e. body of parallel region), don't The work of threads synchronization is also included in the runtime overhead. The event pair ompt_event_barrier_begin and ompt_event_barrier_end can be used to measure the cost of an OpenMP barrier. But the load imbalance accounts for a large part to this cost, and some threads have to wait for the last one to reach the barrier. Thus, we can separate a synchronization construct into two components for each thread, regarding MPC implementation:

• The barrier overhead: to climb the tree until reaching the root, and go back to the leaves before continuing execution

• The barrier idling: make the current thread wait until all threads reach the barrier Fortunately, OMPT also includes events measuring how much time each thread is idle inside the barrier (ompt_event_wait_barrier_begin / ompt_event_wait_barrier_end). We can then isolate overhead induced by the work of synchronization, by substracting the sum of waiting times from the time spent inside the barrier. 

Conclusion and Perspectives

In this thesis, we addressed some problematics coming with supercomputers in the field of High Performance Computing, especially its programming aspects. As parallel architectures evolved with the introduction of multicore processors and the advent of heterogeneous environments, it becomes clear that the MPI model is no longer the unique solution to enable code scalability. Different solutions exist, and one consists in combining MPI with a thread based model such as OpenMP. This direction is more and more adopted in parallel codes. But switching to the Hybrid programming is complex and generates several bottlenecks following the ways MPI and OpenMP are combined. Thus, switching from pure MPI model to Hybrid programming implies making the whole software stack to evolve (applications, runtimes). We recall here our contributions presented in this thesis, and the perspectives, e.g. some directions to deeper dig inside Hybrid programming.

Contributions

We recall here our contributions, tackling different aspects of Hybrid programming.

Overhead of OpenMP in Hybrid programming

Mixing several programming models generally implies cooperation between different runtimes. This approach can be interesting only if each model obtains a good performance. But OpenMP, due to its execution model, generates an overhead when creating and stopping threads. This overhead can impact performances of MPI+OpenMP codes, especially in Fine-Grain mode (i.e, when OpenMP is used to parallelize loops). To maintain an OpenMP runtime as efficient as possible, the characteristics of NUMA architectures have to be taken into account. This is why the OpenMP runtime of MPC framework evolved to integrate a hierarchical activation and synchronization of OpenMP threads. But with hybrid codes, computational resources are shared between MPI tasks and OpenMP threads, and following the thread placement, the space dedicated to a single OpenMP team can be limited. This is why our first contribution, the Adaptive tree, aimed at minimizing the overhead of the runtime as much as possible, by offering a flexible way to launch and stop threads. This contribution only requires few modifications of some OpenMP constructs inside the MPC framework. This technique was tested with microbenchmarks against mainstream compilers such as GCC and ICC and showed interesting results on a 128-core NUMA node.

Cooperation between MPI and OpenMP for Collective operations at application and runtime levels

A MPI based application can be decomposed into sequential and parallel parts. Computational resources are then fully exploited only when the parallel component is executed. Combining MPI with OpenMP consists in adding a level of parallelism, but as compute cores are shared between tasks and threads, only a fraction of cores is used when executing only MPI, leading to waste resources. This is especially true with the Masteronly approach, where cores dedicated to threads are idle outside OpenMP parallel regions. Our second contribution aimed at tackling this drawback by targeting MPI Collective operations. We then used OpenMP threads to keep cores busy as much as possible and accelerate Collective operations. We enhanced this new algorithm with the design of the Rank Shifting technique. By adapting the way each OpenMP thread processes a sub-part of the MPI collective, the memory and network bandwidth can be exploited to improve performance. This approach was validated on several runtimes such as MPC or IntelMPI and allowed improvement of the overall time up to a factor of 5.29 × on a real world application.

In a second part, we discussed some ways to build constructs gathering MPI and OpenMP. We focused on an OpenMP used in a SMPD fashion and highlighted similarities with the MPI model. We then proposed new collective operations implying both MPI tasks and OpenMP threads, implemented inside the MPC runtime, and introducing a unified barrier as a case study.

Performance analysis of OpenMP codes and OpenMP runtime using an instrumentation tool

Obtaining scalability of parallel applications on thousands of processors is a complex work, and bottlenecks can be difficult to detect, as they can come from the application level or the runtime level. Thus, numerous tools have been developed to help the users to solve performance issues. But efficient instrumentation is required to analyze performances of both MPI and OpenMP models. OMPT was introduced as an extension of the OpenMP standard, proposing features to instrument OpenMP codes. In our last contribution, we implemented OMPT inside MPC framework. We then relied on our implementation to profile hybrid codes, and got insight of the behavior of our runtime.

Perspectives

We discuss in this section the main architectural trends which will be encountered in future compute nodes, and their impacts in MPI+OpenMP codes. Then, we will give concrete examples of short term evolutions, based on our contributions, and long term perspectives.

Towards heterogeneous nodes

Based on architectural trends, compute nodes should integrate more and more hardware accelerators, such as Intel Xeon Phi or GPUs. Current architectures presented in Section 2.2 of Chapter2, and composed of NUMA nodes, will then be extended to include these devices.

Figure 7.1 shows how traditional CPUs and hardware accelerators are articulated. We define a NUIOA1 node as composed of a NUMA node linked to an hardware Accelerator via a bus (PCI Express bus in this example). This is the building block of heterogeneous nodes which will spread in future supercomputers. Each Hardware accelerator is equipped with its own memory; when the user wants to execute a program on the device, the data to be computed have to be transferred to its memory.

Parallel programming models thus evolved to exploit these devices. Specific parallel models appeared to program GPUs such as CUDA2 [START_REF] Cook | CUDA Programming: A Developer's Guide to Parallel Computing with GPUs[END_REF] introduced by Nvidia, or OpenCL [START_REF] Munshi | OpenCL Programming Guide[END_REF]. But porting large scientific codes using these models is costly. Thus, more recent parallel models such as OpenACC [START_REF] Wienke | Openacc: First experiences with real-world applications[END_REF] or OpenMP 4.0 [START_REF] Liao | Early experiences with the openmp accelerator model[END_REF] were released to provide simpler interfaces based on directives offloading computations on hardware accelerators. This simplification leads to allow an easier adoption by legacy codes. Some efforts have been made to translate OpenMP into CUDA, with OpenMPC for example [START_REF] Lee | Openmpc: Extended openmp programming and tuning for gpus[END_REF]. But from our point of view, the next step would be to port MPI and OpenMP codes on GPUs. But some runtimes such as StarPU propose an execution model relying on tasks and allowing execution of code and data transfers on GPUs in a transparent way [START_REF] Thibault | Starpu: A unified platform for task scheduling on heterogeneous multicore architectures[END_REF][START_REF] Vet | Parall élisme de t âches et localit é de donn ées dans un contexte multi-mod èle de programmation pour supercalculateurs hi érarchiques et h ét érog ènes[END_REF]. Xeon Phi coprocessors support native programming models such as MPI or OpenMP. Therefore, parallel codes do not have to be completely rewritten to run on such accelerators. However, as current coprocessors can run several hundreds of threads, both MPI and OpenMP libraries should be adapted to these architectures.

To summarize, future machines should mix distributed memory, shared memory, and heterogeneous systems. They should be more complex to program, and will require efforts from the research community to be efficiently exploited. Therefore, the Hybrid model should evolve following at last two aspects:

• MPI and OpenMP for manycore: Optimize both MPI and OpenMP libraries to get good performances on manycore architectures

• Heterogeneous taxonomy: The taxonomy was defined for MPI+OpenMP codes running on traditional clusters. it should evolve, taking the coprocessors into account inside the Thread placement (1 MPI task per compute node, 1 task per NUOIA node, several tasks per accelerator,. . . ).

Short term evolutions

Going back to our contributions, we propose here several ideas to enhance them. We will also focus on how to port our contributions to manycore architectures.

Overhead of OpenMP runtimes on manycore environment

We optimized the OpenMP runtime of the MPC framework to efficiently start and stop threads on large compute nodes, containing up to 128 cores. These nodes were designed following a topology implying several levels of NUMA nodes, exposing hierarchies of parallelism. Compared to the large NUMA nodes, the architecture of Xeon Phi coprocessor contains less hierarchical levels. Moreover, to be able to run on such an architecture, OpenMP runtimes will have to deal with 250 to 300 threads, which can generate a huge overhead. Thus, porting OpenMP codes on a manycore environment such as Intel Xeon Phi implies optimizing the runtime for this platorm. The hardware topology of this device should then be studied. • core level: Depending on the version of the processor, we find between 60 and 70 in-order cores uniformly distributed inside the socket. These cores are interconnected by a bidirectional ring bus.

• hyperthread level: Each core supports four hardware threads.

If we map the underlying topology (Figure 7.2), we should use a two-level tree to deal with OpenMP threads: the root would have 70 children and with 4 children for each sub-tree, since each core can contain four hyperthreads. Moreover, building the tree would be straightforward as HWLOC can detect the topology of Intel Xeon Phi. But in the case the coprocessor is fully populated, the Master thread would have to deal with more than 70 threads, which should generate a huge contention.

Thus, we should decorrelate the tree from the topology and add additional levels, in order to reduce the work of the Master thread. Figure 7.3 illustrates a tree allowing to decouple the thread activation. There are two levels at the core-level, then the Master thread only has to activate six children, and each child wakes the threads. We could even insert an additional level to keep the degrees of the sub-trees as minimal as possible. We assume this kind of tree would give better performances than just using a tree respecting the underlying topology.

Optimization of MPI Collective operations using threads

As we only focused on MPI_Allreduce operation, this contribution could be extended towards different directions:

• Generalize to other MPI collectives: Our approach is not specific to MPI_Allreduce collective and could be experimented with collectives such as MPI_Reduce and be generalized to other ones such as MPI_Bcast or MPI_Gather. We remind that Rank Shifting doesn't work with rooted collectives (Reduce, Broadcast, etc).

• Performance model: For now, we validated our concept with an empirical approach. We plan to predict the best hybrid combination using heuristics and to establish a performance model, based on criteria such as vector length and hardware topology. This model would allow to launch the application with an automatically calculated number of threads. • Rank Shifting: For the moment, Rank Shifting is implemented to shift MPI rank with a step equal to one, ignoring underlying topology and placement of MPI tasks. Indeed, the implemented policy can fit if there is only one MPI task per socket or per node. But with several tasks per socket, step should be increased. Thus, this technique should be more deeply investigated by testing different policies for Rank Shifting, like increasing step for example, or shifting from one NUMA node to another, in order to take memory balancing into account and avoid NUMA effects as much as possible.

• Oversplitting: At this stage, initial vector of each MPI task is split between the OpenMP threads. Another optimization can be studied, i.e. splitting vectors in chunks smaller than required so that each thread performs several calls instead of only one. This solution could lead to better cache reuse. Moreover, since each thread would have more than one chunk to compute, scheduling policies other than static could be experimented.

• Enlarge cache: In order to avoid duplicating communicators each time MPI_Allreduce is called and generate additional overhead, we implemented a cache of size 1 storing the input communicator. But if the input communicator changes, the old one is trashed and a new communicator will be duplicated. We would like to enlarge the cache to be able to store multiple communicators, for more complex applications.

• Parallelize collective inside runtime: For now, the developer has to preload a wrapper in order to re use idle threads. To enable full transparency for the developer, hybridization could be achieved inside the runtime, by tuning implementation of MPI Allreduce. Two limitations have to be mentioned: it requires a common vision of MPI and OpenMP inside the runtime, and it makes us dependent from the runtime.

• Experiment on Xeon Phi: At this stage, we tested our approach on NUMA environments and proved we could have interesting results in this context. It would be interesting to test hybridization of Allreduce on Xeon Phi co-processor [START_REF]Intel MIC architecture[END_REF] and see how our approach scales on numerous cores and how we can take advantage of existing shared memory.

Unified Collective operations

We introduced Unified collective operations to bridge MPI and OpenMP used in SPMD fashion. For future work, we target several aspects of Coarse grain approach:

• Unified barrier: When all OpenMP threads have passed their barrier, the threads reaching the root of their respective trees call MPI_Barrier(). All threads are then idle until MPI barrier returns and makes them free. Several possibilities can be studied about keeping them busy during this time (execute loop iterations or OpenMP tasks for example).

• Unified reduction: MPI includes several primitives performing reduction such as MPI_Reduce() or MPI_Allreduce(). OpenMP allows a similar feature by the clause reduction coming with #pragma omp for construct. This calls for a Unified reduction gathering MPI ranks and OpenMP threads.

• Hybrid parallel loop: #pragma omp for allows loop level parallelism by distributing the chunks among the threads. But it is limited to OpenMP teams and a single compute node. We could extend this construct by distributing iterations to other MPI tasks, by using Scatter collective for example.

• Other Collectives: We observed with [START_REF]Performance comparison of mpi and three openmp programming styles on shared memory multiprocessors[END_REF] that collective operations could be realized with OpenMP. We can then extend our concept to other operations such as All-to-all, Broadcast, etc.

• Critical constructs: As seen in chapter 2, in Coarse Grain parallelism synchronization constructs are required to surround MPI primitives called inside OpenMP regions, for correctness purposes.

Developer is still in charge to use proper synchronization directives to ensure MPI primitives are called only once. It seems straightforward to tune such MPI primitives at runtime level in that they are called by only one thread.

• Multi-threaded Collectives: Splitting off collectives is a technique allowing communications overlap, but is heavy to implement and often leads to bugs. Another variant of enhanced collective would be to parallelize communications at runtime level.

• Initialization: By studying hybrid taxonomy, we saw that in Coarse grained codes, one unique OpenMP parallel region was open, initializing OpenMP threads and MPI tasks approximately at the same time. We could improve simplicity of the code by proposing one unique construct initializing and terminating both MPI tasks and OpenMP threads. MPI_Init() function is required to launch MPI tasks. A common construct initializing both the MPI tasks and the threads could be interesting for Coarse Grain mode, where MPI and OpenMP are both enabled at the beginning of the execution.

Performance analysis with OMPT

We pinpointed some limitations in OMPT standard that prevents from a complete analysis of OpenMP runtimes. So, for future work we plan to dig more into loop optimizations, and better identify roles of both application and runtime in performance bottlenecks. To drive loop tuning, one direction would consist in building a decision tree to automatically deduce the best optimization of OpenMP loops, by tuning both scheduling policy and chunk size.

As we noticed a huge slowdown when switching from static to dynamic scheduling, we would like to get more insight into the runtime, and isolate work stealing from execution of iterations. Causes of this slowdown could be inefficient work stealing strategies or bad implementation of OpenMP loops. But proposed events by OMPT prevent us from investigating inside the runtime, and from identifying sources of slow down. For that purpose, we propose the creation of a new set of events dedicated to work stealing, and allowing to estimate the ratio of time spent in work stealing when executing loops on the one hand, and the percentage of success in the work stealing (how often a thread can steal one or several chunks) on the other hand. We could also imagine finer grained ways to instrument OpenMP loops, such as creating events for each chunk. But all these possibilities have to be carefully considered, as they could generate too much measurement overhead.

Long term perspectives

Based on first observations on future heterogeneous environment and short term evolutions, we propose here some long term perspectives relying on two main ideas:

• Runtime stacking: We propose to adapt our contribution about Unified collectives to several models.

• Hybrid scheduling in an heterogeneous environment: Challenges exposed by heterogeneous clusters will highlight new bottlenecks for the Hybrid codes. Also, features such as asynchronous communications or transfers from CPUs to hardware accelerators will require better more sophisticated schedulers.

Generalization of the unified barrier with nested parallel models

We described the operation consisting in performing a unified barrier involving MPI tasks and OpenMP threads. MPI and OpenMP are nested: one MPI task creates a team of t OpenMP threads. So each OpenMP team performs the first part of a barrier, then the MPI tasks are synchronized, and then each team does another half barrier.

This example involved two programming models, but more models could be involved in this operation (MPI, OpenMP, and POSIX threads for example). Now let's extend this operation and consider n nested programming models:

M 0 → M 1 → ...M n-1
For example, M 0 is the MPI model, and M 1 is OpenMP. first performs a half barrier, and the one that called M n-1 executes its half barrier, and we continue until the model M 0 does a complete barrier. Then all nested models repeat another half barrier but in the other direction, until reaching M n-1 . This construct implies that M i is able to enable M i+1 .

We need to mention some constraints to enable unified constructs implying n models:

• Each model excepted M 0 needs to be able to decompose a barrier into two steps: (i) all tasks reach the scheduling point and (ii) they can continue their execution once the scheduling point is reached.

• M i has to be able to efficiently activate M i+1 . This implies using lightweight mechanisms to activate the inner model.

• Topology: The inner model M i+1 has to be aware of its restricted topology given by M i . This implies that either all models share a global view of the hardware topology, or each model M i knows its restricted topology.

• Affinities: Data locality is not taken into account with the MPI model (M 0 ). So the ranks are usually dispatched among compute cores inside a node. But with the thread-based models, the threads are kept close to each other, following their affinities. But in the case such model activates another one, it has to let some cores idle for the inner model. So policies have to be defined to guarantee that the nester and the nestee models can both keep their threads close to each other.

Scheduling MPI tasks and OpenMP threads.

With the Hybrid MPI+OpenMP codes, execution time is shared between computations and communications, and cores are shared between the tasks and the threads according to the thread placement.

Along this thesis, we took a static approach about the utilization of compute cores by tasks and considered that each MPI task or thread was statically bound to a compute core. This approach is available when MPI performs blocking communications.

But MPI standard also introduced Non Blocking Communications, whether they are point-to-point (MPI_ISend, MPI_IRecv) or collective (MPI_IBarrier, MPI_IReduce). These asynchronous communications allow performing operations before communications have finished. Thus, a compute core used by a task taking part to such communications can be reused by another MPI task or another thread. These features offer the possibility to share the cores between several tasks and introduce the necessity to schedule them. To enable a fair utilization of available cores, a smart scheduling of MPI tasks and OpenMP threads is required. This leads to open questions: should we favor computations or communications ? One technique consists in creating additional threads to accelerate progression of MPI communications. But a special care has to be given to the placement of this kind of threads, since they should not disturb computations.

But asynchronous MPI communications are not the only example motivating this technique. In heterogeneous context, programming models such as OpenMP 4.0 enable transfers between CPUs and hardware accelerators. Another kind of threads would be in charge to handle these transfers.

Thus, the scheduler could have different kinds of threads to handle, and some options are available about the placement of these specialized threads:

• Gather them on a dedicated core or dispatch them inside the compute node ?

• Gather the progression threads in blocks according to their speciality or build blocks mixing threads of different types

• Schedule in priority specialized threads

• Dedicate a number of cores to these threads: 1 core, or several It is to be noted that the MPC framework includes a scheduler providing a global vision of MPI tasks and OpenMP threads. So this could be an eligible platform to conduct these works. 

R ésum é

Afin de r épondre aux besoins de plus en plus importants en puissance de calcul de la part des applications num ériques, les supercalculateurs ont d û évoluer et sont ainsi de plus en plus compliqu és à programmer. Ainsi, en plus de l'apparition des syst èmes à m émoire partag ée, des architectures dites NUMA (Non Uniform Memory Access) sont pr ésentes au sein de ces machines, fournissant plusieurs niveaux de parall élisme. Une autre contrainte, la diminution de la m émoire disponible par coeur de calcul, doit être soulign ée. C'est ainsi que des mod èles parall èles tels que MPI (Message Passing Interface) ne permettent plus aux codes scientifiques haute performance de passer à l' échelle et d'exploiter efficacement les machines de calcul, et doivent donc être combin és avec d'autres mod èles plus adapt és aux architectures à m émoire partag ée. OpenMP, en tant que mod èle standardis é, est un choix privil égi é pour être combin é avec MPI. Mais m élanger deux mod èles avec des paradigmes diff érents est une t âche compliqu ée et peut engendrer des goulets d' étranglement qui doivent être identifi és. Cette th èse a pour objectif d'aborder ces limitations et met en avant plusieurs contributions couvrant divers aspects. Notre premi ère contribution permet de r éduire le surco ût des supports ex écutifs OpenMP en optimisant le travail d'activation et de synchronisation des threads OpenMP pour les codes MPI+OpenMP. Dans un second temps, nous nous focalisons sur les op érations collectives MPI. Notre contribution a pour but d'optimiser l'op ération MPI Allreduce en r éutilisant des unit és de calcul inoccup ées, et faisant intervenir des threads OpenMP. Nous introduisons également le concept de collectives unifi ées, impliquant des t âches MPI et des threads OpenMP dans une m ême op ération. Enfin, nous nous int éressons à l'analyse de performance et plus pr écis ément l'instrumentation des applications MPI+OpenMP, et notre derni ère contribution consiste en l'impl émentation et l' évaluation de l'outil OpenMP Tools API (OMPT) dans le support ex écutif OpenMP du framework MPC. Cet outil nous permet d'instrumenter des constructions OpenMP et de conduire une analyse ax ée aussi bien du c ôt é des applications que des supports d'ex écution.

Mots-cl és: MPI, OpenMP, Mod èle hybride, support ex écutif, OMPT

1. 1

 1 Architectures ccNUMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Taxonomie hybride MPI+OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Activation hi érarchique des threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Vue mat érielle de l'approche Masteronly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 MPI Allreduce hybride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Barri ère unifi ée MPI+OpenMP sans optimisation . . . . . . . . . . . . . . . . . . . . . . . 1.7 Premi ère étape de la barri ère unifi ée: synchronisation des équipes OpenMP . . . . . . . 1.8 Seconde étape de la barri ère unifi ée: appel de la barri ère MPI . . . . . . . . . . . . . . . 1.9 Troisi ème étape de la barri ère unifi ée: lib ération des équipes OpenMP . . . . . . . . . . . 1.10 Insertion des év énements relatifs aux r égions parall èles OpenMP à l'int érieur du support d'OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 Insertion des év évements relatifs aux t âches implicites à l'int érieur du support d'OpenMP 2.1 Process for numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Evolution of performances from the first to the last machine in Top500 ranking . . . . . . . 2.3 Current supercomputers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Evolution of processors following Moore's law . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Memory hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Distributed memory model Vs Shared memory model . . . . . . . . . . . . . . . . . . . . 2.7 Uniform Access to Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 ccNUMA architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 From the programming model to the language, from the language to the program . . . . . 2.10 Domain decomposition of a 2D mesh with MPI . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Memory representation of a pure MPI code and hybrid MPI+OpenMP code, using domain decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Hybrid MPI+OpenMP taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Execution timeline with Fine-Grain parallelism . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Comparison between classic OpenMP and SPMD . . . . . . . . . . . . . . . . . . . . . . 3.5 Thread placement of hybrid programming model . . . . . . . . . . . . . . . . . . . . . . . 3.6 Overhead of OpenMP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 OpenMP overhead with Fine-Grain code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Targeted modes for reducing overhead of OpenMP . . . . . . . . . . . . . . . . . . . . . . 3.9 Targeted modes for hybridizing MPI collectives . . . . . . . . . . . . . . . . . . . . . . . . 3.10 Targeted modes for unified collectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Centralized approach for thread activation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Hierarchical thread activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Hierarchical thread activation -1st stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Hierarchical thread activation -2nd stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Hierarchical thread activation -3rd stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Hierarchical thread activation -4th stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Different tree shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Logic view of a 128-core node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.15 Tune loops of the absorption function depending on chunk size, with dynamic scheduling, running with Intel OpenMP -with the help to OMPT and TAU . . . . . . . . . . . . . . . . 6.16 Deduce overhead of OpenMP runtime based on implicit task . . . . . . . . . . . . . . . . 7.1 Non Uniform Input Output Access architecture gathering a NUMA node and a hardware accelerator, communicating through a PCI Express bus . . . . . . . . . . . . . . . . . . . 7.2 Topology of Xeon Phi architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Increase depth of the tree for Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Generalization of the unified barrier with n models . . . . . . . . . . . . . . . . . . . . . . A.1 Implementation of the hierarchical barrier inside MPC framework . . . . . . . . . . . . . . B.1 Implementation of OMPT events inside OpenMP parallel region function . . . . . . . . . . B.2 Insertion of OMPT events inside implementation of OpenMP loops -starting loops . . . . B.3 Insertion of OMPT events inside implementation of OpenMP loops -ending loops . . . . . Chapter 1

Figure 1 . 1 :

 11 Figure 1.1: Architectures ccNUMA

  de coeurs par noeud M -Nombre de tâches MPI par noeud Ti -Nombre de threads OpenMP pour le ième processus Ci -Nombre de coeurs alloués pour le ième processus j alors Ti > 0, Ci= P Autrement Ti > 0, Ci = 1

Figure 1 . 2 :

 12 Figure 1.2: Taxonomie hybride MPI+OpenMP

Figure 1 . 3 :

 13 Figure 1.3: Activation hi érarchique des threads

Figure 1 . 4 :

 14 Figure 1.4: Vue mat érielle de l'approche Masteronly

Figure 1 . 6 :

 16 Figure 1.6: Barri ère unifi ée MPI+OpenMP sans optimisation

Figure 1 . 7 :Figure 1 . 8 :Figure 1 . 9 :

 171819 Figure 1.7: Premi ère étape de la barri ère unifi ée: synchronisation des équipes OpenMP

  OpenMP: OpenMP Pragma And Region Instrumentor (OPARI), un compilateur source à source permettant de localiser les directives OpenMP dans le code source et d'ins érer des fonction à l'aide de l'interface POMP. OpenMP Runtime API (ou Collector API), conc ¸u au sein du compilateur OpenUH, permet d'ins érer des év énements dans un support d'ex écution OpenMP. ORA est notamment support é par l'outil TAU. Enfin, nous introduisons OMPT, bas é sur les m êmes techniques que Collector API, à savoir l'insertion d' év énements dans un support d'ex écution. OMPT fournit un plus large panel d' év énements que Collector API et est int égr é au standard OpenMP. OMPT, qui doit être impl ément é dans un support ex écutif OpenMP, fait l'interface entre le support d'ex écution et un outil d'analyse de performance.
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 110111 Figure 1.10: Insertion des év énements relatifs aux r égions parall èles OpenMP à l'int érieur du support d'OpenMP La figure 1.10 pr ésente un exemple de code contenant une r égion parall èle OpenMP et montre o ù doivent être ins ér és les év énements afin d'instrumenter ladite r égion parall èle. D'autres év énements permettent d' étudier l'efficacit é du support ex écutif OpenMP, tels que la paire ompt_event_implicit_task_begin et ompt_event_implicit_task_end, permettant de mesurer le temps d'ex écution du code parall èle. On peut alors d éduire le surco ût du support ex écutif.

  OpenMP. Concernant l'hybridisation des op érations MPI collectives, nous pensons appliquer le travail effectu é sur MPI Allreduce à destination d'autres op érations collectives, telles MPI Bcast ou MPI Gather. Cependant, il faut indiquer que la technique du Rank Shifting ne fonctionne pas sur ces op érations collectives.
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 210 Figure 2.10: Domain decomposition of a 2D mesh with MPI

  Figure 3.1 illustrates impacts of hybrid model on domain decomposition inside a compute node, by comparing behaviors of pure MPI code and Hybrid codes when exchanging halos. On the right part of the figure, we only have one MPI task per node, and other cores are fully populated by OpenMP threads. Thus, exchanges of halo cells are done only between compute nodes.
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 332 Figure 3.2, extracted from[START_REF] Carribault | Enabling low-overhead hybrid mpi/openmp parallelism with mpc[END_REF], illustrates an extended taxonomy for MPI+OpenMP applications. We describe in this section this taxonomy, following two main parameters, i.e. different code granularities and placements of MPI tasks and OpenMP threads.
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 4 5 describes the third step of Fork operation. Once threads ranked 8, 16 and 24 have finished to activate the threads on leaves, they can switch from intermediate nodes to the top left leaves of each sub-tree. The activated children threads, as soon as they get their flag turned on, immediately start their execution. Meanwhile, the Master thread iterates through its children inside the first sub-tree starting from the left, and wakes them.When the Master thread has finished activating all its children, it switches from top left intermediate node to the top left leaf and executes himself (Figure4.6).

Figure 4 . 4 :

 44 Figure 4.4: Hierarchical thread activation -2nd stage

Figure 4 . 6 :

 46 Figure 4.6: Hierarchical thread activation -4th stage

Algorithm 3

 3 Hierarchical barrier Require: tree, thread 1: node ← thread.f ather 2: bdone ← node.barrierdone 3: b ← node.barrier 4: atomic(node.barrier ← node.barrier + 1) 5: while b + 1 = node.barriernbthreads and node = tree.newroot do .barrier ← b + 1) 10: end while 11: if node.f ather = N U LL or node.f ather = N U LL and b + 1 = node.bnthreads then 12: while bdone = node.barrierdone do .barrier = 0) 17: node.barrierdone = node.barrierdone + 1 18: end if 19: while node.typechildren = LEAF do 20: node = node.child[thread.ranktree[node.depth]] 21:
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 359 splitComms[numthreads] 4: for i = 0 → numthreads do for j = 0 → nbP rocsP erBlock do 6: splitComms[i][j] ← (block * nbP rocsP erBlock) + j for i = 0 → numthreads do 10: collective(sendbuf, recvbuf, root, splitComms[i]) {Parallel communications} 11: end for Another possibility, depicted in Algorithm 7, consists in splitting communications between nodes.
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 920 Global MPI+OpenMP barrier Require: tree, thread 1: node ← thread.f ather 2: bdone ← node.barrierdone 3: b ← node.barrier 4: atomic(node.barrier ← node.barrier + 1) 5: while b + 1 = node.barriernbthreads and node = tree.root do 6: node.barrier ← 0 7: node ← node.f ather 8: b ← node.barrier 9: atomic(node.barrier ← b + 1) 10: end while 11: if node.f ather = N U LL or node.f ather = N U LL and b + 1 = node.nbthreads then 12: while bdone = node.barrierdone do while node.typechildren = LEAF do 21: node = node.child[thread.ranktree[node.depth]] 22:
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  To illustrate our approach, we take the example of an application launched with 8 OpenMP threads and running on a large compute node. The compute node is a 128-core Bull Coherency Switch node, composed of 4 modules, containing each 4 8-core processors (Figure4.8).
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 1 distantComm[nbP rocsOnN ode] 2: localComm[nbN odes] 3: M P IM asterRank ← M P IRank nbP rocsOnN ode * nbP rocsOnN ode 4: for i = 0 → nbP rocsOnN ode do

	5:	localComms[i] ← M P IM asterRank + i
	6: end for
	7: for i = 0 → nbN odes do
	8:	distantComms[i] ← i * nbP rocsOnN ode
	9: end for
	10: for i = 0 → numthreads do
	11:	if threadRank = 0 then
	12:	if M P IRank = M IP M asterRank then
	13:	collective(message, size, distantComm) {Inter node communications with OpenMP Master
		thread}
	14:	end if
	15:	else if threadRank = 1 then
	16:	collective(message, size, localComm)

17:

  1: nbP rocsP erBlock ← nbP rocs numthreads {Provided nbP rocs can be divided by numthreads} 2: block ←

	M P IRank
	nbP rocsP erBlock

  Implemented and not implemented OMPT events inside MPC cation, which is a parallelized loop of the absorption function, one component of the application. The loop is tuned with a dynamic scheduling policy. We then conduct experiments on this version of the MC code, by first showing how we can use OMPT to guide the loop optimization by tuning scheduling policy and chunk size. For these experiments, we compile MC code with both MPC and Intel OpenMP and rely on both implementations of OMPT. All experiments are launched on one 16-core node from the Curie supercomputer, containing 2 CPUs Sandy Bridge EP, clocked at 2.27GHZ.
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.1 describes the infrastructure of performance analysis regarding high performance applications. We can split the chain in three stages: (i) instrumenting application at several levels, (ii) measuring parts of the application using different techniques and performance metrics, and (iii) analysis of the measurement.

Instrumentation

In order to gain information from an application for performance analysis, some probes have to be inserted. This stage is called instrumentation. While the program is executed, events related to these probes are activated and detected by the tool which will perform measurements. We will see here that the instrumentation can be done at several levels of the code, and different kinds of instrumentations have to be distinguished:

• Source-level instrumentation: This technique consists in inserting function calls in the source code for instrumentation. The source code has to be transformed by a source-to-source compiler which will insert probes at specific points. For example, in the case of an OpenMP code, constructs will be surrounded by function calls. This is the case with OPARI2 [START_REF] Mohr | Design and prototype of a performance tool interface for openmp[END_REF] which uses the functions provided by the POMP interface.

• Compiler instrumentation: In this case, the instrumentation probes are added by the compiler, inside the object code. This kind of instrumentation benefits from a higher level of details and allows fine grain analysis. However, it can prevent from other optimizations usually offered by the compiler, since they can corrupt measurements.

• Library wrapper: This kind of instrumentation consists in interposing a library between user code and runtime. If we take the case of MPI codes, MPI calls are intercepted by the library, which is in charge of calling internals. PMPI is an example of used interface to be plugged to a library. The advantage is that this technique is transparent for the developer.

• Binary instrumentation: Another instrumentation method consists in patching binary codes, and inserting probes at instruction level, allowing finer grained instrumentation. Examples of tools proposing this kind of instrumentation are PIN [START_REF] Janapa Reddi | Pin: A binary instrumentation tool for computer architecture research and education[END_REF] and MAQAO [START_REF] Djoudi | Maqao: Modular assembler quality analyzer and optimizer for[END_REF].

Measurement

Instrumentation helps the tools to measure performance of applications using various methods and metrics. At measurement stage, the events are linked with performance data.

We distinguish several kinds of measurement:

• Profiling: A first method is profiling, which consists in aggregating performance metrics in order to characterize behavior of the targeted application. One example can be to measure the time spent in the different functions composing the studied application (inclusive or exclusive time).

• Tracing: Whereas profiling is able to summarize performance of applications via metrics, another method named tracing consists in building a view of the evolution of the application through a timeline, and in studying its behavior through spatial and temporal aspects. Tracing method generally relies on events capturing activity of the application.

• Sampling: Sampling consists in periodically collecting statistics from the program through execution time, via inserted interrupts.

In order to provide metrics, performance tools can rely on performance data sources, such as hardware counters. Hardware counters are low-level performance metrics and are integrated in current CPUs. They can give more insight about the behavior of studied applications: examples of those counters can be the number of cache hits or misses, or the number of executed instructions per clock cycle,. . . . PAPI [START_REF] London | The papi crossplatform interface to hardware performance counters[END_REF] is an example of interface giving access to hardware counters. To be portable across platforms, it comes with its own API.

When measurements such as profiling or tracing have been built, they can be sent to the analysis component. This can be done by exporting results in files using formats such as Open Trace Format (OTF) [START_REF] Kn Üpfer | Introducing the open trace format (otf)[END_REF] or SLOG [START_REF] Chan | An efficient format for nearly constant-time access to arbitrary time intervals in large trace files[END_REF]. 

Implementations of OpenMP Tools

OpenMP Tools API is supported by several compilers. Intel opensourced its OpenMP runtime [5] and a first version of OMPT has been implemented. IMB also supports OMPT in a version of its XL compiler. OMPT is also expected to be supported in the GOMP library of GCC compiler.

Contribution: Performance analysis of OpenMP applications and OpenMP runtimes using OMPT

The previous section described the OpenMP Tools API, including its possibilities. In this section, we describe our contribution which consists in the implementation of OMPT inside the OpenMP runtime of MPC framework and in the insertion of events. Secondly, we will show how OMPT can be exploited for performance analysis at both application and runtime sides.

#pragma omp p a r a l l e l f o r schedule ( dynamic ) p r i v a t e ( i p ) f o r ( i p = 0 + s h i f t ; i p < max + ( s h i f t / 2 ) ; i p ++) For this purpose, we developed a fine grained version of hybrid application MC [START_REF] Dureau | Hybrid parallelism models for neutron monte-carlo solver in an AMR framework[END_REF], by parallelizing loops, and using pragma omp parallel for constructs. 

Implementation of OpenMP Tools API inside MPC Abstract

To provide increasing computational power for numerical simulations, supercomputers evolved and are now more and more complex to program. Indeed, after the appearance of shared memory systems emerged architectures such as NUMA (Non Uniform Memory Access) systems, providing several levels of parallelism. Another constraint, the decreasing amount of memory per compute core, has to be mentioned. Therefore, parallel models such as Message Passing Interface (MPI) are no more sufficient to enable scalability of High Performance applications, and have to be coupled with another model adapted to shared memory architectures. OpenMP, as a de facto standard, is a good candidate to be mixed with MPI. The principle is to use this model to augment legacy codes already parallelized with MPI. But hybridizing scientific codes is a complex task, bottlenecks exist and need to be identified. This thesis tackles these limitations and proposes different contributions following various aspects. Our first contribution reduces the overhead of the OpenMP layer by optimizing the creation and synchronization of threads for MPI+OpenMP codes. On a second time, we target MPI collective operations. Our contribution consists in proposing a technique to exploit idle cores in order to help the operation, with the example of MPI Allreduce collective. We also introduce unified Collectives involving both MPI tasks and OpenMP threads. Finally, we focus on performance analysis of hybrid MPI+OpenMP codes, and our last contribution consists in the implementation of OpenMP Tools API (OMPT), an instrumentation tool, inside the OpenMP runtime of MPC framework. This tool allows us to instrument and profile OpenMP constructs and allows the analysis of both runtime and application sides. Keywords: MPI, OpenMP, Hybrid model, runtime, OMPT