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Introduction  

Durant les 30 dernières années, des efforts considérables ont été menés en sciences de 

matériaux autour de l’étude de matériaux conducteurs solides superioniques. Ils combinent 

une conductivité ionique élevée et une bonne résistance mécanique, et trouvent ainsi un large 

domaine d’applications dans les piles à combustibles, les capteurs, les supercondensateurs ou 

les batteries, etc... [1]. 

Les sulfates d’alcalins, conducteurs superioniques sont référencés comme des 

électrolytes solides à base de Li2SO4 (Li2SO4, LiNaSO4, LiKSO4, etc.) appartenant à la 

famille des conducteurs ioniques  LiMSO4 (M = Na, K, Rb, NH4, Ag).   Les diagrammes de 

phase des systèmes Li2SO4–Na2SO4, Li2SO4–Ag2SO4, Li2SO4–K2SO4, et Li2SO4–ZnSO4 

indiquent l’existence de plusieurs phases conductrices à haute température : LiNaSO4 (bcc), 

LiAgSO4 (bcc), et Li4Zn(SO4)3 (réseau non-cubique), avec des conductivités pouvant 

atteindre 1 11 Ohm cm− − à 600°C.  

Les sulfates doubles d’alcalins à haute conductivité ionique (LiNaSO4, LiKSO4) sont 

étudiés plus particulièrement dans cette thèse, les sulfates moins conducteurs, comme 

LiRbSO4 et LiCsSO4, seront aussi abordés dans ce travail, l’idée étant de mieux comprendre 

les mécanismes de transport dans ces cristaux.  

Les deux membres de la famille des sulfates d’alcalins doubles, LiNaSO4 (LNS) et 

LiKSO4 (LKS) méritent une attention particulière de par leurs propriétés de conduction. Ils 

sont de plus peu sensibles à l’humidité à l’inverse de beaucoup d’autres sulfates à base de 

lithium (comme Li2SO4) [2]. Les monocristaux de LNS et LKS  peuvent être préparés 

simplement à partir d’une solution aqueuse des sulfates d’alcalins correspondants.  

Ces propriétés en font des bons candidats pour des applications dans le domaine des batteries 

solides, des piles à combustibles ou des batteries de stockage [3]. 

L’évolution en température de la conductivité ionique dans LNS et LKS (Fig. i) 

indique des valeurs tout à fait intéressantes: pour LKS, entre  708K et la température de fusion 

à 950K   (phase II) la conductivité augmente de 10-2 jusqu’à 102 Ohm-1cm-1. Pour LNS, dans 

la phase haute température, au-dessus de 788 K  la conductivité  est plus élevée que dans LKS  

mais le domaine de température concernée par ces valeurs reste très restreint et la température 

de transition assez élevée comparée aux températures visées pour des batteries thermiques 

(670-870 K) [2] par exemple. Néanmoins les caractéristiques attendues pour  ce type 

d’applications seraient une conductivité ionique autour de 0.1 Ohm-1cm-1 dans la phase 
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conductrice alors qu’au-dessous de 340 K, l’électrolyte devrait avoir une conductivité 

négligeable pour éviter la décharge « spontanée » de la batterie.  

Aujourd’hui LNS et LKS ont été testés uniquement dans des cellules prototypes   entre 

770-870 K [2]. Malgré ces différentes limitations, il est intéressant de bien comprendre les 

mécanismes mis en jeu dans ces systèmes  que ce soit pour des applications à venir ou dans 

un intérêt purement académique comme nous le montrerons dans ce travail. 

 

 
Fig. i. Dépendance en température de la conductivité ionique d.c. de monocristal de LiNaSO4  (points 

verts) [4], de la poudre LiNaSO4   (points rouges) [5], et dans le monocristal de LiKSO4   

perpendiculaire à l’axe c-axis (étoiles bleues) [6]. Les lignes bleues en pointillés indiquent les 

températures de transition dans LiKSO4 (708 et 943 K), la ligne rouge en pointillé indique la 

température de transition de phase dans  LiNaSO4 (788 K). 

Les sulfates LNS et LKS sont en effet caractérisés en plus d’un sous réseau cationique 

“quasi-liquide” par un désordre rotationnel des groupements sulfates  avec un couplage entre 

les rotations des anions SO4
2- et la diffusion des cations. La présence de tels mouvements 

corrélés a souvent été décrit par un mécanisme d’engrenage,  “paddle-wheel”ou “cog-wheel”, 

les atomes d’oxygène des ions sulfates « pousseraient » les cations dans des sites interstitiels 

voisins, ou dans des lacunes et une telle ‘assistance’ augmenterait la conductivité ionique[7-

9]. Pendant plus d’un demi-siècle, depuis la découverte d’une conductivité superionique dans 

ii 



LNS, de nombreux articles ont été publiés sur sa structure et ses propriétés dynamiques. Il a 

été montré que la transition de phase était complétement réversible avec des effets 

d’hystérésis très faibles et une enthalpie de fusion anormalement faible 

comparée à l’enthalpie de la transition solide-solide,  [10]. Cette 

« anomalie » a été attribuée à la dynamique et à la réorientation du tétraèdre SO4 dans le 

cristal LNS. 

  

 
Fig. ii. Dépendance en température des temps de relaxation spin-réseau de 7Li dans LiNaSO4 à deux 

champs différents ν(7Li) = 6 MHz (à gauche) et 20 MHz (à droite) [11].  Les contributions BPP sont 

reportées en pointillés rouges (7Li) et bleus (23Na), respectivement. Les énergies d’activation sont 

estimées à Li 0.7eVaE =  and Na 1.2eVaE = . 

Kanashiro et al. [11] ont publié des mesures de T1 du 7Li à différents champs 

magnétiques et ont montré que l’évolution en température de la vitesse de relaxation dans le 

monocristal de LNS ne pouvait pas être décrite par un simple modèle BPP, mais qu’il fallait 

tenir compte d’une fonction de densité spectrale avec au moins deux temps de corrélation.  

D’autre part, il a été montré que le désordre réorientationnel des  groupements SO4
2-

  

ainsi que la mobilité cationique démarraient bien avant la transition de phase α-β [12, 13], 

mais que  les réorientations à basse température n’avaient qu’un  effet  très faible sur la 

diffusion des ions Li+ [13], dans la phase β (< 788 K). 

Dans ce travail, nous avons cherché à caractériser l’ensemble de la dynamique sur 

toute la gamme de température en utilisant la potentialité des outils RMN à notre disposition : 

14.1kJ molfH −∆ =

120.8kJ moltrH −∆ =
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depuis les mesures de T1, l’évolution des largeurs de raies et les mesures de coefficients 

d’autodiffusion en température. En parallèle à la description de la mobilité des cations Li+ et 

Na +, nous avons montré expérimentalement comment sonder les réorientations des SO4
2- à 

partir de la dépendance en température de l’éclatement quadripolaire du 7Li, Qν , dans le 

cristal de LNS.  

Pour LiKNO3, malgré de nombreuses approches expérimentales et théoriques, 

certaines conclusions sont toujours controversées et une vision claire et définitive du 

diagramme de phase n’est toujours pas disponible.  Néanmoins,  les structures des deux 

polymorphes de LiKSO4 sont bien établies pour la phase à haute température (phase I, 

T > 943 K) et la phase à température ambiante (phase III, 203 K < T < 708 K),  tandis que les 

structures  de la structure de la phase intermédiaire et des phases au-dessous de 203 K ne sont 

toujours pas validées.  M. Pimenta et al. [6] ont montré qu’au-dessous de 653 K et au-dessus 

de 708 K la conductivité ionique dans le monocristal de LKS  (le long de l’axe c) suivait une 

loi d’Arrhenius.  Pour les composes “faiblement conducteurs”, LiRbSO4 et LiCsSO4 (et leurs 

solutions solides) beaucoup d’études ont été menées pour leurs propriétés ferroélectriques et 

leurs diagrammes de phase [14-19], mais la question de leur mobilité ionique n’a jamais été 

prise en compte. 

Il reste donc un certain nombre questions non résolues autour de la mobilité ionique 

dans les sulfates d’alcalins. De plus du fait de l’évolution rapide des techniques 

expérimentales et de leurs potentialités notamment pour la spectroscopie RMN, et ses 

développements à haute température pour la mesure des coefficients d’autodiffusion par RMN 

à gradients de champs pulsés [20], nous avons pu réexaminer les différentes approches et 

tenté de répondre à ces questions en mettant à profit l’ensemble de ces outils RMN pour 

suivre in situ en température les différentes étapes de la mobilité ionique dans les sulfates 

d’alcalins.  

*** 

Dans le premier chapitre de la thèse, “Elements of NMR relaxation theory”, nous 

avons choisi de décrire quelques éléments de théorie RMN pour les noyaux  quadripolaires 

dans les solides. En effet, dans les sulfates d’alcalins, les différents atomes étudiés sont tous 

quadripolaires, comme dans le cas de LiNaSO4 et les isotopes 7Li, 23Na, 33S, avec un spin 

3 2I = ,  6Li avec un spin 1I = , et 17O, avec un spin 5 2I = . Dans le cadre de cette étude 

principalement focalisée sur l’approche de la mobilité ionique dans les phases cristallines, une 
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attention particulière a été naturellement portée sur les mesures et l’interprétation des temps 

de relaxation spin réseau.  

Le second chapitre, “Theory and measurements of diffusion in solids”, est consacré à 

l’étude de la diffusion et de l’autodiffusion dans les solides. La première partie du chapitre 

donne les éléments théoriques pour décrire les processus de diffusion, et dans la deuxième 

partie nous décrivons les méthodes de mesures utilisées, notamment la RMN à Gradients de 

champs pulsés.   

Le chapitre 3 traite  des aspects expérimentaux des mesures RMN à haute température 

(HT) et des différentes optimisations effectuées au cours de ce travail pour contrôler au mieux 

la température et sa mesure au niveau de l’échantillon.  

Enfin dans le chapitre 4 “Experimental study of alkali sulfates”, nous présentons les 

résultats expérimentaux obtenus dans les différents sulfates d’alcalins avec une attention 

particulière sur le composé LiNaSO4 qui montre une dynamique ionique la plus intéressante, 

et une approche comparée de la mobilité du lithium dans les sulfates « doubles » avec des 

cations plus gros, (K+, Rb+, and Cs+). 
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Introduction 

I.1 Superionics and their classifications 

The last 25-30 years considerable efforts of theorists and experimentalists in the field 

of material science are aimed at solid ionic conductors with liquid-like ionic conductivity. 

Such second-class (ionic) conductors are referred to as solid electrolytes, superionic 

conductors or fast ionic conductors. They combine high ionic conductivity and mechanical 

strength and, due to this, find wide applications in fuel cells, sensors, supercapacitors, 

batteries, etc. In fact, a number of researches increases in the field of power engineering, 

machine industry, electronics for the newest current sources with high capacity, energy, and 

power density. An analysis of the passive electronic components industry shows that one of 

the most promising electronic devices of the nearest future are supercapacitors, whereas 

lithium batteries are considered as the most promising active elements [1]. 

Application prospects of solid electrolyte-based devices are determined by 

understanding of their physicochemical properties and by ability to modify these properties in 

a controlled manner. Therefore, a detailed study of electronic structure and transport 

properties as well is required. The rapid development of computer technology and specialized 

softwares for material science significantly expanded capabilities of solid state physics and 

chemistry methods in the study of electronic structure of solids and even their transport 

properties. Nevertheless, experimental methods, particularly traditional techniques such as 

ionic conductivity, self-diffusion and NMR relaxation measurements play still a decisive role 

in this field. 

In general, under normal conditions the ion transport in both crystalline and 

amorphous solids is insignificant; at room temperature, the ionic conductivity σ  in usual 

solids does not surpass 10 1210 10− −−  Ohm-1cm-1 [21]. Since the ionic conductivity has 

thermally activated nature, σ  increases with temperature, but even near the melting point it 

rarely surpasses 310−  Ohm-1cm-1. However, anomalously high conductivity of solid 

electrolytes occurs far below the melting point. Thus, solid electrolytes combine the 

properties of liquids and solids. 

For the first time, high ionic conductivity in solids was found in silver sulfide by 

Faraday (1833) [22]. It was shown that it exhibits conductivity comparable to metals in the 

high-temperature range, but, in contrast to metals, loses its conductivity upon cooling down. 

One year later, a considerable increase of the ionic conductivity was found in lead fluoride at 
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723 K. Nowadays, this effect observed in crystals with fluorite-type structure is referred to as 

Faraday (diffuse) transition. It was also recognized later that the generation of a counter 

voltage (polarization by chemical precipitation) during the passage of a current is a 

characteristic feature of electrolytic conductivity of solids, and this led to the discovery of an 

increasing number of solid conductors of a second class. 

High value of the ionic conductivity in solid electrolytes is generally caused by a 

disordering of one or more crystalline sub-lattices. Obviously, this could be realized only in 

solids with extremely weak covalent bonds. Other prerequisites for existing of fast ionic 

conductivity in a solid are as follows: 1) the number of energetically equivalent 

crystallographic positions should exceed the actual number of ions; 2) energy barriers for 

ionic jumps should be quite small (in comparison with kT); 3) conducting channels should 

exist in the structure, otherwise, only local motions of ions could be fast. 

 
Fig. 1. A general classification of ionic conductors: 2,4,6 – known solid electrolytes, i.e. materials with 

i eσ σ>> ; 1,3,5 – ion-electron conductors; 3,4 – superionic conductors; 5,6 – advanced superionic 

conductors; 7,8 – hypothetic advanced superionic conductors with 0.03E kT∆ ≈ ≈  eV (300 K) [1]. 

Other significant feature of the fast ionic conductors is that the concentration of point 

defects in their structure is much higher than the concentration of charge carriers (interstitial 

atoms or vacancies) in usual ionic conductors. Unfortunately, there is still no reliable method 

to measure the actual concentration of defects in solid electrolytes; therefore, one usually 

assumes that all ions of the disordered sub-lattice participate to the charge transport. In 

different solid electrolytes the conductivity is provided by single-, double-, and triply-charged 

cations (Ag+, Cu+, Li+, Na+, K+, Rb+, Cs+, Ca2+, Zn2+, Mg2+, Al3+, Ce3+, Eu3+), and by anions (
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2F ,Cl ,Br ,O− − − − ) [21]. There are also materials, where diffusion of two different ions occurs, 

e.g. Li+ and Na+ in LiNaSO4. 

The enhancement of the conductivity in solid electrolytes is commonly accompanied 

by a phase transition; above the phase transition temperature, ion diffusion is characterized by 

the same values of preexponential factor and activation energy as for diffusion in liquids. It 

was suggested by O’Keefe [23, 24] to classify ionic solids by the type of transition to the 

conducting state. According to this classification, ionic solids could be divided into three 

classes. The Class I includes normal salts (PbCl2, MgCl2, CaBr2, etc.); in these materials the 

ionic conductivity increases only after the melting. In solids of the Class II a first order phase 

transition to the conducting state occurs; this phase transition is accompanied by a value of the 

latent heat close to the fusion heat of normal salts. The Class II includes CuBr, CuI, AgI, 

Ag2S, Li2SO4, LiNaSO4, YF3, BaCl2, SrBr2, etc. There is also a number of salts (Na2S, 

Li4SiO4, CaF2, SrF2, PbF2, LaF3, etc.), in which the non-conducting–conducting 

transformation is not a first order transition as in Class II solids but is spread out over a 

substantial temperature range. Such salts are classified as Class III. 

In Refs. [1, 25] the classification of ionic conductors in terms of ( ,i eσ σ )-diagram was 

suggested ( iσ  and eσ  are the ionic and electronic conductivity, respectively) (Fig. 1). 

According to this classification, solid electrolytes include materials with i eσ σ>>  (regions 2, 

4, and 6 on the diagram). Materials, satisfying this condition but possessing also high 

electronic conductivity are referred to ion-electron conductors (regions 1, 3, 5). Examples for 

such materials are Ag2+xS, Ce2-xO, YBa2Cu3O6+x [26]. Materials with ionic conductivity 
110iσ −>  Ohm-1cm-1 ( 0.1aE ≈  eV) at room temperature are called advanced superionic 

conductors (regions 5, 6). The well-known advanced superionic conductors are α-AgI, α-

RbAg4I5, CsAg4Br3-xI2+x, Rb4Cu16I7Cl13 and some others [25]. Finally, regions 7 and 8 

correspond to hypothetic (not yet discovered) advanced superionic conductors with 

0.03a kTE ≈ ≈  eV at room temperature. Such value of activation energy should provide 

2iσ =  Ohm-1cm-1 for Ag2+ mobile ions and 8(20)iσ =  Ohm-1cm-1 for small Li+ (H+) mobile 

ions. 

Sometimes, the value of the activation energy (and of the pre-exponential factor as 

well) is a better criterion for characterization of fast ionic conductors than the ionic 

conductivity itself. It should be noted that in complex solid electrolytes the conducting ions 

are distributed non-uniformly over crystallographically nonequivalent sites characterizing by 
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potential barriers of different heights. However, one can introduce the average value of the 

activation energy, which is usually small relative to that of ordinary solids. 

I.2 Sulfate superionics 

Sulfate superionic conductors also referred to as Li2SO4-based solid electrolytes 

(Li2SO4, LiNaSO4, LiKSO4, etc.) belong to a distinct family of fast ionic conductors with 

general formula LiMSO4 (M = Na, K, Rb, NH4, Ag). These compounds exhibit successive 

structural phase transitions, ferroelectricity (albeit weakly pronounced), and interesting 

properties of ionic conductivity. The first study of lithium sulfate has been carried out in 1921 

[27], when it was reported that solid Li2SO4 shows a drastic increase of the electrical 

conductivity when the temperature is approaching 580°C. However, this did not attract much 

attention until after it had been determined that the structure of the high-temperature phase 

was fcc for Li2SO4 and bcc for LiNaSO4 [28, 29] and that the electrical conductivity of both 

these phases was of the same magnitude as that of the fused state [29]. 

 

Table 1. Transport properties of some sulfate fast ionic conductors at 873 K [21]. 

Phase σ, Ohm-1cm-1 Eσ, eV Ion D, 10-9 m2/s ED 

Li2SO4, fcc 1.07 0.43 
Li+ 

2
4SO−  

1.59 

~0.0002 

0.34 

0.22 

LiNaSO4, bcc 1.25 0.44 
Li+ 

Na+ 

1.00 

0.93 

0.63 

0.64 

LiAgSO4, bcc 1.52* 0.40 
Li+ 

Ag+ 

1.03 

1.00 

0.52 

0.52 

Li1.33Zn0.33SO4 1 0.36 
Li+ 

Zn+2 

1.30 

0.14 

0.19 

0.22 

AgI, bcc 2.69* 0.11 Ag+  0.12 

Asterisk denotes extrapolated values; Eσ and ED stand for activation energies 

of conductivity and diffusion, respectively; D is a diffusion coefficient. 

Phase diagrams of systems Li2SO4–Na2SO4, Li2SO4–Ag2SO4, Li2SO4–K2SO4, and 

Li2SO4–ZnSO4 indicate the existence of several high-temperature conducting phases: 

LiNaSO4 (bcc lattice), LiAgSO4 (bcc lattice), and Li4Zn(SO4)3 (non-cubic lattice). The double 

sulfate LiKSO4, in turn, has hexagonal symmetry in the high-temperature modification. 
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Mentioned phases are of the most interest as solid electrolytes, since their conductivity 

reaches 1 11 Ohm cm− −  (at 600°C). It should be noted that along with high ionic conductivity, 

these sulfates possess also ferroelectric, ferroelastic and other related properties. 

Table 2. Phase transition temperatures (Ttr) and enthalpies (ΔHtr); melting 

temperatures (Tm) and enthalpies (ΔHm) for different compounds [7, 21]. 

Phase Ttr, K ΔHtr, eV Tm, K ΔHm, eV 

Li2SO4, fcc 850 0.258 1133 0.094 

LiNaSO4, bcc 788 0.257 888 Small 

LiAgSO4, bcc 710 - 845 0.036 

Li1.33Zn0.33SO4 755 0.263 852 Small 

AgI, bcc 420 0.65 828 0.52 

 

Comparison of some Li2SO4-based solid electrolytes with silver iodide (other well-

known superionic conductor) is given in Tables 1 and 2. It is worth noting that in sulfates 

phase transition enthalpies are much higher than melting enthalpies, whereas in AgI these 

values are quite close. Let us note also that below the melting temperature the conductivity of 

AgI is slightly increased, whereas in sulfates the conductivity is decreased after the 

solidification: at 22% in Li2SO4, at 8% in LiNaSO4, and at 5% in LiAgSO4 [4, 30]. 

Double alkali sulfates with high ionic conductivity (LiNaSO4, LiKSO4) are the main 

subject of the present thesis. However, the low-conducting sulfates, LiRbSO4 and LiCsSO4, 

are also considered here. The main goal of the research is a detailed study of diffusion 

mechanisms in such crystals. In addition, we consider some related properties, such as phase 

transition kinetics, orientational disorder of sulfate groups, features of the high-temperature 

sintering, etc. It should be noted that we are focused mainly on temperatures below the phase 

transition to the superionic state. In fact, many of the properties typical for solid electrolytes 

(high value of the ionic conductivity, rotational disorder of molecular groups) appear in 

LiNaSO4 and LiKSO4 far below the transition temperature; therefore, better understanding of 

transport properties in given crystal requires consideration of low-temperature modifications. 

I.3 Why does double alkali sulfate family deserve attention? 

The two main members of the double alkali sulfate family, LiNaSO4 (LNS) and 

LiKSO4 (LKS) deserve a special attention, since both of these compounds have an extensive 

field of possible applications. Moreover, LNS and LKS are insensitive to the moisture unlike 
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a number of other lithium compounds (including Li2SO4) possessing high ionic conductivity 

[2]. Moreover, LNS and LKS single crystals are comparatively inexpensive and could be 

easily prepared from the water solution of corresponding alkali sulfates. These properties 

make these compounds a good candidate for application in solid-state batteries, fuel cells, and 

reserve batteries. The most promising application of LNS and LKS is a solid electrolyte in 

reserve batteries for military equipment (e.g. missiles) [3]. In reserve batteries, the electrolyte 

is stored in an inactive state and then is deliberately activated. In thermal reserve batteries, 

activation of the electrolyte could occur due to its melting or phase transition to the state with 

a high ionic conductivity. Unlike other reserve batteries, which require movement of 

electrolyte to activate them, the design of thermal batteries is mechanically simple and 

reliability is extremely high. 

 
Fig. 2. Temperature dependences of the d.c. ionic conductivity in LiNaSO4 single crystal (green empty 

dots) [4], in LiNaSO4 powder (red filled dots) [5], and in LiKSO4 single crystal perpendicular to the c-

axis (blue stars) [6]. Blue dashed lines indicate phase transition temperatures in LiKSO4 (708 and 

943 K), whereas red dashed line indicates the phase transition temperature in LiNaSO4 (788 K). 

In the working temperature range of thermal batteries, 670-870 K [2], the ionic 

conductivity should be around 0.1 Ohm-1cm-1, whereas below 340 K the electrolyte has to 

have negligible conductivity to avoid self-discharge of the battery. Temperature dependences 

of the ionic conductivity in LNS and LKS are presented in Fig. 2. One can see that the 
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conductivity of LKS almost satisfies this requirement: in the 708-870 K temperature range 

(phase II) it grows steadily from 10-2 up to 100 Ohm-1cm-1. The conductivity of LNS above 

788 K (α-modification) is higher than in LiKSO4; however, the temperature of the phase 

transition is still a little too high and the operating temperature range rather narrow. 

Unfortunately, LNS and LKS are not still widely used in batteries, although prototype cells 

with, e.g., Li2SO4-Na2SO4 compounds have already been used between 770-870 K [2]. 

Other field of possible applications of LNS is a design of fuel cells with proton 

conducting electrolytes, which does not require very high operating temperatures (900-

1000°C) typically needed for solid oxide fuel cells. Thus, Feng et al. [31] developed a method 

to measure the proton conductivity of LNS under fuel cell conditions. Unfortunately, it was 

shown that the major portion of the ionic conductivity of α-LNS is due to Li+ and Na+ ion 

transport, and proton conductivity accounts for only 5-10% of total ion conductivity. It 

explains the poor performance of hydrocarbon conversion fuel cells using LNS as the 

electrolyte. 

 
Fig. 3. Schematic representation of the paddle-wheel mechanism [5]. 

Despite of mentioned difficulties, LNS and LKS have not to be discounted, since the 

development of new current sources could make new demands to solid electrolytes. It is 

possible that LNS or LKS will satisfy these new demands and will find their niche. 

In addition to their possible applications, both of these compounds are of interest from 

the academic point of view as model objects. In fact, along with “quasi-liquid” cationic sub-

lattice, LNS and LKS have considerable rotational disorder of sulfate groups, and the 

coupling between rotational motions of SO4 anions and cations occurs. The existence of these 

correlated motions led to the concept of a “paddle-wheel” or “cog-wheel” mechanism, 

according to which oxygen atoms push cations into neighboring interstices and/or vacancies, 
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and such “assistance” increases the ionic conductivity [7-9] (Fig. 3). Paddle-wheel mechanism 

considers the radii of cations of little importance for their diffusion rates in contrast to a so-

called “percolation” mechanism [32-34], which emphasizes the role of cation radii and mass 

on the diffusion coefficients and favors the idea that the diffusion of cation is enhanced by the 

lattice expansion and/or incorporation of ion vacancies by guest ion presence. A dispute of 

authors upholding different views on the mechanism of the ionic motion in the LNS was 

resolved by Karlsson and McGreevy in 1995 [35]. Using neutron diffraction measurements 

and reverse Monte Carlo modeling they have reported that the ionic conductivity in Li2SO4 

and LiNaSO4 is a combination of both paddle-wheel and percolation mechanisms. Thus, it 

was noted that Na+ ions always diffuse due to “paddle-wheel” mechanism because of its big 

radius (ionic radii of Na+ and Li+ ions are 0.97 Å and 0.68 Å, respectively [36]), whereas Li+ 

ions can move differently. If Li+ occupies  site of the cubic cell, there is no 

correlation between its subsequent jump and the rotation of the neighboring SO4 group that 

corresponds to percolation-type motion; from  positions, Li+ ions move due to 

paddle-wheel. 

1.4 Previous studies of double alkali sulfates: are there 

unresolved questions? 

For more than half a century since the fast ionic conductivity was revealed in LNS, 

dozens of articles about its structure and properties were published. Features of the trigonal-

to-cubic phase transition in LNS were studied in detail by Freiheit et al [10]. It was shown 

that the phase transition is completely reversible and hysteresis effects are very small in 

comparison to other first order phase transitions, i.e. only low kinetic barriers exist. The 

enthalpy of fusion, , was found to be anomalously low compared to the 

enthalpy of the solid-solid transition,  [10]. The origin of this anomaly 

has been attributed to the dynamic and the reorientation of sulfate tetrahedral group in the 

LNS crystal. Such rotational disordering is typical of a plastic crystal; therefore, high-

temperature phase of LNS is often referred to as a rotator phase [37]. The α-β transformation 

corresponds also to paraelastic-ferroelastic phase transition, i.e. a spontaneous strain occurs in 

the β-modification of LNS, where the evolution of rotational disorder of the sulfate groups 

plays the role of an order parameter [10, 38]. It was also noted by Freiheit et al. [10] that the 

( )1 1
2 4,0,

( )1
4 ,0,0

14.1kJ molfH −∆ =

120.8kJ moltrH −∆ =
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α-β phase transition is accompanied by a volume change of 6% (Fig. 4); however, the α- and 

β-form bear a close structural relationship [10, 38]. 

 

Fig. 4. (a) Variation of the scaled trigonal unit cell parameters ( 2a , 3c ) and the cubic unit cell 

parameter 0a  in LiNaSO4 with temperature; (b) temperature dependence of the molar volume in 

LiNaSO4. Dashed line indicates the phase transition temperature. 

Features of the ionic mobility were studied by means of NMR relaxation [11, 39], 

NMR line width analysis [40], IR and Raman study [13, 41-44], ionic conductivity [4, 5, 31, 

45] and diffusion [36] measurements. Massiot et al. [40] carried out 7Li and 23Na NMR line 

width analysis as well as spin-lattice relaxation measurements in a wide temperature range 

(295-940 K), and activation energies for Li+ and Na+ motion below the phase transition were 

estimated to be 0.86 and 1.54 eV, respectively. Thereby, it was revealed that both cations 

exhibit significant translational disorder far below the phase transition point. Kanashiro et al. 

[11] performed the spin-lattice relaxation measurements of 7Li nuclei and revealed that the 

temperature evolution of the 7Li spin-lattice relaxation rate in LNS single crystal at different 

magnetic fields could not be described by a single BPP curve, but the spectral density 

function with at least two correlation times has to be used (Fig. 5), i.e. diffusivity of both 

cationic sub-lattices was confirmed. The authors estimated activation energies for Li+ and Na+ 

motion below 788 K to be 0.7 and 1.20 eV, respectively. 

Rotational disorder of the SO4 anions in the LNS has been studied by inelastic and 

quasi-elastic neutron scattering [46], and by optical (IR and Raman) spectroscopy [12, 13, 

43]. It was noted that the SO4 orientational disorder as well as cationic mobility occurs also 

15 



well below the α-β phase transition [12, 13]. However, the low-temperature reorientations 

have only weak effect on the behavior of the Li+ ions [13], i.e. there is no strong coupling 

between the cationic diffusion and the SO4 reorientational jumps in the β-phase (below 

788 K). 

 
Fig. 5. Temperature dependences of 7Li spin-lattice relaxation in LiNaSO4 in two different magnetic 

fields with Larmor frequencies of 7Li nuclei to be 6 MHz (on the left) and 20 MHz (on the right) [11]. 

An asymmetry of the 1/T1 curves was assumed to be due to simultaneous diffusion of two cationic 

sub-lattices: Li+ and Na+. The BPP contributions of Li and Na motion to relaxation are shown by red 

and blue dashed curves, respectively. Activation energies for ionic jumps were found to be 
Li 0.7eVaE =  and Na 1.2eVaE = . 

As for LKS, the first publication (1890) on this compound described a phase transition 

at high temperature giving rise to a multi-domain structure [47]; seventeen years later Nacken 

[48] determined this transition temperature value as 708 K. Since then a great number of 

scientific works have been dedicated to this compound. The phase transition at 708 K was 

investigated by several experimental techniques, including double reflection [49], differential 

thermal analysis [50], measurement of thermal expansion coefficient, d.c. conductivity [6, 

51], pyroelectric current and dielectric constants [51], X-ray diffraction study [52, 53], and 

Raman scattering [54]. The phase transition at 943 K was detected by differential thermal 

analysis [50] and by X-ray diffraction [55]. The most extensive study on lithium conductivity 

was carried out by Pimenta et al. [6] It was revealed that below 653 K and above 708 K the 

ionic conductivity of the LKS single crystal (along the c-axis) obeyed an Arrhenius law with 

activation energies 1.8 and 1.65 eV in phases III and II, respectively (Fig. 2).  
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Despite of plenty of experimental and theoretical studies devoted to alkali sulfates, 

some features of their structure and ionic dynamics are not clear or even have not been yet 

studied. Thus, only the structures of two modifications of LKS are now well established: the 

high-temperature modification (phase I, T > 943 K) and the room temperature modification 

(phase III, 203 K < T < 708 K), whereas the structures of the intermediate phase and the 

phases below 203 K are still the subject of a dispute. Ionic mobility in LKS has been studied 

by conductivity measurements, i.e. in terms of the long-range transport, whereas NMR study 

of ionic mobility in LKS, which allows probing short-range local motions, has not been 

carried out. 

A number of features of the LNS properties also have not been yet studied. Among 

such “gaps” are: 1) the temperature evolution of 7Li and 23Na self-diffusion coefficients below 

788 K, 2) the kinetics of the α-β phase transition, 3) motional narrowing of the NMR line in 

the β-LNS, and some other features. Other question, which is still open, is the reorientational 

dynamics of SO4 groups, particularly, the value of the activation energy of reorientational 

jumps in the β-phase. It is shown in the experimental part of this thesis, how to probe the SO4 

reorientations using temperature dependence of the 7Li quadrupolar splitting, Qν , in the LNS 

single crystal. 

Finally, the “low-conducting members” of the sulfate family, namely, LiRbSO4 and 

LiCsSO4 (and their solid solutions) have been extensively studied as ferroelectric compounds 

with interesting phase diagrams [14-19], whereas features of their ionic mobility has not been 

considered at all. 

Thereby, the question embedded into the title of the present section is essentially 

positive. There are a number of unresolved problems in regard to ionic mobility in double 

alkali sulfates. It should be noted that if there were not such “gaps”, the development of more 

advanced experimental techniques, which allow exploring “well-known” phenomena in more 

detail provides another reason to study these systems. One of these advanced experimental 

methods is the high-temperature pulsed field gradient (PFG) NMR technique [20], developed 

recently in CEMHTI, Orléans, which allows expanding the temperature range of self-

diffusion measurements up to 1700 K. Some new applications of NMR spectroscopy for 

kinetics measurements have been developed in the scope of the present work to study the 

kinetics of the α-β phase transition in LiNaSO4 (see chapter 4). 
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I.5 Synopsis 

In the present work, nuclear magnetic resonance (NMR) is the principal method of 

investigation. Different methods of NMR allow investigating different types of motion in a 

broad range of characteristic times and so NMR plays an important role in the research of 

solids. There are a huge amount of NMR techniques, and theoretical aspects of them are 

developed nowadays into vast areas of science, so it is just impossible to write about all of 

them (even in brief) and to deal with their theoretical background. Therefore, we have decided 

to focus our attention only on some aspects of NMR relaxation theory of quadrupolar nuclei. 

The reason of such choice is caused by the fact that sulfates of alkali metals, which are the 

subject of the present work, consist of atoms containing quadrupolar nuclei. Thus, e.g. 

lithium-sodium sulfate LiNaSO4 contains isotopes 7Li, 23Na, 33S, having spin 3 2I = , isotope 
6Li with spin 1I = , and isotope 17O, possessing spin 5 2I = . 

In the first chapter of the thesis, “Elements of NMR relaxation theory for 

quadrupolar nuclei”, we consider some aspects of NMR theory for quadrupolar nuclei in 

solids. As the present work is devoted mainly to the investigation of the ionic mobility in 

crystals, a great attention is naturally paid to measurements and interpretations of spin-lattice 

relaxation in the laboratory and in the rotating frames. 

The second chapter, “Theory and measurements of diffusion in solids”, is devoted to 

the problem of diffusion (and self-diffusion) in solids. The first section of this chapter gives a 

theoretical description of the diffusion processes, whereas the second one considers methods 

of measurements of a (self)diffusion coefficient. We focus there predominantly on principles 

of the PFG NMR. It is shown, how different types of echo (Hahn echo and stimulated echo) 

could be used in the experiment on diffusion. 

Chapter 3, “High temperature NMR”, considers experimental aspects of NMR 

measurements at high temperatures (HT). General features of HT NMR, particularly the 

question of temperature calibration, are considered in detail. 

Finally, in chapter 4, “Experimental study of alkali sulfates”, we present experimental 

results on ionic mobility in double alkali sulfates. Most attention has been paid to LiNaSO4 as 

to the most interesting (in terms of the ion dynamics) compound among other double sulfates; 

however, lithium mobility in other double alkali sulfates with bigger cations (K+, Rb+, and 

Cs+) is also considered. 

In chapter 4, we presented measurements of the α-β phase transition kinetics in LNS, 

which have been carried out for the first time, thanks to the developed of a new NMR 

18 



technique, which is based on the difference of spin-lattice relaxation times in the two phases. 

Measurements of 7Li and 23Na self-diffusion coefficients in LiNaSO4 as well as “traditional” 

measurements, such as spin-lattice relaxation and line width analysis, are also presented in the 

final chapter. 

High-temperature NMR study of other relative compounds is also presented in 

chapter 4. The line width analysis and  measurements have been carried out for all of 

them. It should be noted that lithium mobility in LiRbSO4 and LiCsSO4 has been studied for 

the first time. 

Along with a pure experimental study, some novel theoretical approaches have been 

also proposed. Thus, for the treatment of experimental data on LNS, we have obtained an 

expression for the dipolar correlation function characterizing the fluctuations of the 

Hamiltonian under uncorrelated diffusion of two cationic sub-lattices. A corresponding 

formula, which could be used for fitting of the two-step temperature dependencies of the 

NMR line width, has been deduced. The influence of the SO4 reorientational jumps on the 

quadrupolar interactions of 7Li nuclei was treated by a jump reorientational model, which has 

not been previously applied to sulfates. In addition, DFT calculations of NMR parameters in 

some compouns have been also carried out using a CASTEP code. 
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Chapter 1. Elements of NMR relaxation theory 

for quadrupolar nuclei 

1.1 Quadrupolar Hamiltonian 

1.1.1 Classical quadrupole moment of a nucleus 

Assumption that an atomic nucleus is a spherical object with uniformly distributed 

positive charge is, in the general case, incorrect. In fact, if nuclei were ideal uniformly 

charged balls, then the electrostatic interaction of nuclei with surrounding electrons always 

would be equal to zero. However, it is known from the experiment that such interaction is 

nonzero in case of nuclei with the spin 1 2I > , moreover, quadrupolar interactions often 

play a major role in relaxation processes. It is experimentally proven that the dipole moment 

of nuclei is always zero [56]; therefore, an interaction of nuclei with the electric field is 

associated with electric moments of higher orders. As multipole moments of orders more than 

four play negligible role in nuclear magnetism, nuclei with the spin 1 2I >  are called 

quadrupolar nuclei. 

Let us consider a nucleus as a system of point charges located in the small region of 

space. Let us put the origin of coordinates somewhere in the interior of the nucleus. It is 

obvious that in this case radius vectors of nucleons are much less than radius vectors of 

electrons, which could create the electric field. Thus, external (with respect to the nucleus) 

field potential ( )φ r  at the site of the nucleon may be taken equal to the value of the potential 

in the origin of coordinates 0φ . 

The energy of nucleons’ interaction with the electric field could be written in the form 

of a classical sum: 

 ( ),a
a

aU e φ= ∑ r  (1) 

where ae  is a charge of the nucleon (for neutrons it equals to zero, and for protons it equals in 

absolute value to the elementary electronic charge), and ar  is its radius vector. Energy U can 

be developed as series in ar : 

 ( ) ( ) ( )0 1 2 ...U U U U= + + +  (2) 

The first term of the series, 
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 ( )0
0· ,a

a
φU e= ∑  (3) 

corresponds to an approximation, when all charges are situated in the same point. The second 

term of the series has the following form: 

 ( ) ( )1
0grad .a a

a
U eφ= ∑ r  (4) 

Introducing the field strength in the origin of coordinates, ( )0 0grad φ= −E , and the dipole 

moment of the system, 
a

a ae= ∑d r , we have 

 ( )1
0.U = −dE  (5) 

As it was mentioned above, the dipole moment of nuclei always equals to zero; therefore, 
( )1 0U = . Finally, the third term of the series equals to 

 ( ) ( ) ( )
2

2 0

,

1
2

.a a
a i

i j a i j
j

φeU x x
x x
∂

=
∂ ∂∑∑  (6) 

Here ix  ranges over x, y, z. 

 
Fig. 6. Shapes of nucleus with different quadrupole moments. 

Electric field potential φ  satisfies the Laplace equation 

 
2

0,ij
i jx x
φφ δ ∂

∂ ∂
∆ ≡ =  (7) 

where ijδ  is the Kronecker symbol. This implies that we can rewrite Eq. 6 in the following 

form: 

 ( ) ( ) ( )2 20

,

21 1 ,
2 3

a a
a i ij a

j ai j
j

i

φ eU x x r
x

δ
x
∂  = − ∂ ∂  

∑ ∑  (8) 

or as 
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 ( )2

,

1 ,
6 ij ij

i j
V QU = ∑  (9) 

where 

 ( ) ( )( )23 j
a a

ij a i ij a
a

Q δxe x r= −∑  (10) 

is the tensor of the quadrupole moment of a nucleus, and 

 0
2

ij
i j

φV
x x
∂

=
∂ ∂

 (11) 

is the electric field gradient (EFG) tensor. 

It follows from Eq. 10 that the second rank tensor of the quadrupole moment is 

symmetric and traceless, consequently, ijQ  contains only five independent components. Any 

second rank tensor could be reduced to principle axes. If we assume that a nucleus is 

symmetric with respect to the rotation around some axis (z-axis), i.e. corresponds to the 

ellipsoid of revolution, then all of its three principal values are coupled by following way: 

 .1
2YYX ZX ZQQ Q= −=  (12) 

The magnitude ZZQ e  is called the quadrupole moment of the nucleus (one designates it as 

Q). Using formula 

 ( )2 23 ,a a i
a

ZZ j aeQ Q e δz r== −∑  (13) 

one can see that the quadrupole moment of the nucleus defines the deviation of its shape from 

a sphere. If 0Q > , then the nucleus corresponds to the ellipsoid of revolution elongated along 

the z-axis; if 0Q < , the nucleus is oblate (Fig. 6). The measuring unit of Q is barn (1 barn 

equals to 28 210 m− ). 

1.1.2 Quantum-mechanical formulation 

Substituting tensor ijQ  by corresponding quantum-mechanical operator we shall obtain 

in Eq. 9 an expression for the quadrupolar Hamiltonian QH . However, operator ijQ  in the 

form of Eq. 10 is very inconvenient for application, since it is expressed as the sum of 

nucleons. In such approach, the nucleus has to be regarded as a many-particle system. To turn 

aside this difficulty, we have to take into account that only nuclei in the ground state are 

investigated in NMR, i.e. only spatial reorientations of nuclei are of interest. Transition 

between eigenstates of nucleus is associated with the change of angular momentum I, i.e. 
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these transitions lead to the change of nuclear spin. In NMR nuclear spin is conserved, 

therefore we are interested only in those matrix elements of operator ijQ , which are diagonal 

with respect to I. Using Wigner-Eckart theorem, one can show that [57]: 

 ( ) ( )( ) ( )2 23 .3
2

a a
a i i j a i j j i i j

a
jI m e δ I m C I m I Ix x r I I mI δ I′ ′= −− +∑  (14) 

Here m designates eigenstates of z  component of the angular momentum, ranging over 

2 1I +  values. Coefficient C is the same for all values of m, m′ , i, and j, therefore it could be 

expressed in terms of any matrix element in Eq. 14. It is convenient to do this for matrix 

element with m m I′= =  and i j z= = : 

 ( ) ( )2 2 2 23 3 2 1 .a a a z
a

I I e z I I C I I I II I I Ir C= =− −−∑  (15) 

Left-hand term in Eq. 15 equals to eQ, therefore we have: 

 
( )

.
2 1
eQ

I
C

I −
=  (16) 

Equation 14 allows carrying out the transition from many-particle problem to the 

consideration of a nucleus as a single particle with the spin I. In a new formulation, the 

quadrupolar Hamiltonian could be written in the following form: 

 
( ) ( ) 2

,

3 .
6 2 1 2Q i j i j j i i j

i j

eQ V I I I δ
I

I I
I

 = + −  − ∑H  (17) 

In the principle axis system (PAS) of tensor ijV  (let us designate this system by upper-case 

letters XYZ) the quadrupolar Hamiltonian takes the form 

 
( ) { }PAS 2 2 2

1
.

2 2 ZZ Z XX X YY YQ
eQ V I V I V
I

I
I

= + +
− 

H  (18) 

It is convenient to rewrite the Hamiltonian PAS
QH  in terms of operators ZI , X YI I iI+ = + , and 

X YI I iI− = − . Introducing following designations: 

 , ,XX YY
ZZ

ZZ

V VV η
V

eq −
==  (19) 

one can obtain: 

 
( ) ( ) ( ) ( )

2 2 2PAS 2 13 1
4 2 1

.
2Q Z

e Q η II I I I
I I

q + −  = − + +  −  
+


H  (20) 

The magnitude being before the curly brackets could be rewritten as follows: 
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( )

2 1
4 2 1 6

,Q
e Q χ

I I
q

=
− 

 (21) 

where 

 
( ) ( )

23 3
2 2 1 2

.
1Q Q

e Q πχ C
I I I

q
I

= =
− −

 (22) 

The magnitude 

 
2

Q
eC

h
qQ

=  (23) 

is called quadrupolar coupling constant; it is a measure of the strength of the quadrupolar 
interaction. The asymmetry parameter η, in turn, is a measure of the deviation of the EFG 
from an axial symmetry. 

1.1.3 Spherical tensors 

It is convenient to rewrite the Hamiltonian QH  in terms of spherical tensors 

(irreducible tensor operators). A spherical tensor is a magnitude ( )m
lT , which transforms 

under the rotation of the coordinate system according to the following formula: 

 ( )( ) ( ) , , 1,.. ,Ω .,m R n l
l nm

n
lT T n l l l= = − −∑ D  (24) 

where ( )m R
lT  is a spherical tensor in the rotated frame, and ( )ΩD  is the rotation operator (so-

called Wigner rotation matrix), matrix elements of which could be written in the following 

form: 

 ( ) ( )Ω .l imα l inγ
mn mne d eβ− −=D  (25) 

Here { }Ω αβγ=  is a set of Euler angles, and functions ( )l
mnd β  are tabulated elsewhere [58]. 

Using components of the second rank Cartesian tensor ijV  one can built linear 

combinations, which will transform according to Eq. 24. Such combinations could be written 

as follows [59]: 

 

( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0
0

0 1
1 1

0 1 2
2 2 2

1
2

,

, ,

3 , , 21 .
22

s s s s s s
zz xz yz

a a a
xy yz xz

xx yy xy

F V

F V F V iV

F V F V iV F V V iV

±

± ±

=

= = ±

= = ± = − ±





 (26) 

In terms of spin operators, spherical tensors (in this case, tensor operators) could be written as 

[60]: 
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( ){ } ( )

(0)
0

(1) ( 1)
0 1

2(0) 2 ( 1) ( 2)
2 2 2

2
1

,
1, ,

1 13 , ,
6 2 2

1 ,,

z

z z

T

T I T I

T I T I I T II I

±

± ±

±

± ±

+

=

= =

 = = = − +

1





 (27) 

where brackets [ ]... +
 denote the anticommutator. 

It should be noted that spherical tensors built of elements ijV  differ substantially from 

tensors built of spin operators. The fact is that the tensor V  operates in the real three-

dimensional space, whereas the spin tensor operates in the space spanned by basic functions 

of angular momentum operator, and dimensionality of its basis can be more than three. To 

express this difference explicitly we designate spin spherical tensors by letter T, and tensors 

built of elements ijV  – by letter F. 

1.1.4 Spherical tensor representation of the quadrupolar Hamiltonian 

It follows from Eq. 17 that the quadrupolar Hamiltonian can be represented in the 

form of a product of two Cartesian tensors: EFG tensor V  and tensor U  formed of pair 

products of the spin operators: 

 .Q = UVH  (28) 

It easy to show that a product of two Cartesian tensors could be written in the following form 

[59]: 

 ( )0

, ,

0

,
3 .a a s s

i j
ij ij i

z
j j

x y
iV UV VU U

=

= + +∑UV  (29) 

As the tensor V  is traceless and symmetric, i.e. 0 0V =  and a =V 0 , the quadrupolar 

Hamiltonian could be written as 

 
, , ,

.s s
Q ij j

i x z
i

j y
U V

=

= ∑H  (30) 

One can see from Eq. 26 and Eq. 27 that elements of a symmetric Cartesian tensor 

could be arranged to build tensors ( )
2

mT ; therefore, it is clear that the quadrupolar Hamiltonian 

could be written in the form of pair products of second order spherical tensors. 

Let us return to Eq. 17. Using the approach, which was used to rewrite it in the form of 

Eq. 20, one can obtain: 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2

2

3 11
2 2

1

1 3
6

1 1
2

1

2
2 2

1
2

2 .
2

Q Q zz z Q xz yz z z

Q xz yz z z Q x x y y x y

Q x x y y x y

I I iV I I I

iV I I I V

V I V I

V I V I

V

iV

V IiV

−

−

+ +

− +

=  Λ + Λ + − + − +

+ + − − +

+ −

Λ +

Λ +

+ Λ

H

 (31) 

Introducing spherical tensors via Eq. 12 one can write the quadrupolar Hamiltonian in the 

form of the series: 

 ( ) ( ) ( )
2

2

2
21 ,m m

Q
m

m
Q F T

−

−

=

= Λ −∑H  (32) 

where  

 
( )

( )

( )

(0)
2

( 1)
2

( 2)
2

1 ,
2

3 ,
2

,

2

,
2 2 1

y

z z

xz

x

z

x y y x y

Q

F V

F V iV

F VV

Q

iV

e
I I

±

±

=

= ±

= −

Λ =
−







 (33) 

and 

 

( ){ }

{ }

( )

(0) 2
2

( 1)
2

2( 2)
2

3

1 ,

1 1 ,
6

2
1 .
2

z

z z

T I

T I I I I

T I

I I

± ±±

± ±

− +=

= +

=

  (34) 

One can see from Eq. 33 and Eq. 34 that 

 ( ) ( )( ) ( )* ( ) ( )1 , 1 .m mm m m m
l l l lTF F T− −= − = − j  (35) 

1.1.5 Quadrupolar Hamiltonian in the laboratory system 

It should be noted that Eq. 33 and Eq. 34 are valid in any coordinate frame. We can 

use this fact to find the expression for the quadrupolar Hamiltonian in the laboratory system. 

First, let us write the expression for the tensor ijV  in this system. To do this it is necessary to 

rotate it from the system associated with the crystal (PAS). Let us write the rotation matrix in 

terms of Euler angles [58]: 
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 ( ) ( ) ( ) ,
α β γ α γ α β γ α γ α β

z z α β γ α γ α β γ α γ α β

β γ β γ β

y

c c c s s c c s s c c s
s c c c s s c s c c s s

s
α

c s s
β

c
γΩ

 − − −
 

= = + − + 
 − 

R R R R  (36) 

where cosθc θ≡ , sinθs θ≡ .  New tensor labV  could be found by the use of the following 

formula: 

 lab 1 PAS .−
Ω ΩV = R V R  (37) 

One can build tensors ( )mF  by means of Eq. 33, using elements of derived tensor labV : 

 

( )

[ ]{ }

( ){ }

(0) 2 2
2

( 1)
2

( 2) 2 2 2
2

3cos ,
4

3

6 1 sin cos 2

1 sin 2 cos 2 2sisin 2 ,
4

4

n sin 2

1 3sin 1 cos cos 2 2cos sin 2 .

ZZ

iγ
ZZ

ZZ
i γ

V β η β α

V e β η β α i β α

F e β η β α

F

i β

F

V α

±

±

=

= ±

− +

−

+ + = 









 (38) 

The Hamiltonian QH  in the laboratory system will have the following form: 

 
( ) ( ) ( )

( ) ( ) ( )

(0) 2 ( 1)
2 2

2 2(1) ( 2) (2)
2 2 2

6 3
4 2

1
3

,

1Q z z z

z z

F I I F I I I

F I I I F F

eQ I I
I I

I I I

− + +

+− − −−

  + − 


= − + +



+ +



−

− + 


H

 (39) 

where tensors ( )
2

mF  are defined by Eq. 38. 

1.1.6 The first- and the second-order quadrupolar interactions 

As one can see from Eq. 39, the quadrupolar Hamiltonian contains operators I ± ; 

therefore, most of the problems related to the spin dynamics will be complicated by the 

nondiagonality of QH . To get the “nondiagonality” out the stationary perturbation theory is 

used, where QH  is regarded as a small correction to the Zeeman Hamiltonian zZ LI=ωH . 

Let us find first- and second-order corrections. 

It is known from the stationary perturbation theory [61] that the zero-order correction 

is determined by eigenvalues of the operator ZH , e. 

 ( )0 .m Lω mω= −  (40) 

The first-order correction is determined by diagonal elements of the matrix of 

perturbation operator, specified in the basis of ZH . In our case, 

 ( ) ( )1 .m mmQω = H  (41) 

28 



As zI m m m= , it follows from Eq. 39 that 

 ( )

( ) ( )1 (0) 2
2

6 3
4 2 1 3

1m
eQ I IF m

I I
=   −

− +


ω  (42) 

or in the operator form 

 ( )

( ) ( )1 (0) 2 (1) (0)
2 2

6 13
4 2

,
1 6

1
3Q z QI Ie F

I
TQ I

I
= − +  = − 

ωH  (43) 

where 

 ( )(1) 2 21 3cos 1 si c
2

n os 2Q Qω χ β η β α− +=  (44) 

The second-order correction is determined by nondiagonal matrix elements of the 

operator QH : 

 ( ) ( )
( ) ( )

2

2
0 0 ;' nmQ

n
m

mn
=

−∑ω ω ωH
 (45) 

the prime above the sum means that the summation takes under the condition m n≠ . Taking 

into account that ( ) ( ) ( )0 0
nm Lω mω nω− = − − , one can write for ( )2

mω : 

 ( ) ( )
2

2 1 .' Q n
m

L n

m

m n
= −

−∑ω ω H
 (46) 

Required non-diagonal elements are determined by operators z zI II I+ ++ , z zI II I− −+

, ( )2
I + , and ( )2

I − . Recalling that 

 
( ) ( )

( ) ( )

1
2

1
2

1 1 1 ,

1 1 1 ,

I m I I m m m

I m I I m m m−

+ = + − + +  

= + − − −  
 (47) 

we can write general expressions for non-diagonal elements 

 

( ) ( ) ( )

( ) ( ) ( )
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2

1 1
2 2

1 1
2 2

2 1 1 1 ,
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1 1 1 1 2 ,

1 1 1 12 2 .

1

1

2
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I I I m m I I m m

I I m I I m m I I m m

I I m I I m m I I

m I

m I

m

m m m

+

−

+

+ +

−

+

+

+ = + + − +  

+ = − + − −  

= + − + + − + +      

= + − − + − − −     − 

+

−

+
 (48) 

Taking into account that 

 ( )2( ) ( ) ( )* ( )* ( )
2 2 2 2 2, 1 ,mm m m m mF F F F F −= = −  (49) 

we have 
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2 2(1) ( 1) (1) ( 1)
2 2 2 2

2 2(2) ( 2) (2) ( 2)
2 2 2 2

,

.

F F F F

F F F F

− −

− −

= = −

= =
 (50) 

Using Eqs. 39, 46-48, we shall obtain for the second-order correction the following 

expression 
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( ) ( ){
( ) }
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2 (1) ( 1) 2
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(2) ( 2) 2
2 2

2 4 1 81
4 2 1

1

2 2 1 2 1 .

m
L
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−
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 + + − −

 
 −







  (51) 

Now let us consider nuclei with half-integer spin. In this case, as one can see from 

Eqs. 40, 42, and 51, the spectrum of a single crystal, where angles , ,α β  and γ  are fixed, 

splits into 2I lines. The frequency of the central line (transition –1/2↔1/2) is determined by 

the following expression: 
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ω

 (52) 

One can see from Eq. 52 that the first-order quadrupolar interaction has no influence on the 

position of the central line; this is the consequence of the fact that ( )1
mω  is an even function of 

m. Frequencies of external transitions for 3 2I =  are determined by 
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ω eQ
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−
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 −


± ± =

= 
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


 (53) 

Thus, the interaction of the quadrupolar moment of nuclei with EFG splits an NMR 

spectrum of a single crystal into 2I lines with frequencies determined by Eq. 52 and Eq. 53. It 

is interesting to note that the second-order correction changes the position of the central line 

as well as the frequencies of external transitions, but does not change the “distance” between 

satellites; this is the consequence of the fact that ( )1
mω  is an odd function of m. 

Found expressions for (1)
mω  and (2)

mω  contain the Euler angles. It is worth noting that 

finding of these angles is often accompanied by a muddle, which is caused by the ambiguous 
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definition of Euler angles, by the use of the right-handed or left-handed coordinate systems, 

by the ambiguity (degeneracy) of rotation matrices, etc. Therefore, sometimes it is more 

convenient to express the Hamiltonian in the laboratory system or in the coordinate system 

related to the crystal. In this case, one has to find corrections of the perturbation theory using 

the Hamiltonian defined by Eq. 17: 

Let us confine our consideration to the first order correction. It was mentioned above 

that it is defined by the diagonal elements of the quadrupolar Hamiltonian, e., by the operators 
2 2,x yI I  and 2

zI . Matrix elements of the operator 2
zI  could be determined as follows: 

2 2
zm I m m= ; expressions for the diagonal elements of the operators 2 2,x yI I  could be found 

using the rule of matrix multiplication: 

 2
, , , , ,1 1 1 1 .x y x y x y x y x ym I m m I m m I m m I m m I m= + + + − −  (54) 

It is known from the theory of the angular momentum [61] that 

 

11 1 ( )( 1)
2

1 1 ( )( 1)

,

2
,y y

x xm I m m I m I m I m

im I m m I m I m I m

− = − = + − +

− = − − = − + − +
 (55) 

so we shall obtain from Eq. 54 and Eq. 55: 

 

2 2

2

1 1( 1)( ) ( )( 1)
4 4

1 ( 1) .
2

yxm I m m I m I m I m I m I m

m I I

= = + − − + + − + =

 = − + + 

 (56) 

Thus, we have the following expression for ( )1
QH : 

 
( ) ( )(1) 2 21 ( .

2 2 1
1)

2Q zz z xx yy zV V I IeQ
I

IV I
I

 + + − + + 
 =  −  

H  (57) 

Ab initio calculations of the NMR parameters are usually carried out in terms of tensor 

ijV  in the coordinate system related to the crystal. Substituting calculated tensor elements into 

Eq. 57 one will obtain the first order quadrupolar Hamiltonian and, consequently, the 

frequencies of the spectral lines. The rotation of the crystal in the laboratory frame could be 

reduced to the transformation (rotation) of the tensor ijV . 
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1.2 Quadrupolar relaxation in solids 

1.2.1 Phenomenological equation of spin-lattice relaxation  

If system, containing equivalent nuclei of spin I, is put into an external magnetic field 

0B , then the degeneracy of the spin energy will be removed, and the energy of each spin will 

be split into 2 1I +  equidistant levels. The “distance” between these levels (in terms of 

frequency) will be equal to 0γB , where γ is a gyromagnetic ratio. If we assume that the 

magnetic field arises suddenly, then, immediately Zeeman levels will be occupied by the same 

numbers of spins. To return to Boltzmann distribution, an irreversible process, so-called 

magnetic relaxation, occurs. In the course of time, which could be characterized by the 

magnitude 1T  (so-called longitudinal or spin-lattice relaxation time), the system will reach an 

equilibrium state. 

If the z-axis is oriented along the external magnetic field, the equilibration of the 

longitudinal magnetization, in most cases, will satisfy the following phenomenological 

equation: 

 
( ) ( )0

0
1

1 ,z
z

d
dt

M M
M M

T
= −

−
−  (58) 

where zM  is the value of the longitudinal magnetization at time t, and 0M  is its equilibrium 

value. 

A spin-lattice relaxation process could be interpreted as an energy exchange between 

the spin system and “the lattice” (the lattice is a common name of the spins’ environment). 

The heat capacity of the lattice is assumed to be infinite, i.e. one supposes the lattice to be 

always in the equilibrium state, irrespective of the amount of energy imparted to it from the 

spin system. In its nature, the magnetic relaxation is caused by thermal motion of atoms, 

which is associated with the fluctuations of local magnetic as well as electric fields. In fact, 

the spectrum of the fluctuating field always contains the Fourier components with the 

frequencies being equal to the transition frequency between the levels of the spin system. 

Such varying local fields cause transitions between spin levels, and the equilibration occurs. 

Since the motion of molecules causes the magnetic relaxation, measurement of 1T  at 

different temperatures allows studying the molecular dynamics in liquids, solids, or even in 

gases. The spin-lattice relaxation is most sensitive to the fluctuations with frequencies close to 
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Lω ; therefore, the 1T  measurements are usually used as a probe for molecular motions of the 

frequency 7 8~ 10 10− Hz. 

1.2.2 Measurement of spin-lattice relaxation 

The usual technique for measuring 1T  is called inversion recovery. The pulse sequence 

is given by Fig. 7a and consists of two radiofrequency pulses separated by an interval τ , 

which varies during the experiment. A ( )180 x°  pulse generates an inverted population 

distribution. Then the populations relax back towards thermal equilibrium during the interval 

τ  and their progress is monitored by the ( )90 x°  pulse, which converts the population 

difference into coherences, including the observable 1p = −  quantum coherence (p denotes a 

coherence order), which induces an NMR signal (case 1 2I = ) [56]: 

 ( ) ( ) *
0 2 ,, iω t Tts A e eτ t τ −=  (59) 

where *
2T  is the characteristic time of the free induction decay, whereas 

 ( ) ( )1
1 1 2
2

τ TA τ e−= −  (60) 

and 0 kTγB=   is the Boltzmann factor. Thus, the amplitude of the signal ( )A τ  reflects the 

history of the longitudinal magnetization. The spectral peak amplitude is negative for small 

values of τ, but goes through zero and becomes positive for large values of τ. 

It should be noted that for each value of τ  the pulse sequence and data acquisition are 

normally repeated many times, adding the signals together in order to enhance the signal at 

the expense of the noise. Each repetition of the pulse sequence is separated by an interval 

waitτ , during which the spins return to a reproducible thermal equilibrium state. For this to be 

satisfied, the waiting interval waitτ , plus the signal acquisition period, must be several times 

the relaxation time constant, i.e. wait 1τ nT= , where 5..7n = . 

Spin-lattice relaxation of quadrupole nuclei in solid dielectrics is governed by two 

mechanisms: 1) the lattice mechanism responsible for relaxation in “perfect” samples and 2) 

the impurity mechanism associated with the presence of impurity paramagnetic ions, 

radiation-induced centers, etc. The overall process of spin-lattice relaxation is characterized 

by the rate 

 
1 1 1

1 1 1 ,lat impT T TΣ = +  (61) 
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where 1
latT  and 1

impT  are the lattice and impurity components, respectively. 

 
Fig. 7. Inversion recovery (a) and saturation recovery (b) pulse sequences. Solid line denotes a 

longitudinal magnetization recovery. 

The former mechanism of spin-lattice relaxation in perfect crystals predominantly 

occurs through the modulation of the internuclear separation in the crystal lattice by thermal 

vibrations and, consequently, through changes in the electric-field gradient at a nucleus. Since 

the density of phonon states at frequencies close to the Larmor frequency is relatively low, 

Raman processes involving all phonons of the spectrum more efficiently manifest themselves 

in spin-lattice relaxation. 

In ionic conductors, crystal ideality is broken not only due to the anharmonicity of 

lattice vibrations, but also by disordering of the cation and anion sub-lattices due to cation 

diffusion. In this case, relaxation is governed mainly by transaltional diffusion (of course, if 

concentration of paramagnetic impurities is negligible). 
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Unlike the lattice component, the impurity component 1
impT  characterizes the degree 

of perfection of a particular sample rather than the structure of the material. A theoretical 

evaluation of the impurity contribution is substantially complicated by the presence of 

undetectable paramagnetic centers, by the complex dependence of the spin relaxation rate of 

paramagnetic centers on temperature and concentration, etc. [62] 

Note that it is impossible to separate the two contributions to spin-lattice relaxation by 

means of inversion recovery technique. Therefore, quadrupolar relaxation rate in solids is 

measured by special method based on suppressing the impurity contribution to nuclear spin-

lattice relaxation through additional stationary saturation of the NMR line (see Fig. 7b). If the 

spin-lattice relaxation time is measured in the course of the nuclear magnetization recovery 

after complete saturation of the NMR line by a sequence of radiofrequency pulses (the so-

called saturation-recovery method), the impurity relaxation makes a contribution to spin-

lattice relaxation under the following condition [62]: 

 ,locε ε>  (62) 

where locε  is reciprocal of the local spin temperature in the vicinity of the impurity and ε  is 

reciprocal of the mean spin temperature in other regions of the sample. Strong additional 

stationary acoustical, magnetic, or electric saturation of the NMR line can result in local 

overheating of the nuclear spin system in the vicinity of defects to 0locε = , whereas ε  

becomes equal to a certain steady-state value 0ε > . Thus, in the case when the regions near 

defects are overheated, Eq. 62 becomes invalid and the impurity contribution to spin-lattice 

relaxation is suppressed. 

1.2.3 Master equation for the density matrix 

Phenomenological equation of the spin-lattice relaxation, Eq. 58, does not contain 

information concerning the molecular motion. To find the relation between molecular 

dynamics and relaxation one has to use the density matrix formalism. 

Time evolution of the density matrix is determined by the von Neumann equation: 

 [ ], ,dσ i σ
dt

= − H  (63a) 

where σ  is the density matrix operator, H  is the total Hamiltonian of the spin system, and 

square brackets designate a commutator (as above, the Hamiltonian is written in terms of 

frequency). If we want to describe relaxation, the time-dependent part of the total Hamiltonian 

associated with the fluctuations of the local fields has to be taken into account. Thus, the total 
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Hamiltonian could be written as follows: 0 1( )t= +H H H , where 0 1Z= +H H H , and 1H  is a 

non-averaged part of the fluctuating Hamiltonian. The term 1H  always exists in solids; it 

could correspond to residual dipolar or quadrupolar interaction. In liquids, this term often 

tends to zero. However, we shall assume that 1 0=H , since this term does not affect the spin-

lattice relaxation. The von Neumann equation could be written now as follows: 

 [ ]0 1( , .)dσ i t σ
dt

+= − H H  (63b) 

It should be noted that this equation is written in the laboratory system, and it is convenient to 

rewrite it in the interaction representation [63]. In this representation, the equation of motion 

will have the following form: 

 1( ) ,,tdσ i σ
dt

 = −  
  H  (64) 

where 

 0 0 0 0
1 1, .t t ti iti iσ σe e e e− −= = H H H H

H H  (65) 

After integration of Eq. 64 we have 

 1
0

( ) (0) ( ), ( ) .
t

t i t t dt′ ′   ′= − ∫   σ σ σH  (66) 

This integral equation can be solved by method of successive approximations (iteration 

method). Introducing new variable τ t t′= −  we obtain for the second approximation 

 1 1 1
0

( ), (0) ( ), ( ), ( ) .0
td i t t t d

dt
σ σ τ σ τ= −     −    − ∫
    H H H  (67) 

The observable behavior of the system will be described by the ensemble-averaged 

value σ . It is obvious that if the random function equiprobably takes positive and negative 

values, then its average value equals to zero; therefore, 1( ) 0t =H . Thus, the first term in the 

right hand side of Eq. 67 disappears. One can show [64] that, under certain conditions, (0)σ  

could be substituted by ( )σ t . Hereby, omitting angle brackets at ( )σ t , we can write the 

following equation: 

 1
0

1( ), ( ), ( .)d t t tσ τ τd
t

σ
d

∞

  −  =  −∫
   H H  (68) 
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It should be noted that the upper limit of integration was substituted by infinity. In fact, the 

main contribution to the integral 1
0

1( ) ( )
t

τt t dτ−∫  H H  is given by values of τ , which satisfy 

the inequality cτ τ≤ , where cτ  is a correlation time of fluctuations (see below). The 

contribution of members, satisfying the condition cτ τ>> , is negligible; therefore one can 

spread the upper limit up to infinity. Equation 68 is called master equation for the density 

operator and is often referred to as a weak-collision approximation. 

It is convenient to rewrite this equation in terms of spherical tensors. Before doing 

this, let us introduce some definitions. 

1.2.4 Definition of the spectral density function 

Let a stationary random function ( )F t  with zero average value exist. Stationarity of 

this function means that it is invariant by the choice of the time origin. The function 
*) ( )( )(τ F t F τG t= +  is referred to as autocorrelation function of the random function 

( )F t , and because of its stationarity is time-independent (the asterisk means a complex 

conjugation). If there is a symmetry between the future and the past, then 
*( () ) ( )τ G τG G τ=− = , i.e. the autocorrelation function is even and real function of τ . It is 

obvious that under big values of τ  values the function ( )F t  cease to correlate; therefore, 

( )G τ  equals to zero when τ → ∞ .  

Fourier transform 

 
0

) 2 ( )cos( ) ( )( iωτJ ω G τ ωτ dτ G τ e dτ
∞ ∞

−

−∞

= =∫ ∫  (69) 

is referred to as spectral density function. Similarly, one can introduce a cross correlation 

function for two different random functions aF  and bF  

 *) ( ) )( (ab a bτ F t FG t τ+=  (70) 

and corresponding spectral densities. 
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1.2.5 Master equation for the density operator in terms of spherical 

tensors 

The random Hamiltonian 1( )tH  could be developed as a series in spherical tensors. Let 

us restrict our consideration only by the quadrupolar interaction, whose Hamiltonian is 

expressed in terms of the second rank spherical tensors: 

 ( ) ( )
1

2

2
2 2( ) ( 1) ( ) ,m m m

Q
m

t F t T
=

−

−

−Λ= ∑H  (71) 

where ( )
2 ( )mF t  are random functions, and ( )

2
mT  are tensor operators acting on spin variables of 

the system. It is easy to show that, in the rotating frame, the following equality is valid (in the 

case under consideration, transition to the rotating frame coincides with the transition to the 

interaction representation): 

 ( ) ( )
2 2 ;Lωm m im tT T e=  (72) 

therefore, 

 ( ) ( )
1 2 2

2

2
( ) ( 1) ( ) .Lt

m

imm m m
Qt F t T e

=−

−−Λ= ∑ ω
H  (73) 

Let us substitute Eq. 73 into Eq. 68: 

 

2 2
2 ( ) ( )

2 2
2 2 0

( )( ) ( )
2 2

( )( 1) )(

., ( ),

L

L

imω τm m m m
Q

m m

i m m ωm m t

F t F t eσ τ τ

T σ

d
dt

d

eT t

∞
′ ′ −+ − −

′=− =−

′′ +

−Λ − ×

 ×

=



−

  

∑ ∑ ∫



 (74) 

Terms of Eq. 74 proportional to ( ) Li m ω tme ′+  with 0m m′ ≠ ≠  vary rapidly in time; thereby, they 

are averaged to zero during the characteristic time of relaxation ( ~ cτ τ ), if 1( ) L cm ωm τ −′ + >> . 

In this case, only terms with m m′ = −  give the contribution to relaxation. Thus, one can write 

 
2

2 ( ) ( ) ( ) ( )
2 2 2 2

2 0

) (( ) ( , ) .,Limω τm m m m
Q

m

σ τ τF Tt F t e σ
t

dd T
d

t
∞

−− −

=−

 −Λ  −   = ∑ ∫
   (75) 

Taking into account that ( ) *( )
2 2( 1)m m mF F− = −  we shall obtain for the integral in Eq. 75: 

 

( ) ( ) ( ) *( )
2 2 2 2

0 0

1

0

( ) ( ( ) (

1 (

) ( 1) )

( 1) ) ( 1) )sin( )
2

.(

L Limω τ imω τm m m m m

m m
m L m L

F t F t e d F t F t e dτ τ τ τ

ω i τ mω τ dJ m τG

∞ ∞
− −−

∞
+

− −= − =

= − + −

∫ ∫

∫
 (76) 

where ( )m LJ mω  are spectral densities, and )(mG τ  are corresponding correlation functions. 

One can show that the imaginary term leads to the shift of the energy of the spin system; this 
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shift could be included into the main Hamiltonian 0H , therefore we can drop it [64]. As a 

result, we have the equation 

 
2

2 ( ) ( )
2 2

2

1 ( 1) ) ) .
2

( , , (m m m
Q m L

m

σ J ω T σ td m
dt

T−

=−

  =  − Λ −  ∑   (77) 

It should be noted that the Hamiltonian expansion, specified by Eq. 71, corresponds to 

the semi-classical approximation, since the influence of the lattice is specified by “classical” 

functions ( ) ( )mF t , whose spectral densities )(m LJ mω  given by Eq. 76 obey the following 

obvious condition: 

 ) ).( (m L m LJ mω J mω− −=  (78) 

However, when using pure quantum mechanical approach, functions ( )( )mF t  have to be 

substituted by the corresponding operators, and Eq. 78 will take the following form [64]: 

 ) exp( ( ).L
m L m L

mωJ ω J ω
kT

m m−
 = − 


−




 (79) 

Equation 79 coincides with Eq. 78 only when T → ∞ ; therefore, the perturbative solution 

given by Eq. 77 is only valid for infinite temperature. However, it could be shown [64] that 

the weak-collision approximation can also be applied if σ  is interpreted as the difference 

between σ  and the equilibrium density operator 

 
{ }

0

0

exp( / )
Sp exp( / )

.eq eq kTσ
T

σ
k

−
= =

−



 H

H
 (80) 

Thereby, 

 ( )
2

2 ( ) ( )
2 2

2

1( ) ( 1) ( ) ( ) .,
2

,eq m m m eq
Q m L

m
σ t σ Jd

dt
ωm TT σ t σ−

=−

 − − Λ − −   = ∑   (81) 

The following solution of the problem could be executed by different ways. In the first 

approach, which was developed by Abragam [64], one has to try to rewrite Eq. 81 in the form 

of the macroscopic differential equation (Eq. 58); if it is possible, then the formula for the 

spin-lattice relaxation rate is obtained automatically. This approach is limited by the cases of 

dipolar relaxation and quadrupolar relaxation of spins 1I = ; for higher spins this method 

doesn’t work. However, Abragam’s approach could be generalized by the introduction of 

fictitious spin-1/2 operators [65], using which one can always reduce the master equation to 

the form of Eq. 58. 

The second approach is based on the introduction of the so-called relaxation 

supermatrix. This approach as well as the formalism of the fictitious spin-1/2 operators 

implies the transition to the Liouville space.  
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1.2.6 Multi-exponential spin-lattice relaxation in I=3/2 systems 

Using the relaxation supermatrix technique one can show [66] that recovery of the 

longitudinal magnetization of 3 2I =  system after the saturation-recovery pulse sequence is 

determined as follows: 

 (0) (
2 1

0)4 1) 1 exp( ) exp( ) ,
5 5

( eq
z zτ M R τ R τM  = − −  

 (82) 

where the spin-lattice relaxation rates )
2
(0R  and )

1
(0R  are defined as 

 (0) 2 (0) 2
1 1 2 2, ,Q QRR J J= −Λ = −Λ  (83) 

where QΛ  is determined by Eq. 33, and mJ  is a spectral density at frequency Lmω defined by 

 ( ) *( )
2 2( ) ) ,( ) ( Limω τm m

m LωJ m F t F t τ τe d
∞

−

−∞

= −∫  (84) 

where the field gradient tensors ( )
2

mF  are given by Eq. 34. 

Note also that generally one can separate the contribution of the external transitions 

from the central transition. For example, in single crystal with magnetically identical spins, 

one can measure the intensity of the satellites separately from the intensity of the central line. 

It is easy to show using an approach of G. Jaccard et al. [66] that the time evolution of the 

external transition due to spin-lattice relaxation is monoexponential: 

 ET (0)
2

3) ~ 1 exp( ( ) ,
4

τ R τA  −   (85) 

while the central transition relaxes through two exponents 

 2 1
CT (0) (0)1 1) ~ 1 exp( ) exp( ) .

2 2
(τ R τ RA τ − −  

  (86) 

Equation 82 yields very important result: unlike the 1I ≤  system, whose relaxation is 

monoexponential and could be characterized by the single relaxation rate (Eq. 60), the 

3 2I =  system relaxes through two exponents with two different relaxation rates. Let us 

desscribe the nature of such “multi-exponential” behavior. 

The motion of surrounding charges produces at the nucleus position field-gradient 

components, which are function of time. Equation 31 shows that the resulting time-dependent 

quadrupolar Hamiltonian QH , which couples nuclear spins to the surrounding lattice, can lead 

to transitions, in which the nucleus changes its quantum number m by 1m∆ = ± or 2m∆ = ± . 

For clarity, let us write the Hamiltonian QH  for 3 2I =  system in its explicit matrix form: 
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(0) ( 1) ( 2)
2 2 2

( 1) (0) ( 2)
2 2 2

( 2) (0) ( 1)
2 2 2

( 2) ( 1) (0)
2 2 2

( ) 2 ( ) ( ) 0

( ) ( ) 2 0 ( )
3 .

( ) 0 ( ) 2 ( )

0 ( ) ( )

)

( ) 2

(Q Q

F t F t F t

F t F t F t

F t F t F
t

t

F t F t F t

− +

+ +

− −

− +

 
 

− − 
Λ  

− − 
 
 

=H  (87) 

Let examine how quadrupolar relaxation processes affect the behavior of the central line. 

The first peculiarity to be noted is that, although one observes the absorption of radio-

frequency power only in the –1/2↔1/2 transition, the quadrupolar Hamiltonian QH  

responsible for the relaxation induces transitions between all energy levels for which 

1, 2m∆ = ± ±  except between the levels 1/2 and –1/2, since 1 1 1 1
2 2 2 2 0Q Q− −− =H H . 

The nuclear relaxation, therefore, takes place in a roundabout way. Let w denote the transition 

probability per unit time for transitions –1/2↔1/2 induced by the applied radio-frequency 

field; let mnW  be the transition probability per unit time for the nuclear transition from state m 

to state n induced by the time-dependent Hamiltonian QH  responsible for relaxation. The four 

equations determining the time dependence of the numbers mN  of nuclei in each of the four 

energy states m are then given by [67] 

 [ ]
,

( ) ( ) ,m m mn mn n nm m
n n

n
m

d N N W w N W w
dt ≠

= − + + +∑  (88) 

where 0mnw =  except 1 1 1 1
2 2 2 2, , .w w w− −= =  

As a first approximation, one can compute the transition probabilities arising from QH  

by regarding the four nuclear energy levels to be equally spaced by amount Lω  (in terms of 

frequency), where Lω  is the Larmor frequency. According to the Fermi’s golden rule, the 

transition probability is 
2

~mn QW n mH ; it is obvious from Eq. 87 that the matrix elements 

are such that one can express the upward transition probabilities in the form 

 1 1 3 3 3 31 1 1 1
2 2 2 2 2 2 2 2 2 21 2, , , , ,0, , .W W W W W W W− − − − −= = ≡ = ≡  (89) 

The quantities 1W  and 2W  thus defined represent transition probabilities between 

levels separated by Lω  and 2 Lω , respectively. From general principles of statistical 

mechanics (e.g., detailed balancing), one knows that nmW  is related to the inverse transition 

probability mnW  from a state of energy mE  to that of energy nE  by 
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[ ]exp ( ) .nm mn m nW W E E kT= − −  Since 1L kω T∆ = <<  one can then write the downward 

transition probabilities in the form 

 1 1 3 3 3 31 1 1 1
2 2 2 2 2 2 2 2 2 21 2, , , , ,0, (1 , (1 .) )W W W W W W W− − − − −= = =∆≡ + ∆+ ≡  (90) 

Equations 88 could be reduced to two equations for the quantities 

 
1 1 1

2 2 2

1 3 3
2 2 2

,

,

n N N

n N N
−

−

= −

= −
 (91) 

namely 

 
1 1 3

2 2 2

3 1 1
2 22

1 2 1 2 2 2

1 2 1 2 2 2

2 ( )
.

(

( ) ( ) 1 2

( ) ( ) )1 2

n n W n W W N W

n

W w W

n W n WW W N WW

= − + − + −

= − + − +

+ + ∆
 + ∆ −



  (92) 

Here we made use of the fact that the population of any level never departs appreciably from 

4N , N being the total number of nuclei. In the absence of an external radio-frequency field 

( 0)w = , a transient measurement of the recovery of the population difference 1
2

n  to its 

equilibrium value 1
2

eqn  would show the following dependence: 

 1 1
2 2 2 21 1( ) exp( 2 ) exp( 2 ),eqn t n C W t C W t= + − + −  (93) 

where 1C  and 2C  are constants depending on the initial condition. If the recovery of the 

population difference 1
2

n  is measured via inversion recovery method, Eq. 93 coincides with 

Eq. 82 that indicates the equivalence of two approaches used for derivation of these equations. 

The following compliance is obvious: 

 (0) (0
2 2

)
1 12 , ,2R RW W= − = −  (94) 

where the relaxation rates are defined by Eq. 83. 

To summarize the above, note once again that the relaxation process of the 3 2I =  

system is characterized by the two relaxation rates corresponding to single-quantum, 1W , and 

double-quantum, 2W , transition probabilities. It should be noted that these probabilities are 

not equal, in general, not only do they involve different spin operators, but, more important, 

they involve different components of the fluctuating electric field gradient tensor. It is 

interesting that despite of the coupling of transitions between the energy states, relaxation of 

the external transitions is determined only by the single-quantum transition probability (see 

Eq. 85). This gives the means for finding 1W  and 2W  separately. 
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An explicit calculation of the nuclear relaxation time quite generally involves only a 

calculation of transition probabilities of the type 1W  and 2W  produced by the time-dependent 

quadrupolar Hamiltonian QH . The field-gradient components ( )
2

mF  (see Eq. 33) are functions 

of time because of the motion of charges. It follows from the Hamiltonian given by Eq. 32 

that the Fourier components of ( 1)
2F ±  near the nuclear frequency Lω  and components of ( 2)

2F ±  

near the frequency 2 Lω  are those effective in including the nuclear transition (characterized 

by probabilities 1W  and 2W ) in which m changes by 1m∆ = ±  and by 2m∆ = ±  respectively. 

Thus, the following solution of the problem is reduced to the Fourier analysis of ( )
2

mF . 

1.2.7 Spin-lattice relaxation in the rotating frame 

As we have just noted, spin-lattice relaxation is the most sensitive to the fluctuations 

occuring at frequencies close to Lω . Since magnetic fields usually used in the relaxation 

experiment belong to the range 0.5–10 T, the Larmor frequency could take the values in the 

range 7 910 10−  MHz. Therefore, spin-lattice relaxation allows measuring the molecular 

dynamics with characteristic times being in the range 9 7~ 10 10cτ − −−  s. Thus, slow molecular 

motion ( 2 3~ 10 10cτ − −−  s) is not available with this technique. For investigation of a slow 

molecular motion so-called spin-lattice relaxation in the rotating frame 1ρT  is usually 

measured. 

 
Fig. 8. Pulse sequence for measuring of 1ρT . 

Measurement of 1ρT  is based on the locking of the transverse magnetization. A typical 

spin-locking pulse sequence is presented in Fig. 8. First, let us consider the effect of the spin-

locking experiment on the 1 2I =  system. 
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The initial (90 ) y° -pulse converts the initial longitudinal magnetization into transverse 

magnetization along the rotating frame x′ -axis. The phase of the radiofrequency field is 

suddenly changed to 0pφ = , so that the rotating frame radiofrequency field 1B  is also along 

the x′ -axis, i.e. in the same direction as the transverse magnetization. If the radiofrequency 

field is large enough, then the transverse magnetization is unable to precess away from the x′

-axis – it is said to be spin-locked. After a time τ , the locking field 1B  is turned off, releasing 

the transverse magnetization and allowing it to generate an NMR signal. Due to relaxation 

processes, the spin-locked magnetization decays exponentially to zero. The decay process 

may be followed by conducting a series of experiments with several values of the locking 

time τ . The time constant of the exponential decay is usually denoted 1ρT , and is usually 

called the spin lattice relaxation time constant in the rotating frame. 

In case of quadrupolar nuclei, spin-lattice relaxation in the rotating frame, similar to 

spin-lattice relaxation in the laboratory frame, shows non-exponentiality. Let us consider a 1ρT  

theory in detail. 

The Hamiltonian of the system, in the presence of the radiofrequency field, could be 

written as 

 1 RF( ) ( ),Z t t= + +H H H H  (95) 

where, as above, we assumed that non-averaged part of the fluctuating Hamiltonian 1H  equals 

to zero; RF( )tH  is the Hamiltonian of the radiofrequency field oscillating with frequency 

Lω ω= . In the rotating frame, the Hamiltonian is 

 1( ) ,x nutt I= +  ωH H  (96) 

where nutω  is a nutation frequency. The von Neumann equation thus could be written as 

 1 , .( ) x nut
dσ i ω σ
d

t I
t

+ = −  
  H  (97) 

It should be noted that transition to the rotating frame does not correspond here to the 

interaction representation. The latter could be introduced by the following formula: 

 .x nut x nuttiI ω iI tωσ e σe−=   (98) 

The von Neumann equation, in the interaction representation, has the following form: 

 1( ) .,tdσ i σ
dt

 = −   

  H  (99) 
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This representation describes motion in the doubly rotating frame, i.e. in a frame rotating 

about 1B  which is rotating about 0B . Restricting ourselves by quadrupolar interactions one 

can substitute 1( )tH  by its usual expansion in terms of spherical tensors (Eq. 73). Similar to 

Eq. 72, one can find for the second order normalized irreducible tensor operators in the 

doubly rotating frame the following relations: 

 ( )( ) (
2

2

)
2 ,L nuti mω ωm m

n
n

n

tT B e +

=−

= ∑
   (100) 

where ( )m
lT


 are normalized irreducible spherical tensors, whose normalization is defined as 

follows: 
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
 (101) 

Operators ( )m
nB


, in turn, may be written as linear combinations of ( )
2

mT


 

 

( )

( ) ( )

( ) ( )

(0) ( 1)
1 0

(0) ( 2) (0) (2) ( 2)
0 0 2 2 2

(0) (2) ( 2) (0) (1) ( 1) (2) ( 2)
2 2 2 2 2 2 2 2

(1) ( 1) (1) ( 1) (2) ( 2)
1 1 2 2 2 2

(1) ( 1)
2 2

6
6

6 6

0,

2 1 ,
4 8

3 ,
8 8 16
1 1 ,
4

6 6

4

B B

B B T T T

B B B T T T T T

B B T T T T

B B

±
±

± −

− − −
± ± ±

− − −
± ±

−
± ±

= =

= − = − +

= = = ± + + +

= − = − ± −

= =

 

  

       

     

  ( ) ( )

( ) ( )

(0) (1) ( 1) (2) ( 2)
2 2 2 2 2

(2) ( 2) (1) ( 1) (2) ( 2)
1 1 2 2 2 2

1 1 ,
8 4 8

1

6

1 .
4 4

T T T T T

B B T T T T

− −

− − −
± ±

± + + ± +

= = − + −

    

     


 (102) 

So, we have for the quadrupolar Hamiltonian, in the doubly rotating frame: 

 ( )( ) ( )
1

2 2

2
2

2
( 1)) .( L nuti mω ω tm m m

n
n

m n
Q F B et +

=− =−

−Λ= ∑ ∑
H  (103) 

Substituting Eq. 103 in to Eq. 99 we shall obtain 
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Assuming that ( ) L cωm τm′ + >>  as well as ( ) nut cn n ω τ′ + >> , one can write 

 
2

2 ( ) ( )
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2

2

1 ( 1) ) ( )( , , ,
2

m m m
Q mn L

m
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n

σ J ω ω B B σmd t
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where 

 (( ) *( )
2

)
2( ) ( ) ) .( L nuti mω ω τm m

mn L n t
n

uJ m n F t F tω ω eτ τd+
∞

−

−∞

+ = −∫  (106) 

 

Table 3. 

Coefficients ( )m
nc  in Eq. 108. 

m 

n 
2−  1−  0 1 2 

2−  1 4  1 2  6 4  1 2−  1 4  

1−  1 2  1 2−  0 1 2  1 2−  

0 6 4  0 1 2−  0 6 4  

1 1 2−  1 2  0 1 2−  1 2  

2 1 4  1 2−  6 4  1 2  1 4  

 

It is helpful to make a further transformation to this equation given by 

 ( ) ( )exp 2 exp 2 ,y yU i I Uπ i π I′ = −  (107) 

which corresponds to a rotation of 2π  about the y axis. The reason of this transformation is 

that it can be shown that the transformed operators ( )m
nB′


 are of the form 

 ( ) ( ) ( )
2 ,m m m

n nB c T′ =
 

 (108) 

where coefficients ( )m
nc  are listed in Table 3. 

Applying the transformation given by Eq. 107 to Eq. 105 and using Eq. 108 we obtain 
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1 ( 1) )( , , ( ) ,
2

,m m m m
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σ J ω ω T σ tTd
dt

−
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 
′  ′− Λ −  = ∑

    (109) 

where 

 ( )
2

2

2( ) ( )( , ) ( ).m m
ρ L nut n mn L n

n
utJ c Jω nω ωm ω

=−

= +∑  (110) 

If Lnutω ω<< , Eq. 110 reduces to 
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 (111) 

Equation 109 is identical in form to Eq. 77 if ( )m LJ mω  is replaced by ( ) ( , )m
ρ L nutJ ω ω . 

It means that the solution of Eq. 109 for σ ′ , the density operator in the doubly rotating frame 

for relaxation in the presence of RF ( )tH , can be simply deduced from the solution of Eq. 77 

for σ , the density operator in the singly rotating frame for relaxation in the absence of RF( )tH

. In other words, corresponding results for relaxation in the rotating frame can be deduced 

from the theory of relaxation in the laboratory frame simply by replacing ( )m LJ mω  in the 

appropriate expressions by ( ) ( , )m
ρ L nutJ ω ω . 

It is easy to show that relaxation of the magnetization along the field 1B  corresponds 

to longitudinal relaxation in the rotating frame: 

 { } { } { }Tr Tr Tr ;zx x xI σI σI σ I= = = ′     (112) 

therefore, similar to Eq. 82, one can write for relaxation of the locking magnetization in the 

rotating frame after the pulse sequence presented in Fig. 8: 

 ( )(0) (0
1

0 )
2

1) 4exp( ) exp( ) ,
5

(zρ zρ ρ ρτ M RM τ R τ= +  (113) 

where 

 (0) 2 (1) (0) 2 (2)
1 2, ,ρ Q ρ ρ Q ρR J R JΛ= −Λ= −  (114) 

and spectral densities in the rotating frame ( )( , )m
ρ L nutJ ω ω  are defined by Eq. 111. 

1.2.8 Correlation functions 

First, let us introduce some definitions of a random functions theory. Let ( )y t  be a 

random function of time; if a function ( )f y  exists, then it is also a random function of time. 

Let the probability that at time t the function ( )y t  takes a certain value denote as ( , )p y t . 

Then the average value of ( )y t  can be written as follows: 

 ( ) ( , ) ( ) .y t p y t y t dy= ∫  (115) 

The average value of  is ( )f t
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  (116) 

Different values of the function  at different moments of time could be correlated 

with each other. Let us introduce the conditional probability  of that the 

function  takes the value  at time , if it takes the value  at time . If the function 

 is invariant with respect to the change of the origin of time, then  depends 

only on the difference . The probability , in this case, is time-independent 

function . The correlation between the values of the function  at times  and  is 

then defined by the correlation function 

  (117) 

Let us assume that the fluctuations of the field gradient tensor are caused by the 

relative motion of ions, i.e. by the self-diffusion process. In this case, the value of the function 

 at certain moment of time is determined by the value of the electric field potential 

 produced by the moving ions at the site of a given nucleus. The electric field gradient at 

this nucleus is the sum of the gradients over all moving ions: 

  (118) 

where the multiplication factor  is introduced to take into account the following effects: 

Antishielding effect. 

The electric field gradient, which affect the quadrupole moment of the nucleus and 

which is produced by all other ions, is usually referred to as the local field gradient . The 

gradient  would be the sole source of interaction if the charge distribution of the ion, in 

which the nucleus lies, were spherically symmetric. However, the ion is distorted both by the 

quadrupolar field of the nucleus and by ; this distortion adds, in effect, a contribution 

 to the total gradient , where  is so-called quadrupole antishielding factor. The 

physical reason of the antishielding effect is the distortion of the electronic density of the ion 

due to the interaction with the quadrupole moment of the nucleus. In fact, to decrease their 

energy, electrons tend to move inward along the principle axis of the EFG tensor of the 

nucleus and outward at . This shift of the charge gives rise to a positive electronic 

quadrupole moment, i.e. to antishielding of Q. 
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Polarization and strain effects. 

Ionic diffusion in the crystal is always accompanied by the creation of charged point 

defects. Each of such charged defects induces the polarization of the crystal, which also 

contributes to the local field gradient. Moreover, the point defect creates around itself the 

mechanical strain, which causes the additional electric field gradient. 

All mentioned contributions are proportional to ; this allows to introduce a 

common factor , which contains contributions from antishielding, polarizing, and strain 

effects as well. 

If the charge of the n-th ion is , then the electric potential of its field in the point r is 

. Substituting such  in Eq. 118, we obtain 

  (119) 

where  is the Kronecker symbol. Substituting Eq. 119 into the definition of the field 

gradient components  and  (Eq. 33), we have in a spherical coordinate system: 

  (120) 

where  and  are the polar angles of the position vector  of the n-th defect with respect 

to the z-axis. If the N diffusing charges move independently of each other, then it is sufficient 

to consider only one of them; correlation functions and spectral densities could be derived for 

this sole charge, and the result has to be just multiplied by N. Taking into account the form of 

well-tabulated spherical harmonics 

  (121) 

one can write for the  and  components of the field gradient created by the sole 

charge 

  (122) 
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As it was shown in the previous section, transition probabilities  and  could be 

expressed in terms of spectral densities of the functions  and  (combine Eq. 84, 

Eq. 83, and Eq. 94): 

  (123) 

where . According to Eq. 117, the correlation function  

could be written as 

  (124) 

where  is the distance between two relatively moving ions at initial moment of time, and  

is the distance between them after the time . The probability  is a priori constant and 

equals to the inverse volume of the crystal . Thus, to find the autocorrelation functions of 

the components , one needs to know the probability . In case of  the latter is 

determined by the diffusion equation 

  (125) 

where D is the diffusion coefficient, and  is the Laplace operator. Solution of the diffusion 

equation with the initial condition  is well known: 

  (126) 

Thus, the autocorrelation function  could be written as follows: 

  (127) 

Multiplying Eq. 127 by N and calculating the integral [64], we shall obtain 

  (128) 

where , d is the distance of the closest approach of two ions,  is the 

concentration of defects, and  is the Bessel function. The corresponding spectral 

densities are 
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  (129) 

Correlation time  characterizes a fluctuation rate of the local field. The magnitude  

corresponds to its fluctuation frequency, i.e. during  the random function (in our case, 

) changes its sign. The relation between  and the parameters of the system depends 

on the model chosen for the description of the system dynamics. 

It is convenient to introduce the so-called reduced spectral densities 

. One can find from Eq. 128 that 

  (130) 

therefore, 

  (131) 

Taking into account Eq. 123, we obtain for the  system 

  (132) 

It should be noted that the autocorrelation function  in the form of Eq. 127 

assumes that the diffusion process could be described by the Fick's second law (Eq. 125). It 

means that both radial and angular parts of the ions’ coordinates run through a continuous 

range of values. However, diffusing jumps of ions in a solid are characterized by the discrete 

values of the polar angles and distances. In this case, the integral in Eq. 124 has to be 

substituted by the corresponding sum, and the probability  could be found from the 

Smoluchowski equation. We shall consider the model of the ionic motion in solid between 

discrete lattice sites in the next chapter. 

Functions given by Eq. 128 and Eq. 129 are quite complex, therefore, approximate 

functions are often used for the analysis of relaxation. Thus, the autocorrelation function is 

often taken in the simple exponential form 

  (133) 

Such choice of the correlation function for the analysis of magnetic relaxation is referred to as 

a Bloembergen-Purcell-Pound (BPP) approximation. In case of isotropic rotational diffusion, 

the precise form of the correlation function corresponds to Eq. 133; therefore, for spherical 
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molecules in liquids this approximation gives very good result. However, BBP model is a 

quite rough approximation for anisotropic translational diffusion of ions in solids; 

nevertheless, sometimes it could give satisfactory values for the correlation times of the ionic 

motion. 

Taking into account Eq. 133, one can write for  

  (134) 

where 

  (135) 

Here, as above, d is the distance of the closest approach of two ions, and V is the volume of 

the crystal. Substituting  from Eq. 122 into Eq. 135, one can obtain: 

  (136) 

hence we have for  

  (137) 

where the reduced spectral density is 

  (138) 

For the relaxation rates (0)
1R  and )
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(0R  we thus have 
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where 

  (140) 

The constant C could be expressed in terms of more “familiar” quantities: quadrupolar 

coupling constant  and asymmetry parameter η. To do this, one need to use the functions 

 in the form of Eq. 38. Thus, for isotropic rotational diffusion one can obtain [66] 

  (141) 

and Eq. 139 will be still valid. 
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The BPP approximation assumes that the correlation function decays down to zero 

when increasing the time . In fact, molecular motions could be restricted in space, and 

nuclear interactions will not be averaged down to zero. In terms of the correlation function, it 

means that  has to be divided into two parts, one of which defines the residual 

correlations and other one corresponds to the decay. The simplest form of such correlation 

function was suggested by Lipari and Szabo within the scope of the model-free approach 

[68]. In terms of reduced correlation function , the model-free approach is 

defined as follows: 

  (142) 

where S is a generalized order parameter, which is a measure of the averaging of the nuclear 

interactions by a given type of motion. Thus, if the internal motion is isotropic, then , 

i.e. a given interaction is averaged down to zero when increasing . On the other hand, if the 

motion is completely restricted, then . Spectral density of such correlation function is 

  (143) 

where  is a Dirac delta-function. We shall use the spectral density given by Eq. 138 

below, when considering the NMR line width analysis. 

One can see from Eq. 139 that relaxation rates (0)
1R  and )

2
(0R  obey the following 

relations: 1) at very fast motion, when 1L cω τ << , they are equal, (
1
(0) 0)

2R R= ; 2) at 1L cω τ >> , 

i.e. in slow motional regime, 1 2
(0) (0)4R R= . Thus, the relaxation rates do not differ more than 

four times; in other words, the recovery of the magnetization due to spin-lattice relaxation 

does not differ considerably from single exponent. This allows introducing an “effective” 

relaxation rate . To derive it, let us refer to Eq. 82, 
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which determines the time evolution of the longitudinal magnetization measured via the 

saturation-recovery method by integrating of the whole resonance line. At small τ, one can 

expand the function 2 1
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the two first terms. It gives 
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Fig. 9. Temperature evolution of longitudinal relaxation rates: in the laboratory frame,  (red line), 

and in the rotating frame,  (blue line). Parameters of the system are taken to be: 

, . 

One can even extend Eq. 145 to the more general case [69]: 

  (146) 

where 

  (147) 

The relaxation rate defined by Eq. 146 is referred to as relaxation of the Zeeman order 

(subscript Z denotes this). 

If only relaxation of the central transition could be measured in the experiment 

(Eq. 86), then one needs to convert the function  as 

above: 
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Using Eq. 111 one can extend Eq. 145 to the case of longitudinal relaxation in the 

rotating frame: 

  (150) 

Temperature evolution of the relaxation rate is determined by the time dependence of 

the correlation time . If an Arrhenius behavior of the correlation time is assumed, 

, a semi-logarithmic plot of  (Eq. 145) together with  (Eq. 150) has the 

form presented in Fig. 9. Maxima of  and  are observed at  and 

, respectively, and one can see from Fig. 9 that they are significantly spaced in the 

temperature domain. 

1.2.9 Non-exponential relaxation 

In a wide class of various materials, dynamical process could be characterized by a 

continuous set of relaxation times . Such situation often takes place in amorphous and 

crystalline semiconductors, insulators, polymers, disordered crystals and glasses. In this case, 

the time-domain relaxation data could not be fitted via simple exponential function, since 

relaxation will have non-exponential behavior. It should be noted that such non-exponentiality 

differs from the non-exponentiality of pure quadrupolar relaxation. In fact, the latter is caused 

by the existence of two different probabilities for single-quantum and double-quantum 

transitions between energy levels. The non-exponentiality in the case under consideration is 

caused by the disordering of the material structure and, as a result, by distribution of 

activation energies and correlation times characterizing a given type of dynamics. 

If the system is characterized by the set of relaxation times, one can introduce the 

probability  that the relaxation time  takes a certain value, where 

 is referred to as relaxation time probability density function, where  are 

additional parameters which characterize the distribution of relaxation time T. Then the global 

relaxation of the system, i.e. the average relaxation function , could be considered as a 
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continuous sum of pure exponential decays with a particular probability distribution 

 of  values: 

  (151) 

It was found that the relaxation responses obtained by different experimental 

techniques can be well characterized by a small class of fitting functions exhibiting 

asymptotically power-law properties [70]. The most popular function applied to fit the time-

domain relaxation is the stretched-exponential function, known also as the Kohlrausch-

Williams-Watts function (or just Kohlrausch function): 

  (152) 

where  is an effective relaxation time, and  is a stretching parameter, which characterizes 

the width of the probability distribution  of  values; for the Kohlrausch function, 

. Thereby, Eq. 151 has to be rewritten as follows: 

  (153) 

where the probability distribution  depends on the value of the stretching parameter. 

Introducing an effective relaxation rate , one can rewrite Eq. 152 in the 

following form: 

  (154) 

Equation 153 can now be written as follows: 

  (155) 

where , and . Probability density  obeys the usual condition: 

  (156) 

For , the stretched exponential function (Eq. 154) is a pure exponential with 

 and hence the probability density  is a Dirac -function at . For general 

, one can express  in the form of the following series [71]: 

  (157) 
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where  is the Gamma (factorial) function. 

Let us give physical interpretation of  and . The parameter  in the stretched 

exponential function is often referred to as some undefined “average” relaxation rate. 

However, one can show [71] that the average of  is infinite (in the absence of a high-s 

cutoff to ), and the physical interpretation of  is that  is about equally likely to be 

less than  as it is to be greater (to within ). The stretching parameter  is often 

cited as a measure of the width  of the distribution . However, a statistical definition 

of the width, such as the root mean square width , is undefined for . 

Nevertheless,  could be considered as a measure of the full width at half maximum 

(FWHM) of . 

Sometimes, time-domain relaxation function is not available, whereas frequency-

domain physical quantity, e.g., susceptibility, could be measured. Therefore, one needs to find 

the Fourier transform of the Kohlraush function. Let us define the Fourier transform of the 

stretched exponential function as follows: 

  (158) 

For small values of , one can express  in the form of the following sum [72]: 

  (159) 

whereas for large values of  one can write 

  (160) 

Similar to Eq. 151, one can introduce a correlation (not relaxation) time probability 

density function  and define an averaged spectral density  as 

follows: 

  (161) 

where we assumed that each correlation time characterizes an exponential correlation function 

. Note that  cannot depend on ; it is a property of the 

molecular system under study, not of the measuring apparatus [73]. 
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Since the Fourier transform is a linear operation,  also gives the reduced 

correlation function as a distribution of exponential correlation functions: 

  (162) 

which could often be described by the Kohlraush function. Functions given by Eqs. 151 and 

162 should not be confused: the first one correspond to the macroscopic process 

characterizing by the effective relaxation time , whereas the second one describes the time 

evolution of the correlation function, which is the characteristic function of the microscopic 

processes occurring in solid. Here, we shall focus on spectral densities, taking into account 

that corresponding correlation functions could be found via Eq. 162. 

Many different spectral densities were suggested to analyze nuclear spin relaxation 

rates in solids. Most of them have their origin in dielectric relaxation experiments. One of the 

most successful spectral densities used to interpret nuclear spin relaxation experiments in 

solids is so-called Cole-Davidson function , which is defined as follows: 

  (163) 

It easy to show that at 1L cω τ <<  

  (164) 

whereas at 1L cω τ >>  

  (165) 

It is interesting to note that the same behavior has the following function: 
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namely, at 1L cω τ <<  

  (167) 

and at 1L cω τ >>  

  (168) 

Taking into account that  and comparing Eqs. 164 and 165 with Eqs. 167 and 168, 

one can write the following approximate equality: 

,( ; ),...cτ α βp

|

0

|( ) (; , ,... ; , ,.. ), . cτ τ
c cτ α β τ α βg e dτp −

∞

= ∫

*T

CD ,( )j ω β

( )
[ ]
( ) 2CD 2 2

sin2 1 2( ) Im .
1

arctan

1

( )
; c

β β
c c

β
j

ωτ
ω β

ω ωωτ ωi τ

  = − = 
+ +  

CD ( ) 2; ,cω β βτj =

(1 )
CD ( ) 2sin( 2) .; β β

cω β βπ τ ωj − − +=

( ) ( )1 12 22

2
( ) ,

1

c
β

β
c

τω
ω τ

j
+

=
+

( ) 2 ,β cωj τ=

(1 )( ) 2 .β β
β cω τ ωj − − +=

0 1β< ≤

59 



 

Fig. 10. Comparison of the Cole-Davidson function  and the function  (see 

Eqs. 166 and 171) at different values of β. 

  (169) 

or 

  (170) 

where 

  (171) 

and  is defined by Eq. 166. One can see form Fig. 10 that Eq. 169 is satisfied with a 
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spin lattice relaxation rates  and (see Eqs. 145 and 150, respectively) one can use 

either Eq. 163 or Eq. 166; both of these functions could also be used for NMR linewidth 

analysis. 

One can see from Fig. 10 that enhancement of β increases asymmetry of the log-log 

plot of the spectral density. Assuming the Arrhenius behavior of the correlation time, 

, where  is an activation energy of the process, one can find from 

Eqs. 167 and 168 that the slope of the high-temperature ( 1L cω τ << ) side of  is 

, whereas the slope of the low-temperature side ( 1L cω τ >> ) of the spectral density 

is  (without taking into account the sign of the slope). Therefore, one can write 

  (172) 

Hitherto, we assumed that non-exponential relaxation is the consequence of the fact 

that the relaxing macroscopic system consists of the appropriate number of subsystems, each 

of which relaxes exponentially with its own relaxation time. This assumption could have a 

real physical meaning only when one deals with disordering systems such as glasses, 

polymers, etc., albeit even in this case one cannot get rid of some contradictions. Such 

approach, however, cannot be used for regular crystalline structures, where non-exponential 

relaxation also takes place quite often. The reason of this phenomenon one usually associates 

with a non-Markovian type of the dynamical process in a solid [74]. In this case, parameters β 

and  considered above have other physical interpretation. Thus, if the generalize relaxation 

model is applicable to the system, and relaxation could be considered as a self-similar 

process, then the parameter  in Eq. 163 is a dimension of the fractal set, at which interaction 

times between system’s components are distributed [75]. 
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Chapter 2. Theory and measurement of diffusion 

in solids 

2.1 Diffusion and ionic conductivity in crystals 

2.1.1 Bonding in solids and types of conductivity 

There exist two types of conductivity: 1) electronic conductivity, which takes place in 

metals and semiconductors and 2) ionic conductivity, which usually occurs in electrolytic 

solutions, typical ionic crystals at high temperature, and in different types of solid electrolytes 

(fast ionic conductors). In case of the electronic conductivity, the transfer of matter does not 

occur, whereas in the second case the flow of the electric current takes place due to the 

motion of ionized atoms or molecules, i.e. due to the transference of matter. 

In solids, the type of the conductivity depends mainly on the nature of chemical bonds. 

In case of covalent bonds, electron pairs are trapped in very stable and directional orbitals and 

it is difficult to detach an electron from the atom without gaining a lot of energy. The energy, 

which is necessary to break the chemical bond and to detach the electron from its atom, is 

referred to as a band gap. Covalent crystals with the band gap being less than 1–1.5 eV are 

usually referred to as semiconductors, whereas solids with a higher value of the band gap are 

referred to as insulators. 

If elements of a solid have few electrons in the valence shell, they lower the energy by 

sharing a sea of valence electrons with all atoms in the structure forming a metallic bonding. 

The deficiency of electrons makes available many unoccupied orbital states. As a result, high 

electronic conductivity takes place in metals. Along with the transport of electrons the 

transport of ions could also occur in metals, when the electric current flows. This is so-called 

effect of electromigration, which is caused by the momentum transfer between conducting 

electrons and diffusing metal ions. Electromigration occurs when some of the momentum of a 

moving electron is transferred to a nearby activated ion. This causes the ion to move from its 

original position. Over time this force (so-called “electron wind”) knocks a significant number 

of atoms far from their original positions. This effect is important in applications where high 

direct current densities are used, such as in microelectronics and related structures. As the 

structure size in electronics such as integrated circuits decreases, the practical significance of 

this effect increases. 
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Finally, if the different elements of a solid have very different electronegativities, the 

most electronegative atom will affectively take valence electrons of the less electronegative 

one. Thus, in sodium chloride, Na will easily lose its valence electron to Cl, which thereby 

fills its valence shell. Both are stabilized together as Na+ and Cl- ions forming a packed 

structure with an ionic bonding. It should be noted that the bond between the two ions would 

be weak, since there is no overlap of electrons. Nevertheless, if many such pairs are packed 

with alternating cation and anion side by side in three-dimensional structure, there is a total 

electrostatic energy gain. The packing of ions is rigid and the materials are in general hard and 

brittle. The electrons have no possibilities to leave the anions, and the materials are generally 

insulators. However, at high temperatures (around several hundred kelvins below the melting 

point), ions can leave their normal crystallographic positions and travel (diffuse) through the 

crystal. 

2.1.2 Point defects 

Ionic conductivity and diffusion in crystalline solids takes place because of the 

presence of different types of imperfections (defects) in crystal. If the imperfection is limited 

to one lattice site and its immediate vicinity (vacancy or interstitial atom), it is a zero-

dimensional imperfection and is termed as a point defect. Dislocations, which are 

characterized by displacements in the structure in certain directions, correspond to one-

dimensional or linear defects. The plane defects or two-dimensional defects comprise stacking 

faults, grain boundaries, internal interfaces, and external surfaces. Point defects are 

responsible for lattice diffusion, whereas along plane defects and dislocations one can observe 

surface diffusion and dislocation diffusion, respectively. Solid-state diffusion determines or 

strongly influences a number of properties and processes such as mass transport in solids, 

solid state reactions, sintering, high-temperature creep, etc. Hereinafter, we shall focus on 

lattice diffusion and, consequently, on properties of point defects. 

Formation of the point defects – vacancies and interstitial atoms – can be different. 

Thus, a vacancy could arise due to the “incomplete evaporation” of the near-surface atom, i.e. 

due to the shift of the atom from the frontier atomic layer directly to the surface of the crystal. 

The atom of the neighboring atomic layer could occupy the site of this atom in the course of 

time and consequently the vacancy will migrate inside the crystal. Such imperfections are 

termed Schottky defects. Formation of Schottky defects can only occur at surfaces or other 

extended defects (e.g., dislocations, grain boundaries) since the atoms in the vacated sites 

must escape. The defects then diffuse into the crystal until equilibrium is reached. 
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Fig. 11. An example of point defects in a binary ionic crystal (NaCl). 

In the ionic solids, any point defect usually possesses an electric charge; therefore, the 

appearance of only one vacancy (e.g. the cationic vacancy) leads to the violation of the 

electroneutrality of the crystal. To conserve the electroneutrality of the stoichiometric crystal, 

a complementary point defect with opposite effective charge must be formed. Note that this 

requirement is valid only for stoichiometric crystals, since in nonstoichiometric compounds 

the electroneutrality is conserved through the formation of point defects and charge 

compensating electronic defects. The balance of populations of cation and anion vacancies 

could be achieved by the creation of different amount of defects depending of the 

stoichiometry of the compound. For example, if the crystal has a formula MX, then the 

number of cation vacancies will be equal to the number of anion vacancies. It is necessary to 

remember that the number of Schottky defects in a crystal of formula MX is equal to one-half 

of the total number of vacancies. In crystals of more complex formula, such as titanium 

dioxide, TiO2, there will be twice as many anion vacancies as cation vacancies in a Schottky 

disorder. This is because we need the absence of two O2- ions to electrically counterbalance 

the loss of the one Ti4+ ion from the crystal. This ratio of two anion vacancies per one cation 

vacancy will hold in all compounds of formula MX2. In crystals like Al2O3, two Al3+ 

vacancies will be balanced by three O2- vacancies. Thus, in crystals with a formula M2X3, a 

Schottky defect will consist of two vacancies on the cation sub-lattice and three vacancies on 

the anion sub-lattice. It should be noted that these vacancies are not necessarily clustered 

together and only the relative numbers are needed to keep the crystals electrically neutral. 

The defect formation could happen also inside the crystal by means of the shift of the 

cation from its site in the crystalline lattice to the interstice – under this jump the pair 

vacancy-interstitial atom appears. Such paired impurities are termed Frenkel defects. Frenkel 

pairs, which consist of anion vacancies and anion interstitials, are called anion-Frenkel pairs 
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or sometimes anti-Frenkel pairs. Frenkel disorder usually occurs in the cationic sub-lattice and 

it is less common to observe anti-Frenkel disorder. This is the consequence of the fact that 

anions are commonly larger than cations. An important exception to this generalization lies in 

the occurrence of anti-Frenkel disorder in fluorite-structured compounds, like alkaline earth 

halides (CaF2, SrF2, SrCl2, BaF2), lead fluoride (PbF2), and thorium, uranium, and zirconium 

oxides (ThO2, UO2, ZrO2) [76]. One reason for this is that the anions have a lower electrical 

charge than the cations, while the other reason lies in the nature of the open structure of the 

fluorite lattice. It should be noted that under the formation of Frenkel defects the 

electroneutrality is conserved automatically, since the formation of the positively charged 

interstitials and negatively charged vacancies occurs simultaneously. Moreover, the relative 

number of vacancies is not connected to the formula of the compound. 

Although Schottky and Frenkel disorder may be simultaneously presented in 

stoichiometric compounds, one type of disorder usually predominates. Schottky disorder is 

favored where the cations and anions are of the comparable size, while Frenkel disorder 

predominates when the sizes of the cations and anions are appreciably different. Another 

factor is that Schottky disorder tends to dominate when the structure is very effectively 

packed so that the interstitials that are part of Frenkel pairs are hard to form. 

2.1.3 Thermodynamics of point defects 

As it was mentioned above, formation of point defects requires considerable energy 

consumption; nevertheless, at relatively high temperature, an existence of point defects is 

expected to be energy-advantageous. The fact is that the appearance of the defects increases 

the internal energy  of the crystal and its entropy  as well. Thus, for given value of 

pressure P and temperature T the part of the Gibbs potential of the crystal, 

, caused by the presence of the interstitial atoms has a minimum at 

certain defect concentration. The equilibrium concentration is determined by the balance 

between the enthalpy ( ) and entropy ( ). 

The change of the entropy due to the appearance of the defects (such entropy is called 

configurational entropy) can be determined as follows 

  (173) 

where k is the Boltzmann constant and Z is a statistical weight of the system at given 

temperature or more exactly the part of the statistical weight, which is connected with the 

placing of the defects in the crystal. 

 

PV T T= + − = −    

 

ln ,conf k Z=
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Suppose that all interstitial atoms were “born” inside the crystal, i.e. they arise via 

Frenkel mechanism. The defect concentration, i.e. the number of Frenkel pairs in the unit 

volume, we shall designate as N assuming the equality of interstitial atoms and vacancies at 

any temperature. The number of ways to place N atoms into the  interstices could be found 

using the following formula of combinatorial analysis: 

  (174) 

Analogously, one can find the number of ways to place N vacancies into  nodes of a given 

sub-lattice: 

  (175) 

Using Stirling’s formula 

  (176) 

which is valid when x is big, and taking into account that  we can write for the 

configurational entropy 

  (177) 

If the formation of one Frenkel defect requires the energy , then the enhancement 

of the internal energy of the crystal due to the formation of N defects equals to . Hereby, 

the expression for the free energy takes the form 

  (178) 

where  is defined by Eq. 177. At thermal equilibrium, the free energy has a minimum 

relative to the change of N, i.e. 

  (179) 

After the minimization of the function  (Eq. 178) and subsequent transformations one can 

obtain for the defect concentration 

  (180) 
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or taking into account that 0N N<<  and N N ′<<  

  (181) 

Factor  in exponent of Eq. 181 appears because of the assumption that the numbers of 

vacancies and interstitial atoms are equal. 

Deriving Eq. 181 we did not take into account that a vibrational motion of the atom in 

the interstice slightly differs from the vibrational motion in the lattice site. One can consider 

this fact by means of adding a supplementary component to the free energy (Eq. 178): 

  (182) 

where  is a change of vibrational free energy of the crystal under the formation of N 

interstitial atoms. Minimization of function  now gives 

  (183) 

whence, assuming again that  and  we have 

  (184) 

One can estimate  considering the vibrating atom as an isotropic three-

dimensional oscillator. For the Helmholtz energy of linear oscillator we can write 

  (185) 

where 

  (186) 

is a statistical integral, U is potential energy of the oscillator, and Ω designates phase space of 

the oscillator (in case of linear oscillator, Ω coincides with complete number scale). If f is a 

force constant of the linear oscillator, then the force acting on it equals to , where  is a 

deviation from the equilibrium position. Thus, statistical integral equals to 

  (187) 
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  (188) 

The atom will have other force constant  in the interstice; thereby, after the formation of N 

interstitial atoms the Helmholtz energy changes by the value 

  (189) 

where  and  are vibrational frequencies of atoms in the lattice 

sites and in the interstices, respectively. If to take into account that atoms surrounding 

interstitial ions and vacancies also change their vibrational frequency, then we have to take 

into account an additional contribution to the free energy, which will have the following form: 

  (190) 

where  and  are numbers of atoms, surrounding interstitials and vacancies, respectively, 

while  and  are their frequencies. 

Since the dependence of vibrational frequencies of atoms on temperature is quite 

weak, one can write: 

  (191) 

Then Eq. 184 takes the form 

  (192) 

A quantity  is an entropy change related to the alteration of vibrational 

frequency of the atom under its transition from the lattice site to the interstice, i.e. 

. Therefore, 

  (193) 

In fact, processes mentioned above do not give full list of phenomena, which are 

associated with formation of defects in crystal; therefore, we can write  instead of , 

implying under this designation the entropy change which occurs under all possible processes, 

but taking into account that the main contribution to  is caused by the vibrational 

entropy. Then the expression for Frenkel pair concentration will have the form 
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  (194) 

where  is a free energy change under the formation of one Frenkel pair. To determine the 

dependence of the defect concentration on the external pressure, one has to use the Gibbs 

potential instead of the free energy: 

  (195) 

Then, the concentration of Frenkel pairs could be written in following general form: 

  (196) 

where  is the formation enthalpy of one Frenkel pair. 

Consideration of the Schottky defect concentration depends on the composition of the 

compound, since, as it was noted above, Shottky disorder could comprise different amount of 

vacancies depending on chemical formula of the compound. For binary ionic crystal, such as 

NaCl, the equilibrium concentration of vacancies of both cations and anions is 

  (197) 

where  is the concentration of cations (or anions) in the crystal, and  is the formation 

Gibbs energy of one Schottky pair. 

2.1.4 Basics of diffusion 

The equations governing diffusion processes are Fick’s laws. These laws represent a 

continuum description and are purely phenomenological. The Fick’s first law relates the 

concentration gradient of a given species  with its flux J; for an isotropic medium, the 

Fick’s first law can be written as follows: 

  (198) 

The negative sign in Eq. 198 indicates opposite directions of diffusion flux and concentration 

gradient. Diffusion is a process which leads to an equalization of concentration. The factor of 

proportionality, D, is referred to as the diffusion coefficient or diffusivity of the species 

considered. The diffusion coefficient has the dimension of length2 per time and bears the units 

[ ] or [ ]. 

If the number of diffusing particles is conserved in the diffusion process, then the flux 
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  (199) 

where  denotes the vector operation divergence. Fick’s first law (Eq. 198) and the equation 

of continuity (Eq. 199) can be combined to give an equation, which is called Fick’s second 

law or diffusion equation: 

  (200) 

which for concentration-independent diffusivity D in isotropic medium simplifies to 

  (201) 

where  denotes the Laplace operator.  

Let us consider one of the solutions of Eq. 201 in a one-dimensional case. If the 

diffusing species (diffusant) is deposited at the plane , i.e. the initial condition is the 

following: 

  (202) 

where  denotes the number of diffusing particles per unit area, and  is the Dirac delta 

function, then the solution of Eq. 201 is [77] 

  (203) 

The initial condition given by Eq. 202 is often called instantaneous planar source. This 

solution is also referred to as Gaussian solution. The quantity  is a characteristic 

diffusion length, which occurs frequently in diffusion problems. 

Other solution occurs, if the source of diffusant is constant. This situation takes place, 

when the free end of the semi-infinite medium is continuously exposed to a fixed 

concentration, e.g., when atoms from the constant source bombard the surface of the quite 

thick plate. In this case, the concentration distribution is defined as follows [77]: 
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Fig. 12. Diffusion mechanisms: 1 – vacancy mechanism, 2 – interstitial mechanism, 3 – ring diffusion 

mechanism, 4 – caterpillar mechanism, 5 – direct exchange, 6 – crowdian mechanism, 7 – interstitialcy 

mechanism. 

From a microscopic point of view, diffusion occurs by Brownian motion of atoms or 

molecules. In gases, diffusion occurs by free flights of atoms and molecules between their 

collisions. Here, a mean free path λ, corresponding to the average distance traveled by a 

moving particle between successive collisions, could be defined. The individual path lengths 

of fights are distributed around λ. Diffusion in liquids can be described as randomly directed 

shuffles, each much smaller than the average spacing of atoms in a liquid. Finally, in 

crystalline solids, diffusion occurs by atomic jumps in a lattice. The most important point is 

that a separation of time scales exists between the elementary jump process of particles 

between neighboring lattice sites and the succession of steps that lead to macroscopic 

diffusion [78]. In solids, the average distance between lattice sites δ (or between interstices) 

could take the role of the mean free path λ, and some formula derived for gases could be used 

for solids just substituting λ by δ. 

The diffusion process (and the self-diffusion process as well) in a crystal can be 

implemented by several mechanisms [79-85]. If an atom in the node of the crystalline lattice 

could move jumping into an adjacent unoccupied lattice site (vacancy), then the diffusion is 

said to take place by vacancy mechanism (Fig. 12). This type of diffusion is quite general for 
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different solids and plays a decisive role in metals with packed structures. If an atom on an 

interstitial site moves to one of the neighboring interstitial sites, the diffusion occurs by an 

interstitial mechanism (Fig. 12). Such a movement or jump of the interstitial atom involves a 

considerable distortion of the lattice, and this mechanism is probable when the interstitial 

atom is smaller than the atoms of the normal lattice positions. Diffusion of interstitially 

dissolved light atoms, e.g. H, C, N, and O in metals provides the best-known examples of this 

mechanism. 

If the distortion becomes too large to make the interstitial mechanism probable, 

interstitial atoms can move via an interstitialcy mechanism. In the interstitialcy mechanism, 

an interstitial atom pushes one of its nearest neighbors on a normal lattice site into another 

interstitial position and itself occupies the lattice site of the displaced atom (Fig. 12). 

The diffusion of substitutional solutes and of solvent atoms themselves requires a 

mechanism different from interstitial diffusion [78]. Thus, self- and substitutional solute 

diffusion in metals could occur by a direct echange of neighboring atoms (Fig. 12), in which 

two atoms move simultaneously. If three or more atoms are involved in exchange mechanism, 

then the diffusion is said to occur through ring diffusion mechanism, which could be 

represented as a rotation of atoms as a group by one atom distance (Fig. 12). It should be 

noted that ring versions of atomic exchanges have lower activation energies but increase the 

amount of collective atomic motion, which makes this more complex mechanism unlikely for 

most crystalline substances. 

In elemental solids, other variants of the interstitial mechanism have also been 

proposed. Thus, if several ions within some volume are displaced from their normal lattice 

positions to allow the placement of an additional ion along a line within the volume, the 

diffusion is said to occur by crowdion mechanism. The energy to move a “crowdion” may be 

small, but it can only move along the line or along equivalent directions. Finally, Yokota [86] 

proposed a so-called “caterpillar mechanism” for fast diffusion in Ag2S. In this mechanism, it 

is assumed that an ion can jump not only into a nearest neighboring vacant site, but also into a 

site already occupied, with the result that the latter ion performs a similar jump in the same 

direction. This process continues until one of the ions ends the sequence by jumping into a 

vacancy. 

Let us consider the case of unidirectional diffusion of interstitials in a simple cubic 

crystal. We assume for the sake of simplicity that the diffusing atoms are dissolved in low 

concentrations and that they move by jumping from an interstitial site to a neighboring one 
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with a jump length . Let us find the net flux  of diffusing particles between two planes, 1 

and 2, at a distance of the jump length. We suppose a concentration gradient along the x-

direction and introduce the following quantities: the jump rate  (number of jumps per unit 

time) from one plane to the neighboring one; number of interstitials  per unit area in plane 

1; number of interstitials  per unit area in plane 2. Without a driving force, forward and 

backward hops occur with the same jump rate and the net flux  from plane 1 to 2 is 

  (206) 

The factor  is introduced due to the fact that particles in both planes can jump in opposite 

directions, i.e. the number of particles jumping from plane 1 to 2 is , and the number 

of particles jumping from unit area of plane 2 to plane 1 is given by . 

 
Fig. 13. Schematic representation of unidirectional diffusion of atoms in a lattice. 

The quantities  and  are related to the volume concentrations of diffusing atoms 

via 

  (207) 

Usually, in diffusion studies the concentration field, , changes slowly as a function of 

the distance variable x in terms of interatomic distances. From a Taylor expansion of the 

concentration-distance function, keeping only the first term, we get 
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  (208) 

Inserting Eqs. 207 and 208 into Eq. 206 we have 

  (209) 

If diffusion can take place in three orthogonal directions, only one third of the particles jump 

along positive direction of the x-axis. Therefore, in three-dimensional case 

  (210) 

By comparison with Fick’s first law (Eq. 198) we obtain for the diffusion coefficient 

  (211) 

This equation shows that the diffusion coefficient is essentially determined by the product of 

the jump rate and the jump distance squared. 

2.1.5 Diffusion as an activation process 

Now let us consider in detail the movement of the interstitial atoms dissolved in low 

concentration in a simple cubic crystal. Such movement is associated with the transition of a 

given impurity atom to one of the neighboring interstices. The transition could be described in 

terms of usual double-well potential (for simplicity we shall believe that potential barrier and 

wells have a rectangular form). Barrier height adds up to the energy, which the atom has to 

possess to move to new interstice. The probability  that the atom occupies the potential 

well depends on the width  of the well and on the energy  of its “bottom”. According to 

the Boltzmann distribution, 

  (212) 

The probability  to find the atom on the top of the barrier is defined by its width  and by 

the energy of the top  via the similar expression. The ratio of these probabilities equals to 

  (213) 

where  is the barrier height (Fig. 14). 
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The probability to find the atom in some state is proportional to the “lifetime” of the 

atom in this state, therefore  equals to the ratio of corresponding time intervals . 

Hereby, 

  (214) 

It is easy to understand the meaning of time : it is a “lifetime” of the atom in the 

potential well. The meaning of time  is not so clear. It would seem that one can identify  

with a hopping time from one potential well to another, but such simplification is not quit 

accurate. In fact, this consideration does not take into account a dumping of energy which has 

to occur when the atom gets to a new well. If there is no such dumping, then after the hopping 

to the neighboring well the atom comes back to the old one; moreover, one can expect that the 

atom will jump hither and thither repeatedly if the redundant energy is not dumped. Thus, it is 

necessary to include into consideration some mechanism of energy dumping caused by the 

interaction of given atom with its surrounding. Then the “lifetime” of the atom on the top of 

the barrier  is equivalent to the time of energy dumping, i.e. to the time to return to the 

equilibrium state. Hereinafter we shall imply that such dumping is taken into account. 

At room temperature one can apply Maxwellian distribution for the atoms of 

crystalline lattice. It means that average kinetic energy at one degree of freedom equals to 

, consequently, average velocity of atom in the potential well equals to . At the 

same velocity (in order of magnitude) the jump to the neighboring well occurs. Hereby, for 

time  we can write 

  (215) 

Then for time  we have 

  (216) 

The ratio  equals to motion time of the atom from one wall of the potential 

well to another, i.e. equals to the vibration period of the atom in the interstice. So, replacing 

 by  one can write: 

  (217) 
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or in terms of a jump frequency 

  (218) 

where  is referred to as attempt frequency. Taking into account that the rate frequency is 

proportional to the number of adjacent sites (interstices) Z, i.e. , one can write for the 

diffusion coefficient of the impurity 

  (219) 

 
Fig. 14. Double-well potential describing the change of the atom energy during the duffusing jump. 

Equation 219 has to be specified. The fact is that this formula was obtained with the 

assumption that the movement of the interstitial atom occurs regardless of the motion of other 

atoms, i.e. it is supposed that neighboring atoms persist in their equilibrium positions. 

Actually, under the shift of interstitial atom to another interstice, surrounding atoms have to 

“move aside”. To take into account such process it is not enough to redefine the energy of the 

potential barrier . In fact, one cannot consider thermal motion of a given atom 

irrespective of the motion of its neighbors; in other words, it is necessary to consider a 

complex composed of a given atom and its neighboring atoms or even, strictly speaking, the 

crystal in whole. From this point of view the transition of the atom over the barrier can be 

considered as a specific fluctuation; the probability of such fluctuation is determined by the 

increase of Helmholtz energy  at constant temperature and by the increase of Gibbs 

energy  at constant pressure, where  is an enthalpy needed to carry 
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the defect from an initial equilibrium position to a saddle point (sometimes referred to as 

migration enthalpy) and  is a corresponding entropy change. 

Substituting  by  in Eq. 217 we shall obtain the following expression: 

  (220) 

whence for the diffusion coefficient we have 

  (221) 

It should be noted that Eq. 221 is valid only for interstitial diffusion in dilute solid 

solutions, e.g., diffusion of protons by the free transport mechanism in metal oxides with 

simple cubic structure. The diffusivity of a host constituents (i.e. self-diffusion) by an 

interstitial mechanism is not only proportional to the probability that the interstitial defect 

jumps, but also to the probability that a constituent ion is interstitial. It means that the jump 

frequency will be now proportional to the concentration of the Frenkel pairs 

  (222) 

where N and  are the concentration of the Frenkel pairs and the full concentration of ions, 

respectively. Thereby, taking into account Eqs. 211 and 222 we shall obtain for the self-

diffusion coefficient 

  (223) 

where 

  (224) 

From the mathematical point of view, vacancy mechanism of self-diffusion is similar 

to diffusion of interstitials. However, it is impossible to measure directly in a real experiment 

the diffusion coefficient of holes (vacancies), since it is impossible to observe the motion of 

emptiness. In fact, one can measure a self-diffusion coefficient of the crystal, i.e. observe the 

motion of atoms (ions). If ions move due to the vacancy mechanism, then they can travel only 

when there is a hole at the neighboring site. Taking into account that the concentration of 

vacancies even at high temperatures is much less than the concentration of ions, one can 

expect the self-diffusion coefficient be also much less than the diffusion coefficient of 

vacancies. The relationship between them is determined as: 
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where  is the concentration of vacancies and  is their diffusion coefficient;  is the 

concentration of lattice sites. For binary ionic solids,  is determined by the Eq. 197, while 

the diffusion coefficient of vacancies is determined by Eq. 221, where  is referred to the 

“activation enthalpy” of vacancy migration. 

2.1.6 Pre-exponential factor 

Let us consider in detail the pre-exponential factor (or prefactor)  in Eq. 223 

  (225) 

where . While the activation energy of the ion’s jump is defined by the 

barrier “height”, the pre-exponential factor is related to the number of atoms participating in 

this jump, or to the number of possible ways of jumping from a given position [80]. As one 

can see,  depends on the value of the migration entropy  as well as by the value of the 

defect formation entropy . These quantities should be distinguished. The latter is caused 

mainly by the change of the vibrational state of the crystal due to the shift of one atom from 

its normal position to the interstice. Migration entropy, in turn, is caused by the change of the 

vibrational state of the crystal due to the movement of the diffusing atom from its equilibrium 

position (the bottom of the potential well) to the saddle point, i.e. on the top of the potential 

barrier. It is usually assumed that , and then the entropy part of the prefactor 

could be written as follows [87]: 

  (226) 

where  is a j-th normal mode of the crystal at the starting point of the transition, and  is 

the value of a j-th normal frequency, when the diffusing atom oscillates near the saddle point; 

 is the number of degrees of freedom. Eq. 226 was first deduced by Vineyard and 

bears his name. This formula could be considered as a generalization of Eq. 189, where we 

considered all atoms of the crystal as independent three-dimensional oscillators. (It should be 
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noted that Eq. 189 was derived for the formation entropy , and  had the sense of the 

vibrational frequency of an atom in an interstice. However, similar approach could be used for 

derivation of Eq. 226, but with  having the sense of the frequency of the atomic oscillations 

in the saddle point.) 

Let us now find the link between these quantities and thermodynamic properties of the 

crystal. According to the definition, entropy can be expressed as 

  (227) 

One can write for the entropy change under the jump of the atom 

  (228) 

where  is the Gibbs energy change under the movement of the atom at temperature 

. As  at absolute zero, then  coincides with activation enthalpy  of the 

process. If to assume that the Gibbs energy change under the ion’s jump coincides with a 

work of lattice deformation, then the temperature dependence of  is determined by the 

temperature dependence of shear modulus 

  (229) 

Consequently, 

  (230) 

whence 

  (231) 

For metals the following formula is valid [80]: 

  (232) 

where  is a melting temperature. Introducing coefficient 

  (233) 

one can obtain 
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  (234) 

(Note that the superscript m comes from the word “migration”, whereas the subscript m comes 

from “melting”.) 

Most metals have  [80]. For the pre-exponential factor we now have 

  (235) 

Unfortunately, estimation of entropy  cannot be done so easy; however, the following 

rough generalization could be made 

  (236) 

where the parameter β is of the order of unity [80]. 

It has to be noted that Eq. 236 is approximate formulae and coefficients λ and β do not 

have real physical sense. In addition, application of these formulae is limited by fcc and bcc 

metals, but sometimes they are used for the description of diffusion in ionic crystals [11, 88, 

89]. In fast ionic conductors, where the phase transition is accompanied by a considerable 

disordering of the lattice, melting temperature  has to be substituted by temperature of the 

phase transition to the superionic state . 

In most solids, the prefactor has the value in the range ; however, 

in case of surface diffusion or other types of “facilitated” diffusion,  has lower value. 

Much less often, the pre-exponential factor surpasses 1 cm2/s. From the physical point of 

view, such case could be realized due to cooperative nature of diffusion, i.e. when a group of 

atoms is involved into a jump [80]. 

2.1.7 Correlation effects 

Everywhere above it was assumed that each subsequent jump of the ion in the lattice 

occurs independently on the previous jumps. Such a jump sequence is usually termed 

uncorrelated random walk or a Markov sequence (memory free walk). The set of n individual 

ion jumps of a particle could be characterized by the mean square value of the net 

displacement 
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where  denotes a displacement vector under the i-th jump. In Eq. 237, the first term contains 

squares of the individual jump lengths only, whereas the second term contains  

average values of the products , which define correlation (memory) effects. For a Markov 

sequence, these average values are zero, as for every pair  one can find for another 

particle of the ensemble a pair  equal and opposite in sign. Thus, for a random walk 

without correlation we have 

  (238) 

Several atomic mechanisms of diffusion in crystals entail diffusive motions of atoms, 

which are not free of memory effects. For example, correlation effects are involved by the 

vacancy mechanism. Thus, upon exchange, vacancy and “tagged” atom (tracer) move in 

opposite directions. Immediately after the exchange, the vacancy is for a while available next 

to the tracer atom, thus increasing the probability for a reverse jump of the tracer. 

Consequently, the tracer atom does not diffuse as far as expected for a complete random 

series of jumps. This reduces the efficiency of the tracer walk in the presence of positional 

memory effects with respect to an uncorrelated random walk. 

Correlation effects could be accounted for by introducing the correlation factor f [78] 

  (239) 

where unity (the leading term) is associated with uncorrelated (Markovian) jump sequences 

and double summation contains the correlation between jumps. Correlation factor may be also 

defined as the ration of the diffusivity of tagged atoms, , and a hypothetical diffusivity 

arising from uncorrelated jump sequences, , via 

  (240) 

Thereby, for the (self-)diffusion coefficient (Eq. 211) in the cubic lattice we now have to write 

  (241) 

Correlation effects are important in solid-state diffusion of crystalline materials, 
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vacancies, vacancy pairs, self-interstitials, etc. There must be at least three identifiable 

“species” involved in the diffusion process. For example, during tracer diffusion via vacancies 

in pure crystals, the three participating “species” are vacancies, host atoms, and tracer atoms. 

Interstitial diffusion in a dilute interstitial solution is uncorrelated, because no diffusion 

vehicle is involved. 

Under vacancy mechanism, successive jumps occur with higher probability in the 

reverse direction; therefore, the contribution of the double sum in Eq. 239 is negative. 

Consequently, if the diffusion vehicle is involved, i.e. when non-Markovian jumps occur, 

. For the Markovian jump sequence, the correlation factor equals to unity, . For 

example, in the face-centered cubic lattice the vacancy mechanism involves correlations with 

the factor , whereas in the lattice with the diamond structure  [78]. 

Interstitial self-diffusion in any lattice is not accompanied with correlation effects, and . 

2.1.8 Ionic conductivity and self-diffusion. Haven ratio 

As it was mentioned above, external electric field applied to the crystal puts the 

irregular ionic motion in order and an electric current emerges. Current density governed by 

the drift of the ions of certain type is defined as 

  (242) 

where e is a charge of ions, n is their concentration, and  is a drift velocity. At relatively 

low electric field E, the drift velocity is proportional to E: 

  (243) 

coefficient of proportionality u is called ionic mobility. (A quantity  is the mobility 

related to the value of the ionic charge, i.e. q is the coefficient of proportionality between the 

drift velocity and the force, , acting on the ion.) Substituting given expression for  

into the equation for j, we shall obtain 

  (244) 

where 

  (245) 

is an ionic conductivity of the crystal. 

The mobility q is related to the diffusion coefficient by the relationship 

  (246) 
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which was introduced by Einstein and Smolukhovsky into the theory of Brownian motion, but 

is applicable also to particles of any type, if they move stochastically and follow the 

Maxwellian-Boltzmann statistics. Substituting Einstein-Smolukhovsky expression for q into 

the formula for conductivity , we shall obtain 

  (247) 

Equation 247 is usually referred to as Nernst-Einstein relation. It should be noted that  does 

not correspond to the tracer diffusion coefficient , which was considered above, but has to 

be related to chemical diffusion (therefore we use tilde above it). This is the consequence of 

the fact that Eq. 246 is deduced under the assumption that the concentration of diffusing 

particles obeys the Boltzmann distribution, 

  (248) 

where U is the potential energy of the particle in the external field. It means that diffusing 

species are considered as non-interacting particles. More generally, interactions are present 

between them. For this case, Murch [82] showed that the general form of the Nernst-Einstein 

relation is 

  (249) 

where μ is the chemical potential of the particles and  is their site fraction. 

When the distribution of particles is completely ideal (no interactions, not even site 

blocking effects), the thermodynamic factor is unity and Eq. 249 reduces to Eq. 247. In this 

special case, the diffusion coefficient  equals to the tracer diffusion coefficient , so that 

  (250) 

When particles are ideally distributed but subject to site blocking effects, Eq. 249 can be 

written as [78] 

  (251) 

where f is the tracer correlation factor considered above. It should be noted that Eq. 251 is 

appropriate to very dilute solution. Ionic crystals having a virtually perfect lattice of ions fall 

into this category. 

σ
2

.ne Dσ
kT

=


D

*D

( ) exp ,Un x A
kT

 = − 
 

2
0ln( ) ,ne D N Nσ

kT μ
 ∂

=  ∂ 



0N N

D *D
2 *

.ne Dσ
kT

=

2 *

,ne Dσ
fkT

=

84 



In solid-state diffusion literature, Eq. 247 is often used to calculate another “diffusion 

coefficient” called the charge diffusion coefficient via 

  (252) 

 has the dimension of a diffusion coefficient; however,  it does not correspond to any 

diffusion coefficient that can be measured by way of Fick’s laws. Equation 252 is just used as 

a means of changing the d. c. conductivity to a quantity that has the dimensions of a diffusion 

coefficient. Note that the identification of  with a diffusion coefficient is only adequate for 

non-interacting particles.  

The ratio of the tracer diffusion coefficient, , and the charge diffusion coefficient, 

, is called Haven ratio: 

  (253) 

Strictly speaking, there is no a straightforward physical meaning of the Haven ratio; 

moreover, a general theory of  is not yet available. However, one can show that if the 

lattice of charge carriers is almost full or empty, then the interpretation of the Haven ratio is 

straightforward. Such case occurs, e.g., when the vacancy mechanism takes place. Then the 

Haven ratio simply equals the tracer correlation factor: 

  (254) 

In such a case, from a measurement of the Haven ratio the correlation factor and then the 

mechanism of diffusion could be exposed. 

Finally, let us note that Eq. 247 defines the temperature evolution of the d. c. 

conductivity of ionic crystals: 

  (255) 

where . Thus, the activation energy of the conductivity has to be equal 

to the activation energy of the diffusion process. This fact could be used for validation of the 

conductivity/diffusion measurements. Note also that the linear temperature dependence of  

is sometimes ignored in view of its exponential dependence and the following formula is 

used: 

  (256) 
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where  and  is a mean temperature of a measuring interval. 

  

Δ Δσ σH H kT′ = + T
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2.2 Measurement of the self-diffusion coefficient in solids 

2.2.1 Methods of diffusion measurement in solids 

Various techniques were developed to measure diffusion coefficients in solids. One 

can group them into two major categories: direct and indirect methods. 

Direct methods are based on the Fick’s laws and phenomenological definition of the 

diffusion coefficient therein. They are sensitive to long-range diffusion and, in this sense, they 

are macroscopic. Among direct methods, the following techniques could be listed: tracer 

diffusion, chemical diffusion, nuclear reaction analysis, pulsed field gradient NMR, etc. 

Contrary, indirect methods are not directly based on the laws of Fick. They usually 

study phenomena which are influenced by the diffusion jumps of atoms. Some of these 

methods are sensitive to one or a few atomic jumps only. Quantities such as relaxation times 

or line widths are measured and the mean residence time of the diffusing atoms, , is 

deduced therefrom. A microscopic model of the atomic jump process is needed to deduce the 

diffusivity. In the simple case, the diffusion coefficient is given by 

  (257) 

where δ denotes the length of the atomic jump. The following indirect techniques could be 

listed: mechanical spectroscopy (internal friction, Gorski effect), NMR line shape analysis, 

spin-lattice relaxation measurements, Mössbauer spectroscopy, etc. 

One of the most widespread methods for measuring the self-diffusion coefficient is the 

method of radioactive isotopes (tracer diffusion) [78]. Different techniques could be applied 

within this method; the widely used one is the concentration profile analysis. The 

concentration could be measured directly by chemical, spectroscopic, radiometric methods, by 

x-ray and electron diffraction, or by different indirect methods, such as measurements of 

microhardness, electrical conductivity, thermal e.m.f., etc. These methods are usually 

destructive, but they are very informative, especially when studying heterogeneous media. 

Two different types of boundary conditions are usually used in the method of 

radioactive isotopes: 1) diffusion from a constant source, when the constant flow of the 

diffusant is created on the boundary of the sample, e.g., by ion bombardment, or 2) thin 

source diffusion. In the second case, the sample is coated by a thin layer of radioactive 

substance followed by a high temperature annealing; usually, the annealing temperature is 

above  (  is a melting temperature). The concentration distribution  could be 
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determined by destructive methods, e.g., by beveling method, by method of layers removal, 

etc., or by nondestructive methods, such as nuclear spectroscopy, absorption of ionizing 

radiation, etc. 

Other powerful tool for diffusion measurement is pulsed field gradient (PFG) NMR. 

In the PFG method, the attenuation of a spin echo signal resulting from the dephasing of the 

nuclear spins due to the combination of the translational motion of the spins and the 

imposition of spatially well-defined gradient pulses is used to measure motion. This method is 

widely used for measuring diffusion in solids as well as in liquids and is a unique tool for 

studying molecular dynamics in chemical and biological systems. 

We used this method for measuring cationic diffusion in sulfates; therefore, it is 

expedient to write about PFG NMR in more detail. 

2.2.2 Magnetic gradients and diffusion 

To understand the principle of diffusion measurements using magnetic gradients, one 

has to generalize the following formula: 

  (258) 

where  is a Larmor frequency, γ is a gyromagnetic ratio, and  is an external magnetic 

field. (As above, we assume that  is oriented along the z-axis.) It is assumed implicitly in 

Eq. 258 that the magnetic field has the same value in any small part of the sample. If the 

gradient g of the magnetic field, 

  (259) 

exists, then the Larmor frequency will have different values in different points of the sample. 

Thereby, Eq. 258 has to be written as follows: 

  (260) 

In normal NMR spectrometers, it is more common to measure diffusion with the 

gradient oriented along the z-axis (i.e. parallel to ). In this case, g depends only on z 

coordinate; therefore, we shall denote it as g. During time t, an individual spin will be turned 

through the angle 

  (261) 
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where the first term corresponds to the phase accumulated due to the constant external field, 

and the second term corresponds to the phase shift, caused by the field gradient. It is taken 

into account in Eq. 261 that the field gradient may depend on time. Time dependence of the 

spin coordinate  implies that the spin can diffuse. 

 
Fig. 15. Pulse sequences for the PFG NMR method: (a) Hahn echo and (b) STE sequences. The PFGs 

of the strength g and duration δ are applied at a tim interval of Δ. In the STE pulse sequence, three 90° 

radiofrequency pulses (RF) are applied; the interval  between the first and the secon RF pulses and 

between the third pulse and FID acquisition is related to  process and the interval  between the 

second and the third RF pulses is related to the  process. Detailed description of the Hahn echo pulse 

sequence see in the main text.  

( )z t

2τ

2T 1τ

1T
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If the field gradient g is known, then it follows from Eq. 260 that one can label the 

position of a spin inside the sample (albeit indirectly, through the Larmor frequency). In 

addition, one can follow the motion of the spin through the sample (at least, along the z-axis), 

since the frequency of its precession will vary with the change of z coordinate. This provides 

the basis for measuring diffusion. 

The most common approach is to use a simple modification [90, 91] of the Hahn spin-

echo pulse sequence [92, 93], in which equal rectangular gradient pulses of duration δ are 

inserted into each τ period (the “Stejskal and Tanner sequence” or “PFG sequence”) 

(Fig. 15a). We will now explain how this method works. 

Let the equilibrium spin system exist and the PFG sequence is applied to it. -

pulse rotates all the spins by 90°, placing them along the –y axis of the rotating frame. During 

the first τ-period at time , a gradient pulse of duration δ and magnitude g is applied so that at 

the end of the first τ-period, spin i experiences a phase shift 

  (262) 

where we have taken g out of the integral since we are considering a constant amplitude 

gradient. At the end of the first τ-period, a  pulse is applied that has the effect of 

reversing the sign of the precession (i.e. the sign of the phase angle) or, equivalently, the sign 

of the applied gradients and static field. At time , a second gradient pulse of equal 

magnitude and duration is applied. Thus, at the end of the echo sequence, the total phase shift 

of spin i relative to being located at  is given by 

  (263) 

If the spin was not diffusing during the experiment, then the phase shift due to the two 

gradient pulses would cancel, i.e. . In the presence of diffusion, the total phase shift 

will be nonzero, and it will be determined by the value of a gradient g and a time  (  is 

often called a diffusion time). 
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Since in reality we deal with an ensemble of spins, we should talk about the mean 

value of , which is defined by the phase distribution function . The normalized 

intensity (i.e. an attenuation) of the echo signal, S, at  is determined by the average 

value of phase factor , i.e. 

  (264) 

where  is the signal intensity in the absence of gradient. By definition,  must 

be a normalized function, and so 

  (265) 

Thus, one can see that in the absence of diffusion, i.e. when  and , the 

signal  will have a maximum value. 

It is obvious that at zero gradient (or in the absence of diffusion) the signal attenuation 

is determined by the spin-spin relaxation time , 

  (266) 

therefore, to find of the echo signal )(2S τ , one has to determine the function 

  (267) 

which is determined by the pulse sequence. To solve this problem, one can use a macroscopic 

approach, which implies consideration of Bloch equations including the effects of diffusion of 

magnetization. 

These equations could be written in the vector form as follows: 

  (268) 

which is valid for isotropic diffusion. If to assume that both external magnetic field and field 

gradient are applied along the z-axis, then one can write the following equalities: 

  (269) 

Substituting Eq. 269 into Eq. 268, and taking into account that 

  (270) 

we shall obtain the following equation: 
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  (271) 

where 

  (272) 

In the absence of diffusion (i.e. ), Eq. 271 is an ordinary differential equation 

with separable variables. In this case, m relaxes exponentially with the time constant : 

  (273) 

where  represents the amplitude of the precessing magnetization unaffected by the effects of 

relaxation. Substituting Eq. 273 into Eq. 271 we shall obtain the following equation: 

  (274) 

whose solution has the following form in the absence of diffusion: 

  (275) 

where S is a constant, and 

  (276) 

Now, if we consider the case of the PFG pulse sequence, then evolution of the spin 

system after the -pulse is described by Eq. 275, where S corresponds to the value of ψ 

immediately after the pulse. If during the first -period a magnetization vector will be rotated 

by the angle φ in the xy-plane, then after the 180°-pulse it will be rotated by the angle  

relative to the original position (i.e. 180°-pulse will turn the magnetization vector through the 

angle ). Thus, we have after the -pulse: 

  (277) 

where . Equations 275 and 277 can be combined into 

  (278) 

where  is the Heaviside step function. It should be noted that Eq. 278 was derived for 

the PFG sequence, and so in the case of other pulse sequence this equation could be invalid.  

Now let us take into account the influence of diffusion on the value of the 

magnetization. To do this, one has to substitute Eq. 278 into Eq. 274; assuming that S is a 

function of time we shall obtain the following equation: 
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  (279) 

Integration of Eq. 279 from 0 to  gives 

  (280) 

where  is an attenuation of the echo signal caused by spin diffusion in the field 

gradient. In case of the PFG sequence, the expression in the curly brackets equals to 

 [94]; therefore, 

  (281) 

Eq. 281 shows that varying g, Δ, or δ one can find diffusion coefficient D. Usually, the field 

gradient g is used as a variable, whereas magnitudes  and  are used as parameters. 

It should be noted that when measuring the diffusion coefficient in the powder sample, 

the value of  should be chosen carefully. Actually, each powder particle has a border, which 

sometimes could be impenetrable; therefore, the value of D could be determined improperly. 

The fact is that if the real diffusion coefficient D if quite large, then at big values of Δ a 

diffusing atom could be reflected many times from the “walls” of the crystalline particle being 

in its volume. Consequently, if the boundary effects are not properly accounted for and we 

analyze the data using the model of free diffusion, we will measure an apparent diffusion 

coefficient  and not the true diffusion coefficient. This effect is called restricted 

diffusion. 

Restricted diffusion could be characterized by the dimensionless variable 

 

where R is a radius of a powder particle. If 1ξ << , then free diffusion occurs, i.e. the diffusing 

particle does not diffuse far enough to feel the effect of the boundary. In this case, change of 

Δ does not lead to a change in the measured diffusion coefficient, and . If , 

then a certain fraction of the particles will feel the effect of the boundary, and the apparent 

diffusion coefficient  will be now dependent on the diffusion time Δ. Finally, if , 

then the maximum distance that the confined particle can travel is limited by the boundaries, 

and thus the measured mean-squared displacement and diffusion coefficient again becomes 

independent of Δ and depends only on R. Thus, when measuring the diffusion coefficient, one 
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has to make sure that parameters of the experiment correspond to the case of . To do 

this, one should compare measurements at different values of . 

Finally, note that the Stejskal-Tanner sequence has several drawbacks. Since the main 

events for the magnetization take place in the xy-plane, the maximum value of the diffusion 

time Δ is limited by the spin-spin relaxation time . Actually, at small values of , the 

NMR signal decays rapidly, and so one cannot use big values of  because of the small 

intensity of the echo signal. One can avoid this difficulty by using a pulse sequence presented 

in the Fig. 15b (stimulated echo sequence) [94]. In this case, after the -pulse the 

gradient pulse is applied followed by another -pulse, which returns the magnetization 

to the z-axis. Now, the main events for the magnetization take place in the xz plane; therefore, 

the signal attenuation is determined mainly by the time . Since , the time  can be 

larger than in the case of the Stejskal-Tanner sequence. Note that Eq. 281 is also valid for the 

STE sequence. 

Other difficulty, which occurs both for the Stejskal-Tanner sequence and STE 

sequence, is the generation of eddy currents in the surrounding conducting surfaces around 

the gradient coils (e.g., probe housing, cryostat, radiation shields, etc.), which could appear 

during the rapid rise of the gradient pulses. Eddy currents can have the following effects: (a) 

phase changes in the observed spectrum and anomalous changes in the attenuation, (b) 

gradient-induced broadening of the observed spectrum, and (c) time-dependent but spatially 

invariant  shift effects (which appears as ringing in the spectrum). To decrease the 

generation of eddy currents, one uses shielded gradient coils and additional field gradient 

pulses [95]. 
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Chapter 3. High-temperature NMR 

3.1 NMR at high temperature 

3.1.1 General aspects of high-temperature NMR 

The term “high-temperature (HT) NMR” means rather different things for different 

groups of scientists. Thus, biochemists can use this term already for 320 K, whereas for 

material scientists the high-temperature NMR range could reach more than 2300 K.[96, 97] 

The most common commercially available NMR probes allow heating the sample using the 

heat transfer via a flowing gas stream passing through the heater placed at a distance from the 

radiofrequency coil. In this case, it is capable to reach only 420-520 K. This technique rapidly 

becomes inefficient because of low gas heat capacities, but has been used with success to 870-

1020 K in both designs for static and MAS probes [96, 98, 99]. 

Temperatures higher than those available with gas flow heating could be reached, e.g., 

by means of static probes with relatively large radiofrequency coils surrounding both heater 

and sample, and kept cool by vacuum dewars or by water cooling system [100]. In this case, 

resistive heating elements must meet several unusual design criteria. They must be insensitive 

to the radiofrequency field to prevent distortion of the magnetic field at the sample. A number 

of geometries have been discussed, including bifilar solenoids, straight wires or rods parallel 

to the magnetic field, and concentric sheet metal cylinders [101, 102]. In some cases, power 

supplies have been cycled on and off in synchronization with radiofrequency pulses to 

eliminate field perturbations. 

The highest temperatures can be reached with laser heating system [20, 40, 97, 103], 

which can eliminate many of difficulties of resistive heating. It should be noted, however, that 

the laser heating is not widespread, and extremely high temperatures (~2800 K) NMR 

experiments have been developed in one laboratory (CNRS CEMHTI, Orléans, France), with 

CO2 continuous lasers with levitation device to avoid any interaction between the sample and 

the sample holder. 

The experimental setting usually used in CEMHTI for HT NMR measurements with 

laser heating is presented in Fig. 16. It is made of the following elements: CW CO2 laser of 

250 W (one or two depending on experimental requirements), a visible red lase aligned with 

the CO2 laser to provide a visualization of the optical path, and a copper mirror allowing the 

reflection of the laser beams axially in the center of the cryomagnet shim assembly. 
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Fig. 16. Schematic representation of the NMR spectrometer equipped with two CO2 lasers for sample 

heating (CNRS CEMHTI, Orléans, France). 

Different kinds of information become available in HT NMR experiments. Thus, HT 

solid-state phase transitions could be investigated by this approach. Structural information 

from NMR line shapes in solids could occasionally be obtained at elevated temperatures, and 

more applications are coming with the improvement of high-temperature magic-angle 

spinning (MAS) technology [104-106]. In many materials, such as molten salts, metals and 

oxides, the liquid phase of interest cannot be quenched to room temperature and the study of 

these objects could be carried out only in situ at high temperatures. 
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3.1.2 Three main difficulties of high-temperature NMR 

A number of technical difficulties are inherent to NMR measurements at elevated 

temperatures. We shall consider here three of them: 1) the choice of an appropriate container, 

2) thermal shielding, 3) measurement and control of the temperature. Nowadays, all of these 

technical challenges are successfully resolved. 

The container 

For many materials particularly reactive liquids, the simple task of finding a suitable 

container often becomes quite difficult at high temperature. Because materials of substantial 

thickness located between sample and radio frequency coils must be electrically insulating (or 

at least radio frequency transmitting), the use of metal or graphite sample containers is 

generally precluded. Solutions to problems of reaction between containers and samples thus 

can be limited. Silica glass or ceramics have often been used for both solid and liquid metal 

samples and organic materials. Silica glass tubes have also been used for molten salts, 

although alkali vapors in particular can cause devitrification and failure at high temperature. 

Container made of tubular single crystals of sapphire (Al2O3) could be used for these 

purposes. Hexagonal boron nitride, BN, which is characterized by good thermal conductivity, 

inertness, and high melting temperature (3246 K), has proven to be a satisfying container 

material for a large range of substances including highly corrosive liquid fluorides [103]. 

Thermal shielding 

The problem of thermal shielding is particularly relevant, if there is little space 

between the sample and the emission/detection coil. Since the radiofrequency coil is close to 

the sample, it is thus close to the sample temperature; therefore, the signal-to-noise ratio in the 

coil wire will be significantly reduced due to thermal noise. Moreover, the electrical 

resistivity of metals increases substantially with increasing temperature (often by a factor of 4 

from 300 to 1500 K), reducing the quality factor Q and thus lowering both the excitation field 

and the sensitivity to the NMR signal. 

The best way to eliminate this problem is to keep the radiofrequency coil at 

temperatures below 400 K. The laser heating system allows to meet this requirement 

relatively simply and very effectively. It could be carried out by using several ceramic barriers 

with an argon flow passing between them. This allows cooling the ceramics preventing the 

coil from the heating and the crucible from oxidizing as well [20]. 

The PFG NMR probe, where such thermal shielding is realized, was designed at 

CEMHTI; its head is presented in Fig. 17. The crucible is inserted into a mullite support, 

surrounded by an alumina tube. An additional protection in the form of silica glass tube is 
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placed between the alumina tube and the coil. An argon stream at room temperature flows 

between the mullite cradle and the alumina tube. The radiofrequency coil is also cooled by an 

additional nitrogen (or air) stream (see also Fig. 16). An additional water cooling of the 

gradient coil is also used. 

 

Fig. 17. Schematic drawing of the high temperature PFG NMR probe head [20]. 

It should be noted that this PFG NMR probe is unique and, at present, is available only 

at CEMHTI. Main advantage of this technique is that it allows studying ion dynamics and 

local structure of both liquids and solids at very high temperatures (up to 1500 K). 

Temperature control and calibration 

Temperature control in HT NMR experiments is complicated by the need to isolate 

thermocouples from radiofrequency field of excitation pulses, and to prevent the introduction 

of parasitic signal into the receiver. One of the possibilities to eliminate this problem is the 

location of the temperature sensor at some distance from the sample; however, this requires 

the careful calibration of temperature gradients. At sufficiently high temperatures (particularly 

above 1900 K), optical pyrometry could be used as a useful alternative to thermocouples. 

At relatively low temperatures, lead nitrate, Pb(NO3)2, could be used as an effective 

NMR thermometer. The idea is that the isotropic chemical shift  of 207Pb nuclei is very 

sensitive to the change of temperature. An empirical relation between absolute temperature 

and isotropic chemical shift  of 207Pb was found by Beckmann [107]: 

isoδ

isoδ
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  (282) 

The maximum temperature, which could be measured with this “thermometer”, is limited by 

the melting point of the lead nitrate (543 K). 

Temperature measurement in the case of laser heating also cannot be applied directly, 

and an indirect calibration of the temperature is usually used. If only one laser is used for 

heating [40], and the sample container is heated by the laser beam at its bottom, then the 

temperature of the crucible could be measured using a thermocouple inserted into the upper 

part of the crucible. After this calibration, the thermocouple is removed and the crucible with 

the sample is heated at the same conditions (the same gas pressure, the same position of the 

laser focalization point on the crucible, etc.). It is obvious that when heating the container 

only from its one side, temperature gradients occur in the sample. To eliminate (or at least 

decrease) the value of the temperature gradients, heating by two continuous CO2 lasers (from 

top and bottom of the crucible) could be used. The main disadvantage of this geometry is 

inability to use thermocouple; therefore, the temperature calibration is usually made using 

several compounds whose melting temperature is well defined. One uses here the fact that at 

the melting point the NMR signal usually changes greatly.  

Let us consicder in detail the temperature calibration of CO2 laser-heating system in 

the NMR study. The main goal of our consideration is to find the relation between the laser 

power W delivered to the crucible and the resuling temperature T of the sample. Moreover, the 

problem of the cooling rate will be also considered. 

It has been already noted earlier [20] that at small CO2 laser power the temperature 

increases linearly with power; however, at higher temperatures this dependence is not linear 

anymore due to the radiation of the crucible. To find a quite general expression for  (or 

for , where P is a percentage of the maximum available laser power), an equation of the 

heat transfer through the surface of the crucible has to be considered. 

First, note that the most dielectrics have high value of the attenuation coefficient at the 

CO2 laser wavelength ( ), and the radiation is absorbed by a layer of several 

microns in thickness. This applies also to the boron nitride, but the attenuation length here is 

quite big: [108]; nevertheless, we shall assume hereinafter that  the heat source is 

always a surface. The total heat flow  through the surface of the crucible could be 

written as follows: 

  (283) 

( )3713.9 0.758.isoδT = +

( )W T

( )P T

10.6μmλ =

μm100l =

dQ dt

,
N SB

dQ dQ dQ W
dt dt dt

   = + +   
   

99 



where the first term determines the heat transfer from the container surface to the surrounding 

gas flow through a forced convection (so-called Newtonian cooling); the second term 

corresponds to the energy loss via radiation and is sometimes referred to as Stefan cooling 

[109]; finally, W is a laser power delivered to the crucible. 

Under the forced convection, the heat loss is proportional to the temperature difference 

between the hot body and the fluid: 

  (284) 

where  is the temperature of the surrounding gas, A is the surface area, and h is a heat 

transfer coefficient, which is assumed to be independent on temperature. Generally, h depends 

on the kind of the heat transfer agent, type of convection, geometry of the cooling body, etc. 

Note also that in reality h is not always constant and sometimes depends on temperature 

difference. For the gas, h could take values in the rage 10-300 W·m-2K-1 [110]. 

The second term in Eq. 283, which corresponds to the Stefan cooling, is 

  (285) 

where  is a Stefan-Boltzmann constant, ε and  are emissivity and 

absorptivity of the crucible, respectively, and  is the mean temperature of the sources of 

thermal radiation in the environment of the sample container. 

Finally, the power of the laser could be written as follows: 

  (286) 

where  is a maximum available laser power, and P is a percentage of the maximum 

power controlled by the experimenter. It should be taken into account that a certain fraction of 

the delivered laser power is spent on reflection and scattering by optical elements (mirrors, 

optical windows, etc.); therefore, one has to introduce the coefficient p corresponding to the 

part of the laser power directly used for heating. 

Under fixed laser power, the system will increase (or decrease) its temperature until 

input and output heat flows are equal. At equilibrium, the heat flow equals to zero, 

; therefore, combining Eqs. 283-286, one can write for the temperature dependence of P: 

  (287) 
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  (288) 

If at some value of P (let us designate this value as ) the system is in equilibrium, 

then the decrease of the laser power leads to the cooling of the crucible, which could be 

described by the following equation: 

  (289) 

where  is a heat capacity of the container’s material, , and . 

There is no prospect to integrate Eq. 289 to obtain an analytical time dependence of 

temperature; however, at certain conditions, one can simplify this equation. Thus, if the 

temperature difference is quite small, i.e. 1 1T T T− << , then one can represent  as 

follows: 

  (290) 

Substituting Eq. 290 into Eq. 289, we shall obtain: 

  (291) 

where  

  (292) 

Integration of Eq. 291 gives 

  (293) 

At small t, i.e. at 1κt << , one can simplify Eq. 293 to obtain 

  (294) 

Finally, one can see that cooling rate at small t is constant and proportional to : 

  (295) 

We obtained two important results. First, Eq. 287, which could be used for the 

temperature calibration, gives a thermometer for the CO2 laser heating system. Second, 

Eq. 295, which allows evaluating the cooling rate (without thermocouple!) using  as a 

measure of this rate. 

For NMR measurements, we used a Bruker Avance WB 400 MHz spectrometer (the 

operating field 9.4 T) equipped with two CO2 lasers “Coherent Diamond K-250” 
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( for each laser). The used static NMR probe was a new high-temperature probe 

especially designed by the Bruker company and modified in CEMHTI, Orléans. We used an 

argon stream preventing the BN from oxidizing at high temperature and providing the 

convective heat transfer from the crucible; an additional nitrogen stream was also used for 

cooling the radiofrequency coil. The BN crucible containing the powder and closed with the 

screw cap was heated symmetrically by the two lasers from top and bottom. For the 

temperature calibration, four samples with different melting temperatures, , were used: 

LiNO3 ( ) [111], (LiF)0.5-(KF)0.5 ( ) [112], LiNaSO4 ( ) [37], 

and (YF3)0.2-(LiF)0.8 ( ) [113]. Note also that the α-β phase transition in LiNaSO4 

( ) [10] is also accompanied with a great NMR signal change; therefore, the 

temperature of its transition could also be used as a reference point. Thus, we have five 

reference points, all of which lie on the curve defining by Eq. 287 (Fig. 18). Fitting 

parameters were found to be: 12 41.96 10 Ka − −= × , 3 14.14 10 Kb − −= × , 0.33c = . 

 

Fig. 18. Percentage of the lasers power (CO2 250 W) versus sample temperature. 

Let us also estimate the cooling rate of the BN crucible using Eq. 295. The value of 

 available with two CO2 lasers is 500 W; assuming that  and taking into account 

that the heat capacity of BN above 700 K is ca. 20 J/(K·mol) [114] one can find that the BN 

crucible of the weight ca. 1.6 g is cooling with the rate 

250WmaxW =

mT

527 KmT = 765KmT = 888KmT =

968KmT =

788KtrT =

maxW 0.95p =
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  (296) 

Note once again that Eq. 296 is valid only at small t, i.e. at the initial stage of the cooling 

process. 

It should be noted that the result given by Eq. 296 is very important, since it gives an 

opportunity for kinetic measurements and thus extends the range of issues of HT NMR. 
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Chapter 4. Experimental study of alkali sulfates 

4.1 Structure and dynamics of lithium-sodium sulfate 

4.1.1 Structure of LiNaSO4 

 
Fig. 19. Projections of β-LiNaSO4 structure along [100] and [001] (on the left) and 3D-structure of β-

LiNaSO4 represented as “sandwich” (on the right). 

The structure of LNS at room temperature (β-modification) was first deciphered in 

1967 by Morosin and Smith [115]. At room temperature, the crystal structure of LNS is 

trigonal with space group symmetry P31c and six formula units per unit cell. Lattice 

parameters are  and  [10]. The unit cell has the form of a right 

prism whose vertices and centers of the edges, oriented along the c-axes, are occupied by 

sulfur atoms. Each S+6 ion is surrounded by four O-2 ions, which form quite regular 

tetrahedrons. The average  separation (1.469 Å) found in LNS is in agreement with 

7.6310 Åa = 9.8600 Åc =

S O−
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similar values (1.467–1.474 Å) found in other sulfates [115]. Projections of the LNS unit cell 

along [100] and [001] directions are presented in Fig. 19. 

The structure of β-LNS is built up of SO4 and LiO4 tetrahedrons adjoined by their 

vertices (see Fig. 19). Three crystallographically different SO4-groups are located on the 

threefold axes in two types of sequences. In the first type along (0, 0, z) all the SO4 

tetrahedrons are oriented pointing up. In the second along  and  the 

tetrahedrons are arranged ordered up and down. The linkage of the SO4 and LiO4 tetrahedrons 

leads to a channel-like structure. The Na+ ions are located inside these channels surrounded by 

an irregular arrangement of eight oxygens forming a distorted antiprism [10, 115]. The 

structure of β-LNS can be also presented as a “sandwich”, i.e. stack of alternating planes of 

two types. Planes of the first type are occupied by Li+ and S+6 ions, whereas other planes are 

occupied by Na+ and S+6 ions (see Fig. 19). Layers between them are occupied by oxygens as 

well as sulfur atoms, which belong to SO4 groups aligned along  and . 

Such presentation of LNS structure could be useful when comparing crystalline lattice of α- 

and β-modifications, since the orientation of the c-axis coincides with [111] direction in the 

lattice of α-LNS [10].  

In 1958, Förland and Krogh-Moe [28, 29] deciphered the high-temperature structure 

of LNS. It was shown that above 788 K [10] (α-modification) LNS has a body-centered cubic 

structure with a high dynamical disorder of cationic (Li+, Na+) and oxygen sub-lattices. In 

fact, Li+, Na+, and O-2 ions have no fixed coordinates in the structure of α-LNS; therefore, the 

high-temperature phase of LNS is sometimes treated as quasi-liquid state. It was found later 

by means of reverse Monte Carlo modeling [35] that the highest Na+ density distribution is in 

the six octahedral  sites, while the Li+ density distribution is far more disordered: Li+ 

ions are found everywhere except in the SO4 sites, even in those Na+ positions that are not 

occupied by Na+ ions. Diffusion of sulfur atoms, in turn, is negligible and they occupy (0,0,0) 

and  sites in the body-centered cubic cell. 

In the α-modification, which exists in the temperature range 788-888 K, LNS has very 

high ionic conductivity (0.92 Ohm-1cm-1 at 823 K [116]); just below the melting point (888 K) 

the conductivity is 1.35 Ohm-1cm-1 and it increases by about 10% when the salt melts [37]. 

Below the phase transition to the β-modification, the ionic conductivity abruptly decreases by 

at least two orders of magnitude: 0.0010 Ohm-1cm-1 at 773 K [117]. 
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4.1.2 Preparation of samples 

LiNaSO4 single crystals were grown by slow evaporation method using Na2SO4 and 

Li2SO4·H2O as precursors. It should be noted that crystals of alkali metal salts are usually 

grown from water solutions because of several reasons: 

• most of the alkali metal salts are highly soluble in water; it allows to grow 

crystals at relatively low temperature ( ) and pressure; 

• single crystals grown from the aqueous solution have clearly defined habit that 

allows determining the directions of the crystallographic axes and the angles 

between them; 

• growing from the aqueous solution does not require special expensive 

equipment in contrast to the growing of crystals from the melt, where 

maintenance of high temperature is required. 

Methods of the crystal growing from the solution could be classified by ways to create a 

supersaturation in the solution: 1) method of reducing the temperature, 2) evaporation 

method, 3) method of a temperature difference. The choice of the growing method depends on 

the chemical composition of precursors. Thus, if precursors have positive solubility 

coefficients, i.e. their solubility increases with temperature, then one usually uses the method 

of reducing the temperature. In this method, the supersaturation necessary for the crystal 

growth is created by a slow decrease of the temperature. Different variants of this method 

differ in the initial temperature, in the temperature reduction rate, and in other details. 

Some alkali sulfates have negative solubility coefficients [118], so the decrease of the 

temperature will lead to the decrease of the supersaturation, and crystals will not grow. In this 

case, the evaporation method is used. The idea of this method is based on the fact that the 

vapor pressure of the solvent is almost always greater than the vapor pressure of the dissolved 

substance. Therefore, to create the supersaturation it is enough to allow the vapor go to the 

environment. Thereby, the supersaturation necessary for the crystal growth could be 

supported just by the evaporation of the water from the solution. Note that this method 

requires a high stability of the temperature, since a small increase of the temperature leads to 

the dissolution of vertices and edges of the crystal. Evaporation of the solution should occur 

in a sterile environment, i.e. presence of dust particles in the solution should be excluded. 

50 60 C− °
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Fig. 20. Solubility curves of some alkali sulfates [118] (on the left) and crystalline aggregates of 

LiNaSO4 grown by evaporation from the solution (on the right). 

Solubilities of sodium sulfate, Na2SO4, and lithium sulfate monohydrate, Li2SO4·H2O, 

are presented in Fig. 20 (left). One can see from this figure that the solubility of lithium 

sulfate decreases with temperature, whereas the solubility of sodium sulfate initially increases 

when heating, reaches a maximum at about , and then slowly decreases with 

temperature. Such behavior of solubilities does not allow using the method of reducing the 

temperature, and the slow evaporation method should be used. 

Equimolar solution of Na2SO4 and Li2SO4·H2O was prepared at 313 K. After a 

complete dissolution of the components, the solution was filtered to remove insoluble 

impurities and small undissolved crystallites. Thereafter, we poured the solution into a glass 

crystallizer and placed into a thermostat at 333 K. To reduce the rate of the evaporation we 

covered the crystallizer with the cap from a metal foil with holes ~0.5 mm in a diameter. 

Crystals with linear sizes  mm were grown during two weeks. Grown crystals had 

clearly defined habit – their shape had the form of triangular prism. Some of crystals had an 

equatorial mark in the form of superficial crack. When crystals reached the desired size, we 

removed them from the crystallizer and the rest of the solution was evaporated completely to 

obtain crystalline aggregates of LNS (see Fig. 20 right). Obtained aggregates were immersed 

into ethanol to remove water from the surface, and then were dried and crumbled under the 

argon atmosphere in the gloves box. The obtained powder was analyzed by X-ray diffraction 

showing pure LiNaSO4 X-ray diffraction pattern. 

Unannealed powders and annealed samples were studied separately. Annealing of 

powders was carried out in BN crucibles at atmospheric pressure in a furnace Nabertherm 

L9/11 with controller P320. Two sets of samples were annealed at temperatures 823 K and 

30 C°

4 2×
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763 K. High-temperature annealing was carried out for 24 hours; the samples were heated at 

4.5 K/min and were cooled at 1 K/min. 

4.1.3 Experimental details 

4.1.2.1 NMR measurements 

High-temperature NMR measurements have been carried out using a Bruker Avance 

WB 400 MHz spectrometer, operating at 9.4 T. The BN crucible containing the powder and 

closed with the screw cap was heated symmetrically by two  lasers (detailed descriptions 

are given in Chapter 3). Two different probes were used for measurements.  

Diffusion measurements were carried out using a modified 10 mm axial liquid NMR 

probe equipped with a gradient coil (5.5 G/(cm A)) coupled with gradient amplifier Great 10A 

(10A) [20]. The head of this PFG NMR probe is presented in Fig. 17. The maximum value of 

the magnetic field gradient available with this probe was 1200 G/cm. The 90°-pulse for 7Li 

magnetization had the RF field strength in the range 15-20 kHz in different experiments. In 

case of 23Na, the RF field strength was 20 kHz. LiCl and NaCl molar solutions were used as 

reference for the 7Li and 23Na chemical shift scales, respectively. 

Both 7Li and 23Na diffusion phenomena were observed using a stimulated-echo (STE) 

PFG NMR pulse sequence (Fig. 15b). The stimulated echo attenuation E was fitted by the 

Stejskal and Tanner equation 

  (297) 

where parameters δ and Δ were fixed, and the gradient g was varied in the range from 0 to 

1200 G/cm. 

Relaxation measurements and kinetic study (see below) have been done using a static 

NMR probe designed in CEMHTI and manufactured by the Bruker company. The main 

advantage of this probe is an ability to cool the sample with considerable cooling rate 

(~100 K/min), since the multilayer ceramic barrier is substituted here by a single-wall thick 

ZrO2 tube. Moreover, the space between the sample and the emission/detection coil is slightly 

increased in this probe due to the use of a powerful coil with a bigger diameter (18 mm 

compare to 10 mm in case of diffusion probe). 

The spin-lattice relaxation time constants of 7Li was found via saturation-recovery 

pulse sequence, whereas spin-lattice relaxation time of 23Na nuclei was measured using 

2CO

2 2 2exp ,
3
δE γ δg D  ∆ −

 
= −   



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inversion-recovery technique (see Fig. 7). Recovery of the magnetization  in the 

saturation-recovery experiment was fitted by the function 

  (298) 

whereas after inversion-recovery pulse-sequence the intensity of the recovering signal was 

analyzed by 

  (299) 

To record NMR spectra of the LNS single crystal we used the same high-temperature 

experimental setup as in case of powder. Since the largest faces of the crystal are parallel to 

the c-axis, we can unambiguously determine the orientation of the crystal. Thus, in the 

experiment, the crystal was placed on the bottom of the crucible onto one of its three largest 

faces, i.e. the c-axis of the crystal was oriented perpendicular to the magnetic field. 

4.1.2.2 X-ray diffraction 

In situ high temperature XRD data were collected on a D8 Advance Bruker 

diffractometer (  radiation) equipped with a Vantec-1 linear detector and a HTK16 

Anton Paar chamber. The powder sample was deposited on a platinum ribbon heating stage. 

The temperature behavior of this ribbon was previously calibrated using known phase 

transitions and thermal expansion of a corundum reference. The heating rate in the XRD 

experiment was 10 K/min, whereas minimum and maximum cooling rates were taken to be 

2 K/min (“slow cooling”) and 100 K/min (“fast cooling”), respectively. Isothermal data were 

collected between 15 and 70° (2θ) with a 0.016° step size. 

4.1.2.3 DFT calculations 

Along with experimental study, we have carried out CASTEP [119] calculations of the 

principal values of the EFG and tensors of 7Li and 23Na nuclei in β-LNS. To obtain  and η 

values for, a plane wave basis set energy cut-off of 650 eV and a Monkhorst-Pack [120] grid 

density in the range 0.05-0.06 Å-1 (corresponding to a k-point mesh of ) were used. 

The computation of the EFG tensors were performed using the PAW method [121]. For the 

NMR calculations, we used structures obtained after PBE-DFT atomic position optimization 

[122]. Atomic positions were optimized by minimizing the residual forces on all atoms below 

)(A τ

1

) ( ) 1 exp ,( τA τ A
T

  
= ∞ − −  

  

1

) ( ) 1 2exp .( τA τ A
T

  
= ∞ − −  
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10 meV Å-1 using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [123] and keeping 

symmetry constrains and fixing the cell parameters to the experimentally determined values. 

4.1.4 Line width analysis 

4.1.4.1 7Li and 23Na NMR line width narrowing in LiNaSO4 

 
Fig. 21. Temperature dependences of 7Li and 23Na NMR spectra. 

It was noted by several authors [11, 13, 40] that even below the phase transition, both Li+ and Na+ ions 

can diffuse in LNS. For the first time it was revealed by Massiot et al. [40] who carried out 7Li and 
23Na NMR line width analysis as well as spin-lattice relaxation measurements in a wide temperature 

range (295-940 K). Activation energies for Li+ and Na+ motion below the phase transition were 

estimated to be 0.86 and 1.54 eV, respectively. Kanashiro et al. [11] performed spin-lattice relaxation 

measurements of 7Li nuclei and revealed that the temperature evolution of the 7Li spin-lattice 

relaxation rate in LNS single crystal at different magnetic fields could not be described by a single 

BPP curve, but the spectral density function with at least two correlation times has to be used (Fig. 5), 
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i.e. diffusivity of both cationic sub-lattices was confirmed. The authors estimated activation 

 
Fig. 22. 7Li NMR powder spectra of LiNaSO4 at different temperatures and their computer fitting. 

Black solid line corresponds to the experimental spectrum; dashed and dash dotted lines correspond to 

the central transition and external transition fits, respectively; red solid line corresponds to the overall 

fit of the spectrum. 
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energies for Li+ and Na+ motion below 788 K to be 0.7 and 1.20 eV, respectively. An 

additional proof of the Na mobility could be obtained from the temperature analysis of the IR 

absorption spectra of LNS. Thus, it was noted by Zhang et al. [13] that the temperature 

dependence of Na modes is similar to the behavior of Li modes; namely, both sets of spectral 

lines exhibit considerable frequency shifts and broadenings when heating. Taking into 

account that such behavior of lithium modes is caused by the Li+ diffusion, one can 

reasonably assume that Na+ ions can also leave their lattice sites. 

 
Fig. 23. Temperature dependences of 7Li (a) and 23Na (b) NMR line widths (HWHMs). Dotted vertical 

lines indicate onset temperatures of the motional narrowing. 

Temperature evolutions of 7Li and 23Na NMR spectra of the LNS powder in the 

temperature range 295-788 K are presented in Fig. 21 (see also Figs. 29 and 34). The values 

of the NMR line widths were found by fitting of the LNS powder spectra (Fig. 22) with DMfit 

software [124]. It should be noted that in case of 7Li (Fig. 23a) only the central transition line 
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width was taken into account. Note also that the central transition was fitted by a pseudo-

Voigt function :  

  (300) 

where  is a Gaussian curve,  is a Lorentzian curve, and . Parameter p, 

which defines the relative weight of the Gaussian- and Lorentzian-type contribution to the line 

width broadening, varies from zero to unity in the course of motional narrowing. In the rigid 

lattice the spectral line has the Gaussian-type broadening ( ), whereas at high 

temperature, when cationic mobility is very fast, the narrowed line has the shape close to the 

Lorentzian curve ( ). 

One can see from Fig. 23 that temperature dependences of 7Li and 23Na NMR line 

widths have the form of a two-step function. It should be taken into account that both 7Li and 
23Na are quadrupolar nuclei; therefore, the width of the central line may contain contribution 

from the quadrupolar interactions. The influence of the quadrupolar Hamiltonian on the 

central transition depends on the value of the quadrupolar coupling constant and, 

consequently, it will affect differently 7Li and 23Na spectra. Let us consider this question in 

more detail. 

In solids containing 7Li nuclei, the value of the rigid line width could be usually used 

as the natural measure of the dipolar interactions. For the LNS, the half-width at half-

maximum (HWHM), , is 37 times smaller than the value of , 

which was found to be . (The value of  was determined the fir of the 7Li magic 

angle spinning spectrum at room temperature; the fit is presented in Fig. 24.) However, the 

second order of the quadrupolar interactions is negligible:  (at 

), where . Since we study the temperature 

evolution of only the central transition, the contribution of the external transitions to the 

central line of the 7Li NMR powder spectrum can be neglected. 

It should be also noted that the value of the spin-spin relaxation time could be very 

small, if quadrupolar interactions are quite big. This may lead to an additional broadening of 

the NMR line, which could surpass the dipolar broadening of the line. However, this case 

could be easily identified, since the shape of the NMR line should then differ significantly 

from the Gaussian. We revealed that the central transition line in the LNS at room 

temperature can be almost ideally fitted by the Gaussian function; therefore, one can 

)(pV x

( ) (1 ) ( ),pV x pL p G x= + −

( )G x ( )L x 0 1p≤ ≤

0p ≈

1p ≈

Li 3
0 2.35 10 Hz2δω π ≈ × QC

48.7 10 Hz× QC

2 2 10HzQ Lχ πω ≈

6155.5 12 0 HzLω π ×= 3 (2 1)Q Q Iχ C Iπ= −

114 



confidently conclude that its broadening is inhomogeneous, i.e. occurs due to the dipolar 

interactions of a big amount of spins. 

 

  

Fig. 24. Room temperature 7Li NMR spectra 

of LiNaSO4 powder: red line corresponds to 

the magic angle spinning (MAS) spectrum at 

rotating frequency 5 kHz, whereas blue line 

corresponds to the best fit of the MAS 

spectrum. The fitted value of the quadrupolar 

coupling constant, , was . 

Fig. 25. Room temperature 23Na NMR 

spectra of LiNaSO4 powder: static spectrum 

(black line), magic angle spinning (MAS) 

spectrum at rotating frequency 25 kHz (red 

line), and the best fit of the MAS spectrum 

(blue line). The fitted value of the 

quadrupolar coupling constant, , was 

. 

Quadrupolar coupling constant  of 23Na nuclei was found to be at least 13 times 

larger than  of 7Li at room temperature (1.15 MHz to be compared with 87 kHz, 

respectively); therefore, only central transition is observed in the 23Na static powder spectrum. 

(Similar to lithium, the value of  for sodium nuclei was found from fitting the 23Na magic 

angle spinning spectrum at room temperature; the fit is presented in Fig. 25.) Comparatively 

large value of  for 23Na nuclei gives the following estimation for the second order 

quadrupolar coupling:  (at ); this is comparable 

with the broadening due to dipole-dipole interactions in the rigid lattice. As a result, 23Na 

powder spectrum at room temperature has a shape of a distorted Gaussian (see Fig. 23d), 

whose asymmetry is caused generally by the second order quadrupolar interactions. 

QC 48.7 10 Hz× QC

61.15 10 Hz×

QC

QC

QC

QC

32 2 3 z0 H1Q Lχ πω ≈ × 6105.8 12 0 HzLω π ×=
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It follows from the above that temperature evolution of 7Li and 23Na NMR line widths 

may slightly differ due to the difference in values of QC . This distinction should be taken into 

account when fitting experimental data (see below). 

Vertical dashed lines in Figs. 23a,b indicate onset temperatures  of the motional 

narrowing. The lower temperature ( ) corresponds to the onset of the line 

narrowing due to the Li+ motion, whereas at the higher temperature ( ) line 

narrowing occurs due to the Na+ motion. Onset temperature could be a useful parameter, if the 

full curve  cannot be determined. In such case, the activation energy of the Li+ hopping 

process can be estimated by using the empirical expression of Waugh and Fedin [125]: 

  (301) 

where the onset temperature is in kelvins and the activation energy – in electronvolts. 

Substituting  into Eq. 301 we find . 

4.1.4.2 Theoretical treatement of motional narrowing under diffusion of two 

spin sub-lattices 

It is obvious that motions of Na+ and Li+ ions should be characterized by different 

correlation times, Li
cτ  and Na

cτ ; therefore, the BPP approximation [64, 126] cannot be used for 

the line width analysis in LNS. Bilski et al. obtained expressions, which can be used to 

analyze temperature dependences of different NMR measured values in case of several 

correlation times [127]. Using the approach of Bilski et al. [127, 128] we found the 

autocorrelation function for the fluctuations of the dipolar Hamiltonian in the case of diffusion 

of two spin sub-lattices. We also obtained an expression for the temperature dependence of 

the NMR line width, which could be used in the fitting procedure. Proposed fitting formula 

has been extended to the case of a distribution of correlation times. 

The enhancement of the mobility of nuclei leads to a line width narrowing. Along with 

this narrowing, the shape of the line changes: in “rigid” lattice, i.e. in the absence of 

movement, the line is described by the Gaussian, whereas under the fast relative motion of 

nuclei the spectral line takes the form of the Lorentzian curve. The reason that the NMR 

signal in solid has the shape close to the Gaussian curve is purely statistical in nature. Thus, 

due to the smallness of the Zeeman interaction with respect to the value of kT the spin system 

is a somewhat disordered; hereby, during the time of the order of , each spin could be 

considered as a source of a constant magnetic field. It is clear that near each spin a nonzero 

cT

Li ~ 390KcT

Na ~ 570KcT

( )δω T
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local magnetic field  exists, which is the sum of the magnetic fields produced by all other 

spins. Since the direction of the magnetic moment of a given spin could be different at 

different crystallographic sites, the value of the local field could be different at different 

nuclei. Difference of the local fields causes the difference of the precession frequencies of 

different nuclear spins; therefore, the net NMR signal of the solid will have the shape and the 

width determined by the distribution function of the local fields. It should be noted that the 

direct dipole-dipole coupling exists not only between neighboring nuclei, but, strictly 

speaking, between all nuclei of the sample. Since the number of nuclei in crystal is usually 

very high, one can find distribution of the values of the local magnetic field using the central 

limit theorem. Let  designates the field produced by the i-th spin in the point under 

consideration. If the number n of spins is very high, then the central limit theorem predicts 

  (302) 

where  and  is a standard deviation. (The value of the standard 

deviation depends on the crystal structure.) Thus, the central limit theorem says that the line 

shape has to be Gaussian. The half width at half maximum (HWHM) of the line, , is 

determined by the standard deviation: , where γ is the gyromagnetic ratio. 

The relative movement of spins could lead to the motional narrowing of the NMR 

signal. The reason of this narrowing is that local magnetic fields are time-dependent, when 

spins move relative to each other. Thus,  fluctuates under the motion of spins, and is 

characterized by the correlation time . If 0 1cδω τ >>  (  is the line 

width in the “rigid” lattice), then the width of the NMR signal is not affected by the change of 

, and inhomogeneous broadening plays a dominant role defining the Gaussian shape of the 

line. If , then the diminution of  leads to the narrowing of the line. Finally, if the 

fluctuation frequency  surpasses the “rigid” line width , then nuclear spins “feel” 

only average values of fluctuations, which are close to zero. In other words, if 0 1cδω τ << , the 

line width again is not affected by the change of , and the case of extreme motional 

narrowing could occur. 
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The most frequently used formula for the temperature evolution of the NMR line 

width makes use of the second moment of the line [64, 126]: 

 0
2 2 2 2

2( ) ( )arctan( ),cM T M M M α δωτ
π

= + −  (303) 

where 0
2M  is the second moment in the rigid lattice, 2M  is the residual second moment in the 

fast ionic motion limit, cτ  is a correlation time, and δω  is the half-width at half-maximum 

(HWHM) of the line. The coefficient α in Eq. 303 is of order of unity. Equation 303 is 

analyzed in detail, e.g., in the book of Abragam [64] and is a consequence of the BPP 

approximation (with subsequent ad hoc introduction of the parameter 2M , which takes into 

account inhomogeneous broadening effects [129]). 

Strictly speaking, the BPP approximation can be used, if all internal interactions are 

averaged by an isotropic averaging process similar to the rotational diffusion occurring in 

molecules. Nevertheless, Eq. 303 works well in many solids, for which ionic diffusion can be 

described by Markovian jumps, and if cτ  is understood to be an average time between jumps 

of an atom from one atomic site to another [126, 130]. 

If two spin sub-lattices, I and S, exist in a solid, then the secular part of the dipolar 

Hamiltonian related to spins I could be written as follows [64]: 
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Here the first term corresponds to the interaction energy of spins I between themselves, 

whereas the second term defines interactions of spins I with spins S. II
ijθ  and II

ijr  define the 

orientation and distance between a pair of I spins, whereas IS
ijθ  and IS

ijr  determine the 

orientation and distance between an IS pair of unlike spins. Finally, Iγ , Sγ  and IN , SN  are 

gyromagnetic ratios and numbers of spins I and S, respectively. The dipolar Hamiltonian S
DH  

related to spins S could be deduced from Eq. 304 by interchanging I and S.  

The local dipolar field at the I spin has two additive contributions: 1) the field created 

by the spins of the I sub-lattice and 2) the field generated by the spins from the S sub-lattice. 

Consequently, the second moment of the NMR signal of I spins, in the rigid lattice, will 

consist of two components (we omit hereinafter the subscript “0” at the second moments in 

the rigid lattice, if it does not cause confusion): 
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 2 2 2 ,I II ISM M M= +  (305) 

where [64] 
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and 
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1 3cos ( )
( )

( )
ij

ij
ij

θ t
b t

r t
−

=  (307) 

(coefficients IIΛ  and ISΛ  are defined by expressions standing before the sums in Eqs. 306). 

When the I and S spin-bearing atoms start to move, functions ( )II
ijb t  and ( )IS

ijb t  

become time-dependent and motional narrowing occurs. If one assume that the movements 

are uncorrelated and can be described by unique correlation times I
cτ  and S

cτ , it is clear that 

( )II
ijb t  depends only on the relative motion of spins I and, consequently, depends only on its 

characteristic time I
cτ . Function ( )IS

ijb t , however, depends on the motion of spins I as well as 

on the motion of spins S; therefore, the autocorrelation function of this mutual motion 

depends on I
cτ  and S

cτ  as well. From the physical point of view, it means that, in the case of a 

diffusion of two spin sub-lattices with two distinct activation energies, the motional narrowing 

occurs in two stages. In the first stage, the NMR line narrowing starts with the motion of the 

spin carriers with lower activation energy; in the second stage, when spin carriers with the 

highest activation energy start to move, an additional narrowing occurs. To find the full curve 

for the temperature evolution of the NMR line width, one has to deduce the autocorrelation 

function of fluctuations of the dipolar Hamiltonian (Eq. 304) due to the relative motion of two 

spin sub-lattices. 

Now, we assume that ionic motion in solids can be considered as discrete jumps from 

a given lattice site to n neighboring sites kR , 1, 2,...,k n= , in order to find the part of the 

autocorrelation function )(IG τ  characterizing fluctuations of the dipolar Hamiltonian I
DH  

under the motion of spin I carriers (let us denote this part of the autocorrelation function as 

)(IIG τ ). Assuming that the ionic diffusion is a stationary Markovian process, we can write 

[128]: 
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τ p R P R τ bR R bG R= Λ ∑∑  (308) 

where the ( )lIp R  function determines the probability that at time 0t =  the random function 

( )II
ijb t  is equal to ( )II

ij lb R , while , ,( )mlI RP R τ  defines the probability that at time τ the 

function ( )II
ijb t  is equal to ( )II

mijb R , if initially it was equal to ( )II
ij lb R ; In  is the number of 

different discrete lattice sites, between which spins I can jump. One can show [127] that, for 

the Markovian jumps, the conditional probability is 

 ( )1, , ,( ) 1
I I
c cτ τ τ τ

I m lm
I

lP R τ e e
n

R δ− −= − +  (309) 

where lmδ  is a Kronecker delta and where it was assumed that the probability of the random 

variable ( )R t  changing from lR  to mR  by one jump is 1 I
lm c IτW n=  (at l m≠ ). Substituting 

Eq. 309 into Eq. 308 one can find that the function )(IIG τ  is 

 2 2 2)( ( ) ,
I
cτ τII II II

IIG τ M M eM −+= −  (310) 

where  
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is a motionally “narrowed” value of the second moment 2
IIM . It should be noted that Eqs. 309 

and 311 implicitly assume equal occupancies of the various sites, i.e. ) 1( IlIp R n= .  

The part of the autocorrelation function )(IG τ  characterizing fluctuations of the 

dipolar Hamiltonian I
DH  under the motion of spin S carriers (let us denote it as ( )ISG τ ) can be 

written as follows:  
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 (312) 

where we assumed that diffusing jumps of spins I occur independently on jumps of spins S. 

The product )( ( )l S lIp R p R ′  determines the probability that at time 0t =  the random function 

( )IS
ijb t  is equal to ( , )IS

ij l lRb R ′ , while the product ,( ) ), , ,(I m Sl l mR P R τRP R τ ′′  defines the 

probability that at time τ  the function ( )IS
ijb t  is equal to ( , )IS

j mmi Rb R ′ , if at initial time it was 

equal to ( , )IS
ij l lRb R ′ . Unlike Eq. 308, functions ( )IS

ijb t  in Eq. 312 depend simultaneously on 
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the position mR  of spins I as well as on the position mR ′  of spin S. Since the motion of spins 

belonging to different sub-lattices is assumed to be independent, corresponding probabilities 

are multiplied. Conditional probabilities , ,( )mlI RP R τ  and , ,( )mS l RP R τ  could be defined by 

Eq. 309 with appropriate indices. Assuming that probabilities ( )lIp R  and )(S lp R ′  are equal 

to 1 In  and 1 Sn , respectively, where In  and Sn  are corresponding numbers of different 

lattice sites, between which diffusing jumps occur, one can find for )(ISG τ  [127]: 
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where 
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and 2
ISM  is defined by Eq. 306. 

As we assume the motion of spin I and S carriers to be independent (i.e. uncorrelated), 

the evolution of terms 2
IIM  and 2

ISM  also occurs independently. Since their contribution to 

2
IM  is additive, one can write the following formula for the autocorrelation function )(IG τ  of 

dipolar fluctuations caused by simultaneous motion of two sub-lattices: 

 ( )( ) ) ( .I II ISτ G τ GG τ= +  (315) 

Substituting Eq. 310 and Eq. 313 into Eq. 315, we obtain 
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If in a given temperature range the condition 1 1c c
I Sτ τ>>  is valid, then the following 

simplification can be made: 
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In this case, Eq. 316 could be written as follows: 
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where, as above, 2 2 2
I II ISMM M= + . For a reduced correlation function ) ( 0( ) ( )I Iτ G τ Gg =  

(we omit the index I at )(g τ  for simplicity) one can write 
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where we introduced three parameters 

 22 2
1 2 3

2 2 2

, , .
ISII IS

I I I

MM MQ Q Q
M M M

= = =  (320) 

Physical interpretation of parameters in Eq. 319 is transparent: 1Q  is a measure of the 

averaging of the dipolar interactions by relative motion of spins I; 2Q  characterizes the 

motion of spins I with respect to spins S (when spins S are immobile); finally, 3Q  

characterizes the cumulative effect of simultaneous motion of both sub-lattices on dipolar 

interactions. Unfortunately, these parameters cannot be found from the experimentally 

observed correlation function. In fact, they combined in Eq. 319 and cannot be separated. It 

means that Eq. 319 cannot be used in fitting procedure, and, for practical applications, 

Eq. 319 is rewritten as follows: 

 ( (1 ) ( ) ,) c c
SIτ τ τ τg a b e b aτ e− −+ − + −=  (321) 

where 
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Now we can deduce a formula for the temperature dependence of the second moment 

2M  under diffusion of two spin sub-lattices. It is known that the temperature evolution of the 

NMR line width is determined by the following equation [64]: 

 
0
2

2( ) ( )
2

,
α δω

α δω

MT j ω dM ω
π −

= ∫  (323) 

where 0
2M , as above, is the “rigid” second moment and the coefficient α  is of the order of 

unity. Spectral density )(j ω  is given as usual: 

  ) ( )( ,iωτω g τ ej dτ
∞

−

−∞

= ∫  (324) 

where )(g τ  is a reduced spectral density function. Substituting Eq. 321 into Eq. 323 and 

taking into account Eq. 324, one can find for the second moment of the NMR line the 

following formula: 
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 (325) 

Temperature dependence in Eq. 325 is determined by the correlation time cτ , which is usually 

assumed to obey the Arrhenius law: 0 exp( )c aEτ τ kT= , where aE  is an activation energy of 

the dynamical process. 

It should be noted that when 1cδωτ ≤ , it is quite difficult (or even meaningless) to 

determine the second moment of the NMR line [64], since the shape of the NMR signal 

deviates significantly from the Gaussian line shape. Therefore, it is advisable to use other 

parameter, which determines the temperature evolution of the resonance line. Usually, the 

half-width at half-maximum δω  (HWHM) is used as such parameter. Equation 325 will be 

then rewritten in the form of the following implicit equation: 
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Equation 326 assumes exponential correlation functions for both sub-lattices, I and S. 

In fact, Eq. 326 can be rewritten in the following form 
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where functions ( )IK δω  and ( )SK δω  are 
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and spectral densities, )(Ij ω  and )(Sj ω , are defined by the BPP model: 
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However, ionic mobility in solids is often accompanied by non-exponential relaxation 

phenomena [73]. In this case, spectral density functions in the form of Eq. 329 are inadequate, 

and different empirical spectral densities, which take into account a distribution of correlation 

times, are usually applied. One of the most successful spectral densities used to interpret 

experimental data in solids is a Cole-Davidson function CD ,( )j ω β , which is defined as 

follows [73]: 
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where 0 1β< < . It is easy to show that at 1ωτ <<  

 CD ( ) ~; ,cω β τj  (331) 

whereas at 1ωτ >>  

 (1 )
CD ( ); ~ .β β

cω β τj ω− − +=  (332) 

An application of Eq. 330 for the analysis of relaxation data is quite simple, whereas the line 

width analysis is complicated by this approach, since it involves a primitive of the spectral 

density function. Unfortunately, the primitive of Eq. 330 does not exist, and one cannot find 

an analytical expression for Eq. 327 similar to Eq. 326. This trouble, however, can be 

overcome by using an approximate function, whose behavior is close to the Cole-Davidson 

function and whose primitive could be expressed explicitly (at least in terms of special 

functions). It is easy to show that the following spectral density, 
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c
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 (333) 

obeys Eqs. 331-332 and, consequently, could be used instead of Eq. 330. In contrast to the 

Cole-Davidson function, one can find an integral of Eq. 333 in terms of well-known 
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hypergeometric function, 2 1( , ; ; )F a b c z  [131]. Thus, , ( )I SK δω  functions can be written as 

follows (we omit superscripts I and S for simplicity): 

 ( )2 1
1 1( 2 1, ;1 ; ,) β

β c cδω A τ α δω F α δω τ
β

K
β

 
+ − 

 
=  (334) 

where a normalization factor, 
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)( ,β βA ω dωj
−∞
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 
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∫  (335) 

can be found numerically. Substituting then Eq. 334 into Eq. 327, we shall obtain a fitting 

function (in the analytical form!) to describe the two-step narrowing of the NMR lines 

observed in the case of a distribution of correlation times and/or activation energies. It should 

be noted that if the distribution of correlation times really takes place, then the I and S sub-

lattices should be characterized by two different parameters: Iβ  and Sβ . 

 

Table 4. 

Fitting parameters of Eq. 327 for 7Li and 23Na line widths in LiNaSO4 

 S p e c t r a l  d e n s i t y  

 Eq. 329 Eq. 333 Eq. 329 

 7Li 23Na 

 0.70 0.05±  2.1* 0.7* 

 ( ) 123.5 0.3 10−± ×  ( ) 287.9 2.5 10−± ×  3.5×10-12* 

 1.33 0.05±  4.2* 1.33* 

 ( ) 141.0 0.3 10−± ×  ( ) 386.3 2.5 10−± ×  1.0×10-14* 

a 0.015 0.015 0.031 

b 0.235 0.235 0.323 

 1* 1* 1.6±0.1 

βLi - 0.34 0.01±  - 

βNa - 0.30 0.01±  - 

Comment: Parameters marked with an asterisk were fixed when fitting. 

It was shown above that narrowing of the 7Li NMR line in the LNS is caused 

predominantly by the fluctuations of the dipolar Hamiltonian, i.e. by modulations of the 

Li ,eVaE

Li
0 , sτ

Na ,eVaE

Na
0 , sτ

α
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dipole-dipole couplings due to the motion of spins. In other words, the dipolar correlation 

function (Eq. 321) and consequently the derived fitting function (Eq. 325) could be 

adequately used for the analysis of the temperature evolution of the 7Li NMR line width. 

Solid line in Fig. 23a corresponds to the best fit of Eq. 325; fitted parameters are listed in 

Table 4. 

Despite of a distortion of the 23Na central transition due to quadrupolar interaction, we 

used Eq. 325 just to see whether it is possible to obtain satisfactory fit of Na ( )δω T  with the 

same parameters as in case of 7Li. Solid line in Fig. 23b corresponds to the best fit of Eq. 325 

(values of activation energies and preexponential factors were fixed); fitted parameters are 

listed in Table 4. It should be also noted that in spite of inadequacy of the used model for 
23Na, temperature evolution of its line width contains two steps similar to the case of 7Li and, 

moreover, could be even rather well approximated with the same values of correlation times 

 and . It means that the temperature evolution of the 23Na line width is substantially 

caused by the fluctuations of the dipolar Hamiltonian. In fact, using the nutation curve 

technique we revealed that the quadrupolar coupling constant (i.e. its averaged value) of 23Na 

nuclei is almost unchanged when heating the LNS powder (see Fig. 34); therefore, the 

contribution of the second order quadrupolar interactions is approximately the same at 

different temperatures and, consequently, do not affect strongly the temperature dependence 

of the 23Na HWHM. 

 
Fig. 26. Computer fittings of temperature dependence of 7Li NMR line width using different spectral 

densities: blue solid line – Eq. 329; red dash-dotted line – Eq. 333. 

Li
cτ Na

cτ
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To give a conclusion, let us note once again that Eq. 325 gives a good fit for the 

evolution of 7Li NMR line width. For 23Na nuclei, this model also works quite well. 

Parameter  was found to be equal to unity in the case of 7Li, whereas it differs from unity in 

the case of 23Na. It is quite difficult to determine a clear physical sense of the parameter  in 

the case of 23Na; one can only say that it reflects the fact that the measured values of the 23Na 

NMR line widths are affected not only by the non-averaged dipole-dipole coupling, but also 

by quadrupolar coupling. 

It should be noted that the value of the activation energy of Li+ jumps found due to 

Eq. (326) is very small when compared with ionic conductivity measurements [4, 11]. In fact, 

Mellander et al. [4] found that the d.c. ionic conductivity of the LNS single crystal had an 

activation energy 2.15 eV, which is three times larger than the value obtained by NMR study 

(0.70 eV). This discrepancy is well known from line-shape studies on solid electrolytes with a 

single mobile ion species [132-134]. In principle, it could be attributed 1) to an inadequacy of 

the assumption of an exponential correlation function and 2) to local motion of lithium ions. 

To examine the first assumption, we have fitted experimental data using Eq. (333) as a 

spectral density function for both ionic species and fixing the values of the activation energies 

as follows: Li 2.1eVaE =  and Na 4.2eVaE = . Resulting fit is presented in Fig. 1a (dash-dotted 

line). Corresponding fitting parameters are listed in Table 1. One can see that this model does 

not work quite well (one can clearly see the two main discrepancies between the fit and 

experimental points at the bottom of the steps). Moreover, the values of the pre-exponential 

factors were found to be incredibly small and parameters Liβ  and Naβ  also had rather low 

values (see Table 1). This indicates the first assumption to be unjustified. 

Thereby, the local motion of lithium ions seems to be more reasonable explanation of 

the distinction between energy values obtained by different techniques. The simplest model 

explaining mentioned difference is based on the assumption that there exist potential barriers 

of various heights. Since the d.c. conductivity involves ionic migration over long distances, 

only ions with sufficient energy to surmount the highest barriers will contribute to the 

conductivity process. However, other ions may overcome lower potential barriers and move 

shorter distances within a local cavities, whose boundaries are defined by the highest potential 

barriers. Although such local motions do not contribute to the long-range charge transfer, they 

can narrow the NMR spectra. 

α

α
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4.1.5 Spin-lattice relaxation 

It is easy to show that two-time correlation function leads also to the appearance of 

two maxima in the temperature dependence of the spin-lattice relaxation rate  [127]. This 

fact is a consequence of the well-known formula (see Eq. 146): 

  (336) 

where  is a spectral density of the correlation function given by Eq. 321. This result 

implicitly assumes that spin-lattice relaxation is defined by the fluctuations of the dipolar 

Hamiltonian. In case of quadrupolar nuclei, relaxation is usually caused by the fluctuations of 

the quadrupolar interactions; therefore, instead of the dipolar correlation function (Eq. 321) 

one has to use a “quadrupolar” correlation function. The latter could be defined also by 

Eq. 321, but with redefined parameters a and b. 

It is important to note that Eq. 321 is valid for quadrupolar relaxation only if 23Na and 
7Li nuclei “see” exclusively the fluctuations of the electric field gradient (EFG) due to the 

local motions of Li+ and Na+ ions (or vacancies). However, 23Na and 7Li nuclei could also 

“see” the fluctuations of the EFG due to the motions of other neighboring molecular groups, 

whose dynamics may be “invisible” for the dipolar Hamiltonian. It means that dipolar and 

quadrupolar correlation functions could be defined by different motional processes and, 

consequently, could be different. 

It is known that reorientations of sulfate groups as well as translational diffusion of 

cations take place in the β-LNS [13, 43]. Since natural abundance of 33S and 17O nuclei is very 

low and nuclear spins of other stable isotopes of these elements are zero, one can neglect the 

dipole-dipole interactions between Li and S,O as well as between Na and S,O. Therefore, 

dipolar Hamiltonian is insensitive to the quasi-rotations of SO4 anions. (It is valid, if quasi-

rotations of sulfate groups are uncorrelated with the translational motion of cations; for the α-

LNS this condition is not satisfied, but for the β-LNS it is apparently true.) Contrary, EFG 

tensors of 7Li and 23Na nuclei will “see” such reorientations; therefore, correlation function 

describing fluctuations of the quadrupolar Hamiltonian in LNS will differ (may be not very 

much) from Eq. 321. 

Temperature dependences of the spin-lattice relaxation rates of 7Li and 23Na nuclei are 

presented in Fig. 27. One can see that the 7Li spin-lattice relaxation rate has an Arrhenius 

behavior on the low-temperature side of its temperature dependence. The activation energy 

was found to be in excellent agreement with the result of the line width analysis: 

. Around 715 K, one clearly observes a maximum of the  curve. The 

11 T

11 ( ) 4 (2 ),L LT j jω ω∝ +

)(j ω

0.71 0.03eVaE = ± 11 T
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23Na spin-lattice relaxation rate shows similar temperature behavior. The low-temperature 

shoulder has the slope with , which is in a good agreement with the 7Li 

relaxation data. In fact, this indicates that motion of only one type of nuclei governs relaxation 

of both 7Li and 23Na nuclear spins in the low-temperature side of the  curves. Namely, the 

motion of lithium ions leads to the fluctuations of the electric field gradient (EFG) not only 

around 7Li nuclei, but also around 23Na. 

 
Fig. 27. Temperature evolution of the spin-lattice relaxation rate of 7Li (on the left) and 23Na (on the 

right) nuclei. Vertical dashed lines indicate phase boundaries: the α-β phase transition and melting at 

788 K and 888 K, respectively. Measurements were carried out at 9.4 T. 

Unfortunately, it is impossible to observe two maxima of the 7Li  curve in the 

field of 9.4 T, since the first maximum occurs close to the α-β phase transition, and the second 

one could be reached only at higher temperature, where the α-phase is already stable. 

However, in case of 23Na, the second maximum probably starts to appear near the phase 

transition; therefore, a broad plateau appears at the high-temperature part of the 23Na  

curve. Note, that using low magnetic fields Kanashiro et al. [11] really observed two maxima 

on the  curve of 7Li nuclei. However, clearly observed peaks were obtained only at very 

low frequency ( ), whereas at higher frequencies mentioned maxima were 

weakly distinguishable. 

0.68 0.04eVaE = ±

11 T

11 T

11 T

11 T

Li 62 6 10 HzLω π = ×
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The value of the activation energy for Li+ was found to be , and the 

activation energy of Na+ jumps in turn was ; this result is in excellent 

agreement with the values obtained here. 

The fact that at higher Larmor frequencies Kanashiro et al. did not observe two 

separate maxima of the relaxation rate, but revealed only considerable asymmetry of the  

curve, could be explained by the influence of the reorientations of sulfate groups on the 

quadrupolar relaxation of 7Li nuclei. 

In the α-phase, the 7Li relaxation rate is abruptly decreased around 40 times (see 

Fig. 27);  shows again the Arrhenius behavior with . After melting, 

the relaxation rate changes quite weakly. The 23Na spin-lattice relaxation rate is decreased 

only 4 times after the α-β phase transition. The temperature evolution of 23Na relaxation rate 

in α-phase obeys the Arrhenius law with an activation energy  that is 

almost two times higher than the corresponding value for the 7Li spin-lattice relaxation, but is 

quite close to the activation energy of the diffusion process in the α-phase (see below). 

4.1.6 7Li and 23Na self-diffusion measurements 

As it was shown above, the spin-lattice relaxation time of 23Na is around two orders of 

magnitude smaller than that of 7Li at corresponding temperatures. This makes the 

measurements of the 23Na self-diffusion coefficient impossible below the phase transition. In 

fact, for the PFG STE measurements of 23Na below 788 K, the maximum value of the 

diffusion time Δ, which could be taken without significant loss of the signal-to-noise ratio, is 

around 20 ms; it is too small to measure the value of  m2s-1. In contrast, diffusion of 

the 7Li nuclei could be measured below the α-β phase transition in quite wide temperature 

range: 720-788 K. One can see (Fig. 28) that the temperature dependence of the 7Li diffusion 

has an Arrhenius behavior with an activation energy . This value is in a 

quite good agreement with the ionic conductivity measurements carried out by Mellander et 

al. [4] ( ) and Kanashiro et al. [11] ( ). 

Above the phase transition, both nuclei have almost the same value of the self-

diffusion coefficient; moreover, the activation energies for both cations are equal and have the 

value . It is an excellent confirmation of the paddle-wheel mechanism, 

due to which the radii of cations are of little importance for their diffusion rates. However, 

such value of  is in a worse agreement with the conductivity data. Thus, Secco [32] 
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11 T
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1210D −<
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showed that the activation energy of the conductivity in the rotator phase of LNS was around 

0.44 eV. 

 
Fig. 28. Temperature evolution of of 7Li and 23Na self-diffusion coefficients. Dashed line indicates the 

α-β phase transition temperature. 

One can see that the activation energy of Li motion in β-phase found from relaxation 

measurements is almost three times smaller than the value obtained in diffusion experiment. 

This is the consequence of the difference between microscopic nature of relaxation process 

and the macroscopic nature of the direct diffusion measurements. It means that there exist 

some local motions of Li+ ions, which affect the relaxation process, but which cannot be seen 

by PFG NMR. 

In terms of energy landscape, it means that there exist at least two types of potential 

barriers of different heights: 1) low barriers separating local sites, the jumps between which 

could be seen by means of relaxation measurements, and 2) high barriers separating distant 

sites, the jumps between which cause the macroscopic movements of atoms. 

It should be noted that the value of the activation energy of Li+ jumps found from the 

line width analysis is very small when compared with ionic conductivity [4, 11] and self-

diffusion measurements. Such discrepancy is usually attributed to local motion of lithium ions 

[132-134]. The simplest model explaining mentioned distinction of the activation energies is 

based on an assumption that there exist potential barriers of various heights. Since the d.c. 

conductivity involves ionic migration over long distances, only ions with sufficient energy to 
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surmount the highest barriers will contribute to the conductivity process. However, other ions 

may overcome lower potential barriers and move shorter distances within a local cavities, 

whose boundaries are defined by the highest potential barriers. Although such local motions 

do not contribute to the long-range charge transfer, they could narrow the NMR spectra and 

even could govern the magnetic relaxation process. 

4.1.7 NMR study of sulfate reorientations 

We have already noted above that along with high cationic mobility, a rotational 

disorder of sulfate groups takes place in the LNS. In the α-modification, reorientations of 

anions are correlated with the translational motion of cations. This coupling between cationic 

diffusion and anions’ rotation, first revealed in Li2SO4, led to the term “cogwheel mechanism” 

or “paddle-wheel mechanism” [135], which carried the additional implication that the cationic 

diffusion was enhanced by the sulfate ion reorientational jumps (Fig. 3). 

It is interesting to note that the SO4 orientational disorder as well as cationic mobility 

occurs also well below the α-β phase transition [12, 13]. However, the low-temperature 

reorientations have only weak effect on the behavior of the Li+ ions [13], i.e. there is no 

strong coupling between the cationic diffusion and the SO4 reorientational jumps in the β-

phase. 

Rotational disorder of the SO4 anions in the LNS has been studied by inelastic and 

quasi-elastic neutron scattering [46], and by optical (IR and Raman) spectroscopy [12, 13, 

43]. Raman (and IR) spectroscopy gives information about rotational, vibrational or stretching 

modes of sulfates, whose analysis makes it possible to infer the features (timescale, activation 

energy, etc.) of rotational dynamics. Neutron techniques, in turn, could provide information 

about inelastic scattering by oxygens of sulfate groups, and one can determine, e.g., timescale 

of reorientations. Thereby, both neutron and light scattering allow probing the dynamics of 

the sulfate anions directly. 

NMR can be also be used for this purpose. However, isotopes of sulfur and oxygen 

nuclei with nonzero spins (33S and 17O) have very low natural abundance. Therefore, in 

unenriched samples, one can measure the effect of the SO4 reorientations on neighboring 

nuclei. In this sense, NMR can be considered as an indirect probe to study the sulfate 

dynamics. The problem, however, is that the effect of the reorientational jumps of the sulfate 

groups on the 7Li and 23Na relaxation in the LNS is, apparently, quite weak, while the 

relaxation process is mainly governed by the diffusion of Li+ and Na+ ions themselves [11, 
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39]. Linewidth analysis is either inapplicable to study sulfate dynamics because of an 

insensitivity of Li-Li, Na-Na and Li-Na dipolar interactions to the SO4 reorientations [136]. 

 
Fig. 29. Temperature evolution of the 7Li NMR spectrum of the LiNaSO4 single crystal with the c-axis 

oriented perpendicular to the magnetic field (on left) and “green” powder (on the right). 

It is known from the crystallographic data [10, 115] that the unit cell of the β-LNS 

contains six Li+ ions, each in a general position 6c. Electric field gradient (EFG) tensors at Li 

sites have the same principal values, but differ in their orientation with respect to 

crystallographic axes. Since 7Li is a quadrupolar nucleus with spin 3 2I = , each of the six 

nuclei in the cell has to give the NMR signal consisting of three lines: central transition line 

and two symmetrical satellites (external transitions), whose integral intensities are related as 

3:4:3 [56, 64]. 

In fact, below 550 K the NMR spectrum of the LNS single crystal represents a 

multicomponent pattern, whose lines are broadened due to non-averaged dipolar interactions. 

Above 550 K, the 7Li NMR spectrum of the LNS single crystal contains only three lines, 

whose intensities obey the rule 3:4:3 (see Fig. 29). We attributed this phenomenon to the 

lithium mobility, i.e. to the averaging of the EFG tensors due to an exchange (i.e. jumps) 

between different Li sites. The distance between the satellites, which we referred to as NMR 
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splitting, Qν , is determined by an exchange matrix and by the orientation of the EFG tensors 

relative to the magnetic field. Obviously, observed value of Qν  should be considered as 

motionally averaged value of the NMR splitting, Qν  (we omit the angle brackets hereinafter 

for simplicity). 

One can show [137, 138] that the exchange of quadrupolar nuclei between different 

sites leads to a gradual smearing of the NMR multicomponent pattern when increasing a 

hopping frequency. At a certain value of the frequency of atomic jumps, which depends on 

the values of the EFG tensors’ elements, only three lines remain in the spectrum of the 

3 2I =  nuclei. However, further increase of the hopping frequency will not affect the shape 

of the NMR spectrum [137, 138], if principal values of the EFG tensor at a given site are 

unchangeable and if we do not take into account other interactions, e.g., fluctuations of the 

dipolar Hamiltonian. 

As for LNS, the six EFG tensors at the Li sites in the single crystal are averaged above 

550 K. Therefore, according to just mentioned arguments, the value of Qν  should not change 

when further heating. However, the observed value of motionally averaged NMR splitting 

changes when heating above 550 K: it decreases down to zero at around 690 K, and then 

starts to increase (Fig. 1). Similar behavior was also observed in the LNS powder. In 

principle, it could be attributed 1) to a strong temperature dependence of principle values of 

the 7Li EFG tensors 2) to an influence of neighboring molecular groups, or 3) to both of these 

effects. Let us show that namely the reorientation of sulfate anions is responsible for the 

observed temperature evolution.  

Generally, the value of the quadrupolar splitting in solids is a function of pressure P, 

volume V, and temperature T, ( , , )Q Pν V T . Therefore, the following equality takes place at 

constant pressure: 

 ,Q Q Q

P TV

dν ν dV
dT T V

ν
dT

     
= +    

∂
∂ ∂  

∂

  
 (337) 

where Qν , in turn, is defined as follows ( 3 2I = ) [64]: 

 ( )2 211 3cos ,sin co 2
2

sQ Qν η θ φC θ − +=  (338) 

where 2
QC e qQ h=  is a quadrupolar coupling constant, η is an asymmetry parameter, 

ZZq V e= , where ZZV  is the principal value of the EFG tensor; finally, Euler angles θ and φ 
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define the orientation of the EFG tensor with respect to the magnetic field. A theory of the 

temperature dependence of the quadrupolar splitting was studied in detail for nuclear 

quadrupole resonance (NQR) problems by Bayer [139] and Kushida [140]. Thus, it was 

shown that in usual ionic crystals the first term in the right side of Eq. 337 (so-called Bayer’s 

term) is caused by lattice vibrations, under the influence of which the elements of the EFG 

tensor oscillate, i.e. magnitudes ( )QC t  and ( )η t  become functions of time. Since the lattice 

vibration frequency is usually much higher than Qν , the nucleus “feels” only average values: 

( )QC t  and ( )η t .  

According to the Bayer’s theory, which considers the bending motion of the EFG 

tensor around an axis perpendicular to the direction of q, quadrupolar splitting has to decrease 

when heating, since the value of the quadrupolar coupling constant decreases with increasing 

temperature owing to the thermal averaging of the orientation of the EFG tensor. (A detailed 

description of this effect is given in the Appendix). If the Bayer’s theory is valid, then the 

change of the NMR (or NQR) splitting with temperature is comparatively weak: the 

magnitude ( )1
Q Qdν ν dT−  is usually of the order 4 510 10− −− deg-1 [141]. 

If the evolution of ( )QC t  is governed mainly by the stretching normal modes 

involving a periodic change of ZZV , then the Bayer’s term, ( )Q V
Tν∂ ∂ , could be positive. 

This fact is a consequence of the sign ambiguity of the second derivative of q with respect to 

normal coordinates (Eq. A.9). It should be noted that the positive temperature dependence of 

the quadrupolar splitting, which is usually referred to as anomalous temperature dependence, 

is treated in literature to be an influence of the lattice expansion or the consequence of other 

effects, which are not directly related to lattice vibrations [141, 142]. This stereotype 

originates from the pioneering work of Kushida et al. [140], where authors have paid 

particular attention to the second term in the right side of Eq. 337 (it is now sometimes 

referred to as Kushida’s term), but do not indicating explicitly that their approach redefines 

also the Bayer’s term allowing it to be positive at certain conditions. 

Kushida’s term, in turn, defines the change of the quadrupolar splitting due to thermal 

expansion of the crystalline lattice. This term can be written as [141] 

 
, ,

,Q Q

PP T V TV T P
ν νV α

χ
     = −    ∂ ∂ ∂   

∂ ∂∂

 
 (339) 
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where α stands for the thermal expansion coefficient and χ is the isothermal compressibility. 

Both α and χ are normally positive; therefore, when ( )
,Q V T

ν P∂ ∂  is negative, then observed 

quadrupolar splitting could increase with increasing temperature. 

In crystals, containing complex ions or molecules, the temperature dependence of Qν  

often deviates from the Bayer-Kushida theory. In such case, the influence of a reorientational 

motion of molecular groups (particularly, at elevated temperatures) has to be taken into 

account. For the first time, this effect was observed in ammonium salts [143], where the 

change of the quadrupolar splitting was found to be caused by the ammonium ion 

reorientations. Negita et al. [143] developed the so-called “fly-by” model [144] to describe 

the temperature dependence of the quadrupolar splitting of the nuclei located in the 

neighborhood of the 4NH+  ions. Later, this model was also used to explain the influence of 

180° flips of the water molecules on the temperature behavior of the water containing 

compounds [145]. 

As we know, Negita’s model has not been applied to study reorientational motions in 

sulfates; however, we do not see any physical limitations to do this. In terms of sulfate 

reorientational jumps, the “fly-by” model could be described as follows. 

Let the 4
2SO−  ion be static during the time period rτ  and the observed quadrupolar 

splitting of the neighboring nucleus be rν . By definition, rτ  corresponds to the correlation 

time of the ion reorientation, i.e. is understood as a mean time between instantaneous 

reorientational jumps. It is assumed that during a reorientational jump, whose duration equals 

fτ , oxygens “fly-by” the neighboring nucleus and the splitting equals fν  during fτ . 

Naturally, we expect f rτ τ< . If the condition , 1f r Qτ τ ν<<  is fulfilled, then the average 

quadrupolar splitting could be written in the following form [146]: 

 
1

0 ( ) ( ) 1 .Q Q r f r
f

rτν ν ν ν νT
τ

−
 

= + + − +  
 

 (340) 

where 0 ( )Qν T  is the unperturbed splitting, i.e. the value of Qν  in the absence of the sulfate 

reorientations, including the Bayer temperature dependence if appropriate. Since the Bayer’s 

contribution to the temperature evolution of Qν  is usually much weaker than the 

reorientational effect, the term 0 ( )Qν T  is often considered to be a constant. Usually, fτ  is 
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assumed to be temperature-independent, whereas rτ  is chosen in the Arrhenius form, 

0 exp( )r aEτ τ kT= . 

 

Fig. 30. Jump reorientational model as a two-state model. aH E∆ ≅  corresponds to the activation 

energy of the reorientational jump. 

It should be noted that the jump reorientational model is a “two-state” model: the 

sulfate ion is either at rest or rotating. If these two states are associated with single energy 

levels, then their relative populations must be related by a Boltzmann factor: 

exp( )rfn n kTE= − ∆ , where E∆  is the energy difference between the two states. 

Since the populations of each of the two levels are proportional to the lifetimes of the 

anion in the two states, one can write: rf frn n τ τ= . Therefore, at high temperatures rτ  

cannot be shorter than fτ . However, a more satisfactory approach assumes that each of the 

two states is associated with a complex of energy levels so that the ratio of populations is 

 ( ) exp ,f

r r

fn
K T

n k
τ G
τ T

 =
∆

≡ = − 
 

 (341) 

where ( )K T  is an equilibrium constant and G∆  is a Gibbs energy difference. In the high-

temperature limit, the ratio of lifetimes is governed by the factor exp( )S k∆ , which 

determines the difference between densities of the two states, and, generally, can exceed 

unity. 

137 



 
Fig. 31. (a) Temperature dependence of splitting, Qν , between the satellites in the 7Li NMR spectrum 

of the LiNaSO4 single crystal with the c-axis oriented perpendicular to the magnetic field. Blue solid 

line denotes the best fit of Eq. 340, whereas red dashed line denotes the boundary of the β-phase 

(788 K). (b) Calculated values of the 7Li quadrupolar coupling constant in the “frozen” lattice and (c) 

corresponding calculated values of the 7Li asymmetry parameter. 

Temperature evolution of the 7Li quadrupolar splitting in the LNS single crystal is 

presented in Fig. 31a. First of all, it should be noted that NMR experiment does not allow 

determining the sign of the quadrupolar splitting, and only the absolute value of Qν  could be 

measured. Therefore, it is assumed in Fig. 31a that above 690 K real values of Qν  could have 

positive as well as negative sign. The jump reorientational model, however, predicts 

monotonic behavior of Qν ; therefore, if the quadrupolar splitting is positive above 690 K 

(empty dots in Fig. 31a), this should be caused by other effect. The most plausible explanation 

of this possible non-monotonic temperature dependence of Qν  is an abrupt increase of ( )q t  

around 690 K due to the effect of stretching motions of the EFG tensor mentioned above 

(Eq. A.9). One can show, however, that such increase should be accompanied also by the 

growth of the spin-lattice relaxation rate above 690 K, which has not been observed [11]. 

Finally, taking into account that no phase transitions were found in the LNS near 690 K we 

should consider the monotonic behavior of ( )Qν T  to be more preferable.  
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One can see from Fig. 31a that 0Qν =  at around 690 K. Well away from this point, the 

magnitude ( )1
Q Qdν ν dT−  was found to be of the order of 210−  deg-1, what is much higher than 

the value predicted by the Bayer’s theory ( 4 510 10− −− deg-1). Therefore, the first term in the 

right side of Eq. 337 does not give significant contribution to the temperature evolution of Qν  

and could be considered as a constant in the temperature range under consideration. 

 
Fig. 32. (a) Temperature dependence of the equilibrium constant, ( ) f rK T τ τ≡ . (b) Temperature 

dependence of the heat capacity of LiNaSO4 according to Eq. 342. 

The contribution of the Kushida’s term, i.e. the influence of the lattice expansion on 

the NMR splitting, can be calculated by ab initio methods. For this, we have carried out 

CASTEP [119] calculations of the principal values of the EFG tensors for each Li site at 

different temperatures. It should be noted that NMR-CASTEP calculations give values of the 

EFG tensors in the “frozen” lattice, i.e. neither lattice vibrations nor diffusion of ions are 

taken into account, and the temperature of the system is assumed to be 0 K. However, the 

temperature could be introduced indirectly using the data on the temperature evolution of the 

lattice parameters [10]. In this sense, one can built the “temperature dependences” of the 

calculated 7Li NMR parameters, which are presented in Figs. 31b,c. One can see that the 7Li 

quadrupolar coupling constant of the “frozen” lattice slightly grows when increasing 

temperature, whereas the asymmetry parameter monotonically decreases. The only feature in 
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Figs. 31b,c is a small jump of QC  above 750 K. This behavior could be explained by the 

strongly anisotropic thermal expansion of the crystalline lattice of the LNS above this 

temperature [10]. 

Obviously, weak positive temperature dependence of QC  (Fig. 31b) could not govern 

the strong negative temperature dependence of Qν  above 550 K (Fig. 31a). In addition, weak 

evolution of the asymmetry parameter in the frozen lattice (Fig. 31c) either could not give a 

significant contribution to the temperature evolution of Qν . Thereby, the temperature 

dependence of the 7Li quadrupolar splitting in the LNS single crystal above 550 K cannot be 

governed by thermal expansion of the crystalline lattice. We believe that the main 

contribution to the temperature evolution of Qν∆  is associated with the reorientational effect. 

The best fit of the Negita’s model (Eq. 340) to our experimental data is presented in 

Fig. 31a (blue line). The activation energy (or rather enthalpy, H∆ ) for the SO4 

reorientational jumps was found to be 0.19 0.02eV± ; the term 0
Q rν ν∆ + ∆ , in turn, had the 

value 21±2 kHz, whereas f rν ν∆ − ∆  was found to be 42.6 0.9 kHz− ± . We assumed the term 

0
Qν∆  to be temperature-independent. It is interesting to note that ( ) 1f r Kτ Tτ ≡ =  at around 

690 K and even exceeds unity upon further heating (Fig. 2d). Such behavior of the lifetimes 

ratio, f rτ τ , indicates that the orientational disorder of the sulfate groups occurs well below 

the α-β phase transition temperature (788 K). 

 

Fig. 33.Schematic representation of the probability function 2ψ  of the 2
4SO−  ion under oscillational 

and rotational motions. 

Takahashi et al. [147] estimated that the potential energy barrier to rotation of SO4 

groups should be not less than 0.3 eV in alkali-metal sulfate crystals. We obtained an 

underestimated value; however, such low activation energy is reasonable, since the effect of 

140 



reorientations is already observable at comparatively low temperatures. It should be noted that 

the value of the activation energy found by Teeters and Frech [43] was even much less: 

0.09 0.01±  eV. 

The transition from oscillational to rotational motion of sulfate ions should be 

accompanied by thermal phenomena. In fact, when the amplitudes of SO4 external vibrations 

are small, i.e. when a vibrational quantum number n is quite low, eigenfunctions of oscillators 

corresponding to librations of the SO4 groups, ( , )ψ Θ Φ , change only slightly as n is increased 

(Θ and Φ stand for the Euler angles determining the orientation of the 2
4SO−  ion). The 

probability function, 2ψ , has maxima in the neighborhood of the equilibrium values of Θ and 

Φ, and falls off rapidly from these maxima. Increase in n causes only some spread, 

corresponding to larger amplitudes of oscillations. However, when n starts to exceed some 

critical value, the eigenfunctions change completely in nature, becoming much more nearly 

constant [148]. This change increases the repulsive forces between the molecular groups, and 

tends to spread the crystal lattice. Such expansion of the lattice decreases the potential barriers 

for reorientations, so that more SO4 groups can rotate. This transition is accompanied by an 

anomaly of a heat capacity, pC , which can be defined as follows [146]: 

 
2

2 ,
( 1)p A

KkN
K kT

HC ∆ =  +  
 (342) 

where k is the Boltzmann constant, AN  is the Avogadro constant, and H∆  is the activation 

enthalpy for the SO4 reorientational jump. Substituting the equilibrium constant, ( )K T , and 

the enthalpy, H∆ , found from the Negita’s model, into Eq. 342, we obtained a small – 7.1 

J/(mol·K) – anomaly of the heat capacity with the maximum occurring at 587 K (Fig. 31e). 

Such anomaly was really observed experimentally at around 600 K [10]. It was assumed that 

the small maximum of pC  is associated with successive phase transition; however, as we have 

just shown, it corresponds to the transition from oscillational to rotational motion of sulfate 

ions, and is not accompanied to an essential change in the structure of the crystal. 

Since EFG tensors near 7Li nuclei are affected by the reorientational motion of SO4 

groups, similar effect should be observed also on the EFG tensors near 23Na nuclei. In 

Fig. 34a, temperature evolution of the 23Na NMR powder spectrum is presented. One can see 

that at around 600 K the line starts to narrow due to the motion of Na+ ions; at 690 K its width 

is minimal, but when further heating the signal starts to broaden slightly and the asymmetry of 

its shape increases (Fig. 34b). The asymmetry of the line is caused by the contribution of the 
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second order quadrupolar interactions; therefore, the hardly detectable growth of the 23Na line 

width above 690 K corresponds to the growth of the quadrupolar splitting. Such behavior of 
23Na NMR spectrum provides additional grounds to assume that namely reorientational 

motion of SO4 groups causes temperature dependences of quadrupolar interactions considered 

above. 

 
Fig. 34. (a)-(b): Temperature dependences of 23Na spectrum of LiNaSO4 powder. (c): 23Na nutation 

curves of LiNaSO4 at different temperatures compared to nutation in 1M NaCl water solution. 

Finally, it should be noted that the averaging of the dipolar interactions above 690 K 

(in the spectra of both 7Li and 23Na nuclei) does not correspond to the extreme motional 

narrowing, albeit the lines reach their minimal widths. According to the definition, the 

extreme motional narrowing occurs when all interactions are averaged down to zero. 

However, the quadrupolar splitting of both 7Li and 23Na nuclei grows (in absolute value) 

above 690 K, i.e. it is averaged towards higher values of . The good way to see the 

motional narrowing effect is to compare nutation curves at different temperatures. 23Na 

nutation curves are presented in Fig. 34c. Dashed line (together with black filled dots) 

corresponds to the 23Na nutation curve in 1M NaCl and determines the nutation frequency – 

16.5 kHz. 23Na nutation curves of LNS recorded at three other temperatures and shown in 

Δ Qν
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Fig. 34c indicate that quadrupolar interactions are much higher than the nutation frequency, 
(1)
Q nutω ω>> , consequently, an extreme motional regime does not take place in LNS even just 

below the α-β phase transition. 

4.1.8 Kinetics of the α-β phase transition 

Kinetics of the first-order phase transition in solids could be investigated by a number 

of techniques [149, 150]. The most natural techniques for studying structural phase transitions 

(including their kinetics) are scattering experiments: XRD and neutron scattering. Comparing 

the peak intensities of characteristic diffraction patterns of both the phases, the amount of an 

appearing phase  as a function of time can be obtained. The main disadvantage of the 

scattering methods is the limited time resolution due to the comparatively long period needed 

for measurement. The time resolution could be improved by using the high intensity of 

synchrotron radiation; however, this method is still not applicable to fast transitions. 

In metals and semiconductors, electrical conductivity is a valuable tool for studying 

phase transformations. In the transition region, the measured conductivity  is an averaged 

quantity depending on the percentage of the two phases. This method is not limited in its time 

resolution; therefore, it could be used for studying fast transition kinetics. However, the 

averaged conductivity depends on the distribution of both phases in the sample and an 

appropriate model has to be used to calculate  from . 

Kinetic parameters could be also measured by differential thermal analysis (DTA). 

There are several possible ways in which DTA might be used [151]. Thus, one could involve 

analysis of partially transformed material by measuring peak areas corresponding to the phase 

transition. From these data and with the aid of calibration curves, the percentage 

transformation could be determined. In addition to this static (isothermal) analysis, dynamic 

(non-isothermal) methods, which allow measuring activation energy and mechanism of 

crystallization, could be used. Parameters of the phase transition kinetics can be obtained by 

experimental DTA results using proper equations proposed to interpret non-isothermal data 

[152, 153]. 

Finally, transition kinetics could be often measured by means of NMR. Similar to all 

mentioned techniques, NMR tools are also based on the changes of measurable property 

sensitive to the presence of one of the phases. Thus, the difference of the NMR line shape in 

different phases could be used as such measurable property. Other type of experiments could 

be based on the difference of relaxation times. For a good review on NMR approach to the 

( )x t

( )σ t

( )x t ( )σ t
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kinetics measurement see papers of Feio and Cohen-Addad [154, 155], where authors make 

an analysis of three different types of isotherms: normalized spectrum area, half-width at half-

maximum, and spin-lattice relaxation time  isotherms. 

It should be noted that if spin-lattice relaxation time is used as a measureable 

parameter, only slow kinetics could be usually studied, since  measurement takes 

significant time. However, the difference between  values in different phases could be used 

also for the study of quite fast kinetics. For this purpose, we developed a very easy technique, 

which is based on the difference of spin-lattice relaxation times in the two phases, but which 

does not evolve the direct measurement of . 

Let us assume that two phases under consideration, α and β, are characterized by 

different spin-lattice relaxation times  and , respectively. Strictly speaking, it is not 

valid, if quadrupolar nuclei are considered, since non-exponential relaxation could occur in 

this case and more than one relaxation time constants exist for each phase. However, even in 

the case of quadrupolar nuclei, the non-exponentiality can be neglected and an effective single 

relaxation time could be introduced. In a single-pulse experiment, the spin system has to be 

allowed to relax after each 90°-pulse, i.e. a relaxation delay  has to be waited before 

the following pulse. If the delay d does not obey this relation (i.e. smaller than ), then the 

saturation effect occurs. Assuming that the characteristic time of the free induction decay, i.e. 

, is quite short, so that *
2T d<< , one can write for the amplitude of the signal after the n-th 

pulse ( ): 

  (343) 

where  is an equilibrium value of the magnetization. 

During the α-β phase transition, the energy transfer mechanism between the spin 

system and its physical environment steadily changes, so that the part of spin system starts to 

relax faster or slower than before the phase transition. Taking into account Eq. 343 one can 

write for the magnetization in the transition region 

  (344) 

where  and  are relative amounts of phases α and β, respectively, and . The 

normalized NMR signal amplitude in the transition region could be written as follows: 

1T
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  (345) 

where  

  (346) 

and where it was taken into account that . Equation 345 gives a tool to study 

the kinetics of the phase transition, since, as one can see, time evolution of the amplitude of 

the NMR signal is just proportional to the amount of appearing β-phase. 

The procedure of the kinetics experiment could be as follows. Before starting an 

acquisition, the system is stabilized at the temperature exceeding a few degrees the α-β phase 

transition point. Then the laser power is reduced abruptly by the value , and the operator 

runs the acquisition recording each transient in a pseudo-2D NMR data array (similar to  

experiment). After completion of the phase transition, the system could be again heated above 

the phase transition, and the experiment could be reiterated. The experiment has to be 

repeated several times for each value of  to avoid casual errors. 

As it follows from Eq. 345, the time dependence of the NMR signal intensity in the 

kinetics experiments is determined by , i.e. by the time evolution of the amount of 

appearing β-phase. Generally, the time evolution of the volume fraction of the appearing 

phase depends on different factors: geometry of nuclei (germs), nucleation rate, crystallization 

rate, crystallization mode (interface- or diffusion-controlled growth), presence of impurities, 

cooling/heating rate, etc. 

The function describing the time evolution of the global crystallization process, i.e. 

, was first found by A.N. Kolmogorov [156], who solved the problem of the 

solidification of a melt assuming that emergence of crystallization nuclei in a parent phase is 

random and that the growth rate of these nuclei is linear. Two years later, Avrami [157, 158] 

introduced the so-called “expanded volume fraction” , where  is the volume 

occupied by nuclei of the new phase β if they can grow without being hindered by the 

presence of other nuclei;  is the total volume of the phases. It was shown that the real 

volume fraction  is related to  as follows: 
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Equation 347 is referred to as Avrami equation. One can find [159] that in the case of a 

constant nucleation rate ν the expanded volume fraction is ; the rate constant is 

, where c is the linear growth rate of the spherical nucleus and ν is the 

nucleation rate (the number of nuclei appearing in the unit volume of the parent phase per one 

second). 

When all nuclei emerge simultaneously at the initial stage of the crystallization, then 

, where , where  is the average number of germs per unit 

volume. 

If the nucleation rate is a function of time, , than the more general type of 

equation has to be written: 

  (348) 

where the constant k is the function of temperature and of the geometry of germs (sometimes 

it is referred to the rate constant of the crystallization); the exponent b is a function of the type 

of nucleation. Parameters k and b are usually referred to as Avrami parameters, and Eq. 348 is 

referred to as Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation [156-158, 160]. 

 
Fig. 35. Time evolution of the amount of the β phase during the α-β phase transition in LiNaSO4. The 

dependence of Avrami parameters on the cooling rate (more precisely, on ΔP) is shown in the inserts.  
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If Avrami parameters are found, then one can make assumptions concerning the 

crystallization mode and the type of nucleation. Thus, in the case of interfaced-controlled 

growth of spherical germs: 1)  for the constant nucleation rate, and 2)  for rapidly 

exhausted nucleation. In the case of diffusion-controlled growth of spherical germs: 1) 

 for the constant rate, and 2)  for rapidly exhausted nucleation [159]. 

It should be noted that KJMA equation was derived for isothermal crystallization and, 

strictly speaking, cannot be used for the non-isothermal case. Under non-isothermal behavior, 

other models, e.g., Ozawa equation [161], has to be applied. Nonetheless, KJMA equation has 

also been used by some authors [162-165] to describe the non-isothermal crystallization of 

semi-crystalline polymers. We also shall use this approach for the crystallization kinetics of 

the LNS. 

 

Table 5. 

Avrami parameters at different values of ΔP. 

Second column contains approximate values 

of the cooling rate. 

ΔP r, K/min b  

0.1 21 2.11 8.3 

0.2 43 2.10 11.1 

0.3 64 2.06 14.6 

0.4 86 1.97 17.9 

0.5 107 1.58 25.7 

 

As it was explained above, the kinetics of the α-β phase transition in LNS was 

measured via cooling of the powder sample, which was preliminarily stabilized at the 

temperature exceeding a few degrees the α-β phase transition point. The cooling rate was 

controlled by the change of the laser power, which is given by the value of  (see Eq. 295 

and Eq. 296). It was noted in Chapter 3 that the cooling rate r is proportional to  only at 

the initial stage of the cooling process, and the overall process is exponential: 

 However, it was revealed that LNS has anomalously narrow thermal 

hysteresis (around 4 K) [10]; therefore, the onset of the phase transition occurs at the initial 

stage of cooling and we can assume that the cooling rate in our experiment is constant at 
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given . Note that under the cooling rate we understand here the rate, at which the 

temperature changes near the phase transition point. 

The time evolution of the normalized NMR intensity I (Eq. 345) at different values of 

 is presented in Fig. 35. One can see that for all cooling rates the experimental curves have 

a characteristic S-shape (so-called sigmoidal curve). As it was expected, the crystallization 

process is completed faster at higher cooling rates, i.e. crystallization curves become steeper 

when increasing . All curves were fitted by Eq. 345 with  given by KJMA relation 

(Eq. 348). Corresponding Avrami parameters were plotted against , and are presented in 

the insets of Fig. 35. Values of the Avrami parameters are also listed in Table 5. 

One can see that the rate constant k increases with the growth of  showing an 

Arrhenius behavior. Contrary, the Avrami exponent b decreases with temperature from the 

value 2.11 down to 1.58. This indicates that: 1) the phase transition occurs due to the 

diffusion-controlled growth of germs, since , and 2) when increasing the cooling 

rate, nucleation centers tend to appear simultaneously at the initial stage of cooling. 

Freiheit et al. [10] showed that the transformation of the LNS lattice under the α-β 

phase transition can be considered as a minor displacement of S6+ ions. Thereforeit was 

assumed that the transition occurs via diffusionless mechanism [10, 38], i.e. could be referred 

to martensitic transitions. However, very high mobility of the cationic sub-lattice (and of the 

oxygen sub-lattice as well) does not allow attributing this phase transition to the pure 

martensitic transformation. Moreover, small values of the Avrami exponent b indicate that the 

diffusion-controlled growth of germs takes place. It means that the limiting stage of the 

transition kinetics is related to the diffusion of the cations, but not to the transformation of the 

sulfur sub-lattice. 

4.1.9 Rearrangement of powder particles under cooling through the 

α-β phase transition 

The 7Li NMR spectrum of the LNS single crystal at 750 K with the c-axis oriented 

perpendicular to the magnetic field is presented in Fig. 36 (lower spectrum). As it was 

explained above, this spectrum is a result of averaging of the EFG tensors due to an exchange 

(i.e. jumps) between different Li sites. The distance between the satellites in the spectrum of 

the crystal depends on the orientation of the crystallographic axes with respect to the magnetic 

field. 
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The powder is an ensemble of crystallites randomly oriented in the space, and each 

crystallite in the powder will give its own spectrum. In the case of , the summation (or 

rather integration) over the orientations of all crystallites gives a powder pattern that has the 

form presented in Fig. 36 (upper spectrum), where the 7Li NMR spectrum of unannealed 

powder of LiNaSO4 recorded at 750 K is presented. 

In order to study the effect of rearrangement of powder particles we recorded spectra 

at 750 K. At this temperature, the motion of lithium ions is fast enough to suppress the dipolar 

broadening and the signal to noise ratio is much better. The quadrupolar coupling decreases 

almost to zero on heating up to 690K and increases again on further heating. At 750K, the 

quadrupolar coupling is quite high and allows abserving the individual lines in the case of 

single crystal. 

 
Fig. 36. 7Li NMR spectra of LiNaSO4 at 750 K recorded in single crystal 

and unannealed powder. 

Above 788 K, both 7Li and 23Na spectra of LNS powder contain only single line; this 

reflects its quasi-liquid structure. After subsequent cooling below the phase transition, the 7Li 

powder spectrum differs substantially from the usual  powder pattern presented in 

Fig. 36.  

After different cycling of heating and cooling through the phase transition, different 

patterns have been obtained. Figure 37a presents one of such patterns obtained after slow 

cooling (~20-50 K/min) from 800 K to 750 K. One can see that the 7Li powder spectrum in 

Fig. 37a consists of three lines, typical of the spectrum of the LNS single crystal at this 

temperature (Fig. 36) with the central, –1/2↔+1/2, and external, ±3/2↔±1/2, transitions. It 
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means that some new arrangement of crystallites takes place in the powder after cooling 

through the phase transition. 

Different spectral patterns have been obtained when repeating this experiment keeping 

the same conditions. However, all spectra observed after slow cooling are quite different from 

the usual  powder pattern, whereas after quenching to room temperature, the NMR 

spectrum of the reheated sample (Fig. 37b) is again similar to the  powder pattern, but 

with a complex shape. 

 
Fig. 37. (a)-(b): 7Li NMR spectra of the LiNaSO4 powder after slow (a) and fast (b) cooling. (c)-(d): 

Schematic representation of the LiNaSO4 crystallites’ arrangement after slow (c) and fast (d) cooling; 

dashed rectangles outline the “necks” between powder particles. (e)-(f): XRD powder patterns of the 

LiNaSO4 after slow (e) and fast (f) cooling. At each experiment, the cooling passes through the α-β 

phase transition. 
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The rearrangement of the crystallites in the LNS powder after slow cooling through 

the phase transition is confirmed also by the XRD data. The room-temperature XRD pattern 

of the LNS powder heated up to 823 K and subsequently cooled at ~1 K/min is presented in 

Fig. 37e. Figure 37f contains the XRD pattern of the same sample after quenching, that would 

rather correspond to a random distribution of the powder crystallites in the sample after fast 

cooling. 

Effect of the rearrangement of crystallites in the LNS powder was observed also in the 

annealed samples. Similar regularities were observed when cooling annealed samples through 

the phase transition. Thus, under slow cooling, the crystalline lattices of grains were tended to 

be oriented in the same direction, whereas fast cooling destroyed this type of ordering. 

 
Fig. 38. XRD patterns of LiNaSO4 powder at 753 K: (a) before annealing; (b) after annealing at 823 K 

and subsequent cooling with the cooling rate 2 K/min; (c) after annealing at 823 K and subsequent 

cooling with the cooling rate 100 K/min. 

Observed phenomenon can be explained quite easy. Remembering that any phase 

transition is a stochastic process and taking into account the existence of inevitable 

temperature gradients in the sample, one can confidently assert that the phase transition in 

some crystallites occurs earlier than in other ones. If the cooling rate is quite small, then 

emerging trigonal phase intergrowths into neighboring crystallites through the common 

borders. The powder particles, in which the phase transition occurs earlier, could be 
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considered as “macroscopic nucleation centers”, which determine the orientation of the 

crystallographic axes in other crystallites of the powder sample. 

To provide the intergrowth of the trigonal phase into neighboring crystallites, a set of 

conditions have to be fulfilled. 

1) The crystallites must have necks between its neighbors, i.e. rigid coupling between 

powder particles has to exist. 

2) The borders between crystallites must be “transparent” for the moving cations, 

since the kinetics of the phase transition was found to be determined by the diffusion. 

3) Mechanical stresses have to exist on the borders, because the structural 

interrelationship between crystalline lattices of α- and β-modifications should be destroyed. 

Let us show that all of these conditions are satisfied. 

Generally, real necks emerge between neighboring powder particles under sintering. It 

is interesting to note the effect of the rearrangement of crystallites in the LNS powder we 

originally observed in the annealed samples, and only later, the same effect was reproduced in 

the unannealed LNS powders. Since the diffusion rate in α-LNS is very high (), the processes 

of sintering should occur very quickly; therefore, common necks, which are formed at the 

initial stage of sintering [166, 167], could appear almost immediately after the heating above 

the phase transition. Thus, the first condition, i.e. the existence of the necks, is fulfilled. 

In the diffusion experiment, we varied the diffusion time Δ to determine the effect of 

the borders on the value of the self-diffusion coefficient; however, evidence of restricted 

diffusion was not revealed neither in the β-LNS, nor, what is more important, in the α-LNS. 

This result indicates that (at least) in α-LNS diffusing cations “do not feel” the crystalline 

borders and can easily cross them getting into neighboring powder particles. Apparently, such 

transparency of borders enables the trigonal phase to germinate from a given crystallite to the 

neighboring ones. Thus, the second condition is also satisfied. 

It has been already shown that the α-β phase transition in the LNS is ferroelastic in its 

nature [38], i.e. the sulfur sub-lattice of the α-LNS is very malleable near the phase transition, 

and could be easily deformed under the influence of external mechanical forces [168]. It also 

means that sulfur ions can move quite far during the phase transition, and they apparently do 

this, if there are external forces acting on the crystal. Such plasticity may cause the violation 

of the structural relationship between α- and β-phases. It was shown by Freiheit et al. [10] that 

a significant shrinkage of the crystalline lattice occurs under the phase transition (the volume 

of the unit cell is decreased at ~6% under the transformation of the lattice from cubic to 

trigonal). (Note that the term “shrinkage” is related here to the decrease of the interatomic 
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distances under the phase transition, but not to the shrinkage of the powder sample after 

sintering.) Due to the presence of the common borders, the phase transition occurring inside 

of one of the neighboring crystallites may lead to the emergence of mechanical stresses on 

these borders, i.e. the clamping of the crystalline lattice could take place. Such clamping may 

act as the external force required to the destruction of structural interrelationship between 

crystalline lattices of α- and β-modifications. Thus, the third condition is also satisfied. 

In summary, we would suggest the following mechanism for the discussed 

phenomenon. Let some crystallite of the LNS powder undergo the structural α-β phase 

transition. This transformation changes not only the volume structure of the crystallite, but 

also the structure of its boundary. Since this border is common for at least two powder 

particles, its crystallization corresponds to the creation of a germ of the β-phase for the 

neighboring crystallite. This germ governs the phase transition, providing the direction of the 

crystallographic axes of the β-modification. Thus, the trigonal phase expands into the volume 

of the powder sample, using necks (borders) between distinct powder crystallites as channels 

of growth. The most important thing here is that the orientation of the crystallographic axes in 

all powder crystallites is determined by the orientation of the lattice in the first powder 

particle, which could be considered as a macroscopic germ. 

It should be noted that crystallites tend to orient their lattices in the same manner only 

at small cooling rate r. It could be explained by assuming that the nucleation rate is very low 

at small r, whereas the growth rate is very high. In other words, few (or even only one) germs 

are assumed to appear in the sample during the overall phase transition process at small r, and 

these germs grow quickly into the remaining volume. On the other hand, we revealed that the 

Avrami exponent b is decreased when increasing the cooling rate (see inset in Fig. 35). This 

indicates that the nucleation rate is very high at “fast cooling” (b tends to 3/2), and big amount 

of germs appears in the sample at the same time. As a result, formation of the trigonal phase 

occurs simultaneously over the entire volume of the sample, and powder particles change its 

crystalline structure from cubic to trigonal independently of the others. In fact, one can see 

from Fig. 37b that the NMR spectrum of the powder sample after queching resembles the spin 

 powder pattern with an incomplete averaging over different orientations of the 

crystallites. 
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Going to other sulfates… 

Before going to other representatives of double alkali sulfates it should be noted that 

we did not have a possibility (because of limitations in time) to pay as much attention to these 

compounds as to lithium sodium sulfate. However, it is very important to compare different 

members of LiMSO4 family in order to find common features and distinguish their individual 

characteristics. Thus, it is interesting to follow the dependence of Li mobility on the size of 

the second cation. Moreover, crystalline structures in different phases of given compouns 

should be compared to give more reasonable justification for joining these sulfates into the 

same family. Without this comparison, the whole picture will not be complete. 

First, we consider Li dynamics of each compound, and then we make comparative 

description of the whole family. 
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4.2 Structure and dynamics of lithium-potassium sulfate 

4.2.1 Structure of LiKSO4 

Lithium potassium sulfate, LiKSO4 (LKS), has been investigated in detail for over 

more than a century [47, 48], and a large variety of physical phenomena have been found in 

its different crystalline phases (pyroelectricity, ferroelectricity, ferroelasticity, fast-ionic 

conductivity, and structure modulation). LKS undergoes over ten phase transitions in the 20-

1000 K temperature range. At least two phase transitions take place in LKS above room 

temperature: at 708 K and 943 K. The complexity and richness of its phase diagram is unusual 

for an inorganic crystal with such a simple chemical formula. 

 
Fig. 39. Structure of LiKSO4 at room temperature (P63, ) projected on the basal plane (on the 

left) and perpendicular to it (on the right). 

Only the structures of two phases are now well established: the high-temperature 

phase (phase I, T > 943 K) and the room temperature phase (phase III, 203 K < T < 708 K). 

Crystal structure refinements at room temperature have been carried out by Karppinen et al. 

[169] and Bhakay-Tamhane et al. [170] for a twinned crystal. It was shown that at ambient 

temperature LKS belongs to the space group P63 with two formula units per unit cell (Fig. 

39). The SO4 and LiO4 tetrahedra form an ordered three-dimensional framework structure 

characterized by six-membered rings of three LiO4 and SO4 tetrahedra. The apices of the three 

LiO4 tetrahedra point in the opposite direction to those of the three SO4 tetrahedra [171]. The 

K+ ions occupy positions on the hexagonal c-axis and are coordinated by nine oxygens. The 

structure is very compact in the basal plane (the Li+ ions are tightly closed into a tetrahedral 
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cage of oxygen) if compared with the perpendicular direction. In fact, SO4 librations around 

axes parallel to c are submitted to restoring forces more important due to stronger chemical 

bonds in the basal plane with respect to the other directions [172]. 

The high-temperature phase (phase I) belongs to the space group P63/mmc with two 

formula units per unit cell [55, 173, 174]. The structure can be described as a hexagonal close 

packing of sulfate tetrahedra, with the K+ ions occupying the octahedral sites (every K+ ion is 

surrounded by six sulfate ions) and the Li+ ions occupying the tetrahedral sites (Fig. 40). This 

produces a framework of corner-shared LiO4 and SO4 tetrahedra with K+ filling the cavities 

within the framework. The K+ ion displays a tricapped trigonal prism coordination with 

respect to oxygen atoms. It should be noted that the symmetry elements of the P63/mmc 

group, absent in the P63 group, are due to the orientational disorder of the sulfate groups and, 

moreover, that in this structure two equivalent positions are available for each lithium ion, a 

necessary condition for a good ionic conductivity. 

 
Fig. 40. Structure of LiKSO4 above 943 K (P63/mmc, ) projected on the basal plane (on the left) 

and perpendicular to it (on the right). 

The structure of the intermediate phase (phase II, 708 < T < 943) is more 

controversial: some authors proposed the existence of a fourfould superstructure ( ) 

above 708 K with symmetry P63 and a possible modulated incommensurate phase between 

743 and 943 K [173], while others stated that the experimental results could be interpreted 

assuming a model of twinned orthorhombic domains with symmetry Pmcn and  [175]. 

Using X-ray powder diffraction Pietraszko [174] confirmed the symmetry Pmcn in the 

temperature range 743–935 K (phase II), as well as the hexagonal symmetry P63/mmc of the 

phase I. Scherf et al. [176] using polarization microscopy on thin LKS single-crystal plates, 
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studied the domain structure growth during the  transition and confirmed the 

orthorhombic character of the phase II. According to the structural studies carried out by 

Pinheiro et al. [177] phase II consists of three types of orthorhombic twinned domains with 

Pmcn symmetry oriented at 120° to each other. 

4.2.2 Experimental details 

The procedure of the preparation of the LKS powder was analogous to the preparation 

of the LiNaSO4 samples (see section 4.1.2). Namely, LKS powder was obtained by grinding 

of the LKS single crystals grown by a slow evaporation technique using equimolar solution of 

K2SO4 and Li2SO4·H2O as precursors. NMR measurements have been carried out using a 

static NMR probe designed by the Bruker company and modified in CEMHTI, Orléans. Spin-

lattice relaxation measurements have been carried out via saturation-recovery pulse sequence. 

Data on the spin-lattice relaxation in the rotating frame have been obtained using a standard 

spin-locking technique (see section 1.2.). The 90°-pulse for 7Li magnetization had the 

duration, corresponding to a RF field strength of 17.8 kHz. The strength of the locking field 

was 41.5 kHz. LiCl molar solution was used as reference for the 7Li chemical shift scale. 

4.2.3 Lithium mobility in LiKSO4 

 
Fig. 41. (a) Temperature dependence of  7Li NMR powder spectrum in LiKSO4. (b) Temperature 

evolution of a central transition width. Dashed line indicates the onset temperature of a motional 

narrowing. Vertical dash-dotted line indicates a boundary of the III phase. 
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Despite of a vast bibliography on LKS [178], only several papers were devoted to the 

ionic mobility in this compound [6, 51, 179]. The most extensive study on lithium 

conductivity was carried out by Pimenta et al. [6, 172] Authors stated that a rotation of a 

sulfate group around an axis in the basal plane permits a Li+ ion to reach position, which is 

normally forbidden, since lithium ions are closed into a tetrahedral cage formed by oxygen, 

each one belonging to a different sulfate group. To minimize the energy in this new local 

configuration associated with the displacement, the other three sulfate groups linked to this 

particular lithium ion will rotate and, consequently, provoke the displacement of the other 

lithium ions out of their sites, and so on. The lithium-ion mobility is, therefore, coupled with 

the rotation movements of the sulfate groups by a “paddle-wheel” mechanism similar to 

LiNaSO4. 

It was shown [6] that below 653 K and above 708 K the ionic conductivity of the LKS 

single crystal (along the c-axis) obeyed an Arrhenius law with activation energies 1.8 and 

1.65 eV in phases III and II, respectively. Between 653 and 708 K, the slope of the 

experimental curve (in the logarithmic scale) was not constant and increased steadily up to 

transition temperature. This result was attributed to the decrease of the activation energy in 

this temperature range. The decrease in energy, in turn, was considered as a consequence of 

the increasing disorder of sulfate ions below the phase transition. Above 708 K, the value of 

the conductivity (~0.1 Ohm-1cm-1) was found to be only one order of magnitude inferior to the 

accepted hallmarks of superionic phases [6]. At the  phase transition, the 

conductivity increased suddenly by a factor of 20, whereas the jump of the ionic conductivity 

at the  transition (943 K) is markedly smaller. It was shown that the phase transition at 

943 K is also preceded by a decrease of the activation energy due to an additional increase of 

the orientational disorder [6]. 

In present research, we studied lithium mobility in LKS by means of NMR. Below 

708 K, the line width analysis was applied to find the activation energy of Li+ jumps, whereas 

above the phase transition (i.e. in phase II),  and  measurements were carried out to 

understand ionic motion. 
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Fig. 42. Temperature dependences of  (open circles) and  (filled circles) relaxation rates. 

Dash-dotted lines correspond to Arrhenius fits to the experimental data. Blackout regions indicate 

temperature ranges, where the coexistence of the two phases was observed. Vertical dashed lines 

indicate the boundaries of the II phase. 

Temperature dependence of a 7Li NMR powder spectrum of LKS is presented in 

Fig. 41a. To obtain the values of the central transition widths, each spectrum was fitted with 

DMfit software [124]. Corresponding temperature evolution of the central transition width is 

presented in Fig. 41b. Due to the phase transition, which occurs at 708 K, an abrupt jump of 

the ionic mobility accompanied by a sudden decrease of the line width takes place at this 

temperature. Therefore, the full  curve is not available and to evaluate an activation 

energy of Li+ jumps an empirical relation of Waugh and Fedin [125] should be used. Using 

the value of the onset temperature of , we obtain . Similar to 

LiNaSO4, a considerable discrepancy takes place between the NMR (Waugh-Fedin) value of 

the activation energy and the value obtained from d.c. conductivity measurements, 1.80 eV 

[6]. It should be noted that obtained discrepancy is not such big as in the case of LiNaSO4; 

however, the same explanation, namely, the existence of potential barriers of various heights 

could be applied. On the other hand, one should remember that the Waugh-Fedin approach is 

a quite rough estimation. This can also explain the mentioned difference. 
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Figure 42 contains the temperature dependences of two different relaxation rates:  

and . Blackout regions indicate temperature ranges, where the coexistence of the two 

phases was observed. One can see that in the  range one cannot obtain the 

whole curves of the relaxation rates, and only a “low-temperature shoulder” of the  curve 

and a “high-temperature shoulder” of the  dependence can be measured. It was revealed, 

that both temperature dependences obey the Arrhenius law and the values of the activation 

energies were found to be  and . This discrepancy indicates that 

there exists a distribution of correlation times describing the mobility of Li+ ions. The 

stretching parameter, , in turn, was found to be quite far from unity, , 

indicating a considerable deviation of the correlation function from the exponent (see section 

1.2.). 
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4.3 Structure and dynamics of lithium-rubidium sulfate 

4.3.1 Structure of LiRbSO4 

 
Fig. 43. Structure of LiRbSO4 at room temperature (phase V, P1121/n, ) projected on different 

planes. 

 
Fig. 44. Structure of LiRbSO4 above 477 K (phase I, Pmcn, ) projected on different planes. 

LiRbSO4, lithium rubidium sulfate (hereinafter LRS), undergoes successive structural 

phase transitions at temperatures between 439 and 477 K: paraelectric (phase I)( ) 
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→ incommensurate (phase II) ( ) → ferroelastic (phase III) ( ) → 

ferroelectric (phase IV) ( ) → paraelectric (phase V) [14]. At all temperatures, 

LRS has a framework structure make up of alternating LiO4 and SO4 tetrahedra forming six-

membered rings, inside which Rb+ cations are located [15]. The phase transition is 

approximately described as arising from changes of the orientations of tetrahedral SO4-

groups. 

LRS belongs to the monoclinic point group (P1121/n , ) at room temperature 

(phase V) and is orthorhombic (Pmcn, ) above 477 K (phase I). Phases 

IV ( ) and III ( ) are known to be monoclinic (respectively P11n, 

 and P21/c11, ) and phase II exhibits incommensurate modulations [15, 16]. The 

melting point is around  [17]. Even in the monoclinic phases, the distortion of the 

lattice from the orthorhombic structure is small since the monoclinic angles are very close to 

90° [16]. Moreover, the  ratio of the lattice parameters is about 1.73 in all phases, i.e. the 

Bravais lattice is almost hexagonal. Therefore, LRS has been described by some authors as a 

pseudo-hexagonal network of six-membered rings of SO4 and LiO4 tetrahedra [15] (Fig. 43). 

High-temperature orthorhombic phase is also referred to as disordered phase since SO4 

ions occupy with an equal probability two positions related by the mirror of the Pmcn 

structure [15, 180]. Two configurations of the SO4 tetrahedron can be reached by ±16.8° 

rotation from the mirror plane about an axis nearly oriented to the c-axis (Fig. 44). Farhi and 

Coudin [181] showed that from the Raman point of view the LRS crystal behaves as if it was 

orthorhombic above 439 K. Nevertheless, a monoclinic ordering exists in the temperature 

range  and it is expressed through residual Raman lines. The microscopic 

nature of this ordering was related to the rotation of the SO4 tetrahedra about the c-axis. 

4.3.2 Experimental details 

LRS powder was obtained by grinding of the LRS single crystals grown by a slow 

evaporation technique using equimolar solution of Rb2SO4 and Li2SO4·H2O as precursors. 

Details of the NMR measurements are identical to LiKSO4 study. 

4.3.3 Lithium mobility in LiRbSO4 

Until nowadays, Li+ mobility in LRS has not been considered at all, since its high-

temperature phase has very low ionic conductivity. It should be noted that phase transitions 

2 475KtrT = 3 458KtrT =

4 439KtrT =

4Z =

4Z =

439 458T< < 458 475T< <

20Z = 8Z =

1010KmT =

b a

439 477 KT< <
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considered above are not accompanied by an increase of the ionic mobility, whereas a 

dynamical disorder of a lithium sub-lattice, seemingly, takes place only above ~600 K. 

 
Fig. 45. (a) 7Li NMR spin-lattice relaxation rates of LiRbSO4 in both the laboratory (open circles) and 

the rotating (filled circles) frame of reference. (b) Central transition width of the 7Li NMR powder 
spectra of LiRbSO4 as a function of temperature. Both types of experimental data were fitted with the 

BPP model, , (black dash-dotted line) as well as with the model assuming a distribution of 
correlation times, , (red solid line). Vertical dash-dotted lines in figure (b) indicate the phase 
transition temperatures; whereas the vertical dashed line indicates the onset temperature of the line 

narrowing. 

1β =

1β <
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To understand the motion of Li+ ions in LRS, we have carried out high-temperature 

NMR measurements. Activation energy and correlation times of Li+ jumps were determined 

by means of line width analysis and relaxation measurements. 

Figure 45a contains the temperature dependences of two different relaxation rates: 

 and . Temperature evolution of the spin-lattice relaxation rate in the rotating frame,  

, was obtained between 640 and 960 K, whereas  dependence was measured only 

above 810 K. Below 810 K, relaxation time constant  was found to exceed one minute that 

makes the corresponding measurements to be time-consuming. One can see that  has an 

Arrhenius behavior in the temperature range under consideration. An activation energy was 

found to be . 

It is clearly seen from Fig. 45a that the  logarithmic plot is asymmetric. The BPP 

model is thus and to fit the experimental data, we used a spectral density function given by 

Eq. 166. (It was shown in section 1.2.9 that this approach is equivalent to the Cole-Davidson 

model.) Red solid line in Fig. 45a corresponds to the best fit obtained. The activation energy 

was found to be , whereas the parameter β was found to deviate 

significantly from unity: . Such stretching parameter gives the following value for 

the slope of the low-temperature shoulder of the  curve: . This value 

exceeds slightly the activation energy found from the  slope; however, this can be 

explained by the assumption that the distribution of correlation times varies with temperature. 

Temperature evolution of the central transition line width of the 7Li NMR powder 

spectra is presented in Fig. 45b. Experimental data were fitted with the BPP model (dash-

dotted curve) as well as with the model assuming a distribution of correlation times (solid 

line). In the second case, the parameter β was fixed to be 0.56, as it was found from relaxation 

measurements. It is interesting to note that both models (BPP and Cole-Davidson) give a 

satisfactory fit and, moreover, give the same value of the activation energy for Li+ jumps: 

. The only minor difference is in preexponential factors: 

 and . Finally, it should be noted that the 

onset temperature of a motional narrowing was rather low, , and gives rather low 

value of the activation energy: . This indicates that the Waugh-Fedin relation 

[125] can involve large error, particularly, in case of distribution of correlation times. 
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4.4 Structure and dynamics of lithium-cesium sulfate 

4.4.1 Structure of LiCsSO4 

At ambient temperature, LiCsSO4 (CLS) has an orthorhombic structure (space group 

Pmcn) with four molecular units per unit cell [18, 19]. Figure 46 shows the projections of the 

atomic positions in the Pmcn phase on two different planes. The four Li and Cs atoms in a 

unit cell are crystallographically equivalent. The oxygen coordination around each Cs is 11-

fold, and the Li+ ion has a tetrahedral coordination. Each SO4 tetrahedron in the network of 

CLS is surrounded by four LiO4 tetrahedra via common corners and vice versa. The 

framework contains channels, in which the Cs+ cations are incorporated. The alternating LiO4 

and SO4 tetrahedra are positioned on mirror planes perpendicular to [010]. In the actual 

structure, the SO4 groups are disordered between two orientations symmetric with respect to 

the mirror plane. 

Below room temperature, LCS undergoes a phase transition at about 202 K to a 

ferroelastic phase with monoclinic structure (space group P21/n) without undergoing a change 

in the number of atoms in the unit cell. Above room temperature, only one phase transition 

was found to be at 1013 K from electrical conductivity measurements [182]. 

 
Fig. 46. Structure of LiCsSO4 at room temperature projected on different planes. 
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4.4.2 Experimental details 

LRS powder was obtained by grinding of the LCS single crystals grown by a slow 

evaporation technique using equimolar solution of Cs2SO4 and Li2SO4·H2O as precursors. For 

other experimental details see sections 4.1.2 and 4.2.2. 

4.4.3 Lithium mobility in LiCsSO4 

Similar to LiRbSO4, the ionic conductivity of LCS is rather low; therefore, there is a 

lack of bibliography concerning the lithium mobility in this compound. To understand the 

ionic motion, we have carried out the measurements of spin lattice relaxation rate in the 

rotating frame, , in the 750-1000 K temperature range. Along with relaxation study, the 

line width analysis has been also carried out in the 500-1000 K range. 

 
Fig. 47. (a) 7Li NMR spin-lattice relaxation rate of LiCsSO4 in the rotating frame of reference. (b) 

Central transition width of the 7Li NMR powder spectra of LiCsSO4 as a function of temperature. 

Vertical dashed line indicates the onset temperature of the line narrowing. 

Temperature evolution of  is shown in Fig. 47a. One can see that the logarithmic 

plot of  is symmetric; therefore, we have applied the BPP model to fit experimental data 

(solid line in Fig. 47a). An activation energy of Li+ jumps was found to be 1.96 eV. However, 

the data on the 7Li central transition width (Fig. 47b) deviate significantly from the relaxation 

data. In fact, the best fit to the temperature dependence of the 7Li line width (dash-dotted line 

in Fig. 47b) gives the value of the activation energy of 1.07 eV, whereas keeping 

, we obtain unsatisfactory fit (red solid line in Fig. 47b). The Waugh-Fedin 

11 ρT
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11 ρT
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approach [125] with Li 650KcT =  again gives underestimated value: . The 

obtained discrepancy is very strange and has not been observed for compounds considered 

above. For the present, we cannot find a reasonable explanation of this fact. 
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4.5 Discussion: comparison of transport properties in 

alkali sulfates 

Temperature dependences of the ionic conductivity of three related superionic 

conductors are presented in Fig. 48. One can see that conductivities of Li2SO4 and LiKSO4 

have almost the same activation energies below 850 K: 1.7 eVaE ≈ . LiNaSO4, in turn, 

exhibits much higher potential barrier; nevertheless, due to the phase transition at 788 K, an 

absolute value of the LiNaSO4 ionic conductivity is the highest among other sulfates in the 

788-888 temperature range. It should be noted, however, that despite of the same slope of 

experimental curves, lithium sulfate and lithium potassium sulfate exhibit different 

temperature behavior near the phase transition point. In fact, Li2SO4 exhibits the sharp phase 

transition, and the temperature dependence of the conductivity is not deviated considerably 

from the straight line on a “log” plot. Contrary, LiKSO4 exhibits considerable “non-linearity” 

(deviation from the Arrhenius law), which was assumed to be the consequence of the decrease 

of the activation energy when heating above 870 K [6]. 

 
Fig. 48. Temperature dependences of the ionic conductivity in different sulfate superionic conductors 

[5, 6]. Values of the activation energy, Ea, are shown near the corresponding data. 

One can see from Fig. 48 that similar to Li2SO4 lithium sodium sulfate exhibits quite 

sharp phase transition; moreover, both Li2SO4 and LiNaSO4 have almost the same absolute 

values of the conductivity in the high-temperature phase. Obviously, concentration of Li+ ions 

in lithium sulfate exceeds approximately twice the concentration of these ions in lithium 
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sodium sulfate; therefore, one should assume that 1) both Li+ and Na+ ions transfer the charge 

in LiNaSO4 above the phase transition, and 2) the diffusivity of Na+ is not less than the 

diffusivity of Li+. 

As we have mentioned above that this really takes place in α-LiNaSO4 (Fig. 28) due to 

the paddle-wheel mechanism of the ionic motion. It was also shown above that Na starts to 

move well below the phase transition; however, its diffusivity in β-LiNaSO4 is much lower 

than the diffusivity of Li (Fig. 23). This can be used to explain an abrupt increase of the 

LiNaSO4 ionic conductivity after the phase transition. In fact, a contribution of Na+ motion 

into ionic conductivity below the phase transition is comparatively small, and the charge 

transfer is governed mainly by Li motion. Just above the phase transition, the diffusivity of Na 

is abruptly increased due to the onset of SO4 reorientations giving rise to the sharp increase of 

the net conductivity. 

 
Fig. 49. Temperature dependences of relative NMR line width, 0δω δω , in four alkali sulfates. 

It is interesting to follow the influence of the M+ cation size on Li mobility in LiMSO4 

compounds. First, it should be noted that the two-step motional narrowing occurs only in 

LiNaSO4, whereas in other compounds such behavior of the NMR line width has not been 

observed. This indicates that cations of a big radius (bigger than Na+) cannot diffuse in a 

crystal and form a second “skeleton” sub-lattice in addition to sulfur ions. 

It is reasonable to assume that the size of cations forming immobile sub-lattice should 

influence the mobility of lithium. In fact, one can see from Fig. 49 that the onset temperature 
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of Li motion in LiNaSO4 (blue dashed line) is much lower than in other sulfates. Thereby, the 

increase of the radius of the second cation hinders Li mobility. However, the onset 

temperature of Li mobility in alkali sulfates with big cations (K+, Rb+, and Cs+) is almost the 

same (red dased line in Fig. 49). In other words, the hindering is most effective when going 

from Na+ to K+, whereas the further increase of the cation’s radius does not give any 

significant effect on the onset temperature. Using an approach of Waugh and Fedin (WF) 

[125] we found an activation energy of Li jumps to be approximately 0.63 and 1.05 eV in 

LiNaSO4 and in other compounds, respectively. 

 

Table 6. Activation energies of Li jumps in double alkali sulfates 

determined by different techniques: Waugh-Fedin astimation, 
WF
aE ; ( )δω T  curve fitting, δω

aE ; 1T  measurements, 1
a
TE ; 1ρT  

measurements, 1ρ
a
TE . 

Sulfate WF
aE , eV δω

aE , eV 1
a
TE , eV 1ρ

a
TE , eV 

LiNaSO4 

(β-phase) 
0.63 0.71 0.71 - 

LiKSO4 

(phase II) 
1.05 - 0.79 1.89 

LiRbSO4 

(phase I) 
1.05 2.05 0.82 2.05 

LiCsSO4 1.05 1.07 - 1.96 

 

It should be noted that the WF estimation is quite rough and other techniques can give 

different values of the potential barrier. In Table 6, we listed values of activation energy for Li 

jumps determined by four different methods. One can see that values obtained for LiNaSO4 

are in a quite good agreement, whereas for other compounds obtained results are 

contradictory. Thus, LiRbSO4 exhibits the highest discrepancy between the WF approach and 

the full ( )δω T  curve fitting. Probably, this discrepancy is caused by the distribution of 

correlation times observed in LiRbSO4. Non-exponential relaxation (i.e. the distribution of τc) 

was also assumed to exist in LiKSO4; however, it’s impossible to compare WF
aE  and δω

aE  for 

this compound, since the full ( )δω T  is not available due to the phase transition occurring at 
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708 K. In contrast, WF
aE  was found to be almost equal to δω

aE  in LiCsSO4, where relaxation 

was found to be exponential. 

It is interesting to note that both LiKSO4 and LiRbSO4 have rich phase diagrams along 

with non-exponentiality of Li relaxation. In contrast, in LiNaSO4 and LiCsSO4, where the 

non-exponentiality has not been observed, only one phase transition occurs above room 

temperature. Probably, these facts are somehow interrelated. 

Other feature, which has to be noted here, is that both Li2SO4 and LiNaSO4 have cubic 

structure in the high-temperature phase in contrast to other alkali sulfates under consideration. 

Thus, the α-phase of LiNaSO4 (T > 788 K) is body-centered cubic, whereas the phase I of 

LiKSO4 (T > 943 K) is hexagonal. This difference was reflected also by NMR measurements: 

while the 7Li NMR spectrum of a LiNaSO4 powder above 788 K contained only a single line 

indicating the cubic symmetry, the spectrum of LiKSO4 above 943 K represented a clearly 

observed  powder pattern. It is easy to show that the bcc lattice of the α-LiNaSO4 

cannot be obtained directly from the trigonal lattice of the β-phase. In other words, the 

transformation to the superionic phase is reconstructive in its nature, i.e. a group-sugroup 

relationship between the symmetry of the phases is absent. (The same is valid for Li2SO4.) 

Different nature of phase transitions in, e.g., LiNaSO4 and LiKSO4, should have some 

impacts. Thus, the effect of rearrangement of powder crystallites, which was revealed in 

LiNaSO4 when cooling through the phase transition, has not been observed in LiKSO4. It does 

not seem to be possible to explain in detail this discrepancy at current stage of study; 

however, we believe that this is a consequence of the different nature of phase transitions in 

these two compounds. 

The symmetry of the high-temperature phase should affect also the symmetry of 

reorientational motion of sulfate groups. Thus, in α-LiNaSO4 (bcc lattice) oxygens were found 

to be distributed in an octahedrally distorted spherical shell with six preferential sites around 

each sulfur atoms [35], i.e. SO4 rotational motion was found to be almost isotropic. Quasi-

rotations of sulfates in LiKSO4 (phase I, hexagonal lattice), in turn, were found to occur along 

the c-axis, i.e. in the basal plane [172]. Nevertheless, both compounds exhibit strong 

correlations between rotational jumps of SO4 groups and translational motion of cations, i.e. 

the paddle-wheel mechanism takes place. 

Dynamical disorder of sulfate groups was found to exist in both LiNaSO4 and LiKSO4 

even below the superionic phase transition. It was noted by Pimenta et al. [6] that in LiKSO4 

paddle-wheel coupling still takes place in the phase II. Thus, it was assumed that this coupling 

3 2I =
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leads to the decrease of the activation energy of the conductivity, which results in the 

deviation of ( )σ T  from the Arrhenius law. In contrast, Zhang et al. [13] revealed that sulfate 

reorientations have only weak effect on the behavior of the Li+ ions in β-LiNaSO4, i.e. there is 

no strong coupling between the cationic diffusion and the SO4 reorientational jumps in the β-

phase. This is confimed also by conductivity measurements in lithium sodium sulfate, where 

the deviation from the Arrhenius law has not been observed. 

It is reasonable to assume that reorientational jumps of SO4 groups occur also in two 

other compounds (LiRbSO4 and LiCsSO4) at elevated temperatures. However, a detailed 

study of this problem has not been yet carried out. 
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Main conclusions and perspectives 

A short review of an accomplished work 

The main goal of the present research was a detailed study of ionic transfer in double 

sulfates belonging to the LiMSO4 family, where M = Na, K, Rb, Cs. The most attention has 

been paid to LiNaSO4 as to the most interesting (in terms of the ion dynamics) compound 

among other double sulfates. The interest to LiNaSO4 is, first, due to the highest (among other 

members of the LiMSO4 family under consideration) ionic conductivity in the 600-850 K 

temperature range. Albeit the conductivity of LiKSO4 exceeds the highest value of σ in 

LiNaSO4 above 850 K (Fig. 2), these temperatures are too high for the most possible 

applications, particularly, for batteries. We also had shown that single crystals of lithium 

sodium sulfate are the most unpretentious to the growing conditions. In fact, crystals with 

well-defined habit and good optical properties were obtained under different temperatures, pH 

levels, and rates of evaporation. Other compounds, in turn, had some disadvantages, e.g., 

LiKSO4 was found to form almost spherical (albeit faceted) crystals under elevated 

evaporation rates. 

It was shown by the present study as well as by some previous works that ions of the 

two types (Li+ and Na+) transfer the charge in LiNaSO4. This leads to interesting effects, such 

as the existence of two minima in the temperature evolution of the spin-lattice relaxation time 

at low magnetic field. We also observed a two-step motional narrowing, which has not been 

previously observed and which was found to be caused also by simultaneous diffusion of two 

spin (cationic) sub-lattices. It should be noted that these phenomenona are clearly observed 

experimentally because of a considerable difference between characteristic times of Li and Na 

motions. In fact, due to significant difference, a contribution of the slowest motion (Na in the 

present case) is visible only at elevated temperatures, whereas motion with the shortest τc can 

be probed at lower temperatures. Moreover, inequality Li Na
c cτ τ<<  allows applying quite 

simple mathematical models for the analysis of experimental data.  

For the first time, we have carried out PGF NMR measurements of 7Li and 23Na self-

diffusion coefficients in LiNaSO4: lithium diffusion was measured in the 720-860 K range, 

whereas the self-diffusion coefficient of sodium was measured in the 790-860 K range. 

Diffusion coefficients of Li+ and Na+ ions at 823 K were found to be approximately the same 

and equal to 9 2 s10 mD −≈ . This is an excellent confirmation of the paddle-wheel 

mechanism, due to which the radii of cations are of little importance for their diffusion rates. 
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Unfortunately, attempts to study correlation effects comparing diffusion and conductivity 

measurements failed because of a large spread of experimental data on the ionic conductivity 

in LiNaSO4 and, as a consequence, inability to determine the Haven ratio. Nevertheless, both 

conductivity and diffusion activation energies were found to be in a good agreement. 

For the first time, we have measured the phase transition kinetics in LiNaSO4. The 

measurements have been carried non-isothermally, i.e. at non-zero cooling rate. In fact, the 

kinetics of the α-β phase transition was measured via cooling of the LiNaSO4 powder sample, 

which was preliminarily stabilized at the temperature exceeding a few degrees the phase 

transition point. Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation was found to be an 

appropriate model for the analysis of the time evolution of the appearing β-phase during the α-β 

phase transition. It was shown that the phase transition occurs due to the diffusion-controlled 

growth of germs, and the nucleation was found to be rapidly exhausted at high cooling rates. 

We also found that after slow cooling through the α-β phase transition, powder 

crystallites are not randomly oriented in space, but a new arrangement of crystallites takes 

place in the sample. This phenomenon was treated as the intergrowth of the trigonal phase 

through the common borders of powder crystallites. We assumed that the trigonal phase 

expands into the volume of the powder sample using necks (borders) between distinct powder 

crystallites as channels of growth. The most important thing here is that the orientation of the 

crystallographic axes in all powder crystallites was assumed to be determined by the 

orientation of the lattice in the first powder particle, which could be considered as a 

macroscopic germ. It has been also revealed that crystallites tend to orient their lattices in the 

same manner only at small cooling rate. This feature is in agreement with kinetics 

measurements and can be explained by the fact that the nucleation rate is very low at small 

cooling rates, whereas the growth rate, in turn, is very high. 

We have carried out an NMR study of the sulfate ion reorientations in the low-

temperature modification of LiNaSO4. The influence of the SO4 reorientational jumps on the 

quadrupolar interactions of 7Li nuclei was investigated by a jump reorientational model, 

which has not previously been applied to sulfates. The activation energy required for the SO4 

reorientations was found to be 0.19 eV. It was also revealed that the SO4 reorientational 

disorder should be associated with a small anomaly of a heat capacity at around 600 K, which 

was previously observed experimentally. 

High-temperature NMR study of LiKSO4 has been also carried out for the first time. 

This compound has two phase transitions above room temperature: at 708 K and 943 K. 

Below 708 K, the line width analysis has been applied to find an activation energy of Li+ 

176 



jumps, whereas above the phase transition (i.e. in phase II),  and  measurements have 

been carried out to understand ionic motion. It was found that  measurements give quite 

close values of activation energies for Li+ jumps in LiNaSO4 and LiKSO4: 0.7 (in β-phase) 

and 0.79 eV (in phase II), respectively. However, a considerable deviation of a correlation 

function from the exponent was revealed in LiKSO4. This non-exponentiality causes the 

difference between the slopes of relaxation data. In fact, the  slope (or rather the slope of 

its high-temperature shoulder) gives a value around 1.9 eV for the activation energy. 

Therefore, a comparison of potential barriers for Li+ jumps in LiNaSO4 and LiKSO4 found 

from the relaxation data is meaningless, whereas one should compare conductivity (or 

diffusion) data. Activation energies of the ionic conductivity were found to be 2.15 and 

1.65 eV for LiNaSO4 and LiKSO4, respectively. This indicates that below 788 K LiKSO4 

should be a better conductor (Fig. 2). 

Finally, we have carried out high-temperature NMR study with line width analysis and 

 measurements of two other compounds with larger ions: LiRbSO4 and LiCsSO4. Lithium 

mobility has been studied in these compounds for the first time. It was shown that the 

correlation function describing Li+ jumps in LiRbSO4 deviates significantly from exponent, 

whereas for LiCsSO4 such deviation has not been observed and BPP model was found to be 

applicable for 7Li relaxation data in LiCsSO4. 

Things to be proud of 

Attempts to understand behavior of LiNaSO4 in different experiments led to the 

development of a set of techniques, which could be useful, in perspective, for the NMR study 

of other solids. Thus, we have shown that an orientational disorder of sulfate groups affects 

significantly the quadrupolar interactions of 7Li nuclei. It provides an NMR probe to study 

reorientational jumps of SO4 groups. We applied the Negita’s model (reorientational jump 

model) to find the activation energy of the SO4 reorientational jumps and to reveal the onset 

temperature of quasi-rotations of sulfate groups. 

The proposed method is a “low-cost” technique, since it does not require 17O enriched 

sample and dispenses with time-consuming 33S NMR. Other advantage of the given method is 

the possibility to probe reorientational motions without NMR relaxation measurements. This 

is particularly relevant for LiNaSO4, since both 23Na and 7Li relaxation are almost insensitive 

to the dynamics of sulfate groups.  

1T 1ρT

1T

11 ρT

1ρT

177 



An expression for the dipolar correlation function characterizing the fluctuations of the 

Hamiltonian under uncorrelated diffusion of two cationic sub-lattices in a solid has been 

obtained. The corresponding formula, which could be used for fitting the two-step 

temperature dependencies of the NMR line width, has been deduced. The obtained function 

has been also extended to the case of correlation times distribution. The advantage of this 

approach is that even in the case of τc distribution the fitting function could be expressed in 

the analytical form. 

To measure the kinetics of the α-β phase transition in LiNaSO4, we developed a very 

easy technique, which is based on the difference of spin-lattice relaxation times in the two 

phases, but which does not involve the direct measurement of . The technique allows 

measuring time evolution of the volume of the appearing phase at controlled cooling rates. 

Applying the KJMA equation for fitting experimental curves, one can extract Avrami 

parameters – the principal quantities determining the crystallization mode and the type of 

nucleation. The main advantage of this method is that it can be used to study quite fast 

kinetics. 
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Appendix 

A.1 Temperature dependence of the quadrupolar splitting: 

the Bayer-Kushida theory 

If the asymmetry parameter, η (or rather ( )η t ) is close to zero, then the influence of 

lattice vibrations on the value of Qν  is determined by the change of the principal value of the 

EFG tensor, i.e. is governed by the function ( )QC t , where angular brackets denote a time 

averaging. The latter could be written in the following form [139]: 

 
2

23( ) ( ) 1 ( ) ,
2Q

e QC t q t t
h

 = −  
ϑ  (A.1) 

where the angle ( )tϑ  defines the bending motion of the EFG tensor around an axis 

perpendicular to the direction of q. Time dependence of q, in turn, is governed by the 

stretching normal modes involving a periodic change of ZZV . Angles ϑ and θ should not be 

confused: the former determines a periodic deviation of the principal axis of the EFG tensor 

from its equilibrium orientation due to vibrations, whereas the latter defines the orientation of 

the EFG tensor with respect to the external magnetic field. 

Taking into account that amplitudes of the vibrations are usually very small, one can 

put 1ϑ <<  (this assumption was used in Eq. (A.1)), whereas the Euler angle θ can take any 

value. 

H. Bayer [139] considered the evolution of the quadrupolar splitting under the bending 

motion of the EFG tensor assuming the principal value to be unchanged, i.e. 0( )q t q= . 

Assuming further that N normal modes contribute to this bending motion one can represent 

( )tϑ  as a superposition of these modes: 

 
1

( ) ,
N

i i
i

α ξt
=

ϑ = ∑  (A.2) 

where iξ  stands for the i-th normal coordinate. Taking into account that the mean square 

displacement of the quantum oscillator is [183] 

 2 coth ,
2 2

i
i

i kT
ωξ

ω
 =  
 


 (A.3) 

where iω  is a frequency of the i-th normal mode, we have 
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Assuming that we can use the following expansion: 

 31coth( ) ( ),
3
xx O x

x
= + +  (A.5) 

we obtain 

 ( )0( ) 1 ,Q QC t C a T b Tϑ ϑ= + +  (A.6) 

where 

 
2

1

2
2

2
1

3 , .
2 8

N N

i i

i
i

i

a b
k

αk
T

α
ωϑ ϑ

= =

= − = −∑ ∑
 (A.7) 

One can see from Eq. (A.7) that , 0a bϑ ϑ < ; moreover, it is easy to show that since 

12 13 11~ 0 s10ω −− , the ratio of fitting parameters is 3 5 2~ 10 10 Kb aϑ ϑ − . Thereby, Eq. (A.6) 

determines the negative temperature dependence of the quadrupolar coupling constant, which 

is linear at elevated temperatures, but deviates from the straight line when the temperature 

decreases. 

Weak negative temperature dependence of the quadrupolar splitting observed in a vast 

majority of solid substances is usually referred to as normal (Bayer’s type) temperature 

dependence. In this case, parameters ,a bϑ ϑ  are assumed to be temperature-independent. In 

reality, however, these parameters are functions of the volume [140] and, consequently, they 

can be expected to change in the constant pressure measurements accompanying by thermal 

expansion. This circumstance was first pointed by T. Kushida et al. [140]; therefore, the 

second term in the right side of Eq. (337) (see the main text) is sometimes referred to as 

Kushida’s term. 

Let us now assume that ( )QC t  is governed mainly by the stretching normal modes 

involving a periodic change of ZZV . Following Eq. (A.2), we can expand ( )q t  into a series 

with respect to normal coordinates iξ : 
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Taking into account that 0iξ =  we obtain 
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In contrast to Eq. (A.4), where coefficients 2
iα  are always positive, second derivatives 

2 2
iq ξ∂ ∂  could have any sign resulting in positive or negative temperature dependence of Qν  

(regardless of the influence of thermal expansion). It is easy to show that Eq. (A.9) governs 

the linear temperature dependence of the quadrupolar coupling constant at elevated 

temperatures, whereas at lower temperatures ( )q t  does not depend against T. 

An increase (or decrease) of ( )q t  leads also to an anomaly of the relaxation rate. In 

fact, the temperature dependence of the relaxation rate constant could be defined as follows 

[69, 184]: 

 [ ]1 2
1 )( 4 (2 ) ,)( () L LJT qK I Jωt ω− = +  (A.10) 

where )(J ω  is a spectral density function, Lω  is the Larmor frequency, and )(K I  is a 

coefficient depending on the spin quantum number. One can find using Eq. (A.8) that 
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2 2 1
0( ) coth ,

2 2i i
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q t q
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T
ω

=
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∑   (A.11) 

where 

 
22

2 .i
i iξ

qA
ξ

q ∂ ∂
= + ∂ ∂ 

 (A.12) 

It is obvious that if the second derivatives are positive, then Eq. (A.11) governs an increase of 

the relaxation rate above 2EΘ , where EΘ  is the Einstein temperature of a given solid. 
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Principales conclusions et perspectives 

L'objectif principal de ce travail a porté sur l’étude détaillée du transfert ionique dans 

les sulfates d’alcalins de la famille LiMSO4, où M = Na, K, Rb, Cs. La plus grande attention a 

été accordée à LiNaSO4, le composé le plus intéressant en termes de dynamique  ionique,  

avec une conductivité ionique très élevée entre 600 et 850 K. Bien que la conductivité de 

LiKSO4 dépasse encore la valeur la plus élevée de σ dans LiNaSO4-dessus de 850 K (Fig. 2), 

ces températures sont pour le moment trop élevées pour les applications potentielles, en 

particulier, pour les batteries mais ces systèmes sont toutefois intéressants pour mieux 

comprendre le type de mécanismes de transport impliqués dans les électrolytes solides.  

Nous avons également montré qu’il était très facile d’obtenir des monocristaux de 

sulfate de sodium et de lithium avec des conditions de croissance bien maitrisées, et 

reproductibles en fonction des conditions de température, pH, et des taux d'évaporation, alors 

que pour les autres composés comme pour LiKSO4, la croissance est plus délicate . 

En accord avec des travaux antérieurs nous avons confirmé que dans LiNaSO4 , les 

deux types de cations Li+ et Na+ transportent les charges. Cela conduit à des effets 

intéressants, tels que l'existence de deux minima dans l'évolution du T1 avec  la température à 

bas champs magnétiques. Nous avons également observé pour la première fois un 

rétrécissement de la raie RMN en deux étapes, qui a été expliqué par la diffusion simultanée 

de deux sous-réseaux cationiques. Il convient de noter que ces phénomènes sont clairement 

observés expérimentalement du fait de la différence importante entre les temps 

caractéristiques des mouvements de Li et Na. En fait, en raison de cette différence 

significative, une contribution du mouvement lent (Na dans le cas présent) est visible 

uniquement à des températures élevées, alors que le mouvement avec le τc plus court peut être 

sondé à des températures inférieures. En outre, cette différence Li Na
c cτ τ<<  permet d'appliquer 

des modèles mathématiques très simples pour l'analyse des données expérimentales. 

Nous avons effectué des mesures des coefficients d'autodiffusion de 7Li et 23Na, par 

RMN à gradients de champs  dans LiNaSO4 entre 720 et 860K. Les valeurs des coefficients de 

diffusion des ions Li+ et Na+ mesurées à 823 K sont quasiment identiques ( 9 2 s10 mD −≈  ). 

Ceci confirme le mécanisme d’engrenage proposé pour « libérer » la diffusion des cations, où 

la valeur du rayon des cations a peu d’influence sur leur vitesse de diffusion.   

Nous avons mesuré la cinétique de transition de phase α-β dans LiNaSO4. Les mesures 

ont été effectuées en conditions non-isothermes au cours du refroidissement de la poudre de 
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LiNaSO4 préalablement stabilisée quelques degrés au-dessus de la température de transition 

de phase. L’équation Kolmogorov-Johnson-Mehl-Avrami (KJMA) a été utilisée comme 

modèle approprié pour l'analyse au cours du  temps de l’apparition de la phase à la transition 

de phase α-β. Il a été montré que la transition de phase se produit par la croissance de germes 

par diffusion contrôlée  et que la nucléation s’arrête rapidement pour des vitesses de 

refroidissement élevées. 

Nous avons également constaté que nous ne retrouvions plus un spectre de poudre 

après un refroidissement « à travers » la transition de phase, du fait d’un nouvel agencement 

des cristallites. Nous avons supposé que ce phénomène était lié à une croissance de la phase 

rhomboédrique au travers des bords des cristallites de la poudre. La phase se développerait 

ainsi dans tout le volume de l'échantillon de poudre à partir des frontières entre les cristallites 

qui jouent ainsi le rôle de canaux de croissance.  

L'orientation des axes cristallographiques dans toutes les cristallites est déterminée par 

l'orientation initiale dans la première particule de poudre, que l’on peut alors considérer 

comme un germe macroscopique. Nous avons aussi observé qu’à faible vitesse de 

refroidissement, les cristallites ont tendance à orienter leurs réseaux de la même manière en 

accord avec les mesures cinétiques. Le taux de nucléation est très faible à faibles vitesses de 

refroidissement, tandis que le taux de croissance, lui, est très élevé. 

Nous avons mené en parallèle par RMN l’étude des réorientations des ions sulfate 

dans la phase basse température de LiNaSO4, en mesurant leur influence sur les interactions 

quadripolaires du 7Li à partir d’un modèle de sauts, qui n'a pas encore été appliquée à des 

sulfates. L'énergie d'activation nécessaire pour la réorientation de SO4 a été estimée à  0,19 

eV. Le désordre de réorientation des SO4
2- est associé à une très faible capacité thermique à 

600 K, ce qui a été précédemment observé expérimentalement. 

L’étude de  LiKSO4 par RMN haute température a été menée par l’étude de la largeur 

de raie au-dessous de 708K dans la phase I, pour déterminer l’énergie d’activation des sauts 

du Li+, et au-dessus dans la phase II, par des mesures de T1 et de T1ρ  pour comprendre la 

dynamique ionique. Des valeurs assez proches des énergies d’activation ont été obtenues pour 

les sauts du  lithium dans les deux systèmes LNS et LKS, de 0.7 dans la phase  β et de 0.79eV 

dans la phase II respectivement. L’énergie d’activation déduite de la pente de l’évolution de 

1/T1ρ , 1.89eV est à rapprocher des données de conductivité estimée à  2,15 et 1,65 eV pour 

LiNaSO4 et LiKSO4, respectivement. Ce qui  indique qu’au-dessous de 788 K LiKSO4 serait  

un meilleur conducteur (Fig. 2).Enfin, nous étudié la mobilité dans les systèmes LiRbSO4 et 

LiCsSO4, en augmentant la taille du deuxième cation. Nous avons montré que la fonction de 
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corrélation décrivant les sauts du Li+ n’est pas une simple exponentielle dans LiRbSO4 alors 

qu’une telle déviation n’a pas été observée dans LiCsSO4 et les données de relaxation ont été 

facilement modélisable par un simple modèle BPP. 

Things to be proud of... 

Afin de mieux comprendre la dynamique ionique dans les sulfates d’alcalins et plus 

particulièrement dans  LiNaSO4, nous avons pu exploiter l’évolution en température de 

différents paramètres RMN « sensibles » à la dynamique et développer un ensemble de 

modèles adaptés pour rendre compte des évolutions observées.  Nous avons montré qu'un 

désordre d'orientation des groupements sulfates affectait de manière significative les 

interactions quadripolaires des noyaux 7Li et pu ainsi exploiter cet effet pour sonder les sauts 

réorientationnels des groupes SO4
2-, en déterminer l'énergie d'activation ainsi que la 

température d’apparition. La méthode proposée est une technique "à faible coût", car elle 

permet d’éviter l’enrichissement en 17O de l’échantillon ou des expériences très longues en 

RMN du souffre 33. Elle permet aussi de sonder ces mouvements sans avoir recours aux 

mesures de temps de relaxation. Ceci est particulièrement pertinent pour LiNaSO4, puisque 

les relaxations des deux cations 23Na et 7Li sont quasi insensibles à la dynamique de groupes 

sulfates. 

Une expression de la fonction de corrélation dipolaire caractérisant les fluctuations de 

l'Hamiltonien en présence de diffusion non corrélée de deux sous-réseaux cationiques dans un  

solide a été obtenue. Une formule correspondante pour le fit de l’évolution en température de 

la largeur de raie RMN en deux étapes comme observée dans le LNS, a été déduite. La 

fonction obtenue a été également étendue au cas d’une distribution de temps de corrélation. 

L'avantage de cette approche est que, même dans le cas d’une distribution de τc la fonction 

d'ajustement peut être exprimée sous une forme analytique. 

Pour mesurer la cinétique de la transition de phase α-β dans LiNaSO4, nous avons 

développé une technique très simple, qui est basée sur la différence des temps de relaxation 

spin-réseau dans les deux phases, mais qui ne nécessite pas la mesure directe de T1. Cette 

méthode permet de mesurer l'évolution dans le temps du volume de la phase apparaissant à 

des vitesses de refroidissement contrôlées. A partir de l'application de l'équation KJMA pour 

fitter les courbes expérimentales, on peut extraire les paramètres d’Avrami, les principales 

grandeurs qui déterminent le mode de cristallisation et le type de nucléation. Le principal 

avantage de cette méthode est de pouvoir être utilisée pour étudier les cinétiques très rapides. 
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Propriétés structurales et dynamiques des sulfates d’alcalins 

 
Le s ujet de c ette t hèse es t pr incipalement c iblé s ur l ’étude d u t ransport ionique dans  l es s ulfates 

d’alcalins de l a f amille LI MSO4, où M =Na, K, R b, C s. U ne at tention par ticulière es t por tée s ur l ’étude d u 
système LiNaSO4, le plus intéressant en termes de dynamique ionique, par RMN en fonction de la 
température. 

Dans l e c adre de c ette ét ude, nous avons ef fectué des  m esures de t emps de r elaxation et d e 
largeurs de r aie pour  toute la  série de composés. Des mesures de c oefficients d’autodiffusion du 7li et du 
23Na, ont été menées depuis l’ambiante jusqu’à la température de fusion. Pour la première fois, nous avons 
pu mesurer la cinétique de transition de phase dans LiNaSO4, à partir d’une nouvelle méthode basée sur la 
différence de t emps de r elaxation d ans l es deux  ph ases de par t et  d’ autre d e l a t ransition, mais sans 
mesurer forcément le T1. Cette technique élaborée dans le cadre de ce travail permet de mesurer l’évolution 
au cours du temps du volume de la phase qui apparait pour des vitesses de refroidissement contrôlées.  

Nous avons aussi mené une étude par RMN des réorientations des groupements sulfates dans la 
phase b asse t empérature. L’ influence des  réorientations des SO 4

2- sur l es c ouplages q uadripolaires au  
noyau 7li, a été étudiée par un modèle de réorientation par sauts, qui n’avait encore jamais été utilisé pour 
les sulfates. La méthode proposée est une méthode à « bas couts » car elle permet d’atteindre l’information 
sur la dynamique des groupements sulfates sans enrichir l’échantillon en 17O ou de mener des expériences 
très longues pour le 33S, ou sans passer par les mesures de temps de relaxation. 

Afin d’analyser l e rétrécissement par  le mouvement  (motional narrowing) en fonction d e la 
température dans les solides avec deux sous réseaux cationiques diffusant comme dans le cas du LiNaSO4 , 
nous avons élaboré un modèle permettant de fitter l’évolution observée à deux marches de la largeur de raie 
RMN avec la température. La fonction analytique obtenue a été étendue au cas de distributions de temps de 
corrélation   

Mots clés : Sulfates d’alcalins, RMN, relaxation, diffusion, cinétique des transitions de phases… 

Structural Properties and Dynamics of Alkali Sulfates 
 

The main goal of a present research is a detailed study of ionic transfer in double sulfates belonging 
to the LiMSO4 family, where M = Na, K, Rb, Cs. The most attention has been paid to LiNaSO4 as to the most 
interesting (in terms of the ion dynamics) compound among other double sulfates.  

We have carried ou t magnetic relaxation measurements and line width analysis for all compounds 
under consideration. Moreover, PGF NMR measurements of 7Li and 23Na self-diffusion coefficients in 
LiNaSO4 have be en c arried out . For t he f irst t ime, w e ha ve m easured t he phas e t ransition k inetics i n 
LiNaSO4. For this purpose, we developed a new technique, which is based on the difference of spin-lattice 
relaxation times i n t he t wo phas es, but which does not i nvolve t he di rect m easurement of T1. Elaborated 
technique allows measuring time evolution of the volume of the appearing phase at controlled cooling rates. 

We have carried out NMR study of the sulfate ion reorientations in the low-temperature modification 
of LiNaSO4. The influence of the SO4 reorientational jumps on the quadrupolar interactions of 7Li nuclei was 
investigated b y a j ump r eorientational m odel, which has  n ot pr eviously been app lied t o s ulfates. T he 
proposed method is a “low-cost” technique, since it does not require an 17O enriched sample and dispenses 
with time-consuming 33S NMR. Other advantage of a given method is a possibility to probe reorientational 
motions without NMR relaxation measurements. 

To analyze motional narrowing in solids with two diffusing spin sublattices (such case occurs, e.g., in 
LiNaSO4) we deduced a formula, which can be used for fitting of the two-step temperature dependencies of 
the N MR l ine width. T he obtained f unction has  be en al so ex tended t o t he c ase, w hen a di stribution of  
correlation t imes t akes pl ace. T he adv antage of t his appr oach i s t hat e ven i n the c ase of  d istribution of 
correlation times, the fitting function could be expressed in the analytical form. 

Keywords: alkali sulfates, NMR, relaxation, diffusion, phase transition kinetics... 
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