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Abstract

This thesis focuses on the design and implementation of local search

based algorithms for discrete optimization. Specifically, in this research

we consider three different problems in the field of combinatorial op-

timization including "One-dimensional Bin Packing" (and two similar

problems), "Machine Reassignment" and "Rolling Stock unit manage-

ment on railway sites". The first one is a classical and well known op-

timization problem, while the other two are real world and very large

scale problems arising in industry and have been recently proposed by

Google and French Railways (SNCF) respectively. For each problem

we propose a local search based heuristic algorithm and we compare our

results with the best known results in the literature. Additionally, as

an introduction to local search methods, two metaheuristic approaches,

GRASP and Tabu Search are explained through a computational study

on Set Covering Problem.



Résumé

Cette thèse porte sur la conception et l’implémentation d’algorithmes

approchés pour l’optimisation en variables discrètes. Plus particulière-

ment, dans cette étude nous nous intéressons à la résolution de trois

problèmes combinatoires difficiles : le « Bin-Packing », la « Réaffecta-

tion de machines » et la « Gestion des rames sur les sites ferroviaires

». Le premier est un problème d’optimisation classique et bien connu,

tandis que les deux autres, issus du monde industriel, ont été proposés

respectivement par Google et par la SNCF. Pour chaque problème,

nous proposons une approche heuristique basée sur la recherche locale

et nous comparons nos résultats avec les meilleurs résultats connus

dans la littérature. En outre, en guise d’introduction aux méthodes de

recherche locale mise en œuvre dans cette thèse, deux métaheuristiques,

GRASP et Recherche Tabou, sont présentées à travers leur application

au problème de la couverture minimale.
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Introduction

Many problems in combinatorial optimization are NP-hard which implies that it

is generally believed that no algorithms exist that solve each instance of such a

problem to optimality using a running time that can be bounded by a polynomial

in the instance size. As a consequence, much effort has been devoted to the design

and analysis of algorithms that can find high quality approximative solutions in

reasonable, i.e. polynomial, running times. Many of these algorithms apply some

kind of neighborhood search and over the years a great variety of such local search

algorithms have been proposed, applying different kinds of search strategies often

inspired by optimization processes observed in nature.

Local search algorithms move from solution to solution in the space of candidate

solutions (the search space) by applying local changes, until a solution deemed

optimal is found or a time bound is elapsed. These algorithms are widely applied

to numerous hard computational problems, including problems from computer

science (particularly artificial intelligence), mathematics, operations research, en-

gineering, and bioinformatics. For an introduction to local search techniques and

their applications in combinatorial optimization, the reader is referred to the book

edited by Aarts and Lenstra (Aarts and Lenstra [1997]).

This thesis focuses on the construction of effective and efficient local search based

methods to tackle three combinatorial optimisation problems from different ap-

plication areas. Two of these problems arise from real-world applications where

essential and complex features of problems are present. The first one is Machine

Reassignment problem, defined by Google, and concerns optimal assignment of

processes to machines i.e. improvement of the usage of a set of machines. The
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second one is Rolling Stock Problem, defined by French Railways (SNCF), which

can be classified as a scheduling (planning) problem. The task is to plan train

movements in terminal stations between their arrival and departure. Both prob-

lems have been proposed in ROADEF/EURO Challenge competitions in 2012 and

2014, which are international competitions jointly organized by French and Euro-

pean societies of Operations Research. Although these two problems come from

different application domains, they share some common features: (1) they are

complex due to the presence of the large set of constraints which represent the

real-world restrictions, e.g. logical restrictions, resources restrictions, etc. (2) they

tend to be large. Due to these two main features of the problems, in general,

solving these problems is computationally challenging. To tackle these problems

efficiently, in this thesis we construct solution methods based on local search.

Besides those two large scale problems, we present a local search method for ef-

ficiently solving One-dimensional Bin Packing Problem (BPP), classical and well

known combinatorial optimization problem. Even though the classical instances

for BPP are of a significantly smaller size than those for previous two problems,

solving BPP is computationally challenging as well. This is particularly due to

the fact that (1) optimal solutions are usually required (in contrast to the two

previously mentioned large scale problems where optimal solutions are usually not

known) and (2) some of the instances are constructed in order to be "difficult".

Additionally, as an introduction to local search methods, a computational study

for solving Set Covering problem by GRASP and Tabu Search is presented.

Methods developed for solving Set Covering, Bin Packing and Machine Reas-

signment problems are pure local search approaches, meaning that local search

starts from initial solutions already given (in case of Machine Reassignment) or

constructed in a very simple way (First Fit heuristic for Bin Packing and sim-

ple heuristic for Set Covering). On the other hand, for Rolling Stock problem,

approach combines local search with greedy heuristics and Mixed Integer Pro-

gramming (MIP). Greedy heuristic (rather complex) and Integer Programming

have been used in order to obtain initial feasible solutions to the problem, which

are then the subject of an improvement procedures based on local search. MIP has

been used in order to produce better initial solutions (combined with greedy pro-
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cedure). Nevertheless, high quality solutions can be produced even when omitting

the MIP part, as was the case in our solution submitted to the ROADEF/EURO

Challenge 2014 competition. Proposed local search approaches for Bin Packing

and SNCF Rolling Stock problems are applied on partial configurations (solutions).

This local search on a partial configuration is called the Consistent Neighborhood

Search (CNS) and has been proven efficient in several combinatorial optimization

problems (Habet and Vasquez [2004]; Vasquez et al. [2003]). CNS has been intro-

duced in Chapter 1 as an improvement procedure in GRASP method for solving

Set Covering Problem.

Our goal was to develop effective local search algorithms for the considered prob-

lems, which are capable of obtaining high quality results in a reasonable (often

very short) computation time. Since complexity of the local search methods is

mainly influenced by the complexity (size) of the local search neighborhoods, we

tried to use simple neighborhoods when exploring the search space. Additional

elements had to be included in the strategies in order to make them effective. The

most important among those possible additional features are the intensification of

the search, applied in those areas of the search space that seem to be particularly

appealing, and the diversification, in order to escape from poor local minima and

move towards more promising areas. Key algorithm features leading to high qual-

ity results will be explained, in a corresponding chapter, for each of the considered

problems.

This thesis is organized into four main chapters:

1. GRASP and Tabu Search: Application to Set Covering Problem

This chapter presents the principles behind the GRASP (Greedy Random-

ized Adaptive Search Procedure) method and details its implementation in

the aim of resolving large-sized instances associated with a hard combinato-

rial problem. The advantage of enhancing the improvement phase has also

been demonstrated by adding, to the general GRASP method loop, a Tabu

search on an elementary neighborhood.

2. One-dimensional Bin Packing Consistent neighborhood search approach

3
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to solving the one-dimensional bin packing problem (BPP) has been pre-

sented. This local search is performed on partial and consistent solutions.

Promising results have been obtained for a very wide range of benchmark

instances; best known or improved solutions obtained by heuristic methods

have been found for all considered instances for BPP. This method is also

tested on vector packing problem (VPP) and evaluated on classical bench-

marks for two-dimensional VPP (2-DVPP), in all instances yielding optimal

or best-known solutions, as well as for Bin Packing Problem with Cardinality

constraints.

3. Machine Reassignment Problem The Google research team formalized

and proposed the Google Machine Reassignment problem as a subject of

ROADEF/EURO Challenge 2012. The aim of the problem is to improve the

usage of a set of machines. Initially, each process is assigned to a machine. In

order to improve machine usage, processes can be moved from one machine

to another. Possible moves are limited by constraints that address the com-

pliance and the efficiency of improvements and assure the quality of service.

The problem shares some similarities with Vector Bin Packing Problem and

Generalized Assignment Problem.

We proposes a Noisy Local Search method (NLS) for solving Machine Reas-

signment problem. The method, in a round-robin manner, applies the set of

predefined local moves to improve the solutions along with multiple starts

and noising strategy to escape the local optima. The numerical evaluations

demonstrate the remarkable performance of the proposed method on MRP

instances (30 official instances divided in datasets A, B and X) with up to

50,000 processes.

4. SNCF Rolling Stock Problem We propose a two phase approach com-

bining mathematical programming, greedy heuristics and local search for

the problem proposed in ROADEF/EURO challenge 2014, dedicated to the

rolling stock management on railway sites and defined by French Railways

(SNCF). The problem is extremely hard for several reasons. Most of induced

sub–problems are hard problems such as assignment problem, scheduling

problem, conflicts problem on track groups, platform assignment problem,
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etc. In the first phase, a train assignment problem is solved with a com-

bination of a greedy heuristic and mixed integer programming (MIP). The

objective is to maximize the number of assigned departures while respecting

technical constraints. The second phase consists of scheduling the trains in

the station’s infrastructure while minimizing number of cancelled (uncov-

ered) departures, using a constructive heuristic. Finally, an iterative pro-

cedure based on local search is used to improve obtained results, yielding

significant improvements.

5



INTRODUCTION

6



Chapter 1

GRASP and Tabu Search:

Application to Set Covering

Problem

This chapter will present the principles behind the GRASP (Greedy Randomized

Adaptive Search Procedure) method and offer a sample application to the Set

Covering problem. The advantage of enhancing the improvement phase has also

been demonstrated by adding, to the general GRASP method loop, a Tabu search

on an elementary neighborhood.

Resolution of the set covering problem by GRASP mathod presented here has been

inspired by the work of Feo and Resende [1995]. The method presented in Feo and

Resende [1995] has been modified by adding a tabu search procedure to the general

GRASP method loop. This tabu search procedure that works with partial solu-

tion (partial cover) is referred as Consistent Neighborhood Search (CNS) and has

been proven efficient in several combinatorial optimization problems (Habet and

Vasquez [2004]; Vasquez et al. [2003]). The search is performed on an elementary

neighborhood and makes use of an exact tabu management.

Most of the method features can be found in the literature (in the same or sim-

ilar form) and, therefore, we do not claim the originality of the work presented

herein; this chapter serves mainly as an introduction to GRASP and Tabu search

metaheuristics and Consistent Neighborhood Search procedure. Also, application
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to Set Covering problem showed to be suitable due to the simplicity of the method

proposed and results obtained on difficult Set Covering instances.

1.1 Introduction

The GRASP (Greedy Randomized Adaptive Search Procedure) method generates

several configurations within the search space of a given problem, based on which

it carries out an improvement phase. Relatively straightforward to implement,

this method has been applied to a wide array of hard combinatorial optimiza-

tion problems, including: scheduling Binato et al. [2001], quadratic assignment

Pitsoulis et al. [2001], the traveling salesman Marinakis et al. [2005], and main-

tenance workforce scheduling Hashimoto et al. [2011]. One of the first academic

papers on the GRASP method is given in Feo and Resende [1995]. The principles

behind this method are clearly described and illustrated by two distinct imple-

mentation cases: one that inspired the resolution in this chapter of the minimum

coverage problem, the other applied to solve the maximum independent set prob-

lem in a graph. The interested reader is referred to the annotated bibliography

by P. Festa and M.G.C. Resende Festa and Resende [2002], who have presented

nearly 200 references on the topic.

Moreover, the results output by this method are of similar quality to those deter-

mined using other heuristic approaches like simulated annealing, Tabu search and

population algorithms.

1.2 General principle behind the method

The GRASP method consists of repeating a constructive phase followed by an

improvement phase, provided the stop condition has not yet been met (in most

instances, this condition corresponds to a computation time limit expressed, for ex-

ample, in terms of number of iterations or seconds). Algorithm 1.1 below describes

the generic code associated with this procedure.

The constructive phase corresponds to a greedy algorithm, during which the

8
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Algorithm 1.1: GRASP procedure
input : α, random seed, time limit.

1 repeat

2 X ← Randomised Greedy(α);
3 X ← Local Search(X, N);
4 if z(X) better than z(X∗) then

5 X∗ ← X;

6 until CPU time > time limit ;

step of assigning the current variable - and its value - is slightly modified so as

to generate several choices rather than just a single one at each iteration. These

potential choices constitute a restricted candidate list (or RCL), from which a

candidate will be chosen at random. Once the (variable, value) pair has been

established, the RCL list is updated by taking into account the current partial

configuration. This step is then iterated until obtaining a complete configuration.

The value associated with the particular (variable, value) pairs (as formalized by

the heuristic function H), for still unassigned variables, reflects the changes intro-

duced by selecting previous elements. Algorithm 1.2 summarizes this configuration

construction phase, which will then be improved by a local search (simple descent,

tabu search or any other local modification-type heuristic). The improvement

phase is determined by the neighborhood N implemented in an attempt to refine

the solution generated by the greedy algorithm.

Algorithm 1.2: Randomized Greedy
input: α , random seed.

1 X = {∅};
2 repeat

3 Assemble the RCL on the basis of heuristic H and α;
4 Randomly select an element xh from the RCL;
5 X = X ∪ {xh};
6 Update H;

7 until configuration X has been completed ;

The evaluation of heuristic function H serves to determine the insertion of

(variable, value) pairs onto the RCL (restricted candidate list). The way in which

this criterion is taken into account exerts considerable influence on the behavior

exhibited during the constructive phase: if only the best (variable, value) pair is
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selected relative to H, then the same solution will often be obtained, and iterating

the procedure will be of rather limited utility. If, on the other hand, all possible

candidates were to be selected, the random algorithm derived would be capable of

producing quite varied configurations, yet of only mediocre quality: the likelihood

of the improvement phase being sufficient to yield good solutions would thus be

remote. The size of the RCL therefore is a determinant parameter of this method.

From a pragmatic standpoint, it is simpler to manage a qualitative acceptance

threshold (i.e. H(xj) better than α×H∗, where H∗ is the best benefit possible and

α is a coefficient lying between 0 and 1) for the random drawing of a new (variable,

value) pair to be assigned rather than implement a list of k potential candidates,

which would imply a data sort or use of more complicated data structures. The

terms used herein are threshold-based RCL in the case of an acceptance threshold

and cardinality-based RCL in all other cases.

The following sections will discuss in greater detail the various GRASP method

components through an application to set covering problem.

1.3 Set Covering Problem

Given a matrix (with m rows and n columns) composed solely of 0′s and 1′s,

the objective is to identify the minimum number of columns such that each row

contains at least one 1 in the identified columns. One type of minimum set covering

problem can be depicted by setting up an incidence matrix with the column and

row entries shown below (Figure 1.1).

More generally speaking, an n-dimensional cost vector is to be considered,

containing strictly positive values. The objective then consists of minimizing the

total costs of columns capable of covering all rows: this minimization is known as

the Set Covering Problem, as exemplified by the following linear formulation:
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Figure 1.1: Incidence matrix for a minimum coverage problem

min z =
n

∑

j=1

costj × xj

∀i ∈ [1,m]
n

∑

j=1

coverij × xj ≥ 1,

∀j ∈ [1, n] xj ∈ {0, 1}.

(1.1)

For 1 ≤ j ≤ n, the decision variable xj equals 1 if column j is selected, and 0

otherwise. In the case of Figure 1.1 for example, x =< 101110100 > constitutes a

solution whose objective value z is equal to 5.

If costj equals 1 for each j, then the problem becomes qualified as a Unicost

Set Covering Problem, as stated at the beginning of this section. Both the Unicost

Set Covering Problem and more general Set Covering Problem are classified as

combinatorial NP-hard problems Garey and Johnson [1979]; moreover, once such

problems reach a certain size, their resolution within a reasonable amount of time

becomes impossible by means of exact approaches. This observation justifies the

implementation of heuristics approaches, like the GRASP method, to handle these

instances of hard problems.
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1.4 An initial algorithm

This section will revisit the same algorithm proposed by T. Feo and M.G.C. Re-

sende in one of their first references on the topic Feo and Resende [1995], where

the GRASP method is applied to the Unicost Set Covering problem. It will then

be shown how to improve results and extend the study to the more general Set

Covering problem through combining GRASP with the Tabu search metaheuristic.

1.4.1 Constructive phase

Let x be the characteristic vector of all columns X (whereby xj = 1 if column j

belongs to X and xj = 0 otherwise): x is the binary vector of the mathematical

model in Figure 1.1. The objective of the greedy algorithm is to produce a config-

uration x with n binary components, whose corresponding set X of columns covers

all the rows. Upon each iteration (out of a total n), the choice of column j to be

added to X (xj = 1) will depend on the number of still uncovered rows that this

column covers. As an example, the set of columns X = {0, 2, 3, 4, 6} corresponds

to the vector x =< 101110100 >, which is the solution to the small instance shown

in Figure 1.1.

For a given column j, we hereby define the heuristic function H(j) as follows:

H(j) =

{

C(X∪{j})−C(X)
costj

if xj = 0
C(X\{j})−C(X)

costj
if xj = 1

where C(X) is the number of rows covered by the set of columns X. The list of

RCL candidates is managed implicitly: H∗ = H(j) maximum is first calculated

for all columns j such that xj = 0. The next step calls for randomly choosing

a column h such that xh = 0 and H(h) ≥ α × H∗. The pseudo-code of the

randomized greedy algorithm is presented below in Algorithm 1.3.

The heuristic function H(), which determines the insertion of columns into

the RCL, is to be reevaluated at each step so as to take into account only the

uncovered rows. This is the property that gives rise to the adaptive nature of the

GRASP method.

Let’s now consider the instance at n = 45 columns and m = 330 rows that

12
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Algorithm 1.3: greedy(α)

input : Coefficient α ∈ [0, 1]
output: feasible vector x, characteristic of the set X of selected columns

1 X = {∅};
2 repeat
3 j∗ ← column, such that H(j∗) is maximized;
4 threshold ← α×H(j∗);
5 r ← rand() modulo n;
6 for j ∈ {r, r + 1, ..., n− 1, 0, 1, ..., r − 1} do
7 if H(j) ≥ threshold then
8 break;

9 X = X ∪ {j} (add column j to the set X ⇔ xj = 1);

10 until all rows have been covered ;

corresponds to data file data.45 (renamed S45), which has been included in the

four Unicost Set Covering problems, as derived from Steiner’s triple systems and

accessible on J.E. Beasley’s OR-Library site J.E.Beasley [1990]. By setting the

values 0, 0.2, . . . 1 for α and 1, 2, . . . 100 for the seed of the pseudo-random sequence,

the results table presented in Table 1.1 has been obtained. This table lists the

α\z 30 31 32 33 34 35 36 37 38 39 40 41 total

0.0 0 0 0 0 0 1 9 10 15 17 21 15 88
0.2 0 0 0 1 3 15 34 23 18 5 1 0 100
0.4 0 0 0 5 13 30 35 16 1 0 0 0 100
0.6 0 2 2 45 38 13 0 0 0 0 0 0 100
0.8 0 11 43 46 0 0 0 0 0 0 0 0 100
1.0 0 55 19 26 0 0 0 0 0 0 0 0 100

Table 1.1: Occurrences of solutions by z value for the S45 instance

number of solutions whose coverage size z lies between 30 and 41. The quality

of these solutions is clearly correlated with the value of parameter α. For the

case α = 0 (random assignment), it can be observed that the greedy() function

produces 12 solutions of a size that strictly exceeds 41. No solution with an optimal

coverage size of 30 (known for this instance) is actually produced.
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1.4.2 Improvement phase

The improvement algorithm proposed by T. Feo and M.G.C. Resende Feo and

Resende [1995] is a simple descent on an elementary neighborhood N. Let x denote

the current configuration, then a configuration x′ belongs to N(x) if a unique j

exists such that xj = 1 and x′
j = 0 and moreover that ∀i ∈ [1,m]

∑n
j=1 coverij×

x′
j ≥ 1. Between two neighboring configurations x and x′, a redundant column

(from the standpoint of row coverage) was deleted.

Algorithm 1.4: descent(x)
input : characteristic vector x from the set X
output: feasible x without any redundant column

1 while redundant columns continue to exist do
2 Find redundant j ∈ X such that costj is maximized;
3 if j exists then
4 X = X \ {j}

Pseudo-code 1.4 describes this descent phase and takes into account the cost

of each column, with respect to the column deletion criterion, for subsequent

application to the more general Set Covering problem.

Moreover, the same statistical study on the occurrences of the best solutions

to the greedy() procedure on its own (see Table 1.1) is repeated, this time with

addition of the descent() procedure, yielding the results provided in Table 1.2. A

leftward shift is observed in the occurrences of objective value z; such an observa-

tion effectively illustrates the benefit of this improvement phase. Before pursuing

the various experimental phases, the characteristics of our benchmark will first be

presented.

1.5 Benchmark

The benchmark used for experimentation purposes is composed of fourteen in-

stances made available on J.E. Beasley’s OR-Library site J.E.Beasley [1990].

The four instances data.45, data.81, data.135 and data.243 (renamed re-

spectively S45, S81,S135 and S243) make up the test datasets in the reference

14



GRASP AND TABU SEARCH

α\z 30 31 32 33 34 35 36 37 38 39 40 41 total

0.0 0 0 0 0 1 9 10 15 17 21 15 8 96
0.2 0 0 1 3 15 34 23 18 5 1 0 0 100
0.4 0 0 5 13 30 35 16 1 0 0 0 0 100
0.6 2 2 45 38 13 0 0 0 0 0 0 0 100
0.8 11 43 46 0 0 0 0 0 0 0 0 0 100
1.0 55 19 26 0 0 0 0 0 0 0 0 0 100

Table 1.2: Improvement in z values for the S45 instance

Inst. n m Inst. n m Inst. n m

G1 10000 1000 H1 10000 1000 S45 45 330
G2 10000 1000 H2 10000 1000 S81 81 1080
G3 10000 1000 H3 10000 1000 S135 135 3015
G4 10000 1000 H4 10000 1000 S243 243 9801
G5 10000 1000 H5 10000 1000

Table 1.3: Characteristics of the various instances

article by T. Feo and M.G.C. Resende Feo and Resende [1995]: these are all Uni-

cost Set Covering problems. The ten instances G1...G5 and H1...H5 are considered

Set Covering problems. Table 1.3 indicates, for each test dataset, the number n of

columns and number m of rows.

The GRASP method was run 100 times for each of the three α coefficient

values of 0.1, 0.5 and 0.9. Seed g of the srand(g) function assumes the values

1, 2, . . . , 100. For each method execution, the CPU time is limited to 10 seconds.

The computer used for this benchmark is equipped with an i7 processor running at

3.4GHz with 8 gigabytes of hard drive memory. The operating system is a Linux,

Ubuntu 12.10.

1.6 greedy(α)+descent experimentations

Provided below is the pseudo-code of the initial GRASP method version, GRASP1,

used for experimentation on the fourteen datasets of our benchmark.

The srand() and rand() functions used during the experimental phase are
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Algorithm 1.5: GRASP1
input : α, random seed seed, time limit.
output: zbest

1 srand(seed);

2 zbest ← +∞;
3 repeat
4 x← greedy(α);
5 x← descent(x);

6 if z(x) < zbest then
7 zbest ← z(x);

8 until CPU time > time limit ;

those of the Numerical Recipes Press et al. [1992]. Moreover, let’s point out that

the coding of the H function is critical: introduction of an incremental computation

is essential to obtaining relative short execution times. The values given in Table

1.4 summarize the results output by the GRASP1 procedure. The primary results

α = 0.1 α = 0.5 α = 0.9

Inst. z∗ z #
∑

zg
100 z #

∑
zg

100 z #
∑

zg
100

G1 176 240 1 281.83 181 1 184.16 183 3 185.14
G2 154 208 1 235.34 162 7 164.16 159 1 160.64
G3 166 199 1 222.59 175 2 176.91 176 3 176.98
G4 168 215 1 245.78 175 1 177.90 177 5 178.09
G5 168 229 1 249.40 175 1 178.56 174 6 175.73

H1 63 69 1 72.30 67 29 67.71 67 5 68.19
H2 63 69 2 72.28 66 1 67.71 67 1 68.51
H3 59 64 1 68.80 62 1 64.81 63 34 63.66
H4 58 64 1 67.12 62 18 62.86 63 80 63.20
H5 55 61 1 62.94 59 2 60.51 57 99 57.01

S45 30 30 100 30.00 30 100 30.00 30 100 30.00
S81 61 61 100 61.00 61 100 61.00 61 100 61.00
S135 103 104 2 104.98 104 4 104.96 103 1 104.10
S243 198 201 1 203.65 203 18 203.82 203 6 204.31

Table 1.4: greedy(α)+descent results

tables provided herein indicate the following:

• the name of the tested instance,

• the best value z∗ known for this particular problem, along with,
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• for each value of coefficient α = 0.1, 0.5 and 0.9:

– the best value z found using the GRASP method,

– the number of times # this value has been reached per 100 runs,

– the average of the 100 values produced by this algorithm.

For the four instances S, the value displayed in column z∗ is optimal (Ostrowski

et al. [2011]). On the other hand, the optimal value for the other ten instances

(G1,. . . ,G5 and H1,. . . ,H5) remains unknown: the z∗ values for these ten instances

are the best values published in the literature ( Azimi et al. [2010]; Caprara et al.

[1999]; Yagiura et al. [2006]).

With the exception of instance S243, the best results are obtained using the

values 0.5 and 0.9 of RCL management parameter α. For the four instances

derived from Steiner’s triple problem, the values published by T. Feo and M.G.C.

Resende Feo and Resende [1995] are corroborated. However, when compared with

the works of Z. Naji-Azimi et al. Azimi et al. [2010], performed in 2010, or even

those of A. Caprara et al. Caprara et al. [1998], dating back to 2000, these results

prove to be relatively far from the best published values.
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1.7 Tabu search

This section will focus on adding a Tabu search phase to the GRASP method in

order to generate more competitive results with respect to the literature. The

algorithm associated with this Tabu search is characterized by:

• an infeasible configuration space S, such that z(x) < zmin,

• a simple move (of the 1-change) type,

• a strict Tabu list.

1.7.1 The search space

In relying on the configuration x0 output by the descent phase (corresponding to

a set X of columns guaranteeing row coverage), the Tabu search will explore the

space of configurations x with objective value z(x) less than zmin = z(xmin), where

xmin is the best feasible solution found by the algorithm. The search space S is

thus formally defined as follows:

S = x ∈ {0, 1}n / z(x) < z(xmin)

1.7.2 Evaluation of a configuration

It is obvious that the row coverage constraints have been relaxed. The H evaluation

function of a column j now contains two components:

H1(j) =

{

C(X ∪ {j})− C(X) if xj = 0

C(X \ {j})− C(X) if xj = 1

and

H2(j) =

{

costj if xj = 0

−costj if xj = 1

This step consists of repairing the coverage constraints (i.e. maximizing H1)

at the lowest cost (minimizing H2).
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1.7.3 Managing the Tabu list

This task involves use of the Reverse Elimination Method proposed by F. Glover

and M. Laguna (Glover and Laguna [1997]), which has been implemented in order

to exactly manage the Tabu status of potential moves: a move is forbidden if and

only if it leads to a previously encountered configuration. This Tabu list is referred

to as a strict list.

Algorithm 1.6: updateTabu(j)

input : j ∈ [0, n− 1]
1 running list[iter] = j;
2 i← iter;
3 iter ← iter + 1;
4 repeat
5 j ← running list[i];
6 if j ∈ RCS then
7 RCS ← RCS/{j};

8 else
9 RCS ← RCS ∪ {j};

10 if |RCS| = 1 then
11 j = RCS[0] is tabu;

12 i← i− 1

13 until i < 0;

The algorithm we describe herein is identical to that successfully run on another

combinatorial problem with binary variables Nebel [2001]. The running list is

actually a table in which a recording is made, upon each iteration, of the column j

targeted by the most recent move: xj = 0 or xj = 1. This column is considered the

move attribute. The RCS (for Residual Cancellation Sequence) is another table in

which attributes will be either added or deleted. The underlying principle consists

of reading one by one, from the end of the running list, past move attributes, in

adding RCS should they be absent and removing RCS if already present. The

following equivalence is thus derived: |RCL| = 1 ⇔ RCL[0] prohibited. The

interested reader is referred to the academic article by F. Dammeyer and S. Voss

Dammeyer and Voß [1993] for further details on this specific method.
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1.7.4 Neighborhood

We have made use of an elementary 1-change move: x′ ∈ N(x) if ∃!j/x′
j 6= xj. The

neighbor x′ of configuration x only differs by one component yet still satisfies the

condition z(x′) < zmin, where zmin is the value of the best feasible configuration

identified. Moreover, the chosen non-Tabu column j minimizes the hierarchical

criterion ((H1(j),H2(j))). Pseudo-code 1.7 describes the evaluation function for

this neighborhood.

Algorithm 1.7: evalH(j1, j2)

input : column interval [j1, j2]
output: best column identified j∗

1 j∗ ← −1;
2 H∗

1 ← −∞;
3 H∗

2 ← +∞;
4 for j1 ≤ j ≤ j2 do
5 if j non tabu then
6 if (xj = 1) ∨ (z + costj < zmin) then
7 if (H1(j) > H∗

1) ∨ (H1(j) = H∗
1 ∧ H2(j) < H∗

2) then
8 j∗ ← j;
9 H∗

1 ← H1(j);
10 H∗

2 ← H2(j);

1.7.5 The Tabu algorithm

The general Tabu() procedure uses as an argument the solution x produced by

the descent() procedure, along with a maximum number of iterations N . Rows

6 through 20 of Algorithm 1.8 correspond to a search diversification mechanism.

Each time a feasible configuration is produced (i.e. |X| = m), the value zmin is

updated and the Tabu list is reset to zero.

The references to rows 2 and 20 will be helpful in explaining the algorithm in

Section 1.9.
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Algorithm 1.8: tabu(x,N)

input : feasible solution x, number of iterations N
output: zmin, xmin

22 zmin ← z(x) ;
3 iter ← 0 ;
4 repeat
66 r ← rand() modulo n;
88 j∗ ← evalH(r, n− 1);

1010 if j∗ < 0 then
1212 j∗ ← evalH(0, r − 1);

13 if xj∗ = 0 then
14 add column j∗;
15 else
16 remove column j∗;

17 if |X| = m then
18 zmin ← z(x) ;
2020 xmin ← x ;
21 iter ← 0;
22 delete the Tabu status ;

23 updateTabu(j∗);

24 until iter ≥ N or j∗ < 0;

1.8 greedy(α)+descent+Tabu experimentations

For this second experimental phase, the benchmark is similar to that discussed in

Section 1.6. Total CPU time remains limited to 10 seconds, while the maximum

number of iterations without improvement for the Tabu() procedure equals half

the number of columns for the treated instance (i.e.n/2). The pseudo-code of the

GRASP2 procedure is specified by Algorithm 1.9.

Table 1.5 effectively illustrates the significant contribution of the Tabu search

to the GRASP method. All z∗ column values are found using this version of the

GRASP method. In comparison with Table 1.4, parameter α is no longer seen to

exert any influence on results. It would seem that the multi-start function of the

GRASP method is more critical to the Tabu phase than control over the RCL

candidate list. However, as will be demonstrated in the following experimental

phase, it still appears that rerunning the method, under parameter α control, does

play a determinant role in obtaining the best results.
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Algorithm 1.9: GRASP2
input : α, random seed seed, time limit.
output: zbest

1 zbest ← +∞;
2 srand(seed);
3 repeat
4 x← greedy(α);
5 x← descent(x);
6 z ← Tabu(x, n/2);

7 if z < zbest then
8 zbest ← z;

9 until CPU time > time limit ;

α = 0.1 α = 0.5 α = 0.9

Inst. z∗ z #
∑

zg
100 z #

∑
zg

100 z #
∑

zg
100

G1 176 176 100 176.00 176 96 176.04 176 96 176.04
G2 154 154 24 154.91 154 32 155.02 154 57 154.63
G3 166 167 4 168.46 167 10 168.48 166 1 168.59
G4 168 168 1 170.34 170 35 170.77 170 29 170.96
G5 168 168 10 169.59 168 7 169.66 168 10 169.34

H1 63 63 11 63.89 63 2 63.98 63 5 63.95
H2 63 63 21 63.79 63 13 63.87 63 5 63.95
H3 59 59 76 59.24 59 82 59.18 59 29 59.73
H4 58 58 99 58.01 58 98 58.02 58 100 58.00
H5 55 55 100 55.00 55 100 55.00 55 100 55.00

S45 30 30 100 30.00 30 100 30.00 30 100 30.00
S81 61 61 100 61.00 61 100 61.00 61 100 61.00
S135 103 103 49 103.51 103 61 103.39 103 52 103.48
S243 198 198 100 198.00 198 100 198.00 198 100 198.00

Table 1.5: greedy(α)+descent+Tabu results

1.9 greedy(1)+Tabu experimentations

To confirm the benefit of this GRASP method, let’s now observe the behavior of

Algorithm 1.10: TABU. For each value of the pseudo-random function rand() seed

(1 ≤ g ≤ 100 for the call-up of srand()), a solution is built using the greedy(1)

procedure, whereby redundant x columns are deleted in allowing for completion

of the Tabu(x,n) procedure, provided CPU time remains less than 10 seconds.
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Inst. z #
∑

zg
100 Inst. z #

∑
zg

100 Inst. z #
∑

zg
100

G1 176 95 176.08 H1 63 2 63.98 S45 30 100 30.00
G2 154 24 155.22 H2 63 4 63.96 S81 61 100 61.00
G3 167 19 168.48 H3 59 36 59.74 S135 103 28 103.74
G4 170 3 171.90 H4 58 91 58.09 S243 198 98 198.10
G5 168 20 169.39 H5 55 97 55.03

Table 1.6: greedy(1)+descent+Tabu results

For this final experimental phase, row 2 has been replaced in pseudo-code

1.8 by zmin ← +∞. Provided the CPU time allocation has not been depleted,

the Tabu() procedure is reinitiated starting with the best solution it was able

to produce during the previous iteration. This configuration is saved in row 20.

Moreover, the size of the running list is twice as long.

Algorithm 1.10: TABU
input : random seed, time limit.
output: zbest

1 zbest ← +∞;
2 srand(seed);
3 x← greedy(1);
4 xmin ← descent(x);
5 repeat
6 x← xmin;
7 z, xmin ← Tabu(x, n);

8 if z < zbest then
9 zbest ← z;

10 until CPU time > time limit ;

In absolute value terms, these results fall short of those output by Algorithm

1.9: GRASP2. This TABU version has produced values of 167 and 170 for instances

G3 and G4 vs. 166 and 168 respectively for the GRASP2 version. Moreover, the

majority of average values are of poorer quality than those listed in Table 1.5.
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1.10 Conclusion

This chapter has presented the principles behind the GRASP method and has de-

tailed their implementation in the aim of resolving large-sized instances associated

with a hard combinatorial problem. Section 1.4.1 exposed the simplicity involved

in modifying the greedy heuristic proposed by T.A. Feo and M.G.C. Resende,

namely:

H(j) =

{

C(X ∪ {j})− C(X) if xj = 0

C(X \ {j})− C(X) if xj = 1

in order to take into account the column cost and apply the construction phase,

not only to the minimum coverage problem, but to the Set Covering Problem as

well.

The advantage of enhancing the improvement phase has also been demon-

strated by adding, to the general GRASP method loop, a Tabu search on an

elementary neighborhood.
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Chapter 2

One-dimensional Bin Packing

In this chapter we study the One-dimensional Bin Packing problem (BPP) and

present efficient and effective local search algorithm for solving it.

2.1 Introduction

Given a set I = {1, 2, . . . , n} of items with associated weights wi (i = 1, . . . , n),

the bin packing problem (BPP) consists of finding the minimum number of bins,

of capacity C, necessary to pack all the items without violating any of the capacity

constraints. In other words, one has to find a partition of items {I1, I2, . . . , Im}

such that
∑

i∈Ij

wi ≤ C, j = 1, . . . ,m

and m is minimum. The bin packing problem is known to be NP-hard (Garey and

Johnson [1979]). One of the most extensively studied combinatorial problems, BPP

has a wide range of practical applications such as in storage allocation, cutting

stock, multiprocessor scheduling, loading in flexible manufacturing systems and

many more. The Vector Packing problem (VPP) is a generalization of BPP with

multiple resources. Item weights wr
i and bin capacity Cr are given for each resource

r ∈ {1, . . . , R} and the following constraint has to be respected:

∑

i∈Ij

wr
i ≤ Cr, r = 1, . . . , R, j = 1, . . . ,m

25



ONE-DIMENSIONAL BIN PACKING

Bin packing problem with cardinality constraints (BPPC) is a bin packing problem

where, in addition to capacity constraints, an upper bound k ≥ 2 on the number

of items packed into each bin is given. This constraint can be expressed as:

∑

i∈Ij

1 ≤ k, j = 1, . . . ,m

Obviously, bin packing with cardinality constraints can be seen as a two dimen-

sional vector packing problem where C2 = k and w1
i = w2

i = 1 for each item

i ∈ 1, . . . , n.

Without loss of generality we can assume that capacities and weights are integer

in each of the defined problems.

We will present a new improvement heuristic based on a local search for solv-

ing BPP, VPP with two resources (2-DVPP) and BPPC. The method will first be

described in detail for a BPP problem, followed by the set of underlying adapta-

tions introduced to solve the 2-DVPP and BPPC.

A possible mathematical formulation of BPP is

minimize z =
n

∑

i=1

yi (2.1)

subject to z =
n

∑

j=1

wjxij ≤ Cyi, i ∈ N = {1, 2, . . . , n} (2.2)

n
∑

i=1

xij = 1, j ∈ N (2.3)

yi ∈ {0, 1}, i ∈ N (2.4)

xij ∈ {0, 1}, i, j ∈ N, (2.5)

where

yi = 1 if bin i is used, otherwise yi = 0;

xij = 1 if item j is assigned to bin i, otherwise xij = 0.

26



ONE-DIMENSIONAL BIN PACKING

Definition 1 For a subset S ⊆ I, we let w(S) =
∑

i∈S wi.

Some of the most simple algorithms for solving BPP are given in the following

discussion.

Next Fit Heuristic (NF) works as follows: Place the items in the order in which

they arrive. Place the next item into the current bin if it fits. Otherwise, create a

new bin. Pseudo code is given in Algorithm 2.1.

This algorithm can waste a lot of bin space, since the bins we close may not be

very full. However, it does not require memory of any bin except the current one.

One should be able to improve the performance of the algorithm by considering

previous bins that might not be full. Similar to NF are First Fit Heuristic (FF),

Best Fit Heuristic (BF), and Worst Fit Heuristic (BF). First Fit works as follows:

Place the items in the order in which they arrive. Place the next item into the

lowest numbered bin in which it fits. If it does not fit into any open bin, create

a new bin. Best Fit and Worst Fit heuristics are similar to FF, but instead of

placing an item into the first available bin, the item is placed into the bin with

smallest (greatest for WF) remaining capacity it fits to.

If it is permissible to preprocess the list of items, significant improvements are

Algorithm 2.1: Next Fit

1 Input: A set of all items I, wi ≤ C, ∀i ∈ I;
2 Output: A partition {Bi} of I where w(Bi) ≤ C for each i;
3 b← 0;
4 for each i ∈ I do

5 if wi +w(Bb) ≤ C then

6 Bb ← Bb ∪ {i}

7 else

8 b← b+ 1;
9 Bb ← {i};

10 return B1, . . . , Bb;

possible for some of the heuristic algorithms. For example, if the items are sorted

before they are packed, a decreasing sort improves the performance of both the

First Fit and Best Fit algorithms. This two algorithms are refered to as First

Fit Decreasing (FFD) and Best Fit Decreasing. Johnson [1973] showed that FFD
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heuristic uses at most 11/9×OPT+4 bins, where OPT is the the optimal solution

(smallest number of bins) to the problem.

In our proposed heuristic, the solution is iteratively improved by decreasing the

number of bins being utilized. The procedure works as follows. First, the upper

bound on the solution value, UB, is obtained by a variation of First Fit (FF)

heuristic. Next, an attempt is made to find a feasible solution with UB − 1 bins,

and this process continues until reaching lower bound, the time limit or maximum

number of search iterations. Aside from the simple lower bound,
⌈∑n

i=1
wi

C

⌉

, lower

bounds developed by Fekete and Schepers [2001], Martello and Toth [1990] (bound

L3) and Alvim et al. [2004] have also been used.

In order to find a feasible solution with a given number of bins, m < UB, a

local search is employed. As opposed to the majority of work published on BPP,

a local search explores partial solutions that consist of a set of assigned items

without any capacity violation and a set of non-assigned items. Moves consist of

rearranging both the items assigned to a single bin and non-assigned items, i.e.

adding and dropping items to and from the bin. The objective here is to minimize

the total weight of non-assigned items. This local search on a partial configura-

tion is called the Consistent Neighborhood Search and has been proven efficient in

several combinatorial optimization problems (Habet and Vasquez [2004]; Vasquez

et al. [2003]). Therefore, our approach will be refered as CNS_BP in the reminder

of the chapter.

An exploration of this search space of partial solutions comprises two parts, which

will be run in succession: 1) a tabu search with limited add/drop moves and 2)

a descent with a general add/drop move. This sequence terminates when a com-

plete solution has been found or the running time limit (or maximum number of

iterations) has been exceeded.

Additionally, the algorithm makes use of a simple reduction procedure that con-

sists of fixing the assignments of all pairs of items that fill an entire bin. More

precisely, s set of item pairs (i, j) such that wi + wj = C has been identified, and

the problem is now reduced by deleting these items (or setting their assignments).
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This same reduction has been used in the majority of papers on BPP. It is im-

portant to mention that not using reduction procedure will not have a significant

influence on the final results (but can speed up the search) and, moreover, no

reduction is possible for a big percentage of the instances considered.

This chapter will be organized as follows. Section 2.2 will address relevant work,

and our approach will be described in Section 2.3. The general framework will be

presented first, followed by a description of all algorithmic components. A number

of critical remarks and parameter choices will be discussed in Section 2.4. Section

2.5 presents a summary of methodological adaptations to 2-DVPP and BPPC. The

results of extensive computational experiments performed on the available set of

instances, for BPP, 2-DVPP and BPPC will be provided in Section 2.6, followed

by conclusions drawn in the final section.

2.2 Relevant work

2.2.1 BPP

A large body of literature relative to one-dimensional bin packing problems is avail-

able. Both exact and heuristic methods have been applied to solving the problem.

Martello and Toth [1990] proposed a branch-and-bound procedure (MTP) for solv-

ing the BPP. Scholl et al. [1997] developed a hybrid method (BISON) that combines

a tabu search with a branch-and-bound procedure based on several bounds and a

new branching scheme. Schwerin and Wäscher [1999] offered a new lower bound

for the BPP based on the cutting stock problem, then integrated this new bound

into MTP and achieved high-quality results. de Carvalho [1999] proposed an exact

algorithm using column generation and branch-and-bound.

Gupta and Ho [1999] presented a minimum bin slack (MBS) constructive

heuristic. At each step, a set of items that fits the bin capacity as much as possible

is identified and packed into the new bin. Fleszar and Hindi [2002] developed a

hybrid algorithm that combines a modified version of the MBS and the Variable

Neighborhood Search. Their hybrid algorithm performed very well in computa-

tional experiments, having obtained the optimal solution for 1329 out of the 1370
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instances considered.

Alvim et al. [2004] presented a hybrid improvement heuristic (HI_BP) that uses

tabu search to move the items between bins. In their algorithm, a complete yet

infeasible configuration is to be repaired through a tabu search procedure. Simple

"shift and swap" neighborhoods are explored, in addition to balancing/unbalancing

the use of bin pairs by means of solving a Maximum Subset Sum problem. HI_BP

performed very well, as evidenced by finding optimal solutions for all 1370 bench-

mark instances considered by Fleszar and Hindi [2002] and a total of 1582 out of

the 1587 optimal solutions on an extensively studied set of benchmark instances.

In recent years, several competitive heuristics have been presented with results

similar to those obtained by HI_BP. Singh and Gupta [2007] proposed a com-

pound heuristic (C_BP), in combining a hybrid steady-state grouping genetic

algorithm with an improved version of Fleszar and Hindi’s Perturbation MBS.

Loh et al. [2008] developed a weight annealing (WA) procedure, by relying on the

concept of weight annealing to expand and accelerate the search by creating dis-

tortions in various parts of the search space. The proposed algorithm is simple and

easy to implement; moreover, these authors reported a high quality performance,

exceeding that of the solutions obtained by HI_BP.

Fleszar and Charalambous [2011] offered a modification to the Perturbation-MBS

method (Fleszar and Hindi [2002]) that introduces a new sufficient average weight

(SAW) principle to control the average weight of items packed in each bin (referred

to as Perturbation-SAWMBS). This heuristic has outperformed the best state-of-

the-art HI_BP, C_BP and WA algorithms. Authors also presented corrections to

the results that were reported for the WA heuristic, obtaining significantly lower

quality results comparing to those reported in Loh et al. [2008].

To the best of our knowledge, the most recent work in this area, presented

by (Quiroz-Castellanos et al. [2015]), entails a grouping genetic algorithm (GGA-

CGT) that outperforms all previous algorithms in terms of number of optimal

solutions found, particularly with a set of most difficult instances hard28.

Brandão and Pedroso [2013] devised an exact approach for solving bin packing

and cutting stock problems based on an Arc-Flow Formulation of the problem;
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these authors made use of a commercial Gurobi solver to process their model.

They were able to optimally solve all standard bin packing instances within a

reasonable computation time, including those instances that have not been solved

by any heuristic method.

2.2.2 VPP

As regards the two-dimensional VPP, Spieksma [1994] proposed a branch-and-

bound algorithm, while Caprara and Toth [2001] forwarded exact and heuristic

approaches as well as a worst-case performance analysis. A heuristic approach

using set-covering formulation was presented by Monaci and Toth [2006]. Masson

et al. [2013] proposed an iterative local search (ILS) algorithm for solving the

Machine Reassignment Problem and VPP with two resources; they reported the

best results on the classical VPP benchmark instances of Spieksma (1994) and

Caprara and Toth (2001).

2.3 A proposed heuristic

This section will describe our improvement heuristic. General improvement pro-

cess is given in Algorithm 2.2. Algorithm starts with applying a simple reduction

procedure and constructing initial (feasible and complete) solution by applying FF

heuristic on a randomly sorted set of items. This initial solution, containing UB

bins, is then to be improved by a local search based procedure, which represents

the core element of our proposal. More precisely, an attempt is made to find a

complete solution with m = UB − 1 bins by applying local search on a partial

solution, and this process continues until reaching lower bound, the time limit or

maximum number of iterations (precisely defined later).

The remainder of a section will describe a procedure aimed at finding a feasible

solution with a given number of bins, m. The inherent idea here is to build a partial

solution with m − 2 bins and then transform it into a complete feasible solution

with m bins through applying a local search. The partial solution is one that

contains a set of items assigned to m− 2 bins, without any capacity violation, and
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Algorithm 2.2: CNS_BP

1 remove item pairs (i, j) such that wi + wj = C;
2 compute lower bound LB;
3 random shuffle the set of items;
4 m← upper bound by First Fit;
5 while m > LB ∧ time limit not exceeded do

6 m← m− 1;
7 create partial solution S with m− 2 bins;
8 CNS(S);

9 return the last complete solution;

a set of non-assigned items. The goal of the local search is, by rearranging the

items, to obtain a configuration such that non-assigned items can be packed into

two bins, thus producing a feasible solution with m bins.

One can notice that termination of the search by finding a complete solution, i.e.

packing non-assigned items into two bins is not possible if more than two "big"

items (with weight greater than or equal to half of the bin capacity) are non-

assigned. Therefore, maximum number of non-assigned big items is limited to two

during the whole procedure. When packing non-assigned items into two bins is

possible, complete solution is obtained by simply adding the two new bins to the

current set of bins.

Partial solution with m − 2 bins is built by deleting three bins from the last

complete solution i.e. by removing all the items from these three bins and adding

them to the set of non-assigned items (note that last feasible solution contains

m+ 1 bins). Bins to be deleted are selected in the following way:

• select the last two bins from a complete solution,

• select the last bin (excluding the last two) such that total number of non-

assigned "big" items does not exceed two.

The capacity of all bins is never violated at any time during the procedure.

Items have been randomly sorted before applying FF in order to avoid solutions

with many small or many big non-assigned items, which could make the search

more difficult or slower (this is the case, for example, if items are sorted in de-

creasing order). This very same procedure is then used for all types of instances,
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e.g. the same initial solution, same parameters, same order of neighborhood ex-

ploration.

For the sake of simplicity, let’s assume that the non-assigned items are packed

into the special bin with unlimited capacity, called trash can and denoted by TC.

Let B = {b1, b2, . . . , bm−2} be the set of currently utilized bins, IB ⊆ I the set

of items assigned to the bins in B and Ib the set of items currently packed into

bin b ∈ B. Analogously, let ITC denote the set of currently non-assigned items.

Total weight and cardinality of a set of items S will be denoted by w(S) and |S|

respectively. For the sake of simplicity, total weight and current number of items

currently assigned to bin b ∈ B∪TC will be denoted by w(b) = w(Ib) and |b| = |Ib|.

2.3.1 Local Search

The Local Search procedure is applied to reach a complete solution with m bins, in

starting from a partial one with m−2 bins constructed as described before. Several

neighborhoods are explored during the search, which consists of two procedures

executed in succession until a stopping criterion is met. These two procedures

are: a) tabu search procedure and b) hill climbing/descent procedure. All moves

consist of swapping the items between a bin in B and trash can TC.

Formally speaking, the local search moves include:

1. Swap(p, q) - consists of swapping p items from a bin b ∈ B with q items from

TC,

2. Pack(b) - consists of optimally rearranging the items between bin b ∈ B and

trash can TC, such that the remaining capacity in b is minimized, whereby

a set of items (packing) P ⊆ Ib ∪ ITC that fits the bin capacity as optimally

as possible is determined. Pack is a generalization of a Swap move with p

and q both being unlimited.

Only the moves not resulting in any capacity violation are considered during this

search. Swap move is used only in the tabu search procedure, while descent proce-

dure makes use of a Pack move exclusively. Pseudo code of the procedure is given

in Algorithm 2.3 and two main parts, TabuSearch() and Descent() procedures, will
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be explained below in the corresponding sections.

Before explaining each of the two main parts of the local search, we will discuss

Algorithm 2.3: CNS()

1 input: partial solution currSol;
2 while time or iterations limit not exceeded and complete solution not found do

3 currSol← TabuSearch(currSol);
4 currSol← Descent(currSol);

5 return currSol;

the search neighborhoods, objective function and search termination conditions.

The goal of the local search procedure is to optimize the following lexicographic

fitness function:

1. minimize the total weight on non-assigned items (minimize use of the trash

can) : min w(TC);

2. maximize the number of items in the trash can: max |TC|.

The first objective is quite natural, while the second one is introduced in order

to yield items with lower weights in the trash can, as this could: 1) increase the

chance of terminating the search; and/or 2) enable a wider exploration of the

search space. Formally, the following fitness function is to be minimized

obj(TC) = n× w(TC)− |TC| (2.6)

The maximum number of items from the same bin that can be rearranged in

a single Swap move is limited to three. More precisely, Swap(p, q) moves with

(p, q) ∈ {(0, 1), (1, 1), (2, 1), (1, 2), (2, 2), (2, 3), (3, 2)}

have been considered. Swap(0, 1) corresponds to shift move, which consists of

shifting (or adding) the item from the trash can to bin b ∈ B. All other possi-

ble moves such as Swap(1, 0), Swap(0, 2) and Swap(3, 1) have been omitted since

they increase the complexity of the neighborhood evaluation without improving

the final results. The results obtained by not allowing more than two items from
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a single bin to be swapped ((p, q) ∈ {(0, 1), (1, 1), (2, 1), (1, 2), (2, 2)}) will also be

reported. Note that the higher complexity of these Swap(p, q) moves, with respect

to the classical shift and swap moves used in the literature, is compensated by the

fact that no moves between pairs of bins in B are performed.

Generating optimal packing for a set of items is a common procedure intro-

duced in several papers (Gupta and Ho [1999], Fleszar and Hindi [2002], Fleszar

and Charalambous [2011]) and originally proposed in Gupta and Ho [1999]. The

Pack move is the same as the "load unbalancing" used in Alvim et al. [2004]. A

Packing problem is equivalent to the Maximum Subset Sum (MSS) problem and

can be solved exactly, for instance by either dynamic programming or enumera-

tion. Let’s note that the packing procedure is only being used for a small subset

of items, i.e. the set of items belonging to a single bin b ∈ B or trash can TC. Let

pack_set(S) denote the solution to the MSS problem, which is a feasible subset

P ⊆ S (whose sum of weights does not exceed C) with maximum total weight.

The enumeration procedure has been used herein to solve the packing problem and

pseudo code is given in Algorithm 2.4. Clearly, the complexity of the enumeration

procedure is O(2l), where l is a number of considered items. The structure of

the available instances makes this approach reasonable, though a simple dynamic

programming procedure of complexity O(l × C), can, if necessary, also be used.

As mentioned before, no more than two "big" items (with weights greater than or

equal to C/2) are allowed to be assigned to the trash can during the entire solving

procedure. This is easily achieved by forbidding all Swap and Pack moves that

result in having three or more big items in the trash can, but is omitted in the

presented algorithms (pseudo-codes) for the simplicity reasons.

During the search, each time the total weight in the trash can is less than or

equal to 2C, an attempt is undertaken to pack all items from the trash can into

the two bins. This step involved simply uses the same Pack procedure, with quite
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Algorithm 2.4: pack_set()

1 input: set of items S = {i1, . . . , ik}, current packing P (initialized to empty set);
2 output: best packing P ∗ (initialized to empty set);
3 if S 6= ∅ then

4 if w(P ) + wi1 ≤ C then

5 pack_set(S \ {i1}, P ∪ {i1});

6 pack_set(S \ {i1}, P );

7 else

8 if (w(P ) > w(P ∗)) ∨ (w(P ) = w(P ∗) ∧ |P | < |P ∗|) then

9 P ∗ ← P

obviously packing into two bins being possible (feasible) if and only if

w(pack_set(ITC)) ≥ w(TC)− C. (2.7)

If packing into two bins is indeed possible, then the procedure terminates.

Aside from the lower bound and time limit termination criteria, the procedure

terminates when total number of solutions with w(TC) ≤ 2C obtained during

the search exceeds a given number. Terminating the search after failing to pack

non-assigned items into two bins too many times seems to be reasonable and this

limit is set to 100000 for all considered instances. On the other hand, further ex-

ploration of the search space does not look promising if solution with w(TC) ≤ 2C

cannot be obtained in a reasonable time. Therefore, we also decide to terminate

the search if no solution with w(TC) ≤ 2C has been found during the first ten

algorithm loops (Tabu + Descent).

2.3.1.1 Tabu search

The main component of the improvement procedure is a tabu search that includes

Swap moves between trash can and bins in B. In each iteration of the search,

all swap moves between trash can and each bin have been evaluated and the best

non-tabu move relative to the defined objective ( minimizing trash can use) is per-

formed. Should two or more moves with the same objective exist, then a random

choice is made. Note that the best move is carried out even if it does not improve
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the solution with respect to the objective function. Each time the total weight of

items in the trash can remains less than or equal to 2C, an attempt is made to

terminate the search by packing non-assigned items into two bins.

This process repeats until no feasible and non-tabu move exists or until the time

limit timeLimitTabu has been exceeded or the maximum number of moves with-

out improvement (maxNmbIters) has been reached.

Running time of the tabu search has been limited by timeLimitTabu; all results

reported here were obtained with a one-second limit. The maximum number of

iterations without improvement in a tabu search has been set to |B| × |I|.

Whenever an item with weight w is placed into bin b via a swap move, all swap

moves that include an item from b with weight w become tabu for a specific num-

ber of iterations. Only removing the items from the bin and placing them into the

trash can may then be considered tabu, implying that moving an item from the

trash can to a bin is never tabu. The number of iterations for which moving the

item of weight w from bin b to the trash can is tabu depends on the frequency of

assigning an item of the same weight w to the same bin, i.e. on the number of

swap moves performed that place the item of weight w into b, freq(b, w). More

precisely, the given move is tabu for freq(b, w)/2 iterations.

Given that the objective of a local search, as defined above, is lexicographic, mini-

mizing the total weight of non-assigned items has a higher priority than maximizing

the number of non-assigned items. Nevertheless, this objective can lead the search

to the configurations with quite good first objective, but very low number of non-

assigned items, which might make the termination and exploration of the search

more difficult. We have therefore decided to rely on two different variants of the

tabu search procedure, namely:

• tabu search consisting of all defined Swap(p, q) moves,

• tabu search consisting of subset of moves that do not decrease the second

objective i.e. with p ≥ q (⇒ (p, q) ∈ {(1, 1), (2, 1), (2, 2), (3, 2)})

Two variants differ only in the set of allowed swap moves (line 7 in Algorithm 2.5)

and are applied one after another, meaning that the whole tabu search procedure
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consists of sequentially calling these two variants. Introducing the second variant of

the tabu search has significantly improved the results obtained on hard28 dataset

(around 5 new optimal solutions in average).

Tabu search procedure returns either the best found solution in case initial solution

is improved or the last obtained solution (see the last 5 lines in Algorithm 2.5).

Algorithm 2.5: TabuSearch()

1 input: current solution initTabuSol;
2 maxIters← |B| × |I|;
3 iter ← 0;
4 bestObj ← current objective;
5 bestSol← current solution;
6 while iter < maxIters ∧ time limit timeLimitTabu not exceeded do

7 evaluate all Swap(p, q) moves between each bin b and TC ;
8 perform a non-tabu swap move that minimizes obj(TC) (choose the random one in

case more equal moves exist);
9 if current objective < bestObj then

10 bestSol← current solution;
11 bestObj ← current objective;
12 iter ← 0;
13 reset tabu;

14 if w(TC) ≤ 2C ∧ w(pack_set(ITC)) ≥ w(TC)− C then

15 TERMINATE;

16 update tabu list;
17 iter ← iter + 1;

18 if bestSol 6= initTabuSol then

19 return bestSol;

20 else

21 return current solution;

2.3.1.2 Descent procedure

The second part of the search procedure involves exploring the search space by

applying Pack move, which is exclusively reserved as part of the descent (hill

climbing) procedure due to the greater complexity associated with this move. Like

in the tabu procedure, this move is performed only between trash can and bin

in B. The Pack(b) move is executed for each bin b ∈ B until no improvement

in the objective can be achieved. Formally, Pack(b) consists of assigning a set of

items pack_set(Ib ∪ ITC) to bin b and set (IB ∪ ITC) \ pack_set(Ib ∪ ITC) to trash
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can. The order of bins in B while exploring the neighborhood is random. It is

clear that the defined objective cannot increase during the procedure due to the

nature of the pack move. As in the tabu search procedure, a feasible packing of

non-assigned items into two bins is attempted after each Pack move which results

in w(TC) ≤ 2C. The running time of the descent procedure is significantly less

than that of the tabu search, which is understandable when taking into account

the fact that all moves performed are improvements and moreover that the move

complexity is not much greater.

Complete Pack(b) move is performed only when total number of considered items

(|Ib ∪ ITC |) is not greater than 20. Nevertheless, a limited Pack(b) move consid-

ering a random subset of items containing no more than ten items from b and no

more than ten items from TC is performed. Thus, complexity of the Pack move

never exceeds 220. Descent procedure is listed in Algorithm 2.6.

Algorithm 2.6: Descent()

1 repeat

2 randomly sort the set of bins B;
3 for each b ∈ B do

4 perform Pack move between b and TC: Pack(b);
5 if objective improved ∧ w(TC) ≤ 2C ∧ w(pack_set(ITC)) ≥ w(TC)− C then

6 TERMINATE;

7 until no objective improvement made;

2.4 Discussion and parameters

Unlike many published algorithms, only one procedure has been implemented to

build initial solution. We decided to use FF heuristic because of its simplicity,

while randomly sorting the set of items before FF is used in order to avoid search

configurations with many items of similar sizes (too many small or too many big

items for example). The trash can could contain too many small items if, for

example, First Fit Decrease heuristic is used. Furthermore, solutions obtained by

using only First Fit heuristic on a given set of items (without random shuffling)

depend on the order of items given in the benchmark data files; this can be a
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Figure 2.1: The picture illustrates the oscillation of the fitness function for instance
BPP_766 from hard28 dataset. Total weight of non-assigned items, w(TC), is
represented after first and second variant of Tabu() procedure and after Descent().

decreasing order for example, or even the one for which FF would produce optimal

solution for each instance.

Many experiments including choices of neighborhoods, termination conditions, etc.

have been conducted. For instance, a partial solution with m− 3 bins can be em-

ployed, and termination condition could be a packing of non-assigned items into

three bins. This modification is capable of producing improved average results or

computation times for certain instances, though our experiments have shown that

no overall improvement can be achieved by applying it. On the other hand, one

could simplify the procedure by adopting a partial solution with m − 1 bins (or

m bins) and using w(TC) ≤ C (or w(TC) = 0) as the termination criteria. The

first simplification will produce worse results only for hard28 dataset, as will be

shown later, while the second one yields significantly lower quality solutions on

all datasets. This is quite understandable, given that, in this case, the only move

to terminate is Swap(0, 1) (recall that no move between bins ∈ B is performed)

and a problem of obtaining a configuration for which this is possible is of same
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difficulty as the original one (with capacity of one bin being decreased).

Since tabu search procedure is the main part of the algorithm, one can expect

that the maximum number of items to rearrange in a single Swap(p, q) move, i.e.

the upper bounds for p and q, can significantly influence the quality of results. As

will be shown later, the results obtained by allowing no more than two items from

the same bin to be swapped rather than three are only slightly worse. Neverthe-

less, allowing just Swap(0, 1) and Swap(1, 1) moves, drastically reduces solution

quality. This outcome is to be expected since capacity violation is prohibited and

most moves quickly become infeasible.

Only several parameters have been used during the entire method. Total run-

ning time of the algorithm has been limited to 60 seconds for all instances. Opting

for a much smaller limit would produce the same results for most instances, but

the 60-second limit is preferred mainly because of the difficulty of instances be-

longing to the hard28 or gau_1 class. Tabu Search procedure has been limited to

a duration of timeLimitTabu, which has been set to one second in all reported

experiments, and a maximum number of iterations (moves) without improvement,

maxNmbIters, set to |B|×|I|. Complete Pack move is solely performed if the to-

tal number of items considered for rearrangement does not exceed 20 (which is not

really a limitation for any of the instances considered herein) and a move limited to

a subset of 20 items is performed otherwise. This limitation is introduced only to

avoid huge enumeration times, but similar values (15-25 for example) will produce

the same quality results. Furthermore, if dynamic programming procedure is uti-

lized for finding an optimal packing, no limitation on number of items is required.

Tabu tenure in tabu search procedure is proportional to the frequency of the move.

Optimizing running time was not the primary goal, so we did not exert much ef-

fort towards possibly accelerating the algorithm or finding solutions more quickly

by making adaptations to it (e.g. exploring fewer neighborhoods) for certain in-

stances. No distinction whatsoever has been made between the instances. Nev-

ertheless, we have sought to obtain an algorithm with a reasonable running time,

and we believe this goal has been achieved.
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2.5 Applying the method on 2-DVPP and BPPC

The generalization of the presented method to 2-DVPP is straightforward. The

main modification introduced is to the fitness function. Let w1(TC) and w2(TC)

be the total weight of non-assigned items on resources one and two, respectively.

The first objective here is to minimize the greater of the two values, w1(TC)/C1

and w2(TC)/C2. The second objective, like for BPP, is to maximize the number of

items in the trash can. Formally, the following fitness function is to be minimized:

n× C1 × C2 ×max(
w1(TC)

C1

,
w2(TC)

C2

)− |TC| (2.8)

As for BPP problem, upper bound UB is obtained by First Fit heuristic applied

on a randomly sorted set of items. Reduction procedure is analogous to the one

used in BPP: a set of item pairs (i, j) s.t. w1
i + w1

j = C1 and w2
i + w2

j = C2 has

been identified, and the problem is reduced by fixing assignments of these items.

In the case of 2-DVPP, we consider the weight of item j to be greater than or

equal to half of the bin capacity if w1
j ≥

C1

2
and w2

j ≥
C2

2
.

Only a simple lower bound,

⌈

max(

∑n
i=1 w

1
i

C1

,

∑n
i=1 w

2
i

C2

)

⌉

has been used for 2-DVPP. All other algorithm features, such as parameters choice,

remain the same.

An analogous adaptation could be made for VPP with more than two resources;

however, experiments were not conducted since only a few relevant experimental

results have been reported in the literature and most algorithms proposed have

only been tested on 2-DVPP benchmarks.

BPPC problem is simply transformed to 2-DVPP and solved as described above.

Transformation consists of setting the second resource capacity C2 to the upper

bound on number of items per bin, k, and weight of each item on the second

resource to 1.
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2.6 Computational results

This section will report the results of extensive computational experiments per-

formed using the presented method on a broad set of test problems. Our method

has been implemented in C++ and compiled using gcc 4.7.2 compiler in Ubuntu

14.04. All tests were run on a computer with an Intel Core i7-3770 CPU 3.40

GHz processor. All computation times are reported in seconds; if not otherwise

specified, reported values always correspond to the total running time of the al-

gorithm i.e. from the lower bound calculation and initial solution construction to

the search termination.

2.6.1 BPP

A common set of one-dimensional bin-packing instances has been used to test the

method; this set consists of five classes of instances: 1) a class developed by Falke-

nauer [1996] consisting of two sets, uniform and triplets (denoted respectively

by U and T in the result tables), with each containing 80 instances; 2) a class de-

veloped by Scholl et al. [1997] consisting of three sets set_1, set_2, and set_3,

containing 720, 480 and 10 instances respectively; 3) a class of instances developed

by Schwerin and Wäscher [1999] containing two sets, was_1 and was_2, with each

set comprising 100 instances; 4) a class of instances developed by Wäscher and

Gau [1996], called gau_1, containing 17 problem instances; 5) the hard28 class,

consisting of the 28 difficult problem instances used, e.g. in Belov and Scheithauer

[2006]. All instances can be downloaded from the Web page of the EURO Special

Interest Group on Cutting and Packing (ESICUP) (ESICUP [2013]). Optimal so-

lutions for all instances are known.

Optimal solutions for all instances in the first three classes (1570 instances in

all) have been obtained by several heuristics, including HI_BP and GGA-CGT.

HI_BP optimally solves 12 of the 17 instances in gau_1, while other recent heuris-

tics yielded more optimal results (e.g. 15 by C_BP and 16 by Perturbation-

SAWMBS and GGA-CGT). The only instance from this class that could not be

solved optimally by any heuristic algorithm is "TEST0014".
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Fleszar and Charalambous [2011] reported that their Perturbation-SAWMBS

method could not solve to optimality more instances in the hard28 dataset than

the First Fit Decrease (FFD) procedure (5 out of the 28), even when drastically in-

creasing the maximum number of iterations in their algorithm. The same applies

to the HI_BP algorithm, as reported in Quiroz-Castellanos et al. [2015]. Most

of the other proposed heuristics for the bin packing problem, including the best

performers, cannot optimally solve more than 5 instances from this class. Nev-

ertheless, a recently proposed genetic algorithm GGA-CGT (Quiroz-Castellanos

et al. [2015]) finds optimal solutions to 16 instances. These authors also reported

that more instances can be solved by increasing the population size (up to 22 in-

stances when the population is increased from 500 to 10,000,000).

The exact methods based on Arc-Flow Formulation, as presented in (Brandão

and Pedroso [2013]), can solve all instances to optimality within a reasonable

computing time, including all instances from the hard28 dataset. Solver can be

downloaded at http://vpsolver.dcc.fc.up.pt/ and detailed results obtained

by using Gurobi solver for solving their Arc-Flow model are given at http://www.

dcc.fc.up.pt/~fdabrandao/research/vpsolver/results/.

Average running times of this exact algorithm for each class of instances are listed

in column time in Table 2.1. Computer used is 2 × Quad-Core Intel Xeon at

2.66GHz, Mac OS X 10.8.0, 16 GBytes of memory, while Gurobi 5.0.0 solver (sin-

gle thread) is used to solve the model. It can be noted that the computation times

in their experiments were much greater for gau_1 dataset (up to a few thousand

seconds) when compared to other datasets. This is due to the fact that average

number of items per bin in this dataset is greater than in other datasets. Gener-

ally, one should not forget that exact algorithm runs until optimality is proven,

but might find optimal solution very early and exact algorithm can be, for ex-

ample, easily transformed into a heuristic approach by stopping it after a given

time limit. However, this is not the case here since lower bounds, obtained by

linear programming (LP) relaxation or by other well known methods, are equal to

the optimal solutions in majority of the cases, and, thus, stopping the algorithm

before optimality is proven will rarely produce optimal solutions. More precisely,

lower bounds obtained by LP relaxation of Arc-Flow model are not equal to the

44



ONE-DIMENSIONAL BIN PACKING

optimal solutions only for 7 out of 1615 instances considered here. Average run-

ning time elapsed from starting integer optimization (excluding bound calculation

time) until finding the best solution for an exact approach is reported in column

IP timeToBest in Table 2.1. Table 2.2 reports total number of optimal solutions

found by exact approach with limiting the computational time to different values

and excluding time spent for calculating the bound.

class inst time(s) IPtimeToBest(s)

U 80 0.34 0.24
T 80 0.91 0.71

set_1 720 0.15 0.10
set_2 480 43.4 39.7
set_3 10 12.1 7.53
was_1 100 0.67 0.52
was_2 100 0.57 0.40
gau_1 17 1641 1485

hard28 28 29.69 27.0

Table 2.1: Results of exact approach based on Arc-Flow formulation

Turning exact approach into heuristic

timeLimit(s) 60 120 300 600 1000
opt solutions 1520 1558 1598 1607 1611

Table 2.2: Number of optimally solved instances when limiting the running time
of the exact approach based on Arc-Flow formulation.

To investigate the effectiveness of CNS_BP, we compared these results with

those obtained by the best heuristic approaches reported in the literature, Perturbation-

SAWMBS and GGA-CGT.

Running time of the algorithm is highly influenced by several important factors,

such as a lower bound used to terminate the search and running time and it-

erations limit placed on the algorithm. Using a more complicated bound could

terminate the search earlier but can also consume a significant CPU time (espe-

cially if implementation is suboptimal). Choosing the running time and iterations
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limits largely depends on the set of instances to be solved. As an example, if the

hard28 dataset was excluded from consideration, which is the case in many pub-

lished papers on BPP, then the average total time would decrease substantially,

as would the required running time and iterations limits. In the reported results,

there is no distinction made in the algorithm across all instances. Raising the

running time or iterations limit could increase the number of optimal solutions

but might also drastically increase the average running time since total running

time is to be reported, even if no improvement in results is achieved. We will also

report the running times required to obtain the best solution values i.e. excluding

the time spent exploring the search space after the last complete solution has been

found. All results reported in this section have been obtained with a running time

limit of 60 seconds and no more than 100,000 moves resulting in w(TC) ≤ 2C, if

not otherwise specified.

Results for seed = 1

P.-SAWMBS GGA-CGT CNS_BP

class inst opt time scTime opt time opt time scTime toBest

U 80 79 0.00 0.00 80 0.23 80 0.072 0.315 0.062
T 80 80 0.00 0.00 80 0.41 80 0.016 0.070 0.016

set_1 720 720 0.01 0.015 720 0.35 720 0.083 0.364 0.002
set_2 480 480 0.00 0.00 480 0.12 480 0.029 0.127 0.029
set_3 10 10 0.16 0.24 10 1.99 10 0.001 0.004 0.001
was_1 100 100 0.00 0.00 100 0.00 100 0.000 0.001 0.000
was_2 100 100 0.01 0.015 100 1.07 100 0.000 0.001 0.000
gau_1 17 16 0.04 0.06 16 0.27 17 3.131 13.69 2.352

* 0.818 3.575 0.04
hard28 28 5 0.24 0.36 16 2.40 25 6.205 27.14 3.351

TOTAL 1615 1590 1602 1612

Intel core2 Core2 Duo Intel i7-3770
Q8200 2.33GHz CE6300 1.86GHz 3.40GHz

Table 2.3: Results with a seed set equal to 1. A comparison is drawn with the best
state-of-the-art methods. The reported running time for gau_1 has been largely
influenced by the "TEST0014" instance, which is not solved in any other heuristic;
therefore, the running time without this instance has been reported as well(*).

Much like most of the previous work on BPP, for each instance, a single ex-

ecution of the algorithm was run, with the initial seed for the random number

generation set to 1. Results are listed in Table 2.3. For each class of instances,
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60 sec 30 sec 10 sec 5 sec 2 sec

class opt time opt time opt time opt time opt time

U 80.0 0.070 80.0 0.070 80.0 0.070 80.0 0.070 80.0 0.070
T 80.0 0.016 80.0 0.016 80.0 0.016 80.0 0.016 80.0 0.016

set_1 719.6 0.074 719.6 0.074 719.6 0.074 719.6 0.070 719.6 0.054
set_2 480.0 0.043 480.0 0.043 479.70 0.039 479.46 0.035 479.02 0.031
set_3 10.0 0.001 10.0 0.001 10.0 0.001 10.0 0.001 10.0 0.001
was_1 100.0 0.000 100.0 0.000 100.0 0.000 100.0 0.000 100.0 0.000
was_2 100.0 0.001 100.0 0.001 100.0 0.001 100.0 0.001 100.0 0.001
gau_1 16.90 2.371 16.70 1.987 16.24 1.366 16.12 0.896 16.0 0.390

* - - - - 0.048
hard28 24.78 7.224 24.52 4.750 23.64 2.672 22.96 1.763 21.34 0.958

TOTAL 1611.28 1610.82 1609.18 1608.14 1605.96

Table 2.4: Average Results of CNS_BP for 50 seeds with different time limits

the number of optimally solved instances using each approach, as well as the

average computation time per instance, are reported. For our approach, aver-

age time to obtain the best result (toBest) per instance for each class have also

been reported. Algorithms are executed on different machines and to have a fair

comparison we will calculate the scale factors, which are used to compare the per-

formance of the algorithms as if they were running on the same machine. For

this purpose, we will use the CPU speed estimations provided in SPEC standard

benchmark (https : //www.spec.org/cpu2006/results/cint2006.html). According

to this, CPU speeds of processors used to run Perturbation-SAWMBS, GGA-CGT,

and CNS_BP are 18.30, 12.30 and 53.80 respectively. If we choose the second one

as a reference one, the scale factors will be 1.48, 1 and 4.37 respectively. Therefore,

reported running times of each three algorithms are multiplied by these factors and

reported in columns scT ime. Note that this column is not necessary for GGA-

CGT algorithm since corresponding factor is equal to 1.

A more detailed and more relevant (in our opinion) result of CNS_BP would

be the average from running the algorithm for 50 different seeds (1 to 50) and for

different time limits. These results are reported in Table 2.4. As in the previous

table, the number of optimally solved instances and average running time per in-

stance are indicated for each class and each of five time limits (60, 30, 10, 5 and 2

seconds).

Let’s note that in terms of number of optimal solutions found, our algorithm
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outperforms all published heuristic algorithms on the last two datasets and more-

over obtains the same (optimal) solutions on all other datasets. Perturbation-

SAWMBS is superior to other two algorithms in terms of running time, while

running times for the previous best algorithm in terms of number of optimal solu-

tions found, GGA-CGT, and CNS_BP are comparable.

It can be noticed that all instances from 6 datasets are solved in each of the

runs when the running time limit is set at 1 minute. The same finding holds

for 16 instances from the gau_1, 24 instances from the hard28 and 718 instances

from the set_1.. This outcome demonstrates the robustness and precision of the

presented algorithm. The number of solved instances from the hard28 dataset

varies from 24 to 27 for the various seeds and detailed results are illustrated in

Table 2.5. The only non-solved instance in 50 runs is "BPP_13". Nevertheless,

optimal solution for this instance can be found when increasing the time limit or

running the algorithm for more seeds. In most published papers, including HI_BP,

Perturbation-SAWMBS and GGA-CGT, algorithm robustness has been verified by

executing the algorithm five times with different seeds of random numbers (8075

runs in all). The average results should indeed be considered as a reference for

each algorithm. The proposed algorithm found the optimal solutions in 8057 runs

when running with seeds 1-5, missing the optimal solution in just 18 cases (once for

"TEST0014" from gau_1, 15 times for hard28 and twice for set_1 ); in contrast,

HI_BP, Perturbation-SAWMBS and GGA-CGT fail to obtain optimal solutions

in 144, 128 and 78 cases, respectively.

The results derived by certain method simplifications are reported in Table 2.6.

More specifically, the results when prohibiting more than two items from the same

bin to be rearranged in a single Swap move during the tabu search procedure,

the results obtained without the Descent() procedure and the results with partial

solution containing m − 1 bins (and termination condition w(TC) ≤ C) are in-

cluded. This table reports the average results over 50 seeds. One can notice that

first two simplifications do not significantly impact the quality of the results, while

the third simplification produces worse solutions only on hard28 dataset.
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instance LB OPT #opt time toBest

BPP_14 61 62 50 9.508 0.000
BPP_832 60 60 50 0.674 0.674
BPP_40 59 59 16 50.711 10.362

BPP_360 62 62 50 0.063 0.063
BPP_645 58 58 50 1.374 1.374
BPP_742 64 64 50 0.077 0.077
BPP_766 62 62 50 7.716 7.716
BPP_60 63 63 8 9.403 0.157
BPP_13 67 67 0 7.356 0.000

BPP_195 64 64 50 0.038 0.038
BPP_709 67 67 11 49.516 7.887
BPP_785 68 68 50 0.251 0.251
BPP_47 71 71 50 0.136 0.136

BPP_181 72 72 50 1.348 1.348
BPP_359 75 76 50 1.438 0.000
BPP_485 71 71 50 0.622 0.622
BPP_640 74 74 50 0.048 0.048
BPP_716 76 77 50 1.104 0.000
BPP_119 76 77 50 59.372 0.000
BPP_144 73 73 50 0.565 0.565
BPP_561 72 72 50 0.012 0.012
BPP_781 71 71 50 0.017 0.017
BPP_900 75 75 50 2.642 2.642
BPP_175 83 84 50 3.881 0.001
BPP_178 80 80 50 0.241 0.241
BPP_419 80 80 50 5.856 5.856
BPP_531 83 83 50 0.093 0.093
BPP_814 81 81 50 0.032 0.032

Table 2.5: Detailed results for hard28 dataset. The number of runs resulting in an
optimal solution (#opt) is reported for each instance, as are the average running
time (time) and average time spent to obtain best solutions (toBest). 50 runs
were conducted for each instance. One can note that average running time over
all instances is largely influenced by the running time on most difficult instances
and instances for which the lower bound is different than optimal value (BPP_119
for example).

2.6.2 2-DVPP

2-DVPP instances used to evaluate the performance of CNS_BP have been ex-

tracted from Caprara and Toth [2001]; Spieksma [1994] and moreover have been

addressed in Monaci and Toth [2006]. A total of 10 different classes of instances are
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Swap(p ≤ 2, q ≤ 2) no Descent() m− 1 bins

class inst opt time opt time opt time

U 80 80.0 0.062 80.0 0.070 80.0 0.053
T 80 80.0 0.013 80.0 0.015 80.0 0.051

set_1 720 719.6 0.051 719.54 0.062 719.08 0.081
set_2 480 479.88 0.065 479.26 0.127 480.0 0.017
set_3 10 10.0 0.106 10.0 0.001 10.0 0.015
was_1 100 100.0 0.021 100.0 0.001 100.0 0.001
was_2 100 100.0 0.025 99.84 0.006 100.0 0.001
gau_1 17 16.0 2.968 16.90 1.585 16.50 2.275

hard28 28 24.54 7.198 24.58 6.786 17.16 25.280

TOTAL 1615 1610.02 1610.12 1602.74

Table 2.6: Results with simplifications, average results for 50 seeds. Results when
allowing a maximum of two items from the same bin to be swapped in the tabu
search procedure, results without applying the Descent procedure and results with
partial solution with m− 1 bins are reported.

presented. Each class is composed of 40 instances, broken down into 10 instances

of four different sizes. The Class 10 instances have been generated by cutting the

bin resources into triplets of objects, such that not a single capacity slack unit is

found in these solutions. For this class therefore, the optimal solutions in most

cases are known as a consequence of the instance generation process, but not a

result of bin packing algorithms. Classes 2, 3, 4, 5 and 8 are known to be eas-

ily solvable by simple greedy heuristics (Monaci and Toth, 2006), hence we shall

focus our experiments on the remaining classes, which yield a total of 200 instances.

The best results are obtained by the iterated local search (MS-ILS) heuristic

method, as reported in Masson et al. [2013], and we will compare our results

to theirs. Nevertheless, 330 out of 400 instances could still be solved by the exact

approach proposed by Brandão and Pedroso [2013]; 60 out of 70 unsolved in-

stances belong to classes 4 and 5 and can be easily solved optimally by non-exact

approaches. Consequently, 10 instances belonging to class 9 and containing 200

items are the only ones whose optimum remains unknown. Our method obtains

optimal solutions for all instances with known optima (390 out of 400) and the

same best known values for the remaining 10 instances.
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The results reported in Table 2.7 have been aggregated by problem class, i.e.

for each class the cumulative number of bins of 10 instances is reported. A total

of 50 runs with different seeds are performed for each instance. In turn, each col-

umn presents the problem size, problem class, simple lower bound, optimal value

(if known), the best known upper bound obtained by a heuristic (in this case

MS − ILS), average running time per instance for MS − ILS, average and best

number of bins generated with our heuristic, and the average CPU time per in-

stance and average CPU time required to obtain the best results. All best known

upper bounds and optimal solutions obtained by previous algorithms have been

found. The running time limit was set to 10 seconds, and no more than two items

from the same bin can be rearranged in a single Swap move throughout the tabu

search procedure. MS − ILS results reported in Masson et al. [2013] have been

obtained with running the local search with a time limit of 300 seconds on an

Opteron 2.4 GHz with 4 GB of RAM memory running Linux OpenSuse 11.1.

2.6.3 BPPC

To evaluate the performance of CNS_BP on BPPC, we used the same BPPC in-

stances as Brandao and Pedroso (2013) for evaluating their Arc-Flow model. Their

Arc-Flow model could solve all the instances to optimality (http://www.dcc.fc.

up.pt/~fdabrandao/research/vpsolver/results/). Namely, BPPC instances

have been created by adding cardinality constraints to one-dimensional BPP in-

stances. For each of 1615 instances considered in BPP, the instance with cardinal-

ity k ∈ [2, k_max] has been created, where k_max is chosen such that optimal

solution value for BPPC with cardinality k_max equals to the optimal solution

value for problem without cardinality constraint (BPP). In total, 5255 instances

have been created. Obtained results are reported in Table 2.8. Total number

of instances and average number of optimal solutions obtained by proposed algo-

rithm have been reported for each dataset. As for BPP, we run the algorithm with

50 different seeds for each instance. Results of similar quality as for BPP have

been obtained, with average number of optimally solved instances being 5252.38.

Running time limit was set to 60 seconds.
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2-DVPP results - 50 seeds

MS-ILS CNS_BP

N class LB OPT best time avg best time toBest

25 1 69 69 69 12.7 69.0 69 0.000 0.000
25 6 99 101 101 21.3 101.0 101 2.000 0.000
25 7 95 96 96 18.6 96.0 96 1.000 0.000
25 9 63 73 73 20.3 73.0 73 10.000 0.000
24 10 80 80 80 11.1 80.0 80 0.000 0.000

50 1 135 135 135 72.3 135.0 135 0.000 0.000
50 6 213 215 215 68.6 215.0 215 2.000 0.000
50 7 196 197 197 88.0 196.0 196 1.000 0.000
50 9 135 145 145 199.2 145.0 145 10.000 0.000
51 10 170 170 170 68.9 170.0 170 0.000 0.000

100 1 255 255 257 294.5 255.0 255 0.034 0.034
100 6 405 410 410 300.0 410.0 410 5.001 0.001
100 7 398 402 402 285.9 402.0 402 4.004 0.004
100 9 257 267 267 300.0 267.0 267 10.000 0.000
99 10 330 330 330 232.4 330.0 330 0.007 0.007

200 1 503 503 503 300.0 503.0 503 0.011 0.011
200 6 803 811 811 300.0 811.0 811 8.002 0.002
200 7 799 801 802 300.0 801.0 801 2.000 0.000
200 9 503 — 513 300.0 513.0 513 10.011 0.011
201 10 670 670 678 300.0 670.1 670 0.913 0.784

Table 2.7: 2-DVPP Results. Improvements over previous solutions found by
heuristics are shown in bold.

class instBPP card totalInst #opt

U 80 2-3 160 160.0
T 80 2-3 160 160.0

set_1 720 2-4 1189 1188.60
set_2 480 2-10 2529 2528.54
set_3 10 2-4 30 30.0
was_1 100 2-6 500 500.0
was_2 100 2-6 500 500.0
gau_1 17 2-18 131 130.96

hard28 28 2-3 56 54.28

total 1615 5255 5252.38

Table 2.8: BPPC results
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2.7 Conclusion

A new local search-based algorithm has been proposed for the Bin Packing Prob-

lem. The main feature of this algorithm is to proceed by partial configurations

of the search space. Items are assigned in m bins while respecting the capacity

constraint or else are not assigned at all. The single goal of this algorithm is to

derive a set of non-assigned items that can be packed into two bins; hence, we

have obtained a complete m + 2-bin feasible solution. To continue, computations

have been divided into two repeated steps:

• the tabu search on partial feasible configurations. Only low cardinality swap

moves between non-assigned items and bin are used. The fitness function is

aimed at minimizing the sum of weights of non-assigned items while maxi-

mizing the number of non-assigned items;

• the Descent procedure, which performs local optimal packing between non-

assigned items and a bin with the same fitness function. This step corre-

sponds to generalized swap moves between a bin and non-assigned items.

Whenever the sum of weights of non-assigned items is less than or equal to twice

the capacity of a bin, the attempt is made to pack all non-assigned items into two

bins by using the very same packing procedure as in the Descent step of the algo-

rithm. The complexity of this procedure is bounded by O(k × C) (using dynamic

programming like for the simple 0− 1 knapsack problem), where k is equal to the

number of items in one bin plus the number of non-assigned items or O(2k) when

using the enumeration algorithm.

This algorithm introduces very few parameters and outperforms all previous heuris-

tic approaches on a wide range of BPP instances. Let’s note in particular that

it obtains better results than other heuristics on hard28 and gau_1 datasets. In

considering the simplicity of the entire method, it was ultimately quite easy to

adapt it to the Vector Packing Problem and solve the available benchmarks with

a significantly better performance than other published approaches.

When taking into account that this whole process never considers any bin

state metrology, these results might come as a surprise. The algorithm actually

only focuses on the configuration of non-assigned items, which may be viewed as
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a major restriction. Yet on the other hand, integrating bin characteristics (like
∑

b∈B(C − w(b))2 for instance) into the fitness function, in order to guide swap

moves between the bins, could significantly increase CPU time, though maximiz-

ing this function has not produced any better results.

Some of the algorithm features that showed to be crucial in obtaining high qual-

ity solutions include (1) the size of a partial solution and termination criteria i.e.

exploring partial solutions with m − 2 bins and terminating the search when all

non-assigned items can be packed into two bins (thus, producing complete feasible

solution with m bins), (2) defining a suitable fitness function i.e lexicographic fit-

ness function minimizing total weight of non-assigned items first and maximizing

a number of non-assigned items second and (3) introducing second tabu search

variant consisting of a subset of moves that do not decrease the second objective.
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Chapter 3

Machine Reassignment Problem

Machine Reassignment Problem (MRP), a very large scale combinatorial optimiza-

tion problem proposed by Google and posted at ROADEF/EURO Challenge 2012

compatition, is addressed in this chapter. Highly effective local search approach

will be presented.

3.1 Introduction

Data centers have become a common and essential element in the functioning

of many modern companies. The unprecedented growth of demand for data pro-

cessing, storage and networking makes these data centers indispensable. The same

growth causes the growth of data centers in their size and complexity. At the same

time, the data centers are essential for the cooperation and interaction among in-

dividuals, businesses, communications, academia, and government systems world-

wide. Almost every global company has several global data centers (a dozen all

around the world for Google) while local data centers exist in practically every

business building.

The operational cost is often one-third of all costs associated with a modern data

center. A great deal of attention is being paid today to the optimal management

of data centers to improve the overall efficiency regarding energy, water use and

greenhouse gas reductions. Many of these strategies appeared to be holistic and

one of the most important parts is the optimization and simplification of archi-
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tecture, processes and maintenance favoring the modular reusability and ease of

re-deployment. Optimal use of assets, such as computer resources (CPU, RAM,

network bandwidth, etc.), and scheduling the computer processes is an important

part of the whole process. The problem of efficient (re)scheduling of processes

becomes critical when data centers are refreshed or moved from one location to

another.

Google, the company with probably the most extensive practical experience with

data centers, organized in 2009, and 2011 two Industry summits about data cen-

ters’ efficiency. The Google research team formalized and proposed the Google

Machine Reassignment problem as a subject of ROADEF/EURO Challenge 2012

(see ROA [2012]). The aim of the problem is to improve the usage of a set of

machines. Initially, each process is assigned to a machine. In order to improve

machine usage, processes can be moved from one machine to another. Possible

moves are limited by constraints that address the compliance and the efficiency of

improvements and assure the quality of service.

We propose herein a Noisy Local Search method (NLS) for solving Machine Re-

assignment problem. The method, in a round-robin manner, applies the set of

predefined local moves to improve the solutions along with multiple starts and

noising strategy to escape the local optima. The numerical evaluations demon-

strate the remarkable performance of the proposed method on MRP instances (30

official instances divided in datasets A, B and X) with up to 50,000 processes.

The chapter is organized as follows. Problem statement is presented in Section

3.2 and related work is addressed in Section 3.3. Section 3.4 presents simple and

efficient calculation of a lower bound. This lower bound is sufficient to assess the

high quality of many solutions produced by the method. Principle neighborhoods

of the local search are presented in the first part of Section 3.5. In the remaining

part of this section, we present some advanced components of local search and how

they are composed in a general solution method. In Section 3.6, we present the

computational study conducted on 30 official instances provided by Google. The

chapter is concluded with possible extensions of the work and refinement of the

presented method.
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3.2 Problem specification and notations

A detailed description of the problem is given in the ROADEF/EURO Challenge

subject (ROA [2012]), and we summarize it here.

The aim of this challenge is to improve the usage of a set of machines. A machine

has several resources as for example RAM and CPU, and runs processes which

consume these resources. Initially each process is assigned to a machine. In order

to improve machine usage, processes can be moved from one machine to another.

Possible moves are limited by hard constraints, as for example resource capacity

constraints, and have a cost. A solution to this problem is a new process-machine

assignment which satisfies all hard constraints and minimizes a given objective

cost.

3.2.1 Decision variables

Let M be the set of machines, and P the set of processes. A solution is an assign-

ment of each process p ∈ P to one and only one machine m ∈M; this assignment

is noted by the mapping M(p) = m in this document. The original assignment of

process p is denoted M0(p). Note the original assignment is feasible, i.e. all hard

constraints are satisfied. For instance, if M = {m1,m2} and P = {p1, p2, p3}, then

M(p1) = m1,M(p2) = m1,M(p3) = m2 means processes p1 and p2 run on machine

m1 and process p3 runs on machine m2.

3.2.2 Hard constraints

3.2.2.1 Capacity constraints

Let R be the set of resources which is common to all the machines, C(m, r) the

capacity of resource r ∈ R for machine m ∈ M and R(p, r) the requirement of

resource r ∈ R for process p ∈ P. Then, given an assignment M , the usage U of a

machine m for a resource r is defined as:

U(m, r) =
∑

p∈P,M(p)=m

R(p, r)
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A process can run on a machine if and only if the machine has enough available

capacity on every resource. More formally, a feasible assignment must satisfy the

capacity constraints:

∀m ∈M, ∀r ∈ R, U(m, r) ≤ C(m, r)

3.2.2.2 Conflict constraints

Processes are partitioned into services. Let S be a set of services. A service s ∈ S

is a set of processes which must run on distinct machines. Note that all services

are disjoint.

∀s ∈ S, (pi, pj) ∈ S2, pi 6= pj →M(pi) 6= M(pj)

3.2.2.3 Spread constraints

Let L be the set of locations, a location l ∈ L being a set of machines. Note that

locations are disjoint sets. For each s ∈ S let spreadMin(s) ∈ N be the minimum

number of distinct locations where at least one process of service s should run.

The constraints are defined by:

∀s ∈ S,
∑

l∈L

min(1, |{p ∈ s : M(p) ∈ L}|) ≥ spreadMin(s)

3.2.2.4 Dependency constraints

Let N be the set of neighborhoods, a neighborhood n ∈ N being a set of machines.

Note that neighborhoods are disjoint sets. If service sa depends on service sb, then

each process of sa should run in the neighborhood of a sb process:

∀pa ∈ sa, ∃pb ∈ sb and n ∈ N such that M(pa) ∈ n and M(pb) ∈ n.

Note that dependency constraints are not symmetric, i.e. service sa depends on

service sb is not equivalent to service sb depends on service sa.
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3.2.2.5 Transient usage constraints

When a process p is moved from one machine m to another machine m′ some

resources are consumed twice; for example disk space is not available on machine

m during a copy from machine m to m′, and m′ should obviously have enough

available disk space for the copy. Let TR ⊂ R be the subset of resources which

need transient usage, i.e. require capacity on both original assignment M0(p) and

current assignment M(p). Then the transient usage constraints are:

∀m ∈M, ∀r ∈ TR,
∑

p∈P,M0(p)=m∨M(p)=m

R(p, r) ≤ C(m, r)

Note there is no time dimension in this problem, i.e. all moves are assumed to be

done at the exact same time. Then for resources in TR this constraint subsumes

the capacity constraint.

3.2.3 Objectives

The aim is to improve the usage of a set of machines. To do so a total objective

cost is built by combining a load cost, a balance cost and several move costs.

3.2.3.1 Load cost

Let SC(m, r) be the safety capacity of a resource r ∈ R on a machine m ∈ M.

The load cost is defined per resource and corresponds to the used capacity above

the safety capacity; more formally:

loadCost(r) =
∑

m∈M

max(0, U(m, r)− SC(m, r)).

3.2.3.2 Balance cost

As having available CPU resource without having available RAM resource is use-

less for future assignments, one objective of this problem is to balance available

resources. The idea is to achieve a given target on the available ratio of two dif-

ferent resources. Let B be a set of triples defined in N × R2. For a given triple
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b = (r1, r2, target) ∈ B, the balance cost is:

balanceCost(b) =
∑

m∈M

max(0, target× A(m, r1)− A(m, r2))

with A(m, r) = C(m, r)−U(m, r). The total balance cost is the sum over all given

triples.

3.2.3.3 Process move cost

Some processes are painful to move; to model this soft constraint a process move

cost is defined. Let PMC(p) be the cost of moving the process p from its original

machine M0(p). Total process move cost is defined as:

processMoveCost =
∑

p∈P,M(p) 6=M0(p)

PMC(p)

3.2.3.4 Service move cost

To balance moves among services, a service move cost is defined as the maximum

number of moved processes over services. More formally:

serviceMoveCost = max
s∈S

(|{p ∈ s : M(p) 6= M0(p)}|)

3.2.3.5 Machine move cost

Let MMC(msource,mdestination) be the cost of moving any process p from machine

msource to machine mdestination. Obviously for any machine m ∈M, MMC(m,m) =

0. The machine move cost is then the sum of all moves weighted by relevant MMC:

machineMoveCost =
∑

p∈P

MMC(M0(p),M(p))

3.2.3.6 Total objective cost

The total objective cost is a weighted sum of all previous costs. It is the cost to

minimize.
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totalCost =
∑

r∈R

weightloadCost(r)× loadCost(r)

+
∑

b∈B

weightbalanceCost(b)× balanceCost(b)

+ weightprocessMoveCost × processMoveCost

+ weightserviceMoveCost × serviceMoveCost

+ weightmachineMoveCost ×machineMoveCost

(3.1)

3.2.4 Instances

The method has been tested on the official set of competition instances provided

by Google and used for competitors algorithms evaluation. It consists of three

sets of instances, A, B and X, each containing ten instances. The first dataset,

A, has been available since the beginning of the competition and was used for

qualification stage evaluation. It is a medium-size dataset containing instances

with up to 1000 processes and 100 machines. Datasets B and X are larger datasets,

containing instances with up to 50,000 processes and 5,000 machines, and have

been used in the final stage of the competition. Set B has been available since

the beginning of the final stage, while dataset X is a hidden set of instances used

to test the robustness of algorithms (to prevent an over-fitting of the presented

solution approaches to the known problem instances) and has become publicly

available after the end of the competition. Datasets B and X have been in a very

similar way and, therefore, for the sake of simplicity, some experimental results

in this chapter might be given only for dataset B, while very similar results are

obtained on X.

Basic characteristics of all three datasets are given in Tables 3.1 and 3.2. The

tables show the number of processes (|P|), the number of machines (|M|), the

number of resources (|R|), the number of transient resources (|TR|), the number of

services (|S|), the number of locations (|L|), the number of neighborhoods (|N|),

the number of dependencies (dep), and the number of balance costs (|B|) for each

instance.
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Instances A

Inst |M| |R| |TR| |P| |S| |N| |L| dep |B|

a1_1 4 2 0 100 10 1 4 10 1
a1_2 100 4 1 1000 10 2 4 10 0
a1_3 100 3 1 1000 100 5 25 10 0
a1_4 50 3 1 1000 10 2 4 10 1
a1_5 12 4 1 1000 10 2 4 10 1
a2_1 100 3 0 1000 0 1 1 0 0
a2_2 100 12 4 1000 100 5 25 0 0
a2_3 100 12 4 1000 125 5 25 10 0
a2_4 50 12 0 1000 125 5 25 10 1
a2_5 50 12 0 1000 125 5 25 10 0

Table 3.1: The table shows the characteristics of dataset A.

3.3 Related work

Despite its importance in data center applications, the specific characteristics of the

MRP have not been adequately and extensively addressed in the literature before

the problem has been proposed at ROADEF/EURO Challenge 2012 competition.

Recently, during and after the competition, few papers have been published on

this topic.

Mehta et al. [2012] (second placed team in the competition) proposed a Con-

straint Programming (CP) approach to solve a problem and obtained high quality

results. Authors developed a CP formulation of the problem that is especially

suited for a large neighborhood search approach (LNS). LNS approach consists

of repeatedly selecting and solving subproblems. Subproblem selection is based

on selecting a subset of the machines, and allowing all processes on those ma-

chines to be reassigned. Subproblem creation and solution updating have been

done efficiently, which was crutial in obtaining high quality solutions in a limited

computational time (5 minutes time limit has been imposed in the competition).

Authors also experimented with a mixed-integer programming (MIP) model for

LNS. Both MIP and CP-based LNS approaches find similar solutions on a medium-

size set of instances (dataset A, up to 1000 processes and 100 machines), while on

larger instances where the number of processes and machines can be up to 50000
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Instances B,X

Inst |M| |R| |TR| |P| |S| |N| |L| dep |B|

B1,X1 100 12 4 5000 500 5 10 30 0
B2,X2 100 12 0 5000 500 5 10 30 1
B3,X3 100 6 2 20000 1000 5 10 50 0
B4,X4 500 6 0 20000 1000 5 50 60 1
B5,X5 100 6 2 40000 1000 5 50 60 1
B6,X6 200 6 0 40000 1000 5 50 60 1
B7,X7 4000 6 0 40000 1000 5 50 60 1
B8,X8 100 3 1 50000 1000 5 10 50 0
B9,X9 1000 3 0 50000 1000 5 100 60 1

B10,X10 5000 3 0 50000 1000 5 100 70 1

Table 3.2: The table shows the characteristics of datasets B and X.

and 5000, CP-based LNS is superior in memory use and the quality of solutions

that can be found in limited time.

Another LNS approach has been presented by Brandt et al. [2014]. Similarly

to the previous paper, solution is iteratively improved by selecting a subset of

processes to be considered for reassignment and the new assignments are evaluated

by a constraint program.

Jaskowski et al. [2015] (third placed team in the competition) present a hy-

brid metaheuristic approach for solving the problem. The approach consists of a

fast greedy hill climber and a large neighborhood search, which uses mixed inte-

ger programming to solve subproblems. Hill climbing algorithm is employed to

quickly improve the initial solution and further improvements are performed by

a MIP-based large neighborhood search. The hill climber explores only a single

neighborhood, which includes shift(p,m) move that reassigns process p from its

current machine m0 to another machine m1, and first improving move is always

selected. The second phase consists of selecting subproblems (similar to Brandt

et al. [2014]; Mehta et al. [2012]) and solving them by MIP (IBM CPLEX solver

12.5).

Portal et al. [2015] (ranked fourth in the competition) propose a heuristic based

on simulated annealing. The search explores shift and swap neighborhoods. De-

spite the simplicity of the method when compared to the previously described
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approaches, high quality results have been obtained on a considered set of in-

stances.

Masson et al. [2013] propose a Multi-Start Iterated Local Search method (MS-

ILS) for solving MRP and Two-Dimensional Vector Packing provlem (2-DVPP).

MS-ILS relies on simple shift and swap neighborhoods as well as problem-tailored

shaking and specialized restart procedures.

Most of the teams competing in ROADEF/EURO Challenge 2012 competition

used a variant of Local Search method (Large Neighborhood Search, Simulated

Annealing, Late Acceptance, Tabu Search,...). Some authors also use Mixed Inte-

ger Programs, efficient only for very small instances or to solve the subproblems

or simply to compute the lower bounds.

MRP is similar to the Generalized Assignment Problem (GAP) with some specific,

and often hard to satisfy, constraints. GAP is a classical combinatorial optimiza-

tion problem and some of the local moves presented in this chapter (e.g. shift,

swap) could be found in GAP related literature, for example in Yagiura et al.

[2004] and Yagiura et al. [1998]. Given n jobs J = {1, 2, . . . , n} and m agents

I = {1, 2, . . . ,m}, the goal is to determine a minimum cost assignment subject

to assigning each job to exactly one agent and satisfying a resource constraint for

each agent. Assigning job j to agent i incurs a cost of cij and consumes an amount

aij of resource, whereas the total amount of the resource available at agent i is

bi. An assignment is a mapping α : J → I, where α(j) = i means that job j is

assigned to agent i. Then the generalized assignment problem is formulated as

follows:

minimize cost(α) =
∑

j∈J cα(j),j

subject to
∑

j∈J,α(j)=i ai,j ≤ bi, ∀i ∈ I

Multi-Resource Generalized Assignment Problem (MRGAP) is a more complex

version of GAP where jobs require more than one type of resources.

Some of the most successful approaches for solving MRGAP (GAP) are tabu-search

algorithm by Yagiura et al. (Yagiura et al. [2004] and Yagiura et al. [1998]), large-

scale variable neighborhood search (zana Mitrovic-Minic and Punnen [2009]) and

tabu-search by Diaz and Fernandez (Diaz and Fernandez [1998]).
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3.4 Lower Bound

In this section we present a simple lower bound calculation for a given problem.

The existence and the quality of a lower bound is essential for all practical solution

approaches. The bound is simple and easy to calculate, yet it is, for a great number

of instances, only a fraction of a percent from the optimal value. The load cost and

the balance cost are the two most important components of the objective function

and the lower bound proposed here is equal to the sum of lower bounds for these

components. This same lower bound procedure has also been proposed in several

other papers, including Mehta et al. [2012], Jaskowski et al. [2015] and Brandt

et al. [2014].

3.4.1 Load Cost Lower Bound

Solution load cost is given by

LC =
∑

r∈R

weightloadCost(r)× loadCost(r),

where weightloadCost(r) is a given weight for load cost of resource r.

We have:

loadCost(r) =
∑

m∈M

max(0, U(m, r)− SC(m, r))

≥
∑

m∈M

(U(m, r)− SC(m, r))

=
∑

m∈M

U(m, r)−
∑

m∈M

SC(m, r)

= U(r)− SC(r)

where U(r) =
∑

m∈M

U(m, r) is the total requirement for resource r and SC(r) =
∑

m∈M

SC(m, r) is the total safety capacity. The total load cost lower bound is then

equal to

∑

r∈R

weightloadCost(r)× (U(r)− SC(r))
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3.4.2 Balance Cost Lower Bound

In a similar way, we obtain a lower bound on the balance cost. The balance cost

is given by

BC =
∑

b∈B

weightbalanceCost(b)× balanceCost(b),

where weightbalanceCost(b) is a given weight for balance cost.

We have:

balanceCost(b) =
∑

m∈M

max(0, target× A(m, r1)− A(m, r2))

≥
∑

m∈M

(target× A(m, r1)− A(m, r2))

=
∑

m∈M

target× A(m, r1)−
∑

m∈M

A(m, r2)

= target×
∑

m∈M

A(m, r1)−
∑

m∈M

A(m, r2)

= target× A(r1)− A(r2),

where A(m, r) = C(m, r)−U(m, r), b = (r1, r2, target) ∈ B and A(r) =
∑

m∈M

A(m, r)

is the total available amount of resource r. The total balance cost lower bound is

then equal to

∑

b=(r1,r2,target)∈B

weightbalanceCost(b)× (target× A(r1)− A(r2)).

Lower bounds for datasets A and B are listed in tables 3.3 and 3.4. Apart

from the lower bound presented here, lower bounds obtained by solving Linear

Programming relaxation of the MIP model of the problem are reported for dataset

A and taken from Masson et al. [2013]. Such lower bounds could not be calculated

for datasets B and X due to a huge size of MIP models.

The last remark about lower bounds is that they are calculated as a sum over

resources. This fact gives us an opportunity to easily estimate the quality of a

solution with respect to a subset of resources and then intensify the optimization

regarding only one or several resources.
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Instance Load LB Balance LB Total LB LP_LB

a1_1 31 011 730 13 294 660 44 306 390 44 306 501
a1_2 777 530 730 0 777 530 730 777 531 000
a1_3 583 005 700 0 583 005 700 583 005 715
a1_4 0 242 387 530 242 387 530 242 406 000
a1_5 602 301 710 125 276 580 727 578 290 727 578 000

a2_1 0 0 0 126
a2_2 13 590 090 0 13 590 090 537 253 000
a2_3 521 441 700 0 521 441 700 1 031 400 000
a2_4 1 450 548 890 229 673 490 1 680 222 380 1 680 230 000
a2_5 307 035 180 0 307 035 180 307 403 000

Table 3.3: Lower Bounds - instances A

Instance Load LB Balance LB Total LB

B1 3 290 754 940 0 3 290 754 940
B2 31 188 860 983 965 000 1 015 153 860
B3 156 631 070 0 156 631 070
B4 0 4 677 767 120 4 677 767 120
B5 922 858 550 0 922 858 550
B6 0 9 525 841 820 9 525 841 820
B7 0 14 833 996 360 14 833 996 360
B8 1 214 153 440 0 1 214 153 440
B9 10 050 999 350 5 834 370 050 15 885 369 400

B10 0 18 048 006 980 18 048 006 980

Table 3.4: Lower Bounds - instances B

3.5 Proposed Heuristic

This section describes the proposed Noisy Local Search method (NLS) approach

used to solve the problem. The heuristic combines a Local-Search (LS) improve-

ment procedure with the problem tailored noising moves, sorting the set of pro-

cesses and restart procedures. The method iteratively tries to replace the current

assignment with a better one. Only feasible moves are considered. Three different

local search neighborhoods are explored. The initial solution, given as an input,

is used as a starting point for the local search procedure. The search terminates

once a maximum time limit is reached. We will first define all the neighborhoods
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Figure 3.1: Gap between our best solutions and lower bounds on A and B datasets

explored in local search procedure and explain the evaluation procedures, followed

by some strategies used to improve the solutions including intensification and di-

versification of the search.

As opposed to the presented local search method for Bin Packing for example,

only moves that improve the objective function are accepted during the whole

procedure. This is mainly due to the size of the problem at hand.

3.5.1 Neighborhoods

The local search procedure consists of exploring three neighborhoods, denoted by

shift, swap and BPR and explained below. These three neighborhoods are ex-

plored sequentially, one after another, in a given order. The order of neighborhoods

exploration in the final release of our method will be defined and discussed later.

Exploring each of three neighborhoods terminates when no improvement moves

are found or running time limit is reached.
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3.5.1.1 Shift and Swap

Given a solution s, the shift neighborhood, Nshift(s) , is defined to be the set of

solutions that can be obtained from s by reassigning one process from one machine

to another. Formally,

Nshift(X) = {X ′ : X ′ is obtained from X by changing the assignment of one process}

Given a solution s, the swap neighborhood, Nswap(s) , is the set of solutions that

can be obtained from s by interchanging the assignments of two processes assigned

to different machines. Formally,

Nswap(X) = {X ′ : X ′ is obtained from X by exchanging the assignments of two processes}

Shift and swap neighborhoods are the simplest ones and can be found in many

papers concerning solving problems similar to MRP (Diaz and Fernandez [1998];

Yagiura et al. [1998, 2004]) and in several papers on MRP (Jaskowski et al. [2015];

Masson et al. [2013]; Portal et al. [2015]). Shift move that reassigns process p ∈ P

from its current machine M(p) to machine m ∈M will be denoted by shift(p,m),

and exchanging the assignments of two processes p1, p2 ∈ P will be denoted by

swap(p1, p2). Change of the objective function with performing shift(p,m) will

be denoted by eval_shift(p,m). Obviously, the move is improving the objective

function only if eval_shift(p,m) < 0. In case shift(p,m) move is not feasible

(i.e. will result in constraints violation) we set eval_shift(p,m) = 1, 000, 000.

Analogous definition, eval_swap(p1, p2) holds for a swap move swap(p1, p2).

As mentioned earlier, MRP is a very large scale problem with real-world bench-

marks containing several thousands of processes (machines) and a huge number of

constraints. For example, in a classic MIP formulation, instance B10 would have

more than 250,000,000 binary decision variables. Furthermore, a running time

limit of 5 minutes has been imposed in the competition. Consequently, even a

complete evaluation of shift and swap neighborhoods is not possible. Obviously,

complexity of shift and swap neighborhoods is O(|P||M|) and O(|P|2) respectively.

Therefore, our local search procedure explores only a part of these neighborhoods

as explained below. For the same reasons, choosing the "best" shift of swap move
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in terms of the objective improvement each time (as was the case for example in

proposed method for Bin Packing) is not reasonable.

Shift and swap neighborhoods are explored in a following way:

1. randomly select and evaluate a subset of possible moves S

2. sort the moves according to the objective improvement

3. repeat the following until S is empty

• scan the set S and perform a move if it is still improving the objective

or delete it from the list otherwise

4. repeat previous steps until stopping criteria is met

Note that performing one shift/swap move can change the value of another move

in terms of the objective improvement of move feasibility. Therefore, in Step 2 of

the previous procedure, the move is evaluated again and accepted only if objective

function is improving. This change of moves quality also implies that, except for

the first move performed, not the best move is always accepted. However, selecting

the moves in a given way produces slightly better results than accepting the first

improving move found or not sorting the list of moves, while, on the other hand,

explores the neighborhood much faster than when evaluating all the moves after

each performed move.

Selecting a subset of possible shift moves (step 1 in a previous procedure) is done

in the following way:

• select a random subset of processes P1 ⊆ P. For each process p ∈ P1 select a

subset of machines Mp ⊆ M and evaluate all shift(p,m) moves reassigning

process p to machine m ∈ Mp. Size of the set P1 is limited to 10,000, while

the size of Mp is limited to 1,000.

Selecting possible swap moves is analogous:
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• select a random subset of processes P1 ⊆ P. For each process p1 ∈ P1 select

a subset of processes P2 ⊆ P (no process in P2 is currently assigned to the

same machine as p) and evaluate all swap(p1, p2) moves that exchange the

assignments of processes p1 an p2 ∈ Pp. Size of both sets, P1 and P2 is limited

to 2,500.

Pseudo codes for exploring shift and swap neighborhoods are given in Algorithms

3.1 and 3.3, while creating the list of possible moves is given in Algorithms 3.2 and

3.4.

Algorithm 3.1: shift()

// Fill the list of all feasible and good shifts

1 S ← fillShift() ;
2 while S 6= ∅ do

3 if first move shift(p0,m0) in S is feasible and eval_shift(p0,m0) < 0 then

4 perform move shift(p0,m0) - reassign p0 to m0 ;

5 else

6 Delete move shift(p0,m0) from the list S;

7 S ← fillShift() ;

Algorithm 3.2: fillShift()

// set of moves

1 S ← ∅;
2 select a random subset of processes P1 ⊆ P of size min(10000, |P|);
3 for each process p ∈ P1 do

4 select a random subset of machines Mp ⊆M of size min(1000, |M|);
5 for each machine m ∈Mp do

6 if eval_shift(p,m) < 0 then

7 add shift(p,m) move to S;

8 return S;

For the set of instances provided in the ROADEF/EURO competition it has

been observed that the original solution can be substantially improved by only

exploring shift and swap neighborhoods. Furthermore, solutions obtained for ma-

jority of the instances from datasets B and X are near optimal. Results obtained

by exploring only shift and swap neighborhoods for datasets A and B with a 5

minute running time limit are listed in table 3.5. Neighborhoods are explored in
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Algorithm 3.3: swap()

// Fill the list of all feasible and good shifts

1 S ← fillSwap() ;
2 while S 6= ∅ do

3 if first move swap(p1, p2) in S is feasible and eval_swap(p1, p2) < 0 then

4 perform move swap(p1, p2);

5 else

6 Delete move swap(p1, p2) from the list S;

7 S ← fillSwap() ;

Algorithm 3.4: fillSwap()

// set of moves

1 S ← ∅;
2 select a random subset of processes P1 ⊆ P of size min(2500, |P|);
3 for each process p1 ∈ P1 do

4 select a random subset of processes P2 ⊆ P of size min(2500, |P|);
5 for each process p2 ∈ P2 do

6 if eval_swap(p1, p2) < 0 then

7 add swap(p1, p2) to S;

8 return S;
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turn until no improvement move can be found. One can note that shift and swap

neighborhoods can be explored in a short time for dataset A, while for dataset B

exploration usually does not terminate before a given time limit of five minutes

has been reached.

Instance Initial shift+swap Lower Bound cpu (s)

a1_1 49 528 750 44 306 501 44 306 390 0
a1_2 1 061 649 570 803 075 488 777 530 730 0
a1_3 583 662 270 583 006 315 583 005 700 0
a1_4 632 499 600 278 499 816 242 387 530 1
a1_5 782 189 690 727 579 209 727 578 290 1
a2_1 391 189 190 4 545 591 0 1
a2_2 1 876 768 120 993 897 289 13 590 090 1
a2_3 2 272 487 840 1 454 003 869 521 441 700 0
a2_4 3 223 516 130 1 797 566 378 1 680 222 380 5
a2_5 787 355 300 491 424 615 307 035 180 3

B1 7 644 173 180 3 684 274 572 3 290 754 940 30
B2 5 181 493 830 1 025 573 054 1 015 153 860 148
B3 6 336 834 660 157 975 099 156 631 070 300
B4 9 209 576 380 4 677 901 406 4 677 767 120 300
B5 12 426 813 010 923 321 429 922 858 550 300
B6 12 749 861 240 9 525 919 157 9 525 841 820 136
B7 37 946 875 350 14 932 536 292 14 833 996 360 300
B8 14 068 207 250 1 214 435 602 1 214 153 440 288
B9 23 234 641 520 15 885 653 135 15 885 369 400 300

B10 42 220 868 760 18 171 973 406 18 048 006 980 300

Table 3.5: Shift+Swap results: neighborhoods are explored as described and ex-
ploration terminates when no improvement move is found. For each instance in
datasets A and B, initial solution, improved solution by shift and swap, lower
bound and total exploration time (in seconds) are given. All the results are ob-
tained using the same seed for a random number generator.

One can note that exploration of shift and swap neighborhoods described

above is completely deterministic if number of processes does not exceed 2,500

and number of machines does not exceed 1,000 (this is the case for all dataset A

instances). Results with slightly different way of exploring the neighborhoods are

given in Table 3.6. Namely, instead of performing the first feasible move from set

S that improves the objective function, we randomly choose one of the first few
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such moves (reported results are obtained by choosing one of first three moves).

The search starts from initial solution and terminates when no improvement move

can be found and this whole procedure repeats until time limit of 5 minutes is

reached. The best solution found is reported. Results are reported only for several

instances, i.e. those with the biggest gap from the lower bound in Table 3.5.

Instance Initial shift+swap Lower Bound

a1_2 1 061 649 570 785 827 517 777 530 730
a1_4 632 499 600 267 891 485 242 387 530
a2_1 391 189 190 4 513 190 0
a2_2 1 876 768 120 986 680 470 13 590 090
a2_3 2 272 487 840 1 430 489 492 521 441 700
a2_4 3 223 516 130 1 746 529 151 1 680 222 380
a2_5 787 355 300 468 937 777 307 035 180

B1 7 644 173 180 3 588 464 895 3 290 754 940

Table 3.6: Shift+swap with randomness. Average results for 10 runs with different
seeds are reported.

3.5.1.2 Big Process Rearrangement (BPR) Neighborhood

The BPR neighborhood, Nbpr(s), is the set of solutions s′ obtainable from s by

shifting a process p to a machine m while at the same time shifting a certain

number of processes from m to some other machines. A single BPR move will

be denoted by BPR(p). This neighborhood showed to be particularly useful in

reassigning big processes. Often it is not possible to reassign a big process us-

ing shift and swap moves, especially if it is much bigger then all other processes.

The BPR neighborhood can be very useful in a such situation. One should note

that while performing this move, several processes from the same machine change

their assignments, while shift and swap moves reassign only one process from or

to a machine. Since the BPR neighborhood is more complex than shift and swap

neighborhoods, first BPR move that improves the objective function is accepted.

The pseudo code for exploring the BPR neighborhood (a single BPR move) is

given in Algorithm 3.5.

Process ’p’ (line 1 in Algorithm 3.5) is chosen in the following way: All machines
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Algorithm 3.5: BPR - one move

1 Choose process p (random process assigned to one of several most expensive machines);
2 for m = 1 to NM do

3 Reassign p to m;
4 Reassign processes from m (different from p) while cost is improving (only feasible

reassignments);
5 if capacity violated on m then

6 Reassign processes from m until capacity satisfied (if possible);

7 if capacity violated or cost not improved then

8 Undo all the moves;

are sorted in descending order by the current machine cost. Machine cost is equal

to the sum of current machine load cost and current machine balance cost, which

are simple to calculate. Then, process selected for BPR move is a random process

from one of several most expensive machines. Selected machine is also chosen ran-

domly. Number of most expensive machines to be considered here is a parameter

and it is set to |M |
20

in the experiments presented here. Both random choices, i.e.

choice of process and choice of machine, are made using uniform distribution. One

can note that, in this way, processes selected for BPR move are not necessarily

"big processes", but we call the move "Big Process Rearrangement" move since it

is especially useful in reassigning big processes.

During the whole BPR move, all constraints except capacity constraint (conflict,

spread, dependency) are satisfied at any time. Capacity constraint can be possibly

violated by reassigning process ’p’ (line 1 in Algorithm 3.5). If possible, violated

constraint will be satisfied by reassigning several other processes from the machine

process p was reassigned to. If all constraints are satisfied at the end of BPR move

and solution cost has improved, BPR move is accepted. Otherwise, the next ma-

chine to reassign to or next BPR move are selected. Maximum number of machines

selected (line 2 in Algorithm 3.5) is set to 100 in our experiments. Set of machines

is also chosen randomly. As can be seen in Algorithm 3.5, examination of BPR

neighborhood is brute force and straight forward and thus can be computationally

expensive if used too much. Therefore, searching the BPR neighborhood is con-

trolled by parameter BPR defined in parameters section (Section 3.5.2.5). This

parameter represents the maximum number of evaluated BPR moves (i.e. number

75



MACHINE REASSIGNMENT PROBLEM

of calls to Algorithm 3.5).

Results obtained by exploring all three defined neighborhoods are listed in Ta-

ble 3.7. As before, exploration of neighborhoods is done sequentially (order is

shift+ swap+BPR) and the best solution obtained in 5 minutes time frame are

reported. Number of BPR moves evaluated is set to 300.

Table 3.8 illustrates the importance of the BPR neighborhood by comparing

Instance Initial shift+swap+BPR Lower Bound cpu (s)

a1_1 49 528 750 44 306 501 44 306 390 300
a1_2 1 061 649 570 782 975 028 777 530 730 300
a1_3 583 662 270 583 006 015 583 005 700 300
a1_4 632 499 600 275 698 786 242 387 530 300
a1_5 782 189 690 727 578 509 727 578 290 300
a2_1 391 189 190 314 0 300
a2_2 1 876 768 120 911 613 753 13 590 090 300
a2_3 2 272 487 840 1 431 708 958 521 441 700 300
a2_4 3 223 516 130 1 684 411 144 1 680 222 380 300
a2_5 787 355 300 390 622 267 307 035 180 300

B1 7 644 173 180 3 475 699 536 3 290 754 940 300
B2 5 181 493 830 1 023 723 645 1 015 153 860 300
B3 6 336 834 660 157 460 196 156 631 070 300
B4 9 209 576 380 4 677 920 811 4 677 767 120 300
B5 12 426 813 010 923 766 440 922 858 550 300
B6 12 749 861 240 9 525 941 777 9 525 841 820 300
B7 37 946 875 350 14 835 299 922 14 833 996 360 300
B8 14 068 207 250 1 214 569 926 1 214 153 440 300
B9 23 234 641 520 15 885 704 020 15 885 369 400 300

B10 42 220 868 760 18 048 531 587 18 048 006 980 300

Table 3.7: Shift+Swap+BPR results. Several solutions are built (until time limit
of 5 minutes is reached) and the best one is reported. Average results for 10 runs
with different seeds are reported.

the solutions obtained using all the neighborhoods to the solutions obtained using

shift and swap neighborhoods only. The significant difference can only be seen on

the most challenging instances (in our opinion a2_2, a2_3, a2_5, B1 and X1).

These instances are also the ones that had the largest impact on the results of
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qualification and final phase of ROADEF/EURO competition, since the majority

of teams obtain near optimal solutions on all other instances (especially on in-

stances B2−B10, X2−X10). We can note that exploring the BPR neighborhood

increases the running time of the method 3-7 times on these instances, but still

can be comfortably used in the 5 minute time frame. Eventual speeding up the

search through the BPR neighborhood could improve the method, and this could

be the subject of the future work.

without BPR without ShiftSwap

Inst gap speed up gap speed up

a1_2 0.33 4.1 0.08 1.19
a1_4 0.90 4.3 0.30 1.21
a2_2 13.1 6.8 0.45 1.12
a2_3 7.5 6.6 0.61 1.15
a2_5 8.2 3.1 0.77 1.22
B1 0.5 3.2 0.05 1.07
X1 0.4 3.2 0.07 1.10

Table 3.8: The importance of neighborhoods. The second column represents the
gap between solutions obtained without the BPR neighborhood to the standard
solutions (solutions using all neighborhoods). The third column represents the
speed up of the method when not exploring the BPR neighborhood. Columns 4
and 5 illustrate the same thing for Shift+Swap neighborhood.

3.5.2 Tuning the algorithm

The core elements of the solution are already given and their straightforward or

even naive use can solve to near optimality most of B and X instances, as showed

in Table 3.7. Several other carefully designed and chosen implementation details

render the solution robust and very efficient for all instances.

3.5.2.1 Neighborhoods exploration

Local search neighborhoods are explored sequentially, meaning that the next neigh-

borhood is explored after the previous has been finished. The order of neighbor-

hoods exploration during the search showed to be important and the following
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order has been used: BPR, shift, swap. As discussed earlier, shift and swap neigh-

borhoods can be explored until no improvement move exists and all the results

reported above have been obtained by using this termination condition. How-

ever, a large amount of CPU time can be consumed before stopping the search,

especially for the biggest instances. As can be seen in Table 3.5, for some of the

instances (B7, B10) search exploration will not terminate before 5 minute running

time limit. On the other hand, as could be expected, most of the solution im-

provement has been done in first few loops (shift() + swap()), with most of the

further improvement often being negligable. It can also happen that slow explo-

ration of a single neighborhood (shift or swap) results in a small number of loops.

Therefore, we decided to stop the exploration of neighborhood when total objec-

tive improvement between the last two calls to fillShift()(fillSwap()) is smaller

than a given threshold, minImprovement. When stopping criteria is met for a

current neighborhood, the search continues with exploring the next neighborhood.

3.5.2.2 Sorting processes

The numerical experiments show that the quality of the solution is sensitive to the

the order of processes to reassign. In the presented method we order the processes

by their size and the reassignment of the large processes is done first followed by

the reassignment of smaller processes.

The size of a process p ∈ P is defined as a sum of its requirements over all resources

and denoted by size(p). Formally speaking,

size(p) =
∑

r∈R

R(p, r).

The algorithm will first explore local search neighborhoods by considering only the

rearrangements that include the biggest processes (first 10% for example). Then,

the number of processes to consider for rearrangement is iteratively increased and

exploring the search space continues.

More precisely, all the processes are sorted in decreasing order by size(p) and

the number of processes to consider is set to zero at the beginning of algorithm

(N = 0). Then, in each iteration of the algorithm the number of processes to
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consider is increased by δ and local search procedure considering (and reassigning)

only processes from position 0 to N in the sorted list of processes (denoted by

LS(N)) is invoked. Obviously, shift(p,m) can be performed in LS(N) only if p is

one of N biggest processes, while swap(p1, p2) move if at least one of two processes,

p1 and p2 is amongst N biggest processes. Similarly, a necessary condition for a

BPR(p) move to be considered is related to the size of the first process (process p)

to be shifted. This procedure is repeated until all processes are examined.

Sorting the processes by their size is only one of the possibilities, while the best

sort remains one of the open questions in this research. Several experimentations

have been done with defining the order of processes, but no improvement in the

final results could be achieved. Value δ is a parameter and will be addressed in

Section 3.5.2.5.

Results obtained when sorting the set of processes and limiting the search for

the biggest processes only are listed in Table 3.9. Only the most difficult instances

results are reported and one can note that a significant improvement has been

achieved.

Instance shift+Swap+BPR+sorting

a1_2 780 559 151
a1_4 270 997 812
a2_2 799 925 251
a2_3 1 287 389 046
a2_4 1 684 612 901
a2_5 346 851 450

B1 3 434 975 791

Table 3.9: Results obtained with sorting the processes. Average results for 10 runs
with different seeds and δ = |P|/5 are reported.

3.5.2.3 Noising

The principles and details of the noising methods are thoroughly explained in

Charon and Hurdy [2012]. The quality of the actual solution with respect to a

given resource can be easily estimated using the calculation like the one explained

in Section 3.4. The proposed noising method consists of increasing the load cost
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weights for one or a subset of resources. This simple change in the objective

function will diversify and intensify the search at the same time.

There are several possible ways to change the objective function. We implement

and keep the most simple one by changing only one load cost weight at time:

• choose resource r

• increase load cost weight of the resource r.

We optimize the modified objective function and then continue, from obtained

solution, with the optimization of the original objective. This is repeated for few

different resources, which are chosen by importance (distance to the load cost

lower bound). The weight increasing value used in presented results is equal to

10. The impact of sorting the processes and noising method to the final results

are illustrated in Figure 3.2.

3.5.2.4 Randomness - dealing with seeds and restarts

The proposed solution is still sensitive to the choice of the random seed and the

pseudo-random function. The initial phase of the search, dealing with biggest

processes, strongly influences the quality of the final solution. In other words,

the final solution is usually good only if it is good after reassigning the biggest

processes.

In order to increase the robustness of the method, the following approach is im-

plemented:

• Optimize big processes reassignment (initial phase of the search) for several

different seeds

• Use only a few best seeds in the remaining search

The exact number of different seeds to be tested depends mostly on the size and the

type of the instance at hand. To be able to consider all the processes, optimizing

big processes reassignment should not take too much CPU time and is limited in

the proposed method to maximum 60 seconds. The maximum number of seeds is

equal to 15 for set A instances and 8 for sets B and X.

80



MACHINE REASSIGNMENT PROBLEM

0 5 10 15 20 25 30

1

1.1

1.2

1.3

Instance

va
lu
e

00
01
10
11

Figure 3.2: Results with/without sorting processes and with/without noising (00
- no sorting, no noising; 01 - no sorting; 10 - no noising; 11 - with sorting and
noising). The best of these four solutions (It is always solution 11 and it is denoted

by B.) takes a value 1 and the value of solution S on the graphic is equal to obj(S)
obj(B)

.
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3.5.2.5 Parameters

The algorithm relies on three main parameters: δ, r, BPR. The first parameter is

the value of increasing the number of processes in the next iteration of algorithm

(line 6 in Algorithm 3.6). The value of δ is set to either |P |
7

or |P |
5

depending

on the size of the instance to solve. Parameter NR is the number of resources

used in the noising method (line 8 in Algorithm 3.6). The value of NR is given by

max( |R|
2
, 3) for all instances. BPR is the number of iterations in exploring the BPR

neighborhood. More precisely, it is the number of processes (process p in Algorithm

3.5) that are selected for BPR neighborhood move, i.e. the number of calls of

Algorithm 3.5 in each local search iteration (lines 7, 10, 12 in Algorithm 3.6). The

BPR neighborhood can be computationally intensive and time consuming and the

value of BPR should be controlled. We use BPR = 100 for large and BPR = 300

for smaller instances. All these parameters are set after much experimental work.

The values of all these parameters showed to be more or less irrelevant for B and X

instances. On the other hand, the method with the parameters set to these values

achieves the best possible results over all ROADEF challenge instances respecting

the computational time limit of 5 minutes.

3.5.2.6 Efficiency

The imposed time limit of only five minutes on the total computational time means

that efficiency of the method is of paramount importance. Simple data structures

for current remaining and safety capacities, current spread for each service, current

costs and others, all associated with the single machine and process, render the

calculation of the estimations and their updates related to one or several reassign-

ments very efficient. Profiling and code optimization ensured additional 10 fold

speed up of the method. The total number of evaluations done in 5 minutes is

up to 40 × 106 for set A instances and from 5 × 105 to 10 × 106 for set B and X

instances. The algorithm can produce about 10 solutions for set A instances and

2-5 solutions for sets B and X instances in a given 5 minute time frame. In order

to obtain better results, both cores of the processor are used with two different

methods (possibly with different parameters) running in parallel.
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Figure 3.3: The picture ilustrates objective function change during the search for
instances a2_2 and B1. Bottom x-axis represents CPU time and Y-axis represents
objective value. Upper x-asis represents the search range - percentage of processes.
To have a real picture about objective change we do not use restarts (few different
seeds).
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Suitable data structures Efficient evaluation of neighborhoods and solution

update after performing a move is crucial for the speed of the presented algorithm.

Namely, for each of the local search moves, one has to verify (1) the feasibility

with respect to given hard constraints and (2) change in the objective function

after performing the move. Therefore, aside from the simple data structures that

represent the problem data, several redundant data structures have been used in

order to reduce the overall computational time, as listed below:

• MachineResource is a structure that stores, for each (machine, resource)

pair, a current resource usage on a given machine, with two most impor-

tant informations being the current remaining capacity on a given resource,

curr_rem_capacity, and current load cost, curr_load_cost.

• MachineService is |S| × |M| integer matrix, with MachineService(m, s)

being the number of processes form service s currently executing on machine

m. Obviously, all the elements of a matrix are 0 or 1 because of conflict

constraint.

• ServiceLocation |S| × |L| integer matrix, with ServiceLocation(s, l) being

the number of processes form service s currently executing in location l. This

matrix is useful when checking spread constraints.

• ServiceNeighborhood - the same as ServiceLocation, with neighborhoods

instead of locations (useful in dependency constraint checking).

• ServiceSpread is an array representing current number of locations for each

service (current service spread).

• numberOfMovedProcessesFromService - a list representing for each ser-

vice s, a number of processes from a service moved from initial machine.

• numberOfServicesWithMaxNumberOfMovedProcesses - the number of

services with maximum number of moved processes.

These data structures showed to be useful in evaluating the moves more quickly.

Suppose we are moving process p ∈ P, belonging to service s ∈ S, to machine
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m ∈ M belonging to location l ∈ L and neighborhood n ∈ N. Using structure

MachineResource, we can verify in O(|R|) if the capacity constraints are satisfied.

Conflict constraints are satisfied if and only if MachineService(s,m) = 0. Spread

constraints can be verified in constant time by making sure that the move will not

lower the spread of service s below its minimum requirements. This is the case

if (1) ServiceSpread(s) > spreadmins or (2) ServiceSpread(s) == spreadmins

and either p is not the only process of service s in its current location or p is the

first process of service s in location l. Regarding dependency constraints, process

p cannot be moved if it is the only process of service p in its current neighborhood

and another process in that neighborhood depends on it. Additionally, one has

to assure that n contains processes that satisfy all the dependencies of service s.

For the set of dependencies D, all these requirements can be verified in O(|D|).

In summary, the feasibility of a shift move can be verified in O(|R| + |D|). The

difference between the cost of the new solution and the cost of the current solution

can also be computed in O(|R|+|D|). When executing the move all data structures

must be updated to reflect the new assignment. This can be done in O(|R|). All

the other moves i.e. swap and BPR can be seen as a sequence of shift moves and

the same rules are applied.

3.5.3 Final Algorithm

Final algorithm pseudo-code is given in Algorithm 3.6. Since local search procedure

(LS()) is invoked many times (for each considered N and for NR resources), BPR,
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shift and swap neighborhoods are explored only once, as shown in Algorithm 3.7.

Algorithm 3.6: NLS

1 Sort processes by sum of requirements ;

2 N ← 0;

3 Sbest ← Sinitial ;

4 Scurrent ← Sinitial ;

5 while N < |P | do

6 N ← N + δ;

7 LS(Scurrent, N);

8 for i = 1 to NR do

9 Change objective - increase weight of resource i;

10 LS(Scurrent, N);

11 Set resources weights to original;

12 LS(Scurrent, N);

13 if cost(Scurrent) < cost(Sbest) then

14 Sbest ← Scurrent

15 Scurrent ← Sbest

Algorithm 3.7: LS()

1 input: current solution, number of processes to consider N ;

2 BPR();

3 shift();

4 swap();

3.6 Computational Results

In this section, we present the computational results for a provided set of instances.

The benchmark dataset is composed of 3 sets (A, B and X) of 10 instances that were

used in the ROADEF/EURO Challenge 2012. The size of these instances ranges

from 4 machines and 100 processes to 5,000 machines and 50,000 processes. The

instances of set A have a smaller size than the others, while sets B and X are larger

and very similar in nature. Despite their smaller size, instances A showed to be
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much harder to solve to the optimality (e.g. a2_2 and a2_3 instances). For almost

all instances of sets B and X the gap between the solution value and a lower bound

is smaller than 0.01%. All the results are obtained on a core2duo E8500 3.16GHz

with 4GB RAM on Debian 64 with maximum execution time fixed to 5 minutes

for each instance. The same machine is used for ROADEF/EURO Challenge

evaluation. The whole method is implemented in C++ and the code itself is

available as an open source project. The program was run 100 times for each

instance. The average and best objective values are reported. The score function

is the one used for challenge evaluation and involves measuring and comparing the

cost gains relative to the initial solution. In Tables 3.10 and 3.11, we present our

computational results for a provided set of instances. Longer running times may

lead to additional solution improvements, but most of the possible improvement is

already achieved after five minutes. Therefore, we do not give any solution reports

with running time greater than 5 minutes. Using greater time limit is equivalent

to multiply runs with different seeds (for example, best reported results in Tables

3.10 and 3.11 can be seen as average solutions in 500 minutes running time).

Score function Some instances considered in this work may have arbitrarily

low optimal costs. Thus, assessing the solution quality as a gap from the best

solution cost would give too much importance to problems for which the expected

final solution value is low. We thus rely on another alternative, which involves

measuring and comparing the cost gains relative to the initial solution which is

quite natural approach and is used for challenge evaluation. The score of solution

S respect to solution B is equal to

cost(S)− cost(B)

cost(originalSolution)

. Improvement can be expressed as a percentage: 0% means no improvement over

the original solution and 100% means that the cost of the original solution has

been reduced to 0.
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Results A - 100 runs

Inst Average Best Best Q LB LP LB

a1_1 44 306 501 44 306 501 44 306 501 44 306 390 44 306 501 *
a1_2 778 142 261 777 536 907 777 532 896 777 530 730 777 531 000 *
a1_3 583 006 320 583 005 818 583 005 717 583 005 700 583 005 715 *
a1_4 259 815 285 245 421 266 252 728 589 242 387 530 242 406 000
a1_5 727 578 311 727 578 309 727 578 309 727 578 290 727 578 000 *

a2_1 333 199 198 0 126 *
a2_2 740 140 535 707 237 541 816 523983 13 590 090 537 253 000
a2_3 1 210 207 120 1 182 260 491 1 306 868 761 521 441 700 1 031 400 000
a2_4 1 680 629 156 1 680 542 520 1 681 353 943 1 680 222 380 1 680 230 000
a2_5 317 804 454 309 714 522 336 170 182 307 035 180 307 403 000

Score -9.36 -15.86

Table 3.10: The table shows the results for set A instances. The average and
best objective values are reported by running the program for 100 different seeds
with 5 minutes running time. The fourth column (Best Q) represents the best
solutions from the qualifying phase of competition. The fifth column represents
the score of our average (best) solutions with respect to the best solutions from
qualification phase and Total Score is the sum of these values. The last two columns
represent the solution lower bounds, the first one is simple lower bound described
in Section 3.4 and the second one is linear programming based lower bound taken
from Masson et al. [2013]. The instance is marked by (*) if the load and balance
costs are optimal.

3.7 Conclusion

Local search algorithm has been proposed for the Machine Reassignment problem

proposed by Google. Local search starts with initial solution given as an input data

and improves it by exploring three local search neighborhoods; two commonly used

neighborhoods, shift and swap, and one more complex called BPR (Big Process

Rearrangement) neighborhood. Several strategies have been developed in order to

obtain better solutions including intensification and diversification of the search,

defining a good order of processes when exploring the search space, and restart

procedures. Noising strategy consisting of slight objective function modification

showed to be useful in improving the final results. To deal with the size of the
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Results B, X - 100 runs

Inst Average Best Best Challenge LB

B1 3 343 410 128 3 297 378 837 3 339 186 879 3 290 754 940
B2 1 015 561 513 1 015 515 249 1 015 553 800 1 015 153 860 *
B3 157 737 166 156 978 411 156 835 787 156 631 070 *
B4 4 677 981 438 4 677 961 007 4 677 823,040 4 677 767 120 *
B5 923 905 512 923 610 156 923 092 380 922 858 550 *
B6 9 525 934 654 9 525 900 218 9 525 857 752 9 525 841 820 *
B7 14 835 328 102 14 835 031 813 14 835 149 752 14 833 297 940 *
B8 1 214 453 127 1 214 416 705 1 214 458 817 1 214 153 440 *
B9 15 885 693 227 15 885 548 612 15 885 486 698 15 885 064 440 *
B10 18 048 711 483 18 048 499 616 18 048 515 118 18 048 006 980 *

X1 3 065 081 130 3 030 246 091 3 100 852 728 3 023 565 050
X2 1 003 356 104 1 002 698 043 1 002 502 119 1 001 403 470
X3 341 508 259 656 211 656 0 *
X4 4 721 856 521 4 721 820 325 4 721 629 497 4 721 558 880 *
X5 160 418 144 768 93 823 0 *
X6 9 546 972 261 9 546 967 016 9 546 941 232 9 546 930 520 *
X7 14 253 212 517 14 253 133 805 14 253 273 178 14 251 967 330 *
X8 147 269 138 083 42 674 0 *
X9 16 125 760 293 16 125 746 709 16 125 612 590 16 125 494 300 *
X10 17 815 072 367 17 815 045 320 17 816 514 161 17 814 534 020 *

Score -0.38 -1.48

Table 3.11: The table shows the results and lower bounds for set B and X instances.
We do not report the score for each instance since all the results are very close
to the lower bounds. The total score is equal to -0.38 (-1.48) for average (best)
results. The instance is marked by (*) if the load and balance costs are optimal.

problem instances, search exploration is limited for each of the neighborhoods.

The proposed solution is still sensitive to the choice of the parameters and the

appropriate choice of processes and machines participating in the moves. The

computational tests show that these choices in the initial phase of the method

greatly influence the quality of the final solution. Nevertheless, some of the ob-

tained results are quasi optimal, while the others are competitive with the world’s

best known results. The challenge remains to construct essentially different types

of local search moves. We believe it would be very useful to design an efficient

algorithm to calculate the optimal assignment of processes on two given machines,

taking into consideration only the processes already assigned to those machines.

While the whole problem is defined as an improvement problem for a given solu-
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tion, the construction of an initial solution from scratch would bring a new insight

to the data and the solution method which would improve the presented local

search itself.
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Chapter 4

SNCF Rolling Stock Problem

This chapter presents the method developed for solving the problem of Rolling

Stock unit management on railway sites, defined by French Railways (SNCF). The

problem is very complex and includes several difficult sub-problems. Contrary

to the pure local search methods described in the previous chapters, approach

proposed herein combines greedy heuristics, Mixed Integer Programming (MIP)

and local search. Greedy heuristic (rather complex) and Integer Programming

have been used in order to obtain initial feasible solutions to the problem, which

are then the subject of an improvement procedures based on local search.

4.1 Introduction

The problem of rolling stock unit management at railway sites, as defined by

French Railways (SNCF) has been proposed at the ROADEF/EURO Challenge

2014 competition. The problem involves managing trains between their arrivals

and departures at terminal stations. This problem is currently being jointly ad-

dressed by several SNCF departments, thus decomposing it into a collection of

sub-problems to be solved sequentially. Consequently, the integrated problem for-

mulation exposed here in fact reflects a prospective approach. Between terminal

station arrivals and departures, the trains never do vanish. This aspect unfortu-

nately is often neglected in railway optimization methods. In contrast, in the past,

rail networks possessed sufficient capacity to accommodate all trains without too
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many constraints: such is no longer the case. Traffic has indeed increased consider-

ably in recent years, and a number of stations are now experiencing real congestion

issues. Current traffic trends will make this phenomenon even more challenging

over the next few years. The proposed model focuses on the multiple dimensions

of this problem, by taking into account many different aspects. The model scope

remains within geographically limited boundaries, typically just a few km in urban

environments: the train station and surrounding railway infrastructure resources

are considered by this model. The solutions to such problems involve temporary

parking and shunting on infrastructure, which typically consists of station plat-

forms, maintenance facilities, rail yards located close to train stations and the set

of tracks linking them (these infrastructure resources constitute what is referred

to as the "system").

This chapter will be organized as follows. A description of the problem is provided

in Section 4.2. The description employed herein has been borrowed from the of-

ficial competition subject (Ramond and Marcos [2014]). Section 4.3 will address

all related work. Our two-phase approach will be described in Section 4.4: solving

the problem of matching (assigning) trains to departures will be considered first,

followed by the problem of scheduling trains inside the station. An iterative im-

provement procedure, based on a local search, will be presented at the end of this

section. The computational results obtained from the available set of instances,

provided by SNCF, will be provided in Section 4.5. Our algorithm developed for

solving the preliminary version of the problem used during the qualification phase

of the competition, along with computational results, is presented in Section 4.6.

The authors’ final remarks and conclusion will be given in the last section.

4.2 Problem Statement

4.2.1 Planning horizon

The planning horizon considered in this problem is variable. It is an integral

number (nbDays) of days from morning of day 1 ("d1" at 00:00:00, denoted h0) to

midnight of day nbDays ("dnbDays" at 23:59:59). No absolute date is considered,

we assume that the days to be planned can be at any date. All days last 24 hours,
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and no time change occurs in the horizon. The set of all time instants within

the planning horizon is denoted by H. In the following, we use the word "time"

to represent a time instant (date/time) during the horizon. A time within this

horizon is written "di hh : mm : ss", where i ∈ [1, nbDays] stands for the day

index, hh ∈ [0, 23] for the hours, mm ∈ [0, 59] for the minutes and ss ∈ [0, 59] for

the seconds. This representation implies that the time horizon is discretized, the

smallest duration taken into account being one second. Durations have a format

similar to time instants (hh : mm : ss), but the number of hours hh may be

greater than 23. Note that using the second as the shortest time unit enables to

represent time with a high precision, considering that most durations used in the

following are typically a few minutes or hours. All instances may not fully exploit

this precision; some may only handle durations and time instants as multiples of

10 seconds or one minute, for example. Depending on the resolution approach,

this might be used to reduce the problem complexity.

4.2.2 Arrivals

Arrivals are the end of journeys for passengers. In our model, arrivals generate

entrances of trains in the system. The times of arrivals are provided as an input

and are considered to be non-modifiable. These times correspond to the moments

trains arrive on platforms, but their entrance in the system usually occurs a few

minutes before. Indeed, trains have to perform what is called "arrival sequences".

These sequences are fixed and represent the routing of trains on the tracks during

the last few km before platforms. Arrival sequences are non-modifiable but they

require some resources of the station, such as a set of tracks during pre-defined

time periods, and in that sense they impact the efficiency and the usage of the

whole system. Formally, the set of arrivals during the horizon is denoted by A and

an arrival a ∈ A is defined by the following characteristics:

• the associated train, arrTraina (see the set T of trains introduced in Section

4.2.4),

• the arrival time arrT imea ,
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• the arrival sequence arrSeqa , which is the sequence of track groups (see

Section 4.2.7.5) used immediately before arriving on platform,

• the set of preferred platforms, prefP lata , determining which platforms are

preferred to be assigned to a (these preferences may be unsatisfied in solu-

tions, but this is penalized by a cost in the objective function),

• the ideal dwell time, idealDwella , and the maximum dwell time maxDwella,

which respectively represent the ideal and the maximum time arrTraina

should stay on the platform after arrT imea before moving to some other

resource,

• the remaining distance before maintenance (DBM) remDBMa and time

before maintenance (TBM), remTBMa of arrTraina, determining whether

or not arrTraina must perform maintenance operations before being as-

signed to a departure. In the following, if train t ∈ T is associated with

a (arrTraina = t), we define remDBMt = remDBMa and remTBMt =

remTBMa.

Potentially, a can be part of a joint-arrival denoted by jointArra . A joint-

arrival defines a combination of trains, physically assembled and arriving

together at the station. More details on joint-arrivals and joint-departures

are provided in Section 4.2.5.

One decision to make concerning an arrival a is the platform to assign, i.e.

the platform on which arrTraina arrives at arrT imea. It is feasible (but

penalized) not to cover some arrival a ∈ A. In this case, the associated train

arrTraina merely does not come into the system and, hence, does not use

any resource during the planning horizon. Obviously, in such cases no plat-

form has to be assigned to a. Another direct consequence is that arrTraina

cannot be assigned to any departure.

4.2.3 Departures

Departures are known by passengers as the beginning of a train journey. From

the problem’s perspective, departures are the way trains leave the system. As

for arrivals, a platform must be assigned to each departure; their times as well
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as their departure sequences (routing between platforms and the limits of the

system) are known, fixed and given in advance. One has to decide which train is

assigned to each departure. Assigning no train to a departure is highly undesirable;

uncovered departures constitute a significant part of the objective function (see

section 4.2.10). Note that at most one train can be assigned to a departure. The

train assigned to departure d, if any, is denoted by depTraind. The following

attributes define a departure d ∈ D, where D represents the set of all departures:

• its departure time depT imed,

• its departure sequence, depSeqd , which is the sequence of track groups used

immediately after departing from platform,

• the set of preferred platforms, prefP latd, determining which platforms are

preferred to be assigned to d,

• the set of compatible train categories, compCatDepd, which is a subset of

C (see section 4.2.4.2) determining which trains can be assigned to d (only

trains whose category is in compCatDepd can be assigned),

• the ideal dwell time, idealDwelld, and the maximum dwell time, maxDwelld,

which respectively represent the ideal and the maximum time the assigned

train should stay on the platform before depT imed,

• the distance, reqDBMd and time reqTBMd of the journey following the

departure. These two values are compared, for a train t ∈ T , with the

remaining DBM and TBM of t, to determine whether or not maintenance

operations have to be performed on t before depT imed.

Potentially, d can be part of a joint-departure represented by jointDepd.

This description assumes that the assignments of trains to departures have no

impact on arrivals and, more precisely, on the remaining TBM and DBM of

trains associated with arrivals. In practice, this is not completely true because

the trains associated with arrivals are usually trains which were earlier assigned to

departures and which spent some time out of the system before coming back. To
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take this into account, some arrivals are linked with departures occuring earlier

in the horizon. For such an arrival a ∈ A, we introduce an additional parameter

denoted by linkedDepa ∈ D. linkedDepa is the departure whose assigned rolling

stock unit comes back in the system associated with a. Then, if a train t is assigned

to d, and if a is covered, the default train category of arrTraina provided in the

input data is replaced by the train category of t. In a similar way, the default

remaining DBM and TBM of a are replaced by values depending on t(see Section

4.2.6).

4.2.4 Trains

We consider a set of trains denoted by ∈ T . In our model, we define a train as a

visit in the system of a rolling stock unit. The set of trains is composed of:

• trains already present in the system, located on one of its resources at the

beginning of the horizon (this set is represented by TI ⊂ T),

• trains associated with arrivals (these trains belong to set TA ⊂ T).

Rolling stock units are unoriented, composed of railcars which may not be decom-

posed nor recombined with those of other units. In fact, railcars are not considered

in this model: trains are the smallest rolling stock elements.

Today, almost all modern rolling stocks are reversible and non-decomposable units:

high-speed trains, recent regional trains, etc. But older trains still have a composi-

tion that varies depending on the destinations and weekdays; this implies different

numbers and types of railcars, 1st vs 2nd class repartition. . . To keep the problem

description simple, we don’t handle this aspect here. The successive stays of a

given rolling stock unit in the system during the horizon are considered as differ-

ent trains in this problem. For instance, a unit may be assigned to a departure

d ∈ D, leave the system and return back a few days later in it, associated with an

arrival a ∈ A: in this case, we consider two distinct trains. As described earlier,

these trains might correspond to the same rolling stock unit, if linkedDepa = d,

but the trains arrTraina and depTraind are different because they correspond to

distinct visits in the system.
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As a consequence, trains are considered only during a portion of the planning hori-

zon: between their associated arrival (or the beginning of the horizon, if they are

initially in the system) and the departure they are assigned to (or, if they are not

assigned to any departure during the horizon, the end of the horizon).

A train t ∈ T belongs to a train category, catt ∈ C, defining some common tech-

nical characteristics, such as length, that t shares with other trains of the same

category, C being the set of all train categories.

4.2.4.1 Trains initially in the system

As mentioned earlier, some trains can be present in the system at the beginning

of the planning horizon. In addition to its train categories, a train t ∈ TI initially

in the system is characterized by the following attributes:

• rest: the resource used by t at d100 : 00 : 00,

• remDBMt: the remaining distance before maintenance of t,

• remTBMt: the remaining time before maintenance of t.

Like arrivals which can remain uncovered, one may choose not to use some trains

initially in the system, which is feasible but penalized. The unused initial trains,

if any, do not use any resource of the system during the planning horizon and

cannot be used to be assigned to departures. It is assumed that trains initially in

the system are not travelling on track groups at h0.

4.2.4.2 Train categories

As introduced in Section 4.2.4, trains share common characteristics defined by

their belonging to some categories. In a sense, all trains belonging to the same

category are identical, with only their initial maintenance conditions (remaining

TBM and DBM) being different from one train to another. In practice, trains

are usually produced in series of a few dozen or hundred identical units which

are eventually delivered by the manufacturers to the railways companies: these A

train category c ∈ C, where C is the set of all train categories, is defined by:

97



SNCF ROLLING STOCK PROBLEM

• a length: lengthc,

• a compatibility group catGroupc expressing the physical and technical com-

patibility of trains with each other when two or more trains are assembled:

two trains are compatible if and only if their respective compatibility groups

are identical,

• a maximal distance before maintenance, maxDBMc, expressed in km and

defining the DBM of trains belonging to category c once they finish a main-

tenance operation of type "D"(restoring the DBM , see 4.2.6). This quantity

represents the maximal number of km a train of category c can run between

two maintenance operations of type "D".

• similarly, maxTBMc designates the maximal time before maintenance of

trains of category c. This is the maximal time trains of category c can run

between two maintenance operations of type "T".

• the time maintT imeTc required to perform a maintenance operation of type

"T", and

• the time maintT imeDc required to perform a maintenance operation of type

"D".

For the sake of simplicity, in the following we use the following convention (the

characteristics of a train refer to those of its category). For any c ∈ C and any

t ∈ T such that catt = c, we set:

lengtht = lengthc

catGroupt = catGroupc

maxDBMt = maxDBMc

maxTBMt = maxTBMc

maintT imeTt = maintT imeTc

maintT imeDt = maintT imeDc
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Figure 4.1: Junction of two trains

4.2.4.3 Preferred train reuses

From a practical point of view, the assignment of trains to departures is not always

completely free. Indeed, in order to ensure the feasibility of the schedules, some

decisions are planned in an earlier stage; train reuses are part of these decisions.

They consist in pre-determining which arriving train is supposed to be assigned

to a given departure. This might be sub-optimal in some particular situations,

especially when changes occur in the tactical planning and some assumptions do

not hold any-more. However, this kind of information is shared among a high

number of workers and these decisions are difficult to change because they induce

disorganization in the operational management.

To represent this, some preferred train reuses are provided as an input in some

instances. A reuse u ∈ U , where U denotes the set of all reuses, is defined by

an arrival, arru , and a departure, depu . For such a reuse u, when possible, the

train assigned to depu should be the same, ideally, as the one associated with arru

. This might not be respected, but in this case a non-satisfied reuse cost applies

in the objective function. In particular, this cost applies if any of arru or depu is

uncovered. It is assumed that any departure d ∈ D appears in at most one reuse,

i.e. there is at most one reuse u such that depu = d. Conversely, for any a ∈ A

there is at most one reuse u such that arru = a.

4.2.5 Joint-arrivals and joint-departures

When the number of expected passengers is high, some commercial trips are cov-

ered by more than one train:n ≥ 2 trains are physically assembled to run to-

gether. We call a joint-arrival a combination of n simultaneous arrivals and a
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joint-departure the equivalent for n simultaneous departures, corresponding to n

assembled trains arriving to or departing from the same platform. A joint-arrival

concerns n arrivals, and expresses a synchronization of arrivals. A joint-departure

consists of n departures, all having the same time; the associated trains must be

assembled, on the same platform, in a certain order. Indeed, the roles played by

the different trains differ according to the departure they are assigned to, and

their order is important when they are disassembled, even when this happens out-

side of the considered system. Similarly, all the trains of a joint-arrival share the

same time and the order of the arriving trains on the platform is an attribute of the

joint-arrival. Formally, a joint-departure j ∈ Jdep , where Jdep is the set of all joint-

departures, is defined by an ordered list of departures jdListj. In a symmetrical

way, Jarr represents the set of all joint-arrivals and any j ∈ Jarr is character-

ized by an ordered list of arrivals jaListj. The order of arrivals/departures is

important because it enables to distinguish which train (associated with which de-

parture/arrival) runs first, at the head of the "convoy". The convention adopted

throughout this document is as follows: the first departure/arrival in the lists

jdListj and jaListj is associated with the train located most on side A of the

assigned platform (as explained later in Section 4.2.7, all resources have a side

A and a side B), and the next departures/arrivals are associated with the next

positions. The junction of one train with another train, or with already assembled

trains, is an operation which has a cost denoted junCost and requires a duration

denoted by junT ime. This operation is presented in Figure 4.1. Starting from

trains not assembled, the junction of n trains cannot be performed in a single

junction operation: it requires n− 1 junction operations and, consequently, costs

(n−1)× junCost and requires a duration of at least (n−1)× junT ime. Junction

operations can be performed only on platforms, single tracks, maintenance facili-

ties or yards (see types of resources in Section 4.2.7). Once assembled, the trains

are considered as if they were a single train when they move on track groups: only

one move is considered when assembled trains run on a track group. However,

they are still considered as multiple trains on the other types of resources.

Symmetrically, a disjunction of trains has a cost disjCost and requires some

time represented by disjT ime. Like junctions, disjunctions can only be performed

on platforms, single tracks, maintenance facilities or yards. A disjunction operation
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Figure 4.2: Disjunction of two trains

is shown in Figure 4.2. The schedules associated with assembled trains should be

the same between their junction and disjunction: beginning times on each resource

as well as resources themselves must be identical as long as trains are assembled.

4.2.6 Maintenance

Trains must be maintained on a regular basis to be able to run in proper security

and comfort conditions. Their ability to be assigned to departures is determined by

comparing their DBM and TBM with the requirements of the departure (distance

and time required for the journey following the departure). The TBM is a value

representing the time a train can run before a maintenance of type "T" needs to be

performed. It is mostly associated with comfort considerations. The DBM is more

related to security constraints. It represents the maximum distance a train can

still run before the next maintenance of type "D". For a given train performing

no maintenance operation in the system, the DBM and TBM remain unchanged

between an arrival and a departure: local moves between resources are neglected

as their speed is slow and the associated distances are short with respect to those

induced by departures; the time spent in the system by the train is not considered

as affecting the TBM . Two types of maintenance operations may be performed:

maintenance of type "D" enables to restore the DBM of a train t to its maximum

value, maxDBMt, whereas maintenance of type "T" is its equivalent for time

(restores TBM to its maximum value, maxTBMt). A train may perform at most

one operation of each type. Indeed, subsequent operations would have no effect on

TBM/DBM because TBM/DBM would already be restored at their maximum

value. When an arrival a has a linked departure d (i.e. linkedDepa = d), two cases

must be distinguished. If d is not covered (i.e. if no train is assigned to d), then
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the remaining TBM and the remaining DBM of a are those provided in the input

data for a. If d is covered, these characteristics are replaced by those induced

by depTraind: the remaining TBM and DBM of a are deduced from those of

the train assigned to d. If d = linkedDepa, t = depTraind and no maintenance

operation is performed on t, we have

remDBMa = remDBMt − reqDBMd

remTBMa = remTBMt − reqTBMd

If a maintenance operation of type "D" is performed on t, then

remDBMa = maxDBMt − reqDBMdm

and if a maintenance operation of type "T" is performed on t,

remTBMa = maxTBMt − reqTBMd.

For instance, if a train t has remaining DBM of 500km and a remaining TBM

of 48 hours, it can be assigned to a departure requiring a DBM of 450km and a

TBM of 24 hours. However, it may not be assigned to a departure requiring a

DBM of 450km and a TBM of 52 hours (this would violate the TBM require-

ment). It may also not be assigned to a departure requiring a DBM of 550km

and a TBM of 24 hours (this would then violate the DBM requirement).

Maintenance operations can only be performed on maintenance facilities (described

in section 4.2.7.4) which are dedicated to only one type of maintenance. Conse-

quently, a train may not perform both types of operations on the same maintenance

facility. The duration of maintenance operations depends on the category of trains.

Maintenance capacities in the system being limited, the number of maintenance

operations which can be performed over a day in the system, i.e. over all main-

tenance facilities of the system, is bounded by a maximal value represented by

maxMaint.
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Figure 4.3: Example of resources infrastructure

4.2.7 Infrastructure resources

Between arrivals and departures, trains are either moving or parking on tracks that

we consider as resources. In practice, trains can be very long and occupy more

than only one track at a time, but we neglect this aspect here, we consider trains

as if they were points which can instantly move from one resource to another.

Let R be the set of all resources. Resources can be either single tracks, plat-

forms, maintenance facilities, yards or track groups; S, P, F, Y and K represent

respectively the set of all single tracks, all platforms, all maintenance facilities,

all yards and all track groups of the system. Single tracks, platforms and main-

tenance facilities represent portions of tracks considered in an individual manner,

while track groups and yards are aggregated types of resources which usually con-

tain more than only one track and contain switches to physically link the different

tracks together. The next sections provide details for each of these types of re-

sources. An example of resources configuration associated with a sample system

are presented on Figure 4.3. Infrastructures corresponding to dataset A (used in

qualification stage) and some instances in datasets B and X (used in the final stage

of competition) are illustrated in Figures 4.4 and 4.5.

4.2.7.1 Transitions between resources

A resource r ∈ R has a set neighSetr of neighbor resources, defining the possible

transitions for trains, in a symmetrical way: if a resource r′ is a neighbor of r,
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Figure 4.4: Infrastructure for instances A1 – A6

Figure 4.5: Infrastructure for instances A7 – A12
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that is if it belongs to neighSetr, r is a neighbor of r′ and a train might use

r′ immediately after r (and vice-versa). On the contrary, if r′′ /∈ neighSetr ,

the direct transition from r to r′′ is not allowed (and neither from r′′ to r): an

intermediate resource must be used between r and r′′. As we are interested only in

transitions between different resources, a resource is not a neighbor of itself. In our

model, resources represent railways infrastructure elements which are in general

linear and can be accessed from at most two sides, and in some cases from only

one side. Given this aspect, the neighbors of a resource can then be divided into

two subsets, one being physically associated with each "side" of the linear element.

By convention, these two sides are denoted A and B. Hence, for any resource r,

the set of neighbors of r is decomposed into two subsets:

neighSetr = neighSetAr ∪ neighSetBr

. It is also assumed that a resource cannot be the neighbor of another resource

both on A and B sides:

neighSetAr ∩ neighSetBr = ∅.

The transitions between a resource, r, and one of its neighbors, are performed

through one of the entry/exit points, which we call gates, located on both sides of

the resource. These gates correspond to the physical tracks linking the different

resources. Let Gr denote the set of gates of resource r. A gate g ∈ Gr is defined by

its side sideg ∈ {A,B} and its index indg ∈ N ; rg represents the resource g belongs

to. The neighbor gate of g, neighg , is unique and represents the gate of a neighbor

resource accessible through g. The relation between a gate and its neighbor gate is

reflexive: the neighbor gate of neighg is g. The only exception concerns the gates

at the boundaries of the system, which do not have a neighbor. Trains must run

through these gates without neighbor to enter or exit the system. On each side,

the gates are ordered according to their physical positions. The indices of the gates

follow this order. For instance, if a track group consists of tracks oriented following

an East-West axis, the gates on each side are ordered from North to South. On

side A, the gate most on the North is called A1, the next gate A2, and so on.
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Figure 4.6: Example of gates in track group

Figure 4.7: Example of resource with only one gate, on side A

Figure 4.6 presents an example for a track group. Associated with each gate of a

particular resource is exactly one gate associated with one of its neighbors (or no

neighbor if the gate represents is at the boundary of the system). Single tracks,

platforms and facilities, representing individual tracks, have at most one gate on

side A, and at most one gate on side B (hence, at most one neighbor resource on

each side):

∀r ∈ S ∪ P ∪ F, |neighSetAr | ≤ 1 ∧ |neighSetBr | ≤ 1.

When only one side is accessible, for instance a platform in a terminal sta-

tion where the track ends, we use the convention that only side A is accessible:

neighSetAr 6= ∅ ∧ neighSetBr = ∅.

A resource r ∈ S ∪ P ∪ F with only one gate on side A and no gate on side B can

be seen as a stack. It must be managed in a Last In First Out (LIFO) way. This

means that a train t cannot leave r at h ∈ H if another train t′ has arrived later

on r and has not yet left r. A resource r ∈ S∪P∪ F with one gate on side A and

one gate on side B can be seen as a double-ended queue. A train t cannot leave

r through the gate on side A if another train t′ has arrived later through the gate

of side A.

Only track groups and yards may have more than one gate on each side. For these

types of resources, two adjacent resources might be linked by more than one gate:

the gate used for the transition between two resources has to be specified.
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Some resources can be used only by some particular train categories. The set of

train categories compatible with resource r is denoted by compCatResr. For in-

stance, some infrastructure resources might not be electrified, which prevents their

use by electrical rolling stock; in general, maintenance facilities are dedicated to

some categories only.

For any train t and any resource r used by t (except if r is a track group),

the time difference between the associated EnterResource and ExitResource events

must be greater than or equal to a constant duration represented by minResT ime.

To take into account that some operations must be performed on a train to change

its direction (in particular, drivers must walk to go to the other extremity of

the train), a train entering on a single track through a given side must stay a

minimum amount of time on it before going back through this same side. This

time is represented by revT ime.

4.2.7.2 Single tracks

Some tracks of the system, which are not located in stations (i.e. which do not

allow boarding and unboarding of passengers and, hence, cannot be used for ar-

rivals or departures), are considered individually, not part of yards or track groups.

They are called single tracks. S ⊂ R is the set of single tracks. A single track

resource s ∈ S has a length lengths and a capacity capas. At any time h ∈ H, both

the total length of trains and the number of trains parked on s must not exceed

the length of the track and its capacity. The order of trains on single tracks must

be consistent with their moves. As trains cannot fly over each other, they must

respect the order of their arrival on the track to leave it.

4.2.7.3 Platforms

In our model, platforms represent tracks within the train station where passen-

gers can board and unboard the trains. They are very similar to single tracks in

the sense that the order of trains must be consistent with their respective times

of moves. However, they do not have a capacity expressed in maximal number

of trains. Moreover only platforms can be assigned to arrivals and departures.
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P ⊂ R denotes the set of all platforms. Each platform pinP has a lengthlengthp.

If the duration of use of a platform is too short before a departure d ∈ D, less

than idealDwelld, passengers might not be able to board the train in a comfort-

able way. This is penalized by a cost. Symmetrically, trains staying more than

idealDwelld on platforms before departure are penalized because platforms are

considered as critical resources. In any case, trains may not use a platform for

more than maxDwelld before departure. Similar considerations apply to arriving

trains, which should stay on platforms a duration close to idealDwella, and in any

case less than maxDwella.

If a platform is temporarily used for purposes other than an arrival or a departure

then the duration of use of the platform must not exceed a constant duration de-

noted by maxDwellT ime.

4.2.7.4 Maintenance facilities

Maintenance facility resources are special tracks inside maintenance workshops.

They are used to periodically reset the DBM and TBM of trains. The set of

maintenance facilities is denoted by F ⊂ R. A maintenance facility f ∈ F is char-

acterized by a type typef ∈ {”D”, ”T”} indicating which type of operations can

be performed. If typef equals "D", only operations of type "D" can be performed;

otherwise, if typef equals "T", only operations of type "T" can be performed. As

a consequence, either the DBM or the TBM is restored by a maintenance facility

resource, in an exclusive manner. It is also characterized by a length lengthf which

may not be exceeded by the total length of trains using it.

4.2.7.5 Track groups

Track groups are sets of tracks used by trains to move throughout the system. A

track group represents a sub-part of the rail network in the considered system. Its

real physical configuration in terms of tracks and switches linking them can be

very complex; we don’t consider this complexity here, we rather see it as a black

box with some indications on how to identify conflicts. The set of all track groups

is represented by K ⊂ R. A track group k ∈ K is supposed to be used for train
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moves: the duration of use of k by any train (i.e. travel time) is a constant denoted

by trT imek. It is the time required by a train to enter the track group k on one

side and exit at the opposite side. Indeed, a train entering on one side of a track

group must exit on the other side. All gates of one side are reachable from all

gates of the opposite side. As a consequence, if a track group has n gates on one

side and m gates on the other side, then n×m different paths are possible in each

direction. Besides, hwTimek represents the headway of the track group: this is

a security time which must be respected at any place between two trains. Figure

4.6 shows an example of track group representation with n gates on side A and m

gates on side B. When several trains use a track group over the same time period,

conflicts might occur between them. A conflict is an unwished situation where two

running trains might come too close to each other, and one has to stop one of them

to respect security distances. Once again, we adopt here a "black-box" approach

where the full complexity of the track group is eluded. Real conflicts should be

identified through a very detailed description of all infrastructure equipments and

signaling systems; here, conflicts model non-robustness, that is trains are likely

to stop due to headway constraints. Conflicts are not considered feasible. The

associated constraints are exposed in Section 4.2.9.

4.2.7.6 Yards

A yard is also a set of tracks, but it is mainly used for parking. Therefore, contrary

to track groups which are dedicated to train moves, the duration of use by trains

is not fixed, trains can stay on yards with no time restriction. The set of yards

is denoted by Y ⊂ R. A yard y ∈ Y has a limited physical capacity on the

number of trains which can be handled simultaneously, capay, which is a way to

model the number of tracks and the maximal number of trains that can be parked

simultaneously.

4.2.7.7 Initial train location

It is assumed that trains initially in the system are not traveling on track groups

at h0 (in other words, for any t ∈ TI , rest /∈ K). Moreover, we assume that
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when several trains are initially in the system at the beginning of the horizon on

the same resource of type single track, platform or maintenance facility, they are

positioned by order of appearance in the data input file, starting from side A (the

first train appearing in the file is the most on side A, the next ones are on the next

positions towards side B).

4.2.7.8 Imposed resource consumptions

Some aspects of the system we consider are external to our decision perimeter.

They are considered fixed and cannot be changed. For instance, some trains use

resources during the horizon whereas they are not part of T: infrastructure main-

tenance trains, trains not terminating at the train station and continuing their

journey, or trains from other companies, on which no decision is to be made. They

should not be considered the same way in the sense that no decision should be made

for them. However they do use the same resources as those of T, i.e. resources

of R. Moreover, some resources might be unavailable due to opening times of

resources or infrastructure maintenance works. To represent this, pre-determined

consumptions of resources are imposed over the horizon on the different resources.

Depending on the type of resource, these imposed consumptions have different

characteristics. The set of imposed resource consumptions is represented by I. An

imposed consumption i ∈ T refers to an associated resource, denoted resi. If resi

is an individual track (single track, platform or maintenance facility), it is consid-

ered unavailable between a beginning time, begi, and an end time, endi. No train

is allowed to use resi during the interval [begi, endi]. If resi is a yard y ∈ Y, then

i is defined by a number of trains, nbi , using the yard y between begi and endi.

It is equivalent to a temporary reduction of capacity of the yard by nbi units. We

assume that two distinct imposed consumptions for the same yard do not overlap.

Finally, if resi is a track group k ∈ K, i represents the move of a train over the

track group; it is then defined by an origin gate, oi, a destination gate, di, and the

time the train enters the track group at oi, hi. These imposed train paths over

track groups are considered exactly the same way as for trains in T when detecting

conflicts.
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4.2.8 Solution representation

A solution to the problem is composed of a set of schedules, each denoted by

schedt , one for each train t ∈ T. The schedule schedt of train t is a sequence

of events during its presence in the system, along with details such as the time

of each event, the resources used, etc. With this information for every train, it is

possible to derive the status of the system and each of its resources at any time

during the horizon. Trains in T which are associated with uncovered arrivals, or

unused initial trains must have any empty schedule (no event at all).

The considered events concerning a train are its arrival and departure, its

entrance in and exit from the system or any resource of the system, and the be-

ginning and end of junction, disjunction and maintenance operations. These types

of events are respectively denoted by Arrival, Departure, EnterSystem, ExitSys-

tem, EnterResource, ExitResource, BegJunction, EndJunction, BegDisjunction,

EndDisjunction, BegMaintenance and EndMaintenance. With any event e ∈ E,

where E represents the set of all events in the solution, is associated a train, te, a

time, he, an event type ye, a resource, re, a gate on re, ge, and a complement, ce.

Depending on the type of event, some of these characteristics may not be relevant.

A solution is feasible if and only if all constraints are satisfied. While most

of them were introduced earlier in the previous sections, the constraints of the

problem are defined in a more formal way in the competition subject (Ramond

and Marcos [2014]).

In the following, the notation T+ will be used to designate trains which are

actually used in the solution, i.e. trains of T not associated with uncovered arrivals

or unused initial trains. Recall that these latter do not use any resource of the

system during the whole horizon, so the following constraints do not hold for them.

4.2.9 Conflicts on track groups

Depending on their respective times, conflicts may occur between two moves m1

and m2 on a track group. These conflicts are not considered feasible. Moves m1

and m2 can be associated with consecutive EnterResource and ExitResource events

in the schedule of trains of T+, or imposed consumptions on a track group. Let M

represent the set of all moves on track groups. For any move mi on track group
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Figure 4.8: Conflicts in the same direction

k, let oi, di and hi respectively denote its origin gate (i.e. the gate through which

mi enters k), its destination gate (i.e. through which mi exits k) and the time it

enters the track group at oi. It is recalled that trT imek represents the travel time

of a train on k, hwTimek the headway time on k, meaning the minimum buffer

time between two trains to respect security distances, and that assembled trains

entering a track group count for only one move. Let m1 and m2 be two moves on

the same track group. We consider that a conflict occurs in the following cases:

• Case 1: m1 and m2 are on intersecting paths, in the same direction, with

insufficient buffer time (see Figure 4.8 for examples of configurations where

conflicts might arise between two trains in the same direction)

– the indices of destination gates of m1 and m2 are equal, or inverted with

respect to those of origin gates:

(indo1 − indo2)× (indd1 − indd2) ≤ 0,

– m1 and m2 are in the same direction (sideo1 = sideo2), and

– the headway time may not be respected (|h1 − h2| < hwTimek).

• Case 2: m1 and m2 are on intersecting paths, in opposite directions, with

insufficient buffer time

– the indices of the gates used by m1 and m2 on each side are equal, or

inverted with respect to those used on the other side:

(indo1 − indd2)× (indd1 − indo2) ≤ 0,

– m1 and m2 are in opposite directions (sideo1 6= sideo2), and

– the headway time may not be respected (|h1−h2| < trT imek+hwTimek).
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With this definition, the constraints on conflicts are expressed by:

∀(m1,m2, k) ∈M2 ×K s.t. sideo1 = sideo2 ,

(indo1 − indo2)× (indd1 − indd2) ≤ 0→ |h1 − h2| ≥ hwTimek

∀(m1,m2, k) ∈M2 ×K s.t. sideo1 6= sideo2 ,

(indo1 − indd2)× (indd1 − indo2) ≤ 0→ |h1 − h2| ≥ hwTimek + hwTimek

(4.1)

4.2.10 Objectives

The objective function f is used to evaluate the quality of feasible solutions. It is

a sum of individual costs which are:

1. Uncovered arrival/departure and unused initial trains cost (funcov),

2. Platform usage costs (f plat),

3. Over-maintenance cost (f over),

4. Train junction and disjunction operation costs (f jun),

5. Non-satisfied preferred platform assignment cost (f pref ), and

6. Non-satisfied train reuse cost (f reuse).

4.2.11 Uncovered arrivals/departures and unused initial trains

Minimizing the number of uncovered arrivals/departures and unused initial trains

is important for the quality of the solution. Uncovered departures have no asso-

ciated train in the solution schedule. Uncovered arrivals and unused initial trains

have their associated trains not part of the solution schedule. The uncovered

arrival/departure and unused initial train cost is given by:

funcov = uncovCost× (|{t ∈ T \ T+}|+ |{d ∈ D; depTraind = ∅}|) (4.2)

If no train is assigned to a departure d belonging to a joint-departure j, d is

considered uncovered. If trains are assigned to the other departures of j, these
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departures are covered but their order has to be coherent with the order defined

by the joint-departure. Likewise, if an arrival a belonging to a joint-arrival j is

not covered, the trains associated with the other arrivals of j (if they are covered)

must be ordered consistently with the order defined by j.

4.2.12 Performance costs

4.2.12.1 Platform usage costs

A platform may be used in four cases:

1. for an Arrival event only (let A∗ ⊂ A be the set of such arrivals),

2. for a Departure event only (let D∗ ⊂ D be the set of such departures),

3. for an Arrival event immediately followed in schedt by a Departure event

(Z ⊂ A ×D represents the set of such arrival/departure pairs where t does

not leave the platform), or

4. for none of these cases.

Some costs apply to cases 1, 2 and 3; the associated cost functions are respec-

tively denoted by f plat1 , f plat2 , f plat3 , where dwellCost represents the cost of one

second of variation between the ideal stay duration and the actual stay duration on

a platform. Note for any pair (a, d) ∈ Z we have dwella = dwelld. For any arrival

a ∈ A∗, let dwella be the duration of use of the platform assigned to a (i.e. the

time difference between the EnterResource and ExitResource events before and

after a). Similarly, for any departure d ∈ D∗, let dwelld be the duration of use of

the platform assigned to d. And let dwellz and idealDwellz respectively denote

the duration of use of a platform by a pair z = (a, d) ∈ Z, and the ideal duration

defined as the sum of ideal durations of a and d:

idealDwellz = idealDwella + idealDwelld. (4.3)

Then, we define:

f plat1 =
∑

a∈A∗

dwellCost× |dwella − idealDwella| (4.4)
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f plat2 =
∑

d∈D∗

dwellCost× |dwelld − idealDwelld| (4.5)

f plat3 =
∑

z∈Z

dwellCost× |dwellz − idealDwellz| (4.6)

Finally, we set:

f plat = f plat1 + f plat2 + f plat3 . (4.7)

4.2.12.2 Over-maintenance cost

Maintenance should be avoided when trains can still run for some time/distance

because this generates additional production costs. Hence, for any maintenance

operation, the remaining DBM (expressed in seconds) or TBM (expressed in

km) of the concerned train is penalized. The corresponding costs, remDCost and

remTCost are expressed per second and per km, respectively.

fmaint =
∑

e∈E,ye=BegMaintenance,ce=”D”

remDCost× remDBMte+

∑

e∈E,ye=BegMaintenance,ce=”T”

remTCost× remTBMte

(4.8)

4.2.12.3 Train junction / disjunction operation cost

Each junction and disjunction operation has a cost in the objective function, f jun

is the sum of these individual costs:

f jun =
∑

e∈E,ye=BegJunction

junCost+
∑

e∈E,ye=BegDisjunction

disjCost (4.9)

4.2.12.4 Non-satisfied preferred platform assignment cost

For any arrival a ∈ A, if the platform platfa assigned to a is not in prefP lata,

a cost of platAsgCost applies. Likewise, this cost applies if, for any departure

d ∈ D, the platform platfd assigned to d does not belong to prefP latd.
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f pref =
∑

a∈A,platfa /∈prefP lata

platAsgCost+

∑

d∈D,platfd /∈prefP latd

platAsgCost
(4.10)

4.2.12.5 Non-satisfied train reuse cost

Finally, if some reuse u ∈ U is not satisfied, a cost of reuseCost applies. f reuse is

defined by:

f reuse =
∑

u∈U,depTraindepu 6=arrTrainarru

reuseCost. (4.11)

For the set of instances introduced for the competition, the first two objectives

(funcov and f plat) are, by far, the most critical, as illustrated in figure 4.9.

4.3 Related Work

A large body of literature relative to train routing problems is available. However,

any exact or even similar matches of previous research with the current problem

could not be identified. Only variations to some of the sub-problems occurring

here can be found in several publications (for example, in Lentink et al. [2003] and

Freling et al. [2005]); moreover, a broad range of optimization models for specific

problem variants does exist. We will not therefore be emphasizing any of the pa-

pers or related problem variants herein.

Recently, both during and after the competition, a few papers (or technical re-

ports) have been published on this topic. Cambazard and Catusse [2014] propose

a methodology heavily based on modeling with both Mixed Integer Programming

(MIP) and Constraint Programming technologies for problem resolution. These

authors mainly concentrate on solving the problem of assigning trains to depar-

tures and using a Mixed Integer Programming approach similar to that explained

in this work. Haahr and Bull [2014] propose two exact methods, MIP and Column

Generation, for solving the same sub-problem (called "Train Departure Matching

Problem" in their paper). They report that solving the problem of assigning trains
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Figure 4.9: Objective parts importance: for each instance (B1 – B12), the
value of each objective part in the final solution is represented by a different color.

to departures exactly is very difficult, if not impossible, for a given set of instances.

Most of the teams competing in the ROADEF/EURO Challenge 2014 proposed

algorithms that rely on greedy procedures or Integer Programming or a combi-

nation of both. Modeling an entire problem or a significant part of one using

MIP is theoretically possible and has been achieved by a number of competitors,

yet the outcome proved incapable of producing satisfactory results on the given

set of instances. MIP techniques therefore are mainly used to solve only specific

sub-problems. The decomposition of a problem into two dependent sub-problems,

i.e. assignment and scheduling problems, is quite a natural step given the problem

complexity and was carried out in most of the approaches presented. To the best
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of our knowledge, a local search has not been conducted in any approach (at least

as a significant component) besides the one presented herein.

4.4 Two Phase Approach

In our proposed method, the problem has been decomposed into two sub-problems,

which are then solved sequentially. During the first phase, a train assignment prob-

lem (AP) is solved by combining a greedy heuristic and MIP. The main objective

here is to maximize the number of assigned departures while respecting techni-

cal constraints. Other objectives are taken into account as well, with the aim of

obtaining "better" input for the following phase. During the second phase, the

train scheduling problem (SP), which consists of scheduling the trains inside the

station, is solved using a constructive heuristic. The goal of SP is to schedule as

many assignments as possible, in utilizing station resources and respecting all con-

straints. An iterative improvement procedure is implemented in order to improve

the resulting schedule.

4.4.1 Simplifications

Several simplifications of the problem have been introduced in this work. Most of

the work presented has been performed while competing in ROADEF/EURO Chal-

lenge, meaning that a reliable algorithm capable of producing feasible solutions for

all instances within a limited computation time frame had to be developed. For

this reason, when nearing the competition deadline, we decided to simplify our

approach to a certain extent, namely by introducing some restrictions. The main

restriction pertains to junction/disjunction operations for the trains. No such op-

eration has been accepted in the final schedule. This restriction implies that joint

trains should be set on exactly the same schedule, i.e. they must be scheduled at

the joint departure or else one (or both) of them has to be cancelled. In both these

cases, we can consider them as a single train in the scheduling phase of the algo-

rithm. This same restriction applies to joint departures. The result may turn out

to be, but not necessarily, slightly worse, yet on the other hand implementation

of the scheduling procedure has been greatly simplified and become much more
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reliable. Our numerical experiments have shown that this restriction does not ex-

ert a significant impact on the results obtained for the available set of instances.

Another restriction consists of allowing only one maintenance per train. The un-

derlying reasoning is the same, and similar conclusions can be drawn regarding the

implementation and influence on final results. In the remainder of this chapter, it

will be assumed that the restrictions described above have been applied.

4.4.2 Assignment problem

This section will describe the method adopted to solve the problem of matching

(assigning) trains to departures. Assigning train t ∈ T to departure d ∈ D must

satisfy the following technical constraints:

• compatibility: train category catt must be compatible with departure d, i.e.

catt ∈ compCatDepd,

• the remaining distance/time before maintenance of train t must be sufficient

for departure d: remDBMt ≥ reqDd and remTBMt ≥ reqTd,

• the time difference between arrival and departure must be large enough

to allow executing required operations (train maintenance, changing direc-

tion/train reversal, . . . ),

• the number of maintenance operations per day constraint: the total number

of maintenance operations during any day must not exceed a given number

maxMaint.

We call an assignment (t, d) of a train t ∈ T to a departure d ∈ D feasible if the

following holds:

1. catt is compatible with d, i.e. catt ∈ compCatDepd,

2. arrT imet+minDwell(t, d)+maintT ime(t, d)+addT ime(t, d) ≤ depT imed,

3. remDBMt ≥ reqDd, remTBMt ≥ reqTd,

where:
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• minDwell(t, d) is the minimum dwell time of train t, i.e. the minimum

amount of time the train is to spend on the arrival/departure platform. This

amount is equal to: minResT ime or minRevT ime, depending on the set of

possible platforms to choose,

• maintT ime(t, d) is the total maintenance duration required for scheduling t

to d (0 if maintenance not required),

• addT ime(t, d) is an additional time necessary for parking and handling the

train, i.e. in the case where the train is required to leave the arrivals platform

before departure (non-immediate departure). The train may be parked either

at the maintenance facility to undergo maintenance or at any authorized

resource before being scheduled for departure.

Additional time, addT ime(t, d), is a variable value to be determined; it is used

to increase the chance of finding a feasible schedule, yet an excessive value of this

variable may also decrease the number of assigned departures. This value has been

experimentally set to lie within the range of 5 to 60 minutes.

The following objectives are considered during the assignment phase:

1. (o1) maximize the number of assigned departures,

2. (o2) maximize the number of (possible) immediate departures 1,

3. (o3) minimize the number of maintenance operations,

4. (o4) minimize the number of assignments with a large difference between

departure time and arrival time (called "long assignments") (> 10h, for

example),

5. (o5) maximize the number of reuse assignments.

These objectives mixed and exact importance (weight) of each objective part will

be given while describing the methods used for solving the problem. The reason

1Departure d covered by train arrTraina is said to be immediate if train arrTraina can
be scheduled to d without leaving the platform. Such is the case if the time difference between
arrival and departure, depT imed − arrT imea, does not exceed the maximum allowable dwell
time, maxDwell(a, d) = max(maxDwella,maxDwelld).
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Figure 4.10: Assignment graph: color of the line corresponds to the number of
required maintenances: black - 0 maintenances, red - 1 maintenance, blue - 2
maintenances. Dotted line represents link between arrivals and departures.

for introducing objectives (2) and (3) is to minimize the use of track groups since

minimizing track group use will obviously decrease the chance of conflict. Another

goal of inserting (3) is to minimize the use of maintenance facilities, which are

considered critical resources. The aim in avoiding long waiting time between ar-

rival and departure is to minimize the use of parking resources, especially yards.

Violating the yard capacity constraint very often is the reason for cancelling an

arrival or departure. This fact is based on numerical experimentation and our

experience with the given set of instances. The final objective is expected to min-

imize the number of unsatisfied reuse assignments, though it was found to have a

non-significant influence on the final results.

Other parts of the problem objective, such as platform usage cost, will only be

considered during the scheduling phase.

Let’s note that the dwell cost for an immediate assignment (t, d), i.e. dwell cost

of train t scheduled to departure d without leaving the platform, is known before

the scheduling phase since time spent on the arrival/departure platform is known

in advance (equal to depT imed − arrT imea).

The following definitions will be used herein:
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• nbM(t, d): the number of different maintenance types required to schedule

train t to departure d (equals 0, 1 or 2);

• imm(t, d): 1 if d is immediate, 0 otherwise;

• long(t, d): 1 if depT imed − arrT imea > L, where L is a parameter, 0 other-

wise;

• reuse(t, d): 1 if reuse (t, d) exists, 0 otherwise.

These same definitions apply when assigning a set of joint trains to a set of joint

departures. One important remark to make is that if a set of m joint trains jt

were assigned to a set of m joint departures jd without a disjunction operation

and if one of the trains needed to undergo maintenance of type "D"("T"), then

all the trains in jt will undergo maintenance of this same type. The number of

maintenance operations to be performed is therefore equal to: m× nbM(jt, jd).

The actual assignment problem difficulty depends on the structure of the con-

sidered instance. The existence of linked departures significantly complicates the

AP since the remaining distance and time for some trains are not known before

scheduling the linked departures. The problem also becomes more difficult if the

maximum number of maintenance operations per day is low, i.e. the maximum

number of maintenance operations per day constraint (MNMDC) is tight.

A combination of greedy and integer programming algorithms has been imple-

mented to solve this assignment problem. A mixed integer programming approach

could not be applied directly (independently) since the existence of linked depar-

tures makes the model uncontrollable.

4.4.2.1 Greedy assignment algorithm

The first approach for solving an assignment problem is a greedy one, which con-

sists of trying to match departures one by one. For each departure d, the best

train is chosen in consideration of the defined objectives. In formal terms, the

procedure works as follows:
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• sort departures d ∈ D in ascending order with respect to departure time

depT imed;

• for each departure d ∈ D, find the "best" available train.

Only feasible assignments are to be considered here and after assigning train t to

linked departure d, the data (remDBM , remTBM and category) of the corre-

sponding linked train are updated according to the constraint.

The exact choice of train for each departure is precisely described in the pseudo-

code of the assignment algorithm, as given in 4.1. The "assignment value" for

all possible feasible assignments is calculated and the train corresponding to the

minimum value is chosen.

Informally, the following rules are applied when choosing the train for each depar-

ture d:

• consider only currently unassigned trains;

• whenever possible, always choose an immediate assignment: choose the one

that minimizes dwell cost;

• assignments without required maintenance and trains with a small remaining

distance/time value (remDBMt, remTBMt) are preferable for non-linked

departures - the value v = min( remD(t)
reqD(d)

, remT (t)
reqT (d)

) is used as a "measure" of

train size;

• in contrast to the previous rule, assignments involving required maintenance

and trains with a large remaining distance/time value are preferable for

linked departures;

• long assignments are not desirable (see objective (o4) defined in the previous

section).

The maximum number of maintenance operations per day constraint is taken into

account in the following manner. For each interval of days [day1, day2], we define

by m(day1, day2) a current number of maintenance operations performed between
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days day1 and day2. Obviously, m(day1, day2) must not exceed (day2 − day1 +

1) × maxMaint. Each time a maintenance operation or operations needs to be

performed for assignment (t, d), the value m(day1, day2) is updated for each interval

of days [day1, day2] containing [arrDay(t), depDay(d)]. It will be shown below that

respecting the given bound for each interval of days guarantees the existence of

a feasible choice of days for each required maintenance operation in respecting

the daily maintenance limit. A simple procedure for choosing the exact day of

maintenance, along with the proof of correctness, is given in section 4.4.2.3. This

same notion is found in the MIP model, which enables representing a constraint

on the daily maintenance limit as linear.

The greedy procedure is combined with Integer Programming in order to improve

the quality of assignments, as will be explained in the following section.

4.4.2.2 Greedy assignment + MIP

To obtain improved solutions to the assignment problem, the greedy procedure

explained above is combined with a Mixed Integer Programming (MIP) approach.

The main difficulty in applying MIP directly (independently) to solve the as-

signment problem defined above pertains to the presence of linked departures.

More specifically, the remaining distance and time before maintenance (remDBM ,

remTBM) of some trains is not known before assigning the linked departures. De-

riving an efficient, solvable and complete MIP model able to take linked departures

into account remains a challenge and the topic of future research. The greedy pro-

cedure described in the previous section and mixed-integer programming have thus

been combined as follows:

• the assignment problem is solved by a greedy procedure;

• assignments of linked departures are fixed (in updating the data on linked

trains);

• the resulting assignment problem is solved once again with MIP.

Let’s define the set of possible assignments as:
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Algorithm 4.1: Greedy assignment

1 Sort departures by time;
2 for d = 0 to |D| − 1 do

// each departure

3 bestTrain← −1;
4 minV alue← 10000000;
5 for t = 0 to |T | − 1 do

6 isFeasible← d(t) =
−1 ∧ isFeasible(t, d) ∧ checkNmbMaintenancesConstraints();

7 if isFeasible then

8 value← 10000000;
9 if LONG then

10 value← depT imed − arrT imet;

11 else

12 if IMMEDIATE then

13 value← −100000 + dwellCost(t, d);

14 else

15 nmbM ← calculateNmbRequiredMaintenances(t, d)

value = min( remD(t)
reqD(d) ,

remT (t)
reqT (d) )

16 if d is not linked and nmbM > 0 then

17 value← value+ nmbM ∗ 100000 ;

18 if d is linked and nmbM > 0 then

19 value← value− 100000;

20 if d is linked and nmbM = 0 then

21 value← −value

22 if value < minV alue then

23 minV alue← value;
24 bestTrain← t;

25 if bestTrain 6= −1 then

26 t(d)← bestTrain;
27 d(bestTrain)← d;
28 Update linked arrival if needed;
29 Add maint. to all intervals containing [arrDay, depDay] if required;
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S = {(TR,DEP ) : TR ⊂ T, DEP ⊂ D} = {(T1, D1), (T2, D2), . . . , (Tn, Dn)},

where TR and DEP are the sets of arrivals and departures respectively and:

• all trains (departures) in TR (DEP ) are joint (this assumption is considered

true if the set contains just one element, i.e. |TR| = 1 (|DEP | = 1));

• the number of trains in TR equals the number of departures in DEP , i.e.

|TR| = |DEP |;

• all assignments are feasible (the definition of feasibility for joint assignments

is analogous to that for single assignments);

• linked assignments do not exist, i.e. DEP is not a linked departure.

For example, given two joint arrivals t1, t2 and two joint departures d1, d2, then:

S = {(t1, d1), (t1, d2), (t2, d1), (t2, d2), ({t1, t2}, {d1, d2})}.

For each pair in S, a decision variable is defined. More formally, the binary

variable xj corresponds to the jth candidate assignment (Tj, Dj); for each of n

possible assignments (1 ≤ j ≤ n), we obtain xj = 1 if Tj is assigned to Dj, xj = 0

otherwise. Assignments of linked departures are previously fixed, and the variables

pertaining to fixed trains and departures have not been included herein.

As mentioned above, several objectives must be taken into account during the

assignment phase ((o1)-(o5)). All these objectives are merged into a single ob-

jective function by applying a weight for each of the parts. Formally, the MIP

objective function is to maximize the following weighted sum:

∑n
j=1 |Tj| × xj × ( assignmentWeight+

durationWeight× (1− long(Tj, Dj))+

immWeight× imm(Tj, Dj)+

maintWeight× (2− nbM(Tj, Dj))+

reuseWeight× reuse(Tj, Dj)),
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with all weights being non-negative and ordered by magnitude. The weights

are chosen experimentally, and all results in this chapter have been obtained

with the following choices: assignmentWeight = 1000, durationWeight = 100,

immWeight = 10, maintWeight = 1, reuseWeight = 1.

Next, let’s define the constraints included in this model.

Let Tj() (resp. Dj()) denote the characteristic function of Tj (resp. Dj): Tj(t) = 1

if train t belongs to the set Tj, Tj(t) = 0 otherwise. A maximum single assign-

ment exists for each train t and each departure d, as expressed by the following

constraints:

∀t ∈ T

n
∑

j=1

Tj(t)× xj ≤ 1

∀d ∈ D

n
∑

j=1

Dj(d)× xj ≤ 1

As mentioned above, train disjunctions and junctions are prohibited, and this

restriction must therefore be included in the model. This rule means that if two

trains t1 and t2 belonging to a joint arrival ja are assigned to departures d1 and d2,

then d1 and d2 must belong to the same joint departure jd, and vice versa. This

constraint can be simply included in the model by the following. Let (TR,DEP ) ∈

S be a candidate assignment, such that |TR| > 1. The disjunction of trains

belonging to TR is prohibited by allowing at most one variable corresponding to

(tr, dep), such that tr ⊆ TR equals 1. A similar constraint is used to prohibit train

junctions. Formally, these constraints can be expressed as follows:

∀TR : |TR| > 1 ∧ (∃DEP : (TR,DEP ) ∈ S)
∑

(Tj ,Dj)∈S,Tj⊆TR

xj ≤ 1

∀DEP : |DEP | > 1 ∧ (∃TR : (TR,DEP ) ∈ S)
∑

(Tj ,Dj)∈S,Dj⊆DEP

xj ≤ 1

Let Mj = |Tj| × nbM(Tj, Dj) denote the number of maintenance operations re-

quired by the assignment (Tj, Dj). The first and last possible days for maintenance

(as denoted by fdj and ldj) are the corresponding arrival and departure days. For

each interval [d1, d2] (1 ≤ d1 ≤ d2 ≤ nbDays), the right-hand side values are initial-

ized: MaxMaint(d1, d2) = (d2 − d1 + 1)×maxMaint. Then, for each previously
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fixed assignment (t, d) (linked assignments), MaxMaint(d1, d2) is decreased by

the number of maintenance operation(s) required by (t, d) for all [d1, d2], such that

[arrDay(t), depDay(d)] ⊆ [d1, d2]. The constraint on maintenance is formulated

by the following:

∀[d1, d2]
n

∑

j=1

Mj × xj × ✶[fdj ,ldj ]⊆[d1,d2] ≤MaxMaint(d1, d2)

The assignment values obtained by the greedy procedure and MIP are illustrated

in Table 4.1. The three most critical values (in our experiment) are reported as:

the number of unassigned departures, the number of immediate departures, and

the number of long assignments.

Inst Greedy Greedy+MIP

#nonassign #immediate #long #nonassign #immediate #long

B1 138 350 202 143 339 159
B2 138 350 202 143 339 159
B3 131 319 272 109 284 173

B4 155 602 230 136 576 207
B5 180 702 283 153 648 269
B6 150 603 230 131 576 209

B7 31 128 13 32 134 7
B8 33 124 13 34 131 7
B9 116 741 359 119 742 251

B10 48 39 4 48 40 0
B11 274 199 219 253 205 218
B12 135 126 72 132 128 63

Table 4.1: Assignment values B: number of non-assigned departures, number of
immediate departures and number of "long" assignments (depT ime− arrT ime >
10hours) is given for each instance and each method used. addT ime = 30minutes
is used.
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4.4.2.3 Choosing maintenance days

As described earlier, maximum number of maintenances in a day constraint is

satisfied by respecting the limit for each interval of days [d1, d2], while updating

the number of maintenances for each interval that contains [arrDay(t), depDay(t)]

when maintenance has to be done for train t ∈ T. Exact day for each maintenance

remains to be determined. Two simple procedures, along with the proofs of cor-

rectness, for choosing the maintenance days used in our experiments are presented

below.

The first procedure works in the following way:

• sort assignments (that require maintenance) in ascending order by departure

day and then by arrival day. Sorting example is given in Figure 4.11.

• for each assignment (ti, di) in a sorted list

– choose the first (minimum) available day for maintenance, i.e. the

first day in {arrDay(ti), . . . , depDay(ti)} for which maintenance limit

maxMaint is not reached.

Figure 4.11: Sorting Example

Now, we will prove the correctness of this procedure.

Let M = {m1,m2, ...,mk} be the set of all assignments that need maintenance. We
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can assume that only one maintenance is required for each assignment (assignment

that requires 2 maintenances can be represented as two assignments that require

a single maintenance). Let ai and di be arrival and departure day of assignment

mi respectively. We will write mi = (ai, di), ai, di ∈ {1, 2, . . . , nbDays}.

Claim: If the following inequality holds for each interval of days [d1, d2]:

k
∑

i=1

✶[ai,di]⊆[d1,d2] ≤ (d2 − d1 + 1) ∗maxMaint (4.12)

then assignment of maintenance days using the procedure described respects max-

imum number of maintenances in a day constraint.

We will prove the claim by contradiction. Let mj = (aj, dj) be the first assign-

ment for which maintenance day cannot be chosen and Mj−1 = {m1,m2, . . . ,mj−1}

be the set of previously assigned candidates.

This means that maintenances limit is reached for each day in [aj, dj]. (*)

Let d0 be a minimum (first) day such that maintenance limit is reached for each

day in interval [d0, dj] ( existence of d0 is obvious because of (*) ).

Obviously, d0 = 1 or limit is not reached for d0 − 1. (**)

Let F = {f1, f2, . . . , fl} ⊂Mj−1 be the set of assignments already assigned to one

of the days in [d0, dj] (l = (dj − d0 + 1)×maxMaint since limit is reached for the

whole interval).

For each fi = (afi, dfi) ∈ F we have

• afi ≥ d0 : otherwise, chosen maintenance day would be not greater than

d0 − 1 because of assignment rule and (**)

• dfi ≤ dj : because of sorting order

The same holds for mj : aj ≥ d0 because of definition of d0 and (*), dj ≤ dj.

Now, consider the set U = F ∪ mj. As shown, maintenance interval for each

element of U lies in [d0, dj] and thus,
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k
∑

i=1

✶[ai,di]⊆[d0,dj ] ≥
∑

i∈U

✶[ai,di]⊆[d0,dj ] = |U | = (dj − d0 + 1)×maxMaint+ 1

which is contradictory to the main assumption (1).

The second procedure for choosing maintenance days consists of repeating the

following two steps:

• STEP1: randomly choose a maintenance mj that has not been fixed yet

– maintenance mj has not been fixed if aj < dj

– if such maintenance does not exist, assignment of days to maintenances

is finished and procedure terminates

• STEP2: fix maintenance day and update the constraints (system of inequal-

ities (1))

– randomly choose a maintenance day xj in interval [aj, dj] such that

fixing a day of maintenance mj to xj (reducing the domain of variable)

and updating all necessary constraints will not violate any constraints

(system of constraints/inequalities remains feasible)

It is clear that described procedure will give a feasible choice of days for mainte-

nances if STEP2 can be performed at any iteration. Checking if fixing a day of

maintenance mj to xj ∈ [aj, dj] will keep the system (1) feasible is straightforward:

• increase the left hand side in each constraint from (1) if it corresponds to

interval of days I such that [aj, dj] is not contained in I and xj is contained

in I;

• if some of the constraints (updated in previous step) becomes violated, then

xj is not a feasible choice for maintenance mj and we need to choose a

different day to test.
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Note that left hand side of any constraint can be increased maximum by 1 when

fixing a single maintenance.

Now, we will prove that STEP2 of the procedure for choosing maintenance days

can be performed at any iteration. Let mi = [a, d] be any non-fixed maintenance

i.e. a < d. It is enough to prove that domain [a, d] can be reduced to a smaller

one without violating any constraints. Then, by induction (or by repeating the

process), interval will be reduced to a single day. Specifically, domain [a, d] can be

reduced to [a, d−1] or [a+1, d]. Assume the contrary, i.e. [a, d] cannot be reduced

to any of two intervals [a, d−1], [a+1, d]. This implies that there are two intervals

I1 ⊇ [a, d − 1] and I2 ⊇ [a + 1, d] such that corresponding constraints are active

(equalities hold in both inequalities from (1) corresponding to intervals I1 and I2).

Constraints/inequalities affected by reducing the domain to [a, d− 1] are the ones

that correspond to the intervals that contain [a, d−1] and do not contain [a, d], i.e

[a, d−1], [a−1, d−1], . . . , [1, d−1]. Thus, I1 = [x, d−1] for some x ∈ {1, 2, . . . , a}.

Similarly, we have I2 = [a + 1, y] for some y ∈ {d, d + 1, . . . , nbDays}. Equal-

ity in constraint corresponding to I1 = [x, d − 1] means that there are exactly

(d − x) × maxMaint maintenances (intervals) inside I1 (number of ones in left

hand side of constraint). Similarly, there are (y− a)×maxMaint intervals inside

I2. We will denote by n(I) the number of maintenances contained in interval I

(corresponding interval of the maintenance is contained in I).

Clearly, the number of intervals contained in either I1 or I2 is not greater than the

number intervals contained in [x, y], since I1, I2 ⊆ [x, y]. Formally,

n([x, y]) ≥ n(I1) + n(I2)− n(I1 ∩ I2)).

Also, interval [a, d] is included in [x, y] and not included in any of I1, I2 and [a, d]

is the interval corresponding to maintenance mi so we have stronger inequality:

n([x, y]) ≥ n(I1) + n(I2)− n(I1 ∩ I2)) + 1. i.e.

n([x, y]) ≥ n(I1) + n(I2)− n([a+ 1, d− 1])) + 1

Constraint corresponding to [a+1, d− 1] in (1) is n([a+1, d− 1]) ≤ (d− a− 1)×

maxMaint (note that inequality also holds if a + 1 = d i.e. when intervals have

no intersection), so we have
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n([x, y]) ≥ n(I1) + n(I2)− (d− a− 1)×maxMaint+ 1

= (d− x)×maxMaint+ (y − a)×maxMaint

− (d− a− 1)×maxMaint+ 1

= (y − x+ 1)×maxMaint+ 1

(4.13)

The last inequality is contradictory to the inequality in (1) corresponding to in-

terval [x, y].

4.4.3 Scheduling problem

The goal of the second algorithm part is to schedule the assignments generated by

the first phase inside the station while respecting all resource constraints. Trains

must move through the network/graph of inter-connected resources. All types of

resources and constraints associated with the trains are given in the problem de-

scription provided in Section 4.2. A constructive procedure has been implemented

here to solve the scheduling problem. The output schedule is then improved by an

iterative procedure based on a local search.

Three possibilities exist for the schedule of each train t ∈ T:

1. t is scheduled to departure d ∈ D;

2. t is parked inside the station until the end of the planning time frame without

being assigned to any departure;

3. t is cancelled.

The schedule, possibly an empty one, must be given for each train t ∈ T. All re-

sources used by the train must be specified, along with the exact time of entering

and leaving each resource. The greedy procedure schedules the trains one by one,

in a defined order (ordering will be addressed in Section 4.4.3.10). A complete

schedule for the train is output before scheduling the next train. Nevertheless, all

trains share the same resources and all constraints need to be respected over the

entire scheduling procedure. If part of the train schedule can only be generated

by violating one or more constraints, then the train is cancelled, i.e. it will have

133



SNCF ROLLING STOCK PROBLEM

an empty schedule.

The following strategy for parking the trains and performing maintenance is em-

ployed. Maintenance resources are considered critical in this problem and therefore

yards are used as a parking resource whenever possible. Maintenance facilities are

used for parking only when parking on the yard is impossible. Similarly, single

tracks are never used for parking the trains, rather they are merely used as tran-

sition resources. If maintenance is required for a particular train, it is scheduled

as quickly as possible. If the maintenance facility cannot be found immediately

after arrival or if maintenance has to be performed on another day (see Section

4.4.2.3), the train is parked at the yard and moved to the maintenance facility as

soon as possible. After performing a maintenance operation, the train can stay at

the facility and move to a later departure (provided the waiting time is not too

long) or else it should be moved to the yard as soon as possible.

Since junction and disjunction operations are prohibited, a set of joint trains (de-

partures) can be considered as a single train (departure). If one of the trains

belonging to a joint arrival is assigned (during the assignment phase) to a depar-

ture while another one is not, then the other train will have an empty schedule,

which naturally would be penalized in the objective function. This same set of

rules is applied to joint departures. In the remainder of this section, it will be as-

sumed that all trains and departures are single. Nevertheless, a set of joint trains

still contains two or more trains and all the costs relative to this "joint train" are

multiplied, as is resource consumption (except in the case of track groups where

moving a joint train is considered as a single move).

4.4.3.1 Possible train movements

Modeling the scheduling problem exactly, i.e. in considering all possible resource

choices (all possible train movements) at every possible instant, is not realistic

given the size and structure of the instances proposed by SNCF. We have therefore

limited possible train movements to the following:

• arrival - arriving on the platform via a given set of track groups (arrival
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sequence),

• departure - departing from the platform via a given set of track groups

(departure sequence),

• move from arrivals platform to yard,

• move from arrivals platform to facility,

• move from parking (facility, yard, single track) to departure platform,

• move from yard to facility,

• move from facility to yard.

The train schedule will specify, for each train movement, the set of resources

deployed with the exact resource input (output) times. The connected set of re-

sources used while moving the train from one place to another will be called path.

P = (R1, R2, . . . , Rk) denotes a path connecting resources R1 and Rk that starts

at R1, visits resources R2, R3, . . . , Rk−1 and then ends at Rk. Two consecutive

resources in a path must be connected by a gate. The use of path P (i.e. using

resources in P ) for a given entry and exit times on each resource will be called

travel. To simplify the scheduling procedure, let’s assume that the time spent on

each intermediate resource on a path (resources R2, . . . , Rk−1) is always a mini-

mum, i.e. no waiting on any intermediate resource once the minimum time has

elapsed. In the case of track groups, this time is set equal to trT ime, while in the

case of other resources it equals minResT ime or minRevT ime, depending on the

resource input and output sides. Consequently, a travel duration is known and

equal to the sum of minimum resource times for each intermediate resource on the

path.

The travel of a given train is thus determined by both the designated path and the

travel starting time. Travel using path P and starting at time st will be denoted

T (P, st).

To conclude, the schedule of each train is represented as a set of travels, hence the

decision variables to be determined for each scheduled train are a set of paths and
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starting times.

All paths potentially used for any feasible movement are constructed before the

start of the scheduling procedure. This set of paths includes those for each pair of

resources (r1, r2), such that r1 and r2 are of different types, with neither of them

being a track group or single track. The simple and common depth-first search

(DFS) algorithm serves to identify all these paths. This simple preprocessing step

simplifies implementation to a significant extent. Paths are sorted by length (i.e.

total number of resources) for each pair r1, r2; moreover, should many paths exist

between two resources, only several shortest ones are to be kept.

4.4.3.2 General rules for choice of movements

As mentioned earlier, the set of possible train movements is limited to the simplest

and most significant ones. Furthermore, the scheduling procedure seeks to identify

a feasible schedule for a given train with lowest possible number of movements,

i.e. unnecessary movements should not be performed.

The choice of movements depends on the type of operations that need to be carried

out (e.g. maintenance), total time spent at the station, etc. The schedule for the

given train is built by scheduling each travel one at a time. In some cases, two

travels need to be scheduled simultaneously during the same procedure.

The general strategy for choosing the movements of train t, corresponding to arrival

a, may be summarized as follows:

1. Immediate departure: if the time between arrival a and departure d assigned

to t is short enough. The train will only use track group resources to arrive

at the platform, with a platform stay from arrT imea to depT imed, and then

track group resources to depart from the platform (i.e. to exit the system).

The task is to determine the gates on the track groups that avoid conflicts,

as well as find a platform available between arrT imea and depT imed that

respects both the train order and platform length constraints.

2. Park on any yard: if the time between arrival and departure is sufficiently

long and no maintenance is required or feasible travel to the maintenance

facility could not be found. This task is to find an available yard, feasible
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travel to the yard (resources and gates without conflict) and an available

arrivals platform.

3. Go to maintenance: if maintenance is required. This task is to find an

available maintenance facility, feasible travel to the facility and an available

arrivals platform.

If the train is currently parked (yard, maintenance facility), the following options

become available:

4. Move from yard to departure: if the train is positioned at the yard and

needs to be scheduled for departure without first performing the mainte-

nance. Shortly before departure, the train will be moved to the departure

platform and depart at a given time. This task is very similar to (2), but in

the other direction.

5. Move from yard to maintenance facility and perform maintenance: if the

train is positioned at the yard and needs to be scheduled for departure after

performing maintenance. Movement should be made as soon as possible.

6. Move from maintenance facility to departure: if the train is positioned at

the maintenance facility and needs to be scheduled for departure.

7. Move from maintenance facility to yard: if the train positioned at the main-

tenance facility needs to be scheduled for departure and the departure time

is not "close".

4.4.3.3 Resource consumption and travel feasibility

The consumption of each resource in the station needs to be updated during the

schedule for each train and the resource availability (i.e. resource constraints) must

be checked. Resource consumption is tracked by recording the set of all previous

visits for each resource in the station. The set of visits to the resource is updated

when scheduling each train. A visit to a resource has the following attributes:

entry time and side, exit time and side, number of trains (1,2,...), length of trains,

and entry and exit gates. Each time the resource needs to be visited by a train, all
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constraints for a given resource are checked and the visit is only allowed if found

to be feasible.

Then, verifying the feasibility of travel T (P, st) simply requires checking the visit

feasibility on each resource in path P.

4.4.3.4 Time spent on a resource between two travels

One of the difficulties involved in train scheduling is to determine an exit time for

the last resource in each travel/path. Knowing the exit time on the last resource

is required in order to check constraints regarding this particular resource. An

exact exit time is often not known before the next travel has been planned. The

following strategy has been employed to handle this issue:

1. If the last resource of travel i is a platform (in the case of arrival and depar-

ture): travels i and i + 1 must be planned together. This step is equivalent

to planning a single travel, with possible paths being a combination of two

paths (candidate paths for travels i and i+1), yet time spent on the platform

is no longer fixed and needs to be determined.

2. If the last resource of travel i is a yard (for parking): the exit time is equal

to departure time if the train must be scheduled for a departure; otherwise,

the exit time is the end of the time horizon. A train parked on a yard that

cannot be scheduled for a later departure is cancelled.

3. If the last resource of travel i is a facility (for either parking or maintenance)

• the same as (2) in the case where the facility is only used for parking

• exit time is equal to max(depT imed, enter_time + max_fac_time)

if the train is assigned to departure d and maintenance needs to be

performed, where enter_time is the time at which the train enters

the facility and max_fac_time is a parameter defining the maximum

length of time the train can stay at the facility.

If a feasible travel cannot be found (e.g. for moving from yard to facility), then

the train will be cancelled, i.e. no attempt will be made to change the previous
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travels.

4.4.3.5 Travel starting time

An important decision to be made when scheduling each train is the starting time

for each travel. Some starting times are fixed, such as the time of arrival and

departure, while others are to be selected from a feasible set of time instants.

An ideal starting time will be defined for each travel and it will be attempted to

schedule travel with a starting time as close as possible to the ideal time. We can

always calculate the earliest and latest possible travel times, est and lst, which

depend on the time constraints such as minimum resource times, travel duration,

fixed arrival and departure times, etc.

The ideal travel starting time depends on the type of travel; for our purposes, the

following was used:

• If train t, corresponding to arrival a, needs to be moved from platform to

parking (yard or facility): the ideal starting time will minimize the dwell

cost on the platform, i.e. arrT imet + idealDwella;

• If train t, parked at a yard or facility, needs to be moved to the platform

for departure d: the ideal starting time will minimize the dwell cost on the

platform, i.e. depT imed− idealDwelld− travelDur, where travelDur is the

duration of travel to the platform;

• If the train is to be moved from one parking resource to another (i.e. from

yard to facility and vice versa): the ideal starting time is the earliest possible

starting time, est

Once the ideal travel starting time, idealST , has been determined, the next step

seeks to choose a starting time, between the earliest and latest possible, as close

as possible to idealST . Formally speaking, the selected starting travel time, st, is

the first one from the set

{idealST, idealST − δ, idealST + δ, idealST − 2δ, idealST + 2δ, . . .},
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such that st ∈ [est, lst] and travel T (P, st) is feasible for some path P . Slick time,

δ, is chosen from the interval [10s, 60s].

4.4.3.6 Choosing platforms and parking resources

Each arrival and departure is assigned to the platform that minimizes the sum

of dwell cost and preferred platform cost. Parking resources (yards and facilities)

and paths associated with these resources are sorted by "path length", and the

first feasible path is chosen.

4.4.3.7 Dealing with yard capacity

As mentioned earlier, the main resources used for train parking are yards. Each

yard has a capacity that cannot be exceeded at any time. The numerical exper-

imentation on a given set of instances shows that yards are critical and scarce

resources for this scheduling problem. A strategy must therefore be developed

to make better use of the yards. Since the station has limited capacity, it is not

possible for the number of trains arriving at the station to significantly exceed the

number of departures from the station. Consequently, most trains associated with

arrivals must be scheduled to a departure. However, some trains may remain at

the station until the end of the planning horizon, though this number is typically

much smaller than the number of trains scheduled to a departure. Furthermore, if

station resources are critical, especially yards, it is not desirable to consume them

with the trains not scheduled to any departure, which potentially could disable

the scheduling of some trains to be scheduled for departure. We have therefore

used the following simple heuristic in the scheduling procedure:

1. planning departures : schedule each assigned train t (d(t) ≥ 0) and if the

train cannot be successfully scheduled for departure d(t), then cancel it;

2. park unassigned and cancelled trains at the very end of the procedure (after

optimizing the solution) - in respecting capacity constraints.
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Let’s also note that assignments with too much time between arrival and departure

are not desirable from the standpoint of yard capacity, which is taken into account

during the assignment phase.

4.4.3.8 Choosing gates: Avoiding conflicts on track groups

The main difficulty with this problem, from our experience, lies in effectively choos-

ing the gates for each track group to enter and exit, as this gate selection will allow

more trains to travel on the track groups without conflict. As defined in Section

4.2, conflicts on track groups are prohibited. For each travel T (P, st) of train t, a

set of entry/exit gates on each track group in P needs to be determined. Like for

all other resources, the exact entry and exit times for each track group are known

if the starting time, st, of the travel is given.

Let n1 be the number of possible gates to choose for an entering track group

TG ∈ P , and n2 the number of possible gates for exiting; we then have a total of

n1 × n2 possible moves to choose from. It is simple to check whether or not the

selected move conflicts with any of the previous moves on the track group. For this

purpose, like for any other resource type, we have kept a set of all visits (moves)

to the track group, and only those moves not in conflict with any moves in the

given set are to be allowed.

Since the number of moves on the same track group can often be large, considering

all moves when detecting potential conflicts can be very time consuming. We have

therefore grouped all visits to the track group into subsets, determined by entry

time, which then allows conflicts to be detected by considering just a few visit

subsets.

Formally, for track group k, m = |H|/(trT imek + hwTimek) + 1 subsets S1, S2,

. . . , Sm are created, with subset Si containing all visits with an entry time in

[(i − 1) × (trT imek + hwTimek), i × (trT imek + hwTimek)]. When potential

conflicts need to be detected for a visit with entry time eT , only three subsets,

Sj−1, Sj, Sj+1 require consideration, where j = eT/((trT imek + hwTimek)). The

number of moves in a single subset is usually very low, which tremendously accel-

erates the conflict detection procedure.

A set of entry/exit gates without conflicts must be determined for the entire travel
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T (P, st), which means that a feasible move needs to be found on each track group in

P . Consequently, the number of possible combinations of moves becomes greater.

It has been assumed here that path P and travel starting time st are both known.

A simple DFS procedure to find a feasible set of moves for travel has been em-

ployed. This procedure explores all possible combinations of moves (one move for

each track group in P ) until a feasible one (without conflicts) has been found.

The naive way of using a DFS procedure is to begin with the first possible gate on

each track group and increase the gate index, according to a depth-first sequence,

whenever a feasible choice has not been found. This manner of choosing the gates

is not necessarily a good one as regards track group usage. To improve the choice

of gates, let’s attempt to identify a different order for exploring the possibilities

in a DFS procedure. Formally, for each path P = (R1, R2, . . . , Rn), a "preferred"

entry gate on each resource in P will be defined and the DFS procedure will ex-

plore all possibilities by starting with a preferred gate on each resource. Note that

the preferred gate is fixed when only one gate exists, as in the case of individual

resources.

The set of preferred gates for travel T (P, st) is determined according to the first

and last resources, more specifically R1 and Rn in P , and depending on the posi-

tions of these resources relative to the neighboring track groups, R2 and Rn−1.

It can be noted that the majority of travels start or end at the platform, i.e. they

have a platform as the first or last resource. Such is actually the case for all travels

in our set-up, except for movements from yard to facility and vice versa. Conse-

quently, the most critical track groups are those either connected to or close to the

platforms. We have therefore decided to define the preferred gates solely according

to the relative position of the platform with respect to the connected track group.

If R1 is the j − th of np platforms connected to track group R2 (according to

gate indices) and g1, g2, . . . , gk are the gates from Ri to Ri+1 (2 ≤ i < n), then a

preferred gate is gl, where: l = j
np
k. The same rule is applied if Rn is a platform.

For example, if the chosen platform is the top platform, then it is only natural to

choose the top gate on each resource in path P.

We have conducted several experiments with a more complicated choice of gates,

however the results obtained only changed slightly and were not necessarily always
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better. Moreover, the local search procedure described at the end of this section

will question this choice of gates.

4.4.3.9 Virtual visits

One of the difficulties in avoiding conflicts is not knowing the "future traffic",

i.e. overall track group use. This issue is especially important when choosing

the starting times of travels without a fixed starting time (i.e. all travels except

arrivals and departures). For example, if train t, associated with arrival a, needs

to be moved from the arrivals platform to the yard, a possible starting time for

moving to the yard would lie in the interval [arrT imea+minResT ime, arrT imea+

maxDwella]. Very often, many different possibilities are feasible and just one has

to be chosen, although choosing any one of them might potentially block more

trains yet to be scheduled than choosing another one.

We have introduced the concept of "virtual visits" to improve the starting time

of each such travel. Virtual visits can be viewed as the potential visits capable of

occurring on the track groups in the future. Virtual visits will be generated for

each arrival and each matched departure (by the assignment procedure) and then

taken into account when choosing the starting times and gates for the travel.

The set of virtual visits V is constructed as follows:

• for each arrival a ∈ A and each matched departure d ∈ D

– randomly choose a compatible platform p,

– find a set of gates for arrSeqa∪p (p∪depSeqd) with a minimum number

of conflicts with V , in applying the procedure explained in the previous

section,

– add the corresponding set of visits to the track groups to V .

The set of virtual visits is computed at the start of the scheduling phase, before

scheduling any train. Next, during train scheduling, the starting time of each

travel not corresponding to an arrival or departure is selected in order to minimize

the number of conflicts with virtual visits. The virtual visits of train t are removed

143



SNCF ROLLING STOCK PROBLEM

from V when the scheduling procedure for t has been completed (t is scheduled

for departure, parked or cancelled).

4.4.3.10 Scheduling order

Trains are to be scheduled independently and in a consecutive manner, one by

one. Some trains however may have a higher scheduling priority than others. For

example, cancelling a train assigned to a linked departure could cause cancellation

of the linked trains, cancelling a joint train will produce a higher cost, and some

trains are consuming far fewer resources than others, etc. Trains are therefore

scheduled in the following order:

1. assigned trains:

(a) joint trains: two (or more) joint trains are using the same resources

without conflict,

(b) trains that may be departing immediate: only arrival and departure

gates are used,

(c) trains assigned to linked departures: uncovering a linked departure can

cause more uncovered departures,

(d) trains that do not require any maintenance,

(e) remaining assigned trains,

2. unassigned trains:

(a) joint trains,

(b) remaining unassigned trains.

Constraints relative to linked departures are respected, e.g. if train t2 ∈ T is linked

to departure d ∈ D and t1 ∈ T is assigned to d, then t1 must come before t2 in the

given ordering.
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CPU time (seconds)

Inst Objective assign schedule total

B1 752 916 2 6 8
B2 689 251 2 6 8
B3 640 895 9 6 15

B4 1 555 790 4 27 31
B5 1 926 970 16 33 49
B6 1 363 350 4 22 26

B7 230 101 1 2 3
B8 265 607 1 2 3
B9 1 703 030 13 27 40

B10 182 755 0.5 1 1
B11 1 351 390 1 5 6
B12 707 955 1 1 2

Table 4.2: First Feasible results on B instances. Greedy and MIP are used for
assignment.

4.4.4 Iterative Improvement Procedure

By applying the assignment and scheduling procedures described in the previous

sections, feasible solutions to this problem are obtained in less than one minute

for all benchmarks proposed in the ROADEF/EURO Challenge, as illustrated in

Table 4.2. Please note that the running time for each instance is significantly less

than the computation time allowed during the competition (i.e. 600 seconds).

This section will propose an iterative procedure for improving the schedule. This

procedure operates as follows:

• (1) schedule more trains by allowing conflicts on the track groups,

• (2) resolve conflicts by means of a local search,

• repeat steps (1)-(2) until the stopping criteria are met.

The entire solution procedure is illustrated in Figure 4.12.

4.4.4.1 Feasible to infeasible solution with more trains

The first step of this improvement procedure consists of adding more trains (and

departures) to the feasible schedule by allowing conflicts. For each train added,
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Figure 4.12: Solution Process

the allowed track group conflicts are limited to a given number (e.g. a maximum of

3 conflicts per train). This scheduling procedure is the same as the one previously

explained, but without respecting the constraint on track group conflicts. All other

constraints are to be respected. An infeasible solution generated in this manner

will serve as input for the local search procedure described below.

4.4.4.2 Local search to resolve track group conflicts

An infeasible solution is repaired by means of a local search procedure. The aim

of this procedure is to change the choice of gates in order to reduce the number

of conflicts to zero. The entry and exit times are to remain unchanged for each

visit, as is the list of resources allocated for each train. Accordingly, a complete

schedule for the train will either remain the same or be deleted (in the case of

cancelling the train). The initial configuration (solution) is an infeasible set of

visits on track groups. A visit is represented by a pair of gates (g1, g2). Let’s

denote the configuration by V = {(g11, g21), ..., (g1n, g2n)} and the initial one by

V0 = {(g101, g2
0
1), ..., (g1

0
n, g2

0
n)}. The domain of each variable g1i (g2i) includes all

gates connecting the same pair of resources as g10i (g20i ) and NULL value. A visit

corresponding to (g1, NULL), (NULL, g2) or (NULL,NULL) is called a partial
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visit. A configuration V is called partial if it contains a partial visit.

Remark: Two successive visits of the same train (g1i, g2i) and (g1j, g2j) share

a common gate, i.e. g2i = g1j. For these cases, the local search procedure will

perform the same modification at both gates.

The objective of the local search procedure is to minimize the number of can-

celled trains. A train is cancelled if one of its visits is partial or should a related

train be cancelled. Train t2 is related to train t1 if:

• t1 and t2 are joint (i.e. belong to the same joint arrival) or

• t1 and t2 correspond to the same physical unit (train) and t2 arrives before

t1 (linked departures).

Greedy procedure to resolve track group conflicts

The first part of a local search is the greedy procedure to clear conflicts by

deleting gates, i.e. setting the gate values to NULL. The objective here is to com-

pute a partial, but feasible, configuration (set of visits). The heuristic is simple:

delete the gate that will decrease conflicts by the greatest number until conflicts

no longer exist.

Tabu search on the partial feasible configuration

The tabu search procedure starts from a partial, but feasible, configuration

of gates given by the greedy-clear procedure. The goal is to assign gate values

to partial visits while keeping the configuration feasible. This tabu search is very

similar to the one presented in Chapter 2 for solving the Bin Packing Problem:

similar moves, tabu tenure, choice of the move, etc.

The following two elementary moves are carried out:

• ADD gate corresponds to one of the 2 possible moves:

– (NULL, g2i) ⇒ (g1i, g2i) (g1i 6= NULL and g1i leads to the same

neighbor resource as g10i )
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Figure 4.13: Objective function oscillation during improvement phase for instance
B1. x-asis represents time elapsed since improvement procedure start, while y-axis
represents the value of objective function after adding new trains and after local
search procedure.

– (g1i, NULL) ⇒ (g1i, g2i) (g2i 6= NULL and g2i leads to the same

neighbor resource as g20i )

• DROP gate corresponds to one of the 2 possible moves:

– (g1i, g2i)⇒ (NULL, g2i) (delete g1 )

– (g1i, g2i)⇒ (g1i, NULL) (delete g2 )

These modifications are also applied to the next/previous visit of the given train

(see remark in Section 4.4.4.2).

The local search move consists of a single ADD move and, should conflicts occur,

is to be followed by a few DROP moves in order to clear the conflicts. Deleting

a gate gi (DROP) is allowed only if gi has not been added for a given number of

iterations (i.e. if setting gi to NULL is not tabu). The number of iterations for

which deleting a gate is tabu equals to the frequency of adding this gate.
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Figure 4.14: Objective function oscillation during improvement phase for instance
X4.

The current configuration is evaluated by the following hierarchical function:

1. the number of trains cancelled,

2. the number of deleted gates, i.e. the number of gates with a NULL value.

At each iteration, a non-tabu move that minimizes this function is performed.

Should two or more moves with the same objective exist, then a random choice is

made. This process repeats until non-tabu move exists or until a maximum num-

ber of moves without improvement has been reached. In all reported experiments

this limit has been set to 300.

The possibility of changing the arrival/departure platform for each train is also

included in the local search. Constraints regarding platforms (length and con-

flict constraints) are respected during each of the moves; hence, checking platform

constraints is part of the evaluation of the ADD move for the gate connected to

the platform. Introducing the platform change move into the model has improved

results, while slightly increasing the running time of the local search procedure.
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Figure 4.15: Improvement by local search (instances B1 – B12)

An illustration of the objective function change during this improvement pro-

cedure for two instances (B1 and X4) is given in Figures 4.13 and 4.14. It can

be noted that most of the improvement occurs during the early stage and not

many new trains are added at the end. The improvement in results by the local

search for each instance in dataset B is illustrated in Figure 4.15; the same im-

provement can be observed by comparing results in Tables 4.2 and 4.4 (column

5). Improvement varies between 14.2% and 27.0% over dataset B instances, with

average improvement per instance being 20.8%.

MIP instead of Local Search The problem of repairing conflicts explained

above and solved by local search procedure can possibly be solved in different

ways. One possible approach that we have experimented is to define a problem

as a mixed integer program (which is not too complicated), with the objective

of determining the maximum subset (in terms of number of scheduled trains) of

train schedules without conflicts on track groups. Whole improvement procedure

remains the same, we only try to solve the problem of "repairing conflicts" by

using mixed integer programming instead of local search.

If we consider a single iteration of improvement phase (add trains + repair) i.e.

solving the problem – given a set of train schedules with conflicts, choose the gate
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values such that minimum number of departures/arrivals is canceled – it is clear

that MIP will produce better (or at least the same) solutions than local search.

However, using MIP instead of local search has not made any (or negligible) im-

provements on the final results using presented improvement framework, especially

in 10 minutes running time frame when using MIP usually produces worse results.

The main reason for this is the fact that after many iterations of improvement

phase (for ex. 100) solution values obtained by local search come very close to

the values of infeasible solutions, i.e. only few trains can be added to the feasible

solutions. Also, much more iterations can be done in the same running time if

local search is used, which is crucial for some instances. Similar conclusions can

drawn when MIP is used with a given running time limit (thus, transforming exact

solution approach into heuristic one).

4.4.5 Final Algorithm

The pseudo-code of the final algorithm is given in 4.2.

Algorithm 4.2: FinalAlgorithm

1 Solve assignment problem (greedy/MIP);
2 Determine maintenance days;
3 Sort trains for schedule (see schedule order);
4 Add virtual visits;
5 for t ∈ T do

6 schedule train t : schedule(t, d(t));
7 if train is not scheduled to departure cancel it;

8 repeat

9 add trains with conflicts;
10 repair conflicts (local search);

11 until stopping criteria met ;
12 Park non-scheduled trains;
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4.5 Evaluation and Computational results

4.5.1 Benchmarks

This method has been tested on the official set of competition instances provided

by SNCF. This test data consists of two sets of instances, i.e. dataset B and

dataset X. Both sets have been used to conduct the final evaluation. The first

set was made available during the competition, while dataset X is a hidden set of

instances provided to test algorithm robustness and then made publicly available

after the end of the competition. Each set contains 12 instances and has been

generated very similarly. For the sake of simplicity therefore, many experimental

results in this chapter are given solely for dataset B, while very similar results are

obtained on X. Four different resource infrastructures have been introduced, with

six instances for each one - the first three instances from B and X (B1, B2, B3,

X1, X2, X3) feature the same resource infrastructure, and the second three from

each set have another infrastructure, etc. The basic characteristics of instances B

are given in Table 4.3, while the instances from dataset X are very similar.

Instances

Inst nbDays |A| |D| |TI| |JA| |JD| maxMaint |L|

B1 B2 7 1235 1235 37 281 237 30 475
B3 7 1235 1235 37 281 237 60 0

B4 B6 7 1780 1780 35 353 342 50 722
B5 7 2153 1780 57 431 401 60 720

B7 B8 1 304 304 33 40 28 100 143
B9 7 1967 1967 52 296 239 100 860

B10 1 196 196 31 56 58 20 90
B11 7 1122 1122 43 314 317 20 486
B12 3 570 570 40 160 167 20 263

Table 4.3: Instances B: #arrivals (|A|), #departures (|D|), #initial trains (|I|),
#joint arrivals (|JA|), #joint departures (|JD|), maximum number of maintenances
in a day (maxMaint), # linked departures (|L|).
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4.5.2 Evaluation and results

This section will report on the computational experiments performed with the pre-

sented method on the given set of instances. The method has been implemented

in C++ and compiled using Linux gcc 4.7.2 compiler in Ubuntu 12.10. All tests

were performed on a computer with an Intel Core i7-3770 CPU 3.40 GHz proces-

sor. The mixed integer programming model proposed for the assignment phase

has been solved using the IBM ILOG CPLEX 12.6 solver. The computation times

reported here are given in seconds.

The algorithm sequentially produces independent solutions until the time limit is

exceeded and retains the best one. Results obtained on datasets B and X (used

for the final competition evaluation) are listed in Table 4.4. The results submitted

to the competition are being reported, along with the improved results obtained

following the competition deadline. The improvement was mainly achieved by

using the MIP model, which was not included in the final submission, for the as-

signment problem. The results could be obtained in a running time of 10 minutes,

thus satisfying the competition rules. These results can only be slightly improved

with additional running time and were therefore not reported. A comparison is

drawn with the best solutions obtained during the competition.

Since the number of uncovered arrivals and departures is the most important part

of the objective, Table 4.5 reports the values corresponding to the best solutions

obtained on dataset B. The values obtained by optimizing just the total number of

uncovered arrivals/departures, i.e. in neglecting all other objectives, has also been

reported. It can be noted that these values do not change for instances B7-B12,

since this part represents a rather large weight in the objective function, corre-

sponding to uncovering arrivals/departures, when compared to the other weights

in the objective. Let’s also note that the percentage of arrivals and departures

cancelled is quite high, varying from 11.90% on the B3 instance to 44.21% on B12.

The average percentage on dataset B is 26.04%. Train cancellation is mainly due

to the fact that track group conflicts are prohibited. As mentioned in the problem

statement, these conflicts are not always the real conflicts due to a "black-box"

approach introduced to model track groups in the current problem. It is impor-

tant to mention that conflicts have been modeled as a soft constraint (with the
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Instance Challenge Improved results

Our Result Best Result Average Best

B1 699 750 699 750 643 651 622 879
B2 636 550 636 550 582 000 561 579
B3 545 974 545 974 480 960 462 848

B4 1 263 764 1 263 764 1 179 584 1 142 660
B5 1 573 290 1 573 290 1 471 631 1 417 578
B6 1 097 572 1 097 572 1 047 493 993 580

B7 168 369 168 369 171 257 167 993
B8 213 190 213 190 221 480 208 573
B9 1 332 256 1 332 256 1 234 501 1 130 644

B10 168 457 155 100 149 301 142 600
B11 1 192 687 1 142 072 1 100 200 1 076 260
B12 620 527 571 497 577 000 556 853

X1 790 506 790 506 712 260 683 939
X2 1 176 901 1 176 901 890 666 874 014
X3 735 579 735 579 669 864 655 220

X4 1 109 468 1 109 468 1 026 635 983 693
X5 1 012 268 1 012 268 925 955 884 348
X6 943 024 943 024 822 780 768 395

X7 1,642,024 1 642 024 1 569 772 1 543 090
X8 534 889 534 889 560 170 553 427
X9 732 818 732 818 748 539 711 395

X10 193 210 184 022 180 707 168 407
X11 1,107 732 988 996 1 018 810 965 892
X12 501 218 467 605 477 634 455 736

Table 4.4: Results on datasets B, X : average and best values from 20 runs of
10 minutes are reported for the improved results

corresponding cost in the objective) during the early stage of the competition,

though this was later changed because of the large (and thus unrealistic) number

of conflicts occurring in the solutions submitted. An early version of the method

proposed herein, based on similar ideas and used to solve an earlier problem (with

conflicts as a soft constraint), yielded results without any cancelled arrivals and

less than 1% cancelled departures.
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Inst Uncov. Dep. Uncov. Arr. Upper Bounds

# % # % #dep #arr

B1 212 17.16 200 16.19 194 186
B2 212 17.16 200 16.19 194 186
B3 147 11.90 144 11.66 140 140

B4 428 24.04 400 22.47 368 337
B5 537 24.80 516 23.97 475 450
B6 369 20.73 322 18.09 379 271

B7 73 24.01 58 19.07 73 58
B8 90 29.60 78 25.66 90 78
B9 448 22.77 446 22.67 448 446

B10 64 32.60 60 30.61 64 60
B11 489 43.50 477 42.51 489 477
B12 252 44.21 249 43.68 252 249

Table 4.5: Uncovered arrivals/departures : Number (and percentage) of un-
covered arrivals and departures corresponding to the best solutions from table
4.4 are reported. Values obtained when considering number of uncovered ar-
rivals/departures as the only objective are reported in the last two columns.

4.6 Qualification version

In this section we present the method for solving a qualification variant of the

problem. Complete description of final version of the problem has been given

in Section 4.2 and we will now list the differences occurring in the qualification

version of the problem. They consist of turning some soft constraints into hard

ones and vice versa and redefining the objective function:

• all arrivals and initial trains have to be scheduled i.e. must not have an

empty schedule;

• conflicts on track groups and yard overcapacity are allowed;

• the following lexicographic objective is to be minimized:

– number of cancelled departures

– number of conflicts on track groups and yard overloads
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– operational costs: f plat, f over, f jun, f pref , f reuse

The same, two-phase approach has been developed for solving this variant of

the problem, but with appropriate modifications to deal with different objective

and constraints. As defined above, number of cancelled departures should be

minimized first, followed by number of conflicts and yard overloads and operational

costs. For the set of instances proposed by SNCF for the qualification stage of the

challenge, the first objective part turned out to be the only relevant one. This is

due to the difficulty of the proposed set of instances regarding the first objective.

Moreover, all the teams have been ranked at the end of the qualification stage of

the competition only according to this objective. Therefore, the only objective

considered here is the number of cancelled departures. Contrary to departures, all

arrivals have to be scheduled i.e. cancelling an arrival is not allowed. Gates choice

on track group resources will be made randomly since conflicts are allowed and,

as assumed, penalty in the objective function corresponding to those conflicts is

neglected. The same rule applies for yard overloads. The method will be tested

on benchmark dataset A, the one used in qualification stage of the competition.

4.6.1 Assignment problem

This section will describe the method adopted to solve the problem of matching

(assigning) trains to departures. Obviously, junction or disjunction operation is re-

quired when assigning a single train to joint departure and vice-versa. For example,

if two single trains t1 and t2 are assigned to joint departures d1, d2 ∈ jointDepd,

junction operation is required before the departure. If trains belonging to the

same joint arrival are to be scheduled to departures belonging to the same joint

departure, then no junction or disjunction operation is required. The need of per-

forming junction of disjunction operations when assigning the train t, belonging

to joint arrival jointArra, to departure d, belonging to joint departure jointDepd,

is not obvious, i.e. it depends of assignments of other trains belonging to the same

joint arrival. Therefore, we will define feasible assignments for a train-departure

pair (t, d) ∈ T × D and feasible assignments for a pair of joint arrival and joint

departure (jointArra, jointDepdd).

We call an assignment (t, d) of a train t ∈ T to a departure d ∈ D (called "single
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assignment") feasible if the following holds:

1. catt is compatible with d, i.e. catt ∈ compCatDepd,

2. arrT imet +minDwell(t, d) + junDisjT ime(t, d) +maintT ime(t, d) +

addT ime(t, d) ≤ depT imed,

3. remDBMt ≥ reqDd, remTBMt ≥ reqTd,

where:

• minDwell(t, d), maintT ime(t, d) addT ime(t, d) are defined as before and

• junDisjT ime(t, d) is the total junction/disjunction duration required for

scheduling t to d: disjunction is required if t is a part of joint arrival and

junction is required if d is a part of joint departure.

Assignment of joint arrival jointArra to joint departure jointDepdd is called fea-

sible if the following holds:

1. number of trains in jointArra is equal to the number of departures in

jointDepdd, i.e. |jointArra| = |jointDepdd|,

2. all corresponding single assignments are feasible (according to the previous

definition) when junDisjT ime(t, d) = 0.

The following lexicographic objective is considered during the assignment phase:

1. maximize the number of assigned departures,

2. minimize the number of maintenance operations.

Second objective is introduced in order to minimize the use of facility resources,

which showed to be critical resources.

As before, greedy and MIP procedures have been used to solve the assignment

problem. Additionally, combining these two procedures with minimum weighted

matching algorithms has also been implemented.

157



SNCF ROLLING STOCK PROBLEM

4.6.1.1 Greedy assignment algorithm

Algorithm is given in 4.3. When looking for the best train for each departure

d ∈ jointDepd, the attempt is first made to find a single feasible assignment

(t, d) and, in case the one is not found, we look for a feasible joint assignment

(jointArra, jointDepd).

When looking for the best train for a linked departure d, one can choose the train

with minimum value v ("smallest" train) and perform a maintenance operation

or choose the "biggest" train (train with maximum value v) without performing

a maintenance. In our experiments, the first choice gives better results than the

second one. Nevertheless, one can decide to use both of the two options during

the procedure. Thus, we randomly pick one of the two choices in each iteration

(for each departure d) with a probability of choosing the first one being signifi-

cantly greater than the second one (0.8 and 0.2 for example). A great variation

can occur in obtained results for some of the instances: for example, number of

non-assigned departures for benchmark A1 varies from 33 to 50. Greedy procedure

is run several times with different random seeds and the best assignment is chosen.

For certain benchmarks i.e. those for which daily maintenance limit constraint

is tight, the greedy procedure is combined with matching in order to improve the

quality of assignments, as will be explained in the following section.

4.6.1.2 MIP formulation for assignment

MIP model analogous to the one used for the final variant of the problem is devel-

oped. The only differences are non-existence of constraints for forbidding junction

and disjunction operations and the objective function. The objective function here

is :

Maximize
n

∑

j=1

|Tj| × xj, xj ∈ {0, 1} j = 1, ..., n
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Algorithm 4.3: Greedy assignment

1 Sort departures by time;
2 for d = 0 to |D| − 1 do

// each departure

3 bestTrain← −1, minV alue← 10000000;
4 for t = 0 to |T| − 1 do

5 isFeasible← (d(t) = −1) ∧ isFeasible(t, d) ∧ checkMaintenanceLimit();
6 if isFeasible then

7 value← 10000000;
8 nmbM ← calculateNmbRequiredMaintenances(t, d);

9 value = min( remDBMt

reqDd
, remTBMt

reqTd
);

10 if d is not linked and nmbM > 0 then

11 value← value+ nmbM ∗ 100000;

12 if d is linked and nmbM > 0 then

13 value← value− 100000;

14 if d is linked and nmbM = 0 then

15 value← −value;

16 if value < minV alue then

17 minV alue← value;
18 bestTrain← t;

19 if bestTrain 6= −1 then

20 t(d)← bestTrain, d(bestTrain)← d;
21 Update linked arrival if needed;
22 Add maint. to all intervals containing [arrDay, depDay] if required;
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4.6.1.3 Greedy assignment + matching + MIP

To obtain improved solutions to the assignment problem, the greedy procedure

explained above is combined with a weighted matching algorithm in a following

way:

1. the assignment problem is solved by a greedy procedure;

2. assignments of linked departures are fixed (in updating the data on linked

trains);

3. solve remaining assignment problem by matching, minimizing a given lexi-

cographic objective, with the following restriction: train t can have a main-

tenance in new assignment (t, d′) only iff train t also had a maintenance in

previous (greedy) assignment (t, d);

• restriction assures that maintenance limit constraint remains satisfied

• number of maintenances has possibly decreased

4. add more assignments (as in greedy) if possible;

5. repeat previous steps until no new assignments can be added.

Restriction has been made in step 2 since matching algorithm cannot deal with

maintenance limit constraint. New assignments can possibly be added in step 3

of the procedure since number of maintenances has possibly decreased by using

the matching. One can note that this improvement procedure will not be useful if

daily maintenance limit has not been reached in the solutions obtained by greedy

procedure.

Assignment values obtained by described method on dataset A are listed in Table

4.6. One can note that greedy assignment can be improved only on instances A1,

A2, A4-A6. This is due to the fact that daily maintenance limit constraint is not

tight (can almost be ignored) for remaining instances, i.e. maximum number of

maintenances in a day is large enough and is never reached. Linked departures

do not exist in A3 and A9. Additional time (addT ime) for assignments used in
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Assignment results

Inst G G_MIP G_M_MIP LB

A1-2 36 25 20 6
A3 12 12 12 12
A4 38 27 20 6
A5 28 17 11 5
A6 39 27 20 6

A7-8 4 4 4 0
A9 11 11 11 0

A10 4 4 4 0
A11 3 3 3 0
A12 4 4 4 0

.

Table 4.6: Assignment values. Number of non-assigned departures is given
for each instance and each method used: G - greedy,G_MIP - greedy + MIP,
G_M_MIP - greedy + matching + MIP. addT ime = 5minutes is used

experiments is 5 minutes.

A simple lower bound on number of non-assigned departures reported in Table 4.6

is calculated in the following way:

• Use maximum possible remDBM and remTBM for each train t;

– If t is not linked, use original remDBM and remTBM

– If t is linked with departure d then:

remDBMt = maxDBMt − reqDd

remTBMt = maxTBMt − reqTd

• Build a bipartite graph as described before without junction(disjunction)

time and additional time (i.e. addT ime = junDisjT ime = 0) and using

calculated remDBM and remTBM for each train;

• Find maximal matching in a graph (maintenance constraint not included).
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4.6.2 Scheduling problem

Contrary to the final version of the problem, two possibilities exist for the schedule

of each train t ∈ T:

1. t is scheduled to departure d ∈ D;

2. t is parked inside the station until the end of the planning time frame without

being assigned to any departure.

All junction and disjunction operations are performed on platforms, just after the

arrival or just before the departure. Move from one facility to another has

been added to the list of possible train movements.

4.6.2.1 Choosing platforms, parking resources and travel starting times

As before, ideal starting time, idealST , for each travel is determined, and pro-

cedure will try to find a feasible travel with starting time as close as possible to

idealST . In this variant of the problem, ideal starting time chosen for each travel

is the earliest or latest possible time, depending on the type of travel. The reason

for this is to minimize the usage of critical resources (especially platforms and fa-

cilities). For example, the train arriving to the platform will leave the platform as

soon as possible and train to depart from a platform will arrive to the platform as

late as possible. An important constraint of the problem is that all arrivals have to

be scheduled. This means that available platform has to be found for each arrival.

Similarly, parking resource (if necessary) has to be found, but this is less critical

since yard capacity is not a hard constraint. Therefore, the following strategy is

used for arriving trains:

• arrivals are sorted in descending order by train length and scheduled one by

one in this order (sorting should respect "linked" constraints),

• available platforms are sorted in ascending order by length for each ar-

rival/departure and the first one is chosen.
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Similarly, maintenance facility with minimum length is chosen for each mainte-

nance operation.

When movement to the yard i.e. parking has to be made, the yards are sorted

randomly and all paths are checked until a feasible travel has been found.

Scheduling procedure is run several times with different random seeds, with slightly

different parameters such as random ordering of yards, slick time choice, choice

of platform /facility if there are several "equal" choices, etc., and the best one is

retained.

4.6.3 Evaluation and Computational results

Instances A

inst |T| |D| maxMaint L

A1 A2 A4 A6 1272 1235 30* 35%
A3 1272 1235 60 0%
A5 1534 1499 40* 30%

A7 A8 A10 A12 1815 1780 50 40%
A9 1815 1780 100 0%
A11 2210 2153 60 33%

Table 4.7: Instances A1 – A12: |T| - number of trains (initial + arrivals), |D| -
number of departures, maxMaint - maximum number of maintenances in a day
(* means that constraint is tight), L - percentage of departures that are linked.

This method has been tested on the official set of twelve competition instances

(A1 – A12) provided by SNCF for a qualification phase. Algorithm sequentially

produces independent solutions until the time limit is exceeded and keeps the best

one. Assignment problem is solved several times and the best solution is taken.

For a given assignment several schedules are made and the best one is taken.

Computing time for one feasible solution (Assignment + Schedule) is few seconds.

Computational results on instances set A are given in the table 4.8. Comparison is

made with the best solutions obtained in qualifying stage of the competition (Q).
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Solutions A - 10 minutes, 10 runs

Inst Average Best Assignment Q LB

A1 23.2 20 20 46 6
A2 23.2 20 20 46 6
A3 12.1 12 12 15 12
A4 25.4 22 20 31 6
A5 12.5 11 11 25 5
A6 25.1 21 20 32 6

A7 4.1 4 4 8 0
A8 4.1 4 4 8 0
A9 11.7 11 11 15 5

A10 6.6 5 4 12 0
A11 4.0 4 3 15 0
A12 6.5 6 4 12 0

Total 158.5 140 265

Table 4.8: Results A: average and best result over 20 runs of 10 minutes is reported
in second and third column. For each solution, 50 assignments with different
random seeds and 3 schedules for the best assignment are generated. Assignment
value (result of assignment procedure) in the best solutions is given in the fourth
column. The best results for each instance obtained in ROADEF/EURO Challenge
are reported in the last column.

4.7 Conclusion

This rolling stock unit management problem on a railway site is extremely difficult

to solve for several reasons. Most induced sub-problems, such as the assignment

problem, scheduling problem, track group conflict problem and platform assign-

ment problem, are indeed complicated. In order to solve this problem, we have

proposed a two-phase approach that combines exact and heuristic methods.

A natural way of approaching the problem consists of dividing it into two sub-

problems, the first consisting of matching (assigning) trains to departures and the

second consisting of planning train movements (scheduling) inside the station, and

then solving both sequentially. The presence of linked departures and a constraint
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on the daily maintenance limit further complicate the assignment problem. Other-

wise, the problem could be solved in a polynomial time by means, for instance, of

the maximum weighted matching algorithm. A common strategy for overcoming

these constraints calls for modeling the assignment problem as a mixed integer pro-

gram. The number of linked departures in the given set of instances however makes

the MIP model unworkable due to the tremendous number of variables needed to

be generated in order to cope with the linked departures. A greedy procedure has

therefore been used to solve the assignment problem. The departures are sorted

by departure time and matched to the trains one by one, in a greedy manner. A

simple function has been introduced to evaluate the quality of assignment (t, d).

Solutions to the assignment problem are improved by combining a greedy proce-

dure with MIP, whereby all train assignments with linked departures obtained by

the greedy procedure are fixed and the remaining assignment is solved by MIP.

We have proposed the simple idea (and proven its correctness) of modeling the

constraint on daily maintenance limit as a linear one.

The second step in solving the problem is to plan train movements inside the

station in respecting all resource constraints and cancelling as few trains as possi-

ble. This problem is very complex and features a tremendous number of decision

variables (all resources, gates and entry/exit times must be specified for each

train); hence, modeling the problem exactly and solving it efficiently are likely to

be impossible. We have therefore opted for a constructive procedure to schedule

the trains. They are scheduled sequentially, one by one, after being ordered by a

given set of criteria. The possible train movements are restricted to just a few of

critical importance in order to reduce problem complexity. For this purpose, a set

of potential paths trains are allowed to use has been constructed at the beginning

of the procedure.

A concept of virtual visits has been offered to expand the choice of starting times

for each travel in order to address track group conflicts. An iterative procedure

has been adopted to improve the scheduling phase solutions, by allowing infeasi-

ble solutions as regards track group conflicts and then resolving these candidate

solutions by means of a local search. The introduction of both virtual visits and

an iterative improvement procedure has served to significantly improve these so-
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lutions.

The algorithm described in this chapter was ranked first at the ROADEF/EURO

Challenge 2014 competition, recognized as the best solution for 18 out of the 24

competition instances. A number of simplifications have been performed for the

final submission in order to enhance method reliability. In deleting these simpli-

fications, the method can indeed be improved. Allowing violation of some other

constraints such as resource length and capacity (probably a "small" violation)

could possibly be included in proposed improvement heuristic and might improve

the quality of final results. We decided to allow only violations of conflict con-

straint since this constraint showed to be, by far, the most restrictive for proposed

set of instances.
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In this chapter we highlight the main contributions of our research and summarize

the main results. As we stated earlier, the scope and the aims of this thesis are

to investigate how to efficiently solve several difficult combinatorial optimization

problems, by local search based heuristics. In addition to local search, greedy

algorithms and Mixed Integer Programming (MIP) have been used in order to

produce initial feasible solutions for one of the considered problems. Performance

of local search approaches is influenced by several important factors such as a set of

neighborhoods to be explored, intensification and diversification strategies, imple-

mentation efficiency, etc. Simple (or medium size) neighborhoods for each of the

considered problems have been used in proposed approaches, with high solutions

quality being obtained by adding several local search features such as intensifica-

tion and diversification strategies, noising procedures, restarts, tabu list, etc.

Two of considered problems are a very large scale problems arising from real-

world applications where essential and complex features of problems are present:

Machine Reassignment problem defined by Google and Rolling Stock Problem

defined by French Railways (SNCF). The third problem considered here is One-

dimensional Bin Packing Problem (BPP), a classical and well known combinatorial

optimization problem. Solving these problems is computationally challenging. For

the first two problems this is mainly due to the fact that problems are large scale

and contain many constraints, while for BPP main difficulty comes from the fact

that competitive method is required to find optimal solutions for most of the in-

stances.

To tackle these problems efficiently, in this thesis we constructed solution methods

based on local search. Obtained results are competitive with the best results found
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in the literature (or proposed by competitors in ROADEF/EURO Challenge com-

petitions): most of the obtained results are proven to be optimal, near optimal, or

the best known.

In Chapter 2, local search approach to One-dimensional Bin Packing problem

(BPP) based on exploring partial solutions is proposed to solve the problem suc-

cessfully. As opposed to the majority of work published on BPP, a local search

explores partial solutions that consist of a set of assigned items without any ca-

pacity violation and a set of non-assigned items. The main contribution is a Tabu

search on partial and consistent solution (called Consistent Neighborhood Search)

that includes moves consisting of rearranging both the items assigned to a single

bin and non-assigned items, i.e. adding and dropping items to and from the bin

(Swap move). Swap move includes maximum three items from a single bin. This

higher complexity of Swap moves, with respect to the classical (mostly shift and

exchange) moves used in the literature, is compensated by the fact that only moves

between assigned and non-assigned items are performed.

Some of the algorithm features crucial for obtaining high quality solutions include:

• size of a partial solution and termination criteria i.e. exploring partial solu-

tions with m−2 bins and terminating the search when all non-assigned items

can be packed into two bins (thus, producing complete feasible solution with

m bins),

• defining a suitable fitness function i.e lexicographic fitness function mini-

mizing total weight of non-assigned items first and maximizing a number of

non-assigned items second

• introducing second tabu search variant consisting of a subset of moves that

do not decrease the second objective,

• allowing only the moves between assigned and non-assigned items speeds up

the search significantly.

Promising results have been obtained for a very wide range of benchmark instances;

best known or improved solutions obtained by heuristic methods have been found
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for all considered instances for BPP, successfully outperforming published results

for the particular class of instances hard28, which appears to provide the greatest

degree of difficulty for BPP algorithms. This method is also tested on vector pack-

ing problems (VPP) and evaluated on classical benchmarks for two-dimensional

Vector Packing Problem (2-DVPP), in all instances yielding optimal or best-known

solutions.

Local Search approach for Machine Reassignment Problem (MRP) has been pro-

posed in Chapter 3. MRP shares some similarities with bin packing problems

considered in Chapter 2, but contains additional constraints and has different

objective function. Due to the size of the instances, exploring the search space

"smartly" and efficiently was crucial in obtaining high quality results. Besides two

simple neigborhoods, shift and swap, used in most of the papers on MRP, a neigh-

borhood referred as BPR (for Big Process Rearrangement) has been defined and

showed to be very useful in obtaining better results. Limiting the neighborhood ex-

ploration (by maximum number of evaluations for example) has been done in order

to deal with the size of instances. Several strategies have been developed in order

to improve the results, including strategies for search intensification and diversi-

fication, defining a suitable order of processes when exploring the neighborhoods

and restart procedures. Experiments on large-scale problem instances, proposed

by Google and containing up to 50,000 processes and 5,000 machines, have been

conducted, showing a remarkable performance of the presented local search algo-

rithm. Proposed algorithm was ranked first in ROADEF/EURO Challenge 2012.

It is important to mention that 50 teams have submitted their algorithms in the

competition, with many proposed approaches being based on local search. Second

and third placed team have proposed Large Neighborhood Search methods, using

Constraint or Integer Programming to solve sub-problems.

Chapter 4 considers SNCF Rolling Stock management problem: rolling stock unit

management on railway sites, defined by French Railways (SNCF). The problem

is to manage trains between their arrivals and departures in terminal stations.

The problem is very complex and involves temporary parking and shuntings on

infrastructure which are typically platforms in stations, maintenance facilities,
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railyards located close to train stations and tracks linking them. Proposed ap-

proach is a two-phase approach that solves two sub-problems sequentially. Several

techniques are applied, including greedy algorithms, Mixed integer Programming

(MIP) and Local Search. Feasible solutions to the problem have been obtained by

greedy algorithms and MIP (only to obtain better initial solutions, not required).

These solutions are then a subject of a local search based improvement procedure.

More precisely, improvement procedure consists of iteratively producing infeasible

solution (in terms of the most difficult, conflict, constraint) by adding more ar-

rivals/departures to the schedule and repairing it by local search. This local search

is Consistent Neighborhood Search, based on exploration of partial solutions (as in

proposed methods devised for Set Covering and Bin Packing in Chapters 1 and 2).

The method submitted to ROADEF/EURO 2014 competition was ranked first,

obtaining the best results for 18 out of 24 instances, while improved version that

includes MIP produces the best results on remaining six instances as well. To the

best of our knowledge, no local search as an important method ingredient has been

proposed by other competitors.

As a final remark, we would like to point out the importance of appropriate al-

gorithm choices when designing the methods for solving proposed problems given

that short running time limit is imposed (either by competition rules or in order

to be competitive with the best approaches in the literature). Therefore, several

important steps have been performed when designing the algorithms such as:

• carefully study the problem (instances, size of the problem, find greatest

difficulties, etc.);

• try to find characteristics shared by all (or majority of) available instances

of the problem and take them into account when design the algorithm;

• using appropriate data structures and fast algorithm implementation;

• defining the suitable termination conditions for each part of the algorithm;

• performing reductions or simplifications of the problem if possible and nec-

essary;
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• keeping only algorithm parts that contribute the most to quality of the fi-

nal results i.e. dropping less important features in order to speed up the

algorithm (based on extensive numerical experiments), . . .

Obviously, some of these steps are to be done even when no time limit on running

the algorithm exists, but existence of short time limit makes them particularly im-

portant. Many experiments have been performed for all presented problems (par-

ticularly for Bin Packing and Machine Reassignment), including different choices

of neighborhoods and the way of their exploration, termination conditions, apply-

ing possible reductions and/or decompositions, etc. and the final algorithms, that

showed to be the best in terms of solution speed and quality, have been presented

in this thesis.
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Abstract This thesis focuses on the design and implementation of local search

based algorithms for discrete optimization. Specifically, in this research we consider

three different problems in the field of combinatorial optimization including "One-

dimensional Bin Packing" (and two similar problems), "Machine Reassignment"

and "Rolling Stock unit management on railway sites". The first one is a classical

and well known optimization problem, while the other two are real world and very

large scale problems arising in industry and have been recently proposed by Google

and French Railways (SNCF) respectively. For each problem we propose a local

search based heuristic algorithm and we compare our results with the best known

results in the literature. Additionally, as an introduction to local search methods,

two metaheuristic approaches, GRASP and Tabu Search are explained through a

computational study on Set Covering Problem.

Keywords: Combinatorial optimization, Local search, Metaheuristics

Résumé Cette thèse porte sur la conception et l’implémentation d’algorithmes

approchés pour l’optimisation en variables discrètes. Plus particulièrement, dans

cette étude nous nous intéressons à la résolution de trois problèmes combinatoires

difficiles : le « Bin-Packing », la « Réaffectation de machines » et la « Gestion

des rames sur les sites ferroviaires ». Le premier est un problème d’optimisation

classique et bien connu, tandis que les deux autres, issus du monde industriel, ont

été proposés respectivement par Google et par la SNCF. Pour chaque problème,

nous proposons une approche heuristique basée sur la recherche locale et nous

comparons nos résultats avec les meilleurs résultats connus dans la littérature. En

outre, en guise d’introduction aux méthodes de recherche locale mise en œuvre dans

cette thèse, deux métaheuristiques, GRASP et Recherche Tabou, sont présentées

à travers leur application au problème de la couverture minimale.

Mots clés: Optimisation combinatoire, Recherche locale, Métaheuristiques


