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Abstract

In the field of industrial robots, there is a growing need for having cooperative robots

that interact with each other and share work spaces. Currently, industrial robotic systems

still rely on hard coded motions with limited ability to react autonomously to dynamic

changes in the environment. This thesis focuses on providing a novel framework to deal

with real-time collision avoidance for robots performing tasks in a dynamic environment.

We develop a reactive trajectory generation algorithm that reacts in real time, removes

the fastidious optimization process which is traditionally executed by hand by handling it

automatically, and provides a practical way of generating locally time optimal solutions.

The novelty in this thesis is in the way we integrate the proposed time optimality prob-

lem in a task priority framework to solve a nonlinear optimization problem efficiently in

real time using an embedded system with limited resources. Our approach is applied in

a Model Predictive Control (MPC) setting, which not only improves reactivity of the sys-

tem but presents a possibility to obtain accurate local linear approximations of the collision

avoidance constraint. The control strategies presented in this thesis have been validated

through various simulations and real-world robot experiments. The results demonstrate the

effectiveness of the new control structure and its reactivity and robustness when working

in dynamic environments.
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Résumé

Nous observons ces dernières années un besoin grandissant dans l’industrie pour des robots

capables d’interagir et de coopérer dans des environnements confinés. Cependant, au-

jourd’hui encore, la définition de trajectoires sûres pour les robots industriels doit être faite

manuellement par l’utilisateur et le logiciel ne dispose que de peu d’autonomie pour réagir

aux modifications de l’environnement. Cette thèse vise à produire une structure logicielle

innovante pour gérer l’évitement d’obstacles en temps réel pour des robots manipulateurs

évoluant dans des environnements dynamiques. Nous avons développé pour cela un algo-

rithme temps réel de génération de trajectoires qui supprime de façon automatique l’étape

fastidieuse de définition d’une trajectoire sûre pour le robot.

La valeur ajoutée de cette thèse réside dans le fait que nous intégrons le problème

de contrôle optimal dans le concept de hiérarchie de tâches pour résoudre un problème

d’optimisation non-linéaire efficacement et en temps réel sur un système embarqué aux

ressources limitées. Notre approche utilise une commande prédictive (MPC) qui non seule-

ment améliore la réactivité de notre système mais présente aussi l’avantage de pouvoir

produire une bonne approximation linéaire des contraintes d’évitement de collision. La

stratégie de contrôle présentée dans cette thèse a été validée à l’aide de plusieurs expéri-

mentations en simulations et sur systèmes réels. Les résultats démontrent l’efficacité, la

réactivité et la robustesse de cette nouvelle structure de contrôle lorsqu’elle est utilisée

dans des environnements dynamiques.
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Chapter 1

Introduction

1.1 Industrial Motivation

The first industrial robot was created by George Devol in the USA in 1954 and joined the

assembly lines at General Motors in 1961 [40]. Since then robotic technology has started

handling numerous applications in the industry: manufacturing of integrated circuits, cars,

food, and other automated lines that assemble, handle, move and package products. Nev-

ertheless, recent publications [14, 21] show that industrial robots are under-utilized in the

Small and Medium Enterprises (SMEs) due to several factors. The major issues are the

lack of flexibility of industrial robots and the difficulty to program a complete automatic

application.

SMEs usually produce various products in small quantities. Figure 1.1 from [21] il-

lustrates that in mass production, robotic systems are in use for long production phases,

while in SMEs robotic systems are reconfigured and changed frequently. For this reason,

production lines in SMEs need to be reconfigured in easy and inexpensive ways to fit dif-

ferent tasks, what is not possible with the current industrial robot systems. Installing and

programming a robotic system is a complex task, it can require an expert robotic engineer

some weeks to configure a given required task. This complexity rises the cost of produc-

tion. The study in [34] shows that for some industrial applications the cost of programming

1
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Figure 1.1: Comparison of phases of robot use in mass production and small and medium
enterprises (SMEs) production. Reprinted from [21].

Figure 1.2: The industrial robot is only one cost item for the total production system.
Reprinted from [34].

a robot can reach around 40% of the actual application cost (see figure 1.2). As a result, in-

dustrial robots cannot always be used cost effectively for production tasks in SMEs. There

is a real need for a new generation of robot controllers that simplifies and facilitates the

installation and programming of industrial robots.

Industrial robots will typically follow a designed path described by a series of trajec-

tory segments. These segments can be straight lines or interpolations. This principle of

programming a succession of segments has been mainly adopted because it offers some
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flexibility for the end user. This means that for a complex robotic application the program-

mer must teach a large amount of points: this can reach more than 1000 in certain applica-

tions. The programming methods used by industry can be categorized into two categories:

online programming and offline programming [65]. In the former, the programmer teaches

the robot in the field by moving manually the robot end effector to the desired points, the

concept is simple but it is only suitable for programming simple applications and it can

require a lot of experience to get a well formed program. On the other hand, offline pro-

gramming is based on a 3D model of the complete work cell; it shifts most of the work

from the field to the office. It is efficient for complex applications but again it needs a lot

of experience and takes considerable time and effort. These complexities make robot inte-

gration a difficult task, and deep knowledge in robotic engineering is required, but usually

not present in SMEs. Thus simplifying the programming methods of industrial robots will

open the door to huge markets and expand the use of robots in SMEs and other areas. An

enhancement to enable simple robot programing for SMEs is smart trajectory generation

which can create a safe robot trajectory only knowing the physical constraints and work

environment.

As outlined above, the programming of industrial robots is generally based on the ap-

plication engineer experiences. In addition to planning a collision free path and teaching

the robot the desired points, engineers should optimize robot trajectory so that the physical

limitation of the actuators are respected and the robot works in an efficient way, satisfying

the required criteria: go as fast as possible, consume minimum energy and so on. However,

even experienced engineers can only reach a limited level of efficiency because robotic sys-

tems are complex. Hence, a better way is to shift this task to a smarter trajectory generator,

using computer aided optimization methods. In this thesis, we will focus on generating

trajectories with a minimum time objective (go as fast as possible) subject to actuator lim-

itations.

Robot manipulators may share their workspace with other robots or humans. They may

cooperate with each other to achieve a common goal or they may share the same production

line to increase the throughput. This can save space which for many companies is of great

benefit through reduction of real estates costs. Figure 1.3 shows an industrial application

where two robots share the same workspace and each one has its own task. There is a new
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Figure 1.3: An industrial application: two robotic manipulators share the same work space.

emergent market for collaborative robots, either collaborating between robots or between

humans and robots [14]. This is an exciting and challenging development for industrial

robots, which could open the door to new industrial and even nonindustrial applications.

This is still a futuristic subject because of the lack of safety standards. But one essential step

towards having collaborative robots is to have a trajectory generator able to avoid dynamic

obstacles and react in real time to sudden changes.

1.2 Scientific Motivation

Trajectory planning and optimization have been central problems in robotics for more than

30 years, and is still an active subject today. Unlike the early eighties, industrial robots now

evolve in dynamic environments: conveyor tracking, working on moving parts, bin picking,

robots sharing the same workspace and collaborative robots. They need to have the highest

possible productivity. As a result, trajectory generators must work at a high rate, reaching 1

kHz, running on an embedded system with limited power (e.g. 400 MHz, 16kB L1 cache).

The scientific literature shows some very interesting algorithms and model simplifications

but they are still not relevant for industrial robots.

A robot is a nonlinear system, so the transcription of the trajectory planning to an op-

timization problem is clearly nonlinear with nonlinear equality and inequality constraints.

Thus one optimization iteration is computationally expensive because of the non linearity,
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and the management of the non-linear inequality constraints which is a complex process.

All this is to show how difficult it is to design a trajectory generator running in real time.

Usually the literature proposes two solutions to solve trajectory optimization problems (op-

timal control problem):

• Indirect methods, based on solving the equations coming from Pontryaguin’s princi-

ple, but finding the optimal initial conditions for the adjoint variable is complex and

can not be done online. Moreover, the solution is sensitive to the accuracy of the

initial conditions [88].

• Direct methods, which consist in discretizing the optimal control problem, what leads

to a standard optimization problem of high dimension solved using a SQP (Sequential

Quadratic Programming). This method is much more stable than the previous one but

we can still see some problems in handling the inequality constraints efficiently [9].

It has been proposed in [8] and [30] to add continuation methods to the direct multiple

shooting methods; this allows a highly efficient way of handling inequality constraints and

online nonlinear optimization in the case of feedback controlled system. Such methods

have been widely used in the chemistry industry and are more and more popular in the

robotics area [23]. All these approaches consider that the problem of trajectory planning

must be translated into a constrained non-linear optimization problem.

Additionally, we can consider that a robot must execute tasks with different priorities,

for example one high priority task can be to avoid obstacles, then another task with lower

priority could be to minimize cycle time, so at the end the robot will avoid obstacles even if

it will make a longer motion. It is possible to imagine a robot completely programmed with

tasks and priorities. This concept of tasks linked with optimization has been formalized

in [61]. Some numerical and theoretical aspects for this concept have been presented in [22,

26, 25]. This latest approach seems promising and takes a new approach to how robots must

be programmed.

To summarize, this thesis will have to focus on the following scientific questions:

• What are the best theoretical and numerical approaches to optimize in real time in-

dustrial robots trajectories while integrating their own physical limitations and con-

straints of their environment?
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Figure 1.4: Cobra s600 SCARA Adept robot. Reprinted from [1]

• What is the impact of such approach in the way industrial robots are programmed?

1.3 Thesis Contribution

The main contribution of this dissertation lies in introducing a novel framework for indus-

trial robot trajectory generator. It will propose a smart trajectory generation technique to

replace the traditional one. The prominent features of this trajectory generator are:

1. Reactivity in real time: It can instantly perform collision avoidance in the presence

of multiple static and dynamic obstacles and react on-the-fly to dynamic changes in

the workspace using limited memory and computation resources (400 MHz CPU).

2. Automatic trajectory optimization: it removes the fastidious optimization process

which is traditionally executed by hand by handling it automatically.

3. Change the way of programming industrial robot applications using the proposed

generator, the robot can be completely programmed with tasks and priorities.

This is an appealing and challenging development for industrial robots. It will bring new

utilities in the world of robotics. The novelties of the proposed framework revolve around

the following:

First, it provides a novel approach to solve minimum time control problem for discrete

time system subject to linear constraints in the sate and control variables. The proposed
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approach differs from existing ones in: (i) it does not rely on an ad-hoc selection of weight-

ing factors (which is highly non-trivial), (ii) it does not lead to any approximation and

results in time-optimal behavior for arbitrary linear constraints, (iii) and yet it is tractable

in real-time.

Second, the novelty in this thesis is in the way we integrate the proposed time optimality

problem in a task priority framework to solve a nonlinear optimization problem efficiently

in real time using an embedded system with limited resources. Our formulation hinges on

recent developments of efficient hierarchical solvers in the field of robotics [22, 26, 33]

and integrates seamlessly in existing hierarchical control frameworks. Our approach is

applied in a Model Predictive Control (MPC) setting, which not only improves reactivity

of the system but presents a possibility to obtain accurate local linear approximations of

the collision avoidance constraint.

All the techniques presented in this thesis are validated through various simulation and

real-world robot experiments. The experiments conducted on a Cobra s600 SCARA Adept

robot figure 1.4. The underlying optimization problems for robots were solved on a Pow-

erPC CPU of 400 MHz.

1.4 Thesis Outline

Here is a brief overview of the following chapters:

Chapter two: Theoretical Background

Chapter 2 reviews several techniques in robotics that share some common ground with

the research work considered in this thesis.

Chapter three: Obstacle Avoidance as an Optimization Problem

Chapter 3 reviews the state of the art on controlling robots in the presence of obsta-

cles. Then it introduces a reactive trajectory generator based on a hierarchy between a

strict obstacle avoidance behavior, and a control law which is time optimal in the absence

of obstacles. The algorithm will be validated through various simulations and real world
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robot experiments.

Chapter four: An MPC Approach to Time Optimal Control
Chapter 4 presents two different numerical approaches to find the minimum time con-

trol for discrete time systems. These approaches are applied in a Model Predictive Control

(MPC) setting. The first will be modeled as a Linear Problem (LP) and the second, as a

hierarchical optimization Problem.

Chapter five: Implementation and Validation in the Presence of Obstacles
Chapter 5 validates the MPC approaches presented in Chapter 4 by applying them to

online trajectory generation for industrial robots performing pick and place operations in

the presence of dynamic obstacles. Then we evaluate the different approaches presented in

this thesis in terms of time optimality, reliability and computation time.

Chapter six: Conclusion
Chapter 6 concludes this dissertation by summarizing its contributions, discussing its

limitations and mentioning the possible future developments and research directions.



Chapter 2

Theoretical Background

The work developed in this thesis is based on a number of techniques taken from different

research domains. In this chapter, we provide a brief overview of these techniques which

is important for understanding the remainder of the thesis. This overview is not exhaus-

tive and is not aimed to provide a complete account of what has been done within this

domain. Instead, it is intended to provide the reader with enough information to situate

this work among the relevant state of the art approaches. The structure of this chapter will

be as follow: Section 2.1 presents an overview of different trajectory planning approaches.

In Section 2.2, we start by providing an overview of standard constrained optimization

techniques. Then a brief survey of numerical approach in the field of optimal control and

nonlinear optimization will be given. Finally in Section 2.3, we review the techniques that

can be used to compute the shortest distance between different objects.

2.1 Trajectory Planning

Trajectory planning is a major research area in robotics. Research in this area started in

the 1970s. It deals with the problem of finding a collision free path from an initial state

to a final state given a complete description of robot’s physical limitations, geometry and

environment. In this section, we start by showing the difference between path planning and

trajectory planning. Then, a brief overview about local and global planning approaches will

9
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Figure 2.1: The standard procedure for trajectory planning in industrial robots. Reprinted
from [58].

be presented. Finally, we go discuss the positive and negative sides of defining trajectories

in operational space or joint space.

2.1.1 Path Planning vs Trajectory Planning

Path planning is the geometric description of the robot motion, usually an interpolation

of a set of points in space that the robot must follow. The velocity, acceleration and jerk

profile for these points are called the Motion planning; it is also called the time law of the

trajectory.

Path planning and trajectory generation are often used synonymously but path planning

is actually a part of trajectory generation. Trajectory generation is formed by both path

and motion planning. Standard algorithms in trajectory generation for industrial robots

are illustrated in figure 2.1. The path is defined in a parametric form as p = p(s). The

parameter is defined as a function of time and represents the curvilinear abscissa of the

path also called the time law. The curvilinear abscissa s(t) is defined by specifying the path

and the robot constraints such as velocity, acceleration and jerk limitations.

The algorithm proposed in this thesis generates trajectories directly without this dis-

tinction between the path and the time law. It determines the control signals that will

cause a system to satisfy the physical limitations of the robot (e.g velocity and acceleration

constraints) and its environment constraints (obstacles avoidance), and at the same time

minimizes some performance criteria. The performance criterion chosen here is the time
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needed for the robot to reach its destination.

2.1.2 Global Planning vs Local Planning

Many path planning algorithms have been presented in the literature, they can be divided

in two categories [16]: global and local algorithms.

Global path planning involves strategies to find the shortest collision free path for a

complex work space respecting all the constraints of the robot. It will find the path based

on a known environment map. A large number of approaches have been proposed, the main

two categories are cell decomposition[57, 71] and road maps[45, 39]. Cell decomposition

divides the free space into regions called cells. A path then consists of a sequence of cells

and points at which the transition from on cell to another occurs. Road maps represent the

free space in the form of nodes that form a graph. The edges that join the nodes represent

the relationship between the nodes. A path is generated by connecting the initial and des-

tination state of the robot to the road map and sequentially connecting the resulting states

by applying a graph search method. Despite the possibility to parallelize the algorithms in

order to reduce computation time [87], it is still too large to consider online. Moreover, in

the case of unexpected obstacles, a replanning would be required. Thus, considering the

limited resources (CPU, memory) in industrial robots and the requirements of planning in

real time in a dynamic environment, global approaches are not an appropriate solution.

On the other hand, local or reactive trajectory planning needs less computation time,

and there is no need for prior information on the environment. It will react to obstacles

and generate collision free paths in real time. So it is suitable for online planning in dy-

namic environments. However, due to the lack of prior information on the environment,

the motion can stop in a local minimum even if a collision free path does exist.

In this thesis, we propose a reactive trajectory planning algorithm that works in real time

avoiding dynamic obstacles. Chapter 3 introduces techniques to reduce the probability of

falling into local minima. In Chapter 5 a new trajectory generator will be designed based on

a model predictive control approach (MPC). This will anticipate the future and help avoid

falling into a local minima by reacting to it in advance.
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Figure 2.2: In the left, (Cartesian Space) the robot is blue, the obstacle is gray and the
destination is the red point. In the right, (Joint Space) the end effector of the robots is the
blue point, the destination is the red point and the obstacle is the black shape.

2.1.3 Joint Space vs Operational Space

Trajectories can be defined either in operational (Cartesian) space or joint space. For ar-

ticulated manipulators, defining trajectories in joint space is computationally simpler, no

need for online kinematic inversion. In addition, since the actual control is in joints, apply-

ing constraints in joint position, velocity, and acceleration will be straightforward. On the

other hand, trajectories in Cartesian space are easy to describe where the motion of the ma-

nipulator is completely specified while trajectories in joints space need forward kinematic

inversion to know the actual Cartesian position of the robot. However, since trajectories are

generated in Cartesian space, care must be taken that the trajectories do not pass through,

or come close to singularities.

In this thesis, we choose to define trajectories in joint space for two reasons. Firstly,

this allows simple application of constraints on joint range, velocity and acceleration. Sec-

ondly, in articulated manipulators, the actuators are in the joints so to satisfy the time opti-

mality the optimization should be applied to the joints directly, which is not the case if we

choose to work in Cartesian space. However, obstacle avoidance constraints are expressed

in Cartesian space, where the shortest distance to the obstacle is calculated and controlled.

We choose to construct the obstacle avoidance constraints in Cartesian space, because find-

ing the shortest distance from robot to obstacle is easy and time saving in Cartesian space

whereas it is difficult and time consuming in joint space. To find the shortest distance from
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robot to obstacle in joint space, the obstacle shape should be transformed to joint space (see

figure 2.2), this transformation is time consuming and not easy to do.

2.2 Optimization

Trajectory planning can be seen as an optimization problem where some performance cri-

teria has to be optimized while respecting physical and environment constraints: finding

the best solution among all feasible solution. The standard form is:

minimize
x

f (x)

subject to gi(x)≤ 0, i = 1, ...,n,

hi(x) = 0, i = 1, ...,m

(2.1)

where f (x) is the objective function to minimize over the variable x, the functions gi(x)

are the inequality constraints and hi(x) are the equality constraints. The goal is to find an

optimal value x∗ such that f (x∗) has the smallest value in the feasible set that satisfies all

the constraints. Since the late 1940s, a large effort has gone into developing algorithms for

solving various classes of optimization problems.

The optimization problem is called linear programming (LP) [17, 18], if the objective

and the constraints functions are linear, satisfying

f (αx+βy) = α f (x)+β f (y) (2.2)

for all x,y ∈ Rn and all α,β ∈ R. A general linear program has the form

minimize
x

cT x

subject to aT
i x≤ bi, i = 1, ...,n,

(2.3)

where a ∈ Rn and b ∈ R. If the objective function or one of the constraints are not linear, it

is called a nonlinear problem.
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Optimization problems can be split also into another two categories: convex optimiza-

tion where the objective and constraint functions are convex, satisfying

f (αx+βy)≤ α f (x)+β f (y) (2.4)

for all x,u ∈ Rn and all α,β ∈ R with α + β = 1,α ≥ 0,β ≥ 0. And non-convex opti-

mization where there is at least one non-convex function. We can see from (2.2) and (2.4)

that linearity is a special case of convexity so any linear program is a convex optimization

problem. Another well known convex optimization problem is a quadratic programming

(QP) where the objective function is quadratic, and the constraint functions are linear. It

can be expressed in this form

minimize
x

1
2

xT Qx+ pT x

subject to Ax≤ b

Cx = d,

(2.5)

where Q is a n× n real positive definite symmetric matrix, A is a m× n real matrix , and

b ∈ Rm.

Various approaches are proposed to solve convex optimization: Interior point [42], ac-

tive set [64], augmented Lagrangian [90] , and simplex algorithm [60]. In convex optimiza-

tion, if there is an optimal solution, it will be the global solution [10], while in non-convex

optimization it could be a local solution, where several local minima may exist and make

solving non-convex problems harder to solve globally than convex problems. A solution x

is a local minimum if the objective function is smaller than feasible nearby x, but it is not

smaller than all points in the feasible set.

Section 2.2.3 presents different approaches to solve nonlinear optimization, while Sec-

tion 2.2.1 will introduce Optimal control and an example of an optimal control problem

will be presented in Section 2.2.2.
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2.2.1 Optimal Control

Optimization is usually performed in a finite dimensional Euclidean space: the optimal

solution will be a vector x∗ ∈ Rn. However, some problems require that the optimization

be performed in a real function space, an infinite dimensional space. The interest is in

extremal functions that make the functional attain a maximum or minimum value. The

problem written:

minimize
x(t)

∫ t2

t1
f (x(t))dt

subject to g(x(t))≤ 0
(2.6)

The calculus of variations refers to the latter class of problems. Optimal control is an

extension of the calculus of variations. The aim is to determine the control signal that will

cause the system to satisfy the physical constraint and at the same time, optimize some

performance criterion. Variables are separated into state variables x and control variables

u, which are related via a set of differential equations forming the dynamics of the system.

Further, the constraint functions could involve in this case both state and control variables.

The standard form goes as follows. Minimize a cost function

minimize
u(t)

∫ t2

t1
f (t,x(t),u(t))dt (2.7)

subject to the dynamic system

ẋ(t) = h(x(t),u(t)) (2.8)

the boundary condition

x(t1) = x1 (2.9)

and equality/inequality constraints

g(x(t),u(t))≤ 0 (2.10)
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the solution is an admissible control u∗ ∈ u[t1, t2] which satisfies the constraints (2.8), (2.9),

and (2.10) in such a manner that the cost function (2.7) has a minimum value.

Optimal control has developed into a well established research area and finds its appli-

cations in many scientific fields, ranging from mathematics and engineering to biomedical

and management sciences. The maximum principle, developed in the late 1950s by Pon-

tryagin and his coworkers [66] can properly be regarded as the birth of the mathematical

theory of optimal control.

For some simple optimal control problems, finding the analytical solution by solving the

necessary condition "Pontryagin Maximum Principle (PMP)" will be applicable. One well

known example is solving a linear time optimal problem, it will be presented in 2.2.2 and

we will use the solution and build on it in the proposed approach presented in Chapter 3.

More complex optimal control problems, with nonlinear constraints on state and control

variables will be too difficult for an analytical solution. Computational algorithms are

inevitable in solving such problems. A brief survey of numerical methods in the field of

optimal control will be proposed in Section 2.2.3.

2.2.2 Linear Time Optimal Problem

Consider a linear time-invariant system

ẋ(t) = Ax(t)+Bu(t) (2.11)

with bounded input

u ∈ [−U,+U ]. (2.12)
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we consider the problem of finding a piecewise continuous control u(t) that brings the

system from an initial state x0 to the origin, in minimum time:

minimize
u

J(u) =
∫ t f

t0
dt = t f − t0 = T.

subject to ẋ(t) = Ax(t)+Bu(t)

x(t0) = x0

x(t f ) = 0

u(t) ∈ [−U,+U ].

(2.13)

The solution of this time optimal control problem (2.13) is the well-known bang-bang

control. The derivation of the optimal solution based on Pontryagin Minimum Principle

(PMP) will be presented briefly in this section.

The Hamiltonian function can be defined for this problem as

H(x(t),u(t), p(t), t) = 1+ p(t)T [Ax(t)+Bu(t)] (2.14)

Then based on PMP [80], a necessary condition for u∗ to be an optimal control is

First

u∗ = arg min
u∈[−U,+U ]

H(x∗(t),u(t), p(t), t) (2.15)

Second

ṗ(t) =
∂H
∂x

(2.16)

where p(t) can be seen as Lagrange multipliers, but it is more commonly known as the

costates of the system. From condition (2.15), we conclude that:

u∗ =

+U, p(t)T B < 0,

−U, p(t)T B≥ 0.
(2.17)
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Figure 2.3: The state space of a Bang-bang controller.

for each t0 ≤ t ≤ t f , and from condition (2.16), satisfied so

ṗ1(t) =−
∂H
∂x

= 0 ⇒ p1(t) =C1 (2.18)

ṗ2(t) =−
∂H
∂ ẋ

=−p1(t) ⇒ p2(t) =−C1 ∗ t +C2 (2.19)

where C1 and C2 are constants. The switching function (2.19) is a linear function of time,

this indicates that the time-optimal control is a bang-bang control, where the control vari-

able switches between its maximum and minimum values.

For the time interval on which u(t) = +U

ẍ =+U (2.20)

ẋ =Ut +K1 (2.21)

x =
U
2

t2 +K1t +K2 (2.22)

⇒ x =
ẋ2

2U
+K (2.23)

Thus, the portion of the optimal response for which u(t) = +U is an arc of a parabola,

along which the phase points move upwards (u > 0). Analogously, the portion of the
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optimal response for which u(t) = −U is an arc of a parabola, along which the phase

points move downwards (u < 0) (see figure 2.3). Consequently, the control signal u(t) is

chosen as follows:

u∗ =−Usgn(σ), (2.24)

σ = x+
|ẋ| ẋ
2U

, (2.25)

where sgn(.) is the sign function and σ = 0 is the switching curve.

2.2.3 Nonlinear Optimization

Many methods have been developed to solve trajectory optimization methods. They can be

categorized in three basic families of approaches [20]: state-space, indirect, and direct.

The state-space approach starts from the principle of optimality of sub-arcs where each

sub-trajectory of an optimal trajectory is an optimal trajectory as well. This is the basics

of dynamic programming in discrete time. The equivalent continuous time case is called

the Hamilton-Jacobi-Bellman (HJB) equation. The main idea is to discretize the work

environment into a grid of cells and then attempt to solve the optimization problem by

solving a large number of sub-problems. For example, in path planning for a robot, the

problem can be solved by dividing the work space into cells and calculating the distance to

the goal in each cell. Then the cell is searched to find the optimal path from start to goal.

Several techniques are proposed in the literature to solve this problem: A* algorithm [77],

Rapidly-exploring random trees (RRT) [55], probabilistic road maps (PRM) [45], Artificial

Neural Network [94], and genetic algorithms [59]. In this kind of approaches the true

global solution of the optimization problem is found even for non convex optimization

problem. The worst-case complexity of global optimization methods grow exponentially

with respect to the dimension of the state space, and limits the use of such approaches to

applications where computation time is not critical. This drawback has been well known

since the origins of optimal control theory, and it was what Richard Bellman referred to as

the “curse of dimensionality” [4, 5].

Indirect approaches use the necessary conditions of the optimality problem (PMP) to

transfer the optimal control problem into a boundary value problem (BVP) [89] and then
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solve the problem numerically. This approach is often called as "first optimize, then dis-

cretize". The main drawbacks of this method is that the underlying ordinary differential

equations (ODE) are often difficult to solve due to non linearity and the control structure

complexity.

Direct methods transform the optimal control problem into an equivalent nonlinear pro-

gramming problem. Then the solution can be found using numerical optimization meth-

ods [64]. This approach is often called as "first discretize, then optimize". Compared to

indirect methods, direct methods can more easily take into account inequality constraints.

They have better convergence properties and are more stable even with poor initial guess.

For solutions of constrained optimal control problems in real world applications, direct

methods are by far the most widespread and successfully used techniques [20].

One of the most effective methods for nonlinearly constrained optimization, generates

steps by solving quadratic subproblems. This sequential quadratic programming (SQP)

approach is appropriate for small or large problems [64]. SQP methods show strength

when solving problems with significant nonlinearities in the constraints. This is the case in

this thesis, where collision avoidance constraints are nonlinear. A sequence of linearized

sub-problems is solved using an SQP type of approach. Each sub-problem identifies a

minimum-time trajectory from the current stat of the robot with respect to local linear

approximations of the collision avoidance constraints.

Time optimal trajectories for linearized sub problems will be obtained by applying a

hierarchical approach where a particular choice of lexicographic objective is introduced to

guarantee a general solution to minimum time problem in discrete time system. Chapter 4

will explain in detail this approach. To solve efficiently the hierarchical problem, we use a

recent solver [22, 26] based on a novel matrix factorization that can be cheaply updatable.

In Chapter 5 a brief description about this solver will be given. Our approach is applied in a

Model Predictive Control (MPC) setting, which not only improves reactivity of the system

but presents a possibility to obtain accurate local linear approximations of the collision

avoidance constraints. Next section will give a brief overview of MPC.
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2.2.4 Model Predictive Control

Model predictive control (MPC) is an advanced method of control that has been used in-

creasingly since the 1980s in several industrial sectors, especially in chemical plants and

oil fields. It is a model-based control scheme that defines an open loop optimal control

problem which is easier to solve than the original problem and then iteratively solves it on-

line, using the current state of the system as initial condition, providing in the end a closed

loop feedback controller.

MPC can be solved efficiently as nonlinear optimization problem using direct opti-

mal control methods. MPC algorithms typically exploit the fact that consecutive optimal

control problems are similar to each other. This allows to initialize the solver procedure ef-

ficiently by a suitably shifted guess from the previously computed optimal solution, saving

considerable amounts of computation time.

2.3 Distance Computation

The closest points between robot and obstacles must be calculated and used to formulate

collision avoidance constraints. Determining the minimum distance between objects is

a common problem in robotics. Many approaches have been proposed to compute the

shortest distance between objects, especially between two convex polyhedrals [7, 37, 56].

In our choice of algorithm, computation time will be a driving aspect. For this reason, we

choose to simplify the shape of the robot and the obstacles to a composition of spheres and

swept sphere lines as suggested in [81], and then use these simple models to calculate the

closest points. For more complex shapes, we present in Section 2.3.2 a simple algorithm

that formulates the shortest distance computation as an optimization problem. Section 2.3.1

will present some properties of the distance to obstacle function. Then Section 2.3.3 will

end by showing a solution to discontinuity that may happen in distance function.
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2.3.1 Distance Notation

Finding the shortest distance between two sets of points is equivalent to finding the infimum

of the distances between these sets:

inf
y∈O

d0(x,y) (2.26)

where O is representing the obstacle set, x is the robot set(assuming it is a point), and

d0(x,y) is the distance between two points. If the obstacle is a parametric function

minimize
x,y,τ

d0(x,y)

subject to y = f (τ)

x = xc,

(2.27)

The Lagrangian equation and the necessary condition

L(x,y,τ) = d0(x,y)+λ
T
1 (y− f (τ))+λ

T
2 (x− xc) (2.28)

∂L
∂x

=
∂d0(x,y)

∂x
+λ2 = 0 (2.29)

∂L
∂y

=
∂d0(x,y)

∂y
+λ1 = 0 (2.30)

∂L
∂τ

=−λ
T
1

∂ f (τ)
∂τ

= 0 (2.31)

∂L
∂λ1

= y− f (τ) = 0 (2.32)

∂L
∂λ2

= x− xc = 0 (2.33)

from (2.30), (2.31) and the symmetric property of the distance function

∂d0(x,y)
∂y

=
∂d0(x,y)

∂x
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∂d0(x,y)
∂x

· ∂ f (τ)
dτ

= 0 (2.34)

knowing that

d0(x,y) = ‖y− x‖=
√
(y− x)T (y− x) (2.35)

∂d0(x,y)
∂x

=
−(y− x)√

(y− x)T (y− x)
(2.36)

⇒
∥∥∥∥∂d0(x,y)

∂x

∥∥∥∥= 1. (2.37)

Then ∂d0(x,y)
∂x is a unit vector perpendicular to ∂ f (τ)

dτ
at the shortest distance. The variations

of this distance will be

d = d0(x,y) (2.38)

ḋ =
∂d0(x,y)

∂x
ẋ (2.39)

d̈ =
∂d0(x,y)

∂x
ẍ+

d
dt

[
∂d0(x,y)

∂x

]
ẋ (2.40)

=~aẍ+
d
dt

[~a] ẋ (2.41)

=~aẍ+~bẋ (2.42)

where ~a is a unit vector in the direction of the obstacle and the time derivative of any unit

vector is a vector orthogonal to it~b. Thus if the distance function is convex, the projection

of the velocity~bẋ takes the robot away from the obstacle so controlling ~aẍ as proposed in

Chapter 3 is enough to avoid a convex obstacle.

2.3.2 Distance computation as an optimization problem

There are different ways to formulate the shortest distance computation as an optimization

problem, here we give a brief overview of two methods. More details about Geometric

optimization can be found in [73].

The first way is to define polytopes as intersections of half spaces. Consider there are
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two sets of half spaces G = (g1, ...,gn) and H = (h1, ...,hn) in dimension d, the goal is

to find points g ∈
⋂n

i=1 gi and h ∈
⋂m

j=1 h j such that ‖g−h‖ is minimized. Knowing that

a point x is contained in the halfspace gi if the function gi(x) defining the corresponding

hyperplane is non-positive, the optimization problem will be

minimize (x− y)T (x− y)

subject to gi(x)≤ 0, i = 1, ...,n

hi(y)≤ 0, i = 1, ...,m,

(2.43)

Another way is to consider polytopes as a set of points. P = (p1, ..., pn) and Q =

(q1, ...,qm) are two point sets in d-dimensional space, the goal is to minimize ‖p−q‖ such

that p and q are points belong to the convex hull p = ∑
n
i=1 λi pi and q = ∑

m
i=1 µiqi where λi

and µi are in [0,1] and sum up to one. The optimization problem will be:

minimize xTCTCx

subject to
n

∑
i=1

xi = 1

n+m

∑
i=n+1

xi = 1

x≥ 0,

(2.44)

where C = (p1, ..., pn,−q1, ...,−qm).

2.3.3 Strictly and Non Strictly Convex Obstacle

The closest points between two strictly convex objects move continuously. It is not the

case for non-strictly convex objects. It is proposed in [43] tp keep track of several pairs

of points that move continuously on the facets of the polyhedral composing the obstacles

and the robot (see figure 2.4). In [27] a method to convert a polyhedral convex hull into a

strictly convex hull is presented. The idea is to prevent jumps of the pair of closest points

by curving them. This strictly convex hull/shape will guarantee a unique closest point and

at least C1 continuity of the distance function ( see figure 2.5). Thus the gradient of the
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(a) (b)

Figure 2.4: (a) Example of a discontinuous constraint. (b) Another pair of the closest points
constrained so that the constraints move continuously. Reprinted from [43]

(a) (b)

Figure 2.5: (a) Parallel faces with infinite number of closest points. (b) Removing the flat
part by curving it then only one pair of closest points is considered. Reprinted from [27]

distance function is continuous, which is useful for integrating distance as a constraint in

robotic motion planners.

2.4 Discussion and Conclusion

In this chapter, we have reviewed several techniques in robotics that share some common

ground with the research work considered in this thesis. Here, we aim at presenting the

current challenging requirements considered in this thesis, and pointing out the contribution

of the presented work in this regard.

This thesis aims at providing an online trajectory generator for industrial manipulators
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performing tasks in a dynamic environment. Specifically, our goal is to design a reactive

trajectory generator that achieves the following requirements: 1) Move as fast as possible:

generates trajectories that are time optimal in absence of obstacles and as close as possible

from optimality in presence of obstacles. 2) Generates collision free path: the robot must

not collide with static and dynamic obstacles. 3) Works in real time: the algorithm must

generate adequate control action online each 16 ms in the worst case, using limited compu-

tation resources (CPU of 400 MHz). 4) The robot must arrive precisely at the commanded

destination without any vibration or overshoot. 5) Satisfy the physical limitations of the

robot: velocity, acceleration, jerk and torque constraints.

We have presented an overview of trajectory planning approaches in Section 2.1 Global

planning algorithms need high computation power and cannot react in real time to any

change in the environment. This type of trajectory generation will break the goal number

3) and can’t do 2) in case of moving obstacles. On the other side, local planing algorithms

will provide such reactivity without the need of high computation power, but they introduce

local minima and none of the algorithm in the literature tackle the question of time opti-

mality. In this thesis, we develop a reactive trajectory algorithm that plan a bit in advance,

with a certain horizon based on model predictive control, and provide a practical way of

generating locally time optimal solutions.

Since the collision avoidance constraints are in general nonconvex, the trajectory op-

timization problem to be solve in this thesis will be a nonlinear optimization problem. In

Section 2.2, we gave an overview of different approaches used in the literature to solve such

problems. As outlined there, for solving such problems in real world applications, direct

methods are by far the most widespread and successfully used techniques. However, solv-

ing nonlinear optimization problems online on embedded system with limited resources

(CPU 400 MHz) is still a challenging problem. The novelty in this thesis is in the way

we formulate the time optimality problem and integrate it in a task priority framework (see

Chapter 4). Our formulation hinges on recent developments of efficient hierarchical solvers

in the field of robotics [22, 26, 33] and integrates seamlessly in existing hierarchical con-

trol frameworks. Thus, solving nonlinear optimization problems can be achieved in few

milliseconds using 400 MHz CPU.



Chapter 3

Obstacle Avoidance as an Optimization
Problem

We have presented in the first chapter the main motivation behind having a trajectory gen-

erator able to avoid dynamic obstacles, and react in real time to sudden changes. In this

chapter, we propose a reactive trajectory generator based on a hierarchy between a strict

obstacle avoidance behavior, and a control law which is time optimal in the absence of

obstacles. The algorithm has low computational requirements, and is therefore suitable for

robots lacking very high computational capabilities. The undesired equilibrium points, as

may be generated by the optimization problem, are handled by introducing circular fields

around the obstacles, with strength being inversely proportional to the squared distance

between the robot and the obstacle. Simulation results and real experiments show the ef-

fectiveness of the proposed solution.

3.1 State of the art

An early approach for a reactive control of robots in the presence of obstacles was to use

potential fields [48], with repulsive forces pushing away from obstacles, added to an attrac-

tive force pulling towards the goal. But this can lead the robot to get stuck in local minima

27
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and not reach the goal. Local minima can be avoided by combining local and global infor-

mations, as in the elastic band framework [67, 11], but this requires offline planning, and

even re-planning in case the path being executed becomes infeasible at some point. An-

other option, not requiring offline planning, is to combine circular and potential fields [38].

But the main problem with these approaches is that for robots moving at high-speed, ob-

stacles will be avoided only if the repulsive forces are strong enough, what can in turn lead

to unstable oscillations [28].

Harmonic potential functions, simulating the dynamics of fluids around obstacles, are a

way to avoid these problems [52, 29, 92], but they require that the motion of both the robot

and obstacles follow harmonic functions, what can be too restrictive in practice. An alterna-

tive, based on the modulation of a dynamical system embedding the trajectory tracking task,

doesn’t have this limitation, but reintroduces some difficulties with local minima [47, 72].

Anyway, none of these approaches tackles the question of time-optimality.

Interestingly, this modulation approach is conceptually similar to the velocity damper

proposed earlier in [28], which selectively damps the motion of a speed-controlled robot

in the direction of obstacles, in a way that strictly enforces obstacle avoidance. The use of

damping instead of repulsive forces avoids introducing oscillations. Hopefully, this earlier

approach can be easily extended to consider time-optimal motion of acceleration-controlled

robots. This will be the basis of the work described in this chapter.

A standard approach for optimal control problems is Dynamic Programming [6, 12],

but it usually requires very intensive computations. Branch and bound methods such as the

A* algorithm [77], or probabilistic approaches [45, 55] can accelerate these computations

substantially, but still not enough for high-frequency control of fast robots in dynamic

environments. A usual option then is to resort to sub-optimal solutions. This will be the

goal of this chapter. A very interesting and efficient approach focuses on the bang-bang

structure of time-optimal control to simplify the on-line computation of near time-optimal

obstacle avoidance [76]. But avoiding multiple obstacles is realized with a heuristics which

can fail, what is not acceptable for fast and therefore dangerous robots.

We propose therefore to begin with an analytical solution to the problem of time-

optimal control of velocity and acceleration constrained systems in the absence of obsta-

cles, as presented in [95]. And we propose to selectively limit the acceleration of the robot
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in the direction of obstacles in a way that strictly enforces obstacle avoidance, following

the idea presented in [28]. The result is a control law which is time-optimal in the absence

of obstacles, and near time-optimal in the presence of obstacles.

One way then to describe the obstacle avoidance constraint is the so-called Velocity

Obstacle [31], recently generalized to the Acceleration-Velocity Obstacle [83], but this

formulation is based on specific velocity and acceleration profiles (a constant velocity in

the former case, a continuous acceleration in the latter one), which do not correspond to

the profiles generated by time-optimal control. As a result, we are going to propose in this

chapter a specifically adjusted formulation of the obstacle avoidance constraint.

The structure of this chapter is as follows: our proposition is presented first on a one-

dimensional example in Section 3.2, before being applied to single planar mobile robots in

Section 3.3, and manipulator robots in Section 3.4.

3.2 A one-dimensional example

In order to simplify the problem and put aside the difficulties coming from the complexity

of manipulators and mobile robots, the proposed solution will be presented first on a double

integrator system.

3.2.1 Minimum time control

Let us consider a one-dimensional standard double integrator

ẍ = u (3.1)

with bounded input

|u| ≤U. (3.2)

The classical minimum time control for this system to reach the origin x = 0, ẋ = 0 is the

well-known bang-bang control which is presented in detail in Section 2.2.2.

u =−Usign(σ) (3.3)
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with sign(·) =±1 the standard sign function and σ the switching curve

σ = x+
ẋ|ẋ|
2U

. (3.4)

Continuous time system:

The control signal (3.3) supposes an ideal sliding on the switching curve, when the state

(x, ẋ reaches it, which is not the case in real life. The control signal u(t) will oscillate

at high frequency between the two values ±U . Consequently, applying this controller in

any real application will cause chattering in the input. The chattering can be reduced by

introducing a boundary layer in the neighborhood of the switching curve σ = 0. This can

be done by using in (3.3) a standard saturation function sat(.) (3.6) instead of sign function

sgn(.):

u =−Usat(λσ), (3.5)

and

sat(x) =


−1, x≤−1

+1, x≥+1.

x, |x| ≤ 1

(3.6)

However, this solution does not guarantee the absence of overshoot. To cope with this,

different techniques have been suggested in the literature e.g. proximate time-optimal ser-

vomechanisms (PTOS) [93, 19], nonlinear controller [63], variable structure sliding mode

control [82]. In the controller (3.7), a boundary layer has been introduced around the

switching curve σ = 0 by using the saturation function sat(.). Moreover, the sliding mode

variable σ defined in (2.25) has been properly modified in order to guarantee the absence

of overshoot. (For more detail see [95]).

u =−Usat(λσ)

σ = x+max(|ẋ| ,k)ẋ/2U +
3

2λ
sat(

ẋ
k
).

(3.7)
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(a) (b)

Figure 3.1: Phase space when a discretised version of controller in continuous time is used:
(a) the trajectory of the tracking error; (b) a detail around the origin showing the overshoot.

Discrete time system:

Direct discretization of the previous controller (3.7) does not insure that the state x remains

within the boundary layer during the switching phase, also overshoot may arise in the

system (see figure 3.1). For a time sampled system like a computer controlled robot, such

a minimum time control is slightly more involved, as shown in [35, 95]:

uk =−Usat(σ) (3.8)

with sat(·) ∈ [−1,1] the standard saturation function and σ a modified, piece-wise linear

switching curve

σ = żk +
zk

m
+

m−1
2

sign(zk) (3.9)

with

zk =
xk

τ2U
+

ẋk

2τU
, żk =

ẋk

τU
, (3.10)

m = Int

(
1+
√

1+8|zk|
2

)
, (3.11)
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(a) (b)

Figure 3.2: (a) System trajectory when the discrete time controller designed in [95] is used.
(b) Boundary layer around the switching curve, shows how the controller maps the system
state to origin. Reprinted from [95].

where τ is the sampling period and Int(·) is the integer part (the truncation).

Equation (3.8) shows that the control signal uk is saturated with value ±U all the time

except when the system state z = (zk, żk) belongs to the boundary layer |σ | < 1 (z ∈ Rm).

The work of the controller proposed by [95] is to map any system state z ∈ Rm into a

segment Am
m−1 during the next sampling period τ by applying appropriate control signal uk.

Then the control law maps segment Am
m−1 into segment Am−1

m−2 and so on until the system

state z reaches the origin (see figure 3.2). Finally, the system state z reaches the origin in a

finite number of sampling periods τ without overshoot (For more detail see [95]).

In the following, we will refer to this minimum time controller as

uk = f (xk, ẋk,U) (3.12)

and drop the sampling time index (·)k when not necessary to simplify notations.
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Figure 3.3: The distance state space and the switching curve generated by the constraint.

3.2.2 Obstacle Avoidance

Suppose that there is an obstacle at position xO and the distance d to this obstacle,

d = aT (x− xO) (3.13)

with

a =
x− xO

|x− xO|
, (3.14)

must remain greater than a minimum safety distance d0:

d ≥ d0. (3.15)

We can observe that for the double integrator with bounded input (3.1)-(3.2) to always

satisfy this minimum distance constraint, the variations of this distance (in this simple 1D

case,~a is supposed constant)

ḋ = aT ẋ, d̈ = aT u, (3.16)

must satisfy

d̈ ≥ f (d−d0, ḋ,U). (3.17)

What we want therefore is to be as close as possible to the minimum time controller (3.12):

minimize
u

|u− f (x, ẋ,U)|2, (3.18)
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while always satisfying the obstacle avoidance constraint

aT u≥ f (d−d0, ḋ,U). (3.19)

The proposed solution is an optimization (minimization) of a quadratic function subject

to linear constraint on u. Without the constraint the result of the minimization is a bang-

bang controller, with the constraint a switching curve appears in the distance state space

(d, ḋ) as can be seen in figure 3.3.

When (d, ḋ) is in R2, the robot will collide with the obstacle, there is not enough time

and power to drive the robot away from the obstacle. On the other hand, when (d, ḋ) is in

R1, the constraint will be aT u≥−U . It doesn’t affect the minimization because it is always

satisfied (aT u ∈ [−U,+U ] from (3.2) and (3.14)). However when (d, ḋ) is at the switching

curve, the constraint will be aT u≥+U ; knowing that aT u∈ [−U,+U ], the solution of this

optimization problem should satisfy aT u =+U (decelerate in the direction of the obstacle)

in order to make sure that the robot doesn’t hit the obstacle.

3.2.3 Velocity limits

We propose to follow the approach proposed in [32] in order to deal with the velocity limit

ẋmin ≤ ẋk+1 ≤ ẋmax. (3.20)

With the time sampled dynamics

ẋk+1 = ẋk + τ uk, (3.21)

we easily obtain the corresponding bounds that apply on the control uk:

1
τ
(ẋmin− ẋk)≤ uk ≤

1
τ
(ẋmax− ẋk), (3.22)

which have to be added then to the optimization problem (3.18)-(3.19).
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Figure 3.4: Control signal (upper left) and phase plot (upper right) where the switching
curve for the minimum time controller appears in red, velocity constraints are the black
horizontal lines, and the switching curve for the obstacle avoidance constraint is in black.
We can see that the motion of the robot in blue always stays within the constraints as
required. The lower figure shows the resulting trajectory, with the goal in red and the
obstacle in black.

3.2.4 Simulation result

Consider a simple situation where the robot starts from x =−4 with zero velocity and tries

to reach the origin x = 0, ẋ = 0 in minimum time, but there is an obstacle on the way at

xO = −1 (with security margin, d0 = 1). The maximum acceleration and deceleration is

U = 1 and the minimum and maximum velocities are −1 and +1. We can see the motion

resulting from our controller in figure 3.4: the robot accelerates first until it reaches its

maximum velocity, but the obstacle avoidance constraint imposes an early deceleration so

that the robot stops before the obstacle at x =−2, unable to reach the target position x = 0.
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3.3 Planar mobile robot

The approach proposed in the previous section is generalized in this section to planar mo-

bile robots. The size of the problem will increase, the obstacle avoidance constraint will

especially need to be modified, and the potential presence of undesired stable equilibrium

points will be tackled. Furthermore, an application to two mobile robots sharing the same

working space will be simulated using the proposed solution.

3.3.1 Minimum time control

Consider a two-dimensional double integrator

ẍ1 = u1, ẍ2 = u2, (3.23)

with x = (x1,x2), u = (u1,u2) and bounded input

|u1| ≤U, |u2| ≤U. (3.24)

In this case, the minimum time control may not be unique, and we will simply use two

decoupled one-dimensional minimum time controllers

u1 = f (x1, ẋ1,U), u2 = f (x2, ẋ2,U) (3.25)

what we will note

u = f ′(x, ẋ,U). (3.26)

3.3.2 Obstacle avoidance

Suppose that there is an obstacle at position xO and the distance d to this obstacle,

d = aT (x− xO) (3.27)
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Figure 3.5: Constraints in the control space (u1,u2). Admissible controls can have a norm
greater than U . If the unconstrained minimum of (3.38) is the red dot, we can see that only
imposing the constraint (3.39) can lead to a solution, here the green dot, which does not
satisfy the constraint (3.40). This constraint must therefore be enforced explicitly, giving
as a solution the blue dot.

with

a =
x− xO

|x− xO|
, (3.28)

must remain greater than a minimum safety distance d0:

d ≥ d0. (3.29)

The variations of this distance

d =
√

xT x =
xT x
d

= aT x, (3.30)

ḋ =
2xT ẋ

2
√

xT x
=

xT ẋ
d

= aT ẋ, (3.31)

d̈ =
xT ẍ
d

+
1
d

(
ẋT ẋ− (aT ẋ)2) (3.32)

= aT ẍ+
1
d
(bT ẋ)2, (3.33)
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Figure 3.6: Trajectory of the robot, control signals and phase space plots in each dimension,
with the minimum time controller switching curves in red.

with b a unit vector orthogonal to a , must satisfy a constraint related to the minimum time

control f (d−d0, ḋ,U). However, in the present case, some modifications are necessary.

As we can see in figure 3.5, the Euclidean norm of the input u can be greater than U ,

so the norm of the acceleration d̈ can also be greater than U . Hence, considering the same

constraint as before,

d̈ ≥ f (d−d0, ḋ,U), (3.34)

continuously imposing a lower limit d̈≥−U , could slow down the robot unnecessarily. On

the other hand, simply dropping this constraint when f =−U quickly results in chattering.

What we propose then is to base the obstacle avoidance constraint on a modified, unilateral
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saturation function:

d̈ ≥ g(d−d0, ḋ,U) (3.35)

with

g =−Usat(σ) (3.36)

and

sat(σ) =

−1 if σ ≤−1,

σ otherwise.
(3.37)

Furthermore, we can also see in figure 3.5 that considering the optimization problem (3.18)

with the constraint (3.35) can lead to control values u outside of the limits (3.24). These

limits must therefore be enforced explicitly. In the end, the controller is based on the

following optimization problem:

minimize
u

‖u− f ′(x, ẋ,U)‖2 (3.38)

s.t.

d̈ ≥ g(d−d0, ḋ,U) (3.39)

and

|u1| ≤U, |u2| ≤U. (3.40)

A simulation result can be seen in figure 3.6, where the robot is first heading directly at

the obstacle, because its goal is right behind. The obstacle avoidance behavior is activated,

and the resulting trajectory of the robot altered, only when there is no other choice to avoid

collision. A truly time optimal behavior would have managed its way around the obstacle

earlier to minimize in the end the time to reach the goal.

This obstacle avoidance behavior can be tuned however, to be activated earlier if de-

sired. One option is to change the minimum safety distance, as shown in figure 3.7(a).

Another option is to introduce a safety margin on the maximum deceleration with respect

to obstacles, modifying the constraint (3.35) in the following way:

d̈ ≥ g(d−d0, ḋ,U/α) (3.41)
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(a)

(b)

Figure 3.7: (a) Varying obstacle avoidance behaviors for different minimum distance d0 =
ε . (b) Varying obstacle avoidance behaviors for different deceleration safety margins α .

with α ≥ 1, as shown in figure 3.7(b).

In the presence of multiple obstacles, the distances di to each obstacle i must be con-

strained independently:

d̈i ≥ g(di−d0, ḋi,U), (3.42)

in order to ensure unconditional avoidance of all obstacles. Simulation results can be seen

in figures. 3.9 and 3.10.

3.3.3 Undesired equilibrium points

In the absence of obstacles, the only equilibrium point for the control law (3.25) is the goal

(0,0). It is moreover globally stable, and always reached in finite time. But in the presence

of obstacles, the constrained control law (3.38)-(3.40) potentially faces other stable and
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(a) (b)

Figure 3.8: (a) Undesirable stable equilibrium points may lie on the boundary of the obsta-
cles when the obstacles and goals are aligned with the main coordinate axes and the angle
of the boundary is more than 45 degrees. (b) The effect of applying a circular field around
the obstacle.

unstable equilibrium points, on the boundary of the safety distance d0 to obstacles. As a

result, there is a risk that the robots get stuck there instead of reaching their goals.

With the control law (3.38)-(3.40), such equilibrium points arise when the obstacles

are aligned with the goals along one of the main coordinate axes. In this case, equilib-

rium points will lie on the boundary of the obstacles. This can be seen for example in

figure 3.8(a) for various initial positions.

One way to avoid these equilibrium points is to introduce circular fields around the

surface of the obstacles, as in [38, 79]. This requires a small modification of the control

objective (3.38), considering instead:

minimize
u

‖u− f ′(x, ẋ,U)‖2 +w‖bT u−U‖2, (3.43)

where b is the direction of the circular field generated around the obstacle, perpendicular to

a, and w= 10
d2 is a weight which increases when approaching the obstacle. The effectiveness

of this approach can be seen in simulation in figure 3.8(b).
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Figure 3.9: Avoiding two obstacles comparing Locally time Optimal approach Vs Our
approach

3.3.4 Sub optimality

In the absence of obstacles, the control law (3.12) is time-optimal. In the presence of

obstacles, we can assess the degree of sub-optimality of our controller by comparing the

resulting behavior with time-optimal trajectories obtained with a standard local optimiza-

tion method (Sequential Quadratic Programming). We can see in figure 3.9 that when there

are few obstacles, the time required to reach the goal is always very close to optimal, with

a computation time which is always kept very small. This is the standard situation for

the industrial manipulator robots considered in the next section. However, when there are

more obstacles, we can see in figure 3.10 that the sub-optimality degrades significantly. In

such situations, more complex methods would be required to generate faster motions of the

robot.
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Figure 3.10: Avoiding 12 obstacles comparing Locally time Optimal approach Vs Our
approach

3.3.5 Collision avoidance between cooperating robots

If two robots x and y have to share the same working environment, each one appears to be an

obstacle for the other. In this case, a collaboration between the robots regarding collision

avoidance can lead to improved performance. Such a collaboration can be approached

in various ways, one way is to consider each robot as an independent system where the

other robot will be seen as a dynamic obstacle. In this case, the solution proposed in the

previous section can be applied directly. We propose here a joint controller for the two

robots considered as a unique system.

Suppose the distance d between the two robots,

d = aT (x− y) (3.44)

with

a =
x− y
‖x− y‖

, (3.45)
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Figure 3.11: The red and blue robots should track respectively the small red and blue
rectangles alternating between two treadmills. Control signals are given below.

must remain greater than a minimum safety distance d0:

d ≥ d0. (3.46)

Then, as before, the variations of this distance

ḋ = aT (ẋ− ẏ), d̈ = aT (ẍ− ÿ)+
1
d

(
bT (ẋ− ẏ)

)2
(3.47)

must satisfy the collision avoidance constraint

d̈ ≥ g(d−d0, ḋ,U). (3.48)
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Figure 3.12: The red and blue robots should track respectively the small red and blue
rectangles alternating between two treadmills. A grey static obstacle is added in the middle.
Control signals are given below.

The joint controller takes then the simple form of a combined optimization problem

minimize
ẍ,ÿ

‖u− f ′(x− xd, ẋ− ẋd,U)‖2 +‖v− f ′(yd, ẏ− ẏd,U)‖2 (3.49)

s.t.

d̈ ≥ g(d−d0, ḋ,U) (3.50)

and

|ẍ1| ≤U, |ẍ2| ≤U, (3.51)

|ÿ1| ≤U, |ÿ2| ≤U. (3.52)

Different weightings can be considered in (3.49) to give a higher priority to one robot or

the other.
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A simulation result where two mobile robots have their goals alternating between two

treadmills is shown in figure 3.11 with U = 4. In figure 3.12, a static obstacle is added

in the middle. In both cases, the two robots manage to reach their moving and alternat-

ing goals without collision, respecting their velocity and acceleration constraints through

cooperation.

3.4 Manipulator Robots

The control scheme proposed in the previous sections can also be applied to industrial ar-

ticulated manipulator robots. The motion of these robots is usually limited mostly by max-

imum joint range, speed and acceleration. The previous scheme can therefore be applied

directly in the joint space:

minimize
q̈

‖q̈− f ′(q, q̇,U)‖2. (3.53)

Obstacle avoidance is better approached, however, in Cartesian space.

3.4.1 Obstacle avoidance formulation

For collision avoidance, it is more appropriate to compute distances and closest points

between robots and obstacles in Cartesian space, where it is difficult and time consuming

in joint space as we saw in Section 2.1.3. Many methods for this have been proposed not

only in robotics but also in computer graphics [24, 85].However the computation time will

be a driving aspect in our choice. We will simplify the shape of the robot and the obstacles

to a composition of spheres and swept sphere lines [81]. We will compute the closest point

based on this model.

For simplicity, we consider a SCARA robot avoiding circular obstacle. Suppose that

the obstacle is centered at position xo with radius r. Let p1 and p2 be the points on the robot

links that are closest to the obstacle, as illustrated in figure 3.13. Then the shortest distance
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Figure 3.13: The closest points from each link of the robot to the obstacle.

d1,d2 between the robot links and obstacle,

d1 = aT
1 (xo− p1)− r

d2 = aT
2 (xo− p2)− r

(3.54)

must remain greater than a minimum safety distance d0. Then as before, the variation of

distances d1,d2

ḋ1 = aT
1 (ẋo− ṗ1), d̈1 = aT

1 (ẍo− p̈1)+
1
d1

(
bT

1 (ẋo− ṗ1)
)2

ḋ2 = aT
2 (ẋo− ṗ2), d̈2 = aT

2 (ẍo− p̈2)+
1
d2

(
bT

2 (ẋo− ṗ2)
)2

(3.55)

must satisfy the collision avoidance constraints

d̈1 ≥ g(d1−d0, ḋ1,U)

d̈2 ≥ g(d2−d0, ḋ2,U).
(3.56)

However, p1 and p2 will change with time. Therefore the calculation of ṗ1, ṗ2, p̈1, and p̈2
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joint 1 joint 2
angle [deg] [-105, 105] [-150, 150]
velocity [deg/s] [-322, 322] [-600, 600]
acceleration [deg/s2] [-2000, 2000] [-3000, 3000]

Table 3.1: Bounds on joint angles, velocities and accelerations.

is not straight forward because the rate of change in their position should be integrated.

p1 =

(
L1 cos(q1)

L1 sin(q1)

)
(3.57)

ṗ1 =

(
−L1 sin(q1) 0

L1 cos(q1) 0

)
q̇+

(
cos(q1)

sin(q1)

)
L̇1 (3.58)

= Jp1 q̇+ JL
p1

L̇1 (3.59)

p̈1 = Jp1 q̈+ JL
p1

L̈1 + J̇p1 q̇+ J̇L
p1

L̇1 (3.60)

where L1 illustrated in figure 3.13 and L̇1 is the rate of change of L1 which can be approxi-

mated by collecting the previous values of L1 (L̇1 ≈
Lk−1

1 −Lk
1

∆t ). The same calculation can be

done for ṗ2, and p̈2.

Finally, the optimization problem will be written in term of q̈

minimize
q̈

‖q̈− f ′(q, q̇,U)‖2

subject to aT
1 Jp1 q̈≥ g(d1−d0,U)−aT

1 (J
L
p1

L̈+ J̇p1 q̇+ J̇L
p1

L̇)

aT
2 Jp2 q̈≥ g(d2−d0,U)−aT

2 (J
L
p2

L̈+ J̇p2 q̇+ J̇L
p2

L̇)

|q̈1| ≤U

|q̈2| ≤U,

(3.61)

3.4.2 Experimental Results

In this section, we evaluate the performance of the proposed approach by testing it on real

industrial applications. In the experiments presented here, in addition to bounding the joint

accelerations, constraints on the joint angles and velocities were imposed (see Table 3.1).
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The underlying optimization problems for both manipulators were solved on a PowerPC

CPU of 400 MHz (16 ms control sampling time was used).

Avoiding obstacles: In this experiment the robot must avoid two obstacles, while per-

forming a pick and place task. Figure 3.14 shows a snapshot from the experiment, while

figure 3.15 depicts joint profiles. The end effector of the robotic arm reaches its goal while

respecting joint velocity and acceleration constraints, and without hitting the obstacles.

Tracking a moving goal: In this experiment, the robot has to track a moving goal on a

treadmill, while avoiding an obstacle. The strict priority given to obstacle avoidance can be

seen here, where the tracking is automatically canceled in order to avoid the obstacle, and

recovered as soon as possible. Figure 3.16 shows a snapshot from the experiment, while

figure 3.16 depicts joint profiles.

Collaborative robots: In this experiment, two Adept Cobra s600 SCARA robots are

performing pick and place operations while sharing the same working environment. Each

manipulator has a dedicated controller and considers the other manipulator as a dynamic

obstacle. Both robots share the same PowerPC CPU of 400 MHz. This poses a challenge

to our proposed approach. Figure 3.18 shows how the robots are able to share the same

workspace without collision, respecting their velocity and acceleration constraints through

cooperation. In figure 3.19, a static obstacle is added in the middle.

In such industrial applications, the programmer should traditionally specify the inter-

mediate trajectory for each robot by teaching a large amount of points, and must tune the

maximum acceleration, deceleration and speed for each segment. This process needs a lot

of experience and takes considerable time and effort which prevents many manufacturers

from using multi-robot systems or considering applications with obstacles. By using our

approach the user input for such application is simply the desired endpoints without the

need to teach any intermediate points.

The experimental results demonstrate the effectiveness of the proposed approach. How-

ever, due to non linearity in manipulators, we found some real problems and limitations.

Using the proposed trajectory generator could lead to invalid reaction to the obstacle. In fig-

ure 3.20, the robot reacts to the obstacle even though it is outside of the robot’s workspace.

Note how the control variable u1 in figure 3.21(a) is reacting to the obstacle during the

interval [0.13,0.35]. Figure 3.21(b) depicts the status of the shortest distance between link
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2 of the robot and the obstacle. As can be seen, the obstacle avoidance constraint (the

red switching curve) leads to unnecessary reaction to the obstacle. In another example,

in figure 3.22, the robot reacts lately to the obstacle, leading to high control action. Note

how the values of the control variables u1 and u1 in figure 3.23 are twice bigger than their

limitation during the interval [0.1,0.15]. Some work around can be proposed to deal with

such problems, but the motivation and need for a more comprehensive solution is clear.

3.5 Conclusion

In this chapter, we have introduced a real time reactive trajectory generator for mobile and

manipulator robots. We proposed to begin with an analytical solution to the problem of

time optimal control in the absence of obstacles, and to selectively limit the acceleration of

the robot in the direction of obstacles, in a way that strictly enforces obstacle avoidance.

The result is a control law which is time-optimal in the absence of obstacles, and sub-

optimal in the presence of obstacles. The proposed method can handle multiple obstacles;

however, they may lead to the appearance of undesired equilibrium points. These points

are handled by introducing circular fields around the obstacles. The algorithm can tune the

obstacle avoidance behavior to be activated earlier to copy with uncertainty in the obstacles

state. Experimental results show that the desired behavior is indeed obtained: collisions

with obstacles are strictly avoided, the algorithm runs in real time using limited computa-

tion power and the general motions of the robots still maintain some sub-optimality in the

presence of obstacles. However, some problems and limitations remain due to nonlinearity

in manipulators, and motivate us to start a new approach that will be presented in chapters

4 and 5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14: Snapshots from typical pick and place operations (a) → (b) → (c) → (d).
Then another pick and place (e)→ (f)→ (g)→ (h).
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Figure 3.15: Joint profiles for the experiment in figure 3.14.
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(a) (b) (c) (d)

Figure 3.16: Snapshots from the experiment, (a)→ (b)→ (c)→ (d). Robot avoid hitting
the obstacle and wait until it is able to track the moving goal.
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Figure 3.17: Joint profiles for the experiment in figure 3.16.
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Figure 3.18: The red and blue robots should track respectively the small red and blue
rectangles alternating between two treadmills. Control signals are given below.
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Figure 3.19: The red and blue robots should track respectively the small red and blue
rectangles alternating between two treadmills. A grey static obstacle is added in the middle.
Control signals are given below.
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(a) (b) (c) (d)

Figure 3.20: Snapshots from typical pick and place operations (a)→ (b)→ (c)→ (d).
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Figure 3.21: (a) Joint profiles and (b) the state space of the shortest distance between link
2 and the obstacle for the experiment in figure 3.20.
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(a) (b) (c) (d)

Figure 3.22: Snapshots from typical pick and place operations (a)→ (b)→ (c)→ (d).
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Figure 3.23: Joint profiles for the experiment in figure 3.22.



Chapter 4

An MPC Approach to Time Optimal
Control

Finding the solution to the minimum time control problem for discrete time systems sub-

ject to linear constraints in the state and control variables is not a trivial problem. In special

cases, an analytical solution can exist, but this is rarely the case. In this chapter we propose

two different approaches that find numerically a general solution to this problem. The ap-

proach proposed in Section 4.3 will find the solution by numerically identifying the sparsest

possible state vector sequence over a large enough control horizon by approximating the

sparse optimization by a weighted `1-norm minimization. In Section 4.4 a novel approach

to minimum-time control is presented based on a hierarchical optimization problem, which

is standard in the field of robotics. This is advantageous as already existing tools can be

used to approach its solution. Simulation results will demonstrate the effectiveness of the

proposed approaches. Moreover, an online trajectory generator for real industrial manipu-

lator will be designed in Chapter 5 base on the approaches proposed in this chapter.

4.1 Related work

Time optimal control refers to the problem of transferring the state of a dynamic system

from a given initial state to a certain target state in minimum time. For continuous time

57
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linear dynamical systems the minimum-time problem has been demonstrated to be a bang-

bang control policy (see Section 2.2.2), the implementation of such a switching control on

microcomputers requires its discretization. This, however, may be challenging in practice

because of high frequency chattering in the control signal [35]. As a result, it has been

considered advantageous to develop minimum-time controllers directly for discrete-time

plants [95].

However, analytical solutions are available only for special cases. In [35, 95] solution is

derived for a standard double integrator. The work in [96, 36] designs a discrete minimum

time control for a triple integrator system with bounded velocity, acceleration, and jerk.

There is no simple and generic closed form characterization of the optimal control policy

as in the continuous time case [15]. The motivation for more general solution to minimum

time problem in discrete time system necessitates the use of numerical techniques.

We address the problem of driving the state of an arbitrary discrete-time linear dy-

namical system to the origin by numerically identifying the sparsest possible state vector

sequence over a large enough control horizon. There are various ways to formulate a prob-

lem that identifies such a sequence. In [15], these sparse optimization problem is solved

by minimizing a cost functional constructed as an appropriately weighted sum of `2-norms

of the system states. In Section 4.3 we propose a similar approach however we approx-

imate the sparse optimization with a weighted `1-norm minimization. We end solving a

Linear program (LP) which is simpler and faster to solve compare to a weighted `2-norm

minimization; however, in both cases we still rely on a selection of weighted factors.

In contrast to [15] and our proposition in Section 4.3 , we propose another approach

in Section 4.4 that: (i) does not rely on the ad hoc selection of weighting factors (which

is highly non-trivial), (ii) does not lead to any approximation and results in time-optimal

behavior for arbitrary linear constraints (iii) and yet is tractable in real-time. Our formula-

tion hinges on recent developments of efficient hierarchical solvers in the field of robotics

[22, 26, 33] and can be integrated seamlessly in existing hierarchical control frameworks.

Apart form introducing our hierarchical formulation to minimum-time trajectory gen-

eration, we discuss practical issues related to its application. One such issue is the high

frequency chattering in the control signal in the presence of noise when the setpoint has

been reached [97]: a common drawback of aggressive control strategies. Following the
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ideas in [86] we formulate our controller in a way that leads to smooth behavior in the

vicinity of the goal state.

This chapter is organized as follows. Section 4.2 reviews a classical approach to the

minimum-time control problem. Section 4.3 introduces our `1-norm approach. Section 4.4

explains the hierarchical approach to the minimum time problem and discusses the effect

of noise in the state estimates and how it can be improved. Section 4.4.2 includes a nu-

merical comparison with an analytical solution in a simplified setting. Section 4.5 shows

the theoretical and practical differences between the `1-norm approach and the hierarchical

approach.

4.2 The Minimum-Time Problem

Let us consider a discrete time linear dynamic system

xk+1 = Axk +Buk, (4.1)

where xk ∈ Rnx and uk ∈ Rnu are the state variables and control input, respectively. The

system matrices A∈Rnx×nx and B∈Rnx×nu could be arbitrary (however, we assume that the

origin is reachable). In this chapter we consider a double integrator system as an example

where

A =

[
1 ∆t

0 1

]
, B =

[
∆t2

2

∆t

]
(4.2)

with sampling period ∆t.
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Transferring a given initial state x(c) (at discrete sampling time c) to the origin in mini-

mal time can be achieved by solving

minimize N

subject to xk+1 = Axk +Buk

x0 = x(c)

xN = 0

uk ∈Uk

g(x)≥ 0

N ∈ {Nmin, . . . ,Nmax},

(4.3)

with k = 0, . . . ,N−1 and Uk being a closed and bounded set containing zero in its interior

(we assume it to be convex) [86]. The decision variables are x1, . . . ,xN , u0, . . . ,uN−1 and

the number of discrete-sampling intervals is N. Note that, by design, we are not interested

in reaching the origin faster than Nmin sampling intervals in order to avoid aggressive be-

havior near the origin (as we will discuss in Section 4.4.4). g(x) ≥ 0 includes collision

avoidance constraints, which are in general nonconvex, as well as possibly other state re-

lated constraints , e.g., position and velocity limits. We will use N?
c to denote the value of

N at the solution of (4.3) (the subscript emphasizes the dependence on x(c)). Note that this

is a mixed integer programming problem (due to the decision variable N). Solving such a

problem can require high computation and memory resources, which make it not applicable

to execute in real time on a limited resources system.

A computationally less demanding control strategy will be introduced in this chapter

based on an equivalent reformulation of (4.3). Our proposed approaches are applied in

a Model Predictive Control (MPC) setting (see Section 2.2.4) that defines an open loop

optimal control problem and then iteratively solves it on-line, providing in the end a closed

loop feedback controller with a finite prediction horizon N.

The prediction of the system behavior for N sampling times will be

x = Sx0 +Tu
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where the sequence of states x=(x1, . . . ,xN) and sequence of control inputs u=(u0, . . . ,uN−1)

are related through the matrices S and T , which can be obtained by iterating (4.1) for

k = 0, . . . ,N−1 [68].

S =


A1

A2

...

AN

 , T =



A0B 0 . . . . . . 0

A1B A0B . . . ...
... . . . . . . . . . ...
... . . . . . . 0

AN−1B AN−2B . . . . . . A0B


where N is the length of the horizon.

4.3 An `1-norm Approach

In this section, we introduce a numerical approach to solve the minimum time control

problem for discrete time linear systems by looking for the sparsest possible state vector

sequence over a large enough control horizon. We approximate the sparse optimization by

a weighted `1-norm minimization.

4.3.1 Formulation

We defined of time optimal control as transferring a given initial state x0 ∈R2 to the origin,

in the smallest number of discrete time steps (N). An alternative point of view is to find a se-

quence of control inputs u = (u0, . . . ,uN−1) such that the sequence of state x = (x1, . . . ,xN)

has the most number of zeros. This can be achieved by solving in the following optimiza-

tion problem

minimize
s, u

card(h(x))

subject to x = Sx0 +Tu

u ∈U ,

(4.4)
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where h(x) = (‖x1‖1 , . . . ,‖xN‖1).
1

Note that (4.4) is a very particular cardinality problem, in the sense that the zero com-

ponents of h can appear only from the tail [15]. That is, if the origin can be reached in

exactly N? sampling times, we would have

h = (‖x1‖1 , . . . ,‖xN?−1‖1 ,0, . . . ,0). (4.5)

This structure suggests that the solution of a minimum-time control problem could be ap-

proached by solving a sequence of convex problems [86] (while using e.g., bisection for

identifying N?). However, we are interested in finding (4.5) with a single, properly chosen,

convex problem (of course, we assume that N? is not known).

A common alternative to solving the cardinality problem (4.4) is to use

minimize
x, u

‖W x‖1

subject to x = Sx0 +Tu

u ∈U ,

(4.6)

with a diagonal weighting positive-definite matrix W depending on the parameters [13].

Here, we choose to parametrize W = diag(w1 +βw2),

w1 = (1,0,1,0, . . . ,0), w2 = (0,1,0,1, . . . ,1) ∈ R2N ,

with a positive scalar parameter β , which means that we are introducing a weight β to the

velocity components of state x = (x1, . . . ,xN).

For convenience, instead of (4.6), the `1-norm minimization problem can be cast as a

1We use the `1-norm here, but any norm could be used without impacting card(h), which gives the number
of nonzero components of h.
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Figure 4.1: Optimal trajectories state space corresponding to the `1-norm optimization
problem (4.7) where N̂ = N = 20 and β = 0.4, for a single double integrator sys-
tem (4.2),(4.1) with sampling time ∆t = 0.1 s

linear program (LP)

minimize
u, r

(w1 +βw2)
T r

u ∈U

− r ≤ Sx0 +Tu≤ r.

(4.7)

where the vector r is part of the optimization variables [10].

We proved numerically that for a given ∆t, N̂ and N ≥ N̂, there are values of β , for

which a solution of (4.7) solves problem (4.4) for any x ∈KN̂ . The N̂ step controllable

set KN̂ is the set of all states that can be driven to the origin in at most N̂ sampling times

(while satisfying the constraints).

4.3.2 Numerical results

In order to validate our approach, we test it on a double integrator system and compare the

results with the analytical closed form solution proposed by [95].

Consider the system (4.1), (4.2) with sampling time ∆t = 0.1 s, the goal is to determine
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Figure 4.2: Duration of trajectory with red color in figure 4.1 for varying N with different
values of β .

the control signal u that forces the system to zero in minimum time starting from different

initial states and respecting the control constraint |u| ≤ 1. For all trajectories, we have used

N = 20 and β = 0.4 knowing that N̂ = 20. Figure 4.1 shows the state space plots for all

trajectories. The minimum times calculated analytically by [95] are exactly the same we

obtained by our approach. This confirms the capability of the proposed numerical solution

to recover an exact time-optimal control sequence.

Figure 4.2 depicts the influence of N and β on the duration of the trajectory with red

color in figure 4.1. As can be seen, time-optimality can not be achieve for some values

of β e.g β = 0.1. For other values, a sufficient length of horizon Ñ is required to achieve

time-optimality. Due to the feedback effect introduced by applying the optimization prob-

lem (4.7) in an MPC setting, Ñ can be smaller than N̂ e.g β = 0.4, 0.7, or 1 [68]. However,

choosing β = 0.4 is the best choice in this particular case where time optimality is achieved

for value Ñ = 10, considerably smaller than N̂.

In Section 4.5, another numerical test in a more complex scenario will be presented.

Moreover, to further illustrate the applicability of this `1-norm approach, we will use it in

Chapter 5 to design an online trajectory generation for an industrial manipulator performing

pick and place operations in the presence of dynamic obstacles.
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4.4 Hierarchy Approach

The approach introduced in this section is based on an equivalent reformulation of (4.3) as

a hierarchical optimization problem: a standard multi-objective problem, where objectives

can be assigned with different levels of priority. Hierarchical formulations are popular in

robotics because they ensure that objectives with lower priority are optimized as far as they

do not interfere with the optimization of objectives with higher priority [78, 49].

4.4.1 Formulation

Let us consider Nmax ≥ N?
c , and define a sequence of states x = (x1, . . . ,xNmax) and control

inputs u = (u0, . . . ,uNmax−1). We introduce the following hierarchical problem

lexminimize
x,u

v = (‖xNmax‖2 , . . . ,‖xNmin‖2)

subject to xk+1 = Axk +Buk

x0 = x(c)

u ∈U

g(x)≥ 0,

(4.8)

with k = 0, . . . ,Nmax− 1 and U being a closed and bounded set containing zero in its

interior. The “lexminimize” operator implies that the vector v is to be minimized according

to a lexicographic order [41], that is, minimizing vi (in a least-squares sense) is infinitely

more important than minimizing v j, for i < j. We will use Pc to refer to (4.8) when we

want to emphasize the dependence on the initial state x(c).

The novelty of formulation (4.8) is in the particular choice of a lexicographic objective.

It states that the most important thing, after satisfying the constraints, is to reach the origin

in Nmax number of sampling intervals. Then, if possible, try to reach the origin in Nmax−1

sampling intervals, and so on until Nmin intervals. This formulation ensures that each state

xNmin , . . . ,xNmax would be as close as possible to the origin (in Euclidean norm), and once

the origin has been reached, the states xNmin , . . . ,xNmax would remain there. Note that we

have chosen the origin as the target state only for convenience. An arbitrary target state can
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Figure 4.3: Coupling constraint (diamond) and box constraints with dashed line. Blue and
red dots depict the control profiles from figure 4.5.

be used by a simple change of variable [46]. Furthermore, if necessary, target regions can

be considered by using a similar formulation.

4.4.2 Comparison with the analytical solution for a double integrator

In special cases, the minimum-time problem for discrete-time linear dynamical systems

subject to linear constraints has an analytical solution. One such case is when using a

double integrator subject to simple bounds on the accelerations [35, 95]. Here, numerical

results from our hierarchical formulation are compared to this analytical solution. The

purpose of this comparison is not so much to demonstrate the equivalence (which should

be apparent from the analysis in Section 4.4.1) but to emphasize the potential advantages

of using numerical techniques for approaching the solution of the minimum-time problem.

Let us recall from Chapter 3 the analytical solution for the minimum-time problem for

a two-dimensional double integrator (3.8) to (3.12), (3.26) and (3.25)

uk = f ′(xk, ẋk,U).

It will ensure time optimal transition toward the goal for any given stat xk, while taking into
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Figure 4.4: Eleven trajectories. Each trajectory starts with zero velocity and converge to
the origin.

account the simple bounds on the controls u≤U .

However, we expect to have additional linear constraints coupling the motion (e.g., due

to the linearization of the collision avoidance constraints we will see it in detail in Chap-

ter 5). One possible option for still using the analytical solution would be to find u?k by

solving

minimize
uk

∥∥uk− f ′(xk, ẋk,U)
∥∥2

subject to uk ∈Uk.
(4.9)

The motivation behind (4.9) is to stay as close as possible (in Euclidean norm) to f ′(xk, ẋk,U)

while respecting the additional constraints defined by Uk. In order to evaluate the perfor-

mance of (4.9) we compare it to (4.8) on a simple example, with a more restrictive con-

straint on uk that couples the motion.

Figure 4.3 depicts this constraint as a gray diamond (contained in the box defined by the

simple bounds). Figure 4.4 depicts in blue eleven minimum-time trajectories converging to

the origin generated using (4.8). The effect of using heuristics (4.9) for the 6-th trajectory
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Figure 4.5: Evolution of the control inputs for trajectory number 6 in figure 4.4. Blue and
red correspond to formulation (4.8) and heuristics (4.9), respectively.
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Figure 4.6: Duration of each of the eleven trajectories in figure 4.4. The minimal time as
computed using (4.8) is depicted in blue, while the time required when using the heuris-
tics (4.9) is depicted in red (a more than two times difference can be observed).
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Figure 4.7: Duration of trajectory number 6 in figure 4.4 for varying Nmax. Similar pattern
can be observed across all trajectories. Note that N?

6 = 25, hence even though in theory
time-optimality is guaranteed only for Nmax ≥ N?

6 , it appears that in practice satisfactory
results can be obtained with much smaller Nmax.

can be seen in red (the corresponding control inputs are given in figure 4.5). For all trajec-

tories we have used Nmin = 1 and Nmax = 29≥ N?
i , i = 1, . . . ,11 (e.g, N?

6 = 25), where i is

the number of trajectory in figure 4.4, with a control sampling time ∆t = 0.1 s. The duration

of each trajectory is depicted in figure 4.6. As can be seen, using the heuristics (4.9) may

result in more than twice slower transitions.

Based on these results we could conclude that even small modification of the constraints

may render the analytical solution unsatisfactory. Since finding an analytical solution for

arbitrary linear constraints is not straightforward it is beneficial to consider the numerical

approach introduced here.

4.4.3 Choosing Nmax

Formulation (4.8) involves parameters Nmin and Nmax which should be specified by the

user. The choice of Nmax reflects the length of the preview horizon and thus can be used

to influence the reactivity of the system. If it satisfies Nmax ≥ N̂ = max(N?
1 ,N

?
2 , . . .), time-

optimality would be guaranteed. Note, however, that Nmax should not be chosen to be too
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large as it directly impacts the size of the problem to be solved.

Figure 4.7 depicts the influence of Nmax on the duration of the trajectory number 6 from

figure 4.4 for which N?
6 = 25 with corresponding time of 2.5 s and a control sampling time

∆t = 0.1 s. As can be seen, time-optimality is achieved even for values considerably smaller

than N?
6 , due to the feedback effect introduced by applying the optimization problem (4.8)

in an MPC setting. Even Nmax ∈ [7,8,9] appears to be acceptable, as the impact on the

trajectory duration is rather small. We have observed that such behavior is very common

even when additional state constraints are considered.

Lets call Ñ the minimum value of N that satisfy time optimality for the system. A

reasonable guess for Ñ can be made based on the system setting (e.g., by considering factors

like sampling time, velocity and acceleration limits). If we take a double integrator system

having acceleration limits |u| ≤Umax and velocity limits |v| ≤ Vmax as an example. When

the state x is on the system limits, having maximum velocity, the system will need the

maximum length of horizon tmax to be at rest at the desired set point.

tmax =
Vmax

Umax
(4.10)

Ñ >

⌈
Vmax

∆t ∗Umax

⌉
(4.11)

where d.e is a ceiling function that maps a real number to the smallest following integer.

4.4.4 Choosing Nmin

The choice of Nmin has an impact on the behavior of (4.8) in the vicinity of the setpoint

when state measurement noise is present. On one hand, using Nmin = 1 results in a rather

aggressive controller that always attempts at reaching the setpoint in one step. In the pres-

ence of noise this would result in high frequency chattering in the control signal. On the

other hand, a too high value for Nmin might have a significant impact on the time optimal

behavior. Finding a proper trade-off has been considered as an important problem [97].

Note that when the setpoint can be reached in m sampling intervals, using Nmin > m

leads to redundancy (the solution of (4.8) is not unique) which can be exploited to optimize

additional criteria (that can be used to formulate a desired trade-off). This can be achieved
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Figure 4.8: Test with trajectory 6 from figure 4.4 when the state measurement is corrupted
by Gaussian noise with zero mean and standard deviation 0.005. The blue and red curves
represent cases with Nmin = 6 and Nmin = 1, respectively (Nmax = 29).

by simply adding more hierarchical levels to (4.8).

Figure 4.8 depicts the influence of Nmin on the trajectory number 6 from figure 4.4,

when the state measurement is corrupted by Gaussian noise with zero mean and standard

deviation 0.005. The objective of (4.8) is modified to

lexminimize (‖xNmax‖2 , . . . ,‖xNmin‖2 ,‖u‖2),

i.e., an additional optimization criterion is introduced.

The blue and red curves represent cases with Nmin = 6 and Nmin = 1, respectively. Fig-

ure 4.8 illustrates the profile of the control input of joint 1. As can be seen, the minimization

of ‖u‖2 has a filtering effect on the high frequency chattering (which is desirable in prac-

tice). The lower plot depicts the resultant profiles of the angle of joint 1: they are hardly

distinguishable. This implies that a proper choice of Nmin can have a smoothing effect on

the control profiles without degrading the time-optimal behavior significantly.

In summary, the parameters Nmin and Nmax can be used to achieve a trade-off between

time-optimality, problem size and smoothness of the solution (in the vicinity of the set-

point).
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Figure 4.9: Coupling constraint (polygon) and box constraints with dashed line. Blue and
red dots depict the control profiles from figure 4.12.

4.5 `1-norm vs Hierarchy Approach

In this section we present a comparison between the `1-norm and the hierarchical approach.

Figure 4.9 shows the constraints applied on the control variable u as a gray polygon. As

can be seen it is not a simple constraint so there is no straightforward analytical solution.

The duration of each trajectory is illustrated in figure 4.11.

Figure 4.10 depicts in blue and red, the trajectories generated using (4.8) and using (4.7)

respectively. Note that for the same initial and final states two totally different minimum

time trajectories generated. The time optimal solution is not unique, there are alternative

sequences of control inputs that lead to time optimal state transitions (see figure 4.12).

The reason behind the differences in the generated trajectories between the two ap-

proaches is that, the sequences of control generated by `1 norm will lead also to states that

have the minimum `1 norm distances to the goal, while using hierarchical approach will

lead to states that have the minimum `2 norm distances to the goal. Each approach has an-

other criterion to satisfy in addition to time optimality. For example, if we want to generate

a minimum time trajectories that have a minimum energy, we will get different trajectories.

None of these approaches can be used in this case (see figure 4.10), we should reformulate
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Figure 4.10: Eleven trajectories. Each trajectory starts with zero joint velocity and converge
to the origin. Trajectories generated by hierarchical approach is depicted in blue, while the
ones generated by `1-norm approach is depicted in red.
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Figure 4.11: Duration of each of the eleven trajectories in figure 4.10. The minimal time
as computed using hierarchical approach (4.8) is depicted in blue, while the time required
when using `1-norm approach(4.7) is depicted in red.
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Figure 4.12: Evolution of the control inputs for trajectory number 8 in figure 4.10. Blue
and red correspond to hierarchical formulation (4.8) and `1-norm formulation (4.7), respec-
tively.

the problem such that we introduce a minimum energy criterion instead of minimum `1 or

`2 norm criterion.

Figure 4.13 depicts the influence of the horizon length N on the duration of the trajec-

tory number 8 in figure 4.10. Note that `1-norm approach required longer horizon (N = 16)

than hierarchical approach (N = 9) in order to achieve time-optimality. Moreover, hierar-

chical approach does not rely on the ad-hoc selection of weighting factors (β parameter),

while an appropriate value of β should be chosen to make sure that `1-norm optimiza-

tion (4.7) generates time optimal trajectory.

Based on these results, we conclude that using hierarchical approach is preferable over

`1-norm approach. To further illustrate and evaluate the performance of the presented meth-

ods, an online trajectory generation for an industrial manipulator performing pick and place

operations in the presence of dynamic obstacles based on them will be presented in Chap-

ter 5.
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Figure 4.13: Duration of trajectory number 8 in figure 4.10 for varying N and different
values of β .

4.6 Conclusion

In this chapter, we have introduced two different numerical approaches to find the min-

imum time control for a discrete time system. The first one formulates the problem as

a weighted `1-norm minimization problem, as an approximation to a cardinality problem

which is an alternative definition of time optimality. The second approach is based on hi-

erarchical optimization problem which is standard in the field of robotics. A comparison

with the analytical solution for a double integrator system shows the effectiveness of the

proposed approaches. They give a time-optimal behavior for arbitrary linear constraints

where finding analytical solution to such arbitrary linear constraints is not straightforward.

Finally we did a comparison between the `1-norm and the hierarchical approaches. the

hierarchical approach is preferable since it doesn’t rely on an ad-hoc selection of weighting

factors, and in addition, time-optimality is achieved with a shorter horizon length.
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Chapter 5

Implementation and Validation in the
Presence of Obstacles

In this chapter, we validate the numerical formulation introduced in Chapter 4 by applying

them to online generation of trajectories for industrial robots performing pick and place

operations in the presence of obstacles. Model predictive control is used in order to achieve

a reactive behavior and to obtain accurate local approximations of the collision avoidance

constraints (which are nonlinear and nonconvex). An experiment using two SCARA robots

that share the same working environment is used to evaluate the proposed approach.

5.1 Introduction

This chapter addresses the problem of online trajectory generation for an industrial manip-

ulator performing pick and place operations in the presence of dynamic obstacles. Since

in many mechatronic applications the control input cost is less important than the task ex-

ecution time [86], we focus on fast transitions by attempting to achieve time-optimality.

The user input for the proposed scheme is simply the desired endpoints without the need

to specify an intermediate trajectory. This can simplify greatly the deployment of indus-

trial technology, leading to decreased cost and thus may have impact on various industrial

applications [3]. Accounting for the full-body dynamics when generating this intermediate

77
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trajectory is usually not essential as most industrial robots are position controlled. That is

why we model the evolution of the joint positions and velocities of the manipulator using a

discrete-time linear dynamical system while accounting for input and state constraints.

Since the collision avoidance constraints are in general nonlinear (and nonconvex), we

employ a Sequential Quadratic Programming (SQP) approach [64] where a sequence of

linearized sub-problems is solved (one for each control sampling time). Each sub-problem

identifies a minimum-time trajectory from the current state of the robot with respect to lo-

cal linear approximations of the collision avoidance constraints. While such a sequence of

problems is not guaranteed to converge to a time-optimal solution for the original noncon-

vex problem, it provides a practical way of generating locally optimal solutions, which is

sufficient for most applications [50, 51]. Our approach is applied in a Model Predictive

Control (MPC) setting, which not only improves reactivity of the system but presents a

possibility to obtain accurate local linear approximations of the collision avoidance con-

straints.

Time-optimal trajectories for the above mentioned SQP sub-problems will be guaran-

teed by applying the hierarchical approach presented in Chapter 4. This formulation gen-

erates a time optimal behavior for arbitrary linear constraints and is tractable in real-time.

To solve efficiently the hierarchical problem, we use a recent solver [22] base on a novel

matrix factorization called "lexicographic QR" or `−QR in short.

We present an experimental evaluation of the proposed approach using a typical in-

dustrial setup where two manipulators share the same working environment (see Fig. 5.1).

Each manipulator has its own controller and considers the other manipulator as a potential

obstacle. This is a problem of practical interest and presents a very good test bed for our

approach due to the limited computational resources (the underlying optimization problems

for both manipulators are solved on a single CPU at 400 MHz).

The rest of this chapter is structured as follows: Section 5.2 formalizes the nonlinear

collision avoidance constraints and introduces the importance of continuous collision de-

tection algorithms. Section 5.3 poses priorities between robot tasks. Section 5.4 includes

the tools used to decrease the computation time needed to solve the proposed approach.

Section 5.5 shows the experimental evaluation, and Section 5.6 presents a comparison

with the previous approach presented in Chapter 3.
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Figure 5.1: Experimental setup. Two Adept Cobra SCARA [1] robots sharing the same
working environment.

5.2 Collision avoidance constraints

The work introduced in this chapter is based on the `1 norm optimization problem (4.7)

and the hierarchical optimization problem (4.8) presented in Chapter 4; however, in this

case collision avoidance constraints, which are in general nonlinear and nonconvex will be

added to the problem. As a result, (4.8) and (4.7) will be nonlinear optimization problems.

We approach the solution of this nonconvex optimization problem by adopting an SQP

scheme in an MPC context. That is, problems (4.8) and (4.7) with linearized collision

avoidance constraints are solved during each control sampling interval c and only u(c) =

u?0 is applied to propagate the state from x(c) to x(c+1). More details on the linearization

are provided in the following section. Each sub-problem can be integrated seamlessly in

existing control frameworks in robotics. As we did in Chapter 4, we will use Pc to refer to

the optimization problem ( (4.8) or (4.7)) when we want to emphasize the dependence on

the initial state x(c).



80CHAPTER 5. IMPLEMENTATION AND VALIDATION IN THE PRESENCE OF OBSTACLES

(a) (b)

Figure 5.2: (a) The closest points between a given link of the manipulator and a static
circular obstacle. (b) The convex hull of a given link at k-th sampling interval and at k+1-
th sampling interval of the preview.

5.2.1 Formulation

Collision avoidance constraints g(x) ≥ 0 can be defined in terms of various primitive

shapes [81, 32]. We consider a standard model that approximates the shape of the robot

and the obstacles using a composition of spheres and swept sphere lines [81]. Due to the

nature of the envisioned application, the collision avoidance constraints are dynamically

changing i.e., not known in advance, and are moreover nonconvex. The MPC scheme that

we have adopted here can be used to address both issues. Not only it increases the reactivity

of the controller but also it can be used to develop accurate local linear approximations of

g(x)≥ 0.

For clarity, first we consider collision avoidance constraints between a given link of the

manipulator and a static circular obstacle (see figure 5.2(a)). Suppose that the obstacle is

centered at position h ∈ R3. Let p(c)k be the point on the link that is closest to the obstacle

during the k-th sampling interval of the preview associated with Pc. Then, in order to avoid

collision, the Euclidean distance between p(c)k and h:

d(c)
k =

(
a(c)k

)T (
p(c)k −h

)
, a(c)k =

p(c)k −h∥∥∥p(c)k −h
∥∥∥ , (5.1)
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must remain greater than a minimal safety distance ds:

d(c)
k ≥ ds. (5.2)

This is a nonconvex constraint and accounting for it explicitly can be computationally

costly. That is why, we approximate it by observing that Pc is closely related to Pc−1.

This fact is heavily used in the field of predictive control not only to formulate simple and

expressive constraints but to warm-start each optimization process with an adequate initial

guess [91]. Following the exposition in [75], we use an approximation:

a(c)k ≈
p(c−1)

k−1 −h∥∥∥p(c−1)
k−1 −h

∥∥∥ , p(c)k ≈ p(c−1)
k−1 + J(c−1)

k−1 q̇(c)k , (5.3)

where J(c−1)
k−1 is the Jacobian matrix associated with p(c−1)

k−1 . This way, constraint (5.2) can

be approximated using (
a(c)k

)T (
J(c−1)

k−1 q̇(c)k + p(c−1)
k−1

)
≥ ds, (5.4)

which is linear in q̇(c)k (a part of the decision variables of Pc). Alternatively one can use

q̇(c)k =
q(c)k −q(c−1)

k−1

∆t
, (5.5)

with ∆t being the sampling time, to reformulate (5.4) in terms of q(c)k . Approximating

g(x) ≥ 0 by using linear constraints like (5.4) for each link of the manipulator for k =

1, . . . ,Nmax, renders problem (4.8) with only linear constraints and a lexicographic least-

squares objective, which is a class of problems commonly solved in robotics.

The only modification needed in case of a dynamic obstacle, assuming that its position

over the preview horizon is known, is that one has to consider a time-varying h in the above

derivations. Using other primitive shapes instead of a sphere to model obstacles is readily

possible (this would only alter how the closest point is computed [24]).
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5.2.2 Continuous collision avoidance

The previous section describes how to formulate a collision avoidance constraint that makes

sure the robot will not collide with obstacles at each time step; however, collisions between

these time steps may still happen. Figure 5.2(b) illustrates that.

To ensure collision avoidance in all cases, we should reformulate the obstacle avoidance

constraint such that it makes sure that the robot will avoid hitting the obstacle continuously

even between the specified time steps. In [69, 70, 98], given two discrete configurations of

the links of an articulated model, an "arbitrary in-between motion" is used to interpolate its

motion between two successive time steps and check the resulting trajectory for collisions.

In [54, 74], multi-vehicle formation control with collision avoidance based on model pre-

dictive control (MPC) is proposed. Since MPC based methods can only consider collision

avoidance at discrete time steps, a collision may occur in intervals between prediction time

steps. As a result, they propose a method based on mixed-integer programming, where

transition constraints are imposed so that they ensure collision avoidance between the pre-

diction time steps. In order to apply such approaches, high computation power is needed

which make them not applicable for an algorithm running in real time and using limited

computation and memory resources. In [75], the swept volume for the links of the robot

between successive time steps is calculated and then a collision avoidance constraint on

the distance between the swept volume and the obstacle is applied. In this approach, a

good approximation for calculating the swept volume is suggested, which fits our situa-

tion: The convex hull of the initial and final volumes [84] (see figure 5.2(b)). Then the

same formulation as in the previous section can be applied.

This approach can double the computation time [75] in itself, but it allows using a

smaller number of sampling times what reduces the total computation cost. However in

our case the thickness of the manipulator and the small size of the time step will make sure

that no collision will occur in the intervals between the prediction time steps. Therefore,

there is no need to apply this in our problem at least for the near future.
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5.3 Task prioritization

The robot has to reach a target in minimum time, respect robot limitations (i.e., joint angles,

velocities, and acceleration constraints.), and safely avoid obstacles. It have several goals

to satisfy. However, there might not exist any control action u that satisfies all these tasks

due to conflicts among them. Let us get inspiration from the famous three laws of robtics

introduced by Isaac Asimov:

1. A robot may not injure a human being or, through inaction, allow a human being to

come to harm.

2. A robot must obey the orders given to it by human beings, except where such orders

would conflict with the 1st law.

3. A robot must protect its own existence as long as such protection does not conflict

with the 1st or 2nd law.

These laws are stated in a way that clearly imposes a strict hierarchy of importance between

different goals. The safety of humans (collision avoidance constraints) is considered to be

strictly more important than the safety of the robot (joint angles, velocities, and acceleration

constraints), and to reach the target in minimum time may be attempted only after these

safety concerns have been taken care of.

One way to give priority between tasks is to apply a weighted least square [53] and

give different weights for tasks, to have a strict priority between them, appropriate weights

should be chosen. However, It is not easy and not achievable in many problems [62].

In [44], a strict hierarchy between tasks is achieved by solving a sequence of constrained

least squares, where lower priority objectives are optimized as far as they do not interfere

with the higher priority objective. A more efficient approach is suggested by [22, 26],

where the solver considers all the priority levels at the same time. It solves the complete

hierarchical problem at once, avoiding the unnecessary iteration encountered in solving

a sequence of QP. This latest approach will be used in the real time implementation for

industrial robots performing pick and place operations in the presence of obstacles.



84CHAPTER 5. IMPLEMENTATION AND VALIDATION IN THE PRESENCE OF OBSTACLES

−100 −50 0 50 100
−50

0

50

100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Angle Joint 1

A
ng

le
 J

oi
nt

 2

(a)

−100 −50 0 50 100
−50

0

50

100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Angle Joint 1

A
ng

le
 J

oi
nt

 2

(b)

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Trajectory number

T
ra

je
ct

or
y 

du
ra

tio
n 

[s
]

 

 

Uniform sampling N=14
non−uniform sampling N=7

(c)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
x 10

−3

time

C
om

pu
ta

tio
n 

tim
e[

s]

 

 

Uniform sampling N=14
non−uniform sampling N=7

(d)

Figure 5.3: Twenty trajectories. (a) Uniform sampling of the predicted horizon with N =
14. (b) Non-uniform sampling of the predicted horizon N = 7. (c) Duration of each of the
twenty trajectories. (d) Solver computation time at each iteration.

5.4 Real-Time Implementation

This section discusses various aspects used in the implementation to have an efficient algo-

rithm in terms of computation time. The basic element of this implementation is the hierar-

chical solver. First, a brief description about the multi objective active set method [22, 26]

used in the solver will be given. Second, we highlight the capacity to warm start the

solver. Finally, we discuss the ability to change the way the predicted horizon in MPC

is parametrized and how it will effect the computation time.
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5.4.1 Multi objective active set method

The proposed method by [22, 26] provide a solver that considers all the priority levels at

the same time. It is based on a novel matrix factorization called lexicographic QR decom-

position (`-QR) [22] that is cheaply updatable and faster to compute than the hierarchical

complete orthogonal decomposition (HCOD) factorization proposed in [26] while . The

proposed algorithm is derived from the classical primal active set method for QPs. It is

composed of two parts: the first part incrementally builds an active set such that all the

constraints in all levels are activated or satisfied. The second part searches for the corre-

sponding optimal active set by deactivating unnecessary constraints.

Using this method, the hierarchical optimization problem appears as a single problem,

where the active sets of all hierarchical levels are computed at the same time, avoiding the

unnecessary iterations encountered in [44], where a sequence of QPs is proposed to solve

such a problem. As a result, the computation time decreases and it is possible to use a warm

start in robot control problems, so fewer iterations are needed to converge to the solution.

5.4.2 Warm-starting in optimization

In robot control, the solver is used at each sampling time. The problem definition doesn’t

vary too much from one control cycle to another. The optimum active set for the optimiza-

tion problem at time t is nearly the same at time t +∆t. Thus, the optimum active set of

time t can be used as an initial guess for the active set of time t +∆t. This is known as

warm-starting in optimization. The warm-start improves the efficiency of the solver, the

solution for the new cycle can be obtained very quickly, where only a few iterations of the

solver are required to get the optimum active set.

The results show a significant reduction in the computation time using warm start. Fig-

ure 5.13 depicts the computation time with and without warm start. As can be seen, warm-

starting in optimization helps in decreasing the computatoin time.
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5.4.3 Control parametrization

The size of the optimization problem is related to the length of the predicted horizon N.

For instance, in the current implementation, the size of the optimization problem is: 2∗N

decision variables, 4∗N equality constraints and 12∗N+k∗N inequality constraints where

k is the number of obstacles in the work space (see Table 5.1). Control parametrization is

a technique that enables a drastic reduction of the size of the the optimization problem that

underlines the MPC design without noticeable reduction in the control performance [2].

Instead of having a uniform sampling of the predicted horizon, we can use a non-uniform

one, while preserving the same control performance.

Figure 5.3 depicts the different in computation time between using a uniform sampling

where N = 14, and a non-uniform sampling where N = 7. As can be seen, both of them

give the same control performance: trajectory travel time is the same. For lack of time, we

weren’t able to investigate the effects of non-uniform sampling of the preview window in

the presence of obstacles, so we run the real time implementation using a uniform sampling.

5.5 Experimental verification

We consider the industrial setup in figure 5.1. Two Adept Cobra s600 SCARA robots are

performing pick and place operations while sharing the same working environment. Each

manipulator has a dedicated controller and considers the other manipulator as a dynamic

obstacle. Snapshots from a typical operation are depicted in figure 5.4.

In such industrial applications, the typical approach is for a programmer to specify in-

termediate paths between a large number of endpoints (for each robot). On these paths, ac-

celeration profiles must then be defined. This process requires a lot of experience and takes

considerable time and effort which prevents many manufacturers from using multi-robot

systems. In contrast, the approach proposed here requires simply the desired endpoints to

be specified by the user, while the intermediate trajectory is generated online.

In the experiment presented here, in addition to bounding the joint accelerations, con-

straints on the joint angles and velocities were imposed (see Table 3.1). The underlying

optimization problems for both manipulators were solved on a single PowerPC CPU at 400
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(a) (b)

(c) (d)

Figure 5.4: Snapshots from a typical pick and place operation (a)→ (b)→ (c)→ (d).
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Figure 5.5: (a) Typical joint profiles of one pick and place cycle from the experiment in
the video (for one of the robots) with Nmax = 5. (b) A simulation result for the same end-
points as in (a), however, with Nmax = 7 (the associated snapshots are depicted in Fig. 5.4).
Profiles of joints 1 and 2 are depicted using red and blue, respectively.



88CHAPTER 5. IMPLEMENTATION AND VALIDATION IN THE PRESENCE OF OBSTACLES

MHz (32 ms control sampling time was used). This poses a challenge to our numerical

approach (the hierarchical problems were solved using an implementation of the method

in [22]).

Collision avoidance constraints were formed by considering each link of one manipu-

lator (modeled using a swept sphere lines) as an obstacle for the other. We followed the

linearization procedure described in Section 5.2.1. Since there was no notable state esti-

mation noise, Nmin = 1 was used. Although we were aiming at having a preview length

Nmax = 7 (which was verified to lead to very satisfactory results in a simulation study), due

to the hardware limitations, Nmax = 5 was considered. The impact of this will be discussed

later.

Figure 5.5 (a) depicts typical joint profiles of one pick and place cycle from the ex-

periment (for one of the robots). The results demonstrate that online generation of fast

manipulator motions with the proposed hierarchical approach is readily possible even with

limited resources. Although our choice of Nmax makes online computations feasible it,

however, leads to an undesired “velocity saturation”. Note how the velocity of joint 2 satu-

rates at approximately 400 deg/s during the interval [0.25,0.5]. This is a good indicator that

by increasing Nmax one can expect to achieve faster transitions. The results with Nmax = 7

(obtained in a simulation) confirm this. As can be seen on figure 5.5 (b), the velocities of

both joints are very close to the actual limits and, in our experience, increasing further Nmax

leads to only a marginal gain. The resulting transition duration is 30% faster compared to

the case with Nmin = 5. Our current efforts are in the direction of reducing this gap by

means of improving our numerical tools so that a larger Nmax can be used or by enhancing

our formulation. For example, we are investigating the effects of non-uniform sampling of

the preview window and alternative warm-starting techniques.

5.6 Evaluation

In Chapter 3, we proposed a reactive trajectory generator based on a hierarchy between a

strict obstacle avoidance behavior and a control law which is time optimal in the absence

of obstacles. The algorithm shows good results but there were some real problems and
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Figure 5.6: Ten trajectories. Each trajectory starts with zero velocity, converges to the
origin and avoids two convex obstacle in joint space using (a) Bang-bang control approach
(b) `1 norm approach (β = 0.1 , N = 8) and (c) Hierarchical approach (N = 8). The effect
of using MPC can be seen clearly in trajectories number 5, 7 and 8.

limitations due to nonlinearity in manipulators. In order to overcome those problem and

limitations, two other approaches were introduced in Chapter 4 based on MPC. In this

section, we aim at providing a more clear understanding of the advantages and limitation of

all three proposed methods: bang-bang control approach (Chapter 3), `1 norm approach and

hierarchical approach (Chapter 4). To reach this goal, we test them in different simulation

examples and compare the performance of these approaches in terms of time optimality,

reliability and computation time.

In the simulation tests presented here, we consider a SCARA robot with constraints in

joints acceleration, velocity and angle (see Table 3.1). All the computation times in this

section are recorded while running the simulation in OCTAVE on a PC with an Intel Core

2.70 GHz CPU.

5.6.1 Time optimality

In order to produce higher productivity and profit, industrial automation requires faster

robots. A comparison in terms of trajectory duration will be presented in this section.

In the absence of obstacles, the trajectory generated by all approaches are time opti-

mal. A SCARA robot will do any pick and place operation in the fastest way respecting

acceleration, velocity, and angle joint constraints defined in Table 3.1. However, as we
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Figure 5.7: (a) Duration of each of the ten trajectories in Fig. 5.6 using the three different
approaches. (b) The percentage of improvement in trajectories duration relative to the
duration of the trajectories generated by bang-bang control approach.
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Figure 5.8: Ten trajectories. Each trajectory starts with zero velocity, converges to the
origin and avoids two convex obstacle in joint space using (a) Bang-bang control approach
(b) `1 norm approach (β = 0.1 , N = 8) and (c) Hierarchical approach (N = 8). The effect
of using MPC can be seen clearly in trajectories number 2, 3 and 7.
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Figure 5.9: (a) Duration of each of the eight trajectories in Fig. 5.8 using the three different
approaches. (b) The percentage of improvement in trajectories duration relative to the
duration of the trajectories generated by bang-bang control approach.
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Figure 5.10: Duration of trajectory number 5 in Fig. 5.6 for varying N.
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saw in Section 4.4.2 a small modification of the constraints even any arbitrary linear con-

straints except a simple box constraints may affect the solution generated by the bang-bang

control approach and make it far from time optimal. This is not the case with the other

two approaches where a numerical solution is proposed to find the minimum time optimal

solution in the presence of linear constraints.

In the presence of obstacles, `1 norm and hierarchical approach will anticipate future

events and take control action accordingly, which is not the case of the bang-bang control

approach where the control action is a function of the current state only (see Chapter 3).

Thus, we are expecting to reach the destination faster and be closer to time optimal so-

lution using `1 norm and hierarchical approach. Figures 5.6 and 5.8 show clearly this.

The duration of each trajectory is depicted in figures 5.7 and 5.9 respectively. As can be

seen, trajectories based on model predictive control (MPC) may result in more than 40%

faster transition. Moreover, even with a small horizon length (N = 4), the hierarchical ap-

proach generates trajectories faster than the bang-bang control approach (see figure 5.10).

To conclude, approaches based on MPC (`1 norm and hierarchical approach) overcome the

bang-bang control approach in terms of time optimality.

Figure 5.10 depicts the influence of the horizon length N on the duration of the tra-

jectory number 5 in figure 5.6. Note that the `1 norm approach always requires longer

horizons than the hierarchical approach to achieve the same transition time. Furthermore,

the hierarchical approach does not rely on the ad hoc selection of a weighting factor, while

the other requires to choose an appropriate value of β . The comparison shows that trajec-

tories generated by the hierarchical approach have mostly the fastest transition time (the

minimum trajectory duration in figures 5.7 and 5.9).

5.6.2 Reliability

As we saw in Section 3.4.2, using the bang-bang control approach for articulated manipu-

lators leads to some problems and limitations due to nonlinearity. Using MPC approaches

allows a highly efficient way of handling online nonlinear optimization, where a sequence

of linearized sub-problems is solved using an SQP type of approach. Each sub-problem

identifies a minimum-time trajectory from the current state of the robot with respect to
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The
Algorithm

Type of
problem The solver # of decision variable # of inequality constraints # of equality

constraint
Control
variable

Slack
variable

For slack
variable

For
acceleration,
velocity and
joint range

For each
obstacle

avoidance

Bang-bang
control
approach

Quadratic
Problem QPsolve 2 1 0 12 1 0

`1 norm
approach

Linear
Problem GLPK 2*N 2*N 8*N 12*N N 0

Hierarchy
approach

Sequential
Quadratic
Problem

LEXLSI 2*N 0 0 12*N N 4*N

Table 5.1: The size of the optimization problem for the three proposed approach.

local linear approximations of the collision avoidance constraints.

In figure 5.11, MPC approaches will react earlier to the obstacle and respect the con-

straints, which is not the case if we are using the bang-bang control approach. Another

example in figure 5.12 shows the advantage of using MPC against the bang-bang control

approach. Due to nonlinearity in manipulators, the robot reacts to the obstacle knowing that

the obstacle is outside robot’s workspace. MPC approaches solve correctly this problem.

5.6.3 Computation time

The trajectory generator must work at high rates (100 Hz to 1 kHz) to react in real time to

any change in the workspace on an embedded system with limited processing and memory

resources. Generating safe, reliable and fast trajectories using a slow algorithm is not

possible. Thus, comparing the proposed approaches in term of computation time is an

essential criterion.

We have three different approaches, the size of the optimization problem for each ap-

proach is depicted in Table 5.1. The LEXLSI solver [22] is used to solve the hierarchical

problem, while GLPK and QPsolve solvers are used to solve the LP and QP respectively.

More powerful solvers can be used to solve the QP and LP however, we choose to work

with open source ones. As we mentioned before, all the computation times are recorded

while running the simulation in OCTAVE on a PC with an Intel Core 2.70 GHz CPU.

Figure 5.13(a) shows the computation time consumed by the solver at each sampling

time to generate a trajectory for a SCARA robot performing pick and place operations in
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Figure 5.11: (a) shows the results of applying bang bang control approach, while (b) shows
the results of applying MPC based approach.
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Figure 5.12: (a) shows the results of applying bang bang control approach, while (b) shows
the results of applying MPC based approach.
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Figure 5.13: Solver computation time at each iteration using the three proposed approach
(a) for the trajectory number 5 in Fig. 5.6 and (b) for the trajectory number 7 in Fig. 5.8.

the presence of two convex obstacles in joint space (see figure 5.6). The comparison shows

that the bang-bang control approach is the fastest one in terms of computation time which

is expected because this approach controls the current state without predicting any step in

the future so this requires very little computation to determine the shortest distance to the

obstacle and simple optimization problem, as Table 5.1 shows.

Figure 5.13(b) shows that increasing the number of obstacles in the workspace will

increase the computation time in all approaches but with different ratios. In bang-bang

control approach, each obstacle will add just one inequality constraint to the optimization

problem. However, in MPC based approaches as each obstacle will add N inequality con-

straints, in addition to the time required to calculate the shortest distance for N predictions.

The effect of introducing warm start to the LEXLSI solver helps in decreasing the compu-

tation time. However, it remains slower than the bang-bang control approach.

5.7 Conclusion

In this chapter, we validated the MPC approaches presented in Chapter 4 by applying them

to online trajectory generation for industrial robots performing pick and place operations in
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the presence of dynamic obstacles. In particular, we presented an experimental evaluation

using two SCARA robots that share the same working environment. The proposed formu-

lation simplifies greatly the deployment of industrial technology, as it does not rely on the

tedious and time consuming task of manually specifying paths between a large number of

endpoints. We closed this chapter by evaluating the three different approaches proposed

in this thesis. We tested them in different simulation examples and compared the perfor-

mance of these approaches in terms of time optimality, reliability and computation time.

We conclude that MPC approaches show the desired behavior; however they still require

more work to reduce computation time.
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Chapter 6

Conclusion

The work presented in this thesis opens new interesting doors in the fields of programming

and controlling industrial robots. In this chapter, we provide a brief summary of the major

ideas of this work, and bring to light its main limitations along with possible directions of

improvement.

6.1 Summary

We have presented in this thesis a novel framework to deal with real-time collision avoid-

ance for robots performing tasks in a dynamic environment. We developed a reactive tra-

jectory generation algorithm that plans a bit in advance, following an MPC design, and

provides a practical way of generating locally time optimal solutions.

We proposed first a reactive trajectory generator based on a hierarchy between a strict

obstacle avoidance behavior, and a time optimal control law. This algorithm has a simple

structure and low computational requirements, but it doesn’t show the desired behavior

when we apply it to a nonlinear system: some problems and limitations appear when we

use it to generate reactive trajectories for manipulators.

In Chapter 4, we provided a novel approach to solve minimum time control problems

for discrete time systems. Our approach is applied in an MPC setting, which not only

improves reactivity of the system but presents a possibility to obtain accurate local linear
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approximations of the collision avoidance constraint. The proposed approach differs from

existing ones in: (i) it does not rely on an ad-hoc selection of weighting factors (which is

highly non-trivial), (ii) it does not lead to any approximation and results in time-optimal

behavior for arbitrary linear constraints, (iii) and yet it is tractable in real-time.

In Chapter 5, we validated this approach by applying it to online trajectory generation

for industrial robots performing pick and place operations in the presence of dynamic ob-

stacles. It shows the desired behavior: 1) it reacts on-the-fly to dynamic changes in the

workspace using limited embedded system, 2) it simplifies greatly the deployment of in-

dustrial technology, as it removes the fastidious optimization process which is traditionally

executed by hand by handling it automatically, 3) it provide a practical way of generating

locally time optimal solutions.

6.2 Future work

The concepts introduced in this thesis give rise to various questions for future work.

• Throughout this thesis, we have defined robot trajectories at the kinematic level,

knowing that there is a low level tracking controller that converts kinematic variables

into motor commands. The dynamics of the robot and its hardware limitations are

not explicitly considered. They are implicitly taken into account through different

constraints e.g. velocity, acceleration, and jerk constraints. An interesting exten-

sion to this work is to define robot trajectories at the dynamic level and apply the

real physical constraints of the robot by considering explicitly the robot’s hardware

limitations e.g. maximum motor torques.

• In Chapter 5, we have validated our formulations by implementing them for online

trajectory generation for industrial robots. We concluded that the MPC approaches

show the desired behavior, but using a longer horizon N is required to generate faster

trajectories and be closer to time optimal solution. Increasing further N will increase

the size of the optimization problem so computation time will go up. According

to the experimental results, solving the hierarchical optimization problem consumes
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around 70% of the computation time. An essential future work will be to improve

our numerical tools so we can save some computation time and be able to use larger

N and generate faster trajectories.

• In the framework presented in this thesis, we assumed that the information about

the environment needed to avoid obstacles is already available. We are skipping

the environment perception problem. An interesting long term future work would

be to integrate sensors in the robot environment so we can estimate robot-obstacle

distances based on data collected from sensors. This is an interesting development

that will bring new utilities and open the door to human-robot cooperation.

• In this thesis, we developed a reactive trajectory controller that plans a bit in advance,

following a standard MPC design. It provides a practical way of generating locally

time optimal solutions. Another long term future work would be to integrate our

current approach to a global planning algorithm so that we have at the end a reactive

trajectory working at real time and generating a global time optimal solution.
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[51] H. Kim, S. Lim, C Iuraşcu, F. Park, and Y Cho. A robust, discrete, near time-optimal

controller for hard disk drives. Precision Engineering, 28(4):459 – 468, 2004.

[52] J-O. Kim and P.K. Khosla. Real-time obstacle avoidance using harmonic potential

functions. IEEE Transactions on Robotics and Automation,, 8:338—-349, 1992.



108 BIBLIOGRAPHY

[53] T. Kitahara and T. Takashi. Proximity of weighted and layered least squares solutions.

SIAM Journal on Matrix Analysis and Applications, 31:1172–1186, 2009.

[54] K. Kon, S. Habasaki, H. Fukushima, and F. Matsuno. Model predictive based multi-

vehicle formation control with collision avoidance and localization uncertainty. In

System Integration (SII), 2012 IEEE/SICE International Symposium on, pages 212–

217, Dec 2012.

[55] J.J. Kuffner and A.M. LaValle. RRT-connect: An efficient approach to single-query

path planning. In IEEE International Conference on Robotics and Automation, vol-

ume 2, pages 995–1001, 2000.

[56] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance calculation.

In IEEE International Conference on Robotics and Automation, pages 1008–1014,

1991.

[57] F. Lingelbach. Path planning using probabilistic cell decomposition. In Robotics and

Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,

volume 1, pages 467–472 Vol.1, April 2004.

[58] A. De Luca. Trajectory planning lecture at sapienza university.

http://www.diag.uniroma1.it/ deluca.

[59] M. Melanie. An Introduction to Genetic Algorithms. Cambridge. Cambridge, MA:

MIT Press, 1996.

[60] Katta G. Murty. Linear complementarity, linear and nonlinear programming. Sigma

Series in Applied Mathematics 3. Berlin: Heldermann Verlag., 1988.

[61] Y. Nakamura. Advanced robotics: redundancy and optimization. Addison-Wesley

Longman, 1990.

[62] H. Nakayama. Aspiration level approach to interactive multi-objective programming

and its applications. In Advances in Multicriteria Analysis (Kluwer Academic Pub-

lishers), pages 147–174, 1995.



BIBLIOGRAPHY 109

[63] W. S. Newman. Robust, near time-optimal control. In IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, volume 35, 1990.

[64] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[65] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish. Recent progress on pro-

gramming methods for industrial robots. Robotics and Computer-Integrated Manu-

facturing, 28(2):87–94, April 2012.

[66] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The

Mathematical Theory of Optimal Processes. Pergamon Press, 1964.

[67] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and control. IEEE

Int.Conf. on Robotics and Automation,, 2:802—-807, 1993.

[68] J. Rawlings and D. Mayne. Model Predictive Control: Theory and Design. Nob Hill

Publishing, 2009.

[69] Stephane Redon, Abderrahmane Kheddar, and Sabine Coquillart. Fast Continuous

Collision Detection between Rigid Bodies. Computer Graphics Forum, 21(3):279–

287, 2002. The definitive version is available at www.blackwell-synergy.com.

[70] Stephane Redon, Young J. Kim, Ming C. Lin, and Dinesh Manocha. Fast Continuous

Collision Detection for Articulated Models. Journal of Computing and Information

Science in Engineering, 5(2):126–137, 2005.

[71] J. Rosell and P. Iniguez. Path planning using harmonic functions and probabilistic

cell decomposition. In Robotics and Automation, 2005. ICRA 2005. Proceedings of

the 2005 IEEE International Conference on, pages 1803–1808, April 2005.

[72] M. Saveriano and D. Lee. Point cloud based dynamical system modulation for re-

active avoidance of convex and concave obstacles. IEEE Int.Conf.Intelligent Robots

and Systems (IROS),, pages 5380–5387, 2013.

[73] Sven Schonherr. Quadratic Programming in Geometric Optimization: Theory, Im-

plementation, and Applications. PhD thesis, Swiss Federal Institute of Technology,

Zurich, Switzerland, 2002.



110 BIBLIOGRAPHY

[74] Tom schouwenaars. Safe Trajectory Planning of Autonomous Vehicles. PhD thesis,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, USA, 2006.

[75] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Gold-

berg, and P. Abbeel. Motion planning with sequential convex optimization and

convex collision checking. The International Journal of Robotics Research (IJRR),

33(9):1251 – 1270, 2014.

[76] Z. Shiller and S. Sharma. Online obstacle avoidance at high speeds. The International

Journal of Robotics Research,, pages 1030–1047, 2013.

[77] A. Shukla, R. Riwari, and R. Kala. Mobile robot navigation control in moving obsta-

cle environment using a* algorithm. In International Conference on Artificial Neural

Networks in Engineerying, volume 18, pages 113–120, 2008.

[78] B. Siciliano and J.-J. Slotine. A general framework for managing multiple tasks in

highly redundant robotic systems. In Fifth International Conference on Advanced

Robotics (ICAR), pages 1211–1216, 1991.

[79] L. Singh, H. Stephanou, and J. Wen. Real-time robot motion control with circulatory

fields. IEEE Int.Conf. on Robotics and Automation,, pages 2737—-2742, 1996.

[80] R.F. Stengel. Optimal Control and Estimation. Dover Publications, 1986.

[81] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick. Real-time collision avoidance

with whole body motion control for humanoid robots. In International Conference

on Intelligent Robots and Systems, pages 2053–2058, 2007.

[82] V.I. Utkin. Variable structure systems with sliding modes. In IEEE Transactions on

Automatic Control, volume 22, pages 212–222, 1977.

[83] J. van den Berg, J. Snape, S.J. Guy, and D. Manocha. Reciprocal collision avoidance

with acceleration-velocity obstacles. In IEEE International Conference on Robotics

and Automation, pages 3475–3482, 2010.



BIBLIOGRAPHY 111

[84] G. van den Bergen. Proximity queries and penetration depth computation on 3d game

objects. Game Developers Conference, 2001.

[85] G. van den Bergen. Collision Detection in Interactive 3D Environments. The Morgan

Kaufman Publishers, 2004.

[86] L. Van den Broeck, M. Diehl, and J. Swevers. A model predictive control approach

for time optimal point-to-point motion control. Mechatronics, 21(7):1203 – 1212,

2011.

[87] A. Vazquez-Otero, J. Faigl, and A. P. Munuzuri. Path planning based on reaction-

diffusion process. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 896–901, 2012.

[88] R. Vinter. Optimal Control. Modern Birkhaeuser Classics, Boston, 2000.

[89] O. von Stryk and R. Burlisch. Direct and indirect methods for trajectory optimization.

In Annals of Operations Research, volume 37, page 357–373, 1992.

[90] O. von Stryk and R. Burlisch. Global linear convergence of an augmented lagrangian

algorithm for solving convex quadratic optimization problems. In Journal of Convex

Analysis, volume 12, pages 45–69, 2005.

[91] Y. Wang and S. Boyd. Fast model predictive control using online optimization. IEEE

Transactions on Control Systems Technology, 18(2):267 – 278, 2010.

[92] S. Wardo and R. Murray. Vehicle motion planning using stream functions. IEEE

Int.Conf. on Robotics and Automation,, 2:2484—-2491, 2003.

[93] M.L. Workman. Adaptive Proximate Time-Optimal Servomechanisms. PhD thesis,

Stanford University, Stanford, CA, 1987.

[94] S. X. Yang and M. Meng. An efficient neural network approach to dynamic robot

motion planning. In Neural Networks, volume 13, page 143–148, 2000.

[95] R. Zanasi, C. Guarino Lo Bianco, and A. Tonielli. Nonlinear filters for the generation

of smooth trajectories. In Automatica, 2000.



112 BIBLIOGRAPHY

[96] R. Zanasi and R. Morselli. Discrete minimum time tracking problem for a chain of

three integrators with bounded input. In Automatica, 2003.

[97] V. Zanotto, A. Gasparetto, A. Lanzutti, P. Boscariol, and R. Vidoni. Experimental val-

idation of minimum time-jerk algorithms for industrial robots. Journal of Intelligent

& Robotic Systems, 64(2):197 – 219, 2011.

[98] Xinyu Zhang, Stephane Redon, Minkyoung Lee, and Young J. Kim. Continuous Col-

lision Detection for Articulated Models using Taylor Models and Temporal Culling.

ACM Transactions on Graphics, 26(3):Article 15, 2007.


	Abstract
	Résumé
	Acknowledgments
	Introduction
	Industrial Motivation
	Scientific Motivation
	Thesis Contribution
	Thesis Outline

	Theoretical Background
	Trajectory Planning
	Path Planning vs Trajectory Planning
	Global Planning vs Local Planning
	Joint Space vs Operational Space

	Optimization
	Optimal Control
	Linear Time Optimal Problem
	Nonlinear Optimization
	Model Predictive Control

	Distance Computation
	Distance Notation
	Distance computation as an optimization problem 
	Strictly and Non Strictly Convex Obstacle

	Discussion and Conclusion

	Obstacle Avoidance as an Optimization Problem
	State of the art
	A one-dimensional example
	Minimum time control
	Obstacle Avoidance
	Velocity limits
	Simulation result

	Planar mobile robot
	Minimum time control
	Obstacle avoidance
	Undesired equilibrium points
	Sub optimality
	Collision avoidance between cooperating robots

	Manipulator Robots
	Obstacle avoidance formulation
	Experimental Results

	Conclusion

	An MPC Approach to Time Optimal Control
	Related work
	The Minimum-Time Problem
	An 1-norm Approach
	Formulation
	Numerical results

	Hierarchy Approach
	Formulation
	Comparison with the analytical solution for a double integrator
	Choosing Nmax
	Choosing Nmin

	1-norm vs Hierarchy Approach
	Conclusion

	Implementation and Validation in the Presence of Obstacles
	Introduction
	Collision avoidance constraints
	Formulation
	Continuous collision avoidance

	Task prioritization
	Real-Time Implementation
	Multi objective active set method
	Warm-starting in optimization
	Control parametrization

	Experimental verification
	Evaluation
	Time optimality
	Reliability
	Computation time

	Conclusion

	Conclusion
	Summary
	Future work

	Bibliography

