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ABSTRACT 

Mantle cell lymphoma (MCL) is a rare aggressive lymphoma caused by the chromosome 

translocation t(11;14)(q13;q32) juxtaposing the cyclin D1 (CCND1) locus on chromosome 11  

with  the immunoglobulin heavy chain (IgH) locus on chromosome 14. As a result, a proto-

oncogene cyclin D1 which is not expressed in normal B-cells, becomes active. The initial 

hypothesis favored direct influence of the strong IgH enhancer on CCND1 gene promoter to 

upregulate its transcription. However, the CCND1 locus may be as far as 200 kb from the 

chromosome breakpoint. We have shown that 11q13 locus relocalizes from the nucleus 

periphery towards the transcriptionally active center and nucleolus (Allinne et al., 2014). This 

may lead to activation of the entire locus, suggesting an epigenetic mechanism of gene 

upregulation in MCL, rather than simple enhancer-promoter effect. 

Several new treatments are proposed for MCL, including histone deacetylase inhibitors 

(HDACis) with epigenetic mechanism of action. In MCL cell lines, HDACis were shown to have 

antiproliferative effects and to decrease the cyclin D1 protein level in the cells. Until now, there 

is no clear understanding of this phenomenon, nor of HDACis mechanism of action. Therefore, 

a study of epigenetic state in 11q13 and 14q32 loci should significantly advance our knowledge 

about the mechanisms of cyclin D1 upregulation in MCL. 

The purpose of the present work was to study chromatin structure in the rearranged 

(11;14)(q13;q32) locus in MCL cells as compared to the 11q13 and 14q32 loci in normal 

human B-lymphocytes. Furthermore, we studied the effect of different HDACis on the 

rearranged (11;14)(q13;q32) locus at several levels: histone modifications, chromatin 

conformation and gene expression. 

We have shown that t(11;14)(q13;q32) translocation leads to overexpression of CCND1 along 

with a group of genes spanning over 15 Mb around the translocation point. The genes sensitive 

to deregulation by t(11;14) translocation react to the HDACi treatment by increasing their 

expression. Importantly, while HDACi stimulates genome-wide disaggregation of 

heterochromatin, gene promoters stay shielded from its effect.   



 

 
11 

RÉSUMÉ 

Le lymphome des cellules du manteau (LCM) est un lymphome d’une rare agressivité 

causée par la translocation chromosomique t(11;14)(q13;q32) juxtaposant le locus de la 

cycline D1 (CCND1) sur le chromosome 11 avec le locus de la chaîne lourde de 

l'immunoglobuline (IgH) sur le chromosome 14. En conséquence, une cycline D1 proto-

oncogène devient active alors qu’elle n’est pas exprimée dans les cellules-B normales. 

L’hypothèse initiale semble indiquer une influence directe du fort enhancer IgH sur le 

promoteur du gène CCND1 afin de surexprimer sa transcription. Quoi qu’il en soit, le locus 

CCND1 peut être éloigné jusqu'à 200kb du point de cassure du chromosome. Nous avons 

montré que le locus 11q13 relocalise depuis la périphérie du noyau jusque au centre actif de 

transcription et au nucléole (Allinne et al., 2014). Ce phénomène qui mène à l’activation du 

locus entier, suggère un mécanisme epigénétique de régulation des gènes dans les LCM 

plutôt que simplement un simple effet enhancer-promoteur.  

Plusieurs nouveaux traitements contre le LCM ont été proposés, y compris les inhibiteurs 

d’histone deacetylase (HDACis) qui impliquent des mécanismes epigénétique. Dans LMC, les 

HDACis sont décrites comme vaillant des effets antiprolifératifs et diminuant le niveau de la 

cycline D1 dans la cellule. Jusqu'à présent, les mécanismes d’action des HDACis reste 

obscurs. Pour ces raisons, une étude d’état epigénétique sur les loci 11q13 et 14q32 devrait 

fortement améliorer notre connaissance sur les mécanismes de surexpression de la cycline D1 

dans les LMC. 

L’objectif de ce travail est d'étudier la structure de la chromatine dans le locus réarrangé 

(11;14)(q13;q32) dans des cellules LMC par rapport au locus 11q13 et 14q32 dans les 

lymphocytes humains normaux. Nous avons ensuite étudié l'effet de différentes HDACis sur le 

locus réarrangé (11;14)(q13;q32) à plusieurs niveaux: l'acétylation / la méthylation des 

histones de la chromatine ainsi que sa conformation et l'expression des gènes. 

Nous avons montré que t(11 ;14)(q13;q32) conduit à la surexpression de CCND1 avec un 

groupe de gènes couvrant plus de 15 Mb autour du point de translocation. Les mêmes gènes, 

sensibles à la dérégulation par la translocation t(11;14), réagissent au traitement HDACi en 

augmentant leur expression. Nos résultats indiquent que bien que HDACi stimule la 

désagrégation de l'hétérochromatine sur l'ensemble du génome, les promoteurs de gènes 

restent à l'abri de ces effets.  
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РЕЗЮМЕ 

Лимфома мантийной зоны (ЛМЗ) - редкая и агрессивная форма неходжкинской 
лимфомы, вызываемая транслокацией t(11;14)(q13;q32). В результате этой транслокации 
ген циклина D1 (CCND1) на 11 хромосоме соединяется с локусом генов тяжелых цепей 
иммуноглобулинов (IgH) на 14 хромосоме. Это вызывает активацию прото-онкогена 
циклина D1, что в норме не экспрессируется в B-лимфоцитах. Согласно изначальной 
гипотезе, непосредственное влияние сильного энхансера IgH вызывает гипер-
экспрессию CCND1. Однако, CCND1 может быть вынесен на расстояние до 200 kb от 
места разрыва хромосом. Ранее нами было показано, что локус 11q13 переносится во 
время транслокации с периферии ядра в транскрипционно активный центр рядом с 
ядрышком (Allinne et al., 2014). Это может повлечь за собой активацию всего локуса, 
указывая на эпигенетический механизм активации генов в ЛМЗ, нежели на простой 
эффект энхансера на промоутер. 

В последние десятилетия были предложены новые методы лечения ЛМЗ, 
включая ингибиторы гистоновых деацетилаз (ИГД) с эпигенетическим механизмом 
действия. В клеточных линиях ЛМЗ было показано, что ИГД проявляют 
антипролиферативный эффект и парадоксально снижают количество циклина D1. До 
настоящего момента не существует объяснения этого явления, и точный механизм 
действия ИГД до конца не ясен. Поэтому изучение «эпигенетического ландшафта» в 
локусах 11q13 и 14q32 может существенно продвинуть наше понимание механизмов 
активации циклина D1 в ЛМЗ. 

Целью данного исследования явилось изучение структуры хроматина в 
транслоцированном локусе (11;14)(q13;q32) в клетках ЛМЗ по сравнению с локусами 
11q13 и 14q32 в нормальных B-лимфоцитах. Кроме того, мы исследовали эффект 
различных ИГД на измененный локус (11;14)(q13;q32) на нескольких уровнях: 
ацетилирование и метилирование гистонов, конформация хроматина и экспрессия генов.  

В результате проведенных исследований мы показали, что транслокация 
(11;14)(q13;q32) приводит к гипер-экспрессии не только гена CCND1, но и большой 
группы генов, расположенных вокруг точки транслокации на 15 Mb фрагменте. Более 
того, эти же гены, что чувствительны к дерегулированию транслокацией t(11;14), 
реагируют на обработку ИГД повышением своей экспрессии. Мы показали, что несмотря 
на то, что ИГД вызывает глобальную диссоциацию гетерохроматина, промоутеры самих 
генов остаются незатронутыми, как бы защищенными от прямого влияния ингибитора.  

Таким образом, полученные данные поддерживают гипотезу эпигенетического 
механизма, лежащего в основе дерегулирования экспрессии циклина D1 (что 
предоставляет рациональную базу для использования эпигенетических лекарств), и 
указывают на опосредованный механизм действия ИГД.    
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I  - The epigenetic machinery 
 

 

Genetics studies heredity and variability of living organisms embedded in the sequence of 

DNA. In the last few decades however, other types of variations and inheritance which do not 

alter the underlying DNA sequence were found, called epigenetics. The term was derived from 

the Greek word epi- (επί-) which means ‘over, outside of, around’. The definition of epigenetics 

was proposed by Conrad Waddington in 1942 (Waddington, 1942). Together with Ernst 

Hadorn (Hadorn, 1961), they were the first to assume an interaction between the environment 

and genetic information, which later evolved into the field now called epigenetics. This study 

shifts the focus of attention from a gene to the control over its activity.  

Epigenetic mechanisms of gene expression include DNA CpG methylation, post-translational 

histone modifications, small and non-coding RNA-mediated regulation, chromatin remodeling 

and nucleosome repositioning. These epigenetic mechanisms work in deep interdependence 

and are orchestrated by the complex network of enzymes. Such modifications influence the 

overall chromatin structure, its activity and gene expression. The most broadly studied and 

well-characterized mechanisms currently are DNA methylation and histone modifications. 

Recent studies established a link between epigenetics and complex diseases such as cancer, 

type II diabetes, schizophrenia, autoimmune disease and others. Indeed, changes in the 

pattern of DNA methylation or histone acetylation often precede or accompany malignant 

transformation (Esteller, 2011). New discoveries in this field open unexpected and promising 
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perspectives on the wellbeing of humans. International human epigenome projects are 

currently working to define the totality of epigenetic marks in all major tissues across the entire 

genome (Jones, 2008), (Zhang et al., 2011).  

 

1. Chromatin Structure 

 

To understand the epigenetic mechanisms, first the chromatin organization has to be 

appreciated (Figure 1). Genomic DNA in the eukaryotic cell is represented in the form of 

chromatin: DNA in the complex with associated proteins. 2 meters of DNA is wrapped around 

specialized histone proteins resulting in its packaging inside a cell nucleus with a diameter of 

~10 µm. Such an organization makes DNA accessible to a variety of proteins involved in its 

transcription, replication and repair processes. 

A stretch of double-stranded DNA 146 nucleotides long is wrapped around an octamer of the 

four core histones (H2A, H2B, H3, and H4) forming a nucleosome - a basic unit of chromatin. 

Amino-terminal tails of core histones extend from the globular centre of the octamer and are 

accessible to modifying enzymes (Luger et al., 1997). This form of chromatin compaction, 

known as "beads-on-a-string", is 10 nm wide. Similarly, nucleosomes fold into higher-order 

structures with the help of a linker histone H1 forming a 30 nm-diameter fiber, called a filament. 

There are two popular models of intermediate chromatin condensation: solenoid and zigzag 

models.  
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Figure 1. Chromatin compaction: from DNA to metaphase chromosome. 

This scheme shows main levels of chromatin packing postulated to give rise to the highly condensed 

mitotic chromosome. 
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The 30 nm supercoiled chromatin forms independent loops by bounding anchor sequences to 

the nuclear matrix or scaffold. These anchor sequences, named S/MAR (scaffold/matrix 

attachment region), occur in 5´-introns and breakpoint cluster regions (BCRs).  Unbound loop 

domains, approximately 300 nm in diameter, protrude away from the matrix or scaffold and 

play important role in gene expression and DNA replication processes (Heng et al., 2001). 

Domains of 300-700 nm, observed during interphase, together form a chromosome territory. 

Higher levels of chromatin organization are much less studied, and questions about how they 

are formed, regulated and interplayed with genomic activity remain elusive (Ruthenburg et al., 

2007), (Razin et al., 2014).  

There are several models proposed to describe the spatial arrangement of the chromatin within 

the nucleus. The modern hypothesis of the eukaryotic genome organization, first proposed in 

1988 (Bodnar, 1988), (Goldman, 1988), is based on the conception of domains. According to 

this theory, genome is built up from units with similar structure and function (domains) which 

are controlled simultaneously mostly on the level of chromatin packaging (Razin et al., 2007). 

Importantly, 3D-organisation of genome defines spatial approaching of linearly-distant loci after 

folding into the higher order chromatin structures. Thus, pieces of one functional cluster can be 

discontinuous, but characterized by co-regulation and simultaneous switching between gene 

activation and repression, euchromatin or heterochromatin state. 

The chromatin, from functional point of view, can be commonly divided into the more active 

euchromatin and the less active heterochromatin, where the former chiefly takes central 

position in the nucleus, whereas the latter segregates closer to periphery (Figure 2). 

Euchromatin represents a relaxed state of DNA which is more accessible to transcription 

factors and chromatin-associated proteins. It contains active and inactive genes, whereas 

heterochromatin mostly consists of inactive genes as it has a highly condensed inaccessible 
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form (Jenuwein and Allis, 2001). DNA sequences critical for chromosomal stability are as well 

represented in the heterochromatic state (Talbert and Henikoff, 2006).  

Bivalent separation of chromatin into eu- and heterochromatin historically came from the 

experiments on sensitivity DNA to DNase I cleavage (Lawson et al., 1982), (Lawson et al., 

1982).  With the recent techniques of genome-wide analysis genome has been shown to be 

divided into more than two types of distinct active and inactive chromatin regions (Filion et al., 

2010), (Farkash-Amar and Simon, 2010). Euchromatin is shown to be mostly composed of 30-

nm fibers and looped domains, whereas heterochromatin represents more condensed 

chromatin domains or higher-order chromatin fibers, which are still not completely understood. 

 

 

Figure 2. Euchromatin and heterochromatin. 

Relative quantity of euchromatin and heterochromatin in a cell reflects the level of the cell’s activity. 

Heterochromatin is accumulated adjacent to the nuclear envelope or scattered in irregular particles 

throughout the nucleus. Euchromatin is not readily stainable and dispersed in the center of nucleus. 
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2. Chromosome territories 

 

All chromosomes have their own location in the nucleus according to their level of activity in 

different types of cells (Bolzer et al., 2005). These are called chromosomal territories (Figure 

3). Initially, their existence had been suggested by Carl Rabl in 1885 (Rabl, 1885) and then 

proved in the early 1980s by Thomas and Christoph Cremer (Bodnar, 1988). The territorial 

organization of chromosomes in interphase turns out to be a basic feature of nuclear 

architecture, specific to both cell and tissue type, and are evolutionary conserved (Tanabe et 

al., 2002). 

Chromosome territories are radially arranged around the nucleus and were shown to correlate 

with their gene density and size. In this case, more active and gene-rich territories segregate in 

the centre, whereas more silent with less genes density territories – close to the periphery of 

the nucleus (Sun et al., 2000). Notably, once a gene is “switched on” it can be relocated from 

the periphery towards the interior (Chuang et al., 2006). The same is also true for the opposite 

process. This phenomenon shows the dynamical structure of chromosome territories.  

The chromosomal territories are comprised of higher order chromatin domains called 

Topologically Associating Domains (TADs) of ~1 Mb each (Albiez et al., 2006). These 1Mb 

domains are likely to be built up from smaller loop units, and at the same time, can themselves 

serve as smaller units for larger chromatin clumps (Cremer and Cremer, 2010). 

If part of a chromosome relocalizes into the new atypical surroundings, as it happens in case of 

translocations (Harewood et al., 2010), (Allinne et al., 2014), then this change of usual position 

causes an aberrant gene expression in most of the cases. Such repositioning is often observed 
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in different diseases. For example, the majority of lymphomas contain a chromosomal 

translocation with consequent overexpression of a proto-oncogene. 

 

Figure 3. Chromosome territories. 

(A) Two-color painting of the p-arm (red) and the q-arm (green) of human chromosome 1 in a 

lymphocyte metaphase spread. (B) Visualization of the two arms in a light optical section through a 

human diploid fibroblast nucleus (bottom) shows two distinct, mutually exclusive arm domains. (C) 

Three-dimensional reconstructions of two chromosome 17 territories, established from light optical serial 

sections through a human diploid fibroblast nucleus, show complex territory surfaces. (D-E) 24 colors 

FISH representation of all visible chromosome territories in a nucleus. [from (Cremer and Cremer, 2001) 

and (Bolzer et al., 2005)] 
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3. Levels of epigenetic regulation 

 

The dynamic composition of chromatin during different stages of the cell cycle, or from one cell 

type to another, is regulated through multiple epigenetic mechanisms.  

 

a. DNA methylation  

In higher eukaryotes, the cytosine within the dinucleotide CpG can be methylated. Perhaps it is 

the best characterized chemical modification of chromatin. DNA methylation plays a critical role 

in gene imprinting, tissue-specific gene expression, genome stability, cell differentiation, X 

chromosome inactivation, regulation of chromatin structure, carcinogenesis, and aging (Bird, 

2002). The process involves the transfer of a methyl group from S-adenosyl-L-methionine 

(SAM), a methyl precursor, to the cytosines in CpG dinucleotides. The latter are often clustered 

in the genome in the so-called CpG islands ranging from 0.5 to 5 kb in size. These sites tend to 

cluster in regions of large repetitive sequences such as centromeric repeats or at the 5’ ends of 

many genes (Bernstein et al., 2007). 

Enzymes responsible for DNA-methylation are called DNA methyltransferases (DNMTs). The 

human genome contains four DNMT genes, DNMT1, DNMT2, DNMT3a and DNMT3b (Figure 

4). Two formers DNMT are de novo methyltransferases, preferentially targeting unmethylated 

CpGs to initiate methylation (Stresemann et al., 2006). Once established in early 

embryogenesis, DNA methylation patterns must be stably maintained over cell divisions. This 

function is fulfilled by DNMT1, the maintenance methyltransferase, through its preference for 

hemimethylated DNA. DNA methyltransferase DNMT2 exhibits a weak methyltransferase 
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activity in vitro and has only one catalytic domain, whereas DNMT1 and DNMT3A/B enzymes 

contain both regulatory and catalytic domains (Li and Zhang, 2014). 

 

Figure 4. DNA methyltransferases.  

(A) DNA methyltransferase 1 (DNMT1) predominantly methylates hemi-methylated DNA during 

replication. (B) DNMT3a and DNMT3b predominantly methylate unmethylated DNA. (C) 5-

Methylcytosine can undergo spontaneous deamination to thymine, generating T:A transition mutations. 

(D) Methyl-CpG binding proteins (MBPs) bind to methylated DNA; (E) DNMT1 and MBPs can recruit 

histone deacetylase, resulting in tighter packing of DNA into chromatin. (F) Methylation, MBPs and 

histone deacetylation inhibit transcription by interfering with transcription factor access. [from (Goffin and 

Eisenhauer, 2002)] 

 

The opposite process, demethylation of DNA, can be passive or active. Passive DNA 

demethylation happens when maintenance methyltransferases are inactive and newly 

synthesized strand, after DNA replication, retains the unmethylated state. Active DNA 
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demethylation can occur independently of DNA replication and involves several enzymes, 

which have been elusive for many years. Methyl-CpG-binding domain protein 2 (MBD2), one of 

the first suggested enzymes responsible for DNA demethylation, is now disputed. Recently, a 

mechanism of 5meC excision in plants involving DNA glycosylases was discovered, although 

evidence supporting a similar mechanism in mammals has been less forthcoming. DNA 

demethylation can also be achieved by deamination of 5meC with the help of Aid and 

APOBEC enzymes generating thymine (T). This is followed by consequent replacement of 

mismatched T with unmethylated C. Alternatively, TET enzymes can oxidize 5mC with 

production of 5-hydroxymethyl cytosine (5hmC) (Figure 5). Modified bases in both processes 

of deamination and oxidation are removed by glycosylases with generation of apyrimidinic acid 

which is subsequently replaced with cytosine (for review see (Wu and Zhang, 2010)).  

Interestingly, 5-hydroxymethyl cytosine functions not merely as a passive intermediate in the 

DNA demethylation pathway. 5hmC serves as an epigenetic mark opposing DNA methylation 

and plays important role in stem cell renewal, neurological disorders, cancer development and 

progression (Rajneesh and Sinha, 2014). For these reasons, 5hmC is sometimes referred to 

as the “sixth base”. 

Methylation of DNA has many roles in various cellular processes and may impact the 

transcription of genes by preventing the binding of key transcriptional factors. Indeed, control 

elements for transcription and replication often contain CpG islands (Bird, 2002), (Prioleau, 

2009), which recruit methyl CpG-binding transcriptional repressors and interfere with DNA 

binding of transcriptional activators. This results in a condensed chromatin state. Normally in 

heterochromatic regions, 50-70% of all CpGs are methylated, whereas in euchromatin within 

promoters, they typically remain unmethylated, especially during development and in normal 

(non-neoplastic) tissues. 
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Figure 5. Oxidation and deamination pathways of demethylation. 

Supposed mechanisms of demethylation via modification of 5mC through deimination (Aid, APOBEC) or 

hydroxymethylation (Tet). These modified bases are removed by glycosylases, which generate 

apyrimidinic acid that is subsequently removed by excision repair and replaced with cytosine. [from 

(Bergman and Cedar, 2013)] 

 

DNA methylation patterns are dynamic and change intensively during development. In 

primordial germ cells, genome is actively demethylated. After fertilization in the early embryo, 

methylation levels increase rapidly and establish a differential pattern in the trophectoderm and 
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the inner cell mass (Jaenisch et al., 1982). This type of de novo DNA-methylation was as well 

observed in adult somatic cells during aging, or development of disease like cancer (Issa, 

2000). Apart from that, CpG-island methylation can be developmentally programmed, like in 

cases of X-chromosome inactivation, genomic imprinting and tissue-specific differentiation 

(Laird, 2003). 

After being established in early development, DNA methylation pattern tends to be copied 

during the DNA replication process in a semiconservative way, thus passing the epigenetic 

information between cell generations (Holliday and Pugh, 1975). Recent discoveries revealed 

that this process though might be not so simple.  Apparently, DNA methyltransferases have 

high frequency of mistakes (~4% per cell division). In spite of the high error rate at the single 

CpG methylation level, the general methylation pattern is propagated during development at a 

significant rate (Bird, 2002). Moreover, it has been shown that CpG-island methylation can still 

be maintained without the DNMT1 which is known to be responsible for the process (Rhee et 

al., 2000). This hints on a yet unknown component critical for the maintenance process. 

Several lines of evidence suggest that DNA methylation affects genes which are already silent 

(Gautsch and Wilson, 1983), (Pannell et al., 2000). For example, phosphoglycerate kinase 

gene in mammals is silenced on inactive X chromosome before methylation of its promoter 

occurs (Lock et al., 1987). When DNA methyltransferase 1 (an enzyme responsible for 

maintenance of methylation) is inhibited, X-linked transgene undergoes the frequent 

reactivation in mouse embryo cells and in cultured somatic cells (Sado et al., 2000). These and 

many other data indicate that methylation serves rather as a secondary event which aims to 

silence DNA irrevocably. 
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Even though DNA methylation has been repeatedly shown to interfere with transcription in a 

mutually exclusive way (Bird, 2002), emerging evidence for existence of the opposite 

processes recently appeared (Rothbart and Strahl, 2014). Transcription factors binding specific 

DNA sequences in a methylation-dependent manner have been identified. For example, 

recognition of 5mC by KLF4 plays a stimulatory role in KLF4-mediated transcription. New 

intriguing findings expand the functional role of 5mC in gene regulation: it might mediate both 

active and repressive gene states but in a site-specific manner. 

 

b. Non-coding RNA 

In mammals only 1% of genome codes for proteins (Taft et al., 2007), whereas most part of 

DNA is still being transcribed without consequent translation. That ‘transcriptional noise’ or 

‘junk DNA’ has been found to be evolutionarily conserved and to serve for regulation of gene 

expression and genome stability (Guttman et al., 2009), (Costa, 2007). Indeed, 98% of all 

transcriptional output results in so called non-coding RNA (ncRNA) (Mattick, 2001), which is 

synthesized by RNA polymerase II and III (Dieci et al., 2007).  

As research progresses in this field, more and more different types of ncRNAs have been 

identified (Zhou et al., 2010).  2 main groups of non-coding RNAs include the short ncRNAs 

(<30 nts) and the long ncRNAs (>200 nts). The major classes of short non-coding RNAs 

include: microRNAs (miRNAs), short interfering RNAs (siRNAs), and piwi-interacting RNAs 

(piRNAs). Many of ncRNAs are involved in the processing and regulation of other RNAs such 

as mRNA, tRNA, and rRNA, and chromatin. A mechanism by which RNA molecules 

specifically inhibit gene expression is called RNA interference (RNAi). In addition to this 
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function, ncRNAs play an important role in defending cells against parasitic nucleotide 

sequences – viruses and transposons. 

miRNAs are tiny and highly conserved ncRNAs that induce degradation of specific mRNAs or 

repression of translation by complementary binding to a target. Being produced from either 

their own genes or from introns as single-stranded RNAs, they are then processed by the 

RNase III endoribonuclease (Dicer). Together with RNA-induced silencing complex (RISC), 

these RNAs bind to a specific target mRNA inducing its cleavage, degradation or blocking its 

translation. miRNAs control approximately 30% of all human protein-coding genes from almost 

every cellular process (Filipowicz et al., 2008). In addition, miRNAs were reported to regulate 

expression of other types of ncRNAs, such as long ncRNAs (Calin et al., 2007). 

siRNAs, similarly to miRNAs, mediate transcriptional and post-transcriptional gene silencing 

and are involved in the process of chromatin modification (Carthew and Sontheimer, 2009). 

These molecules are as well catalysed by the Dicer enzyme, but initially synthesized as 

dsRNAs with a process of bi-directional transcription (Katayama et al., 2005).  

piRNAs originate form the largest class of small ncRNAs and regulate the suppression of 

transposon activity in germline and somatic cells. piRNAs in complexes with piwi proteins 

target transposons in antisense way and cause its cleavage (O'Donnell and Boeke, 2007). 

These RNAs are produced as single strand clusters and then cleaved to individual units 

through a yet undefined processing mechanism (Houwing et al., 2007).  

Long ncRNAs (lncRNA) have a length of more than 200 nucleotides and represent the major 

group of non-coding RNAs. The most common function of the lncRNAs, together with 

chromatin-modifying proteins, is to create a repressive chromatin state and influence gene 

expression (Mercer and Mattick, 2013). The most known example is X-chromosome 
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inactivation which involves two lncRNAs: Xist and its negative regulator - antisense transcript 

Tsix (Lee, 2009). Coating of X-chromosome with Xist transcripts triggers extensive histone 

methylation and chromosome inactivation. Notably, implication of lncRNAs in gene activation 

by establishing transcriptionally competent chromatin structure as well has been reported 

(Guttman et al., 2011).  

Non-coding RNAs play a significant role in epigenetic regulation of gene expression via 

mechanisms such as RNA-associated gene silencing, DNA methylation, chromatin 

remodelling, chromosome inactivation, genomic imprinting and paramutation (Figure 6) (Zhou 

et al., 2010). 

 

Figure 6. Schematic representation of the different components of epigenetic control by 
ncRNAs in epigenetic regulation. [from (Zhou et al., 2010)] 
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c. Histone modifications 

The amino terminals of the core histones can be subjected to several types of modifications, 

including acetylation of lysines (K), methylation of arginine (R) and lysines, phosphorylation of 

serine (S) and threonine (T), ubiquitination and sumoylation of lysines, etc. (Kouzarides, 2007). 

These post-translational modifications of histones are critical for global chromatin environments 

and the orchestration of DNA-based biological tasks. Regulation of chromatin structure and 

function affects chromosomal organization, gene transcription, recombination, DNA repair and 

replication.  

All these biological events require ordered recruitment of the machinery to unravel DNA, 

manipulate it and then put it back to the correct chromatin state. These processes have 

different steps, wherein each of them requires a distinct type of chromatin-remodeling activity. 

This explains the necessity of different combinations of modifications. To describe the specific 

set of histone modifications required for a given DNA function, the term “histone code” has 

been proposed (Jenuwein and Allis, 2001).  

The abundance of modifications on the histone tails creates a ‘‘crosstalk’’ between them 

(Figure 7). First, if more than one possible modification targets the same site, it may lead to 

competitive antagonism, as in the case of lysines which can be methylated, acetylated or 

ubiquitylated. Second, one modification can be dependent on another, being stimulated or 

disrupted by a specific proteins binding to modified residues.  

Histone modifications function via two different mechanisms. The first is regulation of chromatin 

folding intensity. The second is recruitment of nonhistone proteins which specifically bind the 

modified histones.  Thus, acetylation is recognized by bromodomains and nonrelated PHD 
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domains, methylation - by chromo-like domains, and phosphorylation is recognized by a 

domain within 14-3-3 proteins (Figure 8) (Kouzarides, 2007). 

 

Figure 7. Histone modification cross-talk.  

Histone modifications can positively or negatively affect other modifications. A positive effect is indicated 

by an arrowhead and a negative effect is indicated by a flat head [from (Bannister and Kouzarides, 

2011)] 

 

• Histone methylation 

Histone methylation occurs on different lysine residues. Depending on the number of the 

methyl groups (from one to three) and on the lysine residues’ positions, it exerts a different 

effect on gene function and chromatin state. Histone methylation can be associated both with 

transcriptional activation and inactivation, as well as with silent genomic regions (Jenuwein and 

Allis, 2001). 
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Figure 8. Domains binding modified histones. 

Examples of proteins with domains that specifically bind to modified histones as shown. [from (Bannister 

and Kouzarides, 2011)] 

 

For example, modifications that are localized to active genes, such as H3K4me, H3K36me, or 

H3K79me, are often referred to as euchromatin modifications (Koch et al., 2007), (Edmunds et 

al., 2008). In contrast, the enrichment of histone methylation at H3K9me, H3K20me, or 

H4K27me is associated with gene inactivation or silencing (Kouzarides, 2007). Co-existence of 

H3K4me3 and H3K27me3 marks keeps genes in poised states in so called "bivalent domains" 

for later activation in stem cells (Meissner et al., 2008), (Mikkelsen et al., 2007). Interestingly, 

H3K9me1, H3K27me1 and K4K20me1 are documented to be implicated in gene activation and 

were observed in euchromatin regions, whereas with increased methylation degree these 
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modifications H3K9me3, H3K27me3, and K4K20me3 are associated with transcriptional 

repression and heterochromatin formation (Barski et al., 2007), (Vakoc et al., 2006). 

Apart from the transcription regulation, several lines of evidence suggest that lysine 

methylation of histone proteins also functions to maintain genome integrity and cellular identity 

(Albert and Helin, 2010). For example, H3K9 methylation plays crucial role in the maintenance 

of chromosome integrity (Peters et al., 2001). 

 

• Histone acetylation 

The acetylation of histones is the most widely studied histone modification and is the first 

epigenetic modification connected with biological activity (Feinberg and Tycko, 2004). Lysine 

residues have a positive charge that can bind tightly to the negatively charged DNA. That 

process is responsible for formation of condensed nucleosomes and closed chromatin 

structure inaccessible to transcriptional machines. Acetylation has the effect of changing the 

basic lysine charge from positive to neutral, thus transforming DNA to a more accessible state 

(Shahbazian and Grunstein, 2007). All four core histones are susceptible for that modification.  

Hyperacetylation is involved as well in recruitment of other chromatin associated factors which 

participate in gene transcription or chromatin architecture (Ruthenburg et al., 2007). In 

contrast, histone deacetylation leads to opposite effects. Thus, acetylation of histones is known 

to be exclusively associated with active chromatin.  

Moreover, recent studies have revealed a link between histone acetylation and nucleosome 

structure and dynamics (Tessarz and Kouzarides, 2014). Acetylation of H3K122 or H3K64 

correlates with decreased nucleosome stability. 
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• Other histone modifications 

Phosphorylation of serine residues, like in case of acetylation, changes its basic charge and 

thus may have important consequences for chromatin compaction and cellular processes such 

as mitosis, apoptosis, and gametogenesis (Fischle et al., 2005), (Krishnamoorthy et al., 2006), 

(Ahn et al., 2005). During cell division, histones are often phosphorylated at specific sites 

(Barber et al., 2004). Phosphorylation of H2A in mammalian cells takes place as an early 

response to DNA damage (Fillingham et al., 2006). Phosphorylation of threonine can markedly 

influence nucleosome architecture. For example, H3T118 phosphorylation can induce the 

formation of alternative nucleosome arrangements (North et al., 2014). 

Ubiquitylation. Lysine 119 in H2A, lysine 120 in H2B and histone H3 (the exact site has not 

yet been indentified) in humans are susceptible to ubiquitylation. Modification of H2AK119, 

mediated by the Bmi/Ring1A protein, has been found to be associated with transcriptional 

repression (Wang et al., 2006). In contrast, H2BK120 ubiquitylation was linked with 

transcription activation and elongation (Zhu et al., 2005), (Pavri et al., 2006). H2B 

monoubiquitination is required for proceeding of histone methylation, a process known as 

histone crosstalk. Apart of that, ubiquitylation was shown to play a role in UV-induced DNA 

repair (Wang et al., 2006). 

Sumoylation is a very large modification which can take place on all four core histones 

(Nathan et al., 2006). It was shown to be antagonistic for both acetylation and ubiquitination, as 

it occurs on the same lysine residue. Consequently, this modification is repressive for the 

transcription.  

ADP-Ribosylation is a reversible addition of one or more ADP-ribose moiety to an arginine 

residue in histones. This modification is involved in many cellular processes, including cell 
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signaling, DNA repair, gene regulation and apoptosis (Hassa et al., 2006). Improper ADP-

ribosylation has been implicated in some forms of cancer (Scarpa et al., 2013). 

Citrullination has recently been reported to be implicated in histone–DNA interactions 

(Christophorou et al., 2014). Citrulline is derived from arginine amino acid by peptidylarginine 

deimination with loss of its positive charge. In embryonic cells linker histone H1 is citrullinated 

at the position Arg54 in a domain necessary for the interaction with nucleosomal DNA. This is 

apparently one of the reasons for more accessible chromatin in embryo cells as compared to 

differentiated cells.  

 

4. Enzymes involved in histone modifications 

 

Covalent modifications of histones, ranging from small chemical changes such as methylation 

and acetylation to large peptide addition such as ubiquitylation and sumoylation, add multiple 

layers of complexity to chromatin. Most part of histone modifications are dynamically regulated, 

which was demonstrated by the discovery of many enzymes that can remove the modification. 

Over the past decade, several families of histone-modifying enzymes have been identified.  

 

a. Histone methyltransferases / demethylases 

Histone methylation ensures binding of regulatory proteins that affect chromatin structure in 

different ways. Lysine-(K) and arginine-(R) residues in histone proteins can be methylated 

(Martin and Zhang, 2005), (Bedford and Clarke, 2009). Amongst all the enzymes that modify 
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histones, those responsible for methylation / demethylation are the most specific about their 

histone targets. Reversible methylation is catalyzed by S-adenosylmethionine (SAM) - 

dependent methyltransferases and erased by two classes of demethylases: either 

hydroxylases of Jumonji C family or amine oxidases - the lysine-specific demethylases 1 

(LSD1) and 2 (LSD2) (Tsukada et al., 2006); (Shi et al., 2004b).   

Histone methyltransferases (HMT) are divided based on their substrate, into lysine or arginine-

specific types. Both types belong to the family of enzymes with a conserved catalytic domain 

called SET (Suppressor of variegation, Enhancer of Zeste, Trithorax), except histone lysine 

methyltransferase DOT1L, which does not contain a SET domain. All histone 

methyltransferases use SAM as a cofactor and methyl donor group.  

In human genome, there are approximately 50 HMTs, and each enzyme regulates different 

genes or different cellular processes. For instance, methyltransferases Set1 and Set2 

methylate Lys4 and Lys36 of histone H3 respectively (Shilatifard, 2006). Dot1, a SET-domain 

free HTM, catalyzes histone H3K79 mono-, di- and trimethylation, which mediates telomere 

silencing (Lacoste et al., 2002). Dot1, unlike SET-containing HMTs, can methylate a lysine 

residue in the globular core of the histones, whereas others do so only in the tail region of the 

histone (Wood and Shilatifard, 2004).  

The first histone demethylase (HDM) discovered was Lysine Specific Demethylase 1 (LSD1) 

specific for mono- and dimethylated Lys4 in histone H3 (Shi et al., 2004a). LSD1 and LSD2 

belong to the conservative flavin adenine dinucleotide (FAD)-dependent amino oxidase family, 

which are specific for mono- and dimethyllysines only. 

Next discovered HDMs were reported to contain a JmjC catalytic domain, known to be 

implicated in chromatin-dependent functions (Clissold and Ponting, 2001). In contrast to 
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LSD1/2 demethylases, these JmjC enzymes are able to catalyze trimethyllysines as well as 

mono- and dimethylated substrates (Klose and Zhang, 2007). Many JmjC family members 

have unique substrate specificities.  

 Histone arginine demethylases could not be identified for a long time. Recently, a human 

JMJD6 was shown to possess an arginine-specific demethylated activity specific for 

H3R2me1/2 and H4R3me1/2 (Chang et al., 2007). 

 

b. Histone acetyltransferases 

Histone acetylation is a reversible process catalyzed by histone acetyltransferases (HAT) and 

histone deacetylases (HDAC). HATs use acetyl-CoA as a cofactor to acetylate       ε-amine of 

either arginine-(R) or lysine-(K) residues. In a cell, histone acetyltransferases can be localized 

in the nucleus, acetylating histones in chromatin (HAT type A), and in the cytoplasm, facilitating 

assembly of nucleosomes by acetylating newly translated histones (HAT type B) (Richman et 

al., 1988).  

Acetylated chromatin has a relaxed structure which is favorable for transcription and may 

interact with bromodomain-containing family of proteins that, in turn, can act as transcription 

activators or chromatin remodelers (Filippakopoulos et al., 2012). Moreover, many 

transcriptional coactivators, such as CBP/p300, Gcn5/PCAF and SRC-1, have been shown to 

possess intrinsic HAT activity. 

In total, there are about 30 known human HATs which can be divided into 5 families based on 

structural and functional homology of their catalytic domains. GNATs, Gcn5-related N-
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acetyltransferases, have 4 conserved motifs in their HAT domain and bromodomain or 

chromodomain for binding acetylated or methylated lysine, respectively (Neuwald and 

Landsman, 1997). GNATs are usually involved in cellular growth (Zhang et al., 1998). MYST 

(MOZ, Ybf2, Sas2, and Tip60) HATs contain acetyl-CoA binding motif and a zinc finger in their 

MYST- and other domains for interaction with other proteins (Avvakumov and Cote, 2007). In 

general, MYST HATs are involved in survival, transcription and cell growth control. This HAT 

family is closely linked to cancer (for a review see (Avvakumov and Cote, 2007)). The other 

three families include: the p300/CBP HATs; the steroid receptor co-activators (SRC)/nuclear 

receptor co-activators (NCoA) family; and the general transcription factor HATs containing 

TAF250 domain (Torchia et al., 1998).  

HATs are often not specific to individual lysines, but nevertheless fulfill specific functions. For 

instance, both the elongator complex and SAGA complex acetylate H3K9 and H3K14, where 

former functions in coding regions, while latter acts at promoters (Wittschieben et al., 1999). It 

can be explained by the fact that HATs are often revealed to be a part of multisubunit protein 

complexes that determine their recruitment, catalytic activity and substrate specificity (Nagy 

and Tora, 2007). 

HATs carry out a broad range of functions acetylating not only histones, but also an increasing 

number of non-histone substrates (Yang, 2004). For example, tumor suppressor p53 is 

regulated by acetylation carried out with p300/CBP HAT (Gu and Roeder, 1997). 
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c. Histone deacetylases   

The removal of acetyl groups from arginine and lysine residues in histones is catalyzed by 

histone deacetylases (HDACs). This group, comprising of 18 humans enzymes, is quite 

heterogeneous and can be divided into four classes based on their sequence homology to their 

yeast orthologues: Rpd3, yHda1 and Sir2 (Table 1).  

The Class I, II, and IV HDACs, called as well «classical» HDACs, belong to the 

arginase/deacetylase superfamily of proteins which require Zn2+ for their catalytic activity 

(Figure 9). Class I HDACs are localized in the nucleus and are the most abundant and 

ubiquitously-expressed. Class II HDACs shuttle between the nucleus and the cytoplasm and 

their expression is tissue-specific. That class can be divided into two sub-classes: IIa which is 

characterized as having a highly conserved C-terminal deacetylase catalytic domain and a 

unique N-terminal domain; IIb which contains two deacetylase domains. Class IV has only one 

member HDAC11 and resides in the nucleus (Kim and Bae, 2011). Class III, or sirtuins, 

belongs to deoxyhypusine synthase like NAD/FAD-binding domain superfamily and uses 

NAD+ as an essential co-factor. Apart from histone deacetylation, sirtuins have mono-ADP-

ribosyltransferase enzymatic activity (Seto and Yoshida, 2014) 

When purified to homogeneity, classical HDACs reveal very low histone deacetylase activity 

which makes it difficult to define their histone substrate specificity. HDACs exist as a part of 

several different complexes, where each of them shows different substrate preferences. In 

contrast to the classical ones, class III HDACs have clearer histone substrate specificity (Table 

1). 
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Figure 9. The molecular targets of HDACs and the biological effects of HDAC inhibition.  

HDAC inhibitors induce acetylation of histones and non-histone proteins, leading to a wide range of 

biological effects, including regulation of gene expression, including apoptosis and cell cycle arrest, 

inhibiting angiogenesis, and regulation of DNA damage and repair pathway. AR, androgen receptor; 

ERa, estrogen receptora; NF-KB, nuclear factor-KB; PLAG1, pleomorphic adenoma gene 1; PLAGL2, 

PLAG-like 2; RUNX3, runt-related transcription factor 3; SHP, short heterodimer partner; SMC3, 

structural maintenance of chromosomes 3; STAT3, signal transducer and activator of transcription 3; 

YY1, Ying Yang 1 [from (Chun, 2015)]  

 

All types of HDACs, apart from regulating histone modification, also regulate a wide range of 

non-histone proteins working in nucleus, cytoplasm and mitochondria: such as chaperones, 

transcription factors and structural proteins (Witt et al., 2009a); (Seto and Yoshida, 2014). For 

example, acetylation of Lys residue competes with its other modifications, thus inhibiting 

ubiquitination dependent protein degradation (Caron et al., 2005). Recently, a large number of  



 

 

Table 1. Human HDACs and their functions. 

HDAC Protein associations 
(normal and oncogenic) 

Role in the cell Expression in tumor tissues Function in cancer cells Links 

Class I (homologous to RDP3 yeast protein, nuclear location, ubiquitous tissue expression, co-factor for activity - Zn2+ ) 

HDAC1 

(482 a.a.) 

 

HDAC2, CoREST, NuRD, 

Sin3, AML1-ETO, PML, 

PLZF, BCL6, p53,  AR, 

ER, Rb/E2F1, MyoD, 

STAT3, androgen 

Represses transcription, 

binds to TF. 

Resistance to 

chemotherapy 

Proliferation control 

Apoptosis 

p21 and p27 CDK inhibitor 

repression 

Especially common in cancers of 

the gastrointestinal system and is 

associated with 

dedifferentiation, enhanced 

proliferation, invasion, advanced 

disease and poor prognosis. 

DLBCL, ALL: high expression is 

associated with poor prognosis. 

KD results in inhibition of proliferation 

and induction of autophagy. 

KD results in abrogated lymphomagenesis 

due to a block in early thymic 

development. 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

(Min et al., 2012) 

(Heideman et al., 2013) 

 

HDAC2 

(488 a.a.) 

 

HDAC1, CoREST, NuRD, 

Sin3, AML1-ETO, PML, 

PLZF, Bcl6, STAT3, 

glucocorticoid receptor, 

YY-1 

 

Negatively regulates 

transcription by being 

recruited to DNA as a 

corepressor. 

Proliferation control 

Apoptosis 

Gastric, prostate, colorectal cancers, 

DLBCL, ALL: high expression is 

associated with poor prognosis. 

Cervical cancer cells: HDAC2 KD results 

in differentiation, apoptosis and p53 

independent p21 expression. 

Genetic HDAC2 mutation reduces 

intestinal tumor development in APC mice 

in vivo.  

KD results in abrogated lymphomagenesis 

due to a block in early thymic development. 

CLL cells: KD sensitizes for TRAIL-

apoptosis 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

(Lee et al., 2014) 

HDAC3 

(428 a.a.) 

 

HDAC4, HDAC5, 

HDAC7, NCoR/SMRT, 

AML1-ETO, PML, PLZF, 

PML-RARα, PLZF-RARα, 

Bcl6, STAT1, TAT3, 

GATA1, GATA2, NF-κB, 

RelA, MEF2D, YY-1, SHP 

Represses transcription, 

binds to TF. 

Proliferation 

Differentiation 

Gastric, prostate, colorectal cancers: 

high expression associated with 

poor prognosis. 

APL cells: HDAC3 associated with PML-

RARα fusion protein, KD induces 

differentiation genes. 

AML: AML-1-ETO binds HDAC3 (and 

HDACs 1, 2), disrupts cell cycle. 

 

(Witt et al., 2009b) 

(Kristensen et al., 2009) 

(Kim and Bae, 2011) 

(West and Johnstone, 

2014) 
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HDAC8 

(377 a.a.) 

 

nd Proliferation 

Differentiation 

Childhood neuroblastoma: high 

HDAC8 expression significantly 

correlates with advanced stage 

disease, clinical and genetic risk 

factors and poor long term survival. 

Neuroblastoma cells: HDAC8  KD 

induces differentiation, cell cycle arrest 

and inhibits clonogenic growth. 

Lung, colon, cervical cancer cells: KD of 

HDAC8 reduces proliferation. 

HDAC8 specific inhibitor selectively 

induces apoptosis in T-cell derived 

lymphoma and leukemic cells. 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

Class IIa (homologous to Hda1 yeast protein, shuttle between nucleus and cytoplasm, tissue-restricted expression, co-factor for activity - Zn2+) 

HDAC4 

(1084 a.a.) 

HDAC3-NCoR, GATA1, 

GCMa,  HP-1 

Differentiation 

Angiogenesis 

ALL: high expression is associated 

with poor prognosis, high initial 

leukocyte count, T-cell ALL and 

prednisone poor-response. 

APL cells: HDAC4 interacts with PLZF-

RARα fusion protein, represses 

differentiation genes. 

Renal carcinoma cells: KD inhibits 

expression and functional activity  

of HIF-1a. 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

(Gruhn et al., 2013) 

HDAC5 

(1122 a.a.) 

HDAC3-NCoR, GATA1, 

GATA2, Smad7, HP-1, 

GCMa 

Differentiation 

 

Up-regulated in colorectal cancer. 

Downregulated in AML and lung 

cancer. 

Erythroleukemia: HDAC5 shuttles from 

nucleus to cytoplasm upon differentiation, 

interacts with GATA-1. 

KD decreased medullablastoma cell 

growth and viability. 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

HDAC7 

(855 a.a.) 

HDAC3-NCoR, ERα, 

FLAG1 and 2 

Angiogenesis 

 

Up-regulated in colorectal cancer 

and ALL. 

Downregulated in lung cancer. 

Endothelial cells: HDAC7 silencing alters 

morphology, migration and tube-forming 

capacity. 

KD induced growth arrest in colon  and 

breast cancer cells. 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

HDAC9  

(1011 a.a.) 

nd  Overexpressed in ALL and 

medulloblastoma, associated with 

poor prognosis. 

 

KD of HDAC9/10 inhibited homologous  

recombination and increased sensitivity to 

DNA damage and decreased 

medullablastoma cell growth and viability 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 



 

 

Class IIb (homologous to yeast protein Hda1, mostly cytoplasmic location, tissue-restricted expression, co-factor for activity - Zn2+) 

HDAC6 

(1215 a.a.) 

HDAC11, α-Tubulin, 

HSP90, SHP, Smad7 

Regulation of protein 

degradation both  

via the aggresome 

 (a structure that forms in 

response to misfolded 

proteins) and the regulation 

of Hsp90 chaperone 

activity. 

Angiogenesis 

Migration 

Oral squamous cell cancer: high 

expression, increased in advanced 

stage. 

Upregulated in breast cancer and 

CTCL. In breast cancer is 

associated with enhanced prognosis. 

Down-regulated in lung cancer. 

K562 leukemic cells: targeted inhibition of 

HDAC6 leads to acetylation of HSP90 and 

disruption of its chaperone function, 

resulting in depletion of pro-growth and 

pro-survival client proteins including the 

Bcr-Abl oncoprotein. 

Colon carcinoma cells: HDAC6 targeting 

blocks EGF induced nuclear translocation 

of ß-catenin and c-myc expression. 

KD of HDAC6 causes donwregulation of 

HIF-1a, VEGFR1/2. 

HDAC6 involved in TGFβ induced 

epithelial-mesenchymal transition of lung 

carcinoma cells. 

(Witt et al., 2009b) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

HDAC10 

(669 a.a.) 

HSP90 Angiogenesis Overexpressed in hepatocellular 

carcinoma. Poor prognostic 

indicator in lung cancer. 

KD of HDAC10 downregulates VEGFR.  

 

(New et al., 2012) 

(Kristensen et al., 2009) 

(West and Johnstone, 

2014) 

Class III or sirtuins (Silent information regulator 2 family gemology, co-factor for activity - NAD+, conventional HDACis do not affect them) 

SIRT1  

(747 a.a.) 

(Nucleus) 

H3K9, H3K14, H3K56, 

H4K16, H1K26, p53, 

KU70, Foxo3a, BCL6 

Chromatin organization, 

DNA repair/genome 

stability, stress, cancer  

Upregualted in human lung cancer, 

prostate cancer and leukemia and 

has been found downregulated in 

colon tumors. 

 (Seto and Yoshida, 

2014) 

(Heltweg et al., 2006) 

(Ropero and Esteller, 

2007) 

SIRT2  

(352 a.a.) 

(Cytoplasm) 

H4K16, H3K56 Chromatin condensation, 

mitosis, DNA repair, 

cancer 

Frequently downregulated in human 

gliomas. 

 (Seto and Yoshida, 

2014) 

(Ropero and Esteller, 

2007) 
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SIRT3 

(399 a.a.) 
(Nucleus and 

mitochondria) 

H4K16 Chromatin silencing, DNA 

repair, cellular stress 

  (Seto and Yoshida, 

2014) 

SIRT4  

(310 a.a.) 
(Mitochondria) 

None    (Seto and Yoshida, 

2014) 

SIRT5 

(314 a.a.) 
(Mitochondria) 

None    (Seto and Yoshida, 

2014) 

SIRT6 

(355 a.a.) 

(Nucleus) 

H3K9, H3K56 Telomeric chromatin / 

senescence, DNA 

repair/genome stability 

  (Seto and Yoshida, 

2014) 

SIRT7 

(400 a.a.) 

(Nucleus) 

H3K18 Cellular transformation   (Seto and Yoshida, 

2014) 

Class IV (Unknown yeast protein homology, cytoplasmic location, tissue-restricted expression, co-factor for activity - Zn2+) 

HDAC11 

(347 a.a.) 

HDAC6 Regulates the 

protein stability of DNA 

replication factor CDT1 

and the expression of 

interleukin-10 

Overexpressed in breast, renal and 

liver cancer. 

ALL: high expression is associated 

with poor prognosis. 

It has been implicated in immune 

system regulation via its role in 

interleukin-10 expression and OX40L 

surface expression in Hodgkin lymphoma 

(Witt et al., 2009b) 

(New et al., 2012) 

(Kim and Bae, 2011) 

(Kristensen et al., 2009) 

(Glozak and Seto, 2009) 

(West and Johnstone, 

2014) 

 

KD – knockdown. ALL - acute lymphoblastic leukemia. AML - acute myeloid leukemia. APL - acute promyelocytic leukemia. CLL - chronic 

lymphocytic leukemia. DLBCL - diffuse large B-cell lymphoma. TF – transcription factor. 
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proteins sensitive to regulation by acetylation have been identified (Choudhary et al., 2009); 

(Kim and Bae, 2011). Key cell survival proteins such as p53, Ku70, BCL6, tubulin turn out to be 

targets for classical HDACs and sirtuins (Bereshchenko et al., 2002); (Gu and Roeder, 1997); 

(Matsuyama et al., 2002). Therefore, altered HDAC activity may influence both gene 

expression and other cellular processes including tumor cell apoptosis, growth arrest, 

differentiation, inhibition of angiogenesis, etc (West and Johnstone, 2014). 

 

d. Control over HATs and HDACs activity 

HAT and HDAC activity in mammalian cells is regulated through three main mechanisms: 

regulation of the enzyme amount, its enzymatic activity, or its availability for interaction with 

specific transcription factors. 

First and the most obvious way of enzyme regulation is the control over their gene expression. 

For example, HDAC1 expression is induced by histone hyperacetylation in its promoter, thus 

creating a feedback loop control (Hauser et al., 2002). Second, their half-life which defines 

intracellular quantity of a protein. Thus, degradation of Tip60 HAT, involved in apoptosis and 

DNA double-strand break repair, is regulated via ubiquitination by the ubiquitin ligase Mdm2 

(Legube et al., 2002). The third main mechanism that regulates the enzymatic activity of HATs 

and HDACs involves post-translational modifications and protein–protein interactions. Apart 

from that, the metabolic cofactors availability might also influence acetylation levels. 

Post-translational modifications. Phosphorylation is one of the most common modifications 

which regulates activity of many HATs and HDACs. For instance, cyclin E/cyclin-dependent 

kinase 2 phosphorylates CREB-binding protein (CBP) in order to stimulate its HAT activity 
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which is required for progression to the S-phase of the cell cycle (Ait-Si-Ali et al., 1998). 

Another example is reduction of HDAC4 activity by sumoylation with E3 ligase RANBP2 (Kirsh 

et al., 2002).  

Protein-protein interactions. Both HATs and HDACs normally work as a part of large, 

multimolecular complexes. Notably, factors which are not bona fide components of the 

complex were usually described to control HAT activity (Legube and Trouche, 2003). 

 Third documented mechanism of HATs or HDACs regulation includes either their capacity to 

interact with specific transcription factors or their subcellular localization (Zanger et al., 2001), 

(Baek et al., 2002).  

 

5. Relationship between levels of epigenetic regulation 

 

Chromatin architecture and gene expression is regulated by tight cooperation between different 

epigenetic modifications. Extensive cross-talk between histone and DNA modifications is 

mediated by several epigenetic adaptors, including chromatin remodeling enzymes, methyl-

DNA binding proteins and siRNA. Epigenetic marks are much more than simple on/off switch of 

gene promoters. An increasing body of evidence indicates a high level of their functional 

integration. 

For a long time, DNA methylation was thought to affect gene expression by mostly modulating 

the interaction between transcription factors and DNA (Becker et al., 1987), (Iguchi-Ariga and 

Schaffner, 1989). However, recent discoveries opened another view on downstream effects of 

DNA methylation, giving the principal role to indirect regulatory mechanisms, where methyl-
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DNA binding proteins take the leading position (Ng and Bird, 1999). Moreover, these proteins 

also serve as general adaptors between DNA methylation and epigenetic histone 

modifications. 

The first example of an adaptor between distinct epigenetic modifications was methyl-DNA 

binding protein MeCP2. It specifically binds methylated DNA and then recruits histone 

deacetylase complexes (Jones et al., 1998). Thus, MeCP2 serves as an important factor in the 

establishment of repressive chromatin state at methylated loci. Since then, several other 

methyl-DNA binding proteins have been characterized (Hendrich and Bird, 1998). Interestingly, 

proteins containing both, a methyl-DNA binding domain and a putative histone methyl 

transferase domain, have also been identified (Kouzarides, 2002). Discovery of these proteins 

permitted to better understand long-range effects of DNA methylation and its correlation with 

histone deacetylation and gene silencing.  

Experiments on plants and flies showed functional interaction between H3K9 methylation and 

DNA methylation. In this case, methylation of H3K9 is required for de novo DNA-methylation, 

while the opposite is possible too: histone methylation can be controlled by DNA methylation 

(Soppe et al., 2002), (Tamaru and Selker, 2001). 

Various lines of evidence also suggest a connection between RNAi and DNA methylation. 

Mutation in ARGONAUTE4 gene in Arabidopsis, which is involved in siRNA processing, 

affected DNA methylation patterns and altered histone H3-K9 methylation (Zilberman et al., 

2003). However, the exact mechanistic basis of the interaction between siRNAs and other 

epigenetic factors has not yet been determined.  

siRNA-mediated suppression of transcription has been reported a number of times to be 

associated with histone and DNA methylation in genes promoters of mammalian cells (Morris 
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et al., 2004), (Castanotto et al., 2005), (Suzuki et al., 2005). At the same time, it has been 

shown that double-stranded RNAs (dsRNAs), targeted to selected promoter regions of the 

human genes, did not change their DNA methylation state, but provoked histone 

demethylation, especially H3m2K4 (Li et al., 2006), (Chen et al., 2008). As a result the targeted 

genes underwent long-lasting activation: the phenomenon termed as RNA activation (RNAa). 

Thus, interactions between DNA methylation and histone modifications can be established, 

maintained and reinforced by involving siRNAs and adaptor molecules, like methyl-DNA 

binding proteins. In this scenario, many types of interactions are conceivable that would 

reinforce the stability of epigenetic information (Figure 10).  

In recent times, after collecting and analyzing an increasing amount of epigenetic data, 

scientists started coming to the conclusion that local changes in gene expression are rather 

secondary consequences of epigenetic regulation, whereas the primary outcome is changes in 

higher-order chromosome organization (for review see (Weissmann and Lyko, 2003)).  

The most illustrative examples include studies of affected enzymes such as DNA-

methyltransferases or histone deacetylases. It has been revealed that inhibition of their 

catalytic activity (either by mutations or inhibitors) paradoxically does not lead to global 

changes in gene expression. Instead of that, it leads to misregulation of only about 1% of 

genes, notably, in both directions - upregulation and downregulation ((Jackson-Grusby et al., 

2001) and (Ehrlich et al., 2001) for DMT genes; (Heider et al., 2006) for HDACs inhibition).  

Deletions of both histone methyltransferases in mice caused a loss of centromeric H3K9 

methylation and a concomitant reduction of chromosome stability (Peters et al., 2001). 

Disruption of RNAi pathway in fission yeasts reflected at the level of chromosome structure 

(Hall et al., 2003). Patients with ICF syndrome (immunodeficiency, centromeric instability, facial 
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anomalies) have lack of DNMT3B DNA methyltransferase activity and consequently 

decondensed centromeric heterochromatin, chromosome fusions and multiradial 

chromosomes with up to 12 arms (Smeets et al., 1994).  

These and much more experimental data hints at the idea that epigenetic signals regulate 

higher order chromosome structure and thus affect gene expression patterns, i.e. indirectly, 

rather than affecting genes on a locus-specific level. In this sense, consequences of 

 

Figure 10. Cooperative interactions in epigenetic regulation.  

Epigenetic regulation network involves the DNA methylation, histone modification, chromatin remodeling, 

ncRNAs, chromatin remodeling and repositioning, which mutually affect each other. The results can be 

gene silencing or reactivation. [from (van Engeland et al., 2011)] 
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chromosomal translocations, where entire chromosome loci change their intranuclear locations 

and hence particular epigenetic environment, gain significance. 

 

6. Epigenetic changes and cancer 

 

Cancer is a genetic disease at the cellular level initiated by alterations in genes from cell 

proliferation, survival, and other key cellular process pathways (Vogelstein and Kinzler, 2004). 

Such genes, which have a potential to cause cancer or protect a cell from the path to cancer, 

are called oncogenes and tumor suppressor genes respectively. In malignant cells oncogenes 

and/or tumor suppressor genes are modified by mutations or altered at the level of expression 

by epigenetic modifications. This can occur through chromosome translocations, DNA 

methylation, histone modifications, miRNA alterations and other processes (Jones and Laird, 

1999). Mutations, chromosomal aberrations and global changes in the epigenetic landscape 

are the hallmarks of cancer. 

 

a. DNA methylation and cancer 

Loss of methylation is very often revealed in cancer cells (Jones and Baylin, 2002). If 

mechanism of DNA methylation is altered, regions of the genome that should be methylated, 

such as repetitive sequences, may lose stability as a result of the loss of methylation. This 

genomic instability can then lead to the development of different malignancies. Indeed, the 

general level of DNA methylation is often decreased in neoplastic cells, causing genetic 
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instability and unscheduled activation of genes (Feinberg and Vogelstein, 1983). 

Hypomethylation of repetitive sequences and retrotransposons increases genomic instability by 

promoting chromosomal rearrangements (Eden et al., 2003), (Howard et al., 2008). 

DNA hypomethylation can activate growth-promoting genes, such as MAGE-1 locus, which is 

normally expressed only in germ line cells, but is activated in melanoma cells (De Smet et al., 

1996), R-Ras and MAPSIN - in gastric cancer, S-100 - in colon cancer cells (Wilson et al., 

2007). 

On the other hand, tumor suppressor genes’ promoters (responsible for proliferation, 

apoptosis, DNA repair, and immortalization) aberrantly gain hypermethylation which typically 

results in their silencing. Their silencing can therefore promote tumor formation and growth. 

One of the first discovered examples of such suppression was retinoblastoma (RB) gene, 

whose promoter is found to be methylated in a significant subset of sporadic and even 

hereditary retinoblastomas (Greger et al., 1989). Methylation silencing of SFRP genes 

(antagonists of the WNT signaling pathway) lead to cell proliferation and promotes early 

dysplastic colon mucosal lesions in mice. In the majority of prostate cancers, glutathione S-

transferase (GSTP1) gene, encoding the detoxification enzyme, is often inactivated by 

hypermethylation.  

One of the most possible mechanisms of gene silencing via hypermethylation involves higher 

activity of DNA methyltransferases in tumor cells. Indeed, altered DNMT activity and 

expression was observed in numerous diseases including obesity, cardiovascular diseases, 

type 2 diabetes, autism and cancer, (Milagro et al., 2011), (Chowdhury et al., 2011), (Maier and 

Olek, 2002), (Grafodatskaya et al., 2010), (Nephew and Huang, 2003). Interestingly, regions 
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which gain hypermethylation in cancer, are often pre-marked with H3K27me3 polycomb mark 

in embryonic stem cells (Schlesinger et al., 2007). 

 

b. Histone modifications and cancer  

In cancer cells, the balance of histone modification marks is substantially altered. High-

throughput sequencing analysis revealed a global loss of H4K16ac and H4K20me3 during 

tumorigenesis (Fraga et al., 2005). 

Chromatin structure and its accessibility for transcription are very regulated by histone 

modifications. For example, deacetylated histones can block access for transcription factors 

and therefore prevent the gene expression. Thus, changes in activity of enzymes, responsible 

for histone acetylation / deacetylation (HATs / HDACs), may alter the transcription of genes 

controlling cell-cycle progression and developmental events. Indeed, HDACs and HATs are 

often found overexpressed or altered in another way in various types of cancer (Halkidou et al., 

2004), (Song et al., 2005). In leukemia, fusion proteins often involve HAT or HAT-related genes 

(e.g. MOZ, MORF, CBP and p300) (Yang, 2004). EZH2, the H3K27 HMT, is found 

overexpressed in breast and prostate cancer (Valk-Lingbeek et al., 2004). 

 

c. Deregulation of miRNAs in cancer 

During tumorigenesis, widespread changes in miRNA expression were detected (Lu et al., 

2005). miRNAs regulate genes involved in processes which are usually deregulated in cancer, 
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i.e. transcriptional regulation, cell proliferation and apoptosis. miRNA can be down- or 

upregulated in cancer cells, depending on their targets. In chronic lymphocytic leukemia, tumor 

suppressor miRNAs miR-15 and 16, that target an antiapoptotic gene BCL2, are 

downregulated. In lung cancer let-7 is downregulated, which targets the oncogene RAS (Zhang 

et al., 2007). Opposite examples come from oncogenic miRNAs, which target growth inhibitory 

pathways. These miRNAs are often upregulated in cancer. Thus, miR-21 in human 

glioblastoma (Chan et al., 2005) and miRNA-155 in breast, lung and several hematopoietic 

malignancies are upregulated (Kluiver et al., 2006). Several possible mechanisms can be 

responsible for such changes in miRNA expression, including chromosomal abnormalities and 

epigenetic alterations (Deng et al., 2008). 

 

d. Translocations and cancer 

Chromosome translocations have an important role in the initial steps of carcinogenesis, 

including leukemia, lymphoma and some solid tumors. Translocations involve non-homologous 

chromosomes and can be classified as reciprocal (with exchange of segments between two 

chromosomes) and non-reciprocal (fusion of two acrocentric chromosomes with reduction of 

chromosomal number).  

First suggestion that acquired chromosome abnormalities play a crucial role in the origin of 

cancer, was conceptualized by Theodor Boveri in 1914 (Boveri, 1914). Technical possibility to 

prove this theory became available only half a century later. In 1960 with technologies of 

human chromosome visualization, the association of Philadelphia chromosome with chronic 

myeloid leukemia (CML) has been discovered by Nowell and Hungerford (Nowell, 1960). Now 
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it is commonly accepted that many chromosome aberrations are responsible for specific types 

of malignancies, especially hematological (Rowley, 2001).  

Common consequences of chromosome aberrations are the generation of chimeric fusion 

genes and gain or loss of genetic material. Notably, chromosome translocations frequently lead 

to changes in constant chromosome positions (Harewood et al., 2010), (Allinne et al., 2014). 

This event causes relocalisation of genes to the new not typical surroundings, defining an 

aberrant gene expression in most of the cases. These changes in gene expression, without 

altering neither any gene structure nor its dosage, can be considered as purely epigenetic. 

Translocations broadly have two dominating types of consequences: inactivation of tumor 

suppressor genes and activation or deregulation of proto-oncogenes. 

 

• Chimeric genes 

Translocations may fuse the coding sequences of two genes together to generate a chimeric 

fusion gene, which in turn codes an activated form of the protein affecting the normal cellular 

physiology (Grignani et al., 1998a), (Minucci et al., 2000), (Lin and Evans, 2000).  

Genes, prone to chimer formation, often encode transcription factors regulating differentiation 

at the cellular, tissue and organismal level. As a result, fusion-gene translocations commonly 

lead to arrested or aberrant development, or heavy diseases. Thus, fusion-gene translocations 

are classically recognized as hallmarks of sarcomas and hematopoietic neoplasms. 

One of the first studied examples is the Philadelphia chromosome, discovered in patients with 

chronic myelogenous leukemia (CML) (Figure 11). Janet Rowley and colleagues have shown 

that the Philadelphia chromosome was actually a product of a reciprocal translocation between 

chromosomes 9 and 22  (Rowley, 1973),  which  fused  the  coding sequences of the BCR at 



INTRODUCTION | The epigenetic machinery 

 
54 

 

 

Figure 11. Gene fusion leading to a chimeric gene.  

The Philadelphia chromosome, which originates through the translocation t(9;22)(q34;q11), juxtaposes 

the 5' part of the BCR gene at 22q11 with the 3' part of the ABL1 gene at 9q34, resulting in the creation 

of a hybrid BCR-ABL1 fusion gene. The ABL1 gene is oriented with its 5' end towards the centromere of 

chromosome 9. The gene spans more than 230 kb and contains two alternative first exons, 1b and 1a, 

followed by exons 2-11. Exon 1b is located approximately 200 kb upstream of exon 1a. The breakpoints 

are scattered over a large area (greater than 300 kb) at the 5' end of the gene, either upstream of the 

first alternative exon 1b, between the two alternative exons, or between exons 1a and 2. Irrespective of 

the breakpoint location, splicing of the hybrid transcript yields an mRNA in which BCR sequences are 

fused to ABL1 exon 2. The BCR gene has its 5' end towards the centromere of chromosome 22, spans 

approximately 135 kb and has 23 exons. In most patients with chronic myeloid leukemia, and at least 

one third of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia, the break 

occurs in a 5.8 kb major breakpoint cluster region that spans exons 12-16. [from (Mitelman et al., 2007)] 
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22q11 and ABL1 genes at 9q34. The BCR-ABL1 fusion protein is a protein tyrosine kinase 

which constitutively activates cell growth and proliferation signaling pathways. Notably, 

knowledge of that particular mechanism of CML development, allowed investigators to develop 

a successful treatment for that disease by specifically inhibiting the fusion BCR-ABL protein's 

activity. 

Another well known fusion protein is TEL-AML1 in acute lymphoblastic leukemia (ALL). TEL-

AML1 is a result of t(12;21)(p12–13;q22) translocation, bringing together TEL, a transcription 

factor of the ETS family, and AML1, a subunit of a core binding factor important in 

hematopoietic stem cells formation. TEL-AML1 fusion protein causes transcriptional repression 

of genes by involving histone deacetylases in that process (Pui et al., 2004), (Zelent et al., 

2004). 

In hematological disorders, 264 gene fusions, involving 238 different genes, have been 

identified. For the full list see Table 2. 

 
• Gene dosage 

Some translocations, particularly non-reciprocal ones, may lead to changes in gene dosage. 

Change in copy number may result in loss of tumor suppressor genes or duplication of 

oncogenes (Artandi et al., 2000), thus causing cancer formation and progression (Volik et al., 

2006), (Frank et al., 2007), or other genomic disorders (Lupski, 1998). 

For example, in non-small cell lung cancer, EGFR copy number can be higher than normal 

(Cappuzzo et al., 2005). A higher copy number of CCL3L1 is associated with lower 

susceptibility to HIV infection (Gonzalez et al., 2005); a low copy number of FCGR3B can 

increase susceptibility to systemic  lupus erythematosus  and  other inflammatory autoimmune  
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Table 2. Chromosomal translocations involved in hematopoietic tumors leading to gene 
fusions. 

Type of translocation Type of tumor Genes involved References 

t(8;21)(q22;q22) AML-M2 AML1/CBFα(21q22) Ohki M, Sem. Cancer Biol., 
1993;4:369–376 ETO/MTGβ(8q22) 

t(15;17)(q21;q21) APL PML (15q21) Gillard et al., Sem. Cancer Biol., 
1993;4:359–368 RARA (17q21) 

t(8;16)(p11;p13) *AML MOZ(8p11) Borrow J et al., Nat Genet., 
1996;14:33–41 CBP(16p13) 

t(9;22)(q34q11.2) CML/ALL BCR(22q11) de Klein et al., Nature, 1982;300:765–
767 c-ABL(9q34) 

t(11;17)(q23;q21.1) AML-M3 PLZF (11q23) Chen et al., EMBO J., 1993;12:1161–
1167 RARA (17q21) 

t(9;11)(p22;q23) AML-M4,  
pre-B-ALL 

MLL (11q23) Nakamura et al., PNAS, 1993;90: 
4631–4635 AF9 (9p22) 

t(6;11)(q27;q23) AML-M5, ALL MLL (11q23) Prasad et al., Cancer Res., 
1993;53:5624–5628 AF6 (6q27) 

t(6;9)(p23;q34) AML-
M1,M2,M4,M5 

DEK (6p23) von Lindern, Mol. Cell Biol., 
1992;12:1687–1697 CAN (9q34) 

t(16;21)(p11;q22) AML FUS(16p11) Shimizu et al., PNAS, 
1993;90:10280–10284 ERG(21q22) 

t(16;21)(q24;q22) t-AML, MDS AML1(21q22)MTG(16q24) Gamou T et al., Blood, 
1998;91:4028–4037. 

t(3;21)(q26;q22) CML AML1(21q22) Mitani et al., EMBO J., 1994;13:504–
510 EVI-1(3q26) 

t(3;21)(q26;q22) Myelo-dysplasia AML1(21q22) Nucifora et al., PNAS, 1993;90:7784–
7788 EAP(3q26) 

t(7;11)(p15;p15) AMLM2, M4 NUP98(11p15) Borrow J et al., Nat Genet., 
1996;12:159–167 HOXA9(7p15) 

t(1;11)(q23;p15) AML-M2 NUP98 Nakamura T et al., Blood, 
1999;94:741–747 PMX1 

t(1,11)(p32;q23) ALL MLL/HRX(11q23) Bernard et al., Oncogene, 1994;9: 
1039–1045 AFP1(1p32) 

t(17;19)(q22;p13) Pro-B-ALL E2A(19p13) Inaba et al., Science, 1992;257:531–
534 HLF(17q22) 

t(12;22)(p13;q11–12) MDS ETV6(12p13)/TEL Buijs A et al., Oncogene, 
1995;10:1511–1519 MN1(22q11) 

t(8;22)(p11;q13) AML-M5 MOZ(8p11) Lai et al., Cancer Genet Cytogenet, 
1992;60: 180–182 

P300(22q13) Chaffanet et al., Genes Chromosomes 
Cancer, 2000;28: 138–144. 

t(5;12)(q33;p13) CMML TEL(12p13) Golub et al., Cell, 1994;77: 307–316 
*Nalm-6 PDGFRβ(5q33) Wlodarska et al., Blood, 1997;89: 

1716–1722 
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t(1;19)(q23;p13) AML-M7,  
Pre-B-ALL 

OTT and MAL Nourse et al., Cell, 1990;60:535–545 
E2A(19p13.3)PBX1(1q23) Kamps et al., Cell, 1990;60:547–555 

t(12;21)(p12–13;q22) Pre-B-ALL TEL(12p12) Romana et al., Blood, 1995;86:4263–
4269 AML1(21q22) 

t(4;11)(q21;q23) Pre-B-ALL MLL(11q23) Djabali et al., Nature Genet., 1992;2: 
113–118 

AF4(4q21) Gu et al., Cell, 1992;71:701–708 
t(11;19)(q23;p13) Pre-B-ALL, T-

ALL 
MLL(11q23) Tkachuk et al., Cell, 1992;71:691–

700 
ENL(19p13) Yamamoto et al., Oncogene, 1993;8: 

2617–2625 
t(X;11)(q13;q23) T-ALL MLL(11q23) Corral et al., PNAS, 1993;90: 8538–

8542 AFX1(Xq13) 
t(2;5)(p23;q35) ALCL (NHL) NPM (5q35) Morris et al., Science, 

1994;263:1281–1284 ALK (2p23) 
t(4;16)(q26;p13) T-lymphoma BCM(16p13.1)IL2(4q26) Laabi et al., EMBO J., 1992;11:3897–

3904 
t(4;11)(q21;p15) pre-T-LBL NUP98(11p15.5) Kalatzis et al., Cancer Genet 

Cytogenet, 1993;69: 122–125 
RAP1GDS1(4q21) Mecucci et al., Br J Haematol, 

2000;109: 788–793 
t(5;14)(q33;q32) AML CEV14(14q32) Abe et al., Blood, 1997;90:4271–

4277. PDGFRB(5q33) 
t(1;22)(p13;q13) AMKL RBM15(1p13) Lion et al., Blood, 1992;79:3325–

3330. 
MKL(22q13) Ma et al., Nat Genet., 2001;28: 220–

221. 
t(10;11)(p13;q21) pre-T-LBL CALM (11q21) Chaplin et al., Blood, 1995;85:1435–

1441 AF10(10p13) 
 

ALCL — anaplastic large-cell lymphoma, NHL — non-Hodgkin's lymphoma, ALL — acute lymphoblastic 

leukemia, AML — acute myeloid leukemia, APL — acute promyelocytic leukemia, AML — acute 

monoblastic leukemia, Pre-T-LBL — pre-T cell lymphoblastic leukemia/lymphoma, AMKL — acute 

megakaryoblastic leukemia, CML — chronic myelogenous leukemia, CMML — chronic myelo-monocytic 

leukemia, T-PLL — pro-lymphocytic leukemia, CLL — chronic lymphocytic leukemia, FL — follicular 

lymphoma, DLCL — diffuse large-cell lymphoma, BL — Burkitt's lymphoma, MDS — myelodysplastic 

syndrome. 

* Nalm-6 is a pre-B-cell line, established from the peripheral blood of a 19-year-old man with acute 

lymphoblastic leukemia (ALL). [from (Nambiar et al., 2008)] 
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disorders (Aitman et al., 2006). In addition, copy number variation has also been associated 

with diseases such as autism (Sebat et al., 2007), idiopathic learning disability (Knight et al., 

1999) and schizophrenia (Sutrala et al., 2008).  

 

• Epigenetic abnormalities 

Juxtaposition of oncogenes and a transcription control element of an active gene on a different 

chromosome is another common consequence of translocations (Nussenzweig and 

Nussenzweig, 2010). The juxtaposition as well as mere relocalization of the translocated region 

in the nuclear space (Harewood et al., 2010), (Allinne et al., 2014) leads to deregulation of 

important genes, particularly proto-oncogenes and tumor suppressor genes, crucial for 

regulation of important cellular processes (Korsmeyer, 1992), (Mitelman et al., 2004). Notably, 

in this case, translocations do not alter any gene structure nor its dosage but still lead to 

changes in gene expression. Thus, these changes in gene expression might be considered as 

purely epigenetic. 

Oncogene-activating translocations are tightly associated with lymphoid malignancies. The 

most studied t(14;18) translocation in follicular lymphoma brings BCL2 gene on chromosome 

18 under the control of IgH enhancer on chromosome 14. Break on chromosome 14 occurs at 

JH segments of IgH loci, while on the chromosome 18, potential points of translocation are 

concentrated in the MBR region, 150 bp long (Figure 12a). This juxtaposition confers anti-

apoptotic qualities to the cell.  

Burkitt's lymphoma harbors a translocation involving chromosomes 8 and 14. This process 

takes place mostly during the class switch recombination of Ig genes, and the break occurs at 

the switch regions of the immunoglobin heavy chain genes (IgH) segments. The translocation 
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places fragment of chromosome 8 with proto-oncogene CMYC on the 14 chromosome with IgH 

genes. As a result, CMYC protein from the cell proliferation signal pathway is overexpressed in 

lymphoid cells (Figure 12b). The initial theory explained it by influence of the IgH powerful 

promoter on CMYC gene (Dalla-Favera et al., 1982). However the recent discoveries disprove 

this theory and propose another mechanism which will be discussed later (Allinne et al., 2014). 

 

Figure 12. Chromosomal translocations resulting in juxtaposition of promoter/enhancer 
elements to oncogenes. 

In some lymphoma and leukemia, translocations result in juxtaposition of the coding region of a gene 

(gene A) to enhancer elements of another gene (gene B). This leads to enhanced expression of the 

gene A under the influence of either the enhancer or alternative promoters. (a) Follicular lymphoma with 

t(14;18) translocation. (b) Burkitt's lymphoma with t(8;14) translocation. (c) Diffuse large B-cell 

lymphoma with various translocations involving the BCL6 gene on chromosome 3 and different partner 

chromosomes. (d)  Mantle cell lymphoma with t(11;14) translocation. [with changes from (Nambiar et al., 

2008)] 
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One of the most common genetic abnormalities in diffuse large B-cell lymphoma comprises of 

various translocations involving the BCL6 on 3q27 band with one of the partner chromosomes 

(14q32, 2p11, 22q11, 4p11, 6p21, 11q23) (Figure 12c). As a result of these translocations, 

BCL6 comes under the influence of a new promoter and is overexpressed (Ohno, 2004).  

Another example is mantle cell lymphoma (MCL) with a translocation between 11 and 14 

chromosomes juxtaposing Cyclin D1 proto-oncogene with IgH promoter (Figure 12d). The 

majority (80-90%) of translocation breakpoints on the 14 chromosome occur at the major 

translocation cluster (MTC) at an approximate distance of 120 kb from CCND1 gene (de Boer 

et al., 1993). 

A list of lymphoid malignancies associated with chromosomal translocations is represented in 

Table 3. 
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Table 3. Chromosomal translocations involved in hematopoietic tumors leading to 
altered gene expression. 
Type of 
translocation 

Affected gene Type of 
tumor 

Mechanism of 
activation 

References 

t(8;14)(q24;q32) c-MYC(8q24) BL,  
B-ALL 

Relocation to 
IgH locus 

Rabbits et al., Adv Immun, 
1991;50:119–146 

t(2;8)(p12;q24) c-MYC(8q24) B-ALL Relocation to 
IgH locus 

Rabbits et al., Adv Immun, 
1991;50:119–146 

t(8;22)(q24;q11) c-MYC(8q24) B-ALL Relocation to 
IgH locus 

Rabbits et al., Adv Immun, 
1991;50:119–146 

t(8;14)(q24;q11) c-MYC(8q24) T-ALL Relocation to 
TCR-α locus 

Shima et al., PNAS, 1986;83:3439–43 

t(8;12)(q24;q22) c-MYC(8q24) B-CLL, 
ALL 

Relocation to 
Ig locus 

Rimokh et al., Genes Chrom. Cancer, 
1991;3:24–36 

BTG(12q22) 

t(7;19)(q35;p13) LYL1(19p13) T-ALL Relocation to 
TCR-β locus 

Mellentin et al., Cell, 1989;58: 77–83 

t(1;14)(p32;q11) TAL1/SCL(1p32) T-ALL Relocation to 
TCR-α Locus 

Baer et al., Sem. Cancer Biol., 
1993;4:341–347 

t(7;9)(q35;q34) TAL2(9q34) T-ALL Relocation to 
TCR-β locus 

Baer et al., Sem. Cancer Biol., 
1993;4:341–347 

t(11;14)(p15;q11) RBTN1/TTG1(11p15) T-ALL Relocation to 
TCR-δ Locus 

Boehm et al., EMBO J, 1988;7:385–
94 
McGuire et al., Mol. Cell. Biol, 
1989;9:2124–32 
Boehm et al., PNAS, USA, 
1991;88:4367–71 

t(11;14)(p13;q11) RBTN2/TTG2(11p13) T-ALL Relocation to 
TCR-δ/α/β 
locus 

Cheng et al., J Exp Med, 
1990;171:489–501 
Yoffe et al., Blood, 1989;74:374–9 
Foroni et al., Genes Chr Cancer, 
1990;1:301–9 
Garcia et al., Oncogene, 1991;6:577–
82 

t(7;11)(q35;p13) RBTN2/TTG2(11p13) T-ALL Relocation to 
TCR-δ/α/β 
locus 

Sanchez-Garcia et al., Sem. Cancer 
Biol., 1993;4:349–358 

t(10;14)(q24;q11) HOX11(10q24) T-ALL Relocation to 
TCR-α/β locus 

Lu et al., Genes Chr Cancer, 
1990;2:217–22 
Kagan et al., PNAS, USA, 
1989;86:4161–5 
Zutter et al., PNAS, USA, 
1990;87:3161–5 

t(7;10)(q35;q24) HOX11(10q24) T-ALL Relocation to 
TCR-α/β locus 

Dube et al., Blood, 1991;78:2996–
3003 
Hatano M et al., Science, 
1991;253:79–82 

t(3;14)(q27;q32) BCL6(3q27) DLCL,  
FL 

Relocation to 
IgH locus 

Kerckaert et al., Nature Genet., 
1993;5:66–70 
Ye et al., Science, 1993;262:747–750 
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t(14;18)(q32;q21) BCL2(18q21) FL Relocation to 
IgH/IgL locus 

Bakshi et al., PNAS, USA, 
1987;84:2396–400 
Buchonnet et al., Leukemia, 2002;16: 
1852–6 
Cotter et al., Blood, 1990;76:–131–5 
Wyatt et al., J. Exp Med, 
1992;175:1575–88 

t(11;14)(q13;q32) BCL1(11q13) B-CLL Relocation to 
IgH locus 

Tsujimoto et al., Science, 
1984;224:1403–6 
Tsujimoto et al., Nature, 
1985;315:340–3 
Welzel et al., Cancer Res., 2001;61: 
1629–1636 

t(10;14)(q24;q32) LYT10(10q24) B -
lymphoma 

Relocation to 
IgH locus 

Neri et al., Cell, 1991;67:1075–1087 

t(14;19)(q32;q13.1) BCL3(19q13.1) B-CLL Relocation to 
IgH locus 

Ohno et al., Cell, 1990;60:991–997 
Wulczyn et al., Nature, 
1992;358:597–599 

t(5;14)(q31;q32) IL-3(5q31) pre-B-ALL Relocation to 
IgH locus 

Grimaldi et al., Blood, 1989;73:2081–
2085 
Meeker et al., Blood, 1990;76:285–
289 

t(7;9)(q34;q34.3) TAN1(9q34.3) T-ALL Relocation to 
TCR-β locus 

Ellisen et al., Cell, 1991;66:649–661 
Burnett et al., Genes Chrom. Cancer, 
1991;3:461–467 

t(1;7)(p34;q34) LCK(1p34) T-ALL Relocation to 
TCR-β Locus 

Tycko et al., J. Exp. Med., 
1991;174:867–873 

t(X;14)(q28;q11) C6.1B(Xq28) T-PLL Relocation to 
TCR-α locus 

Stern et al., Oncogene, 1993;8:2475–2483 

t(14;21)(q11;q22) BHLHB1(21q22) pre-T-LBL Relocation 
toTCRA/D locus 

Wang et al., PNAS, 2000;97: 3497–3502 

t(1;14)(q21;q32) BCL-9(1q21) B-ALL and 
MALT 
lymphoma 

Relocation to 
IgH locus 

Willis et al., Blood, 1998;91:1873–81 
Zhang et al., Nat Genet, 1999;1:63–8 

 

ALCL — anaplastic large-cell lymphoma, NHL — non-Hodgkin's lymphoma, ALL — acute lymphoblastic 

leukemia, AML — acute myeloid leukemia, APL — acute promyelocytic leukemia, AML — acute 

monoblastic leukemia, Pre-T-LBL — pre-T cell lymphoblastic leukemia/lymphoma, AMKL — acute 

megakaryoblastic leukemia, CML — chronic myelogenous leukemia, CMML — chronic myelo-monocytic 

leukemia, T-PLL — pro-lymphocytic leukemia, CLL — chronic lymphocytic leukemia, FL — follicular 

lymphoma, DLCL — diffuse large-cell lymphoma, BL — Burkitt's lymphoma, MDS — myelodysplastic 

syndrome. [from (Nambiar et al., 2008)] 
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II  - Lymphomas 
 

 

1. Etiology 

 

Lymphoid malignancy is a cancer involving cells of the immune system. Lymphoid 

malignancies can be generally divided into two major groups: lymphomas and leukemias. 

Lymphoma is a malignant transformation of white blood cells usually in a lymph node or 

occasionally in another organ. Leukemia is an increased and uncontrolled production of 

immature and abnormal leucocytes in the bone marrow and other blood-forming organs.  

Lymphoma is divided into the two main types: Hodgkin's (HL, about 10%) and non-Hodgkin's 

lymphoma (NHL, about 90% of cases) (Shankland et al., 2012). The first type usually consists 

of an abnormal type of B lymphocyte, named Reed-Sternberg cells, which do not undergo 

hypermutation to express their antibody. In the non-Hodgkin's lymphoma, both types of 

lymphocyte, B-cells and T-cells, can be affected. Lymphomas can be subdivided into over 35 

different subtypes. 

50% of the B-cell NHLs are comprised of small B-cell lymphomas, which includes follicular 

lymphoma (FL; 40%), mantle cell lymphoma (MCL; 3%– 4%), and B-cell chronic lymphocytic 

leukemia (B-CLL; 3%– 4%) are included (Figure 13). The majority of the remaining 50% of B-

cell NHLs are represented by diffuse large B-cell lymphoma (DLBCL), subdivided into germinal 
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center (GC) B-cell–like (GCB-DLBCL) or activated B-cell–like (ABC-DLBCL) (Taylor et al., 

2013b). 

Lymphomas, as well as leukemias, represent an interesting class of cancers where almost 

100% of malignant transformations are caused by chromosomal translocations (for review see 

(Nussenzweig and Nussenzweig, 2010), (Hassler et al., 2013)) (Table 3). During maturation, 

lymphocytes undergo the programmed genomic alterations such as: rearrangement of VDJ cell 

receptors genes and somatic hypermutation. Mistakes in these processes lead to chromosome 

translocations, a cytogenetic hallmark of most part of lymphomas (Alt et al., 2013). Clear 

examples of such mistakes are translocations involving chromosome 14 with immunoglobulin 

heavy-chain (IgH) locus and BCL2 gene on 18 chromosome in case of follicular lymphoma, 

CMYC gene on 8 chromosome in Burkitt’s lymphoma, CCND1 gene on 11 chromosome in 

mantle cell lymphoma (Shaffer et al., 2002), (Liu et al., 2004). 

 

Figure 13. B-cell malignancies and their normal counterparts.  

Epigenetic alterations with oncogenic potential may occur at any stage of normal B-cell development and 

lead to an accumulation of cells at specific stages of differentiation. Abbreviations: CLL, chronic 

lymphocytic leukemia; MCL, mantle cell lymphoma; FL, follicular lymphoma; GCB-DLBCL, germinal 

center B-cell-like diffuse large B-cell lymphoma; ABC-DLBCL, activated B-cell-like diffuse large B-cell 

lymphoma. [from (Taylor et al., 2013b)] 
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2. Epigenetics of lymphomas 

 

Development of lymphoid malignancies involves a variety of mechanisms which in one way or 

another affect epigenetic and transcriptional modifiers, which appears to be a recognizable 

feature of B-cell lymphomas (Shaknovich and Melnick, 2011). 

 

a. Aberrant DNA methylation patterning 

One of the important functions of DNA methylation is to maintain repetitive sequences of the 

genome in a stable state. If this mechanism is altered it leads to genomic instability and hence 

to development of different malignancies (Goelz et al., 1985). Extensive studies of DNA 

methylation have revealed hundreds of individual genes aberrantly methylated in different 

lymphomas and leukaemias (reviewed in (Taylor et al., 2013a); (Hatzimichael and Crook, 

2013)). 

Apart from the fact that DNA methylation patterns of genome are dramatically affected in 

cancer cells, it has become recently evident that DNA methyltransferases and MBD proteins 

are often altered too, thus contributing to development of human malignancies. For instance, 

up to 25% of patients with acute myeloid leukaemia (AML) harbor recurrent mutations in 

DNMT3A gene (Ley et al., 2010). DNMT3B gene is downregulated in CLL (Kn et al., 2004). 

DNMT1, DNMT3A and DNMT3B are overexpressed in DLBCL (Amara et al., 2010).  
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b. Disequilibrium of histone modification marks 

During normal B-cell development, histone modifications are responsible for maintaining the 

heritable transcriptional states and lineage fidelity (Parra, 2009). Altered activity of histone 

modifying enzymes leads to disturbed balance in chromatin modifications, which can affect 

gene expression of pro-apoptotic genes and proto-oncogenes which contributes to the 

lymphomagenesis. Indeed, the histone acetylation level is perturbed in different types of 

cancer, and global histone modification levels are predictive of cancer recurrence (Seligson et 

al., 2005). 

 

• Histone methylation 

Histone-modifying enzymes are frequently targeted by somatic mutations in B-cell lymphoma. 

Thus, mixed lineage leukaemia (MLL) family of histone methyltransferases (known to mediate 

H3K4 trimethylation) are frequently mutated or duplicated in acute leukaemias (Rege-Cambrin 

et al., 2005) and NHL (Morin et al., 2011). A fusion form of that protein is known to activate 

oncogenic target genes such as HOXA9 and EVI1 (Mills, 2010).  

EZH2, a component of the Polycomb repressive complex (PRC), methylates histone 3 lysine 

27 (H3K27). During early B-cell development EZH2 is required for VDJ recombination (Su et 

al., 2003). In mature B-cells it was shown to be downregulated, but after T-cell dependent 

activation in germinal center (GC), it is strongly expressed (Velichutina et al., 2010). EZH2 was 

reported to be over-expressed in several types of leukaemia (Simon and Lange, 2008) and B-

cell lymphoma (Sneeringer et al., 2010), and to be mutated in some myeloid malignancies 

(Ernst et al., 2010), (Nikoloski et al., 2010). 
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The frequent occurrence of defective MLL2 and over-expressed EZH2 underscores the 

significance of H3K4me3 and H3K27me3 in aberrant epigenetic programming. Cytogenetic 

studies of various cancer genomes have demonstrated recurrent translocations and coding 

mutations in other histone lysine methyltransferases like MMSET (Martinez-Garcia et al., 

2011), UTX (van Haaften et al., 2009), and in demethylases, like JMJD2C (Rui et al., 2010). 

 

• Histone acetylation 

Histone acetyltransferases and histone demethylases have broad cellular activities:  they 

regulate chromatin structure and activity of vast majority of non-histone proteins. At least 1750 

proteins in addition to histones have been shown to be acetylated in leukemia cells (Chi et al., 

2010). 

Decreased HAT activity caused by gene deletions and somatic mutations, together with gain-

of-function mutations of HMTs, leads to repressed chromatin states linked to malignant 

processes in lymphoid malignancies (Hassler et al., 2013). Two highly related HATs, CBP and 

p300, often harbor mutations in their HAT coding domain in follicular and diffuse large B-cell 

lymphoma (Pasqualucci et al., 2011). The same study pointed at the importance of allelic 

dosage of HAT genes. In B-cell lymphomas, CBP and p300 are known for acetylating proteins 

involved in lymphomagenesis such as nuclear factor  kB (NFkB), p53, BCL6 and Hsp90 

(Cerchietti et al., 2010).  

There are several examples of translocations involving HATs such as MLL-CBP and MOZ-

TIF2; altered expression of HAT genes is observed in a range of cancers (reviewed in (Dawson 

and Kouzarides, 2012)).  
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Abnormal histone deacetylases (HDACs) play a key role in many human diseases. Class I and 

Class II HDACs were implicated in several types of cancer, including lymphomas (reviewed in 

(Witt et al., 2009a)).  

Activity of HDACs is very often altered in lymphoid malignancies, whether by overexpression, 

mutations or by being involved in the complex with fusion oncoproteins. Chimeric fusion 

proteins, such as PML-RARa, PLZF-RARɑ, and AML1-ETO, the result of chromosomal 

translocations in some leukemia cases, usually recruit HDACs for their activity leading to gene 

silencing (Grignani et al., 1998b), (Dawson and Kouzarides, 2012), (Cress and Seto, 2000). 

The expression of different HDACs itself has been observed to be upregulated in various types 

of cancer (West and Johnstone, 2014), (Kim and Bae, 2011). For example, chronic lymphocytic 

leukemia is characterized with generally increased HDAC expression (Yang et al., 2015). 

Although mutations in HDACs are relatively rare, mutations in HDAC2 and HDAC4 were 

reported in human epithelial cancer cell lines and breast cancer, respectively (New et al., 

2012). 

 

3. Mantle Cell Lymphoma  

 

Mantle cell lymphoma (MCL) is a malignant proliferation of B-cells in the mantle zone of 

lymphoid follicles that have a striking tendency to disseminate throughout the body, infiltrating 

the lymphoid tissues, bone marrow, peripheral blood, extranodal sites and gut (Fisher et al., 

1995). It is a rare and relatively aggressive disease accounting for 5–7% of non-Hodgkin 

lymphomas in adults (Schmidt and Dreyling, 2008). MCL can occur at any time between the 
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late 30s to older ages, but it is more common over 50. It is three fold more frequent in males 

than in females. The clinical course is often indolent or moderately aggressive at diagnosis, 

with few or no symptoms. Nevertheless, with time, the disease invariably becomes clinically 

aggressive with frequent remissions (60%-90%) after chemotherapy, showing the worst long-

term survival among all B-cell lymphoma subtypes (Zucca et al., 1995). The median survival of 

diagnosed patients is 3–5 years (Fisher, 2005). MCL cells express CD5+, CD19+, CD20+, 

CD22+, CD24+, CD43+, CD79a+ B-cell antigens, and are usually CD10 and CD23 negative 

(Bertoni et al., 2004). 

Cytogenetic analyses have revealed that MCL is closely associated with a t(11;14)(q13;q32) 

translocation, juxtaposing the immunoglobulin heavy chain (IgH) locus on chromosome 14 with 

the BCL-1 locus in early B-cells (Figure 12d). Translocation t(11;14), apart from mantle cell 

lymphoma, can be found in some cases of diffuse large cell lymphoma, chronic lymphocytic 

leukemia and multiple myeloma. In addition to Cyclin D1 overexpression, supplementary 

genetic alterations appear to disturb the cell cycle machinery, interfere with the cellular 

response to DNA damage and disruption of (Rizzatti et al., 2005). 

Translocation (11;14)  leads to overexpression of a number of genes, including the cell cycle 

regulating factor - cyclin D1 (CCND1). This functions as a permanent “on switch” committing 

the cell to complete the cycle (Bosch et al., 1994), (Dreyling et al., 1997) (Figure 14). However, 

there exist a small number of cases that express cyclin D2 or D3 instead of cyclin D1 

(Wlodarska et al., 2008).  

Human IgH locus has several powerful enhancers (Figure 14). The IgH intronic enhancer (Eμ) 

is located between the constant (CH) and the joining (JH) regions. It is involved in VDJ 

rearrangement and gene expression in early B-lineage cells (Chen et al., 1993). The IgH 3′-
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enhancers are located 25 kb downstream of the Cα gene. The 3′ -enhancers consist of four 

DNase I-hypersensitive sites: HS1, 2, 3 and 4. The initial hypothesis suggested Eμ and 3′ -

enhancers being responsible for CCND1 overexpression in case of mantle cell lymphoma 

(Wang and Boxer, 2005). However, our findings indicated another mechanism, which will be 

discussed below.  

 

Figure 14. Translocation t(11;14)(q13;q32) in mantle-cell lymphoma.  

A. Genomic structure of the Cyclin D1 locus on chromosome 11q13. Most of the breakpoints occur at 

the major translocation cluster (MTC). Usually the distance between the break and CCND1 gene is 

about 120 kb. Normal immunoglobulin heavy chain (IgH) locus on chromosome 14q32 displaying the 

genomic structure of the constant (CH), joining (JH), diversity (DH), and variable (VH) region. The Eμ 

enhancer is located between the constant and the joining regions. B. As a result of the t(11;14)(q13;q32) 

translocation, Cyclin D1 is brought under the control of the Eμ IgH enhancer on the derivative of 14 

chromosome.   
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Translocation breakpoints in 11q13 locus occurring in MCL are scattered over an area 

spanning more than 100 kb. However, a vast majority of these are located within a ~100 bp 

segment, called the major translocation cluster (MTC) (Williams et al., 1993). MTC is located 

∼120 kb upstream (centromeric) of the CCND1 gene. Ten to twenty percent of MCL cases may 

harbor two minor translocation clusters, approximately 22 kb from the MTC  towards the 

telomere (Rimokh et al., 1993). 

Cyclins are cell cycle regulating proteins that increase their quantity during cell cycle 

progression and degrade in mitosis (Sewing et al., 1993). Cyclins D regulate transition from G1 

to S phase. Cyclin D1 protein functions in complex with cyclin dependent kinases CDK 4/6. 

This complex phosphorylates the retinoblastoma (RB) protein. As a result, RB loses its growth 

suppressive effects and the cell is promoted from G1 to S face in the cell cycle (Gladden and 

Diehl, 2003). Another mechanism involves CDK inhibitors p27kip1, p21 and cyclin E/CDK2 

complexes (Figure 15). Besides that, D type cyclins have their CDK independent functions. In 

cancer cells, Cyclin D1 may interact with CCAAT enhancer binding protein alpha (CEBPα) and 

thus serve as a DNA binding protein (Ewen and Lamb, 2004). In normal hematopoietic cells, 

Cyclin D1 is not expressed, whereas Cyclin D2 and D3 are expressed in both normal and 

neoplastic B and T lymphocytes. Expression of Cyclin D1 is observed in hematologic 

malignancies, like MCL and multiple myeloma (MM). Notably, in some cases of MM and hairy 

cell leukemia (HCL), Cyclin D1 expression has been reported without t(11;14) translocation, 

but with extra copies of chromosome 11 or a hyperdiploid phenotype (Troussard et al., 2000). 
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Figure 15. Cell cycle deregulation in mantle-cell lymphoma (MCL).  

Molecules with increased expression or function in MCL are colored in yellow and molecules with 

decreased expression or function are colored in green. Cyclin D1 assembles with cyclin-dependent 

kinase (CDK) -4 and CDK6 and controls the G1/S-phase transition of the cell cycle. Increased 

expression of Cyclin D1 in all MCL cases and occasional overexpression of CDK4 promote G1/S-phase 

transition by phosphorylating the retinoblastoma (Rb) protein. In addition, increased amounts of Cyclin 

D1 and CDK4 and -6 complexes sequester p27kip1 that is usually bound by Cyclin E/CDK2 complexes, 

resulting in accelerated cell cycle progression. Homozygous deletion of the INK4a/ARF locus leads to 

loss of p16 INK4a expression and decreased inhibition of CDK4 and -6. As an alternative to the loss of 

p16 INK4a, BMI-1 is amplified and/or highly expressed in some MCL cases. [from (Fernandez et al., 

2005)] 
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Significantly, overexpression of CCND1 alone in transgenic mice is not sufficient to cause the 

mantle cell lymphoma (Fiancette et al., 2010). It is noteworthy that at least one other gene on 

11q13, gluthatione-S-transferase (GSTπ), is also highly overexpressed along with CCND1 

after the translocation in MCL (Bennaceur-Griscelli et al., 2004). The over-expression of GSTπ 

protein with detoxification properties in MCL strongly coincides with resistance to 

chemotherapy; the effect that serves as one of phenotypic features and main danger of MCL 

(Thieblemont et al., 2008). Interestingly, despite different chromosomal locations of the GSTπ 

and CCND1 genes, and the absence of Eµ enhancer near the translocated GSTπ allele, they 

keep coherent expression in MCLs that bear t(11;14)(q13;q32). Thus, transcriptional 

upregulation cannot be directly explained by translocation of the regulatory elements (HS and 

Eμ IGH enhancers) on chromosome 14 into relative proximity (120 to 300 kbp) to the CCND1 

gene. 

Several treatments are suggested for MCL. There are a number of chemotherapy 

combinations used to treat MCL. Recent studies show that patients who are treated with 

chemotherapy plus rituximab (Rituxan®), a monoclonal antibody against CD20 antigen, 

present on B lymphocytes, show higher initial response rate than with chemotherapy alone 

(Ying et al., 2012), (Kaplan et al., 2014). Radioimmunotherapy with a monoclonal antibody to 

enhance its effectiveness (for example Tositumomab/iodine I-131(Bexxar®)) and yttrium 90 

ibritumomab tiuxetan (Zevalin®)) are being studied for the treatment of MCL (Skarbnik and 

Smith, 2012). Bortezomib (Velcade), a proteasome inhibitor with important anticancer activity, 

has been studied in clinical trials as a single agent and in combination with other agents. It has 

been approved by the US Food and Drug Administration (US-FDA) for the treatment of patients 

with relapsed or refractory MCL in 2006 (Koprivnikar and Cheson, 2012). High-dose drug 

therapy and autologous stem cell transplantation has resulted in high rates of clinical remission 
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for MCL patients. However, this type of transplant is generally available to patients less than 60 

years old (Cheminant et al., 2015). 

Most MCL patients will have refractory or recurrent disease. Treatment of recurrent MCL is 

difficult because of the rapid development of chemotherapy resistance. MCL resistance to 

conventional therapy could be explained by at least two hallmarks of the disease. First, the 

classical malignant cells divide slowly, which makes cells less sensitive to chemotherapy. 

Second, they display a deregulated cell cycle via overexpression of cyclin D1 and inactivation 

of p53, or via deregulated cellular DNA damage response, mainly through inactivation of ATM 

(Greiner et al., 2006), which is one of the major safeguards for genome stability (Smith et al., 

2010).  

Although the probability of cure remains low, there has been notable progress in the treatment 

of MCL over the last three decades with a near doubling of overall survival.  Therefore, new 

therapies are being developed (for review see (Camara-Clayette et al., 2012)). Among them is 

epigenetic treatment, a new therapeutic concept which consists of the use of histone 

deacetylase inhibitors (HDACis) and/or DNA methyltransferase inhibitors (DNMTi).
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III  - Epigenetic drugs  
 

 

Epigenetic modifications play an important role in development and disease because of their 

potential to alter gene expression patterns and key cellular processes (Li, 2002), (Jones and 

Baylin, 2002). Discovery of a great number of aberrant epigenetic mechanisms in lymphoid 

malignancies provides a rational basis for the development of drugs targeting epigenetic 

modifying enzymes (Hassler et al., 2013). 

 

1. DNA methylation inhibitors 

 

The first DNMT inhibiting agents used in the treatment of malignant diseases were analogs of 

natural nucleosides: 5-azacytidine and 5-aza-2′-deoxycytidine (decitabine) (Cihak, 1974). 

These two agents have gained US Food and Drug Administration (US-FDA) approval for 

routine clinical use for myelodysplastic syndrome.  

Azacytidine and decitabine, as well as 1-β-D-arabinofuranosyl-5-azacytosine (fazarabine) and 

dihydro-5-azacytidine (DHAC), belong to variations of deoxycytidine, where all of them are 

modified at position 5 of the pyrimidine ring – the feature responsible for inhibiting DNMT. On 

the molecular level, they incorporate into DNA and/or RNA with formation of covalent 
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complexes with DNMTs in actively proliferating cells. This prevents the DNA from methylation 

propagation during replication.  

However, azacytidine and decitabine are chemically unstable in water and suppress the blood 

cells growth and proliferation, leading to toxicity problems when used at high levels (Kantarjian 

et al., 2003). By contrast, at non-cytotoxic concentrations they show favorable demethylation 

activity for tumor suppressor genes (Bender et al., 1998). 5-azacytidine and decitabine have 

been tested in hematological malignancies such as chronic and acute myeloid leukemia (CML 

and AML) and showed promising clinical trials (Issa et al., 2004), (Scandura et al., 2011).  

New nucleoside analogs, clofarabine and nelarabine, have been approved for treatment of 

refractory patients with lymphoblastic lymphoma (LBL) and acute lymphoblastic leukemia 

(ALL), and cladribine, fludarabine and pentostatin - for the treatment of lymphoid malignancies 

(for review see (Robak, 2011)). 

In vitro studies showed that DNMT inhibitors induce re-expression of methylated tumor 

suppressor genes, such as p16 and SHP1 in ALK-positive anaplastic large cell lymphoma 

(ALCL) (Hassler et al., 2012), (Han et al., 2006), CDH13 in DLBCL (Ogama et al., 2004), 

Lamin A/C in a B-cell lymphoma cell line (Agrelo et al., 2005). 

Interestingly, the combinatorial use of DNMT and HDAC inhibitors recently started to gain more 

and more popularity, showing superior therapeutic outcomes (Thurn et al., 2011), (Cameron et 

al., 1999), (Steele et al., 2009). 
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2. Histone deacetylase inhibitors  

 

Histone deacetylase (HDACs) inhibitors are a relatively new class of anti-cancer agents with 

epigenetic mechanism of action. Due to aberrant activity of HDACs in various types of 

malignancies, a wide range of HDAC inhibitors (HDACis) have gained considerable popularity 

as anticancer agents (Seo, 2012), (El-Khoury et al., 2014), (Ogura et al., 2014). HDAC 

inhibitors have also shown activity against MCL cells in preclinical studies and are being 

evaluated in patients alone or in combination with other drugs (Camara-Clayette et al., 2012), 

(Kawamata et al., 2007), (Dasmahapatra et al., 2011). 

Information on histone modifications and HDAC inhibitors presented in this chapter was 

summarized and published in a review (Markozashvili et al., 2015), attached in Annex-III. 

 

a. Types of HDACis 

The first generation of HDACis blocks most part of HDACs from class I, while some block class 

II as well and still fewer also block class IV. Such HDACis are called pan-inhibitors, because of 

their property of inhibiting several classes. In solid tumors, it is often reported that altered 

expression of individual HDACs takes place. For example, in gastric cancer HDAC1 and 2 are 

over-expressed, in breast cancer up-regulated HDACs 6 and 8 are associated with increased 

invasion (Chun, 2015). These discoveries provoked increased interest for synthesis of class-

selective or isoform-selective inhibitors. Some examples of such selective inhibitors are: 

tubacin, which increases acetylation of tubulin, but not that of histones (Haggarty et al., 2003); 

PCI-34051 which is specific to HDAC8 and is shown to induce apoptosis in T-cell lymphoma 
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without affecting histone or ɑ-tubulin acetylation (Balasubramanian et al., 2008); and 

benzamide inhibitor SHI-1:2 which is selective to HDAC1/HDAC2 (Methot et al., 2008). 

However, complete understanding and characterization of HDAC expression patterns in 

various cancers is still far. Moreover, in hematological malignancies HDAC expression patterns 

are not clearly distinguishable (Yang et al., 2015). All this makes it difficult to intelligently target 

specific HDACs for now.  

The first inhibitor of HDACs, n-Butyrate was described in the seventies before the actual 

discovery of histone deacetylases (Riggs et al., 1977). Several other drugs targeting histone 

acetylation, including Trychostatin A (TSA) and valporoic acid (VPA) were discovered and 

introduced into clinical practice for treatment of diseases non-connected with cancer. Discovery 

of the link between histone acetylation and cancer has sparked an interest for HDACi and 

several new drugs were developed during the last ten years. These drugs can be divided into 

several chemically distinct groups: aliphatic acids (phenylbutyrate, valporoic acid), benzamides 

(entinostat), cyclic peptides (romidepsin), and hydroxamates (TSA, vorinostat/SAHA). The 

HDAC inhibitors that have been tested in lymphoid malignancies are summarized in Table 4.   

Vorinostat or SAHA is the first HDACi approved by the United States Food and Drug 

Administration (U.S. FDA) in 2006 for clinical use in patients with cutaneous T-cell lymphoma 

(Zolinza®, Merck and Co., Inc.) (Grant et al., 2007); (Bolden et al., 2006). First synthesized in 

1998, it was shown to induce erythroid differentiation (Richon et al., 1998). SAHA is pan-HDAC 

inhibitor that blocks HDAC enzymes from class I, II, and IV. It was also tested in Hodgkin 

lymphoma, follicular lymphoma, marginal zone lymphoma and mantle cell lymphoma with 

promising results in relapsed/refractory indolent follicular lymphoma (Kirschbaum et al., 2011); 

(Ogura et al., 2014). Vorinostat belongs to the hydroxamic acid group. 
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Table 4. HDAC inhibitors: structure and function. 

Drug HDAC 

target 

(potency) 

Type of cancer in which 

tested 

Clinical trial 

phase 

Structure Mechanism of action Reference 

Hydroxamic Acids 

Vorinostat 

(SAHA) 

Class I, II (µM) Hodgkin’s lymphoma, non-

Hodgkin’s lymphoma and 

multiple myeloma 

Food and Drug 

Administration 

approved for CTCL I-

II-III 
 

Suppresses genes that 

promote uncontrolled 

growth, promotes apoptosis, 

interrupts cell cycle 

progression. TD; GA; AI; AE; 

MF; AU; S; PP; ROS-CD 

(Dokmanovic et al., 

2007) 

(Eot-Houllier et al., 

2009) 

 

Belinostat 

(PXD-101) 

Class I, II B-cell lymphoma, MCL, HL, 

PTCL and CTCL  

FDA approval for 

Refractory or 

Relapsed Peripheral 

T cell lymphoma 

 

 

 GA; A (Gimsing, 2009) 

(De Souza and 

Chatterji, 2015) 

(Foss et al., 2015) 

(Zain and O'Connor, 

2010) 

Panobinosta

t (LBH-589) 

Class I and II 

(nM) 

CTCL, PTCL, myelogenous 

leukaemia 

I-II-III 

 

GA; A; ROS-CD (Dokmanovic et al., 

2007) 

(Eot-Houllier et al., 

2009) 

Abexinostat 

(PCI-24781, 

CRA-024781) 

Class I and II 

(nM) 

B-cell lymphoma II 

 

Promotes apoptosis, 

interrupts cell cycle 

progression 

(Rivera-Del Valle et 

al., 2010) 

(Eot-Houllier et al., 

2009) 

(Morschhauser et 

al., 2015) 



 

 

Cyclic Peptides 

Romidepsin 

(FK228) 

 

Class I and II  

(nM) 

CML, AML, MDS, multiple 

myeloma, CTCL and PTCL 

FDA approval for 

CTCL treatment 

 

Suppresses genes that 

promote uncontrolled 

growth, promotes apoptosis, 

interrupts cell cycle 

progression. 

TD; GA; A; AI; AE; MF; ROS-

CD 

((Nakajima et al., 

1998) 

(Byrd et al., 2005) 

(Piekarz et al., 2009) 

(Klimek et al., 2008) 

(Bates et al., 2010) 

(Grant et al., 2010) 

(Dokmanovic et al., 

2007) 

Aliphatic Acids 

Valproic Acid Class I and IIa 

(mM) 

Myelodysplastic syndromes 

Lymphocytic leukaemia 

I-II 

 

Induces oxidative stress. 

TD; GA; A; S 

(Dokmanovic et al., 

2007) 

(Cotto et al., 2010) 

(Eot-Houllier et al., 

2009) 

Pivanex   

(AN-9) 

µM T-ALL 

Chronic myelocytic leukemia 

I - II 

 

TD; GA; A (Dokmanovic et al., 

2007) 

(Eot-Houllier et al., 

2009) 

(Batova et al., 2002) 

Sodium 

phenyl 

butyrate 

(NaPB) 

Class I and IIa 

(mM) 

Myelodysplastic syndromes I 

 

TD; GA; A; AI; AE (Dokmanovic et al., 

2007) 

(Cortez and Jones, 

2008) 

(Eot-Houllier et al., 

2009) 
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Benzamides 

Chidamide 

(CS055) 

Class I and IIb 

(nM) 

PTCL Chinese FDA 

approval for 

peripheral T-cell 

lymphoma 
 

 (Gong et al., 2012) 

Entinostat  

(MS-275) 

Class I (µM) Lymphoid malignancies I-II  

 

TD; GA; A; AI; AE; 

ROS-CD 

(Dokmanovic et al., 

2007) 

(Eot-Houllier et al., 

2009) 

(Cortez and Jones, 

2008) 

 

 

Mocetinostat 

(MGCD0103) 

Class I, IV 

(µM) 

Hodgkin’s disease, 

advanced leukemia 

II 

 

TD; GA; A (Cotto et al., 2010) 

(Dokmanovic et al., 

2007) 

(Eot-Houllier et al., 

2009) 

(Garcia-Manero et 

al., 2008) 

 

Tenovin-6 SIRT1 and 

SIRT2 

CML, ALL preclinical 

 

Induces p53 acetylation, 

inhibits tumor growth, and 

eliminates cancer stem cells 

in combination with Imatinib 

(Li et al., 2012) 

(Seto and Yoshida, 

2014) 

(Jin et al., 2015) 

 



 

 

Other 

Curcumin, 

Diferuloyl-

methane 

Class I 

 

Hodgkin’s lymphoma, non-

Hodgkin’s lymphoma 

preclinical 

 

Inhibits DNMT activity by 

covalently blocking the 

catalytic thiolate of C1226 of 

DNMT1. 

Induces apoptosis in cancer 

cells, has anti-inflammatory 

and anti-oxidant properties 

(Liu et al., 2009) 

(Eot-Houllier et al., 

2009) 

Cambinol SIRT1 and 

SIRT2 

BL preclinical 

 

Increases p53 acetylation (Heltweg et al., 

2006) 

(Seto and Yoshida, 

2014) 

GA, growth arrest; TD, terminal differentiation; A, apoptosis; AI, cell death by activating intrinsic apoptotic pathway; AE, cell death by 

activating extrinsic apoptotic pathway; MF, mitotic failure; AU, autophagic cell death; S, senescence; PP, polyploidy; ROS-CD, reactive 

oxygen species – facilitated cell death. CTCL - of cutaneous T-cell lymphoma. PTCL - peripheral T-cell lymphoma. BL - Burkitt lymphoma. 

CML - chronic myelogenous leukemia. MDS - Myelodysplastic syndrome. MCL – Mantle cell lymphoma. ALL - acute lymphoblastic 

leukemia. 
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Romidepsin (FK228) is a cyclic peptide isolated from Chromobacterium violaceum (Nakajima 

et al., 1998). It has been investigated in patients with hematological malignancies such as 

CML, AML, MDS, multiple myeloma, cutaneous T-cell lymphoma (CTCL) and peripheral T-cell 

lymphoma (PTCL) (Byrd et al., 2005); (Klimek et al., 2008). The former has showed promising 

results (Piekarz et al., 2009). In 2009, it was granted U.S. FDA approval for CTCL treatment, 

and for PTCL in 2011 (Istodax®, Gloucester Pharmaceuticals - a subsidiary of Celgene Corp). 

A good correlation between drug exposure level and histone acetylation has been revealed 

(Bates et al., 2010). 

Belinostat (PXD-101), another hydroxamic acid derivative HDAC inhibitor, has shown clinical 

response in patients with B-cell lymphoma (Gimsing, 2009), mantle cell lymphoma and HL 

(Zain and O'Connor, 2010), PTCL and CTCL (Foss et al., 2015). It is the third drug which 

received the U.S. FDA approval in 2014 for the treatment of refractory or relapsed PTCL 

(Beleodaq®, Spectrum Pharms, Inc.) (De Souza and Chatterji, 2015). 

Chidamide (CS055) is a new benzamide type of HDAC inhibitor with subtype selective activity 

against HDAC1, 2, 3 and 10. Chidamide is being studied in multiple clinical trials as a single 

agent or in combination with chemotherapeutic agents for the treatment of various 

hematological and solid cancers (Gong et al., 2012); (Dong et al., 2012). It induces growth 

arrest and apoptosis in blood and lymphoid-derived tumor cells, activates NK- and CD8 T-cell-

mediated antitumor activity, stimulates differentiation of tumor stem cells and represses genes 

associated with drug resistance (Gong et al., 2012). In 2015, chidamide obtained approval 

(Epidaza®) from the Chinese FDA for the treatment of relapsed or refractory PTCL.  

Givinostat is a hydroxamic pan HDAC inhibitor recently tested in several hematological 

malignancies such as multiple myeloma, HL and myeloproliferative disease. Clinical efficacy 
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has been reported in patients with Polycythemia Vera and Essential Thrombocythemia 

(Rambaldi et al., 2010). 

Panobinostat is also a hydroxamic acid analog with pan HDAC inhibitor activity. It has been 

studied in various hematological malignancies, revealing good clinical results in patients with 

CTCL (Duvic et al., 2013), HL (Dickinson et al., 2009), AML (DeAngelo et al., 2013). 

Panobinostat has been shown to induce autophagy, thus combination of that drug with 

autophagy inhibitor can increase its antitumor effects (Rao et al., 2012). 

Valproic Acid is a member of the short chain fatty acids and an inhibitor of HDACs class I. 

VPA is a potent and very selective inhibitor of STAT3 (Lee and Kim, 2012). In preclinical 

studies on chronic lymphocytic leukaemia (CLL), it showed cell-killing activity by triggering 

apoptotic pathways (Bokelmann and Mahlknecht, 2008). VPA is undergoing evaluation in India 

as therapy for CLL (Ganesan et al., 2009). 

Entinostat, a benzamide derivative class member specific to class I HDACs, has been tested 

in several lymphomas (Saito et al., 1999). It is tolerated well, both alone and in combination 

with other drugs (Pili et al., 2012). 

Mocetinostat is another synthetic benzamide with an inhibiting specificity for HDACs class I 

and IV. It has a prolonged pharmacodynamic effect (Bonfils et al., 2008). This drug was 

evaluated for the clinical efficacy in patients with follicular lymphoma (Crump et al., 2008), 

Hodgkin lymphoma (Bociek et al., 2008 Siu et al., 2008) and AML ( ). 

Abexinostat, or S78454, is a novel hydroxamic acid pan HDAC inhibitor. Abexinostat induces 

apoptosis and histone alterations in a caspase-8 depended manner in acute leukemia cells 

((Rivera-Del Valle et al., 2010)). In clinical studies Abexinostat showed promising durable 
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responses in follicular lymphoma, B-cell lymphoma, chronic lymphocytic leukaemia patients 

and is currently undergoing phase II of clinical trials ((Morschhauser et al., 2015)). 

Cambinol, a sirtuin inhibitor, has been reported to have antitumor activity in Burkitt’s 

lymphoma by increasing p53 acetylation (Heltweg et al., 2006). 

 

b. Mechanisms of HDACis action 

HDACis have a variety of biological effects across multiple pathways, including selective 

alterations of gene expression and post-translational regulation of pro- and anti-apoptotic 

genes from «extrinsic» (death-receptor)  and «intrinsic» (mitochondrial) apoptosis pathways, 

angiogenesis inhibition, generation of reactive oxygen species (ROS), autophagy,  regulation 

of DNA damage and repair, and other (Kim and Bae, 2011), (Chun, 2015), (Xu et al., 2007). 

However, the mechanism of HDACis action by which the clinical activity is mediated is not 

completely discovered and remains obscure till date. 

One of the reasons which makes the treatment with HDAC inhibitors favorable is that normal 

cells are relatively resistant to the treatment, whereas cancer cells are more responsive and 

undergo growth arrest, inhibited differentiation and apoptosis. Until now, there is no clear 

explanation of HDACis selectivity for cancer vs. normal cells. One of the possible mechanisms 

may induce DNA damage, which only normal but not malignant cells can repair (Lee et al., 

2010). 

The effect of HDACi on lymphoid malignancies can be improved by combination with other 

drugs, e.g. DNA damaging agents such as topoisomerase II poisons or DNA methyltransferase 

inhibitor 5-aza-2'-deoxycytidine (Decitabine) (Thurn et al., 2011). Tenovin-6, sirtuin inhibitor, 
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together with BCR-ABL tyrosine kinase inhibitor (Imatinib) was shown to be effective in chronic 

myelogenous leukemia (Li et al., 2012).  A combination of new potent HDAC inhibitors, 

including abexinostat, belinostat, panobinostat, entinostat and vorinostat decitabine may lead 

to an increase in clinical benefits. 

 

c. HDACi and epigenetic regulation in lymphoid malignancies 

Lymphoid malignancies are provoked by translocations (for review see (Nussenzweig and 

Nussenzweig, 2010)). Some of these translocations result in gene fusions. Most gene fusions 

involve transcription factors or chromatin regulators. In myeloid leukemias, the fusion proteins 

such as PML-RAR and AML1-ETO form stable complexes with HDACs (Grignani et al., 

1998a); (Minucci et al., 2000); (Lin and Evans, 2000). This provided a rational basis for the first 

study of HDACi in leukemia.  

Treatment of mice having PML-RAR induced leukemia with valporoic acid increased survival 

and induced apoptosis of leukemic cells (Insinga et al., 2005). This study has prompted other 

researchers to test HDACi on other lymphomas and leukemias, although the mechanisms of 

these lymphomas are different from myeloid leukemias. Indeed, in B-cell lymphomas, 

juxtaposition of gene regions may lead to over-expression of oncogenes such as CCND1, 

CMYC (Dalla-Favera et al., 1982); (Taub et al., 1982) or BCL2 (Bakhshi et al., 1985); (Cleary 

and Sklar, 1985).  

Recently, it has been shown that translocations also lead to large-scale epigenetic changes 

(Liu et al., 2004), large-scale reorganisation of nuclear organization and aberrant gene 

expression (Harewood et al., 2010); (Allinne et al., 2014). At the same time, most documented 
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effects of HDACi relate to apoptosis associated with increased expression of pro-apoptotic 

genes and decreased expression of anti-apoptotic genes, leading to cell death via one of the 

following pathways: inhibition of angiogenesis, generation of reactive oxygen species, 

autophagy or apoptosis.  Currently our understanding of the immediate and prolonged action of 

HDACi on cells is insufficient and further studies in this direction are required to make full 

advantage of these powerful anticancer drugs.  
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IV  - Conclusions and objectives 
 

 

Mantle cell lymphoma (MCL) is a rare and very aggressive from of non-Hodgkin’s lymphoma 

(Fisher et al., 1995). Involvement of epigenetic mechanisms in establishment and maintenance 

of MCL was argued in the recent years. The translocation event that occurs in pre-B 

lymphocytes during erroneous recombination of IgH gene juxtaposes the cyclin D1 (CCND1) 

locus on chromosome 11 with the immunoglobulin heavy chain (IgH) locus on chromosome 14. 

As a result, CCND1, which is not expressed in quiescent normal lymphoid cells, becomes 

active (Jaffe et al., 2001). Intriguingly, coordinated overexpression of glutathione S transferase 

pi gene (GSTπ) on der11 together with CCND1 gene, despite their different chromosomal 

location, has been found in MCL cells (Bennaceur-Griscelli et al., 2004). This transcriptional 

upregulation cannot be directly explained by translocation of the regulatory elements (HS and 

Eμ IGH enhancers) on chromosome 14 into the relative proximity (120 to 300 kbp) of the 

CCND1 gene.  

There has been notable progress in the treatment of MCL over the last three decades with a 

near doubling of overall survival, even though the probability of cure remained low. Therefore 

new therapies are being developed (for review see (Camara-Clayette et al., 2012)). Among 

them is epigenetic treatment, a new therapeutic concept which consists of the use of histone 

deacetylase inhibitors (HDACis) and/or DNA methyltransferase inhibitors (DNMTis). 
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Histone deacetylase inhibitors affect histone deacetylases (HDACs) which are directly involved 

in the alteration of the structural components of chromatin and other non-histone proteins 

(Walkinshaw and Yang, 2008). Thus, HDACis can influence gene expression patterns and 

regulate different cell processes (Gray et al., 2004), (West and Johnstone, 2014). In MCL cell 

lines, HDACs inhibitors were shown to have antiproliferative effects, and paradoxically they 

decreased the cyclin D1 protein level in the cells (Heider et al., 2006). Until now, there is no 

clear understanding of HDACis mechanism of action and explanation of such an effect on 

cyclin D1 in MCL. Therefore, a study of «epigenetic landscape» in 11q13 and 14q32 loci 

should significantly advance our knowledge about the mechanisms of expression of GSTπ and 

CCND1 in MCL.  

We believe that structural properties of higher-order chromatin conformation may significantly 

change transcription of a gene group if they are localized in the same or different chromatin 

loops (Vassetzky et al., 2000). We have previously shown that the translocated regions 

relocalize in the intranuclear space, and that change of surroundings might be a 

complementary epigenetic mechanism for gene activation or repression in MCL (Allinne et al., 

2014). Such a relocalization might be accompanied by epigenetic changes in the translocated 

regions; this is an additional argument for the use of epigenetic drugs in MCL. 

The purpose of the present work was to study chromatin structure in the rearranged 

(11;14)(q13;q32) locus in MCL cells as compared to the 11q13 and 14q32 loci in normal 

human lymphocytes. We then studied the effect of different HDACis on the rearranged 

(11;14)(q13;q32) locus at several levels: histone acetylation / methylation, chromatin state and 

gene expression. 
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We have shown that t(11:14)(q13;q32) translocation leads to overexpression of not only 

CCND1 but a big group of genes spanning over 15 Mb around the translocated region. The 

same genes, sensitive to deregulation by t(11;14) translocation, react to the HDACi treatment 

by increasing their expression. Importantly, while abexinostat stimulates genome-wide 

desegregation of heterochromatin, genes’ promoters stay shielded from its effect. It has been 

previously shown that HDACi paradoxically decrease Cyclin D1 protein amount (Heider et al., 

2006). We have demonstrated that it happens not via direct influence on CCND1 gene 

expression. Thus, the data supports the idea of an indirect mechanism of HDACi abexinostat 

action. 
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I  - Epigenetic state of rearranged loci 
in MCL and control cell lines 
 

 

The first part of the work aimed to analyze the chromatin state and gene expression levels in 

the 11q13 locus that is translocated in MCL cells in order to dissect the nature of CCND1 gene 

upregulation in MCL. 

As discussed above, translocation t(11;14) leads to cyclin D1 gene (CCND1) activation. 

Initially, a direct influence of a strong IgH enhancer was hypothesized to upregulate CCND1 

transcription. However, cyclin D1 gene may be located at a long distance from the 

chromosome breakpoint (200 kb), which makes direct enhancer-promoter effect much less 

probable. Moreover, gluthatione-S-transferase (GSTP1) located on the derivate of 11 

chromosome as well reveals overexpression after the translocation in MCL (Bennaceur-

Griscelli et al., 2004). Previously, we have shown that 11q13 locus relocalizes from the nuclear 

periphery towards the transcriptionally active nuclear center and nucleolus (Allinne et al., 

2014). This may lead to activation of the entire locus. All these data suggest an epigenetic 

mechanism of gene upregulation in MCL, rather than simple enhancer-promoter effect. 

Therefore, we wanted to analyze the chromatin structure and gene expression in the 

rearranged loci in order to assess its epigenetic state. 
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1.  Activated epigenetic landscape in the 11q13 and 14q32 loci 
after the translocation (11;14) in MCL cells. 

 

Large-scale movements of chromatin after the translocation (11;14)(q13;q32) in MCL may 

provoke global changes in histone modifications of chromatin in the translocated loci. To study 

this, we have isolated nucleosomes containing histone H3 acetylated at lysine 9 (H3K9Ac; 

mark of active chromatin) and di-methylated at the same position (H3K9me2; mark of 

facultative heterochromatin) from normal human B-lymphocytes (NBL) and MCL Granta-519 

cell line using specific antibodies. DNA was extracted from the samples and used as a probe 

for hybridization with a custom NimbleGene genomic microarray covering a 1.4 Mb region in 

11q13 locus (including CCND1 and GSTP1 genes) and 2 Mb region in 14q32 locus (including 

IGH gene). The microarray was prepared with a median probe spacing of 70 bp.  

The total DNA samples were used for reference hybridization in both experimental sets. The 

results of hybridization with microarrays were analyzed using the ACME (Algorithm for 

Capturing Microarray Enrichment) program (Scacheri et al., 2006a), (Scacheri et al., 2006b) as 

described in Materials and Methods. The program identifies the probes representing the 

genomic region under study and scans this region using a window size which can be user-

defined. We have chosen a window size of 400 bp because it will cover DNA fragments 

containing up to two nucleosomes. The p-values assessing a possible association of DNA with 

either H3K9Ac or H3K9me2 were calculated and represented as graphs along the 

chromosomal regions studied.  The distributions of H3K9Ac and H3K9me2 peaks in Granta-

519 were referred to that in NBL and vice versa allowing detection of peaks which are 

presented in MCL, but not in the control. 
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Results obtained for the two selected regions on chromosomes 11 and 14 are shown in Figure 

16. Alignment with gene positions, corresponding to assembly GH18, is shown in the lower 

part of the figures. From the analysis of the data presented in Figure 16A, it is clear that the 

1.4 Mb segment in the 11q13 locus, which contains the CCND1 and GSTP genes, had more 

acetylation peaks in Granta-519 (190 Ac peaks in Granta-519 vs. 113 Ac peaks in NBL). Three 

distinct H3K9Ac peaks were observed around CCND1 gene. From the analysis of the 14q32 

locus reported in Figure 16B, peaks corresponding to H3K9Ac were found scattered all over 

the region, although there were more active chromatin marks in MCL as compared to NBL.  

This more active chromatin state in the loci after indicates rather an epigenetic mechanism of 

gene deregulation after the translocation than mere gene-enhancer effect. 
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A   

B   

Figure 16. Distribution of H3K9Ac chromatin marks within the translocated loci.  

X-axis: log2-ratio Granta-519 / NBL (1st and 3rd lines) and NBL / Granta-519 (2nd and 4th lines). The blue 

lines show the significance threshold higher than the False Discovery Rates (FDR); MTC, the Major 

Translocation Cluster in MCL. Gene coordinated are given in correspondence with HG18 assembly. (A) 

A zoom on 300 Kb segment in 11q13 locus. The horizontal arrow indicates CCND1 gene. (B) Entire 

segments analyzed: 1.4Mb in 11q13 locus (1st and 2nd lines) and 3Mb in 14q32 locus (3rd and 4th lines).  
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2. Analysis of gene expression in the translocated 11q13 region in 
MCL cells reveals upregulated genes adjacent to the 
translocation point on chromosome 11. 

 

We have first wanted to determine whether the t(11;14) perturbs expression of genes other 

than CCND1 in the vicinity of the translocation point. In order to identify this, we have collected 

data from Gene Expression Omnibus (GEO) database, corresponding to different microarray 

platforms, and compared gene expression in MCL to normal naïve B cells. 

After downloading the raw expression data, we have normalized it and found differentially 

expressed genes in the 15 Mb 11q13 locus adjacent to the translocation point. A procedure 

using percentile of the distribution of coefficient variability values was used to filter out the least 

variable probe sets. The threshold for this filtering was set at 0.5. The differentially expressed 

genes between MCL and NB lymphocytes were identified using limma R package from 

Bioconductor with the Benjamini-Hochberg procedure for multiple test adjustment. The 

adjusted p-value threshold was set to 0.05. We have identified 334 genes, 36 of them being 

activated after the t(11;14) translocation (latter referred as upregulated  genes) and 298 genes 

which do not change their expression after the translocation (latter referred as not-upregulated 

genes) ( 

Table 5). 

 
Table 5. 36 upregulated genes spanned over 15 Mb region near the (11;14) translocation 
point.  
 
Gene expression data was extracted from GEO database and analyzed as described in Materials and 
Methods. Expression rate represents the ratio of a gene expression in MCL relative to control. 
Start point of a gene is shown according to the UCSC genome browser (assembly HG19). 
Bold – ten genes chosen for further analysis. Underlined – genes around the translocation point.  
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Start point Gene               Expression rate Gene name  
60739115      CD6 1.80 CD6 molecule 
60869930      CD5 1.94 CD5 molecule 
61100654      DAK 1.44 Dihydroxyacetone kinase 2 homolog (S. cerevisiae) 
62201016      AHNAK 4.54 AHNAK nucleoprotein 
62360675      MTA2 1.43 Metastasis associated 1 family, member 2 
62457747      BSCL2  1.71 Bernardinelli-Seip congenital lipodystrophy 2 (seipin) 
62623518      SLC3A2 1.75 Solute carrier family 3 
63341934      PLA2G16 2.36 Phospholipase A2, group XVI  
63448922      RTN3 1.92 Reticulon 3 
64037300      BAD 1.52 BCL2-associated agonist of cell death 

64494383      RASGRP2 1.54 RAS guanyl releasing protein 2 (calcium and DAG-
egulated) 

64513861      PYGM 1.80 Phosphorylase, glycogen, muscle 
64692180      PPP2R5B 1.37 Protein phosphatase 2, regulatory subunit B', beta isoform 
64794910      SNX15  1.47 Sorting nexin 15 
65337943      SSSCA1 1.41 Sjogren syndrome/scleroderma autoantigen 1 
65479489      KAT5 1.39 K(lysine) acetyltransferase 5 
65686728      DRAP1 1.71 DR1-associated protein 1 (negative cofactor 2 alpha) 
66059373      TMEM151A 1.51 Transmembrane protein 151A 
66278119      BBS1 1.46 Bardet-Biedl syndrome 1 
66330935      CTSF 1.41 Cathepsin F  
66610883      RCE1 1.44 RCE1 homolog, prenyl protein peptidase (S. cerevisiae) 
67195935      RPS6KB2 1.32 Ribosomal protein S6 kinase, 70kDa, polypeptide 2 
67205518      CORO1B 2.44 Coronin, actin binding protein, 1B 
67259239      PITPNM1 1.32 Phosphatidylinositol transfer protein, membrane-associated 
67351066      GSTP1 2.92 Glutathione S-transferase pi 1 
67820326      CHKA 1.60 Choline kinase alpha 
68080108      LRP5 1.46 Low density lipoprotein receptor-related protein 5 
68522088      CPT1A  2.56 Carnitine palmitoyltransferase 1A (liver) 
68671319      1.52 IGHMBP2 Immunoglobulin mu binding protein 2 
69455873 25.14 CCND1 Cyclin D1 
69480331      ORAOV1 1.42 Oral cancer overexpressed 1 
70244612      CTTN 1.41 Cortactin 
71145457      DHCR7 1.43 7-dehydrocholesterol reductase 
71639768      RNF121 1.31 Ring finger protein 121 
71900602      FOLR1  2.34 Folate receptor 1 (adult) 
75526212      UVRAG 1.58 UV radiation resistance associated gene 
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3. Manuscript “Histone deacetylase inhibitor abexinostat affects 
chromatin organization and gene transcription in normal B 
cells and in mantle cell lymphoma” 

 

Histone deacetylase inhibitors, drugs of new generation recently applied in anticancer therapy 

(Richon and O'Brien, 2002) are now used in therapy of lymphoid malignancies (Ribrag, 2015). 

These drugs relate on histone deacetylases (HDACs) which are directly involved in alteration 

of the structural components of chromatin (Walkinshaw and Yang, 2008), (Tan et al., 2010). In 

MCL cell lines, HDACs inhibitors (HDACis) were shown to have anti-proliferative effects, and 

paradoxically they downregulate cyclin D1 levels (Heider et al., 2006), (Alao et al., 2004). 

Here, we wanted to evaluate HDACis effect on chromatin structure and 11q13 genes’ 

expression before and after the translocation t(11;14). The HDACi abexinostat (lab. Servier) 

has been chosen for this purpose. 
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SUMMARY 

 

Mantle cell lymphoma (MCL) is a rare lymphoma caused by the t(11:14) juxtaposing the cyclin 

D1 (CCND1) locus on chromosome 11 and the immunoglobulin heavy chain (IgH) locus on 

chromosome 14. Several new treatments are proposed for MCL, including histone deacetylase 

(HDAC) inhibitors. In the present paper we show that a large amount of genes is overexpressed 

in the translocation region on chromosome 11 and show that most part of these genes are 

sheltered from the direct effect of HDAC inhibitor abexinostat (S78454, PCI-24781). 

 

 

INTRODUCTION 

 

Mantle cell lymphoma (MCL) is a rare disease accounting for 5–7% of non-Hodgkin 

lymphomas in adults [1]. It directly linked to the t(11;14)(q13;q32) juxtaposing the cyclin D1 

(CCND1) locus on chromosome 11 and the  immunoglobulin heavy chain (IgH) locus on 

chromosome 14 in early B-cells. As a result, CCND1 which is not expressed in quiescent 

normal lymphoid cells, becomes active [2], although there exists a small number of cases that 

express cyclin D2 or D3 instead of CCND1 [3]. In addition to cyclin D1 overexpression, 

supplementary genetic alterations appear to disturb the cell cycle machinery and interfere with 

the cellular response to DNA damage. MCL resistance to conventional therapy could be 

explained by at least two hallmarks of the disease: first the classical malignant cells are slow 

dividing and second they display a deregulated cell cycle, via overexpression of cyclin D1 and 

inactivation of P53 or deregulated cellular DNA damage response mainly through inactivation 

of ATM [4], which is one of the major safeguards for genome stability [5].  

Significantly, overexpression of CCND1 alone in transgenic mice is not sufficient to cause the 

mantle cell lymphoma [6]. It is noteworthy that at least one other gene on 11q13, gluthatione-S-

transferase (GSTp), is also highly overexpressed along with CCND1 after the translocation in 

MCL [7]. This transcriptional upregulation cannot be directly explained by translocation of the 
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regulatory elements (epsilon and mu IGH enhancers) on chromosome 14 into the relative 

proximity (120 to 300 kbp) to the CCND1 gene. Indeed, we have recently shown that t(11;14) 

led to relocalization of the CCND1 locus in  the nuclear space to the perinucleolar region where 

it was regulated by an abundant nucleolar protein nucleolin [8]. Reorganization of the nuclear 

space is also observed in other cancers [9, 10]. Chromosomes in the eukaryotic nuclei are 

arranged in chromosomal territories that occupy a specific place in the nuclei (for review see 

[11]. Gene-poor chromosomes are localized to the nuclear periphery, whereas gene-rich 

chromosomes have a more central position in the nucleus. Genes and gene domains may 

relocalize within the territories upon their activation or repression [12, 13] and also when 

damaged reviewed in [14].  

Although the prognosis has clearly improved for MCL over the last few decades, the probability 

of cure remained low, therefore new therapies are being developed (for review see [15]). 

Histone deacetylase (HDAC) inhibitors are one class of drugs that are currently used in clinical 

trials [15]. Histone deacetylase inhibitors  represent epigenetic agents that modify chromatin 

structure through histone acetylation [16]. HDAC inhibitors cause cell death through multiple 

mechanisms, including upregulation of death receptors, induction of oxidative injury, and 

disruption of DNA repair [17]. HDAC inhibitors have also shown activity against MCL cells in 

preclinical studies and are being evaluated in patients alone or in combination with other drugs 

[15, 18, 19], reviewed in [20].  

Abexinostat is a new broad-spectrum phenyl hydroxamic acid HDAC inhibitor currently being 

evaluated in phase I-II clinical trials. It has shown signs of clinical activity in Phase I in 

relapsed and refractory lymphoma [21]. In lymphoma cell lines, abexinostat, at clinically 

achievable concentrations, induced concentration-dependent apoptosis which was dependent on 

caspase and ROS production [22]. In the present work we have evaluated the effect of 

abexinostat on cancer cells and found out that it alters transcription and epigenetic signature in 

only a small subset of genes, regardless of global changes in the nuclear architecture triggered 

by the treatment. 
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MATERIALS AND METHODS 

 

Cell cultures 

 

The human Mantle Cell Lymphoma (MCL) cell lines Granta-519, Jeko-1, UPN-1, Mino and 

NCEB-1 were used in experiments. Lymphoblastoid cell lines RPMI-8866, Priess, Remb1, 

IARC-211 and IARC-171 were used as controls. 

RPMI-8866, Priess, Remb1, IARC-211, IARC-171, Granta-519 and Mino cells were 

maintained in RPMI 1640 (Gibco) supplemented with 10% fetal bovine serum, 2 mM L-

glutamine, and 1% penicillin-streptomycin (Invitrogen). UPN-1 and NCEB-1 cells were 

cultured in MEM alpha medium (Invitrogen, Cergy Pontoise, France) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS, Hyclone, Perbio science), 2 mM L-glutamine, and 

1% penicillin-streptomycin (Invitrogen). Jeko-1 cells were maintained in RPMI 1640 

supplemented with 20% fetal bovine serum, 2 mM L-glutamine, and 1% penicillin-streptomycin 

(Invitrogen). Cells were cultured at 37°C in a humidified 5% CO2 atmosphere. 

 

Abexinostat treatment 

Stock solution of abexinostat in dimethylsulfoxide (DMSO) at 0.1 mM was conserved at -20°C. 

Cells were incubated in the appropriate growth media supplemented with 100 nM abexinostat or 

DMSO as the control during 1 and 24 hours at normal growth conditions. 

 

3D-fluorescence immunodetection 
 
Cells were immobilized on glass coverslips coated with Poly-D-lysine hydrobromide (Sigma). 

The cells were then treated as previously described to preserve their three-dimensional (3D) 

structure [23]. Heterochromatin clusters were immunodetected using rabbit anti-H3K9me3 

(Upstate) antibodies and goat anti-rabbit Alexa 633 (Invitrogen) antibody. DNA was 

counterstained with 4,6 diamidino-2-phenylindole (Vectashield, Vector) or Bobo1 (Invitrogen). 
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Confocal microscopy, image processing, and statistical analysis were carried out as described 

[8]. 

 

Chromatin immunoprecipitation (ChIP) 

For chromatin isolation, cells were fixed with 1% ammonium persulfate and sonicated in a lysis 

buffer (50mM Tris-HCl, pH 8.0, 10mM EDTA, 1% SDS, 0.2mM PMSF, 1% PIC) with 10 

cycles of 20 sec pulse-on, 30 sec pulse-off, 40% amplification. The non-solubilized material 

was removed by centrifugation at 16,000g for 10 min. The size of chromatin fragments (1-3 

nucleosomes) was monitored by electrophoresis in a 1% agarose gel after rev-crosslinking and 

treatment with 5 µg/ml RNaseA and 2 µg/ml proteinase K.  

Chromatin immunoprecipitation was performed as following: 21 µg of chromatin solution was 

incubated overnight with 25µl of the PrG-Dynabeads  (Sigma) and 1-5 µg of antibodies in 1ml 

reaction solution. pan H3 antibodies were used in quantity 1,5 µl per reaction (17-10254, 

Millipore), Ac-K9H3 5 µg (17-658, Millipore), diMe-K9H3 4 µg (ab-1220, abcam) and IgG 

rabbit as a negative control 2 µg (Millipore). Extracted DNA was rev-crosslinked, washed with 

the appropriate buffers from the Active Motif ChIP-IT Express kit and purified by phenol-

chlorophorm extraction. After amplification, DNA samples were hybridized to the two-colored 

SurePrint G3 Human Promoter Microarray, 1x1M (G4873A, Agilent, Palo Alto, Calif., USA) 

covering gene promoter zones all over the genome.  Labeling, hybridization and washing were 

carried out according to the Agilent mammalian ChIP-chip protocol (ver.9.0).  

 

ChIP-on-chip Data Analysis 

Scanned images were quantified with Agilent Feature Extraction software under standard 

conditions. The probe signals were filtered: replicated probes were merged by median and 

saturated probes (at least 1 channel) with high pixel heterogeneity have been removed. Filtered 

probes were processed as following: intra-array quantile normalization, log2 ratio 

transformation (ratio of modified histone probe signal to pan-H3 histone probe signal), GC% 
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normalization, Z-score transformation to homogenize the value distributions (median was 

subtracted from each log2(ratio) and result was divided by the standard deviation).  

The p-value for each probe was computed by a modification of the Whitehead algorhythm as 

follows: an average was calculated for each probe with 2 surrounding it probes within 300bp, 

the distribution of these averages was obtained, each average value was reported to the 

distribution of averages. The area to the right of the value under the averages distribution curve 

was computed: this is the p-value which was attached to each probe. The threshold is set at 95% 

of the distribution (p-value = 0.05). The resulting output contains treated p-values (-log10(p-

value)) with corresponding chromosome coordinates. We have imported these results into the 

Integrated Genome Browser [24] for visualization.  

 

RT-qPCR 

The expression level of 11q13 genes was determined by RT-qPCR using specific primers 

(Table 1). 100 ng of total RNA purified using guanidine thiocyanate and purification columns 

(NucleoSpin RNA II kit, Machery-Nagel) was converted into cDNA using Random Hexamer 

Primer (Fermentas) and RevertAid H Minus Reverse Transcriptase (Fermentas). cDNA was 

quantified using qPCR with FaStart Universal SYBR Green Master (Roche Diagnostics). 

Expression was calculated with ΔCt method (GAPDH gene expression used as the control). All 

values represent means±SEM of at least three biological replicates and follow a normal 

distribution. Statistical significance of the differences between gene expression values in MCL 

vs. control was estimated with unpaired Student’s t test. For evaluation of statistically 

significant differences between untreated, 1h and 24h treated cells gene expression values, one-

way ANOVA followed by Turkey post-test was applied. 
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RESULTS  

 

Analysis of gene expression in the translocated 11q13 region in MCL cells reveals 

upregulated genes adjacent to the translocation point on chromosome 11. 

 

We have first wanted to determine whether the t(11;14) perturbs expression of genes other than 

CCND1 in the vicinity of the translocation point. In order to identify this, we have chosen 10 

cancer-related genes located in the vicinity of the translocation point both on der 11 and der 14 

chromosomes and studied their expression in five non-cancerous lymphoblastoid B cell lines 

(RPMI-8866, Priess, Remb1, IARC-211, IARC-171) and five MCL lines (Granta-519, Jeko-1, 

UPN-1, Mino and NCEB-1) using RT-qPCR analysis. These genes included CD6 and CD5, T-

lymphocyte surface antigens that play a role in T-cell activation and differentiation; MTA2, a 

component of the chromatin remodeling and histone deacetylase complex; BAD, a pro-apoptotic 

protein; KAT5, a MYST family histone acetylase; CTSF; a cysteine proteinase and a pro-

apoptotic component of the lysosomal proteolytic system; GSTP1, a member of detoxication 

system of a cell; CCND1, a regulator of cell cycle G1/S transition; ORAOV1, a protein 

apparently involved in ribosome biogenesys; and UVRAG, a regulator of intracellular membrane 

trafficking and autophagy (Table 2 and Figure 1A).  

Most of the studied genes were overexpressed in MCL cells as compared to the controls; six 

genes (CD6, CD5, CTSF, GSTP1, CCND1, ORAOV1) showed a significant overexpression in 

MCL. Interestingly, five of them are either unexpressed or weakly expressed (CD6, CD5, 

CTSF, ORAOV1 and CCND1) in normal cells (as compared to expression level of a 

housekeeping gene GAPDH). Three out of four genes that did not show a significant 

overexpression in MCL had a relatively high expression level in normal cells as compared to 

GAPDH (Figure 1A). Expression patterns of the individual cell lines are presented in the 

Supplementary Figure 1.  

Globally, gene expression profiles were quite similar across MCL and across normal cell lines. 

In all cell lines MTA2, KAT5, GSTP1, and UVRAG genes showed a relatively high expression: 
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they were expressed stronger than the house-keeping gene GAPDH, and GSTP1 was the most 

expressed (Supplementary Figure 1). In MCL CCND1 showed the highest level of expression. 

In all tested control cell lines, CD5 expression was not detectable; CCND1 expression could not 

be detected neither in RPMI-8866 nor IARC-211; in three other control cells lines, CCND1 was 

expressed at a very low level (Supplementary Figure 1).  

Therefore, we have identified a set of chromosome 11 genes which were significantly 

overexpressed in MCL. These genes span over 15 Mb and can be found both on der11 (CD6, 

CD5, GSTP1, CTSF) and der14 (CCND1, ORAOV1). This global overexpression pattern can 

hardly be explained by the action of a single enhancer but rather could be a result of a large-

scale post-translocation epigenetic regulation. We have next studied chromatin organization in 

several MCL and control cell lines. 

 

Genes sensitive to upregulation after the translocation t(11;14) have different histone 

modification signature than the rest of genes in the 11q13 locus. 

 

We have analyzed marks of active and inactive chromatin in genes’ promoters using genome-

wide ChIP-on-chip analysis in one control (RPMI-8866) and three MCL cell lines (Granta-519, 

Jeko-1, UPN-1). Chromatin was extracted from the cells and immunoprecipitated with 

antibodies against H3K9Ac (an active chromatin mark), H3K9me2 (a facultative 

heterochromatin mark) and panH3 as a reference. DNA extracted from the immunoprecipitated 

samples was used as a probe for hybridization with Agilent genomic microarrays covering gene 

promoters of human genome. The distributions of modified histone H3K9 in genes’ promoters 

were compared to panH3. The statistical analysis was carried out as described in Material and 

Methods, and a number of statistically significant peaks of acetylation or di-methylation was 

calculated (p-value < 0.05). We have defined the level of histone H3K9 modifications 

separately for the whole genome, chromosome 11, the 11q13 locus harboring the translocation 

region, genes sensitive to upregulation (36; further referred as upregulated) and genes not-

sensitive to upregulation genes (298; further referred as not-upregulated) in the 11q13 locus, 

detected previously. 
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At the genome level, the intensity of H3K9 acetylation and di-methylation were the same in the 

control and MCL cell lines, whereas in the 11q13 locus, H3K9 modification intensities differed 

between MCL and the control (Figure 2). Moreover, in both control and MCL cells, the not-

upregulated genes had acetylation and di-methylation levels similar to that in the 11q13 locus, 

whereas upregulated genes had distinct profiles.  

In the control cell line RPMI-8866, gene promoters in the 11q13 locus were acetylated and di-

methylated twice less than in the rest of the genome, whereas upregulated genes were 

acetylated three times and di-methylated two times stronger than the 11q13 locus in general. All 

tested MCL cell lines were hyper-acetylated in the 11q13 locus as compared to the control (2-

fold) and the rest of the genome. Upregulated genes had high level of acetylation in the control 

cell line, but in MCL cells acetylation level decreased: modestly (Jeko-1, UPN-1) or 

substantially (Granta-519). 

A similar pattern was observed for H3K9me2 (with the exception of Granta-519): H3K9me2 

level in the promoters in the 11q13 locus was twice higher in Jeko-1 and UPN-1 than in the 

control. Upregulated genes had high level of H3K9me2 in the control cell line, but in MCL 

cells acetylation level decreased: modestly (Jeko-1) or substantially (UPN-1).  

Granta-519 had a different pattern of H3K9me2 distribution than other MCL cell lines. The 

general level of H3K9me2 in the entire Granta-519 genome and the 11 chromosome was lower 

than in other cell lines; in 11q13 locus, H3K9me2 level was low (twice lower than in other 

MCL cell lines); the upregulated genes had the lowest di-methylation level among all other 

tested cell lines. Increased acetylation and decreased methylation levels in the 11q13 locus in 

Granta-519 possibly indicate a particularly high level of chromatin activity in this region. 

Notably, seven genes out of ten 11q13 genes tested demonstrated the highest level of expression 

as compared to other MCL cell lines. 

Thus, 11q13 locus had low H3K9Ac level in control cells; H3K9Ac increases twice after the 

translocation in MCL cell lines. In contrast, upregulated genes already had a high level of 

acetylation even in the control cells. After the translocation, this acetylation level decreased 
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slightly (Jeko-1, UPN-1) or substantially (Granta-519). A similar pattern of H3K9me2 

distribution was observed. These data show that genes sensitive to upregulation after the 

translocation t(11;14) have a different histone modification signature than the rest of genes in 

the 11q13 locus. Moreover, after the translocation, this epigenetic signature changes in a cell 

line-specific way. 

Next, we have studied the effect of an epigenetic drug abexinostat on chromatin structure and 

expression of the 11q13 genes in MCL. 

 

Abexinostat induces heterochromatin disaggregation in normal and MCL cells 

 
We have evaluated the global effect of the epigenetic drug abexinostat on heterochromatin in 

three control (RPMI-8866, Priess, IARC-211) and three MCL (Granta-519, NCEB-1, Jeko-1) 

cell lines. We have first evaluated the cytotoxic effect of abexinostat. Cell viability of 

abexinostat-treated cells was compared to cells incubated with 0.02% DMSO. Abexinostat 

induced 50% growth inhibition (GI50) at a dose of 0.02 µM in UPN-1 and Jeko-1 MCL cell 

lines at 24 hours (data not shown).  

Cells were next treated with 100 nM abexinostat, fixed, stained with an antibody against a 

constitutive heterochromatin mark H3K9me3, and analyzed under the confocal microscope as 

described in Material and Methods. Large heterochromatin clusters were observed in non-

treated cells. These clusters started to disintegrate already at 1h. At 24h, the global level of 

H3K9me3 dramatically decreased in all cell lines, and heterochromatin was organized in small 

clusters evenly distributed throughout the nucleus (Figure 3). No significant difference was 

observed between normal and MCL cells in this experiment. Thus, HDACi abexinostat induces 

global heterochromatin disaggregation both in normal and cancer cells.  
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Effect of abexinostat on 11q13 genes’ expression in normal and MCL cell lines  

 

We have then evaluated the effect of abexinostat on transcription of the 11q13 genes in the 

control and MCL cell lines. Five MCL and five control cell lines were treated with 100 nM 

abexinostat. The cells were collected at 1h post-treatment for the immediate effects and at 24h 

for the indirect effects mediated by the chromatin remodeling. RNA was isolated and gene 

expression was evaluated by RT-qPCR (Figure 4). While almost all tested genes had a 

tendency to increase their expression upon abexinostat treatment, some genes were strongly 

overexpressed (2-3 times) at 24h: CD6, CTSF, GSTP1 and CCND1 in the control cells; CD6, 

CD5, CTSF and GSTP1 in MCL cell lines. Interestingly, most of the genes reacting to 

abexinostat were upregulated in MCL as compared to the control and had a relatively low level 

of expression (their expression was lower than that of GAPDH), with the exception of GSTP1 

(Figure 1). A very limited effect of abexinostat on transcription was observed at 1h post-

treatment. 

Thus, despite the global chromatin activation triggered by abexinostat (Figure 3), only a part of 

genes reacted to the treatment. 

 
Promoters of the 11q13 genes are protected from the direct effect of abexinostat. 

 

Next, we have analyzed in fine the effect of HDACi abexinostat on histone H3K9 modifications 

in genes’ promoters using genome-wide ChIP-on-chip analysis. One control (RPMI-8866) and 

three MCL cell lines (Granta-519, Jeko-1, UPN-1) were treated with abexinostat for 1 and 24h, 

then chromatin was extracted from treated and non-treated cells and analyzed as described in 

the Materials and Methods. 

Surprisingly, the HDAC inhibitor treatment did not induce hyperacetylation in genes’ promoters 

in all tested cell lines on the levels of the entire genome, chromosome 11 and the 11q13 locus 

(with exception of UPN-1). Remarkable changes in histone modification levels were observed 

only in the promoters of genes sensitive to upregulation by the translocation (Figure 5). In the 

control RPMI-8866 cell line, acetylation in the promoters of the sensitive genes increased 
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modestly at 1h of abexinostat treatment, and then decreased at 24h. In Granta-519 cell line, 

acetylation increased more than two-fold at 1h of treatment, and then decreased to the initial 

level at 24h. Jeko-1 showed a two-fold decrease in H3K9Ac levels at 24h. UPN-1 cell line 

demonstrated a progressive decrease of acetylation both, in the entire 11q13 locus and in the set 

of upregulated genes.  

Interestingly, H3K9me2 levels changed similarly to H3K9Ac upon abexinostat treatment in the 

upregulated genes in RPMI-8866, Granta-519 and Jeko-1 cell lines, and in the entire 11q13 

locus in UPN-1. In the control cell line, H3K9me2 demonstrated a moderate progressive 

increase. In Granta-519, H3K9me2 level had the same changes as H3K9Ac: it increased more 

than three-fold at 1h of treatment, and then decreased two-fold at 24h. In Jeko-1 cells, 

H3K9me2 levels decreased progressively during the treatment. In UPN-1, H3K9me2 decreased 

modestly in the upregulated genes or dramatically in the 11q13 locus at 1h of treatment, and 

then at 24h, increased back to the initial level (11q13 locus). Thus in UPN-1, acetylation in the 

upregulated genes reacted more intensively to the treatment than in the not-upregulated genes, 

whereas methylation, changed stronger in the not-upregulated genes than in the upregulated. 

 

 

 
DISCUSSUION 

 

We and others have previously shown that chromosomal translocations are accompanied by the 

global relocalization of genes in the nucleus [8, 9]. This may lead to generalized upregulation of 

large gene clusters. We have selected ten cancer-related genes in the 11q13 locus situated in the 

vicinity of the translocation region and studied their expression in a panel of five non-cancerous 

lymphoblastoid cell lines and five MCL cell lines. Six of these genes were found to be 

upregulated in all MCL cell lines tested (Figure 1). Surprisingly, these genes were located on 

both sides of the translocation region, i.e. both on der11 and der14 chromosomes. Most of these 

genes, with the exception of GSTP, were either unexpressed or weakly expressed in normal B 

cells.  
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We have studied the effect of the HDAC inhibitor abexinostat on expression of these genes. 

Time points 1h and 24h post-application were chosen in order to distinguish between the 

immediate action of the drug and an indirect action which may be mediated by the induced 

changes in chromatin structure. A limited effect of abexinostat was observed at 1h, while 

different subsets of genes changed their expression at 24h in abexinostat-treated cells: CD6, 

CTSF, GSTP1 and CCND1 were overexpressed in the control cells while CD6, CD5, CTSF and 

GSTP1 were overexpressed in MCL cell lines, though all genes revealed a tendency for increase 

of their expression. Some variations in this pattern were observed between different MCL or 

control cell lines (Supplementary Figure 2). Interestingly, most genes reacting on abexinostat 

treatment were upregulated in MCL as compared to the control, and they had a relatively low 

level of expression in the control cells. For example, abexinostat increased CCND1 expression 

levels in MCL cells, but not in the control.  

Next, we have studied the chromatin organization in abexinostat-treated and control cells. 

Large-scale movements of chromatin after the translocation may provoke global changes in 

histone modifications of chromatin in the 11q13 locus. Indeed, changes in the chromatin 

organization in MCL cells as compared to normal lymphocytes have been detected earlier [8, 

25]. We have first studied the global organization of heterochromatin in the control and 

abexinostat-treated cells by immunofluorescence microscopy at 1 hour and 24 hours after 

treatment with abexinostat. The levels of the heterochromatin mark H3Kme3 dramatically 

decreased in both, control and MCL cell lines. These changes were associated with 

disappearance of peripheral heterochromatin clusters and redistribution of heterochromatin in 

cells with formation of an uniform punctuate pattern of heterochromatin (Figure 3).  

We have then used ChIP-on-chip to analyze changes induced by abexinostat in details. 

Surprisingly, while abexinostat had a global effect on chromatin structure in general, the genes 

themselves seemed to be shielded from its direct influence. Abexinostat triggered small changes 

in the H3K9Ac status of gene promoters. Acetylation did not simultaneously increase 

everywhere in the genome as it would be expected knowing the non-selective effect of HDACi. 

Only a small subset of genes from the entire genome reacted to abexinostat treatment, notably, 
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genes sensitive to upregulation after t(11;14) translocation in case of RPMI-8866, Granta-519, 

Jeko-1, and genes of entire 11q13 locus in UPN-1. The first effect of abexinostat (1h) on 

H3K9Ac levels was cell line-dependent, whereas the long-term effect (24h), decrease of H3K9 

acetylation, was similar among all tested cell lines. Changes in the H3K9me2 patterns varied 

across different cell lines. This data indicates that, in general, gene promoters are protected from 

global changes triggered by the histone deacetylase inhibitor, and observed changes in histone 

modification levels hint on indirect mechanism of HDACi action. 

 A similar effect of chromatin-modifying agent on chromatin organization has been found in 

[26]. We showed that only genes sensitive to upregulation by t(11;14) translocation (or the 

entire 11q13 locus in UPN-1 cell line)  showed intensive changes in their histone acetylation 

status (Figure 5). Methylation status of these genes as well reacted on the treatment. These data 

point to an indirect mechanism of abexinostat action. 

 

CONCLUSIONS 

 

Translocation (11;14) leads to upregulation of a cluster of genes located in the 11q13 locus on 

both sides of the translocation point. H3K9 acetylation status of this locus is elevated as 

compared to the average genome acetylation level. Regardless of a general heterochromatin 

disaggregation in response to abexinostat treatment, only a small subset of genes reacts to the 

treatment. Genes sensitive to upregulation after t(11;14) paradoxically decrease the level of 

acetylation in their promoters at 24h, though expression of some of these genes increases. Thus, 

genes mostly are sheltered from global changes triggered by abexinostat.  
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FIGURE LEGENDS 
 

 
Figure 1. Gene expression levels of selected genes around the (11;14) translocation point. 
(A) The graphic represents average gene expression levels measured by RT-qPCR of 5 control 
cell lines (black) and 5 MCL cell lines (grey). Transcript abundance was normalized GAPDH, 
and presented on a base 10 logarithmic scale. The value 1 corresponds to GAPDH expression. 
At least 3 independent experiments were carried out for each of cell lines. The values are 
presented as mean±SEM. *p<0.05; ***p<0.001 (unpaired Student’s t test relative to control) 
(B) Location of selected genes on the chromosome 11 relative to the translocation point (MTC – 
Major Translocation Cluster).  
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Figure 2. Level of H3K9 acetylation and H3K9 di-methylation in promoters of different 
subsets of genes. Chromatin from control cell line (RPMI-8866) and three MCL cell lines 
(Granta-519, Jeko-1, UPN-1) was immunoprecipitated with antibodies against H3K9Ac, 
H3K9me2 and panH3 as a reference. Enrichment in acetylation and methylation normalized to 
panH3 was estimated using Agilent Human Promoter Microarray. Statistically significant 
H3K9Ac and H3K9me2 peaks were calculated for the entire genome, the 11 chromosome, the 
11q13 locus, for the genes which do not change their expression after the translocation (not-
upreg) and for the genes sensitive to upregulation after the translocation t(11;14) (upreg). The 
data is presented as acetylation / methylation level (amount of statistically significant histone 
modification peaks divided by number of genes in the region analyzed). 
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Figure 3. Changes in H3K9me3 levels in the control and MCL nuclei upon abexinostat 
treatment. Abexinostat treated for 1 and 24 hours and untreated cells (n/t) were fixed and 
immunostained for H3K9me3 (green). Scale bar = 5 µM 
 

MCL cell linesControl cell lines

n/t                           1h                        24hn/t                           1h                        24h

n/t                           1h                        24hn/t                           1h                        24h

n/t                          1h                        24hn/t                           1h                        24h

RPMI-8866

Priess

IARC-211

Granta-519

Jeko-1

NCEB-1



RESULTS | Manuscript 

 
116 

 
 
Figure 4. Effect of abexinostat on gene expression levels of 11q13 genes. Five MCL (Granta-
519, Jeko-1, UPN-1, Mino and NCEB-1) and five control (RPMI-8866, Priess, Remb1, IARC-
211, IARC-171) cell lines were treated with 100 nM abexinostat and the gene expression levels 
were assayed before the treatment (n/t, black), at 1h (grey) and 24h (white) after treatment. The 
expression level was measured by RT-qPCR vs. GAPDH expression. The data represent the 
average of 5 MCL and 5 control cell lines. At least 3 independent experiments for the each cell 
line were performed. The values are presented as mean±SEM. *p<0.05; **p<0.01; ***p<0.001 
(1 way ANOVA with Turkey post-test). 

Control Cell Lines

CD6 CTSF GSTP1 CCND1 CD5 MTA2 BAD KAT5 ORAOV1 UVRAG
0

2

4

6 n/t
1h
24h

**

***

***

***

Fo
ld

 e
nr

ic
he

m
en

t ∆
∆C

t

MCL

CD6 CD5 CTSF GSTP1 MTA2 BAD KAT5 CCND1 ORAOV1 UVRAG
0

2

4

6

8 n/t
1h
24h

**

***

*

**

Fo
ld

 e
nr

ic
he

m
en

t ∆
∆C

t



RESULTS | Manuscript 

 
117 

 
Figure 5. Changes in H3K9 acetylation and di-methylation levels in genes’ promoters 
induced by abexinostat. MCL (Granta-519, Jeko-1, UPN-1) and control (RPMI-8866) cells 
were treated with 100 nM abexinostat and H3K9Ac, H3K9me2 enrichment normalized to 
panH3 was analyzed at defined time points using Agilent Human Promoter Microarray. The 
data is presented as acetylation / methylation level (amount of statistically significant histone 
modification peaks divided by number of genes in the region analyzed) in the entire genome, 
the 11 chromosome, the 11q13 locus, the genes which do not change their expression after the 
translocation (not-upreg) and the genes sensitive to upregulation after the translocation t(11;14) 
(upreg). n/t (black) – cells without treatment; 1h (grey), 24h (dark grey) – time points of 
abexinostat treatment. 
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Supplementary Figure 1. Individual gene expression patterns for 10 selected 11q13 genes 
around the (11;14) translocation point. The graphic represents gene expression levels 
measured by RT-qPCR of 5 control cell lines (A) and 5 MCL cell lines (B). Transcript 
abundance was normalized GAPDH, and presented on a base 10 logarithmic scale. The value 1 
corresponds to GAPDH expression. At least 3 independent experiments were carried out for 
each of cell lines.  
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Supplementary Figure 2. Changes in transcript level induced by abexinostat in individual 
cell lines. The cells were treated with 100 nM abexinostat and the gene expression levels were 
assayed before the treatment (0h, black), at 1h (grey) and 24h (white) after treatment. The 
expression level was measured by RT-qPCR vs. GAPDH expression in 5 MCL and 5 control 
cell lines. The data represent the average of at least 3 independent experiments for each cell 
line. The values are presented as mean±SEM. *p<0.05; **p<0.01; ***p<0.001 (1 way ANOVA 
with Turkey post-test). 
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Table 1. RT-qPCR primers for cDNA 
 
Gene   Sequence 5' - 3' 

CD6 Fw GCC CTG ACC ACC TTC TAC AGT 

  Rv GGG TTG GCA GTT GGG ATG T 

CD5 Fw CCA TCC GTC CTT GAG GTA GA 

  Rv CCT TGT ACC TGC TGG GGA T 

MTA2 Fw TAT GTG GGT GGC TGG TAA TG 

  Rv GCC TGG CTG ATA GTA ATG CC 

BAD Fw TCA CCA GCA GGA GCA GCC AA 

  Rv GAG CGC GAG CGG CCC CGA AA 

KAT5 Fw CTT GGC CAA AAG ACA CAG GT 

  Rv CAT CCT CCA GGC AAT GAG AT 

CTSF Fw GAC TGT GAC AAG ATG GAC AA 

  Rv CCA CGG AGT CAT TGA TGT AGA 

GSTP1 Fw AAT GAA GGT CTT GCC TCC CT 

  Rv GAC CTC CGC TGC AAA TAC AT 

CCND1 Fw AGT TGT TGG GGC TCC TCA G 

  Rv AGA CCT TCG TTG CCC TCT GT 

UVRAG Fw TGG AGT CCC TAG TCC ATG TTG 

  Rv AGG AGG GGA GAA GTT GCA GT 

ORAOV1 Fw GTC AGG ACA TAT TCG ATG CCA T 

  Rv GCT GCC TTC CCT CCA TCA CA 

GAPDH Fw CTG CAC CAC CAA CTG CTT AG 

 Rv AGG TCC ACC ACT GAC ACG TT 
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Table 2. Properties of the selected genes in 11q13 locus and their expression in control and 
MCL cell lines 
 
 

Gene 
 

Expression 
rate MCL vs. 
control# 

Function Expression in cancer References 

CD6 4.4 

Lymphocyte glycoprotein 
receptor on the majority of T 
cells and a subset of B cells. 
Mediates cellular adhesion 
migration across the 
endothelial and epithelial 
cells. 
Participates in the antigen 
presentation by B cells and 
the subsequent proliferation of 
T cells 

Prostate cancer. 
T cell large granular 
lymphocyte leukemia. 
Centrocytic lymphoma. 

[27] 
[28] 
[29] 
[30] 

CD5 ∞   ## 

Lymphocyte glycoprotein 
receptor on T cells and in 
small proportion on B cells 
that signals cell growth. 

Blastic mantle cell 
lymphoma cells. 
T-cell 
leukemia/lymphoma. 
Chronic lymphocytic B-
cell leukemia. 
Thymic sarcoma. 

[31] 
[32] 
[33] 

MTA2 1.3 

Component of NuRD, a 
chromatin remodeling and 
histone deacetylase complex. 
Strongly expressed in many 
tissues. 

Ovarian epithelial cancer. 
Breast tumor. 
B cell acute 
lymphoblastic leukemia. 
Adenocarcinoma. 
Gastric cancer. 

[34] 
[35] 
[36] 
[37] 
[38] 

BAD 0.9 

Pro-apoptotic protein 
positively regulating cell 
apoptosis by forming 
heterodimers with BCL-xL 
and BCL-2, and reversing 
their death repressor activity. 

Down-regulated in breast 
and ovarian cancers. 

[39] 
[40] 
[41] 

KAT5 1.1 

Histone acetylase from the 
MYST family. 
Plays a role in DNA repair, 
apoptosis and in signal 
transduction. 

Overexpression in 
melanoma associated 
with increased 
chemosensitivity. 
Down-regulation is 
associated with 
malignancy of gastric, 
colon, lung, pancreatic, 
breast, metastatic 
melanoma cancers. 

[42] 
[43] 
[44] 
[45] 
[46] 
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CTSF 4.3 

Cathepsin F is a component of 
the lysosomal proteolytic 
system. Ubiquitously 
expressed. 

Cervical cancer. 
Breast cancer. 

[47] 
[48] 

GSTP1 1.5 

Plays an important role in 
detoxification and catalyzes 
detoxification of xenobiotics 
including carcinogens via 
conjugation to glutathione. 

Lack of expression in 
human prostate cancer 
cells. 
Upregulated in neoplastic 
cells, non-small cell lung 
cancer. 
Associated with drug 
resistance. 

[49] 
[50] 
[51] 
[52] 
[53] 

CCND1 2154.6 
Regulator of CDK4 or CDK6 
kinases, required for cell cycle 
G1/S transition. 

Mantle cell lymphomas 
and t(11q13)-associated 
leukemias. 
Carcinoma. 
Breast cancer. 
Non-small-cell lung 
cancer. 
Colorectal cancer. 
Melanoma. 
Multiple myeloma. 

[54] 
[55] 
[56] 
[57] 

ORAOV1 1.3 
Plays essential roles in the 
function and biogenesis of the 
ribosome. 

Esophageal carcinoma. 
Gastric adenocarcinoma. 
Squamous cell 
carcinomas. 
Cervical cancer. 
Oral cancer. 

[58] 
[59] 
[60] 
[61] 
[62] 

UVRAG 1.4 

Critical regulator of 
intracellular membrane 
trafficking, including 
autophagy and chromosomal 
stability. Tumor suppressor. 

Deleted, mutated or 
dowmregulated in colon, 
breast and gastric cancers. 

[63] 
[64] 
[65] 
[66] 

 

# - Expression was measured using RT-qPCR and presented as average of fold-enrichement ΔCt [target - 
ref gene (GAPDH)] in 5 MCL relative to 5 control cell lines. At least 3 independent experiments were 
performed for each cell line. 
## - CD5 was not expressed in normal lymphoblastoid cell lines. 
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Table 3.  Abexinostat-induced changes in H3K9 acetylation and di-methylation levels in 
gene promoters  
 

Cell line Condition Genome 11 chromosome 11q13 locus 
H3K9Ac H3K9me2 H3K9Ac H3K9me2 H3K9Ac H3K9me2 

RPMI-8866 
 
 

n/t 0.98 0.97 1.07 1.05 0.65 0.53 
1h 0.97 0.91 1.15 1.04 0.70 0.47 

24h 0.91 0.99 0.91 1.06 0.62 0.60 
Granta-519 

 
 

n/t 1.03 0.82 1.02 0.71 1.14 0.64 
1h 0.83 0.91 0.86 1.05 1.12 0.97 

24h 0.86 0.85 0.93 0.99 1.12 0.73 
Jeko-1 

 
 

n/t 0.90 0.88 1.03 1.04 1.26 1.23 
1h 1.10 0.87 1.14 1.04 1.30 0.98 

24h 1.07 0.98 1.12 1.11 1.38 1.16 
UPN-1 

 
 

n/t 0.96 0.94 1.04 1.06 1.30 1.20 
1h 0.88 0.94 0.96 1.16 1.13 0.37 

24h 0.94 0.86 1.14 0.99 0.57 1.18 
 
MCL and control cells were treated with 100 nM abexinostat and H3K9Ac, H3K9me2 enrichment 
normalized to panH3 was analyzed at defined time points using Agilent Human Promoter Microarray. 
The data is presented as acetylation / methylation level (amount of statistically significant histone 
modification peaks divided by number of genes in the region analyzed) in the entire genome, the 11 
chromosome and the 11q13 locus. n/t – cells without treatment; 1h, 24h – time points of abexinostat 
treatment. 
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4. Effect of abexinostat on gene expression in t(14;18) follicular 
lymphoma cells 

 

Since abexinostat did not affect CCND1 expression in t(11;14) mantle cell lymphoma, but led 

instead to overexpression of some weakly expressed genes (Figure 1 and Figure 4 in the 

manuscript), we wanted to verify whether this effect could be observed in other types of 

lymphomas. For this, we assessed abexinostat effect on gene expression in follicular 

lymphoma cells. Follicular lymphoma is one of the most common types of non-Hodgkin’s 

lymphomas harboring t(18;14) or t(3;14) translocations, which lead to BCL-2 or BCL-6 

overexpression, respectively. A recent study demonstrated downregulation of BCL-2 protein in 

t(14;18) lymphoma by HDACi (Duan et al., 2005). 

First, we have tested a follicular lymphoma cell line RL and one sample from a patient with 

follicular lymphoma for the expression of 3 genes in 11q13 locus (CTSF, GSTP1, CCND1) and 

of BCL-2 gene on the 18 chromosome. Three independent experiments were performed for the 

RL cell line, and average of gene expression enrichment was calculated (Figure 17). As 

expected, BCL-2 was overexpressed (290 times higher than GAPDH expression in the patient 

sample and 30 times higher in the RL cell line). CTSF and CCND1 expressions were very low 

in the patient’s sample and were not detectable in RL cell line. GSTP1 was highly expressed, 

though in normal B-lymphocytes (NBL and LCLs) it showed overexpression too. 
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Figure 17. Gene expression in follicular lymphoma and normal cells.  

Follicular lymphoma cell line RL, a sample from a patient with follicular lymphoma, normal B-

lymphocytes from donors (NBL) and normal lymphoblastoid cell lines (LCLs) were tested for the gene 

expression by RT-qPCR. The data represents fold enrichment average for three independent 

experiments on RL cell line, for three NBL samples and for 6 normal cell lines (LCLs: RPMI-8866, 

Priess, Remb1, IARC-211, IARC-171). BCL-2 expression in NBL and LCLs was not analyzed. Transcript 

abundance was normalized GAPDH (corresponds to the value 1), and presented on a base 10 

logarithmic scale. The data is presented as mean±SEM. 

 

Next, we have assessed effect of abexinostat on gene expression in follicular lymphoma. Cells 

were treated with 100 nM abexinostat for 1 and 24 hours, and then expression was analyzed in 

reference to GAPDH gene. In the patient’s cells, expression was measured after 1h and 24h in 

both, treated and not treated cells, then values in treated cells were related to that from 

untreated cells from the same time point.  

No influence of abexinostat was detected on BCL-2 or GSTP1 expression in both, patient’s 

cells and RL cell line (Figure 18). Two genes, CCND1 and CTSF, demonstrated strong or 
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moderate, respectively, increase of expression in 24h of treatment in patient’s cells (in RL cell 

line these genes were not expressed). Interestingly, these two genes had initially a low level of 

expression in the cells (Figure 17). The same trend was detected in MCL cell lines: mostly 

genes with a low expression level reacted to abexinostat (Figure 1 and 4 in the manuscript). 

The observed variations in expression of BCL-2 and GSTP1 in response to the treatment in 

patient’s cells might reflect normal fluctuations, regularly detected in experiment repeats. Only 

strong changes in expression, like in case of CCND1 gene (24h) might indicate a real response 

of a gene to the treatment. To confirm the observed reaction of CTSF and CCND1 genes to 

abexinostat, more samples from patients with follicular lymphoma would have to be tested. 

 

 

Figure 18. Effect of abexinostat on gene expression levels in follicular lymphoma.  

One sample from follicular lymphoma patient and RL cell line were treated with 100 nM abexinostat 

during 1h and 24h, then gene expression was tested using RT-qPCR. Transcript abundance was 

normalized to GAPDH, and then results from treated cell were referred to untreated cells. Three 

independent experiments were hold for RL cell line, the average of fold enrichment is displayed. In the 

patient cells, expression was analyzed in 1h and 24h in both, treated and not treated cells, then values in 

treated cells were related to that from untreated cells from the same time point. The values are 

presented as mean ± SEM. 
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Thus, regardless of the described downregulation of BCL-2 protein by HDACi in follicular 

lymphoma (Duan et al., 2005), we have not detected any decrease in BCL-2 gene expression 

after abexinostat treatment. Instead, we have again observed that HDACi upregulated genes 

with an initially low expression level. 

 

5. Abexinostat does not induce B-cell activation 

 

Gene expression analysis revealed overexpression of CD6 and CCND1 genes in abexinostat-

treated control cell lines (Figure 4 of the manuscript). It might indicate B cell activation 

triggered by the HDACi treatment. To verify this, we tested normal B cells from donors for 

activation using flow cytometry analysis. Marker of active B cells (CD23) and cyclin D1 were 

measured before and after abexinostat treatment. Activation cocktail (10 ng/ml recombinant 

human IL4 (Sigma), 1 µg/ml anti-human monoclonal antibodies to CD40 (G28.5 clone, 

Biolegend), and 20 µg/ml monoclonal anti-human IgM (clone DA4.4, kindly provided by Joelle 

Wiels)) was used as a positive control. Positive B cell selection was done using FITC-

conjugated antibodies to CD19 marker. The experiment was repeated twice. Results are 

shown in Figure 19.  

The CD23 marker was not detected in 24h, 48h or 72h upon abexinostat treatment in the 

normal B cells (Figure 19A). Neither G2/M peak of the cell cycle (Figure 19B), nor increase of 

cyclin D1 protein (Figure 19C) were observed in 48h or 72h of abexinostat treatment. Thus, we 

conclude that overexpression of CD6 and CCND1 genes upon abexinostat treatment in normal 

cells is not due to B cell activation. 
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Figure 19. Flow cytometry analysis of B-cells activation markers.  

Normal B-cells non-treated, treated with abexinostat (24h, 48h, 72h), and treated with the activation 

cocktail as a positive control. (A)  CD23 (median of PE-A fluorescent intensity). (B) Cell cycle in normal 

B-cells (percentage of cells with G2/M peak). (C) Cyclin D1 levels (median of Alexa Flour 488 

fluorescent intensity). 

 

6. Changes in histone H3K9 modifications in gene coding 
sequences upon abexinostat treatment 

 

We used chromatin immunoprecipitation followed by RT-qPCR to assess histone modifications 

distribution in the coding sequences of four genes in response to abexinostat treatment in MCL 

(B) 

(C) 
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cell line Granta-519 and the control cell line RPMI-8866. Two genes from the 11q13 locus, 

CCND1 and GSTP1, one housekeeping gene GAPDH, and one unrelated muscle-specific 

transcriptional activator gene MyoD (inactive in lymphocytes) were tested for H3K9 acetylation 

and di-methylation.  

In the control RPMI-8866 cell line, chromatin immunoprecipitation analysis showed pronounced 

reaction of H3K9 acetylation in response to the treatment in GSTP1 gene: it increased in 1h 

and decreased back to the initial level in 24h (Figure 20). Initial level of acetylation in this gene 

was high in comparison with other three tested genes; this is not surprising taking into account 

a high activity of this gene (Figure 21). CCND1, GAPDH and MyoD genes did not reveal any 

marked changes in their histone H3K9 acetylation levels. In the MCL Granta-519 cell line, 

actively expressed genes progressively increased their acetylation: moderately (GSTP1, 

GAPDH) or dramatically (CCND1). The highest initial level of acetylation was observed in 

CCND1 gene, which is the most expressed in MCL (Figure 21). The silent MyoD gene had a 

low level of acetylation, which progressively decreased during the treatment (Figure 20).  

Thus, in the control cell line, inactive (CCND1 and MyoD1) and house-keeping (GAPDH) 

genes had no reaction to abexinostat, whereas a highly expressed GSTP1 (Figure 21) 

experienced hyperacetylation at 1h of treatment, but at 24h, acetylation status was normalized. 

In contrast, in MCL cells, active genes underwent a steady hyperacetylation, whereas the silent 

gene MyoD decreased its acetylation by half (24h).  

Observed histone H3 Lys9 acetylation dynamics suggests that HDAC inhibitor causes genes 

hyperacetylation which is persistent in the MCL cell line, but gets balanced in normal cells in 

the long term. This concerns mostly active and highly expressed genes. 
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Figure 20. Histone H3K9 acetylation distribution in genes in response to abexinostat 
treatment in control RPMI-8866 and MCL Granta-519 cell lines.  

Histone H3K9Ac distribution was measured with RT-qPCR after ChIP and normalized to total histone 

H3.  

 

Figure 21. Gene expression in RPMI-8866 and Granta-519 cell lines.  

The graphics represents average of 5 independent experiments for each cell line. 11q13 genes’ 

expression was measured with RT-qPCR vs. GAPDH. The values are presented as mean±SEM. 

 

H3K9 di-methylation showed unique a pattern in both control and MCL cell lines (Figure 22). 

The H3K9me2 levels increased at 24h of treatment: 3-4 times in the control cell line and 10-

100 times in MCL. Notably, di-methylation levels in the MCL cell line initially were low as 
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compared to the control (0.001 vs. 0.5), and the observed increase in MCL was, therefore, 

more dramatic. This pattern might indicate presence of a common non-specific HDACi-

triggered mechanism of histone hypermethylation in the coding sequences, possibly due to 

activation of HMTs. 

Taking into account results obtained from the gene promoters (Figure 5 in the manuscript), 

we may conclude that histone H3K9 modifications in the control cell line RPMI-8866 reveal 

similar profiles of reaction to abexinostat both inside the genes and in the promoter regions (in 

the subset of sensitive to upregulation genes). However in MCL Granta-519 cell line, these 

profiles were partially different: in promoter zones of upregulated genes, histone acetylation 

and di-methylation increased strongly at 1h, and then decreased at 24h, whereas histone 

modification levels inside active genes (CCND1, GSTP1, GAPDH) were increased at 24h of 

treatment as compared to the controls. 

 

Figure 22. Histone H3K9 di-methylation distribution in genes in response to abexinostat 
treatment in control RPMI-8866 and MCL Granta-519 cell lines.  

Histone H3K9me2 distribution was measured with RT-qPCR after ChIP and normalized to total histone 

H3.  
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II  - Downregulation of cyclin D1 levels 
in mantle cell lymphoma 
 

 

In MCL cells, HDAC inhibitors NaBu and SAHA were shown to decrease cyclin D1 protein 

levels without affecting CCND1 gene expression rates (Heider et al., 2006), (Kawamata et al., 

2007). Nevertheless, until now, there is no clear understanding of this phenomenon. In this part 

of the work, we explored potential mechanisms of cyclin D1 protein downregulation in MCL by 

abexinostat.  

 

1.  Abexinostat decreases cyclin D1 protein levels in MCL 

 

To evaluate the effect of abexinostat on cyclin D1 protein levels in MCL and normal B cells, 

four MCL (Granta-519, Jeko-1, NCEB-1 and UPN-1) and three control (RPMI-8866, Priess and 

Remb1) cell lines were treated with abexinostat during 1, 24 and 48 hours. Then cells were 

fixed, permeabilized, stained with FITC-conjugated antibodies against cyclin D1 protein (Santa 

Cruz Biotechnology sc-8396) and analyzed with fluorescence-activated cell sorting (FACS) 

analysis. The experiment was repeated at least two times for each cell line. 
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In three tested MCL lines out of four, abexinostat decreased cyclin D1 protein levels as 

compared to non-treated cells: 1.3 times in UNP-1 (24h), 2.3 times in Jeko-1 (24h) and 1.6 

times in NCEB (48h) (Figure 23). No changes were observed neither in Granta-519, nor in 

three tested control cells lines. 

This data shows that abexinostat decreases cyclin D1 protein levels in MCL cells, but not in the 

normal B cells, though Granta-519 did not reveal intensive downregulation of cyclin D1 protein 

levels.  

 

Figure 23. Representative flow cytometry histograms of cyclin D1 protein response to 
abexinostat treatment in the control and MCL cell lines.  
The signal fluorescent intensity of Alexa Fluor 488 is given in tables as median. 
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2. HDACi TSA downregulates cyclin D1 protein levels 

 

We next evaluated another HDAC inhibitor, Trichostatin A (TSA) in MCL cells to compare it 

with effects revealed for abexinostat. For this purpose, gene expression and cyclin D1 protein 

levels were assessed in Jeko-1 cell line upon TSA application. TSA was reported to be efficient 

in increasing general histone acetylation without growth inhibition in different types of cells 

while applied in concentrations 3.3, 6.6 and 33 nM (Yoshida et al., 1990). We have first tested 

these concentrations on naïve B cells: none of them had cytotoxic effects (data not shown). 6.6 

nM was chosen as a working concentration for further analysis. 

Jeko-1 cells were treated with 6.6 nM TSA for 24 and 48 hours; then fixed, permeabilized, 

stained with FITC-conjugated antibodies against cyclin D1 protein (Santa Cruz Biotechnology 

sc-8396) and analyzed with fluorescence-activated cell sorting (FACS) analysis. Cells treated 

with 100 nM abexinostat were used as a positive control. To analyze cell cycle populations, 

cells were treated with DAPI just before loading on FACS. 

 

Figure 24. Effect of TSA and abexinostat on cyclin D1 protein levels in Jeko-1 cell line.  

Cyclin D1 protein levels were assessed with flow cytometry using FITC-conjugated antibodies. Negative 

control (K-): non-treated cells; positive control (K+): cells treated with abexinostat (ABX).  
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At 24h, both TSA and abexinostat induced a 1.2-fold decrease of cyclin D1 protein, whereas at 

48h, only TSA decreased cyclin D1 protein levels (1.3 times) (Figure 24). These results 

confirm that HDACis indeed slightly decrease the cyclin D1 levels in MCL cells. 

RT-qPCR analysis did not reveal any significant changes in gene expression upon TSA 

treatment (Figure 25). Thus, the same process was observed for both abexinostat and TSA: 

these HDACis downregulate cyclin D1 protein without altering CCND1 gene expression in 

MCL. 

 

Figure 25. Expression 11q13 genes upon TSA treatment in Jeko-1 cell line.  

Cells were treated with 6.6 nM TSA during 1h and 24h, then gene expression was measured using RT-

qPCR vs. GAPDH expression. The results represent the average of three independent experiments. The 

data is presented as mean±SEM. Statistical test applied: 1 way ANOVA. 
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3. Abexinostat triggers nucleoli disaggregation in MCL and 
normal B cells 

 

Cyclin D1 downregulation by HDACis was described by several research groups (Heider et al., 

2006), (Kawamata et al., 2007), but the exact mechanism of this phenomenon has not been 

yet elucidated. 

Previously we have shown that abexinostat did not reduce CCND1 expression (Figure 4 in the 

manuscript), suggesting that gene expression is not involved in downregulation of cyclin D1 

protein levels. Thus, we next analyzed the level of translation in abexinostat-treated cells. 

We aimed to verify whether abexinostat would trigger any changes in nucleoli state. For this, 

we have used the 3D-FISH experiments in order to visualize nucleolar phosphoprotein B23, 

which corresponds to granular and fibrillar regions of the nucleolus. It is a structure where 

ribosomes are synthesized and undergo maturation for following transport to the cytoplasm 

where they serve for translation of mRNA to proteins.  

MCL Granta-519 and control RPMI-8866 cell lines were treated with 100 nM abexinostat for 1 

and 24 hours, then immunostained with anti-B23 antibody (Sigma). After 24 hours of treatment, 

we detected a significantly higher ratio of cells without visible nucleoli (Figure 26: 10% vs. 3% 

and 12% vs. 4% in average for Granta-519 and RPMI-8866, respectively). 

 Interestingly, the simultaneous detection of nucleoli with the genes of interest (CCND1, 

GSTP1 and IgH) detected a loss of their association already at 1h of abexinostat treatment 

(Figure 27). We have previously shown that IgH, CCND1 and GSTP1 genes after translocation 

(11;14) in MCL cells were localized in the perinucleolar space which has a transcriptionally 

active background (Allinne et al., 2014). Nevertheless, this dissociation after abexinostat 
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treatment does not lead to a decrease in the transcription level of the 11q13 genes (in the 

manuscript: Figure 4 and supplementary Figure 2). 

 

 
Figure 26. The number of cells with no visible nucleoli increased 24 hours after the 
abexinostat treatment.  

RPMI-8866 and Granta-519 cells were fixed after the 1h and 24h of abexinostat treatment. 

Immunostaining was made to visualize nucleoli (B23 protein). (A) The graph shows rate of cells with 

reduced nucleoli at 0, 1 and 24 hours after abexinostat treatment. The dashed curve corresponds to 

Granta-519 cell line and continuous curve to RPMI-8866 cell line. (B) A confocal section of Granta-519 

cell stained with antibodies against a nucleolar marker B23 (blue). n/t- not-treated; 1h and 24h - 

abexinostat treated. Scale bar: 5μm. 
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These results indicate that HDAC inhibitor abexinostat perturbs nucleoli structure; this might 

have effect on ribosomal level and thus might affect protein translation process. Therefore, we 

further tested main ribosomal rRNA’s levels upon abexinostat treatment. 

 

Figure 27. Genes lose their association with nucleoli after abexinostat treatment.  

Fluorescent in situ hybridization was performed to reveal CCND1, GSTP1 and IgH genes (red), then 

immunostaining was used to visualize heterochromatin (H3K9me3, blue) and nucleoli (B23, green). Cell 

line presented: Granta-519. n/t – without treatment; 1h – abexinostat treatment. Scale bar: 5um. 
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4. Abexinostat does not affect rRNA levels 

 

To further investigate abexinostat effect on nucleoli, we assessed rRNA quantity in five MCL 

and five control cell lines before and after treatment. Cells were treated with 100 nM 

abexinostat during 1 and 24 hours, total RNA was extracted, and a relative quantity of 18S + 

28S rRNAs to total RNA was measured using Bioanalyzer (Agilent Technologies). For each 

cell line, from 2 to 6 repeats of the experiment were performed.  

No significant changes in rRNA levels were detected upon abexinostat treatment in both MCL 

and control cell lines (Figure 28).  

 

 
Figure 28. Dynamics of rRNA content in abexinostat treated cells.  

5 MCL and 5 control cell lines were treated with abexinostat during 1 and 24 hours. Total RNA was 

extracted from treated and non-treated cells. Relative level of 18S + 28S rRNA to total RNA was 

measured using Bioanalyzer, Agilent Technologies, Inc. The box represents the first and third quartiles, 

the band inside the box is the median, the ends of the whiskers represent the minimum and the 

maximum of the total data.  
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5. MG132 proteasome inhibitor decreases cyclin D1 protein levels  

 

As cyclin D1 protein reduction by abexinostat was not caused by chromatin modifications, gene 

expression changes or ribosomal state, we hypothesized that HDACi might affect cyclin D1 on 

the level of its degradation. Cyclin D1 turnover is regulated by 26S proteasome (Alao, 2007), 

thereby its inhibition would be expected to increase cyclin D1 protein level.  

We treated Jeko-1 cell line with proteasome inhibitor MG132 (25 mM) during 24h or 48h and 

tested abexinostat effect on cyclin D1 protein levels using flow cytometry and FITC-conjugated 

antibodies against cyclin D1 (Santa Cruz Biotechnology sc-8396). Surprisingly, we observed 

cyclin D1 protein reduction upon MG132, applied alone or together with abexinostat 

(respectively 1.26 and 1.45 times in 24h; 1.38 and 1.35 in 48h) (Figure 29).  

Remarkably, MG132 induced G1 arrest: treated cells accumulated in G0/G1 phase of the cell 

cycle (24h and 48h). Cells treated with only abexinostat revealed partially this effect: G2/M 

 

Figure 29. Effect of proteasome inhibitor MG-132 on Cyclin D1 protein level in Jeko-1 
cell line. 

Jeko-1 cells were treated with 25 mM MG132 during 24h or 48h. Cyclin D1 protein levels were 

measured with FACS using FITC-conjugated antibodies against cyclin D1. Median of cyclin D1 

fluorescent intensity (Alexa Fluor 488) is shown in tables.  
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peak of the cell cycle decreased in 48h. Moreover, MG132 triggered cells apoptosis after 48h 

of treatment, which was not observed in the cells treated only with abexinostat (Figure 30). 

 

Figure 30. Effects of abexinostat and MG132 on cell cycle progression of Jeko-1 cell 
line.  

Jeko-1 cells were treated with proteasome inhibitor MG132 (25 mM) and abexinostat (100nM) for 24h or 

48h. Cells cycle and apoptosis level were assessed with DAPI. 
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III  - Epigenetic state of rearranged loci 
in MCL and normal primary cells 
 

 

Usage of established cells lines is very practical due to their ability to indefinitely proliferate, 

whereas primary cells extracted directly from donors have very limited lifespan. Nevertheless, 

there are advantages of using primary cells over cell line, because the latter is transformed and 

has a deviation from normal primary cells. That is why we wanted to assess chromatin state 

and gene expression in the samples from patients with MCL and healthy donors. Thus, in this 

part of the work, we evaluated 11q13 gene expression, chromatin state and abexinostat effect 

in one sample from MCL patient and in normal B cells from healthy donors. 

 

1. 11q13 genes are overexpressed in MCL patient in the same 
way as in MCL cell lines. 

 

One sample from a patient with MCL and three samples from healthy individuals were 

analyzed for gene expression near the (11;14) translocation point. Six genes out of ten were 

overexpressed in a patient with MCL as compared to normal B-lymphocytes: CD6, CD5, CTSF, 

GSTP1, CCND1, ORAOV1 (Figure 31). The same pattern was observed in MCL cell lines 

(Figure 1 in the manuscript). Thus, cell lines and primary cells from humans have the same 

background of gene overexpression after the t(11;14) translocation. 
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Figure 31. Gene expression levels of selected 11q13 genes around the (11;14) 
translocation point in human samples.  

The data represents the average of genes expression in normal B-lymphocytes (NBL) obtained from 

three healthy individuals and in MCL cells from one patient (MCLp). Transcript abundance is normalized 

to GAPDH, and presented on a base 10 logarithmic scale. The value 1 corresponds to GAPDH 

expression. The data is presented as mean ± SEM. *p<0.05; **p<0.01; ***p<0.001 (unpaired Student’s t 

test relative to control). 
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time, gene expression was assessed at 1 and 24 hours both in treated and untreated cells. 

Then expression in treated cells was related to untreated ones from the same time point. 

In normal B cells, only CTSF gene reacted to the abexinostat treatment with an 11-fold 

increase of expression at 24h (Figure 32A). In case of MCL cells from the patient, all ten 

tested genes had a tendency to decrease their expression at 1h and then increase it at 24h 

(Figure 32B).  

Thus, normal B-lymphocytes from humans revealed a profile of gene expression similar to 

normal lymphoblastoid cell lines in reaction to abexinostat: one gene in NBL (CTSF) and four 

genes in LCL (CTSF, CD6, GSTP1 and CCND1) increased their expression at 24h of 

treatment. Interestingly, CTSF was the gene with the lowest expression in NBL. 

MCL cells from the patient showed a different pattern of gene expression as compared to MCL 

cell lines. In the latter, four genes (CD6, CD5, CTSF, GSTP1) increased their expression at 

24h of abexinostat treatment, while in the MCL patient, genes showed a quick decrease (1h) in 

expression with a gradual increase at 24h.  

Here, we observe abexinostat-triggered downregulation of KAT5, CTSF, CCND1 and UVRAG 

genes expression in cells from one MCL patient. More samples from MCL patients should be 

analyzed to confirm this pattern.  
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Figure 32. Effect of abexinostat on 11q13 genes’ expression levels.  

The cells were treated with 100 nM abexinostat, and then 11q13 genes’ expression levels were 

measured by RT-qPCR vs. GAPDH. Expression was analyzed in both treated and non-treated cells, in 

1h and 24h, then expression in treated cells was related to that from untreated cells of the same time 

point. The values are presented as mean ± SEM. (A) Normal B-lymphocytes from healthy individuals. 

The values represent an average of two samples of normal B-lymphocytes. **p<0.01 (1 way ANOVA 

with Turkey post-test). (B) MCL cells from a patient. The values represent a mean of technical triplicates 

from one patient’s sample.  
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3. Effect of abexinostat treatment on histone H3K9 modifications 
in gene coding sequences 

 

We next used chromatin immunoprecipitation followed by RT-qPCR to assess histone 

modification distributions (H3K9Ac, H3K9me2, H3K9me3) within the coding sequences of 4 

genes (CCND1, GSTP1, GAPDH, MyoD) in response to abexinostat treatment in the MCL cells 

from patient. 

Analysis of H3K9me3, a mark of constitutive heterochromatin, revealed a two-fold decrease of 

H3K9me3 level in all four tested genes at 24h of treatment (Figure 33).  This corresponds to 

the results of immunohistochemistry analysis where abexinostat was shown to trigger global 

heterochromatin desegregation in 24h of treatment (Figure 3 in the manuscript). At 1h, the 

H3K9Me3 levels varied depending on the gene: in GSTP1 tri-methylation dramatically 

decreased, in other three genes, it either did not change (MyoD) or moderately increased 

(GAPDH, CCND1). 

 

Figure 33. Distribution of histone H3K9me3 marks in response to abexinostat treatment 
in MCL cells from the patient. Data is normalized to total histone H3. 
 

In response to abexinostat treatment, H3K9 acetylation in three active genes (GSTP1, 
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observed in the GSTP1 gene (8-fold). At 24 hours, acetylation levels were substantially 

reduced in GSTP1 and GAPDH, whereas in CCND1 acetylation remained increased twofold. 

The silent gene MyoD did not reveal any changes. A similar pattern was observed in the 

control RPMI-8866 cell line, whereas all MCL cell lines demonstrated an increase of H3K9 

acetylation (Figure 20). Thus, cells from MCL patient revealed a reaction similar to normal 

cells, but with more pronounced changes in expression and with overexpression of CCND1 at 

24h. 

  

Figure 34. Histone modification distributions in the genes in response to abexinostat 
treatment in MCL patient.  

H3K9Ac (A) and H3K9me2 (B) distributions were measured with RT-qPCR after ChIP and normalized to 

total histone H3.  
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lines, where both control and MCL, showed increase of H3K9me2 levels in 24 of treatment 

(Figure 22). 

In summary, MCL cells from the patient revealed a different response to abexinostat treatment 

at the level of histone modifications as compared to MCL cell lines. The same was observed in 

the gene expression analysis (Figure 32B and Figure 4 in the manuscript). That might 

indicate a substantially different cellular background in intact human cells and established cell 

lines. To verify that, more samples from MCL patients have to be analyzed. 
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IV  - CONCLUSIONS 
 

 

This work gives a new insight on the mechanisms of gene expression regulation in lymphomas. 

Lymphomas are the types of cancer where almost 100% of cases are caused by chromosomal 

translocations triggering aberrant gene expression. The most common consequences of 

chromosomal translocations are: gain or loss of genetic information and formation of fusion 

genes bearing often oncogenic qualities. However, some translocations do not lead to any of 

these structural abnormalities, but still trigger the malignant transformation by the mechanisms 

which are not clearly understood. In this work, we have studied mechanisms of gene 

expression misregulation after chromosomal translocation on an example of mantle cell 

lymphoma. 

MCL harbors a (11;14)(q13;q32) translocation, which leads to cyclin D1 proto-oncogene 

overexpression. Previous studies by our and other research groups hinted at epigenetic 

mechanisms involved in this upregulation (Allinne et al., 2014), (Bennaceur-Griscelli et al., 

2004). Therefore, we have concentrated on studying epigenetic processes that might be 

involved in MCL development. We have studied chromatin state and 11q13 genes’ expression, 

and elucidated effects of epigenetic drugs (HDAC inhibitors) in MCL and control cells. 

 

In the first part of the work, we used ChIP-on-chip analysis to demonstrate an active epigenetic 

background in both the rearranged loci (11q13 and 14q32) after the translocation t(11;14) in 

MCL. Analysis of gene expression arrays from GEO database and RT-qPCR gene expression 



CONCLUSIONS 

 
155 

analysis revealed overexpression of a group of genes (including CCND1 and GSTP1) in MCL 

as compared to normal cells. These overexpressed genes are spread along 15 Mb region, and 

notably, they are located on both sides from the chromosome breakpoint: i.e. in the locus 

which is relocated to der14 and on the der11 which is not replaced. 

ChIP-on-chip array have uncovered that these upregulated genes had markedly different 

histone H3 Lys9 modifications signature as compared to the rest of the genome. Intriguingly, 

this signature was different even in the control cells, thus before the translocation occurs. 

As soon as it became evident that epigenetic processes are involved in genes’ upregulation in 

MCL, it was interesting to evaluate epigenetic drugs influence on gene expression and 

chromatin state to understand better the underlying mechanisms of misregulation in 

lymphomas. We have tested HDAC inhibitors, a new class of anti-cancer drugs, shown 

promising results in lymphomas cure, though its exact mechanism of action is far from being 

clear.  

The direct consequence of HDACis application is an increase of histone acetylation levels in 

genome. Indeed, immunostaining with antibodies against constitutive mark of heterochromatin 

(H3K9me3) demonstrated global chromatin activation upon Abexinostat treatment: in 24h in 

both MCL and control cells, the amount of heterochromatin dramatically decreased. 

Nevertheless, ChIP-on-chip analysis did not show any global changes in acetylation status of 

genes’ promoters (in MCL and control cells). Instead, only a small proportion of genes revealed 

a response to the drug: the genes sensitive to upregulation by the translocation (11;14) 

(referred as ‘upregulated’). Moreover, acetylation in this subset of genes behaved in different 

ways depending on the cell line: decrease or increase of Ac levels in 1h, and then decrease in 

24h. Notably, H3K9me2 marks as well intensively reacted to abexinostat treatment, but 
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similarly to acetylation, only in the small subset of upregulated genes. Thus, only small 

proportion of genes reacted to the HDACi treatment, whereas the rest of genes were sheltered 

from its influence; and observed changes were triggered by HDACi rather indirectly. 

Then, we tested abexinostat influence on 11q13 genes’ expression. RT-qPCR has shown that 

not all genes sensitive to upregulation by the translocation (11;14) reacted to abexinostat 

treatment. Mostly genes with initially low expression (lower that GAPDH) increased their 

expression in 24h of treatment. For example, abexinostat increased CCND1 expression levels 

in MCL cells, but not in the control. The same scenario was observed in follicular lymphoma, 

which has (11;18) translocation leading to BCL-2 overexpression. Abexinostat did not change 

BCL-2 expression levels, but increased those of CCND1 and CTSF, which were initially very 

less expressed in the follicular lymphoma cells.  

 

A number of findings demonstrated HDACi-induced downregulation of cyclin D1 protein 

(Heider et al., 2006), (Kawamata et al., 2007). However mechanisms of this process were not 

understood. In the second part of the work, we have investigated HDACis impact on the cyclin 

D1 levels. 

Indeed, FACS analysis showed that HDACis abexinostat and TSA decreased amount of cyclin 

D1 protein in MCL cell lines in 24h of treatment. However, efficiency of cyclin D1 degradation 

depended on the cell line type. Considering that our results had shown these HDACis to not 

alter CCND1 expression in MCL, we searched for possible mechanisms of cyclin D1 protein 

downregulation on other levels. 

We have assessed nucleoli state using 3D-FISH and detected a significantly higher ratio of 

cells with dramatically reduced nucleoli in 24h of treatment (in both MCL and control). 
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However, 18S + 28S rRNA levels analysis did not reveal any changes upon abexinostat 

treatment. Then, we have verified whether HDACi might impact on cyclin D1 degradation. We 

have inhibited proteasomes in MCL cells and evaluated cyclin D1 protein levels using FACS. 

Paradoxically, proteasome inhibitor MG132 as well led to reduction of cyclin D1 protein 

amount. Thus, apparently abexinostat affects neither translation process on the ribosomal 

level, nor cyclin D1 protein degradation by proteasome.  

 

In the third part of the work, we have verified whether abexinostat would have the same effects 

in MCL primary cells as those which have been discovered in MCL cell lines. For this, we have 

tested gene expression and chromatin state in one sample from patient with MCL and 

compared it to normal B-lymphocytes (NBL) extracted from blood of donors (three samples). 

First of all, we have noticed that 11q13 genes are overexpressed in MCL patient as compared 

to NBL in the same way as in MCL vs. control cell lines. Then, we have applied abexinostat 

and found out that in NBL it triggered the same type of changes as in the normal cell lines: one 

gene with lowest initial expression substantially increased it in 24h of treatment. However, in 

the MCL patient’s cells, genes showed a totally different response to abexinostat: some part of 

the genes decreased its expression already in 1h of the drug application, including CCND1 

gene. Apart from that, histone modifications inside the genes demonstrated as well other type 

of response to the treatment in contrast to MCL cell lines. To verify observed differences, more 

MCL patient’s samples have to be analyzed. Nevertheless, taking into account the fact that 

primary cells differ from cells established in the culture, it is possible to assume that we 

witnessed different impact of abexinostat on the cellular processes due to deviation of 

biological background in cell lines and in primary cells. 
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I  - Epigenetic mechanism of gene 
upregulation in MCL 
 

 

All chromosomes have their own location in the nucleus according to their level of activity in the 

different types of cells (Bolzer et al., 2005). Genes’ and genomic regions’ positions can be 

changed depending on the cell type, the cell cycle stage and in case of pathologies (Bartova 

and Kozubek, 2006). The fact that genomic territories are evolutionary conserved suggests its 

important role in genomic processes. Indeed, correlation between genomic sequence position 

and its expression level was demonstrated (Takizawa et al., 2008).  

In this context, translocation (11;14)(q13;q32) in mantle cell lymphoma might provoke global 

changes in genes’ transcription activity due to repositioning to a new nucleolar surroundings. 

11q13 and 14q32 loci are located in the different nucleolar regions and have different levels of 

gene activity. For instance, CCND1 gene is not expressed in normal B cells, in contrast, 

immunoglobulin IgH genes are abundantly expressed. In B-lymphocytes, chromosome 14 is 

situated in the nucleolar center and is associated with nucleolus due to actively transcribed 

rRNA genes situated in this chromosome. Chromosome 11, in opposite, is found near 

nucleolar periphery. Previously, it has been demonstrated by our research group that one allele 

of 11q13 locus translocates in the space and takes more central position on the derivate of 

chromosome 14 in MCL (Allinne et al., 2014) (Figure 35A). Thus, the 11q13 locus together 

with the situated on it CCND1 gene, replaces into the active nucleolus region revealing high 
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transcription levels. Interesting, derivate of chromosome 11 (which contains GSTP1 gene) 

does not move from the nucleus periphery, however it acquires position close to nucleolus 

surface (Figure 35B-C; data not published).  

Relocalization to the new transcriptionally active surroundings in the nucleus most likely would 

impact the gene transcription activity. Indeed, we have demonstrated that apart from CCND1 

and previously reported GSTP1 (Bennaceur-Griscelli et al., 2004) genes, a big group of genes 

is overexpressed after (11;14) translocation in MCL. Analysis of gene expression arrays from 

GEO database revealed 36 genes spread on 15 Mb region on both sides from the breakpoint 

on the chromosome 11. Using RT-qPCR we tested some genes from this list and proved that 

their expression is higher in MCL vs. control B cells. We observed the same picture both in cell 

lines and in primary cells from humans. 

 
Figure 35. Nucleolar localization of the CCND1 alleles, der14 IgH and der 11 GSTP1 in 
MCL and normal B cells. 

(A) Perinucleolar relocalization of the der14 IgH and CCND1 alleles in the MCL Granta-519 cell line. A 

representative image of double-labeled DNA FISH. IgH is green, CCND1 is red, and nucleolus (B23) is 

blue. Scale bar represents 5μm. Image is from (Allinne et al., 2014). (B-C) A confocal section of NBL (B) 

and Granta-519 MCL cells (C) stained with antibodies against B23 (a nucleolar marker, blue) and 

hybridized in situ with the GSTP BAC probe (green). Scale bar: 5um. After the translocation, the position 

of the GSTP gene region vs. the nuclear periphery did not change significantly, while its proximity to the 

nucleolus has greatly increased (0,65 um in Granta-519 cells vs. 1,37 um in NBL).  The difference in the 

localization of the GSTP locus vs. the surface of the nucleolus is statistically significant (p < 10-15). 

(A) (B) (C)
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Revealed data calls into question the previous model explaining CCND1 overexpression in 

MCL, where a strong IgH Eμ enhancer was hypothesized to upregulate CCND1 transcription. 

First of all, single IgH enhancer misregulating genes on over 15 Mb region seems being very 

unlikely. Secondly, experiments on transgenic mice demonstrated that mere expression of the 

CCND1 gene under the control of the IgH Eμ enhancer is not sufficient to develop lymphomas 

(Fiancette et al., 2010). Finally, in our previous work a colocalization of IgH and translocated 

CCND1 loci with nucleolus-derived factor, nucleolin, was discovered, which presumably 

activates transcription (Allinne et al., 2014).  

Indeed, our study of epigenetic landscape in the rearranged loci revealed more active 

background in the translocated 11q13 locus (higher level of H3K9Ac marks in MCL vs. control). 

Interesting, 14q32 locus as well demonstrated more active background after the translocation. 

But this should not come as a surprise as replacement of a big part of chromosome cannot 

happen without affecting neighborhood, including its epigenetic level.  

Analysis of histone modification marks in genes’ promoters has shown the 11q13 locus to have 

distinct epigenetic signature. In the control cell line, its H3K9Ac levels are almost twice lower 

than in the rest of genome, whereas after the (11;14) translocation acetylation levels increases 

twice and become the highest over the rest of genome. Histone methylation levels are as well 

affected by the translocation. Normal B cells have low H3K9me2 levels in the 11q13 locus, 

which are changed after the translocation in a cell line-dependent way. For example, in Jeko-1 

and UPN-1 H3K9me2 levels increase twice (as compared to the control), but in Granta-519 it 

substantially decreases in the entire chromosome 11.  

In summary, the findings presented here offer another mechanism of CCND1 and other 11q13 

genes overexpression in MCL. It favors large-scale epigenetic changes to be responsible for 
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genes’ upregulation. It is reasonable to expect that chromosomal translocations in other types 

of lymphomas may provoke similar mechanisms of misregulation. 

 

 

II  - Are the 11q13 genes prone for 
being upregulated ? 
 

In the current work, we have discovered that subset of genes which are overexpressed after 

the (11;14) translocation (upregulated) have distinct epigenetic signature and their histone 

acetylation levels are very high. From Figure 36, it is obvious that ratio of H3K9Ac/H3K9me2 

levels is markedly higher in the subset of upregulated genes than in the rest of genome and 

even than in the 11q13 locus.  

Such active epigenetic signature in the subset of upregulated genes in Jeko-1 and UPN-1 cell 

lines or in the entire 11q13 locus in Granta-519 can simply reflect the fact of these genes being 

upregulated after the translocation. Indeed, the 11q13 locus changes its normal positioning and 

relocalizes to the new active chromatin surroundings, what obviously influences on the 

transcriptional rates. However, active epigenetic signature in the subset of upregulated genes 

exists as well in the control cell line, thus yet before the translocation occurs. This might 

indicate the possibility that these genes can be prone for upregulation due to their more active 

epigenetic background.  
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Figure 36. Ratio H3K9Ac/H3K9me2 levels in gene promoters in MCL and control cell 
lines.  

Chromatin from control cell line (RPMI-8866) and three MCL cell lines (Granta-519, Jeko-1, UPN-1) was 

immunoprecipitated with antibodies against H3K9Ac, H3K9me2 and panH3 as a reference. Enrichment 

in acetylation and methylation normalized to panH3 was assessed using Agilent Human Promoter 

Microarray. Statistically significant H3K9Ac and H3K9me2 peaks were calculated in the entire genome, 

the 11 chromosome, the 11q13 locus, and in the genes sensitive to upregulation after the translocation 

t(11;14) (‘upregulated’).  H3K9 acetylation and H3K9 methylation levels (amount of statistically 

significant histone modification peaks divided by number of genes in the region analyzed) were 

calculated, and then ratio of H3K9Ac/H3K9me2 was taken, which is represented on the chart.  

 

Important marks such as H3K9Ac, H3K14Ac, H3K4me3 and others are highly correlated with 

active promoters (Jenuwein and Allis, 2001). Enrichment in this histone marks near 

transcription start sites (TSS) facilitates binding of transcriptional machineries. However, their 

mere presence at the promoter regions does not initiate transcription, as far as other 

components including RNA polymerase II and associated transcription factors have to be 

attracted to the promoter and be initiated. This can explain why upregulated genes with high 
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H3K9Ac/H3K9me2 ratio in the control cell line are not expressed, but nevertheless are prone 

for upregulation after the translocation in MCL. 

Interesting, in the work (Burman et al., 2015), it has been demonstrated that some histone 

modifications can predispose genome regions to breakage and translocation by creating more 

active chromatin state and, hence, more predisposed for double strand breaks (DSB). Thus, 

we cannot refuse the thought that such distinct active epigenetic signature unraveled in 11q13 

locus in normal B cells might increase probability of DSB and therefore - translocations. It is 

known that most of translocation events in B cells occur during V(D)J  IgH gene recombination, 

a period with high DSB frequency. If that period coincides with time when some other locus has 

epigenetic background prone for DSB too, it might increase probability of chromosome 

translocation events by an order of magnitude. In this extend, it is worth to verify whether this 

active signature in 11q13 genes is specific to B cells, and when exactly during cell cycle it 

appears.  

 

 

III  - Active chromatin marks are 
required for abexinostat-triggered effects 
 

Regardless general abexinostat-induced heterochromatin disaggregation, we have not 

observed global changes in gene expression in response to the treatment. Instead, the 

changes in histone modifications marks and in gene expression had a precise topography and 
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affected only small portion of genes. In agreement with our observations, altering a relatively 

small proportion of expressed genes by HDACis was independently described by other groups 

(Van Lint et al., 1996), (Peart et al., 2005), (Halsall et al., 2012). 

We have discovered that abexinostat effect on histone modifications was largely restricted to 

loci with active epigenetic background. Namely, the subset of upregulated genes or in some 

cases the entire 11q13 locus, which showed the highest H3K9Ac / H3K9me2 ratio in the 

genome (Figure 36 and Figure 5 in the manuscript). Perhaps, enrichment in H3K9Ac mark, 

or in other active mark which coincides with H3K9Ac, might be a requirement for abexinostat-

mediated effects in the histones. This is consistent with observations (Lopez-Atalaya et al., 

2013) and (Wang et al., 2009), indicating that HDACis effects were largely restricted to loci 

enriched in active chromatin marks such as H3K4me3, AcH3K9,14 and H4K16Ac. 

Why HDACis would be attracted to active chromatin marks? (Wang et al., 2009) suggested a 

model according to which active and primed genes (not yet expressed, but not silent neither) 

are subject to dynamic regulation by HATs and HDACs. In actively transcribed regions 

acetylation marks have to be controlled to avoid its excess, as it can destabilize chromatin and 

increase cryptic initiation of transcription. In genes primed for transcription, a transient binding 

of HATs and HDACs was detected indicating their potentiated state for future activation upon 

receiving external signal. Therefore, as soon as these types of genes are associated with 

HDACs, they are more sensitive for HDAC inhibitor application. These data is in accordance 

with our observations, demonstrating that the set of upregulated genes, highly expressed in 

MCL and not expressed but prone for transcriptional activation in normal B cells, reveal 

intensive response to abexinostat treatment. 
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Figure 37. Changes in H3K9Ac/H3K9me2 enrichment in genes’ promoters upon 
abexinostat treatment.  

MCL (Granta-519, Jeko-1, UPN-1) and control (RPMI-8866) cells were treated with 100 nM abexinostat 

and H3K9Ac, H3K9me2 enrichment normalized to panH3 was analyzed at defined time points using 

Agilent Human Promoter Microarray. Statistically significant H3K9Ac and H3K9me2 peaks were 

calculated in the entire genome, the 11 chromosome, the 11q13 locus, and in the genes sensitive to 

upregulation after the translocation t(11;14) (‘upregulated’) for untreated (n/t), and 1h and 24h 

abexinostat-treated cells. H3K9 acetylation and H3K9 methylation levels were calculated, and then ratio 

of H3K9Ac/H3K9me2 was taken, which is represented on the charts. 

 

Abexinostat triggered enrichment in H3K9Ac mark vs. H3K9me2 in MCL Jeko-1 and UPN-1, 

and in control RPMI-8866 cell lines. It was detected in short time (1h) in the promoters of 

upregulated genes or in 11q13 locus (Figure 37). In contrast, Granta-519 revealed decrease of 

H3K9Ac / H3K9me2 ratio in 1h. From Figure 36 is it evident that Granta-519 has especially 

high enrichment of H3K9Ac vs. H3K9me2 mark in entire genome (as compared to other cell 
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lines), what probably could be a premise of differing HDACi-induced changes in histone 

modifications. Interesting, shifted H3K9Ac / H3K9me2 enrichment triggered by abexinostat had 

tendency to be re-balanced in long-time period of treatment (24h), with exception of UPN-1, 

which demonstrated loss of active mark. 

 

Intriguingly, in MCL, regardless dramatic changes in histone modifications marks in 1h of 

treatment, we have not detected immediate impact on gene expression. Instead, expression of 

genes increased only in 24h. Corresponding to a new emergent view on histone code theory, 

histone-tail covalent modifications do not directly participate in recruitment of chromatin 

regulators and TFs. Instead, they induce chromatin fiber allosteric transitions which, in turn, 

play a key role in transcriptional regulation (Lesne et al., 2015), (Rando, 2012). Thus, active 

chromatin marks would just favor transcriptionally permissive state of a gene, but not trigger 

transcription. We might suppose that after involving other factors and RNA Pol II, transcription 

starts with delay after HDACi application. Importantly, in 24h, we have observed 

overexpression of only a few genes with active epigenetic marks: among the upregulated 

genes, mostly genes with low basal expression reacted to abexinostat with increase in their 

transcription rates. This does not sound controversial to the pervious reflections: since 

HATs/HDACs cooperation already provided very high acetylation level to a gene region, HDAC 

inhibitor apparently cannot increase it even more. 

 

 



DISCUSSION 

 
168 

IV  - Mechanism of HDACi-induced 
downregulation of cyclin D1 protein 
 

Data from several research teams have reported HDACi-induced degradation of cyclin D1 

protein levels (Heider et al., 2006), (Kawamata et al., 2007), however till now, underlying 

mechanisms remain obscure. 

Consistently with previous observations, our findings showed that incubation of MCL cells with 

HDACis abexinostat or TSA resulted in downregulation of cyclin D1 protein levels. However, 

changes in CCND1 gene expression rates were not observed. It means that HDACi does not 

downregulate cyclin D1 protein levels via its gene expression. Interesting, we have detected 

HDACi-induced increase of CCND1 expression in the control cell lines. But this did not lead to 

changes in the cyclin D1 protein levels. This is expectedly, as in normal B cells, basal CCND1 

expression was extremely low and protein was expressed in trace amounts, thus HDACi-

induced 4-fold increase in transcription did not come to the protein level. 

As long as HDACis does not alter CCND1 expression in MCL, the keys of cyclin D1 

downregulation must be lying in the downstream processes. Using 3D-FISH analysis we have 

analyzed nucleoli state upon abexinostat treatment. Nucleoli are the fabrics of ribosomes 

where they are synthesized and undergo maturation. Then ribosomal subunits are transported 

to the cytoplasm to serve for translation of mRNA to proteins. We have found out nucleoli 

reduction in 24h of abexinostat treatment in both control and MCL cells. However, analysis of 

18S+28S rRNA levels did not detect any significant changes during HDACi treatment. Thereby, 

abexinostat does not induce cyclin D1 protein downregulation on the ribosomal level.  
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Apart of being ribosomal fabrics, nucleoli have active transcriptional background not only for 

rDNA genes but as well for RNA Pol II-transcribed genes (Allinne et al., 2014). Thus, from one 

hand, we can hypothesize that reduction of nucleoli might indicate general depression of 

transcriptional apparatus in the nucleus. But, from another hand, we detected HDACi-triggered 

overexpression of some genes in 24h. This apparent contradiction can be explained in appeal 

to the discussed above gap between expression rates and epigenetic background in a locus. 

We might speculate that abexinostat probably induces depression of transcriptional 

background, but this does not yet come to the level of transcription, however it might indirectly 

lead to redaction of active marks ratio in the histones. Especially this can be true for the genes 

with high level of active marks, like the discovered subset of upregulated genes. Indeed, from 

the Figure 37 we can notice that in 24h of treatment ratio of active/not-active histone marks 

(H3K9Ac/H3K9me2) decreases in 24h as compared to n/t or to 1h in all tested cell lines. This 

decrease in acetylation levels indicates definitely not direct HDACi effect.  

Howbeit, as soon as HDACi-induced downregulation of cyclin D1 protein is not dependent on 

chromatin modifications, gene expression rates, nor on ribosomal state, we assumed that 

HDACi might affect cyclin D1 on the level of its degradation. Cyclin D1 turnover is regulated by 

26S proteasome (Alao, 2007), thus its inhibition would be expected to increase cyclin D1 

protein levels. However, MG132 inhibition of proteasomes, in contrary, led to cyclin D1 levels 

reduction. In accordance with our results, proteasome inhibitor PS-341-triggered degradation of 

cyclin D1 protein has been previously described in Mino cell line (Pham et al., 2003). However, 

in breast cancer cells, proteasome inhibitor PS-341 lead to accumulation of cyclin D1 

polyubiquitinated form (Ishii et al., 2006). These observations point to additional non-

proteasomal mechanisms of abexinostat action. 
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In contrast to our findings, HDACi TSA was shown to downregulate cyclin D1 protein levels by 

26S proteasomal degradation pathway (Alao et al., 2006). Nevertheless, it was demonstrated 

on breast cancer cells, which have different molecular-biological background. Moreover, TSA 

working concentrations were much higher as in our study (1μM vs. 6.6 nM).  

Recently, (Kawamata et al., 2007) has discovered that in MCL cells, cyclin D1 can be 

downregulated with HDACi SAHA via blocking protein translation by inhibiting PI3K/eIF4E-BP 

pathway. Phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR/eIF4E-BP pathway is responsible for 

initiation of translation (Gingras et al., 2001). Indeed, this pathway was previously shown to be 

activated in MCL cells and to be linked to elevated levels of cyclin D1 protein (Rizzatti et al., 

2005), (Rosenwald et al., 1993). Several investigators have reported that HDAC inhibitors can 

block the PI3K/Akt pathway and decrease cyclin D1 levels in cancer cells (Zhou et al., 2006), 

(Kodani et al., 2005), (Zhang et al., 2015), albeit causative role of HDACi in blocking 

PI3K/eIF4E-BP pathway and hence downregulating cyclin D1 was demonstrated only in the 

study (Kawamata et al., 2007). 

Thus, the same HDACis can decrease cyclin D1 protein levels via different mechanisms 

depending on the cell type. Our results obtained on MCL indicate mechanism of abexinostat-

induced cyclin D1 downregulation rather similar to one described for SAHA in the study 

(Kawamata et al., 2007). To verify it, analysis of abexinostat effect on PI3K/eIF4E-BP pathway 

members have to be performed in MCL cells.  
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Cell cultures 

The human mantle cell lymphoma (MCL) cell lines Granta-519, Jeko-1, UPN-1, Mino, NCEB-1 

and follicular lymphoma cell line RL were used in experiments. Either naïve CD20+ B-

lymphocytes from peripheral blood or a lymphoblastoid RPMI-8866, Priess, Remb1, IARC-211, 

IARC-171 cell lines were used as a normal control.  

RPMI-8866, Priess, Remb1, IARC-211, IARC-171, Granta-519, Mino, RL cell lines and primary 

cells from humans were maintained in RPMI-1640 (Gibco) supplemented with 10% fetal bovine 

serum, 2 mM L-glutamine, and 1% penicillin-streptomycin (Invitrogen). UPN-1 and NCEB-1 

cells were cultured in MEM alpha medium (Invitrogen, Cergy Pontoise, France) supplemented 

with 10% heat-inactivated fetal bovine serum (FBS, Hyclone, Perbio science), 2 mM L-

glutamine, and 1% penicillin-streptomycin (Invitrogen). Jeko-1 cells were maintained in RPMI 

1640 supplemented with 20% fetal bovine serum, 2 mM L-glutamine, and 1% penicillin-

streptomycin (Invitrogen). Patients’ malignant lymphocytes and normal B-lymphocytes were 

isolated from peripheral blood, separated by Ficoll-Hypaque density sedimentation, and placed 

in RPMI-1640 supplemented with 10% serum and antibiotics. Cells were cultured at 37°C in a 

humidified 5% CO2 atmosphere. 

 
Drugs treatment 

HDAC inhibitors 

Stock solution of abexinostat in dimethylsulfoxide (DMSO) at 0.1 mM was conserved at -20°C. 

Cells were incubated in the appropriate growth media supplemented with abexinostat at 0.1 µM 

concentration during 1, 24, 48 or 72 hours at normal growth conditions.  Control cells had an 

equivalent level of DMSO added. 
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Stock solution of TSA 6.6 µM was conserved at -20°C. Working concentration 6.6 nM was 

used for cell treatment. 

Proteasome inhibition 

Proteasome inhibitor MG-132 (Euromedex) was prepared as stock solution 25 mM in DMSO 

and kept at -20°C. Cells were treated in the appropriate growth media supplemented with MG-

132 at 25 µM concentration during 24 and 48 hours. 

 

Cell viability assay 

Cytotoxic effects of the abexinostat compared to the LBH589 were evaluated on cell 

proliferation using WST-1 reagent (Roche diagnostic). Different concentrations of the HDAC 

inhibitor were tested:  

0.0002, 0.001, 0.005, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.25, 0.5, 1, 1.25, 1.5 and 2 µM  

5*104 cells were incubated in triplicate with different concentration of abexinostat in tissue 

culture 96-well-plate. 24h later, 10µl of WST-1 reagent was added to the cells and incubated 

over 3 hours. Spectrophotometric quantification of cell proliferation was performed at 450 nm. 

Cell viability was compared to cells incubated with DMSO (<0.02%). Growth inhibition 50 

(GI50) was estimated after 24 hours. 

 

Apoptosis assessment 

Cell death was assessed by labeling cells with Annexin-V-FITC (Roche Applied Science) and 

DAPI.  Aliquots of 106 cells were stained with 0.5μl Annexin-V-FITC for 10 min and diluted in 
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500μl PBS buffer with 0.5 μl DAPI. Samples were analyzed (n=10 000) by flow cytometry on 

the FACScan flow cytometer LSRII (BD Biosciences) within 30 min. Annexin V positive cells 

were considered as apoptotic cells. 

 

Chromatin immunoprecipitation (ChIP) 

For chromatin isolation, cells were fixed with 1% formaldehyde and sonicated in a lysis buffer 

(50mM Tris-HCl, pH 8.0, 10mM EDTA, 1% SDS, 0.2mM PMSF, 1% PIC) with 10 cycles of 20 

sec pulse-on, 30 sec pulse-off, 40% amplification. The non-solubilized material was removed 

by centrifugation at 16,000g for 10 min. The size of chromatin fragments (1-3 nucleosomes) 

was monitored by electrophoresis in a 1% agarose gel after rev-crosslinking and treatment with 

5 µg/ml RNaseA and 2 µg/ml proteinase K.  

Chromatin immunoprecipitation was performed as following: 21 µg of chromatin solution was 

incubated overnight with 25µl of the PrG-dinabeads (Sigma) and 1-5 µg of antibodies in 1ml 

reaction solution. H3-pan antibodies were used in quantity 1.5 µl per reaction (17-10254, 

Millipore), H3K9ac 5 µg (17-658, Millipore), H3K9me2 4 µg (ab-1220, abcam) and IgG rabbit 

as a negative control 2 µg (Millipore). Extracted DNA was washed with ChIP-buffers from 

ChIP-IT Express kit (Active Motif) and purified by phenol-chlorophorm extraction.  

Precipitated DNA was followed by the qPCR and/or microarray analysis. 

Immunoprecipitated DNA was qPCR-amplified using hot-start DNA polymerase (FastStart 

SYBR Green Master Mix, Roche Life Science) and the following primers: 

GAPDH Fw : GCT GGC ACC ACT ACT TCA GAG A 
    Rv : GCC AAC AGC AGA TAG CCT AGG A 
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GSTP1   Fw : GTG GAG GAA ACT GAG ACC CAC TGA 
    Rv : TGG AAG GAT GAG AGA CTG CCA CAC 
CCND1  Fw :  CGC CCT CGG TGT CCT ACT TCA A     
               Rv :  GAT CCC TAG AAA CAC CAC GGC AAA 
 

The presence of non-specific sequences in the ChIP was verified using the following primers: 
 

MYOD   Fw : CGC CAG GAT ATG GAG CTA CT 
    Rv : GAG TGC TCT TCG GGT TTC AG 

 

qRT-PCR 

The expression level of 11q13 genes was determined by quantitative real-time PCR using 

specific primers designed for cDNA listed below. 100 ng of total RNA purified using guanidine 

thiocyanate and purification columns (NucleoSpin RNA II kit, Machery-Nagel) was converted 

into cDNA using Random Hexamer Primer (Fermentas) and RevertAid H Minus Reverse 

Transcriptase (Fermentas). cDNA was quantified using qPCR with FastStart Universal SYBR 

Green Master (Roche Diagnostics). Expression was calculated with ΔΔCt method (GAPDH 

gene expression used as control). 

Gene   Sequence 5' - 3' 
CD6 Fw GCC CTG ACC ACC TTC TAC AGT 
  Rv GGG TTG GCA GTT GGG ATG T 
CD5 Fw CCA TCC GTC CTT GAG GTA GA 
  Rv CCT TGT ACC TGC TGG GGA T 
MTA2 Fw TAT GTG GGT GGC TGG TAA TG 
  Rv GCC TGG CTG ATA GTA ATG CC 
BAD Fw TCA CCA GCA GGA GCA GCC AA 
  Rv GAG CGC GAG CGG CCC CGA AA 
KAT5 Fw CTT GGC CAA AAG ACA CAG GT 
  Rv CAT CCT CCA GGC AAT GAG AT 
CTSF Fw GAC TGT GAC AAG ATG GAC AA 
  Rv CCA CGG AGT CAT TGA TGT AGA 
GSTP1 Fw AAT GAA GGT CTT GCC TCC CT 
  Rv GAC CTC CGC TGC AAA TAC AT 
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CCND1 Fw AGT TGT TGG GGC TCC TCA G 
  Rv AGA CCT TCG TTG CCC TCT GT 
UVRAG Fw TGG AGT CCC TAG TCC ATG TTG 
  Rv AGG AGG GGA GAA GTT GCA GT 
ORAOV1 Fw GTC AGG ACA TAT TCG ATG CCA T 
  Rv GCT GCC TTC CCT CCA TCA CA 
GAPDH Fw CTG CAC CAC CAA CTG CTT AG 
 Rv AGG TCC ACC ACT GAC ACG TT 

 

ChIP-on-chip 

NimbleGen (tilling micro-array) 

After amplification as recommended (Nimblegen), DNA samples were hybridized to a human 

genome tiling array consisting of 50-mers positioned every 100 bp along non-repeated 

sequences of the selected regions of chromosomes 11 and 14. Raw data were collected by 

Nimblegen (Roche-NimbleGen, Iceland). . 

The data obtained has been analyzed with the ACME (Algorithm for Capturing Microarray 

Enrichment) package, available from Bioconductor. ACME analysis and permutation 

significance testing has been performed as described for the H3K9Me2 and H3K9Ac tiling 

ChIP data. 

Signal intensity data were extracted from the scanned images of each array using Roche 

NimbleScan software. The ratio of the input signals for the experimental and control samples 

that were co-hybridized to the array was computed for each feature of the array. Then the log2 

ratio was computed. Subsequently, the NimbleGen log2 ratio files have been analyzed using 

ACME (Algorithm for Capturing Microarray Enrichment) (Scacheri et al., 2006a), (Scacheri et 

al., 2006b), written in R language and freely available through Bioconductor. ACME supports 

data analysis for any NimbleGen tiled array design. The software is based on the assumption 
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that the real signal is represented by multiple probes that are located close to one another in 

the genome, producing a neighbor effect. After loading the data into R, ACME automatically 

sorts probes by their genomic location. The user must then set a threshold within the 

distribution of the ratio measurements above which true positive signals are expected to be 

enriched. We have set this threshold at 0.85 or the 85th percentile. To identify potential sites of 

enrichment, a window of user-defined size (window is of size 400, corresponding to 1-2 

nucleosomes) moves stepwise along the tiled region, centering at every probe and testing if it 

contains a higher than expected number of probes over the defined threshold 0.85 (chi-

squared test). Single probes that yield high intensity ratios most likely represent noise and are 

automatically filtered out by the windowing/threshold analysis (Scacheri et al., 2006b). The 

resulting output contains treated p-values (-log10(p-value)) with corresponding chromosome 

coordinates. We have imported these results into the Integrated Genome Browser (Nicol et al., 

2009) for visualization. Analyses performed at other window sizes and threshold produced 

similar results (data not shown).  

While computing p-values using ACME, independence between individual data points was 

violated to an unknown degree (Scacheri et al., 2006a), (Scacheri et al., 2006b). We used a 

permutation-based algorithm to assess the significance of the ACME p-values and to establish 

relevant cutoffs likely to be representative for H3K9Me2 and H3K9Ac binding events. The null 

hypothesis is that the probe label order has no effect upon the computed ACME p-values. If 

changing the order of the probe labels destroys the effect, then a random permutation test can 

be done. Hence, we have generated 40 permuted samples for each of the two datasets 

(H3K9Me2 and H3K9Ac). We processed the ChIP-on-chip signal with ACME for each of the 

permuted datasets, and then computed the False Discovery Rates (FDR), corresponding to the 

ACME p-value of each probe. FDR was computed by counting the rate of permutation ACME 
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p-values which were larger than the ACME p-value obtained on the real dataset. According to 

the obtained results, for p-value <0.0001 (-log10(p-value)>4), the FDRs were very close to zero, 

meaning that peaks characterized by -log10(p-value)>4 were not likely to be discovered by 

chance. Thus, we set cutoff p-value = 0.0001. 

 

Agilent micro-array (gene promoter zones) 

After amplification, DNA samples were hybridized to the two-colored SurePrint G3 Human 

Promoter Microarray, 1x1M (G4873A, Agilent, Palo Alto, Calif., USA) covering genes’ promoter 

zones all over the genome. Labeling, hybridization and washing were carried out according to 

the Agilent mammalian ChIP-chip protocol (ver.9.0). 

Scanned images were quantified with Agilent Feature Extraction software under standard 

conditions. The probe signals were filtered: replicated probes were merged by median and 

saturated probes (at least 1 channel) with high pixel heterogeneity have been removed. 

Filtered probes were processed as following: intra-array quantile normalization, log2 ratio 

transformation (ratio of modified histone probe signal to pan-H3 histone probe signal), GC% 

normalization, Z-score transformation to homogenize the value distributions (median was 

subtracted from each log2(ratio) and result was divided by the standard deviation).  

The p-value for each probe was computed by a modification of the Whitehead algorhythm as 

follows: an average was calculated for each probe with 2 surrounding it probes within 300bp, 

the distribution of these averages was obtained, each average value was reported to the 

distribution of averages. The area to the right of the value under the averages distribution curve 

was computed: this is the p-value which was attached to each probe. The threshold is set at 
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95% of the distribution (p-value = 0.05). The resulting output contains treated p-values             

(-log10(p-value)) with corresponding chromosome coordinates. We have imported these 

results into the Integrated Genome Browser (Nicol et al., 2009) for visualization. 

 

3D-fluorescence in situ hybridization and immunodetection 

Cells were immobilized on glass coverslips coated with Poly-D-lysine hydrobromide (Sigma). 

The cells were then treated as previously described to preserve their three-dimensional (3D) 

structure (Solovei et al., 2002). Denatured nuclei were hybridized overnight with denatured 

probes, IgH labeled green (RP11-346I20, AmpliTech) and CCND1 labeled orange (RP11-

300I6, AmpliTech). After probe hybridization, slides were washed and nucleoli were detected 

using mouse anti-B23 antibody (Sigma) and goat anti-mouse Pacific Orange antibody 

(Invitrogen). Transcription factories or heterochromatin clusters were immunodetected 

simultaneously with detection of nucleoli using rabbit anti-RNA Pol II phosphorylated at serine 

5 (ActiveMotif) or rabbit anti-H3K9me3 (Upstate) antibodies, correspondingly, and goat anti-

rabbit Alexa 633 (Invitrogen) antibody. DNA was counterstained with 4,6 diamidino-2-

phenylindole (Vectashield, Vector) or Bobo1 (Invitrogen). Confocal microscopy, image 

processing, and statistical analysis were carried out as described (Allinne et al., 2014). 

 

Flow cytometry analysis 

For Cyclin D1 protein level estimation 106 cells were fixed and permeabilized with pure cold 

methanol over night. Fixed cells were incubated with cyclin D1 FITC-conjugated mouse 

monoclonal antibody (Santa Cruz sc-8396) as recommended by the manufacturer. Cellular 
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fluorescence was measured on the FACScan flow cytometer LSRII (BD Biosciences) with the 

use of corresponding software. 

 

B-cell activation 

For the control B-cell activation experiments, B-cells (105 cells/ml of complete medium) were 

activated by incubation for 24h, 48h and 72h with a cocktail containing 10 ng/ml recombinant 

human IL4 (Sigma), 1 µg/ml anti-human monoclonal antibodies to CD40 (G28.5 clone, 

Biolegend), and 20 µg/ml monoclonal anti-human IgM (clone DA4.4, kindly provided by Joelle 

Wiels). Activation was confirmed in 24h of treatment by FACS with PE-labeled anti-CD23, 

PerCP/Cy5.5-labeled anti-CD69, and APC-labeled anti-CD80 B-cell activation markers, and 

FITC-labeled anti-CD19 B-cell specific marker (Biolegend). All the FACS antibodies were 

produced by Biolegend (USA). B-cell activation was further confirmed by BrDU incorporation, 

72h after the activating treatment. For BrDU incorporation cells were incubated with 50 µM of 

BrdU for 1 hour at 37°C. After that cells were washed with PBS and fixed in cold 70 % ethanol 

using standard procedure. Cell cycle was analyzed by FACS with propidium iodide for DNA 

staining. 

 

Analysis of gene expression data from GEO database  

MCL genes expression data collected from Gene Expression Omnibus (GEO) and 

corresponding to different microarray platforms, was compared to gene expression in normal 

naïve B (NNB) cells. The raw expression data from GEO was downloaded: MCL (15 

conventional MCL samples composed of Peripheral blood cd19+ tumour cells, GSE16455) and 
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NNB (3 naïve B cell samples from tonsils of patients undergoing routine tonsilectomy, 

GSE12366). Student t-tests on the three probes targeting GAPDH showed that there was no 

difference in the expression levels of GAPDH in the MCL group versus the NNB group. 

Barplots showed same ranges among the two groups too, hence no batch effect correction has 

been carried out. 

The expression data have been normalized (R function rma) and half of the probes 

corresponding to the least variable features have been removed (R function nsFilter, default 

settings). The differentially expressed genes between MCL and NNB lymphocytes were 

identified using an Empirical Bayesian approach to computing a moderated t-statistic variable 

implemented in the limma R package with the Benjamini-Hochberg procedure for multiple test 

adjustment. The adjusted p-value threshold was set to 0.05. Next, we have used Bioconductor 

library GexMap (Cagnard, 2009) in order to detect the existence of chromosomic regions, 

characterized by clusters of differentially expressed genes. With this library, the list of 

differentially expressed genes was mapped to the respective chromosomal locations, 

chromosome by chromosome. Each chromosome is divided into units 1 Mbp and the quantity 

of observed differentially expressed genes is compared to a computed theoretical (expected) 

quantity of differentially expressed genes using the following equation: 
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Perinucleolar relocalization and nucleolin as crucial events in the 
transcriptional activation of key genes in mantle cell lymphoma. 

Allinne J, Pichugin A, Iarovaia O, Klibi M, Barat A, Zlotek-Zlotkiewicz E, Markozashvili D, Petrova N, 

Camara-Clayette V, Ioudinkova E, Wiels J, Razin SV, Ribrag V, Lipinski M, Vassetzky YS. 

Blood. 2014 Mar 27;123(13):2044-53. PMID: 24452204 

 

In this paper we were analyzing the molecular mechanism of CCND1 activation caused by 

t(11;14) translocation in mantle cell lymphoma (MCL). 

Using a combination of 3D- and immuno-FISH, we have first observed that translocated 

CCND1 allele significantly more distant from the nuclear membrane than its non translocated 

counterpart, with a very high proportion of IgH-CCND1 chromosomal segments localized next 

to a nucleolus. Regardless of their subnuclear localization, gene loci can be protected from 

nearby activating elements by insulator sequences such as those bound by the CCCTC-

binding factor. Using the Transfac software, 2 potential CTCF-binding sites, referred to here as 

CTCF26 and CTCF2, were identified 26 and 2 kb upstream of the CCND1 promoter.  

My role in the paper consisted in performing chromatin immunoprecipitation experiments. The 

precipitated DNA fragments were analyzed by quantitative PCR using primers for amplification 

of several sequences located near or within of CCND1 gene. This analysis confirmed the 

presence of CTCF on 2 potential CTCF-binding sites - CTCF26 and CTCF2 (Figure 5 in the 

article). 

However, despite CTCF being bound immediately upstream of CCND1 transcription start site, 

that gene is still transcribed in MCL cells. With further analysis we have shown that nucleolin, a 

nucleolus-derived factor, interacts with potential enhancer elements located further 
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downstream in the CCND1 gene and activates transcription. That coincided as well with 

colocalisation of active RNA polymerase II close to perinucleolar areas. 

I have also tested whether the proximity with a nucleolus is important for CCND1 transcription 

in MCL cells using a pan-histone deacetylase inhibitor Abexinostat (S78454 / PCI-24781). It 

provokes an overall disorganization of the nuclear structure. In treated GRANTA-519 MCL cells 

the percentage of the der14-carried CCND1 alleles, still localized next to a nucleolus, 

decreased from 75% to 53% as early as 1 hour after treatment. Next, I have performed gene 

expression analysis using RT-qPCR and shown that this phenomenon was accompanied by a 

4-fold reduction in CCND1 transcription (Figure 6 in the article). Thus, CCND1 expression in 

MCL cells requires an unperturbed chromatin and nuclear organization. 

Our results allowed us to propose a hypothesis that CCND1 transcriptional activation in MCL 

cells relates to the repositioning of the rearranged IgH-CCND1-carrying chromosomal segment 

in a nuclear territory with abundant nucleolin and active Pol II molecules. Similar transforming 

events could occur in Burkitt’s and other B-cell lymphomas.  
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DNA polymorphism and epigenetic marks modulate the affinity of a 
scaffold/matrix attachment region to the nuclear matrix. 

Kisseljova NP, Dmitriev P, Katargin A, Kim E, Ezerina D, Markozashvili D, Malysheva D, Planche E, 

Lemmers RJ, van der Maarel SM, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS. 

Eur J Hum Genet. 2014 Sep;22(9):1117-23. PMID: 24448543 

 

Mechanisms that regulate attachment of the scaffold/matrix attachment regions (S/MARs) to 

the nuclear matrix remain largely unknown. We have studied the effect of the simple sequence 

length polymorphism (SSLP), DNA methylation and chromatin organization in an S/MAR 

implicated in a facioscapulohumeral dystrophy (FSHD), a hereditary disease linked to a partial 

deletion of the D4Z4 repeat array on chromosome 4q. This FSHD-related nuclear matrix 

attachment region (FR-MAR) loses its efficiency in myoblasts from FSHD patients.  

First, we have shown that DNA-methylation level of FR-MAR affects its efficiency of attaching 

to the nuclear matrix (NM). Moreover, DNA with the 8nt+ SSLP haplotype had a much higher 

affinity to the NM than the 8nt- haplotypes (for the details refer to the original article). Then we 

wondered whether other features of chromatin structure could further contribute to this 

association.  

My role in the paper was to perform a ChIP analysis of the FR-MAR region of normal and 

FSHD myoblasts with antibodies against Methyl-CpG-binding protein (MeCP2), and histone 

acetylated on Lys9 (H3K9ac). DNA was isolated from immunoprecipitates and quantified via 

TaqMan qPCR using G17-F/G17-R primers. We have observed that there were no H3K9ac in 

FR-MAR region in normal myoblasts, contrasting with FSHD cell lines. MeCP2, in opposite, 

was present in high levels within the FR-MAR region in normal myoblasts and decreased in 
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FSHD (Figure 3 in the article). Interestingly, the presence of MeCP2 appeared to be inversely 

related to that of H3K9ac not only in primary myoblasts but also in carcinoma cell lines, 

suggesting that it indicates a common mechanism of MeCP2/chromatin binding operates in two 

types of cells (Supplementary Figure S2 in the article). 

To further explore these possible relationships between various features of the chromatin 

structure and FR-MAR affinity to the NM, we treated the human cervical carcinoma cells CaSki 

with the methylation inhibitor 5-aza-dC, the histone deacetylation inhibitor trichostatin A or a 

combination there of. Isolation of NM and further qPCR have shown that the FR-MAR 

attachment to the NM depends on both the methylation of the DNA and the acetylation levels in 

the chromatin-contained histones. 

Thus, three criteria were found to be important for high-affinity interaction between the FR-

MAR and the nuclear matrix: the presence of a specific SSLP haplotype in chromosomal DNA, 

the methylation of one specific CpG within the FR-MAR and the absence of H3K9ac in the 

relevant chromatin fragment. 
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Histone deacetylase inhibitors and epigenetic regulation in lymphoid 
malignancies. 

Diana Markozashvili, Vincent Ribrag, Yegor S. Vassetzky 

Invest New Drugs. 2015 Sep 30. [Epub ahead of print]   PMID: 26423245 

 

Information on histone modifications and HDAC inhibitors discussed in the Introduction chapter 

III is summarized and published in this review. 
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Résumé : Le lymphome des cellules du 
manteau (LCM) est un lymphome d’une rare 
agressivité causée par la translocation 
chromosomique t(11;14)(q13;q32) qui activet le 
proto-oncogène cycline D1 (CCND1). Nos et 
d’autres découvertes récents suggère un 
mécanisme epigénétique de régulation des 
gènes dans les LCM plutôt que simplement un 
simple effet enhancer-promoteur.  
Plusieurs nouveaux traitements contre le LCM 
ont été proposés, y compris les inhibiteurs 
d’histone deacetylase (HDACis) qui impliquent 
des mécanismes epigénétique. Dans LMC, les 
HDACis se sont révélés antiprolifératifs et ils 
diminuent le niveau de la cycline D1. Jusqu'à 
présent, les mécanismes d’action des HDACis 
reste obscurs. Une étude d’état epigénétique sur 
les loci 11q13 et 14q32 devrait fortement 
améliorer notre connaissance de ces processus. 

L’objectif de ce travail est d'étudier la structure 
de la chromatine dans le locus réarrangé (11;14) 
dans des cellules LMC par rapport au locus 
11q13 et 14q32 dans les lymphocytes humains 
normaux. Nous avons ensuite étudié l'effet de 
différentes HDACis sur le locus réarrangé 
(11;14) à plusieurs niveaux: l'acétylation / la 
méthylation des histones ainsi que conformation 
de chromatine et l'expression des gènes. 
Nous avons montré que t(11;14) conduit à la 
surexpression de CCND1 avec un groupe de 
gènes couvrant plus de 15 Mb autour du point 
de translocation. Les mêmes gènes, sensibles à 
la dérégulation par la translocation, réagissent 
au traitement HDACi en augmentant leur 
expression. Nos résultats indiquent que HDACi 
stimule la désagrégation de l'hétérochromatine 
sur l'ensemble du génome, mais les promoteurs 
de gènes restent à l'abri de ces effets. 

 

 

Title : Nuclear organization and transcriptional regulation in lymphomas 

Keywords : transcription, cancer, lymphoma, HDACi, epigenetics, translocation 

Abstract : Mantle cell lymphoma (MCL) is a 
rare aggressive lymphoma caused by the 
chromosome translocation between 11 and 14 
chromosomes, which lead to activation of the 
proto-oncogene cyclin D1 (CCND1). Our and 
others recent discoveries suggest epigenetic 
mechanisms of CCND1 up-regulation. 
 
Several new treatments are proposed for MCL, 
including histone deacetylase inhibitors 
(HDACis) with epigenetic mechanism of 
action. In MCL cell lines, HDACis were shown 
to have antiproliferative effects and to decrease 
cyclin D1 protein levels in the cells, however, 
till now underlying mechanisms remain 
obscure. Therefore, a study of epigenetic state 
in 11q13 and 14q32 loci should significantly 
advance our knowledge about the mechanisms 
of cyclin D1 upregulation in MCL. 

The purpose of the present work was to study 
chromatin structure in the rearranged 
(11;14)(q13;q32) locus in MCL cells as 
compared to the 11q13 and 14q32 loci in 
normal human lymphocytes. Furthermore, we 
studied the effect of different HDACis on the 
rearranged (11;14) locus at several levels: 
histone modifications, chromatin conformation 
and gene expression. 
We have shown that t(11:14)(q13;q32) 
translocation leads to overexpression of CCND1 
along with a group of genes spanning over 15 
Mb around the translocation point. The genes, 
sensitive to deregulation by t(11;14) 
translocation, react to the HDACi treatment by 
increasing their expression. Importantly, while 
HDACi stimulates genome-wide disaggregation 
of heterochromatin, gene promoters stay 
shielded from its effect. 
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Le lymphome des cellules du manteau (LCM) est un lymphome d’une rare agressivité 

causée par la translocation chromosomique t(11;14)(q13;q32) juxtaposant le locus de la 

cycline D1 (CCND1) sur le chromosome 11 avec le locus de la chaîne lourde de 

l'immunoglobuline (IgH) sur le chromosome 14 (Fisher et al., 1995) (Fig. 1’). En 

conséquence, une cycline D1 proto-oncogène devient active alors qu’elle n’est pas 

exprimée dans les cellules-B normales (Bosch et al., 1994), (Dreyling et al., 1997). 

L’hypothèse initiale semble indiquer une influence directe du fort enhancer IgH sur le 

promoteur du gène CCND1 afin de surexprimer sa transcription (Wang and Boxer, 2005). 

Quoi qu’il en soit, le locus CCND1 peut être éloigné jusqu'à 200kb du point de cassure du 

chromosome. Nous avons montré que le locus 11q13 relocalise depuis la périphérie du 

noyau jusque au centre actif de transcription et au nucléole (Allinne et al., 2014). Ce 

phénomène qui mène à l’activation du locus entier, suggère un mécanisme epigénétique de 

régulation des gènes dans les LCM plutôt que simplement un simple effet enhancer-

promoteur.  

Plusieurs nouveaux traitements contre le LCM ont été proposés, y compris les inhibiteurs 

d’histone deacetylase (HDACis) qui impliquent des mécanismes epigénétique (Camara-

Clayette et al., 2012). Dans LMC, les HDACis sont décrites comme vaillant des effets 

antiprolifératifs et diminuant le niveau de la cycline D1 dans la cellule (Heider et al., 2006). 

Jusqu'à présent, les mécanismes d’action des HDACis reste obscurs. Pour ces raisons, 

une étude d’état epigénétique sur les loci 11q13 et 14q32 devrait fortement améliorer notre 

connaissance sur les mécanismes de surexpression de la cycline D1 dans les LMC. 
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L’objectif de ce travail est d'étudier la structure de la chromatine dans le locus réarrangé 

(11;14)(q13;q32) dans des cellules LMC par rapport au locus 11q13 et 14q32 dans les 

lymphocytes humains normaux. Nous avons ensuite étudié l'effet de différentes HDACis 

sur le locus réarrangé (11;14)(q13;q32) à plusieurs niveaux: l'acétylation / la méthylation 

des histones de la chromatine ainsi que sa conformation et l'expression des gènes. 

Dans la première partie de travail, nous avons utilisé l'analyse ChIP-on-chip pour montrer 

un fond épigénétique actif dans les deux locus réarrangés (11q13 et 14q32) après la 

translocation t(11;14) dans LCM (Fig. 2’). Analyse des tableaux d'expression génique de 

base de données GEO et analyse de l'expression génique RT-qPCR ont révélé une 

surexpression d'un groupe de gènes (y compris CCND1 et GSTP1) dans MCL par rapport 

aux cellules normales. Ces gènes surexprimés se sont répartis le long de 15 Mb région, et 

notamment, ils sont situés sur les deux côtés du point de cassure de chromosomes: c'est-

à-dire, dans le locus qui est déménagé à der14 et sur le der11 qui n’est pas remplacé. 

La méthode de ChIP-on-chip a découvert que ces gènes surexpressées avaient nettement 

différente signature de modifications de histone H3 Lys9 par rapport au reste du génome. 

Curieusement, cette signature est différente même dans les cellules de control, c'est-à-dire  

avant la translocation se produit (Fig. 3’). 

Dès qu'il est devenu évident que les processus épigénétiques sont impliqués dans la 

régulation à la hausse de gènes dans LCM, il était intéressant d'évaluer les médicaments 

épigénétiques qui influencent l'expression des gènes et l'état de la chromatine afin de 

mieux comprendre les mécanismes sous-jacents de dérégulation dans les lymphomes. 

Nous avons testé les inhibiteurs de HDAC, une nouvelle classe de médicaments anti-

cancéreux, montrés des résultats prometteurs dans les lymphomes remèdes, bien que son 

mécanisme d'action exact est loin d'être claire. 
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La conséquence directe de l'application HDACis est une augmentation des niveaux 

d'acétylation d’histones dans le génome. En effet, immunocoloration avec des anticorps 

contre marque constitutive de l'hétérochromatine (H3K9me3) a montré l'activation de la 

chromatine globale après traitement avec Abexinostat: en 24h, montant de 

l'hétérochromatine considérablement diminué et dans les cellules LCM et dans le contrôle 

(Fig. 4’). Néanmoins, l'analyse ChIP-on-chip n'a pas montré de changements globaux dans 

l'état d'acétylation des promoteurs de gènes (en LCM et des cellules de contrôle) (Fig. 5’). 

Au lieu de cela, une seule petite proportion de gènes ont révélé une réponse au 

médicament: les gènes sensibles à une régulation positive par le translocation (11;14) 

(appelée comme «upregulated»). En outre, l'acétylation dans ce sous-ensemble de gènes 

se sont comportés de manière différente selon la lignée cellulaire: diminution ou 

augmentation des niveaux d’Ac dans 1h, puis diminution dans 24h. Notamment, les 

marques H3K9me2 ainsi réagi intensivement au traitement avec Abexinostat, mais comme 

acétylation, que dans un petit group de gènes régulés à la hausse. Ainsi, seule petite 

proportion de gènes a réagi au traitement HDACi, tandis que les autres gènes ont été l'abri 

de son influence; et les changements observés ont déclenchées par HDACi de manière 

indirecte. 

Ensuite, nous avons testé influence d’Abexinostat sur l'expression de gènes 11q13. RT-

qPCR a montré que tous les gènes sensibles à une régulation positive par le translocation 

(11;14) ont réagi au traitement avec Abexinostat. Principalement, la plupart des gènes avec 

une expression faible (inférieur de GAPDH) ont augmenté leur expression dans 24h de 

traitement (Fig. 6’). Par exemple, Abexinostat augmenté les niveaux d'expression de 

CCND1 dans les cellules de LCM, mais pas dans le contrôle. Le même scénario a été 

observé dans le lymphome folliculaire, qui a t(11;18) conduisant à la surexpression de Bcl-

2. Abexinostat n'a pas changé niveaux d'expression de BCL-2, mais a augmenté et celles 
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du CCND1 et CTSF, initialement exprimé très fiable dans les cellules de lymphome 

folliculaire. 

Un certain nombre de résultats ont montré la régulation négative de la protéine cycline D1 

induite par HDACi (Heider et al., 2006), (Kawamata et al., 2007). Cependant les 

mécanismes de ce processus ne sont pas compris. Dans la deuxième partie de travail, 

nous avons étudié l'impact de HDACis sur les niveaux de cycline D1. 

En effet, l'analyse FACS a montré que HDACis Abexinostat  et TSA ont diminué la quantité 

de protéine de cycline D1 dans les lignées cellulaires LCM dans 24h de traitement (Fig. 7’). 

Cependant, l'efficacité de la dégradation de la cycline D1 dépendait du type de lignée 

cellulaire. Considérant que nos résultats ont montré que ces HDACis ne modifient pas 

l'expression des CCND1 dans LCM, nous avons cherché des mécanismes possibles dans 

les autres niveaux. 

Nous avons évalué l'état nucléoles utilisant 3D-FISH et avons détecté un niveau 

significativement plus élevé de cellules avec des nucléoles considérablement réduits à 24h 

de traitement (LCM et contrôle) (Fig. 8’). Cependant, d'analyse des niveaux de 18S + 28S 

rRNA n'a pas révélé de changements sur le traitement avec Abexinostat (Fig. 9’). Ensuite, 

nous avons vérifié si HDACi pourrait avoir un impact sur la dégradation de la cycline D1. 

Nous avons inhibé protéasomes dans les cellules LCM et évalué les niveaux de protéine de 

cycline D1 en utilisant FACS (Fig. 10’). Paradoxalement, inhibiteur du protéasome MG132 

ainsi conduit à la réduction de la quantité de protéine cycline D1. Ainsi, apparemment 

Abexinostat n’affecte pas ni translation au niveau du ribosome, ni la dégradation de cycline 

D1 protéine par les protéasomes. 

Dans la troisième partie de travail, nous avons vérifié si Abexinostat aurait les mêmes effets 

dans les cellules primaires LCM que ceux qui ont été découverts dans des lignées 
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cellulaires LCM. Pour cela, nous avons testé l'expression des gènes et de l'état de la 

chromatine dans un échantillon de patient avec LCM et par rapport à des lymphocytes B 

normaux (NBL) extraites du sang de donneurs (trois échantillons). 

Tout d'abord, nous avons remarqué que 11q13 gènes sont surexprimés dans LCM patient 

par rapport à NBL a la même manière que dans les lignées cellulaires de LCM contre du 

contrôle (Fig. 11’). Ensuite, nous avons appliqué Abexinostat et découvert qu’il a déclenché 

le même type de changements dans NBL que dans les lignées cellulaires normales: un 

gène ayant la plus faible expression initiale sensiblement augmenté en 24h de traitement. 

Cependant, dans les cellules du patient LCM, les gènes ont montré une réponse à 

Abexinostat tout à fait différente: une partie des gènes réduit son expression déjà dans 1h 

d’application de médicament, y compris le gène CCND1. En dehors de cela, les 

modifications d'histones à l'intérieur des gènes ont montré aussi d'autres types de réponse 

au traitement par contraste avec les lignées cellulaires LCM. Pour vérifier les différences 

observées, plus des échantillons de LCM patients doivent être analysés. Néanmoins, 

compte tenu du fait que les cellules primaires diffèrent des cellules établies en culture, il est 

possible de supposer que nous avons assisté à des effets différents d’Abexinostat sur les 

processus cellulaires due à la déviation de fond biologique dans des lignées cellulaires et 

des cellules primaires. 

De cette façon, nous avons montré que t(11;14)(q13;q32) conduit à la surexpression de 

CCND1 avec un groupe de gènes couvrant plus de 15 Mb autour du point de translocation. 

Les mêmes gènes, sensibles à la dérégulation par la translocation t(11;14), réagissent au 

traitement HDACi en augmentant leur expression. Nos résultats indiquent que bien que 

HDACi stimule la désagrégation de l'hétérochromatine sur l'ensemble du génome, les 

promoteurs de gènes restent à l'abri de ces effets. 
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Figure 1’. La translocation t(11;14)(q13;q32) dans le lymphome des cellules du 
manteau. 

A. Structure génomique du locus cycline D1 sur le chromosome 11q13. La plupart des points des 

ruptures chromosomiques se produisent au sein du région majeure de translocation (major 

translocation cluster - MTC). Habituellement, la distance entre du point de cassure et le gène 

CCND1 est d'environ 120 kb. Le locus normal de la chaîne lourde d’immunoglobuline (IgH) sur le 

chromosome 14q32 affichage la structure génomique des régions constante (CH), jonction (JH), 

diversité (DH) et variable (VH). L'activateur Eμ se situe entre les zones constante et jonction. B. En 

raison de la translocation t(11;14)(q13;q32), la cycline D1 est présenté sous le contrôle de 

l'amplificateur IgH Eμ sur le dérivé du 14 chromosome. 
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A   

B   

Figure 2’. Distribution des marques H3K9Ac de chromatine dans le locus de 
translocation. 
L'axe X: log2 ratio Granta-519 / NBL (lignes 1er et 3ème) et NBL / Granta-519 (lignes 2ème et 

4ème). Les lignes bleues indiquent le niveau de signification plus élevé que les taux de fausses 

découvertes (FDR); MTC, région majeure de translocation dans MCL. Coordonnées de gènes sont 

données en correspondance avec l'assemblage HG18. (A) Un zoom sur 300Kb segments en 11q13 

locus. La flèche horizontale indique le gène CCND1. (B) Segments analysés entiers: 1.4Mb en 

11q13 locus (lignes 1er et 2ème) et 3Mb en 14q32 locus (3ème et 4ème lignes). 
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Figure 3’. Niveaux d’acétylation et di-méthylation de H3K9 dans les promoteurs de 
différents groups de gènes.  

Chromatine de la lignée cellulaire de contrôle (RPMI-8866) et de trois lignées de cellules LCM 

(Granta-519, Jeko-1, UPN-1) a été immunoprécipité avec des anticorps contre H3K9Ac, H3K9me2 

et le panH3 comme une référence. Enrichissement en acétylation et méthylation normalisée à 

panH3 a été estimée à l'aide Agilent humaine Promoteur de puces à ADN. Les pics de H3K9Ac et 

H3K9me2 significatives statistiquement ont été calculés pour l'ensemble du génome, le chromosome 

11, le locus 11q13, pour les gènes qui ne changent pas leur expression après la translocation (non-

upreg) et pour les gènes sensibles à une régulation positive après la translocation t(11;14) (upreg). 

Les données sont présentées en tant que niveau d'acétylation / méthylation (quantité de pics 

statistiquement significatives de modification d'histone divisé par le nombre de gènes dans la région 

analysée).  

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

genome 11 chr 11q13 locus not-upreg upreg

Le
ve

l  o
f  

H3
K9

Ac
 

RPMI-8866

Granta-519

Jeko-1

UPN-1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

genome 11 chr 11q13 locus not-upreg upreg

Le
ve

l  o
f  

H3
K9

m
e2

 

RPMI-8866

Granta-519

Jeko-1

UPN-1



Synthèse de thèse en français 

 

254 

 

 

Figure 4’. Les changements dans les niveaux H3K9me3 dans les noyaux de contrôle 
et de LCM sur le traitement avec Abexinostat.  
Les cellules traitée par Abexinostat pendant 1 et 24 heures et les cellules non traitées (n/t) ont été 

fixées et immunocolorées pour H3K9me3 (vert). La barre d'échelle = 5µM. 
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Figure 5’. Changements dans les niveaux d’acétylation et di-méthylation de H3K9 
dans les promoteurs de gènes induits par Abexinostat.  
Cellules de LCM (Granta-519, Jeko-1, UPN-1) et de contrôle (RPMI-8866) ont été traités avec 100 nM 

Abexinostat et l'enrichissement H3K9Ac, H3K9me2 normalisée à panH3 a été analysée à des moments définis 

à l'aide Agilent humaine Promoteur de puces à ADN. Les données sont présentées comme une proposion 

d’acétylation à méthylation (quantité de pics significatives statistiquement de modification d'histone divisé par le 

nombre de gènes de la région analysée) dans l'ensemble du génome, le chromosome 11, le locus 11q13, les 

gènes qui ne modifient pas leur expression après la translocation (non-upreg) et les gènes sensibles à une 

régulation positive après la translocation t(11;14) (upreg). n/t (noir) - cellules sans traitement; 1h (gris), 24h (gris 

foncé) - points de temps de abexinostat traitement. 
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Figure 6’. Effet d’Abexinostat sur les niveaux d'expression de gènes 11q13.  
Cinq lignées de cellules de LCM (Granta-519, Jeko-1, UPN-1, Mino et NCEB-1) et cinq de contrôle 

(RPMI-8866, Priess, Remb 1, le CIRC-211, le CIRC-171) ont été traitées avec 100 nM Abexinostat 

et les niveaux d'expression de gènes ont été analysés avant le traitement (n/t, noir), à 1h (gris) et 

24h (blanc) après le traitement. Le niveau d'expression a été mesuré par RT-qPCR vs. expression 

de GAPDH. Les données représentent la moyenne de cinq MCL et 5 des lignées cellulaires de 

contrôle. Au moins 3 expériences indépendantes pour la chaque lignées de cellule ont été 

effectuées. Les valeurs sont présentées sous forme de moyenne ± SEM. * p<0,05; ** p<0,01; *** 

p<0,001 (1 way ANOVA avec post-test Turkey). 
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Figure 7’. Histogrammes représentant de cytométrie en flux de réponse de la cycline 
D1 protéines au traitement par Abexinostat dans les lignées de cellules de LCM et le 
contrôle. 
L'intensité de signal fluorescent de Alexa Fluor 488 est donnée dans les tableaux comme la 

médiane. 
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Figure 8’. Le nombre de cellules sans nucléoles visibles a augmenté a 24 heures 
après de traitement par Abexinostat. 
RPMI-8866 et Granta-519 cellules ont été fixées après 1h et 24h du traitement par Abexinostat. 

Immunocoloration a été faite pour visualiser nucléoles (protéine B23). (A) Le graphique montre le 

niveau de cellules avec des nucléoles réduites à 0, 1 et 24 heures après du traitement par 

Abexinostat. La courbe en pointillés correspond à la lignée cellulaire Granta-519 et la courbe 

continue de lignée cellulaire RPMI-8866. (B) Une section confocale des cellules Granta-519 colorées 

avec des anticorps contre un B23 marqueur nucléolaire (bleu). n/t - non traités; 1h et 24h - 

Abexinostat traité. Barre d'échelle: 5μm. 
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Figure 9’. Dynamique de quantité d’ARNr dans les cellules traitées par Abexinostat. 
5 lignées de cellules de LCM et 5 de contrôle ont été traitées avec Abexinostat pendant 1 à 24 

heures. L'ARN total a été extrait des cellules traitées et non traitées. Niveau relatif de 18S + 28S 

ARNr à total ARN a été mesurée à l'aide Bioanalyseur, Agilent Technologies, Inc. La boîte 

représente les premier et troisième quartiles, la bande à l'intérieur de la boîte est la médiane, les 

extrémités des moustaches représentent le minimum et le maximum de l'ensemble des données. 

 

 
Figure 10’. Effet de l'inhibiteur de protéasome MG-132 sur le niveau de protéine 
cycline D1 en lignée cellulaire Jeko-1. 
Jeko-1 cellules ont été traitées avec MG132 25mM pendant 24h ou 48h. Les niveaux de protéine 

cycline D1 ont été mesurées à l'aide de FACS en utilisant des anticorps conjugués au FITC contre la 

cycline D1. Médiane de l'intensité de la cycline D1 fluorescente (Alexa Fluor 488) est représenté 

dans les tableaux. 
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 (A) 

(B) 
Figure 11’. Les niveaux d'expression des gènes sélectionnés dans le 11q13 au tour 
de point de translocation (11;14). 
Le graphique indique les niveaux moyenne d'expression des gènes mesurée par RT-qPCR de (A) 5 

lignées cellulaires de contrôle (noir) et 5 lignées de cellules LCM (gris); et de (B) trois personnes 

sains (NBL, bleu) et les cellules LCM d'un patient (MCLp; rouge). L'abondance de la transcription est 

mesuré par rapport de GAPDH, et présenté sur une échelle logarithmique en base 10. La valeur 1 

correspond à l'expression de GAPDH. Les données sont présentées sous forme de moyenne ± 

SEM. * p<0,05; ** p<0,01; *** p<0,001 (test t de Student non apparié relative à contrôle). 
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