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Applications à l’oxydation de composés carbonés pour le post-traitement. 
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Résumé : la crise environnementale a conduit  
l’industrie automobile à faire face à des 
contraintes croissantes tandis que les limitations 
drastiques de polluants entrent en vigueur. Afin 
de réduire les émissions polluantes issues de la 
combustion, l’une des solutions adoptées est de 
post-traiter les fumées à l’aide de systèmes de 
post-traitement catalytique à l’image du 
catalyseur 3 voies (TWC) pour les moteurs à 
essence ou le catalyseur d’oxydation (DOC) 
pour les moteurs diesel. Ces appareils présentent 
une structure en nid d’abeille constituée d’un 
réseau de canaux à l’échelle millimétrique 
appelés monolithes et dont les parois intérieures 
sont recouvertes d’une fine couche de métal 
précieux aux propriétés catalytiques. Les 
polluants sont transformés via l’interaction entre 
les molécules présentes dans la phase gaz et les 
sites actifs du métal précieux. Etant donné les 
conditions laminaires d’écoulement au sein des 
monolithes, un mélange faible et une diffusion 
moléculaire limitée peuvent être rencontrés au 
voisinage de la paroi réactive. Le taux de 
conversion des polluants peut être alors 
insuffisant pour des conditions opératoires 
données. Dans le but d’optimiser les transferts, 
des obstacles peuvent être introduits par 
déformation mécanique des parois du canal 
catalytique au cours du processus de fabrication. 
Les simulations numériques peuvent contribuer 
à l’émergence de solutions innovantes basées sur 
une compréhension et une maitrise profonde des 
phénomènes sous-jacents.  Afin d’atteindre cet 
objectif, le premier élément clé a été de formuler  
et d’intégrer  dans le code de dynamique des 
fluides AVBP une approche numérique 
combinant d’une part des conditions aux limites 
dédiées à la prise en compte de parois réactives,   
et d’autre part, la résolution de la cinétique 
chimique gaz et surface via un solveur d’EDP. 

L’approche a permis la prise en compte de la 
cinétique détaillée et l’interaction entre la phase 
gaz et les parois réactives. L’outil développé a 
été validé en premier lieu à l’aide de calculs de 
réacteurs hétérogènes  zéro-dimensionnels. Les 
résultats ont montré un parfait accord avec le 
solveur de référence SENKIN. L’approche a été 
validée ensuite en l’appliquant à la simulation de 
deux canaux réactifs aux parois planes  et en 
comparant les résultats numériques aux résultats 
expérimentaux de Dogwiler et al. L’approche 
développée s’est révélée être capable de 
reproduire les principales caractéristiques de la 
combustion catalytique pour différents points de 
fonctionnement. Enfin, l’outil développé a été 
appliqué à l’étude de l’impact de l’introduction 
d’obstacles pariétaux sur les taux de conversion 
des systèmes catalytiques. Les résultats ont 
permis d’ouvrir des perspectives très 
intéressantes quant à  la contribution de la CFD 
2D et de la chimie hétérogène détaillée à 
l’optimisation du design des systèmes de post-
traitement catalytique. En particulier, l’étude de 
l’influence des obstacles pariétaux  a montré que 
le design de la  géométrie des monolithes 
constitue un fort potentiel d’optimisation de 
l’efficacité des systèmes de conversion 
catalytique et ce, à moindre coût  grâce à une 
utilisation optimisée du métal précieux rendue 
possible par une meilleure interaction entre 
l’écoulement, les réactions chimiques dans la 
phase gaz et  la paroi réactive. 

 



 

 

 

 

Title: Modelling of the heat and mass transfers near reactive walls. Application to the oxidation of 
carbonaceous compounds in after-treatment devices. 

Keywords: reactive walls, combustion, catalysis, chemical kinetics, boundary conditions. 

Abstract: the environmental emergency has led 
automotive industry to deal with growing 
constraints as drastic regulations of pollutant 
emissions are emerging. In order to reduce 
emissions resulting from the combustion 
process, one of the solution adopted is to post-
process pollutants by the means of catalytic 
after-treatment systems such as three-way 
converters (TWC) for gasoline applications or 
oxidation catalysts (DOC) for Diesel 
applications. These devices present a 
honeycomb shape which consists in a grid of 
millimeter-scale narrow channels called 
monoliths whose interior wall are coated with 
precious metals presenting catalytic properties. 
Pollutants are converted through the chemical 
interaction involving gas-phase molecules and 
active precious metal sites. Given the laminar 
flow encountered within these monoliths, weak 
mixing and molecular diffusion could occur 
near the catalytic walls. Pollutant conversion 
rates may therefore prove insufficient for certain 
operating conditions. In order to promote 
transfers, obstacles could be introduced by 
mechanically deforming the channel wall during 
the manufacturing process. Numerical 
simulations can contribute to the emergence of 
innovative technologies based on a profound 
understanding and mastering of the underlying 
phenomena that simulation allows. In order to 
achieve this goal, a first key element was the 
formulation and integration into the AVBP CFD 
code of a numerical approach combining 
specific boundary conditions for reactive walls 
and  ODE solvers for the gas phase and surface 
chemistry. 
 

The approach allowed to account for detailed 
kinetics and the interplay between the reactive 
surface and the gas-phase. The resulting tool 
was first validated using a zero-dimensional 
heterogeneous reactor computations. The results 
were shown to perfectly match the ones obtained 
with the reference kinetic solver SENKIN. 
Furthermore, the approach was then validated 
by applying it to the simulation of two planar 
reactive channel flows, and comparing the 
predictions with experimental findings of 
Dogwiler et al.. The developed approach proved 
to be able of reproducing main features of the 
catalytic combustion observed for different 
operating points. Finally, the developed tool was 
applied to explore the impact of introducing wall 
obstacles on the conversion rate of catalytic 
devices. The resulting findings have proved to 
open very interesting perspectives for 
contributing to the optimization of the design of 
catalytic converters using 2D CFD and detailed 
heterogeneous chemistry. In particular, the 
study of the impact of wall obstacles indicates 
the potential for contributing to further increase 
the efficiency of catalytic converters via the 
design of monolith geometries that would allow 
a more efficient and thus less costly usage of Pt-
coating as a consequence of optimized 
interactions between the gas flow, gas phase 
chemistry and surface chemistry. 
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Nomenclature

Roman letters

Ar pre-exponential factor of the rth gas-phase reaction, (mol, cm, s)

As
r pre-exponential factor of the rth surface reaction, (mol, cm, s)

As,cov
r Coverage dependent pre-exponential factor of the rth surface reaction, (mol, cm, s)

CM third body mole concentration,
(
mol.m−3.s−1

)

Ck mole concentration of the kth gas-phase species,
(
mol.m−3.s−1

)

Cs
k mole concentration of the kth surface species,

(
mol.m−2.s−1

)

Cp,k heat capacity at constant pressure,
(
J.kg−1.K−1

)

Cv,k heat capacity at constant volume,
(
J.kg−1.K−1

)

Dk mass diffusion coefficient of the kth gas-phase species,
(
m2.s−1

)

Dk,j binary mass diffusion coefficient of the kth gas-phase species to jth species,
(
m2.s−1

)

Da Damköhler number, (s)

Da|AI Damköhler number based on the auto-ignition time, (s)

dtCFL time step based on the acoustics, (s)

dtchem time step based on the gas-phase chemical reactions, (s)

dtFo time step based on the diffusive transport, (s)

dtsurfacechem time step based on surface reactions, (s)

E total non-chemical energy,
(
J.kg−1

)

Ear activation energy of the rth gas-phase,
(
J.mol−1

)

Easr activation energy of the rth surface reaction,
(
J.mol−1

)

Eas,covr coverage dependent activation energy of the rth surface reaction,
(
J.mol−1

)

Fo Fourier number

hs,k sensible enthalpy of the kth species,
(
J.kg−1

)

hk total enthalpy of the kth species,
(
J.kg−1

)

hc channel half-height, (m)

Ik surface to gas-phase chemical rates ratio

△hof,k standard enthalpy of formation of the kth species,
(
J.kg−1

)

~Jk diffusive flux of the kth gas-phase species,
(
kg.m−2.s−1

)

kfr forward rate constants of the rth gas-phase reaction, (mol, cm, s)

ks,fr forward rate constants of the rth surface reaction, (mol, cm, s)

Keq
r equilibrium constant of the rth gas-phase reaction, (mol, cm, s)

Ks,eq
r equilibrium constant of the rth surface reaction (mol, cm, s)



Roman letters

ldiff characteristic diffusion length within a chemical time, τchem

Lf axial thickness of the gas-phase reaction front, (m)

Le Lewis number

mc surface carbon mass, (kg)

ṁ convected mass rate at the wall,
(
kg.m−2.s−1

)

p Thermodynamic pressure, (Pa)

Pr Prandtl number

Pt Platinum

~q heat flux,
(
J.m−2.s−1

)

Re Reynolds number

Qr reaction rate of the rth gas-phase reaction,
(
mol.m−3

)

Qs
r reaction rate of the rth surface reaction,

(
mol.m−2

)

R universal gas constant,
(
J.mol−1K−1

)

Rchem
k rate of change of the kth gas-phase species due to gas-phase reactions

Rs,chem
k rate of change of the kth gas-phase/surface species due to surface reactions

Rconv
k rate of change of the kth gas-phase species due to convective transport

Rdiff
k rate of change of the kth gas-phase species due to diffusive transport

ṡk rate of production by surface reactions of the kth species,
(
kg.m−2.s−1

)

ṡhomk rate of production by surface reactions of the kth species

determined by the kinetic solver,
(
kg.m−2.s−1

)

Sck Schmidt number of the kth species

t physical time (s)

tAI a priori estimated ignition time

tspecdiff diffusion characteristic time of gas-phase species

T temperature, (K)

T hom temperature seen by the kinetic solver, (K)

~u velocity vector,
(
m.s−1

)

UStefan Stefan velocity,
(
m.s−1

)



Roman letters

~Vk diffusion velocity field of the kth gas phase species,
(
m.s−1

)

Wk molecular weight of the kth gas phase species,
(
kg.mol−1

)

W s
k molecular weight of the kth surface species,

(
kg.mol−1

)

W s
ads molecular weight of the adsorbed species

xstab flame anchoring position

Xk mole and mass fraction of the kth gas phase species

Xf axial position of the gas-phase reaction front

x′ axial coordinate normalized by the channel length

Yk mass fraction of the kth gas phase species

Y eq
k mass fractions of the kth gas-phase species at the steady state.

Y hom
k mass fractions of the kth gas-phase species seen by the kinetic solver

y′ transverse coordinate normalized by the channel height

Greek symbols

βsr temperature exponent of the rth gas-phase reaction

βsr temperature exponent of the rth surface reaction
¯̄δ Kronecker symbol

εk,r surface coverage parameter for activation energy of the rth species

involved in the rth surface reaction

ηk,r surface coverage parameter for the pre-exponential factor of the rth species

γr sticking coefficient for adsorption reactions

Γ surface site density,
(
mol.m−2

)

λ heat conduction coefficient,
(
W.m−1.K−1

)

µ dynamic viscosity, (Pa.s)

νfk,r molar stoichiometric coefficient of the kth gas phase species present as a reactant

νbk,r molar stoichiometric coefficient of the kth gas phase species present as a product

in the rth reaction

νs,fk,r molar stoichiometric coefficient of the kth surface species present as a reactant

in the rth reaction

νs,bk,r molar stoichiometric coefficient of the kth surface species present as a product

in the rth reaction

ΩG index set of gas-phase species involved in gas-phase and surface reactions

Ωs index set of surface species involved in surface-phase reactions



Greek symbols

ω̇k rate of production by gas-phase reactions of the kth species,
(
kg.m−3.s−1

)

ω̇hom
k rate of production by gas-phase reactions of the kth species

determined by the kinetic solver,
(
kg.m−3.s−1

)

ω̇T gas-phase heat release rate in,
(
J.m−3.s−1

)

ω̇eq
T gas-phase heat release at the steady state,

(
J.m−3.s−1

)

~ψ set of variables undergoing gas-phase reactions
~Π set of variables undergoing surface reactions

ρ gas-phase density,
(
kg.m−3

)

σk Number of sites that each adsorbed species occupies

¯̄τ viscous stress tensor,
(
kg.m−1.s−2

)

θk surface site fraction

τ normalized time

χk thermal diffusion ratios

indexes

i,j refers to the direction of a vector component

k refers to the kth species

n refers to wall-normal vectors

s refers to surface reactions

w denotes for vectors or scalars at the wall

Abbreviations

AI auto-ignition

MCR mass conversion rate

ODE ordinary differential equation
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Chapter 1

Context & introduction

Automotive industry is dealing with growing constraints as drastic regulations of pollutant emissions are

emerging. For instance, the limits of pollutant rejections imposed by the EURO norms [8] are becoming

tougher and tougher since 1993. The stringency of the norms is highlighted in Figure 1.1 thus showing the

political will of reducing the environmental impact of road transport.

FIGURE 1.1: Stringency of the norms since 1993 [1]. CO, NOx and HC stand for carbon monoxide, ni-
trogen oxides and hydrocarbon compounds respectively. PM refers to particulate matter.

Post-processing emissions by the means of devices embedded downstream from internal combustion en-

gines (ICE) is one of the solutions adopted by car manufacturers to reduce pollutants. Solid emissions

such as particulate matter (PM) can be trapped inside particulate filters [9] while gaseous pollutants (CO,

HC andNOx) are converted inside catalytic after-treatment systems such as three-way converters (TWC)

for gasoline applications [10] or oxidation catalysts (DOC) for Diesel applications [11]. Automotive pollu-

tant control devices for gaseous emissions present a honeycomb shape which consists in a grid of ceramic

1
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or metallic made millimeter-scale narrow channels called monoliths. Interior walls of monoliths are coated

with a metal oxide porous layer known as washcoat over which precious metal crystalites (Rhodium/Plat-

inum) presenting catalytic properties are distributed. Pollutants are converted through reactions occurring

at the catalytic wall of the monoliths where gas-phase molecules and active precious metal sites are in-

volved.

In these kind of applications, catalysis favors and provides reaction paths that would not be possible or

infinitely slow under typical exhaust gas thermodynamic conditions.

Figure 1.2a illustrates the channel network structuring the honeycomb-shaped catalytic converter. Fig-

ure 1.2b gives a more detailed view of the monolith interior by showing how the porous layer is bonded

to the surface of the support. The main function of the washcoat is to provide high surface area needed for

the dispersion of catalytic metals to ensure a better conversion. Inorganic base metal oxides can be added

to the wash coat as stabilizers.

(A) Honeycomb shaped catalyst
(B) Catalytic coating

FIGURE 1.2: Left: Structure of a honeycomb-shape catalyst [2]. Right: Catalyst washcoat [3].

Although the flow is turbulent in the exhaust-gas upstream from the catalyst with a Reynolds number of

5000-80000 [12], flows encountered within narrow monolithic channels of converters are laminar with

prevailing Reynolds number between 75-600 [13]. Typical reaction rate curves for catalytic systems are

plotted versus temperature in Figure 1.3. Below 500K, the line (orange) follows an exponential growth

which corresponds to a purely kinetic regime i.e, surface reactions do not undergo transfer limitations. At

this temperature range surface reactions are prevailing in the absence of gas-phase ones. For temperatures

above 1200K, homogeneous reactions rates which are represented by the red line are dominating. Un-

der this regime which is referred as CST (Catalytically Stabilized Thermal combustion) [14], catalytic
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reactions tend to stabilize homogeneous reactions. Under the temperature range that is highlighted in

purple (500K-1200K) homogeneous reactions are activated, however their rates remain low compared to

surface ones. The line of the surface reaction rates reaches a plateau (blue dashed line) as a consequence

of weak mixing and diffusion that occur near the reactive walls. This results in heat and mass transfer

limitations. Therefore, the catalytic conversion rates could be limited by molecular diffusion fluxes and

chemical kinetics, which may prove insufficient for certain operating conditions. This regime that is char-

acterized by surface reactions undergoing kinetic and diffusion limitation in the presence of a gas-phase

chemical activity corresponds to the operating domain of automotive catalytic converters.

FIGURE 1.3: Typical rate curve for catalytic systems [4]. A: kinetic regime; B:heat and mass transfer
limitation; C: gas-phase reactions

In order to enhance transfers under this operating range, Figure 6 shows how a transfer promoter in

the form of an obstacle could be introduced on the otherwise smooth interior walls of the mono-

liths [15]. These obstacles are created by mechanically deforming the channel wall during the manu-

facturing process. Different possible wall/obstacle shapes such as baffles, helical/rectangular ribs, sinu-

soidal/corrugated walls or dimpled tubes and wire coal inserts [16, 17] can therefore be obtained.

The contact between the pollutant species carried by the exhaust-gas flow and the catalytic metals at the

surface could thereby be enhanced. The resulting flow perturbations, in the form of e.g. recirculation,

could lead to higher heat and mass transfer rates to the channel wall and thus larger reaction rates at the

surface, which could improve the overall performance of the system. Moreover, the resulting enhancement

of transfers and reactivity may enable to reduce the amount of catalytic metals used for coating as the

available reactive contact area would be optimized.

Understanding in detail the underlying chemical and physical phenomena inside monolithic channels

could be a key path in order to identify potential technological improvements which might concern the



Chapter I. Context & introduction 4

FIGURE 1.4: Introduction of a transfer promoter in the shape of a semi-spherical rib on the wall of a
monolithic catalyst [5]

obstacles’ shape, their numbers and dimensions. The design of obstacles and the amount of precious metal

coating should thereby be explored for an optimized and cost-effective conversion performance.

Industrial context and objectives of the present study:

As vehicle emissions are limited by more and more drastic policies, pollution control actions are taken at

the source, i.e, by developing new type of fuels [18] and clean combustion modes or by post-processing the

exhaust-gas emissions through efficient after-treatment devices which is the focus of the present study. In

order to explore optimization strategies, experiments could be carried out but under restricted configu-

rations. Moreover, measurements are limited given the involved confinement and high chemical reactiv-

ity [6]. Therefore, numerical simulations appear to be a practical tool for system optimization as realistic

operating conditions could be explored. Nonetheless, experimental data remain necessary in order to vali-

date the numerical modeling. The use of reliable numerical tools can contribute to the emergence of inno-

vative technologies based on a profound understanding and mastering of the underlying phenomena that

simulation allows. The present study aims at developing and adapting an already existing numerical tool to

study the flow within millimeter-scale channels with catalytic walls representative of catalytic monoliths

and to numerically evaluate the effect of obstacles introduction on the local reactivity and transfers.

The burnt gases expelled from the combustion chamber and entering the after-treatment system and the
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monolith channels are composed of an important number of chemical species resulting from the combus-

tion process, and from the conditions found during expansion and flow through the exhaust ducts. The un-

derlying physicochemical processes within each channel of a typical honeycomb structure are illustrated

in Figure 1.5. As the multi-species flow interacts with the catalytic metals, catalytic ignition (light-off)

and gas-phase reactions (homogeneous ignition) could be achieved depending on the operating conditions

(UIN , TIN , YIN ) and on the heat transfer mechanisms such as transverse diffusion, heat conduction in

the solid channel walls and surface radiation heat transfer.

FIGURE 1.5: Physicochemical processes possibly occurring in a catalytic channel [6]

Surface reactions result in the production of gas-phase species that diffuse in the channel, e.g. H2O and

OH but also they might yield a deficient reactant on the catalyst surfaces as illustrated by the fuel mass

fraction YF in Figure 1.5. This adsorption and desorption activity at the reactive wall thereby modifies

the wall gradient of the gas-phase species and leads to a mass flux at the reactive interface known as

Stefan flux [19, 20]. These features make the reactive interface behave as a transpiring wall [21]. In ad-

dition to wall heat losses and heat transfers with the gas-phase, surface reactions might be exothermic

or endothermic which yields a heat release or adsorption in the near-wall region. These dynamics there-

fore modify the momentum, heat and mass transfer in the vicinity of the wall and imply that standard

assumptions of impermeable and isothermal/adiabatic walls are no longer valid as compared to inert-wall

conditions [22, 23]. Also, the underlying processes yielding the activation of both surface and gas-phase

chemistry involved in pollutant conversion are transient. The following physical features thereby should

be taken into account :

• Multi-species flows.

• Presence of both gas-phase and surface reactions.

• Variable density due to the interplay between chemical reactions and hydrodynamics.
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• Modification of the momentum, mass and heat-flux at the reactive wall due to surface reactions.

• Radiative transfers and wall heat conduction.

• Transient behavior.

The variable density code AVBP co-developed at IFPEN and CERFACS solves the compressible unsteady

3D Navier-Stokes equations including gas-phase chemical reactions. At the start of the present work, the

numerical methods were not adapted for the resolution of complex gas-phase kinetics. Simplified one- or

two-step kinetics are however not sufficient to describe with sufficient accuracy the gas phase chemistry in

catalytic monolith, especially as surface chemistry has also to be accounted for. Another alternative could

be the development of chemistry tabulation approaches, but this path was not followed due to the a priori

difficulty to account for surface chemistry in such approaches. For instance, defining a progress variable

accounting for heterogeneous reactions might represent a very challenging task.

During the previous study of Cabrit et al. [24, 25], boundary conditions simulating the impact of surface

reactions on the momentum and mass transfer at the reactive wall were implemented in AVBP . Simpli-

fied one- and two-step kinetics were used to describe surface reactions. Nevertheless, reactive walls were

considered isothermal and complex surface kinetics with the associated numerical resolution were not

addressed. The objective of the present work was to develop an approach that could addresse all main

physical and chemical phenomena of importance for the simulation of catalytic monoliths, with the fol-

lowing main targets:

• Accounting for elementary chemical reactions and radical species within the description of chemi-

cal reactions of the gas-phase and the catalytic wall is essential in order to capture transient chemical

phenomena such as gas-phase ignition and catalytic light-off. As detailed kinetic mechanisms in-

clude a large number of radicals, a large spectrum of species characteristic times is involved. As a

result, the implementation of robust and fast ODE solver for both chemical kinetics is required to

handle the induced stiffness with an acceptable accuracy and computational cost;

• Formulation of proper boundary conditions for determining wall fluxes in the presence of surface

chemistry;

• Understanding the influence of obstacles on the reactivity and near-wall transfers by performing

numerical simulations of the heterogeneous combustion in a narrow channel with catalytic walls

representative of monolithic catalysts encountered in automotive converters.
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Organization of the manuscript

This Ph.D manuscript is divided into seven Chapters:

• In the first Chapter, the general context was presented.

• The second Chapter describes the conservation equations governing multi-species reactive gaseous

flows. The formulation of the Navier-Stokes equations and the numerical method used by the CFD

code are reported. The gas-phase chemistry equations are detailed, along with the associated nu-

merical resolution methods.

• Governing equations for surface reaction kinetics are introduced in the third Chapter. The derivation

of a boundary condition dedicated to the prediction of a proper wall heat flux in the presence of

surface reaction is presented. The overall numerical methodology enabling to account for reactive

walls in a CFD code is depicted, as well as the numerical resolution method for complex surface

kinetics.

• The fourth Chapter consists of a 1D application example that corresponds to the results of our

published article in the International Journal of Heat and Mass transfer (IJHMT) [26]. Transient

numerical simulation of the ignition of a gas mixture by a reactive wall in a quiescent flow is

performed. The interplay between gas-phase diffusion and surface chemistry is emphasized.

• In the fifth Chapter, a 2D numerical simulation of combustion of lean premixed CH4/Air mixture

in a Pt-coated meso-scale channel with flat walls is described. Numerical results are compared

to experimental data provided at steady-state by Dogwiler et al. [27] for validation. Moreover, a

transient analysis is carried out to provide insight into the dynamic of heterogeneous chemistry

encountered within catalytic channels.

• The sixth Chapter is dedicated to presenting numerical simulation results of combustion in a cat-

alytic channel with wall obstacles. Convex and concave cavities were introduced to the planar cat-

alytic channel studied in the fifth Chapter. The planar channel, serving as a reference case, enables to

study the impact of obstacles on the conversion performances. The influence of full and segmented

Pt-distribution is also assessed in order to assist coating optimization strategies.

• Finally, the last chapter is dedicated to the conclusions and perspectives of the present thesis.



Chapter 2

Governing flow equations and their

resolution

2.1 Conservation equations

2.1.1 Navier-Stokes equations

Note: in this Section, the Einstein summation rule is used

The Navier-Sokes equations are described for multi-species compressible reactive flows. The considered

variables used to describe the conservation laws are the density ρ, the mass fractions Yk, the velocity

vector ui, the total non-chemical energy E and the thermodynamical static pressure p :

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0 (2.1)

∂ (ρYk)

∂t
+
∂ρ ((ui + Vk,i)Yk)

∂xi
= ω̇k (2.2)

∂ (ρui)

∂t
+
∂ρ (ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τi,j
∂xj

(2.3)

∂ (ρE)

∂t
+
∂ (ρEui)

∂xi
= − ∂qi

∂xi
+
∂ (τi,jui)

∂xj
− ∂ (pui)

∂xi
+ ω̇T (2.4)

8
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p

ρ
= rT (2.5)

Eqs. (2.1-2.5) respectively correspond to the conservation of mass, species, momentum, total non-

chemical energy and the ideal gas law. It is stressed that several variables could describe the energy

conservation of a multi-species flow [28]. Here, the total non-chemical energy is chosen :

E =
∑

k∈ΩG

hs,kYk − (p/ρ) +
1

2
uiuj (2.6)

hs,k is the sensible enthalpy of kth gas-phase species and is related to the mass heat capacity at constant

pressure Cp,k using the following expression :

hs,k =

T∫

T0

Cp,kdT (2.7)

where ΩG = [1, Ng] with Ng referring to the total number of gas-phase species in the mixture. hs,k stands

for the sensible enthalpy of the kth gas-phase species. In Eqs. (2.1-2.5), Vk,i is the ith component of the

diffusion velocity of the kth gas-phase species. It characterizes the molecular transport properties of the

mixture. This aspect will be developed further in this Chapter (Subsection 2.1.2). ω̇k stands for the rate

of production/consumption of the kth species by gas-phase chemical reactions while ω̇T refers to the heat

release or adsorption rate due to gas-phase chemical reactions. Radiative heat transfers are taken into

account in the energy equation. This assumption will be discussed further in this report.

The ideal gas law is used in order to close the system where r refers to the mixture constant defined as :

r =
R

W
(2.8)

where R = 8.314J ·mol−1 ·K−1 stands for the ideal gas constant, and W is the mean molecular wight

of the mixture :

W =
∑

k∈ΩG

XkWk =


∑

k∈ΩG

Yk/Wk




−1

(2.9)
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Xk and Wk respectively refer to the mole fraction and the molecular wight of the kth gas-phase

species. The relation between the mole and mass fractions is reminded :

XkW = YkWk (2.10)

The viscous stress tensor τi,j is given by the following relation :

τi,j =

(
−1

3
µ

)
∂ul
∂xl

δi,j + µ

(
∂uj
∂xi

+
∂ui
∂xj

)
(2.11)

where δi,j is the Kronecker symbol (δi,j = 1 if i = j, else δi,j = 0), µ is the dynamic viscosity (related

to the kinematic viscosity using ν = µ/ρ). Dynamic viscosity is assumed to be independent of the gas

composition so that only temperature dependence is considered through the power law.

The heat flux qi involved in the total non-chemical energy equation E, is given by :

qi = −λ ∂T
∂xi︸ ︷︷ ︸

Fourier term

+ ρ
∑

k∈ΩG

hs,kYkVk,i

︸ ︷︷ ︸
heat diffusion due to molecular multi-species transport

(2.12)

In Eq. (2.12), two terms are involved in the expression of the heat flux: the Fourier flux which is the

temperature diffusion by molecular effect and the multi-species term of molecular diffusion that charac-

terizes the species sensible enthalpy transport by its diffusion velocity. λ stands for the thermal diffusion

coefficient and is determined using :λ = µCp/Pr.

General comment on the multi-species variables

The presented variables expressing the conservation of mass, momentum, energy and heat for multi-

species fluids are subjected to the following constraints :

∑

k∈ΩG

Yk =
∑

k∈ΩG

Xk = 1 (2.13)

∑

k∈ΩG

ω̇k = 0 (2.14)
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∑

k∈ΩG

ρYkVk,i = 0 (2.15)

The above expressions consist in constraints of mass conservation which need to be satisfied in order to

ensure mass conservation during the numerical resolution of the conservation equations.

2.1.2 Modeling the multi-species transport terms

Note: in this Section, a vector notation is used

A proper approach to determine the diffusion velocity Vk,i involved in the L.H.S of Eq. (2.2) would consist

of the inversion of the system of Williams [29]. However, this is a very costly task as the system has to

be solved in each direction and at each instant. The Hirschfelder and Curtiss approximation is thereby

preferred as it provides an explicit expression of the diffusion velocity [30] :

~VkXk = −Dk
~∇Xk (2.16)

where Dk is an equivalent diffusion coefficient. Using the expression of Eq. 2.10, Eq.( 2.16) can be

expressed in terms of mass fraction :

~VkYk = −Dk
Wk

W
~∇Xk (2.17)

As exact expressions of diffusion velocities are not used, the Hirschfelder and Curtiss approximation does

not necessary satisfy mass conservation
∑

k∈ΩG

YkVk,i = 0. To overcome this issue, a correction velocity is

introduced in the expression of the diffusion velocity (Eq.( 2.17)) so that the compatibility of species and

mass conservation equation is ensured :

~Vk = −Dk

~∇Xk

Xk
+ ~V correc (2.18)

The expression of the correction velocity ~V correc is obtained by introducing the expression in Eq.( 2.18)

in the species conservation equation given in Eq.( 2.2) and summing all over the gas-phase species :
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~V correc =
∑

k∈ΩG

Dk
Wk

W
~∇Xk (2.19)

The relation between the mole fraction gradients and their mass fraction counterparts reads :

~∇Xk =
W

Wk

~∇Yk −
W 2

Wk
Yk
∑

l∈ΩG

1

Wl

~∇Yl (2.20)

Eventually, knowing the expression of the correction velocity and the mole fraction gradient expressions

given by Eqs.( 2.19)-(2.20), the diffusive mass flux ~Jk reads :

~Jk = ρ~VkYk = ρ

(
−DkWk

W
~∇Xk + Yk~V

correc

)
(2.21)

Dk is determined using a simple model by introducing the Schmidt Sck numbers which is considered to

be constant in time and space Dk = µ/ρSck.

2.1.3 Gas-phase kinetics equations

A chemical system of Ng species reacting through R gas phase reactions is considered as follows:

∑

k∈ΩG

νfk,rMk ⇋
∑

k∈ΩG

νbk,rMk for r =1,R (2.22)

where Mk is the chemical symbol of the kth species, νfk,r and νbk,r respectively stand for the stoichiometric

coefficients of the kth species in the rth reaction. ω̇k is the mass rate of production or consumption of the

kth species in the rth reaction :

ω̇k =Wk

R∑

r=1

(νbk,r − νfk,r)Qr (2.23)

where Qr is the mole progress rate of the rth reaction given by :

Qr = Cg
M


kfr

∏

k∈ΩG

(Cg
k)

νf
k,r − kbr

∏

k∈ΩG

(Cg
k)

νbk,r


 (2.24)
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where Cg
k = ρYk/Wk is the mole concentration of the kth gas-phase species. Regarding third-body re-

actions1, Cg
M =

∑
k∈ΩG

αk,rC
g
k is the equivalent mole concentration of the third-body M. αk,r is defined

as the efficiency of the kth species in the rth reaction. Cg
M = 1 for reactions that do not involve a third

body. kfr and kbr respectively denote for the forward and reverse rate constants of the rth reaction. The

forward rate constant is modeled using the Arrhenius law as follows:

kfr = ArT
βrexp

(−Ear
RT

)
(2.25)

where Ar is the pre-exponential constant, βr is the temperature exponent and Ear is the activation energy

of the rth reaction. The reverse constant is evaluated using the the equilibrium constant Keq
r , kbr =

kfr /K
eq
r . Keq

r is determined using [31] :

Keq
r =

(patm
RT

) ∑

k∈ΩG

(νbk,r−νf
k,f

)

exp

(
∆Sr

0

R
− ∆Hr

0

RT

)
(2.26)

where patm is the atmospheric pressure, ∆Sr
0 and ∆Hr

0 are the entropy and enthalpy of the rth reaction at

a reference thermodynamic state. The gas phase heat release rate reads :

ω̇T = −
∑

k∈ΩG

△hof,kω̇k (2.27)

where △hof,k is the enthalpy of formation of the kth species.

2.2 Resolution of the transport equations and gas-phase chemistry

2.2.1 General features of the AVBP code

The AVBP code [32] solves the time-dependent compressible Navier-Stokes equations for multi-species

reactive flows in two and three space dimensions. It uses a cell-vertex finite-volume (FV) method for

numerical discretization and it is based on a unstructured and hybrid grid approach.

1Chemical reactions for which the reaction rate depend on the surrounding species in the mixture. The third body M is
involved in both sides of the reaction,i,e. in the reagents and products). It has a kinetic impact but is not chemically involved
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In the case of cell-vertex methods, variables are stored at the cell vertices or grid nodes whereas the control

volume is delimited by the cells of the primal mesh as shown in Figure 2.1. In other words, the grid nodes

do not represent the center of the control volume as for the cell-centered or vertex-centered methods. The

cell-vertex method is attractive as it is compatible with finite-element (FE) type methods which enables a

flexible use of both FV and FE numerical schemes.

FIGURE 2.1: Two-dimensional schematic of a cell-vertex method. The control volume is delimited by the
nodes of the mesh. The fluxes f are integrated along the cell edges (or faces in 3D) delimited by the grid

nodes. This Figure is taken from the Ph.D report of N. Lamarque[7]

Different numerical schemes are available in the AVBP code and the two schemes that were used in the

present thesis are listed as follows :

• Lax-Wendroff (LW) scheme: It is an adapted version of the LW scheme [33–35] to the cell-vertex

method. This numerical scheme is two-order in time and space and centered. The second order is

reached using a single time integration step.

• Galerkin Runge-Kutta scheme : finite element numerical schemes that are more accurate in time and

space as they are of fourth-order. The time integration is performed using a 3-step Runger-Kutta time

stepping.

2.2.2 Numerical resolution of gas-phase chemistry

Gas-phase chemistry is represented by the volumetric source term ω̇k in the R.H.S of Eq. (2.2). The

latter is either integrated directly, i.e. integrated in the same time and with the same method as transport
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terms or solved independently of the diffusive and convective terms according to an operator-splitting

technique [36] as will be explained in Subsection 2.2.2.2. The heat release due to gas-phase reactions

is always taken into account explicitly, i.e. no splitting is performed concerning energy. Only Gas-phase

species source terms are concerned. ω̇T is calculated as shown in Eq. (2.27) once ω̇k is obtained.

2.2.2.1 Explicit direct resolution

The explicit direct resolution means that the volumetric source term ω̇k in the R.H.S of Eq. (2.2) is first

calculated as in Eq. (2.23) at every iteration and added explicitly which means that a temporal integration

is performed including transport process as follows :

ρY n+1
k = ρY n

k + dtmin

[
Rconv

k +Rdiff
k +Rchem

k

]
(2.28)

where dtmin is the minimum time step of the integration, Rconv
k and Rdiff

k are respectively the operators

expressing the rates of change of Yk due to convective and diffusive transport.Rchem
k is the operator giving

the rate of change due to gas-phase chemical reactions. It implies that the inclusion of the gas-phase chem-

ical source term ω̇k is performed at the same time as the diffusive and convective terms. No assumptions

are made regarding the differences between the chemical, diffusive and convective timescales. If the gas-

phase chemical kinetics are stiff , the explicit integration might undergo numerical instabilities especially

if the time step is not small enough. The numerical time step could be decreased but this is likely to yield

undesirable CPU times.

2.2.2.2 Operator-splitting technique

The alternative to the direct integration method is to isolate chemistry resolution and tackle it with a

dedicated solver. In this thesis, the AVBP code was coupled with the kinetic solver CLOE developed and

owned by IFPEN. This approach that consists of separating chemistry from the diffusive and convective

transport processes in Eq. (2.2) is called the Operator-Splitting technique [36]. As a result, the transport

equation for gas-phase species mass fractions Eq. (2.2) can be expressed in the following form :

∀ k ∈ ΩG :
∂ρYk
∂t

= Rchem
k (t) +Rconv

k (t) +Rdiff
k (t) (2.29)

In order to solve Eq.( 2.29), chemical reactions are separated from convective and diffusive transport and

a the integration of chemistry is performed with respect to the steps described in Figure 2.2 :
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• Step 1: the vector ~ψ that includes the gas-phase species and temperature is defined as shown in

Eq. 2.30. The index hom refers to homogeneous which indicates that the variable solely undergoes

chemical reactions independently of transport.

ψi =




ψ1

.

.

.

ψNg

ψNg+1




=




ρY hom
1

.

.

.

ρY hom
Ng

T hom




(2.30)

• Step 2: at each time step and every node of the mesh, the ith component of ψi(t) is sent to the

kinetic solver CLOE to solve the system of Eq. (2.31), where Rchem
i is the ith component of the

chemical operator that includes the chemical source terms:





~ψ =
(
ρY hom

1 , ..., ρY hom
k , ..., ρY hom

Ng
, T hom

)

∂ψi

∂t
= Rchem

i (t) ∀i = [1, .., Ng + 1]
(2.31)

• Step 3: Once the integration over a time step corresponding to dtmin is achieved, the solution

ψi(t+ dtmin) is returned to the CFD code AVBP.

• Step 4: Y hom
k (t+ dtmin) is used to estimate the chemical source term ω̇k of Eq. (2.2) in the fol-

lowing way :

ω̇k =

(
ρY hom

k (t+ dtmin)− ρYk (t)
)

dtmin
(2.32)

• Step 5: finally, Rchem
k is replaced in Eq. (2.29) using the expression of Eq. (2.32). The time integra-

tion over a time step dtmin expressed in Eq. (2.28) becomes :

ρYk (t+ dtmin) = ρY hom
k (t+ dtmin) + (dtmin)

(
Rconv

k +Rdiff
k

)
(2.33)

Note here that the chemical operator Rchem
k does not include any spatial discretization as convective and

diffusive operators would do. In other words, chemistry is a local process for each grid node. As a re-

sult, Eq. (2.31) corresponds to an Nn independent ODE systems comprising Ng +1 unknowns where Nn

is the number of mesh nodes. Figure 2.3 provides a physical view of the operator-splitting technique. It
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(1): ~ψ(t) =
(
ρY hom

1 (t), ..., ρY hom
k (t), ..., ρY hom

Ng
(t), T hom(t)

)

(2): gas-phase kinetic solver Eq. (2.31)

(3): ~ψ(t+ dtmin) =
(
ρY hom

1 (t+ dtmin), ..., ρY
hom
k (t+ dtmin), ..., ρY

hom
Ng

(t+ dtmin)
)

(4): species chemical source term calculation Eq. (2.32)

(5): Time integration including transport process Eq. (2.28)

FIGURE 2.2: Coupling AVBP with the gas-phase kinetic solver CLOE

FIGURE 2.3: Physical view of the operator-splitting method

shows that physically speaking, each computational node of the mesh could be seen as an independent

homogeneous reactor governed by the ODE system of Eq. (2.31). The governing equations of the homo-

geneous reactors depend on the numerical solver used for kinetics resolution.

Different numerical solvers are available in the kinetic solver CLOE :



Chapter II. Gas-phase equations 18

• DDASPK [37]

• DASAC [38]

• LSODAR [39]

• DVODE [40]

• First order Euler method with sub-cycling (adapting time step)

Although the temperature is evaluated by the CFD code by transporting the total non-chemical energy, the

homogeneous reactor ODE includes the temperature equation in order to update the temperature value at

every sub-iteration in the case of implicit solvers such DVODE or DASAC. A proper resolution is thereby

ensured. This results in a system having a size of Ng + 1 :





~ψ =
(
ρY hom

1 , ..., ρY hom
k , ..., ρY hom

Ng
, T hom

)

∂ρY hom
k

∂t
= Rchem

k (t) = ω̇k ∀k ∈ ΩG

∂T hom

∂t
= Rchem

Ng+1(t) = −

∑
k

hkω̇
hom
k

ρcp
∀k ∈ ΩG

(2.34)

where ω̇hom
k is the chemical source term determined by the kinetic solver. Here, the presented energy

equation is enthalpy based as constant pressure assumption is made. If a constant volume equation is

considered, an internal energy based equations is used. These assumptions are made in order to decou-

ple chemical reactions and convection. The exact approach would consist in a generic formulation by

accounting for both pressure and volume variations.

It is stressed that, if the numerical method used by the kinetic solvers does not involve any time sub-

stepping or iterative methods such as for first order Euler explicit method, temperature equation is not

required. Hence the system size can be reduced to Ng instead of Ng + 1 thus becoming.





~ψ =
(
ρY hom

1 , ..., ρY hom
k , ..., ρY hom

Ng

)

∂ρY hom
k

∂t
= Rchem

k (t) = ω̇hom
k ∀k ∈ ΩG

(2.35)
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2.2.3 Limiting the time step by gas-phase chemistry

In order to ensure that the time variations related to all the physical and chemical phenomena involved

are numerically captured, the limitation of the integration time step dtmin by gas-phase reactions might

be required according to the use of the explicit direct integration method (Section 2.2.2.1) or the operator-

splitting technique (Section 2.2.2.2):

• If the explicit direct integration method is used then the time step related to gas-phase chemistry

dtGas
chem is estimated using the chemical source terms as follows:

dtGas
chem = min

[
ρ

ω̇k

]
(2.36)

The overall dtmin over which the integration of the governing equations is performed is determined

as follows:

dtmin = min
[
dtCFL, dt

min
Fo

, dtGas
chem

]
(2.37)

where dtCFL and dtmin
Fo

respectively stand for the acoustic and diffusion time steps.

• If the Operator-splitting technique is used then the limitation of the time step by gas-phase chemistry

is not necessarily required. The integration of gas-phase chemistry could be performed using an im-

plicit method (or explicit with sub-cycling) with an initial time step dtmin = min
[
dtCFL, dt

min
Fo

]

which is used for the integration of transport.

• As the resolution of chemistry has a cost, the resolution of gas-phase chemistry is not strictly re-

quired at every time step weather the operator-splitting technique or the direct integration method

is used. As a matter of fact, if gas-phase chemistry is not limiting and
dtGas

chem

dtmin
> 10 then the reso-

lution of chemistry could be performed every n time steps where n =

[
dtGas

chem

dtmin

]
. The underlying

assumption is that the gas-phase species mass fractions are considered constant for a physical time

that is equal to n× dtmin. It is stressed that this approach might save a considerable CPU time but

is likely to induce numerical instabilities.

2.2.3.1 Verification of the chemistry resolution

In order to verify the inclusion of detailed gas phase chemistry into AVBP using the coupling with the

kinetic solver CLOE, the resulting tool is applied to the simulation of a zero-dimensional heterogeneous
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reactor. It is composed of one computational cell whose boundaries are all set to be adiabatic and free-slip,

resulting in a simple closed volume reactor exclusively exhibiting gas phase reactions, but no molecular or

convective transport. The numerical results are compared with the ones obtained with a reference kinetic

solver SENKIN of the CHEMKIN library [41]. Table 2.1 shows the initial conditions of the homogeneous

reactor computation. The description and the numerical resolution method of the gas-phase chemistry are

presented as well.

Mixture φ p(t=0), T(t=0) Kinetic scheme Integration method
CH4/Air 0.37 1 atm and 1365 K Reduced Aramco Mech 1.3 [42, 43] DVODE [40]

TABLE 2.1: Features of the homogeneous reactor computation. φ stands for the equivalence ratio. P(t=0)
and T(t=0) are the initial pressure and temperature of the reactor.

The considered gas-phase chemistry is representative of the lean combustion of a CH4/Air mixture. The

kinetic mechanism used to describe the gas-phase chemistry is a reduced skeletal version of the Saudi

Aramco mechanism 1.3 (Aramco Mech 1.3) [42] which involves 16 species and includes 39 bidirectional

reactions and 1 unidirectional reaction. The implicit solver DVODE [40] is used for the present compu-

tation. Figure 2.4 shows the resulting time evolution of the species mass fractions and temperature. As

16 species are involved, only two of the major species (CH4, O2) and the hydroxyl radical OH are

shown. Clearly, the time evolutions resulting from the present coupling (AVBP-CLOE) match very well

the CHEMKIN results. This thereby verifies that the coupling with the kinetic solver properly ensures the

resolution of gas-phase chemistry.
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(A) CH4 and O2 mass fractions (B) OH mass fraction

(C) Temperature

FIGURE 2.4: Time evolution of the gas-phase species and temperature. Lines: AVBP-CLOE. Sym-
bols: CHEMKIN



Chapter 3

Accounting for surface kinetics in

computational fluid dynamics

3.1 Formalism of surface reactions

3.1.1 Description of surface reactions and assumptions

This Section aims at illustrating the description of surface reactions occurring at a reactive wall that are

addressed in this thesis. At this purpose, Figures 3.1 to 3.3 provide examples of the interaction between

carbon monoxide CO and Platinum Pt. Figure 3.1 shows an example of a gas-phase carbon monoxide

species noted CO(g) diffusing near a support presenting Pt active site at its surface. As CO(g) diffuses

toward Pt, chemical bonds (represented by the red bond on the right side) are created thus yielding the

formation of a new species noted CO(s) highlighted by the red frame. This illustrates an adsorption

reaction.

Figure 3.2 shows that the CO-adsorbateCO(s) is returned to the gas-phase as the chemical bonds between

CO and Pt are broken. This illustrates a desorption reaction which is the reciprocal of the adsorption re-

action. Also, adsorbate species and active sites might interact as shown in Figure 3.3 where the interaction

between CO(S) and Pt leads to the formation of two type of surface species: C(s) and O(s). Only ad-

sorbate and active sites are involved in these type of reactions. It is stressed that the backward reaction is

possible which consists of the interaction between two surface species: C(s) +O(s) → CO(s) + Pt.

Therefore, the three types of surface reactions that are considered in the present thesis are listed as follows:

22
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FIGURE 3.1: Schematic of the CO adsorption over Pt: CO(g) + Pt→ CO(s)

FIGURE 3.2: Schematic of the CO desorption reaction: CO(s) → CO(g) + Pt

FIGURE 3.3: Interactions involving surface species: CO(s) + Pt→ C(s) +O(s)

• Adsorption reactions involving gas-phase and surface active sites

• Desorption reactions where adsorbed species are returned to the gas-phase

• Surface reactions involving surface species and active sites.

In the present study, surface reactions will be accounted for under the following assumptions:

• Only surface species that stand on the top layer of the reactive support are considered. This means

that the bulk species that lie inside the porous network are not accounted for.
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• The local molecular mass diffusion of surface species is considered to be very fast with respect to

surface reactions so that the surface species concentration can be considered as locally homoge-

neous. This assumption is referred as the mean field approximation [44].

3.1.2 Set of equations of surface kinetics

A surface chemical system of Ng gas-phase species and Ns surface species reacting through Rs surface

reactions is represented as follows :

∑

k∈Ωg

νs,fk,rMk +
∑

k∈Ωs

νs,fk,rTk ⇋
∑

k∈Ωg

νs,bk,rMk +
∑

k∈Ωs

νs,bk,rTk (3.1)

where Ωs = [1, Ns]. Mk and Tk respectively stand for the chemical symbol of the kth gas-phase and

surface species. νs,fk,r and νs,bk,r respectively stand for the stoichiometric coefficients of the kth gas-phase

and surface species involved in the rth surface reaction. ṡk (kg.m−2.s−1) is the mass rate of production

or consumption of the kth gas-species or surface species in the rth surface reaction :

ṡk =Wk

Rs∑

r=1

(νs,bk,r − νs,fk,r )Qs
r (3.2)

where Qs
r is the mole progress rate of the rth surface reaction given by:

Qs
r =


ks,fr


 ∏

k∈ΩG

(Cg
k)

νs,f
k,r




∏

k∈Ωs

(Cs
k)

νs,f
k,r




−


ks,br


 ∏

k∈ΩG

(Cg
k)

νs,b
k,r




∏

k∈Ωs

(Cs
k)

νs,b
k,r




 (3.3)

In Eq. (3.3), both gas-phase species concentrations (Cg
k ) and surface adsorbates or active sites concentra-

tions (Cs
k) are involved. Whereas Cg

k is in mol.m−3, Cs
k = Γθk/W

s
k is the surface mole concentration of

the kth surface species whose units are in mol.m−2. The different variables involved in the definition of

Cs
k are explained as follows:

• W s
k is the molecular weight of the kth surface species or active site.
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FIGURE 3.4: Illustration of the site density of a Pt active site

FIGURE 3.5: Illustration of an adsorbate site fraction

• Figure 3.4 shows an example of a support over which active sites of platinum Pt are laid. The site

density Γ (mol ·m−2) refers to the number of moles of active sites per surface unit of the support. In

this thesis, Γ is supposed to remain constant.

• θk is the site fraction which represents the mole ratio between the kth surface species and the

total number of adsorbates and void active sites. Figure 3.5 shows an example of a support over

which different adsorbates (O(Pt), C(PT ) and H(Pt)) and void active sites (Pt) are laid. The

site fraction of the adsorbate O(Pt) referred as θO is the ratio between the number of moles of the

adsorbate O(Pt) highlighted by the red box and the total number of moles of the adsorbates and Pt

void site highlighted by the black box.

• ks,fr and ks,br respectively denote for the forward and reverse rate constants of the rth surface reac-

tion. The forward rate constant is modeled using the Arrhenius law as follows:

ks,fr = As,cov
r T βs

r
w exp

(−Eas,covr

RTw

)
(3.4)

where Tw is the reactive wall temperature and βsr is the wall temperature exponent. As,cov
r and

Es,cov
r are respectively the coverage dependent pre-exponential factor and activation energy of the

rth surface reaction that can be written as follows:

ln(As,cov
r ) = ln(As

r) +
∑

k∈Ωs

ηk,rθk (3.5)
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and

Eas,covr = Easr +
∑

k∈Ωs

εk,rθk (3.6)

where As
r and Easr are the pre-exponential and activation energy at zero coverage. ηk,r and εk,r

are kinetic coefficients accounting for the coverage of the surface. ks,br is determined using the

equilibrium constant Ks,eq
r = ks,br /ks,fr .

Assuming the adsorption to be activated, the parameters βsr , Es,cov
r and As,cov

r become [44–46] :

βsr =
1

2
, Es,cov

r = 0, As,cov
r =

( γr
Γm

)√ R

2πW s
ads

(3.7)

where γr is the sticking factor of the adsorption reaction, σk is the number of sites that each adsorbed

species occupies, m corresponds to the number of surface species involved in the surface reaction

and W s
ads is the molecular weight of the gas-phase adsorbed species.

With respect to the assumptions made in this study, the evolution equation describing the variation of the

surface species site fraction is shown in Eq. 3.8 [22] :

∂θk
∂t

=
ṡk
ΓWk

∀ k ∈ Ωs (3.8)

3.2 Derivation of the boundary conditions for momentum, species and en-

ergy

In this Section, the approach resulting in the mass and energy balance at the reactive interface is de-

tailed. The expressions of the momentum, mass and energy wall fluxes are then derived from the interface

balances. The mass balance allows to obtain the expression of the Stefan velocity and the gas-phase species

normal gradients accounting for surface reactions whereas the energy balance gives the normal heat flux

at the reactive boundary. Flux balances at the reactive interface are obtained by integrating the transport

equations over the control volume sketched in Figure. 3.6:

g is the index standing for gas-phase scalars whereas s stands for solid-phase scalars. w is the index

standing for variables at the wall, ~ng is the vector normal to the interface and directed toward the gas-

phase, ~ns is vector normal to the interface and directed toward the solid, S is the elementary reactive
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FIGURE 3.6: sketch of the control volume at the reactive interface

surface which refers to the interface, V refers to the control volume and Σ stands for the surface envelope

of the control volume.

3.2.1 Mass balance

The balance is obtained as follows : The species conservation Eq. (2.2) is integrated over the control

volume V [31, 44]

∫

V

(
∂ρYk
∂t

+∇ · (ρ~uYk)
)
dV =

∫

V

(
−∇ ·

(
ρ ~VkYk

)
+ ω̇k

)
dV (3.9)

Applying the Green-Ostrogradski theorem one obtains:

∫

V

(
∂ρYk
∂t

)
dV +

∫

V

−ω̇kdV =

∫

Σ

(
−
(
ρ ~VkYk

)
· ~n
)
dΣ +

∫

Σ

− (ρYk~u · ~n) dΣ (3.10)

Eq. (3.10) represents the integral form of the transport equation given in Eq. (2.2). If the volume tends

to zero (V → 0), the control volume surface Σ tends to the reactive interface S (Σ → S) [31]. As the

volume tends to zero, no mass accumulation occurs. The first term of Eq. (3.10) becomes :

lim
V→0

∫

V

(
∂ρYk
∂t

)
dV = 0 (3.11)

The gas-phase production rates is decomposed into two terms, the first is non-zero in the gas-phase and

null at the wall whereas the second one equals zero in the gas-phase and non-zero at the interface:
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ω̇k = ω̇′
k + ṡkδ (y) (3.12)

where ω̇′
k and ṡk respectively represent the gas-phase and surface rate of production of the kth species per

unit area and :

∫ +∞

−∞
δ (y) dy = 1 (3.13)

As the volume tends to zero, one can write :

lim
V→0

∫

V

ω̇′
kdV = 0 (3.14)

According to the Dirac function definitions above :

lim
V→0

∫

V

ω̇kdV =

∫

S

ṡkdS (3.15)

Eventually, the volume integral of the L.H.S in Eq. (3.10) becomes :

lim
V→0



∫

V

(
∂ρYk
∂t

)
dV +

∫

V

−ω̇kdV


 = −

∫

S

ṡkdS (3.16)

As convection and diffusion are not present in the solid wall and the boundary of the control volume is

static
(
~Jk

s
= ~us = ~0

)
, one obtains :

lim
Σ→S



∫

Σ

(
−
(
ρ~VkYk

)
· ~n
)
dΣ +

∫

Σ

(ρYk (−~u) · ~n) dΣ


 =

∫

S

(
−
(
ρgw~V

g
k,wYk,w

)
· ~ng
)
dS

+

∫

S

(ρgwYk,w (−~ug) · ~ng) dS
(3.17)

As a result, Eqs.(3.16, 3.17) give :
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−
∫

S

ṡkdS

︸ ︷︷ ︸
rate of production by surface reaction

= −
∫

S

(
ρgw~V

g
k,wYk,w

)
· ~ngdS

︸ ︷︷ ︸
Mass flux diffusion

+

∫

S

ρgwYk,w (−~ug · ~ng) dS

︸ ︷︷ ︸
Mass flux convection

(3.18)

Where :




~V g
k,w · ~ng = Vk,n,w

~u · ~ng = UStefan

(3.19)

The mass balance at the reactive interface (Eq. (3.18)) reads then :

(ρwVk,n,wYk,w) + (ρwUStefanYk,w) = ṡk (3.20)

It is stressed that Eq. (3.20) is consistent with the mass balance near a reactive wall in [17, 25, 44, 47]. Sum-

ming Eq. (3.20) over all the gas-phase species and considering the mass conservation, an expression for

the wall-normal Stefan velocity is obtained:

UStefan =
1

ρw


∑

k∈ΩG

ṡk


 (3.21)

Here, the expression of the prescribed normal gradient of the gas-phase species is derived. First, let us first

consider the mass balance at the interface given by Eq. (3.20) :

(ρwVk,n,wYk,w) + (ρwUStefanYk,w) = ṡk (3.22)

By isolating the species diffusion flux, one obtains :

(ρwVk,n,wYk,w) = ṡk − (ρwUStefanYk,w) (3.23)

The species mass flux is written as in Eq. (2.21) according to the Hirschfelder & Curtiss approximation :

Jk,i = ρVk,iYk = ρ

(
−DkWk

W

∂Xk

∂xi
+ YkV

correc
i

)
(3.24)
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By multiplying Eq. (3.24) by the interface normal ~ng, one obtains :

~Jk,w · ~ng = ρw~Vk,w · ~ngYk,w = −ρw
(
−DkWk

Ww

~∇Xk,w · ~ng − Yk,w~V
correc
w · ~ng

)
(3.25)

with ~V correc
w · ~ng and ~∇Xk,w · ~ng corresponding respectively to the wall-orthogonal correction velocity

and species molar fractions expressed as in Eqs. (3.26, 3.27) :

~V correc
w · ~ng =

∑

k∈ΩG

Dk
Wk

Ww

~∇Xk,w · ~ng (3.26)

~∇Xk,w · ~ng =
Ww

Wk

~∇Yk,w · ~ng − W 2
w

Wk
Yk,w

∑

l∈ΩG

1

Wl

~∇Yl,w · ~ng (3.27)

Making use of Eq. (3.27) and inserting Eqs. (3.21, 3.26, 3.25) into the mass balance at the interface given

by Eq. (3.23), it becomes possible to relate the species mass fraction at the wall Yk,w to its normal gradient

at the boundary surface by isolating the latter [24, 25]:

~∇Y BC
k,w · ~ng =

Yk,w
Dkρw

∑

l∈ΩG

ṡl +
Yk,w
Dk

~V correc
w · ~ng + Yk,wWw


 ∑

l∈Ωgas

1

Wl

~∇Yk,w · ~ng

− ṡk

ρwDk
(3.28)

3.2.2 Energy balance

An energy balance at the reactive interface is now derived in order to prescribe the proper temperature gra-

dient at the wall in the presence of surface reactions. In order to properly represent the interplay between

surface reactions and gas-phase temperature, a specific boundary condition is derived from the energy

balance at the reactive interface. A similar approach as the one used for the mass balance is applied to the

total non-chemical energy given in Eq. (2.4) :

∂ρE

∂t
+∇ · (ρE~u) = ω̇T +∇ · (−~q + ¯̄σ~u) (3.29)

By integrating over the control volume, one obtains :
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∫

V

(
∂ρE

∂t
+∇ · (ρ~uE)

)
dV =

∫

V

(∇ · (¯̄σ~u− ~q) + ω̇T ) dV (3.30)

By Applying the Green-Ostrogradski theorem, Eq. (3.30) becomes:

∫

V

(
∂ρE

∂t

)
dV +

∫

V

−ω̇TdV =

∫

Σ

((¯̄σ~u− ~q) · ~n) dΣ +

∫

Σ

(−ρE~u · ~n) dΣ (3.31)

Eq. (3.31) represents the integral form of the transport equation given in Eq. (2.4). If the volume tends to

zero (V → 0), the control volume surface Σ tends to the reactive interface S (Σ → S) [31]. Eq. (3.31)

becomes :

lim
V→0



∫

V

∂ρE

∂t
dV +

∫

V

−ω̇TdV


 = lim

Σ→S



∫

Σ

((¯̄σ~u− ~q) · ~n) dΣ +

∫

Σ

(−ρE~u · ~n) dΣ


 (3.32)

As the volume tends to zero, energy accumulation does not occur. Hence, the first term of Eq. (3.32)

becomes :

lim
V→0

∫

V

(
∂ρE

∂t

)
dV = 0 (3.33)

The gas-phase heat release can be decomposed into two terms as in Eq. (3.12):

ω̇T = ω̇′
T + ṠT δ (y) (3.34)

When the volume tends to zero, one can write :

lim
V→0

∫

V

ω̇′
TdV = 0 (3.35)

The volume integral of ω̇T becomes :
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lim
V→0



∫

V

−ω̇TdV


 = −

∫

S

ṠTdS (3.36)

Eventually, the volume integral of the left hand-side in Eq. (3.31) becomes :

lim
V→0



∫

V

(
∂ρE

∂t

)
dV +

∫

V

−ω̇TdV


 = −

∫

S

ṠTdS (3.37)

Considering only thermal diffusion in the solid wall:

lim
Σ→S



∫

Σ

((¯̄σ~u− ~q) · ~n) dΣ +

∫

Σ

(ρE (−~u) · ~n) dΣ


 =

∫

S

((¯̄σgw~u
g
w − ~qgw) · ~ng) dS

+

∫

S

(ρgwE
g
w (−~ugw) · ~ng) dS

+

∫

S

((−~qsw) · ~ns) dS

(3.38)

As a result, Eqs.(3.37,3.38) give :

−
∫

S

ṠTdS

︸ ︷︷ ︸
heat release due to surface reactions

=

∫

S

(¯̄σgw~u
g
w) · ~ngdS

︸ ︷︷ ︸
stress heat

−
∫

S

(~qgw) · ~ngdS

︸ ︷︷ ︸
heat flux diffusion

+

∫

S

ρgwEw

(
−~ugw · ~ng

)
dS

︸ ︷︷ ︸
total non-chemical energy convection

+

∫

S

(~qsw) · ~ngdS

︸ ︷︷ ︸
heat diffusion in solid wall

(3.39)

With the following notations :





(¯̄σgw~u
g
w − ~qgw) · ~ng = (¯̄σg · ~ug)n,w − qgn,w

~uw · ~ng = UStefan

(−~qsw) · ~ng = qsn,w

(3.40)

The heat balance at the reactive interface becomes :



Chapter III. Surface kinetics 33

− ṠT = (¯̄σg · ~ug)n,w − qgn,w − ρgwEwUStefan + qsn,w (3.41)

Diffusion of gas-phase species in the solid wall is neglected and the surface heat release is considered to

result from both gas-phase and surface species. These assumptions result in the following expressions:





qsn,w = −λs~∇T s
w · ~ng

ṠT = −


∑

k∈ΩS

hkṡk +
∑

k∈ΩG

△hof,kṡk




(3.42)

By introducing the terms above into Eq. (3.41), and replacing E by its expression one obtains :

(
λg ~∇T g

w − λs~∇T s
w

)
· ~ng =+

∑

k∈ΩG

(ρw (hs,k,wVk,n,wYk,w) + ρwUStefan (hs,k,wYk,w))

+


∑

k∈ΩS

hk,wṡk +
∑

k∈ΩG

△hof ṡk




−
((

¯̄σg ~ug
)
n,w

+ pUStefan

)

+
ṁ

2

∑

j∈D

u2j,w

(3.43)

The first term in the R.H.S of Equation Eq. (3.43) can be simplified by considering the mass balance at

the interface given in Eq. (3.20). Indeed, if Eq. (3.20) is multiplied by the species sensible enthalpy hs,k

and sums all over the gas-phase species, the resulting balance becomes :

∑

k∈ΩG

(ρw (hs,k,wVk,n,wYk,w) + ρwUStefan (hs,k,wYk,w)) =
∑

k∈ΩG

hs,k,wṡk (3.44)

As a result, the first and second terms in the R.H.S of equation Eq. (3.43) are simplified as follows :

∑

k∈ΩG

(ρw (hs,k,wVk,n,wYk,w) + ρwUStefan (hs,k,wYk,w)) +


∑

k∈ΩS

hk,wṡk +
∑

k∈ΩG

△hof ṡk




=
∑

k∈{ΩG∪ΩS}

hk,wṡk

(3.45)
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and the third term becomes :

(
(¯̄σg~ug)n,w + pUStefan

)
=
(
(¯̄σg~ug)n,w + p~ug · ~ng

)
= (¯̄τ g~ug)n,w (3.46)

Finally, injecting Eqs. (3.45, 3.46) into Eq. (3.43) and isolating the gas-phase wall-normal thermal diffu-

sion flux yields :

λg ~∇T g
w · ~ng =

∑

k∈{ΩG∪ΩS}

hk,wṡk − (¯̄τ g~ug)n,w +
ṁ

2

∑

j∈D

u2j,w + λs~∇T s
w · ~ng (3.47)

Eq. (3.47) corresponds to the heat flux balance that accounts for the effect of surface chemistry. The

balance enables to prescribe the proper heat flux at the boundary ~qw
BC · ~ng by isolating in Eq. (3.47) the

heat flux qj given in Eq. (2.12). Under the Hirschfelder & Curtiss approximation ~qw
BC · ~ng reads :

~qBC
w · ~ng = −

∑

k∈ΩS

hkṡk

︸ ︷︷ ︸
Surface heat release due to surface species

−
∑

k∈ΩG

△hof ṡk
︸ ︷︷ ︸

surface heat release due to gas-phase species

− ρw
∑

k∈ΩG

UStefanhs,k,wYk,w

︸ ︷︷ ︸
sensible enthalpy transport by Stefan flux

− ṁ

2

∑

j∈D

u2j,w

︸ ︷︷ ︸
Kinetic energy

+
(
¯̄τ g ~ug

)
n,w︸ ︷︷ ︸

viscous heat

− λs~∇T s
w · ~ng︸ ︷︷ ︸

heat conduction in solid wall

(3.48)

It is stressed that a special attention was given to the derivation to obtain a generic formulation that would

allow the simulation of adiabatic and chemically inert walls is surface reaction rates tend to zero and if the

heat conduction in the solid is neglected.

3.3 Numerical aspects

3.3.1 General approach

Accounting for surface reactions consists in describing the temporal evolution of the chemical activity at

the surface by the resolution of surface kinetics on the hand, and characterizing the interplay between the

gas-phase and surface reactions on the other hand. In this Section, the overall corresponding approach

is described. It is performed with respect to the steps depicted in Figure 3.7. The inclusion of chemical
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kinetics into the AVBP CFD code is addressed by introducing into the kinetic solver CLOE which is

initially dedicated to the resolution of gas-phase kinetic schemes. For the purpose of addressing the

heterogeneous chemistry found in catalytic converters, the kinetic solver was adapted during this thesis

to allow accounting for surface chemistry via the introduction of the required set of equations and their

resolution, as will be detailed in Subsection 3.3.3.

• STEP 1: First, the vector ~Π that includes the gas-phase species mass fractions at the wall

(Y hom
k,w ), surface site fractions (θk) and wall temperature (T hom

w ) is defined as shown in Eq. 3.49. The

index hom refers to the fact that the variable solely undergoes chemical reactions independently of

transport.

Πi =




Π1

.

.

ΠNg

ΠNg+1

.

.

ΠNg+Ns

ΠNg+Ns+1




=




ρY hom
1,w

.

.

ρY hom
w,Ng

θ1

.

.

θNs

T hom
w




(3.49)

• Step 2: at each time step and every node of the wall, the ith component of Πi(t) is sent to the kinetic

solver CLOE to solve the surface reaction kinetics (Step 2a). In the meanwhile, the surface reaction

rates (ṡk∈Ωs) are calculated in order to define the boundary conditions applied to the reactive wall

(Step 2b).

• Step 3: The integration over a time step corresponding to dtmin is performed. Only the updated

values of the site fraction are returned to the CFD code. The update of the mass fractions and the

temperature is carried out by the CFD code. Nevertheless, the kinetic solver requires the values of

the wall temperature and mass fractions in order to ensure a proper integration as will be shown in

the next Subsection.

In what follows,the method ensuring the prescription of the proper boundary conditions accounting for

surface reactions is presented at first. Second, the resolution of surface kinetics is dealt with.
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(1): ~Π(t) =
(
ρY hom

k,w (t), θk(t), T
w,hom(t)

)

(2a): Surface
kinetic solver

(2b): Definition
of the fluxes at

the reactive wall
Eqs. (3.28,3.21,3.48)

(3): ~Π(t+ dtmin) = θk(t+ dtmin)

FIGURE 3.7: Coupling AVBP with the surface kinetics solver and boundary flux correction

3.3.2 Numerical implementation of the boundary conditions

A Dirichlet condition is applied to the velocity vector at the wall in order to impose the Stefan velocity as

shown in Eq. (3.50).

~ucorw = UStefan~n (3.50)

where ~n is the normal vector to the reactive wall, ~ucorw is the corrected velocity at the wall. The normal

gas-phase species mass fraction gradients and the heat flux are numerically imposed at the reactive surface

as shown in Eqs. (3.51, 3.52). First, the numerical scheme predicts the gradient of the kth species mass

fraction ~∇Y p
k,w and the heat flux ~qpw at the reactive wall. These gradients are then modified by imposing

the prescribed normal gradients and the normal heat flux ~∇Y BC
k,w · ~n and ~qBC

w · ~n respectively obtained

from the mass and energy balance at the reactive interface given in Eqs. (3.22, 3.47).

~∇Y cor
k,w = ~∇Y p

k,w +
(
~∇Y BC

k,w · ~n− ~∇Y p
k,w · ~n

)
~n (3.51)

~qcorw = ~qpw +
(
~qBC
w · ~n− ~qpw · ~n

)
~n (3.52)

where ~∇Y cor
k,w and ~qcorw are the corrected species mass fraction gradient and heat flux, ~∇Y p

k,w · ~n and

~qpw · ~n correspond to the normal component of the kth species mass fraction and the heat flux predicted by

the numerical scheme.



Chapter III. Surface kinetics 37

FIGURE 3.8: Physical view of the surface kinetics numerical resolution

3.3.3 Resolution of the surface kinetics

Figure 3.8 shows a physical view of the resolution of the surface kinetics. Physically speaking, each

computational node of the wall mesh could be seen as an independent homogeneous reactor where gas-

phase and surface species are involved in a set of surface reactions. In other words, surface chemistry

is a local process separate for each reactive wall node and refers to an Nnw independent ODE systems

comprising Ng +Ns + 1 unknowns where Nnw is the number of mesh nodes at the reactive wall.

The general form of the ODE system that is solved at the reactive wall nodes is written as follows:





~Π =
(
ρY hom

k,w , θk, T
hom
w

)

∂Πk

∂t
= Rs,chem

k (t) ∀k = [1, .., Ns +Ng + 1]
(3.53)

where Rs,chem
k is the chemical operator expressing the rate of change due to surface reactions. In addi-

tion to surface sites θk, the surface reaction rates depend on the temperature and gas-phase species as

well. The temporal variation of T and Yk,w is required in the system in order to update their value at

every sub-iteration in the case of implicit solvers such DVODE or DASAC. A proper resolution is thereby

ensured. This results in a system having a size of Ng + 1 :
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~Π =
(
ρY hom

k,w , θk, T
hom
w

)

∂θk
∂t

= Rs,chem
k (t) =

ṡhomk

ΓWk
∀k ∈ ΩS

∂ρY hom
k,w

∂t
= Rs,chem

k (t) =

(
A

V

)

w

ṡhomk ∀k ∈ ΩG

∂T hom
w

∂t
= Rs,chem

Ng+Ns+1(t) = −
(

1

cp,w

)



∑
k∈ΩG

hk,w

(
A

V

)

w

ṡhomk

ρ
+

∑
k∈ΩS

hk,wṡ
hom
k

ΓWk




(3.54)

where (A/V )w stands for the local surface to volume ratio. hk,w is the total enthalpy at the wall expressed

as follows:

hk,w = hs,k,w +
∑

k∈[ΩG∩ΩS ]

△hof,kṡk (3.55)

If the reactive wall is supposed iso-thermal, the temperature does not need to be included thus making

the system size equal to Ng + Ns rather than Ng + Ns + 1. If the numerical method used by the kinetic

solver does not involve any time sub-stepping or iterative methods such a first order Euler method, the

temperature and species equations are no longer required. Hence the system size can be reduced to Ns

instead of Ns +Ng + 1 thus becoming :





~Π = (θ1, ..., θk, .., θNs)

∂θk
∂t

= Rs,chem
k (t) =

ṡhomk

ΓWk
∀k ∈ ΩS

(3.56)

3.3.4 Limiting the time step by surface chemistry

In order to numerically capture the time variations related to surface reactions, the limitation of the in-

tegration time step dtmin by surface reactions might also required. The surface chemistry time step is

therefore estimated using both gas-phase species and surface reaction rates ṡk. The following definitions

are local as the time steps are determined at each node of the reactive wall:
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dtsurface,gchem =
ΓWk

ṡk
∀k ∈ ΩG

dtsurface,schem =
ΓWk

ṡk
∀k ∈ ΩS

dtsurfacechem = min
[
dtsurface,gchem , dtsurface,schem

]
(3.57)

where dtsurface,schem and dtsurface,gchem respectively refer to the characteristic time of consumption/production of

surface coverages and gas-phase species through surface reactions. dtsurfacechem is their minimum. The overall

dtmin over which the integration of the governing equations is performed, is determined as follows:

dtmin = min
[
dtCFL, dt

min
Fo

, dtsurfacechem

]
(3.58)

According to the estimation of dtsurfacechem the following remarks should be taken into account:

• If surface chemistry is limiting and dtsurfacechem is found too small resulting in a heavy computational

time then the resolution of surface chemistry should be carried out using an implicit method (or

explicit with sub-cycling) with an initial time step dtmin = min
[
dtCFL, dt

min
Fo

]
which is used for

the integration of transport as well.

• If surface chemistry is not limiting and
dtsurfacechem

dtmin
> 10 then the resolution of surface chemistry

could be performed every n time steps where n =

[
dtsurfacechem

dtmin

]
. The underlying assumption is that

the variations of gas-phase species and surface coverages due to surface reactions are not consid-

ered for a physical time that is equal to n × dtmin. It is stressed that this approach might save a

considerable CPU time but is likely to induce numerical instabilities.

3.4 Verification of the resolution of surface kinetics

In order to verify the inclusion of detailed gas phase and surface chemistry into AVBP, the coupling with

the kinetic solver CLOE is applied to the simulation of a zero-dimensional heterogeneous reactor. It

is composed of one computational cell whose boundaries are all set to be reactive walls, resulting in a

simple closed volume reactor exhibiting gas phase and surface reactions, but no molecular or convective

transport. The numerical results are compared with the ones obtained with a reference kinetic solver

SENKIN of the CHEMKIN library [41]. Table 3.1 shows the initial conditions of the constant volume
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reactor computations. The description and the numerical resolution method of the gas-phase chemistry

are presented as well.

Mixture φ θO(s)(t = 0) p(t=0), T(t=0) Kinetic scheme Integration method
CH4/Air 0.37 1.0 1 atm and 1365 K Reduced Aramco Mech 1.3 [42] DVODE [40]

TABLE 3.1: Features of the homogeneous reactor computation. φ stands for the equivalence ra-
tio. θO(s)(t = 0), P(t=0) and T(t=0) are the initial O(s) site fraction, pressure and temperature of the

reactor.

The considered chemistry is representative of the lean catalytic combustion of a CH4/Air mixture over

Platinum Pt. O(s) refers to the site fraction of the oxygen atom adsorbed over a Pt active site. θO(s)(t =

0) = 1 means that the reactive surface is initially fully covered by oxygen atoms. The kinetic mechanism

used to describe the gas-phase chemistry is similar to the one described in the previous Chapter. The ki-

netics of surface reactions are described using the mechanism of Deutschmann et al. [22, 48]. It uses 21

bidirectional and 3 unidirectional reactions with 7 gas-phase and 10 surface species involved. The implicit

solver DVODE [40] is used for the resolution of both gas-phase and surface kinetics. Figure 3.9 shows

the resulting time evolution of the gas-phase species mass fractions (CH4, O2 and OH), O(s) site frac-

tion θO(s) and temperature.

Notably, the time evolutions resulting from the present coupling (AVBP-CLOE) match very well the

CHEMKIN results. This thereby verifies that the coupling with the kinetic solver properly ensures the

resolution of surface chemistry and their kinetic interplay with the gas-phase.

In order to render the fact that surface reactions are exothermic under the present conditions, Figure 3.10

compares the gas-phase heat release per surface unit (A/V )×Ω̇T with the heat release due to surface reac-

tions ṠT resulting fro the AVBP-CLOE computation (Similar lines were obtained with CHEMKIN). The

level of ṠT is clearly not negligible compared to its gas-phase counterpart. This proves the ability of the

boundary condition derived in Section 3.2 to properly predict the temperature by taking into account the

heat release rate through surface reactions.
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(A) CH4 and O2 mass fractions (B) OH mass fraction

(C) O(s) site fraction (D) Temperature

FIGURE 3.9: Time evolution of the gas-phase species, O(s) site fraction and temperature. Lines: AVBP-
CLOE. Symbols: CHEMKIN
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FIGURE 3.10: Comparison of the gas-phase and surface chemical heat release



Chapter 4

1D simulation: Ignition of a

CO2/O2 quiescent mixture through

gasification and oxidation of a

carbonaceous surface

Note: This Chapter is a 1D application example that corresponds to the results of our published article in

the International Journal of Heat and Mass transfer (IJHMT) [26]

introduction

Oxidation of carbonaceous surfaces is of major interest since it is involved in a wide range of energy

production applications related to coal and biomass combustion and are of importance from the point of

view of safety and environment [49]. For instance, oxy-fuel combustion is an efficient and cost-effective

technology for the reduction of CO2 emission from solid carbon based fuel fired furnaces such as coal

char. To control operating temperatures, flue gas is typically recycled into the combustion chamber, form-

ing O2/CO2 atmosphere. Solid carbon ignition in such an atmosphere represents an issue not only for

combustion technology but also for safety [50]. Several numerical and analytical studies [51–54] have

focused on the prediction of possible gas-phase ignition occurring in the vicinity of the reactive parti-

cles. The induced heat release may ruin the operating systems and provoke safety hazards.

43
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Despite the lower oxygen diffusivity in CO2 and the endothermicity of CO2 gasification (Reduction of

carbon conversion into carbon monoxide), the latter can actually lead to the enhancement of the overall

carbon burning rate in oxy-fuel combustion [55, 56]. Under steady-state conditions the effect of CO2

gasification on carbon conversion rate has been found to depend onO2 concentration [57]. The interaction

between CO2 gasification and oxidation have been extensively studied [58, 59] especially at high pressure

and high temperature [60] but remains poorly understood.

In O2-enriched conditions, gasification can contribute significantly to carbon consumption [61]. Although

the sequential occurrence [62] or respective importance [63] of homogeneous and heterogeneous ignition

mechanisms have been evidenced experimentally, no detailed modeling work focused specifically, to our

knowledge, on the interplay between CO production and consumption pathways under vitiated oxy-fuel

combustion. The contribution of heterogeneous and homogeneous reactions to carbon ignition is known

to depend on the gas-phase composition [60] as well as on carbon particle size [64] and surface tempera-

ture [65, 66]. Makino et al. [51] studied the temporal evolution of oxidation and gasification contributions

using global kinetics and transport and formulated a criterion for the existence of a CO flame. Zou et

al [67] addressed the homogeneous and heterogeneous ignition processes of pulverized coal in oxy-fuel

combustion using an Eulerian-Lagrangian approach with devolatilization kinetic sub-models. The impact

of volatiles combustion processes, ambient gas temperatures, coal particle size and O2 concentrations

on the ignition type were assessed. It was concluded that heterogeneous ignition is more likely to occur

for small coal particles and high O2 concentrations whereas homogeneous ignition launched by initial

volatiles ignition is more likely to occur for large particles.

Many research groups still use simplified film models based on averaged diffusivity and global kinetics

and neglect CO gas-phase conversion in the boundary layer. However, the predictability of simplified film

models need to be further improved [68, 69]. Lewtak et al. [70] showed that the use of an equimolar

counterdiffusion model overpredict the mass transfer towards the particle. A recent review [60] stressed

the need to account for multi-species diffusion effect in carbon oxy-fuel combustion. The sensitivity of

carbon consumption to Stefan flow was shown to depend on the relative contributions of gasification

and oxidation reactions. Stefan velocity can reach significant values when the surface coverages undergo

drastic change during transient processes [22] which may give rise to gas-phase ignition [17]. Thus it is

important to take into account this additional velocity induced by reactive walls.

Theoretical studies have been carried out using global chemistry, highlighting the differences between

transient and steady-state behavior [71], the impact of the relative importance of surface reactions on the

shape of burning rate curve and the respective importance of homogeneous/heterogeneous chemistry and

transport phenomena on particle ignition [52–54].
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The aforementioned works reveal that transient homogeneous/heterogeneous carbon combustion data ac-

counting for multi-species diffusion, surface and gas-phase micro-kinetics with proper species and energy

boundary conditions taking into account the Stefan flux remain scarce. Hence, a one-dimensional tran-

sient heterogeneous case which consists of a quiescent CO2/O2 mixture initiated next to a carbonaceous

reactive wall is performed in order to illustrate the interaction between molecular gas-phase diffusion and

surface reactions. It consists of a quiescent CO2/O2 mixture initiated next to a carbonaceous reactive

wall.

The structure of the present Chapter is as follows:

• First of all, an analytical solution is derived for a flow bounded by two reactive surfaces in Sec-

tion 4.1. Analytical solutions are then compared with numerical numerical findings in order to vali-

date the boundary conditions for mass and momentum.

• The numerical setup and modeling assumptions of the 1D application are described in Section 4.2.

• The transient dynamic of heterogeneous chemistry is analyzed in Section 4.3.

• Section 4.4 is dedicated to the assessment of the diffusion modeling.

• A parametric variation is carried out in Section 4.5 in order to evaluate the impact of the initial

O2/CO2 ratio on the interplay between the gas-phase and surface chemistry.

• Finally, the convergence of the grid resolution is verified in Section 4.6.

4.1 Analytical solution for wall-bounded flow with carbonaceous wall gasi-

fication

Note: The analytical solution presented in the present Section is already reported by Cabrit et al. [24]. A

special acknowledgment is also given to Moula et al. [72]. This Section was part of article published in

the present thesis [26].

In this section the purpose is to derive an original analytical solution to validate the numerical species

boundary condition for the heterogeneous surface reactions with frozen gas-phase. This solution can be

used to understand the physics and easily analyze the influence of some physical parameters onto the

studied phenomena. Moreover, analytical solutions are of wide interest for experimentalists or computa-

tional fluid dynamics users to validate their experimental/numerical procedure. Only the global approach
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is described and the final solution is given. The complete development is provided as a supplementary

material in Appendix C. It is sometimes possible to find the analytical solution of the system of partial

differential equations that governs the physics of simple two-dimensional laminar flows. An example is

the Poiseuille flow configuration which allows to give the analytical velocity/temperature profiles under

the assumption of streamwise-developed steady flow [73]. Introducing the transpiring surface effects,

Koh and Hartnett [74] have shown that the analytical solution can also be recovered for flow over per-

meable wedges. Hamza [21] also presented the solution of channel flow with transpiring and moving

walls for biomechanics-fluid interest. Concerning reacting wall effects, Rosner [75] introduced a set of

solutions for surface catalyzed problems. Duan and Martı́n [76] also mase use of an analytical solution

for a diffusion-tube sidearm reactor in order to validate their numerical simulation of airflow over purely

catalytic wall. To our knowledge, surface ablation has received little attention in the literature. Libby &

Blake [61] developed an analytical solution for ablation but their case of study was purely diffusive. A

special attention is given to the configuration set-up which allows to seek a steady-state solution. The

idea consists in considering a channel problem of which the lower surface undergoes gaseous species

production and solid carbon recession whereas the upper one encounters carbon deposition. Within this

framework, the velocity and molar fraction profiles are derived and discussed. Global surface reactions

and kinetic models are used, the purpose in this section being to seek numerical validation and not ki-

netic accuracy. The surface consumption has an effect on the flow since the products of the heterogeneous

reactions include atoms that were originally embedded in the wall lattice. As a consequence, the surface

geometry is changed according to the reaction rates at the surface. This feature makes the derivation of

the solution more challenging, especially when a steady-state solution is sought for. As presented here-

after, the configuration set-up has to be properly thought to handle this undesirable effect. To simplify the

derivation, one seeks for a solution that satisfies the following assumptions:

• two-dimensional laminar flow,

• steady state,

• channel flow developed in streamwise direction (periodic boundary conditions),

• non-reacting binary mixture (frozen state),

• constant Schmidt numbers,

• pure gasification (no pyrolysis or sublimation of the wall material),

• isothermal gasified surface with finite reaction rates,

• constant pressure and temperature.
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In such a configuration, a special attention must be given to the chemical scheme retained for the heteroge-

neous surface reactions. Indeed, if the same scheme is applied to the two surfaces, this leads to a flow that

similarly behaves at the wall surfaces. This means that the two convective wall normal velocity vectors

induced by surface gasification are pointing towards opposite directions. This translates into an overall

increase (or decrease) of mass that is not compatible with the steady state assumption. For this reason, one

sets up a configuration in which one of the surface is consumed by a reaction while the reverse reaction

takes place at the facing surface so mass increase or decrease in the domain is avoided. The set-up retained

is summarized in Fig. (4.1). The flow is supposed to evolve in a streamwise periodic channel between two

plates separated by the distance h. The wall normal direction is referenced by the letter y whereas x is

used for the streamwise direction.

FIGURE 4.1: Sketch of the configuration.

Making use of the assumption of steady developed non-reacting flow, one can write mass/species/momen-

tum conservation equations as:

∂(ρv)

∂y
= 0 (4.1)

∂

∂y
(ρ (v + Vk,y)Yk) = 0, k ∈ {1, 2} (4.2)

∂(ρuv)

∂y
=
∂τxy
∂y

+ S (4.3)

p

ρ
=

R

W
T (4.4)

The momentum source term S is used for the following numerical and paractical reasons:
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• Standard Inlet/Outlet boundary conditions imply the estimation of a pressure loss in the streamwise

direction to include in the momentum conservation equation which is not an accurate approach for

analytical solution derivation and not strictly conservative.

• Periodicity enables momentum conservation by imposing a momentum source thus being strictly

conservative.

In the following, the letter C, O and P denote the solid wall species (which could be for instance solid

carbon), the gaseous oxidizing species and the gaseous species produced by gasification, respectively. The

associated stoichiometric coefficients are noted νC , νO and νP . According to these notations, the following

chemical schemes are applied to the surface 1 (gasification):

νC C(s) + νO O → νP P (4.5)

and to the surface 2 (lieu of deposition):

νP P → νC C(s) + νO O (4.6)

In what follows, variables subscripted by letters C, O and P refer to the associated species and subscript

numbers 1 and 2 refer to space location, y = 0 and y = h, respectively. The molar progress rate of

reaction 1, Q1, can then be modeled as follows:

Q1 =

(
YO,1

WO
ρ1

)νO

K1 =
(
XO,1

p

RT

)νO
K1 (4.7)

where K1 represents the rate of reaction 1 which can be modeled by an Arrhenius law for instance.

However, in the present framework it is not necessary to go deeper in the modeling of this coefficient

because one assumes a constant temperature implying that K1 can be merely seen as a parameter of the

problem. Similarly, one can write the molar progress rate of reaction 2 as:

Q2 =

(
YP,2
WP

ρ2

)νP

K2 =
(
XP,2

p

RT

)νP
K2 (4.8)

Moreover, the general formulation of species conservation balance at the reacting surfaces reads:

(
ρj~uYk + ρ~VkYk

)
· ~n =

.
sk (4.9)
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The species conservation balance at surface 1 reads:

ρ1v1Yk,1 + ρ1Vk,1Yk,1 =
.
sk,1 (4.10)

and at surface 2:

ρ2v2Yk,2 + ρ2Vk,2Yk,2 = − .
sk,2 (4.11)

where ~n is the vector normal to the wall and pointing toward the gas-phase. Summing over all the species

and making use of the mass conservation constraints
∑

k Yk = 1 and
∑

k YkVk = 0, one obtains the two

relations ρ1v1 =
∑

k

.
sk,1 and ρ2v2 = −∑k

.
sk,2. Furthermore, the continuity equation Eq. (4.1) imposes

that ρ(y)v(y) is constant (in the forthcoming the notation
.
m = ρ(y)v(y) will be used). As a consequence,

one finds that
.
m =

∑
k

.
sk,1 = −∑k

.
sk,2 which leads to the relation Q1 = Q2 (the notation Q = Qj is

thus retained for simplification). The two progress rates of the surface reactions are thus identical. The

relation between the wall normal mass flow rate and the progress rate of reaction is thus expressed as:

.
m = Q (νPWP − νOWO) (4.12)

When the species diffusion due to pressure gradients, temperature gradients (Soret effect) and volume

forces are neglected, the binary diffusion between the two species O and P can be modeled by the classi-

cal relation [30]

VkYk = −Dbin
OP ∂Yk/∂y, where Dbin

OP = Dbin
PO is the binary diffusion coefficient. Another formu-

lation is obtained by considering equivalent diffusion coefficients, Dk, that represents the diffusion

of species k into the mixture and expressed as Dk = (1 − Yk)/(
∑

l 6=kXl/Dbin
kl ). This leads to an

equivalent diffusion model which now involves the species molar fractions instead of their mass frac-

tions, VkXk = −Dk dXk/dy. This presents a strong advantage for solving the system of equations. Note

also that contrary to the binary coefficient, Dk is depending on the local concentration of each species

which means that Dk = Dk(y). According to the previous definitions, the following relation stands for

the present mixture:

DOWO = DPWP (4.13)

Moreover, the dynamic viscosity for gases is usually assumed to be solely temperature dependent which

means that in the present isothermal framework µ is a constant. Since the Schmidt numbers, Sck =

µ/(ρDk), are assumed to be constant, we find that ρ(y)Dk(y) is also constant. This statement allows
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to simplify the integration of the forthcoming partial differential equations. In order to determine the

species concentration profiles, one may concentrate on the variableXO and then deduce the concentration

of species P by the relation XP = 1−XO. At this step, it is important to consider molar fractions instead

of mass fractions because it leads to a first order partial differential equation with constant coefficients.

Indeed, making use of Eq. (4.2), integrating once and identifying with Eq. (4.10), rearranging in terms of

molar fractions, and making use of ρ(y)DO(y) = µ/ScO yields:

ηXO − µ

ScO
.
m

dXO

dy
=

νOWP

νO WO − νP WP
(4.14)

with

η =
WP (νO − νP )

νO WO − νP WP
(4.15)

Since η = 0 for νO = νP , the integration of this differential equation leads to two solutions depending on

the values taken by νO and νP :

XO(y) =

(
XO,1 −

νO
νO − νP

)
exp

[
η
ScO

.
m

µ
y

]
+

νO
νO − νP

for νO 6= νP

XO(y) = −ScO
.
m

µ

WP

WO −WP
y +XO,1

for νO = νP

(4.16)

where XO,1 is the molar fraction of species O at surface 1. The value of this constant is determined

thanks to the relation between XO,1 and XO,2 that comes from the identity Q1 = Q2 which according to

Eqs. (4.7, 4.8) gives:

XνO
O,1

( p

RT

)νO−νP K1

K2
= (1−XO,2)

νP (4.17)

Furthermore, injecting Eq. (4.7) into the wall normal mass flow rate Eq. (4.12) yields the dependency

relation between
.
m and XO,1
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.
m = XνO

O,1

( p

RT

)νO
K1 (νPWP − νOWO) (4.18)

Hence, Eq. (4.16) expressed for y = h can be injected into Eq. (4.17), and with the use of Eq. (4.18)

one obtains an equation in which XO,1 is the only unknown. This manipulation allows determining the

XO,1 constant and Eqs. (4.15-4.18) form the analytical solution for the molar fraction of species O. The

molar fraction of P is then given by the relation XP (y) = 1 −XO(y). Concerning the determination of

the streamwise velocity profile, one introduces the newtonian fluid relation τxy = µdu/dy into Eq. (4.3)

which gives ρv du/dy − µ d2u/dy2 = S . Since µ is a constant under the approximation of constant

temperature, and because ρ(y)v(y) =
.
m is a constant according to the continuity Eq. (4.1), the latter

differential equation is merely of second order with constant coefficients. Its integration with the boundary

conditions u(0) = u(h) = 0 leads to the following solution:

u(y) =
S
.
m

[
h

e
.
m
µ
h − 1

(
1− e

.
m
µ
y
)
+ y

]
(4.19)

where
.
m is determined from Eq. (4.18). The maximum streamwise velocity is expected to be observed at

the wall normal distance:

y|umax =
µ
.
m

ln

[
µ

h
.
m

(
e

.
m
µ
h − 1

)]
(4.20)

The comparisons of analytical and numerical solutions for the wall normal velocity component, the mass

fraction of the oxidizing species and the streamwise velocity are presented in Figs. (4.2a-4.2b) for CO2

gasification. It is noticed that the wall normal distance for which the maximum velocity is observed y|umax

is identical to the channel half-height h/2. Moreover, the fluid encouters the same wall shear stress at both

surfaces, i.e, τw,2/τw,1 ≈ 1. These cases correspond to values of mass rates that are too low to modify

the streamwise velocity profiles significantly (Table 4.2). As a result, these profiles are very close to the

impermeable wall solution. The analytical solutions are identical to the numerical ones, showing that the

boundary conditions taking into account the Stefan velocity are able to predict correctly the influence of

surface reactions on gas-phase species and momentum given respectively in Figs. (4.3, 4.2b).
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TABLE 4.1: Parameters of the test cases.

case Oxidizer (O) Product (P ) νO νP ScO ScP K1 = K2 (kg.m
−1.mol−1.s−1) [61] P (atm)

1 CO2 CO 1 2 0.92 0.59 6.92× 10−3 1
2 CO2 CO 1 2 0.92 0.59 5.2× 10−2 1
3 CO2 CO 1 2 0.92 0.59 0.49 1

TABLE 4.2: Characteristic values of the test cases.

case ṁ
y|umax

h
τw,2/τw,1

1 3.87× 10−4 0.5 1
2 2.16× 10−3 0.5 1.01
3 8.88× 10−3 0.5 1.052
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4.2 Setup of the numerical simulation

4.2.1 Sizing the numerical setup

The considered problem is purely 1D, variations occurring exclusively between the upper and lower

surface and all fields being homogeneous in the y and z directions because of periodicity. The config-

uration studied is a parallelipipedic channel containing initially a quiescent and homogeneous O2/CO2

mixture. Solid carbon consumption and CO/CO2 production through surface gasification and oxida-

tion takes place at the lower wall, whereas the upper surface corresponds to an outlet ensuring a con-

stant pressure within the whole channel. The channel height h is higher than the distance ldiff =√
τchem

(
ν/S̄c

)
|t=0 characterizing diffusion within a chemical time τchem. The latter is evaluated in a

homogeneous adiabatic reactor provided with identical initial thermodynamic and thermal-chemical con-

ditions as the present studied case. The corresponding value of τchem coincides with complete depletion

of surface carbon, i.e, θC(S) = 0.
(
ν/S̄c

)
|t=0 refers to the ratio of kinematic viscosity and the average

Schmidt number of the mixture. According to this approach, the initial Damköhler number (Da) is much

larger than unity which makes the combustion process overall diffusion-limited.

Da =

(
h

ldiff

)2

>> 1 (4.21)

The surface over volume ratio Awall/V ensures that the gas and surface reactions contributions to CO2

and O2 consumption and production are of the same order of magnitude which implies that the surface

species consumption proceeds at a rate as fast as gas-phase chemistry. Awall being the chemically active

surface area of the lower wall ( Figure 4.4 ), the ratio Awall/V reads :

Awall

V
=

a2

a2h
=

1

h
(4.22)

Variables initialization is spatially homogeneous, Table 4.3 summarizes the initial concentrations and

thermodynamic parameters for the reference case. The transport coefficients are determined using the

EGLIB library [77].

TABLE 4.3: Initial conditions of the reference case

T (t = 0) YO2
(t = 0) YCO2

(t = 0) θC(t = 0)

1600K 0.63 0.37 1



Chapter IV. 1D simulation 54

FIGURE 4.4: Schematic drawing of the setup

4.2.2 Boundary conditions

An adiabatic condition is applied to the lower reactive surface which means that the temperature of the

reactive wall presents temporal variations based on the heat flux balance given in Eq. (3.47). The condition

is called adiabatic in the sense that no thermal conduction is accounted for within the solid, which means

that λs~∇T s
w ·~n = 0. The latter expression implies that the prescribed normal heat flux at the wall becomes :

~qBC
w · ~n = −

∑

k∈ΩS

hkṡk −
∑

k∈ΩG

△hof ṡk

− ρw
∑

k∈ΩG

UStefanhs,k,wYk,w

− ṁ

2

∑

j∈D

u2j,w + (¯̄τ~u)w · ~n

(4.23)

The prescribed mass fraction gradient at the wall is given by Eq. (3.28). The upper face is an outlet surface

that relaxes the pressure toward the targeted atmospheric pressure in a partially non-reflecting way using

the NSCBC method [78, 79]. This allows to control waves reflections and avoids the propagation of non-

physical fluctuations. No conditions are applied to the species mass fractions, heat flux and velocity at the

outlet :
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Yk |outlet= Y p
k , ~q |outlet= ~qp, and ~u |outlet= ~up (4.24)

Where Y p
k , ~qp and ~up are respectively the values of species mass fractions, heat flux and velocity predicted

by the numerical scheme. Periodic boundary patches are imposed to the lateral faces. Regarding the mesh,

starting from the wall to x/ldiff = 0.865, mesh cells have a size of 10µm which means that 1000 cells

populate the near-wall region. For 0.865 < x/ldiff <
√
Da, a mesh coarsening has been carried out to

reach a maximum cell size of 75µm at the outlet. As will be discussed in section 4.6, a grid convergence

study is carried out to determine the proper grid resolution in the reactive near-wall region. Regarding

the numerical scheme, a second-order cell-vertex implementation of the Finite Volume Lax-Wendroff

convection scheme is used for time and space integration [33, 34, 80, 81]. It is associated in this study

with a Finite Element diffusion scheme with a 2∆ operator that comes from a strict application of the

Finite Element Galerkin method [82]. This approach has been used to save CPU time and because the

mesh is considered fine enough for an acceptable second-order approximation. It also reminded that the

diffusive terms are solved explicitly.

4.2.3 Gas-phase and surface kinetics description and validation

The surface-phase mechanism (Table 4.4) was extracted from a previously developed and validated semi-

detailed kinetic mechanism [63, 83, 84]. The impact of backward reactions is expected to be negligible

under typical oxy-combustion conditions and the validity of this hypothesis over a wider range of con-

ditions is outside the scope of the present study. Two additional reactions representing the adsorption of

CO2 (S4) and oxygen radicals O (S5) upon carbon sites have been accounted for. The kinetic parameters

of surface reaction (S1 to S3) related to char oxidation are similar to those recommended by Hurt et al

[85], whereas those of CO2 adsorption (S4) are in line with values proposed by Hecht et al [57]. The

resulting detailed kinetic surface mechanism involves a lumped intermediate species, C(O), standing for

oxygenated surface species formed during oxidation and a single type of carbon site, C(S), was cho-

sen to describe solid carbon sites. The mechanism has been validated against continuously stirred tank

reactor (CSTR) experiments by comparing predicted carbon conversion rates with the experimental data

for char gasification and oxidation [86]. The simulations were carried out using Surface Chemkin kinetic

solver [87]. Comparisons of the carbon conversion are shown in Figure 4.5corresponding to carbonO2 ox-

idation and CO2 gasification. The validation covers various concentrations of diluted O2 and CO2 using

chemically inert molecular nitrogenN2 as a balance dilution gas. Regarding the gas-phase mechanism, the

three reversible elementary reactions of dry CO oxidation given in Table 4.5 were extracted from the GRI
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2.11 mechanism. This reaction set was then validated against shock tube experiments of Brabbs et al. for

CO2 dissociation [88].
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FIGURE 4.5: Carbon conversion in a O2/N2 and CO2/N2 environment. The volumetric flow rate is 100
SCCM (Standard Cubic Centimeter per Minute) and the heating rate is 10K/min.

TABLE 4.4: Surface reaction mechanism for the configuration of Fig. 4.4

Step Reaction αj

(
cm2(n−1).mol1−n.s−1

)
βj Ej(kJ.mol

−1) ref.
S1 C(S) +1

2 O2→C(O) 5.0× 106 0.0 45 [63]
S2 C(O)→CO 2.7× 106 0.0 132 [63]
S3 C(O) +1

2 O2→CO2 1.33× 105 0.0 109 [63]
S4 CO2 + C(S)→C(O) + CO 1.0× 1013 0.0 225 [86]

S5 O+C(S)→C(O)
( γ

Γm

)√ R

2πWO
0.5 0.0 [89]

TABLE 4.5: Gas-phase reaction mechanism for the configuration of Fig 4.4

Step Reaction αj

(
cm3(n−1).mol1−n.s−1

)
βj Ej(kJ.mol

−1) .
R1 2O +M⇋O2+M 1.2× 1017 −1.0 0.0
R2 O +CO+M⇋CO2+M 6.02× 1014 0.0 12.55
R3 O2 +CO⇋O+CO2 2.5× 1012 0.0 200.1
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4.3 Transient history

The reference case (Table 4.3) is characterized by two gas-phase reaction zone configurations represented

in the schematic of Figure 4.6. The first one corresponds to a wall-attached CO-reaction zone maintained

by the competition between theCO/O2 combustion and surface reactions, whereas the second one is char-

acterized by the extinction of surface reactions and a gas-phase reaction zone evolving at a certain distance

of the reactive wall. Therefore, two main combustion modes characterize the reference case and the switch

between these modes occurs at tswitch = 0.22s under the conditions used in this study. This time coincides

with the depletion of surface carbon (θc = 0) and is the same order of τchem. As a consequence, time is

normalized by the time corresponding to the combustion mode switch tswitch. The resulting normalized

time being noted τ = t/tswitch.

FIGURE 4.6: Gas-phase CO/O2 reaction zone configurations

Figure 4.7a shows the time evolution of space averaged mass fraction of the kth species at the reactive

wall determined as shown in Eq. (4.25).

〈Yk,wall〉 =

∫
S

Yk(x = 0)dS

Awall
(4.25)

For τ ≤ 1, CO2 and O2 species present in the gas-phase diffuse to the carbonaceous wall, are adsorbed

and converted on surface as shown by their respective decreasing mass fractions at the wall shown in

Figure 4.7a. CO2 and O2 adsorption upon the reactive surface coincides with consumption of surface

carbon and CO production through gasification. CO production by the reactive surface is described by

the increasing profile of CO mass fraction (Figure 4.7a) and the decreasing profile of carbon site frac-

tion θC (Figure 4.7b). CO diffuses to the gas-phase and reacts with O2 thus producing CO2. Carbon
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monoxide consumption and carbon dioxide production through gas-phase combustion are illustrated by

the respective rise and fall of CO2 and CO concentrations for 0.97 ≤ τ ≤ 1.0. At τ = 1, surface carbon

consumption reaches completion which puts an end to surface reactions. Gas-phase CO2/O2 combustion

is the only active chemical process which gradually fades.
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FIGURE 4.7: Evolution of Gas-phase species at the wall and surface coverages versus normalized time τ

Wall-attached reaction zone

In order to quantify the competition between gas-phase and surface reactions, an index Ik for each kth

species is defined in Eq. (4.26):

Ik =
|〈ṡk〉|

|〈ṡk〉|+ |〈ω̇k〉|
(4.26)

where 〈ω̇k〉 and 〈ṡk〉 are respectively the gas-phase and surface space averaged production/consumption

rates that read:

〈ω̇k〉 =
∫

V

ω̇kdV , 〈ṡk〉 =
∫

S

ṡkdS (4.27)

Ik characterizes the contributions of surface and gas-phase reaction regardless of its sign (production/con-

sumption). Figure 4.8 presents the evolution of IO2
, ICO2

and ICO versus the normalized time τ . As can

be noticed, the index Ik varies between 0 and 1 thus showing that the existence of a wall-attached reaction

zone coincides with the competition between surface and gas-phase chemistry. As a matter of fact, IO2
,
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ICO2
and ICO are higher than 0.5 for τ ≤ 0.24, 0.7 and 0.75 respectively, which means that surface-phase

chemistry is as much involved into species consumption or production as the gas-phase one. ICO and ICO2

show a stiff decrease when τ tends to 1 because of the quick drop of surface carbon site fraction as shown

in Figure 4.7. This is due to the thermal runaway caused by the exothermic surface carbon oxidation (S1

to S3) and gas-phase reactions. A slight increase can be noticed before ICO2
decreases rapidly which is

due to the production of CO2 by reaction S3 (Table 4.4).
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FIGURE 4.8: Ik versus τ

CO provided by the surface feeds a CO/O2-combustion characterized by a reaction front at proximity

of the reactive wall. Figure 4.9 presents the reaction zone identified by the gas-phase temperature (a) and

the peaks of heat release (b). These peaks intensify and move slightly upward toward rich zones that are

less O2 diffusion limited but do not go beyond x/ldiff = 0.215. Note that the reaction zone thickness

(non-zero values of ω̇T ) corresponds to regions where surface produced CO has diffused enough to react

with O2 thus covering a length that is the same order of the a priori-estimated characteristic diffusive

length ldiff as τ tends to unity, i.e, as physical time t tends to one chemical characteristic time τchem. This

CO/O2-reaction zone configuration is analogous to the “attached CO-flame” mode described by Makino

[90]. The reaction zone is continuously fed by CO provided by the surface (〈ṡCO〉 > 0), it remains

attached to the wall despite the increase of O2 gradient.

Figure 4.10 shows at two different times during the wall-attached reaction zone phase the evolution of

normalized species spatial profiles. Normalized scalars noted Φ̂k are defined as shown in Eq. (4.28).

Φ̂k =
Φk − Φk,min

Φk,max − Φk,min
(4.28)
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FIGURE 4.9: Temperature and gas-phase heat release profiles during the “attached CO-flame” mode

where Φk,min and Φk,max are respectively the minimum and maximum values of the scalar Φk at a given

time τ .G as-phase combustion occurrence coincides with a decrease of O2 in the reaction zone and the

formation of a peak on CO2 profile. At τ = 0.442, the minimum of CO2 concentration is at the wall

because of its consumption by surface carbon. AsCO/O2 reaction becomes significantly active in the gas-

phase, CO2 production contributes to generate a peak in the corresponding concentration spatial profile

at x/ldiff = 0.425 at τ = 0.954 identifying the gas-phase reaction front.

The wall-attached reaction phase (τ ≤ 0.06) begins with an endothermic process during which CO2

oxidizes carbon. CO2 adsorption through surface reaction causes a drop in both wall (Figure 4.11a) and

gas-phase temperatures (Figure 4.11b). Indeed, the temperature decrease is due to the endothermicity

of CO2 gasification of carbon. Figure 4.11a shows the decrease of the surface temperature during the

endothermic phase (τ ≤ 0.06) causing an increase of the positive gas-phase temperature gradient at the

reactive wall as described in Figure 4.11b. Meanwhile, CO mass fraction gradually increases at the wall,

thus resulting in a sharper gradient as can be seen in Figure 4.11c.

Gas-phase reactions after surface carbon depletion

An overview of the gas-phase reaction zone displacement is shown in Figures 4.12a, 4.12b. As carbon

reaches depletion, surface reaction rates decrease which induces a change in the reaction structure. At τ =

1.0, surface chemistry is not active anymore (〈ṡk〉 = 0) as shown by Figure 4.8. Temperature in proximity

of the wall reaches values higher than 3000K (Figure 4.12) favoring CO2 gas-phase dissociation thus

causing a detachment of the reaction front. Figure 4.12a shows negative heat release rates near the wall

region related toO2 and CO2 dissociation byR1 andR2 (Table 4.5). CO is not generated anymore by the

reactive surface so that the reaction zone loses its attachment to the surface. The resulting reaction zone

moves toward the outlet. Figure 4.12b shows spatial profiles of the gas-phase temperature for different
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FIGURE 4.12: Gas-phase heat release and temperature profiles after surface carbon depletion

times during the phase where the reaction zone is detached from the wall. Unlike gas-phase temperature

profile in Figure 4.9a that presents a peak, temperature profiles have a maximum at the wall resulting

from the high temperature history of the phase during which the reaction zone was attached to the reactive

wall. The heat-release is not high enough to induce a peak in the temperature profile.

As shown in Figure 4.12a, the heat release peak moves upward and decreases in amplitude with time. In-

deed, at τ > 1.0, CO diffuses in the whole domain and mixes with O2 thus creating a partially premixed

reactant field where the reaction zone propagates toward O2-rich regions. The magnitude and the dis-

placement velocity of the heat release profiles peak drop because the further the flame gets from the

reactive wall, the less conducive are the conditions to sustain the gas-phase combustion. As described in

Figure 4.13, CO concentration decreases as the distance to the wall increases, while rich O2 regions do

not compensate for CO diffusion limitation. The zones where ω̇T (x) ≤ 0 for a distance between 0 and

x/ldiff ≈ 2.5 (Figure 4.12a) result from O2 dissociation into O radicals and CO2 dissociation into CO

and O described respectively by R1 and R2 given in Table 4.5.

According to the numerical results, heterogeneous carbon ignition through CO2 and O2 adsorption can

be considered as instantaneous due to the high temperature and O2 concentration. Under these extreme

conditions, the resulting CO production and diffusion contribute to trigger the gas-phase combustion with

O2. During the competition between the heterogeneous and homogeneous reaction, the reaction zone is

adjacent to the reactive wall. Carbon depletion leads to a propagation of the reaction front with a decreasing

intensity away from the wall toward the channel zone that is less chemically limited .
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Model Mole fraction and pressure gradients Soret

Present modeling Hirschfelder & Curtiss approximation Neglected
~Vk

a priori estimation
∑

j∈ΩG

DEGlib
k,j

(
~∇Xj + (Xj − Yj)

~∇p
p

)
+

∑
j∈ΩG

DEGlib
k,j

(
χEGlib
j

~∇T
T

)

~V EGlib
k

TABLE 4.6: Diffusion velocities used to calculate the mass fluxes ρYk ~Vk: Present modeling versus a

priori estimation

Model Fourier Sensible enthalpy diffusion Dufour

Present modeling −λ~∇T + ρ
∑

k∈ΩG

hs,kYk~Vk Neglected

~q

a priori estimation −λEGlib~∇T + ρ
∑

k∈ΩG

hs,kYk~V
EGlib
k + p

∑
k∈ΩG

χEGlib
k

~V EGlib
k

~qEGlib

TABLE 4.7: Diffusion heat fluxes: Present modeling versus a priori estimation

4.4 a priori evaluation of complex transport

Tables 4.6 , 4.7 summarize the differences between the modeling of our present simulation and the a priori

estimated terms for heat and mass diffusion. In the case of multi-species flows, the diffusive velocity flux
~Jk are decomposed into several terms that consist in mole fraction, pressure and temperature (Soret) gra-

dients, whereas the heat flux ~q includes temperature gradient, enthalpy transport through species diffusion

and the Dufour term. In the present modeling, only mole fraction gradients are considered for the diffusive

velocity flux through the Hirschfelder & Curtiss while the Dufour term is neglected in the heat flux. There-

fore, the impact of the Hirschfelder & Curtiss approximation for the multi-species diffusion [30, 91] and

the importance of the Dufour and Soret terms are assessed by post-processing the numerical data using
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a complex transport library ( EGlib library [77] ). DEGlib
k,j represents the binary diffusion matrix, χEGlib

j

correspond to the thermal diffusion ratios and λEGlib refers to the a priori assessed thermal conductivity

coefficient.

Since the studied case is 1D, only components in the x direction (Figure 4.4) are plotted. Figure 4.14 shows

the comparisons of the spatial profiles of the diffusion mass flux (Soret effect not included) and the Soret

diffusion term for each gas-phase species during both reaction phases, i.e, wall-attached reaction zone

phase and gas-phase reactions phase respectively at τ = 0.65 and τ = 1.65. Negative mass fluxes tend

to compensate for low concentrations by diffusing toward the wall, whereas positive fluxes are due to

species diffusing toward the outlet. Note that for all species the present mass diffusion model based on

Hirschfelder & Curtiss approximation is always underestimated compared to the a priori EGLIB based

mass diffusion. The pressure gradient being negligible in our case, this overestimation can be attributed

to the hypothesis of constant Schmidt numbers used by our code to estimate non-binary mass diffusion

coefficients. The relative error is around 5 percent which is fairly acceptable. Concerning the Soret ef-

fect which is not taken into account by our model, a priori calculations show that for CO2 and O2

species, the corresponding term is very small compared to mass diffusion in our case as shown by Fig-

ures 4.14a, 4.14b, 4.14c, 4.14d while it is negligible for CO species as given in Figures 4.14e, 4.14f. As a

result, species concentration gradients play in our case a much more important role for species diffusion

than the temperature gradient.

Heat fluxes linked to Fourier, sensible enthalpy diffusion and Dufour diffusion are also calculated a pri-

ori thanks to the EGlib library fed by the present modeling solution obtained under the Hirschfelder &

Curtiss approximation. The estimation of the heat flux given by the EGLIB library enables to estimate

the error related to the Hirschfelder & Curtiss approximation for species diffusion, moreover, the as-

sumption of constant Prandtl numbers is made in our code to calculate the thermal conduction coefficient

λ appearing in the Fourier diffusion term while the Dufour effect is not taken into account during the

calculations. Hence, this section aims at verifying its importance.

Figure 4.15 compares the spatial profiles of sensible enthalpy diffusion, Fourier and Dufour diffusion

for both reaction phases, i.e, wall-attached reaction phase and gas-phase reaction phase at τ = 0.65 and

τ = 1.65. Regarding the sensible enthalpy transport through species diffusion, our modeling logically

overestimates it since it overpredicts already the mass diffusion flux. The overestimation of the Fourier

diffusion heat flux can be attributed to the hypothesis of constant Prandtl number used by our code to

estimate thermal conductivity coefficient. Though, the relative error is around 6.5 percent which is satis-

fying. This analysis points out also that the Fourier and sensible enthalpy diffusion are of the same order

of magnitude. Concerning the Dufour effect, which is not taken into account in our code, a posteriori
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calculations show in our case that it is negligible as given in Figure 4.15. The system energy is thus much

more sensitive to temperature gradients and species enthalpy diffusion than species diffusion.

4.5 Parametric study

A parametric study is carried out by varying initial O2 and CO2 concentrations. In order to characterize

the effect of the initial ratio (XO2
/XCO2

) |t=0 on the combustion mode switch. Moreover, the influence on

surface and gas-phase chemistry competition, i.e, Ik(τ) = 0.5 is studied. Figure 4.16 shows the evolution

of τswitch and τ1/2,k versus the molar ratio (XO2
/XCO2

) |t=0 for each species.

The parameters τswitch and τ1/2,k stand respectively for the physical time corresponding to the combustion

mode switch and the physical time below which Ik 6 0.5 both normalized by their values for the reference

case corresponding initially to XO2
= 0.7, i.e, (XO2

/XCO2
) |t=0= 2.33. As O2 initial concentration

increases, exothermic surface oxidation is enhanced which increases carbon combustion rate thus resulting

in a decrease of τswitch as the (XO2
/XCO2

) |t=0 ratio increases. τ1/2,O2
then rises because richer O2

mixtures favor surface oxidation reactions (Table 4.4, reactions S1 to S3) which in turn enhances the

surface rate ṡO2
. As a consequence, the competition between O2 adsorption by surface carbon and its

consumption by the gas-phase combustion is extended to a wider time range.

On the contrary, as the initial molar ratio (XO2
/XCO2

) |t=0 is increased, τ1/2,CO2
drops because less

CO2 species is available for surface gasification reaction (Table 4.4 reactions S4) which reduces the

surface rate ṡCO2
. The resulting competition between CO2 consumption by the reactive surface and its

production through gas-phase combustion becomes shorter.

4.6 Grid convergence

A global criterion was written in order to estimate the proper grid resolution in the near-wall region. The

criterion gave a cell height of hmin = 15µm and was established according to the following equality :

dtschem,min ≈ dtFo,min. With dtFo,min = Fo
(
h2min/ν

)
.

The resulting minimum cell height is hmin =
√
(ν/Fo) dtschem,min. dtschem = min

(
ΓWk

ṡk

)
corre-

sponds to the minimum surface chemistry time step estimated thanks to homogeneous calculations and

dtFo,min is an a priori estimation of the diffusive minimum time step which is the limiting time step in
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FIGURE 4.14: Comparison of a priori assessment versus the present simulation : Soret term versus
diffusion induced by molar fraction and pressure gradients at τ = 0.65 (left) and τ = 1.65 (right)
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(A) Energy fluxes at τ = 0.65
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(B) Energy fluxes at τ = 1.65

FIGURE 4.15: Comparison of a priori assessment (thin lines) versus the present simulation (thick lines).

our case. A constant grid resolution was applied for the diffusive length with a cell height corresponding

to hmin and a mesh coarsening has been carried out between x/ldiff = 0.865 and the outlet. Neverthe-

less, a grid convergence was necessary to determine properly the mesh size. The grid convergence was

performed for 4 different meshes by solely varying the diffusive length mesh size between hmin = 15µm

and hmin = 5µm. Figure 4.17 shows near-wall gradients of CO2 species mass fractions and gas-phase

temperature at a time where gradients are strongest, i.e, at τ = 0.955. It shows that the grid convergence

was reached at 7µm. The relative differences between the 7µm grid resolution and the present mesh of

10µm are around 0.1% only. Therefore, the 10µm resolution was chosen because it is judged fine enough

to resolve the stiffest gradients at the reactive wall and the gas-phase reaction zone thickness with reason-

able numerical limiting time steps.
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FIGURE 4.17: Grid convergence for four different near wall resolutions at τ = 0.955

4.7 Conclusions

A boundary condition for the impact of surface reactions on the heat flux at the reactive wall was ap-

plied. An original analytical solution developed has been derived by Cabrit et al. for a flow bounded by

two reactive surfaces. A special attention has been given to the numerical setup so that compatibility with a

steady-state is achieved. This approach enables to compare analytical solutions with stationary numerical

predictions thus validating numerical species boundary condition for the heterogeneous surface reactions.

Numerical simulation accounting for multi-species diffusion and micro-kinetics taking into account the

Stefan flux were subsequently performed to study carbonaceous wall combustion under oxy-fuel condi-

tions. Transition from endothermic gasification to surface carbon oxidation and gas-phase ignition were

evidenced thanks to the analysis of the time-dependent surface and gas-phase species production rates and

transient histories of surface species concentrations as well as spatial profiles of gas-phase species, heat

release and temperature. The reference case that consists in a quiescent mixture containing 70 percent of

O2 and 30 percent of CO2 in volume is characterized by two gas-phase reaction zone configurations. The

first one corresponds to a wall-adjacent CO-reaction zone maintained by the competition between the

CO/O2 combustion and surface reactions. CO surface desorption contributes to the continuous feeding

of the reaction zone which in turn produces CO2 that diffuses to the surface and adsorbs on surface carbon

thus providing an additional CO formation pathway. Once carbon has been totally consumed the reaction

zone moves toward the outlet while its intensity is progressively dumped. Therefore, there is a strong

interaction between the surface and gas-phase kinetics depending on the chemical conditions. Note that

this reaction zone occurring at a certain distance of the reactive wall is observed despite the absence of

volatiles in the gas-phase.
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The impact of the Hirschfelder & Curtiss approximation for the multi-species diffusion and the importance

of the Dufour and Soret terms were assessed by post-processing the numerical data thanks to a complex

transport library (EGlib library). A priori post-processing of the present simulation showed that species

concentration gradients have a much more important contribution to the diffusion velocity than the tem-

perature gradient (Soret effect) whereas the system energy is much more sensitive to temperature gradients

(Fourier) and sensible enthalpy diffusion that are of the same order of magnitude. The Dufour effect be-

ing also negligible, the Hirschfelder & Curtiss approximation is satisfying since the relative error between

the fluxes predicted by the present modeling and the ones estimated by the EGLIB library is around 6

percent. The discrepancies can be attributed to the hypothesis of constant Schmidt and Prandtl numbers

used to estimate non-binary mass diffusion coefficients and thermal conduction coefficient respectively.

Eventually, the effect of initial concentrations of O2 and CO2 on characteristic times of gas and sur-

face reactions and times corresponding to the switch between the two gas-phase reactions structures has

been assessed. As the (XO2
/XCO2

) |t=0 ratio increases, the switch between the two modes of gas-phase

reactions occurs earlier and the competition between CO2 consumption by the reactive surface and its

production through gas-phase combustion becomes shorter. In contrast, the surface consumption of O2

was seen to compete gas-phase combustion for a wider time range.



Chapter 5

2D simulation of catalytic combustion in a

meso-scale planar channel

introduction

The approach developed in the present work accounting for gas-phase and surface chemistry was veri-

fied as described in Chapter 2 and 3 using homogeneous reactor calculations. It was in particular shown

that the boundary conditions predicted properly the time evolution of species and temperature. In the

Chapter 4, both boundary conditions for momentum and mass transfer were validated by comparing the

results of 1D numerical simulations with analytical solutions. Nonetheless, the assumption of neglecting

gas-phase reactions was made to simplify the derivation.

Therefore, 2D simulation of gas-phase combustion of a lean premixed CH4/air mixture in a catalytic

meso-scale channel with planar walls are presented in this Chapter. First, numerical results are compared

to experimental data provided at steady-state by Dogwiler et al. [27] for validation. Second, a tran-

sient analysis is carried out to provide insight into the ignition dynamics encountered within catalytic

channels. Finally, the stabilizing effect of the catalytic walls on gas-phase combustion is emphasized by

numerically deactivating surface reactions.

It should be stressed that the experimental set-up of Dogwiler et al. [27] was relevant for gas-turbines

applications using CST (Catalytically Stabilized Thermal combustion) [14]. Although the configuration

is not strictly representative of monolithic channels encountered in automotive catalytic converters, the

experiment provides valuable data for the validation of the present modeling.

70
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The structure of the present Chapter is as follows:

• The experimental setup of Dogwiler et al. [27] is briefly depicted in Section 5.1 at first.

• The numerical methodology and modeling assumptions are provided in Section 5.2.

• In Section 5.3, validations are carried out at steady-state for different inlet conditions by comparing

numerical results with experimental data.

• Section 5.4 is dedicated to the investigation of the possible sources of discrepancies.

• The transient dynamic of heterogeneous chemistry is analyzed in Section 5.5.

• In Section 5.7, stability effects of surface reactions are highlighted.
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5.1 Experimental configuration

The data used to validate our numerical simulations are taken from the study of Dogwiler et al. [27]. They

experimentally investigated the gas-phase ignition of lean premixed methane-air mixtures in a planar

channel flow configuration with Pt coated interior walls. Figure 5.11 respectively shows schematics of

the optical arrangement (Fig 5.1a) and the central planar (Fig 5.1b) of the experimental set-up. It has been

widely used in several campaigns. Only the main features are given here. For further details, please refer

to [27, 92–95] :

(A) Optical arrangement

(B) Central xy-plane

FIGURE 5.1: Schematics of the experimental set-up of Dogwiler et al.. All distances are in mm. TC stands
for thermocouples.

• As shown in Figure 5.1a, the reactor is rectangular and consists of two 250 mm long (x-direction)

and 100 mm wide (z-direction) ceramic plates that are placed 7 mm apart (y-direction).

• The horizontal ceramic plates are highlighted by orange rectangles in Figure 5.1b. The inner surfaces

of the ceramic plates were made catalytically active thanks to a 2 µm thick Pt-layer sputtering. The

Pt-coating was performed allover their length and width ( 0 ≤ x ≤ 250 mm and -50 mm ≤ z ≤
+50 mm with z = 0 denoting the xy symmetry plane). Lateral walls of the channel (z = ±50mm)

were left chemically inert.

1Images were taken from Brambilla et al. [92]. Although, the catalytic plates are 50 mm longer and 4 mm wider, the experi-

mental set-up is similar, as pointed out by Mantzaras in [6]
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• The temperature of the catalytic walls was controlled and monitored in the experiment thanks to a

heating/cooling arrangement. Longitudinal wall temperature profiles, ranging from 1280 K to 1365

K, could be achieved.

• The preheated CH4/air mixture was introduced into the channel from the left side with respect to

Figure 5.1b. In order to ensure nearly uniform entry flow velocity and temperature, the mixture

flowed through a straightening system placed upstream of the channel entrance.

• The flow is laminar with inlet Reynolds numbers (based on the 7-mm channel height) up to 390. The

reactor operated under atmospheric conditions.

• OH-LIF was performed to measure the levels of hydroxyl radical (OH) resulting from the gas-phase

reactions. 2D maps of the OH molar concentration are provided in the xy symmetry plane (Fig-

ure 5.1a). Measurements of spatial profiles of OH concentration are available as well, along the

channel center-line (y = 3.5 mm and z = 0).

5.2 Methodology and modeling assumptions

5.2.1 Domain of interest and boundary conditions

The 2D domain of interest for the present simulations is highlighted by a red rectangle shown in Fig-

ure 5.1b. The devices present in the experiments and located upstream the highlighted box were not in-

cluded in the simulations. Figure 5.2 shows the resulting 2D computational domain, that was chosen to

be symmetric with respect to the channel half-height (y-direction). The justification for this simplifying

assumption will be discussed in Section 5.7.

The region emphasized in red is the lower part of the domain of interest shown in Figure 5.1b, with a Pt-

coated planar catalytic wall located at y = 0. The two blue regions located up-and downstream the domain

of interest were added for numerical reasons: The convergent located upstream the line x = 0, enables to

yield nearly uniform inlet velocity and temperature profiles at x = 0, as in the experiment. The divergent

located downstream the domain of interest was added in order to achieve imposing atmospheric pressure

at the right end of the domain of interest located at x = Lc + LPO, while at the same time, avoiding non-

physical reflexions resulting from flow perturbations reaching the outflow of the computational domain.

Since the catalytic plates are 100 mm wide ( i.e. in the z-direction shown in Figure 5.1a), which is more

than ten times the channel height (H), the reactor is considered wide enough so that the flow between
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FIGURE 5.2: Numerical setup of the catalytic channel. Plena are added for the numerical imposition of
I/O boundary conditions.

the catalytic plates can be considered as two-dimensional. These observations justify the 2D assumption

made to model the experiment.

As shown in Table 5.1, Dogwiler et al. [27] studied three different cases (labelled in what follows as

(a), (b) and (c)) by varying the inlet the velocity, temperature and equivalence ratio while the pressure and

wall temperature were kept constant. Table 5.2 shows the different types of boundary conditions used in

the present study with the corresponding imposed scalars or fluxes.

Case φ YCH4
|inlet YO2

|inlet YN2
|inlet (ux)|inlet[m · s−1] Tinlet[K] Re P [atm]

a 0.37 0.021 0.228 0.751 1 750 186 1
b 0.37 0.021 0.228 0.751 2 729 390 1
c 0.31 0.018 0.229 0.753 1 754 186 1

TABLE 5.1: Inlet conditions for each case. φ, (Ux)|inlet and Tinlet respectively stand for the equivalence
ratio, axial velocity and temperature of the incoming mixture. YCH4

|inlet, YO2
|inlet and YN2

|inlet respec-
tively refer to the CH4, O2 and N2 species mass fractions at the inlet. Re denotes the inlet Reynolds

number based on the inlet velocity and channel height (H)

Inlet and outlet boundary conditions are respectively applied to the convergent entrance (x = −LPI ) and

divergent exit (x = Lc+LPO) using the NSCBC method [78, 79]. The temperature (Tinlet), species mass

fractions (YCH4
|inlet, YO2

|inlet and YN2
|inlet) and velocity (~u|inlet) are prescribed at the inlet. The velocity
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Boundary Numerical condition Imposed scalars or fluxes
Inlet Inlet NSBC [78, 79] Yk, T and ~u

Outelt Outlet NSCBC [78, 79] P
Catalytic wall Isothermal reactive (Eq. 5.1) T, ~u · ~n and ~∇Yk,w · ~n
Plena walls Adiabatic and free-slip ~u · ~n and ~q · ~n

Channel centerline Symmetry No imposition.

TABLE 5.2: Type of boundary conditions used for the present study with the corresponding imposed
scalars or fluxes.

imposed at the inlet boundary is calculated in order to reproduce the mass flow rate from the experiment

with respect to mass conservation, i.e, ux|inlet×(hc/hPI) is imposed at the convergent entrance. Pressure

is the only enforced value at the outlet boundary as it remains subsonic. The NSCBC method relaxes the

values predicted by the numerical scheme toward the targeted conditions in order to control possible

reflections of the waves thus avoiding the propagation of non-physical perturbations.

In order to render the fact that the temperature of the catalytic walls was controlled and monitored in the

experiments, an iso-thermal boundary condition was numerically imposed using the longitudinal experi-

mental temperature profile experimentally measured and shown in Figure 5.3. The wall temperature profile

is enforced by the means of a conservative relaxation method which relaxes the temperature predicted by

the numerical scheme at the wall toward the targeted temperature profile.

The effect of surface reactions on the mass and momentum fluxes at the wall, is taken into account by

respectively prescribing, at the catalytic wall, the expressions of Eq. (5.1) to the gas-phase species mass

fraction gradients and velocity. The predicted fluxes at the wall are then corrected using the definitions

of Eq. (5.1) with respect to the weak formulations indicated in Eqs. (3.54-56). Standard free-slip and

adiabatic wall conditions are applied to the walls of the plena. Also, during the non-reactive computa-

tions performed to establish the flow, standard impermeable wall conditions are used for the catalytic

wall.





~∇Y BC
k,w · ~ng =

Yk,w
Dkρw

∑

l∈ΩG

ṡl +
Yk,w
Dk

~V correc
w · ~ng + Yk,wWw


 ∑

l∈Ωgas

1

Wl
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− ṡk
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FIGURE 5.3: Experimental wall temperature profile used to impose the iso-thermal wall condition on the
catalytic wall.

5.2.2 Calculation strategy

Figure 5.4 illustrates the calculation strategy followed for the present simulations. It comprises the follow-

ing steps:

• First, the non-reactive steady flow is established by running with switched off chemical reactions

during a physical time τinit ranging from 0.125 s to 0.25 s, that corresponds to one flow through

time. The flow field is initialized using simple homogeneous solutions which are depicted in Ta-

ble 5.3.

• Restarting from the obtained steady chemically inert flow, chemistry is then numerically switched

on (except in the plena), and the simulation is run for a physical time τreac = 115 ms, that is long

enough to cover all the phases of the transient combustion described below.

Variables T (x, y) [K] ux(x, y) [m · s−1] uy(x, y) [m · s−1] P [atm] θO(Pt) Yk(x, y)

Values at t = 0 Twall(x) 0 0 1 1.0 Yk|inlet

TABLE 5.3: Initial solution for the non-reactive computations. Twall(x) stands for the wall temperature
profile plotted in Figure 5.3. θO(Pt) refers to the site fraction of the adsorbed O species by the Pt active

sites.
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FIGURE 5.4: Illustration of the calculation methodology

5.2.3 Meshing strategy

Two grid resolutions are adopted. The first coarser grid is dedicated to the establishment of the flow field

under non-reactive conditions. The second grid is refined and adjusted in order to adapt to chemical and

surface reactions.

Establishment of the flow field:

As indicated in Table 5.4, the domain of interest highlighted in red in Figure 5.1b is descretized using a

triangular mesh with 15 cells in the height and 1000 cells in the length. The mesh is significantly coarsened

in both plena because they do not belong to the domain of interest.

Grid Discretization Grid size
△x Lc/1000 250 µm

△y hc/15 233 µm

TABLE 5.4: Grid resolution used to establish the flow field in the domain of interest.

Reactive cases:

A meshing strategy is adopted for the following reasons :

• The transverse resolution is difficult to define a priori because no proper criterion was derived

in literature when surface chemistry is active. As will be shown in Section 5.7, transverse effects
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of surface reactions are necessary to stabilize the flame under the present conditions. Hence, 1D

flame calculations that would allow to a priori estimate the longitudinal grid resolution could not

be properly achieved because transverse effects are complicated to account for in one-dimensional

modeling [96–98].

• Table 5.5 provides a priori estimations of the time steps due to the different involved phenomena. It

is shown that the acoustic time step is limiting when the grid resolution of the non-reactive case

is used. Since chemical time steps do not a priori depend on the mesh size, acoustic and diffusive

time steps are the most likely to be limiting if a finer mesh is used. Giving the fact that the code is

explicit, carrying out a full transient calculation with a mesh-dependent time step would lead to a

tremendous CPU cost. The estimations given in Table 5.5 are a posteriori verified as will be shown

in Section 5.6.

Phenomenon Convection/Acoustics Diffusion Gas-phase chemistry Surface chemistry

Notation dtCFL dtFo dtGas
chem dtSurfchem

Expression CFL
△x

||~u||+ |c| dtFo = Fo
(△x)2
ν

min

[
ρ

ω̇k

]
min

[
ΓWk

ṡk

]

Estimation ≈ 1× 10−7 ≈ 5× 10−5 ≈ 1× 10−5 ≈ 1× 10−5

TABLE 5.5: a priori estimations of the time steps. dtFo and dtCFL are estimated using a cell size equal
to hc/15 = 230 µm. Fourier (Fo) and CFL numbers are respectively equal to 0.1 and 0.7. c refers to
the sound speed. Gas-phase and surface chemistry time steps are estimated using homogeneous reactor

calculations performed under the present conditions. Γ is the Pt site density.

As the mesh resolution could not be a priori set, it was a posteori checked so that it resolves the gas-phase

reaction front on at least 10 and 6 nodes in the axial and transverse directions respectively. Two different

mesh resolutions (labelled MESH (I) and MESH (II) in what follows) were used to ensure a sufficient

spatial resolution of the reaction zone in the different phases of the transient ignition and stabilization

processes :

The overall meshing strategy is summarized in Figure 5.5. Mesh (I) presents the finest resolution and could

be exclusively used since it should capture all the variations of the gas-phase reaction zone. However, it

is only used to resolve the stiffest dynamics coinciding with the activation of both gas-phase and surface

reactions. Once the gas-phase reaction zone becomes thick enough to be resolved on a coarser mesh, i.e. at

a physical time approximately equal to 3 times the ignition time (tinterp), variables are interpolated to

mesh (II) which is dedicated to the stabilization process. The steady-state can therefore be reached with

an affordable CPU cost as will be shown in Section 5.6.
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MESH(I): Activation
of

chemical reactions

Interpolation of gas-
phase and surface vari-
ables at tinterp = 3 tAI

MESH(II): Stabilization

FIGURE 5.5: Summary of the meshing strategy, tinterp and tAI respectively stand for the interpolation
time and the physical time at which chemical reactions are activated.

Table 5.6 gives the grid size used for both meshes and the reaction front thickness to local grid size

ratio. The thickness of the gas-phase reaction front is noted Lf and is taken as the thickness of the longi-

tudinal profile (x-direction) of the gas-phase heat-release at the channel center-line (y = 3.5 mm).

Mesh Notation △x(µm) △y(µm) Lf/△x Lf/△y
Mesh (I) 25 25 10 ≤ Lf/△x ≤ 30 10 ≤ Lf/△y ≤ 30
Mesh (II) 250 230 Lf/△x = 6 Lf/△y = 6.5

TABLE 5.6: Grid resolutions used for the reactive cases.

5.2.4 Chemical schemes and their resolution

For gas-phase chemistry, the Saudi Aramco mechanism 1.3 (Aramco Mech 1.3) [42, 43] was chosen. It

addresses the oxidation kinetics of hydrocarbon and oxygenated fuels using 250 species and more than

a thousand of reactions. As solving such a large scheme in our simulations would yield unpractical CPU

times, a reduced skeletal scheme was formulated that would render accurately the chemistry found under

the conditions of Dogwiler et.al [27].

As combustion of CH4 is considered, C3/C4 based hydrocarbon species are first suppressed so that only

C1/C2 chemistry is kept. Second, an Error-Propagation based Direct Relation Graph (DRGEP) method-

ology [99] is adopted under the conditions of interest resulting in a skeletal mechanism that includes 39

bidirectional and 1 unidirectional reactions, involving 16 species.

Regarding surface reactions, the reaction mechanism of Deutschmann et al. [22, 48] is employed. It uses

21 bidirectional and 3 unidirectional reactions with 7 gas-phase and 10 surface species involved. Platinum

species (Pt) refers to the catalytic active sites while 9 other surface species represent the species adsorbed

by Pt or resulting from surface-to-surface reactions. The catalyst site density (Γ) is taken equal to 2.72×
10−5 cm2 ·mol−1 simulating a polycrystalline platinum surface which is most likely to resemble to the

experimental catalytic coating site density according to Dogwiler et al.[27]. The mechanism is provided

with the thermochemical data needed to calculate the equilibrium constants for the 3 bidirectional reaction

constants.
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Table 5.7 summarizes the modeling of chemical reactions with the associated time integration methods

used in the present study. The time integration method of chemistry is chosen with respect to the stiffness

features of the kinetic mechanisms:

• Gas-phase chemistry is solved using a simple explicit 1st order Euler method because the limiting

time step of the CFD simulation is small enough to ensure stability of the time integration method;

• Surface chemistry kinetics was found to be stiff and could only be handled by using an implicit

solver. The VODE [40] solver is chosen because it requires shorter CPU times than the other implicit

solvers.

Chemistry Mechanism Number of reactions Number of species Integration method
Gas-phase Reduced Aramco Mech 1.3 39 bidirectional 16 Explicit 1st order

&
1 unidirectional Euler

Catalytic wall Deutschmann et al. [22, 48] 21 bidirectional 7 gas-phase Implicit VODE
& &

3 unidirectional 10 surface species

TABLE 5.7: Features of the gas-phase and surface mechanisms used for the present study

5.3 Validation of the steady-state solutions

The steady-state solutions obtained for the 3 cases (a),(b) and (c) are validated by comparing the numerical

results with the experimental data by Dogwiler et al. [27]. Figures 5.6 to 5.8 compare 2D OH-PLIF

measurements with the computed 2D maps of OH concentration for the three cases. Similar flame shapes

are obtained: The symmetric ”V” shapes and the sweep angles are reproduced in an acceptable manner for

all cases by the present numerical modeling. The V-flames are due to lower axial velocities at the catalytic

wall which results in a penetration of the flame further upstream in the vicinity of the wall.

Comparable predictions of the positions where the flames are stabilized and levels of OH concentration

are noticed as well. The flame of case (b) stabilizes further downstream and is more stretched because the

inlet velocity is two times higher. OH concentration of case (c) presents lower levels than cases (a) and

(b) because of a leaner inlet mixture. Although, predicted flame wakes are more spread with higher OH

concentration levels at the flame center.

In order to quantify the axial stabilization of the flames, Table 5.8 compares the axial distance from the

inlet of the catalytic channel and the axial point where the OH concentration reaches its maximum. The
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Experimental

(A)

Modeling

(B)

FIGURE 5.6: 2D OH concentration maps for case (a)

Experimental

(A)

Modeling

(B)

FIGURE 5.7: 2D OH concentration maps for case (b)

relative differences for all cases are smaller than 3%, thus validating the accuracy of the presented simula-

tion approach for the steady state-conditions. The normalized error indicates that the order of magnitude

of the error is equivalent to one channel half-height (hc) for cases (b) and (c).
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FIGURE 5.8: 2D OH concentration maps for case (c)

Case xexpstab[mm] xnumstab [mm] Relative difference (%)
|xexpstab − xnumstab |

hc

a 86.25 86.1 0.2 0.04
b 162.5 166.8 2.5 1.23
c 91.5 90.35 1 0.33

TABLE 5.8: Comparison of the predicted stabilization positions of the flames (xnumstab ) with the experi-

ment (xexpstab).
|xexpstab − xnumstab |

hc
is the normalized error.

Figure 5.9 compares the computed axial OH-profiles on the channel center-line with experimental find-

ings. Table 5.9 gives the error made by the numerical modeling in predicting OH concentration with

respect to the spatial profiles plotted in Figure 5.9. The discrepancies are quantified by comparing the OH

peaks and the thickness of OH profiles, noted LOH . It is defined as the distance between the two highest

profile gradients.

The error made regarding the maximum OH levels is globally around 50% whereas the order of magnitude

of the discrepancies of LOH approximately corresponds to 3 times the channel half-height.
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(B) Case (b)
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(C) Case (c)

FIGURE 5.9: Comparison of axial OH profiles along the channel center-line for cases (a, b, c). Sym-
bols : Experiments. Lines : Calculations

Case Relative difference of maximum Relative difference of
|Lexp

OH − Lnum
OH |

/hc
axial OH levels OH profile thickness

(%) (%)
a 38 25 2.95

b 62 30 2.25

c 75 15 3.2

TABLE 5.9: Comparison of the predicted maximum OH levels and flame thickness with the experi-
ment. Lexp

OH and Lnum
OH respectively refer to the experimental and predicted values.

5.4 Investigation of the possible sources of discrepancies

The influence of non-chemical parameters and modeling assumptions is investigated in what follows to

identify source of errors for case (a) only :

5.4.1 Effect of wall temperature and inlet conditions

The wall temperature and inlet conditions are subject to measurement uncertainties. Figure 5.10 shows

the sensitivity of axial OH profiles along the channel center-line to a ±10% variation of the inlet temper-

ature, inlet equivalence ratio and wall temperature.

Uncertainties on the equivalence ratio have a negligible impact on the OH profile, whereas uncertainties in

both inlet and wall temperature noticeably impact the flame position and OH peaks. Although, OH peaks

are more sensitive to wall temperature uncertainties. As the flame stabilizes upstream or downstream, the

temperature across the gas-phase reaction front and the local catalytic activity undergo variations. This
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(C) Wall temperature

FIGURE 5.10: Effect of the inlet conditions and wall temperature on the OH concentration profile at the
channel-centerline. Symbols: experiment. Lines: Computations.

results in the modification of the OH concentration peak because the latter is sensitive to both, local gas-

phase temperature and OH adsorption/desorption levels of the reactive wall.

A ±10% variation of the wall temperature and inlet conditions results in profiles that are not likely to

match with the experimental profiles because the flame is shifted and OH peaks are modified while the

reaction front thickness remains the same. It can be concluded that the observed discrepancy in terms of
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OH profiles between experiments and our simulations cannot be related to effects of uncertainties in inlet

or wall conditions.

5.4.2 Influence of the grid resolution

FIGURE 5.11: Effect of the grid on the axial OH profiles in the channel center-line

The steady-state numerical simulations were performed using Mesh (II) which is described in Table 5.6. In

order to evaluate the impact of the mesh resolution on the observed discrepancies between experiments

and simulation, the much finer MESH (II) was used to compute the steady-state solutions, as shown by

Figure 5.11.

5.4.3 Assessment of the modeling assumptions

The influence of the numerical scheme and the kinetic solver used for the resolution of gas-phase reactions

are evaluated at first. Second, the Hirschfelder & Curtiss approximation used to model diffusion velocities

is assessed using the complex transport EGlib library [77].

5.4.3.1 Verification of the numerical scheme and the gas-phase kinetic solver

First, the 3-step time integration GRK numerical scheme is tested in place of the Lax-Wendroff scheme

for the time integration in AVBP, and the results are shown in Figure 5.12a. Second, gas-phase chemistry
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is resolved using the implicit VODE solver instead of the explicit 1st order Euler method and the results

are shown in Figure 5.12.

The GRK numerical scheme (Fig 5.12a) results in a lower OH level and profile thickness but the differ-

ences can be considered negligible. Using the implicit solver for the gas-phase reactions does not result in

any modification of the channel center-line profiles.
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(B) Kinetic solver

FIGURE 5.12: (a) the time integration scheme of the CFD code AVBP and (b) the ODE solver used for
the gas-phase chemistry.

5.4.3.2 Assessment of the Hirschfelder & Curtiss approximation

The configuration of the flow is laminar, molecular transport plays thereby a key role in transfers which

might influence the OH concentration levels. Therefore, in order to assess the present modeling of diffu-

sion described in Chapter 2, the following comparison is made: The heat and mass fluxes resulting from

the constant transport coefficients and the Hirschfelder & Curtiss assumptions made in the present mod-

eling, are compared to their corresponding exact expressions a priori estimated, i.e. by post-processing

the steady-state results of the numerical simulations thanks to a complex transport library (EGlib library

[77]).

Tables 5.10 and 5.11 summarize the multi-species complex transport expressions for the diffusive mass

and heat fluxes. The differences between the assumptions made in the present modeling and the exact

expressions (a priori estimation) are highlighted. DEGlib
k,j represents the binary diffusion matrix, χEGlib

j

correspond to the thermal diffusion ratios and λEGlib refers to the a priori assessed thermal conductivity

coefficient. Figure 5.13 describes the a priori estimation approach which consists of the following steps :
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Numerical
simulation

EGlib
library [77]

Computation of the
exact expressions:

ρYk~V
EGlib
k and ~qEGlib

P , T , ρ, Yk

DEGlib
k,j ,χEGlib

j ,λEGlib

FIGURE 5.13: Summary of the a priori estimation of the heat and mass fluxes exact expressions

Model Mole fraction and pressure gradients Soret

Present modeling Hirschfelder & Curtiss approximation Neglected
~Vk

a priori estimation
∑

j∈ΩG

DEGlib
k,j

(
~∇Xj + (Xj − Yj)

~∇p
p

)
+

∑
j∈ΩG

DEGlib
k,j

(
χEGlib
j

~∇T
T

)

~V EGlib
k

TABLE 5.10: Diffusion velocities used to calculate the mass fluxes ρYk ~Vk: Present modeling versus a

priori estimation

Model Fourier Sensible enthalpy diffusion Dufour

Present modeling −λ~∇T + ρ
∑

k∈ΩG

hs,kYk~Vk Neglected

~q

a priori estimation −λEGlib~∇T + ρ
∑

k∈ΩG

hs,kYk~V
EGlib
k + p

∑
k∈ΩG

χEGlib
k

~V EGlib
k

~qEGlib

TABLE 5.11: Diffusion heat fluxes: Present modeling versus a priori estimation

• First the EGlib library is fed with the reactive flow field resulting from the numerical simulations;

• Exact transport coefficient are then computed as explained by Ern and Giovangigli in [77];

• Fluxes are finally reconstructed using the exact expressions of Tables 5.10 and 5.11.
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FIGURE 5.14: Comparison of a priori estimation versus the present simulation : Soret term versus
diffusion induced by mole fraction and pressure gradients at the steady-state. y′ is the normalized channel

height y/H .

Surface chemistry mainly interacts with the gas-phase transport orthogonally to the reactive wall. There-

fore only transverse profiles of fluxes are analyzed in Figures 5.14 and 5.15 at the axial position where

OH reaches its maximum. Stiffest gradients are found at this position thus coinciding with maximum wall

transfers. Figure 5.14 shows the comparisons of the transverse profiles of the diffusion mass flux (Soret

effect not included) and Soret diffusion term for OH species. The following observations can be made :

• The Soret effect is negligible compared to the diffusion due to species gradients as it is 100 times

lower with zero values at the wall.

• The present modeling predicts lower OH mass fluxes due to species gradients in both the gas phase

and at the wall than the one estimated using the exact expressions. The Hirschfelder & Curtiss

assumption can be designated as the source of error. It is stressed that the present modeling is

performed with Schmidt numbers taken equal to 0.7 for all species.

Heat fluxes are plotted in Figure 5.15. The following features are noted:

• Dufour effect is totally negligible at the considered atmospheric pressure compared to sensible

enthalpy diffusion and Fourier transport as it is 1000 times lower.
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FIGURE 5.15: Comparison of a priori evaluation (thin lines) versus the present simulation (thick lines). y′

is the normalized channel height y/H .

• Sensible enthalpy presents lower levels by one order of magnitude, along the channel height, com-

pared to the Fourier term. Therefore, transverse heat diffusion is mainly due to temperature gradi-

ents. The discrepancies observed for mass diffusion impact the heat fluxes of sensible enthalpy thus

resulting in a gap between the present modeling and the a priori estimated one.

• The present modeling for the Fourier transport present lower values at the wall compared to the

one given by the complex library, thus suggesting that the Hirschfelder & Curtiss assumption is not

fully satisfied near the reactive surface. The present modeling is performed with a constant Prandtl

number taken equal to 0.7 which results in a unity Lewis number.

To conclude, the approximation made when describing the diffusive transport phenomena may contribute

to the discrepancy observed between the predicted and measured OH concentration. The a priori estima-

tion shows that accounting for complex transport leads to higher OH mass fluxes and temperature gradients

to the wall. This is likely to lead to higher OH adsorption levels by the catalytic walls which would de-

crease the overall OH levels. This might explain the over-prediction of OH concentrations resulting from

the present numerical simulations.

Also, given the fact that pressure is constant and that the Soret and Dufour terms are negligible, the

differences between the present modeling and the exact expressions are mainly attributed to the error

made in predicting diffusion due to species gradients.
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5.4.4 Uncertainties related to chemical kinetics

Although the gas-phase kinetic schemes used in this study were validated over a wide range of condi-

tions [22, 42, 48], validations did not directly concern conditions identical to the present ones. Espe-

cially, the reduction of the gas-phase kinetic scheme decreases its range of validity.

It is also highly probable that a reduced gas-phase kinetic scheme over-predicts radical concentrations, as

some radicals are eliminated in the reduction process and therefore element conservation forcefully im-

plies over-prediction of the rest of the radicals. As a result, a 1D flame comparison of the OH concen-

tration predicted with the detailed and the reduced chemistry is performed using the PREMIX solver of

the CHEMKIN library. The resulting OH mole fractions are plotted versus the distance from the inlet in

Figure 5.16. A C1/C2 version was used for the detailed chemistry for CPU time convenience.

FIGURE 5.16: 1D flame computations: comparison of the OH mole fraction predicted with the detailed
and the reduced chemistry

It is observed that the detailed kinetic scheme results in a higher OH mole fraction compared to the one

obtained with the reduced kinetic scheme. This indicates that the over-prediction of the OH levels observed

in the 2D computations are not likely to be related to the reduction of the gas-phase kinetic scheme as the

use of a detailed mechanism would have probably led to higher concentrations. Nonetheless, the impact

of the uncertainties related to the kinetics requires to be quantified through a sensitivity analysis in further

computations.
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5.4.5 Uncertainties related to radiative heat transfers

Considering the high surface to volume ratio encountered within the presented channel and the high wall

temperature that ranges from 1285 K to 1365 K, neglecting the radiative heat transfers in the energy

equation could have an impact on the predicted temperature and OH levels. In order to assess the impact

of this assumption the radiative heat transfer is a priori estimated and compared to the sensible heat flux

and the heat release due to gas-phase chemical reactions using the expression given in Table 5.12. The

heat fluxes are averaged in the transverse direction and plotted versus the distance from the channel inlet

in Figure 5.17.

FIGURE 5.17: Comparison of the a priori radiative heat flux with the chemical and sensible terms.

Sensible Chemical Radiative
−λ~∇T + ρ

∑
k∈ΩG

hs,kYk~Vk ρ
∑

k∈ΩG

∆hof,kYk
~Vk Barlow et al. [100]

TABLE 5.12: Expressions of the heat fluxes

Figure 5.17 shows that the radiative transfer is negligible compared to the chemical and sensible heat

fluxes along the whole channel length. This a priori shows that accounting for the radiative transfers is

not likely to impact the predicted temperature. As the OH concentration is sensitive to temperature, OH

concentration should not be impacted as well. Consequently, the discrepancies between the predicted and

the measured OH concentration levels in the flame region are not due to the fact that the radiative term was

neglected. Nevertheless, the radiative term should be a posteriori accounted for in further computations in

order to assess the present observation.
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5.4.6 Conclusions of the investigation

Several possible sources of error were investigated in order to explore possible reasons for the differences

observed in the OH concentration profiles at the center-line of the channel, which can be summarized as

follows:

• Possible uncertainties of wall temperature and inlet conditions do not explain the observed differ-

ences between the modeling and the experiment. It must be emphasized that actual measurement

uncertainties were not quantified in the study of Dogwiler et al..

• Refining the grid resolution has no impact on the steady-state also confirming a posteriori that the

reaction front is already well resolved on the coarsest mesh.

• The time integration scheme of the CFD code and the gas-phase kinetic solver were not found to

noticeably impact the OH center-line profiles.

• Accounting for complex transport might result in lower levels of OH because the mass and heat

transfers of OH species to the reactive wall are under-estimated by the present modeling. How-

ever, Soret and Dufour terms would have to be implemented and the simulations should be run with

the resulting exact approach. Moreover, adapted boundary conditions of reactive walls need to be

derived in this context.

5.5 Activation of gas-phase reactions

The first phase we propose to discuss is the one exhibiting the initialization of gas phase reactions due

to auto-ignition chemistry. The normalized temperature field θT is plotted at t = 0 in Figure 5.18. θT =

(T − Tmin) / (Tmax − Tmin) where Tmin and Tmax respectively refer to the maximum and minimum

temperature at t = 0. The observed profiles correspond to a thermal boundary layer with a maximum

temperature established downstream the channel. This is due to the isothermal wall that initially presents

a higher temperature.

Normalized transverse profiles of OH mass fraction and heat release rate are plotted in Figure 5.19 where

the transverse temperature is established (x = 0.9 Lc) and for different instants ranging from 0.05 tAI

to 0.25 tAI . τ refers to the normalized time and equals t/tAI . Figure 5.19a shows that the OH transverse

profiles present mass fractions that are higher at the wall. This results from the surface OH desorption by

the Pt active sites. It is noticed in Figure 5.19b that the transverse profiles of the gas-phase heat release
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FIGURE 5.18: Temperature profiles along the channel length at t = 0

rate present similar positive gradients at the wall. Radical species desorption thereby leads to the activation

of gas-phase reactions. Gaseous chemistry is therefore initially activated in the downstream vicinity of the

catalytic plate as surface reactions are activated.

(A) Transverse profiles of the normalized OH
mass fraction (Log scale)

(B) Transverse profiles of the normalized gas-
phase heat release rate (Log scale)

FIGURE 5.19: Transverse profiles of the normalized OH mass fraction and gas-phase heat release rate at
0.05 tAI ≤ t ≤ 0.25 tAI .

Normalized transverse profiles of OH mass fraction and heat release are plotted in Figure 5.19 for x = 0.9

Lc and for different instants ranging, from 0.05 tAI to 0.25 tAI . The overall trend corresponds to the

increase with time of both OH mass fraction and gas-phase heat release in the gas-phase and at the wall,

as chemical reactions take place in the whole transverse direction. Nevertheless, Figure 5.19a shows that
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the OH transverse profiles present mass fractions that are higher at the wall. This results from the surface

OH desorption by the Pt active sites. It is noticed in Figure 5.19b that the transverse profiles of the

gas-phase heat release present similar positive gradients at the wall. Radical species desorption thereby

leads to the activation of gas-phase reactions. Gaseous chemistry is therefore initially activated only in the

vicinity of the reactive wall.

(A) Transverse profiles of the normalized OH
mass fraction (Log scale)

(B) Transverse profiles of the normalized gas-
phase heat release(Log scale)

FIGURE 5.20: Transverse profiles of the normalized OH mass fractions and gas-phase heat release rate at
0.45 tAI ≤ t ≤ 1.65 tAI

Figure 5.20 shows the normalized transverse profiles of OH mass fraction and heat release at x = 0.9

Lc and for different instants ranging from 0.45 tAI to 1.65 tAI . Negative wall gradients of both OH mass

fraction and gas-phase heat release are observed. This is because the near-wall OH and gas-phase heat

release resulting from the activation of surface reactions progressively diffuse in the upper transverse

direction. At 1.65 tAI , both transverse profiles present a difference of 2 orders of magnitude between the

wall and the channel center.

In order to explain this gap, the characteristic times of gas-phase species diffusion and chemistry are com-

pared by a priori estimating the Damköhler numberDa|AI = tspecdiff/tAI under the conditions taken down-

stream the channel at t = 0. It is defined as the ratio between the ignition time tAI and the characteristic

time of species diffusion in the transverse direction (tspecdiff = h2c/(νSc). tAI = 4.5 ms is determined using

homogeneous reactor computations and refers to the time for which OH reaches 50% of its maximum

value. The resulting Da|AI equals to ≃ 13. This means that the characteristic time of species diffusion in

the transverse direction is much larger than the ignition time of gas-phase reactions.

This could explain why gas-phase chemistry ignites at the channel center regardless of the influence of
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the catalytic activity at the surface. Simulation of combustion with deactivated surface reactions, per-

formed under similar conditions, shows that gas-phase reactions are also activated downstream, although

the ignition time is slightly higher. This implies that the activation of combustion in the catalytic channel

is governed by the auto-ignition of gas-phase chemistry with a limited role of surface reactions in the

ignition process under the present conditions.

(A)
ω̇T

ω̇eq
T

(B)
YOH

Y eq
OH

FIGURE 5.21: 2D Normalized gas-phae heat release rate (left) and OH concentration maps (right) at
t = 1.5 tAI

FIGURE 5.22: 2D field of the normalized gas-phase heat release rate at t = 1.65 tAI

2D fields of the normalized gas-phase heat release rate and OH mass fraction are provided in Figure 5.21

at tAI . It shows that the highest rates of heat release and OH mass fractions form a kernel downstream. A

few instants later (at 1.65 tAI ), the gas-phase heat release presents the shape of a ring as shown in Fig-

ure 5.22 which is represented by the two dominating peaks in the gas-phase heat release transverse pro-

files, plotted in Figure 5.20b. This renders the fact that a flame is forming which results from the auto-

ignition of the gas-phase.
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5.6 Grid resolution quality and CPU cost

As mentioned in Section 5.4, two mesh were used. Mesh (I) was first used in order to capture the re-

action front during the ignition and propagation process. Mesh (II) was used for the stabilization phase

characterized by a wider reaction front. In order to define the time range corresponding to each phase, the

position of the flame in the channel is tracked. to this purpose, we define Xf as the axial center-line dis-

tance between the inlet of the catalytic channel and the axial point where the OH concentration reaches its

maximum normalized by the anchoring position. This yieldsXf = 1 as the flame stabilizes. The temporal

evolution of Xf is plotted in Figure 5.23. At approximately t = 3 tAI the slope of Xf decreases as the

flame slows down to stabilize at t = 12× tAI . Therefore the ignition and propagation phase is the process

occurring for t ≤ 3 tAI . the stabilization process refers to t ≥ 3 tAI .

FIGURE 5.23: Temporal evolution of the reaction front position Xf

Figure 5.24 gives the mass fraction profiles of some minor species (CH3O, CH2O and O) in the axial

direction at the channel center-line. Regarding transverse resolution, Figure 5.25 shows mass fractions of

OH and O species plotted in the transverse direction of the reaction front. It is clearly observed that the

profiles are resolved on on at least 10 nodes in both directions.

It may seem that Mesh (II) needs refinement in the transverse direction particularly as shown by Fig-

ure 5.25c. but it was shown in Section 5.3 that using a finer mesh had no impact on the steady-state

features of the flame (Fig 5.11). Figure 5.26 shows the evolution of the different time steps. Computations

are limited by the CFL time step. It is in particular, 10 times lower for the ignition process (Fig 5.26a) than

for the stabilization phase (5.26b) because of the mesh size. As a consequence, the first phase is much

more expensive as highlighted in Table 5.13.
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FIGURE 5.24: Axial profiles of certain stiff species along the reaction front

Performing a full transient simulation, using MESH (I), would therefore result in a cost that is estimated to

72h× (12tAI/3tAI) = 288h. In other words, such a computation would cost 12 days over 256 processors

which is tremendous. This thereby justifies the meshing strategy of the present study. Table 5.13 also
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FIGURE 5.25: Transverse profiles of radical species along the channel height
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(A) AI and propagation (B) Stabilization phase

FIGURE 5.26: Comparison of the time step : CFL time step versus time steps based on gas-phase and
surface reactions.

indicated that surface chemistry is twice more expensive in the first phase. Indeed, surface kinetics are very

stiff during ignition. As a result, the implicit solver induces an additional cost but this is not particularly

related to the grid resolution.

Phase time range limiting time step nodes Procs CPU time G cost S cost
AI + Propagati t ≤ 3 tAI CFL ≈ 1× 10−8 1.2× 106 256 72 h 40% 20%

Stabilization 3 tAI ≤ t ≤ 12 tAI CFL ≈ 1× 10−7 30.000 16 11 h 40% 10%

TABLE 5.13: CPU cost of the calculation under the conditions of case (a). G cost and S cost respectively
stand for the CPU time consumed by gas-phase and surface chemistry. A similar cost is observed for case

(b) and (c).
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5.7 Comparison with an inert-wall channel

The stabilizing effect of the catalytic walls on gas-phase combustion is emphasized by numerically deacti-

vating surface reactions. These tests are solely performed under the conditions of case (a). The steady-state

results of both inert-wall and catalytic wall simulations are compared. In order to capture possible asym-

metric features of the flame, the simulations are carried out in a complete geometry.

FIGURE 5.27: OH concentration map for the catalytic channel at steady-state (t = 25 tAI )

Figure 5.27 shows steady-state OH concentration maps of the catalytic wall simulation. As observed in

the experiment and modeled under the symmetry assumption in the present study, flame features which

consist of the symmetric V-shape, sweep angles and OH concentration levels, are well conserved. This

confirms yet again the symmetry assumption.

The temporal evolution of the reaction front position (Xf ) taken at the flame leading edges, for both

inert and reactive wall channels, are plotted in Figure 5.28. The inert wall case presents an oscillating

evolution with a constant amplitudes, whereas the temporal evolution of the catalytic case reaches a steady-

state. It is also observed that the reaction front anchors much further upstream when surface reactions

are deactivated, i.e, at x = 0.125Lc while the flame stabilizes at the expected location in the catalytic

channel, i.e, at x = 0.34Lc. The order of magnitude of the difference between the two stabilization

locations is 8.5 times the channel total height.

In order to show the transient behavior of the inert-wall case, OH concentration maps of the inert-wall

simulation are shown in Figure 5.29 at 23 tAI and 26 tAI . A slant-shape flame is observed in the vicinity

of channel inlet with a leading edge oscillating between the lower half (Fig 5.29a) and the upper half of the

channel (Fig 5.29b). Also, OH levels are much higher compared to the catalytic case because OH species

is no longer adsorbed by the wall since surface reactions are deactivated.

Deactivating surface reactions therefore results in an oscillatory asymmetric slant-shape flame that anchors

in the vicinity of the inlet, under the present conditions. Although this might lead to shorter conversion
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FIGURE 5.28: Temporal evolution of the normalized reaction front position Xf taken at y = 0.5 hc and
1.5 hc: Channel with inert walls versus catalytic channel.

(A) Channel with inert walls: t = 23 tAI

(B) Channel with inert walls: t = 26 tAI

FIGURE 5.29: OH concentration maps for the channel with inert walls
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distances which is practical for possible system downscaling, instabilities and asymmetries are undesirable

as it might ruin the operating system and yield performance inhomogeneities.

Such behaviors are representative of possible hydrodynamic [101] or thermal-diffusive instabilities [102–

104] encountered in laminar meso-scale channels with isothermal or non-adiabatic walls. The shape and

transient behavior observed in the inert case are in line with the experiment of Dogwiler et al. [27] al-

though performed under different conditions. Here, the same conditions are adopted for both cases to pro-

vide a proper comparison and illustrate numerically that surface reactions restore the symmetric features

of flames undergoing asymmetric instabilities as reported in numerical studies of Pizza et al. [105]. The

investigation of the underlying phenomena of the observed instabilities and the stabilizing effect of surface

reactions is out of the scope of this study. Nonetheless, the numerical modeling of the present study shows

its capability of reproducing such features.

5.8 Conclusions

In this Chapter, 2D simulation of gas-phase combustion of a lean premixed CH4/air mixture in a catalytic

meso-scale channel with planar walls were presented. First, the results were validated at steady-state

by comparing the numerical results with experimental data of Dogwiler et al. [27]. The study of the

influence of non-chemical parameters and modeling assumptions enabled to identify the possible sources

of discrepancies. Second, some insight was provided into the ignition and flame propagation processes

within catalytic channels. Finally, deactivating surface reactions enabled to emphasize the stabilizing effect

of the catalytic walls on gas-phase combustion. The conclusions are listed as follows :

• The comparisons of the steady-state results (Section 5.3) with the experiments [27] have shown

that the present numerical modeling was capable of reproducing the main features of the flames

under different inlet conditions: The V-shaped flames and the sweep angles were reproduced with

an acceptable manner. Comparable predictions of the flame anchoring position and levels of OH

concentration were obtained as well. However, the numerical modeling overpredicted the flame

thickness and the OH concentration peak at the channel center-line by approximately 50 and 20 %

respectively.

• The investigation of the discrepancies (Section 5.4) enabled to point to the following potential

sources of error :

• The a priori estimation has shown that the wall heat and mass transfers of OH were under-

predicted by the present modeling. therefore, accounting for a more complex modeling of
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diffusion is likely to reduce the OH levels but the Soret and Dufour terms would have to

be implemented and the simulations should be run with the resulting exact approach. More-

over, adapted boundary conditions of reactive walls need to be derived in this context. This

was not feasible in the time framework of the present study given the CPU time described in

Subsection 5.6.

• The uncertainties related to the kinetic mechanisms are likely to yield non-negligible differ-

ences between the modeling and the experiments. Sensitivity analysis to both gas-phase and

surface kinetics should thereby be performed in order to estimate the resulting impact on the

numerical predictions. It is stressed that this was not possible in the time framework of the

present study.

• The transient analysis (Section 5.5) allowed to show that the flame results from gas-phase

auto-ignition downstream the channel. The influence of surface reactions was found of minor

importance on the gas-phase ignition phase.

• Deactivating surface reactions (Section 5.7) resulted in an oscillatory asymmetric slant-shape

flame that anchors much further upstream compared to the catalytic channel which was also

observed in the experiments of Dogwiler et al. [27]. The numerical modeling of the present

study has thereby shown its a priori ability of reproducing the possible instabilities encoun-

tered in meso-scale channels with inert walls and the stabilizing effects of surface reactions.

Despite the observed differences, the present modeling has shown its capability of capturing the main

features of the flame within catalytic meso-scale channels with planar walls. These observations enabled

to validate the modeling and resolution of both gas-phase and surface kinetics on the hand, and the use of

boundary conditions to represent the interplay between the gas-phase transport and the reactive wall on

the other hand.



Chapter 6

Impact of non-planar walls on combustion

in a meso-scale channel

Introduction

The numerical strategy described in Chapter 2 and 3 and validated in Chapter 5, is now used to study

the potential impact of obstacles and segmented coating on the anchoring positions of the flame and fuel

conversion within catalytic meso-scale channels.

To this purpose, the catalytic channel with planar walls presented in Chapter 5, is modified by the introduc-

tion of cavities and obstacles on the catalytic walls under the conditions of case (a). Transient numerical

investigations are thereby performed in order to provide some insight on the underlying process leading

to the steady-state flame stabilization and fuel conversion performance. Figure 6.1 shows the part of the

channel highlighted by the red box, where the obstacles or cavities are introduced.

The structure of the present Chapter is as follows:

• A state of the art is discussed at first in Section 6.1 in order to position the targeted objectives of the

present study.

• The numerical setup and modeling assumptions are described in Section 6.2.

• The influence of obstacles, cavities and type of Pt-coating on the anchoring position of the flame

and CH4 conversion rate are presented at steady-state in Section 6.3.

104
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• In order to explain the results, the transient dynamics of the flame propagation are analyzed under

the considered configuration in Section 6.4.

• Conclusions and perspectives are finally discussed in Section 6.5.

FIGURE 6.1: Part of the channel modified by introducing obstacles and cavities.

6.1 State of the art

Numerical investigations of the introduction of obstacles or cavities in catalytic meso-scale channels have

mostly been reported for application representative of gas-turbines applications using CST (Catalytically

Stabilized Thermal combustion). Nonetheless, the corresponding findings have proved to exhibit interest-

ing properties for the considered applications of the present thesis. Li et al. [106, 107] have numerically

shown that cavities could enhance the heat and mass transfers inside the cavities, thus resulting in a better

conversion of reactants and efficiency in catalytic applications. Also, the low velocity zone within the con-

cave regions have proved to increase the blow-off and blow-out limits of the flames so that higher energy

density operating range could be achieved. The introduction of wall cavities were combined to segmented

catalytic coating to avoid gas-phase and surface reactions competition. This behavior was observed in

former studies of Di Benedetto et al. [108, 109] for planar channels using steady-state modeling. Ran et

al. [110] have shown numerically that the introduction of one obstacle or a cavity could possibly allow

a system downscaling and catalyst loading reduction, as a consequence of a reaction front that anchors

closer to the inlet which result in shorter conversion distances.

However, it should be stressed that the above mentioned numerical studies of Li et al. [106, 107] on

catalytic walls with obstacles focus on state-state 2D modeling of gas-phase transport. The underlying

dynamic yielding the flame to stabilize closer to the inlet is explained through a steady-state analysis which

does not provide, to our sense, a full comprehension of the flame anchoring process. Moreover, the effect

of the presence of multiple obstacles and cavities was not compared. A comparison is made however by

Ran et al.[110] but the study focuses on the introduction of one single cavity. Although full and alternative

coating with concave cavity is reported in literature by Li et al. using a steady-approach, multi-segmented

coating approach applied to obstacles has not been reported to our knowledge. Moreover, a lack of clarity
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could also be noted regarding the derivation and validation of the boundary conditions used to account for

the reactive walls.

Regarding automotive catalytic device applications [4, 15, 111], numerical approaches focusing on the

introduction of local protuberances in the shape of obstacles are mostly based on steady-state approaches

and assume that the gas-phase chemistry is frozen. The present study thereby aims at providing a better

understanding of the underlying process leading to the steady-state flame stabilization and fuel conversion

performance over different catalyst coating and obstacles/cavities configurations using transient numeri-

cal investigations which comprise a detailed description of the heterogeneous kinetics and the interplay

between the gas-phase transport and the reactive wall.

6.2 Numerical modeling and assumptions

The modeling assumptions and computation strategy are similar to the ones described in Section 5.2. The

major differences in terms of geometry and meshing strategy are given.

6.2.1 Setup of the simulations

Figures 6.2 and 6.3 show schematics of the two studied geometries. The obstacles and cavities are located

in the upstream part of the channel only (Fig 6.1) in order to disturb the flame during the stabilization

phase. d/hc refers to the blocking ratio. The value of 25% was a posteriori chosen so that an interaction

with the flame could be observed. In order to ensure optimal conversion rates, the gap to width ratio

(referred by g/w) and the ratio w/d are inspired from the study of Li et al. [106, 107]. As described in

Figure 6.4, the obstacles and cavities respectively restrict and increase the channel section by 25%.

Figures 6.5 and 6.6 depict the two types of Pt-coating investigated in the present study for both channels

with obstacles and cavities:

• Full coating, for which Pt covers the whole wall length as shown in Figures 6.5a and 6.6a.

• Segmented coating, for which Pt only covers the top edges of obstacles (Fig 6.5b), or the edges

located between the cavities (Fig 6.6b) .

• As shown in Table 6.1, segmenting the catalyst in the channel with obstacles means that 30% of

the channel length of interest is coated, whereas 66.7% of the upstream half-part of the channel is

coated in the case of cavities.
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FIGURE 6.2: Schematic of the catalyst channel with obstacles

FIGURE 6.3: Schematic of the catalyst channel with cavities

FIGURE 6.4: Reduction and increase of the planar-walls channel section by the respective introduction of
obstacles and cavities. Middle : planar-wall channel, left: obstacles, right: cavities



Chapter VI. Catalytic combustion in non-planar channels 108

(A) Full Pt-coating (OF) (B) Segmented Pt-coating (OS)

FIGURE 6.5: Studied Pt-coatings for the channel with obstacles. The green segments highlight the edges
covered with Pt.

(A) Full Pt-coating (CF)
(B) Segmented Pt-coating (CS)

FIGURE 6.6: Stidued Pt-coatings for the channel with cavities: The green segments highlight the edges
covered with Pt.

Case Pt-coating ratio (%)
OS 30
OF 100
CS 66.7
CF 100

TABLE 6.1: Pt-coating ratio for the channels with obstacles and cavities: coated length divided by the
channel length of interest (0.42 Lc)

Only symmetric channels are considered in the present study in order to save CPU time. Nevertheless, un-

der the conditions of case (a), the symmetry assumption can be justified by the fact that the flame is most

probably not sensitive to thermal-diffusive instabilities as reported by Pizza et al. [105]. Moreover, as

observed in the experiments of Wan et al.[112], cavities are likely to maintain symmetric features of the

flame.

6.2.2 Meshing strategy

The transient ignition phase is not of interest as it occurs much further downstream the channel as was

explained in the previous Chapter. When the flame comes across the first obstacles or cavities, i.e. at

t ≈ 4 tAI , the gas-phase reaction front is considered wide enough to be resolved with a coarser mesh

than MESH (I) described in Subsection 5.2.3. Consequently, a single coarser mesh is used to perform

the whole transient simulations. Table 6.2 gives the grid size used for both types of Pt-loading while

Figure 6.7 illustrates the resolution of the gas-phase reaction front in the vicinity of an obstacle.
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As the mesh resolution could not be a priori set, it was a posteori checked that it allowed to resolve the

gas-phase reaction front with 15 and 12 nodes in the axial and transverse directions respectively. The

resulting mesh enables to discretize the obstacles height and the cavities depth with 12 nodes.

Pt-coating △x(µm) △y(µm) Lf/△x d/△y
Full 70 70 Lf/△x = 20 d/△y = 12

Alternative 70 70 Lf/△x = 15 d/△y = 12

TABLE 6.2: Grid resolutions used for the two types of Pt-coating. Lf refers to the axial thickness of the
reaction front. It is taken as the depth of the gas-phase heat-release longitudinal profile (x-direction) at the

channel center-line (y = 3.5 mm)

FIGURE 6.7: Spatial resolution of the gas-phase heat release rate near an obstacle

6.3 Impact on steady-state solution

6.3.1 Flame anchoring position

Figure 6.8 shows a comparison of the OH concentration maps for the studied cases with obstacles and

cavities. The channel with planar walls is taken as reference. The observations are listed as follows:

• Impact of the obstacles and cavities :
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• (OS) and (CS): It is observed in Figures 6.7b and 6.7d that for both obstacles and cavities ,the

segmented coating results in a flame that stabilize further upstream compared to the planar-

wall channel (Figure 6.7a). However, the impact of obstacles is more notable compared to the

cavities.

• (OF) and (CF): Figures 6.7c and 6.7d show for both channels with obstacles and cavities that

the continuous coating results in a flame that slightly stabilizes further downstream compared

to the planar-wall case (Figure 6.7a). In particular, the obstacles yield an anchoring position

closer to the position of reference compared to the cavities.

• Impact of the Pt-coating :

• (OS) vs. (OF): Figures 6.7b and 6.7c indicate that applying a segmented coating to obstacles

results in a flame that stabilize much further upstream compared to the continuous coating.

• (CS) vs. (CF): Similarly, Figures 6.7d and 6.7e show that segmenting the coating in channels

with cavities yields a flame anchoring position further upstream compared to the continuous

coating. However, the difference between the two types of coating is less pronounced com-

pared to the cases with obstacles ((OS) vs. (OF)).

• Finally, Figure 6.7b indicates that the case with obstacles and segmented Pt-coating (OS) exhibits

the flame anchoring position that is the closest to the inlet.

The observed differences are quantified in Table 6.3 by comparing the positions at which the flames are

stabilized normalized by the channel length and half-height. Noticeably, the channel with obstacles and

segmented coating (OS) allows the flame to stabilize at a position that is 3×hc closer to the inlet compared

to the anchoring position for the planar-wall case. The same type of Pt-loading applied to the channel with

cavities (CS) has a similar impact but is less pronounced. Compared to the planar-wall case, the CS case

exhibits a flame that anchors one channel half-height further from the inlet whereas the impact of cavities

and full coating (CF) is negligible.

The effect is moderate under the present conditions (|xstab − xrefstab|/Lc < 5%) but a significant im-

pact could possibly be expected for a further optimized obstacle geometry or coating. The observations

indicate that coating only the interior walls in a segmented manner allows the flame to stabilize further up-

stream. These findings could indicate that an OS solution could lead to more compact designs for catalytic

converters, the anchoring of the flame closer to the inlet requiring a shorter coated section as compared to

the one for the planar or cavity cases.
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Reference: planar walls (case (a))

(A)

Obstacles and segmented coating (case OS)

(B)

Obstacles and full coating (case OF)

(C)

Cavities and segmented coating (case CS)

(D)

Cavities and full coating (case CF)

(E)

FIGURE 6.8: Comparison of the OH concentration maps: Effect of obstacle, cavities and coating type on
the anchoring position.
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Case
xstab − xrefstab

Lc
(%)

xstab − xrefstab

hc
(%)

OS -4 -314
OF +1.2 +86
CS -0.8 -57
CF +2.4 +17

TABLE 6.3: Comparison of the predicted stabilization positions of the flames for the catalytic channels
with obstacles and cavities. xstab is the axial distance between the inlet of the catalytic channel and the

axial point where the OH concentration reaches its maximum. xrefstab refers to the planar wall case (a).

6.3.2 Fuel conversion rates

We define here the methane conversion rate, referred in what follows as MCR :

MCR = 100×
(
YCH4

|inlet − ȲCH4
(x)
)
/YCH4

|inlet (6.1)

ȲCH4
is the average methane mass fraction integrated along the channel height. The conversion distance is

defined as the distance between the channel inlet and the position in the channel where MCR = 100. Fig-

ure 6.9 shows the MCR profiles. The the red lines indicate where the corners of the obstacles and cavities

are located. The observations are listed as follows :

• Figure 6.9a shows in 0 ≤ x ≤ 0.26Lc that the MCR of both types of Pt-coating over obstacles

is lower compared to the planar-wall channel before reaching the flame. At this part of the channel

channel, the segmented coating particularly exhibits the lowest MCR values. Notably, the MCR

of both OS and OF cases increases over the top edge of the obstacles as the obstacle corners are

reached.

• Figure 6.9b shows in 0 ≤ x ≤ 0.26Lc that the MCR of both types of Pt-coating decreases as

the cavity corners are reached. This decrease results in a slightly lower MCR valuers inside the

cavities compared to the planar-wall channel. The MCR then increases outside of the cavities. The

difference between the two types of coating is however less pronounced compared to the channel

with obstacles.

• The segmented coating enables a shorter conversion distance than the full coating for both channels

with obstacles and cavities.

The above observations could be explained as follows :
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(A) Obstacles (B) Cavities

FIGURE 6.9: MCR for both types of Pt-coating : obstacles vs. cavities

• Full Pt coating presents a more important catalytic surface than the segmented one which may yield

higher methane consumption through surface adsorption by the Pt active sites. This could explain

why the MCR is higher in 0 ≤ x ≤ 0.26Lc if a continuous coating is applied, especially for the

cases with obstacles (Fig 6.9a). The difference between the two types of coating is less notable for

the cases with cavities (Fig 6.9b) probably because the coating ratio is much smaller in the OS case

compared to CS case as described in Table 6.1.

• The shorter conversion distances resulting from the segmented coating could be explained by the

fact that the flame stabilizes further upstream as shown in Figure 6.8. As gas-phase reactions might

govern fuel consumption near the flame, conversion rates are likely to be shorter for the OS and CS

cases for which the flame stabilizes closer to the inlet.

• regarding the channels with obstacles (OF and OF), the increase near the obstacle corners could

be explained by the fact the channel section is restricted (Fig 6.4) which yields a shorter diffusive

distance between the bulk fuel and the catalyst. This might lead to higher mass transfer to the

reactive top edge of the obstacle. Unlikely, CS and CF cases exhibit decreasing MCR near the

cavities because of a higher diffusive distance. The resulting wall mass transfers might be lower.

It is stressed that in order to assess the above presumptions, a further analysis is required by quantifying

the interplay between the gas-phase and surface methane consumption.
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FIGURE 6.10: Temporal evolution of the normalized flame front positions Xf for the channels with
obstacles

6.4 Impact on flame transients

The transient dynamics of the flame propagation are described in order to understand why introducing ob-

stacles and segmented coating yields a flame anchoring position closer to the inlet, thus resulting in shorter

conversion distances. The flame propagation dynamics in both segmented and full Pt-coated channels are

presented for the configuration with obstacles only (OS and OF), as a similar behavior has been observed

with cavities.

Figure 6.10 shows the overall temporal evolution of the normalized flame front position Xf =

xstab/s
ref
stab for the cases with obstacles. Noticeably, the introduction of obstacles results in a propaga-

tion of the gas-phase reaction front that is slower compared to the planar channel, especially in the case

of continuous coating (OF). In particular, the reaction front in the partially coated cases (OS) undergoes a

sequence of abrupt variations starting from t ≈ 4 tAI . At t ≈ 7.5 tAI , the flame position of the OS case

sharply decreases to anchor closer to the inlet compared to the planar channel and the OF case, as was

shown in Figure 6.8. The OF case reaction front propagates smoothly and stabilizes at a channel position

similar to the planar wall case.

In order to understand these time evolutions, the transient history of the gas-phase heat release maps and

the channel center-line profiles of the OH mass fraction are described in what follows.
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FIGURE 6.11: Propagation dynamic for the OS case at t = 6.75 tAI : Gas-phase heat release rate (log
scale)

(A) Gas-phase heat release rate (log scale)

(B) YOH channel center-line profile

FIGURE 6.12: Propagation dynamic for the OS case at t = 7 tAI

(A) Gas-phase heat release rate (log scale)

(B) YOH channel center-line profile

FIGURE 6.13: Propagation dynamic for the OS case at t = 7.2 tAI

6.4.1 Segmented Pt-coating (OS)

Figures 6.11 to 6.15 show for the OS case the transient history of the gaseous heat release maps and the

OH mass fraction axial profiles at the channel center line. The grey OH lines stand for the past whereas
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the thick black lines refer to the present. Figure 6.11 shows at 6.75tAI that there is a gas-phase heat release

spot in the first cavity corner located in the left side of the V-flame which is propagating upstream.

A few instants later, i.e. at 7tAI , Figure 6.12a shows that the heat release spot located in the cavity

(observed in Figure 6.11) yields a reaction front. Therefore, two reaction fronts are observed which consist

in the propagating V-flame located downstream the channel and the one emerging from the cavity located

in the left side of the V-flame. The formation of a new reaction front inside the cavity coincides with a

small increase in the OH mass fraction at x = 0.3Lc as shown by Figure 6.12b.

A decrease of the V-flame sweep angles is observed at 7.2tAI (Fig 6.13a). In the meanwhile, the reaction

front emerging form the cavity comes across the V-flame as it propagates in the transverse direction. This

yields a formation of a small OH peak at the channel center-line (x = 0.3Lc), as shown in Figure 6.13b.

As the two reaction fronts come across each other, Figure 6.14a indicates at 7.5tAI that the reaction front

which was emerging from the cavity results in a V-flame, whereas the tails of the V-flame that was initially

propagating upstream the channel form a small kernel of fresh gases characterized by the trough (off-peak)

in the OH center-line profile for 0.31 ≤ x ≤ 0.32 (Fig 6.14b).

Finally, Figure 6.15a shows at = 7.75tAI that the initial flame undergoes complete extinction while the

V-flame that was formed in the cavity propagates upstream as represented by the upstream convection of

the OH peak shown in Figure 6.15b. From these observations, the following scenario can be proposed for

the flame/obstacles interaction in the context of segmented coating :

As the V-flame propagates upstream the channel, the closest cavity could be preheated through heat dif-

fusion which yields an ignition spot inside the cavity. This results in a reaction front that evolves into a

V-flame which consumes the incoming fresh gases. Consequently, the initial propagating flame undergoes

extinction. The flame does not propagate in a standard manner as in the planar-wall case: the dynamic

corresponds to a sequence of flames resulting from the evolution of auto-ignition spots which might favor

a further upstream propagation of the flame. The flame stabilizes when the local conditions are no longer

promoting auto-ignition and the propagation of the resulting secondary front.

It is stressed that the abrupt decrease of the Xf profiles shown in Figure 6.10 are now explained by the

reaction front emerging from the cavities.

6.4.2 Full Pt-coating

Figure 6.16 shows for the OF case the transient history of the gaseous heat release maps. At 9.85tAI

(Fig 6.16a), the gas-phase heat release spot in the first cavity corner is considerably less pronounced
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(A) Gas-phase heat release rate (log scale)

(B) YOH channel center-line profile

FIGURE 6.14: Propagation dynamic for the OS case at t = 7.5 tAI

(A) Gas-phase heat release rate (log scale)

(B) YOH channel center-line profile

FIGURE 6.15: Propagation dynamic for the OS case at t = 7.75 tAI

compared to the OS case (Fig 6.11) as the V-flame propagates upstream. At 10.1tAI , the near-wall tails of

the flame are extended toward the cavity (Fig 6.16b).

Figure 6.17 shows for the OF case the transient history of the gaseous heat release maps and the OH

mass fraction axial profiles at the channel center-line. It is observed at 10.2tAI that the flame propagates

upstream (Fig 6.17a) in a standard manner. The OH peak has been progressively convected upstream for

9.75tAI ≤ t ≤ 10.2tAI as shown in Figure 6.17b.

It should be stressed that in Figures 6.16 and 6.17a, the heat release presents lower amplitudes than the

segmented case. This could be explained by the fact that the level of adsorbed OH might be much higher

tahn the levels of the segmented case, which yields lower gas-phase activity.

Comparably to the previous case, the following scenario can be proposed for the flame/obstacles interac-

tion in the context of full coating :



Chapter VI. Catalytic combustion in non-planar channels 118

(A) t = 9.85 tAI (B) t = 10.1 tAI

FIGURE 6.16: Propagation dynamic for the OF case: Gas-phase heat release rate (log scale)

(A) Gas-phase heat release rate (log scale)

(B) YOH channel center-line profile

FIGURE 6.17: Propagation dynamic for the OF case at t = 10.2 tAI

In the case of channels with full Pt-coating, the chemical activity is less intense compared to the seg-

mented catalyst. This results in conditions that are less favorable for the formation of auto-ignition spots

in the cavities. The flame is therefore less likely to propagate further upstream. This could possibly explain

why fully Pt-coated catalysts present flame anchoring positions that are located further downstream thus

resulting in a shorter fuel conversion distance.

6.5 Conclusions

Four different wall configurations were explored, combining either obstacles or cavities, and a continuous

or segmented Pt-coating. The analysis of these simulations indicated that the combination of obstacles

with a segmented coating allowed achieving the increase of methane conversion rate, by allowing a flame

anchoring further upstream as compared to the one of the initial planar channel. A first qualitative analysis

showed that the benefit predicted for selectively coated obstacles could be explained by a specific transient

flame dynamic resulting from successive auto-ignitions in the cavities between obstacles, allowing the
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flame to propagate further upstream than with planar walls despite the higher flow velocities induced by

the local flow section restrictions induced by the obstacles.

These findings can be considered to open very interesting perspectives for contributing to the optimization

of the design of catalytic converters using the present modeling approach. Especially, the study of the im-

pact of wall obstacles indicates the potential for contributing to further increase the efficiency of catalytic

converters via the design of monolith geometries that would allow a more efficient and thus less costly

usage of Pt-coating as a consequence of optimized interactions between the gas flow, gas phase chemistry

and surface chemistry.



Chapter 7

Conclusions & Perspectives

The overall objective of the present work was to develop and validate a numerical approach based on 2D

CFD for studying the detailed interactions between flow and heterogeneous chemistry found in particular

in catalytic converters used in exhaust-gas after-treatment systems in the automotive industry.

In order to achieve this goal, a first key element was the formulation and integration into the AVBP CFD

code of a numerical approach combining specific boundary conditions for reactive walls and ODE solvers

for the gas phase and surface chemistry in order to allow accounting for detailed kinetics. The resulting

approach was then validated by applying it to the simulation of two planar reactive channel flows, and

comparing the predictions with experimental findings. Finally, the future potential of the resulting tool

was illustrated by applying it to the study of the impact of non-planar catalytic walls, and of the induced

flow modifications, on the ignition behavior and steady-state flame stabilization, in an attempt to identify

first elements for increasing by design the conversion rate of catalytic devices.

The inclusion of chemical kinetics into the AVBP CFD code was addressed by introducing into the kinetic

solver CLOE developed at IFPEN and which was initially dedicated to the resolution of gas-phase kinetic

schemes. For the purpose of addressing the heterogeneous chemistry found in catalytic converters, the

kinetic solver was adapted during this thesis to allow accounting for surface chemistry via the introduction

of the required set of equations and their resolution, as detailed in the third Chapter. In order to properly

represent the interactions between surface reactions and the gas-phase flow and chemistry, a novel reactive

wall boundary condition was derived from the energy balance that account for the resulting exchanges of

energy at the wall. Special attention was paid to ensure that the generic formulation properly degenerates

to standard inert adiabatic and isothermal wall boundary conditions in the absence of surface chemistry.

120
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In order to validate the inclusion of detailed gas phase and surface chemistry into AVBP, the resulting

tool was applied to the simulation of a zero-dimensional heterogeneous reactor. It is composed of one

computational cell whose boundaries are all set to be reactive walls, resulting in a simple closed volume

reactor exhibiting gas phase and surface reactions, but no molecular or convective transport. The predicted

temporal evolutions of temperature, gas-phase and surface species was shown to perfectly match the ones

obtained with the reference kinetic solver SENKIN of the CHEMKIN library [41], thus validating the

integration of detailed heterogeneous chemistry and related wall boundary conditions into AVBP.

The developed approach was then applied to the simulation of a one-dimensional transient heterogeneous

case in order to illustrate the interaction between molecular gas-phase diffusion and surface reactions. It

consisted of a quiescent CO2/O2 mixture initiated next to a carbonaceous reactive wall. As CO2 and

O2 diffuse to the reactive wall and interact with solid carbon through surface reactions, CO species is

produced and diffuses away from the wall; initiating a gas-phase CO/O2 combustion. The resulting

interaction between the gas-phase and the surface reactions resulted in an original dynamic. These results,

as well as the underlying formulation of reactive wall boundary conditions, led to the publication of an

article in the International Journal of Heat and Mass transfer (IJHMT) [26].

In a next step, the developed approach was applied to the simulation of a two-dimensional configuration

experimentally studied by Dogwiler et al. [27]. It consists of a flow of a lean premixed CH4/air mixture

over a Pt-coated planar wall in a meso-scale channel similar to those found in monoliths of automotive

after-treatment systems. The primary purpose of this study was to validate the predictions obtained with

the developed simulation tool against experimental evidence in a realistic configuration involving both

transport phenomena and heterogeneous chemistry. The following main conclusions can be drawn from

these simulations:

• The developed approach proved to be able of reproducing main features of the combustion observed

for different operating points. The V-shaped flames and the sweep angles were qualitatively well

reproduced, as were the anchoring position of the flames once steady-state was reached. However,

quantitative comparisons against OH measurements showed some discrepancies. Different factors

that could explain the latter were explored:

• Experimental uncertainty concerning the wall temperature and channel inlet conditions were

found to have a small impact to be considered as sources for the observed discrepancies con-

cerning OH levels;

• An a priori analysis indicated that the simplifying assumptions made in the present work

concerning molecular transport certainly a one source for the overprediction of OH levels by

the performed simulations.
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• Given the high surface to volume ratio encountered within the studied meso-scale channel and

the high wall temperature, neglecting radiative heat transfer as done in the present work was

also identified as a possible source for discrepancies in temperature levels, and thus OH;

• Uncertainties concerning the chemical kinetics used for both gas-phase and surface reaction

certainly are another major source of discrepancies.

It was not possible to address the two latter points in the present work. However these aspects would

require careful attention in order to ensure reliable predictions in future studies.

• Surface reactions were found to have a stabilizing effect on the flame shape and stabilization un-

der the studied conditions. This was indirectly confirmed by performing simulations where surface

chemistry was numerically deactivated, resulting in an oscillatory asymmetric slant-shape flame,

which anchored further upstream in steady-state than observed with reactive walls. This indicated

the a priori ability of the developed tool to capture the possible instabilities encountered in meso-

scale channels with inert walls and the stabilizing effects of surface reactions.

Finally, the developed tool was applied to explore the impact of introducing wall obstacles on the conver-

sion rate of catalytic devices. In absence of available experimental results, this was performed using the

reference operating point of the already studied Dogwiler et al. case. Four different wall configurations

were explored, combining either obstacles or cavities, and a continuous or only a partial (selective) Pt-

coating. The analysis of these simulations indicated that the combination of obstacles with a segmented

coating allowed achieving the desired increase of methane conversion rate, as a direct consequence of

allowing a flame anchoring closer to the channel inlet as compared to the one of the initial planar chan-

nel. A first qualitative analysis showed that the benefit predicted for selectively coated obstacles could

be explained by a specific transient flame dynamic resulting from successive auto-ignitions in the cavities

between obstacles, allowing the flame to propagate further upstream than with planar walls despite the

higher flow velocities induced by the local flow section restrictions induced by the obstacles.

Despite the fact that much more research work will be required to yield a fully predictive and reliable tool

and simulation methodology, the developments achieved in the present thesis can be considered to open

very interesting perspectives for contributing to the optimization of the design of catalytic converters using

2D CFD and detailed heterogeneous chemistry. In particular, the study of the impact of wall obstacles

indicates the potential for contributing to further increase the efficiency of catalytic converters via the

design of monolith geometries that would allow a more efficient and thus less costly usage of Pt-coating as

a consequence of optimized interactions between the gas flow, gas phase chemistry and surface chemistry.
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In this context, the presented work can only be considered as an exploratory qualitative work, whose

practical implications are necessarily limited by different key simplifying assumptions. Among those,

future research would have to address amongst others:

• The detailed thermal state of the channel walls. In real applications the wall temperatures are

not controlled, as was highlighted in the studies of karagiannidis et al [113] and Brambilla et

al. [92].This could require in particular setting up a conjugate heat transfer approach, coupling the

CFD code with a tool simulating the heat conduction in the solid walls. This would be required to be

able to address amongst others the heating up of the catalysts, the temporal and spatial evolution of

wall temperatures, the possible appearance of hot spots under certain conditions, or interactions be-

tween neighboring channels. In this context, it would certainly also be necessary to include radiative

heat transfers between the walls and the gases, and potentially adapt the wall boundary conditions

for that.

• Means to render a non- homogeneous coating or surface state. In this context, a proper description

of the porous catalyst support could be achieved by resolving gas-phase transport inside the porous

layer as was explored by Maffei et al. [114]. Furthermore, this could be complemented by models

to account for fouling or the formation and effect of wall deposits, as such local phenomena will

have a first order impact on the conversion rates and practical usability.

• The complexity of the burnt gases composition resulting from the combustion of higher order hydro-

carbons as found in real applications and from their evolution in the exhaust ducts before reaching

the catalytic converter. In the present work, only lower order hydrocarbon fuels and their products

were addressed, for which the chemical kinetics are rather well known.

In this context, it would be of primary importance to set-up and acquire an as much detailed as possible

experimental database allowing to carefully validate the different models to be developed. This would in

particular include quantitative measurements of gas flow fields, gas and wall temperatures, and chemical

species in the gas and at the wall, during both initiation and stabilized phases of realistic monolith channel

configurations and operating conditions.

Finally, detailed 3D CFD studies could be exploited to support the formulation of reduced models for cat-

alytic converters that could be included into system simulations for full EGA systems, and thus contribute

to their overall optimization and to the development of model-based control strategies.
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