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MOTIVATION AND CONTEXT 
 

According to the American Cancer Society, the prostate cancer (PCa) is the most frequent 

malignancy in men. After lung cancer, the PCa is the second leading oncological cause of death. 

Despite many years of research, the main current treatments are still surgery, radiation and androgen 

deprivation therapy. The androgen ablation ultimately leads to the development of a more advanced, 

hormone-refractory (castration-resistant) form of prostate cancer, which responds poorly to standard 

chemotherapy and is considered to be terminal. It is evident that there is an urgent need for the 

discovery of alternative targets and the development of new therapeutic approaches for prostate 

cancer treatment. 

The design of new therapeutic agents against prostate cancer depends critically on our 

knowledge of the molecular mechanisms of cancer origin and progression. In 2007 the term “non-

oncogene addiction” was proposed by Elledge and co-authors to explain the increased dependency 

of cancer cells on the function of normal genes. The phenomenon is based on increased cellular 

stresses experienced by cancer cells (mitotic, proteotoxic, metabolic, etc.), making them more 

dependent on stress support systems. Among these, the ubiquitin-proteasome system (UPS), as a 

major mediator of key cellular functions, represents a perfect model for a loss-of-function screen to 

search for potential drug targets based on non-oncogene addiction. 

This work was carried out in the Biomics laboratory, which is specialized in functional 

genome-wide screens and biomarker discovery targeting prostate cancer. In the course of the project, 

we applied a novel systematic approach to the loss-of-function screen of the UPS. Our strategy was 

to employ the cascade organization of the UPS and its hierarchical mode of function. Compared to 

standard genome-wide screens, this "cascade profiling" results in a rather compact and more targeted 

screen, which facilitates hits identification. Using this approach we have identified components of 

UPS potentially important for prostate cancer cell viability. 
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LITERATURE REVIEW 

CHAPTER 1. PROSTATE CANCER 
 

While in developing countries respiratory infections and AIDS are the most 

mortal diseases, in developed countries, medicine and technology allow people to 

overcome these health problems and live longer, which make heart disease and cancer the 

leading causes of death (http://www.who.int/). Prostate cancer (PCa) is the most often 

diagnosed malignancy (1 in 6 men is diagnosed with PCa during their lifetime) and the 

second leading cause of death from cancers (Jemal et al., 2011; Siegel et al., 2012; 

Stewart & Wild, 2014). Despite high incidence of PCa, the prognosis is usually positive – 

only 1 of 100 men will have progression to an aggressive form during the 5 years 

following diagnosis, and the best treatment option in this case – is watchful waiting. 

Nevertheless, in some patients PCa progresses to terminal disease with extremely fast 

metastasis that requires intensive therapy. Apart from that, current treatment options 

(radio-, chemo- and androgen-deprivation therapy) ultimately lead to the development of 

more advanced forms of prostate cancer - castration-resistant and metastatic PCa. 

Metastatic cancer is considered to be incurable and only 1/3 of patients with metastatic 

PCa survives the 5 years following diagnosis. Better understanding of prostate cancer 

biology would allow clinicians to distinguish relatively indolent forms of prostate cancer 

from aggressive ones. In our research we are searching for proteins involved in the 

viability of prostate cancer cells thus giving an insight in prostate cancer biology. In this 

chapter I describe: (I) epidemiology of prostate cancer, (II) major biomarkers that 

clinicians currently use to determine disease stage and prognosis, and (III) the prevalent 

mutation in prostate cancer, TMPRSS:ERG, and its influence on prostate cancer 

development. 

1.1 STRUCTURE AND FUNCTION OF PROSTATE 

The prostate is a little (3 cm diameter, about 20 grams) auxiliary exocrine gland of 

the male reproductive system located in the anteroinferior part of the pelvis where it 

encloses the urethra and bladder neck. An adult human prostate consists of 3 concentric 

zones (transition/periurethral, central, peripheral), and an anterior fibro-muscular zone 

(Figure 1). The majority of cancers are found in the peripheral zone of the prostate, the 

transition zone in the second place, and almost none in the central zone (De Marzo et al., 
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2007). In contrast, benign prostatic hyperplasia (BPH), a common nonmalignant 

condition found in older men, arises mostly from the transition zone. The prostate is both 

a glandular and muscular body. About a half of the volume of the prostate is taken up by 

30-50 small glands (usually thin branching tubules), forming wedge-shaped slices 

draining into the urethra. The second half of the gland is distributed evenly between fibro-

elastic stroma and randomly orientated smooth muscle bundles that help expel semen 

during ejaculation and form the involuntary urethral sphincter (Shen & Abate-Shen C., 

2010). 

At the histological level, the glandular epithelium of the prostate is mainly 

pseudostratified, comprising tall columnar luminal cells, basal and neuroendocrine cells. 

Tall columnar cells express high levels of androgen receptor (AR), and are responsible for 

the secretory functions of the prostate. They are controlled by the endocrine system and 

respond by the production of unique complex of secretions involved in the fertilization of 

the egg. Basal cells, comprising about 10% of prostatic epithelium, are almost devoid of 

secretory products. They lie on the basal membrane and are wedged between columnar 

cells. It is believed that these cells function as stem cells and are ancestors of luminal 

cells (Merk et al., 1982; Shen & Abate-Shen, 2010). Finally, neuroendocrine cells are 

singular cells producing growth-support secretions (Davis, 1987; Abrahamsson & Lilja, 

1989). 

There is a large variety of types of sensory nerve receptors in the prostate: Vater-

Pacini corpuscles (lamellar bodies), Krause’s end bulb, etc. An extensive network of 

nerve ganglia and nodes around the prostate is so large that relatively small pathological 

changes often lead to severe disorder. Nerve fibers are connected with other nerves of the 

pelvic organs, primarily with the bladder, seminal vesicles, rectum, vas deferens, and 

corpus cavernosum. The close interweaving of the pelvic nerves may facilitate the 

transmission of stimuli (e.g., inflammation) to other pelvic organs. Because of this effect, 

various disorders of pelvic organs often induce uniform symptoms (Molochkov & Ilyin, 

1998). 
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Figure 1. Structure of the prostate. http://teachmeanatomy.info/pelvis/the-male-reproductive-system/prostate-gland/ 

 

1.2 EPIDEMIOLOGY OF PROSTATE CANCER 

The main risk factors for the development of prostate cancer are: aging, family 

history, race (for African-Americans this type of cancer is diagnosed more frequently and 

more often leads to death), hormonal changes, genetic mutations and lifestyle (Reiter & 

de Kernion, 2002). The prevalent form (95%) of prostate cancer is adenocarcinoma 

originating from columnal cells in the acini and glandular part of the ducts. Other 

categories of prostate cancer – such as ductal adenocarcinoma, mucinous carcinoma, and 

signet ring carcinoma – are extremely rare. 

As it was mentioned before, PCa is one of the most often diagnosed malignancies 

in men. Since the introduction of prostate specific antigen (PSA) screening, the rates of 

prostate cancer mortality and incidence began to stabilize and then decline since 1990s. 

PCa incidence decreases 2.4% per year, and the number of PCa-related deaths declines by 

3.4% per year (Figure 2). Despite high incidence of this type of cancer, the prognosis is 

usually positive: PCa is usually confined within the gland and progresses slowly. The 

percentage of patients surviving 5 years comprises 98.9% (Edwards et al., 2014). 

Nonetheless, long-term survival is not as good, because the main treatments often lead to 

the development of highly aggressive metastatic form of PCa (Elledge, 2010). 

The clinical course of localized untreated prostate cancer is still unclear. 

Progression of the disease to the metastatic form within 10-15 years following diagnosis 

is not frequent (5% of all PCa cases according to American Cancer Society), but the 

further follow-up has shown that even primarily indolent localized prostate cancer can 

proceed to a more aggressive form, invading surrounding tissues and giving metastases in 

the lymph nodes and the bones as the major sites (McNeal JE, 1992). To prevent 

http://teachmeanatomy.info/pelvis/the-male-reproductive-system/prostate-gland/
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overtreatment, it is necessary to understand the prolonged natural history of the disease 

(McNeal, 1969; McNeal, 1992; Johansson et al., 2004; Shen MM & Abate-Shen C., 

2010). 

 

Figure 2. Number of new cases and deaths from prostate cancer per 100,000. Figure from Edwards et al., 2014 

 

Therapeutic decisions based on correct diagnosis and accurate staging of prostate 

cancer is critically important for the fate of the patient. Early diagnosis of prostate cancer 

includes three main options: (1) measurement of PSA in blood, (2) digital rectal 

examination and (3) ultrasound-guided transrectal biopsy of the prostate with further 

immunostaining for specific markers (anti-p63, cytokeratin 5 and 14). The most important 

prognosis factors are the initial (pre-therapeutic) level of total serum PSA and the 

Gleason score (G2-G10, discussed below in more details). Patients are also diagnosed by 

the status of their primary tumors, from organ-confined to fully invasive (T1–T4), with or 

without lymph node involvement (N0 or N1), and the presence and degree of distant 

metastases (M0 and M1a–c). Prostate cancer is often preceded by a stage of pre-cancer, 

and timely identification of this condition significantly helps to determine prognosis and 

treatment. To date, Prostatic Intraepithelial Neoplasia (PIN) remains as the only well-

proven preneoplastic condition with clinical significance (Armah & Parwani1, 2008; 

Shen & Abate-Shen, 2010). 

For early diagnosed organ-confined prostate cancer current treatment options 

include watchful waiting, surgery (radical prostatectomy) and radiotherapy - external or 

brachytherapy (implantation of radioactive “seeds”). This type of PCa is curable with 

very good survival and cure rates, but the disease relapses in approximately 25% of 

patients. Nevertheless, choice of treatment option is very questionable – localized cancer 
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rarely progresses to a fatal form and some patients receive overtreatment while others die 

during prostatectomy. For more malignant forms, combined therapy regimens 

(brachytherapy, hormone therapy and chemotherapy) are applied specifically according to 

the disease’s stage, patient’s age and personal choice. In the case of advanced cancer, 

these regimens are usually followed or substituted by androgen deprivation therapy 

(chemical or surgical castration), which initially will reduce tumor burden, but inevitably 

leads to the development of a more destructive form of prostate cancer - androgen-

independent (or castration-resistant, CR-PCa) prostate cancer (Bardan et al., 2007; Shen 

& Abate-Shen, 2010). This recurrent disease has a median survival rate of less than 2 

years. For CR prostate cancer, the only approved therapy is with docetaxel and provides a 

modest survival benefit of 2 to 3 months. 

To explain the emergence of CR-cancer, Isaacs and Coffey proposed that 

androgen withdrawal results in the natural selection of the androgen-refractory cells 

initially present in heterogeneous prostate tumor (Isaacs & Coffey, 1981). Indeed, several 

observations suggest that prostate tumor-initiating cells (TICs) do not express androgen 

receptor (AR) (Gu et al., 2007; Kasper, 2009). In addition, prostate neuroendocrine cells, 

which have been implicated in CR-PCa, are androgen-independent (Cindolo et al., 2007). 

Despite this evidence, however, it is widely established that in the majority of CR tumors, 

AR remains the key driver of cancer progression. Notably, castration-resistant tumors 

express AR as well as AR target genes such as PSA, indicating that pathway activity is 

intact (Gregory et al., 1998). Androgen ablation has been shown to select for TIC clones 

with aberrant, androgen-independent AR signaling (Wang & Shen, 2011). This arises 

through a variety of mechanisms, including mutations that change AR function, 

inactivation of tumor suppressors, activation of oncogenes, increase in autocrine 

stimulation, and rearrangement of cell signaling pathways (Knudsen & Penning, 2010; 

Feldman & Feldman, 2001). As a result, in CR malignant cells, AR executes a 

transcriptional program distinct from that in androgen-responsive cells resulting in 

increased cell survival and androgen-independent growth (Wang et al., 2009). 

It should be noted that in more than 50% of metastatic prostate tumors AR is not 

mutated (Heinlein & Chang, 2004; Knudsen & Penning, 2010). This suggests that the 

aberrant function of AR in androgen-refractory cells results mainly from the changed 

cellular context, i.e. a variety of cellular factors, which define and complement AR 

activity in CR prostate cancer. Comparative genomic analysis of prostate cancer, CR 

tumors and normal prostate cells has revealed numerous genetic alterations and abnormal 
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gene expression profiles in cancer cells (Varambally et al, 2005; Taylor et al, 2010; 

Berger et al, 2011). However, though very valuable for cancer classification and 

prognosis, genomic data tell less about molecular mechanisms of prostate cancer 

progression. A complete understanding of cancer biology requires knowledge of principal 

actors regulating protein interactions and activities. 

1.3 SIGNIFICANT PROGNOSTIC FACTORS 

2.3.1 Gleason score 

To assess the prognosis of patients, clinicians use Gleason Score based on the 

architecture of the prostate glands and the relationship between the tumor cells and the 

surrounding stromal tissue. The Gleason grading system has five levels of tumor 

progression, grade 1 being the least aggressive, while grade 5 is the most anaplastic. 

Usually, prostate tumors are not homogenous. Gleason Score is a sum of Gleason grades 

of the two most typical tumor samples. Thus, it can range from 2 (1 +1) to 10 (5 +5) 

(Bardan et al., 2007). 

In general, the higher the Gleason Score, the more "malignant" the tumor is. 

However, this rule should be used wisely. Generally, the patients with GS ≥ 7 means a 

greater risk for the patient and that it should be treated intensively. Nevertheless, some 

studies using surrogate end points have shown that the prognosis of GS 7 cancers varies 

considerably (Stark et al., 2009). On the other hand, tumors with GS below 4 are 

considered to be indolent and almost never progress to the advanced stage, thus the best 

treatment option in this case – local therapy and watchful waiting. However, after 

universal introduction of routine PSA diagnostics, it became clear that small fraction of 

these “indolent” tumors could progress rapidly and require immediate treatment. 

Consequently, the major clinical challenge is the current inability to readily distinguish 

between indolent and aggressive tumors in prostate cancer patients with a low Gleason 

Score (Shen & Abate-Shen, 2010). 

2.3.2 Prostate specific antigen 

PSA is an organ-specific marker produced by a healthy prostate, and released into 

the blood only in the case of impairment of normal prostate architecture (Lilja et al., 

2008). Thus, while the blood PSA is not a sign of a certain disease or condition, its 

increased level can indicate the presence of a destructive disease, such as adenoma or 
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tumor. This helps to diagnose and monitor PCa progression. PSA in blood serum exists in 

three forms: free, associated with either α-1-antichymotrypsin or with α-2-macroglobulin. 

Two forms of PSA are routinely used in diagnostics: free and α-1-antichymotrypsin-

binded, which add up to a "total PSA". In healthy conditions, PSA is present in serum at a 

very low level, which is age-dependent: 

40-49 years - 2.5 ng/ml 

50-59 years - 3.5 ng/ml 

60-69 years - 4.5 ng/ml 

Over 70 years - 6.5 ng/ml 

Nevertheless, it has been shown that some PCa cases can exist at normal level of 

PSA (Thompson et al., 2004). Men with increased PSA level (10 ng/ml) are 

recommended for prostate biopsy to verify the presence of cancer. To make a decision 

about biopsy in these cases, when serum PSA level is below 10 ng/ml, the ratio of free 

PSA to total PSA becomes crucial: prostate cancer was shown to be associated with the 

formation of protein-bound PSA. “PSA velocity” (the rate of PSA increase) and PSA 

density (the ratio of PSA to prostate volume) are also important prognostic factors 

(Carter, 2006). 

2.3.2 Other potential biomarkers 

Routine PSA screening provides a 20% mortality reduction, because it helps in 

early detection of clinically unapparent, localized tumors with a low GS. However, the 

clinical course of localized untreated prostate cancer is still unclear. Progression to the 

metastatic form in 10-15 years following diagnosis is not frequent, but a further follow-up 

has shown that even primarily indolent localized prostate cancer can proceed to a more 

aggressive form. To prevent overtreatment, it is necessary to understand the prolonged 

natural history of the disease. In order to improve specificity and sensitivity of detection, 

many efforts are being made to identify novel biomarkers. Some of them are already at 

early stages of development and are being evaluated in clinical trials (Duskova & Vesely, 

2014). Examples of such biomarkers are PCA3, PSMA, AMACR, MSMB, etc. One of 

the promising urine biomarkers is TMPRSS2:ERG fusion transcripts. In contrast to PSA, 

which often gives false-negative and false-positive results, TMPRSS2:ERG appears only 

in malignant conditions, which greatly increases the specificity of the test. Some other 

researchers show the efficiency of a multiplexed approach, where the set of markers is 

followed simultaneously that make detection more sensitive and specific. These 
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prominent results could be adjusted for clinical use and would increase the efficiency of 

routing testing for prostate cancer (Rubin, 2012). 

1.4 REARRANGMENTS OF ETS (E26 TRANSFORMATION SPECIFIC) 

TRANSCRIPTION FACTORS 

Localized prostate cancer usually contains histologically and genetically distinct 

areas and thus is regarded as multifocal malignancy. In contrast, despite phenotypical 

differences of metastases in diverse sites, genomic analysis demonstrates their clonal 

origin. During the last few decades, there has been an accumulation of data on molecular 

alterations in PCa, shedding light on the mechanisms of prostate cancer initiation and 

progression. The frequent characteristic mutations have been identified, which include: 

(1) ETS-rearrangements found in more than half of prostate cancer cases (discussed in 

details below); (2) mutations of SPOP component of cullin-RING E3 Ub-ligase complex, 

which are present in up to 15 % of PCa cases; (3) deletion of CHD1 gene (substrate 

recognition component of the transcription regulatory histone acetylation complex 

SAGA) found in up to 15 % of PCa cases. There are also some other less frequent 

mutations/deletions/rearrangements involving PTEN, AR, NKX3-1, p27, p53, Rb and etc. 

(Tomlins et al., 2005; Shen & Abate-Shen, 2010; Yoshimoto et al, 2012; Wyatt et al., 

2014; Yadav et al., 2015). 

The ETS (E26 transformation-specific) family of transcription factors includes 30 

proteins unified by the presence of evolutionarily-conserved ETS domain responsible for 

DNA binding. Also, they contain an N-terminal regulatory domain. The ETS family of 

proteins participates in the regulation of many key cellular processes including 

proliferation, differentiation and apoptosis. In prostate cancer, rearrangements that 

activate ERG, ETV1, ETV4 and ETV5 members of the ETS family have been identified 

(John et al., 2012; Kumar-Sinha et al., 2008; Tomlins et al., 2005; Tomlins et al., 2007b). 

The most frequently rearranged gene in prostate cancer is ERG (ETS related gene) 

(Tomlins et al., 2005). Under normal conditions ERG is constitutively expressed in 

endothelial cells where it regulates angiogenesis and endothelial apoptosis by affecting 

expression of many genes, including eNOS, HO-1, ICAM-2, VE-cadherin, von 

Willebrand's Factor, etc. (Birdsey et al., 2008; Nikolova-Krstevski et al., 2009). The 

major ETS translocation in PCa is TMPRSS2:ERG. TMPRSS2 is a prostate specific, 

androgen responsive transmembrane serine protease (Figure 3). TMPRSS2:ERG fusion 

leads to the ERG expression under control of androgen sensitive promoter elements of 



19 

 

TMPRSS2 (St John et al., 2012). There are multiple other 5’ fusion partners of the ETS 

family in PCa (Figure 3). 

Interestingly, these chromosomal rearrangements may be caused by AR function. 

Studies in androgen-responsive LNCaP cells have shown that AR binding induces 

chromosomal proximity between the TMPRSS2 and ERG loci that can lead, upon DNA 

damage, to the formation of TMPRSS2:ERG fusions. In addition, androgen signaling 

recruits topoisomerase II to AR-binding sites, leading to the induction of double-stranded 

breaks even in the absence of genotoxic stress (Shen MM & Abate-Shen C, 2010). Thus, 

ETS fusions could be induced in cells, which, initially, do not harbor these translocations. 

Combined treatment of prostate cancer LNCaP cells or non-cancerous PNT2 cells with 

DHT and γ-irradiation leads to the appearance of cells with ETS rearrangements (Lin et 

al., 2009; Mani et al., 2009; Bastus et al., 2010; Chiu et al., 2012). Unfortunately, the fate 

of these cells has not been followed, and there is no data on whether this rearrangement 

gives some survival advantages to the cells. 

TMPRSS2:ERG is most likely a driver mutation in prostate cancer. The first piece 

of evidence is the enrichment of this translocation during cancer progression. 

TMPRSS2:ERG fusion is found only in 20% of prostatic intraepithelial neoplasia (PIN) 

lesions (Tomlins et al., 2008), and in up to 50% of confined cancers (Taylor et al., 2010), 

suggesting that this rearrangement is often acquired after cancer initiation, or, instead, it is 

an early event in cancer development and predisposes cells to progression to malignant 

state (Tomlins et al., 2005). The second piece of evidence comes from molecular biology: 

the appearance of this translocation in prostatic cells results in overproduction of various 

N-truncated ERG isoforms (Figure 4). ERG, in its turn, causes transcriptional activation 

of oncogenic pathways including Wnt/β-catenin, NF-κB, c-MYC and disruption of AR-

dependent signaling (Birdsey et al., 2015; Yu et al., 2010; Sun et al., 2008; Wang et al., 

2011). This could lead to the development of PIN but is not sufficient to produce invasive 

adenocarcinoma (Klezovitch et al., Tomlins et al., 2008; Zong et al., 2009). Additional 

factors (e.g., AKT activation, enhanced AR signaling and PTEN loss resulting in aberrant 

phosphoinositide 3-kinase (PI3K) pathway) are required for the development of prostate 

cancer (Carver et al., 2009; Sowalsky et al., 2013; Krohn et al., 2014). 
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Figure 3. ETS rearrangements. This diagram represents all published ETS-fusions grouped by ETS members. 

http://oncofusion.com/pipelines/erg-inhibitors/ 

 

Figure 4. ETS fusions in prostate cancer. Fusion places transcriptional factor ERG (or any other ETS family member, 

i.e. ETV1, ETV4, and ETV5) under the control of AR-responsive promoter that results in overproduction of more or 

less N-truncated ERG protein. ERG, in its turn, activates its own transcriptional program. Acquisition of additional 

mutations (e.g., loss of PTEN) leads to the development of prostate cancer. 

http://oncofusion.com/pipelines/erg-inhibitors/
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The third piece of evidence comes from follow-up studies. Most studies following 

the natural history of the disease show strong correlation between the presence of 

TMPRSS2:ERG fusion and cancer progression to more aggressive forms, metastases and 

a reduced survival rate (Demichelis et al., 2007; Attard et al., 2008; Hägglöf et al., 2014; 

Berg et al., 2014). Interestingly, expression of ERG protein has been shown to correlate 

with markers previously associated with bad prognosis, such as PDGFRβ, hyaluronan, 

Caveolin-1 and von Willebrand factor (Hägglöf et al., 2014). Unfortunately, none of these 

studies addressed the clinical outcome of different TMPRSS2:ERG isoforms, while in in 

vivo cancer models different isoforms were shown to have antagonistic behavior (Rastogi 

et al., 2014). However, the T1E4 isoform (fusion of 1
st
 exon of TMPRSS2 with 4

th
 exon 

of ERG) seems to be the most frequent and clinically relevant. A study, published in 2011 

by Markert and colleagues, takes into account several molecular signatures, including 

TMPRSS2:ERG, and shows that the presence of this translocation is associated with poor 

prognosis, even though the most aggressive phenotype is defined as stem cell-like with 

P53−/PTEN− genotype (Markert et al., 2011). 

High incidence of these gene fusions in prostate cancer and their cancer-driving 

behavior makes them attractive drug targets. However, direct inhibition of ERG protein 

does not give expected results: inhibition of ERG expression in VCaP cells diminishes 

invasiveness, but has no effect on the viability of the cells (Tomlins et al., 2008). Another 

study on VCaPs has shown a slight decrease of cell proliferation under ERG-deprived 

conditions, but only where a high concentration of siRNA was used (starting from 50 

nM), despite that the decrease of ERG protein level starts from 2.5 nM concentration 

(Urbinati et al., 2015). Thus, this effect on viability could be due to some off-target 

effects. Hence, targeted therapy might benefit from using pathways altered in ERG-

expression tumors (Chatterjee et al., 2015; Mancarella et al., 2015) or identification of 

ERG-specific non-oncogene addiction. 
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CHAPTER 2. UBIQUITIN-PROTEASOME SYSTEM (UPS) 
 

In this thesis we describe siRNA screening of the ubiquitin-proteasome system 

(UPS) and ubiquitin-like modifiers (ULMs) pathways to identify individual components 

required for the functioning of PCa cells. We chose to investigate UPS and ULMs 

pathways because of the previous success of proteasome inhibitors in the treatment of 

tumors. It should be noted, that despite the documented anti-cancer effect, proteasome 

inhibition is generally toxic and, thus, may be detrimental for healthy cells. We wanted to 

benefit from targeting individual components of UPS or ULM, which could make therapy 

more selective toward tumor cells. Our screens and subsequent validation experiments 

using a small molecule inhibitor of neddylation revealed that the inhibition of the 

components of the CRL/NEDD8 pathway can have a complex outcome on the viability of 

PCa cells. In this chapter I describe the organization and function of the UPS, and of the 

CRL/NEDD8 pathway as a part of the UPS. 

2.1 UBIQUITIN AND UBIQUITIN-LIKE MODIFIERS 

It has been estimated that bacteria with an average genome size of few thousands 

genes produces about 250,000 individual proteins packed so tight that the space between 

them does not exceed a few molecules of water. Most likely, the eukaryotic cell has more 

or less the same level of compaction (Petsko & Ringe, 2004). The cell interior is 

extremely crowded, but also very mobile: the proteins are separated into different 

compartments and organelles with permanent exchange between them. Complexity is 

increased by a flow of newly synthesized proteins and their constant degradation. In such 

a crowded and mobile environment, precise regulation of protein function is essential to 

avoid chaos. Protein function in vivo can be regulated at transcriptional level via control 

of gene expression. Other levels of control include regulation of translation, post-

translational modification, localization of the protein, covalent or noncovalent binding of 

effector molecules, and the lifetime of the active protein (Petsko & Ringe, 2004; Cooper, 

2000).  

Although it was known that, despite the exergonic nature of peptide-bond 

cleavage protein, degradation is energy-dependent and proteins have different life-time, 

for many decades protein degradation was believed to be non-specific and thus was never 
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really studied (Ravid & Hochstrasser, 2008). At that time lysosome-mediated protein 

degradation was the only pathway known, in accordance with this paradigm. The 

discovery of the ubiquitin-proteasome system made a revolution and was awarded by the 

Nobel Prize in Chemistry in 2004. Specific labeling of intracellular proteins, by small 

protein ubiquitin (Ub), which targets them for degradation by a multienzymatic complex 

called the proteasome, was identified as the main function of this system. Later it was 

shown that ubiquitination also has regulatory functions and does not necessarily lead to 

the degradation of proteins (Glickman & Ciechanover, 2002; Herrmann et al., 2007). 

Ubiquitin, a highly conserved, 76-amino acid protein, is ubiquitously present in 

eukaryotes, but absent in the Eubacteria and the Archaea. Characterization of ubiquitin 

was followed by the discovery that it is a member of a group of protein tags, which share 

similar structure and mechanism of attachment. Ubiquitin and Ubiquitin-Like Modifiers 

(ULMs) have a similar three-dimensional core structure, the β-grasp fold, but otherwise 

are distinct (Figure 5). There are 17 known ubiquitin-like proteins (UBLs) belonging to 

nine phylogenetically distinct classes (Table 1): NEDD8 (RUB for bacteria and plants), 

SUMO (for small ubiquitin-like modifier), ATG8 (for autophagy 8) and ATG12, Ufm1 

(for ubiquitin-fold modifier1), URM1 (for ubiquitin-related modifier 1), ISG15 

(interferon-stimulated gene product of 15 kDa), FAT10 (HLA-F adjacent transcript 10), 

FAU and a diverse assortment of proteins which harbor structurally related folds fused 

translationally to other domains (Watson et al., 2011; Hochstrasser, 2009; Vierstra, 2012). 

 

 

Figure 5. Characteristic ubiquitin-fold. a. Ribbon representation of 3D fold of Ub and ULMs. b. Superposition of their 

3D-folds. Figure from Sorokin at al., 2009 
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Table 1. Known ULMs (modified figure from Hochstrasser, 2009). E1 and E2 - enzymes, involved in modification of 

proteins with a given modifier: E1 – Ub-activating enzyme, E2 – Ub-conjugase (discussed in details below in 2.2 UPS 

MACHINERY) 

Modifier Identity with Ub (%) E1 E2 Roles 

Ub 100 UBA1 & UBA6 >30 Multiple, including protein homeostasis, 

cell receptor signaling, endocytic 

trafficking, transcriptional regulation and 

cell cycle progression 

NEDD8 59 Uba3/NAE1 UBE2M & 

UBE2F 

Activation of cullin-based E3s 

SUMO 18 SAE1/UBA2 Ubc9 Multiple, including protein stability and 

localization, transcriptional regulation and 

cell cycle progression 

Atg12 5 Atg7 Atg10 ATG5–ATG12 conjugate forms complex 

with ATG16 that functions as an E3 ligase 

for autophagic vesicle formation 

Atg8 8 Atg7 Atg3 Autophagic vesicle formation 

Urm1 ~0 UBA4 dimer – Antioxidant pathways; tRNA uracil 

thiolation 

ISG15 32/37 UBA7 UBE2H Antiviral functions; possibly cell growth 

and differentiation 

UFM1 14 UBA5 dimer UFC1 Unknown 

FAU 38 – – Regulation of immune response 

FAT10 32/40 Uba6 USE1 Antiviral functions 
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2.2 UPS MACHINERY 

Ubiquitin and ULM became attached to target molecule in multistep reaction. 

More time will be given to the description of the machinery and organization of the 

ubiquitin-ligation pathway, but the principles are the same for other modifiers. 

Ubiquitin is conjugated to target proteins by the formation of an iso-peptide bond 

between the C-terminal carboxyl group of ubiquitin and a lysine side-chain of the target 

protein. Ub can also be attached by peptide bond to the N-terminus of the protein. This 

process, termed ubiquitylation, occurs through a cascade reaction and requires three 

classes of enzymes: ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes 

(E2), and ubiquitin-protein ligases (E3) (Figure 6). E1 activates ubiquitin by forming a 

high-energy thiol ester bond between an E1 active site-located cysteine and a C-terminal 

glycine of ubiquitin in a reaction that requires the hydrolysis of ATP. Activated ubiquitin 

is then transferred to a specific Cys residue of one of ~30 E2s via a thioester linkage. The 

E3 ubiquitin ligases (E3s) recruit ubiquitin-loaded E2s, recognize specific substrates, and 

facilitate (or directly catalyze) ubiquitin transfer to either the Lys residues (in most cases) 

or the N terminus of their molecular targets with the formation of (iso-) peptide bonds. 

E3s are the key determinants of substrate specificity and are capable of recognizing a few 

or multiple substrates through specific degradation signals. A single E2 may function 

with multiple E3s (and vice versa) to provide specificity in a combinatorial way. To date, 

>500 E3s have been identified. There are several mechanistically distinct classes of E3 

enzymes: many of these E3s contain the Homologous to E6-associated protein (E6-AP) 

Carboxy Terminal (HECT) domain or the Really Interesting New Gene (RING) finger 

domain. Recently, four RING-like domains, the U-box, the Leukemia Associated Protein 

(LAP) finger proteins, the Plant Homeo Domain (PHD) and the Ring Between Ring 

fingers (RBR)-domain family, have also been shown to have E3 activity (Figure 7) 

(Bernassola et al., 2008; Deshaies & Joazeiro, 2009; Chen et al, 2006; Metzger et al., 

2012; Eisenhaber et al., 2007). 
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Figure 6. Enzymatic cascade of UPS. (a) Activation of Ub-moiety by activating enzyme (E1) in energy-dependent 

reaction. (b) Transthiolesterification reaction between E1 and E2 (conjugating enzyme). (c) E3 ubiquitin ligase transfer 

Ub from E2~Ub thioester on target protein. (d) Ubiquitin mark can be eliminated by deubiquitylating enzymes (DUBs). 

Monoubiquitylated substrate can then acquire additional Ub moieties in the form of multiple single attachments (not 

shown) or an ubiquitin chain (e). After depending on the nature of the chain protein can change its function (common 

for mono- multi-ubiquitylation and also for poly-Lys63-cahains) (f) or undergo proteasomal degradation (typical for the 

Lys48 chains (g). Modified figure from Deshaies & Joazeiro, 2009 

 

 

 

Figure 7. Classification of E3 ubiquitin ligases by mechanism of action. Two major types of E3 are illustrated. The 

PHD domain, LAP and U-box E3 have the similar mechanism as RING-ligases. S, substrate of an E3. I. For HECT-

ligases, ligation involves an obligate thioester intermediate with the active-site cysteine of the E3. II. Ring-ligases 

mediate the direct transfer of ubiquitin from E2 to substrate. Modified figure from Chen et al., 2006 
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The fate of ubiquitylated proteins is determined by its nature (mono-, multi- or 

poly-ubiquitylation) and the type of isopeptide linkage of Ub (chains formed through 

lysine 6, 11, 27, 29, 33, 48, 63 or mixed are found in vivo and seem to target proteins to 

different fates). Monoubiquitylation and the formation of multiubiquitin chains by 

isopeptide bonds other than Lys48, such as Lys6, Lys29/33 and Lys63, perform both 

proteolytic as well as regulatory function. Poly-ubiquitylation through Lys48 represents a 

standard signal for proteasome-mediated degradation (Bernassola et al., 2008). Lys63-

poly-ubiquitin chains are involved in protein/protein interaction important for kinase 

signaling activation, receptor endocytosis, protein trafficking, and DNA damage repair 

(Wertz et al., 2004). Lys6 and Lys11 polyubiquitin linkages have been identified in vivo, 

and their accumulation correlates with the pathogenesis in neurodegenerative disorders 

(Bernassola et al., 2008). In addition, recently discovered linear polyubiquitylation 

through Methionine (Met1) is involved in nuclear factor-κB signaling and cell death, and 

dysfunctions in linear ubiquitylation underlie chronic inflammation (Iwai et al., 2014). 

Like many other dynamic posttranslational protein modification, ubiquitylation is 

a reversible process. Ub cleavage is performed by deubiquitylating proteins (DUBs). The 

human genome encodes for nearly 100 Ub-specific DUBs, divided in six families: the 

UCH, USP, OTU, MJD, MCPIP and JAMM families (Reyes-Turcu et al., 2009). 

2.3 PROSTATE CANCER & UPS 

The UPS conjugation pathways have multiple essential biological roles. Even if 

we focus our attention only on cancer-related processes of UPS, the variety of 

downstream effects is extraordinary (Table 2). Ubiquitin-mediated proteasomal 

degradation controls cell-cycle progression, protein quality control, signal transduction, 

and circadian rhythms. The non-proteolytic way of regulation is applied to membrane 

trafficking, control of genome integrity, and the assembly of signaling complexes 

(Hochstrasser, 2009). ULM also regulates multiple biological functions. For example, 

SUMO plays an important role in DNA repair and maintenance of genome stability 

(Bergink & Jentsch, 2004; Nagai et al., 2011). NEDD8 regulates the Ub-pathway and 

degradation of some individual proteins including p53. ISG15 modification is part of the 

cellular response to infection and inflammation (Hochstrasser, 2009). In this light it is not 

surprising that their function, and often malfunction, are important factors in various 

human pathogenesis, including numerous cancer types, cardiovascular diseases and 

neurodegenerative disorders. 
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Table 2. Biological roles of UPS in cancer. 

 

In prostate cancer, E3 ubiquitin ligase adaptor SPOP (speckle-type POZ protein) 

is probably the most often deregulated component of UPS. It is specifically down-

regulated or mutated in 10-15% of all PCa cases, but not in other types of cancer 

suggesting tissue-specific mechanism of action (García-Flores et al., 2014). Indeed, it was 

shown that the wt-SPOP protein provides ubiquitylation and degradation of androgen 

receptor, while mutant isoforms lack this activity (An et al., 2014). Moreover, SPOP 

mutation is associated with genomic instability (Boysen et al., 2015). Interestingly, 

mutation of SPOP and the presence of TMPRSS2:ERG translocation are mutually 

exclusive events (Berger et al., 2011). COP1 (constitutive photomorphogenesis protein 1 

homolog) is another tumor suppressor E3-RING gene, which is frequently affected by 

loss-of-function mutations in cancer (Migliorini et al., 2011). This Ub-ligase controls 

degradation of such oncoproteins as c-Jun and ETS transcription factor Etv1. In the 

majority of prostate cancers ETS factors are overproduced because of TMPRSS2:ETS 

gene fusions (Tomlins et al., 2008). Interestingly, truncated Etv1 encoded by prostate 

cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and is 
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fiftyfold more stable than wild-type Etv1 (Vitari et al., 2011). As a result, almost all 

clinically-relevant translocations result in COP1-insensitive Etv1, implying that COP1 

loss-of-function confers a selective advantage to prostate cancer cells. In contrast to 

COP1, the gene for E3-HECT Ub-ligase WWP1 is frequently amplified in prostate 

cancer. WWP1 induces degradation of several components of the TGFβ pathway as well 

as the Klf5 protein. The latter is one of the key tumor suppressor transcription factors, 

which are down-regulated in PCa (Chen et al., 2007). Mutations of some UPS genes have 

been associated with elevated incidence of sporadic cancer as well as with hereditary 

prostate cancer. For example, the risk of prostate cancer is increased two- to fourfold in 

men with BRCA1/2 mutations (Agalliu et al., 2009). These tumor suppressor genes code 

for E3-RING Ub-ligases, which control DNA repair as well as G2/M and DNA 

replication checkpoints. The most frequent mutations result in truncated BRCA proteins, 

which have lost E3-ligase activity. 

The global alterations of UPS in prostate cancer can also be seen on the protein 

level. Immunostaining of prostate tissues reveals that upon cancer progression sub-

cellular localization of Ub-conjugates is shifted from the nucleus to the cytoplasm 

(Bataineh & Habbal, 2006). This may result from the accumulation of Ub-rich 

cytoplasmic protein aggregates caused by defective protein synthesis and degradation. 

Indeed some UPS components implicated in protein quality control are specifically 

downregulated in PCa (Tomlins et al., 2007b; Lapointe et al., 2004). Other ULMs also 

demonstrate global changes in conjugation and intracellular localization. For example, 

both SUMO and ISG15 pathways are upregulated in PCa cells (Moschos et al., 2010; 

Kiessling et al., 2009), while the NEDD8 pathway is believed to be significantly inhibited 

(Meehan et al., 2002). The critical role of the UPS in prostate cancer is thus well 

recognized and may result from direct control of stability and function of androgen 

receptor and/or regulation of other cancer-related proteins such as oncoproteins and tumor 

suppressors. However, though very important for development of new therapeutic 

approaches, the mechanisms of this regulation, as well as the proteins involved, remain 

poorly understood. 
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2.4 NEDD8-PATHWAY 

3.4.1 NEDD8 as an ubiquitin-like protein 

Among ubiquitin-like modifiers NEDD8 is one of the best studied. NEDD8 is the 

closest to Ub in sequence and structure, but they also have a non-overlapping function. 

NEDD8 was mainly characterized in the context of its function in the regulation of the 

biggest class of E3 ubiquitin-ligases – CRLs (cullin-RING-ligases). However, new 

studies show that NEDD8 probably have other target proteins and functions, the most 

well-studied being the regulation of p53 protein (Harper et al., 2004; Enchev et al., 2014). 

Like in the Ub-pathway, neddylation requires a cascade of reactions performed by 

E1, E2 and E3 enzymes. Neddylation can be reversed by NEDD8-specific proteases. The 

NEDD8-conjugating cascade starts from the NEDD8-activating enzyme (NAE). NAE is a 

heterodimer comprising NAE1 and UBA3 subunits. Activated NEDD8 is subsequently 

transferred to the E2-conjugating enzyme. In metazoans, two NEDD8-specific E2 

conjugating enzymes have been described: UBE2M (also known as UBC12) and UBE2F 

(Huang et al., 2009). Finally, E3 ligases transfer NEDD8 to one of the Lys or N-terminus 

of the target protein. NEDD8-E3-ligases, with one exception, belong to the RING (really 

interesting new gene) finger proteins. 

The best characterized NEDD8-E3-ligases are RBX1 (RING-box protein 1, 

neddylates cullins 1-4 and 7) and RBX2 (RING-box protein 2, specific to cullin 5). 

Neddylation of cullins by RBX1/2 accompanied by DCUN1 proteins (defective in cullin 

neddylation protein 1-like proteins; there are 5 of them in human). Both RBX1 and RBX2 

are part of the multi-subunit complexes Cullin-RING-E3-Ub-Ligases (CRLs), and 

neddylation of cullins leads to activation of CRLs. Other described NEDD8-E3-ligases 

from the RING family are MDM2 (which neddylates p53 and p73 and attenuates its 

transactivation function), c-CBL (which neddylates receptor tyrosine kinases, e.g. EGFR 

and TGFIIβ, and targets them to cell compartments), RNF111 (which neddylates histone 

H4 during DNA-damage response), and DIAP1 (which neddylates caspases and thus 

prevents apoptosis) (Harper, 2004; Watson et al., 2006; Oved et al., 2006; Yang et al., 

2007; Broemer et al., 2010; Ma et al., 2013; Zuo et al., 2013). Recently, the HECT-

domain family of E3 ligase, SMURF1, was shown to be auto-neddylated at multiple sites, 

which increases its activity (Enchev et al., 2014). A few deneddylases have been 

identified, including the CSN5, NEDP1, USP21, Ataxin-3, UCH-L1, and UCH-L3 

(Watson et al., 2011). CSN5 and NEDP1 are selective to NEDD8, whereas the other 
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above mentioned NEDD8 ligases also cleave Ub. The principal cullin deneddylase is 

CSN5, which is active only being a part of 8-subunit COP9 signalosome complex (CSN). 

NEDP1 complements the activity of CSN and ensures maturation of the NEDD8 

precursor (Enchev et al., 2014). 

Normally, both Ub and NEDD8-pathway enzymes are highly specific (Souphron 

et al., 2008), but in conditions of increased ratio of NEDD8:Ub, ubiquitylating enzyme 

E1 UBA1 can activate NEDD8, and redirect it to Ub-conjugation pathway. Unfortunately, 

the biological role of this effect is unclear. One possibility is that formation of mixed Ub-

NEDD8 chains mediates specific stress-response pathways (Leidecker et al., 2012; 

Hjerpe et al., 2012). 

 

 

Figure 8. Architecture of Cullin-RING-ligases. http://biology.ucsd.edu/research/faculty/e1bennett 

3.4.2 NEDD8 targets 

The best-known function of neddylation is regulation of the activity of Cullin-

RING ligases (CRLs), the biggest class of E3 ubiquitin ligases. CRLs are multisubunit 

complexes which consist of the cullin scaffold, a conjugating apparatus represented by 

E2-conjugase and RING-E3-ligases RBX1/2 and an adaptor module, which determines 

specificity to substrate protein (Figure 8). There are a few subclasses of CRLs, depending 

on the type of cullin and adaptor protein involved. In mammals, 7 cullins have been 

identified (1, 2, 3, 4A, 4B, 5 and 7), forming about 300 distinct CRL complexes. Two 

other proteins, CUL9 (also known as PARC) and APC2 (anaphase promoting complex 

http://biology.ucsd.edu/research/faculty/e1bennett


32 

 

subunit 2), also have significant sequence homology to cullins over a ~180 a.a. region and 

bind RBX1 or a homologous small RING protein, APC11. 

The major regulator of CRLs’ function is neddylation. Modification of the cullin 

by NEDD8 causes change of its conformation, stimulating binding to Ub-loaded E2, 

bringing together E2 and substrate, and facilitates transfer of Ub from the E2 active site. 

Upon substrate exhaustion, deneddylation by CSN5 turns off CRL activity and allows 

changing of substrate specificity (Figure 9, C-E). Another key regulator of CRL is the 

protein CAND1. Binding of CAND1 is mutually exclusive with neddylation and the 

adaptor complex of proteins (Figure 9, A-C). CAND1 helps to change the adaptor unit 

and thus change substrate specificity (Merlet et al., 2009; Duda et al., 2011; Pierce et al., 

2013; Abidi & Xirodimas, 2015). 

Other ubiquitin E3 ligases reported to be neddylated include VHL, parkin, 

BRCA1-associated protein 2 (BRAP2) and MDM2. These are all members of the RING 

domain family. Apart from E3 ligases, other proteins modified by NEDD8 include p53, 

NF-κB, L11, HIF1α, E2F1 and APP (Hjerpe et al., 2012; Enchev et al., 2014). 

 

Figure 9. CRLs regulation. CAND1 works as an exchange factor for substrate-recognition unit (A-C), while 

neddylation stabilizes substrate- and E2- conjugated state of the complex (D-E). Ubiquitylated substrate can be 

degraded by proteasome. Figure demonstrates the mechanism described by Pierce et al., 2013 and Merlet et al., 2009. 
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Figure 10. Involvement of CRLs and their substrates in promoting (green boxes/arrows) or inhibiting (red 

boxes/arrows) growth and survival of cancer cells, thus impacting oncogenesis. Figure from Lee J & Zhou, 2010. 

 

3.4.3 Role of CRL/NEDD8 pathway in cancer 

Proteins involved in the regulation of the CRL/NEDD8 pathway are not 

conventional oncoproteins because their effect depends on their targets. Nevertheless, 

there are well-established roles in tumor biology for some final effectors (Figure 10). 

Therefore, the CRL/NEDD8 pathway can function both in promotion and in suppression 

of cancer development (Lee J & Zhou, 2010). In addition, different sorts of NEDD8-

pathway deregulations have been found in cancer. For example, overexpression of NAE 

and UBC12 and global hyper-neddylation are found in a variety of cancers, including 

lung adenocarcinomas and squamous-cell carcinomas (Chairatvit & Ngamkitidechaku, 

2007; Li et al., 2014), while in prostate cancer the pathway is thought to be down-

regulated (Meehan et al., 2002). Another CRL regulatory protein, DCUN1D1, is 

amplified in cancer, particularly in squamous cell carcinoma. Targeting the expression of 

DCUN1D1 by short hairpin RNA induces apoptosis, while another member of DCNL 

family, DCUN1D3, functions as a tumor suppressor by antagonizing the neddylation 

activity of DCUN1D1 (Sarkaria et al. 2006). NEDD8 was reported to cause an anti-

proliferative effect through degradation of Estrogen Receptor-alpha (Fan, 2003). 

Neddylation of pVHL can also inhibit proliferation because it results in pVHL binding to 
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fibronectin and the assembly of extracellular fibronectin. The fibronectin matrix promotes 

differentiation and suppresses the proliferative and metastatic potentials of transformed 

cells in various model systems (Stickle et al., 2004). On the other hand, in its 

deneddylated form pVHL becomes a part of ECV complex (Elongin B/C-CUL2-VHL) 

and participates in the destruction of hypoxia-inducible factor which in turn plays an 

essential role in tumor angiogenesis (Russell & Ohh, 2008). 

Collectively, these data demonstrate the important role of NEDD8-pathway in 

tumorigenesis and suggest that inhibition of neddylation may be a valid therapeutic 

approach for cancer treatment. The development of a potent small molecule inhibitor of 

NAE, MLN4924, was reported in 2009 by Millennium Pharmaceuticals. MLN4924 is 

structurally related to adenosine 5′-monophosphate (AMP), a product of the NAE 

reaction. MLN4924 forms covalent NEDD8-MLN4924 adduct within the active site of 

NAE. MLN4924 is a potent inhibitor of NAE (half-maximal inhibitory concentration 

IC50 = 4 nM), and does not affect related pathways (SUMO, Ub, etc.) or other ATP-

dependent enzymes (Soucy et al., 2009). Treatment of cells with MLN4924 resulted in a 

dose-dependent stabilization of known CRL substrates (Soucy et al., 2009). 
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CHAPTER 3. RNA INTERFERENCE 
 

In this project RNA interference (RNAi) was used to perform loss-of-function 

screening of the UPS components. The discovery of RNA interference made a revolution 

in the field of molecular biology and created a powerful tool for the modulation of gene 

expression. Compared to other methods, RNAi is easy to perform, cost-effective, specific 

to a selected gene and also low in toxicity. As a result, RNAi currently is the most used 

method for gene knockdown. After the development of this technology, genome-wide 

functional screenings became a standard research method, helping to identify the function 

of a gene, the involvement of a protein in a certain process, and, therefore also potential 

new drug targets. Most likely, RNAi will also be used in medicine to treat viral infections 

and cancer, even though there are still some difficulties related to its non-specific effects 

and its delivery system. RNAi and major aspects of its application for molecular biology 

research are discussed below. 

3.1 DISCOVERY OF RNAi 

The term RNAi describes the phenomenon when a double stranded RNA 

(dsRNA) initiates a cellular response, leading to sequence-dependent recognition of a 

target mRNA and thus causes modulation of its function (degradation of mRNA, 

temporary stimulation or inactivation). It has been known by many names, including co-

suppression, post-transcriptional gene silencing (PTGS) and quelling. Only after the 

underlying mechanisms were understood well enough was it given with its current name 

“RNA-interference”, or RNAi. 

The first piece of evidence comes from the 1970s with experiments showing that 

the introduction of oligonucleotides complementary to the target RNA causes the 

formation of RNA-RNA duplexes and interferes with the function of the target RNA. 

First this phenomenon was shown for the E. coli 16s rRNA where antisense RNAs 

inhibited translation. Later the same effect was shown for many other nucleotide 

sequences, and sometimes this interaction has regulatory, but not inhibitory effect. One 

such example is the regulation of the E. coli mobile genetic element Tn10. Hybridization 

of a small anti-sense transcript of Tn10 to its mRNA contributes to the regulation of Tn10 

transposition. Finally, the same effect was shown for mRNAs, where the expression of 

sequences complementary to the herpes simplex virus I (HSV) thymidine kinase (TK) 
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diminishes activity of the enzyme fivefold (Izant & Weintraub, 1984). However, it has 

since been shown that not only can complementary (antisense) RNA cause such a 

silencing, but so can sense oligonucleotides, too. 

In 1990 three reports described a similar phenomenon. To make petunia have 

brighter flowers, petunia genes responsible for flowers coloration (chalcone synthase 

CHS and dihydroflavonol-4-reductase DFR) were overexpressed in transgenic plants. 

Unexpectedly, ¼ to ½ of resultant petunias had completely white flowers or had 

uncolored patterns on the naturally-colored violet flowers. None of transgenic plants had 

flowers darker than the parental genotype. It was found that the level of the introduced 

mRNA was extremely low. Likewise, the level of mRNA of the corresponding 

endogenous gene was very low, too (Napoli et al., 1990; van der Krol et al., 1990). 

Similar results were reported for the tomato polygalacturonase gene. This phenomenon 

was named “co-suppression” (Smith et al., 1990). In 1994 it was shown that, despite the 

strong decrease of CHS mRNA, the transcription of this gene was unchanged (de Lange 

et al., 1994). This suggested that co-suppression was a posttranscriptional event. The next 

important step was made in 1997 by Metzlaff and colleagues, who showed that at least in 

some cases the introduced genes could cause formation of dsRNA, which induces 

silencing. For example, the petunia CHS mRNA forms dsRNA region at the 3’-end of 

transgenic mRNA. 

Andrew Fire and Craig C. Mello brought all this evidence together and proved 

that double stranded RNAs are up to 100 times more efficient comparing to single-

stranded antisense RNA (Fire et al., 1998). For this discovery they were awarded with the 

Nobel Prize in Physiology or Medicine in 2006. This work, performed on nematode C. 

Elegans, stimulated research in the field, leading to the discovery of RNAi mechanisms 

and key RNAi enzymes. It was shown also, that RNAi is evolutionarily conserved and is 

used by many eukaryotes, from protozoa to animals, for gene regulation and for 

protection from viruses. Recently RNAi has become widely used in molecular biology as 

a tool for analyzing gene function. 

3.2 MECHANISM OF RNAi 

As mentioned before, RNAi is initiated by the exogenous or endogenous dsRNA. 

For all vertebrates the efficiency of the interference correlates with the length of dsRNA: 

the longer dsRNA is, the greater the amount of siRNA produced and the greater number 

of target sites recognized on the mRNA molecule. The minimal size of dsRNA sufficient 
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for inducing interference is 19 bp. Most likely this limitation prevents degradation of the 

cell’s own mRNA with short intramolecular self-complementary structures (Elbashir et 

al., 2002). At the same time, in vertebrates, the large dsRNAs cause non-specific effects, 

such as the activation of the interferon response, which leads to suppression of protein 

synthesis and cell death. These non-specific responses can be avoided using small 

interfering RNAs (siRNAs) less the 30 bp long (Caplen et al., 2001). 

The first step in RNAi is the formation of short double stranded RNA fragments 

of 21-28 nt (depending on the species) with 2-nt overhangs at the 3’ ends; the 3’-ends are 

finished an –OH group, and 5’-ends have a phosphate group (Tomari et al., 2004; Lima et 

al., 2009). These small dsRNAs are produced by the enzyme called Dicer, a type III 

RNase, which selectively binds to and cleaves dsRNA. The sequence of this protein is 

highly conserved through evolution (Chiu & Rana., 2002). Dicer contains the following 

domains (Figure 11): PAZ with a “platform”, which recognizes 3’-overhangs on dsRNA; 

double RNase domains, which form intramolecular dimer with a functional RNase active 

site (Vermeulen et al., 2005); dsRBD responsible for the recognition and binding to 

dsRNA (Ketting et al., 2001). At the N-terminus, Dicer has a predicted helicase domain, 

but the helicase function has not yet been demonstrated. Instead, this domain has been 

shown to have some regulatory function – for example, it can function as an 

autoinhibitory module essential for Dicer processivity. The role of the DUF domain 

(Domain of Unknown Function) is still controversial, but it has been suggested that it can 

bind dsRNA and Dicer’s co-enzymes (Dlakic, 2006; Ma et al., 2008; Sawh & Duchaine, 

2012). 

The dsRNA produced by Dicer is transferred to an Ago protein, which uses one 

strand of this RNA as a template for recognition and cleavage of target RNAs. Ago is the 

major protein of RISC (RNA-induced silencing complex), a multisubunit enzyme 

responsible for RNA interference. The RNA strand used as a template for silencing is 

called the “guide chain”, while the remaining “passenger strand” is eliminated. The 

choice of the chain and the loading of this chain onto Ago protein are performed by 

RISC-loading complex (RLC). RLC is formed by the binding of Dicer to a specific 

protein (TRBP in human and R2D2 in D. Melanogaster) with a few cofactors (Figure 12). 

The positioning of RNA in this complex seems to play a crucial role: the favorable 

position is when R2D2 is attached to the end with the higher melting temperature, while 

Dicer is still attached to the opposite end (Song et al., 2004). After the attachment of Ago 

to this complex, the chain with lower melting temperature of 5’-end is then cleaved 
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between 9
th

 and 10
th

 nt from the 5′-end of the guide chain by one of the domains of Ago 

and eliminated from the complex; the second chain then becomes the guide (Leuschner et 

al., 2006). 

The highest assortment of proteins involved in RNAi is found in plants. For 

example, Arabidopsis thaliana has 4 types of Dicer and 10 of Ago, each with its unique 

function. This diversity probably reflects the need of immobile organisms to struggle 

against biotic and abiotic stresses. Drosophila has 2 Dicers: one works with miRNAs and 

the second with siRNAs (described below). This is due to the fact that Drosophila 

actively use RNAi to regulate the activity of its own genes, but also to protect against 

viruses; thus, this separation of function could decrease the concurrence for the enzymes 

between these two processes. This hypothesis is consistent with the observation that Dicer 

and Ago have a very high rate of evolution which may reflect evolutionary pressure from 

viruses. For mammals, silencing of viral genes is not crucial because they developed a 

highly efficient protein-based immune system, and, for them, one type of Dicer is enough 

(Ghildiyal et al., 2009). 

The small RNAs that guide RISC have been given a variety of similar sounding 

names, including siRNA, miRNA, piRNA, rasiRNA, tasiRNA, tncRNA, hcRNA, and 

scnRNA. These molecules are virtually indistinguishable biochemically and functionally, 

and thus they are classified based on the biosynthetic pathway of the precursors or on the 

type of RISC in which the RNA is found. But all of them have the same function: to be a 

template for the recognition of target RNA transcripts for silencing (Pratt & MacRae, 

2009). Nevertheless, there are two major classes of these regulatory RNAs: siRNAs 

(small interfering RNAs) of 21-23 nucleotides in length formed from longer dsRNA; and 

microRNAs (miRNAs) formed from intramolecular double-stranded structures (hairpins) 

of RNA precursors (Vilgelm et al., 2006; Kim et al., 2009b). 

 

 

Figure 11. Domains of Dicer. Figure from Sawh & Duchaine, 2012 
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Figure 12. Formation of RISC-loading complex and destruction of the passenger chain. 

http://helicase.pbworks.com/w/page/17605619/Emily-Devol 

 

miRNAs. miRNA were found to be involved in the regulation of gene expression 

in both plant and animal kingdoms. Genes of miRNA are often clustered into 

polycistronic units and thus transcribed together; nevertheless it has been shown that they 

also can have their own promoter. Moreover, they have been shown to be inserted into the 

introns or exons of coding and non-coding RNAs. Genes of miRNAs are usually 

transcribed by RNA-polymerase II (or, rarer, RNA-pol III) (Borchert et al., 2006); the 

resulting transcripts have self-complementary regions forming “hairpin” structures 

(Figure 13). Those transcripts are cleaved (most likely, co-transcriptionally), by 

microprocessor complexes, into smaller fragments of pre-miRNA (Denli et al., 2004). 

The microprocessor complex comprises two major proteins: Pasha (for C. Elegans; 

human analogue: DGCR8) which binds dsRNA, and Drosha which has RNase activity 

(Lee et al., 2003). These pre-miRNAs are then transported to the cytoplasm by Exportin-

5, where they are processed by Dicer (which cuts off the loop) and Ago (as described 

above). As a result, the mature RISC complex is formed (Khvorova et al., 2003). The 

http://helicase.pbworks.com/w/page/17605619/Emily-Devol
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next step depends on the level of homology between miRNAs and the target RNA. For 

most animals these sequences are not completely complementary, and they have been 

shown to bind 3’-UTR of target mRNA and inhibit its translation (Grosshans & Slack, 

2002; Kim et al., 2009b). Plant mRNAs more often have full complementarity to target 

RNAs and thus more often cause their degradation (Llave et al., 2002). 

siRNAs. This type of regulatory RNAs is most often formed from complementary 

transcripts encoded by transposable elements of the genome or from partially 

complementary transcripts of mRNA from different genes. These transcripts are also 

produced in the nuclei and then transported into the cytoplasm where they are processed 

by Dicer and Ago (Kim et al., 2009b). The highest diversity of endogenous siRNA, and 

of proteins involved in their processing, is found in plants. The distinctive feature of plant 

siRNA is methylation of the 3’-end by the enzyme HEN1. In plants, production of 

siRNAs depends on the activity of RNA-dependent RNA-polymerase (RdRP). 

The genomes of mammals and Drosophila do not encode RdRP, and the discovery 

of endogenous siRNA in these organisms was unexpected. The first discovered mammal 

siRNA was targeted against one of the transposable element of the genome – LINE1 

(long interspersed nuclear element 1). LINE1 has promoters for the sense and antisense 

chains which produce complementary transcripts forming dsRNA. Soon afterward, 

endogenous siRNAs targeting transposons were also found in C. Elegans and D. 

Melanogaster (Ghildiyal et al., 2009). 

RNAi is also used by plants and fungi as a protective mechanism against viruses. 

Very often viruses, during their replication, go through a stage of dsRNA. These dsRNAs 

are then processed by cellular machinery and transformed into siRNAs that have 

complete complementarity with target RNAs, which usually result in their degradation 

(Haasnoot et al., 2007). 
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Figure 13. Biogenesis of miRNA. Figure from Vilgelm et al., 2006 

 

3.3 RNAi AS A TECHNOLOGY 

To induce RNAi in mammal cells synthetic siRNA are used, having a 19 bp 

dsRNA core with a 2 nt 3’-overhang (21 bp total). It is very important to design siRNA to 

be fully complementary to the targeted mRNA, because even 1 nt difference may 

significantly decrease or even abolish the activity of the siRNA. The second important 

factor to consider is the region of the target mRNA corresponding to the sequence of 

siRNA. The secondary structure of the mRNA or its attached regulatory proteins could 

decrease its availability for RISC, and thus significantly diminish the efficiency of RNAi. 

For this reason it is not recommended to target 5’-UTR or the first exon of mRNA, 

because most likely there will be some regulatory sequences and binding sites for 

proteins. Despite all these precautions, the design of siRNA goes through “trial-and-

error” methods: usually 3-4 siRNA sequences, which are complementary to the different 

regions on the target RNA, are chosen and synthesized, and then the most efficient are 

experimentally selected (Kim, 2003; Vilgelm et al., 2006). There are many commercial 
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organizations who offer synthesis of custom siRNA sequences; very often they also 

provide programs for siRNA design. 

Despite world-wide use of RNAi, there are still some limitations in this approach: 

1) Stability. The effect of RNAi is based on the degradation of target mRNA, 

but protein is not affected by RNAi and is instead degraded by natural mechanisms. Time 

of the half-life for each protein is different, thus usually the effect of siRNA on phenotype 

can be detected after the first day, but in case of long-living proteins it develops later. A 

related problem is that the effect of RNAi is transient and lasts until siRNA is present in 

high enough concentrations: after 3-5 mitoses transfected siRNA usually loses its activity. 

To overcome these difficulties it is possible to make additional transfections or to 

introduce into the cells constructions which stably express the necessary siRNA. For 

stable transformation the siRNA is often expressed in the form of shRNAs (Figure 14), 

where sense and anti-sense chains are separated by a short (9 nt) spacer. During 

maturation this spacer loop is cleaved by Dicer as it occurs in the case of miRNA 

(Vilgelm et al., 2006). 

2) Delivery. RNA has a negative charge due to the phosphate groups, which 

makes it difficult to enter the cell through the negatively-charged membrane. Currently, 

there are three major methods for siRNA delivery: electroporation, transfection, and 

stable transformation using DNA-incorporated vectors. Electroporation can be used in the 

case of difficult-to-transfect cells, such as primary and suspension cultures. This method 

was shown to be highly efficient, but harmful, causing up to 50% mortality in cell culture. 

Transfection using lipophilic molecules is currently the most used method for siRNA 

delivery. The most used particles for delivery are liposomes, but there are still 

considerable efforts to find better ways for siRNA delivery (Figure 15). For example, 

polymeric nanoparticles are promising delivery systems because they offer stability and 

controlled release, have the capacity to encapsulate large amounts of genetic material, 

allow for co-delivery, and can readily be surface-modified to enhance stability, transport 

properties, targeting, or uptake. Polymers that are biodegradable, biocompatible, and non-

toxic make attractive candidates for constructing in vivo delivery vehicles. Chitosan, 

cyclodextrin, polyethyleneimine (PEI), poly(lactic-co-glycolic) acid (PLGA), dendrimers, 

and metallic core nanoparticles are becoming popular for delivery, although none of these 

materials possess all of the desirable properties (Vilgelm et al., 2006; Gavrilov & 

Saltzman; 2012). Moreover, self-assembling virus-like particles can be used to deliver 

siRNA into the cells (Kimchi-Sarfaty et al., 2005). 
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As it was said before, for stable inhibition of gene expressing shRNA is often 

used, which can be delivered in the form of plasmids or using virus-based systems 

(lentiviral, adenoviral, adeno-associated or synthetic viruses). These viral vectors have 

been engineered and optimized to facilitate the entry of siRNA into difficlt to transfect 

cells. (http://www.sabiosciences.com/pathwaymagazine/pathways9/sirna-delivery-

methods-mammalian-cells.php) 

3) Off-target effects. Highly-specific RNAi has been converted into a tool for 

molecular biology resulting in a method that has unexpectedly high level of off-target 

effects. siRNAs are designed to have full complementarity to the target and, thus, to have 

no off-target effects. Unfortunately, many studies have shown that siRNA can behave like 

miRNA and regulate expression of RNAs with partial complementarity, which leads to 

appearance of non-specific effects. Considering the amount of these non-target mRNA 

(several hundred), the side-effects can be very strong (Laganà et al., 2014). It appeared 

that the transcripts with sequences complementary to the seed region (nucleotide 

positions 2–8 from the 5′ end of siRNA guide strand), are usually sufficient to yield a 

significant repression of the target (Figure 16). The seed-dependent off-target effect can 

be eliminated by chemical modifications (Ui-Tei et al., 2012). Another approach to the 

off-targeting problem employs pools of siRNAs targeting a single gene in multiple sites. 

This approach may be more specific because such pools combine the effects of individual 

siRNAs on a specific target, while decreasing siRNA effective concentrations and, thus, 

potential off-target effects (Laganà et al., 2014). 

 

 

Figure 14. Expression of shRNA. 

 

 

http://www.sabiosciences.com/pathwaymagazine/pathways9/sirna-delivery-methods-mammalian-cells.php
http://www.sabiosciences.com/pathwaymagazine/pathways9/sirna-delivery-methods-mammalian-cells.php
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Figure 15. The examples of siRNA nanocarriers. Figure from Gavrilov & Saltzman, 2012 

 

 

 

 
Figure 16. Schematic representation of downregulation of transcripts with seed-complementary sequences. In the left 

panel, transcripts possessing 3′UTR complementarity to a given 7-nt-long guide strand sequence were divided into 15 

groups based on the position of the complementary sequence in the siRNA guide strand. Transcripts labeled with “1” 

and “7” at both ends possess complementarity to nucleotides 1–7 of the siRNA guide strand and vice versa. The 

horizontal arrow indicates a transcript group with seed complementarity. In the right panel, changes in gene expression 

levels are shown by log 2 of fold change ratio to mock transfection. Note that the groups of transcripts labeled with 2–8 

are the most sensitive to the off-target effects, suggesting that guide strand nucleotides 2–8 serve as a “seed.” Figure 

from Ui-Tei et al., 2012) 
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II. MATERIALS AND METHODS 

CELL CULTURE 

VCaP and DuCaP cells were cultured in DMEM (Gibco, 41966) containing 10% 

FBS (PAN Biotech, P30-3302) and 1% penicillin/streptomycin (Gibco, 15140). PC3 and 

LNCaP cells were cultured in RPMI1640 (Gibco, 61870) with the same supplements. 

RWPE1 were grown in a medium optimized for this cell line (Invitrogen, Keratinocyte 

Serum Free Medium K-SFM) supplemented with bovine pituitary extract (BPE, 

Invitrogen, K-SFM component), human recombinant epidermal growth factor (EGF) and 

L-glutamine (GIBCO, Kit Catalog Number 17005-075). The cells were then grown in the 

incubator at 37°C with 5% CO2. The RWPE1, PC3, LNCaP and VCaP cell lines were 

purchased from the American Type Culture Collection (ATCC). The VCaP cells were 

also kindly provided by Dr. Matthias Nees from the University of Turku. The DuCaP cell 

line was kindly provided by Prof. Jack Schalken from the Radboud University Nijmegen 

Medical Center, who originally received them from Kenneth J. Pienta, MD, Director of 

Research at The Brady Urological Institute Baltimore where this cell line was created. For 

different passages, the cells were washed twice with PBS (no calcium, no magnesium, 

Gibco, 14190) followed by the addition of trypsin-EDTA (Gibco, 25300) and incubation 

for 3-10 minutes depending on cell line. Subculture was done depending on the density of 

the cells. Usually for VCaP cells, subculture was done once per week, with dilution to 

1/2; DuCaP was once per week, with dilution to 1/10; LNCaP, PC3 and RWPE1 were 

twice per week, with dilution to 1/5. 

CHARCOAL/DEXTRAN STRIPPING OF SERUM 

Charcoal/dextran stripping removes non-polar material such as lipophilic materials 

(virus, certain growth factors, hormones and cytokines) but has little effect on salts, 

glucose, amino acids, etc. Dextran coated charcoal was prepared by stirring 2.5% (w/v) 

Norit-A charcoal and dextran T-70 (0.25% w/v) into PBS and incubating for 18 hours at 

4°C. The dextran-coated charcoal was pelleted by centrifugation at 1,000 g for 5 minutes. 

The supernatant was drained off and replaced with the same volume of Fetal Bovine 

Serum. The mixture was vortexed, to thoroughly mix the charcoal with the serum, and 

then incubated for 12 hours at 4°C. The resulting mixture was passed through a prefilter 
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and 0.45 micron filter before sterilizing through a 0.2 micron filter. The stripped serum 

was aliquoted by 50 ml and stored at -20°C. 

DOUBLE THYMIDINE BLOCK 

 The VCaP cells were plated at 50% confluency in a tissue culture flask. The next 

day, after cells attachment, thymidine was added to a final concentration of 5 mM. Cells 

were incubated in tissue culture incubator for 48 hours (this period corresponds to one 

cell cycle of VCaPs). Next, the culture medium with thymidine was removed, the cells 

were washed once with fresh culture medium, and incubated in fresh DMEM for another 

24 hours to allow cell cycling to restart. After that, thymidine was added for the second 

time to a final concentration of 5 mM. The cells were then incubated for another 48 hours 

in a tissue culture incubator. The cells were released from the block by washing with 

normal culture medium and the addition of fresh DMEM. 

LENS-FREE CELL IMAGING 

CYTONOTE – a Lens-Free Cell Imaging Device (iPRASENSE) is based on 

holographic imaging. Image acquisition using Cytonote doesn’t require any labeling or 

synchronization of cells, and has a large field of view (~30 mm²). This permits the 

monitoring of major morphological properties of cells, including cell adhesion, shape, 

velocity, and also some biological processes, such as cell division and apoptosis (Kesavan 

et al., 2014). For the acquisitions, the cells were plated on culture tissue plates in 

suspension with the testing drugs, and monitored during 3 days using the lens-free 

imaging system. Analysis was performed by Dr. Cedric Allier from CEA Grenoble 

according to the developed and described algorithm (Kesavan et al., 2014). 

SPHEROID FORMATION ASSAY 

To estimate the speed of formation of spheroids time-lapse video microscopy was 

used. Cells were suspended in the standard medium, were subject to treatments (where 

required) and distributed into ultra-low attachment U-bottom plates (Falcon, 353910) at 

concentration of 500 cells/well/100 µl. This resulted in formation of spheroids with 

avarage 400 µm length. For the assay, acquisitions were made every 60 minutes during 4 

days. Typically, 10 spheroids per condition were monitored. For long-term experiments, 

spheroids were grown in the same ultra-low attachment U-bottom plates with a change of 
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culture medim once a week. Prior to the addition of fresh medium, the old culture 

medium were removed using a multichannel pipet. 

SPHEROID SPREADING ASSAY 

Prior to the assay, VCaP spheroids were pre-assembled in ultra-low attachment U-

bottom plates (Falcon, 353910) as described above. Next, the old culture medium was 

removed using multichannel pipet and fresh charcoal-stripped culture medium with or 

without drugs was added into the well. The total volume of the medium along with the 

spheroid were transferred into flat-bottom cell culture plates (Falcon, 353072) using a 

multi-channel pipet. To estimate the speed of spheroids spreading time-lapse video 

microscopy was used. Acquisitions were made every hour during 3 days. The 

development of the images was done using a modified macro script (which was kindly 

created by Dr. Monika Dolega for this purpose). The macro is enclosed in the 

Supplementary Materials. 

TEST FOR SENESCENCE 

Analysis of senescence was performed by measuring of β-galactosidase activity 

according to the protocol described in Nature Protocols (Debacq-Chainiaux et al., 2009). 

The protocol was slightly modified when the test was performed with spheroids. This 

involved the suspension of VCaP cells being distributed in ultra-low attachment U-

bottom plates (Falcon, 353910) in concentrations of 500 cells/well/100 µl and being 

incubated during 10 days. Typically, 30 spheroids per condition were used. Next, the 

spheroids were harvested, pelleted at 600 rpm for 5 min, resuspended in 150 µl of 1.5% 

low-melting agarose (Sigma, A9414) and distributed into Lab Tek chambers (Dominique 

Dutscher, 055082). After polymerization for about 30 minutes, the gels were washed 

twice with PBS, fixed with 2% formaldehyde and 0.2% glutaraldehyde in PBS during 7 

minutes. This was folled by a double wash with PBS, and the addition of a staining 

solution (containing citric acid/Na phosphate buffer, 5 mM K4[Fe(CN)6] 3H2O, 5 mM 

K3[Fe(CN)6], 150 mM sodium chloride, 2 mM magnesium chloride and 1 mg/ml X-gal 

in distilled water). The spheroids were then incubated at 37°C during 5 hours. Then the 

gels were washed multiple times with PBS to remove the background yellow staining of 

agarose. As a final step, the gels were washed with methanol during 1 min and viewed by 

bright field microscopy. 
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RNA EXTRACTION/RT-PCR/PCR/qPCR 

RNA was extracted with an RNeasy Mini Kit (QIAGEN, 74104). 1.5 µg RNA 

was reverse-transcribed in a total volume of 20 µl using a SuperScript® VILO cDNA 

Synthesis Kit (Life Technologies, 11754050) with random primers according to the 

manufacturer’s protocol. Reverse transcription reactions were diluted to 200 µl of 

distilled water and further used in concentrations of 2.5 µl per reaction of quantitative 

PCR (qPCR). 

qPCR was carried out with a Platinum Quantitative PCR SuperMIX-UDG Kit 

(Life Technologies, 11730-017) using a StepOnePlus Real-Time PCR system (Applied 

Biosystems, 4376600). All experiments were run in triplicates, and the results were 

normalized to 18S rRNA expression. Primer sequences are listed in Supplementary Table 

5. 

Standard PCR was done using Herculase II Fusion DNA Polymerase from Agilent 

Technologies (600677). Samples were purified using a MinElute PCR Purification Kit 

from Qiagen (28004) according to the manufacturer’s protocol. Sequencing of PCR 

products was performed on the platform of Beckman Coulter Genomics. 

siRNA TRANSFECTION 

Cells were transfected with siRNA using Lipofectamine® RNAiMAX 

Transfection Reagent (Invitrogen, Ref. 13778) according to the manufacturer’s protocol 

with minor modifications: RNAiMAX was taken 0.75 µl for 1 well of 96-well plate and 

386-well plate. 

Screening of the ubiquitin-proteasome system was performed using ON-

TARGETplus® SMART pool® siRNA Library-Human Ubiquitin Conjugation Subset 1 

from Dharmacon (Supplementary tables 1, 2, 4). Transfection of the SMART pool was 

done at a final concentration of 20 nM of siRNA. Individual siRNAs were added in 

concentrations of 10 nM. 

As controls for transfection AllStars Negative Control siRNA (SI03650318, 

Qiagen) and AllStars Hs Cell Death siRNA Positive cell death phenotype control 

(SI04381048, Qiagen) were used. All controls were used in concentrations equal to the 

concentration of siRNA in the experiment.  The siRNA against the ERG gene was 

prepared by Eurogentec. The sequences of siERG were taken from publication of Tan et 
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al., 2009: sense - 5’-CGACAUCCUUCUCUCACAUAU-3’; antisense - 5’-

AUGUGAGAGAAGGAUGUCGUG -3’ 

siAndrogenReceptor (siAR) were obtained from Dharmacon; used as a mixture: 

Duplex Catalog 

Number 

Gene 

Symbol 

GENE 

ID 

Gene Accession GI Number Sequence 

J-003400-05 AR 367 NM_001011645 58535454 GAGCGUGGACUUUCCGGAA 

J-003400-06 AR 367 NM_001011645 58535454 UCAAGGAACUCGAUCGUAU 

J-003400-07 AR 367 NM_001011645 58535454 CGAGAGAGCUGCAUCAGUU 

 

WESTERN BLOT 

All cellular proteins were extracted using RIPA lysis buffer (Sigma, R0278) with 

protease inhibitor cocktail tablets (Complete Mini from Roche Diagnostics, Cat. No. 11 

836 153 001) and supplements: 

Component [C] Application 

RIPA 10 ml base lysis buffer 

Complete Mini pills 1 pill inhibitor of proteases 

OPA (ortho-phenanthroline) 10 mM  inhibitor of metalloproteases (de-neddylation, de-ubiquitylation) 

NEM (N-Ethylmaleimide) 30 mM  inhibitor of cysteine proteases (de-ubiquitination, de-
sumoylation) 

NaVO4 (sodium 
orthovanadate) 

5 mM inhibitor of phosphatases 

NaF 5 mM inhibitor of phosphatases 

After quantification with a BCA protein assay kit (Pierce, 23225), an equal range 

of concentration (typically 2.5 ng of protein per sample) was run on a NuPAGE Novex 

Bis-Tris Gel (Life Technologies, NP0322BOX, EC60252BOX, NP0323BOX) in MES 

buffer and then transferred onto the nitrocellulose membrane (Amersham™ Protran®, GE 

Healthcare, 10600001). The membranes were blocked in 5% nonfat milk/TBST during 40 

minutes at 37°C, incubated with primary antibodies (a list of antibodies is given in 

Supplementary Table 4) in 5% nonfat milk/TBST during 1 hour at RT or overnight at 

4°C. This step was followed by incubation with secondary HRP-conjugated antibodies.  

Detection was performed with a chemiluminescent reagent depending on the 

concentration of the target protein (Plus-ECL, Perkin Elmer, NEL105001EA; ECL Prime, 

GE Healthcare, RPN2232; SuperSignal West Femto Substrate, Thermo Fisher Scientific, 

34095). 
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IMMUNOFLUORESCENCE MICROSCOPY OF CELLS 

Cells were grown on plasma-treated glass slides. The culture medium was 

removed and replaced by 4% paraformaldehyde (PFA) for 15 min at RT. Then PFA was 

replaced with 0.2% Tween for 5 min at RT. Treatment with Tween was followed by the 

addition of NH4Cl 0,1M for 10 min at RT. Then the slides were washed briefly in PBS 

+Ca
2+

 +Mg
2+ 

(PBS++, Sigma, P4417) and blocked with 3 % BSA in PBS++ which had 

been filtered through a 0.2 µm filter for 30 min. Primary antibodies were added in 1.5 % 

BSA (filtered) and left for 2 hours at RT. This was followed by 3 washes with PBS++, 

and then the slides were incubated with secondary antibodies and phalloidin in 1.5 % 

BSA (filtered) for 45 min at RT. This was followed by a 5 min wash in PBS++, then a 5 

min wash in Hoechst, and then again 5 min with PBS++. Then, these glass slides were 

placed on standard microscope slides with mounting solution (DAKO, S302380) and 

dried for 24 hours. Finally, the slides were analyzed by Zeiss Axioimager Z1 Apotome 

from Zeiss. 

IMMUNOFLUORESCENCE MICROSCOPY OF SPHEROIDS 

Prior to the assay, VCaP spheroids were pre-assembled in ultra-low attachment U-

bottom plates (Falcon, 353910) as described above (SPHEROID FORMATION 

ASSAY). Next, the spheroids were harvested, precipitated at 600 rpm for 5 min, and 

resuspended in fresh charcoal-stripped medium with or without treatments. Next, the 

spheroids were poured onto plasma-treated glass slides in 24-well plates (Falcon, 353047) 

and incubated during 5 days to allow attachment and spreading on the slide. The protocol 

of immunostaining here is identical to the above described protocol for the cells, but with 

longer times of incubation (see details below). 

The culture medium was removed and replaced by 4 % paraformaldehyde (PFA) 

for 30 min at RT. Then PFA was replaced by 0.2 % Tween for 8 min at RT. Treatment 

with Tween were followed by the addition of NH4Cl 0.1M for 30 min at RT. Then slides 

were washed twice in PBS +Ca
2+

 +Mg
2+ 

(PBS++, Sigma, P4417) for 10 min and blocked 

with 3% BSA in PBS++ filtered through a 0.2µm filter for 2 hours at RT. The primary 

antibodies were added in 1.5% BSA (filtered) and left for overnight at 4°. After 4x wash 

with PBS++ for 15 min, the slides were incubated with secondary antibodies and 

phalloidin in 1.5 % BSA (filtered) for 1.5 hours at RT. This was followed by a 15 min 

wash in PBS++, then a 10 min wash in Hoechst, and then again 15 min with PBS++. 
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Then the slides were placed on the microscope slide with mounting solution (DAKO, 

S302380) and dried for 24 hours. Finally the slides were analyzed by Zeiss Axioimager 

Z1 Apotome from Zeiss. 

ANALYSIS OF CELL CYCLE 

The cell cycle was analyzed by the measurement of total DNA content using flow 

cytometry. Cells were grown in culture medium with or without drug treatment during 5 

days. They were harvested with trypsin as described above, neutralized by culture 

medium and washed once in PBS. Then these cells were fixed with 70% fridge-cold 

ethanol for 30 minutes. Next, BSA was added to a final concentration of 0.5%. Then, the 

cells were spun at 3000 rpm for 7 minutes. The supernatant was discarded, while the cells 

were resuspended in 0.25 % BSA in PBS and spun again at 3000 rpm 7 minutes. The 

supernatant was once more discarded, and replaced by a 50 µg/ml 7-AAD (7-

Aminoactinomycin D) solution in PBS. Then the cells were analyzed by BD™ LSR II 

flow cytometer from BD Biosciences. 

PROLIFERATION ASSAY BY ATP CONTENT 

Level of proliferation/viability of cells was analyzed by measuring ATP content 

using ViaLight™ Plus Cell Proliferation and Cytotoxicity BioAssay Kit from Lonza 

(LT07-121) according to the manufacturer’s protocol. In short, cells were seeded in white 

plates with transparent bottom suitable for luminescence assays (Grenier, 655088). The 

treatments were performed on the next day after cell seeding. At indicated times, the lysis 

reagent was added to the cells directly into culture medium for 10 minutes, followed by 

addition of ATP monitoring reagent for 5 minutes. Luminescence was measured using 

GloMax®-Multi Detection System. 

PROLIFERATION BY EdU INCORPORATION 

The quantity of proliferating cells in the population was determined by 

measurement of DNA synthesis (by EdU incorporation) using Click-iT® EdU Alexa 

Fluor® 647 Flow Cytometry Assay Kit from Invitrogen (C-10419). This involved the 

cells being seeded in black plates with transparent bottoms suitable for fluorescent 

measurements (Fisher Scientific, 781091). The treatments were performed on the day 

after cell seeding. At indicated times, VCaP cells were treated with EdU for 5 hours and 

then fixed and stained according to the manufacturer’s protocol. Finally, some Hoechst 
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reagent was added to the cells followed by incubation for 30 minutes. The labeled cells 

were covered with Glycerol and PBS++ solution (in a ratio 1:1) and stored at 4°C. Image 

acquisitions were performed using CellInsight™ NXT High Content Screening Platform 

from Thermo Scientific. The images were analyzed and quantified by the “Cell Health 

Profiling” program, installed within CellInsight™. The identification of cells (cell 

segmentation) is based on the detection of nuclei by the Hoechst channel. Next, the EdU 

signal was quantified for each nucleus. The results were presented as a percentage of cells 

having nuclear EdU staining.  

APOPTOSIS BY ACTIVATION OF CASPASES 

The increase in the amount of apoptotic cells was estimated using CellEvent™ 

Caspase-3/7 Green Detection Reagent from Invitrogen (C10423). This involved the cells 

being seeded in black plates with transparent bottoms suitable for fluorescent 

measurements (Fisher Scientific, 781091). The treatments were performed on the day 

after cell seeding. Some CellEvent reagent was added during the treatment according to 

the manufacturer’s protocol. At the end of treatment, some Hoechst reagent was added to 

the cells before incubation for 30 minutes. The image acquisitions were performed using 

CellInsight™ NXT High Content Screening Platform from Thermo Scientific. The 

images were analyzed and quantified by “Cell Health Profiling” program, installed within 

CellInsight™. Segmentation is based on the detection of nuclei with the Hoechst channel. 

Using this segmentation, the CellEvent signal was then quantified in each nucleus. The 

apoptotic cells were determined by the increase of the signal from CellEvent reagent (see 

below, SCREEN QUANTIFICATION). 

 
Figure 17. Segmentation of cells during CellEvent-based apoptosis assay on CellInsight. The software detects nuclei 

(Hoechst) (A) and fluorescent CellEvent reagent that accumulated in the nucleus upon cleavage by caspases 3/7 

activity. In case of unclear segmentation, the software excludes some areas from analysis: light gray are included and 

dark gray (shown with white arrows) are excluded. In the case of VCaP cells, which are growing in groups, this 

algorithm is not optimal and may count 2 or 3 cells as 1 (red arrows). 
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SCREEN QUANTIFICATION 

The percentage of apoptotic cells was calculated as described above (APOPTOSIS 

BY ACTIVATION OF CASPASES). For each gene the effect of four individual siRNAs 

targeting different exons was analyzed. The effect of each siRNA was measured in 4 well 

replicates split into two 384-microwell plates (2 replicates per plate). The fluorescent 

signals (Hoechst and CellEvent) were measured in 9 fields per well-replicate. Based on 

these signals, the “Cell Health Profiling” program performs cell segmentation and obtains 

information about each individual cell, including the intensity of the signal from the 

channel (Hoechst and CellEvent), the area of the nuclei and the total number of cells per 

field. Based on the CellEvent signal intensities from negative siAllStars and positive 

siCellDeath controls, the threshold that distinguishes alive cells from apoptotic was 

established. Based on this threshold, the median value of the percentage of dying cells 

was then calculated. 

 

Figure 18. CellEvent values for cells treated with controls for plate 2 of VCaP screen. The scatter plot on the left shows 

that siCellDeath increased the population of CellEvent-positive apoptotic cells compared to the negative controls 

siAllStars and siERG. The histogram on the right shows the distribution of cells treated with siCellDeath. The 

population of apoptotic cells is clearly identified, allowing to set a CellEvent signal threshold at 100 (the cells having 

CellEvent signal intensity > 100, were considered apoptotic). 
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For the statistical analysis we used robust Z-score (RZ), which allows the data to 

be less dependent on “outliers”. The Z-score is the distance from the mean of the whole 

plate normalized by its standard deviation. Its robust version, RZ, calculates as follow 

(Birmingham et al., 2009): 

, 

where RZw is a robust Z-score for the well w, Xw is the value for the well (either 

percentage of dying cells or cell number); Md is a median value of the Xw for the whole 

plate, MAD is a median absolute deviation of Xw for the whole plate and k is the constant 

scale factor, which depends on the distribution, and is equal to 1.4826 in case of the 

Gaussian distribution. 

RZ scores were then averaged between 4 repetitions for every siRNA to give a 

merged score (muRZ). To identify hits, we chose a threshold of RZ = 0.82. This 

threshold gives 5% hits (i.e. 5% False Positive) in the hypothetical case where all siRNAs 

are inactive (called null or H0 hypothesis), the distribution of the values is Gaussian, and a 

pro-apoptotic effect of siRNA is the only possible outcome (one sided test). For a 

standard distribution, 95% of the values are below 1.64 but taking into account the 4 

replicates, this threshold has to be divided by the square root of 4 leading to a value of 

0.82. 
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III. RESULTS AND DISCUSSION 

CHAPTER 1. UPS PROFILING IN PROSTATE CANCER 

1.1 INTRODUCTION 

The World Health Organization predicts that tumors may soon become the first 

leading cause of death, leaving behind cardiovascular diseases. At present, more than 

5000 types of cancer are known, which are caused by structural-functional disorders of 

various genes. For the last decades our knowledge of the processes that govern 

carcinogenesis has been rapidly growing. Cancer development is a multistage process – it 

appears as a result of mutation of DNA in a single cell, which has managed to escape 

elimination and has thus subsequently proliferated. The offspring cells then evolve and 

accumulate new genetic alterations, depending on molecular context, lifestyle, treatment 

used, etc. Usually cancer evolution leads to the conservation of the most malignant 

clones, which are capable of avoiding apoptosis, proliferating infinitely, invading 

surrounding tissues, etc. (Hanahan & Weinberg, 2000; Boutros et al., 2015; Sidow & 

Spies, 2015). This phenomenon, known as "oncogene addiction", describes the 

dependency of cancer cells on the altered functioning of oncoproteins. Nevertheless, to 

date, only a few mutations are known to be generally implicated in cancer development, 

including p53, Rb, PTEN, BRCA, etc. At the same time, each cancer patient has a unique 

set of genetic rearrangements influencing the cancer phenotype (Greenman et al., 2007). 

Therefore, it is assumed that some mutations are causal, while the others are acquired 

during carcinogenesis. These latter, somatic mutations, influence the molecular context of 

cancer cells and affect their response to medication. As a result, cancer heterogeneity 

makes each tumor unique and prevents the development of effective anti-tumor drugs. 

Cell constantly faces internal and external stresses, such as mistakes in DNA 

replication and DNA damage, misfolded proteins, toxic byproducts, new signals from the 

environment, etc. To maintain its integrity and homeostasis, the living cell has developed 

various stress-support systems. In a cancer cell, an altered genome redirects normal 

molecular pathways and brings about additional burdens for these systems, which makes 

them the cancer-specific Achilles' heel. This particularity of malignant cells is used in 

cancer treatment: radiotherapy and many chemotherapeutic agents target the increased 

sensitivity of malignant cells to DNA damage, while an inhibitor of the proteasome 
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Bortezomib (or Velcade from Millennium Pharmaceuticals) raises additional proteotoxic 

stress (Luo et al., 2009). Recent data suggest that antioxidants promote cancer 

progression, and vise versa: increasing oxidative stress might suppress the development 

of metastasis in melanoma (Piskounova et al., 2015). Such “non-oncogene addiction”, 

which defines the dependency of tumor on the function of normal genes (Figure 19), 

represents a new attractive strategy for targeted anti-cancer therapy and is expected to be 

specifically toxic for cancer cells (Galluzzi et al., 2013). In some cases, particular agents 

can display genotype-dependent toxicity. For example, it has been shown that inhibition 

of DNA-PKcs is synthetically lethal in cells with defective ATM. In conditions of 

genotoxic stress, suppression of DNA-PKcs leads to failure to repair DNA double-

stranded breaks and to the activation of the apoptotic program (Riabinska et al., 2013). 

Similar results were shown for the TMPRSS2:ERG protein, which affects normal Non-

Homologous End Joining (NHEJ) machinery. Thus, further impairment of DNA repair 

pathway (e.g., inhibition of PARP protein) leads to strong radiosensitization of cells 

harboring this translocation (Chatterjee et al., 2015). 

 

Figure 19. The Hallmarks of Cancer (Luo et al., 2009). In 2000 Hanahan and Weinberg published an article in Cell 

where they describe distinctive features that cancer cells acquire during selection of the most malignant clones (six 

upper symbols). Later, in 2008, Kroemer and Pouyssegur propose an additional trait - avoidance of immune system. In 

2009, Elledge and colleagues describe new features based on increased cellular stresses (metabolic, proteotoxic, 

mitotic, oxidative and DNA damage stress). These hallmarks are interdependent and promote the development of a 

tumor phenotype. Bringing additional instability to the stress-support system causes its failure and, as a result, tumor-

specific lethality. 
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The ubiquitin-proteasome system (UPS) could be viewed as one such stress-

support system. The UPS is a key mediator of molecular turnover in the majority of 

cellular functions, including cell cycle progression, DNA repair and receptor signaling. 

Mutations, genetic rearrangements and rewired molecular pathways result in an 

imbalance of protein levels, causing additional stress for the UPS. It is believed that 

further impairment of the UPS in cancer cells overloads the system, leading to its collapse 

and apoptosis. Indeed, proteasome inhibitors (such as Bortezomib and Carfilzomib) have 

been shown to be highly efficient in hematological malignancies. Unfortunately, because 

targeting the proteasome is a very general approach that influences the degradation of all 

proteins in a cell, these inhibitors often show a lot of negative side-effects. The aim was 

to benefit from the targeting of individual components of the UPS or ubiquitin-like 

modifiers (ULM) pathways, which could make therapy more selective toward tumor 

cells. Indeed, identification of the components of the UPS involved in oncogenesis and 

characterization of their drug susceptibility is of clinical importance as it may lead to the 

discovery of new therapeutic targets. 

The aim of this project was to identify components of UPS/ULM involved in the 

functioning of prostate cancer cells and, in particular, PCa cells harboring the oncogenic 

translocation TMPRSS2:ERG. As a method the loss-of-function siRNA screen of the 

UPS was used. The effects of gene knockdowns were evaluated in five cell lines, 

representing models of non-cancerous cells (RWPE1), ERG-negative cancer cells 

(LNCaP, PC3) and ERG-positive cancer cells (VCaP, DuCaP) (Figure 20). 

 

Figure 20. Diagram of the loss-of-function siRNA screen of UPS. 
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1.2 METHODOLOGY 

In the course of this project, a novel systematic approach to the functional 

profiling of the UPS in prostate cancer was applied. This approach, named “cascade 

profiling”, takes as its starting point the cascade organization of the UPS and uses its 

hierarchical mode of function which results in a rather compact and more targeted screen 

compared to genome-wide screens. Ubiquitin (and Ub-like proteins) are activated using 

one of the corresponding E1-activating enzymes. Then this moiety (Ub or ULM) is 

transferred to one of the E2-conjugating enzymes. Next, with the help of E3-ligase, it is 

attached directly to the target protein. At each enzymatic level, the number of individual 

components grows dramatically, which allows for an increase of specificity in a 

combinatorial way (Figure 21, A). Based on this cascade organization of the UPS, we 

were able to reduce the number of genes in the screen without loss of information: 

identification of E1 or E2 as a hit would facilitate identification of the E3s involved. To 

individually knockdown the UPS components siRNA technology was used. 

ON-TARGETplus siRNA SMART-pool approach from Dharmacon was chosen. 

ON-TARGETplus technology reduces the off-target effects mediated by antisense seed-

region interactions (the seed region is defined as nucleotide positions 2–8 from the 5′ end 

of siRNA antisense strand or miRNA loaded on Ago proteins that determine the 

selectivity of inhibition (Jackson et al., 2006)). SMART-pool contains a mix of 4 

individual siRNAs targeting the same gene, which was advantageous for two reasons: 

first it allows the decreasing of the concentration of individual siRNA that is reported to 

reduce off-target effects (Caffrey et al., 2011), while keeping the concentration of the 

total siRNAs targeting the gene high enough to ensure efficient knockdown. Second, it 

allows for the decreasing of the number of samples, which is convenient for primary 

screens that aim to eliminate siRNAs having no effect. In the secondary validation 

screens individual siRNAs from the deconvoluted pools were used (Figure 21, B). Using 

several siRNAs targeting the same gene separately allowed for the confirmation of a 

phenotypic outcome (if several siRNA cause the same effect) or to reveal off-target 

effects (if only one siRNA induces a phenotype, while others have no effect). Pools were 

used at 20 nM total siRNA concentration to minimize off-target effects, while individual 

siRNAs were used at 10 nM concentration. A set of genes were screened using 

Dharmacon “Human siGENOME siRNA Library – Ubiquitin Conjugation Subset 1” 

complemented with siRNAs to target all known E1-E2 genes. The “Ubiquitin 
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Conjugation Subset 1” also contains siRNAs against some members of the E3-RING 

ligases, which were also included in the screen. 

Because the aim was to identify genes which are synthetically lethal with 

TMPRSS2:ERG fusion, the primary screen was done with the ERG-dependent VCaP cell 

line (Figure 21, B). Based on three phenotypic parameters (induction of cell death, 

changes in cell count and ATP level reflecting cell viability/proliferation) 25 potential hits 

were selected out of 107 screened genes. Due to the abundance of the hits from the 

CRL/NEDD8 pathway in the primary screen, three more genes from this pathway were 

added in the secondary screen. The latter identified seven hits, four of which being 

components of CRL/NEDD8 pathway and 2 being potentially ERG-dependent. The 

detailed description of each step is presented below. 

 

 

Figure 21. A. Hierarchical organization of UPS. Ubiquitin (or Ub-like protein) becomes activated by one of the 

corresponding E1-activating enzymes. This moiety is then transferred to one of the E2-conjugating enzymes, and then 

with the help of E3-ligase transferred directly to the target protein. The black square shows the enzymes taken into the 

primary screen. B. Diagram of the screens. The primary screen was done using the VCaP cell line which contains the 

TMPRSS2:ERG mutation. Based on 3 phenotypic parameters (cell death, cell count and cell viability/proliferation) 28 

potential hits were selected out of 107 genes screened. The secondary screen was performed using five cell lines, 4 

individual siRNA per gene from a deconvoluted pool. The secondary screen revealed seven hits, of those two are 

potentially ERG-dependent. 
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1.3 CANCER CELL LINES CHARACTERIZATION 

The cell lines used in the screen (RWPE1, LNCaP, PC3, VCaP and DuCaP) 

represent different stages of cancer development (non-cancerous, cancerous and 

castration-resistant) and different cellular context (+/-/mut AR, +/-ERG) (Table 3). As a 

model for non-cancerous prostatic cells we used the RWPE1 line, established from the 

peripheral zone of a histologically normal adult human prostate, transfected with a single 

copy of the human papilloma virus 18. Among the PCa cell lines we selected two 

TMPRSS2:ERG-positive (VCaP and DuCaP) and two fusion-negative cell lines (PC3 and 

LNCaP). Despite the fact that the LNCaP cells do not possess oncogenic fusion 

TMPRSS:ERG, they harbor another translocation, activating the ETV1 gene from the 

same ETS-family of transcription factors (Tomlins et al., 2007a). The LNCaP, VCaP and 

DuCaP cell lines are AR signaling dependent, while PC3 is AR-independent. The VCaP 

and DuCaP cells have non-mutated AR (Sobel & Sadar, 2005), while the LNCaP cell line 

harbors a mutation in the ligand-binding domain of AR (T877A) in both alleles, which 

allows the receptor to be activated by progesterone, estrogen, adrenal androgens, and 

hydroxyflutamide in addition to androgens (Veldscholte et al., 1992). 

The VCaP and DuCaP cell lines are derived from the same patient, but from 

different metastatic sites: VCaP were established from vertebral metastases and DuCaP – 

from the dura mater sites (Lee et al., 2001). Although these cell lines have the same 

origin, both of them also have distinctive genetic rearrangements (van Bokhoven et al., 

2003a). Because both DuCaP cell line was established from mouse xenografts, DuCaP 

appears to have a contamination with mouse stromal cells, which could reach up to 50% 

in culture. Moreover, complete elimination of stromal cells is difficult in DuCaP cultures, 

because they seem to be required for the growth and adhesion of DuCaP cells (van 

Bokhoven et al., 2003b). Therefore, although we used the DuCaP cell line in our screen, 

the results obtained with this cell line should be considered carefully. 

Table 3. Description of cell lines used in the screen. 

Cell 
lines 

TMPRSS2:
ERG fusion 

AR 
status 

Metastatic 
site 

Comments 

RWPE1 - + - Non-cancerous immortalized basalcells 

VCaP +++ +++ Vertebral  

LNCaP - +++ 
(T877A) 

Lymph node ETV1-activating fusion. AR is mutated in ligand binding domain 

PC3 - - Vertebrae  

DuCaP + + Dura mater Derived from the same patient as VCaP cell line, but from 
another metastatic site. Highly contaminated with stromal cells 
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Figure 22. Presence of major prostate cancer markers in four PCa cell lines used in the screen. A. Total cell lysates of 

VCaP, DuCaP, LNCaP and PC3 cells were immunoblotted for major prostate cancer markers. The blots for AR and 

ERG presented in two levels of exposure because of differences in quantity of target protein. ERG (blue arrows) is 

found in VCaP cell lines (2 isoforms) and DuCaP (1 isoform). The red arrow shows a band that possibly corresponds to 

the Fli-1 gene product, since the antibodies we used were shown to cross-react with Fli-1, whose molecular weight is 

about 51 kDa. In LNCaP cells a band of higher molecular weight was observed (green arrow). B. Summary graph with 

quantification of Western Blot data. 

 

 

Figure 23. Difference in ERG and AR expression under hormone-depleted conditions. A. Cells were grown during 5 

days on standard medium (StdM) or charcoal/dextran stripped medium (ChSM). Total cell lysates were immunoblotted 

for AR and ERG. The blots are presented in two types of exposures because of the differences in the concentrations of 

proteins in different cell lines. B. Summary graph with quantification of Bestern Blot data. 
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 There are some discrepancies in the description of expression profiles of cell lines 

in the literature. Thus, even for such a well-known cell line as PC3, which is believed to 

be independent on the AR signaling and not expressing AR, there are reports describing 

the presence of AR mRNA and protein (Alimirah et al., 2006). Considering also possible 

stromal contamination of DuCaP cells, precautionary screening was done for major 

prostate cancer markers of the cell lines used. WB was used to detect the presence of AR, 

PSA and ERG proteins in the PCa cell lines (Figure 22). All cell lines, except PC3, 

expressed AR and PSA, but in DuCaP cells the level of these proteins was significantly 

lower. VCaP and DuCaP cells both expressed ERG fusion. In VCaP cells antibodies 

revealed two bands very close in molecular weight, which might represent two the 

isoforms described for VCaP cells: fusion of
 
the first exon of TMPRSS2 gene with the 

forth exon of ERG (T1E4 isoform) with or without the 72 bp fragment of the eleventh 

exon (Wang et al., 2008). DuCaP cells possessed only a high molecular weight isoform at 

low concentrations. 

To recapitulate the conditions of androgen-deprivation therapy a DMEM medium, 

supplemented with the charcoal/dextran stripped FBS (Charcoal-Stripped Medium, 

ChSM), was used. Charcoal/dextran stripping is frequently used for the depletion of 

serum from androgens, but this treatment also decreases the amount of other hormones 

and certain growth factors, such as estradiol, cortisol, corticosterone, the B vitamins, 

triiodothyronine (T3), thyroxine (T4) and prostaglandins (Carter, 1978). The depletion of 

androgens leads to a decrease in the expression of AR-responsive genes, such as PSA and 

TMPRSS2:ERG, which is shown using Western Blot (Figure 23). Interestingly, the 

amount of ERG protein in the DuCaP cell line does not change under hormone-depleted 

conditions (Figure 23). To examine possible differences in the effect of gene knockdown 

in conditions when ERG is depleted or expressed at usual level, this cell line was 

screened on both ChSM and Standard Medium (StdM, when normal, non-stripped, FBS is 

used). 
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1.4 PRIMARY SCREEN 

The purpose of the primary screen was to identify putative gene-hits important for 

the viability of PCa cells. To estimate the effect of gene knockdown on cell viability  

three parameters were used: induction of apoptosis, proliferation and cell count. Induction 

of apoptosis was measured by activation of caspases (CellEvent Caspase-3/7 Green 

Detection Reagent, Life Technologies). The acquisitions were performed using 

CellInsight™ NXT High Content Screening Platform from Thermo Scientific. The 

images were analyzed and quantified by the “Cell Health Profiling” program, installed 

within the CellInsight™. Proliferation was estimated by the level of ATP (ViaLight™ 

Plus Cell Proliferation and Cytotoxicity BioAssay Kit, Lonza). Cell count was measured 

using images obtained in CellEvent experiments. Using several methods gave 

complementary information while permitting the choice of the most robust method for the 

secondary screen. The primary screen was done on ChSM with VCaP cells; the effects of 

siRNA knockdown were estimated on the fifth day after transfection. The results of the 

primary screen are presented on Figure 24, Figure 25 and Figure 26. Part A of each figure 

represents an ordered distributions of the values (from smallest to the biggest), while part 

B reprensents lists of “positive” and “negative” hits. The thresholds for each readout were 

chosen arbitrarily. 

The dataset “Cell Death” (Figure 24) shows a very good distribution, which 

allows easy detection of hits. The plot has obvious “bends” in the upper and lower part of 

the graph, corresponding to about 20% outliers. The siRNAs found in the middle region 

had no apparent effect on cell viability. The negative control siAllStars is located in the 

center of the assumed “no effect” area, whereas the positive control siCellDeath had the 

highest level of dying cells (93%), which confirms the performance of the screen. The 

second highest value (75% of dying cells) was shown by siUBB, targeting ubiquitin itself. 

Knockdown of ubiquitin by siRNA is known to cause cell death (Oh et al., 2013) and is 

used as a part of siCellDeath from Qiagen (Hahn et al., 2013). 

The results obtained from the measurement of proliferation also show a correct 

distribution. Control siRNAs are at the expected places (Figure 26). The data sets 

"Proliferation" and "Cell Death" show a quite good negative correlation (R= -0.714) 

(Figure 27), reflecting the expected antagonistic relationship between these phenotypes. 
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Both assays (Apoptosis and ViaLight) were most sensitive to the “toxic” siRNAs, which 

inhibit proliferation and induce apoptosis. 

The “cell count” values show a much worse distribution, which complicates 

identification of the hits (Figure 25). Control siRNAs does not show the expected results: 

the effect of siCellDeath is very weak and siAS is shifted to the bottom of the graph. 

Moreover, its correlation with the other two datasets is the lowest. Of note, the parameters 

“Percentage of apoptotic cells” and “Cell Number” were obtained from the same 

experiment and thus supposed to be interdependent. However, the anti-correlation 

between these data sets is weak, with a correlation coefficient r = -0.299 (Figure 28). A 

possible explanation for this poor correlation is that the number of cells is a less 

repeatable parameter in general: it is difficult to put exactly the same amount of cells in 

the well and make them equally distributed within the well – there will always be fields 

with more and less cells. A second reason may be the low proliferation rate of VCaP 

cells: according to ATCC their doubling time is about 53 hours. Proliferation of VcaP 

cells in ChSM is even slower, which does not allow for detecting minor differences in the 

number of cells. Other sources of noise could be the way of cell segmentation during the 

data acquisitions, which is complicated by the properties of VCaP cells. The segmentation 

by the “Cell Health Profiling” program is based on the detection of nuclear staining (by 

Hoechst and CellEvent reagent), which is not often evident with VCaP cells growing in 

tight groups (Error! Reference source not found.). From all these considerations we 

conclude that the parameter “Cell Count” is not a good metric for VCaP cells. 
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Figure 24. Results of the primary screen with the VCaP cell line; readout - cell death. A – Ordered distributions of the 

data (from the smallest value to the biggest); B – the list of positive and negative hits. In black – negative control 

siAllStars, in red – positive control siCellDeath. 

 
Figure 25. Results of primary screen with VCaP cell line; readout - cell number. A – Ordered distributions of the data 

(from the smallest value to the biggest); B – the list of positive and negative hits. In black – negative control siAllStars, 

in red – positive control siCellDeath. 



66 

 

 
Figure 26. Results of primary screen with the VCaP cell line; readout - level of proliferation/ATP level. A – Ordered 

distributions of the data (from the smallest value to the biggest); B – the list of positive and negative hits. In black – 

negative control siAllStars, in red – positive control siCellDeath. 

 

Figure 27. Correlation plot for data sets "Proliferation" (axis Y) and "Cell Death" (axis X).  
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Figure 28. Correlation between data sets "Cell Number" (axis Y) and "Cell Death" (axis X). 

 
Figure 29. Summary of the primary screen. A. Data sets "Cell Death", "Proliferation" and "Cell Number" (blue, red and 

violet lines respectively) are summarized in one graph (without control siRNAs and siUbiquitin). Of interest are both  

potential proto-oncogenes (in the red square), whose suppression reduces viability of PCa cells, and potential onco-

supressors (in the green square), whose knockdown increases proliferation and/or decreases apoptosis rate. B. Genes, 

selected for the secondary screen. In pink – potential proto-oncogenes; in green – potential onco-supressors. Genes are 

ordered by the strength of the effects (the strongest were UBE2U and UBE2A, the weakest were RNF25 and 

DCUN1D3). 
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During the primary screen two types of hits were identified (Figure 29): putative 

proto-oncogenes (genes, which knockdown decreases proliferation and induces 

apoptosis) and putative tumor suppressors (genes, which knockdown promotes 

proliferation and decreases spontaneous apoptosis). The terms proto-oncogenes and tumor 

suppressors are used to describe the observed short-term effects of knockdown. However, 

the long-term effects of the inhibition of these genes could be opposite: decrease in 

spontaneous apoptosis may be caused by induction of translesion synthesis, inhibition of 

DNA damage response (DDR) proteins, initiation of senescence, etc. These processes can 

lead to cell death through a different mechanism, and thus may not be beneficial to cancer 

cells. The strongest hits from both groups were selected for the secondary screen (Figure 

29, B). 

The 25 strongest hits obtained in the primary screen could be divided in 4 groups 

according to their functions (Figure 30): 

1) E2 Ub-conjugating enzymes (UBE2A, UBE2D2, UBE2G1, UBE2H, UBE2J1, 

UBE2QL1, UBE2S, UBE2U, UBE2W). 

2) E3 Ub-ligases (HERC2, HERC5, RNF25, KIAA0317). 

3) Members of CRL/NEDD8 pathway (CACUL1, CAND1, CUL2, CUL4B, 

DCUN1D3, DCUN1D5, UBA3, UBE2F). The involvement of NEDD8-pathway 

in cancer progression is well-established, though there is much less information 

available on its role in PCa. One specific inhibitor of NEDD8-pathway, 

MLN4924, is currently in phase I of clinical trials. Of note, the screen revealed 

that the different members of NEDD8-pathway caused opposite effects: part of 

them could be referred to as proto-oncogenes, and others as potential onco-

supressors (Figure 29). 

4) Members of N-end rule pathway (UBR1, UBR3, UBR4 and UBR5). The N-end 

rule states that the N-terminal amino acid of a protein determines its half-life 

(chance of being degraded). Specific N-terminal protein residues, called N-

degrons, are recognized by the recognition components N-recognins of UBR E3 

ligases. Although UBR1-5 share the same mechanism of substrate recognition, 

these proteins perform independent functions. 

Due to the enrichment of the hits from the CRL/NEDD8 pathway in the screen, to 

the secondary screen it was decided to add siRNA targeting other genes from this 



69 

 

pathway: RBX1 and RBX2 (E3 ligases of the pathway) and SPOP, a substrate receptor of 

CRL3 ligase, which is often mutated in prostate cancer, the event shown to be mutually 

exclusive with TMPRSS2:ERG mutation (Barbieri et al., 2012; Rubin, 2012). The final 

list of the 28 candidate genes selected for further validation is presented in Figure 30. The 

sequences of corresponding siRNAs are given in Supplementary Table 3. 

 

Figure 30. Classification of the hits from the primary screen. A. Classification of genes selected for secondary screen by 

their function. B. Final list the 28 candidate genes selected for further validation. 
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1.5 SECONDARY SCREEN 

1.4.1 Technical notes 

The goal of the secondary screens was preliminary confirmation of the hits. These 

screenings were performed with individual siRNAs from deconvoluted siRNA-pools. The 

complete list of siRNAs chosen for the validation is presented in Supplementary Table 3. 

The cell lines used in this screen were: transformed non-cancerous cells (RWPE1), ERG-

negative cancer cells (LNCaP, PC3) and ERG-positive cells cancer (VCaP, DuCaP). 

Examination of cells with different status (+/-AR, +/- ERG, wt/mut p53, etc.) allowed for 

addressing the dependence of gene knockdown on cellular context. To diminish off-target 

effects, individual siRNAs were used at 10 nM concentration. The time of siRNA 

treatment was optimized for each cell line depending on the proliferation rate and 

sensitivity of the cell line to siRNA. Thus, the effect of gene knockdown was analyzed on 

the third day of siRNA treatment for the LNCaP, PC3 and RWPE1 cell lines, and on the 

fifth day for VCaP and DuCaP cells. 

Because the most robust method to estimate the effect of siRNA on cell viability 

apparent from the primary screen was apoptosis assay for caspases activity (CellEvent 

reagent), this was used as a major parameter in the secondary screening. As a 

complementary method cell count was used. Although this parameter was not very 

reliable for the VCaP cell line, for the other cell lines the expected clear anti-correlation 

with apoptotic rate was observed and the controls were at the expected positions (Figure 

31).  

The same protocol of transfection for all cell lines was used, with 4 well replicates 

per siRNA separated into two plates. A hit was selected when muRZ, the average among 

replicates of the robust Z-score per siRNA was above 0.82 (see the section SCREEN 

QUANTIFICATION). Although this threshold is relatively low, it was considered 

reliable because 5 cell lines were screened and two siRNAs per gene with the same 

phenotype were required to select a gene hit. The scores for each siRNA and each cell 

lines for induction of apoptosis are presented in Supplementary Table 6. Positive scores 

signify increased value of the parameter, while negative scores indicate a decrease after 

siRNA transfection. 
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Figure 31. Correlation plots for parameters “Cell Death” and “Cell Number” for all the tested cell lines. Green triangle 

– siCellDeath, blue – negative control siAllStars, red – siERG. VCaP cells show poor anti-correlation and the control 

siAllStars is displaced from expected positions. Nevertheless, the other cell lines show much better correlation and 

controls are located at expected positions. 
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Figure 32. EdU pulse in DuCaP cells. Nuclear staining with Hoechst is shown in blue. EdU staining is shown in red. 

After 1 day of incubation there is about 40% proliferating cells in population. After 5 days of incubation the amount of 

proliferating cells (with the same time of EdU-pulse of 7 hours) decreases dramatically. After increasing the time of 

incubation of cells with EdU up to 37 hours we can visualize about 30% of cells incorporating EdU. 

 

Performing the screen, some unexpected effects were observed on control siRNAs 

(Supplementary Table 6, Figure 31). In all tested cell lines, the negative control siAllStars 

did not cause apoptosis, which results in a very low muRZ-scores ranging from -0.03 up 

to 0.16 depending on cell line. The positive control siCellDeath caused massive apoptosis 

in the majority of cell lines resulting in muRZ-scores above 14. However, siCellDeath did 

not cause apoptosis in DuCaP cell line. siCellDeath target two genes: Ub and Polo-like 

kinase 1 (PLK1), which is responsible for progression through the cell cycle. Thus, an 

extremely low level of proliferation and slow metabolism could render cells insensitive to 

siCellDeath. To examine the proliferation level of the DuCaP cell line EdU incorporation 

pulse was performed. Indeed, despite the initial burst of proliferation, the growth rate of 

DuCaP cells decreased dramatically after a few days in culture (Figure 32, left and middle 

panel). Nevertheless, by increasing the time of EdU pulse up to 37 hours, it was possible 

to detect EdU incorporation (Figure 32, right panel). We believe that this extremely low 

proliferation rate was caused by contact inhibition. This could allow DuCaP cells to 

escape from proliferation-dependent apoptosis. 

It was also observed that siRNA against ERG caused apoptosis in all tested cell 

lines except VCaP. Initially, this siRNA was taken as a second negative control, because 

it was shown to decrease proliferation of VCaP cells without induction of apoptosis (Tan 

et al., 2009). Indeed, siERG caused a strong decrease in proliferation without causing 

apoptosis in VCaPs (Figure 24; Figure 26). Unexpectedly, other tested cell lines 

responded to siERG treatment by induction of apoptosis (Supplementary Table 6). At 

present, it is difficult to determine if this effect was specific or off-target. ERG protein 
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expression in prostate tissue is considered to be specific for TMPRSS2:ERG-positive 

samples. Nevertheless, the ERG gene is still present in all cell lines, and might be 

expressed at a very low level. Consistent with this assumption, it has been reported that 

ERG mRNA is expressed in normal prostatic cells and in TMPRSS2:ERG negative PCa 

samples and cell lines, including LNCaP used in the screen (Zammarchi et al., 2013). 

Thus, apoptosis caused by ERG inhibition in this present experiment could be explained 

by critical depletion of the protein resulting in the abortion of some vital function. 

A very good reproducibility was observed of the screen between plate replicates 

with correlation coefficient above 0.9 for all cell lines (Figure 33, A-G). To compare the 

robustness of various cell lines in response to siRNA perturbations global Standard 

Deviation of the dataset (gSD) was used. This parameter reflects the number of hits and 

their strength for each cell line (Figure 33, H). Of note, because the primary screen was 

performed on VCaPs, the pre-selected hits were specific to this cell line. Nonetheless, 

according to gSD, the DuCaP cell line appeared to be the most sensitive to the 

perturbations induced by pre-selected siRNAs. The most robust cell line appeared to be 

PC3. Considering that even siCellDeath did not have a strong effect on PC3 (about 40 

percent of dying cells in the population in comparison to 90-100 percent for other cell 

lines), it might suggest that the time of siRNA treatment (three days) was not optimal for 

this cell line. Increasing the incubation time might increase the sensitivity of PC3 cells to 

siRNA treatment. 

To compare the effect of gene knockdown in conditions when ERG is depleted or 

expressed at normal level, VCaP cells were screened both in ChSM and in StdM. The 

correlation between the data obtained with VCaPs in these two conditions (r = 0.83) was 

higher than the correlation between VCaPs datasets and any other tested cell line (Figure 

34, C). This suggests that the overall response of VCaP cells to siRNA knockdown was 

similar in ChSM and StdM (Figure 34, A). Among the strong hits (muRZ > 2) there were 

four specific to ChSM while the other four were observed only in StdM (Figure 34, B). 

However, because all these perceived hits were the only siRNA having an effect out of 

four siRNAs per gene, this most likely indicates off-target effects. Among weaker hits 

only siRNAs for cullin 2 (CUL2) and CAND1 showed differential behavior in ChSM and 

StdM. Moreover, siRNAs against CUL2 effectively caused cell death in another ERG-

dependent cell line (DuCaP) and had a much weaker (or no) effect on other cell lines. 

Altogether, these data might suggest ERG-specificity of the CUL2 hit. 
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Figure 33. A-F. Reproducibility of “the percentage of dying cells per siRNA” parameter in two replicate plates for each 

cell line. G. Reproducibility (correlation coefficient between plates) is very high for all the cell lines (r > 0.9). H. Global 

Standard Deviation for each cell line reflects their robustness. The smaller the gSD – the more robust cell line is. 
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Figure 34. Comparison of hits for VCaP cell line on StdM and ChSM. A. Scores for each siRNA for the VCaP cell line 

in ChSM and StdM show strong positive correlation (r=0.83), which is close to the correlation coefficients observed 

between replicates for the same cell line. B. Venn diagram, showing overlap between strong hits (muRZ>2). There are 

13 hits that are effective in both StdM and ChSM, and 8 siRNAs that are strong hits either in StdM or ChSM. C. 

Classification of cell lines based on correlation coefficient. VCaP on StdM and on ChSM have the highest correlation 

between each other than with other cell lines. 

 

 

Figure 35. A. Relative level of apoptotic cells in a population of DuCaP cells when treated with control siRNAs: the 

negative control being siAllStars and positive control siCellDeath. B. Correlation plot showing that compared to other 

tested cell lines DuCaP is the most distinct in terms of apoptotic response after siRNA treatment. 
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The cell line DuCaP showed the most distinct behavior. First, siCellDeath did not 

induce apoptosis in this cell line (Figure 35, A). Second, the phenotypical outcome of the 

inhibition of the UPS genes in DuCaPs was the most different compared to other cell 

lines (Figure 35, B). Third, DuCaPs had significantly lower amounts of AR then other 

cell lines, and only one isoform of ERG was present at a significantly lower level 

compared to VCaPs (Figure 22). Moreover, despite DuCaP being considered to be 

androgen-responsive cell line, the amount of ERG protein did not change in ChSM 

compared to StdM (Figure 23). Considering also the reports about stromal contamination, 

it was conclude that the DuCaP cell line is not a reliable model of ERG-dependent PCa 

cells. Thus, VCaP cells were used as the major model of TMPRSS2:ERG-positive PCa, 

although data obtained with DuCaPs could give complementary information. 

1.4.2 Description of hits 

The results of the secondary screening are presented in Supplementary Table 6 (a 

table with muRZ-scores for each individual siRNA and every cell line) and 

Supplementary Table 7 (a table summarizing the screening). Hits selection were based on 

the following parameters: 

1) How many siRNA per gene cause the same phenotype? If two or more siRNA had 

the same phenotype, this gene was considered a hit. 

2) What is the relative strength of the hits?  Are they similar in strength? If one 

siRNA causes a strong effect, while others are rather weak, this most likely signifies an 

off-target effect. 

3) Does inhibition of the gene cause the same phenotype in all cell lines? Having the 

same effect for all tested cell lines would suggest that the function of gene is not 

dependent on cellular context and is of general importance for prostate cells. 

Parameters 1 and 2 allow calculating mixt_muRZ, which represent relative 

probability of the hits for each cell lines. Graphical representations of mixt_muRZ for the 

VCaP cell line are presented in the Figure 36 (A and B). Based on the three parameters 

mentioned above we selected seven hits (Figure 36C). Of these seven, three are E2-Ub-

ligases (UBE2U, UBE2H and UBE2A), while four are the members of CRL/NEDD8 

pathway (CAND1, CUL4B, CUL2 and RBX1). Two hits are potentially ERG-dependent 

(CUL2 and RBX1), because they had an effect in ERG-positive cell lines only (VCaP, or 
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DuCaP, or both). Inhibition of genes had different effects, including apoptosis (for 

UBE2U, CAND1, CUL2, UBE2H) and survival (for UBE2A, CUL4B, RBX1). A 

detailed discussion of these hits is presented below.  

 

Figure 36. General overview of the hits.  

A and B: Mixt_muRZ scores for each gene based on the muRZ scores obtained from 4 siRNAs per gene. Genes beyond 

the blue line have 2 siRNAs being hits, beyond the orange line - 3 siRNAs. When on the line (e.g. UBE2U 

VCaP_StdM), it means just 2 siRNAs, but with high muRZ-score (above 3 here).  

C: Table with summary information about hits (a full summary for each gene can be found in the Supplementary Table 

7). Designations: numeric - number of hit siRNAs causing the same phenotype (apoptosis/increase in cells/etc.). 2 to 3: 

means 2 hits above the threshold, and 1 just below the threshold. 1 (but 07): 1 hit with the 'major' phenotype, but siRNA 

with catalogue number 07 has an opposite effect. In red - hits decreasing viability, in green - increasing viability. 

Column “Overall” describes the “major” phenotype caused by the gene inhibition: death – more apoptosis, survival – 

less apoptosis, ↓/↑ in cells – decrease or increase of cell number comparing to control. 
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Figure 37. A. Graphical representation of siRNA action for the UBE2U gene. The graph represents the phenotypical 

changes (proportion of dying cells and changes in cell number) for each of 4 siRNAs and all the 5 cell lines tested 

(VCaP presented in 2 conditions: in ChSM, as all the other cell lines, and in StdM). muRZ is an averaged Robust Z-

score from quadruplicates for each siRNA. The grey dotted lines indicate zero values for both axes. Pink dotted lines 

indicate threshold values: everything above or below these values (outside grey rectangle) is considered to be a hit.  

B: The total cell lysates of VCaP, DuCaP, LNCaP and PC3 cells were immunoblotted with UBE2U antibodies from 2 

manufacturers (Santa Cruz and Sigma). First the membrane was stained with antibodies from Santa Cruz, but since 

there was no signal, antibodies from Sigma were used on the same membrane; hence the loading control (GAPDH) is 

the same. Antibodies from Sigma also did not show any staining at the predicted MW of UBE2U (38 kDa), but it 

reveals bands of much higher MW (with 2 major bands at 95 kDa and 130 kDa).  

C. VCaP cells which had been transfected with siUBE2U pool (total mix of 4 siRNAs) or with negative control siAS 

and immunoblotted against UBE2U (Sigma).  

D. VCaP cells which had been transfected with 3 strongest siRNAs individually (si2U-12, si2U-10 and si2U-11 from 

strongest to the weaker) or with negative control siAS and immunoblotted against UBE2U (Sigma). 

 

UBE2U 

The strongest identified hit was UBE2U. Three of four tested siRNAs caused 

apoptosis in all cell lines with very high muRZ-scores (Supplementary Table 6 and 

Supplementary Table 7; Figure 37). There is almost no information about the function of 

this gene. UBE2U is mentioned only in genome-wide or E2-limited interactome screens 

(Markson et al., 2009; van Wijk et al., 2009; Rolland et al., 2014, etc.). The UBE2U gene 

is only present in mammalian genomes and is mapped to the human Chromosome 1. 

There are about 30 predicted mRNA transcripts in the NCBI database, but only one of 

them has been confirmed so far (NM_152489.1) and it is used in all published reports 
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addressing the function of UBE2U. This isoform has 9 exons and is transcribed into a 226 

a.a. protein (NCBI Reference Sequence: NP_689702.1). Because the protein has a 

characteristic E2-ubiquitin-conjugating fold with a preserved active site Cys, it could be a 

functional E2-Ub-conjugase. However, until now no ubiquitin (or ubiquitin-like) 

conjugation activity have been described in the literature. One of the reports has shown 

that UBE2U has no activity in an in vitro assay for the transfer of Ub from UBE1 or 

UBE6 (Jin et al., 2007). 

The data on UBE2U’s interaction network vary a lot and are not conclusive. Van 

Wijk and colleagues using Y2H system and the E2 + E3 protein library have shown that 

UBE2U has the highest number of interactions with E3s (52 interactions) compared to 

other E2s. They have reported that UBE2U has a unique E3-interactome, and after 

removing UBE2U from the network only 20 of UBE2U’s E3 partners remain connected 

to other E2s, whereas 32 E3s become unconnected (van Wijk et al., 2009). This suggests 

a general role of UBE2U in ubiquitylation. Another team (Markson et al., 2009), also 

using the Y2H system, with E2-bait and genome-wide preys, has shown only 13 

interaction with E3-ligases for this E2-conjugase. The most recent genome-wide study of 

its interactome (Rolland et al., 2014) shows only one E3-partner for UBE2U – TRIM32. 

Interaction partners reported in more than one paper are TRIM32 (Markson et al., 2009; 

Rolland et al., 2014) and RNF144B (Markson et al., 2009; van Wijk et al., 2009). 

TRIM32 and RNF144B are poorly characterized proteins with unrelated 

functions. TRIM32 is a member of the TRIM E3-Ubiquitin ligases family of RING 

proteins with more than 70 members in the human genome. TRIM32 has been shown to 

play an important role in antiviral defense (Zhang et al., 2012; Fu et al., 2015). One study 

showed that, upon induction by pro-inflammatory cytokines, TRIM32 is covalently 

modified by another Ub-like protein FAT10 (Aichem et al., 2012). TRIM32 was shown 

to negatively regulate p53 to promote tumorigenesis (Liu et al., 2014). RNF144B is an 

E3-Ubiquitin ligase with an important role in apoptosis. RNF144B is a transcriptional 

target of p53 and induces p53-dependent but caspase-independent apoptosis by 

ubiquitylation and degradation of p21 (Huang et al., 2006; Ng et al., 2003). RNF144B 

has also been shown to be a direct transcriptional target of ΔNp63 a (transcription factor 

that is critical for the development of stratified epithelia). At the same time RNF144B 

binds and mediates proteasomal degradation of ΔNp63α, generating an auto-regulatory 
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feedback loop. These findings substantiate RNF144B as a potentially critical component 

of epithelial homeostasis (Conforti et al., 2013). 

Considering that the expression of UBE2U mRNA has been shown to be restricted 

to the urogenital tract (to the testis by GTEx Analysis Release V4, Uhlen's Lab and 

Illumina Body Map, and to the prostate by the Cancer Genome Anatomy Project), and 

that there was a strong effect of UBE2U inhibition for all tested prostate cell lines, it was 

of interest to get more information on this protein and on its function in prostatic cells. 

First, the presence of the protein, in the current study’s chosen cell lines, was examined 

(Figure 37, B). Two commercially available antibodies (from Santa Cruz and Sigma) 

were tested, but neither of them showed the presence of a protein of the predicted size (38 

kDa). Finally, antibodies from Sigma, produced against a catalytic domain of UBE2U, 

did show protein staining at higher molecular weight with two major bands at 95 and 130 

kDa. In order to check whether these bands are specific to UBE2U, VCaP cells were 

transfected with siUBE2U-pool (total mix of 4 siRNAs) or with the 3 strongest siRNAs 

separately (si2U-12, si2U-10 and si2U-11 from the strongest to the weakest) (Figure 37, 

C and D). After transfection, the 95-kDa band disappeared compared to the negative 

control siAllStars (siAS), and the strongest si2U-12 also had the strongest effect. 

Nevertheless, there was no success in obtaining a Western Blot of good quality for this 

protein due to the low level of expression and insufficient sensitivity of the method. 

An attempt was made to detect the presence of UBE2U at mRNA level. Four pairs 

of primers were selected targeting different isoforms (pairs 1 and 2 – against described 

transcript NM_152489; pairs 3 and 4 – against predicted isoforms). Amplification was 

weak and not always equal (probably because of the low concentration of target mRNA), 

but using primer pair 3 (Supplementary Table 5) three major isoforms were obtained 

(Figure 38, A). Sequencing has shown that all these isoforms consist of the described 

exons of predicted UBE2U mRNA isoforms (Figure 38, B and C). However, the full 

transcripts were not identical to any described or predicted transcripts, and thus represent 

absolutely new isoforms. Unfortunately, none of the found isoforms contain exons with 

the sequence corresponding to the strongest siRNAs si2U-12, which is present in the 

majority of predicted isoforms from the NCBI database (Figure 39, A). Moreover, the 

proteins transcribed from the isoforms that had been amplified were truncated. The 

predicted protein sequences obtained by translation of identified UBE2U isoforms are 

shown below. Only the largest predicted protein still contains the active site, while the 
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medium and small constructs lack catalytic residues (Figure 39, B) and, therefore, also 

lack enzymatic activity. 

The data from screening suggest an important role of UBE2U in the prostate. 

Unfortunately, at present it is not possible to tell if it is protein or RNA that is crucial for 

the survival of prostatic cells. By PCR the presence of several isoforms of UBE2U were 

demonstrated in the VCaP cell line, but considering the extremely low level of its 

expression and the absence of isoforms with exon bearing the sequence of the most potent 

siRNA, most likely there are many more isoforms present in the genome which could 

have different functions. The presence of a specific band of much higher MW than 

predicted (95 kDa instead of 38 kDa) in all tested prostatic cell lines supports this 

conclusion. To characterize the role of UBE2U in prostatic cell lines it is important to 

determine which isoforms are expressed and are crucial for the survival of these cells, and 

one of the possible ways is to use RACE amplification to identify all the possible 

isoforms. 

 

 

Figure 38. UBE2U mRNA amplification and sequencing. A. Representative electrophoresis of PCR products in agarose 

gel with 3 major isoforms (big, medium and small). B. Alignment of the sequences of obtained isoforms. C. Alignment 

of the big isoform to the NCBI database of transcripts. 
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Figure 39. A. Location of siRNAs used in the screening on mRNAs of UBE2U. As a reference the confirmed isoform 

transcript NM_152489 is shown. The most potent si2U-12 does not target any of the amplified isoforms. B. Predicted 

translated proteins from isoforms detected in our research (big, medium and small isoforms) and from reference isoform 

NM_152489. In red the amino acids crucial for formation of active site of E2 enzymes are shown, including the active 

site cysteine (C), star – stop-codon, in grey – non-translated part of the protein. Only the reference isoform translates 

into a full-length protein. The big isoform is shortened, but nevertheless contains amino acids crucial for catalytic 

activity. Both the medium and the small isoform are predicted to be translated into short inactive proteins without 

catalytic activity. 

 

UBE2H 

Knockdown of UBE2H caused apoptosis in TMPRSS-ERG-positive cells VCaP 

and DuCaP, as well as in the non-cancer RWPE1 cell line, but had no effect on either 

PC3 (AR-independent) or LNCaP (ETV1-positive) (Supplementary Table 6 and 

Supplementary Table 7; Figure 40A). The efficacy of tested siUBE2H in the VCaP cell 

line was confirmed at protein level (Figure 40, B). 

UBE2H is an E2-Ubiquitin conjugase overexpressed in many types of cancer, 

including cancer of the prostate, ovaries and breast (The Human Protein Atlas, Expression 

Atlas from EMBL). UBE2H plays an important role in several developmental pathways, 

including the negative regulation of skeletal myogenesis through ubiquitylation and the 

subsequent degradation of focal adhesion kinase (FAK) and insulin receptor substrate 1 

(IRS-1) (Nguyen et al., 2014; Yi et al., 2013) and in the erythroid differentiation of 

hCD34(+) cells (Lausen et al., 2010). UBE2H is also involved in spermatogenesis, where 
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it participates in ubiquitylation of H2A and H2B and thus is essential for chromosome 

remodeling, double strand break (DSB) repair and normal progression through meiosis 

(An et al., 2012). Furthermore, UBE2H participates in degradation of p53 protein (Doyle 

et al., 2010). 

Among tested PCa cell lines, only the VCaPs expressed the UBE2H protein at a 

detectable level (Figure 40, C), which might suggest involvement in the ERG-dependent 

pathways. Nevertheless, considering that UBE2H is often overexpressed in cancers of 

reproductive system (prostate, ovarian and breast cancer) and is involved in cancer 

progression (by DNA remodeling and p53 degradation) it may be an interesting drug-

target. 

UBE2A 

Knockdown of UBE2A decreased apoptosis and increased cell number in the 

VCaP, PC3 and LNCaP cell lines. A weaker prosurvival effect was also observed in 

DuCaP and RWPE1 cells (Supplementary Table 6 and Supplementary Table 7; Figure 

41). Even though not many scores were beyond the threshold, it is clear that all of them 

are shifted to the right lower part of the graph. It should be noted, that due to the 

experimental setup the detection of apoptosis inhibition was more difficult compared to 

apoptosis induction, and thus requires stronger validation. 

 

 
Figure 40. Graphical representation of siRNA action for the UBE2H gene. A. The graph represents the phenotypical 

changes (proportion of dying cells and changes in cell number) for each of 4 siRNAs and all 5 cell lines tested (VCaP 

presented in 2 conditions: in ChSM, like other cell lines, and in StdM). muRZ is an averaged Robust Z-score from 

quadruplicates for each siRNA. Grey dotted lines indicate zero values for both axis. Pink dotted lines indicate threshold 

values: everything above or below these values (outside of grey rectangle) is considered to be a hit. B. The effect of 
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si2H on expression of the protein. VCaP cells were transfected with the 3 strongest siRNAs individually (si2H-5, -7 and 

-8) or with the negative control siAS and immunoblotted against UBE2H. C. Expression of UBE2H in the tested cell 

lines. Only VCaP cells express UBE2H at a detectable level. 

 

 

Figure 41. Graphical representation of siRNA action for the UBE2A gene. A. The graph represents the phenotypical 

changes (proportion of dying cells and changes in cell number) for each of 4 siRNAs and all the 5 cell lines tested 

(VCaP presented in 2 conditions: in ChSM, like the other cell lines, and in StdM). muRZ is an averaged Robust Z-score 

from quadruplicates for each siRNA. Grey dotted lines indicate zero values for both axis. Pink dotted lines indicate 

threshold values: everything above or below these values (outside of grey rectangle) is considered to be a hit. 

 

UBE2A is an E2-Ubiquitin-conjugase homologous to yeast protein Rad6, which is 

a key player in DNA damage response. Monoubiquitylation of the proliferating cell 

nuclear antigen (PCNA) by Rad6 stimulates translesion (error-prone) DNA synthesis, 

while polyubiquitylation of the PCNA with the same enzyme activates the error-free 

repair pathway. Mutations in the catalytic site of Rad6 confer hypersensitivity to a variety 

of DNA damaging agents (Chen et al., 2012b). The human genome encodes two 

homologues of Rad6 protein: UBE2A and UBE2B. They have 70 % of homology and 

often perform complementary, partially redundant functions (Xin et al., 2000). For 

example, under exposure to ionizing radiation (IR), RNF168 attracts both UBE2A and 

UBE2B to the sites of DNA DSB, where they induce ubiquitylation of DNA-bound 

proteins and initiate DNA damage response. Depletion of either UBE2A or UBE2B 

individually does not affect DNA damage response, while the suppression of both 
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proteins at once abrogates DNA-damage-induced Chk1 activation, and affects G2/M cell 

cycle arrest (Liu et al., 2013). Similarly to yeasts, human UBE2A is required for mono- 

and poly-ubiquitylation of the PCNA, the key events of post-replication DNA repair. 

Depletion of UBE2A and 2B impairs homologues recombination (HR) following IR 

treatment and results in increased DNA damage (Liu et al., 2013, Chen et al., 2015).  

UBE2A has also unique functions, distinct from UBE2B, in maintenance of 

cellular homeostasis. Similarly to Rad6, UBE2A may ubiquitylate histone H2B (Chen et 

al., 2012a; Kim et al., 2009a; Masuda et al., 2012). In the monoubiquitylated form H2B 

(H2Bub1) plays key roles in transcription, DDR and stem cell differentiation (Masuda et 

al., 2012; Sadeghi et al., 2014; Shchebet et al., 2012; Barkley et al., 2012; Cole et al., 

2015). In many types of advanced cancers, including breast, colorectal, lung and 

parathyroid cancers, the level of H2Bub1 is downregulated (low to absent), which makes 

H2Bub1 and the enzymes affecting it level a promising therapeutic targets in cancer (Kim 

et al. 2009a; Cole et al., 2015). Indeed, the UBE2A gene was found to be recurrently 

mutated or inactivated in myeloproliferative diseases (de Miranda et al., 2014; Kunapuli 

et al., 2003). 

According to the present study’s results, the inhibition of UBE2A gene decreases 

the level of apoptotic cells and increases cell number. The basal level of apoptosis in the 

screens probably reflects spontaneous death induced by unbalanced proliferation and 

impaired DNA replication. Thus, inhibition of UBE2A protein may lead to the bypassing 

of apoptotic signaling by induction of error-prone DNA synthesis and/or insufficient 

activation of the p53 protein. 

CAND1 

The second strongest hit was CAND1. All 4 tested siRNAs (typically 2 siRNA per 

cell line) caused cell death in all tested cell lines with very high muRZ-scores 

(Supplementary Table 6 and Supplementary Table 7; Figure 42, A). The efficiency of 

tested siRNAs on the inhibition of CAND1 expression was confirmed at the protein level 

(Figure 42, B). The protein was detected in all cell lines at similar levels, with the 

exception of LNCaPs demonstrating significantly lower CAND1 expression (Figure 42, 

C). 

CAND1 (cullin-associated and neddylation-dissociated 1) plays a critical role in 

the function of E3 CRL-ligases and thus in specific protein degradation. It is the only 
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known exchange factor allowing CRL complexes to change substrate specificity (for 

more details see chapter 2.4 NEDD8-pathway of the literature review). The data from the 

literature suggest an important role of CAND1 in cancer development, although the 

precise effect is not clear. Zhai and colleagues (2014) demonstrate downregulation of 

CAND1 protein in tumors compared to normal tissue. Nevertheless, non-biased 

screenings demonstrate both overexpression and downregulation of the protein during 

prostate cancer development (Expression Atlas from EMBL, Korzeniewski et al., 2012). 

The direct effect of CAND1 knockdown on PCa cells was investigated in only one 

study, using LNCaP as a cell model. The authors described androgen-responsive miR-

148a, which controls CAND1 expression (Murata et al., 2007). They showed that miR-

148a inhibits CAND1 expression by binding to the 3′-UTR region of CAND1 mRNA, 

which promotes LNCaPs proliferation. Using siRNA against CAND1, they showed the 

same effect of promoting LNCaP cell proliferation compared to control siRNA. 

Nevertheless, inhibition of CAND1 expression and stimulation of proliferation could be 

independent events: miRNAs were shown to regulate hundreds of genes through partial 

complementarity in the seed region (Laganà et al., 2014). Moreover, the authors have 

tested the effect of a single siRNA against CAND1 with a single cell line. The off-target 

effects of siRNA are well known, and currently it is advised to use at least four siRNAs 

against different exons of the gene to confirm the phenotypical outcome. On the other 

hand, the mechanism of CAND1 regulation by miR-148a may be LNCaP-specific, as, 

according to the present study’s data, CAND1 is strongly down-regulated in LNCaPs 

comparing to other cell lines (Figure 42, C). 

In the present study, siRNAs targeting four different regions of CAND1 mRNA in 

five prostatic cell lines were used. Induced apoptosis in all four siRNAs was observed in 

all tested cell lines, including LNCaP. Interestingly, for the VCaP cell line the effect of 

siCAND1 is weaker in standard medium than in charcoal-dextran stripped medium 

(Supplementary Table 6 and Supplementary Table 7), this could suggest an AR-

dependency of the CAND1 function. 
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Figure 42. Graphical representation of siRNA action for the CAND1 gene. A. The graph represents the phenotypical 

changes (proportion of dying cells and changes in cell number) for each of 4 siRNAs and all the 5 cell lines tested 

(VCaP presented in 2 conditions: in ChSM, as all the other cell lines, and in StdM). muRZ is an averaged Robust Z-

score from quadruplicates for each siRNA. Grey dotted lines indicate zero values for both axis. Pink dotted lines 

indicate threshold values: everything above or below these values (outside of the grey rectangle) is considered to be a 

hit. B. Effect of siCAND on the expression of the protein. VCaP cells were transfected with 3 strongest siRNAs 

individually (siCAND1-9, -10 and -12) or with negative control siAS and immunoblotted against CAND1. C. 

Expression of CAND1 protein in the tested cell lines. 

 

 

Figure 43. Graphical representation of siRNA action for CUL4B gene. A. The graph represents the phenotypical 

changes (proportion of dying cells and changes in cell number) for each of 4 siRNAs and all the 5 cell lines tested 

(VCaP presented in 2 conditions: in ChSM, like the other cell lines, and in StdM). muRZ is an averaged Robust Z-score 

from quadruplicates for each siRNA. Grey dotted lines indicate zero values for both axis. Pink dotted line indicates 

threshold values: everything above or below these values (outside of the grey rectangle) is considered to be a hit. 
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CUL4B 

The knockdown of cullin 4B (CUL4B) decreased apoptosis and increased cell 

number in all tested cell lines except LNCaPs (Supplementary Table 6 and 

Supplementary Table 7; Figure 43). 

CUL4B is a scaffold protein for E3-ubiquitin CRLs (Cullin-RING-Ligases) (more 

details about the structure and function of CRLs are given in the literature review, 

paragraph 3.4.2 NEDD8 TARGETS). Cullin 4-Ring E3 ligases (CRL4), assembled with 

CUL4B, DDB1 substrate adaptor and RBX1 as the core components, participate in a 

broad variety of physiologically and developmentally controlled processes such as cell 

cycle progression, replication, and DNA damage response. In mammals, there are two 

Cullin 4 members, CUL4A and CUL4B. CUL4A and CUL4B have many common 

substrates and are believed to be redundant for some functions (Sharifi et al., 2014). 

CRL4 has emerged as a “master coordinator of cell cycle progression and genome 

stability” (Abbas & Dutta, 2011). CRL4 regulates cell cycle progression through the 

degradation of several factors upon entry into S phase, including replication licensing 

factor Cdt1, Cyclin E (responsible for G1 to S phase transition), cyclin-dependent kinase 

inhibitor p21 and transcriptional suppressor Set8. During DNA synthesis under normal 

conditions, CRL4 is required for translesion synthesis (TLS) via a mechanism that is 

dependent on PCNA monoubiquitylation by UBE2A (Havens & Walter, 2011). 

CRL4 also plays a key role in DNA-damage response by the activation of the error-free 

isoform of DNA-polymerase δ (Polδ) and the degradation of Cdt1, p21, and Set8 (Havens 

& Walter, 2011; Zhang et al., 2013). Depletion of CRL4 subunits induces replication 

stress and DNA damage, leading to cell cycle arrest in G2. This phenotype has been 

shown to depend, at least in part, on the DNA re-replication caused by failure to degrade 

replication origin licensing proteins (Sertic et al., 2013; Zou et al., 2009). 

Although cullins 4A and 4B are thought to be functionally redundant, CUL4A 

does not substitute 4B in all functions. In response to DNA damage CRL4B was shown to 

ubiquitylate and degrade the HUWE1 protein (Yi et al., 2015), which is responsible for 

induction of apoptosis upon DNA damage. Unlike any other cullins, CUL4B contains a 

nuclear localization signal (NLS) and has been shown to colocalize with DNA-damage 

markers inside the nucleus (Guerrero-Santoro et al., 2008). Recent studies have 

established the role of CRL4s, especially of CRL4B, as important epigenetic regulators; 

CUL4B facilitates H3K9 tri-methylation and DNA methylation, two key epigenetic 
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modifications involved in gene silencing (Nakagawa & Xiong, 2011; Yang et al., 2015). 

Depletion of CUL4B resulted in loss of these markers, leading to de-repression of a 

number of genes, including the tumor suppressor IGFBP3 (Yang et al., 2015a; Hu et al., 

2012). 

In accordance with the experimental data, many recent works present CUL4B as 

an oncogene. Inhibition of CUL4B decreases proliferation and induces apoptosis in 

human osteosarcoma, glioma, cervical carcinoma and hepatocarcinoma cells (Chen et al., 

2014; Yuan et al., 2015b; Dong et al., 2015; Yang et al., 2015). Moreover, in colon 

cancer CUL4B overexpression correlates with tumor invasion and metastases (Jiang et 

al., 2013). On the other hand, CUL4B has been shown to be strongly down-regulated or 

to have inactivating mutations in many cancer types (The Human Protein Atlas; de 

Miranda et al., 2014), which is not consistent with the oncoprotein role. 

Collectively, all these data suggest that CUL4B plays an important role in 

chromatin remodeling and DNA-damage response. The present study’s results, showing 

that a knockdown of CUL4B has a survival effect, could be explained by the induction of 

error-prone DNA synthesis and/or cell cycle arrest, which could decrease the level of 

spontaneous apoptosis, but may further lead to increased genetic instability, induction of 

senescence and apoptosis. These effects could be tracked with markers of senescence 

(beta-galactosidase activity, p21, Cdt1) and increased DNA-damage. 

RBX1 

Knockdown of the Ring-Box 1 (RBX1) gene decreased apoptosis and increased 

cell number in the ERG-positive cell line VCaP, and decreased proliferation in LNCaP, 

PC3 and RWPE1 (Supplementary Table 6 and Supplementary Table 7; Figure 44). The 

effect of RBX1 knockdown on another ERG-positive cell line (DuCaP) is not clear. 

However, considering the particularity of DuCaP cells (Figure 32, Figure 35), the effect 

of RBX1 inhibition may still be ERG-dependent. 

RBX1 (also known as ROC1) is a RING E3-ligase, which is a part of the CRL 

complex (more details about the structure and function of CRLs are given in the literature 

review, paragraph 3.4.2 NEDD8 TARGETS). Both RBX1 and RBX2 are able to bind all 

the cullins. Nevertheless, under physiological conditions, RBX2 is selectively associated 

with CUL5, while RBX1 binds to the other members of the family (Wei & Sun, 2010; 

Kamura et al., 2004). Compared to RBX2, which is stress inducible, RBX1 is 
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constitutively expressed. Within the CRL complex RBX1 performs three important roles: 

1) with the help of DCUN1D proteins, it transfers NEDD8 from E2 to cullin to activate a 

CRL; 2) it acts as a scaffold for the E2-conjugating enzyme; 3) it facilitates the transfer of 

Ub moiety from E2 to the substrate. RBX1 protein is expressed ubiquitously, but the level 

of RBX1 expression in malignant tissues seems to be dependent on cell type. For 

example, in ovarian, prostate and testes cancer RBX1 protein is often downregulated 

(Human Protein Atlas; Martinez et al., 2014), but it is often overexpressed in head and 

neck carcinoma, hepatocellular carcinomas, melanomas and gastric cancers (Human 

Protein Atlas; Yang et al., 2013; Nai &, Marques, 2011; Chen et al., 2015b). 

Through promoting timely degradation of many key regulatory proteins as a part 

of E3 CRL ligases, RBX1 controls numerous cellular processes including DNA repair 

and cell cycle progression. There are many reported targets for RBX1, including Cdt1, 

IκBa, IKKβ, c-Jun, HIF-1α, histones H3 and H4, cyclin D1 and many others, including 

oncogenes and tumor suppressors. Thus, the effect of RBX1 gene inhibition relies on the 

stabilization of target proteins, and the resulting phenotypical outcome would vary 

depending on the cellular context. Thus, accumulation of Cdt1 and ORC1 proteins causes 

re-replication, genome instability and senescence, while stabilization of RhoB, p21 and 

p27 (CUL1) induces G2/M cell cycle arrest and apoptosis (Xu et al., 2015). These toxic 

effects have been shown for many cancer cell lines including glioblastoma, bladder and 

liver cancer, and non-small cell lung carcinoma (Jia et al., 2009; Yang et al., 2013; Wang 

et al., 2013). On the other hand, accumulation of Nrf2, which helps cells to maintain a 

favorable redox balance, or HIF1α, a master-gene in hypoxia, are beneficial for cancer 

progression (Park et al., 2010; Martinez et al., 2014; Martinez et al., 2015). 

RBX1 neddylates, and thus activates, the majority of CRL complexes; 

respectively, RBX1 gene knockdown inhibits the CRL/NEDD8 pathway. The anti-cancer 

drug, MLN4924, has an effect similar to RBX1 inhibition: it prevents attachment of 

NEDD8 to the cullins (Lin et al., 2010). Indeed, in the present study, the effects of RBX1 

inhibition resemble the effect of low-dose (<100 nM) MLN4924 treatment (CHAPTER 

2), where VCaP cells undergo G0/G1 cell cycle arrest, thus decreasing spontaneous 

apoptosis, while other cell lines respond with a decrease of proliferation and induction of 

apoptosis. Thus, this study’s data suggest that inhibition of cullin neddylation in PCa cell 

lines (by RBX1 gene knockdown and NAE inactivation by MLN4924) causes differential 

phenotypical outcomes in ERG-positive and negative cell lines. 
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Figure 44. Graphical representation of siRNA action for RBX1 gene. A. The graph represents the phenotypical changes 

(proportion of dying cells and changes in cell number) for each of 4 the siRNAs and all 5 cell lines tested (VCaP 

presented in 2 conditions: in ChSM, like the other cell lines, and in StdM). muRZ is an averaged Robust Z-score from 

quadruplicates for each siRNA. Grey dotted lines indicate zero values for both axis. Pink dotted lines indicate threshold 

values: everything above or below these values (outside of the grey rectangle) is considered to be a hit. 

 

Figure 45. Graphical representation of siRNA action for CUL2 gene. A. The graph represents the phenotypical changes 

(proportion of dying cells and changes in cell number) for each of 4 siRNAs and all 5 cell lines tested (VCaP presented 

in 2 conditions: in ChSM, like the other cell lines, and in StdM). muRZ is an averaged Robust Z-score from 

quadruplicates for each siRNA. Grey dotted lines indicate zero values for both axis. Pink dotted lines indicate threshold 

values: everything above or below these values (outside of the grey rectangle) is considered to be a hit. 
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CUL2 

Inhibition of CUL2 gene by siRNA induces apoptosis in the ERG-positive cell 

lines VCaP and DuCaP (Supplementary Table 6 and Supplementary Table 7; Figure 45). 

Therefore, it seems that this hit is possibly ERG-dependent. 

Cullin 2 (CUL2) is a scaffold protein of the CRL2 complex (more details about 

the structure and function of CRLs are given in the literature review, paragraph 3.4.2 

NEDD8 TARGETS). The effect of CUL2 inhibition is caused by the stabilization and 

accumulation of target proteins of the CRL2 E3-ligases. The majority of CRL2 substrates 

are oncogenes: HIF1α (Maeda et al., 2008; Okumura et al., 2012), NF-κB (Maine et al., 

2007), RNA polymerase II subunit hsRPB7 (Brower et al., 2002), PKCλ (Okuda et al., 

2001), topoisomerase IIα (Yun et al., 2009), β2AR (Xie et al., 2009). Nevertheless, some 

reports suggest that CUL2 function may favor cancer development. Upregulation of 

CUL2 was found in aggressive PCa and was linked to a poor prostate cancer outcome 

(Shipitsin et al., 2014). In esophageal cancer, CUL2 upregulation was shown to be a 

predictive factor for resistance to neoadjuvant chemotherapy; and vice versa – 

downregulation of CUL2 mRNA correlated with a favorable prognosis (Metzger et al., 

2010). According to the Human protein Atlas, CUL2 is overexpressed in some types of 

cancer, including glioma, pancreatic and prostate cancer. On the other hand, 

downregulation of CUL2 was associated with a bad prognosis in oral squamous cell 

carcinoma (Diniz et al., 2015). 

Altogether these data show the important role of CUL2 in carcinogenesis. The 

data of the present study suggest a potential ERG-dependence of the outcome of CUL2 

knockdown in PCa cell lines, which requires further validation. 

 1.6 DISCUSSION 

1.5.1 Screening parameters 

The outcome of the inhibition of a gene depends on the cellular context and may 

vary strongly depending on the cell line. The use of multiple cell lines allows for the 

identification of hits which are generally important for the functioning of cells of a given 

cellular type (prostate), as well as hits specific to cell lines bearing certain a pheno-/geno-

type, such as castration-resistance, specific mutations, etc. When comparing the effects of 

siRNAs in different cell lines the unique characteristics of each cell line should be taken 

into account, such as the level of proliferation, basal rate of apoptosis, transfection 
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efficiency, robustness in response to perturbations and many others. For these reasons, for 

each cell line it was important to make a primary optimization of the screening conditions 

by using control siRNAs. This helped to have similar and, thus, comparable responses to 

siRNA treatment. To adjust the efficiency of transfection, three-day siRNA treatments 

were used for fast proliferating cell lines (PC3, LNCaP and RWPE1) and five-day 

treatments for the slow proliferating ones (VCaP and DuCaP). Nevertheless, the treatment 

time was still not optimal for the PC3 cells and possibly should be increased to four or 

five days. To compare the results in different cell lines the same parameters was used (i.e. 

apoptosis and cell number), as well as the same layout of the plates, and statistical 

analysis. The particularity of DuCaP cells did not allow using this cell line as a proper 

model for an ERG-dependent PCa. The data obtained with DuCaPs was taken into 

account, but the results should be interpreted carefully. 

 An important part of the optimization process is the choice of siRNA 

concentration. In the screening low concentration of siRNA were used (20 nM in the 

primary screen and 10 nM in the secondary), despite that many reported screens use much 

higher (up to 100 nM) concentrations (Reynolds et al., 2004). Therefore, a complete 

knockdown of a gene might not have always been achieved, and there may have been 

more false-negative results. On the other hand, lower concentrations of siRNA decrease 

the amount of false-positive results and off-target effects. Usually, for optimized siRNAs, 

a concentration of a few nM (typically 1-2.5 nM) is sufficient to suppress the expression 

of a target protein. To achieve efficient knockdown it is better to use slightly higher 

concentration, but this may affect expression of many other, potentially hundreds, of 

genes (Caffrey et al., 2011; Laganà et al., 2014; Urbinati et al., 2015). Therefore, the 

choice was made to use lower concentration of siRNA for the present study, while paying 

attention to weak effects by decreasing the muRZ threshold. 

Performing a relatively small siRNA screening (107 genes in the primary screen) 

has several advantages compared to genome-wide approach. It decreases cost, time and 

effort, while increasing control over the conditions, allowing a more detailed analysis 

with multiple cell lines to be carried out. Nevertheless, even in these conditions, it was 

difficult to analyze all the available information. The “Cell Health Profiling” software 

allows estimating many parameters: the total number of cells in the field, the percentage 

of apoptotic cells, the area of the nucleus, the total Hoechst in the nuclei that reflect DNA 

content, etc. However, after primary screening, the level of apoptosis was chosen as the 
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most reliable parameter, thus omitting some data. A lot of information is also found in 

cell line-specific effects. In the screen attention was focused on the genes important for 

the survival of all the prostate cancer cell lines and on the ERG-specific effects. 

Nevertheless, siRNAs for DCUN1D5, CACUL1 and UBE2S also had an impact on the 

viability of PCa cells, but it was more dependent on cellular context and thus requires 

further validation. 

Among the parameters used in the analysis (induction of apoptosis, cell count and 

measurement of proliferation/ATP level), cell count proved to be the least reliable. The 

number of cells always slightly varies between wells. Moreover, with slow-proliferating 

cells (such as VCaPs) it was difficult to obtain a significant change in the number of cells 

in five-day experiments. A measurement of the level of apoptosis was the most reliable 

parameter. The “Cell Health Profiling” software is suitable for high-throughput screens in 

384-well plates, which allows for a sufficient number of replicates to be made, and, with 

acquisition of 9 fields per well, the analysis of about 2 million cells per cell lines. It 

provides a reliable data distribution and allows for the detecting of weak effects. The 

parameter “apoptosis” was found to be highly reproducible between replicates and 

different experiments, even when distinct experimental design were used (e.g., during 

primary and secondary screens). A measurement of proliferation by the level of ATP can 

also be used, but optimization is needed, because this parameter is sensitive to the seeding 

density. Also this readout has a lower dynamic range thus allowing mainly the strongest 

effects to be seen only. 

Finally, although both measurement of apoptosis and proliferation are easy-to-

follow phenotypical parameters, they are too general which complicates the validation of 

the hits and the elucidation of the mechanism of their function. Cell growth and death 

could be affected by many factors, including the deregulation of the proteins governing 

cell cycle progression, DNA repair and replication, cytoskeleton assembly, metabolism 

and many others. It would be better to find more “targeted” parameters to follow, which 

would allow for the identification of the affected pathway and thus facilitate hit 

validation. Examples of such parameters are degradation of a specific protein, or 

activation/inhibition of specific pathways, where the role of the UPS has been suggested. 
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1.5.2 Hits and primary validation 

 The objective of the primary screening was to identify the UPS components 

crucial to the viability of prostate cancer cells and, in particular, PCa cells harboring the 

oncogenic translocation TMPRSS2:ERG. Seven genes were identified, of which two are 

potentially ERG-specific. 

 The most prominent hit is UBE2U. This uncharacterized protein, with an 

urogenital pattern of expression and a robust apoptotic effect of its knockdown in 

prostatic cells, could potentially be a perfect drug target for prostate cancer. Attempts in 

cloning and characterization of this protein suggest the existence of multiple mRNA 

splicing isoforms, with at least some of them truncated. This might suggest that these 

mRNA could have some specific functions. For example, UBE3A was shown to have 

multiple mRNA isoforms coding enzymatically inactive proteins. These mRNAs were 

shown to regulate miRNA governing neuronal development (Valluy et al., 2015). To 

better understand the function of UBE2U, and its role in the prostate and PCa, it is 

important to characterize the existing isoforms and identify those involved in PCa cell 

viability. 

The genes UBE2H, UBE2A, CUL4B have the established roles in chromatin 

remodeling and DNA-damage response. The data from the literature suggest their general 

role in cancer development, and therefore, these genes may not be PCa-specific. For these 

hits basic validation has been done using multiple siRNA targeting the same gene as well 

as confirmation of the efficiency of these siRNA by Western Blot. 

Four (CAND1, CUL4B, RBX1 and CUL2) of the seven identified hits belong to 

the CRL/NEDD8-pathway. Moreover, two of them (RBX1 and CUL2) are potentially 

ERG-specific. In order to elucidate the role of the CRL/NEDD8 pathway in prostate 

cancer MLN4924 was used, which is a potent inhibitor of neddylation, recently 

introduced in biomedical research (CHAPTERS 2 & 3). 
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CHAPTER 2. DISTINCT OUTCOMES OF CRL/NEDD8 

PATHWAY INHIBITION IN CANCER CELLS 

2.1 INTRODUCTION 

The major goal of cancer therapy is to specifically suppress malignant neoplasm 

without detriment to normal cells. Recently, the ubiquitin-proteasome system (UPS) 

appeared as one of the principal cancer targets. Indeed, the inhibition of the major UPS 

component, the proteasome, has proven to be efficient against many types of cancer. Two 

proteasome inhibitors, Bortezomib and Carfilzomib, have been approved by FDA for the 

treatment of hematologic malignancies, while other related compounds, Ixazomib and 

Oprozomib, are in clinical trials. Among major difficulties in cancer treatment are 

extreme plasticity, evolvability, and heterogeneity of the disease. Thus, although 

Bortezomib (+/- Dexamethasone) has shown efficacy against multiple myeloma and, 

more recently, against mantle cell lymphoma, the treatment often leads to a relapsed, 

refractory disease. In some cases, this problem may be addressed by combining 

proteasome inhibitors with additional drugs such as Panobinostat and 

Thalidomide/Lenalidomide, which target other tumor-specific liabilities 

(http://www.themmrf.org/multiple-myeloma-knowledge-center/myeloma-drugs-

guide/velcade/velcade-clinical-studies/). It is also noteworthy that in standard regimens, 

Bortezomib fails against solid tumors, while a dose increase results in peripheral 

neuropathy. Given that the proteasome plays an important role in normal cells, the 

observed neurotoxicity raises the question of the selectivity of proteasome inhibitors in 

cancer treatment. 

Apart from the proteasome, other potential anti-cancer targets from the UPS 

comprise cullin-RING E3 ligases (CRLs). Deregulation of CRLs has been observed in 

many cancers and is linked to tumorigenesis (Lee J & Zhou, 2010; Chairatvit & 

Ngamkitidechaku, 2007; Li et al., 2014; Meehan et al., 2002). Notably, the inhibition of 

CRLs can stabilize a number of tumor suppressors without affecting global cellular 

catabolism, and, therefore, it seems to be a more specific anti-cancer approach compared 

to proteasome inhibition (Soucy et al., 2009). CRLs are multi-protein complexes 

assembled (in mammals) on seven cullin scaffolds (cullins 1, 2, 3, 4a, 4b, 5, 7). Pro-

degradative Ub-ligase activity of CRLs requires modification of the cullin subunit with a 

small Ub-like protein – NEDD8. Similar to ubiquitylation, the neddylation involves an 
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ordered transfer of NEDD8 by specific E1-activating enzymes (NAE/Uba3 heterodimer), 

E2-conjugating enzymes (UBE2F or UBE2M) and E3 ligases (RBX1 and RBX2 for 

CRLs, and others). Some of these enzymes are druggable and, therefore, provide a 

powerful way to block CRL function. Thus, a recently developed NAE inhibitor, 

MLN4924, efficiently abrogates cullin neddylation and suppresses the growth of various 

types of cancer cells in vitro and in vivo (Soucy et al., 2009). MLN4924 is currently being 

evaluated in clinical trials for the treatment of both hematologic malignancies and solid 

tumors (https://clinicaltrials.gov).  

Despite the growing evidence for non-cullin NEDD8 regulation (Hjerpe et al., 

2012; Enchev et al., 2014), all proposed mechanisms of MLN4924 function/action 

implicate inhibition of CRLs. Depending on the cell type these include: (1) induction of 

DNA re-replication through the stabilization of chromatin licensing factor Cdt1 (2) cell 

cycle arrest through the upregulation of cell cycle regulators such as p21, p27, and Wee1; 

(3) inhibition of the NF-κB pathway in NF-κB-dependent cancer cells; (4) suppression of 

tumor angiogenesis as a result of cell cycle arrest and accumulation of RhoA GTPase 

(Enchev et al., 2014; Yao et al., 2014) , etc.  Surprisingly, only two outputs for these 

multitude of mechanisms have been documented, which recapitulate the therapeutic effect 

of MLN4924: cancer cell senescence and apoptosis. However, considering a complex 

network of CRL regulation in the cell, one would expect a much wider range of cellular 

responses to CRL inhibition. It seems possible that, by tracking only death outcomes, 

some cellular phenotypes could be overlooked. Indeed, despite the unique target (NAE, 

IC50 ~5 nM), the toxicity of MLN4924 (EC50) in various cell lines can vary by three 

orders of magnitude, suggesting that suppression of CRL does not necessary lead to cell 

death. Consistent with this conclusion, a recent study has shown that inhibition of 

CRL1
βTrcp

 and CRL2
VHL

 by MLN4924 can also induce autophagy that protects cancer 

cells from apoptosis (Zhao et al., 2012). Complementing MLN4924 treatment with an 

autophagy inhibitor markedly enhanced the drug efficacy. Therefore, analysis of all 

possible outcomes of MLN4924 action is of clinical importance for the evaluation of 

CRL/NEDD8 pathway as a therapeutic target and for optimization of treatment regimens. 

Here the consequences of CRL/NEDD8 pathway inhibition in prostate cancer 

cells are investigated. Notably, this study shows that: (1) distinct cell lines have 

significantly different sensitivity to MLN4924; (2) knockdown of CRL components may 

have opposite effects on cell proliferation and survival; (3) a different degree of 
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CRL/NEDD8 pathway inhibition can result in a completely different cell fate. 

Specifically we found that in VCaP cancer cells, 95% suppression of NEDD8 conjugation 

activates androgen receptor (AR), resulting in reversible cell quiescence and protection 

from proliferation-dependent cell death. Also demonstrated is the fact that knocking 

down/suppressing supplementary targets such as CAND1 and AR can potentiate the toxic 

effect of MLN4924 on prostate cancer cells.  All together, these results demonstrate 

plasticity of cancer cells and suggest ways for the optimal utilization of NAE inhibitors in 

prostate cancer treatment.  

2.2 DIFFERENT SENSITIVITY OF PROSTATE CANCER CELL LINES TO 

MLN4924 

Previous work has shown that MLN efficiently induced cell death in the LNCaP 

prostate cancer cell line (EC50=50 nM) (Soucy et al., 2009). To investigate whether 

MLN4924 is generally potent against other types of prostate cancer we compared its 

effect on LNCaP cells (AR+, androgen-dependent, p53-wt) with PC3 (AR-, androgen-

independent, p53-null) cells, and DuCaP and VCaP cells (both of these AR+, androgen-

sensitive, and contain the TMPRSS2:ERG mutation, p53-R248W). First we used 

ViaLight™ Plus Cell Proliferation chemiluminescent assay to measure cellular ATP 

level. Consistent with previous observations (Soucy et al., 2009), MLN4924 induced a 

marked decrease in total cellular ATP in LNCaP cells, suggesting efficient growth and 

metabolism inhibition in this cell line (Figure 46, A).  Treatment of LNCaP cells with 500 

nM MLN4924 for 3 days resulted in 95% cell mortality confirmed by phase-contrast 

microscopy (Figure 46, A, right panel). Though less sensitive, PC3 cells also showed a 

significant decline in ATP level (>60%) and cytotoxicity with 500 nM MLN4924. On the 

contrary, DuCaP and VCaP cells were largely resistant to up to 1 µM of MLN4924, 

showing little effect on ATP level and on the number of cells after 3 days of treatment 

(Figure 46, A). Most surprisingly, at the concentrations below 1 µM, MLN4924 induced 

an apparent increase of total ATP in DuCaP cells. Both VCaP and DuCaP cell lines were 

derived from the same patient and contain an amplified AR gene as well as 

TMPRSS2:ERG chromosomal translocation. This mutation, which is present in 50-70% 

of prostate cancers, fuses the TMPRSS2 promoter to the ERG gene resulting in androgen-

dependent expression of the truncated ERG protein (Tomlins et al., 2005). ERG is a 

transcription factor that tightly interacts with AR in reprogramming the fate of prostate 
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cancer cells (Yu et al., 2010).  It seems, therefore, possible that this particular genetic 

context renders VCaP and DuCaP cells less dependent on the CRL/NEDD8 pathway. 

Inhibition of the CRL/NEDD8 pathway was shown to induce senescence and 

apoptosis in cancer cells (Enchev et al., 2014). To investigate whether the MLN4924-

inflicted death of prostate cancer cells was due to the induction of apoptosis, we 

examined the activation of pro-apoptotic caspases 3&7 (Figure 46, B). Cells were 

incubated with CellEvent™ Caspase-3/7 fluorogenic substrate (CE) and analyzed by 

automated fluorescence microscopy. MLN4924 induced massive apoptosis in LNCaP 

cells, while PC3 cells were much less affected. Consistent with a MLN4924-resistant 

phenotype, at 3 days of treatment, VCaP and DuCaP cells showed negligible caspase 3/7 

activity, even with 1 µM of MLN4924 (Figure 46, B, right panel). 

 

Figure 46. The effect of MLN4924 treatment on proliferation (A) and apoptosis (B) in PCa cell lines grown in ChSM. 

The images represent phase-contrast (A, right panel) or fluorescent acquisitions (B, right panel) of PCa cells treated 



101 

 

with vehicle (DMSO) or 500 nM MLN4924. On the fluorescent images the nuclei are shown in blue, while the caspase 

CellEvent substrate is in green. 

 

Taken together, these results revealed significant difference in the sensitivity of 

prostate cancer cells toward NAE inhibition. This may reflect genetic and functional 

heterogeneity of these cells apparent from their different phenotypes, androgen 

dependences and proliferation indexes. Thus, VCaP and DuCaP cells have two to three 

times longer doubling time compared with LNCaP and PC3 cells (60-120h vs 30-35h). 

Because the toxic effect of MLN4924 on cancer cells was shown to be proliferation-

dependent (Lin et al., 2010), this may be one of the reasons for their resistance to the 

drug. However, though a longer treatment of VCaP cells with MLN4924 increased the 

cytotoxicity, it was still much less pronounced then with LNCaP cells (see below, and 

Supplementary Figure 1). Furthermore, despite the different proliferation rates, a quite 

similar MLN4924-inhibition profile was observed in cells cultured on standard 

(Supplementary Figure 3) and androgen-deprived (Figure 46) medium, suggesting that 

cell cycle progression is not the only factor determining MLN4924 toxicity. The distinct 

sensitivity of prostate cancer cell lines toward NAE inhibition might also reflect their 

different p53 status, though, contrary to our results, MLN4924 has been shown to be 

generally more toxic to the cells with a mutant p53 (Lin et al., 2010). 

2.3 MLN4924 EFFICIENTLY INHIBITS NEDD8 PATHWAY IN VCaP CELLS 

Poor drug bioavailability and multidrug resistance are common causes of cancer 

cell resistance to a variety of drugs (Kuppens et al., 2005; Holohan et al., 2013). To 

investigate whether the resistance of TMPRSS2:ERG-positive prostate cancer cells 

toward MLN4924 treatment results from inefficient NAE inhibition, we examined the 

effect of this drug on protein neddylation in VCaP cells. Expressing major prostate 

epithelial markers, this cell line is a widely used cellular model for androgen-sensitive 

TMPRSS2:ERG-positive prostate tumors (van Bokhoven et al., 2003a). We found that 

the increasing concentration of MLN4924 induced a progressive decline in the amount of 

NEDD8 conjugates (Figure 47, A). Because no significant changes were observed with 

Ub and SUMO1 conjugates, the inhibition appeared to be NAE-specific (Supplementary 

Figure 5).  Surprisingly, the efficacy and profile of the inhibition of the neddylation were 

quite similar to those previously reported for highly MLN4924-sensitive cell lines (Soucy 

et al., 2009; Brownell et al., 2010): with an abrupt decline in NAE- and Ube2M-NEDD8 

conjugates at 10-25 nM of the drug (bands 4 and 6) and slightly shifted toward higher 
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~100 nM MLN4924 concentrations, a decrease in neddylated cullins (bands 2/3). 

Notably, the suppression of total NEDD8 conjugates attained ~ 90% at 50 nM MLN4924 

and was almost complete at 100 nM (Figure 47, B). These findings were corroborated by 

immunofluorescence microscopy, where negligible anti-NEDD8 staining was observed 

already at 50 nM MLN4924 (Figure 47, C). 

The results presented on Figure 46 and Figure 47 lead to the unexpected 

conclusion that the inhibition of the majority of cellular neddylation is not toxic for 

TMPRSS2:ERG-positive prostate cancer cells. Although surprising, the possible 

explanations for this finding could be that: (1) toxic effects are present but are not 

detected; (2) residual (~5%) neddylation is still sufficient to perform vital cellular 

functions; (3) the cells somehow adapt to low neddylation; (4) vital cellular functions do 

not depend on NEDD8 pathway in these cells. 

 

Figure 47. The effect of MLN4924 on neddylation in the VCaP cell line. A. Western Blot shows a dose-dependent 

decrease in neddylated proteins. Quantification of the WB (B) shows IC50 for total neddylation is about 10 nM, while 

IC50 for CRL is equal to 25 nM. At 50 nM residual neddylation is 10 % compared to control, while 500 nM causes 

complete blocking of neddylation. Immunostaining against NEDD8 (C) showed that neddylation is negligible for both 

50 nM and 500 nM concentrations of MLN4924. 
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2.4 DIFFERENTIAL EFFECT OF NEDD8 PATHWAY INHIBITION ON CELL 

CYCLE PROGRESSION AND VIABILITY 

Because VCaP are slow cycling cells (their doubling time is more than 53 hours 

according to ATCC), more prolonged incubation with MLN4924 might be required to see 

the cytotoxic effect of NAE inhibition. Indeed, extending the MLN4924 treatment to 5 

days increased the percentage of apoptotic cells, albeit only for the drug concentrations 

above 500 nM (Supplementary Figure 1). Curiously, for lower drug doses we observed 

small, but repeatable decrease in caspase 3/7 activity compared to the control, thereby 

inferring a decreased rate of spontaneous apoptosis (Supplementary Figure 1). 

 

Figure 48. The effect of NEDD8 pathway inhibition using different concentration of MLN4924 on cell cycling and 

viability. A. Analysis of the cell cycle by flow cytometry using 7-AAD staining after 5 days of treatment on VCaP cells 

with MLN4924. B. Effect of MLN4924 on the NF-κB pathway (phospho-p65 and phospho-IκB) and phospho-β-

catenin. C. Effect of MLN4924 on the markers of NF-κB pathway (Cdt1), senescence (p21) and DNA-damage 

(γH2AX). D. Effect on DNA synthesis after 3, 24 or 120 hours after treatment with MLN4924. E. Immunostaining for 

γH2AX-positive foci in the nuclei of VCaP cells. We analyzed 3 groups of cells, having 0, 1-3, or more than 3 foci per 

nuclei. 
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The cytotoxic effect of MLN4924 has been linked to the accumulation of a 

number of CRL substrates, e. g. Cdt1, p21, Wee1 (Lin et al., 2010; Jia et al., 2011; Wei et 

al., 2012). This can provoke DNA re-replication and/or cell cycle arrest. Notably, in some 

cell lines the growth arrest by MLN4924 does not necessary cause apoptosis (Jia et al., 

2011). We, therefore, used flow cytometry to examine how NAE inhibition affects cell 

cycle in VCaP cells (Figure 48, A). 

Consistent with the reduced rate of spontaneous death (Supplementary Figure 1), 

the treatment of cells with 50 nM MLN4924 decreased the percentage of sub-G1/G0 

(dead) cells compared to control (Figure 48, A, bottom histogram). Unexpectedly, the 

cells accumulated in the G1/G0 phase, indicating a cell cycle arrest. Because VCaP cells 

express mutant p53-R248W, they are unable to induce G1 arrest (Sobel & Sadar, 2005; 

Willis et al., 2004) and therefore other mechanisms seem to be involved.  Higher doses of 

MLN4924 increased the fraction of sub-G1/G0 dead cells, the cells in G2/M (500 nM of 

drug) and S (5 µM of drug) phases as well as a percentage of cells with high (>4N) DNA 

content. These data are in agreement with the proposed mechanism of MLN4924 action, 

which includes stabilization of replication licensing factor Cdt1 factor, of which 

accumulation leads to DNA re-replication, cell cycle arrest at G2/M, and apoptosis. 

Corroborating this conclusion, Western Blot analysis revealed an elevated level of 

cellular Cdt1 at higher MLN4924 concentrations (Figure 48, B). 

To detect possible DNA re-replication, we measured cellular DNA synthesis 

following different times of NAE inhibition. The Click-iT EdU incorporation assay was 

used. Here, again, distinct responses to low and high doses of MLN4924 were observed 

both in androgen-deprived (Figure 48, D) and in standard medium (Supplementary Figure 

2).  Specifically, the treatment with 50 nM MLN4924 induced progressive inhibition of 

EdU incorporation from 90% of the control value at 24h to 65% at 120h. Meanwhile at 

500 nM and 5 µM the effect of the drug was biphasic: at 24 hours the EdU signal rose to 

200-250% of the control value, followed by complete cessation of DNA synthesis at 

120h. This initial increase in EdU incorporation coincided with Cdt1 accumulation and 

might indicate DNA re-replication and/or repair processes induced by DNA damage. On 

the other hand, the DNA synthesis arrest probably reflects a shutdown of cell functions as 

the result of an inability to repair the inflicted damage. 

To ascertain that MLN4924 can induce DNA damage we examined the status of 

Ser-140 phosphorylated histone H2AX (γH2AX), a marker of DNA double strand breaks. 
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Western Blot analysis revealed a massive accumulation of γH2AX in the cells treated 

with 5 µM MLN4924, while only a small increase in γH2AX signal was observed with 

250-500 nM concentrations (Figure 48, B). This small increase in total γH2AX could 

indicate an onset of DNA damage provoked by intermediate MLN4924 doses. Indeed, an 

analysis of the cells treated with 500 nM MLN4924 by immunofluorescence microscopy 

revealed a marked increase in population of cells having multiple γH2AX foci, the 

presumed sites of DNA damage (Figure 48, E). Notably, at 50 nM, MLN4924 slightly 

reduced the incidence of γH2AX foci compared to the control, inferring that the G0/G1 

cell cycle arrest and reduced rate of DNA synthesis imposed by this dose prevents 

spontaneous DNA breaks.  

A similar dose-response to MLN4924 in γH2AX formation and caspase 3/7 

activation pointed to DNA damage as a primary trigger of apoptosis. On the other hand, 

what caused a G0/G1 cell cycle arrest at MLN4924 concentrations below 100 nM was 

less clear. We observed a significant increase in cyclin-dependent kinase inhibitor p21, 

the substrates of multiple CRLs (Abbas & Dutta, 2011; Yu et al., 1998), already at 25 nM 

MLN4924 (Figure 48, C). This, by itself, may contribute to cell cycle arrest at G0/G1. 

Furthermore, at the same concentration, MLN4924 induced a marked buildup of 

phosphorylated IκB (p-IκB) protein; an inhibitor of NF-κB and a substrate of CRL1
βTrcp

 

(Figure 48, C). NF-κB, a key transcription factor in prostate carcinogenesis, is 

constitutively active in advanced tumors and in ETS-positive cancer cells (Lambert et al., 

1997; Wang et al., 2011; Rayet & Gélinas, 1999). Because an inhibition of NF-κB 

signaling in VCaP cells was shown to suppress cell growth (Wang et al., 2011), this may 

be the mechanism/cause of G0/G1 cell cycle arrest by MLN4924. Consistent with this, 

the stabilization of IκB by MLN4924 was accompanied by an accumulation of 

cytoplasmic, but not nuclear, phospho-p65, an active subunit of NF-κB (Supplementary 

Figure 7). Finally, we observed that MLN4924 also stabilized phosphorylated β-catenin 

(p-b-Cat) (Figure 48, C). Phospho-β-Cat is a component of β-Cat/Wnt signaling, one of 

the major ERG-driven transformation pathways in TMPRSS2:ERG-positive prostate 

cancer cells (Gupta et al., 2010). 

Collectively, our data suggest that, depending on the dose, MLN4924 can instigate 

two apparently distinct cell responses: (1) at concentration below 100 nM (~95% 

inhibition of cellular neddylation), the drug affects NF-κB and β-Cat/Wnt pathways,  

arrests cells in the G1/G0 phase and inhibits DNA synthesis, thus preventing spontaneous 
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DNA damage and apoptosis; (2) at concentration above 500 nM (complete neddylation 

inhibition) MLN4924 causes DNA damage, cell cycle arrest in G2/M and S phases, and 

apoptosis. 

2.5 KNOCKDOWN OF CRL COMPONENTS CAN HAVE OPPOSITE EFFECT 

ON CELL PROLIFERATION AND SURVIVAL 

Although surprising, the discontinuous effect of “almost complete” to “complete” 

NAE inhibition on cell fate was not totally unexpected. Cullins are major neddylation 

substrates. Various CRLs regulate thousands of diverse cellular factors that have distinct 

impacts on cell function (Lee J & Zhou, 2010).  It is possible, therefore, that the inhibition 

of some CRLs by MLN4924 would promote cell death, while the inhibition of others 

would favor pro-survival processes. In this case the final outcome could be discontinuous 

depending on the role, weight, and degree of (susceptibility to) the inhibition of each 

component within the CRL network. To test this hypothesis we analyzed the effect of 

inhibition of CRL components on the viability of VCaP cells (data obtained during our 

primary screening) (Figure 49, A). 

 

Figure 49. A. The effect of inhibition of CRL components on viability of VCaP cells. B. Inhibition of CAND1 protein 

using sub-optimal concentration of siRNA potentiates the toxic effect of MLN4924. 

 

We found that, while knockdown of CUL1 and, particularly, CUL2 inhibited cell 

growth and induced apoptosis, knockdown of CUL7 and CUL4B had an apparent 

beneficial effect by increasing cell number or reducing the fraction of apoptotic cells. 

Some other components of CRL/NEDD8 pathway were also found on the opposite ends 
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of the distribution: CAND1, UBE2F, CACUL1 (pro-apoptotic siRNAs) and 

DCUN1D4/DCN4, DCUN1D5/DCN5 (growth promoting siRNAs). These results suggest 

that the inhibition of NEDD8-dependent activation of CRLs may have opposite outcomes 

depending on the balance within the CRL network. 

Notably, CAND1, one of the key regulators of the CRL network balance, was the 

most prominent hit identified by this screening. CAND1 acts as a protein exchange factor 

catalyzing dynamic redistribution of substrate-receptors between CRLs. Knocking down 

CAND1 induced a significant apoptotic death suggesting it is a limiting component of the 

CRL network in VCaP cells (Figure 49, A). We reasoned, therefore, that, if the 

cytotoxicity of MLN4924 was mainly due to compromised CRL function, the inhibition 

of CAND1 would further potentiate the toxic effect. To examine this possibility we 

suppressed CAND1 with suboptimal concentration of siRNA (1 nM). Under these 

conditions, the extinction of CAND1 protein was not complete and only a limited cell 

mortality was observed (Figure 49, B). Yet, this amount of siCAND1 significantly 

increased the apoptosis induced by 500 nM MLN4924, pointing to the epistatic 

relationship between CAND1 and NAE in prostate cells (Figure 49, B). 

Taking together these data (1) provide some explanation for the differential effect 

of MLN4924 on VCaP cells; (2) support the role of CRLs as a major effector of NAE 

inhibition; (3) suggest CAND1 as another potential therapeutic target for prostate cancer. 

2.6 MLN4924 INDUCES REVERSIBLE GROWTH ARREST IN 3D 

PROSTATOSPHERE MODEL 

The results shown above suggest that the apparent resistance of TMPRSS2:ERG-

positive cancer cells toward MLN4924-induced apoptosis may come from cell cycle 

arrest at the G0/G1 phase. Considering a potential clinical application of MLN4924, the 

principal question is whether this arrest is irreversible (senescence) or reversible 

(quiescence). The latter may lead to tumor re-growth in the case of sub-optimal 

MLN4924 treatment. To address this question we investigated the outcome of NAE 

inhibition in tumor-relevant 3D prostatosphere model. VCaP spheroids were pre-formed 

in 96-well round bottom ultra-low attachment plates, subjected to long-term MLN4924 

treatment, and analyzed by optical microscopy (Figure 50, A, B). Exponential spheroid 

growth was observed in control condition (Figure 50, A, B). Treatment of the spheroids 

with 50 nM MLN4924 blocked their growth for about 6 weeks without visible impact on 
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spheroid integrity (Figure 50, A, B). By contrast, applied at a 500 nM concentration, 

MLN4924 caused complete dissolution/dispersion of the prostatospheres within 2-3 

weeks of treatment (Figure 50, A, B). These results corroborate our findings in 2D 

culture, where significant cell apoptosis was detected only at MLN4924 concentrations 

above 500 nM (Figure 46, B).   

Confirming apoptotic cell death, the staining with CellEvent™ reagent revealed 

strong activation of Caspases-3/7 upon the treatment of the prostatospheres with 500 nM 

MLN4924 (Figure 50, C). Curiously, some caspase activity was also seen in the center of 

the spheroids grown under control conditions. This basal apoptosis may be caused by 

intensive cell proliferation that leads to a local exhaustion of nutrients within the core of a 

rapidly growing spheroid (Hamilton, 1998). On the other hand, consistent with growth 

arrest, only rare apoptotic events were detected in prostatospheres treated with 50 nM 

MLN4924 (Figure 50, C). 

It has been shown that MLN4924 can trigger senescence in some cell types (Jia et 

al., 2011). To test whether MLN4924 treatment causes irreversible growth arrest in VCaP 

spheroids, we measured the activity of senescence-associated beta-galactosidase (SA-β-

GAL) by using colorimetric X-GAL substrate. While the prostatospheres treated with 500 

nM MLN4924 showed intensive X-GAL staining, negligible SA-β-GAL activity was 

detected in control and 50 nM MLN4924 conditions (Figure 50, C). This result implies 

that the cell growth arrest imposed by sub-total NAE inhibition in VCaP cells is not 

senescence and, therefore, may be reversible. In agreement with this conclusion, 

transferring the spheroids arrested for 40 days (with 50 nM MLN4924) into a drug-free 

medium resulted in spheroid re-growth similar to normal pace (Figure 50, A, B). 

Summing up, the results suggest that 90-95% inhibition of cellular neddylation by 

MLN4924 induces quiescence in TMPRSS2:ERG-positive VCaP cells that may protect 

these cells from cycling-dependent apoptosis. 
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Figure 50. A. Differential effect of CRL/NEDD8 pathway inhibition on the viability of VCaP spheroids. A, B. 

MLN4924 caused reversible (at 50 nM) or irreversible (at 500 nM) inhibition of spheroids proliferation. C.  MLN4924 

induced accumulation of senescence (β-galactosidase) and apoptosis (caspases 3,7) markers only at 500 nM 

concentration 

 

2.7 INHIBITION OF NAE ACTIVATES ANDROGEN RECEPTOR 

For many types of cells the G0/G1 cell cycle arrest and exit into a quiescent state 

is an essential step in terminal differentiation. In normal prostate epithelium and low-

grade primary cancer this process is driven by the androgen receptor (AR). Accumulation 

of various mutations during carcinogenesis results in AR reprogramming in favor of cell 

dedifferentiation and proliferation that often accompanies the resurgence of castration-

resistant (androgen-refractory) prostate cancer (Yeh et al., 2009). In TMPRSS2:ERG-

positive cancers, ERG oncogene plays a critical role in suppressing the AR activity 

leading to poorly differentiated, invasive tumor phenotypes (Yu et al., 2010). 

Because the inhibition of cellular neddylation triggered quiescence in VCaP cells, 

we asked whether it involves a reactivation of the AR differentiation program. First, we 

analyzed the effect of MLN4924 on the protein level of AR, ERG and PSA, as AR-

specific differentiation markers (Figure 51, A). 
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Figure 51. Effect of CRL/NEDD8 pathway inhibition on the AR transcription program in VCaP cells. A. Western Blot 

demonstrates the level of AR and AR-responsive proteins (PSA and ERG). B. Test ELISA showed that 50 nM 

concentration stimulates secretion of soluble PSA in 3D (spheroids) and 2D (cells) models. C. Examination of RNA 

level by qPCR showed that a 50 nM concentration of MLN4924 stimulated expression of AR-responsive genes PSA 

(KLK3), prostein (SLC45A3) and ERG. Treatment of VCaP cells with 500 nM MLN4924 caused a decrease in PSA 

and prostein expression, while expression of ERG was still strong. Another AR-responsive gene FKBP51 seemed to not 

be sensitive to MLN4924 treatment. 

 

 

Treatment of the cells with up to 100 nM MLN4924 did not change the level of 

AR, while at higher doses the drug caused a slight decline in AR protein probably 

reflecting an onset of cytotoxicity. By contrast, the level of ERG protein rose 

progressively reaching the maximum at 100-500 nM of MLN4924 (Figure 51, A). This 

increase in ERG could result from the stimulation of AR-dependent transcription, or, 

alternatively, from the stabilization of the protein. The abrupt disappearance of ERG in 

cells treated with 5 µM MLN4924 (Figure 51, A) and our qPCR data (see below) strongly 

suggest transcriptional regulation. Most strikingly, when cells were treated with 50-100 

nM of MLN4924, the level of PSA protein rose approximately fourfold, but dropped 

again when higher doses of the drug where used. A similar biphasic dose-response was 

observed for two others prostate differentiation markers, SLC45A3/prostein and FKBP51, 

whose expression is controlled by AR (Supplementary Figure 6). Notably, despite the 
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accumulation of ERG, the level of presumed ERG targets, FZD4 and LEF1, remained 

unchanged suggesting that the MLN4924 effect was AR-specific (Figure 61). 

To confirm that the changes in differentiation markers observed by Western Blot 

were due to differential gene expression, we measured the level of the corresponding 

transcripts. The cells were treated with 0, 50 and 500 nM of MLN4924 and the expression 

of four AR target genes, TMPRSS2:ERG, KLK3 (PSA), SLC45A3 (prostein) and 

FKBP51, and then analyzed by quantitative RT-PCR (qPCR). We found that the 

inhibition of NAE with 50 nM of MLN4924 stimulates the expression of all tested AR 

target genes except FKBP51. In accordance with previous observations (Figure 51, A; 

Supplementary Figure 6), 500 nM MLN4924 inhibits transcription of PSA and SLC45A3, 

while transcription of ERG continues to increase (Figure 51, C). 

Finally, we examined whether the spheroid growth arrest caused by 50 nM of 

MLN4924 (Figure 5) is accompanied by one of the prostatic differentiation features, the 

secretion of PSA. The spheroids were treated with 0 or 50 nM of MLN4924 for 5 days 

and the amount of PSA in the medium was measured by the standard ELISA kit. About a 

twofold increase in secreted PSA compared to the control value was observed (Figure 51, 

B). 

Taking together these results demonstrate that at <100 nM-doses MLN4924 

stimulates AR-dependent transcription leading to the expression of prostate 

differentiation markers. Thus, the activation of the differentiation program may be one of 

the reasons for cell quiescence caused by subtotal NAE inhibition. 

2.8 OPPOSITE ROLES OF AR & ERG IN VCaP CELL RESPONSE TO NAE 

INHIBITION  

It has been shown that in TMPRSS2:ERG-positive prostate cancer cells ERG 

binds to AR and the majority of AR target genes, disrupting androgen signaling. Our 

finding, that at <100 nM doses MLN4924 activates AR and the AR-dependent 

differentiation program, may imply that subtotal inhibition of neddylation somehow 

relieves AR from ERG suppression. This may switch the cellular program from a 

potentially detrimental ERG-dependent pro-proliferating regime to a pro-differentiated 

AR-dependent quiescent state, thus protecting cells from ERG- and re-replication-

inflicted DNA damage in S-G2 phases. 
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Figure 52. A. Knockdown of ERG using siRNA protects VCaP cells against MLN4924-induced cytotoxicity, while 

knockdown of AR sensitizes them. In accordance with these data, stimulation of the AR-program by DHT (C) has a 

protective effect upon MLN4924 treatment. B. Western Blot confirmed that using siRNA efficiently suppresses target 

proteins (AR and ERG) and alters the expression of markers corresponding to the AR program (PSA) or the ERG 

program (c-Myc). 

 

This scenario suggests that in TMPRSS2:ERG-positive prostate cancer cells the 

cytotoxic effect of MLN4924 is suppressed by AR and potentiated by ERG. To test this 

hypothesis we examined the effect of AR- and ERG-knockdowns on MLN4924-induced 

apoptosis (Figure 52, A). We used specific siRNAs that potently downregulated the level 

of target proteins in VCaP cells (Figure 52, B). Knockdown of ERG strongly suppress the 

levels of ERG and c-Myc protein, the expression of which in VCaP cells was shown to be 

a part of the ERG-dependent transformation program (Sun et al., 2008). This was 

accompanied by a visible increase in the amount of PSA protein consistent with the 

previously reported AR de-repression and activation (Yu et al., 2010). Strikingly, siERG 

also strongly suppressed the apoptosis induced by MLN4924. It may be, at least in part, 

due to the activation/reprograming of AR by ERG knockdown. Indeed, stimulation of AR 

by DHT also had an anti-apoptotic effect, though much less pronounced compared to 

siERG (Figure 52, C). On the other hand, AR knockdown significantly increased the 

MLN4924 cytotoxicity within the whole range of drug concentrations (Figure 52, A). 

These data support an antagonistic role of AR and ERG in response to MLN4924, 

though the mechanism of how CRL inhibition de-represses AR transcription is not clear. 

One possible link may be the NF-κB pathway, which is positively regulated by ETS 

transcription factors, and ERG in particular (Lambert et al., 1997; Wang et al., 2011; 

Rayet & Gélinas, 1999). Several previous reports demonstrated mutual transcriptional 
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repression between AR and NF-κB (Palvimo et al., 1996; Nelius et al., 2007; Han et al., 

2014). We observed that the inhibition of NF-κB signaling occurred at low doses of 

MLN4924 and correlated with AR activation (Figure 48; Figure 51). It seems, therefore, 

possible that NF-κB plays the role of transcriptional switch between ERG-dependent 

proliferation and AR-dependent cell growth arrest. 

Another important question is how the activation of AR is linked to G0/G1 cell 

cycle arrest and quiescence induced by MLN4924. Although we observed that AR 

stimulation by MLN4924 correlated with a buildup of cyclin-dependent kinase inhibitors 

p21Cip1 (Figure 48), this resulted, most probably, from direct inhibition of the 

degradation of these proteins by MLN4924 rather than from AR transcriptional activity. 

Indeed, at higher doses, MLN4924 produced an even more significant accumulation of 

p21Cip1 without inducing G0/G1 cell cycle arrest (Figure 48). This observation suggests 

that the induction of a differentiation-like quiescence state was not, or not only, due to the 

stabilization of p21Cip1. Recent reports from John T. Isaacs’s laboratory documented that 

AR suppresses cell proliferation via AR/b-Cat/TCF-4 complex inhibition of c-MYC 

transcription (Antony et al., 2014). This mechanism could also explain our data showing 

that the knockdown of ERG, which stimulated AR and abolished c-Myc expression 

(Figure 52, B), protected cells from MLN4924-induced proliferation-dependent apoptosis 

(Figure 52, B). To determine whether NAE inhibition by MLN4924 affects c-Myc 

expression we performed a Western Blot. Indeed, five days of treatment with low doses 

of MLN4924 (10-50 nM) caused a significant decrease in c-Myc protein level, and an 

accumulation at higher doses (> 100 nM) (Supplementary Figure 4). This correlated with 

the profile of activation of the transcriptional program of AR (Figure 51; Supplementary 

Figure 6). 

Taken together, these data demonstrate that the subtotal inhibition of the 

CRL/NAE pathway by MLN4924 triggers cell reprograming by turning off NF-κB 

signaling, stimulating AR, and suppressing c-Myc. As a result, the cells acquire a pro-

differentiated quiescent phenotype and become resistant to proliferation-dependent DNA 

damage. 
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2.9 DISCUSSION 

2.8.1 Causes of differential phenotypic outcome. 

We observed differential sensitivity of PCa cells toward MLN4924 depending on 

ERG and proliferation status, where TMPRSS2:ERG-positive slow-proliferating cell lines 

(VCaP and DuCaP) were the most resistant. Moreover, in the VCaP cell line the 

inhibition of the CRL/NEDD8 pathway has a discontinuous effect with two major 

outcomes: quiescence and apoptosis/senescence. 

Using the siRNA approach we have demonstrated that the knockdown of the 

principal CRL components, i.e. cullins and neddylation regulators, can have different 

outcomes. It should be noted that the organization of the CRL system is much more 

complex and comprises a combinatorial hierarchical assembly of adaptor proteins and 

substrate receptors. Thus, multiple CRL complexes can be assembled on the same cullin 

scaffold and play distinct and even opposite roles in cell fate. We did not address this 

complexity in our small siRNA screening. Nevertheless, our data demonstrate that, even 

on the primary level, knockdown of the basic CRL/NEDD8 components may have 

different outcomes. Therefore, the discontinuous cellular response to MLN4924 may, in 

principle, be explained by differential susceptibility of various CRLs to neddylation 

inhibition. Specifically, our results suggest that CRL-suppressors of pro-quiescent 

pathways are more sensitive to MLN4924 (inhibited at < 100 nM doses), whereas CRL-

regulators of pro-apoptotic/senescence pathways are less susceptible to MLN4924 

inhibition (> 250 nM). The latter suggests robust apoptosis suppression by CRL even at 

low level of neddylation, and may reflect the irreversible “last solution” role of this 

outcome. 

Notably, our results imply a principal role of CAND1 protein for CRL functioning 

under suboptimal neddylation conditions. CAND1 is an exchange factor that catalyzes 

redistribution of CRL cofactors (Duda et al., 2011). CAND1 binds non-neddylated cullin 

complexes which are produced by COP9 deneddylase. This binding stimulates the 

dynamics of the CRL adaptor proteins’ exchange and redistribution of CRL components 

for performing diverse cellular functions (Pierce et al., 2013). Therefore, CAND1 may 

become particularly important when the dynamics of the CRL network is perturbed by 

MLN4924. There is also evidence that CAND1 can function as a chaperon by protecting 

non-neddylated cullins from the degradation by proteasome. Notably, this CAND1 
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function becomes apparent when the neddylation of cullins is suppressed (Kim et al., 

2010). Therefore, the knockdown of CAND1 may also potentiate the inhibitory effect of 

MLN4924 by stimulating the degradation of cullins. 

The role of CAND1 in carcinogenesis is largely unexplored. In pulmonary cancer, 

negative correlation between neddylated cullins and CAND1 has been observed, 

supporting the conclusion that CAND1 function is particularly important when 

neddylation is compromised (Salon et al., 2007). The data on the implications of CAND1 

in prostate cancer are controversial. It has been reported that in LNCaP prostate cancer 

cells the expression of CAND1 is negatively regulated by androgen-stimulated Lin RNA. 

On the other hand, analysis of the limited cohort of PC specimens revealed an aberrant 

CAND1 status in cancer tissue with both over- and under-expression levels compared to 

normal prostate. Notably, interrogation of the Oncomine database revealed general up-

regulation of CAND1 in prostate cancer with CAND1 found in the top 2% of upregulated 

genes in intraepithelial neoplasia and in the top 3-10% in prostate adenocarcinoma. 

These data suggest that inhibition of the CAND1-cullin interaction may represent 

a new approach in the treatment of cancer pathology.  

2.8.2 Direct effectors of CRL inhibition  

MLN4924 was reported to be highly selective and to have only one target – E1 

enzyme for NEDD8, NAE. Nevertheless, different doses of MLN4924 caused 

accumulation of different proteins. At low doses (25-100 nM) we observed accumulation 

of phospho-IκB, p21 and phospho-β-catenin, while higher doses (250 nM and higher) 

lead to an accumulation of Cdt1. This might suggest that different doses of MLN4924 

could lead to the inhibition of different CRL complexes, which would lead to an 

accumulation of different targets and, thus, would lead to different phenotypes. 

IκB, β-catenin and p21 are degraded by CUL1-based CRLs. An accumulation of 

p21 can induce G0/G1 cell cycle arrest. Moreover, MLN4924 induced an accumulation of 

the NF-κB inhibitory subunit phospho-IκB and blocked the translocation of the phospho-

p65 subunit of NF-κB into the nucleus (Supplementary Figure 7). As discussed 

previously, the inhibition of NF-κB signaling in ERG-positive VCaP cells was shown to 

suppress cell growth (Wang et al., 2011) and might be another cause of G0/G1 cell cycle 

arrest by MLN4924. A similar mechanism of MLN4924 action has been described with 

NF-κB-dependent activated B cell-like diffuse large B cell lymphoma (ABC) DLBCL 
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(Milhollen et al., 2010). These cells show constitutive IκB kinase (IKK) activity, and 

rapid IκB degradation that distinguish them from other subtypes of DLBCL cells. 

Treatment of ABC-DLBCL cells with MLN4924 results in IκB stabilization, inhibition of 

NF-κB signaling, G1 cycle arrest and apoptosis.  Accumulating data suggest that 

activation of the NF-κB pathway also plays a central role in prostate carcinogenesis and, 

particularly, in the acquisition of castration resistance. NF-κB signaling promotes survival 

of prostate cancer cells at low androgen level and switches the transcriptional program to 

an invasive, metastatic phenotype (Lindholm et al., 2000; Wang et al., 2011). There is 

also a significant correlation between the constitutively active NF-κB pathway and the 

upregulation of ETS transcription factors suggesting a causal link. Indeed, ERG and other 

ETS proteins increase the expression of a number of NF-κB-associated genes and 

promote NF-κB-transcriptional activity while cytokines can stimulate ETS expression via 

NF-κB (Wang et al., 2011). This provides a positive feedback loop leading to constitutive 

activation of ETS and NF-κB through the sustained inflammatory circuit. A recent study 

demonstrated that the NF-κB-dependent production of lymphotoxin by B lymphocytes 

from tumor inflammatory infiltrates is essential for the growth of cancer cell progenitors 

(Ammirante et al., 2010). Therefore, the ability of MLN4924 to inhibit NF-κB both in 

prostate and B cells may be particularly efficient in suppression of castration resistance. 

Generally, however, the inhibition of NF-κB in prostate cancer cells is not sufficient to 

induce apoptosis (Evans et al., 2015). Moreover our data suggest that G1 cell cycle arrest 

induced by MLN4924 in TMPRSS2:ERG-positive VCaP cells is reversible. 

Higher doses of MLN4924 (>250 nM) causes accumulation of the replication 

licensing factor Cdt1 protein, which is recognized to be a substrate of CRL1 and CRL4. 

Inability to degrade Cdt1 induces re-replication, and further DNA damage (followed by 

an increase of H2AX-positive foci), cell cycle arrest in the G2/M phase, which is finally 

manifested by senescence and apoptosis. The mechanism of apoptosis is not clear. VCaP 

cells have a R248W mutation in the p53 gene which abolishes the ability of p53 to initiate 

apoptosis (Sobel & Sadar, 2005; Song et al., 2007). The putative effectors are p21 and c-

Myc. 

2.8.3 General outcomes: transcriptional reprogramming  

In our study, the inhibition of the classical NF-κB pathway (< 100 nM MLN4924) 

correlates with an activation of the AR transcriptional program. AR activation results in 
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the expression of prostate differentiation markers (PSA, prostein, FKBP51); moreover, 

using 2D and 3D prostatosphere models, we showed an increased secretion of PSA. We 

also observed increased ERG expression, but the ERG-expression program seemed to be 

intact (judging by LEF1 and FZD protein levels). Altogether, these data suggest an 

activation of the differentiation program that might be a potential cause of observed 

cellular quiescence (G1 cell cycle arrest without apoptosis and senescence). The finding 

that the knockdown of AR sensitizes cells to low doses of MLN4924, while the activation 

of AR by DHT has a protective effect, supports this conclusion. Some possible 

mechanisms of AR activation: 

1. Direct regulation of AR transcriptional activity by neddylation. Some 

evidence suggest that the intact NEDD8-pathway is essential for transcriptional activation 

of steroid receptors, but they have never show direct neddylation of these proteins (Fan et 

al., 2002; Fan et al., 2003). The direct neddylation of AR was reported in grant 

application (Don Chen, 2009), but the final results are still not published. Moreover, we 

did not detect neddylation of AR in VCaP cells (data not shown). 

2. Activation of the AR-dependent program by accumulated phospho-β-

catenin. Several studies suggest a complex interaction between AR and the Wnt/β-cat 

pathway. It has been shown that β-cat interacts with AR and potentiates AR signaling in 

prostate cells (Pawlowski et al., 2002; Truica et al., 2000), while AR represses the β-cat-

induced transcriptional program (Chesire & Isaacs, 2002; Song et al., 2003). Thus, in 

VCaP cells an accumulation of β-cat without activation of the Wnt-dependent program 

could lead to the re-activation of AR transcription program. 

3. Mutually exclusive activity of AR with NF-κB. Thus, the inhibition of NF-

κB would de-represses AR activity. Previous reports on NF-κB-AR interaction were 

contradictory. Several reports demonstrated mutual transcriptional repression between 

AR and NF-κB (Palvimo et al., 1996; Nelius et al., 2007; Han et al., 2014), while others 

suggest the opposite correlation (Zhang et al., 2009; Chen & Sawyers, 2002). Our data 

supports mutual inhibition of AR and NF-κB. First, in VCaP cells, MLN4924 caused 

dose-dependent inhibition of NF-κB inhibition (stabilization of IκB) negatively correlated 

with AR activation (expression of differentiation markers). Second, the transcriptional 

program of ERG, the major driver of NF-κB activation in TMPRSS2:ERG-positive cells, 

was not stimulated despite a higher ERG protein level. Considering that in 

TMPRSS2:ERG-positive cells AR was shown to be suppressed due to NF-κB activation, 
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we conclude that AR re-activation may occur, at least partially, through NF-κB inhibition, 

though other CRL-NEDD8-dependent mechanisms may exist. 

High doses of MLN4924 (250-500 nM) shut down transcription of AR targets 

except ERG. Of note, at 5 µM MLN4924 we observed a spectacular disappearance of 

ERG and PSA proteins but at this dose MLN4924 may cause a general, non-specific 

toxicity. Strikingly, MLN4924-induced apoptosis was almost completely ERG-

dependent. Pro-proliferation-inducing activity of ERG (and other ETS proteins) in 

prostate cancer cells was shown to generate a relatively high level of spontaneous DNA 

damage (Swanson et al., 2011). Also, aberrant transcriptional activity of AR in cancer 

cells can also produce a significant rate of DNA damage (Shen MM & Abate-Shen C, 

2010). Although the detailed mechanisms of inflicted DNA damage are not clear, this 

seems to be a general hallmark of carcinogenesis which aims for the suppression of DDR 

in favor of proliferation. Furthermore, with a compromised DDR, the high rate of 

replication-associated DNA lesions may lead to genomic instability, providing some 

evolutional advantage to cancer cells. More specifically, in ETS-positive cancers, ERG 

has been shown to directly suppress the expression of master checkpoint kinase Chk1 

releasing the blocking of error-prone DNA replication. This leads to an ERG-dependent 

accumulation of spontaneous DNA damage in VCaP cells; this effect we also observed in 

our experiments. At the same time, ERG and other ETS factors cooperate with PARP1 

and upregulate the NF-κB pathway, insuring cancer cell survival even at high level of 

DNA damage.  We found that, in contrast to other AR-targets, high doses of MLN4924 

(500 nM) significantly induced ERG both on transcription and protein synthesis levels. 

Thus, ERG-driven cell cycling in combination with re-replication imposed by Cdt1 may 

favor further accumulation of DNA damage, G2/M cell cycle arrest, and apoptosis. 

Notably, the protective effect of G1-arrest at this MLN4924 concentration is overwritten 

by the suppression of AR activity. 

2.8.4 Cancer cell plasticity: implication for cancer treatment 

Thie discontinuous response to the inhibition of the CRL/NEDD8 pathway is an 

example of cancer cell plasticity. TMPRSS2:ERG mutation, found in more than 50% of 

prostate cancers, seems to be a master-gene, switching the transcriptional program from 

differentiation to proliferation. ERG has been shown to activate NF-κB (Wang et al., 

2011), leading to increased proliferation in prostate tumors; induce the Wnt/β-cat 
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pathway (Wang et al., 2011; Birdsey et al., 2015), leading to increased migration; induce 

c-Myc (Sun et al., 2008), stimulating metabolism; suppress AR-signaling (Yu et al., 

2010), which could lead to an amplification of AR and the induction of an androgen-

independent phenotype (Figure 53).  

On the other hand, switching the transcriptional program from pro-proliferating 

(ERG:NF-κB:c-Myc:Wnt/β-cat branch) to quiescent/differentiated (AR/β-cat) could help 

PCa cells to adapt to diverse internal and external stimuli. Thus, cancer progression, 

proliferation, invasion, and functioning under androgen deprivation would select cells 

with an active ERG:NF-κB:c-Myc:Wnt/β-cat pathway, whereas, adverse environmental 

conditions, negative pressure on proliferation and functioning under higher androgen 

level would favor the activation of the AR-dependent differentiated pathway. Thus, 

quiescence observed under low doses of MLN4924 (< 100 nM) could be considered as an 

adaptive mechanism to avoid apoptosis. Damage induced by higher doses of MLN4924 

(> 500 nM) is too strong and cannot be overcome. 

 

Figure 53. Known interactions between ERG, AR, NF-κB and β-catenin signaling. 
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CHAPTER 3. INHIBITION OF CRL/NEDD8 PATHWAY BY 

MLN4924 CHANGES VCaP MORPHOLOGY  

3.1 INTRODUCTION AND PRELIMINARY OBSERVATIONS 

Nowadays, genome-wide siRNA screening is a standard technique allowing the 

identification of protein functions. Cancer-related screening most often aims to identify 

new drug targets and thus look for proteins required for the survival of cancer cells. Often 

only a limited number of parameters, such as apoptosis, proliferation or DNA damage is 

analyzed. At the same time, some genes may be involved in diverse important biological 

processes, which are not vital and, therefore, not analyzed and, thus, omitted from the 

screenings. Therefore, paying attention to other phenotypes, distinct from cell death and 

proliferation, would help to obtain important information on cancer biology.  

In our screening, we aimed to identify components of the UPS crucial for the 

viability of PCa cells. Among seven identified hits, four belong to the CRL/NEDD8-

pathway; moreover, two of them are putatively ERG-dependent. In the screening and, 

further, using MLN4924 we showed that the inhibition of CRL/NEDD8 pathway in PCa 

has a complex outcome on viability and depends on cellular context. During the screening 

we noticed that MLN4924 also alters the morphology of VCaP cells, suggesting 

additional functions of the CRL/NEDD8-pathway. Thus, under normal conditions VCaP 

cells are rounded and weakly adherent, but increasing the density results in cells growing 

in colonies without visible borders between them (Figure 54, A). VCaP cells are nearly 

immobile, and do not move from the occupied positions after primary attachment to the 

substrate. Rarely, VCaP cells move to join bigger groups of cells that seem to favor their 

growth (Figure 54, B; supplementary video 1). This observation was corroborated by a 

wound-healing assay: VCaPs don’t “heal wounds” after the scratch (Figure 54, C). 

Inhibition of the CRL/NEDD8 pathway caused a dose-dependent change in the 

morphology of VCaP cells (Figure 55, A). After 5 days of treatment with MLN4924, cells 

grown in 50 nM MLN4924 acquired a fibroblast-like morphology. An increase of 

MLN4924 concentration up to 500 nM caused an aggregation of the cells into clusters 

(Figure 55, A). To further investigate this morphological change we performed 

immunostaining with phalloidin (Figure 55, B). The obtained images demonstrated a 

fibroblast-like morphology of cells treated with 50 nM MLN4924, and tight groups at 500 



121 

 

nM. Moreover, we observed the appearance of stress-fibers and a clearly visible leading 

edge in the cells cultured in 500 nM MLN4924. 

 

Figure 54. A. VCaP cells grown at low and high density. B. Exchange of cells between colonies (extract from 

supplementary video 1). Red arrows show the dividing cell. Two resulting cells have different fate – one of them joins 

the nearest colony, the other leaves the field of view. C. Wound healing assay on VCaP. After primary attachment 

VCaP cells do not fill the gap produced by scratching of the cell monolayer. 
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Figure 55. Dose-dependent effect of CRL/NEDD8 pathway inhibition on the VCaP cell line. Phase-contrast (A) and 

immunofluorescence (B) microscopy; images were obtained 5 days after treatment. Nuclei are shown in red, actin is 

shown in green. An addition of 50 nM MLN4924 leads to a strong increase of the number of fibroblast-like type of 

cells. An addition of 500 nM MLN4924 leads to aggregation of cells in clusters and the appearance of stress-fibers. 
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Altogether these observations suggest that neddylation might have additional 

functions in VCaP cells that might be important in cancer. We conducted a series of 

experiments to get more insights into the mechanism of this morphological change. 

3.2 MORPHOLOGY CHANGE CORRELATES WITH INCREASED ADHESION 

OF VCaP CELLS 

The fibroblast-like morphology and the appearance of stress-fibers are the 

signatures of many cellular processes, including cell adhesion and migration (Parsons et 

al., 2010; Vallenius et al., 2013). First, we examined the involvement of neddylation in 

cell adhesion. To follow cell-to-surface adhesion we used a CYTONOTE - Lens-Free 

Cell Imaging Device. CYTONOTE has a large field-of-view (29.4 mm²) providing the 

possibility to follow several thousand cells at once. Analysis of the acquired images using 

a special algorithm allows for the retrieval of information about morphological properties 

of cells, such as cell adhesion, shape, size, velocity, etc. (Kesavan et al., 2014). The 

resulting scatterplots show the number of cells having a certain type of morphology 

(Figure 56). To perform lensless imaging we placed cell suspension with increasing 

concentrations of MLN4924 in cell culture treated plates. The acquisitions were 

performed every 20 minutes during 4 days. Low concentrations of MLN4924 (50 nM) 

lead to a dramatic increase in the number of adherent cells (60%) compared to the control 

(35%). There were also mostly elongated cells (high aspect ratio) with a relatively small 

cell surface. Higher concentrations of MLN4924 (500 nM) also increased the proportion 

of adherent cells (about 45%), but does not induce the “elongated” morphology. Instead, 

we observed an increase of the average cell surface, which probably reflects the formation 

of cell clusters. These results indicate that the inhibition of CRL/NEDD8 pathway 

increases adhesion of VCaP cells to the substrate. 

To examine the effect of MLN4924 on cell-to-cell adhesion we performed a 

spheroid formation assay. To promote spheroids formation, we placed some cell 

suspension in low attachment U-bottom plates (~500 cells/well) in the presence of 

increasing concentrations of MLN4924. The spheroids assembly was monitored by 

videomicroscopy and the diameter of the spheroids was measured. Both tested 

concentration of MLN4924 (50 and 500 nM) decreased the characteristic time of 

spheroids formation by about 10 hours compared to the control (Figure 57). Thus, we 

conclude that MLN4924 increases the cell-to-cell adhesion of VCaP cells also. 
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In the Chapter 2 of Results and Discussion we showed that the inhibition of the 

NEDD8-pathway by MLN4924 leads to the re-activation of the AR program 

accompanied by an increase in ERG protein level. Both AR and ERG could stimulate 

migration and invasion of PCa cells (Wang et al., 2014; Wu et al., 2013; Tomlins et al., 

2008; Zarif et al., 2015; Kim et al., 2015). We examined, therefore, whether the effects of 

MLN4924 on cell adhesion depends on ERG or AR. To this end the spheroid formation 

assay was performed after a 24-hour pre-treatment of cells with siRNA targeting ERG 

and AR (Figure 58). Both siRNAs abolished the stimulation of spheroids formation 

induced by MLN4924 at low concentration 50 nM, but not at higher concentration of the 

drug (500 nM). 

Together, these data suggest that the inhibition of neddylation in VCaPs renders 

cells more adherent to the surrounding substrates. Stimulation of cell-to-cell interactions 

by MLN4924 is dependent on the intact AR and ERG transcriptional program at least at 

drug concentrations below 100 nM. On the other hand, the effect of higher doses of 

MLN4924 may also be affected by the onset of cytotoxicity. 

3.3 STIMULATION OF SPHEROID SPREADING 

A fibroblast-like phenotype and stress-fibers are both markers of migrating and 

invasive cells. Thus, we wanted to examine the effect of MLN4924 on cell 

invasion/migration properties. Different methods permit analysis of cell migration 

potential: 

1) Measurement of average cell velocity. Our data obtained using lensless 

technology show that MLN4924 treatment did not change the speed of individual cells at 

all tested concentrations (Figure 56). 

2) Cell spreading assays (Transwell migration assay, Platypus Migration Assay, 

Wound healing assay). No significant migration of VCaP cells was detected using these 

methods. Optimization of assay conditions, i.e. increase in seeding density, addition of 

chemoattractant in Transwell Migration Assay, etc., may be required to obtain measurable 

data. 
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Figure 56. Characterization of changes in cellular morphology using lensless technology. Adhesion scatterplots reflect 2 different population of cells – with high and low adhesion to the 

substrate. Addition of 50 nM MLN4924 leads to a dramatic increase in the amount of cells with high adhesiveness (from 30 to 60 %). At 500 nM MLN4924 the proportion of weakly 

adhesive cells decreases significantly comparied to the control. The Aspect Ratio scatterplot shows populations of cells having different morphology (from rounded to elongated). The 

addition of MLN4924 50 nM causes an increase in elongated population of cells. An increase in concentration to 500 nM abolishes this effect.  Surface scatterplots show the size of the 

cells in the population. An addition of 500 nM MLN4924 causes an increase in the average size of the cells, which reflects the formation of clusters. The velocity scatterplots show the 

velocity of cells in the population. MLN4924 does not influence the velocity of the cells. 
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Figure 57. Spheroids formation assay. Cells were suspended in culture medium containing different concentrations of 

MLN4924 (0 nM with DMSO as a vehicle, 50 nM and 500 nM) and incubated in U-bottom ultra-low attachment plates 

to allow the formation of spheroids to occur. Cells were followed by videomicroscopy and the largest diameter of the 

spheroids was measured. 

 

 



127 

 

 

Figure 58. Spheroids formation assay. Suspensions of VCaP cells were distributed in U-bottom well plates together 

with one of the siRNAs (siAllStars negative control, siERG or siAR) for 24 hours. MLN4924 was added on the next 

day at indicated concentration (0 nM with DMSO as a vehicle, 50 nM, 500 nM). Cells were followed by 

videomicroscopy. The time point 30 hours after the addition of MLN4924 was shown. The tested siRNA targeting AR 

and ERG both abolished the effect of MLN4924 on spheroid formation at the low concentration of 50 nM, but did not 

change the effect of high-doses (500 nM) of MLN4924. 
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Figure 59. Spheroids Spreading Assay. A. Spreading on different coatings (no treatment, poly-L-lysine or Matrigel®) 

shows that MLN4924 increases the ability of spheroids to spread on a plane. B. An increase in the concentration of 

MLN4924 up to 500 nM potentiates spheroids spreading. C. MLN4924 stimulated spheroid spreading is not affected by 

MMP inhibitor Batimastat or PLAU inhibitor UK122. 
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3) Spheroid-based tests for spreading and invasion. Spheroids are organ-like 

cellular aggregates characterized by primitive hierarchy of cell-to-cell interactions and 

formation of an extra-cellular matrix (ECM). Compared to a 2D culture, spheroids better 

recapitulate the real situation in tumors. To study the effect of MLN4924 we performed a 

Spheroids Spreading Assay, which measures the disassembly of spheroids on a plane and 

its transformation into a 2D-layer (Xu et al., 2003; Burleson et al., 2006; Indovina et al., 

2008). We tested different plate coatings: cell-culture untreated plates, plates coated with 

poly-L-lysine or with Matrigel®, which recapitulate the composition of the extra-cellular 

matrix (Figure 59, A). With all types of coating, 50 nM MLN4924 increased the 

spreading of VCaP spheroids. We performed all subsequent experiments in poly-L-

lysine-coated plates, since it was the most efficient substrate inducing spheroid spreading. 

Using increasing concentrations of the drug, we observed that at any tested concentration, 

MLN4924 stimulates spreading of VCaP spheroids (Figure 59, A, Supplementary videos 

2-4). Notably, the accelerated spreading was not a result of proliferation within the 

spheroids (we show in Chapter II that MLN4924 decreases the proliferation compared to 

the control). 

We have shown that the inhibition of the NEDD8-pathway by MLN4924 leads to 

an increase in the amount of ERG protein (Figure 51, A). ERG was reported to increase 

the invasion potential of prostate cancer cells (Wang et al., 2014; Wu et al., 2013; Tian et 

al., 2014; Leshem et al., 2011; Tomlins et al., 2008). Moreover, ERG has been shown to 

enhance the expression of matrix metalloproteases (MMP3, MMP9, ADAM19) and 

serine-type endopeptidase PLAU (Plasminogen Activator, Urokinase) (Tomlins et al., 

2008; Tian et al., 2014). Tomlins and his colleagues have demonstrated that the increase 

in invasion potential by ERG protein depended mainly on the activity of PLAU and could 

be abolished using PLAU inhibitors (Tomlins et al., 2008). We hypothesized that the 

activation of ERG could lead to the induction of MMPs and PLAU, thus facilitating 

disaggregation of ECM and accelerating the spreading of the spheroids. We examined the 

effect of pan-MMP inhibitor (Batimastat) and PLAU inhibitor (UK122) on spheroid 

spreading. Data presented in Figure 59C show that none of the tested inhibitors could 

reduce spheroids disaggregation and spreading. Therefore, we conclude that stimulation 

of spheroid spreading by MLN4924 does not depend on the increased activity of MMPs 

or PLAU. This is in accordance with our previous findings that, despite that the relative 

amount of ERG protein increases after the addition of MLN4924, the ERG-driven 
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transcription program seems to not be activated (as judged by the levels of Lef1 and 

FZD4 proteins). 

We also investigated changes in the invasive potential of VCaP cells caused by the 

inhibition of the CRL/NEDD8 pathway. We decided to use VCaP spheroids pre-formed 

in low-attachment U-bottom plates. Pre-formed spheroids can grow in a 3D matrix, but 

do not invade into the Matrigel (Figure 60, A) and other tested 3D matrixes (Cultrex® 

and PuraMatrix®). Furthermore, MLN4924 (50 or 500 nM) did not stimulate the invasion 

of VCaP spheroids into Matrigel (Figure 60, B). Nevertheless, these results might also be 

explained by the particular properties of VCaP cells. It has been shown that individual 

VCaP cells do not form 3D-structures in Matrigel (Härmä et al., 2010). In this matrix 

VCaP cells remain single and might undergo terminal differentiation or senescence. 

VCaP growth was not, however, restricted in collagen type I gels (Härmä et al., 2010). 

Thus, it is possible that Matrigel is not a suitable matrix for invasion assays with VCaP 

spheroids. 

The obtained results suggest that MLN4924 does not stimulate the migration of 

individual cells. However, MLN4924 does stimulate the disassembly and spreading of 

spheroids on the plane, which is not dependent on the activation of MMP or PLAU. The 

effect of CRL/NEDD8 pathway inhibition on invasion requires further investigation. 
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Figure 60. A. Growth of the pre-formed spheroids in Matrigel. Spheroids increase their volume for about 50% every 

two days. During the time of the observation (6 days) spheroids did not invade into the Matrigel ECM. B. Growth of the 

pre-formed spheroids in Matrigel in presence of MLN4924. During the time of the observation (4 days) none of the 

conditions induced invasion into the Matrigel. 

 

Figure 61. Expression of EMT markers. Localization of total β-catenin remains plasma membrane/cytoplasmic in 

presence of MLN4924 (A). The amount of LEF-1 and FZD-4 proteins does not change in the presence of MLN4924, 

suggesting no activation of the Wnt-pathway (B). The level of other principal EMT markers (E-cadherin, β-catenin, 

GSK-3β and cytokeratin-18) also does not change upon the inhibition of the CRL/NEDD8 pathway by MLN4924 (C). 
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3.4 MLN4924 DOES NOT INDUCE EMT 

Change of cellular phenotype from epithelial to fibroblast-like is widely described 

for cancer cells by the term of Epithelial-to-Mesenchymal Transition (EMT), which is a 

hallmark of cancer invasion and metastasis. EMT has some well-established markers, 

including a loss of E-cadherin and some cytokeratins, a decrease in GSK3β expression, 

and a translocation of β-catenin into the nucleus upon the activation of Wnt-pathway 

(Thiery et al., 2002). Moreover, ERG was shown to induce EMT (Wang et al., 2014; Wu 

et al., 2013; Tian et al., 2014; Leshem et al., 2011; Tomlins et al., 2008) by the activation 

of FZD4/Lef1/Wnt-signaling (Gupta et al., 2010; Wu et al., 2013) and the up-regulation 

of the EMT transcription factors ZEB1 and ZEB2 leading to the suppression of E-

cadherin expression (Leshem et al., 2011). In order to examine the possible induction of 

the EMT program on CRL/NEDD8 pathway inhibition we analyzed the expression of 

major EMT markers. The data presented in Figure 61 show that the expression of these 

markers is not affected by MLN4924. We showed the accumulation of phospho-β-catenin 

(Figure 48, C). However, using antibodies against total β-catenin, we did not detect its 

translocation to the nucleus, suggesting an inactive Wnt-pathway. These data suggest that 

mechanisms other than EMT are responsible for the change of the cellular phenotype 

induced by MLN4924. 
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3.5 EFFECT ON CELL JUNCTION PROTEINS 

The increased cell adhesion might reflect changes in the composition of 

membrane proteins. There are five major classes of protein complexes involved in cell 

adhesion (Figure 62): tight junction, adherens junction, desmosomes, gap junction and 

focal adhesions (Kawauchi, 2012). We, therefore, analyzed the effect of inhibition of the 

CRL/NEDD8 pathway on some of these proteins. 

 

Figure 62. This table summarizes the major types of cellular contacts. The picture demonstrate the molecular structures 

of cell-cell and cell-ECM junctions. (a) Epithelial cells contain both cell-cell junctions (Tight junctions, Adherens 

junctions, Desmosomes and Gap junctions) and cell-ECM junctions (Focal adhesions and Hemidesmosomes). While 

fibroblasts are also able to form cadherin-based cell-cell junctions, the majority of adhesion in fibroblasts is still 

integrin-based focal adhesions. Red bars: actin filaments, Purple lines: intermediate filaments, Orange dots in the lower 

panel: focal adhesions, Purple dots in the lower panel: focal complex (immature focal adhesion); (b–e) Molecular 

components of adherens junctions (b), desmosomes (c), tight junctions (d) and focal adhesions (e). (Kawauchi, 2012) 
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3.5.1 Tight junction 

The tight junction (TJ) is found in the apical region around the cell's 

circumference. Compared to other adhesion complexes, TJs form the closest contact 

between the adjacent cells. This brings the cells together to make a barrier with 

controllable transport of the substances around it. Another important function of TJs is the 

maintenance of the apical-basolateral polarity of epithelial cells. The transmembrane 

component of TJs is represented by occludin, claudin and JAM proteins. The intracellular 

scaffold consist of ZO1/2/3 proteins, coupled to actin filaments. 

To estimate the effect of CRL/NEDD8 pathway inhibition on TJs proteins, we 

analyzed the expression of ZO-1 and occludin. We incubated VCaP cells and spheroids 

with increasing concentrations of MLN4924 and analyzed them using 

immunofluorescence microscopy (Figure 63, A-E). We did not observe significant change 

in the expression of the ZO-1 protein (Figure 63, D-E). However, the protein level of 

occludin increased dramatically after 5 days of incubation with 500 nM MLN4924 

(Figure 63, A-B). In parallel, Western Blot demonstrated a dose dependent accumulation 

of occludin, starting at 25 nM MLN4924 and reaching a maximum (tenfold compared to 

the control) at 500 nM (Figure 63, F). According to the current data, the increased level of 

occludin might explain both the increased cell-to-cell adhesion and spheroid spreading 

(Du et al., 2010; Fletcher et al., 2012). Specifically, occludin was shown to participate in 

collective migration (Safferling et al., 2013; Karagiannis et al., 2014), modeled by the 

spheroid spreading assay. 

Immunofluorescence microscopy revealed that occludin accumulates not only on 

the plasma membrane, but also in the granules within the cytoplasm (Figure 63, C). 

Occludin has been shown to be internalized through endocytosis and degraded in the 

lysosomes (Fletcher et al., 2014) in a ubiquitin-dependent manner (Murakami et al., 

2009). We suggest that MLN4924 impedes the degradation of occludin in the lysosomes. 

This would lead to the accumulation of occludin in the late endosomes or lysosomes (seen 

as granules in cytoplasm) and on the plasma membrane after recycling. 
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Figure 63. MLN4924-induced changes in tight junction proteins. Immunostaining of cells and spheroids for occludin 

(A, B, C) and ZO-1 (D, E). Western Blot (F) shows a dose-dependent increase in occludin in presence of MLN4924. 
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However, the CRL/NEDD8 pathway has not been reported to regulate occludin 

degradation (Traweger et al., 2002; Raikwar et al., 2010). Thus, to define the mechanism 

of the MLN4924-dependent accumulation of occluding, further investigation is needed. 

This may reveal the cause of this accumulation (due to an increased transcription or an 

attenuated degradation) and the mechanism (reinforced recycling, inability to degrade, 

etc.), as well as which role in these is processes played by the NEDD8-pathway. 

3.5.2 Adherens junction 

Adherens junctions (AJs) maintain the physical association between the cells, 

regulate cell shape and translate actomyosin-generated forces throughout the tissue. AJs 

are present in many types of tissue, where they have different localization. In epithelium, 

adherens junction form a belt in a juxtaluminal zone of the cells below the tight junction, 

while in fibroblast cells, AJs are spotty and discontinuous (Meng & Takeichi, 2009). 

Classical cadherins are the major transmembrane proteins of the AJs. Epithelial cells 

typically express E-cadherin, whereas mesenchymal cells express various cadherins, 

including N-cadherin, R-cadherin and cadherin-11. The intracellular scaffold consists of 

the catenin family of proteins and vinculin, attached to the actin filaments (Hartsock & 

Nelson, 2008). 

To analyze the possible influence of the CRL/NEDD8 pathway inhibition on the 

proteins forming AJs we examined the expression of β-catenin, E-cadherin and N-

cadherin using immunofluorescence microscopy and Western Blot. We found that the 

amount and localization (cytoplasmic) of total β-catenin did not change (Figure 61, C; 

Figure 64, A). Treatment of VCaP cells with MLN4924 did not affect the total level of 

cellular E-cadherin (Figure 61, C; Figure 64, B), but it did induce its cleavage (Figure 64, 

E). Because the antibody we used recognizes the intracellular C-terminal part of E-

cadherin, the cleaved 38 kDa-fragment corresponds to the intracellular plus 

transmembrane domain of E-cadherin (David & Rajasekaran, 2012). This type of E-

cadherin cleavage has been shown to be performed by multiple extracellular proteases, 

including MMPs, A-disintegrin-and-metalloproteinases (ADAMs), plasmin, and 

kallikrein 7. This cleavage has been shown to weaken cellular contacts and promote cell 

migration (Solanas et al., 2011; David & Rajasekaran, 2012; Grieve & Rabouille, 2014). 

Nevertheless, the effect of MLN4924 on cell phenotype was not abolished by MMPs or 

uPA inhibitors (Figure 59, C). This might suggest that either accelerated spheroid 
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spreading was not dependent on the cleavage of E-cadherin, or that other enzymes are 

involved in E-cadherin cleavage upon inhibition of the CRL/NEDD8-pathway. 

Interestingly, we also observed that MLN4924 treatment causes translocation of 

N-cadherin from the plasma membrane to the peri-nuclear area (at 50 nM), and then to 

the nucleus (at 500 nM) (Figure 64, C, D). One major function of N-cadherin is the 

establishment of the AJ, which is a dynamic structure. N-cadherin is delivered to the 

plasma membrane, and then either internalized, degraded in the lysosomes, or recycled 

(Kowalczyk & Nanes, 2012). Thus, the observed effects of N-cadherin re-localization 

might be explained by impaired trafficking of N-cadherin inside the cell. A similar effect 

was reported for the insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane), 

which disrupts cellular contacts by causing re-localization of N-cadherin, ZO-1 and gap 

junction proteins from the membrane into the vacuoles (Fiorini et al., 2008). On the other 

hand, there are also several reports on the specific role of N-cadherin within the nucleus. 

N-cadherin was found in the nuclei of honey bee gonads (Florecki & Hartfelder, 2012) as 

well as the neuronal crest cell, where it serves as a transcription factor and antagonizes 

the Wnt/β-catenin program (Shoval et al., 2007). Moreover, there are some reports 

showing a correlation between cytoplasmic/nuclear localization of N-cadherin and poor 

cancer prognosis (Luo et al., 2012; Pawar et al., 2013). These data might suggest a 

specific role of the CRL/NEDD8 pathway inhibition in the regulation of N-cadherin 

localization. 

3.5.3 Focal adhesion 

Focal adhesions (FAs) are responsible for the establishment of the contact with 

ECM, mechanosensing and signaling. FAs play a crucial role in migration: new FAs are 

assembled at the leading edge of migrating cells. In resting cells, FAs serve as fixation 

points and help maintain cell shape. Extracellular component of FAs consist of α/β 

integrin heterodimer, which binds to the extracellular matrix. The intracellular element of 

FAs are comprised of multiple proteins. The core proteins are focal adhesion kinase 

(FAK), tallin, vinculin and paxillin. The macromolecular complex of FA is anchored on 

the actin cytoskeleton. To analyze the effect of CRL/NEDD8 pathway inhibition on the 

proteins forming FAs we examined the expression of paxillin and FAK by WB and 

immunofluorescence microscopy. 
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Figure 64. MLN4924-induced changes in adherens junction proteins. Immunostaining of cells and spheroids for β-

catenin (A), E-cadherin (B) and N-cadherin (C, D). Western Blot shows cleavage of E-cadherin in the presence of 

MLN4924 (E). 
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Figure 65. MLN4924-induced changes in focal adhesions proteins. Immunostaining of VCaP cells for FAK (A) shows a 

delocalization of FAK. Western Blot shows an accumulation of both total FAK and phospho-paxillin (B). The 

translocation of FAK to the nucleus correlates with a decrease of p53 protein level (C). 
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We found that while the amount of total paxillin did not visibly change, the level 

of phosphorylated paxillin increased significantly (Figure 65, B). Paxillin has been shown 

to be degraded by the UPS (Didier et al., 2003; Iioka et al., 2007), and at least in some 

cases this degradation is regulated by phosphorylation (Abou Zeid et al., 2006). However, 

the role of CRL/NEDD8 pathway in this process has never been shown. 

In parallel we observed that MLN4924 increased the level of FAK in an adose-

dependent manner. Moreover, immunofluorescence microscopy showed a translocation of 

FAK from the membrane to the perinuclear space and to the nuclei (Figure 65). FAK has 

multiple functions in FAs. It serves as a scaffold protein for the assembly of FA 

complexes, while, as a kinase, it translates signals from ECM into the cell by the 

activation of multiple pathways, including MAPK, PI3-K/Akt and Rho GTPases. FAK is 

often overexpressed in cancer, where it exerts pro-proliferative and anti-apoptotic effects 

(Kamarajan & Kapila, 2007; Tai et al., 2015). Nuclear localization was first shown for 

SUMOylated FAK (Golubovskaya et al., 2005; Stewart et al., 2002), but the biological 

role of this translocation was not described. Recently, several articles reported novel, 

kinase- and SUMOylation-independent mechanism for nuclear FAK. Thus, nuclear FAK 

was shown to exert anti-inflammatory role (Lim et al., 2012) and to be a scaffold for 

MDM2-mediated degradation of p53 (Golubovskaya et al., 2008; Lim et al., 2008). 

Indeed, treatment of VCaP cells with 50-100 nM MLN4924 induced weak (2-fold), but a 

reproducible decrease in the amount of p53 protein in VCaP cells (Figure 65, C). Of note, 

VCaP cells bear a mutation in p53 R248W that abolishes the tumor-suppression activities 

of p53 (Sobel & Sadar, 2005; Song et al., 2007). Nevertheless, we don’t have solid 

evidence that FAK re-location to the nucleus and decrease in p53 quantity are 

interdependent events. Moreover, at 500 nM, MLN4924 induced an increase in p53 

protein, though the nuclear localization of FAK was even more pronounced. 

3.6 DISCUSSION 

This part of thesis documents that the inhibition of the CRL/NEDD8 pathway by 

MLN4924 induced morphological changes in VCaP cells, manifested by an increased 

cell-substrate and cell-to-cell adhesion and accelerated spreading of VCaP spheroids. 

Although we did not find induction of EMT markers, we demonstrated multiple dose-

dependent changes in the expression and localization of proteins forming cellular 

contacts. These included: extracellular E-cadherin cleavage; accumulation of occludin on 
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the plasma membrane and into the intracellular granules; translocation of N-cadherin to 

the nuclei/perinuclear area; and accumulation of FAK and its translocation to nuclei/peri-

nuclear area. Of course, each of these events may have an independent cause and function 

as discussed above. However, taken together these effects suggest that the inhibition of 

the CRL/NEDD8 pathway does result in some general alterations in the trafficking and 

degradation of membrane proteins. MLN4924 might affect trafficking through inhibition 

of CRLs or directly through inhibition of the neddylation of membrane receptors. 

Ubiquitylation of membrane proteins is a well-acknowledged sorting signal for 

both lysosomal and proteasome-dependent degradation (Piper & Katzmann, 2007). 

However, only limited data are available on the participation of CRLs in this type of 

ubiquitylation; in mammals CRL ligases regulate trafficking of growth hormone receptor 

(van Kerkhof et al., 2011), influenza A virus and epidermal growth factor receptor 

(Huotari et al., 2012). 

A growing body of knowledge demonstrates the important role of the 

CRL/NEDD8 pathway in the regulation of protein sorting. Recently, Cullin 3 has 

appeared as an important factor in protein trafficking. Cullin 3-based RING-ligases 

(CRL3) has been shown to control the formation of cytoskeleton tubules, allowing 

trafficking of vesicles from the Golgi to the plasma membrane (Yuan et al., 2014). 

Moreover, ubiquitylation of SEC31 by CRL3 regulates the size of the vesicles formed in 

the endoplasmic reticulum, which allows for the sorting of the molecules by size, which, 

in turn, is important for the transport of macromolecules such as collagen (Jin et al., 

2012). Thus, the inhibition of CRL3 functions could lead to the incorrect trafficking and 

attenuated degradation of plasma receptors. Moreover, direct neddylation regulates 

trafficking and/or degradation of transmembrane proteins TGF-β type II receptor (TβRII) 

(Zuo et al., 2013), chemokine receptor CXCR5 (Renaudin et al., 2014) and EGFR (Oved 

et al., 2006). Together these data suggest a general role of the CRL/NEDD8 pathway in 

the regulation of sorting and degradation of membrane proteins. 

Further investigation is needed to elucidate the role of the NEDD8-pathway in the 

trafficking of membrane-bound proteins. We are planning to perform a proteomics of the 

plasma membrane and intracellular proteins in VCaP cells. This would make it possible to 

establish how general the effects of NEDD8-pathway inhibition on vesicle trafficking are, 

and which molecular pathways are involved. 
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IV. CONCLUSIONS 
 

In this work we describe a systematic approach for the screening of the UPS, based 

on its cascade organization. We evaluated the effect of knockdowns of individual UPS 

components on the viability of PCa cell lines with a major focus on TMPRSS:ERG-

positive cells, as a model for the prevalent phenotype of prostate cancer. Seven genes are 

identified as being involved in the functioning of tested PCa cell lines (UBE2U, CAND1, 

UBE2H, UBE2A, CUL4B, CUL2, RBX1), while two of them are putatively 

TMPRSS2:ERG-dependent (CUL2, RBX1). Importantly, the majority of identified hits 

belong to the CRL/NEDD8 pathway. The identified UPS components are crucial for PCa 

cell functioning and their investigation could provide some keys for a better 

understanding of cancer biology. We selected the most prominent hits, the CRL/NEDD8 

pathway and the UBE2U enzyme, for further validation. 

UBE2U was the strongest hit identified in siRNA screening. During 

characterization of the enzyme, we found that, in VCaP cells, UBE2U is present in 

multiple isoforms. Some of these isoforms are predicted to be enzymatically inactive. 

Moreover, in contrast to existing data, we demonstrate the presence of an UBE2U 

isoform of significantly higher molecular weight (95 kDa compared to 38 kDa). Thus, we 

first provide evidence for UBE2U involvement in prostate carcinogenesis. Although 

further investigation is required, our study is the first step the characterization of UBE2U 

as a potential drug-target. 

Enrichment of the components of the CRL/NEDD8 pathway (CAND1, CUL4B, 

CUL2, RBX1) in the hits suggested a general importance of neddylation in PCa biology. 

Moreover, the potential ERG-dependency of CUL2 and RBX1 hits could indicate a 

specific role of neddylation in TMPRSS2:ERG-positive cells. Indeed, our investigation 

using the neddylation-specific inhibitor, MLN4924, has demonstrated that inhibition of 

the CRL/NEDD8 pathway in prostate cancer cells has a complex outcome that strongly 

depends on the cellular context. MLN4924 induced apoptosis in all tested cell lines, 

though TMPRSS2:ERG positive cell lines were significantly more resistant. We 

demonstrate that the resistance of VCaP cells toward NAE inhibition is the result of cell 

plasticity ensured by a sophisticated interaction network ERG:NF-κB:c-Myc:Wnt/β-
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cat:AR. It has been shown that in TMPRSS2:ERG-positive PCa cells AR is suppressed 

by ERG (Yu et al., 2010). We found that in conditions of incomplete (90-95%) inhibition 

of neddylation, VCaP cells undergo transcriptional reprogramming leading to cell 

quiescence and inhibition of proliferation-dependent apoptosis. This was achieved by re-

activation of the AR transcriptional program and induction of a differentiation-like state. 

These results suggest that targeting AR could potentiate the efficacy of MLN4924-based 

therapy in TMPRSS2:ERG-positive PCa cells. Indeed, knockdown of AR significantly 

increased apoptotic response to MLN4924. By contrast, knockdown of ERG completely 

abolished MLN4924-induced cytotoxicity. Higher doses of MLN4924 caused complete 

inhibition of CRLs and induced an accumulation of replication licensing factor Cdt1, 

leading to re-replication, DNA-damage and subsequent senescence and/or apoptosis.  

Our siRNA screens have shown that the knockdown of different cullins in VCaP 

cells had opposite effects. We thus hypothesized, that the complex outcome of MLN4924 

treatment that we observed in VCaP cells can be explained, at least partially, by the 

different sensitivity of cullins toward MLN4924. Indeed, using Western Blot we have 

shown that the accumulation of CRL substrates had two characteristic onsets: 25 nM (b-

catenin, IKK and p21, being the substrates of CRL1) and 250 nM (Cdt1, being the 

substrate of CRL4). We thus conclude that the effect of MLN4924 might depend on the 

subset of CRLs inhibited at a given dose of the drug. 

Our siRNA screening revealed the crucial role of CAND1 in PCa cells. Moreover, 

we have also shown that when neddylation is compromised, CAND1 exchange factor 

plays a critical role to ensure CRLs functioning. Indeed, knockdown of CAND1 increased 

the susceptibility of VCaP cells to MLN4924 treatment. These data suggest that CAND1 

is a potential drug target. 

Our conclusion is that the CRL/NEDD8 pathway regulates the cancer 

transcriptional network and determines cancer cells plasticity. This knowledge makes it 

possible to find better treatments for TMPRSS2:ERG-positive cancers using potential 

complementary drugs that target AR and CAND1. 

Multiple studies of MLN4924 have shown that it efficiently induces senescence 

and/or apoptosis in many cancer cell lines, including PCa. Furthermore, MLN4924 is 

currently being evaluated in clinical trials for the treatment of hematological malignancies 

and solid tumors. Nevertheless, our data suggest that the effect of MLN4924 on prostate 
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cancer cell lines harbouring TMPRSS2:ERG translocation is mixed. Low-dose treatment 

with MLN4924 induces protective reversible quiescence in cancer cells. Taking into 

account a frequent problem of drug bioavailability, it raises concern about possible 

undertreatment in MLN4924 therapy. Of note, higher doses of MLN4924 were reported 

to produce side-effects and are generally toxic. In conclusion, our data question the 

suitability of MLN4924 for treatment of TMPRSS2:ERG-positive prostate cancers. 

Apart from the above described effects on the viability, we have observed that 

MLN4924 changed membrane properties of VCaP cells and rendered them more adherent 

in cell-substrate and cell-to-cell interactions. While we did not find changes in the 

expression of several EMT markers, we demonstrated dose-dependent changes in the 

expression and re-localization of several membrane-associated proteins, including 

occludin, N-cadherin and FAK. We thus conclude that the CRL/NEDD8 pathway might 

be involved in the sorting/trafficking of membrane proteins. This part of the work 

requires further investigation, as understanding of the underlying mechanisms might 

uncover new a role of the CRL/NEDD8 pathway having general importance for cell 

biology. Our data reveal a potentially globally new role of the CRL/NEDD8 pathway in 

the regulation of intracellular trafficking, composition of plasma membrane and cell 

adhesion. 

Final conclusions: 

1) We have performed a comprehensive screening of the E1-E2 UPS components 

to identify the genes essential for PCa viability. 

2) Our work has revealed new potential drug targets for PCa treatment (UBE2U, 

CAND1) 

3) We have demonstrated the role of the CRL/NEDD8 pathway in the regulation 

of cancer cell plasticity and morphology. 
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V. SUPPLEMENTARY DATA 
 

 
Supplementary Figure 1. The effect of MLN4924 treatment on apoptosis in VCaP cells grown in ChSM (5 days of 

treatment). 

 

 
Supplementary Figure 2. Effect on DNA synthesis 3, 24 or 120 hours after treatment with MLN4924 in Standard 

(StdM) and Charcoal Stripped Medium (ChSM). 
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Supplementary Figure 3. The effect of MLN4924 treatment on proliferation (A) and apoptosis (B) of PCa cell lines 

grown in StdM (3 days of treatment).  
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Supplementary Figure 4. Effect of MLN4924 on the expression of c-Myc proto-oncogene.  

 
 

 
Supplementary Figure 5. Effect of MLN4924 on ubiquitylation and SUMOylation. Cells were treated with increased 

concentrations of MLN4924, lysed and immunoblotted with antibodies against total ubiquitin or SUMO-1. 
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Supplementary Figure 6. Western Blot, demonstrating expression of AR-responsive genes prostein, FKBP51 and PSA 

at different concentrations of MLN4924. All the tested genes show biphasic behavior: protein level increases at low 

concentrations of MLN4924 (25-250 nM) and decreases at higher doses (> 500 nM). 
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Supplementary Figure 7. Immunofluorescence microscopy for phospho-p65 component of NF-κB. Images demonstrate 

accumulation of phospho-p65. However, it remains cytoplasmic and does not enter the nuclei. 
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Supplementary Table 1. Dharmacon ON-TARGETplus® SMART pool® siRNA Library-Human Ubiquitin 

Conjugation Subset 1 
Gene 
Symbol 

Pool 
Catalog 
Number 

Duplex 
Catalog 
Number 

GENEID Gene 
Accession 

GINumber Sequence 

UBE2C L-004693-
00 

J-004693-
06 

11065 NM_181803 32967290 GAACCCAACAUUGAUAGUC 

UBE2C L-004693-
00 

J-004693-
07 

11065 NM_181803 32967290 UAAAUUAAGCCUCGGUUGA 

UBE2C L-004693-
00 

J-004693-
08 

11065 NM_181803 32967290 GUAUAGGACUCUUUAUCUU 

UBE2C L-004693-
00 

J-004693-
09 

11065 NM_181803 32967290 GCAAGAAACCUACUCAAAG 

SMURF1 L-007191-
00 

J-007191-
09 

57154 NM_181349 31317289 GCACUAUGAUCUAUAUGUU 

SMURF1 L-007191-
00 

J-007191-
10 

57154 NM_181349 31317289 GGAGGAGACCUGCGGGUUU 

SMURF1 L-007191-
00 

J-007191-
11 

57154 NM_181349 31317289 GAUCGACAUUCCACCAUAU 

SMURF1 L-007191-
00 

J-007191-
12 

57154 NM_181349 31317289 AAGAAUACGUCCGGUUGUA 

UBR5 L-007189-
00 

J-007189-
06 

51366 NM_015902 41352716 GCACUUAUAUACUGGAUUA 

UBR5 L-007189-
00 

J-007189-
07 

51366 NM_015902 41352716 GAUUGUAGGUUACUUAGAA 

UBR5 L-007189-
00 

J-007189-
08 

51366 NM_015902 41352716 GAUCAAUCCUAACUGAAUU 

UBR5 L-007189-
00 

J-007189-
09 

51366 NM_015902 41352716 GGUCGAAGAUGUGCUACUA 

UBE2K L-009431-
00 

J-009431-
05 

3093 NM_005339 21536483 GAAUCAAGCGGGAGUUCAA 

UBE2K L-009431-
00 

J-009431-
06 

3093 NM_005339 21536483 CCUAAGGUCCGGUUUAUCA 

UBE2K L-009431-
00 

J-009431-
07 

3093 NM_005339 21536483 CCAGAAACAUACCCAUUUA 

UBE2K L-009431-
00 

J-009431-
08 

3093 NM_005339 21536483 GCAAAUCAGUACAAACAAA 

HECTD1 L-007188-
00 

J-007188-
06 

25831 NM_015382 32698701 GUUAAUAGCUGUACUAGAA 

HECTD1 L-007188-
00 

J-007188-
07 

25831 NM_015382 32698701 GCUCAUAGCUGCAUAUAAG 

HECTD1 L-007188-
00 

J-007188-
08 

25831 NM_015382 32698701 CAUAGAGGAUUUAGGUUUA 

HECTD1 L-007188-
00 

J-007188-
09 

25831 NM_015382 32698701 GAAAGGGACAUGCAACUAA 

UBE2T L-004898-
00 

J-004898-
05 

29089 NM_014176 7661807 CCUGCGAGCUCAAAUAUUA 

UBE2T L-004898-
00 

J-004898-
06 

29089 NM_014176 7661807 GAAGGCCAGUCAGCUAGUA 

UBE2T L-004898-
00 

J-004898-
07 

29089 NM_014176 7661807 GGAAGGAUUUGUCUGGAUG 

UBE2T L-004898-
00 

J-004898-
08 

29089 NM_014176 7661807 GUACACAACUCAACACAGA 

CDC34 L-003230-
00 

J-003230-
13 

997 NM_004359 16357476 GCUCAGACCUCUUCUACGA 

CDC34 L-003230-
00 

J-003230-
14 

997 NM_004359 16357476 GGACCAUUCUCCUGAGUGU 

CDC34 L-003230-
00 

J-003230-
15 

997 NM_004359 16357476 CCUGACACCACCAGAAUAA 

CDC34 L-003230-
00 

J-003230-
16 

997 NM_004359 16357476 GAUCGGGAGUACACAGACA 

HECTD4 L-018270-
01 

J-018270-
09 

283450 NM_173813 31341139 GCAGAUGCUCUUCGCAAUA 

HECTD4 L-018270-
01 

J-018270-
10 

283450 NM_173813 31341139 UGAAGAUUGUUGUACGAGA 

HECTD4 L-018270-
01 

J-018270-
11 

283450 NM_173813 31341139 ACUGAAAGGAAUCGAGACA 

HECTD4 L-018270-
01 

J-018270-
12 

283450 NM_173813 31341139 AAUGAGAAGUGGCCGUGAA 

DCUN1D1 L-019139-
00 

J-019139-
05 

54165 NM_020640 36030882 GGAUAAAGUUCGUCAGUUU 

DCUN1D1 L-019139-
00 

J-019139-
06 

54165 NM_020640 36030882 GCAUUAGUGUGUUGAUUAU 
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DCUN1D1 L-019139-
00 

J-019139-
07 

54165 NM_020640 36030882 CCAGGACGAUUUAAGGAUU 

DCUN1D1 L-019139-
00 

J-019139-
08 

54165 NM_020640 36030882 GAACUUAGUGCUUAAUGGA 

CUL2 L-007277-
00 

J-007277-
05 

8453 NM_003591 19482173 GGAAGUGCAUGGUAAAUUU 

CUL2 L-007277-
00 

J-007277-
06 

8453 NM_003591 19482173 CAUCCAAGUUCAUAUACUA 

CUL2 L-007277-
00 

J-007277-
07 

8453 NM_003591 19482173 GCAGAAAGACACACCACAA 

CUL2 L-007277-
00 

J-007277-
08 

8453 NM_003591 19482173 UGGUUUACCUCAUAUGAUU 

HERC3 L-007179-
00 

J-007179-
06 

8916 NM_014606 7657151 GAACUCAACUAGGGUGUUA 

HERC3 L-007179-
00 

J-007179-
07 

8916 NM_014606 7657151 GCUGAUGGGUAGUGAAGUA 

HERC3 L-007179-
00 

J-007179-
08 

8916 NM_014606 7657151 GCAAAGUACUAGAUAACUG 

HERC3 L-007179-
00 

J-007179-
09 

8916 NM_014606 7657151 GGUGUGUGGUGGCAAAGUA 

UBE2W L-009643-
00 

J-009643-
07 

55284 NM_001001482 47933382 GGAAAUGAGUAGUGAUAUG 

UBE2W L-009643-
00 

J-009643-
08 

55284 NM_001001482 47933382 ACAUAGGCCUACAGAAUUA 

UBE2W L-009643-
00 

J-009643-
09 

55284 NM_001001482 47933382 GUAAUGCAUUGUUGAAAGA 

UBE2W L-009643-
00 

J-009643-
10 

55284 NM_001001482 47933382 GAGGAGGUACUGUGUGUUA 

UBE2V2 L-008823-
00 

J-008823-
05 

7336 NM_003350 12025664 GUUAAAGUUCCUCGUAAUU 

UBE2V2 L-008823-
00 

J-008823-
06 

7336 NM_003350 12025664 CAAGAGCUAAGACGUCUAA 

UBE2V2 L-008823-
00 

J-008823-
07 

7336 NM_003350 12025664 CACCAAGGACAAAUUAUGA 

UBE2V2 L-008823-
00 

J-008823-
08 

7336 NM_003350 12025664 GAGCAUACCAGUGUUAGCA 

DCUN1D5 L-014842-
01 

J-014842-
09 

84259 NM_032299 34147410 CAAUCAAAGUAUCGUGUUA 

DCUN1D5 L-014842-
01 

J-014842-
10 

84259 NM_032299 34147410 GUUGAAUGAUAUUUCGUCA 

DCUN1D5 L-014842-
01 

J-014842-
11 

84259 NM_032299 34147410 CCGUCAGACAUCAUAGCAA 

DCUN1D5 L-014842-
01 

J-014842-
12 

84259 NM_032299 34147410 UGAUGGGCAUUGAGCCACA 

HERC2 L-007180-
00 

J-007180-
09 

8924 NM_004667 67190865 GCACAGAGUAUCACAGGUA 

HERC2 L-007180-
00 

J-007180-
10 

8924 NM_004667 67190865 CGAUGAAGGUUUGGUAUUU 

HERC2 L-007180-
00 

J-007180-
11 

8924 NM_004667 67190865 GAUAAUACGACACAGCUAA 

HERC2 L-007180-
00 

J-007180-
12 

8924 NM_004667 67190865 GCAGAUGUGUGCUAAGAUG 

UBE2N L-003920-
00 

J-003920-
06 

7334 NM_003348 37577134 AACCAGGUCUUUAGAAUAU 

UBE2N L-003920-
00 

J-003920-
07 

7334 NM_003348 37577134 UGACUGACAUGUAGGACUU 

UBE2N L-003920-
00 

J-003920-
08 

7334 NM_003348 37577134 AGUAUCAAGUCCUCAGUUA 

UBE2N L-003920-
00 

J-003920-
09 

7334 NM_003348 37577134 GAUGAUCAUUGGUGUCUUG 

UBE2Z L-008596-
00 

J-008596-
05 

65264 NM_023079 20149671 GGGAAAGUCUGCUUGAGUA 

UBE2Z L-008596-
00 

J-008596-
06 

65264 NM_023079 20149671 CCUCAGUGCUCAUCUCUAU 

UBE2Z L-008596-
00 

J-008596-
07 

65264 NM_023079 20149671 GCACGAGACCAUCAGAGUU 

UBE2Z L-008596-
00 

J-008596-
08 

65264 NM_023079 20149671 UAAGAUUCAUGCAUUGAUC 

UBE2L3 L-010384-
00 

J-010384-
06 

7332 NM_003347 38157977 GGGCUGACCUAGCUGAAGA 

UBE2L3 L-010384-
00 

J-010384-
07 

7332 NM_003347 38157977 GUAAGAAUGCUGAAGAGUU 

UBE2L3 L-010384- J-010384- 7332 NM_003347 38157977 ACAAAGAUCUAUCACCCAA 
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00 08 

UBE2L3 L-010384-
00 

J-010384-
09 

7332 NM_003347 38157977 CCACCGAAGAUCACAUUUA 

HERC5 L-005174-
00 

J-005174-
06 

51191 NM_016323 7705930 GGAAGUAGCAUAACUGUCA 

HERC5 L-005174-
00 

J-005174-
07 

51191 NM_016323 7705930 GAACCAGGAUAUAACAGUU 

HERC5 L-005174-
00 

J-005174-
08 

51191 NM_016323 7705930 UAAGAGCACUGACAUGUUU 

HERC5 L-005174-
00 

J-005174-
09 

51191 NM_016323 7705930 GACUUUCCCUGUUCAAUUG 

UBE2NL L-031625-
00 

J-031625-
05 

389898 NM_001012989 61175264 GGUCAUUGCUGGGGAAUCA 

UBE2NL L-031625-
00 

J-031625-
06 

389898 NM_001012989 61175264 AAACGUGAACUAUUACUUG 

UBE2NL L-031625-
00 

J-031625-
07 

389898 NM_001012989 61175264 GAUCCAAUCAUUAAGUGUG 

UBE2NL L-031625-
00 

J-031625-
08 

389898 NM_001012989 61175264 AAUAUGCUCUCUAUCCAAG 

DCUN1D3 L-018390-
00 

J-018390-
05 

123879 NM_173475 27735046 AAGGAUCUCUACCGGUUUA 

DCUN1D3 L-018390-
00 

J-018390-
06 

123879 NM_173475 27735046 ACGGUUCCCUAGCCUCUUA 

DCUN1D3 L-018390-
00 

J-018390-
07 

123879 NM_173475 27735046 CCAGAACAAUCCUCCGGUA 

DCUN1D3 L-018390-
00 

J-018390-
08 

123879 NM_173475 27735046 GUAAGAAUCCCUCAUCGAC 

BIRC6 L-013857-
00 

J-013857-
05 

57448 NM_016252 61744455 ACAAGCACCUCUCGCAUUA 

BIRC6 L-013857-
00 

J-013857-
06 

57448 NM_016252 61744455 GGUCAAAGAUCACUUAGUA 

BIRC6 L-013857-
00 

J-013857-
07 

57448 NM_016252 61744455 GCAACGAUGUGCCAUGUUA 

BIRC6 L-013857-
00 

J-013857-
08 

57448 NM_016252 61744455 CAAUAGAUCUGACUGUUAA 

UBE2J2 L-008614-
00 

J-008614-
05 

118424 NM_194457 37577129 GUAUAGAGACGUCGGACUU 

UBE2J2 L-008614-
00 

J-008614-
06 

118424 NM_194457 37577129 GUGCAGAGUUUAGCAUUUA 

UBE2J2 L-008614-
00 

J-008614-
07 

118424 NM_194457 37577129 GCACAAGACGAACUCAGUA 

UBE2J2 L-008614-
00 

J-008614-
08 

118424 NM_194457 37577129 CCCAGUAUCUAUAUGAUCA 

HECW1 L-007186-
00 

J-007186-
05 

23072 NM_015052 51702517 CUAAAUGACUGGCGGAAUA 

HECW1 L-007186-
00 

J-007186-
06 

23072 NM_015052 51702517 GAUGAGGUCUUGUCCGAAA 

HECW1 L-007186-
00 

J-007186-
07 

23072 NM_015052 51702517 GAUGCCAGCUCGUACUUUG 

HECW1 L-007186-
00 

J-007186-
08 

23072 NM_015052 51702517 CAGCUGCAAUUCCGAUUUG 

UBA7 L-019759-
00 

J-019759-
05 

7318 NM_003335 38045947 CAUCUUUGCUAGUAAUCUA 

UBA7 L-019759-
00 

J-019759-
06 

7318 NM_003335 38045947 CGAAUUGUGGGCCAGAUUA 

UBA7 L-019759-
00 

J-019759-
07 

7318 NM_003335 38045947 AUAGAGCGCUCCAAUCUCA 

UBA7 L-019759-
00 

J-019759-
08 

7318 NM_003335 38045947 GCAUGGAGUUUGCUUUCUG 

UBA1 L-004509-
00 

J-004509-
05 

7317 NM_153280 23510339 GCGUGGAGAUCGCUAAGAA 

UBA1 L-004509-
00 

J-004509-
06 

7317 NM_153280 23510339 CCUUAUACCUUUAGCAUCU 

UBA1 L-004509-
00 

J-004509-
07 

7317 NM_153280 23510339 CCACAUAUCCGGGUGACAA 

UBA1 L-004509-
00 

J-004509-
08 

7317 NM_153280 23510339 GAAGUCAAAUCUGAAUCGA 

HERC1 L-007181-
00 

J-007181-
06 

8925 NM_003922 62422572 GCACCGACCUUAUUGUGUA 

HERC1 L-007181-
00 

J-007181-
07 

8925 NM_003922 62422572 UAGAUUAGCUUCUGAGUUG 

HERC1 L-007181-
00 

J-007181-
08 

8925 NM_003922 62422572 CCACAGGUCCUAUUACUAA 
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HERC1 L-007181-
00 

J-007181-
09 

8925 NM_003922 62422572 GAACAAAGGAACCACUUGA 

HACE1 L-007193-
00 

J-007193-
05 

57531 NM_020771 34222116 GAACAACUUUUCAGCCUAA 

HACE1 L-007193-
00 

J-007193-
06 

57531 NM_020771 34222116 GAAUGAAGACCUCCGAGAA 

HACE1 L-007193-
00 

J-007193-
07 

57531 NM_020771 34222116 GCACAGAUCCUACUAUUAC 

HACE1 L-007193-
00 

J-007193-
08 

57531 NM_020771 34222116 GAAUUGAUAUGGGCUACAA 

CUL7 L-017673-
00 

J-017673-
05 

9820 NM_014780 41872645 GAUCUUGGGCUUUGAGGAA 

CUL7 L-017673-
00 

J-017673-
06 

9820 NM_014780 41872645 CUAGUGAGGACUCGAGUUA 

CUL7 L-017673-
00 

J-017673-
07 

9820 NM_014780 41872645 GAACCUAGAUGGGGAGAUU 

CUL7 L-017673-
00 

J-017673-
08 

9820 NM_014780 41872645 GACGUGAAGUCCCUCAUUC 

UBE2S L-009707-
00 

J-009707-
05 

27338 NM_014501 7657045 ACAAGGAGGUGACGACACU 

UBE2S L-009707-
00 

J-009707-
06 

27338 NM_014501 7657045 GGAGGUCUGUUCCGCAUGA 

UBE2S L-009707-
00 

J-009707-
07 

27338 NM_014501 7657045 GCAUCAAGGUCUUUCCCAA 

UBE2S L-009707-
00 

J-009707-
08 

27338 NM_014501 7657045 CCAAGAAGCAUGCUGGCGA 

CUL3 L-010224-
00 

J-010224-
06 

8452 NM_003590 45827792 GAAGGAAUGUUUAGGGAUA 

CUL3 L-010224-
00 

J-010224-
07 

8452 NM_003590 45827792 GAGAUCAAGUUGUACGUUA 

CUL3 L-010224-
00 

J-010224-
08 

8452 NM_003590 45827792 GAAAGUAGACGACGACAGA 

CUL3 L-010224-
00 

J-010224-
09 

8452 NM_003590 45827792 GCACAUGAAGACUAUAGUA 

ITCH L-007196-
00 

J-007196-
07 

83737 NM_031483 27477108 GUUGGGAACUGCUGCAUUA 

ITCH L-007196-
00 

J-007196-
08 

83737 NM_031483 27477108 CAACAUGGGACGUAUUUAU 

ITCH L-007196-
00 

J-007196-
09 

83737 NM_031483 27477108 GAAAUUAAGAGUCAUGAUC 

ITCH L-007196-
00 

J-007196-
10 

83737 NM_031483 27477108 CGAAGACGUUUGUGGGUGA 

HUWE1 L-007185-
00 

J-007185-
07 

10075 NM_031407 61676187 GCUUUGGGCUGGCCUAAUA 

HUWE1 L-007185-
00 

J-007185-
08 

10075 NM_031407 61676187 GCAGUUGGCGGCUUUCUUA 

HUWE1 L-007185-
00 

J-007185-
09 

10075 NM_031407 61676187 GAGCCCAGAUGACUAAGUA 

HUWE1 L-007185-
00 

J-007185-
10 

10075 NM_031407 61676187 UAACAUCAAUUGUCCACUU 

CAND2 L-023448-
01 

J-023448-
09 

23066 XM_944849 88968671 ACGAGGACAGCGAGCGCAA 

CAND2 L-023448-
01 

J-023448-
10 

23066 XM_944849 88968671 GCACCCUGAUCCAAUGUUU 

CAND2 L-023448-
01 

J-023448-
11 

23066 XM_944849 88968671 AGAACGGUGAGGUGCAGAA 

CAND2 L-023448-
01 

J-023448-
12 

23066 XM_944849 88968671 UGUCGGAGUUGCAGAAGGA 

UBE2D3 L-008478-
00 

J-008478-
09 

7323 NM_181893 33149323 CCACAAUUAUGGGACCUAA 

UBE2D3 L-008478-
00 

J-008478-
10 

7323 NM_181893 33149323 GCCAUGUGAUGCUACCUUA 

UBE2D3 L-008478-
00 

J-008478-
11 

7323 NM_181893 33149323 UCACAGUGGUCGCCUGCUU 

UBE2D3 L-008478-
00 

J-008478-
12 

7323 NM_181893 33149323 GAUGAGUGAUCAACUAAUA 

NEDD4 L-007178-
00 

J-007178-
06 

4734 NM_006154 38257154 GGAGGGAACAUACAAAGUA 

NEDD4 L-007178-
00 

J-007178-
07 

4734 NM_006154 38257154 GAUCACAAUUCCAGAACGA 

NEDD4 L-007178-
00 

J-007178-
08 

4734 NM_006154 38257154 GAACUAGAGCUUCUUAUGU 

NEDD4 L-007178- J-007178- 4734 NM_006154 38257154 CCAAUGAUCUAGGGCCUUU 



154 

 

00 09 

UBA5 L-006405-
00 

J-006405-
05 

79876 NM_024818 163659923 GUAUUGAGCUGGUAUCUGA 

UBA5 L-006405-
00 

J-006405-
06 

79876 NM_024818 163659923 GAAGCUCGAAUGACAAUAA 

UBA5 L-006405-
00 

J-006405-
07 

79876 NM_024818 163659923 CAAGAUGUGGCAUUGGUAA 

UBA5 L-006405-
00 

J-006405-
08 

79876 NM_024818 163659923 CGUGUUAAAGUUUCUGUUA 

UBE2M L-004348-
00 

J-004348-
05 

9040 NM_003969 37577133 GAAAUAGGGUUGGCGCAUA 

UBE2M L-004348-
00 

J-004348-
06 

9040 NM_003969 37577133 AAGCCAGUCCUUACGAUAA 

UBE2M L-004348-
00 

J-004348-
07 

9040 NM_003969 37577133 UUAAGGUGGGCCAGGGUUA 

UBE2M L-004348-
00 

J-004348-
08 

9040 NM_003969 37577133 GAUGAGGGCUUCUACAAGA 

UEVLD L-008494-
02 

J-008494-
09 

55293 NM_018314 23943813 GCAAAUCGAGUGAUCGGAA 

UEVLD L-008494-
02 

J-008494-
10 

55293 NM_018314 23943813 AUGGGUUAUUGGCGAGCAA 

UEVLD L-008494-
02 

J-008494-
11 

55293 NM_018314 23943813 AGGUGGAGAACUCGGUAUU 

UEVLD L-008494-
02 

J-008494-
12 

55293 NM_018314 23943813 GUACAAGUUCAGGGACCUA 

UBE2F L-009081-
01 

J-009081-
09 

140739 NM_080678 18087856 CAAGUAAACUGAAGCGUGA 

UBE2F L-009081-
01 

J-009081-
10 

140739 NM_080678 18087856 AUGACUACAUCAAACGUUA 

UBE2F L-009081-
01 

J-009081-
11 

140739 NM_080678 18087856 CAAUAAGAUACCCGCUACA 

UBE2F L-009081-
01 

J-009081-
12 

140739 NM_080678 18087856 CUGAAGUUCCCGAUGCGUA 

DCUN1D2 L-020261-
01 

J-020261-
09 

55208 NM_001014283 62122951 GGGAGAGGAUCUUGUCGUA 

DCUN1D2 L-020261-
01 

J-020261-
10 

55208 NM_001014283 62122951 GCCAGCAAUUCACGAUUUA 

DCUN1D2 L-020261-
01 

J-020261-
11 

55208 NM_001014283 62122951 ACAGGGAGUCCAUGCGGAA 

DCUN1D2 L-020261-
01 

J-020261-
12 

55208 NM_001014283 62122951 CAUCAUAGCUUUUGCGUUA 

CUL1 L-004086-
00 

J-004086-
06 

8454 NM_003592 32307160 CAACGAAGAGUUCAGGUUU 

CUL1 L-004086-
00 

J-004086-
07 

8454 NM_003592 32307160 CGAGGAAGACCGCAAACUA 

CUL1 L-004086-
00 

J-004086-
08 

8454 NM_003592 32307160 AGACAGUGCUUGAUGUUCA 

CUL1 L-004086-
00 

J-004086-
09 

8454 NM_003592 32307160 CAUAGAAGACAAAGACGUA 

UBE3B L-007197-
00 

J-007197-
06 

89910 NM_183415 35493951 CGAAUGCACACUCAAAUAA 

UBE3B L-007197-
00 

J-007197-
07 

89910 NM_183415 35493951 CAGAUGGGUUCGUGAGUUU 

UBE3B L-007197-
00 

J-007197-
08 

89910 NM_183415 35493951 GAGCAUGGUUCAUCGAUAG 

UBE3B L-007197-
00 

J-007197-
09 

89910 NM_183415 35493951 UGACAUGCUUCGUAAAUUC 

UBE2A L-009424-
00 

J-009424-
05 

7319 NM_181762 32967275 CUAUGCAGAUGGUAGUAUA 

UBE2A L-009424-
00 

J-009424-
06 

7319 NM_181762 32967275 GCGUGUUUCUGCAAUAGUA 

UBE2A L-009424-
00 

J-009424-
07 

7319 NM_181762 32967275 GGACAUACUUCAGAACCGU 

UBE2A L-009424-
00 

J-009424-
08 

7319 NM_181762 32967275 GAACAAACGGGAAUAUGAA 

UBE2E2 L-031782-
00 

J-031782-
05 

7325 NM_152653 22749326 GCUGCUAAAUUGUCAACUA 

UBE2E2 L-031782-
00 

J-031782-
06 

7325 NM_152653 22749326 UCACCAGACUAUCCGUUUA 

UBE2E2 L-031782-
00 

J-031782-
07 

7325 NM_152653 22749326 GCACAAAGAGUUGAUGACA 

UBE2E2 L-031782-
00 

J-031782-
08 

7325 NM_152653 22749326 GAGCAGAGCAUGACCGGAU 
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HECTD3 L-027468-
00 

J-027468-
09 

79654 NM_024602 50843830 CAACUAGUCUGGUGCGAUA 

HECTD3 L-027468-
00 

J-027468-
10 

79654 NM_024602 50843830 CAGCACGGAUCUACAUCUA 

HECTD3 L-027468-
00 

J-027468-
11 

79654 NM_024602 50843830 GGACCGUUCUCGUUUCAUC 

HECTD3 L-027468-
00 

J-027468-
12 

79654 NM_024602 50843830 UCAAGAUCCUCGAUAGUGU 

UBE2I L-004910-
00 

J-004910-
05 

7329 NM_194260 35493995 GGGAAGGAGGCUUGUUUAA 

UBE2I L-004910-
00 

J-004910-
06 

7329 NM_194260 35493995 GAAGUUUGCGCCCUCAUAA 

UBE2I L-004910-
00 

J-004910-
07 

7329 NM_194260 35493995 GGCCAGCCAUCACAAUCAA 

UBE2I L-004910-
00 

J-004910-
08 

7329 NM_194260 35493995 GAACCACCAUUAUUUCACC 

UBE2Q2 L-008326-
01 

J-008326-
09 

92912 NM_173469 29789400 GUACCGAAGAUGUUAGUUA 

UBE2Q2 L-008326-
01 

J-008326-
10 

92912 NM_173469 29789400 GUAAAGUUCCUUAAGCCUA 

UBE2Q2 L-008326-
01 

J-008326-
11 

92912 NM_173469 29789400 AGGUUUAAUCGAUGUUCAA 

UBE2Q2 L-008326-
01 

J-008326-
12 

92912 NM_173469 29789400 CUACAUUGUGUGUGUUUAA 

HERC6 L-005175-
00 

J-005175-
07 

55008 NM_001013000 61563737 GAAGAGAGGUCCACAACUU 

HERC6 L-005175-
00 

J-005175-
08 

55008 NM_001013000 61563737 AAGAAUUGAUGGCCUAGUU 

HERC6 L-005175-
00 

J-005175-
09 

55008 NM_001013000 61563737 GAAUCUAGGUGUGGUUUAU 

HERC6 L-005175-
00 

J-005175-
10 

55008 NM_001013000 61563737 CAGAACCAAUUCAGGCAUU 

WWP1 L-004251-
00 

J-004251-
07 

11059 NM_007013 33946331 GGUCUGAUACUAGUAAUAA 

WWP1 L-004251-
00 

J-004251-
08 

11059 NM_007013 33946331 GAACGCGGCUUUAGGUGGA 

WWP1 L-004251-
00 

J-004251-
09 

11059 NM_007013 33946331 GAAAAGCAACGAUAGAUUU 

WWP1 L-004251-
00 

J-004251-
10 

11059 NM_007013 33946331 CCAGAUGGAUUGAAGAGUU 

UBE2O L-008979-
00 

J-008979-
05 

63893 NM_022066 33636749 GACUUUAGGUUCCGUACAA 

UBE2O L-008979-
00 

J-008979-
06 

63893 NM_022066 33636749 GUUGUAGAGUUGAAAGUUA 

UBE2O L-008979-
00 

J-008979-
07 

63893 NM_022066 33636749 CGACUCGGGUCUCUUCUUC 

UBE2O L-008979-
00 

J-008979-
08 

63893 NM_022066 33636749 GAACCAUACUACAACGAAG 

UBE2V1 L-010064-
00 

J-010064-
06 

7335 NM_001032288 73765545 UGAAUGGAGUAAAUAGUUC 

UBE2V1 L-010064-
00 

J-010064-
07 

7335 NM_001032288 73765545 GCCGAAGCAUAGAUUGUAA 

UBE2V1 L-010064-
00 

J-010064-
08 

7335 NM_001032288 73765545 CACAUGAUCCCUCUGAAUU 

UBE2V1 L-010064-
00 

J-010064-
09 

7335 NM_001032288 73765545 CAGGACCACUAAAUGCUGA 

UBE2R2 L-009700-
00 

J-009700-
07 

54926 NM_017811 58530887 CCACAACCCUGGCGGAAUA 

UBE2R2 L-009700-
00 

J-009700-
08 

54926 NM_017811 58530887 UCUGAAAGGUGGAAUCCUA 

UBE2R2 L-009700-
00 

J-009700-
09 

54926 NM_017811 58530887 GCUCAGAUUUGCUUUACGA 

UBE2R2 L-009700-
00 

J-009700-
10 

54926 NM_017811 58530887 CAAUGUCGAUGCUUCAGUU 

AKTIP L-008768-
02 

J-008768-
11 

64400 NM_022476 61743931 AGUAAUAUUCAUACGGCAU 

AKTIP L-008768-
02 

J-008768-
12 

64400 NM_022476 61743931 AGAAAACAGUGGCGACUUA 

AKTIP L-008768-
02 

J-008768-
13 

64400 NM_022476 61743931 AGGCGGAACCAUAAUCAUA 

AKTIP L-008768-
02 

J-008768-
14 

64400 NM_022476 61743931 GUGCACUGCUCGUUUGUUU 

UBE2E1 L-008850- J-008850- 7324 NM_182666 33359690 GAGAUACGCUACAUAAAUU 
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00 06 

UBE2E1 L-008850-
00 

J-008850-
07 

7324 NM_182666 33359690 GCGAUAACAUCUAUGAAUG 

UBE2E1 L-008850-
00 

J-008850-
08 

7324 NM_182666 33359690 GAGAGUAAAGUCAGCAUGA 

UBE2E1 L-008850-
00 

J-008850-
09 

7324 NM_182666 33359690 GAACAUGACAGAAUGGCCA 

UBE3C L-007183-
00 

J-007183-
05 

9690 NM_014671 7661855 GGUCAAAGACAAUCAUCAA 

UBE3C L-007183-
00 

J-007183-
06 

9690 NM_014671 7661855 UUACAGCAUUUCAGAGUAU 

UBE3C L-007183-
00 

J-007183-
07 

9690 NM_014671 7661855 GGAGUUGUAUCCCGCAUUU 

UBE3C L-007183-
00 

J-007183-
08 

9690 NM_014671 7661855 UCUAAUAUCUUCCAUGUCA 

TSG101 L-003549-
00 

J-003549-
06 

7251 NM_006292 18765712 CCGUUUAGAUCAAGAAGUA 

TSG101 L-003549-
00 

J-003549-
07 

7251 NM_006292 18765712 CUCCAUACCCAUCCGGAUA 

TSG101 L-003549-
00 

J-003549-
08 

7251 NM_006292 18765712 CCACAACAAGUUCUCAGUA 

TSG101 L-003549-
00 

J-003549-
09 

7251 NM_006292 18765712 CCAAAUACUUCCUACAUGC 

UBE2G2 L-009095-
00 

J-009095-
06 

7327 NM_003343 33359699 CCACUUGAUUACCCGUUAA 

UBE2G2 L-009095-
00 

J-009095-
07 

7327 NM_003343 33359699 GCGAUGACCGGGAGCAGUU 

UBE2G2 L-009095-
00 

J-009095-
08 

7327 NM_003343 33359699 GAGCUAACGUGGAUGCGUC 

UBE2G2 L-009095-
00 

J-009095-
09 

7327 NM_003343 33359699 GAUGGGAGAGUCUGCAUUU 

SMURF2 L-007194-
00 

J-007194-
05 

64750 NM_022739 56550041 GUUAAUGACUGGAAGGUAA 

SMURF2 L-007194-
00 

J-007194-
06 

64750 NM_022739 56550041 AGAAUACGCUUGAUCCAAA 

SMURF2 L-007194-
00 

J-007194-
07 

64750 NM_022739 56550041 CCACUUUGUUGGACGAAUA 

SMURF2 L-007194-
00 

J-007194-
08 

64750 NM_022739 56550041 GCAAAAGUAUCCCUGUUAA 

NEDD4L L-007187-
00 

J-007187-
06 

23327 NM_015277 21361471 AAGGGAAUAUAUCGACUUA 

NEDD4L L-007187-
00 

J-007187-
07 

23327 NM_015277 21361471 GAAUAUCGCUGGAGACUCU 

NEDD4L L-007187-
00 

J-007187-
08 

23327 NM_015277 21361471 GAUCAUAACACAAAGACUA 

NEDD4L L-007187-
00 

J-007187-
09 

23327 NM_015277 21361471 GUACAUAUGCGGUCAAAGA 

UBA3 L-005249-
00 

J-005249-
05 

9039 NM_198197 38045945 CAAUAGUGCUUCUCUGCAA 

UBA3 L-005249-
00 

J-005249-
06 

9039 NM_198197 38045945 UACAGGAGGUUUUGGAUUA 

UBA3 L-005249-
00 

J-005249-
07 

9039 NM_198197 38045945 GAUAAAUGGCAUGCUGAUA 

UBA3 L-005249-
00 

J-005249-
08 

9039 NM_198197 38045945 CAAUCUAAAUAGGCAGUUU 

UBE2E3 L-008845-
00 

J-008845-
05 

10477 NM_182678 33359693 GAGAUCAACUAUACUUGGU 

UBE2E3 L-008845-
00 

J-008845-
06 

10477 NM_182678 33359693 GCAGAACACGACAGGAUAG 

UBE2E3 L-008845-
00 

J-008845-
07 

10477 NM_182678 33359693 ACACCAAACUCUCUAGCAA 

UBE2E3 L-008845-
00 

J-008845-
08 

10477 NM_182678 33359693 GGACAUCCUUAAAGACAAC 

UBE2D1 L-009387-
00 

J-009387-
06 

7321 NM_003338 33149307 GCACAAAUCUAUAAAUCAG 

UBE2D1 L-009387-
00 

J-009387-
07 

7321 NM_003338 33149307 GAAAGAAUUGAGUGAUCUA 

UBE2D1 L-009387-
00 

J-009387-
08 

7321 NM_003338 33149307 CAUAAACAGUAAUGGAAGU 

UBE2D1 L-009387-
00 

J-009387-
09 

7321 NM_003338 33149307 CAUAUGUUCUCUACUUUGU 

UBE3A L-005137-
00 

J-005137-
05 

7337 NM_130838 19718761 CCAGAUUGCUCUCUAAUGA 
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UBE3A L-005137-
00 

J-005137-
06 

7337 NM_130838 19718761 GGAUAUUGAUGCCAUUAGA 

UBE3A L-005137-
00 

J-005137-
07 

7337 NM_130838 19718761 GUCGAAAUCUAGUGAAUGA 

UBE3A L-005137-
00 

J-005137-
08 

7337 NM_130838 19718761 GCAGUUGUAUGUGGAAUUU 

TRIP12 L-007182-
00 

J-007182-
06 

9320 NM_004238 10863902 GAACACAGAUGGUGCGAUA 

TRIP12 L-007182-
00 

J-007182-
07 

9320 NM_004238 10863902 GACAAAGACUCAUACAAUA 

TRIP12 L-007182-
00 

J-007182-
08 

9320 NM_004238 10863902 GCUCAUAUCGCAAAGGUUA 

TRIP12 L-007182-
00 

J-007182-
09 

9320 NM_004238 10863902 GGUAGUGACUCCACCCAUU 

HECTD2 L-007198-
00 

J-007198-
05 

143279 NM_173497 27735098 CAAUUUGCCUUGAUGUUAG 

HECTD2 L-007198-
00 

J-007198-
06 

143279 NM_173497 27735098 GGGAUUAAUGCUAAAUUUG 

HECTD2 L-007198-
00 

J-007198-
07 

143279 NM_173497 27735098 CUGUUAGCCCGAAGAAAGA 

HECTD2 L-007198-
00 

J-007198-
08 

143279 NM_173497 27735098 AAACAGAAGUUCACCUGCA 

CUL4A L-012610-
00 

J-012610-
05 

8451 NM_003589 57165422 GCACAGAUCCUUCCGUUUA 

CUL4A L-012610-
00 

J-012610-
06 

8451 NM_003589 57165422 GAACAGCGAUCGUAAUCAA 

CUL4A L-012610-
00 

J-012610-
07 

8451 NM_003589 57165422 GCAUGUGGAUUCAAAGUUA 

CUL4A L-012610-
00 

J-012610-
08 

8451 NM_003589 57165422 GCGAGUACAUCAAGACUUU 

HERC4 L-021426-
00 

J-021426-
05 

26091 NM_001017972 63025217 GGUCCGAGAUGUAGGAUGU 

HERC4 L-021426-
00 

J-021426-
06 

26091 NM_001017972 63025217 UGUCAGAUAUCCAGAUUGU 

HERC4 L-021426-
00 

J-021426-
07 

26091 NM_001017972 63025217 GGAAGUAUUUCACGAAUUA 

HERC4 L-021426-
00 

J-021426-
08 

26091 NM_001017972 63025217 GCAGAACAUCCUACGAUAA 

HECW2 L-007192-
00 

J-007192-
05 

57520 NM_020760 55741472 GUGGGUACCUCCAGUUUAA 

HECW2 L-007192-
00 

J-007192-
06 

57520 NM_020760 55741472 GAUAACUGAACGAGAAUUA 

HECW2 L-007192-
00 

J-007192-
07 

57520 NM_020760 55741472 UUACUUAGAUGCUAUCGAA 

HECW2 L-007192-
00 

J-007192-
08 

57520 NM_020760 55741472 UCACCGUGCUGCAUUCUAA 

UBE2B L-009930-
00 

J-009930-
05 

7320 NM_003337 32967281 GGAAUGCAGUUAUAUUUGG 

UBE2B L-009930-
00 

J-009930-
06 

7320 NM_003337 32967281 GAACCGAAUCCUAACAGUC 

UBE2B L-009930-
00 

J-009930-
07 

7320 NM_003337 32967281 GAGUUUCGGCCAUUGUUGA 

UBE2B L-009930-
00 

J-009930-
08 

7320 NM_003337 32967281 UAGAUAUCCUUCAGAAUCG 

UBE2U L-008998-
01 

J-008998-
09 

148581 NM_152489 22749026 CCUAAAGACCCACGUAAAU 

UBE2U L-008998-
01 

J-008998-
10 

148581 NM_152489 22749026 GGGUAUCACUGCUAAGCCU 

UBE2U L-008998-
01 

J-008998-
11 

148581 NM_152489 22749026 GCUUUCUAAUCCAGUGCUA 

UBE2U L-008998-
01 

J-008998-
12 

148581 NM_152489 22749026 ACAGAAUACUACAGAACUC 

CAND1 L-015562-
01 

J-015562-
09 

55832 NM_018448 21361793 GACUUUAGGUUUAUGGCUA 

CAND1 L-015562-
01 

J-015562-
10 

55832 NM_018448 21361793 CGUGCAACAUGUACAACUA 

CAND1 L-015562-
01 

J-015562-
11 

55832 NM_018448 21361793 CAACAAGAACCUACAUACA 

CAND1 L-015562-
01 

J-015562-
12 

55832 NM_018448 21361793 CAUAACAAGCCAUCAUUAA 

KIAA0317 L-007184-
00 

J-007184-
06 

9870 NM_014821 42734314 GCGCAAGGCUGGGCGUUAU 

KIAA0317 L-007184- J-007184- 9870 NM_014821 42734314 CGAAGAAGGUGUACUGCUA 
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00 07 

KIAA0317 L-007184-
00 

J-007184-
08 

9870 NM_014821 42734314 GCAUUUACUUUGAGGCUUA 

KIAA0317 L-007184-
00 

J-007184-
09 

9870 NM_014821 42734314 GGGAAUGGUUUGAGCUAAU 

UBE2D4 L-009435-
00 

J-009435-
06 

51619 NM_015983 19549332 GGAAUUAACCGACUUGCAG 

UBE2D4 L-009435-
00 

J-009435-
07 

51619 NM_015983 19549332 GCAAGAGAGUGGACACAAA 

UBE2D4 L-009435-
00 

J-009435-
08 

51619 NM_015983 19549332 GAAUGACAGUCCUUACCAA 

UBE2D4 L-009435-
00 

J-009435-
09 

51619 NM_015983 19549332 ACCCUAAUAUCAACAGCAA 

DCUN1D4 L-014118-
01 

J-014118-
09 

23142 NM_015115 32698693 GGUGACAUGUGAUCGUUUA 

DCUN1D4 L-014118-
01 

J-014118-
10 

23142 NM_015115 32698693 GUGCAAUGUCCUAGAGUUU 

DCUN1D4 L-014118-
01 

J-014118-
11 

23142 NM_015115 32698693 GAAUAUAGGUACCAAUGAA 

DCUN1D4 L-014118-
01 

J-014118-
12 

23142 NM_015115 32698693 CCAACUAUCUGGUGCUAUU 

CUL4B L-017965-
00 

J-017965-
05 

8450 NM_003588 28372492 UAAAUAACCUCCUUGAUGA 

CUL4B L-017965-
00 

J-017965-
06 

8450 NM_003588 28372492 CAGAAGUCAUUAAUUGCUA 

CUL4B L-017965-
00 

J-017965-
07 

8450 NM_003588 28372492 CGGAAAGAGUGCAUCUGUA 

CUL4B L-017965-
00 

J-017965-
08 

8450 NM_003588 28372492 GCUAUUGGCCGACAUAUGU 

UBE2L6 L-008569-
00 

J-008569-
05 

9246 NM_004223 38157980 GCUGGUGAAUAGACCGAAU 

UBE2L6 L-008569-
00 

J-008569-
06 

9246 NM_004223 38157980 GGACGAGAACGGACAGAUU 

UBE2L6 L-008569-
00 

J-008569-
07 

9246 NM_004223 38157980 UCAGAAAGAAUGCCGAAGA 

UBE2L6 L-008569-
00 

J-008569-
08 

9246 NM_004223 38157980 UGAUCAAAUUCACAACCAA 

UBE2J1 L-007266-
00 

J-007266-
05 

51465 NM_016021 37577121 GCUCUUAUAUUCCGACGAA 

UBE2J1 L-007266-
00 

J-007266-
06 

51465 NM_016021 37577121 GAGUAUAAGGACAGCAUUA 

UBE2J1 L-007266-
00 

J-007266-
07 

51465 NM_016021 37577121 GAUGUCCUGUUGCCUUUAA 

UBE2J1 L-007266-
00 

J-007266-
08 

51465 NM_016021 37577121 GCCAUAGGUUCUCUAGAUU 

UBE2QL1 L-024273-
01 

J-024273-
09 

134111 XM_940609 88987241 GCAAAUGCCGUUCGGAUUA 

UBE2QL1 L-024273-
01 

J-024273-
10 

134111 XM_940609 88987241 CCACUUAGAUAUCGACUCA 

UBE2QL1 L-024273-
01 

J-024273-
11 

134111 XM_940609 88987241 GAGUCAUAAUAGUCGUGAA 

UBE2QL1 L-024273-
01 

J-024273-
12 

134111 XM_940609 88987241 GACUAAAGAUUGUCAACGA 

UBE2Q1 L-008631-
00 

J-008631-
06 

55585 NM_017582 38045949 GAGGCAAGAUUACUUAAAU 

UBE2Q1 L-008631-
00 

J-008631-
07 

55585 NM_017582 38045949 GGACAGCGCUUUGCACAAC 

UBE2Q1 L-008631-
00 

J-008631-
08 

55585 NM_017582 38045949 CGACCUGUGUAAACUCUAU 

UBE2Q1 L-008631-
00 

J-008631-
09 

55585 NM_017582 38045949 GGAGCCGACUUCAUUCUAC 

UBE2G1 L-010154-
00 

J-010154-
06 

7326 NM_182682 75992938 GAUGGGAAGUCCUUAUUAU 

UBE2G1 L-010154-
00 

J-010154-
07 

7326 NM_182682 75992938 GCUAGUAACUUCACUUAUU 

UBE2G1 L-010154-
00 

J-010154-
08 

7326 NM_182682 75992938 GUAUAGAUCCCGUCACUAA 

UBE2G1 L-010154-
00 

J-010154-
09 

7326 NM_182682 75992938 UAUAGAAACUCGUAAGUGU 

UBE2H L-009134-
00 

J-009134-
05 

7328 NM_182697 33356153 GAGUGGACCUACCUGAUAA 

UBE2H L-009134-
00 

J-009134-
06 

7328 NM_182697 33356153 GAUAUGGAGUUGUAGUAGA 
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UBE2H L-009134-
00 

J-009134-
07 

7328 NM_182697 33356153 GGCGGAGUAUGGAAAGUUA 

UBE2H L-009134-
00 

J-009134-
08 

7328 NM_182697 33356153 UCAAGCUCAUCGAGAGUAA 

CUL5 L-019553-
00 

J-019553-
05 

8065 NM_003478 67514034 GACACGACGUCUUAUAUUA 

CUL5 L-019553-
00 

J-019553-
06 

8065 NM_003478 67514034 GCAAAUAGAGUGGCUAAUA 

CUL5 L-019553-
00 

J-019553-
07 

8065 NM_003478 67514034 UAAACAAGCUUGCUAGAAU 

CUL5 L-019553-
00 

J-019553-
08 

8065 NM_003478 67514034 CGUCUAAUCUGUUAAAGAA 

ARIH1 L-019984-
00 

J-019984-
05 

25820 NM_005744 9966762 CGAGAUAUUUCCCAAGAUU 

ARIH1 L-019984-
00 

J-019984-
06 

25820 NM_005744 9966762 GGAUAUGCCUUGUCAGAUC 

ARIH1 L-019984-
00 

J-019984-
07 

25820 NM_005744 9966762 GAGAGUCGACGAAGGGUUU 

ARIH1 L-019984-
00 

J-019984-
08 

25820 NM_005744 9966762 CCAAAUGCCAUGUCACAAU 

UBA6 L-006403-
01 

J-006403-
09 

55236 NM_018227 40255038 GUGUAGAAUUAGCAAGAUU 

UBA6 L-006403-
01 

J-006403-
10 

55236 NM_018227 40255038 GCAUAGCUGUCCAAGUUAA 

UBA6 L-006403-
01 

J-006403-
11 

55236 NM_018227 40255038 CAGUGUUGUAGGAGCAAUA 

UBA6 L-006403-
01 

J-006403-
12 

55236 NM_018227 40255038 GGAAUUUGGUCAAGGUUAU 

UBE2D2 L-010383-
00 

J-010383-
06 

7322 NM_003339 33188457 UCUGUUCUCUGUUGUGUGA 

UBE2D2 L-010383-
00 

J-010383-
07 

7322 NM_003339 33188457 CAAAUGACAGUCCCUAUCA 

UBE2D2 L-010383-
00 

J-010383-
08 

7322 NM_003339 33188457 GUAUGUGGUUUCUCAGUUA 

UBE2D2 L-010383-
00 

J-010383-
09 

7322 NM_003339 33188457 UCCAGGAACUUGAUUGUUA 

CACUL1 L-016305-
01 

J-016305-
09 

143384 NM_153810 54262140 AGGCGAUGAUGGACGACCA 

CACUL1 L-016305-
01 

J-016305-
10 

143384 NM_153810 54262140 GGAUAUUGGGAGCAAGUAA 

CACUL1 L-016305-
01 

J-016305-
11 

143384 NM_153810 54262140 GGGUACAGAUAGUGAAUGU 

CACUL1 L-016305-
01 

J-016305-
12 

143384 NM_153810 54262140 GCAUUAGAAAGUCUUGUUA 
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Supplementary Table 2. Custom genes for primary screen to complete selected set of enzymes. 

 
Gene 
Symbol 

Pool Catalog 
Number 

Duplex 
Catalog 
Number 

GENE ID Gene Accession GI Number Sequence 

SAE1 L-006402-01 J-006402-09 10055 NM_005500 4885584 GCACAGUAUGACCGGCAGA 

SAE1 L-006402-01 J-006402-10 10055 NM_005500 4885584 GGGUCUGUUGGCCGAAAUA 

SAE1 L-006402-01 J-006402-11 10055 NM_005500 4885584 UGAAGUCAUUGGCCCGAUA 

SAE1 L-006402-01 J-006402-12 10055 NM_005500 4885584 GUUCUUGAGUUUUCGUUUA 

UBA2 L-005248-01 J-005248-09 10054 NM_005499 50592990 GUGCAAAGAGGUCACGUAU 

UBA2 L-005248-01 J-005248-10 10054 NM_005499 50592990 GGACAAACUAUGGCGGAAA 

UBA2 L-005248-01 J-005248-11 10054 NM_005499 50592990 CAUAACCAGUCAUGAGAUA 

UBA2 L-005248-01 J-005248-12 10054 NM_005499 50592990 GCUAGAACUGUUAGACACA 

NAE1 L-006401-00 J-006401-05 8883 NM_001018160 66363687 GAUGAUCGCUGCAUAAAUA 

NAE1 L-006401-00 J-006401-06 8883 NM_001018160 66363687 GCACAGUGGUAUAGUGAAA 

NAE1 L-006401-00 J-006401-07 8883 NM_001018160 66363687 GAUUUUAGCUCGUGCCUUA 

NAE1 L-006401-00 J-006401-08 8883 NM_001018160 66363687 GUUACGGGCUGUUGAUAGA 

ATG7 L-020112-00 J-020112-05 10533 NM_006395 5453667 CCAACACACUCGAGUCUUU 

ATG7 L-020112-00 J-020112-06 10533 NM_006395 5453667 GAUCUAAAUCUCAAACUGA 

ATG7 L-020112-00 J-020112-07 10533 NM_006395 5453667 GCCCACAGAUGGAGUAGCA 

ATG7 L-020112-00 J-020112-08 10533 NM_006395 5453667 GCCAGAGGAUUCAACAUGA 

UFC1 L-020623-01 J-020623-09 51506 NM_016406 7705480 CCUUUGAUAGGCUACGAUA 

UFC1 L-020623-01 J-020623-10 51506 NM_016406 7705480 AAAUAUGCCUGACGGAUCA 

UFC1 L-020623-01 J-020623-11 51506 NM_016406 7705480 AAUAUGAGUUUGACAUCGA 

UFC1 L-020623-01 J-020623-12 51506 NM_016406 7705480 AGUUGUGGGUGCAGCGACU 

ATG10 L-019426-01 J-019426-09 83734 NM_031482 33589825 CGUCUCAGGAUGAACGAAA 

ATG10 L-019426-01 J-019426-10 83734 NM_031482 33589825 AGGAAUUGCGGCACGAAGA 

ATG10 L-019426-01 J-019426-11 83734 NM_031482 33589825 GGAGGAGGCUUUCGAGCUA 

ATG10 L-019426-01 J-019426-12 83734 NM_031482 33589825 CCAACGUUAUUGUGCAGAA 

ATG3 L-015375-00 J-015375-05 64422 NM_022488 34147490 GAGAGUGGAUUGUUGGAAA 

ATG3 L-015375-00 J-015375-06 64422 NM_022488 34147490 GCGGAUGGGUAGAUACAUA 

ATG3 L-015375-00 J-015375-07 64422 NM_022488 34147490 GAGCAACGGCAGCCUUUAA 

ATG3 L-015375-00 J-015375-08 64422 NM_022488 34147490 ACAAGACACUUCACAAUGU 

RNF25 L-007047-00 J-007047-05 64320 NM_022453 34878786 GGUCAAAUCAGCAAAGGUU 

RNF25 L-007047-00 J-007047-06 64320 NM_022453 34878786 AGGCUGAGCGAAACCGAUA 

RNF25 L-007047-00 J-007047-07 64320 NM_022453 34878786 UGAGUCAGCUGUAGAUGUC 

RNF25 L-007047-00 J-007047-08 64320 NM_022453 34878786 GACCAGGAUUCACAGUAUG 

RWDD1 L-020946-02 J-020946-18 51389 NM_015952 55953122 GGCUAUGCUCAGAGGGUUA 

RWDD1 L-020946-02 J-020946-19 51389 NM_015952 55953122 UGAAGAUGAUCCAGACUAU 

RWDD1 L-020946-02 J-020946-20 51389 NM_015952 55953122 GCAGAACUCUUGGAAAUUA 

RWDD1 L-020946-02 J-020946-21 51389 NM_015952 55953122 UCUAGUGACAGCUGUGCAA 

UBR4 L-014021-01 J-014021-09 23352 NM_020765 82659108 GGGAACACCCUGACGUAAA 

UBR4 L-014021-01 J-014021-10 23352 NM_020765 82659108 UCAUGAAGCCUGUUCGAAA 

UBR4 L-014021-01 J-014021-11 23352 NM_020765 82659108 CUACGAAGCUGCCGACAAA 

UBR4 L-014021-01 J-014021-12 23352 NM_020765 82659108 UGAACAAAUUUGCCGAUAA 

UBR3 L-016653-00 J-016653-05 130507 NM_172070 40255162 AGAAAAGUCUUACGAAGUA 

UBR3 L-016653-00 J-016653-06 130507 NM_172070 40255162 AGGCAAACCUCUCUACAUU 
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UBR3 L-016653-00 J-016653-07 130507 NM_172070 40255162 GAGAAAGCUCACCCAGUUA 

UBR3 L-016653-00 J-016653-08 130507 NM_172070 40255162 AGAUCGACCUACUGGAUUA 

UBR2 L-006954-00 J-006954-05 23304 NM_015255 27597060 CAACAGAGAUUACGCUUAC 

UBR2 L-006954-00 J-006954-06 23304 NM_015255 27597060 GCGUAGGUCUGUUCGAUAU 

UBR2 L-006954-00 J-006954-07 23304 NM_015255 27597060 GCUUAGUGAUUCCAAAUUA 

UBR2 L-006954-00 J-006954-08 23304 NM_015255 27597060 UCAGAGAUCAACUGUAUUA 

UBR1 L-010691-00 J-010691-06 197131 NM_174916 83656781 GGAAAUCAGCGCGGAGUUA 

UBR1 L-010691-00 J-010691-07 197131 NM_174916 83656781 GUACAAUCGUGUGGACAUA 

UBR1 L-010691-00 J-010691-08 197131 NM_174916 83656781 GCGAAGAAAUGGACUGUCU 

UBR1 L-010691-00 J-010691-09 197131 NM_174916 83656781 GAUCAGCAAACCCACAAUA 

UBR7 L-016489-01 J-016489-09 55148 NM_175748 28411949 AUGAUGGAUUGGUGCGGAA 

UBR7 L-016489-01 J-016489-10 55148 NM_175748 28411949 GAAAGGAUGAUGUCCGGGA 

UBR7 L-016489-01 J-016489-11 55148 NM_175748 28411949 UGGCGUAGCAAGUUGUGUA 

UBR7 L-016489-01 J-016489-12 55148 NM_175748 28411949 UGAAUAGAGUCCAGCAAGU 

USP2 L-006069-00 J-006069-11 9099 NM_171997 28565284 ACACCAACCAUGCUGUUUA 

USP2 L-006069-00 J-006069-12 9099 NM_171997 28565284 GCGCUUUGUUGGCUAUAAU 

USP2 L-006069-00 J-006069-13 9099 NM_171997 28565284 GUGUACAGAUUGUGGUUAC 

USP2 L-006069-00 J-006069-14 9099 NM_171997 28565284 GACCUAAGUCCAACCCUGA 

USP9X L-006099-00 J-006099-06 8239 NM_021906 74315357 AGAAAUCGCUGGUAUAAAU 

USP9X L-006099-00 J-006099-07 8239 NM_021906 74315357 ACACGAUGCUUUAGAAUUU 

USP9X L-006099-00 J-006099-08 8239 NM_021906 74315357 GUACGACGAUGUAUUCUCA 

USP9X L-006099-00 J-006099-09 8239 NM_021906 74315357 GAAAUAACUUCCUACCGAA 

VCP L-008727-00 J-008727-09 7415 NM_007126 7669552 GCAUGUGGGUGCUGACUUA 

VCP L-008727-00 J-008727-10 7415 NM_007126 7669552 CAAAUUGGCUGGUGAGUCU 

VCP L-008727-00 J-008727-11 7415 NM_007126 7669552 CCUGAUUGCUCGAGCUGUA 

VCP L-008727-00 J-008727-12 7415 NM_007126 7669552 GUAAUCUCUUCGAGGUAUA 

SENP1 L-006357-00 J-006357-05 29843 NM_014554 45505133 GCAUUUCGCCUGACCAUUA 

SENP1 L-006357-00 J-006357-06 29843 NM_014554 45505133 GGAAGUGACUGUGGGAUGU 

SENP1 L-006357-00 J-006357-07 29843 NM_014554 45505133 CAAGAAGUGCAGCUUAUAA 

SENP1 L-006357-00 J-006357-08 29843 NM_014554 45505133 GCAGUGAAACGUUGGACAA 

UBB L-013382-00 J-013382-05 7314 NM_018955 22538474 GCUGUUAAUUCUUCAGUCA 

UBB L-013382-00 J-013382-06 7314 NM_018955 22538474 GUAUGCAGAUCUUCGUGAA 

UBB L-013382-00 J-013382-07 7314 NM_018955 22538474 UCGAAAAUGUGAAGGCCAA 

UBB L-013382-00 J-013382-08 7314 NM_018955 22538474 CACCUGGUCCUGCGUCUGA 

SUMO1 L-016005-00 J-016005-07 7341 NM_001005781 54792064 GUGCAUAUAUGAUACAGUU 

SUMO1 L-016005-00 J-016005-08 7341 NM_001005781 54792064 GCACUGAAAGUUACUGAAG 

SUMO1 L-016005-00 J-016005-09 7341 NM_001005781 54792064 CAUAAAUACUGGAAAUUGC 

SUMO1 L-016005-00 J-016005-10 7341 NM_001005781 54792064 AAUACUCAGUGUUCUGUUU 
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Supplementary Table 3. Genes selected for the secondary screen. 

 
Gene 
Symbol 

Pool 
Catalog 
Number 

Duplex 
Catalog 
Number 

Gene 
Symbol 

GENE ID Gene 
Accession 

GI Number Sequence 

AREL1 J-007184-09 J-007184-09 AREL1 9870 NM_014821 42734314 GGGAAUGGUUUGAGCUAAU 

AREL1 J-007184-06 J-007184-06 AREL1 9870 NM_014821 42734314 GCGCAAGGCUGGGCGUUAU 

AREL1 J-007184-07 J-007184-07 AREL1 9870 NM_014821 42734314 CGAAGAAGGUGUACUGCUA 

AREL1 J-007184-08 J-007184-08 AREL1 9870 NM_014821 42734314 GCAUUUACUUUGAGGCUUA 

CACUL1 J-016305-11 J-016305-11 CACUL1 143384 NM_153810 54262140 GGGUACAGAUAGUGAAUGU 

CACUL1 J-016305-12 J-016305-12 CACUL1 143384 NM_153810 54262140 GCAUUAGAAAGUCUUGUUA 

CACUL1 J-016305-09 J-016305-09 CACUL1 143384 NM_153810 54262140 AGGCGAUGAUGGACGACCA 

CACUL1 J-016305-10 J-016305-10 CACUL1 143384 NM_153810 54262140 GGAUAUUGGGAGCAAGUAA 

CAND1 J-015562-12 J-015562-12 CAND1 55832 NM_018448 21361793 CAUAACAAGCCAUCAUUAA 

CAND1 J-015562-10 J-015562-10 CAND1 55832 NM_018448 21361793 CGUGCAACAUGUACAACUA 

CAND1 J-015562-11 J-015562-11 CAND1 55832 NM_018448 21361793 CAACAAGAACCUACAUACA 

CAND1 J-015562-09 J-015562-09 CAND1 55832 NM_018448 21361793 GACUUUAGGUUUAUGGCUA 

CUL2 J-007277-06 J-007277-06 CUL2 8453 NM_003591 19482173 CAUCCAAGUUCAUAUACUA 

CUL2 J-007277-05 J-007277-05 CUL2 8453 NM_003591 19482173 GGAAGUGCAUGGUAAAUUU 

CUL2 J-007277-08 J-007277-08 CUL2 8453 NM_003591 19482173 UGGUUUACCUCAUAUGAUU 

CUL2 J-007277-07 J-007277-07 CUL2 8453 NM_003591 19482173 GCAGAAAGACACACCACAA 

CUL4B J-017965-06 J-017965-06 CUL4B 8450 NM_003588 28372492 CAGAAGUCAUUAAUUGCUA 

CUL4B J-017965-08 J-017965-08 CUL4B 8450 NM_003588 28372492 GCUAUUGGCCGACAUAUGU 

CUL4B J-017965-05 J-017965-05 CUL4B 8450 NM_003588 28372492 UAAAUAACCUCCUUGAUGA 

CUL4B J-017965-07 J-017965-07 CUL4B 8450 NM_003588 28372492 CGGAAAGAGUGCAUCUGUA 

DCUN1D3 J-018390-05 J-018390-05 DCUN1D3 123879 NM_173475 27735046 AAGGAUCUCUACCGGUUUA 

DCUN1D3 J-018390-06 J-018390-06 DCUN1D3 123879 NM_173475 27735046 ACGGUUCCCUAGCCUCUUA 

DCUN1D3 J-018390-07 J-018390-07 DCUN1D3 123879 NM_173475 27735046 CCAGAACAAUCCUCCGGUA 

DCUN1D3 J-018390-08 J-018390-08 DCUN1D3 123879 NM_173475 27735046 GUAAGAAUCCCUCAUCGAC 

DCUN1D5 J-014842-09 J-014842-09 DCUN1D5 84259 NM_032299 34147410 CAAUCAAAGUAUCGUGUUA 

DCUN1D5 J-014842-10 J-014842-10 DCUN1D5 84259 NM_032299 34147410 GUUGAAUGAUAUUUCGUCA 

DCUN1D5 J-014842-12 J-014842-12 DCUN1D5 84259 NM_032299 34147410 UGAUGGGCAUUGAGCCACA 

DCUN1D5 J-014842-11 J-014842-11 DCUN1D5 84259 NM_032299 34147410 CCGUCAGACAUCAUAGCAA 

HERC2 J-007180-12 J-007180-12 HERC2 8924 NM_004667 67190865 GCAGAUGUGUGCUAAGAUG 

HERC2 J-007180-10 J-007180-10 HERC2 8924 NM_004667 67190865 CGAUGAAGGUUUGGUAUUU 

HERC2 J-007180-09 J-007180-09 HERC2 8924 NM_004667 67190865 GCACAGAGUAUCACAGGUA 

HERC2 J-007180-11 J-007180-11 HERC2 8924 NM_004667 67190865 GAUAAUACGACACAGCUAA 

HERC5 J-005174-06 J-005174-06 HERC5 51191 NM_016323 7705930 GGAAGUAGCAUAACUGUCA 

HERC5 J-005174-07 J-005174-07 HERC5 51191 NM_016323 7705930 GAACCAGGAUAUAACAGUU 

HERC5 J-005174-08 J-005174-08 HERC5 51191 NM_016323 7705930 UAAGAGCACUGACAUGUUU 

HERC5 J-005174-09 J-005174-09 HERC5 51191 NM_016323 7705930 GACUUUCCCUGUUCAAUUG 

RBX1 J-004087-07 J-004087-07 RBX1 9978 NM_014248 22091459 GAAGCGCUUUGAAGUGAAA 

RBX1 J-004087-08 J-004087-08 RBX1 9978 NM_014248 22091459 GGGAUAUUGUGGUUGAUAA 

RBX1 J-004087-09 J-004087-09 RBX1 9978 NM_014248 22091459 GGAACCACAUUAUGGAUCU 

RBX1 J-004087-10 J-004087-10 RBX1 9978 NM_014248 22091459 CAUAGAAUGUCAAGCUAAC 

RNF25 J-007047-05 J-007047-05 RNF25 64320 NM_022453 34878786 GGUCAAAUCAGCAAAGGUU 

RNF25 J-007047-06 J-007047-06 RNF25 64320 NM_022453 34878786 AGGCUGAGCGAAACCGAUA 
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RNF25 J-007047-07 J-007047-07 RNF25 64320 NM_022453 34878786 UGAGUCAGCUGUAGAUGUC 

RNF25 J-007047-08 J-007047-08 RNF25 64320 NM_022453 34878786 GACCAGGAUUCACAGUAUG 

SAG J-011105-08 J-011105-08 SAG 6295 NM_000541 10880124 GCAAGAGAGCCUGCUUAAA 

SAG J-011105-06 J-011105-06 SAG 6295 NM_000541 10880124 GUUCUCUACUCGAGUGAUU 

SAG J-011105-07 J-011105-07 SAG 6295 NM_000541 10880124 GAACCGAACCAUGUUAUCU 

SAG J-011105-05 J-011105-05 SAG 6295 NM_000541 10880124 AAAGUUAUCAGGAUGCAAA 

SPOP J-017919-10 J-017919-10 SPOP 8405 NM_001007228 56117829 CAACUAUCAUGCUUCGGAU 

SPOP J-017919-09 J-017919-09 SPOP 8405 NM_001007228 56117829 GGUAAAGGUUCCUGAGUGC 

SPOP J-017919-08 J-017919-08 SPOP 8405 NM_001007228 56117829 GAGAGUCAACGGGCAUAUA 

SPOP J-017919-11 J-017919-11 SPOP 8405 NM_001007228 56117829 AAAUGGUGUUUGCGAGUAA 

UBA3 J-005249-08 J-005249-08 UBA3 9039 NM_198197 38045945 CAAUCUAAAUAGGCAGUUU 

UBA3 J-005249-05 J-005249-05 UBA3 9039 NM_198197 38045945 CAAUAGUGCUUCUCUGCAA 

UBA3 J-005249-07 J-005249-07 UBA3 9039 NM_198197 38045945 GAUAAAUGGCAUGCUGAUA 

UBA3 J-005249-06 J-005249-06 UBA3 9039 NM_198197 38045945 UACAGGAGGUUUUGGAUUA 

UBE2A J-009424-07 J-009424-07 UBE2A 7319 NM_181762 32967275 GGACAUACUUCAGAACCGU 

UBE2A J-009424-05 J-009424-05 UBE2A 7319 NM_181762 32967275 CUAUGCAGAUGGUAGUAUA 

UBE2A J-009424-08 J-009424-08 UBE2A 7319 NM_181762 32967275 GAACAAACGGGAAUAUGAA 

UBE2A J-009424-06 J-009424-06 UBE2A 7319 NM_181762 32967275 GCGUGUUUCUGCAAUAGUA 

UBE2D2 J-010383-09 J-010383-09 UBE2D2 7322 NM_003339 33188457 UCCAGGAACUUGAUUGUUA 

UBE2D2 J-010383-06 J-010383-06 UBE2D2 7322 NM_003339 33188457 UCUGUUCUCUGUUGUGUGA 

UBE2D2 J-010383-08 J-010383-08 UBE2D2 7322 NM_003339 33188457 GUAUGUGGUUUCUCAGUUA 

UBE2D2 J-010383-07 J-010383-07 UBE2D2 7322 NM_003339 33188457 CAAAUGACAGUCCCUAUCA 

UBE2F J-009081-09 J-009081-09 UBE2F 140739 NM_080678 18087856 CAAGUAAACUGAAGCGUGA 

UBE2F J-009081-11 J-009081-11 UBE2F 140739 NM_080678 18087856 CAAUAAGAUACCCGCUACA 

UBE2F J-009081-10 J-009081-10 UBE2F 140739 NM_080678 18087856 AUGACUACAUCAAACGUUA 

UBE2F J-009081-12 J-009081-12 UBE2F 140739 NM_080678 18087856 CUGAAGUUCCCGAUGCGUA 

UBE2G1 J-010154-08 J-010154-08 UBE2G1 7326 NM_182682 75992938 GUAUAGAUCCCGUCACUAA 

UBE2G1 J-010154-09 J-010154-09 UBE2G1 7326 NM_182682 75992938 UAUAGAAACUCGUAAGUGU 

UBE2G1 J-010154-07 J-010154-07 UBE2G1 7326 NM_182682 75992938 GCUAGUAACUUCACUUAUU 

UBE2G1 J-010154-06 J-010154-06 UBE2G1 7326 NM_182682 75992938 GAUGGGAAGUCCUUAUUAU 

UBE2H J-009134-05 J-009134-05 UBE2H 7328 NM_182697 33356153 GAGUGGACCUACCUGAUAA 

UBE2H J-009134-08 J-009134-08 UBE2H 7328 NM_182697 33356153 UCAAGCUCAUCGAGAGUAA 

UBE2H J-009134-06 J-009134-06 UBE2H 7328 NM_182697 33356153 GAUAUGGAGUUGUAGUAGA 

UBE2H J-009134-07 J-009134-07 UBE2H 7328 NM_182697 33356153 GGCGGAGUAUGGAAAGUUA 

UBE2J1 J-007266-08 J-007266-08 UBE2J1 51465 NM_016021 37577121 GCCAUAGGUUCUCUAGAUU 

UBE2J1 J-007266-06 J-007266-06 UBE2J1 51465 NM_016021 37577121 GAGUAUAAGGACAGCAUUA 

UBE2J1 J-007266-07 J-007266-07 UBE2J1 51465 NM_016021 37577121 GAUGUCCUGUUGCCUUUAA 

UBE2J1 J-007266-05 J-007266-05 UBE2J1 51465 NM_016021 37577121 GCUCUUAUAUUCCGACGAA 

UBE2QL1 J-024273-12 J-024273-12 UBE2QL1 134111 XM_940609 88987241 GACUAAAGAUUGUCAACGA 

UBE2QL1 J-024273-09 J-024273-09 UBE2QL1 134111 XM_940609 88987241 GCAAAUGCCGUUCGGAUUA 

UBE2QL1 J-024273-10 J-024273-10 UBE2QL1 134111 XM_940609 88987241 CCACUUAGAUAUCGACUCA 

UBE2QL1 J-024273-11 J-024273-11 UBE2QL1 134111 XM_940609 88987241 GAGUCAUAAUAGUCGUGAA 

UBE2S J-009707-06 J-009707-06 UBE2S 27338 NM_014501 7657045 GGAGGUCUGUUCCGCAUGA 

UBE2S J-009707-07 J-009707-07 UBE2S 27338 NM_014501 7657045 GCAUCAAGGUCUUUCCCAA 

UBE2S J-009707-05 J-009707-05 UBE2S 27338 NM_014501 7657045 ACAAGGAGGUGACGACACU 

UBE2S J-009707-08 J-009707-08 UBE2S 27338 NM_014501 7657045 CCAAGAAGCAUGCUGGCGA 

UBE2U J-008998-11 J-008998-11 UBE2U 148581 NM_152489 22749026 GCUUUCUAAUCCAGUGCUA 
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UBE2U J-008998-09 J-008998-09 UBE2U 148581 NM_152489 22749026 CCUAAAGACCCACGUAAAU 

UBE2U J-008998-10 J-008998-10 UBE2U 148581 NM_152489 22749026 GGGUAUCACUGCUAAGCCU 

UBE2U J-008998-12 J-008998-12 UBE2U 148581 NM_152489 22749026 ACAGAAUACUACAGAACUC 

UBE2W J-009643-08 J-009643-08 UBE2W 55284 NM_001001482 47933382 ACAUAGGCCUACAGAAUUA 

UBE2W J-009643-07 J-009643-07 UBE2W 55284 NM_001001482 47933382 GGAAAUGAGUAGUGAUAUG 

UBE2W J-009643-10 J-009643-10 UBE2W 55284 NM_001001482 47933382 GAGGAGGUACUGUGUGUUA 

UBE2W J-009643-09 J-009643-09 UBE2W 55284 NM_001001482 47933382 GUAAUGCAUUGUUGAAAGA 

UBR1 J-010691-06 J-010691-06 UBR1 197131 NM_174916 83656781 GGAAAUCAGCGCGGAGUUA 

UBR1 J-010691-09 J-010691-09 UBR1 197131 NM_174916 83656781 GAUCAGCAAACCCACAAUA 

UBR1 J-010691-07 J-010691-07 UBR1 197131 NM_174916 83656781 GUACAAUCGUGUGGACAUA 

UBR1 J-010691-08 J-010691-08 UBR1 197131 NM_174916 83656781 GCGAAGAAAUGGACUGUCU 

UBR3 J-016653-08 J-016653-08 UBR3 130507 NM_172070 40255162 AGAUCGACCUACUGGAUUA 

UBR3 J-016653-07 J-016653-07 UBR3 130507 NM_172070 40255162 GAGAAAGCUCACCCAGUUA 

UBR3 J-016653-06 J-016653-06 UBR3 130507 NM_172070 40255162 AGGCAAACCUCUCUACAUU 

UBR3 J-016653-05 J-016653-05 UBR3 130507 NM_172070 40255162 AGAAAAGUCUUACGAAGUA 

UBR4 J-014021-12 J-014021-12 UBR4 23352 NM_020765 82659108 UGAACAAAUUUGCCGAUAA 

UBR4 J-014021-09 J-014021-09 UBR4 23352 NM_020765 82659108 GGGAACACCCUGACGUAAA 

UBR4 J-014021-11 J-014021-11 UBR4 23352 NM_020765 82659108 CUACGAAGCUGCCGACAAA 

UBR4 J-014021-10 J-014021-10 UBR4 23352 NM_020765 82659108 UCAUGAAGCCUGUUCGAAA 

UBR5 J-007189-09 J-007189-09 UBR5 51366 NM_015902 41352716 GGUCGAAGAUGUGCUACUA 

UBR5 J-007189-06 J-007189-06 UBR5 51366 NM_015902 41352716 GCACUUAUAUACUGGAUUA 

UBR5 J-007189-07 J-007189-07 UBR5 51366 NM_015902 41352716 GAUUGUAGGUUACUUAGAA 

UBR5 J-007189-08 J-007189-08 UBR5 51366 NM_015902 41352716 GAUCAAUCCUAACUGAAUU 
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Supplementary Table 4. List of antibodies. 

 

Protein Manufacturer Reference Application 

Androgen Receptor ThermoScientific MA5-13426 WB 

β-catenin (Ser33/37/Thr41-phospho) Cell Signaling 9561 WB 

β-catenin (total) Transduc lab 610468 WB/IF 

c-Myc Santa Cruz (1.N.2): sc-70469 WB 

CACUL1 (C10orf46) ABGENT AP4997b-ev WB 

CAND1 Abnova H00055832 WB 

Cdt1 Abcam ab70829 WB 

Cytokeratin 18 Dako M 7010 WB 

E-Cadherin BD Transduc lab 610181 WB/IF 

ERG Abcam [EPR3864] (ab92513) WB 

ERG Santa Cruz (C-17): X sc-354 X IP 

FAK Transduc lab F15020 WB/IF 

FKBP51 Santa Cruz (H100) : sc-13983 WB 

Frizzled-4 Santa Cruz (C-18): sc-66450 WB 

GAPDH Santa Cruz sc-25778 WB 

GSK3-beta Cell Signaling 9315 WB 

γH2AX (Ser139) Millipore 16-202A WB/IF 

phospho-IκB (Ser32) Cell Signaling 2859 WB 

Integrin beta 1 Abcam ab30394 WB/IF 

LEF1 Millipore 17-604 WB 

N-Cadherin BD Transduc lab 610921 WB/IF 

NEDD8 Abcam ab81264 WB/IF 

phospho-NF-κB (Ser536) Cell Signalling 3033 WB/IF 

Occludin In Vitrogen 33-1500 WB/IF 

P21 Santa Cruz (C-19): sc-397 WB 

P27 Cell Signalling 3686 WB 

P53 Santa Cruz  (FL-393 G): sc-6243-G WB 

Paxillin Transduc lab 13520 WB 

Prostein Santa Cruz  (A-5) : sc-393069 WB 

PSA DAKO  A0562 WB 

SUMO-1 Santa Cruz (FL-101): sc-9060 WB 

UBE2A GeneTex GTX114186 WB 

UBE2H Santa Cruz (18-Z): sc-100620 WB 

UBE2S ABGENT AP20071b-ev WB 

UBE2U Sigma HPA021660 WB/IF 

UBE2U Santa Cruz sc-104725 WB 

Ubiquitin Santa Cruz (P4D1): sc-8017 WB 

ZO-1 Invitrogen 617300 WB/IF 
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Supplementary Table 5. List of primers. 

 

Gene Direction Sequence (5' → 3') 

PSA 
Forward GATGAAACAGGCTGTGCCG 

Reverse CCTCACAGCTGCCCACTGCA 

TMPRSS2:ERG 
Forward GAGCGCCGCCTGGAG 

Reverse TAGGCACACTCAAACAACGACTG 

18S 
Forward CGATGCGCCGGCGTTATT 

Reverse CCTGGTGGTGCCCTTCCGT 

Prostein 
Forward CGCCATCTCCCTGGTCTTC 

Reverse CAGTGTCCCCTCGGTATTTG 

FKBP1 
Forward AAAAGGCCAAGGAGCACAAC 

Reverse TTGAGGAGGGGCCGAGTTC 

UBE2U-1 
Forward CAGATGAGGAAGTGCCCAAGT 

Reverse GCTCTTCCCCTATGCTGCT 

UBE2U-2 
Forward CCTGAGGCATTTGGGGACAA 

Reverse GAAGCTCATGCTCTTCCCCT 

UBE2U-3* 
Forward CCTGAGGCATTTGGGGACAA 

Reverse CCAAAATTGCTCCACAACGCT 

UBE2U-4 
Forward CAGATGAGGAAGTGCCCAAGT 

Reverse TCCAAAATTGCTCCACAACGC 
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Supplementary Table 6. Scores muRZ for Apoptosis and Cell Number, obtained during secondary screens. In red –

scores above the threshold muRZ > 0,82, decreasing viability (increasing apoptosis or decreasing cell number). In gold 

- strongest scores RZ>1,5, decreasing viability (increasing apoptosis or decreasing cell number). In green –scores above 

the threshold muRZ > 0,82, increasing viability (decreasing apoptosis or increasing cell number). 

 

muRZ for apoptosis muRZ for cell number 

siGene-№ 

V
C

aP
_C

h
SM

 

V
C

aP
_S

td
M

 

D
u

C
aP

 

P
C

3
 

LN
C

aP
 

R
W

P
E1

 

V
C

aP
_C

h
SM

 

V
C

aP
_S

td
M

 

D
u

C
aP

 

P
C

3
 

LN
C

aP
 

R
W

P
E1

 

AREL1-06 -1.39 0.14 -0.19 -0.86 0.10 -0.29 0.73 0.91 0.22 0.38 -0.21 0.09 

AREL1-07 -0.03 2.54 2.50 2.01 0.67 7.70 0.31 -0.04 -0.44 -0.90 -0.71 -1.60 

AREL1-08 0.46 0.02 0.09 -0.91 -0.30 0.07 0.61 0.10 -0.04 1.07 0.30 1.73 

AREL1-09 -0.61 -0.22 0.01 -0.15 -0.65 0.33 -0.15 -0.05 0.31 0.25 0.38 -0.16 

CACUL1-09 0.78 0.77 5.41 0.02 1.19 35.80 -0.13 0.40 -0.11 -1.27 -0.70 -2.29 

CACUL1-10 11.47 19.01 4.65 -0.67 4.08 1.62 1.73 -0.72 -1.27 -0.35 1.03 -0.72 

CACUL1-11 0.80 0.24 0.89 1.02 -0.10 0.08 0.08 1.37 0.01 0.08 0.72 0.90 

CACUL1-12 -0.54 -0.26 -0.36 -1.08 0.09 -1.11 0.47 0.24 0.35 0.67 -0.43 0.51 

CAND1-09 2.29 0.13 0.09 -0.12 2.67 0.96 0.87 -0.40 1.21 0.14 -0.31 1.28 

CAND1-10 2.23 4.22 6.97 2.04 21.77 21.55 0.34 1.01 -1.19 -1.71 -0.50 -1.95 

CAND1-11 -0.78 0.50 3.88 0.12 0.37 -0.28 0.78 1.25 -1.15 -0.77 -0.68 -1.75 

CAND1-12 0.62 -0.09 -0.08 2.43 0.12 -1.01 0.25 0.15 0.82 0.50 0.11 0.66 

siAllStars 0.15 0.07 0.16 0.21 -0.03 0.14 -1.02 -0.13 0.04 -0.09 0.82 0.25 

siCellDeath 14.30 21.97 0.57 40.35 47.09 75.56 -1.04 -1.82 -1.34 -3.20 -1.90 -3.43 

siERG -0.46 -0.25 4.52 1.85 1.59 27.59 -1.39 -0.93 -1.21 -1.62 -1.09 -2.61 

CUL2-05 -0.30 1.48 2.40 -0.20 0.56 -0.70 1.40 -0.35 -0.18 0.22 -0.21 -0.24 

CUL2-06 0.23 -0.26 2.57 -0.83 -0.50 0.29 -0.70 -0.53 -0.35 1.08 -0.73 -0.24 

CUL2-07 0.75 3.88 -0.17 8.55 -1.43 22.35 -0.44 -0.45 0.14 -0.48 0.10 -1.93 

CUL2-08 0.54 1.17 0.07 -1.26 1.28 -0.48 0.87 0.01 0.43 1.05 -0.03 0.76 

CUL4B-05 -0.21 -0.94 -0.24 -0.14 -0.37 -0.97 1.10 0.94 0.69 1.21 0.04 0.96 

CUL4B-06 0.36 1.05 -0.62 -0.38 0.02 -0.35 -0.30 -0.65 1.97 0.26 -0.62 0.51 

CUL4B-07 -0.67 -1.13 -0.09 2.19 0.03 0.57 -0.41 1.49 0.89 0.54 -0.38 0.07 

CUL4B-08 -1.20 -0.05 -0.40 -0.46 -0.31 -1.20 1.58 0.60 0.90 1.23 0.18 0.74 

DCUN1D3-05 -1.41 0.45 2.80 0.77 -0.75 -0.81 0.63 0.22 -0.42 1.01 -0.02 -0.10 

DCUN1D3-06 4.02 19.39 8.63 1.21 6.06 34.89 1.39 -0.16 -0.56 -0.66 0.97 -2.56 

DCUN1D3-07 -0.49 1.47 -0.19 -0.27 -0.53 -0.84 0.84 1.11 0.43 0.84 -0.15 0.34 

DCUN1D3-08 -0.13 -0.45 -0.83 -0.37 -0.72 -1.08 -0.17 0.52 1.63 -0.38 0.41 0.93 

DCUN1D5-09 -1.19 0.13 -0.41 -0.18 -0.55 -0.79 0.89 -0.02 1.42 0.80 -0.16 0.69 

DCUN1D5-10 -0.73 0.16 -0.06 -0.56 -0.24 -0.77 0.31 0.24 1.21 1.35 -0.26 0.67 

DCUN1D5-11 0.75 0.35 1.32 0.21 7.77 1.07 -0.52 0.45 0.24 -0.47 -0.08 -0.84 

DCUN1D5-12 5.92 4.05 7.88 1.93 7.43 0.40 1.14 1.91 -0.97 -0.03 -0.26 -0.70 

HERC2-09 1.34 1.93 0.06 -0.30 6.21 1.82 0.80 -0.31 0.09 0.10 -0.08 -0.70 

HERC2-10 0.74 0.31 0.33 0.82 1.40 0.17 0.03 -1.31 -0.37 -1.05 0.02 0.94 

HERC2-11 -1.40 -0.87 -0.37 0.12 -0.36 0.20 -0.33 -0.27 0.15 -0.44 -0.99 0.81 

HERC2-12 -1.03 -0.43 0.62 -0.01 -0.20 -0.73 0.25 0.32 -0.71 0.21 1.11 1.23 
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HERC5-06 4.34 11.38 0.84 2.45 0.70 4.62 -0.25 -0.67 -0.64 -0.51 -0.46 -1.92 

HERC5-07 -1.43 0.31 1.27 -0.55 0.24 -0.87 0.14 -0.48 -0.50 0.86 0.65 0.58 

HERC5-08 -0.40 0.44 -0.07 0.32 0.09 0.07 -0.06 -0.65 0.71 -0.35 0.29 0.41 

HERC5-09 -0.18 -1.05 1.38 -0.29 0.54 -1.55 0.80 3.02 -0.45 -0.08 -1.08 0.76 

RBX1-07 -0.27 0.26 0.64 -0.03 0.05 -0.28 0.89 0.03 0.26 0.19 -0.45 -0.67 

RBX1-08 -0.74 -0.85 1.48 0.42 -0.38 0.03 0.58 0.64 -0.70 -0.31 -0.80 -0.91 

RBX1-09 -0.90 -0.31 -0.03 2.27 0.11 0.19 -0.96 -0.56 -0.31 -1.38 -0.88 -1.30 

RBX1-10 -0.96 -0.99 -1.04 0.51 0.01 0.17 0.33 1.03 1.82 -0.45 -0.89 -0.87 

RNF25-05 -0.70 -0.13 0.54 -0.26 -0.18 -1.02 0.22 0.24 0.06 -0.36 -0.67 1.02 

RNF25-06 -0.67 0.44 -0.54 -0.94 -0.51 -0.47 0.48 -0.19 0.54 1.08 0.08 0.41 

RNF25-07 -0.38 -0.23 0.09 -0.35 -0.41 -0.25 1.57 -0.22 0.22 0.97 0.29 0.32 

RNF25-08 -0.77 -0.46 -1.07 -0.43 -0.77 -0.79 -0.84 0.56 1.07 -1.00 0.54 1.17 

SAG-05 0.13 -0.81 -0.84 -0.07 -0.40 -0.75 -0.59 0.86 1.72 0.26 0.03 1.19 

SAG-06 0.06 -0.41 -0.12 -0.72 0.13 -0.80 1.06 0.10 0.20 0.81 -0.26 0.85 

SAG-07 -1.59 -1.06 -0.02 -1.01 -0.26 -0.35 0.38 0.80 -0.41 -0.72 -0.78 -0.27 

SAG-08 0.47 0.93 -0.10 0.10 -0.10 -0.26 0.33 0.39 0.19 0.85 0.58 0.54 

SPOP-08 0.48 0.74 -0.61 -0.24 -0.29 -0.56 0.00 0.08 0.57 0.82 -0.90 0.15 

SPOP-09 -0.72 -0.36 -0.19 -0.82 0.47 -0.74 0.38 0.80 -0.45 1.40 -1.35 0.58 

SPOP-10 -0.17 1.14 0.12 -0.28 0.48 1.40 -0.05 -0.98 0.83 0.06 1.62 0.30 

SPOP-11 -0.35 -1.22 1.21 -0.74 -0.70 -0.73 -0.17 2.16 -0.11 -0.54 -0.18 0.63 

UBA3-05 -1.47 0.65 3.12 -0.15 0.40 -0.35 1.68 0.22 -0.70 1.25 -0.73 -0.42 

UBA3-06 -0.54 -0.58 -0.49 -0.61 -0.20 -0.72 0.18 0.18 0.79 0.54 0.18 1.05 

UBA3-07 0.77 1.54 -0.59 0.01 -0.49 -1.06 0.19 -0.37 0.43 0.16 -0.09 -0.33 

UBA3-08 0.22 0.12 4.90 0.76 2.71 0.00 -0.63 0.08 -1.01 -0.41 -0.51 -0.97 

UBE2A-05 -0.46 -0.48 -0.54 -0.49 -1.12 -0.48 0.41 1.32 0.69 -0.03 6.73 0.74 

UBE2A-06 -0.77 -0.50 -0.39 -0.56 -0.73 -0.60 -0.17 1.52 0.53 1.07 0.15 0.58 

UBE2A-07 -0.82 -0.77 -0.94 -0.79 -0.69 0.16 0.06 0.42 0.18 -0.32 -0.26 -0.55 

UBE2A-08 -0.43 -0.81 0.01 -0.99 -1.25 -0.97 -0.07 -0.13 -0.53 -0.36 6.85 0.60 

UBE2D2-06 -0.37 -0.37 -0.81 -0.45 0.01 0.45 -0.71 -1.06 1.26 -0.36 -0.91 0.65 

UBE2D2-07 3.31 9.36 7.63 0.97 3.32 4.20 0.44 0.81 -1.03 -0.33 -0.70 -1.59 

UBE2D2-08 -1.10 -0.53 0.79 0.85 0.59 1.35 0.02 -1.61 -0.69 0.07 -0.80 -0.45 

UBE2D2-09 -0.20 -0.65 -0.52 2.44 -0.21 -0.17 0.31 0.94 1.32 -0.17 0.62 -0.10 

UBE2F-09 -0.47 0.08 0.00 0.81 -0.03 0.07 0.61 -0.50 1.04 0.44 0.46 0.13 

UBE2F-10 -0.57 -0.06 -0.61 0.17 -0.31 -0.38 -0.34 -0.64 0.84 0.15 0.14 0.29 

UBE2F-11 -0.23 0.62 1.78 1.57 -0.81 1.87 -1.84 -1.76 -1.21 -1.03 1.78 -1.66 

UBE2F-12 -0.70 -0.03 -0.33 -0.51 -0.68 -0.96 1.66 0.25 0.75 1.02 0.66 0.50 

UBE2G1-06 0.24 -0.49 0.67 -0.79 -0.52 -0.49 -0.33 -0.59 -0.24 0.48 -0.35 0.67 

UBE2G1-07 -0.67 -0.44 -0.31 -0.72 0.55 -0.76 0.43 0.51 0.89 1.04 -0.08 0.46 

UBE2G1-08 -0.01 -0.84 0.65 -0.38 -0.93 -0.02 0.36 0.15 0.65 1.14 1.03 -0.50 

UBE2G1-09 -0.07 -0.70 -0.52 0.14 -0.21 -0.30 -1.26 -0.31 0.32 0.63 1.98 -0.62 

UBE2H-05 5.54 13.95 4.35 0.42 1.77 2.19 1.91 0.76 -0.51 1.27 0.48 0.05 

UBE2H-06 -0.36 -0.68 -0.59 -0.12 -1.22 -0.18 0.90 0.68 0.89 0.54 5.43 0.37 

UBE2H-07 0.76 1.90 -0.09 -0.96 -0.09 -0.42 0.57 1.62 0.64 1.25 1.54 0.49 

UBE2H-08 0.91 -0.36 1.56 0.53 0.03 1.68 -0.52 0.52 -1.29 -1.12 1.12 -1.60 
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UBE2J1-05 -0.91 -0.77 -0.50 -0.43 -0.81 0.13 -0.22 0.11 0.07 -0.30 3.80 -0.38 

UBE2J1-06 0.40 -0.15 3.10 2.75 3.44 1.25 0.89 1.07 -0.97 -0.02 0.64 -1.44 

UBE2J1-07 -0.97 -0.10 1.14 0.12 0.26 9.31 1.47 -0.33 -1.16 0.14 -0.63 -1.64 

UBE2J1-08 4.13 0.29 -0.22 -0.56 0.05 0.93 -0.72 -0.59 0.51 -0.38 0.20 0.37 

UBE2QL1-09 -0.57 -0.36 -0.32 -0.53 -0.68 -0.77 0.34 -0.08 0.75 -0.12 0.12 0.02 

UBE2QL1-10 1.80 -0.08 2.97 -0.80 -0.44 0.25 0.81 1.96 0.58 0.21 1.51 -1.11 

UBE2QL1-11 -0.85 -1.21 -0.56 -0.11 -0.33 -1.06 0.42 0.20 0.73 1.33 1.04 0.53 

UBE2QL1-12 1.25 6.12 3.44 -0.43 10.99 2.32 0.43 -0.16 -0.22 -1.34 -1.84 -1.79 

UBE2S-05 2.69 1.07 0.38 0.35 -0.69 4.92 -0.59 0.45 -1.22 1.50 1.56 -1.84 

UBE2S-06 -0.02 -0.50 -0.43 1.25 -0.37 0.82 0.38 0.31 -0.20 0.34 5.58 -0.15 

UBE2S-07 0.28 1.46 1.45 0.32 0.35 -0.07 0.07 1.91 0.96 0.55 -0.08 -0.35 

UBE2S-08 1.47 1.40 -0.69 0.20 0.18 0.70 -0.83 -0.97 0.89 -0.17 -0.21 -0.69 

UBE2U-09 -0.94 -0.40 -0.35 0.41 -0.29 -0.54 0.94 1.00 0.94 0.45 0.63 0.37 

UBE2U-10 3.12 3.73 1.34 4.96 3.72 32.69 0.47 -0.47 -1.11 -1.25 -0.18 -1.95 

UBE2U-11 1.43 0.56 3.41 -0.61 -0.14 2.50 1.04 0.64 -0.80 1.23 -0.17 -1.09 

UBE2U-12 6.47 3.83 1.00 1.71 14.26 2.44 0.65 -0.50 -0.74 -0.53 -1.22 -1.73 

UBE2W-07 -0.40 -0.43 -1.04 1.11 -0.46 -0.10 -0.17 -0.89 1.43 0.27 0.05 -0.02 

UBE2W-08 5.60 1.76 4.22 2.20 7.27 6.11 0.05 -0.82 -1.01 0.91 -0.14 -0.42 

UBE2W-09 -0.24 -0.99 -0.55 -0.47 -0.37 -0.30 0.22 1.13 0.82 0.08 0.58 0.57 

UBE2W-10 -0.87 0.12 -0.38 -0.90 -0.36 -0.36 0.55 -0.19 1.05 0.83 1.31 0.20 

UBR1-06 0.07 0.05 0.41 -0.46 -0.46 -0.29 -1.05 0.25 0.17 0.17 0.93 -0.28 

UBR1-07 -0.46 0.44 -0.50 0.31 0.46 0.37 1.50 1.30 0.27 1.01 0.25 -0.10 

UBR1-08 7.37 6.75 0.18 2.12 0.95 0.47 -0.60 0.48 -0.48 -0.55 1.08 -1.30 

UBR1-09 0.00 0.77 -0.83 -0.10 -0.09 -0.42 1.14 -0.15 0.36 0.75 -0.03 -0.26 

UBR3-05 -0.31 -0.56 -0.89 -0.15 0.87 -1.00 -0.69 0.27 -0.19 -0.36 1.33 -0.46 

UBR3-06 -0.85 -1.06 -0.87 -0.67 -0.40 -0.85 1.41 0.45 0.82 1.15 -0.12 1.20 

UBR3-07 6.34 7.20 5.41 17.59 9.09 5.38 -0.35 -0.85 -0.87 -1.00 -0.18 -1.19 

UBR3-08 1.12 3.06 -0.36 -0.32 -0.19 -0.17 -0.27 -0.92 0.26 -0.19 0.24 -0.27 

UBR4-09 -0.46 -0.84 -0.85 0.08 0.63 0.04 -0.42 0.14 1.31 0.35 0.37 0.10 

UBR4-10 1.29 -0.40 -0.86 -0.03 0.20 -0.07 0.86 0.35 1.32 0.27 0.10 0.52 

UBR4-11 -0.44 -0.44 -0.74 -0.63 -0.28 -0.62 1.75 0.31 0.76 0.32 -0.30 0.64 

UBR4-12 0.32 -0.35 0.42 -0.53 -0.15 0.86 1.12 3.51 0.13 0.39 1.73 -0.85 

UBR5-06 -0.08 0.51 -0.18 -0.69 -0.85 -0.55 -0.31 -0.43 -0.16 0.17 0.09 -0.24 

UBR5-07 -0.99 -0.81 -0.95 0.13 -0.37 -0.60 -1.08 0.37 0.91 2.29 0.00 0.59 

UBR5-08 -0.12 -0.92 -0.81 0.31 -0.04 -0.90 0.02 0.52 0.76 0.09 -0.05 1.12 

UBR5-09 2.02 2.55 2.55 2.30 2.45 33.06 -0.49 -1.35 -0.81 -1.96 -1.18 -3.05 
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Supplementary Table 7. Summary of secondary screens. Designations: numerics - number of hit siRNAs causing the 

same phenotype. 2 to 3: means 2 hit above the threshold, and 1 more just below the threshold. 1 (but 07): 1 hit with the 

'major' phenotype, but siRNA with catalogue number 07 is a hit in the other direction. In red - hits decreasing viability, 

in green - increasing viability. Colon “Overall” describes the “major” phenotype caused by the gene inhibition: death – 

more apoptosis, survival – less apoptosis, ↓/↑ in cells – decrease or increase of cell number comparing to control. 

Gene 
Overall Consensus VCaP 

VCaP 
(StdM) 

DuCaP PC3 LNCaP RWPE1 Comment 

UBE2U death 
All 

3 (but 
09) 

2 3 2 2 3 Extremely clear phenotype 

CAND1 death 
All 2 (to 3) 1 2 2 2 2 (but 12) Extremely clear phenotype 

UBE2H death 

Except PC3 
and LNCaP 

2 to 3 2 2 0 (but 07) 1 (but 08) 2 Potentially ERG-specific? 

CUL4B 

survival 
AND ↑ in 

cells 

All except 
LNCaP 

1  AND 2 
2 (but 

06) AND 
2 

0 AND 3 
to 4 

0 (but 07) 
AND 2 

0 and 0 
2 AND 1 to 

2 
weak but clear 

UBE2A 

survival 
AND ↑ in 

cells 

All 
0 to 2 
AND 0 

0 to 2 
AND 2 

1 AND 0 
1 to 2 AND 

1 
2 to 4 AND 

2 
1 AND 0 weak but clear 

RBX1 

survival 
OR ↓ in 

cells 
Just VCaP 2 to 3 2 

1 (but 
08) OR 0 

0 (but 09) 
OR 1 

0 OR 2 to 
3 

0 OR 3 Opposite phenotype for LNCaP 
and RWPE1 

CUL2 death 
VCaP & 
DuCaP 

0 to 1 3 2 
1 (but 08 

& 06) 
1 (but 07) 1 

No effect for VCaP in ChSM (ERG 
suppressed?) 

DCUN1D5 
death OR 
↑in cells 

opposite 
phenotypes 

1 to 2 
OR 2 

1 OR 1 2 OR 2 
1 OR 1 to 

2 
2 OR 0 

1 OR 0 to 
2 

2 siRNAs cause mostly apoptosis, 
and 2 others cause mostly 

increase in cell death 

UBE2QL1 death 

VCaP & 
DuCaP 

2 (but 
11) 

1 (but 
11) 

2 0 1 1 (but 11) 
Only 1 siRNA is strong -> off-

target? For others effect is unclear 

CACUL1 death 

All except 
PC3? 

1 to 3 1 to 2 3 1 (but 12) 2 2 (but 12) Specific for AR-sensitive cells? 

AREL1 no effect 
All             only si07 kills cells - off-target 

UBE2S death VCaP RWPE1 2 3 1 1 0 2 Rather unclear 

DCUN1D3 death 
No 

1 but 
(05) 

2 
2 (but 

08) 
1 to 2 1 (but 3?) 

1 (but 
07,08) 

Only si06 definitely causes death -
> off-target? 

HERC2 no effect 
all             

Only si07 definitely causes death -
> off-target? 

HERC5 death 
Just DuCaP 

1 (but 
07) 

1 (but 
09) 

3 1 0 
1 (but 07 

& 09) 
  

RNF25 no effect All               

SAG no effect All             Not very clear 

SPOP no effect All               

UBA3 no effect All               

UBE2D2 death 
RWPE1 

1 (but 
08) 

1 1 1 to 3 1 2 
Only si06 definitely causes death -

> off-target? 

UBE2F no effect all               

UBE2G1 no effect all               

UBE2J1 death 
DuCaP & 
RWPE1 

1 (but 
07&05) 

0 2 1 1 3   

UBE2W No effect 
all             

Only si08 causes death - off-
target? 

UBR1 No effect 
all             

Only si08 causes death - off-
target? 

UBR3 No effect 
all             

Only si08 causes death - off-
target? 

UBR4 No effect all               

UBR5 No effect 
all             

Only si08 causes death - off-
target? 
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Summary 

The major aim of cancer therapy is to specifically suppress malignant 

neoplasm without detriment to normal cells. Modern therapeutic approaches 

exploit characteristic hallmarks of cancer cells, which render them 

susceptible to certain types of assault such as DNA damage, and mitotic and 

oxidative stress. Recently, the ubiquitin-proteasome system (UPS) has 

emerged as one of the principal cancer targets. In this work, a systematic 

approach, based on cascade organization, is described for screening the UPS. 

The effect of RNAi knockdown of individual UPS components on the 

viability of PCa cells was evaluated, with major focus on the TMPRSS:ERG-

positive cell line, VCaP, as a model of the prevalent phenotype of prostate 

cancer. Seven genes have been identified to be particularly important for the 

functioning of PCa cells. Among them, UBE2U was the strongest hit. This 

thesis provides the first evidence for UBE2U involvement in prostate 

carcinogenesis and describes initial characterization of UBE2U as a potential 

drug target. 

The prevalence of the components of the CRL/NEDD8 pathway in the hits 

(four out of seven) suggests the importance of neddylation to PCa biology. 

Two of these hits, CUL2 and RBX1, being specific to TMPRSS2:ERG-

positive cells, were potentially ERG-dependent. This study reveals the crucial 

role of the CRL-exchange factor, CAND1, in particular, when neddylation is 

compromised. Knockdown of CAND1 induces apoptosis in VCaP cells 

which is further potentiated by neddylation-specific inhibitor MLN4924. 

CAND1 is, therefore, a novel potential drug target. Furthermore, this study 

has found that the inhibition of the CRL/NEDD8 pathway in PCa cells has a 

complex outcome that strongly depends on cellular context. The MLN4924 

inhibitor induced apoptosis in all tested cell lines, though TMPRSS2:ERG 

positive cells were significantly more resistant. This study demonstrates that 

the increased resistance of VCaP cells reflects the plasticity of cancer cells is 

provided by the sophisticated interaction network ERG:NF-kB:c-Myc:Wnt/β-

cat:AR. Partial inhibition of neddylation triggered transcriptional 

reprogramming of the VCaP cells, leading to cell quiescence and inhibition 

of proliferation-dependent apoptosis. This was a result of the re-activation of 

the AR program and the induction of a differentiation-like state. We conclude 

that the CRL/NEDD8 pathway regulates one of the cancer transcriptional 

networks which underlie cancer cell plasticity. This knowledge may help in 

the search for better treatments for TMPRSS2:ERG-positive cancers. 

Finally, it was observed that neddylation inhibition changed the membrane 

properties and the morphology of VCaP cells. This was accompanied by 

dose-dependent changes in the level and localization of several membrane-

associated proteins, including occludin, N-cadherin, paxillin and FAK. We 

thus conclude that CRL/NEDD8 pathway might be involved in the 

sorting/trafficking of membrane proteins. This part of the work requires 

further investigation, since gaining an understanding of its underlying 

mechanisms would be of general importance and may uncover a new role of 

the CRL/NEDD8 pathway in the regulation of cellular functions. 

General conclusions: 

1.We have obtained a comprehensive dataset on the involvement of all the 

human E1-E2 UPS components in the regulation of viability of PCa cells. 

2.Our work has revealed new potential drug targets for PCa treatment: 

UBE2U and CAND1. 

3.We have demonstrated the role of CRL/NEDD8 pathway in the regulation 

of cancer cell plasticity and morphology. 


