N
N

N

HAL

open science

Improving the Hybrid model MPI+4Threads through
Applications, Runtimes and Performance tools
Aurele Maheo

» To cite this version:

Aurele Maheo. Improving the Hybrid model MPI4+Threads through Applications, Runtimes and
Performance tools. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Versailles-

Saint Quentin en Yvelines, 2015. English. NNT: 2015VERS039V . tel-01318684

HAL Id: tel-01318684
https://theses.hal.science/tel-01318684
Submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01318684
https://hal.archives-ouvertes.fr

2

UNIVERSITE DE \‘
VERSAILLES ww»

ST-QUENTIN-EN-YVELINES

Exascale m UnlverSIté.PARIS-SACLAY

W
NS

Thesis submitted to obtain the grade of

Doctor in Philosophy of
Université de Versailles-Saint-Quentin-en-Yvelines

Ecole doctorale de Sciences et Technologie de Versailles
Specialized in Computer Sciences

By Aurele MAHEO

Improving the Hybrid model MPIl+Threads through Applications,
Runtimes and Performance tools

Hosted by
Exascale Computing Research, Versailles, France

Defended on 25 of September 2015 in front of the following doctoral committee :

Pr. William JALBY Professor at the University of Versailles PhD Advisor
Pr. Raymond NAMYST Professor at the University of Bordeaux Referee

Pr. Allen MALONY Professor at the University of Oregon Referee

Pr. Gaél THOMAS Professor at Télécom SudParis Examiner
Pr. Michael KRAJECKI Professor at the University of Reims Examiner
Dr. Patrick CARRIBAULT Research Engineer, CEA, DAM Examiner

Dr. Marc PERACHE Research Engineer, CEA, DAM Examiner

UNIVERSITE DE §W
VERSAILLES ==

ST-QUENTIN-EN-YVELINES

Exascale O UNIVErsSIte PARIS-SACLAY

N

These présentée
pour obtenir le grade de

] Docteur de
I’Université de Versailles-Saint-Quentin-en-Yvelines

Ecole doctorale de Sciences et Technologie de Versailles
Spécialité : Informatique

Présentée par Aurele MAHEO

Amélioration du modele hybride MPI+Threads a travers les
applications, les supports d’exécution et outils d’analyse de
performance

Organisme d’accueil:
Exascale Computing Research, Versailles, France

Soutenue le 25 Septembre 2015 devant la commission d’examen composée de :

Pr. William JALBY Professeur a 'université de Versailles Directeur de thése
Pr. Raymond NAMYST Professeur a l'université de Bordeaux Rapporteur

Pr. Allen MALONY Professeur a l'université de 'Oregon Rapporteur

Pr. Gaél THOMAS Professeur a Télécom SudParis Examinateur

Pr. Michael KRAJECKI Professeur a I'Université de Reims Examinateur

Dr. Patrick CARRIBAULT Ingénieur de recherche, CEA,DAM Examinateur

Dr. Marc PERACHE Ingénieur de recherche, CEA,DAM Examinateur

Acknowledgements / Remerciements

Au moment de terminer ce manuscrit, il me semblait opportun de jeter un coup d’oeil dans le rétroviseur.
Je n’ai pas accompli cette thése seul et beaucoup de personnes de valeur ont apporté leur concours a
sa réalisation.

Je voudrais tout d’abord remercier M. Allen Malony et M. Raymond Namyst, en tant que rapporteurs
de ma thése et d’avoir accepté de juger mes travaux. Merci également a M. Gaél Thomas et M. Michael
Krajecki d’avoir bien voulu étre mes examinateurs.

Je voudrais ensuite exprimer ma gratitude au Professeur William Jalby pour avoir accepté d’étre
mon directeur de thése.

Mes pensées vont ensuite a mes tuteurs Marc Pérache et Patrick Carribault qui m’ont accompagné
pendant ces trois (ou quatre !) années. Je voudrais tout spécialement saluer Patrick qui m’a réellement
impressionné, tout d’abord en tant qu’enseignant pour ses qualités pédagogiques, puis comme en-
cadrant pour sa rigueur intellectuelle, qui a su m’inculquer ce fameux “esprit recherche”. Je remercie
chaleureusement Marc pour son encadrement également et ses qualités humaines. Merci a eux deux
d’avoir su étre a I'écoute quand je me suis senti dans I'impasse. Je m’estime chanceux d’avoir bénéficié
de leur encadrement.

| would like to thank Dr Sameer Shende for welcoming me in University or Oregon. I'm very excited
to continue this collaboration !

Je tiens ensuite a saluer I'équipe MPC, a commencer tout d’abord par les "anciens”. Merci a Jean-
Yves pour sa bonne humeur, merci de m’avoir légué 'appartement, perpétuant ainsi une tradition con-
sistant a garder le bien au sein de I'équipe MPC. Je crains malheureusement - et ce n’est pas faute
d’avoir essayé ! - qu’il ne restera pas dans I'équipe. Merci a Jean-Baptiste pour ses encouragements, a
Sébastien, et a Emmanuelle qui devrait également tenter I'aventure transatlantique, Camille et Antoine,
et sans oublier Jérdme, le Bordelais spécialiste des taches.

Salut a mes camarades du mihps et tout spécialement aux motivés (Nicolas, Zakaria, Caner) qui
ont décidé que 5 ans d’étude, c’était pas encore assez. Rappelons tout de méme que nous fimes les
patients zéro de ce beau Master, soyons fiers !

Je n‘oublie pas les autres exascaliens, Franck, Augustin mon voisin du 2.2, Vincent, Michel et
Iéquipe MAQAO.

J'adresse un salut particulier a Andres qui n’est certainement pas pour rien dans le choix de cette
aventure |

Je salue également les autres collégues ou compagnons d’infortune de these (hum) que jai pu
rencontrer lors de conférences, doctoriales ou autres. Il y eut de belles rencontres, des échanges
intéressants et des occasions de sortir un peu de mon quotidien.

Et pour sortir un peu du cadre de la thése, je n'oublie mes amis et proches qui ont réussi m’arracher
les yeux de I'écran (pas facile). Salut aux collegues plongeurs, c’est toujours agréable de pouvoir faire
quelques bulles entre deux chapitres de manuscrit | Je pense tout d’abord a Mathieu et Pierre, merci
pour ces cavales a droite et gauche, les balades & vélo (le bonheur est simple). Merci a celles et ceux
qui, sans étre présents physiqguement, n’en sont pas moins précieux pour moi. Clin d’oeil a mon vieux
camarade Samir, occupé & parcourir 'Outback australien puis la terre du milieu, mais jamais loin par
la pensée (et par Messenger :)) | Je lui souhaite de tout coeur de trouver son petit coin de paradis.
Peut-étre aura-t-on I'occasion d’explorer des territoires vierges et de palmer un peu parmi les coraux ?
Enfin, no worries !

Merci a Anais, une londonienne qui compte beaucoup pour moi, et avec qui j’ai toujours grand plaisir a
échanger. Merci pour son esprit positif et sa gentillesse.

Je tiens a dire a Timothée qu’il a été un ami treés précieux tout au long de ce parcours, pour son
soutien sans failles. Je crois que nous avons tous deux parfaitement intégré le concept de “reprise
d’études”. Je n'oublierai ni sa présence ni son amitié. J'espére le convaincre un jour d’aller chausser
des skis dans les Rocheuses !

Mes dernieres pensées vont mes proches, spécialement mes neveux et nieces, que j'ai toujours
plaisir a retrouver ! Je voudrais terminer par rendre hommage a mes parents pour leur soutien incon-
ditionnel et pour avoir su me donner de par leur exemple I'envie nécessaire de me dépasser et d’aller
aussi loin que possible.

Contents

Contents 5
9
[1_Résumé en francais| 13
L1 _Contextel. o o 13
1.1.1 Intr ON] e e e e e e e e e e e e 13
[1.1.2 Modele hybride MPI+OpenMP| 14
1.2 NtribUtIoNS| e e e e e e e e e e e e e 16
1.2.1 Supports executifs OpenMP pour les codes MPI+OpenMP| 16
1.2.2 FEtude des opeéerations collectives dans un contexte hybride +OpenMP| 18
1.2.3 HyBrlalsatlon de I’ogeranon collective IVIF’LAIIreduce| 19
1.2.4 erations collectives unifiees|o 21

2. nalyse des performances des codes +Open au niveau applicatit et du
| support d’execution] 23
[T.3 Conclusion etperspectives] 25
131 Travauxfuturs acourftermel 26
[1.3.2 Perspectives alongterme|. 27
[_Context 29
[2__Introduction on High Performance Computing| 31
2.1 High Performance Computing for numerical simulation| 31
1. Numerical simulation for physicmodels| 31
------------------ 32
........................ 33
......................... 33
.............................. 34
.................................... 35
------------- 36

2.2.5 From UMA to NUMA architectures|

[2.3 ChallengesofExascaleeral 38
2.4 Programming models|o 39
................................ 39
2.4.2 Partitioned Global Address Space| 40
2.4.3 ead-based models| 40
[2.4.4 Taskparallelism| 41
.................................. 41
[2.5.1 Adequation with underlying topology| 41
|2.§.2 Memory scalability of domain decomposition method using MPI model|. 42
.............................. 42
.9.4 Optimization of MPl for shared memory| 42
.................................. 43
2.7 Dissertation Outlingl e 44

ocus on hybrid model MPIl+OpenMP 45

3.1 Defining MPl+OpenMP programming model|. 45
-------------------- 45
. equation between programming model and hardware| 45

3.2.2 Reduce memory footprint| 46
.................................. 47
[B24 Drawbacksl 47

[3.3 Taxonomy of hybrid MPI+OpenMP model| 47
................................. 47
332 ThreadPlacement o v vttt e 51
[3.3.3 Overlapping between communications and computations| 51
@unnme I 52
...................................... 52
3.4.2 Interoperability between an enMP| 53
dentity bottlenecks in hybrid programming|. 53

3.5.1 Overhead of OpenMP runtimes| 53
3.5.2 Lack of parallelism and resourceusage| 55
omplexity of Hybrid MPl1+OpenMP codes| 55

3.5.4 Performance analysis of MPI+OpenMP codes|. 55
B.6_Thesis CONIIDURONS] - « « « « « v v v v e e e e e e e e e e e e 56
[3.6.1 Reduce overhead of OpenMP runtimes in the context of fine grain parallelism in |

[MPI+OpenMP model|. o 56
3.6.2 Stu ollective operations ina hybridcontext| 57
3.6.3 Standard performance analysis of Open codes| 58
[l_Contributions| 59
4 OpenMP runtimes for MPl+OpenMP applications 61
E Constralnts on 359 nMP runtime in ﬁxB rid IVIPI+OQenMP codes| 61
eed of efficient mechanisms for Open constructs| 61

62

62

63

64

64

[4.4.2 Application to thread activation and thread synchronization| 64
[4.43 Explore differenttree shapes| 67
[4474 Handletree shapesinadynamicway] 69
A5 Contribution: AJAplive T8 . . - - - - - -« e e e 69
m 69
4.5.2 Apply bypassing to thread activation and thread synchronization] 71
453 Tmplementation]. 73
454 Experimentalresults| 73
[4:6_ Discussion about hierarchicalwork stealing] 75
461 SUalegies fof WOrK SEANING] - - - - - -« o o oo e e e 77
4.6.2 Implementations of hierarchicalworkstealing] 78

A7 Conclusion] 80
|§ Study Collective operations in hybrid MPI+OpenMP context| 81
5.1 Tackle the problem of sequential time in Fine Grain pattern: Focus on MPI collectives| . . 81
clate Ork on optimizin collectives and reduction collectives|. 82

IScussion about ridization o Icollectives| 83

5.2.1 olit communicators withthreads|. 84
------------- 85
ontribution: Use Open threads to optimize reduce|.o 85

6

5.3.1 Hybrid Allreduce approach| 85
5.3.2 Rank Shifting| 86
...................................... 89
................................ 89
5.3.5 Microbenchmarks|, 90
5.3.6 Real World application|. 90
5.3.7 Conclusion and future work about optimizing MPI collectives| 92
------------------ 93
5.5 Contribution: Unified collectives in runfime]o ot 96
5.5.1 Case study of unitied barrier in hybrid MPI+OpenMP context| 97
|§§2 Implementation|. 98
....................................... 100

5.5.4 Conclusion and Future work about Unified Collectives
5.6 Conclusion of studying Collective operations in hybridcontext| 101
|6 Analyze performance of MPI+OpenMP applications at user level and runtime level| 103
6.1 calabillity of hi erformance codes| 103
6.2 verview of performance analysis infrastructure| 104
...................................... 105
[6.22 Measurementl. 105
B23 ANAIYSIE . - - o v e e 106
6.2.4 Existing performance tools for ridcodes| 106
6.3 Prerequisites In instrumentin +Open codes| 106
. elate ork about Open tools tor performance analysis| 107
B5 _OpenMP 10018 APT -« @ 107
6.5.1 Targeted OpenMP constructs and provided events| 108
2 W Worksl e 109
6.5.3 Implementations of OpenMP Tools| 112
[6.6 Contribution: Performance analysis of OpenMP applications and OpenMP runtimes using |
[OMPT] . . . e e 112
6.6.1 Implementation inside MPC framework| 113
6.6.2 uidin en oops tuningusing OMPT| 114
6.6.3 Estimate overhead of Open runtimes|.o o oo 116
B.7Conclusion] o 117
[7__Conclusion and Perspectives| 121
[71 Conifributions] 121
[7.2 Perspectives| e 122
[721 Towards heterogeneousnodes| 122
[72.2 _Shorfferm evolufions] v v v v v e e e e e e e 123
|7.2.3 Longterm perspectives| e 126
A H hical barrier inside MPCl 129
B Tmplementation of OpenMP Tools APl inside MPC| 131
BID 0 D ‘ 135

List of Figures

[1.1_Architectures ccNUMAI e 14
1.2 Taxonomie hybride MPI+OpenMP| o o 15
1.3 Activation hiérarchique desthreads|. 17
1.4 Vue matérielle de 'approche Masteronly| 19
1.5 reduce [= 1 20
1.6 Barriere unifiee MPI+OEenMP sansoptimisation| 21
1.7 Premiere etape de la barriere unifiee: synchronisation des equipes OpenMP| 22
1.8 Seconde etape de la barriere unifiee: appel de la barriere MPI[. 22
1.9 Troisieme etape de la barriere unifie: liberation des equipes OpenMP|. 22
1.10 Insertion des événements relatifs aux régions paralléles OpenMP a l'intérieur du support |
| dOpenMP|. e 24
|1.11 Insertion des eévevements relatifs aux taches implicites a 'intérieur du support dOpenMP| 24
21 Process for numerical simulafion] 32
[2.2__Evolution of performances from the first to the last machine in Top500 ranking|. 32
2.3 Current supercomputers|. 33
4 Evolution of processors following MOOTE'S W] oo oo oo 34
. emory NIerarCny| o e e e e e e e e e 35
[2.6_Distributed memory model Vs Shared memory model] 36
................................... 37
2.8 ccNUMA architecturel e 38
2.9 From the programming model to the language, from the language to the program| 39
[2.70 Domain decompositionofa2D meshwithMPI| 42
3.1 Memory representation of a pure MPI code and hybrid MPI+OpenMP code, using domain |
| decomposItion] 46
3.2 rl +OpenMP taxonomy|. 48
3.3 Execution timeline with Fine-Grain parallelism|. 49
3.4 Comparison between classic OpenMPand SPMD| 50
3.5 read placement of hybrid programming model| 52
3.6 verhead o en model 54
3.7 OpenMP overhead with Fine-Graincode|. 54
3.8 Targeted modes for reducing overhead of OpenMP| 56
3.9 Targeted modes for hybridizing MPl collectives| 57
[3.70 Targeted modes for unified collectives| 58
4.1 Centralized approach for thread activation| 62
4.2 Hierarchicalthread acivation] v v o v i e e e e e e 65
4.3 Hierarchical thread activation - Iststagef. 66

EE Elerarcﬁlca! tﬁrea§ activation - 2n§ sta§e| 66
§§ Elerarcﬁlca! tﬁrea§ activation - §r§ sta§e| 67
§§ Elerarcﬁlca! tﬁrea§ activation - Etﬁ sta§e| 67

4.7 Differentiree shapes|. 68
4.8 Logicview of @ 128-COre NOJE] v o v v vt e e e e 70

4.9 Adaptivetree| e e 71
4.10 UgenMP regions with differentthreads| 72
411 Adaptive treewith32threads| 72
412 AJaphive 66 WD BIATEAGS] - - - - - - « « e e e e e e e e 73
aptive tree - Parallel region overnead on 32-corenode| 74
4.14 Adaptive tree - Parallel region overnead on 128-corenode|. 75
. aptive tree - Barrier overhead on 32-corenodef. oL, 76
. aptive tree - Barrier overhead on -Corenodel e 77
217 Example of implementation of compute index for work stealingl 79
4.18 Apply Bypassing algorithm to the Work Stealing with compute index algorithm]. 79
5.1 Hardware view of Master approach|., 82
5.2 Hybrid MPI_Allreducel e 86
. orithm for Hybri Allreduce]o 87
5.4 Different behavior of the reduction following ordering of the communicator] 88
. an Ifting o rl I_Allreduce| o 88
5.6 Algorithm for Ran iftingl e 89
[6.7 IMB - Hybrid MPI_Allreduce with MPC (4 128-core nodes, 1 MPI task per node} 90
[5.8 TMB - Hybrid MPI_Allreduce w/ and w/out rank shifting on MPC (4 128-core nodes, 1 task |
[PErNOde) o e e 91
9 IMB - Hybrid MPI_Allreduce with IntelMPI (4 8-core nodes, 1 MPI task per node)| 91
5.10 - Comparison between , BullxMPI, Inte , and the best hybrid combination (4
| 128-core nodes, 1 MPltaskpernode)l 92
. - Comparison between , Inte , Bullx , and best hybrid combination for
| MPC and IntelMPI (4 128-core nodes, 1taskpernode) 93
5.1 - Comparison between , Inte , BullxMPI, and best hybrid combination for |
| MPC and IntelMPI (8 16-core nodes, 1taskpernode)| 94
. ombination of MPl'and OpenMP usedas SPMD| 95
............................. 96
5.15 Global MPI+OpenMP barrier without optimization|. 97
-------------------- 99
5.17 Second stage of unified barrier: Call MPl barrier 99
5.18 Third stage of unified barrier: Release OpenMP teams|. 99
. omparison between hybrid barrier and optimized hybrid barrier implemented In
| 128-core node)] 100
. Imeline comparing execution of regular and optimized unified barrier, with the qifferent
[Stages| 101
6.1 Infrastructure of performance analysis| 104
6.2 Correspondin events to Open constructs|, 108
........................ 109
6.4 Insert event callbacks related to implicit tasks inside Open runtimef 109
[6.5 Tnteraction between OMPT, runtime and tool]. o o v v i 110
6.6 Initialization of OMPT] e 110
[6.7 Frame managementwith OMPT| 112
6.8 Parallelize the loop of the absorption functionin MCcode| 112
6.9 Implemented and not implemente events Inside | 113
[6.10 MC compiled with MPC - ompare performances of static and dynamic scheduled foops] . 114
6.11 compiled with Intel Open - compare performances of static and dynamic sched-
[uledloops|. 114
|6.1 2 !une loops of the absorption function depending on the chunk size, with static scheduling, |
running with MPC - with the help to OMPTand TAU| 116
|§’|§ !une !oo@s of tﬁe a§sor§tlon functlon §e§en§|n§ on the chunk size, with static scﬁeaullng, |
running with Intel OpenMP - with the help to and TAU[.. ... 0L 117
|6.1 4 Tune loops of the absorption function depending on chunk size, with dynamic scheduling, |
running wit - with the help to and TAU| 118

10

[6.15 Tune loops of the absorption function depending on chunk size, with dynamic scheduling, |

running with Inte en - with the help to and AUl 119
6.16 Deduce overhead of Open runtime based on implicittaskl 120
[7.1Non Uniform Input Output Access architecture gathering a NUMA node and a hardware |

accelerator, communicating through a P Xpressbus| 123

.2 lopology of Xeon Phiarchitecture| 124
[73_TIncrease epth of e ree for XEON PRI o o o oo e 125
[7.4Generalization of the unified barrier withn modefs| 127

.3 Insertion o0 events Inside implementation of Open oops - ending loops|. 134

11

12

Chapter 1

Résumeé en francais

Cette partie présente un résumé en francais de la these, et en reprend les éléments clés. Le lecteur
voulant approfondir un sujet particulier est invité a consulter les chapitres correspondants.

1.1 Contexte

1.1.1 Introduction

Le domaine du calcul haute performance s’adresse aux machines massivement paralléles utilisées pour
les applications ayant trait a la simulation numérique. Cette discipline et les moyens de calcul associés
sont apparus lors de la Seconde Guerre Mondiale, avec notamment le fameux projet Manhattan, dans
le but de concevoir la premiére bombe atomique. De nos jours, de nombreux projets d’envergure sont
menés a 'aide de la simulation numérique, dont voici quelques exemples:

e Dans le domaine de I'astrophysique, DEUS (Dark Energy Universe Simulation) vise a estimer
I'impact de I'énergie noire dans l'univers.

e Le projet The Human Brain Project est une initiative européenne visant a simuler le cerveau hu-
main, en modélisant ses processus biologiques.

Cependant, ces applications requiérent des capacités de calcul conséquentes. C’est ainsi que les
supercalculateurs ont émergé dans le but d’aider les scientifiques a mener a bien leurs simulations.
Les premiers supercalculateurs sont apparus dans les années 1960, avec le CDC-6600. Dans les
années 1970, Seymour Cray fonde Cray Research et une nouvelle famille d’ordinateurs paralléles,
en premier lieu le Cray-1. La puissance d’un superordinateur est estimé par le nombre de calculs
en virgule flottante qu’il est capable d’effectuer par seconde (FLOP). Si les premiéres machines par-
alleles développaient seulement quelques mégaflops, en 2001, la machine Earth Simulator affichait 40
téraflops. Aujourd’hui, les supercalculateurs sont composés d’armoires reliées en réseau rapide, et sont
capables de développer une puissance de calcul de I'ordre du pétaflop (10'° opérations par seconde).
Cependant, la communauté scientifique a aujourd’hui les yeux rivés sur I'Exascale (10'® opérations par
seconde).

Les processeurs actuels sont équipés de plusieurs coeurs de calcul, obligeant les programmeurs
a rendre leurs codes paralleles. De plus, les processeurs graphiques (GPUs), a l'origine destinés a
l'interfagage entre le systeme et I'utilisateur, puis dédiés au rendu graphique dans le contexte des jeux
vidéos, sont désormais utilisés pour effectuer du calcul. Ces tendances ont influencé I'évolution des
supercalculateurs. Ainsi, originellement composés de systéemes a mémoire distribuée, les machines
actuelles integrent de plus en plus d’'unités de calcul a l'intérieur d’un noeud physique.

Les architectures paralleles se sont également complexifiées: dans les systemes dits UMA (Uniform
Memory Access), les unités de calcul partagent un méme bus pour accéder a la mémoire centrale. Mais

13

" Noeud NUMAO) Noeud NUMA 1
CPUO

o I
coeur (| coeur

CPU 1

. -

Mémoire

o
=
5]
£
Ko}
=

coeur|| coeur|

" Noeud NUMA 2 Noeud NUMA 3

CPU 2 CPU 3

coeur coeur || coeur
.

Figure 1.1: Architectures ccNUMA

Mémoire
Mémoire

la multiplication des coeurs a conduit a saturer la bande passante disponible. Ceci a obligé les con-
structeurs a concevoir des systemes plus complexes, tels les architectures NUMA (figure [1.1). Dans
ce type d’architectures, on définit comme bloc de base I'ensemble constitué d’'un processeur relié a un
banc mémoire local: on appelle cet ensemble un noeud NUMA. La localité des données constitue une
caractéristique importante pour ce type d’architecture, et peut fortement influencer les performances
des applications. En effet, la latence d’accés a une donnée peut étre tres variable selon que cette
donnée se situe dans un banc mémoire local ou alors dans un banc mémoire appartenant a un noeud
NUMA distant. Ce phénomeéne est appelé I'effet NUMA.

Pour programmer ces machines et les exploiter au mieux, plusieurs modeles de programmation ont
été congus, et peuvent étre répartis entre plusieurs familles:

e Modéles a passage de messages, tel que MPI (Message Passing Interface)
e PGAS (Partitioned Global Address Space)

e Modéles a base de threads: Posix Threads, OpenMP

e Modéles a base de taches: Cilk

MPI est le modele principalement utilisé pour paralléliser les applications a travers les clusters de
calcul. Cependant, avec I'évolution des supercalculateurs et la diminution de la quantité de mémoire
disponible par coeur, la librairie MPI montre de plus en plus de limites concernant le passage a I'échelle
des codes de calcul.

C’est pourquoi les scientifiques cherchent désormais a coupler MPI avec un modéle adapté aux ma-
chines a mémoire partagée. OpenMP, modéle a base de threads, est un choix privilégié car considéré
comme un standard. De plus, il supporte les langages C, C++ et Fortran. Cependant, combiner MPI et
OpenMP, modéles munis de paradigmes et de sémantiques différents, est loin d’étre une tache aisée.

1.1.2 Modéele hybride MPI+OpenMP
Nous présentons ainsi une taxonomie décrivant les différentes manieres de combiner ces deux modéles,

a travers deux principaux aspects: la granularité du code et le placement (figure[1.2).

Au niveau du code, différentes granularités sont possibles s’agissant du mélange de MPI et de
OpenMP:

14

¥
MPI pur Hybride (OpenMP pur ‘l

M>0 M=0
Ti=0,Ci=1 MP1+OpenMP To>0,Co=P
l | &
== [Granularité du code) -—-— = - —Q’Iacement de threads)— - - -

L]
Approche a gros grain

Approche a grain fin

Parallélisme au niveau des
boucles

Masteronly ‘

Fully Hybrid Mixed Hybrid

Une seule région paralléle

M>1
Ti>0,Ci>0

M=1
Ti>0,Ci=P

Appels MPI en dehors des
régions paralléles OpenMP

|
|
|
|
|
|
|
I)
|
|
|
|
|
|
|

I
|
]
1
1
1
I
|
Communications Communications |
1
1
1
I
|
]
)

Simple Hybrid Oversubscribed
Process-to-process Thread-to-thread pte 1y Mixed
Communications MPI réparties M>1
Communications MPI encapsulées entre les threads OpenMP ar M>1
dans des constructions critiques Ti>0, PR P Ti>0 o s>p
L Requiert MPI_THREAD_MULTIPLE - ! I«:;
MPI + SPMD OpenMP
Chaque thread OpenMP Alternatmgj Fully Mixed
calcule son sous-domaine
M>1 M>1
e e e e e e e e e e e e | |Sii=jalorsTi>o,Ci=P udese
P - Nombre de coeurs par noeud Autrement Ti > 0, Ci = 1 Ti>0,Ci=P

M - Nombre de taches MPI par noeud |
Ti - Nombre de threads OpenMP pour le iéme processus I
Ci - Nombre de coeurs alloués pour le ieme processus

— e e mm e Em o e o e o o = e = =

Figure 1.2: Taxonomie hybride MP1+OpenMP

Parallélisme a grain fin. Ce mode consiste, a partir d’'un code MPI, a paralléliser des boucles de cal-
cul a l'aide de la construction #pragma omp parallel for. On peut décomposer le temps d’exécution
d’un code hybride a grain fin a l'aide de I'équation suivante:

Tcompute
— 5 1.1
= (1.1)

ou Ttot, Tseq, Tcomm, Tcompute et P sont respectivement le temps total d’exécution, la partie
séquentielle, le temps passé dans les communications, le temps passé dans le calcul et le nombre de
threads OpenMP.

Plusieurs inconvénients sont a noter concernant cette approche. Tout d’abord, quand des boucles
paralléles sont exécutées, deux niveaux de parallélisme sont imbriqués: I'un avec MPI et le second
avec OpenMP. Mais en dehors des boucles paralléles, nous perdons un niveau de parallélisme. De
plus, les coeurs utilisés par les threads OpenMP deviennent alors inactifs.

Troisiemement, le support OpenMP est susceptible d’étre accédé de maniéere trés fréquente dans
ce mode, car OpenMP est utilisé uniquement pour paralléliser les boucles, structures potentiellement
nombreuses dans le code.

Ttot = T'seq + Tcomm +

Parallélisme a gros grain. Dans ce mode, on ouvre une ou plusieurs régions paralléles OpenMP.
Cette approche est susceptible d’offrir plus de parallélisme avec OpenMP. Cependant, il est possible
que ces régions paralléles contiennent des appels a des primitives MPI, ce qui reviendrait alors pour
une fonction MPI donnée, a faire un appel par thread OpenMP de chaque tache MPI. Pour résoudre
ce probleme, deux variantes du parallélisme a gros grain sont possibles: Process-to-process commu-
nications et Thread-to-thread communications. Avec la variante Process-to-process, on s’assure qu’un
appel a une fonction MPI donnée est effectuée par tache MPI a I'aide de constructions critiques telles

15

que #pragma omp single OU #pragma omp critical. Dans la variante Thread-to-thread, on parallélise
les communications en utilisant plusieurs threads. Et ce faisant, il est alors possible de recouvrir les
communications MPI avec du calcul.

Le placement décrit différentes manieres de répartir les taches MPI et les threads OpenMP au sein
d’'un noeud de calcul. Le premier mode, Fully hybrid, utilise MPI pour les communications inter-noeuds
et remplit les coeurs du noeud de calcul avec des threads OpenMP. Avec I'approche Mixed Hybrid,
plusieurs taches MPI sont lancées par noeud de calcul. Il est possible de surcharger les coeurs avec
des taches MPI ou des threads OpenMP (c’est le mode Oversubsribed Mixed).

Suite a I'étude de la taxonomie du modéle hybride MPI+OpenMP, nous présentons différents problemes
freinant le passage a I'échelle des codes MPI+OpenMP:

e Fréquence d’acces a la couche OpenMP dans le mode a grain fin

e Sous-utilisation des coeurs de calcul en dehors des constructions OpenMP, toujours concernant
le parallélisme a grain fin

e Complexité des codes MPI1+OpenMP dans une approche a gros grain

e Nécessité de pouvoir analyser les performances des codes hybrides pour permettre le passage a
I'échelle

1.2 Contributions

1.2.1 Supports exécutifs OpenMP pour les codes MPI+OpenMP

Tout d’abord, considérant le modéle OpenMP comme étant situé en haut de la pile logicielle, il est
nécessaire d’avoir de bonnes performances au niveau du support exécutif d’OpenMP. Ainsi, nous
nous concentrons sur le surco(t induit par les entrées et sorties dans le moteur d’exécution depuis
I'application, a savoir lorsqu’on entre et sort d’'une région parallele, respectivement.

Ceci nous amene a nous intéresser a I'optimisation des support exécutifs OpenMP pour les codes
hybrides MPI+OpenMP et en environnement NUMA. |l s’agit d’obtenir un surco(t minimal d’'une part
dans un contexte ou les coeurs de calcul sont partagés entre les taches MPI et les threads OpenMP,
donc I'espace pour chaque équipe OpenMP peut varier. D’autre part, le parallélisme hiérarchigue induit
par les systemes NUMA doit étre pris en compte, notamment les effets NUMA associés.

Nous pouvons illustrer 'impact des effets NUMA sur le surcolt d’un support exécutif OpenMP en
prenant 'exemple de I'activation des threads lors de I'ouverture d’'une région paralléle. Dans une
implémentation dite centralisée, le thread Master doit réveiller lui-méme tous les autres threads. Si
le colt pour activer un thread est minime si celui-ci se trouve sur le méme socket que le thread Master,
il devient important si le thread a réveiller se situe sur un socket distant. Il est donc important d’utiliser
des mécanismes adaptés en environnement NUMA.

Cependant, plusieurs contributions ont proposé des optimisations concernant les supports exécutifs
OpenMP, suivant plusieurs directions:

e Implémentation des threads OpenMP: Pour démarrer leur exécution rapidement ou effectuer
un ordonnancement efficace, une implémentation Iégere des threads peut constituer une piste
intéressante. Par exemple, une contribution introduit le concept de microVP, implémenté dans le
support MPC. Ces microVPs ordonnancent des threads Iégers appelés microthreads, utilisant la
pile du microVP.

e Placement hiérarchique des threads: ForestGOMP propose une représentation hiérarchique
des threads, via son outils BubbleSched. Les threads appartenant a une équipe OpenMP sont
regroupés au sein d’'une méme bulle, et la bulle est éclatée suivant la topologie NUMA.

16

o Affinité mémoire: Le placement des threads peut évoluer durant I'exécution d’une application
parallele. Cependant, il est important de s’intéresser aux interactions entre un thread et les
données accédées par ce thread (lecture ou écriture). Il peut alors s’avérer pertinent de migrer
les données afin de les garder le plus proche possible du thread en question.

Parmi ces différentes pistes, nous nous sommes concentrés sur comment intégrer la topologie
NUMA dans la représentation des threads.

Noeud NUMA a 32 coeurs thread 0 .
Racine

thread 0 . thread 8 thread 24>

Matériel

Figure 1.3: Activation hiérarchique des threads

Un travail préliminaire a donc consisté a implémenter une représentation hiérarchique des threads
a l'aide d'un arbre équilibré, avec une racine, des noeuds et des feuilles (figure [1.3). Les threads sont
répartis sur I'arbre. Cette structure permet au thread Master de déléguer le travail d’activation des
threads.

Cependant, pour un nombre réduit de threads OpenMP, I'arbre topologique ne convient peut-étre
pas, et un arbre plat (avec une racine et une feuille par thread) est sans doute la forme d’arbre la plus
adaptée. A contrario, pour un grand nombre de threads, un arbre profond tel un arbre binaire permet
de minimiser la contention diie a 'activation des threads a chaque étage.

Arbre adaptatif

Notre premiere contribution consiste en un arbre adaptatif, dont la forme change au cours de I'exécution
de 'application. Nous construisons un arbre topologique, et I'utilisons en fonction du nombre de threads
demandé. Le principe est le suivant: nous utilisons un sous-arbre de I'arbre topologique si le nombre
de threads demandés peut étre contenu dans ce sous-arbre. Dans ce cas, nous déplagons la racine
initialement placée en haut de I'arbre topologique a la racine du sous-arbre.

Le mécanisme d’arbre adaptatif est transparent pour les implémentations des constructions OpenMP
telles que I'activation et la synchronisation des threads. Celles-ci prennent simplement en compte la
racine retournée par I'algorithme de court-circuit.

Expérimentations

Larbre adaptatif a été implémenté au sein de la version 2.5.0 du framework MPC. La forme initiale de
I'arbre suit la topologie matérielle, a I'aide de I'outil HWLOC (HardWare LOCality).

17

Algorithm 1 Bypassing

Require: tree, numthreads

: node < tree.root

: while node.typechildren # LEAF and numthreads < node.children|0].mazindex do
node < node.children|0]

: end while

. tree.newroot < node

: return tree.newroot

oo s N =

Cette approche a été évaluée sur deux configurations matérielles: 1 noeud composé de 4 pro-
cesseurs Nehalem EX X7550 a 2 GHz (Tera-100), totalisant 32 coeurs de calcul 1 second noeud Bull
Coherency Switch contenant 16 processeurs Intel Xeon E7-4800, avec un total de 128 coeurs de calcul.

Nous avons comparé le surcolt du support OpenMP de MPC utilisant I'approche adaptative, tout
d’abord par rapport a d’autres formes d’arbres dans le méme support, puis par rapport aux supports
OpenMP des compilateurs GCC 4.4.4 et ICC 12.1. Ces comparaisons ont été effectuées sur les deux
configurations matérielles présentées, et en se focalisant sur I'activation des threads dans une région
parallele et leur synchronisation dans le cas d’une barriere OpenMP.

Nous nous sommes servis de la suite de microbenchmarks EPCC pour estimer le surcoit du sup-
port MPC.

Les expérimentations décrites suivantes ont été menées sur le noeud large contenant 128 coeurs.

Nous montrons tout d’abord que I'arbre adaptatif permet un surcodt inférieur aux autres formes
d’arbres (4-32, 4-4-8), concernant I'activation des threads, sur une plage de 1 a 128 threads lancés. La
forme d’arbre 4-32, méme si elle offre de bonnes performances jusqu’a 8 threads, devient inefficace
au-dela car les threads ne peuvent plus étre contenus dans un seul socket, et cette forme d’arbre ne
respecte pas la topologie. La forme d’arbre 4-4-8 fournit de bonnes performances sur toute la plage
de threads car elle suit la topologie matérielle, mais demeure moins compétitive que I'arbre adaptatif
jusqu’a 8 threads.

Toujours avec la méme configuration matérielle, nous obtenons de bons résultats par rapport a
d’autres supports OpenMP. Les performances obtenues avec la librairie ioGOMP de GCC 4.4.4 sont
largement en dega de celles de MPC et de ICC 12.1. Sur 128 threads, nous obtenons un surco(t de
8 microsecondes environ avec MPC et I'arbre adaptatif activé, contre 39 microsecondes environ avec
ICC 12.1.

1.2.2 Etude des opérations collectives dans un contexte hybride MPl+OpenMP

D’autres goulets d’étranglements que le surcolt des supports exécutifs OpenMP ont été identifiés,
freinant le passage a I'échelle des codes MPI+OpenMP, telles que le ratio des parties séquentielle
et communication dans le temps total d’exécution, ou la sous-utilisation des coeurs de libre en mode
Masterlonly (figure[1.4).

Ces aspects nous ont conduit a nous intéresser aux opérations collectives MPI, et notamment les
opérations relatives aux réductions. Loptimisation des opérations collectives MPI fait I'objet d’intenses
recherches, desquelles nous avons dégagé deux axes: I'utilisation de la mémoire partagée et I'exploitation
de la topologie matérielle et réseau sous-jacents.

De nombreuses contributions s’appuient sur la mémoire partagée pour optimiser les opérations col-
lectives. Lune d’entre elles se concentre les opérations de réduction et présente deux algorithmes:
Recursive Halving and Doubling, et Binary Blocks, décomposant une réduction en deux opérations:
Reduce_Scatter et Allgather. Le principe pour ces deux algorithmes est de découper les vecteurs
de départ récursivement, et a chaque étape, une moitié est envoyée a la tache MPI voisine. Une autre

18

A l'intérieur des régions OpenMP En-dehors des régions OpenMP

a0 a8 B @8R

socket #0 socket #1 socket #0 socket #1
. - . . etécne)

socket #2 socket #3

~
=
~
&

e thread OpenMP

| l . coeur actif
mcueur libre

o~
~)
&~
]

socket #2 socket #3

~]
&
~
~)

Figure 1.4: Vue matérielle de I'approche Masteronly

contribution propose deux variantes pour paralléliser 'opération MPI_Allreduce. Dans la premiére vari-
ante, chaque processus MPI divise son espace mémoire en autant de sous-blocs que de processus,
et calcule une réduction locale, stockée dans le premier bloc mémoire. La seconde variante permet
d’optimiser le trafic mémoire: les réductions locales sont stockées suivant une approche cyclique.

Exploiter la topologie réseau et matérielle est une autre maniére d’optimiser les opérations col-
lectives. Il peut par exemple s’agir de concevoir des algorithmes ayant connaissance de la topologie
réseau, en utilisant des sous-communicateurs. Par ailleurs, le framework HierKNEM inclut des algo-
rithmes permettant de séparer les communications inter-noeud des communications intra-noeud.

1.2.3 Hybridisation de I’opération collective MPI_Allreduce

Notre seconde contribution se concentre sur I'opération collective Allreduce et consiste a découper les
vecteurs de I'opération Allreduce en plusieurs blocs, a I'aide des coeurs de libres. Ainsi, chaque thread
OpenMP a en charge d'effectuer I'opération sur un sous-ensemble du vecteur de départ (figure[1.5).

La conséquence principale de 'algorithme consiste a dupliquer les appels au support exécutif de
MPI, mais le motif de communication demeure le méme pour tous les appels: tous les rangs MPI ef-
fectuent une réduction vers un méme rang MPI destination, la tache MPI destination effectue la rédution,
puis diffuse le résultat vers toutes les autres taches. La raison est que les threads OpenMP possedent
une copie du méme communicateur d’entrée, avec un ordre des taches MPI identiques. Ceci peut
générer de la contention et du déséquilibre.

Pour pallier a ce défaut, nous proposons une techniqgue complémentaire, appelée Rank Shifting.
Celle-ci consiste a donner un réle différent a chaque thread OpenMP, en effectuant un décalage au
niveau du sous-communicateur. Par exemple, le thread de rank 0 aura une copie identique du com-
municateur de départ. En revanche, le thread de rang 1 fera un décalage de telle sorte que le premier
rang MPI dans son sous-communicateur sera celui de rang 1, et ainsi de suite pour les autres threads
OpenMP. Dans le cas ou il y a plus de threads que de tadches MPI et que nous arrivons au dernier rang
MPI, nous effectuons une rotation de sorte a revenir a la premiére tache MPI. Cette technique permet
donc de rééquilibrer les communications entre taches MPI.

Les algorithmes présentés ont été implémentés dans un wrapper, qui capture les appels a MPI_Allreduce
via l'interface PMPI. Ce wrapper est compilé en tant que librairie partagée et préchargé a l'aide de la
variable d’environnement LD_PRELOAD, lorsque I'on exécute une application. Grace a cette approche,

19

MPI_Allreduce séquentiel MPI_Allreduce hybride

Vecteur du
thread de
d e - e
Vecteurs — —
Vecteur du — — — —
thread o e 7 ,/
de rang 0 L ~ |~ e
threadrang #0_ #3
Rang MPI g * " Rang MPI Rang MPI 4" " * Rang MPI § 77"
#0 #1 2 #3

Rang MPI #2

e @0 | 80 a0 Matériel
oG 0O 6O @a

Noeud 0 Noeud 1 Noeud 0

. coeur occupé

[:] coeur inactif

Figure 1.5: MPI_Allreduce hybride

notre implémentation fonctionne avec n’importe quel support exécutif MPI et OpenMP. Cependant,
I'implémentation doit fournir le support MPI_THREAD_MULTIPLE, du fait que I'on effectue des appels con-
currents a la couche MPI.

Expérimentations

Nous avons dans un premier temps évalué I'hybridisation de la collective MPI_Allreduce sur la suite Intel
MPI Benchmarks 3.2, sur quatre noeud large contenant 128 coeurs de calculs, avec une tache MPI par
noeud.

Une premiére expérimentation a consisté a observer le gain de 'hybridisation sur le framework MPC.
Nous obtenons la plus grosse accélération en utilisant 8 threads pour I'hybridisation (gain de 2,57), sur
une taille de message de 16Mo. La méthode du Rank Shifting sur cette hybridisation apporte une
accélération additionnelle de 18,6%. En testant I'hybridisation de la collective avec le support IntelMPI,
nous obtenons une accélération maximale de 2,55 avec 90 threads, par rapport aux résultats sans hy-
bridisation avec IntelMPI.

Nous avons dans un second temps évalué notre approche avec une application hybride MPI+OpenMP:
MC. Il s’agit d’'un code simulatant des déplacements aléatoires de particules, basé sur des méthodes
de Monte Carlo. OpenMP est utilisé pour paralléliser les boucles de calcul. Les particules se déplacent
sur un domaine unidimensionnel, répliqué sur chaque tache MPI. Lapplication contient une opération
collective MPI_Allreduce, servant a mettre a jour I'état du maillage a chaque itération de la simulation.

Nous avons tout d’abord mesuré le temps d’exécution de MC avec différents supports exécutifs:
MPC, IntelMPI et BullxMPI. Les noeuds de calcul sont intégralement remplis quand les boucles OpenMP
sont exécutés. Nous obtenons les meilleures performances avec BullxMPI.

Nous avons ensuite mesuré les temps d’exécution de MC avec les mémes supports exécutifs, mais
en appliquant I'hybridisation de MPI_Allreduce. Lhybridisation n’est pas applicable avec BullxMPI, car
celui-ci ne supporte pas le niveau de multithreading MPI_THREAD_MULTIPLE. Pour MPC, nous obtenons
la meilleure performance avec 8 threads, performance encore améliorée en appliquant la méthode du
Rank Shifting (accélération totale de 5.29 par rapport a MPC sans hybridisation). Avec IntelMPI, la

20

int main(int argc, char sxargv)

MPI_Init(&argc, &argv);

#pragma omp parallel

/+ Code to be executed x/
#pragma omp barrier
#pragma omp single

MPI_Barrier () ;

/+ Code to be executed x/

}

MPI_Finalize () ;

i

Figure 1.6: Barriere unifiée MP1+OpenMP sans optimisation

meilleure hybridisation est obtenue avec 9 threads.

1.2.4 Opérations collectives unifiées

Nous revenons au parallélisme a gros grain dans le contexte du modeéle hybride, et soulignons la com-
plexité de mise en oeuvre de cette approche. OpenMP peut étre utilisé dans une optique SPMD (Single
Program Multiple Data), ou a mémoire distribuée. A chague thread OpenMP est assigné un sous-
domaine a calculer. Il est possible d’effectuer des opérations collectives telles que diffusion ou réduction
en utilisant OpenMP avec ce mode-ci. Si I'on se replace dans un contexte hybride, et couplons MPI
avec OpenMP dans un mode SPMD, nous pouvons réfléchir aux moyens de concevoir des opérations
collectives impliquant aussi bien des taches MPI que des threads OpenMP.

Le fait de concevoir des collective mettant en jeu aussi bien des tdches MPI que des threads
OpenMP implique une forte coopération entre le support MPI et celui de OpenMP.

Nous motivons notre approche a I'aide d’une preuve de concept, qui est une barriere unifiée, syn-
chronisant toutes les taches MPI et tous les threads de toutes les équipes OpenMP.

Nous commengons par décrire une implémentation de la barriére unifiée a I'aide de constructions
existantes MPI et OpenMP (figure [1.6). Pour synchroniser 'ensemble des taches MPI et des threads
OpenMP, une premiére barriere OpenMP est nécessaire, puis un appel a MPI_Barrier() et une seconde
barriere OpenMP. Cependant, en examinant I'exécution de cette barriére, nous constatons que des
optimisations sont possibles. Pour une meilleure compréhension, nous allons décomposer chaque
barriere OpenMP en deux semi-barrieres: la premiere semi-barriere se charge de synchroniser les
threads, et la seconde semi-barriere libére les threads afin qu’ils continuent leur exécution.

A la fin de la premiére barriére OpenMP, un seul thread exécute la barriere MPI alors que les autres
threads continuent leur exécution et commencent a exécuter la seconde barriere OpenMP. lIs se retrou-
vent donc a la fin de la semi-barriére a attendre le dernier thread.

Notre contribution concernant cette partie consiste donc a proposer une version optimisée de la
barriére unifiée, proposant un appel a une seule fonction, et implémentée au niveau du support exécutif.
Dans cette version optimisée, nous effectuons une premiére semi-barriére OpenMP (figure [1.7). Puis
le dernier thread arrivé appelle une barriére MPI (figure [1.8), puis nous effectuons la seconde semi-
barriere OpenMP (figure [1.9). Cette conception fonctionne avec toute implémentation de la barriére
MPI.

Nous avons implémenté une version optimisée de cette barriere unifiée dans le framework MPC,
cette librairie offrant une vision commune entre les taches MPI et les threads OpenMP. Lidée est

21

MPI_Barrier()

Equipe
OpenMP 1

Barrieres locales Equipe OpenMP 2

Figure 1.7: Premiere étape de la barriere unifiée: synchronisation des équipes OpenMP

MPI_Barrier()

E%Z'W \ WBarriéres |oca|es% Equipe OperjMPZ
AVAYAVARAVAVATA

Figure 1.8: Seconde étape de la barriére unifiée: appel de la barriere MPI

MPI_Barrier()

Equipe OpenMP 2

llfquipe OpenMP Barriéres locales

Figure 1.9: Troisieme étape de la barriére unifiée: libération des équipes OpenMP

d’effectuer cette opération en un seul appel.

22

Expérimentations

Pour valider notre approche, nous avons comparé les performances de notre barriere unifiée optimisée
avec une implémentation classique d’'une barriere unifiée. Pour ce faire, nous avons modifié la suite de
microbenchmarks EPCC, et avons effectué des expérimentations sur un noeud large BCS contenant
128 coeurs de calcul, en testant différents ratios de taches MPI et de threads OpenMP, de telle sorte
de remplir le noeud de calcul.

Avec la barriére unifiée optimisée, nous obtenons la meilleure accélération avec une configuration
avec 2 taches MPI et 64 threads OpenMP par tache. Nous expliquons ce résultat du fait que notre
version optimisée économise un appel a une barriere OpenMP entiére, ce qui a pour conséquence
de gagner un temps significatif avec un grand nombre de threads. En revanche, nous avons une
accélération négligeable avec 64 taches MPI et 2 threads OpenMP par équipe. Nous estimons qu’avec
cette configuration, nous passons la majorité du temps dans la barriere MPI, et 'optimisation sur les
barrieres OpenMP a donc peu d’incidence sur le temps total d’exécution.

1.2.5 Analyse des performances des codes MPI+OpenMP au niveau applicatif
et du support d’exécution

Dans la derniére partie, nous nous intéressons aux divers problémes susceptibles de freiner les per-
formances des codes MPI+OpenMP et empécher leur passage a I'échelle. Identifier ces goulets
d’étranglement est une tache complexe pour des codes s’exécutant sur des milliers, voire des millions
de coeurs de calcul. Cette tache est complexifiée par le fait que ces problemes peuvent provenir d’une
mauvaise conception de I'application ou bien du support d’exécution, a fortiori lorsque deux supports
d’exécution cohabitent, dans le cadre des codes hybrides. Des outils deviennent alors nécessaires afin
d’identifier ces problemes. Nous introduisons dans cette derniére partie ce qui a trait a I'analyse de
performances des applications paralléles.

Lanalyse de performance des applications paralléles peut étre décomposée en trois étapes:

e Instrumentation: Une premiére étape consiste a instrumenter I'application a analyser, a savoir
insérer des sondes soit dans le code source, soit dans I'exécutable ou bien encore dans le support
d’exécution.

e Mesure: La seconde étape permet de mesurer différentes parties de I'application cible a 'aide de
l'instrumentation effectuée. Plusieurs techniques sont répandues lors de cette étape, telles que
le profilage, permettant par exemple de mesurer le temps passé dans des fonctions, ou bien le
tragage, consistant a suivre I'exécution de différentes parties de I'application au fil du temps.

e Analyse: La derniére étape permet d’effectuer une analyse des faiblesses de I'application a partir
des mesures effectuées, et comprend des fonctionnalités permettant de visualiser les mesures
effectuées.

Nous nous focalisons maintenant sur I'étape d’instrumentation et examinons de quoi nous avons
besoin pour instrumenter des codes MPI1+OpenMP. Des outils d’'instrumentation existent pour les codes
MPI tels que PMPI.

On trouve diverses contributions proposant des langages pour instrumenter les codes OpenMP:
OpenMP Pragma And Region Instrumentor (OPARI), un compilateur source a source permettant de lo-
caliser les directives OpenMP dans le code source et d’insérer des fonction a I'aide de I'interface POMP.
OpenMP Runtime API (ou Collector API), congu au sein du compilateur OpenUH, permet d’'insérer des
événements dans un support d’exécution OpenMP. ORA est notamment supporté par I'outil TAU.

Enfin, nous introduisons OMPT, basé sur les mémes techniques que Collector API, a savoir I'insertion
d’événements dans un support d’exécution. OMPT fournit un plus large panel d’événements que Col-
lector API et est intégré au standard OpenMP.

23

OMPT, qui doit étre implémenté dans un support exécutif OpenMP, fait I'interface entre le support
d’exécution et un outil d’analyse de performance.

Les événements fournis par OMPT sont associés aux constructions OpenMP, et sont généralement
utilisés par paire: une paire d’événements pour les région paralléles ou encore les boucles OpenMP.
Voici quelques exemples d’événements associés a des constructions OpenMP:

e ompt_event_parallel_begin / ompt_event_parallel_end
e ompt_event_loop_begin / ompt_event_parallel_end

Ces événements, insérés dans un support d’'OpenMP, permettent a I'outil de prendre connaissance
de l'activité des threads OpenMP, a quel moment ils exécutent des constructions, etc.

int main(int argc, char **argv)
{

1* code */

#pragma omp parallel |
{

Callback ‘

ompt_event_parallel_begin

/¥ code */

} * End of parallel region */ |
\

Callback ‘

1* code */ ompt_event_parallel_end

return EXIT_SUCCESS;

} /* End of program */

Y time

Figure 1.10: Insertion des événements relatifs aux régions paralléles OpenMP a I'intérieur du support
d’'OpenMP

La figure présente un exemple de code contenant une région parallele OpenMP et montre ou
doivent étre insérés les événements afin d’instrumenter ladite région paralléle.

D’autres événements permettent d’étudier I'efficacité du support exécutif OpenMP, tels que la paire
ompt_event_implicit_task_begin et ompt_event_implicit_task_end, permettant de mesurerle temps
d’exécution du code paralléle. On peut alors déduire le surcolt du support exécutif.

void

omp_start_parallel_region(int num_threads
void *(*func),
)

{

Callback
| —

ompt_event_implicit_task_begin
/* Runtime code */

/* Executed code associated to parallel
region */
func();

HM

return; I

Callback ‘

ompt_event_implicit_task_end

}

Y time

Figure 1.11: Insertion des évévements relatifs aux taches implicites a I'intérieur du support d’'OpenMP

Le code de la figure présente le squelette d’une implémentation d’une région parallele OpenMP.
La figure montre ou doivent étre placés les événements relatifs aux taches implicites dans le support.

24

La fagon dont OMPT s’interface avec l'outil est la suivante: OMPT est démarré a l'initialisation du
support OpenMP et arrété a la terminaison de ce dernier. Pour initialiser I'outil, la norme propose
une fonction ompt_initialize, qui doit étre implémenté aussi bien du c6té du support que celui de
I'outil. Une fois OMPT initialisé, I'outil enregistre des callbacks relatifs aux événements susceptibles de
lintéresser, et OMPT doit notifier I'outil lorsque des événements enregistrés par ce dernier sont ren-
contrés.

Nous présentons ici notre derniere contribution, a savoir 'implémentation de I'outil d’'instrumentation
OMPT dans le support exécutif MPC, puis son évaluation sur des application MPI1+OpenMP.

Les événements OMPT liés aux principales constructions OpenMP ont été implémentés dans la
version 2.5.0 du support MPC.

Il est a noter que, puisque la majorité des événements est fournie par paires (une pour I'entrée
dans une construction OpenMP et une pour la sortie), des fonctions d’entrée et de sortie sont requi-
ses pour insérer ces événements. Cependant, Il n’y a pas de fonction générée pour la construction
#pragma omp loop schedule(static), et une seule fonction est générée pour #pragma omp single:
la fonction retourne 0 ou 1 selon que le thread courant exécute la construction ou non.

Ces problemes nous ont poussé a modifier I'interface de GCC avec le support d’exécution afin de
générer les fonctions requises, permettant l'insertion des événements OMPT liés a ces deux construc-
tions.

Une fois I'outil OMPT implémenté dans le support MPC, nous nous sommes dans un premier temps
concentrés sur une étude sur les boucles OpenMP et comment il est possible de les optimiser a
'aide de OMPT. Nous avons donc repris I'application MP1+OpenMP MC, en nous focalisant sur les
boucles OpenMP, en étudiant comment il était possible d’optimiser les boucles en réglant la politique
d’'ordonnancement et la taille des blocs.

Nous avons tout d’abord comparé les politiques d’ordonnancement statique et dynamique pour une
boucle d’'une fonction donnée, et avons observé un ralentissement trés important lorsque I'on passe de
la politique statique a la politique dynamique. Plusieurs raisons peuvent expliquer ce ralentissement:

e Dans la norme OpenMP, lorsqu’aucune taille de bloc est spécifiée avec la politique d’'ordonnancement
statique, la boucle est divisée en autant de blocs que de threads. Ce cas implique un mini-
mum d’intervention du support exécultif, alors que pour la politique d’ordonnancement dynamique,
chaque thread choisit un bloc de taille 1 a exécuter, et ceci jusqu’a I'exécution compléte de la
boucle. Dans ce dernier cas, le support d’exécution est plus sollicité que pour la politique sta-
tique.

e La politique d’ordonnancement dynamique autorise un équilibrage de travail entre les threads.
Aussi, nombre de supports exécutifs OpenMP implémentent des algorithmes de vol de travail.
Il est possible qu’un mauvaise implémentation du vol de travail géne le travail des threads, ou
géneére de la contention au niveau des communication.

Par ailleurs, nous nous servons de OMPT afin de déterminer de maniére empirique la meilleure
combinaison entre la politique d’ordonnancement et la taille de blocs en terme de performances. Nous
comparons les performances des boucles avec les supports MPC OpenMP et Intel OpenMP.

Enfin, nous pouvons utiliser OMPT afin d’estimer le surco(t du support OpenMP de MPC, a l'aide
de la paire d’événements ompt_event_implicit_task_begin / ompt_event_implicit_task_end. Le
surcolt est déduit en comparant le temps passé dans une région paralléle et celui passé dans une
tache implicite, puisqu’il s’agit du temps mis pour réveiller les threads.

1.3 Conclusion et perspectives

Cette thése s’est intéressée a différents aspects du modéle hybride MPI+OpenMP, et s’est focalisée sur
les limitations venant avec ce modéle, empéchant le passage a I'échelle des codes paralléles. Nous
avons présenté des contributions proposant des solutions a ces freins:

25

e Arbre adaptatif: Afin de répondre au besoin d’efficacité des supports exécutifs OpenMP dans un
contexte hybride, notre premiere contribution a consisté proposer un arbre adaptatif permettant
d’optimiser I'activation et la synchronisation des threads en environnement NUMA, et sur un large
spectre de threads.

e Hybridisation de I'opération collective MPI_Allreduce: Nous avons proposé une méthode per-
mettant d’accélérer I'opération collective MPI_Allreduce, en utilisant les threads OpenMP et ainsi
réutilisant les coeurs de calcul inactifs. Cette contribution répond une limitation rencontrée avec
le parallélisme a grain fin.

e Opérations collectives unifiées: Nous avons introduit le concept d’opérations collectives unifiées,
ceci afin d’assurer une meilleure coopération entre MPI et OpenMP utilisé dans le mode SPMD.
Nous motivons notre approche avec une preuve de concept, la barriére unifiée.

¢ Implémentation et évaluation de I’outil d’instrumentation OMPT: Enfin, nous nous concen-
trons sur I'analyse de performance des codes MPI+OpenMP et proposons une implémentation
de l'outil d'instrumentation OMPT, ainsi que son évaluation sur une application MP1+OpenMP, en
ciblant les boucles OpenMP.

Nous terminons en abordant quelques axes de réflexion concernant le modéle hybride.

Tout d’abord, il est a noter que les architectures paralléles devraient étre de plus en plus hétérogenes,
les noeuds de calcul accueillant des accélérateurs matériels, citons par exemple le processeur Intel
Xeon Phi. De par les caractéristiqgues de ces processeurs spécialisés, les modéles de programmation
ont évolué, avec I'apparition de CUDA, du modéle OpenACC puis de I'évolution du standard OpenMP
vers la révision 4, fournissant des directives permettant de déporter des calcul vers un GPU par ex-
emple. Cependant, la prochaine étape de notre point de vue consiste a pouvoir exécuter des codes
MPI+OpenMP sur ces GPUs. Ainsi, le modele hybride MP1+OpenMP devrait évoluer suivant deux axes:

e Optimisation des couches MPI et OpenMP pour les architectures manycore

e Evolution de la taxonomie hybride pour les environnements hétérogénes

1.3.1 Travaux futurs a court terme

Optimisation du support exécutif OpenMP en environnment Manycore. Nous avons proposé des
techniques afin de réduire le surcodt des supports exécutifs OpenMP pour des processeurs tradi-
tionnels. |l est possible d’adapter notre contribution pour les architectures manycore. Nous prenons
I'exemple du processeur Intel Xeon Phi et étudions quel arbre serait le mieux adapté afin de minimiser
le surco(t du support d’OpenMP. Un arbre respectant la topologie matérielle serait composé de autant
de noeuds par coeur, et chaque noeud aurait quatre enfants (un par hyperthread). Cependant, les
modeéles actuels du Xeon contiennent de 60 a 70 coeurs de calcul. Activer les threads suivant un arbre
contenant 60 enfants pourrait conduire a de la contention. Ainsi, se tourner vers des arbres de plus
grande profondeur serait peut-étre plus pertinent.

Optimisation des opérations collectives MPI a I'aide de threads OpenMP. Concernant I'hybridisation
des opérations MPI collectives, nous pensons appliquer le travail effectué sur MPI_Allreduce a destina-
tion d’autres opérations collectives, telles MPI_Bcast ou MPI_Gather. Cependant, il faut indiquer que la
technigue du Rank Shifting ne fonctionne pas sur ces opérations collectives.

Par ailleurs nous aimerions pouvoir effectuer une hybridisation automatique en prédisant quel serait
le nombre de threads nécessaires pour garantir la meilleure accélération, en s’appuyant sur un modeéle
de performance, se basant sur des critéres tels que la longueur du vecteur ou bien la topologie matérielle.
D’autre part, la technigue du Rank Shifting ne prend pas en compte la topologie matérielle. Nous voudri-
ons optimiser cette technique en évaluant différentes distances de décalage.

26

Opérations collectives unifiées. Concernant les opérations collectives unifiées, nous avons motivé
notre approache par une preuve de concept, la barriere unifiée. Nous aimerions appliquer 'approche a
d’autres opérations collectives, telles que la réduction.

En dehors des opérations collectives, nous aimerions également concevoir une opération assurant
le travail des communications MPI a l'intérieur d’'une région paralléle OpenMP, de sorte qu’elle ne soit
appelée qu’une fois par tache MPI.

Analyse de performances de codes hybrides a I’'aide de OMPT. Au sujet de notre derniére con-
tribution concernant I'analyse de performance des codes hybrides MP1+OpenMP, nous nous sommes
servis de 'implémentation de 'outil OMPT afin de guider I'optimisation des boucles OpenMP. Le ralen-
tissement observé lors d’'une étude de cas, en passant d’un ordonnancement statique a un ordon-
nancement dynamique, nous a poussé a réfléchir sur le role joué par le support exécutif dans les per-
formances des boucles. Malheureusement, les événements proposés par OMPT ne nous permettent
d’estimer que partiellement I'efficacité du support d’exécution.

1.3.2 Perspectives a long terme

Lors de cette thése, nous nous sommes concentrés sur certaines problématiques rencontrées lorsque
I'on cherche a combiner deux modéles de programmation paralléle.

Empilement de modeéles. Nous voudrions maintenant étudier I'imbrication de N modeéles et identi-
fier les problématiques associées. Pour cela, nous reprenons notre exemple de barriére unifiée, et
décrivons comme elle se déroulerait avec N modéles imbriqués.

Tout d’abord, le modéle M,,_; effectuer un semi-barriere, et le modele appelant effectue a son tour
une semi-barriére. Nous continuons ainsi jusqu’a ce que le modeéle M, effectue une barriere compléte.
Une fois la barriere compléte effectuée, les modeles imbriqués effectuent chacun une semi-barriere
dans la direction opposée, jusqu’a atteindre le modele M,, ;.

Ordonnancement des taches MPI et des threads OpenMP. Tout au long de cette thése, nous avions
proposé des contributions se basant sur le fait que les taches MPI et les threads OpenMP sont distribués
de maniere statique sur les coeurs de calcul. Cependant, avec l'introduction des opérations collectives
MPI non bloquantes depuis MPI-3, un coeur de calcul utilisé pour effectuer des communications peut
étre réutilisé pour effectuer des calculs, avant que la communication ne soit terminée.

Ce cas conduit au probleme de I'ordonnancement des flux d’exécution sur les coeurs, et conduit a
faire des choix entre privilégier les communications et les calculs.

27

28

Part |

Context

29

Chapter 2

Introduction on High Performance
Computing

This chapter introduces the field of High Performance Computing coming with the advent of supercom-
puters, as a support to numerical applications. We will then see how to program these supercomputers
with their underlying parallel architectures, what are the challenges coming with these architectures,
and how we will take them up.

2.1 High Performance Computing for numerical simulation

In this part, we will talk about Numerical Simulation as a tool allowing to understand phenomena in vari-
ous domains. This field was first used in research community and was then adopted by the industry as a
mean to reduce costs. But Numerical Simulation aims at solving more and more complex mathematical
equations and compute infrastructures had evolve to provide the necessary power.

2.1.1 Numerical simulation for physic models

Numerical codes aim at understanding phenomena from the real world, by reproducing them with the
help of simulation. This field was introduced with the emergence of computer sciences, during World
War II: scientists wanted to control the process of nuclear detonations. This project was as fundamental
for the outcome of the war as secret, and was named Manhattan project. Computers were very useful
tools to obtain these results. For decades, military needs drove the reasearch in this field, but it also
grew for the benefit of other fields, such as physics, biology or medicine.

Here are some examples of such numerical applications:

¢ In astrophysics, DEUS (Dark Energy Universe Simulation [91]) aims at getting more knowledge
about the imprints of dark energy into the universe

e Understanding how human brain works has always been a fascinating subject. The Human Brain
Project [80], a European initiative, aims at constructing realistic simulations of the humain brain,
by modeling its biological processes.

But designing realistic simulation requires a long process, and various skills.

Figure[2.1]gives a description of the process about numerical simulation. Starting from the real world
and a physic phenomenon, physicists try to design a model describing this phenomenon using equa-
tions, which often are Partial Derived Equations. Once this model and its equations have been correctly
established, these equations need to be analysed and solved. Computers can be used for this step,
but the equations have to be expressed in an understandable way. Numerical scientists then design
algorithms in order to solve these equations. Moreover, in most numerical codes, instead of calculating
an exact solution to the input equation, which is time consuming, we try to find an approximate solution.
Several techniques such as Finite Element Method[30] or Monte Carlo methods are available to obtain

31

Real _| Theoretical

world model
Y
Parallel Numerical
code application

Figure 2.1: Process for numerical simulation

approximate solutions. They are based on iterative computations.

Nowadays, with the help of computer sciences which spread in companies and personal lifes, Nu-
merical Simulation and High Performance Computing are more and more adopted by industry, in fields
such as aeronautics, automobile or finance. Indeed, they are seen as tools helping the design of prod-
ucts by reducing both the risks and the duration of development.

But Numerical codes are very demanding of computational cycles and memory resources. The
increasing data necessary to perform simulations, and the need to reduce their duration, encourage
research community and industries to seek for more compute power and adopt supercomputers.

2.1.2 Parallel machines to support numerical simulation

But performing simulations requires a huge amount of computational capabilities. This is why a special
kind of computers emerged in order to help scientists. First supercomputers appeared in the 1960s,
with the CDC-6600 computer [102]. In the early 1970s, Seymour Cray founded Cray Research and
created a new family of supercomputers, starting with the Cray-1 [95].

| EFops

= #

100F Flops o #4500

- Sum

— #1 Trend
Line

—— #500 Trend
Line

= Sum Trend

Line

10 FFiops 1
| PFops
100 TRops -

10 TRaps

Performance

| TRaps 8
100 GRops

10 GFlops

1 GFlops

100 MPops T

1905
1997
1998]
2001

200

2005
2007
2008 7
e
2013 4
?015§
2017 3
2018 1

1993

Figure 2.2: Evolution of performances from the first to the last machine in Top500 ranking

32

The website TOP500 lists the 500 most powerful machines in the world [4]: their performances
are estimated by counting the number of floating point operations per second (flops). Performance of
machines in this ranking is measured using the benchmark suite Linpack[34], which computes a lin-
ear system containing n equations, and leads a solution using Gauss pivoting. Figure [2.2) shows the
evolution of the computation capabilities of the most powerful machines, and compares the evolutions
between the first and the last computers in the list of Top500. If Cray-1 supercomputer could develop
only 138 megaflops, lots of progress have been done since this time. In 2001, the japanese machine
Earth Simulator reached 40 teraflops and was designed for studying global climate models [50].

(a) Tianhe-2 computer (b) Curie computer

Figure 2.3: Current supercomputers

Nowadays, current supercomputers are composed of clusters, interconnected by high-speed net-
works. They reach a compute power of several petaflops (10'° floating operations per second), and
TOP500 ranking is currently dominated by a chinese machine, Tianhe-2 which reaches more than 30
petaflops and accounts for more than three million cores (Figure [2.3). But as soon as the Petascale
barrier was passed, scientists immediately started to seek for the next step.

2.2 Parallel architectures and Memory organization

The last Section introduced supercomputers, from their advent to those encountered nowadays. Start-
ing from the necessity to provide compute power for numerical simulations, efforts in Research&Development
have been made to increase capabilities of supercomputers. Thus, in the last Section we focused on
the evolution of High Performance machines, from the Cray-1 to Tianhe-2.
In this Section, we get more insight into those machines, describing the different elements compos-
ing supercomputers, and how they are organized. We will start from the evolution of microprocessors,
its different kinds, and continue with the memory organization. We will see that current supercomputers
are more and more parallel.

2.2.1 From sequential to multicore machines

Since their introduction in the late 1960s, microprocessors saw their frequency increase at a constant
pace. Following their evolution, Gordon Moore formulated a law, stating that the number of transistors
integrated inside a chip would double approximately every second years. Consequently, processor
frequency increases (Figure [2.4). This law applied until 2004 when processors frequency reached
3GHz. But clock frequency increased thermal dissipation until reaching a limit: heat could not be
sufficiently dissipated. The thermal wall led processor designers to take other directions, like multiplying
compute units inside the same socket.

Intel introduced the Core microarchitecture after the Pentium 4, after observing thermal effects would
be too high. AM[ﬂfolIowed this trend, with its processor Athlon 64 X2.

1Advanced Micro Devices

33

CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 —

@ Quad-Core Itanium Tukwila

Dual-Core Itanium 2 @
® GT200

1,000,000,000 — POWERS, _ o av770
Itanium 2 with 9MB cache @ s
Core 2 Quad ’,‘KIU
tanum2@ L ‘ gghe 2Due
100,000,000 — AxKs
ra .,’ ® Barton ® Atom
= Curve shows Moot L o
=1 urve shows ‘Moore’s Law'’: .
o 10,000,000 — transistor count doubling A il
S every two years 7 eks
@] - @ Pentium
» o
@ 1,000,000 — sl
g o
|_ 386 " .
100,000 —| e
) .’éosa
10,000 —| e
’ ‘.’ 8080
2,300) oos g8 08
1971 1980 1990 2000 2008

Date of introduction

Figure 2.4: Evolution of processors following Moore’s law

Meanwhile, processor designers proposed several hardware implementations to provide parallel
execution of the compute workflow, inside a single compute core. Instruction Level Parallelism (ILP)
allowed accelerating execution of one single instruction, using pipelining: one single instruction is split
into steps, and these steps are executed simultanously by different units, which are always kept busy.
Superscalar architectures allow execution of several instructions in the same clock tic.

2.2.2 Heterogeneous architectures

In addition to CPUs, another device, the Graphic Processing Unit, provides compute capabilities. GPUs
were originally used as drivers to display the interface of the computer on screens. With the advent of
video games and tridimensional display, rendering was delegated to the GPU. After being dedicated to
graphic purpose, GPUs started to interest scientists for parallel computations, when these processors
started to include more and more compute cores, and were able to provide massive parallelism.

They then started to be used in order to accelerate computations, and hardware evolved from being
specialized in graphic pipelining to be used for numerical applications, thanks to their compute power.
This use is known as General Purpose Graphic Processing Unit (GPGPU), and GPU manufacturers
started to propose programming models to exploit them for this purpose. Nowadays, GPUs such as

34

Geforce brand from Nvidia or Radeon from AMD gather thousands of small compute cores executing
simpler instructions than those coming with current CPUs.

From 2010, Intel introduced a new line of processors, called Many Integrated Core Architecture, re-
named Xeon Phiin 2012 [58]. This processor follows the development of Larrabee microprocessor [97].
In its first version, it contained 61 compute cores, organized following a ring topology. It also embedded
an operating system, run by one of its cores. This architecture is compatible with x86/64 instruction set,
and thus provides a portability for applications designed for CPUs. This kind of processors provided
capabilities for massive parallelism, and started to be integrated in modern supercomputers.

Sony, Toshiba and IBM introduced the Cell microprocessor in 2005[60]. Its development had started
in 2001. The architecture of the Cell combined two kinds of compute cores: the Power Processor El-
ement (PPE) and the Synergistic Processor Elements (SPE). The Cell microprocessor was embedded
in the PlayStation 3, developed by Sony, and also equipped the Roadrunner computer [13].

Such architectures, by providing massive parallelism, can be considered as alternatives to CPUs or
be combined with them. But for sure, hardware accelerators will be more and more integrated in future
supercomputers.

2.2.3 Memory hierarchy

In order to ensure execution of the application, nowadays computers include the central memory, also
called RAM (Random Access Memory). The role of this memory system is to store the data needed
during the execution of the application, and to feed the CPU as data are required. This memory is reset
when the computer is turned off or rebooted. But as CPUs and central memory are separated, the time
to retrieve data is expensive and can impact performances. Indeed, if the execution time is mainly used
to load data, the CPU will suffer from under utilization.

© HO)
Processor

registers

Local memories
L1, L2, L3 caches)

Capacity
paads

Central Memory
(RAM)

Hardware drives

®
©

Figure 2.5: Memory hierarchy

In a more general way, computational resources need data to work properly, and applications have
a constant need of data storage. But memory resources come with constraints which are their cost, the
latency to access to the memory system and their capacity. These constraints established a memory
organization which is depicted on Figure We classify memory blocks starting from the peak of the
triangle, from the lowest latency to the biggest. All these memories have different functions.
On top of the memory hierarchy, we find the processor registers, located inside a CPU. These registers
are faster than any other memory components but also the most expensive to build. When instructions
are executed by the processor, data associated to these instructions are temporarily stored in the reg-
isters.

35

To limit accesses from the CPU to the central memory, manufacturers designed smaller memories
named caches, and located them near the processors. The latency to access these caches is smaller
than the one for central memory, but due to their reduced size, only a subset of data can be contained.
This is why only the most frequently used data are placed into caches. Different algorithms are used
to decide how to fill caches. Current CPUs contain different levels of caches (L1, L2, L3) which are
imbricated. L1 and L2 caches are dedicated to each core, whereas L3 cache is shared between several
cores. These local memories have a size increasing following their distance to the cores. They are used
in the following manner: when a core needs a data to process, it first requests this data to L1 cache.
If this data is contained by this memory, then the core executes it: this is called a cache hit. If this is
not the case, then it is considered as a cache miss and data is sought in cache L2. We continue this
process until cache L3. At last, if the required data could not be found in any local memory, then the
CPU has to retrieve it in the central memory. We see that CPU caches were designed to avoid accesses
to the central memory as much as possible. It is also to be noted that different types of cache memory
are available: L1, L2, and L3.

At the bottom of memory hierarchy, we find hard drives which are consistent memories. This means
data remain in these drives when the computer is turned off.

To summarize, the memory hierarchy has been established to hide latencies from computational

resources to memories as much as possible. But this hierarchy implies higher programming efforts for
an efficient use of these resources.

2.2.4 Distributed memory systems and shared memory systems

Memory Memory Memory Memory
CPU 1 CPU 2 CPU 3 CPU 4
CPU 1 CPU 2 ‘ CPU 3 ‘ ‘ CPU 4 ‘ Memory bus
Network Memory bank Memory bank
(a) Distributed memory model (b) Shared Memory model

Figure 2.6: Distributed memory model Vs Shared memory model

In the field of High Performance Computing, memory is organized following various directions. But
we can distinguish two main families of parallel systems (Figure [2.6):

¢ Distributed memory systems: In this topology, CPUs are interconnected via a network, and have
their own memory system. This kind of system implies, for the programmer, to take care of where
the data is located. Indeed, if a required data is located on a remote memory, the programmer
has to explicitly take this data. The main bottleneck of distributed memory systems is the network.
We find this type of memory organization with Grid Computing [17].

e Shared memory systems: Also called Symmetric Multiprocessor (SMP), this model includes
several CPUs sharing a same memory bank, on which they access in a concurrent way. Execution
flows have then access to the entire memory on a transparent manner. So programming this kind
of architecture is simpler than distributed memory systems, as the programmer doesn’t have to
explicitly copy data from a CPU to another. But this model includes several drawbacks: memory

36

contention can appear when two many compute units share the same memory bus. Secondly,
coherency has to be maintained by the processors: when a data is updated by a compute core,
all other units have to be informed about this update. One example of current shared memory
system is the Bull Coherency Switch node, containing 128 cores, dispatched in four modules,
each module containing 4 8-core CPUs.

2.2.5 From UMA to NUMA architectures

In shared memory systems, different architectures coexist to define access from the processors to the
memory.

Memory

Controller

Memory

Processor Processor Processor

Figure 2.7: Uniform Access to Memory

Uniform Memory Access is one type of shared memory architecture, where all processors access to
a same physical memory via a memory bus (Figure[2.7). This architecture provides equal access to the
memory to processors, which means the latency of accessing the memory system is constant whatever
their location.

But when multiple compute units share the same bus to access resources, memory traffic is in-
creased, and thus the memory bus becomes saturated. Thus, with the multiplication of cores per
compute node, this kind of architecture represents a bottleneck for high performance applications.

Non Uniform Memory Access The UMA architectures proved to be insufficient with the multiplication
of cores. This is why hardware manufacturers designed more sophisticated shared memory systems.
ccNUMA architecture is one of them [66]. It consists of giving each CPU its own memory, in order to
solve memory contention.

Figure [2.8|depicts a basic example of ccNUMA architecture, containing four CPUs, each CPU being
composed of four compute cores and having a direct access to a dedicated memory, which solves the
problem of contention described in UMA systems. Thus, each CPU and its memory are considered
as a block called NUMA node. CPUs are interconnected via a bus (QPI E]for Intel or HyperTransport
for AMD). All processors can access to remote memories, and in the user’s point of view, NUMA ar-
chitectures are considered as shared memory systems. And even if memories are separated, cache
coherency has to be maintained across the shared memory. But accessing data on distant memories
implies additional latencies. Let’s take the example of the CPU 2, wanting to access the memory bank
located on NUMA node 1. It will have to go through the bus interconnecting sockets before reaching the
remote memory. Since this bus offers a lower bandwidth than the one provided between a CPU and its
own memory, accessing remote memories becomes more expensive. We all these additional latencies
NUMA effects.

2QuickPath Interconnect

37

" NUMAnode0) NUMA node 1
CPUO

core core

NUMA node 2 NUMA node 3
CPU 3

Figure 2.8: ccNUMA architecture

CPU 2

NUMA systems provide a hierarchical parallelism due to their organization, and are complex to
program.

2.3 Challenges of Exascale era

As supercomputers provides performance on the order of the Petaflop since 2010, they are expected to
reach the Exascale frontier by 2020. But adding more cores will not be enough to reach this step. Thus,
HPC scientists already started to describe characteristics of future supercomputers. But these new
architectures will come with numerous challenges. These challenges are detailed by several papers
(33, [81].

e Energy: The cost of electricity becomes a non negligible part of total costs involved in exploiting
High Performance machines, and this ratio should continue to increase. Introduced in 2001, the
Earth Simulator computer[50] reached 40 teraflops for a power consumption of 3.2 megawatts.
Now, Tianhe-2, the most powerful computer since 2014, requires 17 megawatts for a performance
peak reaching 33 petaflops. Thus, power constraints influence the design of the next generation
of supercomputers. A new ranking, Green500 [40], lists the most energy-efficient computers.

e Memory wall: As scientific codes need both computational cycles and memory to execute, both
constraints have to be considered. But memory may become the most limiting factor of appli-
cations performance, since there is an increasing discrepancy between evolutions of compute
resources and memory. One way to compare both resources was to measure the number of bytes
per flop. For a while, one byte of memory or more was available per flop. But this ratio started to
decrease whith the transition from mono-core to multicore, in 2004. Then this ratio is around 0.1.

¢ Reliability: High performance machines are equipped with thousands of components: compute
cores, memory, hard drives, ... The probability of encountering a failure increases with the size of
the supercomputer. We define the MTBFE] [103] as the mean frequency of a hardware fault. It is
thus critical for scientific applications to tolerate such faults and make them resilient. Strategies
exist to make applications resilient from this constraint such as Checkpoint / Restart [96].

e Heterogeneity: Hardware accelerators spread in the field of High Performance Computing and
were first used as prototypes. They now start to be integrated in current machines: US computer
Stampede includes Xeon Phi co processors [39]. Their compute units are more and more diverse
and smarter ways to efficiently program them are required.

3Mean Time Between Failure

38

2.4 Programming models

Programming
model

Figure 2.9: From the programming model to the language, from the language to the program

We saw that current supercomputers were massively parallel, with several imbrications of compute
and memory resources. These machines are then more and more complex to program, and in order
to efficiently exploit them, scientists introduced models to abstract from the compute resources and
leverage available parallelism. We define parallel programming models as ways to express parallelism
inside applications. These programming models have to be compatible with a language, which comes
with a compiler and a runtime. The language is then compiled or interpreted in order to run on the target
machine. We illustrate this chain with Figure[2.9]

Various programming models have emerged as parallel machines evolved, and they follow different
paradigms. They can be oriented on distributed memory systems, such computers interconnected by a
network, and making them work together.

2.4.1 Message Passing models

Early efforts to express parallelism in programs led to the design of processes which are instances of
a program, allowing the share of computational resources. A process contains everything needed for
executing a program: its own address space, a set of instructions, and a context. Processes were im-
plemented in Unix systems and are the building blocks of Message Passing models. They communicate
through pipes, allowing cooperations between the programs over networks.

Message passing models are now able to communicate using simpler techniques.

MPI (Message Passing Interface [35]) is a standard library using message passing paradigm. It was
introduced in 1991. It is designed for distributed memory machines, as it allows communications be-
tween remote machines. The model involves processes running concurrently and parallelizing applica-
tion. Communications between processes have to be made explicitly by the user. MPI is now widely
adopted for scientific codes, and supports C/C++ and Fortran languages. The standard proposes fol-
lowing features:

¢ Point-to-point communications: MPI includes primitives to enable communications between
MPI processes by explicitly giving their ranks.

e Collective communications: MPI also allows performing operations such as gathering or re-
ducing data of a set of tasks. For this purpose, it provides structures called communicators to
establish the number of processes involved into these operations.

The standard has be revised through its 1.3 version and MPI-2. MPI-3 standard [41] introduced
Non Blocking Collectives, allowing asynchronous communications between processes [52]. where a

39

process can execute other work while a Collective operation is being processed, instead of waiting its
termination.

Numerous implementations of MPI are available, such as OpenMPI[47], MPICH2[48], MVAPICH2[71],
InteIMP1 or MPC (Multi-Processor Computing) [88].

To parallelize computations using MPI model, the Domain decomposition method is often used.
Starting from a defined domain containing the problem to solve, this domain is split into parts called
subdomains, which are allocated to each MPI task. Each task can then compute its part on a concurrent
manner.

2.4.2 Partitioned Global Address Space

When using MPI, it is necessary to specify data transfers. PGASE] is a programming models enabling
a global address space which is partitioned. This model allows a transparent access to data, whatever
they are located on the local node or on a remote one.

Several languages are based on PGAS model:

. UPCE] [105] extends C language and provides a uniform model for both shared and distributed
memory systems.

e Co-Array Fortran [87] extends Fortran language and adds a syntax to describe parallel opera-
tions.

e Chapel[25] was developed by Cray since 2003 and provides a higher level way to express paral-
lelism.

2.4.3 Thread-based models

After the advent of processes, lightweight processes appeared, also called threads, which consists in a
set of instructions, but do not have their own memory. A thread can be included in a process and can
share memory with other threads. Models reying on threads are adapted to shared memory systems,
as no data duplication is required for communications between threads. Such models appear to be
interesting in the field of High Performance Computing, as they give access to more and more cores
per compute node, implying increasing amount of available shared memory. However, they can only be
used within a single compute node.
Following are the main examples of Thread-based models.

POSIX Threads [22] also know as pthreads is a standard allowing management of user-level threads.
This is part of the POSIX standard (Portable Operating System Interface) which is oriented to Unix sys-
tems. Pthreads provide functions for thread creation and termination, and synchronization of threads.
This interface allows parallelizing codes in shared-memory environment.

OpenMP 2.5 [27] is the de facto standard programming model for shared memory machines, relying
on threads. It has been introduced in 1997 by the Architecture Review Board, and defines directives
allowing parallelizing blocks of source codes. The main directives provided by OpenMP consist in open-
ing a parallel region for parts of the code, distributing loops between threads, synchronizing threads,
.... OpenMP also offers features for load balancing regarding loops, and allows tuning visibility of vari-
ables implied in parallel regions. Its execution model works following a Fork/Join mechanism. Since
its 2.5 revision, OpenMP supports C/C++ and Fortran languages. OpenMP is currently supported by
compilers and runtimes such as GCC with libGOMP library, Intel OpenMP runtime which was recently
open sourced, MPC or OpenUH [69].

4Partitioned Global Address Space
5Unified Parallel C

40

2.4.4 Task parallelism

Thread-based models fit to parallelize codes involving structures such as loops, as iteration space is
known. But even if some models such as OpenMP include features to correct imbalance, they lack of
flexibility and are not adapted for some kinds of data structures. This is the case for linked lists where
the size is not known until reaching the end of the list. A last paradigm exist. It can bring flexibility, by
declaring tasks associated to a block of instructions or to a function. It is in charge of the runtime to
schedule encountered tasks.

In the following paragraphs, we present several Task-based languages:

Cilk [18] appeared in 1994 and was developed at the MIT. It relies on a Fork/Join mechanism and can
express threads and tasks with the help of key words. Tasks are linked together by ancestorship. Cilk
runtime also includes work stealing scheduler in order to ensure load balancing when executing tasks.
It supports C and C++ languages.

Intel TBB [93] is a template library written in C++ and introduced in 2006 by Intel. It allows task
parallelism.

OpenMP 3.0 [11] appeared in 2008 and enriched OpenMP standard by offering the possibility for the
user to add explicit tasks in OpenMP parallel regions, that can be associated to a block or a function
call. It offers more flexibility to parallel codes.

2.5 Limitations of the MPI model

MPI standard has been massively adopted to parallelize numerical codes. Indeed, it is roughly the
only message passing model able to work on distributed machines. Classic use of MPI is to bind one
MPI task per compute core. But the evolution of supercomputers challenge MPI libraries, as it is more
and more complex to reach scalability on millions of cores. We will see in this section the limitations
encountered when using MPI on numerical codes.

When studying parallel architectures, we noticed that compute and memory resources tend to evolve
at different paces, implying an increasing discrepancy between them. Consequently, amount of memory
per compute core should continue to decrease. These trends limit scalability of high performance codes
and challenge classic ways to program supercomputers. However, more and more data are needed to
perform larger simulations.

Memory footprint, load imbalance and inadequation with the underlying topology are such barriers
from performance scalability of MPI codes.

2.5.1 Adequation with underlying topology

With the multiplication of compute units inside nodes and the advent of NUMA architectures, current
machines include several levels of parallelism and shared memory. Current nodes contain from 10 to
100 cores per node, and this number should be much higher at exascale horizon, it is critical to ef-
ficiently exploit implied shared memory to allow MP| based applications to scale on numerous tasks.
Moreover, with the advent of NUMA architectures, compute nodes are organized following a hierarchical
way, and this hierarchy is driven by the location of cores relatively to the memory banks. Thus, affinities
between compute cores have to be taken into account.

But MPl is a flat model as it has no semantics to take the underlying topology or the characteristics of
the architecture into account. Thus, it cannot efficiently exploit hierarchical parallelism, and MPI tasks
are distributed on the cores regardless of their organization. At last, since MPI doesn’t know if two
processes are on the same node or on distant nodes, it cannot make difference between intra-node and
inter-node communications.

41

2.5.2 Memory scalability of domain decomposition method using MPI model

MPI tasks

~ | MPI tasks
w7

= () ()

MPI tasks | MPI tasks

(

| sub domain
[| ghostcell

TN icati
- communications

Figure 2.10: Domain decomposition of a 2D mesh with MPI

The domain decomposition method splits the domain into subdomains, and each MPI task is given
a subdomain and processes it. But to process subdomains, additional data are required, which are
located on the edges of its neighbor subdomains. These are called ghost cells or halo cells, and need
to be exchanged between MPI tasks at each time step of the simulation.

Replicating ghost cells in each subdomain implies memory overhead. Since we observed that mem-
ory was a limiting factor from reaching high performance, this overhead can prevent from enabling
scalability of MPI codes when launching hundreds or thousands of MPI tasks, considering all cores are
fully populated.

2.5.3 Problems with load balancing

When writing an MPI application, problem domain is split and equally assigned to MPI tasks. We then
assume that all tasks will have the same amount of work to process. This is actually not the case, as all
tasks do not run at the same speed. Also, some kinds of applications generate load imbalance. This is
the case of ones enabling Adaptive Mesh Refinement algorithm [16]. In this kind of codes, some parts of
the mesh are refined during execution, increasing precision on these parts. This algorithm can be used
for meteorological codes for example, where local phenomena require more compute power. Thus,
tasks do not have equal amount of work, which causes imbalance between them. Several techniques
are used to correct this imbalance, like exchanging parts of meshes between processes, even if they
are complex to implement. But MPI standard does not provide features to correct such as imbalance.

2.5.4 Optimization of MPI for shared memory

With the multiplication of cores in a single compute node, amount of available shared memory also
increases. But there is no difference between intra-node and inter-node communications in MPI stan-
dard. For example, in classic implementations of MPI, two memory copies are usually required and two
processes located on the same compute node want to communicate data: the sender process performs
the first copy on the shared memory, and the receiver process copies back from the shared memory to
its internal structures.

42

But some implementations propose optimizations at several levels for intra-node communications.
At first, we can split MPI implementations into two main categories:

e Process-based MPI: Each MPI rank is an OS process, with its own private memory. This ap-
proach allows easier inter-node communications, and avoid some synchronization between MPI
ranks. But it presents limitations when MPI ranks have to communicate inside a node, as two
memory copies are generally involved in a local communication: the sender first copies from its
private memory the data to a pool on the shared memory, and the receiver copies back to its
private memory.

e Thread-based MPI: MPI ranks are implemented as OS threads, which share the same address
space, excepted the stack and the heap which are private for each rank. But global variables
are shared between ranks, which leads to corrupting application state. This problem is solved by
privatizing these variables to each thread. MPC is one example of thread-based MPI runtime.

HMPI [42] aims at cumulating advantages of both solutions: optimized for shared memory hardware
and providing peak performances for both inter-node and intra-node commmunications. MPI ranks are
implemented using OS processes, but the heap segment is shared between them. It is built on top of
any MPI library and explores one-copy mechanisms.

Other solutions are investigated to optimize communications between local MPI ranks. KNEM[46]
and LiMIC[59] are kernel modules optimizing intra-node communications by implementing a single-copy
data transfer between local processes (processes located on the same node). They are respectively
implemented in OpenMPI and MVAPICH libraries.

In this section, we exposed several limitations of MPI model. At first, the MPI model is not adequate
with the hierarchical parallelism of current architectures as it does not take into account underlying
topology or load imbalance in its semantics. Another problem of this model is its memory footprint. While
some MPI runtimes propose optimizations to reduce memory footprint in shared memory systems, one
copy at least is required for communications inside a compute node. As available shared memory
should continue to increase, it is necessary to exploit it efficiently. This trend advocates to mix MPI with
a programming model relying on the shared memory paradigm. Several programming models suited
for shared memory models have been presented, and do not require data duplications within compute
nodes.

2.6 Hybrid programming models

We took into account the hardware trends in the field of High Performance computing, which are:

¢ the multiplication of cores inside a single compute node, which increases available shared mem-
ory.

e the hierarchical parallelism on current supercomputers
e the smaller and smaller availability of memory per compute core

On the one hand, these characteristics challenge numerical codes to scale on high performance
machines. On the other hand, we showed that MPI model, due to its semantics, presented limitations
and could not meet all these hardware constraints. Another solution is to mix MPI with another model
able to efficiently exploit the shared memory.

We define Hybrid programming by combining several programming models with different paradigms:
Message passing model mixed threads or mixed with tasks. Resources are then shared between the
two models. Since MPI is the most popular and widely used in High Performance codes, it is considered
as the first ingredient in Hybrid programming. The advantage of this solution is to overcome limitations
of MPI by using a model adapted to shared memory systems. But even if the most intuitive solution is
to use Message Passing model for inter-node communications and let the other one perform intra-node
computations, we will see that it is not always the best solution. Thus, candidates for the additional are:

43

OpenMP, POSIX, Cilk, TBB or PGAS languages.

Combining MPI with OpenMP is interesting because both models are standards, and are supported
in numerous runtimes. Moreover, OpenMP is the most elected model to tune MPI-based legacy codes.
We will therefore focus on this model in this thesis.

2.7 Dissertation Outline

We established that combining MPI and OpenMP models was a promising solution to efficiently exploit
current and future supercomputers. In this thesis, we will study hybrid MPI+OpenMP codes at several
levels, from the application to the runtime levels, and via tools dedicated to performance analysis:

¢ In Chapter 2, we will present a taxonomy describing the different kinds of available combinations
of MPI and OpenMP. We will then mention the bottlenecks preventing hybrid codes from reaching
scalability.

e We will focus in Chapter 3 on the overhead encountered in OpenMP runtimes and then will present
our first contribution, allowing to reduce this overhead in the context of hybrid programming, where
compute resources are shared between MPI tasks and OpenMP threads.

e Chapter 4 will be dedicated to MPI Collective operations and how to optimize them in an hybrid
context. In the second part, we will propose a concept unifying collective operations using both
MPI and OpenMP.

e At last, we tackle the aspects of performance analysis on MPI+OpenMP codes in Chapter 5, and
introduce OpenMP Tools API as last block to instrument hybrid codes.

44

Chapter 3

Focus on hybrid model MPI+OpenMP

In Chapter[2] we enumerated the limitations of MPI, and introduced hybrid MPI+X programming, study-
ing several shared memory and task based models as candidates for X. In this chapter, we motivate the
advent of MPI+OpenMP model as a solution for code scalability and study encountered problematics
by combining MPI with the OpenMP model.

Following sections will describe advantages of this model, show how it is structured through an ex-
tended taxonomy, defining various code granularities and thread placements. We will also see that
good cooperation between MPIl and OpenMP is necessary inside runtimes to take advantage of hybrid
programming. Then we will focus on encountered bottlenecks in MPI1+OpenMP codes, preventing to ob-
tain code scalability. At last, we will present contributions of this thesis, that aim at tackling enumerated
bottlenecks.

3.1 Defining MPI+OpenMP programming model

MPI was traditionally adopted by scientists to parallelize numerical codes. Indeed, as a standard, it was
the most obvious programming model to exploit distributed memory machines. But, as shared memory
systems started to be disseminated on supercomputers, MPl more and more appeared to show limi-
tations. So OpenMP was adopted to be mixed with it inside parallel codes, in order to leverage such
shared memory systems. The principle is to start from MPI based codes and augment them by adding
OpenMP constructs at specific points of the code. As a result, compute resources are shared between
MPI tasks and OpenMP threads. However, several directions are available to mix both models. At first,
choices have to be made about how to augment MPI codes with OpenMP, what we call code granu-
larity: insert OpenMP on loops or parallelize larger portions. Then, we have to decide how resources
are shared between MPI tasks and OpenMP threads (e.g placement). Even if reserving OpenMP for
compute node and using MPI only for inter-node communications may be the most intuitive choice, it
is not always the most best mixing. Do we reserve compute nodes to OpenMP and use MPI only for
communications ? lIs it interesting to use only MPI in some cases ? Tradeoffs have to be found, and
several mixing flavors exist, which will be described below through an extended taxonomy.

3.2 Advantages and issues of hybrid MPI+OpenMP model

In this section we list the benefits we can get from switching pure MPI and Hybrid model, and the
shortcomings of this switch.

3.2.1 Adequation between programming model and hardware

Current machines are no longer considered as distributed. They are composed of shared memory
systems, and, with the emergence of NUMA architectures, exhibit hierarchical parallelism. MPI can be
considered as a flat model: it is unaware of shared memory within compute nodes, and doesn’t express

45

any hierarchical parallelism in its semantics, independently of its implementation. At user’s level, it
doesn’t make difference between intra-node and inter-node communications.

The hybrid model, by adding a level of parallelism, provides a more efficient mapping of the underly-
ing topology. Moreover, OpenMP, as a shared-memory model, allows avoiding intra-node communica-
tions.

3.2.2 Reduce memory footprint

Several researches showed that switching from pure MPI to Hybrid provided a memory gain between
80% to 480% with some benchmarks [8]. In [55], authors observed that, for a Real World application, it
allowed to reduce memory footprint by 50% with 4 threads, and 60% with 8 threads, on 4,096 cores. By
simply allowing to exploit shared memory, the use of the Hybrid model can significantly save memory,
at different levels.

Halo cells. As seen in Chapter 1, MPI model, using the domain decomposition method, allows to
parallelize computations as each MPI task computes its own sub-domain. But it requires exchanges of
neighbor cells to perform computations, increasing memory footprint by a factor corresponding to the
number of MPI tasks involved in the code execution. As memory is shared when using the OpenMP
model, no neighbor cells need to be exchanged within an OpenMP team since domain decomposition
doesn’t apply. Figure[3.1]illustrates impacts of hybrid model on domain decomposition inside a compute
node, by comparing behaviors of pure MPI code and Hybrid codes when exchanging halos. On the right
part of the figure, we only have one MPI task per node, and other cores are fully populated by OpenMP
threads. Thus, exchanges of halo cells are done only between compute nodes.

Internal structures. We saw that the MPI model generally needs to perform two memory copies when
transmitting messages between tasks inside a node. Even if several MP| implementations proposed
optimizations to reduce the number of copies, MPIl imposed memory overhead due to its semantics.
This problem is solved with OpenMP, where data are directly accessed with read and write operations.
Also, some internal buffers and global constants implemented in MPI runtimes, that are duplicated for
efficiency purposes, have a non negligible memory footprint as the number of tasks increases. Hence,
reducing the number of MPI tasks allows to save memory footprint.

4 N N

[1]
O MPE o NP [TTTTTT]
| tasks[] ~_- tasks OpenMP OpenMP
[T thread | thread
[T 11 lopenMp lopentp
MPI ~ MPJ thread [thread
tasks ||~ tasks [T T
[T [TTT

_ node) _ node

\:| sub domain associated to a MPI task

\:| inter node halo data
|:| intra node halo data

Figure 3.1: Memory representation of a pure MPI code and hybrid MPI+OpenMP code, using domain
decomposition

46

3.2.3 Better load balancing
Load imbalance between MPI tasks can have several causes:
e Bad distribution of work between tasks

e Load imbalance generated by irregular applications, such AMR codes (Adaptive Mesh Refinement)
[12]

MPI standard doesn’t provide any easy interface to correct load imbalance, even if some techniques
are possible at user’s level. And manually correcting the load imbalance generates some communica-
tion overhead. OpenMP proposes an easy interface to correct load imbalance via scheduling policies
coming with loop constructs, such as dynamic or guided [51]. Since OpenMP 3.0 version and the intro-
duction of explicit tasks, load balancing can be done in a more dynamic way. But it is limited to compute
nodes with any version of OpenMP.

3.2.4 Drawbacks

But augmenting MPI codes with a different programming model means adding a level of parallelism,
and this implies difficulties.

First, as on pure MPI mode, all compute resources were busy during the whole execution time, pro-

vided that all the cores were fully populated with MPI tasks. But with hybrid programming, resources are
shared between MPI tasks and OpenMP threads, consequently only a fraction of cores is used outside
OpenMP parallel regions, depending on the mixing flavor. It happens for example when performing MPI
communications, outside OpenMP constructs. This leads to a waste of computational resources.
Secondly, as less MPI tasks are involved in hybrid codes than with pure MPI applications, less inter-
node communications are performed and then, the network bandwidth is under exploited.
Moreover, mixing different models with different paradigms is challenging for both MPI and OpenMP
runtimes, and requires them to be aware of each other. It increases code complexity, and it is therefore
very easy to introduce bugs. But Hybrid programming proposes different schemes or code granulari-
ties: codes can be augmented either by adding OpenMP constructs in an incremental way or using one
single OpenMP parallel region, and go through a redesign of the application. Thus complexity of hybrid
programming depends on the chosen code granularity.

3.3 Taxonomy of hybrid MPI+OpenMP model

Section highlighted advantages and shortcomings of going hybrid for codes. Research related to
MPI+OpenMP model introduced taxonomies describing a classification of MP1+OpenMP mixes, follow-
ing two directions:

e Code granularity
e Thread Placement inside compute node

Figure[3.2] extracted from [24], illustrates an extended taxonomy for MPI+OpenMP applications. We
describe in this section this taxonomy, following two main parameters, i.e. different code granularities
and placements of MPI tasks and OpenMP threads.

3.3.1 Granularity of OpenMP

Starting from pure MPI codes, different ways exist to hybridize these codes.

Fine-grain parallelism. Fine-grain parallelism is the incremental approach when augmenting MPI
codes [23]. It consists in parallelizing existing loops by using pragma omp parallel for construct,
which combines omp parallel and omp for constructs. To get speedup with Fine-Grain parallelism,
we have to identify hotspots, portions of the code with big execution time. This granularity allows
hybridizing application without much increasing the code complexity.

47

LU0 MPI+0penMP LU

¥ ¥
Pure MPI Hybrid Pure OpenMP
Ti=0,Ci=1 To>0,Co=P

| ‘ &

— - - [Code Granularity)— -—- = - —C Thread placement)— R ——
|

f : ¥ J |
Fine-Grain Approach‘ Coarse-Grain Approach | |
|

Fully Hybrid Mixed Hybrid

Loop-level parallelism

I

Masteronly ‘

Single parallel construct

M>1
Ti>0,Ci>0

M=1
Ti>0,Ci=P

MPI calls outside OpenMP
parallel regions

Process-to-process Thread-to-thread

Lo e i i Oversubscribed
communications communications Simple Hybrid S
MPI commununications inside MPI commununications split M>1
critical constructs. into OpenMP threads i M>1
Ti>0,>c<P . u
. ros Ti>0, o >P
L Requires MPI_THREAD_MULTIPLE I

MPI + SPMD OpenMP

- e o Em mm Em Em Em = oE= o= e

Each OpenMP thread computes| Alternat'ngj Fu"y Mixed
its sub domain
M>1
e | | fi=jthenTi>o0,Ci=P o M=>1
P - Number of cores per node Otherwise Ti > 0, Ci= 1 Ti>0,Ci=P

M - Number of MPI tasks per node |
Ti - Number of OpenMP threads for the ith process
Ci - Number of cores allocated for the ith process |

— e e mm e Em o e o e o o = e = =

Figure 3.2: Hybrid MPI+OpenMP taxonomy

We can decompose execution time of a hybrid code into:

Tcompute
P

where Ttot, Tseq, Tcomm and Tcompute are respectively total execution time, sequential time, time
spent in communications and time dedicated to computations. Fine-grain approach presents several
limitations. Indeed, since the only component of Ttot that can be accelerated is Tcompute, the maxi-
mum speedup to be obtained is

Ttot = T'seq + Tcomm + (3.1)

tcompute (3.2)
tseq + tcomm

So scalability of hybrid code with fine grain approach is limited. Secondly, this approach leads to
a waste of computational resources, because when performing sequential code, cores dedicated to
OpenMP are idle (Figure [3.3).

At last, as a big number of loops can exist in numerical codes, a huge number of OpenMP constructs
are then requested. Thus, the high number of enters/exits inside OpenMP runtime may generate over-
head due to the cost of activating and synchronizing threads. This overhead is added to sequential time,
and at last, global execution time.

We can consider the Masteronly approach [51] as an extension of Fine-Grain approach, where MPI
calls are done outside OpenMP constructs.

Coarse-grain parallelism. The other approach to hybridize MPI codes, Coarse-Grain, consists in
opening one OpenMP parallel region at the beginning of the program, just after launching MPI tasks,
and terminating it at the end of the application. MPI functions are then inserted inside this OpenMP
parallel region. This approach overcomes some limitations of the Fine-Grain approach. At first, since
OpenMP threads are executed during almost all execution time, sequential time is decreased, as it

48

OpenMP flow

= eyt =
N—7 N—7 N——

Parallel
execution

J

Resource usage

Execution time

Figure 3.3: Execution timeline with Fine-Grain parallelism

is transferred to compute time. Secondly, with Coarse-Grain style, the code contains larger parallel
portions and a better use of resources. At last, it leads to less calls to OpenMP layer and avoids
overhead implied by Fork/Join mechanisms.

With the process-to-process configuration, since MPI primitives are called inside OpenMP parallel
region, synchronization constructs such omp single or omp master are required to ensure they are
called only once. But, by serializing calls to MPI primitives inside OpenMP parallel regions, we lose a
level of parallelism, and the potential benefits of Coarse-grain approach are lowered. These constructs
imply additional overhead due to those critical constructs. Moreover, since during these MPI calls one
single thread is used, only a fraction of network bandwidth is used [90Q]. At last, these portions cannot
be neglected since communications are performed in these critical sections. So the main limitation is
Tcomm, referring to communications.

Another drawback of the Coarse-Grain approach is that it increases the code complexity, especially
with thread-to-thread mode. It is no longer incremental, unlike the Fine-Grain approach, and implies
redesigning the application.

Another issue is the sub-utilization of computational resources when MP| communications are per-
formed.

A solution to reduce the ratio of Tcomm, which is proposed with the other variant under Coarse-grain
approach, and is called thread-to-thread communications, consists in splitting off calls to MPI primitives
using OpenMP threads. Depending on their rank, some OpenMP threads are used to perform MPI
communications, and the others are dedicated to computations. An example of thread-to-thread variant
is parallelizing exchanges of halo cells with threads. One constraint is that other OpenMP threads
performing computations don’t need halo data, since communications and computations are done in a
parallel way. This variant allows to keep the cores active when performing MPl communications, and
overlap communications with computations.

But as it performs concurrent calls to the MPI layer, it requires the highest level of multithreading
support. And it implies a much higher complexity of the code as this variant is very intrusive.

49

MPI + SPMD OpenMP. SPM[ﬂis a programming style achieving parallelism in a distributed manner, in
that each task processes its own data independently. It can be enabled with OpenMP but requires mod-
ifications from a classic OpenMP program. With SPMD, work is distributed at hand between OpenMP
threads, and each one computes on its sub-domain. As loops are generally targeted to enable paral-
lelism, they drive the translation into SPMD style. Unlike common OpenMP codes where arrays are
shared between threads and accessed in a concurrent way, arrays are privatized with SPMD program-
ming and split into sub-parts, and computations are spread among threads, in order to maximize data
locality [72]. Additional structures are inserted when results need to be shared.
OpenMP behaves here as a distributed memory model, like MPI.

Let’s take a basic example of a loop to be parallelized.

int main(int argc, char xxargv)

int iter;

/* lteration loop =/

for(iter = 0 ; iter < niter ; iter++)
/+ Code =/
for(i =0 ; i< n; i++)
B[i] = B[i] = a + niter;
/+ Code =/
}

}

int main(int argc, char =xargv)

int iter;

/% Iteration loop =/

for(iter = 0 ; iter < niter ; iter++)
/* Code x/
#pragma omp parallel for schedule(runtime)
for(i =0 ; i<n; i++)
B[i] = B[i] = a + niter;
/* Code =/
}

i

int main(int argc, char xxargv)

nt iter;

int myOMPRank = omp.get-thread-num () ;

int nbOMPThreads = omp.-get-num_threads () ;
int nbnLoc = n / nbOMPThreads;

int iDeb = 1 + myOMPRanksnbnLoc;

int iFin = iDeb + nbnLoc — 1;

if (myOMPRank == nbOMPThreads — 1)
iFin = n;

/+ lteration loop x*/
for(iter = 0 ; iter < niter ; iter++)

/+ Code =/
for(i = iDeb ; i < iFin ; i++)
B[i] = B[i] = a + niter;
/* Code x/
}
}

Figure 3.4: Comparison between classic OpenMP and SPMD

Single Program Multiple Data

50

The second version of the example shows how the loop is split between OpenMP threads using the
proper directive. The last version, called SPMD OpenMP, performs a manual distribution of the code
to the threads. For this purpose, each OpenMP rank is computed, then lower and upper bounds are
deduced following each OpenMP rank. It is to be noted first, that other implementations exist to achieve
parallelism in an SPMD way, second, that is it requires to completely redesign code as this mode is very
intrusive.

With SPMD style, iterations are manually split between threads. SPMD programming has been
studied in literature. In [65], authors present a SPMD version of NAS benchmarks, derived from the
MPI version. Experiments show this approach gives better performances.

For example, reduction feature cannot be used any more to reduce a variable inside a loop. This
operation has to be done manually.

If we come back to our taxonomy, MPI can be coupled with SPMD OpenMP programming. We
consider this combination as a particular case of Coarse-Grain approach with thread-to-thread version.
The difference is that OpenMP is used as a distributed model. In this mode, distribution of work can
be seen as nested: domain is split between MPI tasks, and sub-domains are again spread among
OpenMP threads. Then both models enable a same paradigm consisting in distributed memory style,
in a hierarchical level.

While high performance can be reached using this flavor, it is the most complex to implement.

3.3.2 Thread Placement

Beside code granularity, Placement is an important factor in MPI+OpenMP taxonomy. We describe here
the different mix between MPI tasks and OpenMP threads inside a compute node, their advantages and
limitations regarding code performance and resource exploitation.

As depicted in Figure[3.2]and in order to formalize the different combinations, number of MPI tasks,
OpenMP threads are identified with symbols. M refers to the number of MPI tasks, Ti the number of
OpenMP threads, and Cithe number of cores allocated for the ith process.

The first mode Fully Hybrid exploits only one MPI task per node (M = 1). The other cores of
the node are populated with OpenMP threads. It only exploits MPI for inter-node communications,
reserving all node for computations. Fully Hybrid mode implies limitations in that network cannot be
saturated with one single MPI task per node. With Mixed Hybrid mode, several MPI tasks are launched
inside compute node (M > 1), with one OpenMP team per task. This leads to a better use of network
bandwidth. Simple Mixed is derived from Mixed Hybrid as cores inside compute node are shared
between MPI tasks and OpenMP threads, and are fully populated.

It is also possible to oversubscribe resources with Oversubscribed Mixed mode. In Alternating style,
cores are used either by MPI tasks or by OpenMP threads, depending on MPI rank. With Fully Mixed
combination, all cores of the node are reserved for each MPI task. A single core can be shared by
several OpenMP threads.

Figure exposes a hardware view of different hybrid combinations.

3.3.3 Overlapping between communications and computations

Keeping all the compute resources active along the code execution is critical for code scalability. But
we saw that exploiting all cores at any time was complex due to the different paradigms involving MPI
and OpenMP. For example, Masteronly approach implies a sub-utilization of resources outside OpenMP
parallel regions and a sub-utilization of network bandwidth. Moreover, when MPI communications are
performed (e.g with MPI Collective), only a subset of cores is involved, letting other cores idle. This
type of MPI operation is called Blocking Collective as code execution is suspended until termination
of communications. However, MPI-3 standard revision introduced non blocking Collectives, where the
execution can continue before communications have terminated [52].

We talk about overlapping when MPI communications are recovered with computations [51], reduc-
ing Tcomm component of the total execution time. Exposed taxonomy showed different ways to overlap
communications. First, splitting off communications with OpenMP threads allowed communications and
computations to progress in a parallel way. Secondly, oversubscribing resources with OpenMP threads
or using the core either for MPI tasks or threads would ensure that no core remains idle.

51

SMP node SMP node

Socket 1 Socket 2

Socket 2 Socket 2

U

Node Interconnect

Full MPI

SMP node SMP node

|]

Node Interconnect

Fully hybrid

SMP node SMP node
Socket 1 Socket 2

Socket 2 Socket 2

i

Node Interconnect

Mixed model

MPI+OpenMP

Figure 3.5: Thread placement of hybrid programming model

3.4 Requirements of MPI runtimes

With our extended taxonomy, we introduced various schemes with different code granularities and ways
to share resources between MPI and OpenMP. But mixing such models with different paradigms is not
only tricky at user’s level but also requests features from the runtimes. On the one hand, performing
concurrent calls to MPI layer implies the underlying runtime to be thread safe. But several levels of
thread safety are available. On the other hand, the placement of MPI tasks and OpenMP threads
requests good cooperation between both runtimes.

3.4.1 Thread support

MPI standard defined different levels of multithreading support which can be enabled when initializing
MPI. These levels are described as follows, from the most restrictive to the most permissive:

e MPI_THREAD_SINGLE: A single thread is allowed per MPI process
e MPI_THREAD_FUNNELED: Only the process that initialized can perform MPI calls

e MPI_THREAD_SERIALIZE: A process can be multi-threaded, but only one thread at a time can call
MPI

e MPI_THREAD_MULTIPLE: A process can be multi-threaded, and multiple threads can simultaneously
call MPI functions. It is the MPI runtime responsibility to synchronize concurrent calls to MPI
functions

MPI_THREAD_MULTIPLE is the most constraining level in term of thread safety. This level is required

in mixing modes such as thread-to-thread communications in Coarse-Grain approach. Indeed, as MPI
primitives are inserted in OpenMP constructs, this scheme implies concurrent calls to MPI layer, wher-
eras process-to-process variant only needs MPI_THREAD_FUNNELED level.
But to support this multithreading level, MPI runtimes need to be tuned, and ensuring thread safety at
MPI_THREAD_MULTIPLE level inside MPI runtime is not free as it requires considering many parts of the
runtime [49]. Moreover, this mode adds some overhead [101]. Several MPI implementations support
MPI_THREAD_MULTIPLE level such IntelMPI, MPC, or MPICH2 [48].

52

3.4.2 Interoperability between MPI and OpenMP

Exposed taxonomy highlighted different challenges when switching from pure MPI to Hybrid model.
Sharing resources between both models covering all mixing combinations described on the one hand,
and spawning parallel regions on the other hand, requires a smart cooperation between both models.

A first requirement is to cover all hybrid combinations described in placement part of taxonomy,
including oversubscribing (i.e. share same cores between both models). Secondly, placement of MPI
tasks and OpenMP threads has to be done following hardware topology. At last, a good cooperation is
required in order to ensure fair CPU share between both models.

Topology view for thread placement. To efficiently share compute resources between MPI and
OpenMP, a careful distribution of MPI tasks and OpenMP threads is necessary.

This placement requires that both models have a common view of underlying topology. But when
MPI and OpenMP runtimes are distinct, each model has its own view of hardware topology, and is not
aware of the other model. This case is likely to give a sub-optimal placement.

With MPC, MPI and OpenMP are implemented inside the same runtime, ensuring a good coopera-
tion between them. MPI tasks are distributed in a sparse manner, keeping each task as far as possible
from its neighbors, and reserving a set of cores for it. Then, as a task spawned a parallel region, the
set of cores is populated with OpenMP threads related to this task, threads being distributed following
a compact strategy. If, for example, we execute a code launching 4 MPI tasks on a machine equipped
with 4 sockets (i.e. NUMA nodes), each task will be spawned on a socket, and each task will spawn its
OpenMP threads inside the socket. This set, gathering the task and its OpenMP team, is called Hybrid
instance.

Policies for thread placement can be chosen with each programming model. But the model on the
top is not aware of policy chosen by the underlying model.

Cooperation between MPI and OpenMP. Since OpenMP is the top model in runtime stacking, MPl is
in charge of activating its related OpenMP team. For a complete integration, MPI has to launch OpenMP
threads in an efficient way. So optimizations have been done in MPC framework to improve spawn of
OpenMP threads. Thus, a polling method has been implemented, which consists for OpenMP threads
to wait for a value to be updated before starting their execution.

3.5 Identify bottlenecks in hybrid programming

The study of the Hybrid model and its various combinations through taxonomy helped us to identify its
strengths and weaknesses. We list here the different bottlenecks that can prevent from good scalability
of MPI+OpenMP codes.

3.5.1 Overhead of OpenMP runtimes

We recall here how overhead can be encountered in OpenMP runtimes, illustrated by Figure
OpenMP runtime is called when an OpenMP directive, associated to a parallel region, is encountered.
The runtime is exited when the code associated to the parallel region has finished to be executed. But
differences have to be made between the execution time of the runtime and the execution time of par-
allel threads execute their tasks. The reason is that, while executing the parallel region, the Master
thread has to create itself other threads and these have to synchronize before they are terminated.
These operations, which are know as Fork and Join mechanisms, need time to be executed. This time
corresponds to the overhead, and can be added to sequential time.

This overhead is amplified in Fine-Grain approach due to frequent calls to the OpenMP layer.

We illustrate this point in Figure [3.7] showing a code as a simplified example of Fine grained code
with loop level parallelism. This example allows us to understand why reducing overhead of OpenMP is
critical to reach performances. We can see that, after initializing MPI tasks, we encounter an iteration
loop to ensure the progression of simulation. Within the iteration, we have another loop parallelized

53

OpenMP execution model

Master thread

| |
| |
| |
. |
Sequential | |
execution ; 0
[I |
Parallel		
	.	
execution		
	I I	
overhead overhead
thread activation thread synchronization

Figure 3.6: Overhead of OpenMP model

int main(int argc, char xxargv)

MPI_Init(&argc, &argv);
/+ Code =/

/* lteration loop =/
for(i=0 ; i<niter ; i++)
{

/* Code =/

#pragma omp parallel for schedule(runtime)
for(j=0 ; j<n ; j++)

Cljl = Aljl + BLjl;

/+ Code =/

}

MPI_Finalize () ;

i

Figure 3.7: OpenMP overhead with Fine-Grain code

with OpenMP construct. Consequently, OpenMP runtime will be entered and exited niter times, and
the generated overhead will be as important as niter is high. Since there is only few room to optimize
compute time, it is critical to maintain it as minimal as possible. Indeed, this overhead can be considered
as additional sequential time. But an overhead can also be observed in Coarse-Grain approach, as
OpenMP constructs are required to maintain memory coherency of MPI communications. Frequent
calls to OpenMP layer performed in Fine-Grain approach lead us to study the performance of OpenMP
runtimes, especially for Fork/Join mechanisms.

Performance penalties due to NUMA environment. NUMA architectures are now available on cur-
rent supercomputers and exhibit hierarchical topology. Since OpenMP threads need to communicate
at some points of the program such as the beginning of parallel region or the synchronization points,
NUMA effects can be encountered when threads are not located on a same socket. These effects can
introduce additional overhead to OpenMP runtimes, this is why the underlying topology has to be taken
into account. As mentioned previously, the need of efficiency of OpenMP, especially when entering
and exiting parallel regions, implies to adapt algorithms implementing those operations to hierarchical
parallelism exposed by such memory organizations.

54

Space dedicated to OpenMP vary. With the Hybrid Programming, we introduced the Thread Place-
ment, providing a formalism defining how computational resources inside a compute node can be
shared between MPI tasks and OpenMP threads. For example, depending on Placement and on the
number of MPI tasks inside compute node, the available cores for each OpenMP team will vary, from
entire node to only a socket. So mechanisms for thread management have to be implemented in a
flexible way to keep minimal overhead, whatever the number of allocated cores.

3.5.2 Lack of parallelism and resource usage

The study of this taxonomy showed that sequential part of the code (i.e. outside OpenMP constructs)
and communications may represent an important part of the execution time. This shortcoming especially
appears with the Masteronly approach, where the code is sequential outside OpenMP parallel regions,
meaning only MPI applies. We saw communications represented a non negligible percentage of this
part. This shortcoming was highlighted in Fine-Grain approach, but also with Coarse-Grain scheme, as
MPI communications are serialized. A code with an important sequential part present several issues:

e use of only a subset of resources
e limited speedup and scalability of codes

We have to look for optimizations in order to reuse idle cores. We can tackle this bottleneck by
optimizing the sequential part as much as possible and focusing on MPI primitives (e.g. Collective
operations).

3.5.3 Complexity of Hybrid MPl+OpenMP codes

MPI and OpenMP present different paradigms and different interfaces: MPI provides a set of functions
to perform communications whereas OpenMP comes with a set of directives for work distribution or
synchronization. Then mixing both models is likely to complexify code and introduce bugs. The cost
of having an optimized code, using all resources as much as possible, is heavy. The best example is
the thread-to-thread communications mode, where MPI| and OpenMP are strongly interleaved. These
difficulties are real obstacles to going Hybrid. Yet, OpenMP and MPI propose similar features such as
synchronization and reduction, but these are provided with different semantics.

Also, at runtime level, in MPC framework MPI and OpenMP implementations interact for launching
OpenMP threads, but no cooperation is done for specific features such as synchronization or reduction.

Mix MPI and SPMD OpenMP. SPMD programming style used with OpenMP has been presented as
behaving like a distributed memory model. Then, when coupling SPMD with MPI, programmer had
to deal with 2 nested distributed memory models and a hierarchical domain decomposition. But no
cooperation was done between MPI and OpenMP for the case when tasks of the application need to be
synchronized.

3.5.4 Performance analysis of MPI+OpenMP codes

Ensuring scalability of parallel codes is a difficult task and it requires identifying potential performance
issues. This task is made even more complex as these issues can come from the application or the
runtime. We also highlighted how mixing two models with different paradigms can introduce bugs and
bottlenecks. To reach high performance with parallel codes, tools are often required in order to detect
bottlenecks, via different kinds of performance analysis such as profiling or tracing. But those tools rely
on interfaces to be plugged to programming models. Some interfaces come with MPI such as PMPI [3].
Starting from MPI codes and hybridizing them can lead to unexpected pitfalls, or performances can be
lower than expected. Detecting such pitfalls can be cumbersome, so the performance analysis of hybrid
codes is even more necessary. But some blocks miss to ensure good profiling of such codes, especially
interfaces dedicated to OpenMP. The performance analysis of hybrid codes can be very complex, and
with the increase of code complexity, tools are necessary to profile both models.

55

MPI standard comes with several APIs such PMPI for performance analysis. But there is a lack of
standard tool coming with OpenMP.

3.6 Thesis contributions

Section [3.5 helped identifying bottlenecks related to hybrid model that may prevent from scalability and
viability of hybrid codes. We introduce here our contributions, aiming at tackling the previously described
difficulties. The goal of this thesis will be to solve bottlenecks of the studied programming styles, chosen
by the programmer.

3.6.1 Reduce overhead of OpenMP runtimes in the context of fine grain paral-
lelism in MP1+OpenMP model

| !

A

A A
Fine-Grain Approachl

Coarse-Grain Approach}

L Loop-level parallelism

|
Masteronly J

Single parallel construct

MPI calls outside OpenMP
parallel regions

Process-to-process Thread-to-thread
communications communications
MPI commununications inside MPI commununications split
critical constructs into OpenMP threads

Requires MPI_THREAD_MULTIPLE

MPI + SPMD OpenMP

Each OpenMP thread computes|
its sub domain

I I
I I
I I
I I
I I
I I
I I
I I
I I
I J |
I I
I I
I I
I I
I I
I I
I I
I I

Figure 3.8: Targeted modes for reducing overhead of OpenMP

We saw in Section [3.5] that the OpenMP layer was likely to be frequently accessed in Fine-Grain
mode, generating overhead. But as synchronization constructs are also required in Coarse-Grain style,
optimization of the OpenMP layer is also desirable in this case. We introduce here our first contribution,
tackling one of the issues encountered with Fine-Grain parallelism and, to a lesser extend, with Coarse-
Grain, as highlighted on Figure 3.8} the optimization of OpenMP runtimes, focusing on the creation of
threads and their synchronization. In order to reduce this overhead, we describe in the next chapter a
new design of an OpenMP runtime meeting constraints encountered on MPI1+OpenMP codes, i.e the
need of performance on a large spectrum of threads. Then, we describe challenges raised by NUMA
architectures, and we show how our design meets these challenges by relying on a tree structure in
order to fit underlying topology, and to use it, for example, for thread activation and synchronization.
At last, we introduce our contribution, the Adaptive tree, which is a tree whose shape automatically

56

- —[Code Granularity)— -

l —

{Fine-Grain APProaChJ Coarse-Grain Approach

Loop-level parallelism Single parallel construct

{
[Masteronly]

MPI calls outside OpenMP
parallel regions

Process-to-process Thread-to-thread
communications communications

critical constructs into OpenMP threads

Requires MPI_THREAD_MULTIPLE

!

MPI + SPMD OpenMP

Each OpenMP thread computes|
its sub domain

|
1
|
|
|
|
|
|
|
|
1
MPI commununications inside MPI commununications split I
1
|
|
|
1
|

Figure 3.9: Targeted modes for hybridizing MPI collectives

changes depending on the number of launched threads in OpenMP constructs.

3.6.2 Study Collective operations in a hybrid context

In Chapter [5] we propose a global study about MPI collective operations, targeting several bottlenecks.

Hybridization of Collective operations. In our second contribution, we target the problem of se-
quential component of the total execution time and we search for a better use of compute resources
during this time. This problem is especially encountered with Masteronly approach (Figure [3.9). So,
we analyze what parts of sequential component can be optimized, which leads to focus on MPI collec-
tives. We then investigate literature about optimization of MPI Collectives, through multiple directions:
rely either on shared memory or on network topology. We also study different kinds of MPI collectives
through their characteristics and discuss how we can hybridize them with OpenMP threads. At last, our
contribution is focused on MPI_Allreduce and we propose a portable way to optimize this collective with
the help of OpenMP threads, and using different algorithms.

Introduce unified collectives. In the third contribution, we tackle the problem of code complexity
when mixing models with different semantics. We target Coarse Grain approach (Figure(3.10), and give
guidelines to simplify semantics of the Hybrid model, especially when performing MPI communications
in a thread safe way.

In the case of MPI + SPMD pattern, we introduce collectives unifying both models, such as reduction.
A global barrier is presented as a proof of concept, synchronizing both MPI tasks and OpenMP threads.

57

(== —(Code Granularity)— -
I
I

Coarse-Grain Approach} 1

Single parallel construct

|
|
|
|
| Y |
Process-to-process Thread-to-thread |
|| | communications communications
I|| MPI commununications inside MPI commununications split |
critical constructs into OpenMP threads I
|
Requires MPI_THREAD_MULTIPLE
| - - |
| ‘ |
MPI + SPMD OpenMP I
|
Each OpenMP thread computes| |
| its sub domain
|

Figure 3.10: Targeted modes for unified collectives

3.6.3 Standard performance analysis of OpenMP codes

In the last part of this thesis, we study eligible tools for performance analysis targeting OpenMP codes.
We then describe the newly introduced OpenMP Tools APl (OMPT [54]): this describes an interface
compatible with the OpenMP standard, and is dedicated to performance analysis. This API provides a
set of events dedicated to OpenMP constructs and is to be interfaced between OpenMP runtime and
tools for performance analysis. It covers all OpenMP constructs and can be used to identify bottlenecks
in OpenMP codes and runtimes. We consider this interface as the last arrow to enable a good profiling
of hybrid codes. Then, we describe the implementation of this API into MPC framework.

At last, we study performance analysis using our implementation of OMPT, oriented for both runtimes
and hybrid codes, and with the help of TAU, a tool dedicated to performance analysis.

58

Part Il

Contributions

59

Chapter 4

OpenMP runtimes for MP1+OpenMP
applications

Due to its Fork/Join mechanisms, OpenMP implies overheads when starting and terminating threads.
The reason is that threads have to be created and activated for parallel execution. Regarding these con-
siderations, runtimes implementing OpenMP model propose optimizations to minimize these overheads
as much as possible. In this chapter, we expose on the one hand constraints on OpenMP runtimes
implied in hybrid applications, and on the other hand challenges encountered by NUMA systems on
OpenMP constructs. Then we describe a NUMA-aware design of our OpenMP runtime, and subse-
quently our contribution.

4.1 Constraints on OpenMP runtime in hybrid MPI+OpenMP codes

As the top model in hybrid MPI+OpenMP codes, OpenMP is likely to be frequently entered and exited.
Moreover, the taxonomy related to hybrid MPI1+OpenMP described in last chapter exposes different
mixings between MPI and OpenMP, and different code granularities. Constraints on OpenMP runtime
in hybrid context are then twofold:

e OpenMP constructs are frequently called
e Space for OpenMP vary among compute node

These constraints can consequently lead to non negligible overheads which can impact perfor-
mances of applications. They will be detailed in the following sub-sections.

4.1.1 Need of efficient mechanisms for OpenMP constructs

The taxonomy related to hybrid MPI+OpenMP exposed different granularities when mixing MPI and
OpenMP. Depending on these granularities, OpenMP runtime will be stressed in different manners. With
fine-grain parallelism, code is likely to perform frequent calls to constructs such as omp parallel region
and its combined version omp parallel for. In this configuration, it is critical to be able to enter and
exit OpenMP layer on a fast manner. Moreover, efforts have to be focused on threads activation and
synchronization when designing OpenMP runtimes. These constraints advocate for a lightweight run-
time.

Since we encounter large parallel regions with coarse grain parallelism, we have a lower number of
threads activations. We put the stress on constructs inside OpenMP parallel region, such as OpenMP
loops, barrier oOr single constructs.

Moreover, in oversubscribing configurations, cores are shared between OpenMP threads, or between
MPI tasks and OpenMP theads. We then need to be able to perform fast context switches between
threads.

61

4.1.2 Need of a flexible runtime

In chapter 2, several levels of thread placement were described. For example, in mixed hybrid con-
figuration, compute node is shared between OpenMP teams. Thus, depending on granularity of thread
placement, space available for OpenMP can vary, from the entire node to a socket. These constraints
have to be taken into account by OpenMP runtimes and advocate for efficient runtimes for only few
threads and numerous threads. These considerations lead to design runtimes allowing flexible handling
of threads.

4.2 Impacts of NUMA effects on OpenMP runtimes

Even if, in a hardware point of view, memory units are separated and dedicated to a processor, ccNUMA
architectures are considered as shared memory systems at user’s level. However, due to their char-
acteristics, inter-sockets communications are expensive in terms of latency. Such latencies are called
NUMA effects. These NUMA effects can be encountered when threads located on different NUMA
nodes need to interact, or if a thread has to access data on a remote node. To avoid these penalties, a
special care has to be taken in the area where data are accessed. We call this data locality. With the
problem of data locality comes the problem of memory affinity, i.e. the relationship between threads and
data. Memory affinity is enabled when threads and related data are located on the same NUMA node,
and thus remote accesses are avoided. Taking NUMA characteristics and data locality into account is
critical for scalability of OpenMP codes, and consequently MPI+OpenMP codes. Then, we have to keep
in mind NUMA effects and data locality when designing OpenMP runtimes.

A flat representation of threads is no longer sufficient to leverage such architectures. We illustrate the
problem of threads interactions by taking the example of basic operations in OpenMP such as threads
activation and thread synchronization in the following sub-section.

Impact on OpenMP constructs: thread activation and thread synchronization The basic opera-
tions with OpenMP are to activate threads when beginning a parallel region and to synchronize them on
a barrier (Fork and Join mechanisms). A classic implementation of thread activation is, for the thread
Master (thread of rank 0), to wake itself the other OpenMP threads.

OpenMP team

thread Master

S 5 55 55 5

sequential

parallel

time

S

Y...-....

core
socket

Figure 4.1: Centralized approach for thread activation

62

We can call this implementation a centralized approach (Figure [4.1). We consider OpenMP threads
are equally dispatched on all available cores on the compute node, among all NUMA nodes. If we can
assume that activating threads is only fast if all threads are on the same NUMA node, then, activating
threads dispatched on all NUMA nodes can be time consuming. The explanation is that the Master
thread has to flip variables to launch execution of the entire OpenMP team. Considering that the vari-
ables relative to each thread are located on memory banks near their respective NUMA nodes, master
thread will have to perform remote access, encountering NUMA penalties. The centralized approach
relies on the fact that a single thread is in charge of the entire work of thread activation, which leads
to contention. Moreover, by ignoring data locality previously presented, NUMA effects are likely to be
encountered, and additional overheads are encountered.

The same problem occurs for thread synchronization. With the centralized approach, master thread
increments a counter as threads reach the barrier. When all threads have reached the barrier, the
Master thread sets a flag and all threads are free to continue their execution.

Problem of memory affinity Beside the problem of threads interaction encountered with OpenMP
constructs, a thread also interacts with data during its execution, for example accessing and writing
an array. If we assume that data are allocated near threads (on the same node) when starting the
application, thread placement may evolve during execution. This case is encountered with irregular
applications such as AMR codes(Adaptive Mesh Refinement), in which the memory pattern evolves.

4.3 Related Work

Lightweight OpenMP runtimes. Hybrid codes are designed in a way parallel regions can often be en-
tered and exited, or cores are shared between OpenMP threads. So there is a need to create threads
that are able to quickly start their execution. This leads to study contributions proposing light imple-
mentations of OpenMP threads. [38] describes a new kind of threads named Filaments, supporting
efficient execution of fine grained codes. In [24], authors introduce, inside the runtime MPC (Multi Pro-
cessor Computing), a new kind of OpenMP threads named microVP (micro Virtual Processor). These
microVPs schedule their own microthreads, which can be considered as lazy threads. This implemen-
tation allows faster context switches, since microthreads don’t have their own stack but microVP ones.
Stacks are created on-the-fly at scheduling points (such as barriers). This design achieves a lightweight
implementation of OpenMP runtime and ensures good integration within MPI+OpenMP context.

Thread handling and placement in NUMA environment. Some papers focused on optimizing main
OpenMP constructs. [86] proposes several implementations of the OpenMP barrier in the OpenUH com-
piler, describing several algorithms, such as tree, dissemination, or tournament. Experiments revealed
that tournament ensured best scalability of the OpenMP barrier.

In [20], authors present ForestGOMP, an OpenMP runtime which extends the libGOMP library, and
propose optimizations for NUMA environments. Indeed, it introduces a hierarchical representation of
threads, via a component named BubbleSched, which gathers threads belonging to an OpenMP team
in bubbles, and dispatchs them among underlying topology. To target irregular applications, some work
stealing algorithms are also proposed to dynamically move threads from a core to another, for load
balancing purposes.

Memory Affinity In order to control memory affinity between threads and data, ForestGOMP also
proposes data migration via its memory manager MaMﬂ This component proposes new memory poli-
cies like next-touch, which is a generalization of first-touch memory policy: when a thread accesses
data on a remote node, data are moved inside the memory system near the thread.

Some other contributions also focus on how to ensure memory affinity in a NUMA context and for
OpenMP codes. In [94], authors present Minas, a framework providing explicit or automatic tuning to
control memory affinity. Minas contains several components for ensuring memory affinity:

"Marcel Memory Interface

63

o MAIi (Memory Affinity interface) is an API providing data allocation and placement. It implements
some memory policies following different data distributions (bind, cyclic and random). Minas first
presents alternative memory pattern policies than first-touch policy, implemented in Linux sys-
tems: next-touch policy, which allows data movement to close threads. These memory policies
deal with both regular and irregular applications.

e MApp is a preprocessor performing source-to-source transformations to insert specific functions
belonging to MAi API.

¢ A third component named Numarch retrieves machine informations, ensuring Minas to offer hard-
ware abstraction and code portability.

4.4 NUMA aware runtime

The characteristics of NUMA architectures and impacts on OpenMP runtime described in the previ-
ous section lead us to design a hierarchical representation of threads inside OpenMP runtimes. This
work has been implemented in MPC framework and is built on top of the lightweight implementation
of OpenMP threads mentioned in [24]. It can also be compared to the contribution made with Forest-
GOMP, as it also relies on a hierarchical structure. However, as we will see, it is also oriented towards
Hybrid context where MPI and OpenMP are mixed.

4.41 Hierarchical tree

Our hierarchical representation of threads consists of a balanced tree, containing a root, nodes and
leaves. Threads will be mapped on this tree. To illustrate our design, we can take the example of a
machine equipped with 4 processors, each containing 8 cores and coming with its memory bank. This
example is depicted on Figure If we build a tree following hardware topology, it will consist in 4
nodes, each node representing a NUMA node, and having 8 leaves in its sub-tree. The tree has a total
of 32 leaves. Let’s then consider an OpenMP team of 32 threads, fully populating the machine, and let’s
see how these threads are mapped on this tree. The Master thread (thread of rank 0) will be placed on
the tree root, on the top left node and top left leaf. Threads of rank 8, 16, and 24 will be placed on the
other nodes and top left leaves inside their respective sub-trees.

The Hierarchical data structure allows to delegate part of the activation and synchronization work to
those threads located on intermediate nodes. We describe these mechanisms in the following sub-
sections.

4.4.2 Application to thread activation and thread synchronization

Whereas the centralized approach previously described consisted in having all the OpenMP threads ac-
tivated by the Master thread, our approach allows to delegate parts of the thread activation, as illustrated

in Figure[4.2]

Algorithm 2 Hierarchical thread activation

Require: tree
1: node + tree.root
2: while node # LEAF do
3: wait on node.exec = 1
4: for i := 0 to node.nbchildren do
5 if i > 0 then
6 node.childrenli].exec < 1
7: end if
8
9
0:

end for
node < node.children|0]

10: end while

64

32-core NUMA nodes thread 0
RS Root

thread 0, thread 8

Hardware

Figure 4.2: Hierarchical thread activation

The principle of thread activation using hierarchical tree, depicted in Algorithm[2] operates as follows:
the thread of rank 0 is waiting on the tree root and wakes the threads located on children nodes. Once
awaken, these threads are polling on their nodes and take in charge the activation of threads located
on their children nodes. This operation is repeated in a recursive way until reaching the tree leaves.
As soon as a thread is activated, it starts its execution. As depicted on Figure the Master thread
(ranked 0) is waiting on the tree root as well as on the left intermediate node, and on the top left leaf. In
a similar manner, the threads located on other internal nodes are also broadcasted on each left leaf of
respective sub-trees.

We detail the process of thread activation by following its different steps. For better understanding,
nodes where threads are waiting for execution are colored in red and those where threads are executing
or activating other threads are colored in green.

Figure describes the first step of thread activation. We start from the root of the tree with the
thread ranked 0. The first job of thread 0 is to wake its children which are thread 8, thread 16 and thread
24. The wakening operation consists in updating value of a flag to 1 in order to inform children threads
to start their execution.

Once the threads located on children nodes are awaken, they wake the threads located on the
leaves, in their own sub-trees. This is the second step of thread activation process (Figure 4.4 While
threads located on intermediate leaves activates their children leaves, the Master thread located on the
tree root, switches location from the root to the node located on its left.

Figure describes the third step of Fork operation. Once threads ranked 8, 16 and 24 have
finished to activate the threads on leaves, they can switch from intermediate nodes to the top left leaves
of each sub-tree. The activated children threads, as soon as they get their flag turned on, immediately
start their execution. Meanwhile, the Master thread iterates through its children inside the first sub-tree
starting from the left, and wakes them.

When the Master thread has finished activating all its children, it switches from top left intermediate
node to the top left leaf and executes himself (Figure [4.6).

Algorithm [3] describes the implementation of the OpenMP barrier using a hierarchical tree. Each
node of the tree has an intermediate barrier to synchronize threads belonging to its sub-tree. To syn-
chronize all threads relative to its sub-tree, the node contains a counter barrier allowing to know how
many of its threads have reached this barrier. Each time a thread reaches the barrier, it increments the
counter, until its value equals the number of expected threads stored in the sub-tree. We have to make
sure this counter is incremented in an atomic way since it is accessed in a concurrent way. When the
expected number of threads has reached the intermediate barrier, a flag related to this node named

65

32-core NUMA nodes

thread 0

thread 8 thread 16

thread 24

Hardware

Figure 4.3: Hierarchical thread activation - 1st stage

32-core NUMA nodes

thread 0

thread 8 thread 16

thread 24

Hardware

Figure 4.4: Hierarchical thread activation - 2nd stage

barrier_done is activated, and the last thread having reached this barrier continues to higher stages.
Consequently, we climb the tree in a recursive way until reaching the tree root and its global barrier.
Once root is reached, all nodes are informed that the global barrier is reached, and each thread goes
down to its leaf through relative nodes and continues its execution.

By using a hierarchical tree taking into account underlying topology, we improve the data locality and
reduce the contention by decoupling the work of Fork / Join mechanisms.

66

32-core NUMA nodes
thread 0

thread 0

Hardware

Figure 4.5: Hierarchical thread activation - 3rd stage

32-core NUMA nodes
thread 0

thread 8

thread 0 B thread 16

thread 24

thread 0 thread 8 thread 16 thread 24

Hardware

Figure 4.6: Hierarchical thread activation - 4th stage

4.4.3 Explore different tree shapes

Flat tree In the previous part, we took the example of a tree following hardware topology, as we call
it topology tree. This solution seems to be the most intuitive tree shape, as it adheres to hierarchical
architecture and optimizes data locality. However, for a small number of threads, centralized algorithm
presented in Section is an efficient way for thread activation and synchronization, as it is straight-
forward. We call this approach flat tree (depicted on the left part of Figure [4.7): we deal with a one
level tree, with a single thread in charge of activating or synchronizing all other threads. The overhead
is minimal for these operations.

67

Algorithm 3 Hierarchical barrier

Require: iree,thread
: node < thread. father
: bdone < node.barrierdone
. b < node.barrier
. atomic(node.barrier < node.barrier + 1)
: while b + 1 = node.barriernbthreads and node # tree.newroot do
node.barrier < (
node < node. father
b < node.barrier
atomic(node.barrier < b+ 1)
: end while
. if node. father £ NULL or node. father = NULL and b + 1 # node.bnthreads then
while bdone = node.barrierdone do
wait thread
end while
: else
atomic(node.barrier = 0)
node.barrierdone = node.barrierdone + 1
: end if
: while node.typechildren # LEAF do
node = node.child[thread.ranktree[node.depth]]
n.barrierdone = node.barrierdone + 1
: end while

IO M o oo oo o o
NXS0®N20s®0 =00

Deep tree At the opposite, for a large number of threads, we can investigate trees deeper than the
topology tree, in order to expose more parallelism. Indeed, by increasing the depth of the tree, we
increase the number of steps and decrease the number of threads to deal with, which allows to lower
the contention at each level. The binary tree is the deepest tree we can study. Since each node degree
is minimal, it allows the smallest contention when it needs to deal with its children. But the drawback
is that the global overhead increases due to the number of implied steps. These considerations lead to
find a tradeoff between exposing parallelism and limiting the number of steps, depending on the number
of threads we have to handle.

32-core NUMA node Root Binary tree

32-core NUMA nodes
2 Root

Flat tree

T EE Bl T .” m—aE—— N _ i .”

NUMA node Core NUMA node
Hardware Hardware

Figure 4.7: Different tree shapes

68

4.4.4 Handle tree shapes in a dynamic way

We saw that the tree shape is likely to influence performances, depending on the number of launched
threads. Furthermore, some codes, as they perform OpenMP parallel regions, require less OpenMP
threads than launched at the beginning of the execution. Thus, the number of used OpenMP threads is
likely to change during execution time, and we need to dynamically adapt the tree shape. The difficulty
here is twofold: elect the best tree shape to ensure best possible performances, and be able to change
it in a dynamic way, with low additional overhead.

4.5 Contribution: Adaptive tree

In the last section, we described our design of NUMA-aware OpenMP runtime, consisting in a hierar-
chical tree where OpenMP threads are mapped, and used to wake or synchronize OpenMP team. The
need to keep a minimal overhead for few threads and numerous threads drove to study different tree
shapes. But as the number of threads involved in parallel codes can change during their execution,
there is a need to tune tree shape in a dynamic manner.

Thus, we introduce here our concept of adaptive tree: we build a topology tree, mapping the under-
lying topology, and exploit it depending on the number of launched threads. Our contribution, extracted
from [77], consists in only using a subset of the whole tree when all threads can be contained in this
subset. We later present our mechanism to bypass the tree when possible.

4.5.1 Bypassing the tree

In the previous sub-section, we saw there was no unique solution for best tree shape. The need of han-
dling tree shape in a dynamic manner according to the number of launched threads lead us to change
the tree shape during execution. Our contribution consists in an adaptive tree, whose the exploitation
depends on the number of launched threads during the execution. The principle is the following: we use
only a sub-tree provided it can contain all the threads. We do this by comparing the number of launched
threads with the number of available cores on the machine. If the number of threads can be contained
inside a sub-tree, we set the root on top of this sub-tree.

Algorithm 4 Bypassing

Require: tree, numthreads
1: node < tree.root
2: while node.typechildren # LEAF and numthreads < node.children|0].mazindex do
3: node < node.children0]
4: end while
5: tree.newroot <— node
6: return tree.newroot

Algorithm [4] describes how Adaptive tree works through what we call a Bypassing mechanism. We
start at the tree root, and take it as the current root. The algorithm then compares the number of
launched threads with the total number of leaves in the sub-tree of the top left child node of the tree
(given by the field maxindex). If the number of threads is lower or equal to the number of leaves, then the
child node located at the top left becomes the root. This process is recursively repeated until reaching
the leaves. At the end, Algorithm [4|returns the new computed root.

69

9pOU 8109-8Z| B JO MaIA 01607 :8°1 8inbig

g

P —)

P) B —")

susemiod [(1 []| eorsss

aseo

E E E . E

E

waseo

E

:: e z. oo | | eramm s E E

Sramees

Trameos

rawees

r—

=

raseo oo

E

! s ? o ?
e o s; e 25 Ea

E

E l: ore ?
oo is is

oo = e [e e e

(@02) vika oo 7

028 o1rd oo

(3028) 344 soenorn

[|

Ciramess

P

P

e

oo o |

P p——"

P pp——"

[|

oram

wase

oraseo

s

waseo

Teaemd

o0

waseo

oraso

Zramees

o

rawees

oramees

ey

is0u2

is0s2

o

ey

70

To illustrate our approach, we take the example of an application launched with 8 OpenMP threads
and running on a large compute node. The compute node is a 128-core Bull Coherency Switch node,
composed of 4 modules, containing each 4 8-core processors (Figure[4.8).

128-core NUMA nodes AN Ada pt|Ve
tree

I < or equal
| 32 threads
, @

I < or equal
| 8 threads ¢ o
1

AAL AN

Module Core

Hardware

Figure 4.9: Adaptive tree

The tree depicted on Figure maps the underlying topology of the node.

We can apply the bypassing algorithm to this configuration. The current node is the root of this tree.
We start by considering the top left sub-tree, framed in a dashed rectangle. We compare the number of
launched threads with the total number of leaves contained by this sub-tree. Since the sub-tree gathers
a total of 32 leaves, then we tag the top left child node as the root. Again, we repeat this operation by
examining its own top left sub-tree, in plain rectangle, and test if the number of its children exceeds or
is equal to the number of threads. This time, the number of threads and leaves match. So we can place
current root on the root of the top left sub-tree.

4.5.2 Apply bypassing to thread activation and thread synchronization

The mechanisms of thread activation and synchronization remain the same. The only difference is
that bypassing algorithm returns a different root. So the thread activation and synchronization take the
root returned by the bypassing algorithm as an input, and are therefore constrained inside the deduced
sub-tree.

In order to make clear how bypassing algorithm works, we illustrate the concept with a code (Figure
involving several consecutive OpenMP parallel regions. Each region is launched with a different
number of threads. Inside the runtime, the bypassing algorithm will be executed as soon as the parallel
region is encountered. The first encountered parallel region is launched with 128 threads, which corre-
sponds to the total number of available threads. So the computed root of the algorithm will be the real
root of the tree. This computed root applies to the algorithms of parallel region and barrier. Once the
first parallel region is passed, the computed root is reset. Consequently, all trees will be used and all
threads will be activated.

When encountering the second parallel region, 32 threads are required. The Bypassing algorithm
computes the new root and tags the left child node as the new root: all its leaves can contain the
requested threads (Figure [4.77). So only the threads contained in the left sub-tree are waiting to be
activated.

At the end of the parallel region, the barrier applies only on this sub-tree.

71

int main(int argc, char sxargv)

/* Sequential code =/
#pragma omp parallel num_threads(128)

/* Code of parallel region x/

#pragma omp parallel num_threads(32)
/* Code of parallel region =/
#pragma omp barrier

/% Code of parallel region =/

}

#pragma omp parallel num_threads(8)
/* Code of parallel region =/
#pragma omp single

/+ Body of omp single construct =/

/* Code of parallel region x/

#pragma omp parallel num_threads(128)

/* Code of parallel region =/

return EXIT_.SUCCESS;
}

Figure 4.10: OpenMP regions with different threads

128-core NUMA node Root Adaptive
tree

< or equal
32 threads

Hardware

Figure 4.11: Adaptive tree with 32 threads

The third parallel region is to be launched with 8 threads. Starting from the tree root, we recursively
cross the tree and take the top left node of the smallest sub-tree as the root. We then launch the parallel
region.

But the flexibility provided by the Bypassing approach allows to go back to a big number of threads
(i.e. last parallel region).

This example showed that our bypassing algorithm offered a flexible way to efficiently launch OpenMP
constructs with varying numbers of threads, and on consecutive parallel regions. The computed root
is reset when the parallel construct is finished. This approach allows to minimize the impact for thread
activation and synchronization implementations.

72

128-core NUMA nodes Root Ada pt|Ve
tree

Hardware

Figure 4.12: Adaptive tree with 8 threads

The main advantage with the Bypassing algorithm is that this approach is transparent for thread
activation and barrier: the algorithms just have to take the input root into account, as a starting point or
as a limit.

4.5.3 Implementation

Hierarchical tree, thread activation and synchronization, and Adaptive tree have been implemented in
MPC 2.5.0. To be able to build the topology tree, we needed to know about underlying topology. So
we used HWLOC library (Hardware LOCality). This library allowed to discover the hardware topology
and therefore to build our tree in a recursive way. The tree was built once at the beginning of the
application execution, when first encountering an OpenMP parallel region. Each time a parallel region is
encountered, the Bypassing algorithm was executed and returned a new computed root. This computed
root was taken as the input for thread activation and synchronization.

4.5.4 Experimental results
We evaluated the adaptive tree on two hardware configurations:

e one 32-core node composed of 4 processors Nehalem EX X7550 clocked at 2.00 GHZ (Tera-100
supercomputer)

e a 128-core Bull Coherency Switch node containing 16 processors Intel Xeon E7-4800. These
processors are dispatched on 4 modules linked with a BCS interconnect system, each composed
of 4 NUMA nodes (Curie supercomputer)

EPCC microbenchmarks First experiments were performed on EPCC [21], a suite of microbench-
marks the goal of which is to estimate overhead of OpenMP constructs. We focused on omp parallel
and omp barrier constructs, and compared our approach with other tree shapes and OpenMP run-
times.

Different OpenMP runtimes were compared:

e ICC 121

73

e GCC 4.6.1 on 32-core node
e GCC 4.4.4 on 128-core node
e MPC 2.5.0

GCC compiler includes libGOMP library.
The different tree shapes compared with the adaptive tree were a "4-8” tree, a flat tree on the 32-core
node, a "4-4-8” tree and a "4-32” tree on the large node.

50

|Cb-12.1 ———
GCC-4.6.1
" MPC-MIXED i@
40 7
35
?
°
S 30
3
Q
2
o
G 25
£
£
o 20
£
15
. /
5
@
0. T II||IIII IIII L
1 2 3 . . — /

threads

MI‘:’C-4-8 ——
MPC-Flat-Tree
MPC-MIXED 1@ |

time (in microseconds)

i pd

0 i i i i
1 2 3 4 8 16 32

threads

Figure 4.13: Adaptive tree - Parallel region overhead on 32-core node

Results are depicted on Figures [4.13] [4.14] [4.15 and [4.16] On the first hardware configuration, we
compared performances between a flat tree, a topology tree and our adaptive tree, with MPC. We notice
that on 32-core node, the flat tree performs best with a few threads but performances fall with more than
16 threads. The "4-8” tree and adaptive tree have similar performances on 32-core node. We observe
GCC performs poorly on all configurations, especially with a large number of threads, probably due to

74

2000

ICC-12‘.1 ——
GCC-4.4.4
1800 MPC-MIXED i@ |

1600

1400

1200

1000

800

time (in microseconds)

600

400

200

1 2 3 4 8 16 32 64 128
threads

35 T T
MPC-TREE-4-32 et

MPC-TREE-4-4-8
MPC-MIXED 1
30 /
25 //
20
15 /
10
|||\\|--|\\\|1)
"
e
5 / Rl W
"
.l;uumuun‘p
||\|““‘
"

" hnd |
1 2 3 4 8 16 32 64 128
threads

time (in microseconds)

Figure 4.14: Adaptive tree - Parallel region overhead on 128-core node

the absence of support of NUMA environment. MPC with the Adaptive tree is able to better perform
than with the ICC 12.1, on both hardware configurations.

4.6 Discussion about hierarchical work stealing

Some applications are called irregular due to their sparsity. Such applications cause load imbalance
between threads, in the case of OpenMP applications. Load imbalance is an obstacle to scalability of
codes, and some techniques enable to correct it, in particular work stealing. Work stealing corrects
imbalance by allowing idle threads to look for compute work to be executed by other threads. There are
opportunities for work stealing with OpenMP loops and OpenMP tasks.

75

25

ICC-12.1 —+—
GCC.4.6.1
MPC-MIXED 88+

20

15

10

time (in microseconds)

0 *
1 2 3
threads
8 T
MPC-4-8 =—t—
MPC-Flat-Tree
MPC-MIXED - #::-

7

6
)
T 5
o
(53
Q
[}
o
s 4
£
E
£

2

1 ("‘"‘/

s D e A e r TS
0 s ;
1 2 3 4 8 16 32

threads

Figure 4.15: Adaptive tree - Barrier overhead on 32-core node

OpenMP loops OpenMP standard allows, via constructs like #pragma omp for, to split their itera-
tion space involved in loops into chunks, to be dispatched on threads and executed. There is also
a possibility to tune granularity of chunks. Several scheduling policies such as static and dynamic
are described to schedule chunks on threads. Whereas static policy doesn’t allow correcting load
imbalance, dynamic policy gives room for work stealing.

This is why OpenMP runtimes propose features such as work stealing to correct this imbalance.
When a thread has no more chunks to execute and becomes idle, he looks for other chunks to execute
in the neighbor threads.

OpenMP tasks OpenMP 3.0 revision introduced the concept of explicit tasks. Developers can express
these explicit tasks via #pragma omp task construct, as soon as this feature is supported by OpenMP
runtime. This task is associated with a function or a portion of code. A thread encountering this construct

76

T
ICC-12.]
GCC-4.4.4
MPC-MIXED 111
350 a

300 1

250

200

time (in microseconds)

150

100

50

1 2 3 4 8 16 32 64 128
threads

70

MPC-TREE-4-4-8 s
MPC-TREE-128
MPC-MIXED i@

60 g

50

40 4

30

time (in microseconds)

20

10

0 L.l o ! i
1 2 3 4 8 16 32 64 128
threads

Figure 4.16: Adaptive tree - Barrier overhead on 128-core node

is in charge of executing the associated task before reaching a scheduling point. Thus, during execution
time, several tasks related to a thread are likely to be waiting for execution. There are different possible
implementations to store OpenMP tasks waiting for execution. Examples of implementations are a pool
of tasks shared by all threads or a private queue for each thread.

In the following sub-sections, we will study different strategies and implementations of work stealing.

4.6.1 Strategies for work stealing

Work stealing strategies have been widely investigated and numerous algorithms have been proposed
in the literature. Emergence of NUMA architectures lead to perform work stealing in a hierarchical way.
In [28], the authors adopt a hierarchical representation of OpenMP task scheduling and adapt work

77

stealing strategies to this representation. [82] introduces HotSLAW, a task library proposing several
work stealing mechanisms such as:

e Hierarchical Victim Selection: steals from the nearest neighbor and gradually climbs locality hier-
archy.

e Hierarchical Chunk Selection: tunes chunk size to steal depending on the distance between the
thief thread and the victim thread

Another contribution extracted from [31] enables a technique to split task queues between victim and
thief threads. This technique allows a scalability of work stealing on 8,192 cores.
4.6.2 Implementations of hierarchical work stealing

We investigated several designs for work stealing, relying on hierarchical structure previously presented.

A first implementation of hierarchical work stealing is to store the entire tree (e.g nodes and leaves)
in a stack. To parse the tree, the thread has to pop the stack.
An alternate design allows to avoid parsing the tree.

Algorithm 5 Compute index

Require: DEPTH,nbleaves,treeShape[DEPTH)], threadPos|DEPTH]
1: fori:=0to DEPTH do

absPosli] < 0

3: currentPos|i] < threadPosli

4: end for

5: while iter < nbleaves do

6:

7

8

fori:=0to DEPTH do
currentPos[i] < (absPos[i] + threadPos[i])modtreeShapeli]

. end for
9: 1+ DEPTH -1
10: while i > 0 and absPos[i] = treeShape[i] — 1 do
11 absPosli] < 0
12: 141—1
13: end while
14: ifi > 0 then
15: absPosli] < absPosli] + 1
16: end if
17: ater < iter + 1
18: end while
19: return currentPos

As described in Algorithm [5] it consists, for each thread, in starting from the leaf of current thread
and in parsing all leaves by beginning with the next leaf. The algorithm takes three parameters as input:
the tree depth, the tree shape as an array, and the thread position relative to the tree. The tree shape
(i.e the number of children at each level) is stored in an array the size of which corresponds to the
tree depth. Another array, threadPos contains the path from the tree root to the location of the current
thread, and is used to compute the next targeted leaf, modulo the tree shape. This process is iterated
until parsing all leaves. This algorithm gives each thread a unique parsing in order to avoid contention,
and first explores the neighbors first, before looking for other works to steal.

With Figure [4.17] we take an example of a balanced tree and apply the algorithm to it. The depth
of the given tree is equal to 3 and its shape can be expressed as treeShape = 3,2,3 . Let’s consider
the current thread is located on the second upper sub-tree, its second sub-tree and on the second leaf.
We will apply the algorithm to this thread. Its location following the tree is thus given as threadPos
= 1,1,1. The location of this thread is marked with an arrow. When starting the algorithm, absPos
is initialized to 0,0,0 and currentPos is set to 1,1,1. The ordering of the parsing is tagged with the

78

QO Root

17 15 16 14 12 13 5 3 4 2 4 11 9 10 8 6 7

Figure 4.17: Example of implementation of compute index for work stealing

numbers below the leaves. The algorithm then iterates through the leaves and the first step is the last
leaf of the sub-tree (step 1). For the next step, currentPos is computed taking into account absPos
and modulo treeShape , then it is gives 1,1,0. So on step 2, the current thread looks after the first leaf
of the sub-tree. On the following step, we parsed the entire starting sub-tree, the next leaf to be visited
is the second one of the neighbor sub-tree, wich is included in the containing sub-tree. After iterating
through this sub-tree, the current thread parses the top right sub-tree, starting by the second leaf, which
is still computed following absPos and treeShape . When finishing the algorithm, absPos equals
treeShape .

Root

Figure 4.18: Apply Bypassing algorithm to the Work Stealing with compute index algorithm

79

We can also use the Adaptive tree for Work Stealing purposes and combine it with the Compute
Index algorithm. Let's apply the Bypassing algorithm to the left sub-tree (Figure and run the
Compute Index algorithm again. The value of tfreeShape will be 2,3. The current thread is located on
the second lowest sub-tree, on the second branch (threadPos = 1,1). absPos and currentPos are
respectively initialized to 0,0 and 1,7. Then, the algorithm parses all leaves like in the first case, but it
only applies for the given sub-tree.

4.7 Conclusion

The goal of this chapter was to highlight constraints on OpenMP runtimes encountered in hybrid MP1+OpenMP
codes, and running on NUMA architectures. We presented a state-of-the art design to take into account
hierarchical parallelism implied by NUMA systems, with application to most encountered OpenMP con-
structs such as thread activation and barrier. We introduced our first contribution, the Adaptive tree,

that offers a flexible way to reduce the overhead of OpenMP runtime, through its Bypassing algorithm.

We demonstrated through several examples that Bypassing algorithm was transparent to other features

such as thread activation, synchronization or Work stealing algorithms. This contribution was imple-
mented inside MPC runtime and experiments showed this approach was a promising solution to meet
previously enumerated constraints. At last, we discussed about features coming with OpenMP imple-
mentations such as Work stealing and impacts of hierarchical topology on Work stealing.

80

Chapter 5

Study Collective operations in hybrid
MPI+OpenMP context

In Chapter [4] we identified the overhead of OpenMP runtimes as a limiting factor of scalability in hybrid
MPI+OpenMP codes, following Fine Grain pattern. We then presented a design in order to reduce this
overhead on NUMA architectures.

But other issues have been highlighted and are other bottlenecks for hybrid applications. These
issues are such:

e Ratio of sequential and communication parts in total execution, for Fined Grained codes
e How to reuse idle cores outside OpenMP parts, in Masteronly codes
e Problem of code complexity with coarse grained applications, and reduce programming effort

In this chapter, we conduct a global study of collective operations, starting by focusing on existing
MPI Collectives and describe different ways to optimize them in Masteronly mode. We then introduce
hybridization of such collective operations by exploiting idle cores and idle OpenMP threads, and see
how we could apply the state-of-the-art optimizations with threads. After, we introduce our contribution
consisting in optimizing MPI_Allreduce with OpenMP threads, following several techniques.

In the second part of the chapter, we recall characteristics of Coarse grained codes and see how
to propose common constructs between MPI and OpenMP in order to alleviate the programming effort
in this pattern. By recalling combination between MPI and OpenMP SPMD, we propose unified con-
structs coordinating both MPI tasks and OpenMP threads. We introduce a unified barrier as a proof of
concept, synchronizing MPI tasks and OpenMP threads, and show its performances againts a regular
implementation of this feature.

5.1 Tackle the problem of sequential time in Fine Grain pattern:
Focus on MPI collectives

When studying the taxonomy of Hybrid model in Section [3.3] of Chapter 3] we listed the drawbacks of
Fine Grain approach:

e The first one is the difficulty to maintain the compute cores active during the whole execution time.
Indeed, all compute units are busy only when OpenMP threads are launched. This is particularly
true with Masteronly style. Figure[5.1]illustrates this shortcoming with a code launched with 4 MPI
tasks and a total of 16 OpenMP threads, and compares occupation of compute cores, inside and
outside OpenMP parts. In the last case, only a subset of cores is used, which leads to a loss of
parallelism.

e The second shortcoming is that sequential and communication components (i.e. when only ex-
ecuting MPI code outside OpenMP constructs) are far from being negligible. For example, the

81

Inside OpenMP parts Outside OpenMP parts

a0 a8 B @8R

socket #0 socket #1 socket #0 socket #1
e MPI task

a8 88
| |

~
=
~
&

e OpenMP thread

| l . busy core

a0 a8 N B

socket #2 socket #3

socket #2 socket #3

~]
&
~
~)

Figure 5.1: Hardware view of Master approach

authors in [90] showed that communications in this hybrid scheme could reach 15% of global
execution time.

As sequential and communication times are such obstacles to the scalability hybrid codes, we stud-
ied how to minimize them, and have looked for elements that could be optimized.

MPI Collectives are good candidates for optimization because they are well encountered in high
performance codes and are often concerned by communications by involving multiple MPI ranks at the
same time. Moreover, they represent a non negligible percentage of total execution time, and conse-
quently in sequential time. To illustrate this point, we studied an hybrid MPI + OpenMP application sim-
ulating interactions between particles with a Monte Carlo algorithm, involving multiple MPI_Allreduce
operations [36]. We launched it with 4 MPI tasks and 128 OpenMP threads per team, on a represen-
tative configuration of 4 Bull Coherency Switch 128-core nodes, on the Curie supercomputer. The time
spent in such collective represents more than 50% of the global execution time of the application.

In the next section, we study the state-of-the-art optimizations of MPI collectives, using shared mem-
ory systems and network topology.

5.1.1 Related Work on optimizing MPI collectives and reduction collectives

We expose in this section the state-of-the-art regarding optimizations of MPI collectives, with a focus on
reduction collectives. These optimizations take advantage of two aspects: (i) shared memory available
in current compute nodes, and (ii) underlying topology including network topology.

Exploit shared memory

Shared memory has been strongly exploited to design powerful algorithms implementing MPI collec-
tives. In [89], the authors improve the collective operations of MPICH runtime, and present new al-
gorithms for Reduction operations. Two algorithms are presented to implement Allreduce collective:
Recursive Halving and Doubling, and Binary Blocks. With both algorithms, Allreduce operation is ac-
tually decomposed in 2 operations: Reduce_scatter and Allgather. Reduce_scatter is an irregular
collective, which performs a regular reduce operation, but, instead of sending the result to the root like
allreduce, it scatters it among processes. With Recursive Halving and Doubling algorithm, the input
vectors are recursively halved and one half of the vector is sent to the neighbor process. At each step,
the distance between neighbor processes is doubled. When each process has a reduced element,
Reduce_scatter operation is achieved. Then an Allgather operation is performed by recursively con-
catenating elements, but the distance between neighbor processes is recursively halved. This algorithm

82

implies an overhead when the number of MPI processes is not a power of 2. The Binary Blocks algo-
rithm reduces the load imbalance implied by the Recursive Halving and Doubling algorithm when the
number of MPI tasks is not a power of 2. Indeed, it splits MPI processes into power of 2 chunks.

HMPI [42] 68], presented in Section of Chapter [2] optimizes Allreduce collective with several
algorithms. On algorithm, Tiled Reduce-Broadcast, splits input vectors into multiple chunks and each
MPI task reduces a chunk into a temporary buffer. Tiling is used only within sockets. Then temporary
buffers are reduced between sockets. This algorithm shows good performances for large vectors.

The article [79] presents two variants of the same algorithm to parallelize Al1reduce through shared
memory. In the first flavor, each process starts by dividing its own block of elements into several sub-
blocks (one sub-block per process available on the node). Then the ith process on the node reduces
the ith block of each MPI rank, storing the intermediate result into block 0. The second flavor optimizes
the memory traffic by shifting the work of each process in a cyclical way.

In [43] the problem of double copy between MPI processes is mentioned, and this problem is solved
by allocating a buffer for communications between processes. MPI Reduce collective is implemented
by splitting buffers in chunks, on which processes perform operations

Rely on topology

Other contributions highlight the importance of having knowledge about the topology and separate intra-
node from inter-node communications, by specifying sub-communicators and electing leaders.

The authors in [61] discuss about exploiting the network topology to design topology-aware algo-
rithms for two MPI collectives: Scatter and Gather. These algorithms involve sub-communicators, cre-
ated at MPI initialization, gathering processes according to their position in the topology hierarchy.
These optimizations allow to improve these collectives by almost 54%.

Other contributions focus on separating inter- and intra-node communications.

In [74], the HierKNEM framework includes algorithms for MPI_Bcast and MPI_Reduce, using hierarchi-
cal layers, and one-sided primitives. [104] introduces some methodologies to separate inter-node from
intra-node communications, using sub-communicators. The authors also use a cache blocking tech-
nique which consists in tiling the message and storing it in L1 or L2 cache, evaluating different segment
sizes.

In [63], considering one single leader per node as a limitation, the authors propose a multi-leader
approach, a maximum of one per socket, and several implementations, including one exploiting shared
memory. This approach leads to a performance improvement of 60% for small messages, and 70% for
medium-sized messages.

The article [62] exposes encountered problematics when executing MPI collectives in heterogeneous
environment, including Many Integrated Cores (MIC) co-processors[1]. Especially, it identifies a bottle-
neck between MIC and network adapter. Then, authors introduce a framework decoupling execution
of MPI collectives in heterogeneous environment. An example is described with the implementation
of MPI_Bcast collective, where different aspects are considered, as communications between MIC and
CPU, intra-node and inter-node communications. For intra-MIC communications, they present several
algorithms to implement reduction, and one with a tree-based approach, using OpenMP threads. Those
threads distribute the work for the computational part of the reduction.

5.2 Discussion about hybridization of MPI collectives

Previous Related Work showed different techniques to optimize MPI Collective operations, with a focus
on reduction operations. One of the techniques consisted in decoupling communications whether they
happen inside or between nodes.

In this section we describe how we can take advantage of the Hybrid model to accelerate the work
made by Collective operations, and how we apply encountered techniques using them. We define
hybridization of Collective operations by using idle cores to split work done by such operations. This
can be done following multiple directions, which have been explored in some Related Work:

e Use threads to separate inter node from intra node communications

e Split messages

83

e Parallelize both communications and computations

The following sub-sections describe these different flavors using several algorithms, which can apply
to both rooted and non rooted MPI collectives.

5.2.1 Split communicators with threads

MPI Collectives such MPI_Bcast, MPI_Gather, MPI_Allgather or MPI_Scatter are purely communi-
cations oriented, as they do not perform computations in their data. Then, all we can do with spare
cores is to parallelize communications between MPI tasks. Some Related Work showed that separating
inter-node from intra-node communications was a promising way to optimize Collectives.

Algorithm 6 Split intra-node and inter-node communications

Require: message, size, nbNodes, nbProcsOnN ode, communicator, M PI Rank, numthreads, thread Rank

. distantComm[nbProcsOnN ode)
. localComm[nbN odes]
: MPIMaster Rank <+ % * nbProcsOnN ode
for i =0 — nbProcsOnNode do
localComms|i] < M PIMaster Rank + i
end for
: for i =0 — nbNodes do
distantCommsli] < i * nbProcsOnN ode
: end for
: for i = 0 — numthreads do
11: if threadRank = 0 then
12: if M PIRank = M 1P Master Rank then
13: collective(message, size, distantComm) {Inter node communications with OpenMP Master
thread}
14: end if
15: else if threadRank = 1 then
16: collective(message, size, localComm)
17 end if
18: end for

ONDOR N2

_
o ©

Algorithm [6] depicts how we can use threads to separate communications within a node from com-
munications between nodes. In the first part of the algorithm, we create one communicator per node,
localComm, and another communicator, distantComm, gathering each leader of each node. The leader
of each node, masterRank, is computed depending on the current rank, and the number of MPI ranks
per node. In the second part, depending on the MPI rank, we search whether it is a local communication
or an inter-node communication. We parallelize this part using 2 threads.

Algorithm 7 Split communications between nodes

Require: nbNodes, numthreads, nbProcs, communicator, M PI Rank
nbProcsPerBlock < mz%% {Provided nbProcs can be divided by numthreads}
 block < Ty e per ek
splitComms[numthreads]
: for i = 0 — numthreads do
for j = 0 — nbProcsPerBlock do
splitCommisli][j] < (block * nbProcsPerBlock) + j
end for
: end for
: for i = 0 — numthreads do
collective(sendbu f, recvbu f, root, splitComms|i]) {Parallel communications}
: end for

TeYw®NO O N 2

—_ -

84

Another possibility, depicted in Algorithm [/ consists in splitting communications between nodes.
The number of involved MPI tasks is divided into blocks by the number of launched threads, in order
to create as many sub-communicators as there are threads. We then fill sub-communicators using
computed blocks. Then we perform communications inside a parallel loop.

This algorithm allows to use more threads than the previous one.

5.2.2 Message tiling and parallelizing computations using threads

As a case study, we developed a code to validate the approach of using OpenMP threads to optimize
MPI_Broadcast collective. We separate inter node from intra node communications.

We saw in [74], that tiling was used for a better use of caches. We can also add that messages ex-
changed between MPI tasks are bigger in hybrid context due to bigger sub-domains. So this technique
can be promising.

Algorithm 8 Hybridize collective with numthreads given
Require: sendbuf fer > 0, recvbuf fer > 0, numelements, numthreads > 0

numelements

collective(sendbuf fer, recvbuf fer, numelements, communicator) {Parallel communications}
: end if

1: size < * datasize
N numthreads
2: if numelements mod numthreads = 0 then
3: fori¢ =0 — numthreads do
4: collective(sendbu f fer + i * size, recvbuf fer + i x size, %, communicator)
5. end for
6: else
7:
8

Algorithm (8| describes this technique. The call to the collective is surrounded by a loop, and
numthreads calls are performed, numthreads being the number of involved OpenMP threads. Each
thread computes an offset and deduces a chunk of sendbuffer and recvbuffer. Each thread performs
the collective operation with its chunk. This algorithm is also interesting for collectives performing com-
putations such as reduction collectives (MPI_Reduce and MPI_Allreduce). Inded, threads are then used
to parallelize reduction.

We will base our contribution on this algorithm.

5.3 Contribution: Use OpenMP threads to optimize MPI_Allreduce

In Related work, we observed in [79] some techniques to parallelize Allreduce collective by decompos-
ing input vectors with the help of other MPI tasks. In the last section, we studied how to use threads to
optimize collectives, by separating for example inter-node from intra-node communications. Our contri-
bution is extracted from [76] and extends beyond[79] using OpenMP threads.

5.3.1 Hybrid Allreduce approach

Our approach of hybridizing Allreduce consists in splitting the vectors of a MPI_Allreduce operation
in multiple chunks so that each available core will be in charge of reducing one chunk. Thus, each
OpenMP thread would process a subset of the input vector by performing a smaller MPI reduction,
leading to the parallelization of the computational and communication parts of the whole operation with
independent operations.

Figure depicts the example of an application running on a computational node containing four
4-core processors for a total of 16 cores. Let us consider now a parallel MPI + OpenMP application
running with 4 MPI processes. Considering that MPI processes should be dispatched among the whole
node, the regular approach would be to place one of these processes per multicore processor, letting
4 cores per MPI rank to launch an OpenMP parallel region. The left part of Figure illustrates the
behavior of the application when performing an Allreduce communication outside any OpenMP region.

85

Sequential MPI_Allreduce Hybrid MPI_Allreduce

Vectors

.C} .D .[:) .[:] Hardware
00 OO | 0O (]

Node 0 Node 1 Node 0

. busy core
[:] idle core

Figure 5.2: Hybrid MPI_Allreduce

Because this operation is not done inside a parallel block, only 4 cores will help processing this opera-
tion. It leads to a total of 12 idle cores. Our solution is described on the right part of this figure: it shows
how the spare cores are used when performing an hybrid MPI_Allreduce operation. We can see that
for each MPI rank, 4 OpenMP threads are launched, each working on its subset of the initial vector, and
thus all cores of the node are active.

The algorithm presented in Figure5.3|describes how this new version of MPI_Allreduce is done with

OpenMP. Let numthreads be the number of OpenMP threads defined when running the application. The
first step is to take care of the communicator to allow multiple threads to perform sub-reductions. The in-
put communicator comm is duplicated in numthreads identical sub-communicators, so that each thread
can have its own. This is done inside the manage_comms function. But duplicating the input commu-
nicator each time MPI_Allreduce is called may imply a large overhead: therefore we implemented a
cache to keep the sub-communicators available. We motivate this optimization by observing a repeating
pattern in current scientific codes, meaning the same communicators are reused with different calls of
MPI collectives. Indeed, in numerous high performance applications, a main loop is performed to iterate
physical system and MPI collectives are called at each iteration of this loop, using identical communica-
tors.
The principle of this cache is quite simple: the captured communicator is split into sub-communicators
and stored. If the communicator for the next reduction operation is identical, the previous subcommu-
nicators are used, avoiding additional duplication. Note this algorithm depicts a cache of size 1, but
more optimized structures can be used to cache multiple main communicators. After dealing with com-
municators, the initial vector is split into numthreads chunks, each thread computes its offset based
on the vector size, and then works on its chunk. This is done with a simple parallel for directive with a
static schedule. Finally, instead of doing one call to MPI_Allreduce, our approach performs numthreads
smaller reductions. The algorithm tries to balance the charge among threads. If the number of elements
to reduce cannot be divided by the number of threads, we straighten the remaining elements between
them.

5.3.2 Rank Shifting

The main effect of the algorithm Figure [5.5]is to duplicate the calls to the MPI runtime (as many calls to
MPI_Allreduce as the number of OpenMP threads within a team) with exactly the same configuration.

86

MPI.Comm newcomm[numthreads];
MPI.Comm lastcomm ;

int initcomm = 0;

/= Create a cache to optimize communicators handling x/
void manage.comms (MPI.Comm comm)

if ((lastcomm != comm) || (!initcomm)) {
if (initcomm) {
for(i = 0 ; i < numthreads ; i++)

PMPI_.Comm_free (&newcomm[i]) ;

}

for(i = 0 ; i < numthreads ; i++)
PMPI_Comm_dup (comm, &newcomm[i]) ;

initcomm = 1;

lastcomm = comm;

/= Entry point fo reduction =/
int MPI_Allreduce (void xsendbuf, void =xrecvbuf,
int numelements, MPI_Datatype datasize, MPI.Op op, MPI.Comm comm)

int size, i;
manage.comms (comm) ;
size = (numelements / numthreads) = datasize;

#pragma omp parallel for schedule(static)
for(i = 0 ; i < numthreads ; i++)

if (i < numelements % numthreads)
PMPI_Allreduce (sendbuf+ixsize+datasize , recvbuf+ixsize+datasize,
numelements/numthreads , newcomm[i]) ;

else
PMPI_Allreduce (sendbuf+ixsize , recvbuf+ixsize,
numelements/numthreads, newcomm[i]) ;

}
}

Figure 5.3: Algorithm for Hybrid MPI_Allreduce

To illustrate this behavior, let us consider a very simple implementation of MPI_Allreduce structured in
3 steps: (i) each MPI task sends its data to a destination MPI task, (ii) this destination task performs the
whole reduction of the received data and (iii) it broadcasts the final results to all MPI processes involved
in the input communicator. In such a case, our approach will allow parallel execution of the main
reduction within the destination task, but the communication pattern remains the same. Indeed, instead
of performing one reduction, the algorithm will spawn multiple smaller reductions, but the underlying
MPI library will eventually perform the same communications to send data to the destination task, on the
same core. The reason is that each thread has a copy of the same input communicator, with the same
ordering of MPI ranks. So all threads in a team have the same behavior when performing reduction.
Thus this scheme is likely to generate memory contention and lead to communication imbalance, as all
data involved in reduction are sent to a same NUMA node.

To tackle this issue, a second technique consists in giving a different role to each thread, by shifting
their rank in sub-communicators.

Figure explains this technique by describing behavior of MPI ranks involved in a reduction. It
shows how the ordering of communicator implied in the reduction impacts the operation. We have here
4 MPI tasks, each containing a vector of elements. In the first example, the communicator contains the
ranks of the tasks, starting from 0. So the task of rank 0 will be the root, and will reduce the value. If
we shift the ordering of the communicator to the left, then the task of rank 1 will be the root. A rotation
is performed so that rank 0 is the last one in the communicator. We run through the example, until the
last case (where the first number in the communicator is 3). Then all tasks reduce to the rank 3. This
example is relevant for our case because it addresses the first part of an Allreduce operation.

Thus each thread belonging to the same team will have a different rank inside their communicator.
It can be seen as the extension to hybrid of the cyclical algorithm proposed by [79].

We illustrate this approach with Figure 5.5|exposing the same hardware configuration as Figure
In this example, each thread, with OpenMP rank equal to 0, will perform the same sub-reduction as the
one on the right part of Figure[5.2] But the second thread of each team (those with OpenMP rank equal
to 1) will use the second MPI rank as destination of their sub-reduction. We continue with this approach
until we reach the last MPI rank. If the number of threads exceeds the number of MPI tasks, we do a

87

comm = {0,1,2,3} o E 15 #25 #3@

o %

Node 0

Hardware

-8 B B B

MPI rank #0 #3

comm = {1,2,3,0}

Node 0

Hardware

Vectors Q E @ EI
#1 #2 #3

MPI rank #0

comm = {3,0,1,2}

Node 0

Hardware

Figure 5.4: Different behavior of the reduction following ordering of the communicator

Vector of
thread rank 3

e
7 e
7 e e e
2 B = E] E 1 E
Vector of , P // . 7 ///
// // //
#0_ #3

thread rank 0

thread rank

MPI rank .. MPlrank § ** MPI rank

MPirank § " °
#0 #1 #2

#3

. busy core
O idle core

et aE o8 || ee

Node 1

Figure 5.5: Rank Shifting of Hybrid MPI_Allreduce

rotation and go back to first task. In this example, we shifted the MPI rank of each OpenMP thread by
1. It is also possible to change the shifting value to adapt the memory traffic and the inter-node commu-

88

MPI.Comm newcomm[numthreads];
MPI.Comm lastcomm ;

int initcomm = 0;
int rank, mpisize;

/% Reorder communicator for each thread =/
void manage.comms (MPI.Comm comm)

PMPI_Comm_rank (comm, &rank) ;
PMPI_.Comm_size (comm, &mpisize);

if ((lastcomm != comm) || (!initcomm)) {
if (initcomm) {
for(i = 0 ; i < numthreads ; i++)
PMPI_Comm_free(&newcomm[i]) ;

}

for(i = 0 ; i < numthreads ; i++)
key = (rank+i)%mpisize;

color = i;

PMPI.Comm_split(comm, color, key, &ewcomm[i]);

initcomm = 1;

lastcomm = comm;

Figure 5.6: Algorithm for Rank Shifting

nication pattern. It is important to add that this technique only works for non rooted MPI collectives.

The rank shifting appears inside the manage_comms function of the algorithm in Figure 5.3} when
creating a sub-communicator for each OpenMP thread, we shift the target MPI rank, modulo the total
number of MPI ranks, and store the result in a key. Thus, at the end of this function, each thread has its
own communicator and each thread belonging to the same OpenMP team will have a different MPI rank
inside their own communicator. Figure [5.g)illustrates the updated version of the manage _comms function.

5.3.3 Implementation

We implemented the algorithms of Figure 2 and 4 in a wrapper, which captures the calls to MPI_Allreduce
collectives using the MPI Profiling Interface (PMPI [3]). This wrapper is compiled as a shared library and
preloaded using LD_PRELOAD environment variable when running the target hybrid application. With this
approach, our implementation is independent from any MPI implementation and works with all OpenMP
implementations and MPI runtimes. The only requirement is related to the thread-level support in the tar-
get MPl library: in our wrapper, the calls to the MPI library are performed inside OpenMP regions, as de-
picted in Figure 2, it therefore requires the highest multithreading support level MPI_THREAD_MULTIPLE.
Moreover our design guarantees a full support of regular types, derived data types, and communicators
passed to the MPI_Allreduce collective.

5.3.4 Experimental environment

We evaluated our concept on the Curie supercomputer, with the following hardware configurations: the
first configuration consists in 4 Bull Coherency Switch nodes, containing each 16 8-core CPU Nehalem-
EX, clocked at 2.27GHZ. These processors are distributed on 4 modules, each containing 4 sockets.
The second hardware environment is composed of 8 nodes, containing each 2 8-core CPU Sandy
Bridge clocked at 2.7GHZ.

Experiments were performed on micro benchmarks and one real-world application (MC), using In-
teIMP1 4.1.3.048, MPC 2.4.1 (Multi Processor Computing [24]) and BullxMP1 1.1.16.6 (based on Open
MPI 1.5.4.a1 [47]) libraries. Notice that the first ones (IntelMPIl and MPC) both support the required
MPI_THREAD_MULTIPLE multithreading level with Infiniband network while BullxMPI does not. For the
OpenMP part, we used Intel OpenMP for IntelMPI (with the KMP_AFFINITY variable set to compact to
keep the threads as close as possible) and the OpenMP runtime integrated to MPC for the experiments
with MPC.

89

5.3.5 Microbenchmarks

We first consider the Intel MPI Benchmarks (IMB[2]) suite 3.2, which measures the time spent in MPI
operations, for various message sizes. Because our target is an hybrid application performing MPI col-
lective communications outside OpenMP region, we selected the message size on a range between
1MB and 16MB.

70000

MPC
MPC2th
MPC4th ne—
MPC8th s
60000 mpci6th
MPC32th

50000

40000

30000

time (in microseconds)

20000 1

10000 1

1024 2048 4096 8192 16384
Message size (in KB)

Figure 5.7: IMB - Hybrid MPI_Allreduce with MPC (4 128-core nodes, 1 MPI task per node)

Figure 5.7|depicts the latency of an hybrid MPI_Allreduce operation according to the message size
with MPC and different numbers of OpenMP threads(see algorithm Figure [5.3). The most efficient
combination is reached with 8 OpenMP threads leading to a speedup of 2.57 against regular implemen-
tation of MPI_Allreduce on a 16 MB message. This result can be explained because the size of the
smallest NUMA node is 8. With more than 8 threads, we have penalties dues to OpenMP inter-socket
communications and MPI NUMA effects.

Figure [5.8]shows the same experiment with the best thread configuration (8 threads) and rank shift-
ing. In this test, the MPI rank of each OpenMP thread in the corresponding sub-communicator is shifted
by 1 (see algorithm Figure [5.6). It provides an additional speedup of 18,6%.

The best hybrid configuration with IntelMPI is obtained with 90 OpenMP threads which leads to a
speedup of 2.55 x compared to regular MPI_Allreduce (see Figure[5.9). This large number of threads
can be explained by the fact that the Intel OpenMP implementation is well optimized for multicore pro-
cessors.

Figure [5.10| summarizes the results with MPC, BullxMPI and IntelMPI within the same hardware
configuration. Furthermore, this graph plots the best combination for MPC (8 OpenMP threads with
shifted ranks) and IntelMPI (90 OpenMP threads). The best performance is reached by MPC providing a
speed up of 41% against IntelIMPl and 3.75 x compared to the reference MPI implementation BullxMPI.

5.3.6 Real World application

The second test case, MC, is extracted from [36]. MC is an hybrid MPI + OpenMP application solving
the transport equation for neutronics, using Monte Carlo methods. The application is launched on an
Adaptive Mesh Refinement grid. The code works on an unidimensional domain, which is replicated
among MPI processes. It also contains an iterative loop where the system is computed and updated,

90

25000

MPC8th =——+—
MPC8thRS

20000

15000 /

10000 /

e

0
1024 2048 4096 8192 16384
message size (in KB)

time (in microseconds)

5000 /
o

Figure 5.8: IMB - Hybrid MPI_Allreduce w/ and w/out rank shifting on MPC (4 128-core nodes, 1 task
per node)

180000 T
IntelMP]| —
IntelMPI12th
IntelMPI3th n—
160000 |- IntelMPI4th w—
IntelMPI18th
IntelMPI116th
140000 | IntelMPI32th me—
InteIMPI190th m——
120000

100000

80000

time (in microseconds)

60000 - N

40000 | N e

20000

1024 2048 4096 8192 16384
message size (in KB)

Figure 5.9: IMB - Hybrid MPI_Allreduce with IntelMPI (4 128-core nodes, 1 MPI task per node)

and lasts as long as particles exist on the domain. An MPI Allreduce collective is performed to update
the number of available particles at each step. We tested our hybrid approach on this MPI_Allreduce
collective operation, each MPI task containing a 128KB vector. We conducted our experiments on the
same configuration as for the micro benchmark, we fully populated the nodes with OpenMP threads,

91

80000

MPC s

BullxMPI
IntelMP| r—
70000 MPC8th m—
MPCB8thRS
InteIMPI190th
60000
50000
40000

30000

time (in microseconds)

20000 R

10000 s]

L mima [l

1024 2048 4096 8192 16384
message size (in KB)

Figure 5.10: IMB - Comparison between MPC, BullxMPI, IntelMPI, and the best hybrid combination (4
128-core nodes, 1 MPI task per node)

and tuned the number of threads for the hybrid MPI_Allreduce collective.

Figure [5.11] depicts comparative execution times of the MC application, with 4 MPI tasks launched
on 4 large nodes, on all MPI libraries. With MPC, using 8 OpenMP threads provides the best perfor-
mance for the hybrid MPI_Allreduce. But an additional speedup of 68% is achievable by applying rank
shifting (5 th bar on Figure 9), which gives a total speedup of 5.29. For IntelMPI, the best combination is
obtained with 9 threads, leading to a speedup of 3.54. The lowest execution time is reached with MPC
(3.9 better than OpenMPI) by performing hybrid MPI_Allreduce with 8 threads and appying a rank shift-

ing.

Figure[5.12)presents the same study on eight 16-core nodes, with 1 MPI task per node. Once again,
even if the total execution time of the application is larger with MPC, parallelizing the MPI_Allreduce
collective operation with 8 threads leads to the best performance among the other configurations. In-
deed, the performance increase is around 81% and shifting the rank gives an additional improvement
of 41%. Similarly with IntelMPI, our approach is able to reduce the execution time from 242 seconds
to 147 seconds using 8 threads for the hybrid MPI_Allreduce part. In all the test cases, no additional
speedup could be obtained for InteIMPI by coupling rank shifting with the best optimizations of MPI
Allreduce.

5.3.7 Conclusion and future work about optimizing MPI collectives

With this approach, we investigated the topic of optimizing MPI collectives in hybrid applications. We
proposed a way to extend existing optimizations, targeting MPI + OpenMP applications, to parallelize
the computational and communication parts, using spare cores. Experimental results showed a 2.57
speedup on micro benchmarks and a speedup of 5.29 on a real world application. Furthermore, this
approach is portable to any MPI implementation which provides the support of MPI_THREAD_MULTIPLE

92

1200 T T

1000

800

600

time (in seconds)

400

) I I
0

MPC IntelMPI BullxMPI MPC8th MPCB8thRS IntelMPI9th

Figure 5.11: MC - Comparison between MPC, InteIMPI, BullxMPI, and best hybrid combination for MPC
and IntelMPI (4 128-core nodes, 1 task per node)

and any OpenMP runtime.

5.4 Designing common constructs between MPI and OpenMP

The hybrid taxonomy introduced in Chapter [3|described different programming styles, including Coarse
grain parallelism. While providing better performances than Fine Grain approach by a better exploitation
of resources, it requires more programming effort, and is prone to bugs. Indeed, it is the responsibility
of the programmer to launch both MPI tasks and OpenMP threads, and to ensure that MPI functions
are called only once using synchronization directives.

In this section, we discuss opportunities for designing constructs mixing MPI and OpenMP features,
in coarse grained codes. We then focus on codes mixing MPIl and OpenMP, using SPMD method, and
we show how common constructs can be relevant in this case.

We mentioned in Chapter [2] that PGAS languages mixed several paradigms for parallelizing com-
putations, and included Collective operations in [6] for example. But to the best of our knowledge, no
investigation has been made about designing common constructs implying different parallel program-
ming models.

Need of simpler constructs with Coarse Grain parallelism. Coarse Grain parallelism, while over-
coming limitations of Fine Grain approach, requires special care for code correctness. Examples of
this specific attention can be to call functions or directives to start MPI tasks and OpenMP threads,
or to surround MPI calls by OpenMP blocks, or else to use threads to split point to point or collective
communications, etc. Moreover, since a single OpenMP parallel region is open in this mode, MPI tasks
and OpenMP threads are launched approximately at the same time. But they both require their own
constructs to launch tasks and threads. Consequently, there are some opportunities to simplify the code

93

400

350

300

250

200

150
100
50
0

MPC IntelMPI BullxMPI MPC8th MPCB8thRS IntelMPI8th

time (in seconds)

Figure 5.12: MC - Comparison between MPC, InteIMPI, BullxMPI, and best hybrid combination for MPC
and IntelMPI (8 16-core nodes, 1 task per node)

and reduce the risks of introducing bugs. These examples call for a new language proposing features
such as launching MPI tasks and threads at the same time, calling MPI primitives in a thread safe way,
etc. This supposes to transfer such work as ensuring the correctness of the code and as activating MPI
and OpenMP from the developer to the runtime.

We will consider that with the Coarse Grain approach, different paradigms co-exist, by mixing dis-
tributed memory parallelism with shared memory parallelism.

Cooperation between MPI and OpenMP SPMD programming. SPMD fashion, introduced in Hybrid
taxonomy of chapter 2, describes a special kind of parallelism, as it allows to use OpenMP following
a distributed memory paradigm. In a way similar to MPI, each thread computes its work in an inde-
pendent manner. But this mode prevents from using regular OpenMP constructs. For example, when
we want to perform a reduction using SPMD technique, instead of using the proper clause reduction
combined with parallel loops, each thread computes a local reduction. These local reductions are then
accumulated in a shared variable.

Some contributions in the literature show OpenMP can be used to implement features traditionally
proposed by MPI. For example, in [65] the authors introduce different versions of NAS benchmarks,
including one implemented with SPMD fashion, and being derived from MPI version. Operations such
as point-to-point, reduction, or All-to-All are implemented with OpenMP and SPMD programming. To
implement All-to-All operations with OpenMP, a global shared array is used.

A pure MPI version of the reduction is implemented using MPI_Allreduce, and is compared to oth-
ers using OpenMP, including one implemented following SPMD fashion. They build the SPMD OpenMP
version from pure MPI version of NAS Benchmarks. So with SPMD programming, we are able to im-
plement some operations traditionally performed by MPI. This contribution shows we can use OpenMP
with SPMD programming to implement operations such All-to-All, Gather or Broadcast, traditionnally
implemented by MPI collectives.

If we go back to MPI + SPMD OpenMP mode, we observe that both models can do these operations

94

at the same time, but without cooperation between them. For example, each model would perform
a reduction operation using the same patterns, but without sharing the results between MPI ranks
and OpenMP threads. So, beyond reducing the code complexity, it would be of strong interest for
the programmer to use constructs implementing the mentioned operations, and implying both MPI and
OpenMP at particular steps of code execution.

int main(int argc, char =xargv)

MPI_Init(&argc, &argv);

int iter;
int size = 100;

/% lteration loop =/
for(iter = 0 ; iter < niter ; iter++)

#pragma omp parallel
{

int a[100];

int myOMPRank = omp_get.thread_.num () ;

int nbOMPThreads = omp.get.num_threads () ;
int nbnLoc = n / nbOMPThreads;

int iDeb = 1 + myOMPRank«nbnLoc;

int iFin = iDeb + nbnLoc — 1;

if (myOMPRank == nbOMPThreads — 1)
iFin = n;

/+ Code =/
for(i = iDeb ; i < iFin ; i++)

a.in[i] = a-in[i] + a * niter;

} /* End of parallel region =/
/+ Code =/
MPI_Reduce(a.in, a.out, n, MPILINT, MPLSUM, 0, MPL.COMM.WORLD) ;
} /* End of iteration loop =/
MPI_Finalize () ;

i

Figure 5.13: Combination of MPIl and OpenMP used as SPMD

What we learn from this contribution advocates for common constructs simplifying these operations
and gathering both MPI and OpenMP. Indeed, combining MPI with OpenMP using SPMD programming
will result in executing models with same paradigms and similar algorithms.

Prerequisites in runtimes. Designing constructs involving MPI tasks and threads in an application
imply gathering MPI calls and OpenMP blocks inside the same function. Strong cooperation of both
models are then required at runtime level.

For example, when considering Coarse Grain parallelism, a programmer has to handle multiple
paradigms within the same code, like ensuring thread safety when calling MPI functions, or managing
communications with several threads. Simplifying this kind of programming would consist, for the run-
time, to take in charge serialization of MPI calls. In this case, we need to guarantee that the correspond-
ing MPI internal is called with a single OpenMP thread, inside the runtime. To be able to design this kind
of constructs, MPI and OpenMP can be implemented inside their own runtime. But it is necessary for
each model to access the APl one from the other. Most vendors propose separate implementations of
MPI and OpenMP. This is the case of IntelMPI and Intel OpenMP runtimes. The ideal case is provided
with MPC. Indeed, this framework offers a very easy way to design such constructs as it implements
MPI and OpenMP inside the same runtime. This framework ensures a good cooperation between the
different models. Thus it is simple to extend existing constructs.

The most convenient case is to have both MPI and OpenMP implemented inside the same runtime,
so that we have a common view of both models.

95

5.5 Contribution: Unified collectives in runtime

In the previous section, we recalled characteristics coming with Coarse-Grained codes, and focused on
the problematics when combining MPI and OpenMP used the following SPMD fashion. We observed
that there was a need to simplify this kind of codes on the one hand, and a lack of cooperation between
MPI and OpenMP for collective operations, on the other hand. To the best of our knowledge, no com-
mon constructs mixing different programming models have been proposed yet.

We introduce here our concept of unified collectives, which consists in proposing common constructs
for MP1 and OpenMP achieving traditional MPI collective operations. Examples of these collectives are:

e Reduction
e Barrier

o All-to-all

Step O
OMP#0 . #n #0 .. #n #0 #n #0 .. #n
MPI #0 MPI #1 MPI #2 MPI #3
Step 1
OMP#0 .. #n #0 .. #n #0 . #n #0 .. #n
MPI #0 MPI #1 MPI #2 MPI #3
®0) ®0) 0] ®0
Step 2
OMP#0 . #n #0 ... #n #0 #n #0 ... #n
MPI #0 MPI #1 MPI #2 MPI #3
Step 3
OMP #0 ... #n #0 .. #n #0 . #n #0 #n
MPI #0 MPI #1 MPI #2 MPI #3
Step 4
OMP#0 .. #n #0 .. #n #0 #n #0 #n
MPI #0 MPI #1 MPI #2 MPI #3

Figure 5.14: Example of unified Allreduce operation

Let’s start by describing a specific example with Allreduce operation. We take the case of an applica-
tion running 4 MPI tasks, each containing a team of 4 OpenMP threads, as depicted on Figure[5.14] The

96

int main(int argc, char sxargv)

MPI_Init(&argc, &argv);

#pragma omp parallel

/+ Code to be executed x/
#pragma omp barrier
#pragma omp single

MPI_Barrier () ;

/+ Code to be executed x/

}

MPI_Finalize () ;

i

Figure 5.15: Global MP1+OpenMP barrier without optimization

figure describes the different steps implied by Allreduce operation, involving MPI ranks and OpenMP
threads. We will consider the reduction must concern one element per MPI task and OpenMP thread,
and MPI task of rank 0 is the temporary root of all tasks. Step 0 is the initial stage. Each OpenMP
thread has computed a local reduction. At step 1, each MPI rank computes a temporary reduction from
all local ones of its OpenMP team. At the end of the operation, Master threads of all OpenMP teams
have their variables Or, 1ir, 2r and 3r updated with computed temporary reduction. At step 2, all MPI
ranks perform a global reduction (as would be done by MPI_Reduce ()) starting from values of Or, 1r,
2r and 3r. At the end of the global reduction, the MPI task of rank 0 contains the global reduction R. In
step 3, the root MPI task broadcasts the result of the reduction to all MP| tasks. Step 2 and 3 describe a
classic MPI_Allreduce operation, so that these steps can be fused. In the last step, the reduced value
R is shared between all OpenMP threads of each team. The Allreduce operation is finished.

This example showed how MPI ranks and OpenMP threads could cooperate to perform global oper-
ation, combining basic operations.

5.5.1 Case study of unified barrier in hybrid MPI+OpenMP context

We presented unified collectives in order to perform global operations implying all tasks, with the ex-
ample of the reduction. To show the feasibility of this contribution, we present here a proof of concept
which is a unified barrier. Unified barrier consists in synchronizing at the same time all MPI tasks and
all OpenMP threads of each team, with a single construct.

The goal of our prototype is to perform this synchronization with one single directive, and compare it
with a regular synchronization, i.e. a barrier implying MPI tasks and threads with traditional constructs.
Algorithm[5.75|describes a global barrier involving regular MPI and OpenMP constructs. In an OpenMP
parallel region, several MPI tasks are launched, each executing a team of threads. We first encounter
an OpenMP barrier synchronizing all threads. To make sure only one OpenMP thread of each team
executesMPI_Barrier (), the call to MPI_Barrier () is surrounded by a #pragma omp single. An im-
plicit barrier is done for each OpenMP team at the end of single construct.

But these synchronization points do not ensure that all threads of all MPI ranks are synchronized at
the same time. To understand this, let’s consider all threads of a single team. They will all execute single
construct, and the first thread encountering the construct will go inside and will execute MPI_Barrier().
Other threads will wait at the barrier terminating single construct. But what happens in the case the
threads within the same team are distant from each other ? All teams will not finish implicit OpenMP
barrier at the same time, so the global barrier is not respected. Consequently, we have to insert an
additional OpenMP barrier before executing single construct, in order to ensure that all threads are
well balanced before executing MPI_Barrier ().

We saw that implementing a unified barrier with regular constructs is not straightforward and offers
room to introduce bugs. We propose here to replace this complex implementation by a single function

97

call which is our optimized hybrid barrier.

5.5.2 Implementation

We chose to develop our optimized hybrid barrier inside MPC framework, because it offered a very
convenient way to mix MPI and OpenMP internals inside the same function. We implemented it starting
from current implementation of OpenMP barrier.

Algorithm 9 Global MP1+OpenMP barrier

Require: tree,thread
. node < thread. father
: bdone < node.barrierdone
: b < node.barrier
. atomic(node.barrier < node.barrier + 1)
: while b + 1 = node.barriernbthreads and node # tree.root do
node.barrier < 0
node < node. father
b < node.barrier
atomic(node.barrier < b+ 1)
: end while
. if node. father # NULL or node.father = NULL and b + 1 # node.nbthreads then
while bdone = node.barrierdone do
wait thread
end while
: else
atomic(node.barrier = 0)
node.barrierdone = node.barrierdone + 1
call MPI_Barrier()
: end if
: while node.typechildren # LEAF do
node = node.child[thread.ranktree[node.depth])
n.barrierdone = node.barrierdone + 1
: end while

0N DO WN =

MDD NN 4 4 4 4 4 a4 a4 a4 a4
N2 QLN REN QO

Algorithm [9] is based on another one, from OpenMP barrier presented in Chapter [4 It describes
the implementation of our optimized global barrier. This algorithm, initially implementing the barrier in a
hierarchical manner, is also tuned to synchronize MPI tasks. We insert a call to MPI_Barrier at a spe-
cific point of the algorithm, and ensure that one single thread executes this function. To explain how we
chose the location to call MPI barrier, let’s remind the hierarchical implementation. Each thread, when
entering the barrier, will climb the tree by encountering intermediate barriers when reaching nodes.
When the root is reached, only one thread is executing the algorithm at this point. Thus, this thread
calls MPI_Barrier(), all threads cross the tree to the leaves and continue their execution.

To understand the exposed algorithm, let’s detail the different stages of the algorithm of our unified
barrier. We take here the example of 2 MPI tasks and 2 OpenMP teams containing each 8 threads,
encountering the global barrier.

At first stage (Figure [5.16), the threads of each OpenMP team encounter the barrier relative to each
team. Then, they climb the tree until reaching the tree root.

Once the last thread of each team reached the tree root, they call the MPI barrier (Figure[5.17), and
wait until MPI barrier finishes its job.

When MPI barrier is done, calling OpenMP threads go down inside their respective tree, freeing
other threads until reaching the leaves, and threads continue their execution (Figure [5.18).

98

MPI_Barrier()

OpenMP team 1 OpenMP team 2

Local barriers

Figure 5.16: First stage of unified barrier: Barrier of OpenMP teams

MPI_Barrier()

OpenMP team 1 ¢ OpenMP team 2

Local barriers

Figure 5.17: Second stage of unified barrier: Call MPI barrier

OpenMP team 1 Local barriers OpenMP team 2

Figure 5.18: Third stage of unified barrier: Release OpenMP teams

99

5.5.3 Experiments

To validate our concept of hybrid barrier, we used EPCC microbenchmarks and added new tests, one
executing an hybrid barrier involving regular MP1 and OpenMP constructs as well as our optimized ver-
sion calling the associated construct. We compared both versions on the Curie supercomputer, on one
128-core Bull Coherency Switch node. The range of launched MPI tasks varied from 2 to 64, populating
other cores with OpenMP threads.

100

REGULARHYBBARRIER s
UNIFIEDBARRIER s

80

60
40
20

0

2MPI640OMP 4MPI320MP 8MPI160MP 16MPIBOMP 32MPI4OMP 64MPI20MP
Ratio MPI tasks / OpenMP threads

time (in microseconds)

Figure 5.19: Comparison between hybrid barrier and optimized hybrid barrier implemented in MPC (1
128-core node)

Figure 5.19 presents the performances of our optimized unified barrier against the regular one. We
gain speedup on all configurations, but we observe that performances of both versions are somehow
similar with 64 MPI tasks, whereas the biggest difference of performances is seen with 2 MPI tasks.

In order to analyse the results, we described the different components of regular and optimized ver-
sions of the unified barrier through a timeline, in figure [5.20] With the regular one, each OpenMP team
has to pass a first OpenMP barrier. We assume there is a small overhead due to #pragma omp single
construct, and then, we call the MPI barrier. At last, all OpenMP teams have to pass the last OpenMP
barrier related to single construct. But with the optimized unified barrier, OpenMP threads have just
to pass half of the barrier before reaching the tree root. Then one thread executes MPI barrier, and all
pass the other half of the tree.

So, when analysing general performances, it is not suprising that our optimized construct gives better
performances, since optimized barrier avoids the call of an additional OpenMP barrier. We also assume
that time spent in MPI barrier increases with the number of involved tasks in the barrier, and that its
cost is bigger than the one of OpenMP barrier, even if the MPI barrier was optimized for shared memory
in MPC. This is why, with 2 MPI tasks and 64 OpenMP threads, we observe the biggest discrepancy
between the two versions. Indeed, this configuration highlights the advantages of our version against
the regular one. But if we consider the configuration involving 64 MPI tasks and 2 OpenMP threads,

100

Regular unified
barrier

OpenMP single

overhead . .
OpenMP barrier MPI Barrier OpenMP barrier

Optimized
unified barrier

OpenMP .
pen MPI Barrier

half barrier

OpenMP
half barrier

— >
Time

Figure 5.20: Timeline comparing execution of regular and optimized unified barrier, with the different
stages

we can say overhead due to OpenMP barriers is negligible and most of the time is spent in MPI barrier.
Furthermore, if we assume that calling an MPI barrier is much more expensive than an OpenMP barrier,
the optimization of our concept can be neglected regarding the cost of MPI_Barrier with 64 tasks.

5.5.4 Conclusion and Future work about Unified Collectives

We recalled characteristics of Coarse grained codes, and especially MPI mixed with OpenMP used in a
SPMD style. While this pattern gives better performances than Fine grained model, one shortcoming is
the complexity of programming applications with such modes. We highlighted the behavior of OpenMP
in SPMD approach and its similarities with MPI, each OpenMP thread having a particular role. Literature
showed it was possible to design collectives involving pure OpenMP codes. We then introduced con-
structs gathering both MPI tasks and OpenMP threads for collective operations traditionally encountered
with MPI. An example of such unified constructs was given with Allreduce operation. We showed the
feasibility of Unified Collectives by giving the example of hybrid barrier. This proof of concept consisted
of synchronizing all threads and all MPI ranks with one single directive, implemented inside the MPC
runtime. lts implementation was very simple, thanks to MPC framework, and gave speedup against a
regular implementation of MPI+OpenMP barrier.

5.6 Conclusion of studying Collective operations in hybrid con-
text

In this chapter, we tackled various issues preventing from reaching high performances in Hybrid pro-
gramming, including:

e |dle cores in Fine Grain scheme, outside OpenMP regions
e Part of sequential and communications components in total execution time
e Complexity of code in Coarse Grain approach

e Necessity of cooperation between OpenMP and MPI in SPMD programming

101

We gave solutions to these shortcomings by conducting a global study of collective operations, for
different purposes. We first investigated optimization of MPI collectives and applied several techniques
for Hybrid programming, in order to reuse idle cores and reduce communication time. We then stud-
ied characteristics of SPMD programming using OpenMP and common operations between MPI and
OpenMP.

Our contributions were twofold:

e Optimize performances of regular MPI collectives in the context of Fine Grain parallelism by
reusing inactive threads outside OpenMP constructs. Our contribution on parallelizing MPI_Allreduce
operation with threads showed promising results. It should be extended by investigating deeper
presented techniques, and should address other MPI collectives (reduction, MPI Broadcast, etc).

At last, activating OpenMP threads inside the runtime instead of within a wrapper would allow to
parallelize the collective in a transparent way for the developer.

¢ Introduce unified collectives which consist in making MPI ranks and OpenMP threads work to-
gether in collective operations. This contribution is relevant in SPMD programming style where
the programming effort is the most important. Our optimized unified barrier as proof of this con-
cept allowed to gain speedup compared to the regular unified barrier. With these constructs, we
seek out to reduce the programming effort in the SPMD pattern and to make the runtime take in
charge operations such as synchronizing the calls to MPI primitives or splitting off the MPI calls
with threads. This could lead to a new language mixing models with different paradigms.

102

Chapter 6

Analyze performance of MPI+OpenMP
applications at user level and runtime
level

The hybrid taxonomy introduced in Chapter [3| highlighted the complexity of hybrid codes. Depending
on the various programming configurations, the performance pitfalls can be of various natures, and may
come from both the application side or the runtime side. Moreover, due to the mix of the two program-
ming models, they are difficult to isolate. Having proper tools to detect such pitfalls is critical to enable
hybrid programming.

In this chapter, we focus on the performance bottlenecks that can exist in hybrid codes, we introduce
performance analysis as a research field, and we detail its different components. We then present
existing tools targeting both MPI and OpenMP codes. Afterwards, we focus on the instrumentation
part and look for ways to instrument both models. If MPI proposes a standard API via MPI_T for high
performance codes, this was not the case for OpenMP. Then, we present the newly introduced OpenMP
Tools API, included in the OpenMP standard, and its features enabling an instrumentation of OpenMP
codes and an insight in OpenMP runtimes. At last, we present our contribution, which first consists first
in the implementation of OMPT inside the MPC framework, and then in analyzing the performances of
hybrid MPI1+OpenMP application using two different implementations of OpenMP Tools, including ours.

6.1 Scalability of high performance codes

We estimate performance of High Performance codes by their scalability, in other words how they can
take advantage of numerous compute cores. But it is hard to reach scalability on massively parallel
machines, as the current supercomputers approximately reach one million core counts. These difficul-
ties can come, for a large part, from the characteristics of these machines: their hardware topology, the
multiple levels of parallelism, their network latency, etc. Optimizing parallel codes to efficiently exploit
such architectures is a long and difficult process, and the performance bottlenecks have to be identified.

These bottlenecks of parallel codes can be:

Limited extensibility of algorithms implemented in applications

Load imbalance in parallel codes

Inefficiency of load balancing in OpenMP runtimes

Implementation of MPI algorithms in MPI runtimes

MPI library not optimized for intra node communications

Bad data locality

103

¢ Memory consumption

As we can observe in this list, the performance pitfalls are numerous and can come from various
directions. Limitations can come from both application or runtime level.

Moreover, adding OpenMP pragmas inside MPI codes means adding another level of parallelism,
and establish coexistence between two runtimes. This leads to increase potential bottlenecks. These
are then difficult to pinpoint and require some expertise.

Performance tools are necessary to get insight of parallel codes and runtimes.

6.2 Overview of performance analysis infrastructure

The previous section showed the difficulties encountered by the developers to track potentiel bottlenecks
in numerical codes, which revealed the necessity to use proper tools for performance analysis.

Instrumentation
Insertion of probes
Source Library Runtime Binary | | U
code wrapper code code
\\\\ | /I //
Measurement
Profiling Tracing

Performance data sources .
Sampling
- Hardware counters
- System counte

Export trace files (OTF, SLOG, ..)

Data management Visualization

- Profile - Vampir
- Trace - Expert
- Jumpshot

Figure 6.1: Infrastructure of performance analysis

Figure[6.7]describes the infrastructure of performance analysis regarding high performance applica-
tions. We can split the chain in three stages: (i) instrumenting application at several levels, (ii) measur-
ing parts of the application using different techniques and performance metrics, and (iii) analysis of the
measurement.

104

6.2.1 Instrumentation

In order to gain information from an application for performance analysis, some probes have to be
inserted. This stage is called instrumentation. While the program is executed, events related to these
probes are activated and detected by the tool which will perform measurements. We will see here that
the instrumentation can be done at several levels of the code, and different kinds of instrumentations
have to be distinguished:

e Source-level instrumentation: This technique consists in inserting function calls in the source
code for instrumentation. The source code has to be transformed by a source-to-source compiler
which will insert probes at specific points. For example, in the case of an OpenMP code, constructs
will be surrounded by function calls. This is the case with OPARI2 [83] which uses the functions
provided by the POMP interface.

e Compiler instrumentation: In this case, the instrumentation probes are added by the compiler,
inside the object code. This kind of instrumentation benefits from a higher level of details and
allows fine grain analysis. However, it can prevent from other optimizations usually offered by the
compiler, since they can corrupt measurements.

o Library wrapper: This kind of instrumentation consists in interposing a library between user code
and runtime. If we take the case of MPI codes, MPI calls are intercepted by the library, which is in
charge of calling internals. PMPI is an example of used interface to be plugged to a library. The
advantage is that this technique is transparent for the developer.

e Binary instrumentation: Another instrumentation method consists in patching binary codes, and
inserting probes at instruction level, allowing finer grained instrumentation. Examples of tools
proposing this kind of instrumentation are PIN[92] and MAQAOQO[32].

6.2.2 Measurement

Instrumentation helps the tools to measure performance of applications using various methods and
metrics. At measurement stage, the events are linked with performance data.

We distinguish several kinds of measurement:

e Profiling: A first method is profiling, which consists in aggregating performance metrics in order
to characterize behavior of the targeted application. One example can be to measure the time
spent in the different functions composing the studied application (inclusive or exclusive time).

e Tracing: Whereas profiling is able to summarize performance of applications via metrics, another
method named tracing consists in building a view of the evolution of the application through a time-
line, and in studying its behavior through spatial and temporal aspects. Tracing method generally
relies on events capturing activity of the application.

e Sampling: Sampling consists in periodically collecting statistics from the program through execu-
tion time, via inserted interrupts.

In order to provide metrics, performance tools can rely on performance data sources, such as hard-
ware counters. Hardware counters are low-level performance metrics and are integrated in current
CPUs. They can give more insight about the behavior of studied applications: examples of those
counters can be the number of cache hits or misses, or the number of executed instructions per clock
cycle,.... PAPI[73] is an example of interface giving access to hardware counters. To be portable
across platforms, it comes with its own API.

When measurements such as profiling or tracing have been built, they can be sent to the analysis
component. This can be done by exporting results in files using formats such as Open Trace Format
(OTF)[64] or SLOG[26].

105

Measurement overhead. Events allow to observe the behavior of the targeted code, and to measure
performance of key parts. The selection and the number of these events depend on the performance
resolution the user wants to enable. But instrumenting parallel codes is not free and can insert a bias
in measuring, as instrumentation represents a performance intrusion. And the bigger the number of
inserted events in instrumented code is, the higher the probability is to alter behavior of applications.
This is called performance perturbation ([78]). But most performance tools provide techniques to reduce
the measurement overhead.

6.2.3 Analysis

The role of the analysis component is to enable an empirical performance evaluation of high perfor-
mance applications, and to display it. Depending on the tools, features coming with the analysis part
can be more or less rich, and include a large set of hints in order to characterize the studied codes. At
first, outputs from measurement component such as profile and trace data are merged to build a com-
prehensive view of the application behavior. With some tools, databases are also included to compare
different executions of the same application. For example, the Performance Data Management Frame-
work (PerfDMF) [53] allows storing, querying and analyzing performance data from multiple executions
or application versions. At last, several utilities are proposed for display purpose. Vampir[85] allows to
display traces of MPI based applications. It also offers statistic features. CUBE [100] is a performance
analyzer relying on a data model and provides performance metrics. Other examples are Paraprof[15]
or Jumpshot[109].

6.2.4 Existing performance tools for hybrid codes

Several performance tools gather numerous features and kinds of instrumentations, measurements,
and analysis capabilities, among those described in the previous sub-section.

Presentation of TAU. TAU (Tuning and Analysis Utilities [98]) provides the full chain (instrumentation,
measurement and analysis) for performance analysis of hybrid MPI+OpenMP codes. This tool is able to
be plugged to various interfaces such OPARI2, or OMPT, an interface which will be studied later. So we
see that various instrumentation techniques available such as source to source or binary instrumenta-
tions. TAU also includes several measurement techniques such as profiling and tracing. It can also rely
on hardware performance counters. At last, it comes with several tools such as paraprof or jumpshot
for visualization purposes.

Scalasca. Scalascal44] is another example of performance tool, able to analyze hybrid codes. This
tool proposes several analysis features such as runtime summarization by accumulating statistics and
postmortem analysis with the help of event traces. For visualization purposes, Scalasca comes with
Cube.

6.3 Prerequisites in instrumenting MPI+OpenMP codes

Performance bottlenecks of hybrid codes can come from numerous directions, as difficulties to write
efficient applications are leveraged by the mixing of different programming models. In order to have a
full observation of hybrid codes, it is necessary to have tools that are able to instrument both MPI and
OpenMP codes.

Instrumentation of MPI codes. MPI Tool Information Interface (MPI_T) offers a standardized mecha-
nism to gain information from MPI runtimes. It was introduced with MPI 3.0 revision and works through
PMPI interface [3]. MPI_T communicates with the MPI runtime through control and performance vari-
ables. Control variables allow tuning operations such as eager limits, or the selection of algorithms
implementing collectives. With performance variables, the user can get information such as memory
consumption of MPI library.

106

Instrumentation of OpenMP codes. As standard interfaces are available to instrument MPI codes,
this was not the case with OpenMP codes until recently. Different approaches exist for OpenMP instru-
mentation at different levels. The next section exposes the related work concerning the existing tools to
instrument OpenMP codes.

6.4 Related Work about OpenMP tools for performance analysis

As mentioned in the previous section, different methods exist for instrumenting OpenMP codes.

[57] presents a binary instrumentation methodology to monitor runtime events, integrating the MAQAO
performance tool into Score-P [7]. It introduces a new interface named SMOMP, which provides a set
of probe functions for OpenMP regions.

Still within MAQAO, the authors in [14] describe features consisting in inserting probes at the instruc-
tion level of the codes for static analysis of OpenMP codes.

In [54], the authors compare different approaches to instrument OpenMP codes:

e A first method, OpenMP Pragma And Region Instrumentor (OPARI) [83], is a source-to-source
translator which locates the OpenMP constructs and inserts instrumentation via the POMP inter-
face. POMP OpenMP Performance Monitoring Interface was also introduced in [83] and defines
a portable API for performance tools. Opari is then able to provide tools for OpenMP activity, but
without any insight inside the runtimes. At last, source instrumentation is likely to generate some
overhead and prevent compiler optimizations.

e A second approach, built into OpenUH compiler, is introduced, OpenMP Runtime API [56], com-
monly known as Collector API, and allows performance tools to interact with OpenMP runtimes.
Callbacks are to be registered for event transitions in the runtime, and thus get insight into it. ORA
is supported by TAU.

e The authors also present a method consisting in a library interposed between the application and
libGOMP, the runtime library coming with GCC[45]. This technique is possible via a utility coming
with TAU, which generates libraries.

e At last, their paper describes OpenMP Tools APl (OMPT), which provides a set of events and
states. It is based on the same principle than ORA but provides more events. It is integrated in
the OpenMP standard.

OMPT takes advantage of these different approaches: it can be considered as a superset of ORA,
since more events are provided for tools. Moreover, it is now integrated into the OpenMP standard. In
the next section, we will study this instrumentation tool, its features and how we can take advantage of
it to measure both application and runtime performances.

6.5 OpenMP Tools API

We recall the need of a standardized interface in order to analyze the performance of OpenMP codes.
Starting from the observation of a gap between OpenMP applications and the behavior of OpenMP
implementations, the OpenMP Architecture Review Board introduced OMPT as an extension of the
OpenMP standard. OMPT (OpenMP Tools API [37]) is an Application Programming Interface, oriented
towards performance analysis. This APl was defined to provide the measurement of OpenMP applica-
tions and mirror the behavior of OpenMP runtimes. For this purpose, it collects performance measure-
ments for tools, and provides a set of events and states.

Events are associated to OpenMP constructs, and are, for most part, organized according to be-
gin/end pairs: they have to be placed from creation to completion of associated OpenMP constructs.
Also they are split into two classes: mandatory or optional, and are notified when threads encounter
OpenMP constructs such as parallel regions. Performance tools are then able to build profilings and
tracings, based on these events. But to receive them, the tools have to interact with the runtimes via

107

OpenMP construct Associated events

void ompt_event_thread_begin / ompt_event_thread_end

#pragma omp parallel ompt_event_parallel_begin / ompt_event_parallel_end

#pragma omp for ompt_event_loop_begin / ompt_event_loop_end

#pragma omp barrier ompt_event_barrier_begin/ ompt_event_barrier_end

#pragma omp single ompt_event_single_in_block_begin / ompt_event_single_in_block_end
ompt_event_single_others_begin / ompt_event_single_others_end

#pragma omp master ompt_event_master_begin / ompt_event_master_end

#pragma omp task ompt_event_task_begin / ompt_event_task_end

#pragma omp taskwait ompt_event_taskwait_begin / ompt_event_taskwait_end

Figure 6.2: Corresponding OMPT events to OpenMP constructs

callbacks: they register the callbacks associated with the events they want to be notified.

OMPT also describes some states of the runtime, referring to the state information of the executing
thread, whether the current thread is executing serial code or parallel code, or is idle. ... These states
are implemented as variables which are updated in accordance the evolution of the current thread, and
are not linked to any temporal information. They can be used for sampling techniques for example.

At last, OMPT provides unique identifiers to threads, parallel regions, and tasks, and also provides
some inquiry functions to get these identifiers.

Thus, this API is able to feed the tools with thread activites and status, for profiling, tracing or
sampling purposes.

Unlike other instrumenters like OPARI2 which performs source-to-source transformations, OMPT is
to be implemented inside OpenMP runtimes. It is thus not visible from the source code but can require
changes inside the compiler if the ABE] supported by the runtime does not fit the OMPT events. We will
detail this last point later.

6.5.1 Targeted OpenMP constructs and provided events

Events provided by OMPT cover all OpenMP constructs and are classified into two categories: manda-
tory and optional. The most common provided events are ompt_event_thread_begin/ompt_event_thread_end
which notify when a thread is created and terminated.

Here is a list of the main events provided by OMPT, with the corresponding OpenMP constructs:

e Creation and termination of threads: ompt_event_thread_begin / ompt_event_thread_end
e Creation and termination of parallel regions: ompt_event_parallel_begin/ompt_event_parallel_end

e Entering and exiting a parallel loop: ompt_event_loop_begin / ompt_event_loop_end

Figure presents the example of an OpenMP parallel region and shows where related event
callbacks have to be inserted. For a better understanding, we listed a user code, but in a real case,
callbacks should be inserted in the runtime code. We see that a parallel region is open, and the callback
related to ompt_event_parallel_begin is placed at the beginning of the parallel region, while the one
related to ompt_event_parallel_end is placed just before the closing bracket. These callbacks have to
be executed by the master thread, in charge of creating and terminating the parallel region.

A pair of events is also provided and has to be used when the current thread starts executing its
associated code and when exiting it.

OMPT also supplies events in order to measure how much time a given thread waits inside a con-
struct (like barriers, or OpenMP locks).

At last, some events are available to get insight of the runtime. One of these provided events
defines an implicit task as the code associated to a parallel region, which corresponds to the code

' Application Binary Interface

108

int main(int argc, char **argv)

1* code */

#pragma omp parallel /
{

ompt_event_parallel_begin

Callback ‘

/¥ code */

} /* End of parallel region */ |

—

Callback ‘

1* code */ ompt_event_parallel_end

return EXIT_SUCCESS;

} /% End of program */

Y time
Figure 6.3: Insert event callbacks related to parallel regions

inside brackets. This implicit task is not visible from user code, and can be instrumented by the pair
ompt_event_implicit_task_begin/ompt_event_implicit_task_end

void

omp_start_parallel_region(int num_threads
void *(*func),
)

{

Callback
/

ompt_event_implicit_task_begin
/* Runtime code */

/* Executed code associated to parallel
region */
func();

/* Runtime code */

return;

—

Callback ‘

ompt_event_implicit_task_end

}

Y time

Figure 6.4: Insert event callbacks related to implicit tasks inside OpenMP runtime

We show where the event pair regarding the implicit task has to be inserted with Figure[6.4] To ex-
plain the interest of this event pair, we listed the skeleton of an implementation of an OpenMP parallel re-
gion inside a runtime. The parallel region is implemented by the function omp_start_parallel_region,
coming with arguments such as the number of threads, and a pointer to the code inside the parallel
region. The callbacks associated to the implicit tasks surround the call to the code func.

6.5.2 How OMPT Works

Now we evocated the different features proposed by OpenMP Tools, let’s describe how it interacts with
the runtime and the performance tools.

Figure describes the chain composed of the application running with the OpenMP runtime, the
implementation of OMPT, a performance tool, and the interactions between all these components. The
runtime implements OpenMP directives of the application and supports its execution. OMPT implemen-
tation can be considered as part of the runtime: data structures defined by OMPT have to be imple-
mented inside it and be linked to runtime structures. Hooks (e.g., event callbacks) have to be inserted
inside it, in the proper locations. These hooks are used to know when targeted OpenMP constructs are
encountered. When a tool wants to be plugged to the OpenMP runtime, it has to communicate through

109

OpenMP Application Tool - Profiling
sorsgnacmp s - Tracing
/* code */

}
Get
information: Event

supports Register [oo notification
callbacks -~ Task ID
- state
[

S s s s Hooks

<

OMPT implementation

OpenMP Runtime

Figure 6.5: Interaction between OMPT, runtime and tool

the OMPT API. So events are then notified to the plugged tool. To receive events from the runtime, the
tool has first to register callbacks. To retrieve informations such as thread identifiers, the tool has to call
the corresponding inquiry functions. Once callbacks have been registered, the runtime has to notify the
events associated to callbacks to the tool.

Runtime Tool

Runtime
Initialization

= (strong symbol)
(weak Symbol) pe— ompt_initialize()
ompt_initialize()

<

D (@ Query function pointers

Y

<

(@) Register event callbacks

\ 4

End runtime
— initialization

D Notify events

Y implementation
time o

Figure 6.6: Initialization of OMPT

Initialization of OMPT and interactions between runtime and tool are described in Figure[6.6| OMPT
is started when runtime is initialized and is turned off at runtime termination. The API defines a function
ompt_intialize for tool initialization. The prototype of this function is as follows:

extern "C"

110

{

int ompt_initialize(ompt_function_lookup_t lookup,
const char *runtime_version,

unsigned int ompt_version);

}

One of the arguments coming with ompt_initialize function is a callback named lookup allowing
the tool to query pointers. These pointers will be used by the tool to interrogate the runtime.

Both runtime and tool provide an implementation of ompt_initialize function, but runtime has to
implement it with a weak symbol, whereas the one at tool side must be as strong symbol. This means
that the tool-supplied implementation of the function overrides the runtime one. If ompt_intialize
returns 0, the OpenMP runtime does not need to maintain state information and won’t perform any call-
back.

The tool’'s implementation of ompt_initialize follows two main steps:

e Query function pointers by calling 1ookup function. These pointers are necessary for the tool to
register callbacks and get information such as thread identifiers via inquiry functions.

¢ Register callbacks to receive notifications of events, using ompt_set_callback function

For example, to obtain a pointer to get the identifier of current thread, the lookup function has to be
used as follows:

ompt_interface_fn_t ompt_get_thread_id_ptr = lookup("ompt_get_thread_id")

The return code of the function at runtime side is overriden.

Procedure frames. Along its lifetime, any thread switches from the user space to the runtime space:
when it encounters a parallel region, the Master thread enters in the runtime, activates the slave threads
and executes the body of the region. It then exits the runtime to execute the user’s procedure. OMPT
distinguishes user’s procedures from runtime procedures by dividing the thread execution into procedure
frames. For that purpose, OMPT standard defines a structure containing pointers to these procedure
frames, associated to the current thread. This structure is updated whether the current thread enters or
exits the runtime.

Figure illustrates this approach with a code containing nested parallel regions, and executed by
2 threads. Code A, B and C are respectively the initial task (sequential), the code executing the outer
parallel region, and the one executing inner parallel region. The user’s view of the code execution and
the call stacks of threads are compared. When the first thread encounters the outer parallel region,
it calls the routine associated with OpenMP parallel region and enters in the runtime to create a new
parallel region. A frame f2 is created and corresponds to the runtime routine called by frame f1. The
field reenter_runtime_frame is set to frame f2 and the ompt_frame_t structure is labeled r1.

Before exiting the runtime and starting the implicit task associated to the parallel region "b”, the field
exit_runtime_frame is set to f4.

The second thread starts from frame 3, and is first idle, as shown with the frame f6. When thread
2 is able to execute its work, it enters frame 7. Before exiting the runtime to execute its implicit task
associated to code B, field exit_runtime_frame of ompt_frame_t (labeled r3) is set to frame 7.

At last, when thread 2 encounters parallel region ”c”, the runtime fills reenter_runtime_frame of the
structure labeled r3 to frame 9, which is the first frame to be executed after the implicit task associated
to code B. Before invoking the implicit task associated to code C, the field exit_runtime_frame of
structure labeled r4 is set to frame f11.

We can see how pointers of the frame structure are maintainted, in order to distinguish frames
dedicated to user’s procedures from those for OpenMP runtime routines.

111

code A

[#pragma omp parallel "b") Deve|0per view
(codeB)
[#pragma omp parallel c)

code C
thread 1 thread 2 Implementation
view
rl: code A (f0) r3.:
exit(a) 0 code A (f1) ,ee::,t),(b)
reenter(a) |[— — 3 code B (f8) /
r2: .
ra:
exit(b) —_—
reenter(b) |0 code B (f5) <—— | exit(c)
code C (f12) 0 | reenter(c)

Figure 6.7: Frame management with OMPT

6.5.3 Implementations of OpenMP Tools

OpenMP Tools API is supported by several compilers.

Intel opensourced its OpenMP runtime [5] and a first version of OMPT has been implemented. IMB also
supports OMPT in a version of its XL compiler. OMPT is also expected to be supported in the GOMP
library of GCC compiler.

6.6 Contribution: Performance analysis of OpenMP applications
and OpenMP runtimes using OMPT

The previous section described the OpenMP Tools API, including its possibilities. In this section, we
describe our contribution which consists in the implementation of OMPT inside the OpenMP runtime of
MPC framework and in the insertion of events. Secondly, we will show how OMPT can be exploited for
performance analysis at both application and runtime sides.

#pragma omp parallel for schedule(dynamic) private(ip)
for(ip = 0 + shift ; ip < max + (shift / 2); ip++)

if (ens_partic—=>particules[ip].p-enable)
const int ic = ens_partic=>particules[ip].p-nc; // Indice de la couche
const real_.t wnc = ens_partic—=>particules[ip].p-wmc;
const real_.t dw = (1 — expo) * wmc;

// Le poids retire’ de la particule est depose’
// dans la couche dans laquelle la particule se deplace

ens._partic—=>particules[ip].p-wmc —= dw;

c.walic] += dw;

}
} /= End for loop =/

Figure 6.8: Parallelize the loop of the absorption function in MC code

For this purpose, we developed a fine grained version of hybrid application MC [36], by parallelizing
loops, and using pragma omp parallel for constructs. Figure [6.8|shows a sample code of MC appli-

112

OpenMP construct

Associated events

ompt_event_thread_begin / ompt_event_thread_end
ompt_event_idle_begin /ompt_event_idle_end
ompt_event_parallel_begin / ompt_event_parallel_end
ompt_event_loop_begin / ompt_event_loop_end
ompt_event_barrier_begin / ompt_event_barrier_end
ompt_event_wait_barrier_begin/ompt_event_wait_barrier_end
ompt_event_single_in_block_begin / ompt_event_single_in_block_end
ompt_event_single_others_begin/ompt_event_single_others_end
ompt_event_master_begin / ompt_event_master_end
ompt_event_task_begin / ompt_event_task_end
ompt_event_taskwait_begin / ompt_event_taskwait_end
ompt_event_wait_taskwait_begin/ ompt_event_wait_taskwait_end
ompt_event_taskgroup_begin / ompt_event_taskgroup_end
ompt_event_wait_taskgroup_begin/ ompt_event_wait_taskgroup_end
ompt_event_sections_begin / ompt_event_sections_end
ompt_event_implicit_task_begin/ompt_event_implicit_task_end
ompt_event_initial_task_begin/ompt_event_initial_task_end
ompt_event_workshare_begin / ompt_event_workshare_end
ompt_event_tasks_switch

ompt_event_wait_critical

ompt_event_acquired_critical

ompt_event_release_critical

ompt_event_wait_atomic

ompt_event_acquired_atomic

ompt_event_release_atomic

ompt_event_init_lock

ompt_event_destroy_lock

ompt_event_release_nest_lock

ompt_event_init_nest_lock

ompt_event_destroy_nest_lock
ompt_event_acquired_nest_lock_first
ompt_event_acquired_nest_lock_prev
ompt_event_release_nest_lock_prev
ompt_event_release_nest_lock_last
ompt_event_acquired_nest_lock_next

ompt_event_flush

IMPLEMENTED
NOT IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
NOT IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
IMPLEMENTED
IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED
NOT IMPLEMENTED

Figure 6.9: Implemented and not implemented OMPT events inside MPC

cation, which is a parallelized loop of the absorption function, one component of the application. The
loop is tuned with a dynamic scheduling policy. We then conduct experiments on this version of the
MC code, by first showing how we can use OMPT to guide the loop optimization by tuning scheduling
policy and chunk size. For these experiments, we compile MC code with both MPC and Intel OpenMP
and rely on both implementations of OMPT. All experiments are launched on one 16-core node from the
Curie supercomputer, containing 2 CPUs Sandy Bridge EP, clocked at 2.27GHZ.

In the last part, we rely on some OMPT events to estimate the efficiency of the MPC runtime.

This contribution will show how we can use OMPT to detect bottlenecks of the application, and
estimate the efficiency of the OpenMP runtimes.

6.6.1 Implementation inside MPC framework

We implemented OMPT standard inside MPC 2.5.0 and tested it with performance-evaluation tool TAU.
Most provided events were added inside the runtime, excepted those related to nested parallelism:
To easily enable and disable OMPT support inside the framework, we defined the macro OMPT_SUPPORT.

113

This allowed to eliminate any overhead when not using OMPT.

Our implementation was tested with the performance tool TAU, which proposes proper interface
to communicate with OMPT. It is to be noted that entry and exit functions are required in the run-
time to insert pairs of events, for constructs such as parallel regions or parallel loops. Thus technical
issues appeared when inserting some events related to OpenMP loop and pragma omp single con-
structs. Since MPC runtime is tied to GCC ABI for runtime internals, there is no generated internal
for pragma omp for construct with static scheduling, whereas there are some with this construct com-
ing with dynamic scheduling. For pragma omp single construct, GCC generates one single routine
mpcomp_do_single () function. This function returns 0 or 1 whether the current thread executes code
associated to the construct or not. These issues required to modify the interface of GCC compiler
to generate the functions mpcomp_static_loop_begin() and mpcomp_static_loop_end() for OpenMP

loops with static scheduling, and the function mpcomp_end_single () to permit the insertion of the ter-
minating event related to pragma omp single construct.

6.6.2 Guiding OpenMP loops tuning using OMPT

Our first study with OMPT is purely oriented towards performance analysis of the MC application. As
we parallelized existing loops with the combined construct pragma omp parallel for, we wanted to
know if we would encounter some load imbalance or if we would get the best performances with a
static scheduling. In this part, we then conducted an empirical study of OpenMP loops by tuning the
scheduling policy and the chunk size. We then launched the hybrid version of the MC code, using 1
MPI task and 16 OpenMP threads, and generated profilings of various combinations of the loops.

Name: OpenMP_LOOP: absorption._omp_fn.0 [{absorption.inst.c} {0,0}] Name: OpenMP_LOOP: absorption._omp_fn.0 [{absorption.inst.c} {0,0}]
Metric Name: TIME Metric Name: TIME

Value: Exclusive Value: Exclusive

Units: seconds Units: seconds

1286 [std. dev. 2135 | std. dev.

Figure 6.10: MC compiled with MPC - compare performances of static and dynamic scheduled loops

Name: OpenMP_LOOP: absorpncn
[{/cce/scratch/cor h

Name: OpenMP_LOOP: absorpnon
Is/tau2-ompt-ir _mpi_ _mpi_ope [{/ccc/scratch c h Is/tau2-ompt- _mpi_ _mpi_ope
nmp} {0,0}] nmP) {0,0}]
Metric Name: TIME Metric Name: TIME
Value: Exclusive Value: Exclusive
Units: seconds

Units: seconds

417459] max
89343] node 0, thread 0

416982] mean

B30 e] node O thread 12 416982 e] node 0, thread 12
38 e] node O,thread 13 416969 e] node 0, thread 7
8377 e] node 0, thread 8 416902] node 0, thread 9
8362 B] node O, thread 15 416846] node 0, thread 11
B e nodeOthread 14 416842] node 0, thread 10
8333 e nodeOthread 10 4168 e] node 0, thread 13
83100] node0,thread 9

83116 B ' mi

in B — [
83116] node 0, thread 11

2301 B std. dev. 0.156 | std.dev.

Figure 6.11: MC compiled with Intel OpenMP - compare performances of static and dynamic scheduled
loops

With Figures [6.70]and [6.11] we compare the execution times of OpenMP loops with both static and

114

dynamic scheduling, starting from the absorption function. On each figure, the number of bars equals
the number of launched OpenMP threads, multiplied by the number of MPI tasks. There are additional
bars regarding the mean and the maximum execution times. We see on the left side of the bars the
execution time expressed in seconds. On the right side, we see the identifiers of each OpenMP thread
belonging to a MPI task with a given rank number.

On the one hand we notice the version with static scheduling that the loop is well balanced. On
the other hand, we observe a huge slowdown when switching to dynamic scheduling: the maximum
execution time with static scheduling is around 64 seconds whereas it is 421 seconds with dynamic
scheduling, which is approximatively 6.6 x slower.

There can be multiple reasons explaining such a big gap:

e Static scheduling vs dynamic scheduling: In static loops, the iteration space is split between
threads, when no chunk size is specified. This policy is then straightforward for the runtime and
ensures a minimal overhead. This is thus the best option when the application is well balanced
as we can see in this case. Rather, when choosing dynamic policy, each thread gets a chunk,
executes it and requests another one until depleting available chunks. We are in the case where
no chunk size is defined, so the default is 1, which corresponds to one iteration. This policy
involves more work from the runtime, and thus more overhead.

e Work stealing: While static scheduling forbids the use of work stealing, such technique is possible
with other scheduling policies. But different strategies exist to steal work, which are more or less
efficient according to the hardware topology or load imbalance. We saw in Chapter 3 that too
aggressive strategies could interfere with the inter-socket bandwidth and disturb compute work,
which leads to penalize performances.

To summarize, several reasons can explain such performance penalties with a dynamic policy, but
more insight is required to analyze those results. Unfortunately, OMPT doesn’t provide enough cover-
age to understand the runtime behavior when executing loops.

Figures and expose the profiling of the parallel loop in the absorption function, scheduled
with static policies, running with MPC and Intel OpenMP. We show here how performances evoluate by
increasing the chunk size, and how OMPT can help us to find the best optimization. We start from the
reference times from Figures [6.10]and where maximum times to execute loops were 64 seconds
for MPC and 83 seconds for Intel OpenMP, and we try to reduce these times by increasing chunk sizes
by a factor 2 at each step. With MPC, we can see that, when running loops with a chunk size 25600,
we execute the loops with a maximum time of around 58 seconds, but at a cost of strong imbalance.
With Intel OpenMP, a chunk size of 100 gives a maximum time of approximately 53 seconds, with gives
a speedup of 60%.

We show with Figures [6.14]and[6.15]the profiling of the same loop, still with MPC and Intel OpenMP,
but with a dynamic scheduling. We recall that the maximum times with dynamic scheduling were re-
spectively 318 seconds and 417 seconds with MPC and Intel OpenMP. With MPC, we show different
flavors of tuned loops with a chunk size varying from 400 to 3200 iterations. The best result with MPC is
obtained with a chunk size of 1600 iterations: maximum time is around 101 seconds, which represents
a speedup of 3.16 x. With Intel OpenMP, we reach best performances by tuning chunk size at 800, with
a maximum time of approximately 87 seconds (speedup of 4.79 x). Chunk size is increased following
the different sub-figures, from 400 to 3200. We can see that minimal execution time is reached with a
chunk size of 1600: the maximum execution time reaches approximately 100 seconds, whereas it was
421 seconds without specifying a chunk size (e.g, chunk size equal to 1). We then gained a speedup of
4.21.

We see with these examples that OMPT, coupled with TAU, can help us to tune parallel loops in order
to obtain the best performances, through successive optimizations. Our observations are the following:

e Dynamic scheduling is far from being the best scheduling policy against static one and can give
surprising slow downs.

115

Name: OpenMP_LOOP: absorption._omp_fn0 [{absorptioninst.c} {0,0}] Name: OpenMP_LOOP: absorption_omp_fn0 [{absorption.inst.c} {0.0}]
Metric Name: TIME Metric Name: TIME
Value: Exclusive

Value: Exclusive
Units: seconds. Units: seconds.

123071 [

max 210.889 max
123071 [node 0, thread 1 210.889 node 0, thread 3
122672 [node 0, thread 0 210775 node 0, thread 7
119,619 node 0, thread 6 210,698 node 0, thread 5
119.383 node 0, thread 3 210.682 node 0, thread 4
119.382 node 0, thread 8 210637 node 0, thread 2
119.381 node 0, thread 4 210416 node 0, thread 6
119.164 node 0, thread 5 210415 node 0, thread 8
119163 node 0, thread 7 209.083 [node 0, thread 0
116617 mean 184.441 [node 0, thread 1
113493 node 0, thread 13 183189 [mean
113482 node 0, thread 11 152625 node 0, thread 15
11334 node 0, thread 12 152.321 node 0, thread 11
113289 node 0, thread 14 15198 node 0, thread 9
113.144 node 0, thread 15 151.849 node 0, thread 12
112859 [node 0, thread 10 151639 node 0, thread 13
112834 [node 0, thread 9 15134 node 0, thread 14
111501 [min 151241 min
111591 node 0, thread 2 151241 node 0, thread 10
3795 E std. dev. 28309] std. dev.

(a) Chunk size: 3200 (b) Chunk size: 6400

Name: OpenMP_LOOP: absorption._omp_fn.0 [{absorption.inst.c} {0,0}]
Metric Name: TIME

Value: Exclusive

Units: seconds

Name: OpenMP_LOOP: absorption._omp_fn.0 [{absorption.inst.c} {0,0}]
Metric Name: TIME

Value: Exclusive

Units: seconds

106.534 max Bpy———————————————————— g
106.534

x
node 0, thread 4 58.071 [————————————— 0 d ¢ 0, thread 4

106443 node 0, thread 6 57,77 [—————————————— 0l 0, thread 3
106.365 node 0, thread 1 57,730 | ——————————— 0 e 0, thread 1
106346 node 0, thread 7 57.73 e —————————————————————— "0 0, thread 6
106.303 node 0, thread 8 5772 | ———————————— e 0, thread 7
106297 node 0, thread 2 5750 I ———————————————— "]¢ 0, thread 0

106.195 node 0, thread 5 27.44] ————— 5. deV.
104.401 [node 0, thread 0 22699 ————} 3

87.719 [node 0, thread 9 16317 — node 0, thread 2

87.708 [node 0, thread 14 0029 | node 0, thread 5

87.7 [node 0, thread 13 0.026 | node 0, thread 9
87.676 [node 0, thread 3 0026 | node 0, thread 13
78.058 [mea 0.026 | node 0, thread 14

n

49.142 node 0, thread 10
40.133] std. dev.

0.033 | node 0, thread 11

0.032 | node 0, thread 15

0.031 | min

0.031 | node 0, thread 12

0.025 | node 0, thread 15
0.025 | node 0, thread 8

0.025 | node 0, thread 11
0.025 | node 0, thread 10
0.025 | min

0.025 | node 0, thread 12

(c) Chunk size: 12800 (d) Chunk size: 25600

Figure 6.12: Tune loops of the absorption function depending on the chunk size, with static scheduling,
running with MPC - with the help to OMPT and TAU

e Anincreasing chunk size can give huge speedups, especially when coupled with dynamic schedul-
ing. We explain this observation by the fact that when the chunk size is increased, the pool of
chunks to be executed is reduced, then each thread has less work to do. Consequently, the
overhead implied in the runtime is lowered.

6.6.3 Estimate overhead of OpenMP runtimes

Whereas we could characterize an OpenMP code and optimize its loops using OMPT and profiling tool,
we will demonstrate here that we can get a better use of this interface and estimate the overhead of the
runt