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Résumé

Introduction

Durant ces dernières années et pour des raisons multiples, nous avons assisté à une véritable révolution

dans le monde des systèmes électriques de puissance. Tout d’abord, nous avons pu constater une crois-

sante demande d’énergie liée à la migration de populations des zones rurales vers des centres urbaines

à haute densité de population. Ce qui laisse présager, que la demande d’énergie est donc supposée aug-

menter d’environ le 36% d’ici 2035 [81]. D’autre part, la plus part de la production d’énergie actuelle se

base sur l’exploitation des combustibles fossiles, par rapport auxquels deux problèmes fondamentales se

posent. Premièrement, il est bien reconnu que l’utilisation massive de ces ressources est un facteur clé

intervenant dans les changements climatiques, ceci étant liés aux émissions de dioxyde de carbone (CO2)

qui se produisent avec la combustion [107, 23]. Deuxièmement, l’allure d’utilisation des combustibles

fossiles est tel que les réserves actuelles ne seront pas suffisantes pour répondre à la demande d’ici cent

ans [107, 47].

À partir de ces considérations, plusieurs économies nationales ont démarré des politiques énergétiques

alternatives durant les quinze dernières années, en introduisant dans leur mix énergétique les énergie

renouvelables, tels que le solaire, l’éolien et le géothermique, en accord avec le Protocole de Kyoto,

signé en 1997 [38, 25]. Par conséquent, on a remarqué une très forte intégration de sources d’énergie re-

nouvelables dans l’infrastructure actuelle des systèmes électriques de puissance. Ces changements, bien

évidemment, appellent pour une réflexion sur l’architecture globale des systèmes de production, distri-

bution et utilisation de l’énergie, ainsi que leur modes de fonctionnement. D’un point de vue théorique,

une première considération est que des architectures totalement différentes pourraient constituer la

meilleure option pour une nouvelle infrastructure des systèmes de puissance, basée uniquement sur

la production d’énergie renouvelable. Toutefois, le remplacement intégral de l’infrastructure existante

avec un architecture fondée exclusivement sur les énergies renouvelables aurait un coût qui dépasserait

largement les avantages inhérents à la nouvelle architecture. Le problème de la conception de nouvelles

architectures pour les systèmes électriques modernes devrait donc être formulé de manière progressive:

comment adapter l’infrastructure existante pour une meilleure intégration des énergies renouvelables?

L’architecture électrique traditionnelle, qui se base sur la génération d’énergie utilisant des générateurs

synchrones, implique une claire séparation entre le sous–systèmes de génération et de distribution, ceux–

ci opérants à différents niveaux de tension [96, 7]. En effet, la plus part des unités de génération – qui se

basent sur des combustibles fossiles et qui sont typiquement de grandes dimensions – nécessitent un mode

d’opération en haute tension, tandis que les unités d’utilisation demandent normalement des tensions

basses ou moyennes. Les sous–systèmes de génération et de distribution sont alors connectés aux travers

1



2 LIST OF TABLES

des lignes de transmission et des transformateurs qui permettent d’adapter les différent niveaux de ten-

sion. Dans ce contexte, la large diffusion de sources d’énergie renouvelables – qui sont par définition

distribuées et de dimensions contenues – pousse inévitablement à concevoir de différents paradigmes

conceptuels qui aillent au-delà de la classification standard génération–transmission–distribution. Une

des possibilités consiste alors dans la conception de nouvelles architectures électriques à les positionner

aux frontières de l’infrastructure déjà existante, plus précisément aux niveaux de haute et basse tension.

Au niveau de haute tension, l’idée principale est de construire un réseau de grand dimension, appelé

global grid ou supergrid, qui se déploie sur tous les cinq continents et qui connecte les plus grandes unités

de génération du monde [31, 57]. En utilisant cette architecture, il alors serait possible d’intégrer des

sources d’énergie renouvelables, à haut potentiel, situées dans des zones très éloignées des centres ur-

baines, de manière à fournir l’énergie durable aux réseaux locaux au travers de la transmission en haute

tension à courant continu. Quelques exemples de ces sources à haut potentiel sont les réserves d’énergie

géothermique en Islande, l’énergie éolienne dans la mer du Nord, l’énergie solaire dans les régions Sa-

hariennes et les sources hydroélectriques en Groenland (voir [31] pour une analyse économique et de

faisabilité du projet supergrid). D’un autre côté, au niveau de basse tension, l’objectif principal est de

réduire le gaspillage d’énergie qui caractérise la transmission d’énergie sur des distances très longues

et de doter le sous–systèmes de distribution de la capacité d’opérer de façon autonome. Une solution

potentielle est alors représentée par le concept de microgrid [98, 140, 63]. Un microgrid est en effet

un réseau de petite dimension qui est constituée par: plusieurs unités de génération, basée princi-

palement sur des sources d’énergie renouvelables, charges résidentielles, batteries et dont le mode de

fonctionnement peut être soit autonome, soit en connexion avec le réseau de distribution principal [140].

Ces nouvelles architectures, bien que particulièrement utiles à l’intégration des énergies renouvelables

dans l’infrastructure électrique existante, posent des nouveaux problèmes du point de vue opération,

ainsi que du contrôle de systèmes de génération, transmission et distribution de l’électricité. Les raisons

sont les suivantes. Premièrement, les sources d’énergie renouvelables sont normalement interfacées au

réseau principal au travers des convertisseurs de puissance dont la dynamique très différente de celle des

générateurs synchrones. En outre, comme on a déjà remarqué et contrairement aux sources d’énergie

traditionnelles, les sources d’énergie renouvelables sont généralement distribuées et de dimensions con-

tenue [151]. Il serait donc nécessaire d’avoir plusieurs nouvelles unités de génération assurant la même

quantité d’énergie produite par une seule unité de génération traditionnelle. Pour cela il est donc fonda-

mental de déterminer un mode de fonctionnement approprié pour les convertisseurs. En conclusion de

ces considérations, il est évident qu’il y a une forte nécessité de méthodes avancées dans la modélisation,

l’analyse et la commande de systèmes électriques de puissance modernes.

Contributions principales

Aujourd’hui, on peut constater qu’ils existent des approches très différentes abordant les problèmes de

modélisation, analyse et commande de systèmes électriques de puissance. Dans ce contexte, la différence

de méthodes et de langage adoptés par la communauté des systèmes électriques de puissance en con-

traste avec la communauté de contrôle représente sans doute une difficulté majeure. En s’appuyant sur

ces considérations, le caractère innovant de ce travail repose sur l’application de nouvelles méthodes,

développées récemment par des théoriciens du contrôle – plus précisément des méthodes basées sur

la notion d’énergie – aux problèmes de modélisation, analyse et commande de systèmes électriques.
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L’objectif principal est de promouvoir une combinaison de la vision pragmatique, typique d’une ap-

proche de type ingénieur, avec une vision plus théorique, fondée sur une caractérisation mathématique

et physique rigoureuse, conçue à partir de considérations énergétiques. Dans ce travail, les contributions

de l’auteur regardent différentes architectures des systèmes électriques de puissance, tels que les systèmes

de transmission haute tension en courant continu (hvdc), les microgrids, les systèmes à courant alter-

natif conventionnel et aussi des classes plus généralisées de systèmes électriques de puissance. Toutefois,

les résultats principaux sont développés autour d’une application: les systèmes multi–terminal hvdc.

Dans l’opinion de l’auteur, même si la plus part des résultats peuvent être généralisés à des classes plus

larges de systèmes et architectures, ceux-ci devraient être analysés au cas par cas, en argumentant les

descriptions mathématiques adoptées avec une interprétation technique et spécifique de l’application

traitée.

Les contributions principales de ce travail sont les suivantes.

1) Un approche unifié, basé sur la notion d’énergie, pour la modélisation de systèmes

électriques de puissance généralisés, à partir des principes physiques fondamentaux.

(Chapitre 3, Sections 4.3, 5.2, 5.3)

En littérature, il existe une grande variété des modèles aptes à décrire un système électrique de

puissance traditionnelle, basé sur les générateurs synchrones. Typiquement, il est vu comme un

système doté de n ports, décrit par des équations algèbro–différentielles, qui souvent ne retiennent

pas les identités des composantes et donnent une description cryptique du comportement physique

du dit système. Une première contribution – développée dans le Chapitre 3 – est alors la formula-

tion d’un approche généralisée pour la modélisation des systèmes électriques de puissance à partir

des principes physiques fondamentaux. Cette formulation se base sur des outils mathématiques,

qui permettent de formaliser des importantes notions physiques telles que la passivité, le fluxes

énergétiques, les interconnexions et les dissipations. Les outils mathématiques clés sont: la théorie

des graphes, utilisée pour la description de l’architecture du système; les systèmes Hamiltoniens

à ports, utilisés pour la description individuelle des composantes électriques. Le modèle obtenu

a donc l’avantage d’expliciter les caractéristiques physiques du système tout en préservant une

formulation mathématique rigoureuse. Il se présente donc comme un lingua franca pour des do-

maines de recherche apparemment différents, avec l’intérêt de faciliter la communication entre

théoriciens et ingénieurs. La méthode proposée est appliquée, avec des différences mineures, à la

modélisation de systèmes multi–terminal de transmission hvdc (Section 4.3), microgrids (Section

5.2) et à systèmes ac traditionnels (Section 5.3).

2) Vers une généralisation des procédures de réduction du modèle à partir des principes

physiques fondamentaux: quelles sont les hypothèses nécessaires? Le cas des systèmes

multi–terminal hvdc et des microgrids. (Sections 4.8, 5.2)

Pour l’analyse et la commande de systèmes électriques de puissance traditionnelles, l’utilisation

de modèles réduits est largement adoptée en littérature. Toutefois, on peut se demander si les

hypothèses sous–jacentes aux procédures de réduction sont encore valides pour des systèmes dont

la quantité de sources d’énergie renouvelables est majoritaire. Pour ce type de systèmes en ef-

fet, les modèles mathématiques sont souvent présentés sans aucune référence à la procédure de

réduction adoptée, ce qui complique la compréhension du comportement physique du système.
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Une contribution ultérieure de l’auteur est donc la dérivation – à partir des principes physiques

fondamentaux et sous certaines, raisonnables hypothèses – de modèles réduits pour deux classes

de systèmes électriques de puissance: les systèmes multi–terminaux de transmission hvdc (Section

4.8) et les microgrids (Section 5.2).

3) Commande hiérarchisée de systèmes multi–terminaux de transmission hvdc, (Chapitre

4)

- a) Modélisation de type énergétique et analyse du système en boucle ouverte

(Sections 4.3–4.5). Un modèle complet d’un système multi–terminal de transmission haute

tension à courant continu, en forme Hamiltonienne à ports, est obtenu (Section 4.3), en

utilisant l’approche illustré dans le Chapitre 3. Ce modèle constitue le point de départ pour

la dérivation des résultats successifs, qui concernent l’équilibre de puissance du système et la

définition des solutions admissibles (Section 4.5), ainsi que pour développer une discussion

sur l’architecture de contrôle du système (Section 4.4).

- b) Contrôle de la boucle interne: conception de la lois de commande, stabilité

et analyse des performances (Sections 4.6, 4.7). à partir du modèle Hamiltonien à ports

du système, une nouvelle loi de commande, des PIs décentralisés basés sur la notion de

passivité (PI–PBC), est dérivée. La stabilité globale du système en boucle fermée est alors

garantie sous l’hypothèse que les conditions opératives soient nominales et les gains des PIs

soient positifs. Avec l’objectif de placer la loi de commande obtenue dans le contexte de la

littérature des systèmes de puissance, une analyse comparative avec les stratégies de contrôle

standard est présentée. Premièrement, il est possible de démontrer que des problèmes de

stabilité peuvent se vérifier dans le cas des lois de commande standards, e.g. vector control,

si les gains ne sont pas bien choisis. D’un autre côté, même si le PI–PBC garantit un

comportement globalement asymptotiquement stable du système en boucle fermée, on peut

constater que les performances sont en–dessous de la moyenne. En effet, on peut vérifier

qu’ils existent des limitations de performances claires qui empêche d’obtenir des réponses

suffisamment rapides, indépendamment des choix des gains. Pour surmonter ce problème,

inspiré de la pratique de rajouter une boucle externe pour optimiser les performances, on

détermine une modification du PI–PBC telle que les réponses du système soient améliorées.

Les résultats obtenus sont enfin validés avec des simulations et suivis par une discussion sur

les avantages et inconvénients du PI–PBC par rapport aux lois de commande standards.

- c) Contrôle primaire: conception de la lois de commande, stabilité et distribution

de puissance (Section 4.8). Sous certaines, raisonnables, hypothèses on dérive un modèle

réduit, non linéaire, d’un système multi-terminal de transmission hvdc. à partir de ce modèle,

une classe généralisée de lois de commande primaires, qui comprend le droop control, est

formulée. Le modèle obtenu – qui est non linéaire – représente le point de départ pour

l’analyse des conditions nécessaires pour l’existence de solutions, la stabilité des équilibres,

ainsi qu’une distribution appropriée de puissance parmi les différentes unités. Les résultats

obtenus sont validés au travers d’un simple exemple avec des calculs numériques.
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Plan de la thèse

Ce travail est structuré en cinq chapitres et il est suivi d’une brève conclusion et une discussion sur les

futures lignes de recherche. Note aux lecteurs: avec l’intention d’éviter confusion dans les définitions,

tous les chapitres sont auto–contenus et peuvent contenir plusieurs répétitions. Ceci est dû au choix

intentionnel de l’auteur afin d’éviter des généralisations erronées des résultats obtenus. Le plan du

travail est le suivant.

Dans le Chapitre 2 on rappelle des concepts préliminaires en théorie du contrôle et sur la modélisation

des systèmes électriques de puissance. Un approche généralisé pour la modélisation – basé sur les notions

d’énergie et graphe – est donc dérivé dans le Chapitre 3. Les principaux résultats sont présentés

dans le Chapitre 4, où sont développées des procédures théoriques pour la modélisation, l’analyse

et la commande de systèmes multi–terminal de transmission hvdc. Le Chapitre 5 est dédié à aux

contributions ultérieures de l’auteur qui peuvent être présentées comme des interprétations alternatives,

extensions où applications des résultats obtenus dans les chapitres précédentes. Les conclusions et

perspectives futures de recherche sont finalement présentées dans le Chapitre 6.
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Chapter 1

Introduction

1.1 Motivation

Since their development at the end of the IX–th century, with the first lighting systems commercialized

by Edison and Westinghouse, electric power systems had a powerful impact on society and contributed

to a substantial improvement of the quality of everyday life. However, because of their dependence on

the nature of the energy resources, as well as of their strict relation with the human needs, they have to

be adapted according to the current, rapidly evolving scenario, which has undergone notable changes

in recent years. These changes are mainly driven by the following factors:

• New needs naturally arising from the worldwide urbanization processes, the unrelenting growth

of the population and of the rising economies, e.g. China and India. Hence, a growing energy

demand is expected, mainly coming from these developing countries. This is essentially due to

people migration from rural areas to densely populated urban centers. The worldwide demand is

expected to increase by 36% in the following years until 2035 [81].

• Conventional electric power systems are based on few large–sized, fuel–based generation units

constituted by a combination of steam turbines and synchronous generators [151]. The steam is

typically obtained by combustion of fossil fuels, e.g. oil, coal, natural gas, that are the traditional

primary resources employed for electricity supply. Unfortunately, the massive utilization of these

resources has the following drawbacks.

- It has been widely acknowledged by the scientific community that fossil fuels are key contrib-

utors to climate change and global warming, because of the greenhouse emission of carbon

dioxide (CO2) that follows the combustion [107, 23].

- With the current exploitation, reserves of fossil fuels are expected to run out in less than

a century. Moreover, since they are a valuable resource, useful for manufacture of plastics,

perhaps this would be a better use than simply setting fire to them [107, 47].

- Countries with small reserves of fossil fuels risks to be highly dependent from countries with

larger reserves, thus rising a problem of security of the supplied energy.

All this considered, although the path of the future electric power system is still somehow uncertain,

there is quite a clear consensus on the following point: it is necessary to drastically cut the production

of energy based on fossil fuels, in order to reduce the decisive human contribution to changing climate

trends and mitigate their economical and geopolitical consequences. Since the increase of the population

7
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and of the energy demand by the emerging economies make likely impossible a reduction of the energy

consumption, a viable possibility is to shift (at least partially) the energy production from fossil fuels

to renewable energy sources, like solar, wind, hydro and geothermal. In the last fifteen years many

developed countries started approving energy policies that agreed with this intention and is expected

that other countries follow soon the same guidelines, in accordance with the Kyoto Protocol, signed in

1997 [38, 25].

As a result of these new policies, we have assisted to a widespread penetration of renewable energy

sources in the existing electric power systems infrastructure. Obviously, these changes call for a reflec-

tion on the overall system architecture, as well as on its conventional operation. A first consideration

is that, from a purely theoretical point of view, conceptually different architectures may constitute the

best option for the architecture of power systems based on renewable energy sources. Nevertheless,

it is unlikely that the current architecture will be fully dismantled, all fuel–based units removed and

replaced with renewables. The problem of new architectures for modern electric power system with

high penetration of renewables should be then better reformulated as follows: how to integrate and/or

extend the existing architectures to better account for the growing penetration of renewables?

The traditional electric architecture, founded on synchronous generators, is based on a strong separation

between the generation and utilization subsystems, since they operate at a different voltage level [96, 7].

Because of the large size of the fuel–based generation units, generation is indeed mostly operated at

high–voltage, while utilization requires in general medium– and low–voltage levels. Generation and uti-

lization subsystems are then connected by means of the transmission subsystem that, starting from an

high–voltage level, takes care of stepping down the voltages from the generation until the distribution

level. Then, with the penetration of renewable energy sources — which are by definition small–sized

and distributed — a new paradigm, that goes beyond the standard generation–transmission–distribution

classification is required. One possibility is to conceive new architectures that will take place at the

boundary of the existing infrastructure, more precisely at the high– and low–voltage levels, as illus-

trated in Fig. 1.1. At the high–voltage level, the purpose is to build an high–voltage grid spanning the

whole planet and connecting most of the large power plants in the world, the so–called global grid or

supergrid concept [31, 57]. In this scheme it would be likely possible to integrate remotely located, high

potential, aggregated renewable energy resources that would be able to provide sustainable energy to

the main grids using high–voltage transmission systems. Examples of these large green energy reserves

are geothermal energy in Iceland, wind energy in the North Sea, solar energy in the Saharian region and

hydro power in Greenland (see [31] for an economical and technical feasibility analysis of the supergrid

project). At the low–voltage level, on the other hand, the key idea is to cut drastically the waste of

energy due to the losses for transmission over long distances and to endow the distribution level with

the capacity of autonomous operation. A potential solution is constituted by the microgrid concept

[98, 140, 63]. A microgrid consists of a collection of generation units, mostly based on renewable energy

sources, residential loads and energy storage elements that can be operated either in grid–connected

mode or in islanded mode, i.e., in a completely isolated manner from the main transmission system

[140]. We do not dwell any longer on these two concepts, for which the reader is referred to Chapter 4

and Chapter 5.

It is clear that these new architectures, that foster the integration of renewable energy sources in the

existing infrastructure, pose new problems for operation and control of the overall system. The reasons

are twofold. Firstly, renewable energy sources are usually interfaced to the grid through power switched
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Figure 1.1: Infrastructure of a modern electric power system composed by a supergrid (green–colored),
conventional power systems based on synchronous generators (black–colored) and microgrids (red–
colored). Aggregated renewable energy sources are connected to conventional power systems through
high–voltage transmission. Distributed renewable energy sources, are interfaced directly at the distri-
bution level.

electronics, the dynamics of which largely differ from standard synchronous generators, which are the

traditional generation units in conventional power systems. Secondly, in contrast with traditional power

plants, renewable energy sources are small–sized and distributed [151]. Hence, since it will be likely

requested for many renewable energy sources to provide the same quantity of energy provided by a

single power plant, an appropriate operation of individual switched electronic devices is crucial for a

correct and safe operation of the overall system. As a result of these considerations, it is obvious that

there is a strong need for advanced methods in modeling, analysis and control of electric power systems,

that takes into account the role played by renewable energy sources and by switched power electronics

devices.

1.2 Main contributions

Nowadays the gap between power engineer and control theorist approaches is not trivial and far to be

closed, and this fact represents in this sense a major shortcoming. Moving from this consideration, the

innovative character of the described work relies basically to the applications of emerging approaches

recently developed by control theorists — namely energy–based methodologies — to the very topical

issue of large–scale electric power systems. The main purpose is then to perform a combination of
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a more practical vision, typical of a power system engineering approach with a more theoretical one,

characterized by classical mathematical and physical formalism, conceived starting from energy–based

considerations. As detailed below, contributions of the author concern various architectures of power

systems, ranging from hvdc transmission systems, microgrids, conventional ac systems to generalized

classes of electric power systems. Nevertheless, the core of the work is developed around one specific

application: multi–terminal high–voltage direct–current (hvdc) transmission systems. It is indeed the

author’s belief that, although most of the approaches employed in the present work may be possibly

adapted to different architectures and scenarios, these should be discussed case by case, by supporting

the theoretical description with a technically–founded, application–specific interpretation of the ob-

tained mathematical results.

The main contributions — that are clearly restated in the related chapters and sections to enhance

readability — are the following.

1) A unified, energy–based modeling approach for generalized electric power systems,

starting from fundamental physical principles (Chapter 3, Sections 4.3, 5.2, 5.3)

In literature there exists a wide variety of models for the description of traditional electric power

systems based on synchronous generators. These usually are well–established, reduced models

where the system is viewed as an n–port described by a set of ordinary or algebraic differential

equations, which often do not retain the identity of the components and provide a cryptic de-

scription of the physics of the system. A first contribution — developed in Chapter 3 — is the

formulation of a generalized approach for the modeling of electric power systems starting from first

physical principles. This is based on two fundamental mathematical tools: graph theory for the

description of the system architecture and the port–Hamiltonian framework for the description

of the single components. This kind of formulation naturally leads to a simpler formalization of

fundamental physical concepts like passivity, energy flows, physical interconnections and dissipa-

tions, which are indeed captured by port–Hamiltonian representations. The obtained model is

thus expected to provide a lingua franca for two apparently different research areas, facilitating

communication between control theorists and power systems engineers, due to the incorporating

of a priori knowledge and providing more intuitive physical interpretations of classical mathemat-

ical frameworks. The proposed method is applied, with some minor differences, to the modeling

of multi–terminal hvdc transmission systems (Section 4.3), ac microgrids (Section 5.2) and a sim-

plified model of traditional ac system (Section 5.3). The obtained models are instrumental for the

next contributions.

2) Towards a generalization of model reduction procedures starting from first princi-

ples models: under which underlying assumptions? The case of multi–terminal hvdc

transmission systems and ac microgrids (Sections 4.8, 5.2)

Reduced models are largely employed for analysis and control of traditional electric power systems.

However, it may be questioned whether the assumptions underlying these reduction procedures,

are still valid for power systems with an high penetration of renewable energy sources and, con-

sequently, of switched power electronics. With respect to this modified scenario, reduced models

are in fact typically presented without any reference to the reduction procedure, hampering the

understanding of the physical phenomena behind them. Hence, another contribution of this work
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consists in the establishment — starting from the previously obtained first principles models, and

under some physically motivated assumptions — of the reduced models for two specific class of

electric power systems: multi–terminal hvdc transmission systems (Section 4.8) and ac microgrids

(Section 5.2). Interestingly, while for the case of ac microgrids the standard model commonly em-

ployed in practice is recovered, in the case of hvdc transmission system a new (nonlinear) model

is obtained.

3) Hierarchical control of multi–terminal hvdc transmission systems (Chapter 4).

- a) Energy–based modeling & analysis of the open–loop system (Sections 4.3–4.5).

A full model of a multi–terminal, meshely connected, hvdc transmission system, based on

port–Hamiltonian representation, is established (Section 4.3), using the modeling approach

developed in Chapter 3. The obtained model constitutes the backbone that is necessary for

obtaining the next theoretical results (Section 4.5), as well as for developing a discussion on

the hierarchical control architecture of the system (Section 4.4).

- b) Inner–loop control: design, stability & performance analysis (Sections 4.6, 4.7).

Moving from the full port–Hamiltonian model the multi–terminal hvdc transmission system,

a new decentralized PI controller, based on passivity arguments (PI–PBC) is derived. It is

shown that the obtained controller ensures — under the assumption of nominal operating

conditions — global asymptotic stability of the desired set point for any positive gain. In

order to place the proposed controller in context, a comparative analysis with inner–loop

control strategies commonly employed in practice is presented, thus leading to the following

two main contributions. First, it is shown that instability may arise in standard controllers,

e.g. vector control, if controller gains are not properly tuned. On the other hand, although

the PI–PBC ensures a globally asymptotically stable behavior of the system, it is shown

to have clear performance limitations. Hence, fast transient responses can not be achieved,

independently from the choice of the gains. To cope with this problem, inspired by the

engineering pratice of adding an outer–loop for improving performances, we determine a

modification of the PI–PBC that effectively overcome the mentioned performance limitations.

The mentioned contributions are validated via simulations. A discussion on advantages and

disadvantages of the PI–PBC with respect to standard controllers is further presented.

- c) Primary control: design, stability & power sharing (Section 4.8). Under some

reasonable, physically–motivated assumption, a reduced nonlinear model of multi–terminal

hvdc transmission system, in closed–loop with standard inner–loop controllers is derived. A

generalized class of primary controllers — that includes the ubiquitous voltage droop control

— is further formulated. Moving from the obtained model — that should be contrasted with

standard linear models employed in literature — necessary conditions for existence, stability

and power sharing of equilibria are established and verified via numerical calculations.

1.3 Publications

Main contents of this thesis are based on the following publications, that are listed in chronological order.

Contributed chapter
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D. Zonetti, R. Ortega, “Control of HVDC Transmission Systems: From Theory to Practice and

Back”. In M.K. Camlibel, A.A. Julius, R. Pasumarthy, J. Scherpen (eds.), Mathematical Control The-

ory I, Springer, pp. 153-177.

Journal papers

J. Schiffer, D. Zonetti, R. Ortega, A. Stankovic, T. Sezi, J. Raisch, “A survey on modeling of mi-

crogrids – From fundamental physics fo phasors and voltage sources”, Automatica, submitted — [140].

D. Zonetti, R. Ortega, A. Benchaib, “Modeling and control of HVDC transmission systems: from

theory to practice and back”, Control Engineering Practice, Volume 45, December 2015, Pages 133-146,

ISSN 0967-0661, http://dx.doi.org/10.1016/j.conengprac.2015.09.012 — [182].

S. Fiaz, D. Zonetti, R. Ortega, J. Scherpen, A. van der Schaft, “A port-Hamiltonian approach to

power network modeling and analysis”, European Journal of Control, Volume 19, Issue 6, December

2013, Pages 477-485, ISSN 0947-3580, http://dx.doi.org/10.1016/-j.ejcon.2013.09.002 — [53].

Conference proceedings

D. Zonetti, R. Ortega, “A tool for stability and power sharing analysis of a class of generalized

droop control for high–voltage direct–current transmission systems”. Decision and Control, Conference

on, Las Vegas, US, Dec 2016, submitted.

D. Zonetti, R. Ortega, A. Benchaib, “A Globally Asimptotically Stable decentralized PI control of

multi–terminal High–Voltage DC transmission systems”. European Control Conference, Strasbourg,

France, Jun 2014 — [181].

S. Fiaz, D. Zonetti, R. Ortega., J. Scherpen, A. van der Schaft, “On port-Hamiltonian modeling of

the Synchronous Generator and Ultimate Boundedness of its solutions”. Proceedings of the conference

on Lagrangian and Hamiltonian Methods in Nonlinear Control, Bertinoro, Italy, Aug 2012 — [52].

S. Fiaz, D. Zonetti, R. Ortega., J. Scherpen, A. van der Schaft, “Port Hamiltonian modeling of

Power Networks”. MTNS 2012 Proceedings, Melbourne, Australia, Jul 2012.

D. Zonetti, S. Fiaz, R. Ortega, A. van der Schaft, D. Langarica, J. Scherpen, “Du Bond Graph au

modèle Hamiltonien à Ports d’un Système de Puissance”. CIFA 2012 Proceedings, Grenoble, France,

Jul 2012 — [180].

1.4 Outline

This work is structured in five chapters and is wrapped–up with some conclusions and guidelines for

future research. We bring to the attention of the reader that, in order to avoid barking up the wrong

tree, chapters are self–contained and repetitions may occur. This is justified by intentional choice of the

author to avoid misleading generalization of the obtained results. The outline of this work is as follows.
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Chapter 2 is dedicated to recall some preliminary concepts in control theory and modeling of electric

power systems. The formulation of a generalized approach for the modeling — based on the notions of

energy and graph — is derived in Chapter 3. The main body of the thesis is presented in Chapter 4,

where we develop a general, theoretically–founded procedure for the modeling, analysis and control of

multi–terminal hvdc transmission systems. Chapter 5 is devoted to further contributions of the author,

that can be presented as alternative interpretations, extensions or applications of the results obtained

in the previous chapters. Conclusions and future works are finally discussed in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, structured in two main sections, we recall some fundamental notions, well–established in

literature, that are relevant for this work. Section 2.1 is then dedicated to illustrate preliminary concepts

and definitions on modeling, analysis and control of nonlinear dynamical systems, while Section 2.2 is

devoted to discuss prevailing signal architectures employed for generation, transmission and distribution

of electricity and to introduce standard tools for the description of the electrical behavior.

2.1 Control theory

2.1.1 Notation

The symbols R and C denote the sets of real and complex numbers. The real part of a complex number

p is denoted by Re(p), while its imaginary part is denoted by Im(p). For a set N = {l, k, . . . , n} of,

possibly unordered, elements, we denote with i ∼ N the elements i = l, k, . . . , n. All vectors are column

vectors. Given positive integers n, m, the symbol 0n ∈ Rn denotes the vector of all zeros, 0n×m the

n × m column matrix of all zeros, 1n ∈ Rn the vector with all ones, In the n × n identity matrix.

When clear from the context dimensions are omitted and vectors and matrix are simply denoted by the

symbols 0, 1 or I. The matrix J2 is defined as

J2 :=

[
0 1

−1 0

]
∈ R2×2.

For a given matrix A, the i-th column is denoted by Ai. diag{ai} is a diagonal matrix with entries ai ∈ R
and bdiag{Ai} denotes a block diagonal matrix with entries the matrices Ai. x := col(x1, . . . , xn) ∈ Rn

denotes a vector with entries xi ∈ R, when clear from the context it is simply referred as x := col(xi). For

a function f : Rn → R, ∇f denotes the transpose of its gradient. The symbol ⊗ denots the Kronecker

product. The subindex i, preceded by a comma when necessary, denotes elements corresponding to the

i-th subsystem or element.

2.1.2 Elements of linear graph theory

Linear graph theory provides a very useful conceptual framework for the modeling of physical and non

physical network. The interested reader is referred to [21, 60] for further details on mathematical graph

theory and to [168] for an application to physical systems. We define a weighted directed graph an

ordered tuple G := (N , E , π, ρ) consisting of a finite set of vertices (nodes) N , a finite set of directed

15
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edges E , a mapping π from E to the set of ordered pairs of N , where no self–loops are allowed, and

a weight function ρ : E → R+. Therefore to every edge e ∈ E , there corresponds an ordered pair

(v, w) ∈ (N ,N ), v 6= w, representing the tail vertex v and the head vertex w of this edge, and a weight

ρ(e). A graph is said to be unweighted if ρ(e) = 1 for any e ∈ E . Otherwise it is said weighted. An

undirected graph is the one in which edeges have no orientation and are not ordered in pairs, i.e. the

edge (v, w) is identical to the edge (w, v). In an undirected graph G, two vertices v and w are called

connected if G contains a path (i.e. a series of undirected edges) from v to w, Otherwise, they are called

disconnected. A graph is said to be connected if every pair of vertices in the graph is connected. We

call a graph G′ := (N ′, E ′, π′, ρ′) a subgraph of G := (N , E , π, ρ), if N ⊂ N ′ and E ⊂ E ′.

Let v the number of vertices (or nodes), and e the number of edges of the weighted graph G =

(N , E , π, ρ). We provide fundamental properties of the graph that are captured by the following matri-

ces.

- The incidence matrix M(G) ∈ Rv×e is a matrix with element (i, j) equals to −ρ(ej) if ej is an

edge towards i, equals to ρ(ej) if it is an edge originating from i, and 0 otherwise.

- The adjacency matrix A(G) ∈ Rv×v is a matrix with element (i, j) equals to ρ(e) if there exists

an edge e connecting vertices i, j, including self–loops, and 0 otherwise.

- The degree matrix D(G) ∈ Rv×v is a diagonal matrix with entry (i, i) equals to the sum of the

weight of the edges towards and originating from vertex i.

- The Laplacian matrix L(G) ∈ Rv×v is a matrix L(G) := D(G)−A(G). The Laplacian matrix of a

directed graph is nonnegative, its off–diagonal entries are nonpositive and its row sums are zero.

If the graph is undirected it is symmetric and positive semidefinite.

2.1.3 Port–Hamiltonian systems

Conceiving subsystems as vehicles of energy is a very appealing approach for the modeling of com-

plex physical systems. Indeed, energy transfer can be seen as a process in which subsystems energy

is exchanged by means of injections/ejections with respect to some ports (so–called energy ports) and

correspondent variables (so–called port variables). In particular, the act of delivering energy can be

associated with one variable giving the flux of energy flow, that is called effort (e) variable, and a

variable giving the pitch of energy flow, that is called flow (f) variable [168, 109]. Thus, an energy

port can be represented by a pair of terminals with a pair (e, f) of generalized variables, which to-

gether represent the energy transfer mechanism, and whose by–product is a power, see Fig. 2.1. In

this context, port–Hamiltonian (pH) systems provide a particularly interesting paradigm for modeling,

analysis and control of complex nonlinear systems using the notion of energy and port. There are two

reasons for their appeal: first, that they can be used to represent a wide class of multiphysical systems,

including (but not limited to), systems described by Euler–Lagrange equations. Second, they directly

reveal the fundamental role of the physical concepts of energy, dissipation and interconnection. For a

wide overview on this subject, see the excellent books [161, 159, 43].

We introduce the following definitions.



2.1. CONTROL THEORY 17

Figure 2.1: Port representation of a generalized subsystem with effort and flow variables.

Nonlinear port–Hamiltonian systems. We define a time–invariant, port–controlled Hamilto-

nian system S with dissipation, the following stationary, differential algebraic equations (DAEs):

S :



ẋ = [J (x)−R(x)]∇xH(x) + g(x)u+G(x)σ +G0(x)σ0

y = G>(x)∇xH(x)

y0 = G>0 (x)∇xH(x)

0 = w(σ0, y0),

(2.1.1)

where x : R+ → X ⊆ Rn denotes the state vector, u : R+ → U ∈ Rm the control input,(σ0, y0) ∈
Σ0 × Y0, with Σ0,Y0 ∈ Rp0 the conjugated algebraic port–variables, (σ, y) ∈ Σ × Y, with Σ,Y ∈ Rp,
the conjugated interaction port–variables, H : Rn → R, the Hamiltonian (energy) function, w : Rp0 ×
Rp0 → Rp0 , the characteristic function. Matrices are further defined as follows: interconnection matrix

J (x) = J (x)> ∈ Rn×n, positive semi–definite dissipation matrix R(x) = R> ∈ Rn×n, input matrix

g(x) ∈ Rn×m, algebraic–port matrix G0(x) ∈ Rn×p0 , interaction–port matrix G(x) ∈ Rn×p. In some

cases, it may be also convenient to introduce a reference output

yr := h(x, u), (2.1.2)

with yr : R+ → Yr ⊆ Rq. The vector x of state variables describes the capacity of the system to store

information related to its past history. The control input u is a set of m exogenous signals that usually

correspond to variables that can be directly manipulated by the user. The Hamiltonian function H
accounts for the total energy stored by the system, the matrix J specifies the internal interconnection

and R the dissipation structure of the system. The conjugated port variables (σ0, y0) are a set of p0

pairs of variables that are related by an algebraic characteristic w. The conjugated port–variables (σ, y)

are a set of p pairs of variables that describe the interaction of the system with the external environment

and are called the interaction port–input and port–ouput variables. The product of port variables has

the dimension of a power. The energy flowing through the ports at time T is indeed given by:

E(T ) = E(t0) +

∫ T

t0

y>(t)σ(t)dt. (2.1.3)

The reference output yr is a set of q variables that are of particular interest for analysis and/or control

purposes. For example it may consist of a (sub)set of the state variables that are available for measure-

ment (measured output) or that are of some interest for performance analysis.

Whenever no characteristic function is defined, the system is said to be an ordinary differential equa-
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tions (ODEs) port–Hamiltonian system. Otherwise, it is said to be a differential algebraic equations

(DAEs) port–Hamiltonian system. Special subclasses of the system (2.1.1) can be further obtained by:

assuming that the system is energetically isolated from the external environment, that corresponds to

take G(x) = 0; or assuming the absence of any control action, that corresponds to take g(x) = 0. In the

sequel we refer to these subclasses as isolated and uncontrolled port–Hamiltonian systems respectively.

Power preserving interconnection laws. To introduce the notion of power preserving intercon-

nection laws we consider two port–Hamiltonian systems S1, S2 of dimension n1, n2 and assume that the

correspondent ports have the same dimension, as depicted in Fig. 2.2. Then we define a time–invariant

power preserving interconnection law any relation

I12 :

[
σ1

σ2

]
=

[
0 β(x1, x2)

−β>(x1, x2) 0

][
y1

y2

]
, (2.1.4)

with β : Rn1 × Rn2 → Rp, that verifies:

y>1 σ1 + y>2 σ2 = 0. (2.1.5)

Recalling that the by–product of the port variables is a power, it is easy to see that (2.1.5) expresses

the fact that power is preserved by the interconnection between S1 and S2.

Figure 2.2: Power–preserving interconnection laws.

2.1.4 Equilibria Analysis

We consider the following general DAEs nonlinear system1:

ẋ = f(x, σ0) + g(x)u

0 = µ(x, σ0),
(2.1.6)

with f , g, µ sufficiently differentiable functions. Let x(t0;x0) the correspondent evolution in time of the

state vector, moving at time t0 from an initial point x0 ∈ X . A special situation is when the trajectory

is constant for some constant control input, that is equivalent to determine a constant x̄ = x0 that

verifies:

0n = f(x̄, σ̄0) + g(x̄)ū, 0p0 = µ(x̄, σ̄0) (2.1.7)

1An isolated DAEs port–Hamiltonian system can be always rewritten as a general nonlinear system in input–affine
form with appropriate functions f , g, µ.
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for some ū ∈ U , σ̄0 ∈ Σ0. The pair (x̄, ū) ∈ Rn×Rm is usually referred as an equilibrium pair of the

system (2.1.1), while (2.1.7) as the equilibria equation. We further refer to x̄ as a (state) equilibrium

point, and to ū as the equilibrium control. Obviously, in general (2.1.7) does not admit a solution for

any constant x̄ ∈ Rn. Hence, we find convenient to define the set of admissible equilibria:

E? := {x̄ ∈ Rn : 0n = g⊥(x̄)f(x̄, σ̄0), 0p0 = µ(x̄, σ̄0)}, (2.1.8)

where g⊥(x) is a full–rank left annihilator of g(x), i.e. it verifies g⊥(x)g(x) = 0. Moreover, given x̄, it

is easy to see that the corresponding equilibrium control ū is determined by:

ū = −
[
(g>g)−1g>f

]
(x̄, σ̄0), 0p0 = µ(x̄, σ̄0). (2.1.9)

2.1.5 Stability in the sense of Lyapunov

Though stability is widely acknowledged as a fundamental property in systems and control theory,

there exist many definitions available in literature. Roughly speaking, stability of a given trajectory

means that the system motion can be kept arbitrarily close to this trajectory by starting sufficiently

close to it [147]. For a precise definition we consider an isolated nonlinear system described by ODEs.

This situation arises when there are no algebraic constraints or, if they are, they can be solved with

respect to σ0 and included in the ODEs of (2.1.6). Moreover, we assume that the nonlinear system is

uncontrolled, i.e. g(x) = 0 in (2.1.6). This case may represent, for example, a system in closed–loop

with some designed controller or for which no control action is allowed. Under these assumptions the

dynamical system (2.1.6) reduces to:

ẋ = f(x), (2.1.10)

the equilibria of which are determined by the equilibria equation:

0 = f(x̄). (2.1.11)

We are now in the position to define the notion of stability of an equilibrium point for the system

(2.1.10), similarly to [92].

Definition 2.1.1 (Stability). Let x̄, x0 ∈ X , where x̄ is an equilibrium point for the system (2.1.10),

i.e. it verifies (2.1.11). Then, x̄ is said to be:

- stable if, for any scalar ε > 0, there exist δ(ε) > 0 such that

‖x0 − x̄‖ < δ, ⇒ ‖x(t;x0)− x̄‖ < ε, ∀t ≥ 0; (2.1.12)

- unstable if it is not stable;

- asymptotically stable if it is stable and δ can be chosen such that

‖x0 − x̄‖ < δ, ⇒ lim
t→∞

‖x(t;x0)− x̄‖ = 0; (2.1.13)

- globally asymptotically stable, if it is stable and x(t;x0)→ x̄ as t goes to infinity for any x0 ∈ X .

It is clear that it is in general difficult to verify the stability of an equilibrium point using the men-

tioned definitions, because they are tantamount to calculate the solution of the n differential equations
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describing the dynamical system (2.1.10). A well–established theory for investigating stability without

explicit calculation of the solutions is the Lyapunov theory. At the end of the XIX century, the Russian

mathematician Lyapunov showed indeed that particular classes of functions can be used to determine

the stability properties of an equilibrium point. In order to introduce this fundamental result, we

provide the following useful definitions.

Definition 2.1.2. Consider a neighborhood of a point x̄ ∈ Ω ⊆ Rn. A continously differentiable

function V : Ω→ R is said to be:

- positive definite with respect to x̄, if

V(x̄) = 0, V(x) > 0, ∀x ∈ Ω− {x̄};

- positive semidefinite with respect to x̄, if

V(x̄) = 0, V(x) ≥ 0, ∀x ∈ Ω;

- negative definite with respect to x̄, if −V(x) is positive definite;

- negative semidefinite with respect to x̄, if −V(x) is positive semidefinite;

- indefinite, if V(x) does not have a definite sign as per one of the cases above.

We are now ready to state the Lyapunov’s stability theorem.

Theorem 2.1.3. Let V : Ω→ R a positive definite function with respect to the point x̄ ∈ Ω ⊆ X , that

is an equilibrium point for (2.1.10). Then, if its derivative along the trajectories V̇(x) of the system

(2.1.10) is:

- negative semidefinite with respect to x̄, i.e.

V̇(x) ≤ 0, ∀x ∈ Ω, (2.1.14)

the equilibrium point x̄ is stable;

- negative definite with respect to x̄, i.e.

V̇(x) < 0, ∀x ∈ Ω− {x̄}, (2.1.15)

the equilibrium point x̄ is asymptotically stable.

The positive definite function V that satisfies the properties (2.1.14) is usually called a Lyapunov

function. Because stability and asymptotic stability in the sense of (2.1.12), (2.1.13), are concerned

only with a subset of the state space X , it is of interest to determine global stability conditions. We

have then the following theorem.

Theorem 2.1.4. Let V : Rn → R a positive definite function with respect to the point x̄ ∈ Ω ⊆ X , that

is an equilibrium point for (2.1.10). Then, if its derivative along the trajectories V̇(x) of the system

(2.1.10) is negative definite, i.e.:

V̇(x) < 0, ∀x ∈ Ω− {x̄}, (2.1.16)
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and

V(x)→∞ as ‖x‖ → ∞, (2.1.17)

the equilibrium point x̄ is globally asymptotically stable.

A function that verifies the property (2.1.17) is said to be radially unbounded.

In many situations it may be difficult to determine a positive definite function for the system

(2.1.10) that verifies (2.1.15), thus stimying the application of Theorem 2.1.3 or Theorem 2.1.4 for the

establishment of asymptotic stability. However asymptotic stability can be still inferred with the help

of the LaSalle’s invariance principle. We first introduce the following definition.

Definition 2.1.5. The set Ω ⊆ X is said to to be positively invariant with respect to (2.1.10) if for any

x0 ∈ Ω, x(t;x0) ∈ Ω for any t ≥ 0.

Theorem 2.1.6. Let ω ⊂ X be a positively invariant, compact set with respect to (2.1.10). Let V :

X → R be a continuously differentiable function that verifies V̇(x) ≤ 0 in Ω. Let M the largest invariant

set contained in the subset of Ω such that V̇(x) = 0. Then everyy solution starting in Ω approaches M

as t→∞.

We have then the following corollary, that extend Theorem 2.1.3 and Theorem 2.1.4 to the case

where V(x) is not positive definite.

Corollary 2.1.7. Let x̄ an equilibrium point for (2.1.10). Let V : X → R be a continuously differentiable

function that is positive definite with respect to x̄ and verifies V̇(x) ≤ 0 in X . Consider the set S :=

{x ∈ X : V̇(x) = 0} and suppose that no solution can stay identically in S, except the trivial solution

x(t) ≡ x̄. Then x̄ is asymptotically stable. If moreover X ≡ Rn and V is radially unbounded, it is

globally asymptotically stable.

Theorems 2.1.3 and 2.1.4 are usually referred as Lyapunov’s second method for checking stability

of an equilibrium point, while Theorem 2.1.6 and Corollary 2.1.7 are known as LaSalle’s invariance

principle and its criterion for asymptotic stability. We next provide a further method that allows to

establish local stability properties of a nonlinear system and that is known as Lyapunov’s first method.

Theorem 2.1.8. Let x̄ an equilibrium point for (2.1.10) and define J(x̄) := ∂f
∂x (x̄). If:

- Re{λi(J(x̄))} < 0 for all eigenvalues λi of J(x̄), then the equilibrium point is locally asymptotically

stable and the matrix J(x̄) is said to be an Hurwitz or stability matrix;

- Re{λi(J(x̄))} > 0 for at least one eigenvalue λi of J(x̄), then the equilibrium point is unstable.

2.1.6 Zero Dynamics

Some important properties of general nonlinear systems can be characterized using the concept of zero

dynamics. For this purpose, we briefly introduce the fundamental notions of relative degree and normal

form. For more rigourous definitions, the reader is referred to [82, 27].

Let consider an ODEs nonlinear system in input–affine form expressed by:

ẋ = f(x) + g(x)u

yr = h(x, u),
(2.1.18)
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where input and output vectors have the same dimension m = q. Such a (multi–input multi–output)

system is said to have relative degree {1, 1, . . . , 1} at a point x0 if the matrix

A(x0) :=

[
∂h

∂x
· g(x)

]
x=x0

is nonsingular. If this is the case, under a further controllability condition2, there exist n−m functions

z1(x), . . . , zn−m(x), defined in a neighborhood of x0 and vanishing at x0, which, together with the m

components of the output map yr = h(x), qualify as a new set of local coordinates. Hence, the system

can be represented in new coordinates (z, y) as follows [27]:

ż = q(z, y)

ẏ = b(z, y) + a(z, y)u,
(2.1.19)

that is called the normal form of the system (2.1.18).

Moving from these definitions, the zero dynamics is defined as the internal dynamics of the system

that are induced by zeroing the output, i.e. by constraining the system to:

y(t) ≡ 0, ∀t ≥ t0.

If a system has relative degree {1, 1, . . . , 1} at x = x0, its zero dynamics locally exist in a neighborhood

I of x0, evolve on the smooth (n−m)– dimensional submanifold:

Z? = {x ∈ I(x0) : h(x) = 0}, (2.1.20)

that is called the zero dynamics manifold. Moreover it is described by a differential equation of the

form:

ż = q(z, 0), (2.1.21)

while the input is given by u = − [a(z, 0)]
−1
b(z, 0). Such dynamics can be equivalently rewritten in the

original coordinates as:

ẋ = f?(x), x ∈ Z?, (2.1.22)

that is the restriction to Z? of the system (2.1.18).

Depending on the stability property of the zero dynamics of the system, we have the following

definitions [27]. The system (2.1.18) is said to be: minimum phase, if its zero dynamics is asymptotically

stable; weakly minimum phase, if its zero dynamics is stable; non–minimum phase if its zero dynamics

is unstable.

2.1.7 Passivity

Passivity is a notion widely diffused to describe the input–output behavior of a system, see [169, 159, 27]

for an overview from a control theory perspective. For a precise definition we consider the ODEs

nonlinear system in input–affine expressed by (2.1.18), where input and output vectors are of the same

dimension, that is m = q. Consider the function s : U × Yr → R, that is called the supply rate of the

2The controllability condition consists in that the distribution spanned by the columns of g(x) is involutive [82, 117].
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system and assume that for any u ∈ U and initial condition x0 = x(t0), the output trajectory yr(t) is

such that: ∣∣∣∣∫ t

t0

s(u(τ), yr(τ))dτ

∣∣∣∣ <∞. (2.1.23)

We have then the following definitions.

Definition 2.1.9 (Dissipativity). The system (2.1.18) is said to be dissipative with respect to the supply

rate s if there exists a function V : X → R+, called the storage function, such that for all x0 ∈ X , all

t1 ≥ t0 and all input functions u ∈ U , we have:

V(x(t1;x0)) ≤ V(x0) +

∫ t1

t0

s(u(t), yr(t)),dt. (2.1.24)

If (2.1.24) holds with equality, then the system is said to be lossless.

The inequality is called dissipation inequality. A special case of the dissipativity inequality (2.1.24)

arises when the supply rate is defined as:

s(u, yr) := u>yr, (2.1.25)

from which follow the next definitions.

Definition 2.1.10 (Passivity). The system (2.1.18) is said to be:

- passive (conservative), if it is dissipative (lossless) with respect to the supply rate (2.1.25);

- input strictly passive, if there exists a scalar δ > 0 such that the system is dissipative with respect

to the supply rate:

s(u, yr) = u>yr − δ‖u‖2;

- output strictly passive, if there exists a scalar ε > 0 such that the system is dissipative with respect

to the supply rate:

s(u, y) = σ>yr − ε‖yr‖2.

We now provide a characterization of the zero dynamics of passive systems recalling the following

theorem, formulated in [27].

Theorem 2.1.11. Suppose that the system (2.1.18) is passive with a positive definite storage function

V. Suppose that either:

x? := arg min V

is a point of regularity for the system or that V is nondegenerate. Then the zero dynamics of the system

locally exist at x = x? and the system is weakly minimum phase.

For the special case of port–Hamiltonian systems we have the following passivity property [159].

Lemma 2.1.12. Let consider the system (2.1.1) with input and output signals given by:

û := col(u, σ, σ0), ŷ := col(yr, y, y0). (2.1.26)

with yr := g>(x)∇H. Then the system is passive with storage function given by H.
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Proof. For the proof it suffices to calculate the derivative of H along the trajectories, thus giving:

Ḣ = −(∇H)>R∇H+ (∇H)>gu+ (∇H)>Gσ + (∇H)>G0σ0

= −(∇H)>R∇H+ ŷ>û ≤ ŷ>û,
(2.1.27)

that proves passivity.

���

2.2 Electric systems

2.2.1 Lumped parameters assumption

An electric system can be viewed as the composition of smaller electric subsystems — that from now on

we call power units — that are interconnected according to an appropriate circuit topology. All along

this thesis we make the following assumption.

Assumption 2.2.1. All power units composing an electric system can be represented by lumped pa-

rameters models.

This assumption implies that all electric subsystems (power units) can be described as the composi-

tion of a certain number of ideal elements with no geometrical dimension. This is equivalent to assume

that such elements have negligible physical dimension with respect to the generated electromagnetic

field [109].

Under the limits of validity of the lumped parameter assumption a power unit can be characterized

by a pair of generalized port variables, effort and flow, that correspond to the fundamental electric

quantities of voltage v(t) and current i(t). These two quantities are then related by some mathematical

expressions that can be of different type (differential, algebraic, differential–algebraic) and that describe

the physical characteristics of the power unit [43, 168, 109]. The simplest power units are: ideal

generators, resistors, inductors and capacitors, transformers and gyrators, that correspond indeed to

elementary energy behaviors expressed by source and sink, dissipation, storage and transformation

elements. Standard description of elementary power units can be found in any basic textbook of electric

circuits, see for example [109], and is for this reason omitted. For more details about fundamental energy

element, see [85] for the electric domain, or [43, 168] for generalized multiphysics systems. The positive

and negative signs of voltage and current are arbitrary. However, to avoid confusion, we adopt the sign

convention for which their by product, that is a power, is equivalent to the power absorbed by the power

units from the environment. For a precise definition of power, the reader is referred to Subsection 2.2.5.

2.2.2 Dc and ac signals

Electric systems employ two alternatives way of generating, transmitting and utilizing power: direct–

current (dc) and alternating–current (ac). The denomination refers explicitly to current signals, but

usually the abbreviations ac and dc stands for general time–varying electric signal. Dc and ac signals

play an important role in electric power systems. As a matter of fact, for single–phase and three–phase

systems — that are the most diffused architectures — it is often of practical interest that, in steady–

state operation, electric signals waveform are of dc or ac type. Hence, it is usual to refer to such systems

as dc and ac systems. Both ac and dc describe types of current flow in a circuit, but there are some
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differences. Indeed, in dc, the electric charges moves only in one direction, from which follows that

the voltage is also unipolar, thus meaning that one pole is always at an higher voltage than the other.

Electric charges in ac, on the other hand, periodically reverse their direction [40, 109]. As a result,

the voltage reverses polarity along with the current. We then introduce the following definitions —

based on [140, 109] — for an electric time–varying signal x(t), that can either represents a current or a

voltage.

Definition 2.2.2. A real (time–varying) electric signal x : R+ → R is said to be a dc signal if it is

constant in time, that is

x(t) = x̄.

Definition 2.2.3. A real (time–varying) electric signal x : R+ → R is said to be a single–phase

T–periodic ac signal if:

- it is periodic, with period T ∈ R+, that is

x(t) = x(t+ kT ), k ∈ N;

- it has zero arithmetic mean over the period, that is∫ t+T

T,i

x(τ)dτ = 0.

Note that from these definitions it follows that a dc signal can be interpreted as a single–phase ac

signal with period T = ∞. An appropriate composition of three single–phase ac signals leads to the

following definitions.

Definition 2.2.4. A real (time–varying) electric signal x3φ : R+ → R3 is said to be a three–phase T–

periodic ac signal if any of its components is a single–phase T–periodic ac signal for a unique T ∈ R+.

Definition 2.2.5. Consider a three–phase T–periodic ac signal x3φ : R+ → R3. It is said to be balanced

if:

x3φ(t) :=

xa(t)

xb(t)

xc(t)

 = X(t)

 sin(α(t))

sin(α(t)− 2
3π)

sin(α(t) + 2
3π)

 . (2.2.1)

Moreover, X : R+ → R is referred as the amplitude and α : R+ → S as the phase angle of the three–phase

ac signal.

Note that three–phase T–periodic ac signals are completely described by the pair (X,α) and can be

alternatively represented using these two quantities, that are called polar coordinates of the three–phase

ac signal, in contrast with the abc coordinates expressed by (2.2.1).

2.2.3 Dq0–transformation

While considering three–phase signals, in many situations it may be convenient to adopt a reference

frame that does not coincide with the abc–reference frame in which the signal is usually expressed.

It is then possible to perform a transformation of coordinates so that the transformed waveform is

represented in a more suitable form for the purpose of analysis. It is common to employ the following

transformation, that was originally formulated by Robert H. Park, in 1929 [118].
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Definition 2.2.6. Let ϑ : R+ → S. The mapping Tdq0 : S→ R3×3, with

Tdq0(ϑ) :=

√
2

3

cos(ϑ) cos(ϑ− 2
3π) cos(ϑ+ 2

3π)

sin(ϑ) sin(ϑ− 2
3π) sin(ϑ+ 2

3π)
√

2
2

√
2

2

√
2

2

 ,
is called a dq0–transformation with angle ϑ. Moreover

xdq0(ϑ(t), x3φ(t)) :=

Xd(t)

Xq(t)

X0(t)

 = Tdq0(ϑ(t))x3φ(t),

is called the correspondent dq0–transformed signal, where Xd(t), Xq(t), X0(t) are named respectively

its direct, quadrature and 0–components.

Dq0–transformations are widely employed to obtain an alternative representation of balanced three–

phase ac signals [7, 96]. The frame in which the signal is represented is usually called dq0–frame, in

contrast with the abc–frame, that is the natural frame for three–phase ac signals. By applying the

transformation to (2.2.1), we have:

xdq0 = Tdq0(ϑ)x3φ

=

√
2

3
X

cos(ϑ) sin(α) + cos(ϑ− 2
3π) sin(α− 2

3π) + cos(ϑ+ 2
3π) sin(α+ 2

3π)

sin(ϑ) sin(α) + sin(ϑ− 2
3π) sin(α− 2

3π) + sin(ϑ+ 2
3π) sin(α+ 2

3π)
√

2
2 sin(α) +

√
2

2 sin(α− 2
3π) +

√
2

2 sin(α+ 2
3π)



=

√
3

2
X

sin(α− ϑ)

cos(α− ϑ)

0

 ,
where the last equivalence follows by standard trigonometric formulas. Because of the 0–component

is always zero, it is shown that any three–phase balanced ac signal can be mapped into a two dimensional

space by means of a dq0–transformation. Let then:

ϑ(t) = α(t)− ϕ0,

where ϕ0 is constant. With this choice the dq0–transformed signal is given by:

xdq0 =

X̄d

X̄q

X̄0

 =

√
3

2
X

sin(ϕ0)

cos(ϕ0)

0

 ,
that is also constant. Recalling then Definition 2.2.2, it this easy to see that the original three–phase

ac signal can be transformed into a two–dimensional signal, where both components are of dc–type.

Because in this work we focus exclusively on system driven by balanced three–phase ac and dc

signals, we find convenient to define the following transformation Tdq : S→ R2×3, with:

Tdq(ϑ) :=

√
2

3

[
cos(ϑ) cos(ϑ− 2

3π) cos(ϑ+ 2
3π)

sin(ϑ) sin(ϑ− 2
3π) sin(ϑ+ 2

3π)

]
,
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that applied to a balanced three–phase ac signal x3φ, gives the following dq–transformed signal

xdq =

[
Xd

Xq

]
= Tdq(ϑ)x3φ =

√
3

2
X

[
sin(α− ϑ)

cos(α− ϑ)

]
.

2.2.4 Representation of ac signals in the complex domain

We now recall some fundamental notions about representation of ac signals in the complex domain. A

very common waveform for electric ac signals, single–phase or three–phase, is of sinusoidal type of the

following form3:

x(t) = X cos(ωt+ ϕ), (2.2.2)

where X, ω, ϕ are respectively the amplitude, the (costant) frequency and the phase shift of the

sinusoidal ac signal. If we consider X and ϕ as the polar coordinates of a point p in a two–dimensional

plane, it is obvious that there is a one–to–one mapping between the function (2.2.2) and the point p.

Such a plane is usually called phasor (complex) domain and the quantity:

X = Xejϕ, (2.2.3)

is called the phasor of the function (2.2.2).

It is possible to determine a clear relationship between the function x(t) and the correspondent phasor

X. Using Euler’s formula we have indeed:

x(t) = X cos(ωt+ ϕ) = X
ej(ωt+ϕ) + e−j(ωt+ϕ)

2
, (2.2.4)

from which follows

x(t) =
Xejωt + X?e−jωt

2
= Re{Xejωt}. (2.2.5)

We next provide voltage–current characteristics for resistive, inductive and capacitive elements in

the phasors domain, as available in basic textbooks of electrotechnics, see for example [109].

Resistive. The voltage-current time-domain relation of a purely resistive element is given by Ohm’s

law

v(t) = Ri(t) or i(t) = Gv(t), G :=
1

R
, (2.2.6)

with R, G called respectively the resistance and the conductance of the element. The correspondent

voltage-current phasors–domain relation is given by

V = RI. (2.2.7)

Inductive. The voltage-current time-domain relation of a purely inductive element is given by the

ordinary differential equation

Li̇(t) = v(t), (2.2.8)

with L called the inductance of the element. The correspondent voltage-current phasors-domain relation

is given by

V = jXLI, XL := ωL,

3A purely sinusoidal signal can be always rewritten as a cosinusoidal signal.
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where XL is called inductive reactance.

Capacitive. The voltage-current time-domain relation of a purely capacitive element is given by

the ordinary differential equation

Cv̇(t) = i(t), (2.2.9)

with L called the inductance of the element. The correspondent voltage-current phasors-domain relation

is given by

V = jXCI, XC := − 1

ωC

where XC is called capacitive reactance.

Generalized impedance. The complex number:

Z := R+ jX, (2.2.10)

where R is a resistance and X is a sum of reactances, that is

X :=

nC∑
i=1

XC,i +

nL∑
k=1

XL,k,

is called a generalized impedance. The complex number

Y :=
1

Z
, (2.2.11)

is called a generalized admittance. Noting that Y is also a complex number, it can be rewritten as:

Y = G+ jB, (2.2.12)

where G, B are called respectively conductance and susceptance of the generalized admittance.

2.2.5 Power definitions

Consider a power unit with voltage–current generalized variables pair (v(t), i(t)). The power, in a strict

physical sense, is defined as the rate of absorbing work W through the port, that is:

P (t) :=
dW (t)

dt
=
dW

dq

dq

dt
= v(t) · i(t), (2.2.13)

where q represent the electrical charge. This signal in general a time-varying signal and is usually called

instantaneous power.

However, it is well–known that instantaneous power is not sufficient to describe the power behavior

of three–phase power units, because of the existence of terms representing the nonactive power, due

to the oscillations associated to storage elements [109]. Hence, we introduce the following definitions

of instantaneous active, reactive and apparent power under balanced, but not necessarily steady-state,
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conditions. Let the following pair of balanced three–phase voltage and current:

v3φ(t) =
√

2V (t)

 sin(αV (t))

sin(αV (t)− 2
3π)

sin(αV (t) + 2
3π)

 , i3φ(t) =
√

2I(t)

 sin(αI(t))

sin(αI(t)− 2
3π)

sin(αI(t) + 2
3π)

 , (2.2.14)

where αV : R+ → S, αI : R+ → S are the phase angles, and
√

2V : R+ → R+,
√

2I : R+ → R the

amplitude of the voltage and current signals. Using the dq–transformation introduced in Subsection

2.2.3, it is easy to obtain the dq–transformed signals:

vdq =

[
Vd

Vq

]
=
√

3V (t)

[
sin(αV (t)− ϑ(t))

sin(αV (t)− ϑ(t))

]
, vdq =

[
Id

Iq

]
=
√

3I(t)

[
sin(αI(t)− ϑ(t))

sin(αI(t)− ϑ(t))

]
. (2.2.15)

We now introduce the following definition, that are based on [6, 140].

Definition 2.2.7. Let vdq(t) and idq(t) be given by (2.2.15). The instantaneous three-phase active

power is defined as

P (t) := v>dq(t)idq(t) = Vd(t)Id(t) + Vq(t)Iq(t). (2.2.16)

The instantaneous three-phase reactive power is defined as

Q(t) := v>dq(t)J2idq(t) = Vd(t)Iq(t)− Vq(t)Id(t). (2.2.17)

Finally, the instantaneous three-phase (complex) apparent power is defined as

S(t) := P (t) + jQ(t). (2.2.18)
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Chapter 3

Modeling of electric power systems

3.1 Introduction

3.1.1 Motivation

Market liberalization and the ever increasing electricity demand have forced the power systems to oper-

ate under highly stressed conditions. This situation has led to the need to revisit the existing modeling,

analysis and control techniques that enable the power system to withstand unexpected contingencies

without experiencing voltage or transient instabilities. At the network level power engineers used re-

duced network models (RNM) where the system is viewed as an n–port described by a set of ordinary

differential equations. RNMs do not retain the identity of the network components and induces non–

negligible values to the conductances which hinders present energy–like functions for stability analysis

and also complicates controller design. Even for constant impedance loads terminated to ground at the

load buses the analysis becomes quite difficult with RNMs due to transfer conductances appearing in

reduced admittance matrices. The concept of energy functions in the presence of transfer conductances

is not clear. In order to overcome the aforementioned difficulties in RNMs, structure preserving models

(SPM) were first proposed in [16], and later refined in [157] (for a review see [162]). In SPMs the struc-

ture remains intact and complete with load buses paving the way for easy inclusion of nonlinear loads

[77]. SPMs foster the approach to view the entire network as the power–preserving interconnections

of its components such as generators, transmission lines and loads whose dissipativity–based proper-

ties may be added to study the overall system’s stability. The SPMs consists of differential algebraic

equations (DAEs). In [73] SPM with nonlinear loads have been used with the singular perturbation

approach, in which the algebraic equations are considered as a limit of fast dynamics to calculate an

L2–gain disturbance attenuation control. The network was assumed to be lossless. The approach of fast

dynamics is used in order to circumvent the singular properties in the nonlinear differential algebraic

system. In [39] SPM is used to design a globally convergent controller for the transient stability of

multi–machine power systems. At the synchronous generator level, power engineers used simplified,

reduced order, models that neglect some fast transients and losses (see [41]). In particular, it is as-

sumed that the electrical magnitudes can be represented via (first harmonic) phasors, and the generator

dynamics is reduced to a second or a third order model. On the other hand, these reductions may result

in loss of physical structure, leading to some approximate rationalizations of the new quantities, e.g.,

the concept of “voltage behind the reactance”. The urge to develop a complete nonlinear, structure

preserving model which is useful for studying power system stability still exists. Furthermore, with

31
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the recent developments in various types of renewable energy–sources and energy–storing devices there

is a strong need for a unifying modeling framework which can treat different components on an equal

footing.

3.1.2 Main contributions

This chapter is dedicated to introduce a novel, generalized approach for the modeling of electric power

systems, that is based on two main mathematical tools that have been introduced in the previous

chapter: graph theory for the description of the circuit topology and the port–Hamiltonian framework

for the description of the power units. The remainder of the chapter is organized as follows. First of all, in

Section 3.2, a qualitative classification of components constituting an electric power system is provided.

In Section 3.3 we then present a procedure for the description of the power system topology, based on

linear graph theory. The generalized port–Hamiltonian models of the power units are introduced in

Section 3.4. The overall model, that is obtained by combining the mentioned graph description and the

individual port–Hamiltonian models of the power units, is finally presented in Section 3.5.

3.2 Classification

An electric power system is a complex physical system that is employed for generation, transmission

and utilization of electricity. It is traditionally defined as the interconnection of smaller subsystems

that belong to the following macro categories [96, 7]:

- generation

- transmission, sub–transmission and distribution

- utilization.

An example of such a classification is illustrated in Fig. 3.1. It is also common to refer to the transmis-

sion, sub–transmission and distribution category as the network subsystem. This classification stems

from the traditional architecture of electric power systems, that has been for a long time dominated by

a few type of components: large–size fuel–based ac synchronous generators for the generation, passive

loads for the utilization, lossy transmission lines and passive transformers for the network. However, be-

cause of the unrelenting penetration of renewable energy sources, the recent advancements in switched

power electronics and the diversification of modern power loads, this scenario is rapidly mutating

[151, 50]. This fact adds particular value to the modeling approach that we propose in the next sec-

tions, since it provides a unifying framework which can treat different components on an equal footing.

All this considered, the purpose of this chapter is not to give an overarching collection of specific models

for any subsystem that may constitute a modern power system — this being burdensome considering

the wide variety of scenarios — but more likely to provide a generalized approach for the description of

power systems using the fundamental notions of energy and port. To simplify the presentation of our

results, we make the following assumption.

Assumption 3.2.1. Interactions between subsystems occur through ports of the same dimension p and

are fully determined by power preserving interconnection laws.

This assumption is equivalent to assume that all interconnections between power units occur through

the same number of phases p and that no power is dissipated through them, i.e. any interconnection

law between two subsystems need to verify (2.1.5). Standard architectures are typically cosntituted by
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Figure 3.1: Standard classification of a traditional electric power system [96].

three–phase (p = 3), single–phase (p = 1), or a mix of three–phase and single–phase interconnections,

the last implying that the value of p may change depending on the point of interconnection considered.

Although we consider only the case in which p is the same at all interconnection points, it will result

clear from the next subsections that the modeling procedure can be easily extended to the mixed general

case with no loss of generality.

We propose to classify power units according to the traditional paradigm generation–transmission–

utilization. Hence, we assume that units can be generation or utilization units, that correspond respec-

tively to units injecting a relevant amount of power into the environment or absorbing a relevant power

from the environment — over a given period of time. If the amount of power injected or absorbed is

little compared with the amount injected or absorbed by the other generation and utilization units,

such units are referred as transmission units.
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Remark 3.2.2. It is obvious that the adopted classification provides only a qualitative characterization

of the power units. As a matter of fact — when a mode of operation is not a priori fixed — a power

unit may operate alternatively as a generation or as an utilization unit. Different classifications can

be then considered, depending on the purpose of the analysis. For instance, units can be classified in

terms of their controllability or regrouped according to analogous modes of operation.

3.3 Circuit topology: a graph description

An electric power system can be viewed as an unweighted directed graph G↑ where power units corre-

spond to edges and buses correspond to nodes. Based on the mentioned classification we call a bus: a

generation bus when a generation unit is connected to it; an utilization bus when an utilization unit is

connected to it; a transmission bus when nor generation nor utilization units are connected to it. All

buses associate a potential and we call a bus a reference bus when all the potential of the buses in the

power system are measured with respect to it. The reference bus is assumed to be at ground potential.

The generation, utilization and reference buses are boundary buses, while the transmission buses are

interior buses. Because it is always possible to eliminate these interior buses through a process, that is

called Kron–reduction [42, 160], we make the following assumption.

Assumption 3.3.1. The graph G↑ has no interior nodes.

Let there be g generation buses and r utilization buses and one reference bus. Then the total number

of buses (nodes) of the power system (graph) is n + 1, with n = g + r. Without loss of generality we

assume that the set of nodes N can be partitioned into three ordered subsets called NG, NR and the

one–element set N0 associated to generation, utilization nodes and the reference node respectively. We

call V ∈ Rn+1 the vector of node potentials. There is a generation edge — associated to a generation unit

— between every generation node and the reference node and there is an utilization edge — associated

to an utilization unit — between the utilization node and the reference node. It is a standard practice

to define power units such that their interaction with the environment is modeled by a voltage capacitor

at the given bus of interconnection. Nevertheless, as there might be several power units attached at the

same bus, this will result in the parallel connection of a certain number of capacitors at the bus. For

simplicity then, and with no loss of generality, we make the following assumption.

Assumption 3.3.2. All (possibly lossy) capacitors in parallel connection at a given bus are replaced

by an equivalent capacitor, whose dynamics are fully described by a capacitor edge.

Consequently, all capacitors that are shared by power units at their point of interconnection can

be safely neglected and there is an equivalent capacitor edge between every generation or utilization

node and the reference node. Therefore there are in total g generation, r utilization and g+ r capacitor

edges. Let there be t the number of transmission edges — associated to transmission units — that

connect generation and utilization buses. Hence there are in total m = 2g + 2r + t edges. Without loss

of generality we assume that the set of edges E can be partitioned into four ordered subsets called EG,

ER, ET , EC , associated to generation, utilization, transmission and capacitor edges respectively. We

call (Ve, Ie) ∈ Rm × Rm the vectors pair associated to edge voltages and currents respectively. Note

that because of Assumption 3.2.1 implies that all power units share a port of the same dimension p,

each node/edge defined above corresponds to p nodes/edges representing the different phases. Hence,

all the definitions provided hold modulo p, where p is the (uniform) number of phases. Then, under

Assumption 3.2.1, Assumption 3.3.1 and Assumption 3.3.2, the topology of the electric power system
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is fully described by a directed graph G↑ to which are associated the vectors V, Ve, Ie and the following

one–phase incidence matrix:

B =

 Ig 0 BG Ig 0

0 Ir BR 0 Ir
−1>g −1>g 0 −1>r −1>r

 ∈ R(n+1)×m. (3.3.1)

The submatrix

Bnet = B(G↑net) =

[
BG
BR

]
∈ Rn×t, (3.3.2)

represents the one–phase incidence matrix of the sub–graph G↑net, that is obtained by eliminating the

reference node and edges that are connected to it. The incidence matrix Bnet thus captures the infor-

mation about the interconnection structure of generation and utilization units, i.e. the interconnection

structure of the network. To avoid confusion, in the sequel we refer to: G and B as the power system

graph and the power system incidence matrix ; to Gnet and Bnet as the network graph and the network

incidence matrix. The latter in particular plays a significant role in the construction of network reduced

models, see for example Section 4.8 in Chapter 4, where this is investigated for the specific case of

high–voltage direct current transmission systems. An example of graph, that corresponds to the power

system depicted in Fig. 3.1 is provided in Fig. 3.2.

Remark 3.3.3. A similar graph–based description can be obtained using bond graph theory, as developed

in [180]. This has the interesting feature to lead naturally to the formulation of a port–Hamiltonian

representation of the power units [43].

3.4 Power units as edges: a port–Hamiltonian representation

3.4.1 Generation edge

According to the mentioned classification we call a generation unit i a power unit that injects a relevant

amount of power into the network to which it is connected through a port of dimension pi. Using

Assumption 3.2.1 we have pi = p. There are g generation units, the totality of which constitutes

the generation subsystem. In order to describe the dynamics of the generation edges we consider a

port–Hamiltonian system of the form (2.1.1), that is

Si : i ∼ EG



ẋi = (Ji −Ri)∇Hi(xi) + giui +Givi +G0,iσ0,i

ii = G>i ∇Hi(xi)

y0,i = G>0,i∇Hi(xi)

0 = wi(σ0,i, y0,i),

(3.4.1)

with: state space vector xi ∈ Rni ; Hamiltonian energy function Hi : Rni → R; control input vector

ui ∈ Rmi ; conjugated interaction port variables (vi, ii) ∈ Rp×Rp; conjugated generation port variables

(σ0,i, y0,i) ∈ Rp0,i ×Rp0,i and generation characteristic function wi : Rp0,i ×Rp0,i → Rp0,i . Matrices can

be state–dependent and are defined as follows: interconnection, dissipation matrices Ji,Ri ∈ Rni×ni ;

control matrix gi ∈ Rni×mi , interaction port matrix Gi ∈ Rni×p and generation port matrix G0,i ∈
Rni×p0,i .

Generation characteristic is usually a complex, possibly time–varying, function of the generation
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Figure 3.2: Graph of the power system depicted in Fig. 3.1. Nodes are represented by circles and
edges are represented by lines. Unfilled circles represent the reference node, that is shown multiple
time for aesthetic reasons. Green, red, black and blue lines denote respectively generation, utilization,
transmission and capacitor edges. The network graph can be simply obtained by removing the colored
edges and the unfilled circles.

port variables σ0,i, y0,i, see for example Fig. 3.3, where characteristic functions of a wind energy

system and a solar cell are illustrated. Nevertheless, in many cases some simplifications can be made

and assumed that the generation characteristic function is simply defined as a constant source, that is

equivalent to have:

wi(σ0,i, y0,i) = σ0,i − E0,i,

where E0,i ∈ Rp is a p–phases source. In literature there exists many examples of generation units

that can be represented by (3.4.1) and include multiphysics three–phase ac, purely dc, or hybrid dc/ac

systems [182, 53], see for example [11], [52] for synchronous generators, [49] for a generalized class of

power converters, [12], [174] for induction machines and the excellent book [43] for an overview on

different generation models.

3.4.2 Utilization edge

We call a utilization unit i a power unit that absorbs a relevant amount of power from the network to

which it is connected through a port of dimension pi. Using Assumption 3.2.1 we have pi = p. There
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(a) Torque–speed characteristic of a wind turbine
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with (σ0, y0) = (i, v).

Figure 3.3: Examples of generation characteristic functions.
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(a) Torque–speed characteristic of a motor with
(σ0, y0) = (T, ω).
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(b) Current–voltage characteristic of an active load
with (σ0, y0) = (i, v).

Figure 3.4: Examples of utilization characteristic functions.

are r utilization units, the totality of which constitutes the utilization subsystem. In order to describe

the dynamics of the utilization edges we consider a port–Hamiltonian system of the form (2.1.1), that

is

Si : i ∼ ER



ẋi = (Ji −Ri)∇Hi(xi) + giui +Givi +G0,iσ0,i,

ii = G>i ∇Hi(xi)

y0,i = G>0,i∇Hi(xi)

0 = wi(σ0,i, y0,i),

(3.4.2)

with: state space vector xi ∈ Rni ; Hamiltonian energy function Hi : Rni → R; control input vector

ui ∈ Rmi ; conjugated interaction port variables (vi, ii) ∈ Rp ×Rp; conjugated utilization port variables

(σ0,i, y0,i) ∈ Rp0,i×Rp0,i and utilization characteristic function wi : Rp0,i×Rp0,i → Rp0,i . Matrices can be

state–dependent and are defined as follows: interconnection, dissipation matrices Ji,Ri ∈ Rni×ni ; con-

trol matrix gi ∈ Rni×mi , interaction port matrix Gi ∈ Rni×p and utilization port matrix G0,i ∈ Rni×p0,i .

Similarly to generation, utilization characteristic is usually a complex, possibly time–varying, func-

tion of the utilization port variables σ0,i, y0,i, see for example Fig. 3.4, where the utlization characteristic

of a motor and a constant power load, are illustrated. This generalized model is well–suited to repre-

sent passive loads (gi = 0), either three–phase ac or purely dc, static or dynamic, among which the

ubiquitous ZIP models [96], see for example Chapter 4, where the latter are employed for the (reduced)

modeling of voltage–controlled units in hvdc transmission systems. On the other hand, the inclusion of

a control input vector (gi 6= 0) further allows to encompass models of active loads.
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3.4.3 Transmission edge

We call a transmission unit i is a power unit that absorbs or inject a little amount of power — compared

to generation and utilization units — from the network to which it is connected through a port of

dimension pi. Using Assumption 3.2.1 we have pi = p. There are t transmission units, the totality of

which, together with the bus capacitors, constitute the network subsystem. In order to describe the

dynamics of the transmission edges we consider a port–Hamiltonian system of the form (2.1.1), that is

Si : i ∼ ET

{
ẋi = (Ji −Ri)∇Hi(xi) + giui +Givi

ii = G>i ∇Hi(xi),
(3.4.3)

with: state space vector xi ∈ Rni ; Hamiltonian energy function Hi : Rni → R; control input

vector ui ∈ Rmi and conjugated interaction port variables (σi, yi) ∈ Rp × Rp. Matrices can be state–

dependent and are defined as follows: interconnection, dissipation matrices Ji,Ri ∈ Rni×ni ; control

matrix gi ∈ Rni×mi and interaction port matrix Gi ∈ Rni×p.

This generalized model is well–suited to represent standard lumped models of transmission lines —

including multi–cell lines — conventional transformers, either three–phase ac or purely dc [43, 53]. The

inclusion of a control input vector (gi 6= 0) further allows to model flexible transmission devices [108]

and controllable transformers. Nevertheless, although there exists a great variety of transmission units,

the majority of transmission units composing a power system are power transmission lines. For their

modeling, π–models are largely diffused in literature [7]. We then make the following assumption.

Assumption 3.4.1. All transmission units are power transmission lines that can be described by single–

cell π–models.

A circuit representation of standard, single–cell, lossy π–model is illustrated in Fig. 3.5. The model

consists in the interconnection of elementary (linear) power units: an RL unit (resistance connected in

series with an inductor) in parallel connection with shunt RC units (resistance connected in parallel

with a capacitor). Recalling Assumption 3.3.2, we can build the model of the correspondent edge by

Figure 3.5: π–model of a transmission unit.

removing the lossy capacitors situated at both end of the π–model — that are included in the capacitor

edges — so that the model reduces to a simple RL unit. At this point, the model of the i–th RL unit
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is simply given by the following port–Hamiltonian system:

Si : i ∼ ET

{
ψ̇i = −(Ri ⊗ Ip)∇Hi(ψi) + vi

ii = ∇Hi(ψi),
(3.4.4)

with Hamiltonian energy function Hi : Rp → R:

Hi(ψi) :=
1

2
ψ>i (Li ⊗ Ip)−1ψi, (3.4.5)

where Li, Ri ∈ Rp×p are phase inductance, resistance respectively, the state ψi ∈ Rp is the magnetic

flux in the inductor, the conjugated interaction port variables (vi, ii) ∈ Rp × Rp are respectively the

voltages across and the current through the inductor.

3.4.4 Capacitor edge

A lossy capacitor i characterizes the dynamics at the bus that interfaces a generation or utilization unit

to the network through a port of dimension pi = ni . Using Assumption 3.2.1 we have ni = p. There

are g+ r bus capacitors of which g are associated to generation buses and r are associated to utilization

buses. As already noted, the totality of bus capacitors, together with the transmission units, constitute

the network susbsystem. The model of a single bus capacitor is given by the following port–Hamiltonian

system Si of the form

Si : i ∼ EC

{
q̇i = −(Gi ⊗ Ip)∇Hi(qi) + ii

vi = ∇Hi(qi),
(3.4.6)

with Hamiltonian energy function Hi : Rp → R:

Hi(qi) :=
1

2
q>i (Ci ⊗ Ip)−1qi, (3.4.7)

where Ci, Gi ∈ Rp×p are p–phases capacitance, conductance respectively, the state qi ∈ Rp are

the electric charges in the capacitor, the conjugated interaction port variables (ii, vi) ∈ Rp × Rp are

respectively the current through and voltage across the capacitor.

3.5 Overall system

3.5.1 Aggregated models

To obtain a full model of the interconnected system we consider a directed graph G↑ and the associated

p–phases incidence matrix B ⊗ Ip, that is defined by (3.3.1). Then, we need the aggregated models of

the edges, that are the aggregated models of the generation, utilization, transmission units and of the

bus capacitors.

Generation edges

The aggregated model of the generation edges can be obtained collecting the port–Hamiltonian systems

Si with i ∼ EG given by (3.4.1). Let the numbers

ng :=

g∑
i=1

ni, mg :=

g∑
i=1

mi, pg0 :=

g∑
i=1

pG,i,



40 CHAPTER 3. MODELING OF ELECTRIC POWER SYSTEMS

the aggregated vectors

xG : = col(xi) ∈ Rng , vG := col(σi) ∈ Rpg, iG := col(yi) ∈ Rpg

uG : = col(ui) ∈ Rmg , σG0
:= col(σ0,i) ∈ Rpg0 , yG0

:= col(y0,i) ∈ Rpg0 ,

the interconnection and dissipation matrices

JG := bdiag{Ji} ∈ Rng×ng , RG := bdiag{Ri} ∈ Rng×ng ,

the control input and interaction port matrices

gG := bdiag{gi} ∈ Rng×mg , GG := bdiag{Gi} ∈ Rng×pg, GG0 := bdiag{Gi} ∈ Rng×pg0

and the total Hamiltonian function HG : Rng → R and the generation characteristic function

wG : Rpg0 × Rpg0 → Rpg0 :

HG(xG) :=

g∑
i=1

Hi(xi), wG := col(wi). (3.5.1)

The aggregated model of the generation edges can be then written as

SG :



ẋG = (JG −RG)∇HG(xG) + gGuG +GGvG +GG0σG0

iG = G>G∇HG(xG)

yG0
= G>G0

∇HG(xG)

0 = wG(σG0
, yG0

).

(3.5.2)

Utilization edges

The aggregated model of the utilization edges can be obtained collecting the port–Hamiltonian systems

Si with i ∼ ER given by (3.4.2). Let the numbers

nr :=

g+r∑
i=g+1

ni, mr :=

g+r∑
i=g+1

mi, pr0 :=

g+r∑
i=g+1

p0,i,

the aggregated vectors

xR : = col(xi) ∈ Rnr , vR := col(σi) ∈ Rpr, iR := col(yi) ∈ Rpg

uR : = col(ui) ∈ Rmr , σR0
:= col(σ0,i) ∈ Rpr0 , yR0

:= col(y0,i) ∈ Rpr0 ,

the interconnection and dissipation matrices

JR := bdiag{Ji} ∈ Rnr×nr , RR := bdiag{Ri} ∈ Rnr×nr ,

the control input and interaction port matrices

gR := bdiag{gi} ∈ Rnr×mr , GR := bdiag{Gi} ∈ Rnr×pr, GR0
:= bdiag{Gi} ∈ Rng×pr0

and the total Hamiltonian function HR : Rnr → R and the utilization characteristic function wG :
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Rpr0 × Rpr0 → Rpr0 :

HR(xR) :=

g+r∑
i=g+1

Hi(xi), wR := col(wi) (3.5.3)

The aggregated model of the utilization edges can be then written as

SR :



ẋR = (JR −RR)∇HR(xR) + gRuR +GRvR +GG0
σG0

iR = G>R∇HR(xR)

yR0 = G>R0
∇HR(xR)

0 = wR(σR0
, yR0

).

(3.5.4)

Transmission edges

Under Assumption 3.4.1, the aggregated model of the transmission edges can be thus obtained collecting

the port–Hamiltonian systems Si with i ∼ ET given by (3.4.4). Let the aggregated vectors

ψT := col(ψi) ∈ Rpt, vT := col(vi) ∈ Rpt, iT := col(ii) ∈ Rpt,

the dissipation matrix

RT := bdiag{Ri ⊗ Ip} ∈ Rpt×pt

and the total Hamiltonian function HT : Rpt → R:

HT (ψT ) :=

g+r+t∑
i=g+r+1

Hi(ψi). (3.5.5)

The aggregated model of the transmission edges can be then written as

ST :

{
ψ̇T = −RT∇HT (ψT ) + vT

iT = ∇HT (xT ).
(3.5.6)

Capacitor edges

Recalling that capacitors can be connected either to generation either to utilization buses, let partition

the set of edges EC in two ordered subsets ECg, ECr. Hence, the aggregated models can be obtained

collecting the port–Hamiltonian systems (3.4.6). Let i ∼ ECg, k ∼ ECr, the aggregated vectors

qg := col(qi) ∈ Rpg, ig := col(vi) ∈ Rpg, vg := col(ii) ∈ Rpg

qr := col(qk) ∈ Rpr, ir := col(vk) ∈ Rpr, vr := col(ik) ∈ Rpr

the dissipation matrices

Rg := bdiag{Ri ⊗ Ip} ∈ Rpg×pg, Rr := bdiag{Rk ⊗ Ip} ∈ Rpr×pr, (3.5.7)

and the total Hamiltonian functions Hg : Rpg → R, Hr : Rpr → R:

Hg :=

2g+r+t∑
i=g+r+t+1

Hi(qi), Hr :=

m∑
k=2g+r+t+1

Hk(qk). (3.5.8)
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The aggregated model of the capacitor edges can be then written as

SC :



q̇g = −Rg∇Hg(qg) + ig

q̇r = −Rr∇Hr(qr) + ir

vg = ∇Hg(qg)

vr = ∇Hr(qr).

(3.5.9)

3.5.2 Interconnected model

Collecting the aggregated models (3.5.2), (3.5.4), (3.5.6) and (3.5.9), we get then:1

ẋG = (JG −RG)∇HG + gGuG +GGvG +GG0
σG0

(3.5.10)

ẋR = (JR −RR)∇HR + gRuR +GRvR +GR0
σR0

(3.5.11)

ψ̇T = −RT∇HT + vT (3.5.12)

q̇g = −Rg∇Hg + ig (3.5.13)

q̇r = −Rr∇Hr + ir (3.5.14)

iG = G>G∇HG (3.5.15)

iR = G>R∇HR (3.5.16)

iT = ∇HT (3.5.17)

vg = ∇Hg (3.5.18)

vr = ∇Hr (3.5.19)

yG0 = G>G0
∇HG (3.5.20)

yR0 = G>R0
∇HR (3.5.21)

0 = wG(σG0
, yG0

) (3.5.22)

0 = wR(σR0
, yR0

). (3.5.23)

Let the numbers

n := ng + nr + p(g + r + t), m := mg +mr, p0 := pg0 + pr0 .

Then (3.5.10)–(3.5.23) can be rewritten in compact form as

ẋ = (J −R)∇H(x) + gu+Gσ +G0σ0

y = G>∇H(x)

y0 = G>0 ∇H(x)

0 = w(σ0, y0),

(3.5.24)

with state vector x := col(xG, xR, ψT , qg, qr) ∈ Rn, control input vector u := col(uG, uR) ∈
Rm, conjugated interaction port variables (σ, y) ∈ Rpm × Rpm, with σ := col(vG, vR, vT , ig, ir), y :=

col(iG, iR, iT , vg, vr), counjugated generation/utilization port variables (σ0, y0) ∈ Rp0 ×Rp0 , with σ0 :=

col(σG0
, σR0

), y0 := col(yG0
, yR0

), interconnection and dissipation matrices

J := bdiag{JG,JR, 0, 0, 0}, R := bdiag{RG,RR,RT ,Rg,Rr},
1The dependence of the Hamiltonian functions from the state is here omitted to enhance readability.
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the control input and interaction port matrices

g :=


gG 0

0 gR

0 0

0 0

0 0

 , G :=


GG 0 0 0 0

0 GR 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

 , G0 :=


GG0

0

0 GR0

0 0

0 0

0 0


of appropriate dimension, the total Hamiltonian energy function H : Rn → R, with:

H(x) := HG +HR +HT +Hg +Hr (3.5.25)

and the function w := col(wG, wR).

From Assumption 3.3.2, we have that all the capacitors that are shared by power units at their port

are removed and included in the bus capacitors dynamics, from which follows that the ouputs of the

power units have the physical dimension of a current, while the outputs of the bus capacitors have the

dimension of a voltage. Hence, clearly vG, vR, vT , vg and vr have the dimension of a voltage, while iG,

iR, iT , ig and ir have the dimension of a current. Also, recalling Assumption 3.2.1, all ports have the

same dimension. We consider the reference node to be at ground potential and define the node and

edge vectors:

V :=

VGVR
0

 ∈ Rn+1, Ve :=


vG

vR

vT

vg

vr

 ∈ Rm, Ie :=


iG

iR

iT

ig

ir

 ∈ Rm. (3.5.26)

Using Kirckhhoff’s current and voltage laws we get then [160]:

[KCL] 0n+1 = (B ⊗ Ip)Ie, [KVL] Ve = (B ⊗ Ip)>V. (3.5.27)

Then, recalling the definition of incidence matrix given in (3.3.1), we have

[KCL]


0 = iG + (BG ⊗ Ip)iT + ig

0 = iR + (BR ⊗ Ip)iT + ir

0 = 1>gpiG + 1>rpiR + 1>gpig + 1>rpir

[KVL]



vG = VG
vR = VR
vT = (BG ⊗ Ip)>VG + (BR ⊗ Ip)>VR
vg = VG
vr = VR

(3.5.28)

After some manipulations, we obtain the overall interconnection laws

σ = Iy, (3.5.29)
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with

I :=


0 0 0 Ig 0

0 0 0 0 Ir
0 0 0 B>G B>R
−Ig 0 −BG 0 0

0 −Ir −BR 0 0

⊗ Ip ∈ Rpm×pm. (3.5.30)

Note that the obtained interconnection laws are power preserving. In fact

σ>y = y>I>y = 0, (3.5.31)

where the second equivalence follows from skew–symmetry of I. It now suffices to replace (3.5.29) into

(3.5.24) to obtain:

ẋ = (J −R+GIG>)∇H(x) + gu+G0σ0

y0 = G>0 ∇H(x)

0 = w(σ0, y0),

(3.5.32)

that is the overall interconnected port–Hamiltonian model of the electric power system.

Remark 3.5.1. Noting that I is a skew–symmetric matrix, it follows that also J0 := GIG> is skew–

symmetric. Hence, with this new definition the system can be written in the standard port–Hamiltonian

form (2.1.1).

Remark 3.5.2. The overall system satisfies the power balance equation

Ḣ = −(∇H)>R∇H+ (∇H)>gu+ (∇H)>G0σ0, (3.5.33)

with 0 = w(σ0, y0), where the term:

- Ḣ accounts for the stored power;

- (∇H)>R∇H represents the dissipated power;

- (∇H)>gu represents the controlled power;

- (∇H)>G0σ0 represents the difference between supplied and absorbed power.

Remark 3.5.3. Although a port–Hamiltonian representation of the individual power units is in general

more suitable for an energy–based analysis of the electric power system, a standard state–space repre-

sentation can be obtained with no loss of generality. For, it suffices to calculate an explicit expression of

the gradient of the Hamiltonian function, while preserving the same interaction ports characterization.

The invidual units can be then interconnected using the same modeling procedure.



Chapter 4

Hvdc transmission systems

4.1 Introduction

4.1.1 Motivation

As is well known, ac systems are overwhelmingly dominant over the alternative dc option in the electrical

power industry. See [57] for a vivid account of this debate, which stretches back to the famous Edison-

–Tesla “war of the current”, and [71] for a more technical discussion. However, this configuration is

rapidly changing in the XXI–st century with dc systems playing an ever increasing role in the overall

power systems scenario. The reasons for this change are manifold.

i) A widespread utilization of renewable energy sources (RES), mainly based on wind and solar

power [50, 151, 83, 31]. These sources will be deployed either as small-scale sources in low-voltage

residential distribution networks [71, 80], either as aggregated sources located in remote areas

[57, 31].

ii) Improved efficiency due to decreased losses between dc sources and loads. Moreover, since dc are

rapidly replacing ac loads in residential distribution networks, dc networks becomes attractive

because they require less conversion stages [151, 71, 165].

iii) High–voltage dc transmission has significantly less (heat) losses than an equivalent ac system for

long distances and specially for submarine connections [165, 152].

All this considered, two architectural paradigms have recently attracted the attention of the research

community: dc microgrids [87, 128] and multi–terminal hvdc transmission systems [86, 61]. These new

architectures pose new challenging control problems, which significantly differ from the ones appearing

in traditional ac systems for the following reasons.

- The key building block of these architectures is the power converter, which is a highly nonlinear

device [130, 29, 90, 49] for which standard linear PI controllers yield below par performances [76].

- In traditional (large–scale, centralized, fuel–based) ac power systems there is a clear time–scale

separation between generation and transmission–distribution of power that considerably simplifies

the control task [131]. This property is absent in RES, which are small–sized and distributed.

The control problem is further complicated by the intermittent nature of RES.

- Traditional ac generation units can be practically considered to have an “infinite impedance”,

diminishing the effect of the loads, and allowing us to treat them as “closed systems” [96]. The

45
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loading effect in RES cannot be neglected leading to the problem of controlling a highly intercon-

nected nonlinear system.

- The ever increasing presence of nonlinear, e.g., constant power, loads invalidates the standard

assumption of linear impedance loads and poses new control theoretical questions [14, 97, 9].

4.1.2 Main contributions

Although many of the treated arguments have validity for generalized dc grids, this chapter focuses

exclusively on high–voltage direct–current (hvdc) transmission systems. The main objective is to con-

tribute, if modestly, towards the development of a general, theoretically–founded procedure for the

modeling, analysis and control of these systems. With the intention to bridge the gap between theory

and applications, one of the main concerns is to establish connections between existing engineering solu-

tions, usually derived via ad–hoc considerations, and the solutions stemming from theoretical analysis.

The main contributions are the following.

(C1) To propose a unified, physically motivated, modeling framework for hvdc transmission systems.

This framework is based on port–Hamiltonian models of the system components combined with a suit-

able graph theoretic representation of their interconnection, as illustrated in Chapter 3.

(C2) In the spirit of [76, 84, 130] it is proved that the incremental model of the hvdc transmission

system defines a passive map with respect to some suitably designed output. A consequence of this fun-

damental property is that a decentralized PI passivity–based controller (PBC) globally asymptotically

stabilizes (GAS) any assignable equilibrium, with no restriction imposed on the (positive) gains of the

PI–PBC. It is also shown that the proposed PI–PBC is closely related with Akagi’s PQ instantaneous

power method [5] that was derived (without a stability analysis) invoking power balance considerations

and is standard in applications.

(C3) It is well–known that passive systems are minimum phase and have relative degree one [27, 159].

Consequently, the attainable performance of a PI–PBC is limited by its associated zero dynamics. An-

other contribution of the paper is the proof that, in hvdc systems, the zero dynamics is “extremely

slow”, stymying the achievement of fast transient responses. On the other hand, it is also shown that

standard inner–loop controllers reported in the literature may exhibit unstable behavior because the

zero dynamics associated to the corresponding outputs are non–minimum phase.

(C4) Inspired by common engineering practice, an outer–loop that determines the PI–PBC reference

signals is added to improve the transient performance. This consists in a modification of the standard

PI–PBC, for which it is shown that the intrinsic performance limitation are overcome, further preserv-

ing global asymptotic stability.

(C5) Under a reasonable time–scale separation assumption, a reduced (nonlinear) model of the hvdc

transmission system — suitable for primary control analysis and design — is obtained. The obtained

model — that includes the model of the widely diffused voltage droop control [123, 70, 142, 65] — should

be contrasted with linear models usually employed for primary control analysis and design [8, 177].

(C6) A final contribution consists in the analysis of equilibria and stability of the reduced model. More
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precisely, conditions on existence of equilibria, power sharing and stability of an (assumed existent)

equilibrium point — dependent from the free primary control parameters — are established, thus de-

termining an appropriate procedure for the choice of the gains of the controller.

The remainder of the chapter is structured as follows. First of all, the hvdc transmission concept

is introduced in Section 4.2. The physical modeling of a wide class of hvdc systems — under some

reasonable assumptions — is developed in Section 4.3. The hierarchical control architecture is then

presented in Section 4.4, thus illustrating the four–layered structure of the control system. In Section

4.5 we provide a characterization of the assignable behavior of the system, that is instrumental for

the formulation of the tertiary control and the centralized reference calculator, also called secondary

control. Section 4.6 and Section 4.7 are then dedicated to the analysis and design of the “innermost

level” of control, that is called inner–loop control. A reduced model, suitable for primary control design,

followed by an analysis on existence of equilibria, power sharing and stability is presented in Section

4.8.

4.2 The hvdc transmission concept

Although the existing power systems architecture is dominantly ac, hvdc transmission systems are one

of the few dc options that always received great attention from the industry and the research community.

This is motivated by the clear disadvantages of ac transmission in terms of heat losses, when power is

transmitted over long distances. Ac transmission is indeed typically realized using overhead lines, the

inductive and capacitive elements of which puts limits to the transmission capacity and the transmission

distance [152]. Since ac cable usually have a maximum distance of 50 to 100 km, for longer distances

the hvdc transmission is then the only available option. On the other hand, for what concern costs, it

should be noted that ac systems usually employ a three–phase architecture, while in dc systems only

two conductors are necessary. Hence, for the transmission only a narrow power corridor is required.

Several applications make use of hvdc transmission technologies, among wich the most relevant are the

following.

- Integration — with small losses — of remotely located energy sources, such as hydro, off–shore

wind and solar power that are typically situated at hundreds or thousands of kilometers from load

centers [31, 61].

- Interconnection of ac grids, thus allowing for easy transfer of power between grids operating at

different frequencies and giving the possibility to tap into the line at intermediate points [57].

- Connection of densely populated urban centers with no need of overhead lines or connection of

islands via submarine connection [86, 57, 31].

Since the first prototypes, many technologies have been employed in hvdc transmission systems,

ranging from mercury arc valves, thyristors (also called current source converters) until the more recent

voltage source and multimodular converter technologies — that are based on IGBTs. In this work, we

focus on hvdc based on voltage source converters [173, 54]. There are many advantages in using this

new technology with respect to the traditional hvdc transmission systems based on line–commutated

thyristors [2]:

- Since the voltage source converter does not depend on line–commutation, all the four quadrants

of the PQ operating plane are possible.
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- Power reversal can be realized without changing polarity of the dc voltage.

- No need of an external voltage source for commutation.

- Improved controllability of active, reactive power and ac, dc voltages, thus giving a strong dynamic

enhancement to transient stability.

For more informations about development of hvdc during this last century and for a technical dis-

cussion on the advantages voltage source converters with respect to other technologies, the interested

reader is referred to [173, 152, 2, 54].

An example of a multi–terminal hvdc transmission system based on voltage source converters is

illustrated in Fig. 4.1. Ac subsystems are interfaced to the dc network through ac/dc voltage source

Off-shore WF Off-shore WF

Off-shore WF

Transformer

Transformer

Transformer

Transformer Transformer

VSC

VSC

VSCVSC

VSC

On-shore 
ac grid

On-shore
ac grid

Figure 4.1: Circuit scheme of a five–terminal hvdc transmission system.

converters, that are in their turn connected by dc transmission lines. Typical ac subsystem interfaced

via hdvc can be medium/high–voltage ac grids or renewable energy sources based on wind, hydro or

solar power. Converters are preceded by a transformer that step–up the voltage, a phase reactor and
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further equipped with filters on both ac and dc sides to mitigate harmonics propagation [37, 54, 96].

According to the traditional nomenclature [54, 93, 133], the converter subsystem, including transformer,

phase reactor and filters, is said an hvdc station or terminal, while the ensemble of dc tranmission lines

— called dc links — constitutes the hvdc network.

Terminals can be classified according to the characteristics of the associated ac subsystem. Then an

hvdc terminal is said to be: strongly connected, if the ac voltage at the point of interconnection remains

constant regardless of the power flowing through that point; weakly connected, if the ac voltage depends

on the power flowing through that point [1]. Ac systems can be defined as weak from two aspects: if

their impedance is high relative to their point of interconnection and if the mechanical inertia is inade-

quate relative to the dc power infeed [175]. Example of weak ac systems are large ac system connected

to hvdc at a weak point of interconnection or systems with a few numbers of rotating machines.

Figure 4.2: Radial and meshed topology of a multi–terminal hvdc transmission system.

There exist two possible schemes for the interconnection of terminals through the hvdc network.

Converters can be indeed parallel–connected, from which follows that they operate at the same voltage.

Or they can be series–connected, from which follows that the same current is flowing through the dc

links. Parallel scheme is the most popular and for this reason is the one considered in this work [96]. It

is typically characterized by a radial or a meshed topology [54, 26, 61], which are illustrated in Fig. 4.2.

The radial topology provides a common point of interconnection to which all terminals are connected.

This is the case for example of on–shore stations situated on opposite seacoasts while the off–shore

stations are placed in their middle [26, 94, 152, 181]. Nevertheless, in a radial topology any fault

occurring at a given tranmission line implies the total service interruption to the associated terminal.

In this work we consider the more suitable architecture in which the stations are directly connected

with lines, that corresponds to a meshed topology. In such a case it is in general possible to guarantee

no interruption of service because of the existence of different paths connecting the various terminals

[26].

4.3 Physical modeling

In Chapter 3 it was shown that generalized electric power systems can be represented by a directed

graph, where the power units correspond to edges and the buses correspond to nodes. Moreover, to

underscore the physical structure of the power units, it was employed a generalized port–Hamiltonian

representation. In this section the same procedure is applied to describe the dynamics of a multi–
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terminal hvdc transmission system based on voltage source converters. According to such a procedure

and in particular — under Assumption 3.4.1 — we consider only two types of power units: voltage

source converters and their attached ac subsystem (terminals) — that we call converter units — and

dc transmission lines — that are transmission units. We next provide a graph description of the system

topology and appropriate port–Hamiltonian models of the individual units.

4.3.1 Graph description

An hvdc transmission system can be viewed as an unweighted directed graph G↑ where power converters

and dc lines correspond to edges and buses correspond to nodes. We call a bus a converter bus when

a converter unit is connected to it and a transmission bus when no converter units are connected to

it. All buses associates a potential and we call a bus a reference bus when all buses potentials are

measured with respect to it. The reference bus is assumed to be at ground potential. Converter and

reference buses are boundary buses, while the transmission buses are interior buses. We further assume,

as in Chapter 3, that transmission (interior) buses are eliminated via Kron–reduction [42, 160], from

which follows that if c is the number of converter buses, then the total number of buses (nodes) is

c+1. Without loss of generality we assume that the set of nodes N can be partitioned into two ordered

subsets called NV SC and the one–element set N0, associated to converter nodes and the reference node

respectively. We call V ∈ Rc+1 the vector of node potentials. We also mentioned that is common

practice to define power units such that their interaction with the environment is modeled by a voltage

capacitor at their interaction port. In the case of hvdc systems it is easy to see that both converters and

tranmission units share a capacitor at the converter buses to which they are attached. For simplicity

then, we make the following assumption.

Assumption 4.3.1. All (possibly lossy) capacitors in parallel connection at a given bus are replaced

by an equivalent capacitor, whose dynamics is included in the power converter dynamics.

Consequently, all capacitors shared by tranmission units at their ports can be safely neglected, while

capacitors shared by voltage source converters need to be replaced by equivalent capacitors. Let t the

number of transmission edges — associated to transmission units — that connect converter buses. Since,

there is a converter edge between every converter bus and the reference bus, there are in total m = c+ t

edges. Without loss of generality we assume that the set of edges E can be partitioned into two ordered

subsets called EV SC and ET associated to converter edges and transmission edges respectively. We call

(Ve, Ie) ∈ Rm×Rm the vectors pair associated to edge voltages and currents respecitvely. The topology

of the hvdc transmission system is fully described by the directed graph G↑ to which are associated the

vectors V, Ve, Ie and the following incidence matrix

B =

[
Ic Bnet
−1>c 0

]
∈ R(c+1)×m. (4.3.1)

The submatrix Bnet ∈ Rc×t, represents the incidence matrix of the sub–graph G↑net, that is obtained by

eliminating the reference node and edges that are connected to it. The incidence matrix Bnet thus fully

captures the topology of the hvdc network. To avoid confusion we refer to G↑ as the hvdc transmission

system graph and to G↑net as the hvdc network graph.
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Figure 4.3: Circuit scheme of a three–phase voltage source converter, in abc coordinates.

4.3.2 Converter edges

From the switched to the averaged model

The circuit scheme of a three–phase two–level voltage source converter is depicted in Fig. 4.3. The

voltage source converter is characterized by six switches — that are supposed to be ideal (diodes

nonlinear dynamic neglected), bidirectional and mutually synchronized — and is connected to the ac

subsystem through a phase reactor and a transformer. Converters are further equipped with purely

capacitive filter on the ac side — located between the phase reactor and the transformer — and on

the dc side, see Fig. 4.3. These are usually provided to minimize ripples generated respectively in ac

currents and dc voltage. Nevertheless, several models proposed in literature do not consider the filter

bus on the ac side. In [37] it is shown that, although the value of the capacitance largely affects the ac

voltage amplitude, this has little effect on the values of active and reactive power. Hence, neglecting the

filter leads to slightly different results in stability studies. Another assumption is that three–phase line

voltages are balanced and that the neutral connection is neglected. While considering a bidirectional

power flow — an important requirement in hvdc transmission systems — the converter can operate in

two different modes: rectifier mode (turning ac energy into dc energy) and inverter mode (turning dc

energy into ac energy). To obtain the full model, we refer to the equivalent single phase circuit given

in Fig. 4.4, that consists in mutually coupled ac and dc circuits [170, 171, 156].

By direct application of Kirchhoff’s current and voltage laws we obtain the following differential

equations in abc coordinates:

LiI3i̇i = −RiI3ii + vac,i − v1,i

Civ̇C,i = −GivC,i + i2,i + iC,i.
(4.3.2)

For the ac circuit, ii ∈ R3 is the three–phase vector of inductor currents, vac,i ∈ R3 the three–phase

vector of input voltages, Li, Ri ∈ R respectively the (balanced) inductance and resistance. For the

dc circuit, vC,i ∈ R is the capacitor voltage, iC,i ∈ R the input current, Ci, Gi ∈ R respectively the

capacitance and conductance. The vector v1,i ∈ R3 and the scalar i2,i ∈ R are three–phase voltages

and dc current sources, mutually controlled, that describe the behavior of the switches. They are

related to inductor currents and capacitor voltage through the three–phase modulating variables mi =
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Figure 4.4: Equivalent circuit scheme of the a–phase — with R := Rtf +Rf , L := Ltf + Lf — and of
the dc side of the three–phase voltage source converter.

col(ma,i,mb,i,mc,i) by means of the following relation [155, 156]:

v1,i = [Υmi] vC,i, i2,i = m>i ii (4.3.3)

with

Υ =
1

3

 2 −1 −1

−1 2 −1

−1 −1 2

 . (4.3.4)

Now by replacing (4.3.3) in (4.3.2) we obtain:

LiI3i̇i = −RiI3ii −ΥmivC,i + vac,i

Civ̇C,i = −GivC,i +m>i ii + iC,i.
(4.3.5)

Note that the variables ma,i, mb,i, mc,i determine the status of the switches and are defined on a

binary set. Hence they can be either 0 (closed switch) or 1 (open switch). The system (4.3.5) is usually

called the switched model of the voltage source converter [173].

Voltage source converters, like all power converters, are indeed switching electronic devices. Switches

are usually controlled by means of pulse width modulation (PWM) techniques [170, 2], in order to

regulate the power supplied to the attached electrical devices. The underlying philoshopy of such a

technique consists in turning on and off the switches as fast as practically possible to minimize the

switching transition time and the associated switching losses. For an overview of PWM techniques,

the reader is referred to [78]. In the frequency range much lower than the switching frequency, the

modulating (binary) variables mi can be thus replaced in the model (4.3.5) by their average value (or

duty ratio) ui ∈ R3 in that switching period [170]. Such a modified model is called the averaged model

of the voltage source converter [173]. We now make the following assumptions.

Assumption 4.3.2. The three–phase input of the voltage source converter is instantaneously synchro-

nized to the attached ac subsystem.

Assumption 4.3.3. All terminals constituting the hvdc transmission system are strongly connected.

Assumption 4.3.2 is justified by the introduction of a phase–locked–loop (PLL) circuit that detects

the latching phase [173]. A PLL circuit is a circuit that synchronizes an oscillator with a reference
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sinusoidal input, see [17] for more details on this topic. Hence, the PLL is locked to the a–phase of

the ac voltage vac,i at the point of interconnection between the power converter and the attached ac

subsystem.

Assumption 4.3.3 is equivalent to assume that the dynamics of the attached ac subsystems evolve at a

time–scale much slower than the time–scale in which the power converter is operated. Since the rates

of change of amplitude Vi(t) and frequency ωi(t) of the three–phase ac voltage are very slow, the PLL

circuit allows then to latch the input voltage of the converter to a purely sinsouidal three–phase voltage

source.

Figure 4.5: Equivalent circuit scheme of a three–phase voltage source converter, in dq coordinates.

Let vac,a,i =
√

2Vi sin(ωi + ϕi) the a–phase of the ac voltage. First of all, it is easy to see that

the averaged version of the system (4.3.5) is a nonlinear time–varying system. Hence, it is convenient

to transform it in an appropriate rotating frame by means of the dq–transformation introduced in

Subsection 2.2.3, picking as transformation angle the phase ϑi(t) = ωit+ϕi−π/2. Because the system

is balanced, it is possible to reduce the three–phase system into a two–phase system, thus leading to

the following model of the voltage source converter in dq–frame [20], the circuit equivalent of which is

illustrated in Fig. 4.5:

LiI2i̇dq,i = (J2Liωi −RiI2)idq,i − udq,ivC,i + vdq,i

Civ̇C,i = −GivC,i + u>dq,iidq,i + iC,i,
(4.3.6)

where idq,i := Tdq(ϑ)ii ∈ R2, vdq,i := Tdq(ϑ)vC,i ∈ R2 are the dq vector of inductor currents and

input voltage respectively, and udq,i := Tdq(ϑ)ui ∈ R2 are the dq–transformed duty ratios. Note that

for this particular choice of ϑi we have:

vdq,i =

[
Vd,i

Vq,i

]
=
√

3Vi

[
sin(π2 )

cos(π2 )

]
=

[√
3Vi

0

]
, (4.3.7)

from which follows that the transformed system (4.3.6) is now time–invariant.
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Port–Hamiltonian model

It is now easy to see that (4.3.6) admits the following port–Hamiltonian representation [49, 119]:

Si : i ∼ EV SC

ẋi = [Ji(ui)−Ri]∇Hi + e1Vd,i + e3iC,i

vC,i = ∇Hi,
(4.3.8)

with state space vector xi := col(φd,i, φq,i, qC,i) ∈ R3, duty cycles ui := col(ud,i, uq,i) ∈ R2, external

source Vd,i ∈ R, port variables (iC,i, vC,i) ∈ R× R, interconnection and dissipation matrices

Ji(u, i) := J0,iLiωi + Jd,iud,i + Jq,iuq,i, Ri := diag{Ri, Ri, Gi} (4.3.9)

with:

J0,i :=

 0 1 0

−1 0 0

0 0 0

 , Jd,i :=

0 0 −1

0 0 0

1 0 0

 , J1,i :=

0 0 0

0 0 −1

0 1 0

 ,
port matrices e1 := col(1, 0, 0), e3 := col(0, 0, 1) ∈ R3, Hamiltonian energy function

Hi(xC) :=
1

2
x>i Qixi, Qi := diag{ 1

Li
,

1

Li
,

1

Ci
}. (4.3.10)

Remark 4.3.4. Note that, in view of the skew–symmetry of Ji(ui), the i–th converter satisfies the

power balance equation

Ḣi︸︷︷︸
stored power

= − x>i QiRiQixi︸ ︷︷ ︸
dissipated power

+x>i Qie1Vd,i + x>i Qie3iC,i︸ ︷︷ ︸
supplied power

(4.3.11)

Recalling that c is the number of converter units (edges) composing the hvdc transmission, we now

formulate the correspondent aggregated model. We have then:

SV SC :

ẋC = [JC(u)−RC ]∇HC + E3iC

vC = E>3 ∇HC ,
(4.3.12)

with the following definitions.

- State space vector xC := col(col(φd,i), col(φq,i), col(qC,i)) ∈ R3c.

- Energy function

HC(xC) :=
1

2
x>CQCxC , QC := bdiag{L−1

C , L−1
C , C−1

C },

with LC := diag{Li}, CC := diag{Ci}.

- Duty cycles u := col(uCd, uCq) ∈ R2c, where uCd := col(ud,i) and uCq := col(uq,i).

- External sources V := col(Vd,i) ∈ Rc.

- Port variables iC := col(iC,i) ∈ Rc and vC := col(vC,i) ∈ Rc.
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- Interconnection matrix

JC(u) :=

c∑
i=1

(JC0,iLiωi + JCd,iud,i + JCq,iuq,i) (4.3.13)

where:

JC0,i :=


−1 in (i,c+i)

1 in (c+i,i)

0 elsewhere

JCd,i :=


1 in (i,2c+i)

−1 in (2c+i,i)

0 elsewhere

JCq,i :=


−1 in (c+i,2c+i)

1 in (2c+i,c+i)

0 elsewhere

- Dissipation matrix RC := bdiag{RC , RC , GC}, where RC := diag{Ri} and GC := diag{Gi}.

- Port matrices E1 := [Ic 0 0]
>

, E3 := [0 0 Ic]> ∈ R3c×c.

Remark 4.3.5. Note that, in view of the skew–symmetry of JC(u), the set of converters satisfy the

aggregated power balance equation

ḢC︸︷︷︸
stored power

= − x>CQCRCQCxC︸ ︷︷ ︸
dissipated power

+x>CQCE1V + x>CQCE3iC︸ ︷︷ ︸
supplied power

. (4.3.14)

4.3.3 Transmission line edges

In order to describe the dynamics of a transmission line, a π–model — that consists of the parallel

connection of two capacitors by means of an RL–series impedance — has been considered in Chapter

3. However, under Assumption 4.3.1, dc lines reduces to a more simple RL–series impedance. This is

justified, as explained before, by the definition of an equivalent capacitor at the output of each converter.

Hence, a set of t dc transmission lines can be represented by the port–Hamiltonian system:

ST :

ẋT = −RT∇HT + vT

iT = −∇HT ,
(4.3.15)

with the following definitions.

- State space variables the collection of lines inductor fluxes xT := col(φT,i) ∈ Rt.

- Energy function

HT (xT ) :=
1

2
x>TQTxT , QT := diag{ 1

LT,i
},

where LT,i is the inductance of the line.

- Port variables the voltages at the terminals vT := col(vT,i) ∈ Rt and the inductors currents

iT := col(iT,i) ∈ Rt.

- Dissipation RT = diag{RT,i}, with RT,i the resistance of the line.

4.3.4 Interconnected model

The interconnection laws can be obtained following the same approach used in Chapter 3, where Kirch-

hoff’s current and voltage laws are expressed in relation to the incidence matrix B. We first define the
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node and edge vectors:

V :=

[
VC
0

]
∈ Rc+1, Ve :=

[
vC

vT

]
∈ Rm, Ie :=

[
iC

iT

]
∈ Rm. (4.3.16)

Using the definition of the incidence matrix (4.3.1) and the Kirchhoff’s currents and voltages laws

expressed by (3.5.27), we have:

0c = iC + BnetiT , −1>n iC = 0, VC = vC , B>netVC = vT , (4.3.17)

Recalling the expression for iL from (4.3.12) and vC from (4.3.15) it is easy to get:

iC = −Bnet∇HT , vT = B>netE>3 ∇HC , (4.3.18)

so that in order to obtain the overall port–Hamiltonian representation it is sufficient to combine (4.3.12),

(4.3.15) and (4.3.18), thus leading to

ẋ = [J (u)−R]∇H+ EV, (4.3.19)

with the following definitions.

- State space variables x := col(xC , xT ) ∈ R3c+t.

- Energy function H(x) := HC(x) +HT (x).

- Duty cycles (controls) u := col(uCd, uCq) ∈ R2c.

- Interconnection matrix

J (u) :=

[
JC(u) −E3Bnet
B>netE>3 0

]
, (4.3.20)

- Dissipation matrix

R := bdiag{RC ,RT } > 0. (4.3.21)

- Input matrix E :=
[
E>1 0

]>
.

Remark 4.3.6. It is easy to see that it is possible to rewrite (4.3.19) in the standard port–Hamiltonian

form (2.1.1). In fact, after some manipulations we can obtain:

J (u)∇H = J0∇H+ g(x)u, (4.3.22)

with the following definitions

J0 :=

[∑n
i=1(JC0,iLiωi) −E3Bnet
B>netE>3 0

]
, g(x) :=

[
gCd(xC) gCq(xC)

0 0

]
,

where

gCd(xC) : =
[
JCd,1QCxC . . . JCd,nQCxC

]
gCq(xC) : =

[
JCq,1QCxC . . . JCq,nQCxC

]
.
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Remark 4.3.7. To simplify the notation in the port–Hamiltonian representation it is selected a state

representation of the system using energy variables, that is, inductor fluxes and capacitor charges,

instead of the more commonly used co–energy variables, i.e., inductor currents and capacitor voltages.

The coordinates are indeed related by

id,i =
φd,i
Li

, iq,i =
φq,i
Li

, vC,i =
qC,i
Ci

, iL =
φT
LT,i

. (4.3.23)

Remark 4.3.8. For ease of presentation it is assumed that the state of the system lives in R3c+t. Due

to physical and technological constraints it is actually only defined in a subset of R3c+t. In particular,

the voltages of the dc links are strictly bounded away from zero.

4.4 Control goals & architecture

For its correct operation, hvdc systems — like all electrical power systems — must satisfy a large set

of different regulation objectives that are, typically, associated to the multiple time–scale behavior of

the system. One way to deal with this issue, that prevails in practice, is the use of hierarchical archi-

tectures. These are nested control loops, at different time scales, each one providing references for an

inner controller [173, 90, 46, 65]. The control architecture — that mimicks the well–established control

architecture of ac systems [7, 96] — is illustrated in Fig. 4.6.

POWER
CONVERTER

INNER LOOP
CONTROL

PRIMARY
CONTROL

20mins to 1hr

~2/3 s

few ms

SECONDARY CONTROL

REFERENCE
CALCULATOR

POWER LOOP
CONTROL

centralized distributed/decentralized decentralized

(space)

(time)
TERTIARY

CONTROL (OPF)

Figure 4.6: Control architecture of multi–terminal hvdc transmission systems.

Tertiary control. For a precise description, it is convenient to start from the “outermost” level of

control, that is called tertiary control [46, 152, 15]. This takes as input the desired behavior specified
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by each terminal operator and provides as output a set of power references, that are the solution of

an appropriate centralized optimization problem. Such references play the role of operating conditions

of the hvdc system — and are obtained by solving a minimization problem, that takes economics and

technical aspects into account, as well as their constraints, e.g. the power balance. Tertiary control is

usually based on algorithms for optimization of the power flow (OPF) [45, 116]. If the tertiary control

has an exact knowledge of such constraints and of the desired operation of all terminals, then it is able

to formulate a nominal optimization problem and allows the lower levels of control to operate in nominal

conditions. Otherwise, the tertiary control will formulate a perturbed optimization problem and the

system will be operating in perturbed conditions. Perturbed conditions may arise because of uncertainty

on system parameters and references or whereas one or more terminals provide erroneous information

about its current operation. The time–scale in which this layer of control takes action ranges from 20

minutes to an hour [45].

Inner–loop control. We call inner–loop control the “innermost” level of control, that is control at

the power converter level. The objective of the inner–loop control is to asymptotically drive the hvdc

transmission system, if possible, towards the desired steady–state regime specified by the reference

input. This steady–state regime is usually expressed in terms of currents and/or voltage, that are

determined by the immediately higher level of control or energy–management system [173, 90, 148]. If

the desired behavior is not feasible, i.e. in perturbed conditions, convergence to an arbitrary steady–

state regime is in general required. Regulation should be achieved selecting a suitable switching policy

for the converters. A major practical constraint is that the control should be decentralized. That is, the

controller of each power converter has only available for measurement its corresponding coordinates,

with no exchange of information between them. The time–scale in which this layer of control takes

action is of a few ms [171, 152, 148]. The design of a new inner–loop controller and an analysis of

standard inner–loop control scheme is carried out in Section 4.6 and Section 4.7.

Primary control. It is of fundamental importance — when a perturbation occurs — that the

control system takes action adjusting promptly the references to be provided to the inner–loop con-

trol in order to preserve properties that are essential for the correct and safe operation of the system.

First of all, as for all power systems, stability should be mantained. Furthermore, two fundamental

properties must be preserved irrespective of the perturbation: a prespecified power distribution (the

so–called power sharing); vicinity of the terminals voltage near their nominal value [13, 152, 8]. These

are usually achieved by an appropriate control of the dc voltage of one or more terminals at their point

of interconnection with the hvdc network [164, 142, 13]. Note that in nominal conditions, the sent power

references match those given by the tertiary control and no reference modifications are required. This

layer of control — that can be either distributed or decentralized — is called primary control. Several

primary controls have been proposed in literature, see [164, 142, 120] for an overview of traditional

control methods. The most diffused design is however the droop control [18, 123, 69], that takes action

by properly modifying the references to be provided to the lower level of control. The time–scale in

which this layer of control should take action is — at the best of author’s knwoledge — a controversial

point. Indeed, although in many practical cases simulated in literature it is assumed a time–scale of ms

[46, 45, 18, 152], stability analysis is usually carried out under the assumption that the primary control

takes action at a time scale of s, that is the same time–scale adopted in primary control of ac systems

[65, 177]. modeling and analysis of an hvdc system under such slower droop controllers is carried out

in Section 4.8.
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Secondary control. Since the objectives of the secondary control are twofold, it is convenient to

separate such a control layer in two stages, similarly to [46]. A first stage is devoted to calculate currents

and/or voltage references to be provided to the inner–loop control, starting from the measured power

and power references obtained by the tertiary control. This stage is usually known as power control

and has a decentralized architecture. On the other hand, the second stage takes care of recalculating

power references whereas a contingency occurs. This stage is known as reference calculator and is

based on power flow equations. Hence, it requires a centralized architecture to exchange information

with the terminals. The outputs of the reference calculator are the sent new power references, that are

transformed in currents and/or voltage by the power control. In nominal conditions the sent power

references match those given by the tertiary control and no reference modifications are required. A

typical example is when a terminal is disconnected, from which follows that previous references cannot

be maintained. In this case the secondary control tries to restore the power balance [45].

4.5 Open–loop analysis: assignable equilibria

A first step towards the development of a control strategy for the system (4.3.19) is the definition of

its achievable, steady–state behavior, which is determined by the assignable equilibria, as defined in

Subsection 2.1.4. To identify this set the following lemmata are established.

Lemma 4.5.1. The equilibria of the transmission line coordinates are given by

x?T = (RTQT )−1B>netE>3 QCx?C . (4.5.1)

Proof. Setting to zero the left–hand side of (4.3.15), calculated at x?T , gives

0t = −RTQTx?T + v?T ⇒ x?T = (RTQT )−1v?T .

Moreover, from (4.3.18) it follows that v?T = B>netE>3 QCx?C , that replaced in the equation above com-

pletes the proof. ���

Lemma 4.5.2. The equilibria of the converters coordinates are the solution of the following c quadratic

equations:

− Ri
L2
c,i

[
(φ?d,i)

2 + (φ?q,i)
2
]
− Gi
C2
c,i

(q?C,i)
2 +

vd,i
Lc,i

φ?d,i +
1

Cc,i
q?C,ii

?
C,i = 0, (4.5.2)

with col(i?C,i) = BnetR−1
T B>netQCcol(q?C,i), i ∼ EV SC .

Proof. In [129] it is shown that the set of admissible equilibria of a voltage source converter is obtained

by setting equal to zero its power balance, that for c converters is equivalent to (4.5.2). To complete

the proof, it is now sufficient to recall definitions

col(i?dc,i) = i?C , E>3 QCx
?
C = col(q?C,i),

together with (4.3.18), (4.5.1). ���

The main result of the section is now presented, the proof of which follows immediately from the

lemmata above.
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Proposition 4.5.3. The set of assignable equilibria of the system (4.3.19) is given by

E? := {x? ∈ R3c+t | (4.5.1) and (4.5.2) hold}. (4.5.3)

Remark 4.5.4. From the derivations above it is clear that the equilibria of the network are univo-

cally determined by the equilibria of the converters. Moreover, the latter should satisfy the quadratic

equations (4.5.2), which are called the power flow (steady–state) equations (PFSSE) of the individual

converter subsystems. In contrast with standard power flow equations reported in literature [116], that

are indeed expressed using power variables, the PFSSE (4.5.2) are expressed in terms of currents and

voltages of the power converters. A question of interest is how system operators should select from

this set the equilibrium points that correspond to some desired behavior. In the latter there are many

practical considerations to be taken into account, including technical and economical aspects. The layer

of control in charge of this task is the tertiary control.

Remark 4.5.5. Differently from the single converter case, the set of assignable equilibria does not

coincide, but is strictly contained, in the set where the power of the system is balanced, that is

E? ⊂ P?, P? := {x? ∈ R3c+t | Ḣ = 0}.

This fact is clearly explained in [129], where it is proved that a necessary condition for E? ≡ P?, is the

system to be of co-dimension one.

4.6 Inner–loop control: design

4.6.1 Control objectives & standard controllers

For an appropriate design of the inner–loop control, the control problem should be first established.

This is done briefly reviewing some of the inner–loop controllers for converters reported in the literature,

that are implicitly determined by the correspondent control objectives. The vast majority of the papers

reported on this topic — and, in general, of control of power converters [90, 173, 112, 48] — uses the

description of the dynamics of the single converter in co–energy variables, that is the one given by

(4.3.6). Since we focus on the model of a single voltage source converter the subindex i — when clear

from the context — is omitted. The total energy of the single converter expressed by (4.3.10) can be

then rewritten in co–energy variables as:

HC(id, iq, vC) :=
1

2

(
Li2d + Li2q + Cv2

C

)
,

and the power balance is

ḢC = −R(i2d + i2q)−Gv2
C + P + Pdc. (4.6.1)

Note, that in the last equation we used the fact that Vq = 0 and the definitions of power provided in

Subsection 2.2.5, from which follows:

P = Vdid, Q = Vdiq, Pdc = vCidc. (4.6.2)

Because under Assumption 4.3.3 Vd is constant, it is clear that the regulation of P and Q is equivalent

to the regulation of id and iq respectively. Since two variables among the three can be controlled, we

have three possible combinations: active/reactive power, active power/dc voltage and reactive power/dc
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voltage. In practice however, because of the small losses of the converter, the value of P slightly differs

from Pdc, and consequently there is no interest in regulating the pair P and vC at the same time. It is

thus common to distinguish two modes of operation:

i) PQ (also: active/reactive power) control mode, when the converter is required to control the

active and reactive power. This is achieved regulating to zero the output

yI =

[
id − i?d
iq − i?q

]
. (4.6.3)

The converter is operated as power source, i.e., it provides a pre-specified amount of active

and reactive power. The inner control loop is a current control the feedback signal of which

is the current through the filter inductance. Current references are determined by an outer

power controller — based on (4.6.2) — that takes measured active and reactive powers and their

references P ?, Q? as input and provides as output i?d and i?q . This layer of control is referred

as power control and is usually considered to be part of the secondary control, while the overall

scheme is also called direct current control [100, 143].

ii) Q− vC (also: reactive power/dc voltage) control mode, when the converter is required to control

reactive power and dc voltage. In this case, the regulated output is

yV =

[
vC − v?C
iq − i?q

]
. (4.6.4)

The converter is controlled in such way that reactive power and dc voltage can be specified by

the designer. This can be achieved either by an inner quadrature current/dc voltage control or

via a cascaded control scheme consisting of an inner current control and an outer voltage control

[100, 143, 120]. The latter control architecture is sometimes preferred since it improves the con-

trol performance. These kind of schemes are also called direct and undirect output voltage control

respectively. The quadrature current reference — as for the case of PQ control — is determined

by an outer (reactive) power controller — based on (4.6.2) — that takes the measured reactive

power and its reference Q? as input and provides as output i?q . This layer of control takes the

name of reactive power control.

In the recent years many innovative control strategies have been proposed to regulate the outputs

(4.6.3) and (4.6.4), based on H∞ theory [176, 102], Lyapunov theory [101], sliding–modes control [126]

or complex feedback linearization schemes [155, 32, 33, 15]. However, such new control strategies often

lead to complicate (nonlinear) controllers and are in general difficult to implement. More conservative

control strategies are indeed used in real applications [148]. The control strategy most used is vector

control [171, 20, 100] and consists in an appropriate combination of a feedback linearization and a PI

control scheme, see Fig. 4.7, where such a scheme is illustrated with respect to the equivalent circuit

of the power converter, in dq coordinates. An invariably local analysis is usually carried out to justify

these control schemes [171, 152] and suitable tuning procedures are adopted to ensure the stability of

the system [150, 172]. In Section 4.7 it is proved that yI and yV with respect to which the feedback

linearization is performed, have unstable zero dynamics. Consequently, applying high gains in the PIs

will induce instability and the internal behavior of the feedback linearizing schemes will be unstable.
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This well–known phenomenon of nonlinear systems [82] is akin to cancellation of unstable zeros of the

plant with the unstable poles of the controller in linear systems.

PI

PI

Active power
controller

Reactive power
controller

PLL

PWM

PQ
 m

ea
s.

Figure 4.7: Vector control as a combination of a feedback linearization and a PI control scheme.

Remark 4.6.1. For weakly connected terminals, the ac voltage is a controllable variable and further

modes of operation have to be considered, namely for the control of the ac/dc voltages and of the active

power/ac voltage, for which the interested reader is referred to [68].

Remark 4.6.2. An important observation is that any arbitrary pair (i?d, i
?
q) or (i?q , v

?
C) always, uni-

vocally, determines an assignable equilibrium point x? = (i?d, i
?
q , v

?
C) ∈ E?. Hence a steady–state that

verfies yI = 0 (or yV = 0) is always achievable.

4.6.2 PI–passivity based control

In this section it is presented a decentralized, globally asymptotically stabilizing, PI controller based on

passivity arguments (PI–PBC) for the system (4.3.19). The construction of the controller is inspired by

previous works on passivity–based control of power converters [119, 76, 84], which exploit the property

of passivity of the incremental model. For, the following assumption, that is equivalent to assume the

system operating in nominal conditions, is made.

Assumption 4.6.3. The desired operating point belongs to the set of assignable equilibria, that is

x? ∈ E?.
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Along the lines of Proposition 1 in [76], it is possible to establish passivity of the incremental model

of the overall hvdc transmission system (4.3.19) with respect to a suitable defined output. As is well–

known, global regulation of a passive output can be achieved with a simple PI controller [27]. Regulation

of the state to the desired equilibrium then follows provided a suitable detectability assumption is

satisfied [159].

Proposition 4.6.4. Consider the hvdc transmission system (4.3.19). Let x? ∈ E? be the desired

equilibrium with corresponding (univocally defined) control u? ∈ R2c. Define the error signals

x̃ = x− x?, ũ = u− u? (4.6.5)

and the output signal

y :=

[
col(yd,i)

col(yq,i)

]
∈ R2c, (4.6.6)

with

yd,i := x∗>C QCJCd,iQCxC , yq,i := x∗>C QCJCq,iQCxC .

The mapping ũ→ y is passive. More precisely, the system verifies the dissipation inequality

Ḣd ≤ y>ũ, (4.6.7)

with storage function Hd(x̃) = 1
2 x̃
>Qx̃.

Proof. The proof mimics the proof of Proposition 1 in [76]. First of all, recalling the relation (4.3.22)

in Remark 4.3.6, it is possible to rewrite (4.3.19) in the alternative form:

ẋ = (J0 −R)Qx+ EV + g(x)u

= (J0 −R)Q(x̃+ x?) + EV + g(x̃+ x?)(ũ+ u?)

= (J0 −R)Qx̃+ g(x̃)(ũ+ u?) + g(x?)ũ,

(4.6.8)

where definitions (4.6.5) have been used to get the second equation and the fact that the assignable

equilibria x? and corresponding (constant) control u? satisfy

(J0 −R)Qx? + EV + g(x?)u? = 0,

are used to obtain the third equation.

The derivative of Hd along the trajectories of the incremental model (4.6.8) yields

Ḣd = −x̃>QRQx̃+ x̃>Qg(x?)ũ = −x̃>QRQx̃+ y>ũ,

where the skew–symmetry of J0, JRd,i and JRq,i is used in the first equation, and the fact that the

output signal can be rewritten as

y = g>(x?)Qx = g>(x?)Qx̃

is used to obtain the second identity. The proof is completed recalling that the dissipation matrix

verifies R > 0 to obtain the bound (4.6.7). ���
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We have then the following result.

Proposition 4.6.5. Consider the hvdc transmission system (4.3.19), with a desired steady–state x? ∈
E?, in closed–loop with the decentralized PI control

u = −KP y +KIζ, ζ̇ = −y, (4.6.9)

with y given in (4.6.6) and positive definite gain matrices

KP =

[
KPd 0

0 KPq

]
∈ R2c×2c, KI =

[
KId 0

0 KIq

]
∈ R2c×2c, (4.6.10)

where KPd = diag{kPd,i}, KPq = diag{kPq,i}, KId = diag{kId,i}, KIq = diag{kIq,i}. The equilibrium

point (x?,K−1
I u?) is globally asymptotically stable (GAS).

Proof. Define the Lyapunov function candidate

W (x̃, ζ̃) := Hd(x̃) +
1

2
ζ̃>KI ζ̃, (4.6.11)

where ζ̃ := ζ − K−1
I u?. The derivative of W (x, ζ) along the trajectories of the closed–loop system

(4.3.19)-(4.6.9) is given by

Ẇ = −x̃>QRQx̃+ y>ũ+ ζ̃>KIy

= −x̃>QRQx̃+ y>ũ− (ũ> + y>KP )y

= −x̃>QRQx̃− y>KP y ≤ 0,

which proves global stability. Asymptotic stability follows, as done in [76], using LaSalle’s arguments.

Indeed, from the inequality above and the definition of R in (4.3.21) it is clear that all components of

the error state vector x̃ tend asymptotically to zero. ���

Remark 4.6.6. The proposed PI–PBC is decentralized in the sense that, for its implementation, the

controller requires only the measurement of the inductor currents and capacitor voltage of the associated

terminal. Guaranteeing this property motivates the choice of block diagonal gain matrices (4.6.10).

Remark 4.6.7. The PI–PBC requires the selection of the desired values for the inductor currents and

capacitor voltages that, clearly, cannot all be chosen arbitrarily. Instead, they have to be selected from

the set of assignable equilibrium points E , that is determined by the PFSSE. This set has a rather simple

structure: the quadratic equation (4.5.2) defines the converters variables from which it is possible to

univocally determine the transmission lines coordinates via (4.5.1).

Remark 4.6.8. The PI–PBC is universal, in the sense that it can operate either in PQ or Q−vC control

mode, depending on which components of the equilibrium point are assigned as desired references, and

which ones are consequently determined via the PFSSE.

4.6.3 Relation of PI–PBC with Akagi’s PQ method

A dominant approach for the design of controllers for reactive power compensation using active filters

(for three–phase circuits) is the PQ instantaneous power method proposed by Akagi, et al. in [5]. It

consists of an outer–loop that generates references for the inner PI loops. The references are selected
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in order to satisfy a very simple heuristic: the ac active power P has to be equal to the dc power Pdc,

thus ensuring the maximal power transfer from the ac to the dc side, and the reactive power should

take a desired value. For the sake of comparison the passive output (4.6.6) in co–energy variables, for

a single converter, is provided:

y =

[
v?Cid − i?dvC
v?Ciq − i?qvC

]
, (4.6.12)

where (i?d, i
?
q , v

?
C) ∈ E?, that is, they belong to the assignable equilibrium set. Now, using (4.6.2) define

the active ac and dc powers at the equilibrium as

P ? = Vdi
?
d, P ?dc = v?CiC .

Consider then the following equivalences

P ?Pdc = P ?dcP ⇔ v?Cid = i?dvC ⇔ y1 = 0,

with y1 the first component of the passive output (4.6.12). Similarly, for the reactive power

Q?Pdc = P ?dcQi ⇔ v?Ciq = i?qvC ⇔ y2 = 0,

with y2 the second component of the passive output (4.6.12). In other words, the objective of the

PI–PBC to drive the passive output y to zero can be reinterpreted as a power equalization objective

identical to the one used in Akagi’s PQ method.

4.7 Inner–loop control: performance & stability analysis

Quality assessment of control algorithms is a difficult task — epitomized by the classical performance

versus robustness tradeoff, neatly captured by the stability margins in linear designs. The situation for

nonlinear systems, where the notions of (dominant) poles and frequency response are specious, is far

more complicated. In any case, it is well–known that the achievable performance in control systems

is limited by the presence of minimum phase zeros [55, 125, 141]. In this section an attempt is made

to evaluate stability properties and performance limitations of the inner–loop controllers discussed in

the previous sections, namely the PI–PBC introduced in Section 4.6.2 and the vector control schemes

described in Section 4.6.1.

4.7.1 Zero dynamics analysis

The zero dynamics of the converter system (4.3.6) for the outputs y (4.6.6), yI (4.6.3) and yV (4.6.4)

are computed. All three outputs have relative degrees {1, 1}, hence their zero dynamics is of order one

but, while it is exponentially stable for the passive output y it turns out that — for normal operating

regimes of the converter — it is unstable for yI and yV . If the zero dynamics is unstable cranking up

the controller gains yields an unstable behavior. This should be contrasted with the passive output y

that, as shown in Proposition 4.6.5 yields an asymptotically stable closed–loop system for all positive

gains.1

1This discussion pertains only to the behavior of the adopted mathematical model of the converter. In practice, other
dynamical phenomena and unmodeled effects may trigger instability even for the PI–PBC.
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A caveat regarding the subsequent analysis is, however, necessary. When the converters are con-

nected to the transmission lines the currents iC are linked to the currents on the line via (4.3.17), which

are clearly nonconstant. However, to simplify the analysis, it is assumed that they are constant. This

assumption is standard for the inner control of power converters [90, 173, 112] and can be justified by

exploiting the fact that their rate of change is slow (with respect to the converter dynamics). Under

this assumption the assignable equilibrium set of (4.3.6) is given by:

E? = {x ∈ R3 | R(i2d + i2q)− Vdid +Gv2
C − iCvC = 0}. (4.7.1)

To simplify the derivations only the case of i?q = 0 is considered. This assumption is justified since

it corresponds to fix to zero the desired value of the reactive power, which is a common operating mode

of converters. Moreover, this is done without loss of generality because it is possible to show — alas,

with messier calculations — that the stability of the zero dynamics is the same for the case of i?q 6= 0.

This situation may arise when the converter is associated to an ac grid and not to a renewable energy

source. In this section, it is possible to prove that the (first order) zero dynamics associated to (4.6.6),

is “extremely slow” — with respect to the overall bandwidth of the converter. Since this zero “attracts”

one of the poles of the closed–loop system, it stymies the achievement of fast transient responses. This

situation motivates the inclusion of an outer–loop controller that generates the references to the inner–

loop PI. This modification is presented in Section 4.7.3.

Before presenting the main result, an important observation is done: the zero dynamics of the

converter model (4.3.6) and of its corresponding incremental version are the same. Indeed, the zero

dynamics describes the behavior of the dynamical system restricted to the set where the output is zero.

Since the incremental model dynamics is the same as the original model dynamics — simply adding

and substracting a constant — their zero dynamics coincide.

Zero dynamics analysis of the passive output y

Proposition 4.7.1. Fix (i?d, i
?
q , v

?
C) ∈ E? with i?q = 0. The zero dynamics2 of the converter (4.3.6) with

respect to the output (4.6.12) is exponentially stable and is given by

v̇C = −λvC + λv?C , λ :=
R(i?d)

2 +G(v?C)2

L(i?d)
2 + C(v?C)2

. (4.7.2)

Proof. By setting the output (4.6.12) identically to zero and using the fact that i?q = 0, it is easy to get

id =
i?d
v?C
vC , iq =

i?q
v?C
vC = 0. (4.7.3)

Replacing (4.7.3) into (4.3.6) gives

L
i?d
v?C
v̇C = −R i?d

v?C
vC − vCu1 + Vd, (4.7.4)

0 = −Lω i
?
d

v?C
vC − vCu2, (4.7.5)

Cv̇C =
i?d
v?C
vCu1 −GvC + idc. (4.7.6)

2With some abuse of notation, the zero dynamics is represented using the same symbols of the system dynamics.
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To eliminate u1 it suffices to multiply (4.7.6) by
v?C
i?d

and add it to (4.7.4), yielding

(
Cv?C
i?d

+
Li?d
v?C

)
v̇C = −

(
Ri?d
v?C

+
Gv?C
i?d

)
vC + Vd +

v?C
i?d
iC .

The proof is completed by noting from (4.7.1) that, for (i?d, i
?
q , v

?
C) ∈ E? with i?q = 0, it follows that

Vd +
v?C
i?d
iC =

R(i?d)
2 +G(v?C)2

i?d

and by pulling out the common factor 1
i?dv

?
C

. ���

Remark 4.7.2. The parameters R and G, that represent the losses in the converter, are usually small

— compared to L and C. Consequently, λ will also be a small value, placing the pole of the zero

dynamics very close to the origin and inducing slow convergence.

Remark 4.7.3. It is interesting to note that the rate of exponential convergence of the zero dynamics

can be rewritten as

λ =
1

2

R(i?d)
2 +G(v?C)2

H(i?d, i
?
q , v

?
C)

,

that is equivalent to half the ratio between the steady–state dissipated power and the steady–state

energy of the system. This relation holds true also for the case i?q 6= 0.

Zero dynamics analysis of yI

Before analyzing the zero dynamics of the PQ and dc voltage control outputs, (4.6.3) and (4.6.4),

respectively, it is important to recall that their references necessarily belong to the assignable equilibrium

set, see Remark 4.6.2. Moreover, similarly to the case of the passive output, it is assumed that i?q = 0.

Figure 4.8: Plot of v̇C versus vC for the cases of (a) αI > 0 and (b) αI < 0. The arrows in the horizontal
axis indicate the direction of the flow of the zero dynamics.

Proposition 4.7.4. Fix i?d ∈ R, i?q = 0. The zero dynamics of the converter (4.3.6) with respect to the

output (4.6.3) is given by

Cv̇C = −GvC +
αI
vC

+ i?C , αI := Vdi
?
d −R(i?d)

2 (4.7.7)
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where i?C is a constant value for iC satisfying

(i?C)2 > −4GαI . (4.7.8)

- If αI > 0 the zero dynamics has one equilibrium and it is stable.

- If αI < 0 the zero dynamics has two equilibria one stable and one unstable.

- If αI = 0 the zero dynamics is a linear asymptotically stable system.

Proof. Setting the output (4.6.3) equal to zero with i∗q = 0 and replacing into (4.3.6) gives

0 = −Ri?d − vCu1 + Vd (4.7.9)

0 = −Lωi?d − vCu2 (4.7.10)

Cv̇C = i?du1 −GvC + i?C , (4.7.11)

where the superscript (·)? has been added to iC . Replacing u1 obtained from (4.7.9) into (4.7.11)

yields directly (4.7.7). Condition (4.7.8) is then necessary and sufficient for the existence of a (real)

equilibrium of (4.7.7). If αI = 0 the dynamics reduces to

Cv̇C = −GvC + i?C .

The proof is completed by recalling that vC > 0 and looking at the plots of the right hand side of (4.7.7)

for αI positive and negative in Fig. 4.8. ���

Remark 4.7.5. From Fig. 4.8, if αI < 0, it is easy to see that the stable equilibrium point is the

largest one. For standard values of the system parameters it turns out that this equilibrium is located

beyond the physical operating regime of the system, hence it is of no practical interest.

Remark 4.7.6. The parameters R and G are usually very small and i?C can take positive or negative

values in standard operation. Then condition (4.7.8) is always verified while αI can take positive or

negative values.

Remark 4.7.7. The situation αI = 0, when the zero dynamics is linear and asymptotically stable,

is unattainable in applications. Indeed, assuming that in steady–state all signals converge to their

reference values, it can be shown that αI = 0 if and only if GvC − iC = 0 that, given the small values

of G is not realistic in practice.

Zero dynamics analysis of yV

Proposition 4.7.8. Fix v?C ∈ R, i?q = 0. The zero dynamics of the converter (4.3.6) with respect to

the output (4.6.4) is given by

L
did
dt

= −Rid +
αV
id

+ Vd, αV := i?Cv
?
C −G(v?C)2 (4.7.12)

where i?C is a constant value for iC satisfying

V 2
d > −4RαV . (4.7.13)

- If αV > 0 the zero dynamics has two equilibria and they are both stable.
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- If αV < 0 the zero dynamics has two equilibria one stable and one unstable.

- If αV = 0 the zero dynamics is a linear asymptotically stable system.

Proof. Setting the output (4.6.4) equal to zero with i∗q = 0 and replacing into (4.3.6) gives

L
did
dt

= −Rid − v?Cu1 + Vd, (4.7.14)

0 = −Lωid − v?Cu2, (4.7.15)

0 = idu1 −Gv?C + iC . (4.7.16)

Replacing u1 obtained from (4.7.16) into (4.7.14) yields directly (4.7.12). Condition (4.7.13) is necessary

and sufficient for the existence of a (real) equilibrium of (4.7.12). The proof is completed invoking the

same arguments used in the proof of Proposition 4.7.4 and are omitted for brevity. ���

Remark 4.7.9. Remarks 4.7.5, 4.7.6 and 4.7.7 apply verbatim to (4.7.12) and αV of Proposition 4.7.8.

4.7.2 An illustrative example

Although Proposition 4.7.1 proves that the zero dynamics for the passive output y is exponentially sta-

ble, it turns out that, for the components used in standard hvdc transmission system, the convergence

rate is λ ≈ 0.04, which is extremely slow. As indicated above this dominating dynamics stymies the

achievement of fast transient responses — a situation that is shown in the following simulations. Also,

simulated evidence of the unstable behavior of the vector control inner–loops using the outputs (4.6.3)

and (4.6.4) is presented.

A three–terminals hvdc transmission system with a simple meshed topology is considered, as illus-

trated in Fig. 4.9, where the corresponding graph is also given. The model of the system is given by

(4.3.19), that is a system of dimension 3c + t = 11 with 2c = 6 inputs. Parameters of the converters

and of the transmission lines are given in Table 1.

WF1

WF2

AC
GRID

Figure 4.9: Schematic representation of a multi–terminal hvdc transmission system constituted by three
terminals, associated to two wind farms (WFs) and an ac grid, with associated graph. The graph is
represented by filled circles for the converter buses and the unfilled circle for the ground node. Blue
and red edges characterize converters and lines, respectively.
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Table 4.1: Three-terminal hvdc transmission system parameters.

Value Value
Rr,i 0.01 Ω Gr,i 0 Ω−1

Lr,i 40 mH Cr,i 20 µF
Vi 130 kV ωi 50 Hz
R`,12 26 Ω L`,12 3.76 mH
R`,23 20 Ω L`,23 2.54 mH

Table 4.2: Three-terminal hvdc transmission system references.

SB WF 1 WF 2 SB WF 1 WF 2

0 −1260 900 1000 100 142.595 158.951
T −1588 900 1800 100 153.650 179.691
2T −266 500 −200 100 109.004 104.004
3T 905 −400 −200 100 69.419 60.877
4T −849 1300 −200 100 128.708 124.532

Consider then the following control objectives: all the terminals are required to regulate the reactive

power to zero; the terminals associated to the wind farms (WF1, WF2) are required to regulate the

active power to desired (constant) values; the remaining terminal, called slack bus (SB), must regulate

the voltage around its nominal value. The corresponding references of direct current and dc voltages

are then selected by the operator of each terminal and the corresponding assignable equilibria are de-

termined by the PFSSE defined by (4.5.3). Changes in references occur every T s over a time interval

of 5T s and are described in Table 23. From 0 to 2T s both WFs are injecting (active) power into the

hvdc transmission system so that the SB is absorbing power. At 2T s, WF1 is reducing the amount

of injected power, while at the same time WF2 becomes unable to provide enough power to supply

local loads. Thus, the power flow at WF2 is reversed, but the required power can be still matched by

the power injected by WF1. At 3T s, also WF1 becomes unable to supply its local loads, from which

follows that the power flow is fully reversed and the SB is now demanded to contribute for the missing

power. Finally, at 4T s WF1 regain the ability of supplying local loads, reversing again the power flow

and contributing to feed both WF2 and the SB.

PI–PBC

In this subsection the simulations on the three–terminals benchmark example of the decentralized

PI–PBC defined in Section 4.6.2 are presented, illustrating the stability properties and performance

limitations previously discussed. Setting T = 2000 s the controllers (4.6.9) are designed with identical

parameters and diagonal matrices kP,i = diag{1, 1}, kI,i = diag{10, 10}. Some considerations before an

analysis of the simulations are, however, necessary. Recalling Remark 4.6.7, since the PI–PBC requires,

for its implementation, the knowledge of the equilibrium point, this needs to be computed beforehand

by a centralized calculator via the PFSSE defined by (4.5.3). A correct computation of such equilibrium

is thus possible in practice only if information about selected references and terminal parameters is

correctly and instantaneously transferred from the terminals to such a calculator, i.e. the system is

operated in nominal conditions.

3It is worth mentioning that such a strongly changing scenario is not frequently experienced in practice and it is here
employed only for validation purposes.
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The behavior of the converters — in nominal conditions — is depicted in Fig. 4.10. As expected, the

direct currents of each station attain the assignable equilibria defined in Table 2, while the quadrature

currents are always kept to zero after a very short transient. Moreover, the dc voltage at the slack bus

is maintained near the nominal value of 100 kV , as required, while the dc voltage variation at the wind

farms stations, balances the fluctuation of power demand. Even though the desired steady–state is

attained for all practical purposes, the convergence time of direct currents and dc voltages is extremely

slow. This poor transient performance behavior is independent of the controller gains. Indeed, extensive

simulations show that the system maintains the same slow convergence time even with larger gains,

thus validating the performance limitations analysis realized in Subsection 4.7.1.
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Figure 4.10: Responses of converters variables under the decentralized PI–PBC — in nominal conditions.

Unfortunately if we suppose that at perturbation occurs, e.g. in the form of a change of active power

references provided by a terminal to its PI–PBC, although the responses of the converters still converge

to a steady–state, this may be not suitable for pratical operation of the hvdc system. It can be indeed

shown that the responses stay close the nominal operating condition only for very small perturbations.

For larger perturbations on the other hand, the system is driven to a steady–state regime with a large

drop of the dc voltages from the nominal value and active powers almost zero at all terminals — this

being clearly unsuitable in practice.

Remark 4.7.10. From Fig. 4.10, it is noted that dc voltages exhibit significant overshoots at 2T , 3T ,

4T s. This behavior is due to the highly stressed scenario and the essential benchmark employed for

the simulations. A more realistic scenario would include more terminals — some of which would be

operated as slack buses — and less significant reference changes. Hence, any reference change in terms

of active power is supposed to be better absorbed by the slack buses, thus reducing the amplitude of

the overshoots.

PQ and Q− vC controllers

The behavior of the system under the standard PQ and Q− vC controllers of Subsection 4.6.1, is next

analyzed. In agreement with the control requirements described above, two PQ controllers are designed

to regulate direct and quadrature currents of the wind farm stations and one Q−vC controller is designed
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to regulate dc voltage and quadrature current of the slack bus. Vector controllers defined over the

outputs (4.6.3), (4.6.4) are considered, designed with identical controller gains kP,i, kI,i. The behavior

of the converters in nominal conditions are depicted in Fig. 4.11, while responses in perturbed conditions

are omitted. This is justified by the fact that PQ and Q − vC controllers are not directly affected by

perturbed conditions, since no additional references calculation is required for their implementation and

references are always assignable, see also Remark 4.6.2. We take T = 4 s, in contrast with the value

(T = 2000 s) used for the PI–PBC. It is easy to see that the PQ and Q − vC controllers correctly

(and rapidly) regulate the station at the desired references between 0 and 8 s. This good behavior is

not surprising, since PQ controllers applied to converters that are injecting power, and the Q − vC
controller applied to converters that is absorbing power, have associated globally asymptotically stable

zero dynamics, as proved in Subsection 4.7.1. On the other hand, as shown in the figures, when

at stations WF1 and WF2 the power flow is reversed (respectively at t = 12 s and t = 8 s), the

correspondent dc voltages go unstable, because in these cases the zero dynamics is unstable. Similar

unstable behavior appears also at the slack bus station. A tuning procedure of the controllers gains is

thus usually adopted to ensure boundedness of the uncontrolled variable [150, 172]. Note however that

such a procedure is not independent from the provided references and may fail for perturbed operating

conditions.
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Figure 4.11: Responses of converters variables under the decentralized PQ and Q − vC controllers —
in nominal conditions.

4.7.3 Adding an outer–loop to the PI–PBC

To overcome the transient performance limitations of the PI–PBC exhibited in Subsection 4.7.2, in this

subsection it is proposed to add an outer–loop that takes as input some desired references — indicated

with (·)ref — and generates as output the references (·)? to the inner–loop scheme — see Fig. 4.12.

The latter will replace the desired equilibria in the definition of the passive output (4.6.12), associated

to each converter and, if properly designed, allows to overcome the performance limitations of the passive

output, while preserving global asymptotic stability of the closed–loop system. Since the objective is

to improve performances of the PI–PBC in nominal conditions, the following assumption is made.
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OUTER -LOOP
 CONTROL

PASSIVITY-BASED
PI CONTROL VSC

Figure 4.12: Proposed architecture for improving performance limitations of the PI–PBC. The new
outer–loop is located behind the PI–PBC .

Assumption 4.7.11. The input references (·)ref of the outer–loop control belong to the set of assignable

equilibria E?.

The proposed modification of the PI–PBC consists of an additional linear feedback that affects only

the proportional part. The following proposition is then presented.

Proposition 4.7.12. Consider the hvdc transmission system (4.3.19), with a desired steady–state

x? ∈ E?, in closed–loop with the PI control

u = −KP y +KIζ −KLQx̃, ζ̇ = −y, (4.7.17)

with y given in (4.6.6), gain matrices KP ,KI as in (4.6.10) and KL ∈ R2×(3c+t) verifying

R0 := R+ g(x?)KP g
>(x?) +

1

2

[
g(x?)KL +K>L g

>(x?)
]
> 0. (4.7.18)

Then, the equilibrium point (x?,K−1
I u?) is globally asymptotically stable (GAS).

Proof. Using the same Lyapunov function (4.6.11) employed in the proof of Proposition 4.6.5, the

derivative along the trajectories of the closed–loop system (4.3.19)–(4.7.17) is given by

Ẇ = −x̃>QRQx̃+ y>ũ+ ζ̃>KIy

= −x̃>QRQx̃+ y>ũ− (ũ> + y>KP + x̃>QK>L )y

= −x̃>QRQx̃− x̃>Qg(x?)KP g
>(x?)Qx̃− x̃>QK>L g>(x?)Qx̃

= −x̃>QR0Qx̃ < 0,

where in the third equivalence the output definition y = g>(x?)Qx̃ is used, while the last equivalence

follows from condition (4.7.18). ���

Loosely speaking, the Proposition 4.7.17 states that the property of global asymptotic stability

of the closed–loop system (4.3.19)–(4.6.9) — that is the hvdc transmission system controlled via PI–

PBC — is preserved for any additional linear feedback that affects only the proportional part of the

controller and any gain matrix KL which verifies condition (4.7.18). However, beside this stability
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result, Proposition 4.7.12 does not provide any hint on how to select the controller gains in order to

overcome the performance limitations of the PI–PBC, nor how to preserve the decentralization property

that — for some inappropriate choice of the gain matrix — can be even lost.

4.7.4 Relation of the outer–loop with droop control

A commonly used outer–loop control is the so–called droop control [142, 69], which replaces — at the

i–th converter — the direct current i?d,i with its desired reference iref
d,i plus a deviation (droop) term

proportional to the voltage error, leaving some constant references for i?q,i and v?C,i. Inspired by this

controller, the following assignment is made:

KL :=

[
0 0 KD 0

0 0 0 0

]
,

where KD := diag{kD,i} ∈ Rc×c is a positive matrix to be defined. With this choice it is easy to see

that the controller (4.7.17) can be decomposed in c decentralized controllers of the form

[
ud,i

uq,i

]
=

[
−kPd,iyd,i + kId,izd,i − kD,i(vC,i − v?C,i)

−kPq,iyq,i + kIq,izq,i.

]
,

˙[
zd,i

zq,i

]
=

[
−yd,i
−yq,i

]
, (4.7.19)

that correspond to c PI–PBC plus an additional linear feedback in the local dc voltage error.

Straightforward calculations — here omitted for brevity — show that it is always possible to deter-

mine a gain matrix KD, such that (4.7.18) is verified, thus guaranteeing global asymptotic stability of

the closed–loop system.

The modified PI–PBC (4.7.19) can be indeed interpreted, similarly to a droop controller, as an

outer–loop providing references for the the standard PI–PBC, but only affecting its proportional part.

It is indeed easy to see that it corresponds to assume the following inner–loop control scheme[
ud,i

uq,i

]
=

[
kPd,i(v

?P
C,iid,i − i?Pd,ivC,i) + kId,izd,i

kPq,i(v
?P
C,iiq,i − i?Pq,i vC,i) + kIq,izq,i

]
,

˙[
zd,i

zq,i

]
=

[
v?IC,iid,i − i?Id,ivC,i
v?IC,iiq,i − i?Iq,ivC,i

]
,

together with the following outer–loop assignments of the proportional and integral references

i?,Pd,i ← iref
d,i + kD,i

vC,i − vref
C,i

vC,i
, i?,Pq,i ← iref

q,i , v?,PC,i ← vref
C,i

i?,Id,i ← iref
d,i , i?,Iq,i ← iref

q,i , v?,IC,i ← vref
C,i,

(4.7.20)

where, as done before, the notation (·)ref indicates the (assignable) references of the outer–loop.

The behavior of the converters under PI–PBC plus outer GAS control — in nominal conditions —

are illustrated in Fig. 4.13. In contrast to the simulations of the basic PI–PBC of Subsection 4.7.2 when

the references change every T = 2000 s, now they are a thousand times faster that is, every T = 2 s. It

is easy to see that, compared to Fig. 4.10, the responses maintain the same shape while the convergence

occurs with a rate ≈ 103 faster. Unfortunately, in perturbed conditions the controller presents the same

problems of the simple PI–PBC, from which follows that unsuitable steady–states are usually achieved

also by the modified PI–PBC.
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Figure 4.13: Responses of converters variables with the decentralized PI–PBC plus GAS outer controller
— in nominal conditions.

4.7.5 Some conclusions on inner–loop control

Sections 4.6 and 4.7 have been dedicated to analysis and design of inner–loop controllers for the hvdc

transmission system described by (4.3.19). We have proposed a globally stable inner–loop decentralized

PI–PBC controller and made a comparative analysis with standard vector controllers employed in

practice. For the hvdc transmission system in closed–loop with these controllers we can then draw the

following conclusions, see also Table 4.3.

- Under the assumption of nominal operating condition, the PI–PBCs are able to guarantee global

asymptotic stability of any known operating point, for any positive controller gain.

- PI–PBC are universal, in the sense that they can operate either in PQ or Q − vC control mode,

see also Remark 4.6.8. One important advantage of this universal feature is that there is no need

to switch between different controllers when the converters are requested to change their mode

of operation — this is in contrast with other inner–loop schemes that require switching between

controllers, which is clearly undesirable in practice.

- The system controlled via PI–PBC has clear performance limitations that cannot be overcome by

appropriate tuning of the controller gains.

- The addition of a further loop of control to the PI–PBC allows to overcome the performance

limitation, preserving global asymptotic stability of the closed–loop system.

- Although simulations show that a stable behavior is preserved, in presence of large perturbations

the system may converge to unpractical steady–states. An appropriate tuning of the controller

gains is thus required to ensure convergence to reasonable steady–state regimes.

On the other hand, for standard vector controllers, we can draw the following conclusions.

- The hvdc transmission system in closed–loop with standard vector controllers may exhibit an

unstable behavior of the uncontrolled variables, independently from the operating conditions.
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Table 4.3: Comparison of inner–loop controllers.

Nominal conditions Perturbed conditions
PI stable for some gains, tuning re-

quired, good performances
stable for some gains, tuning re-
quired (hard), fair performances

PI−PBC stable for any gain (nonlinear
proof), poor performances

stable (simulations), unsuitable
steady–state

PI−PBC +
outer loop

stable for a defined set of gain
(nonlinear proof), best perfor-
mances

stable (simulations), unsuitable
steady-state

Hence, a tuning procedure is required not only to improve transient performance, but also to

guarantee stability of the controlled system.

- Switches between different controllers are required, when a terminal is requested to change its

mode of operation.

4.8 Primary control: modeling & design

4.8.1 Graph description

A first step towards the construction of a suitable model for primary control analysis and design is

the definition of an appropriate graph description of the system topology. Since the action of primary

control has to be taken into account, this description slightly differs from the one presented in Section

4.3. As before, we consider an hvdc transmission system described by a graph G↑ where c + 1 is the

number of graph nodes, and m = c+t the number of graph edges, with c and t the number of converters

and transmission units respectively. Furthemore, we define p the number of converter units not equipped

with primary control — that we call PQ units — and v the number of converter units equipped with

primary control — that we call voltage–controlled units. Without loss of generality we assume that the

set of converter nodes NV SC (respectively edges EV SC) can be partitioned into two ordered subsets

called NP and NV (respectively EP and EV ) associated to PQ and voltage–controlled units. Hence, the

incidence matrix (4.3.1) can be decomposed as:

B =

 Ip 0 BP
0 Iv BV
−1>p −1>v 0

 ∈ R(c+1)×m, (4.8.1)

where the submatrices BP , BV fully captures the interconnection topology of PQ and voltage–controlled

units.

4.8.2 Internally controlled voltage source converters

We next assume that any hvdc terminal is internally controlled via fast direct current control schemes.

These can be implemented, for example, via vector control, see Subsection 4.6.1 for more details on

this control strategy. The combined architecture of the vector control inner–loop scheme plus primary

control is illustrated in Fig. 4.14. The assumption can be formalized as follows.
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Vector control

Power controlPrimary control

Figure 4.14: Primary and inner–loop control architecture of an hvdc terminal, where the inner–loop
direct current scheme is implemented via vector control. The primary control takes action — for the
units that are equipped with — by properly modifying the direct current reference.

Assumption 4.8.1. All voltage source converters are controlled via stable direct current control schemes.

Moreover, such schemes guarantee instantaneous and exact tracking of the desired currents.

This assumption can be justified by an appropriate design of the inner–loop control scheme so that

the resulting closed–loop system is internally stable and has a very large bandwidth compared to the

primary control. As already discussed, this is usually achieved using tuning procedures. If stability is

guaranteed and this time–scale separation is followed in the design of the system, the assumption can

be mathematically formalized by invoking singular perturbation theory [92, 140].

We now determine implications of the aforementioned assumption for the dynamics of the PQ and

voltage–controlled units. Since the vector control allows perfect tracking of the references and converters

are instantaneously synchronized to the attached ac voltage sources through the PLL, the controlled

ac–side can be approximated by a power source:

P̂i = Vd,i(i
?
d,i + i?q,i). (4.8.2)
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If the converter unit is a PQ unit the references are established by the outer power loop:

i?d,i =
P ?i
Vd,i

, i?q,i =
Q?i
Vd,i

, i ∼ EP . (4.8.3)

Hence, the ac side can be approximated by a constant power device, as illustrated in Fig. 4.15. This

is equivalent to a current source ui constrained by the following relation:

P ?P,i := P ?i +Q?i = vC,iui, i ∼ EP . (4.8.4)

On the other hand, if the converter unit is a voltage–controlled unit, the references are defined

according to the primary control strategy. A common approach is to introduce an additional deviation

in the direct current reference — obtained from the outer power loop — as a function of the dc voltage,

keeping unchanged the reference of the quadrature current. Then, we can write:

i?d,k =
P ?k
Vd,k

+ δk(vC,k), i?q,k =
Q?k
Vd,k

, k ∼ EV , (4.8.5)

where δk(vC,k) represents the state–dependent contribution provided by the primary control. We pro-

pose to take:

δk(vC,k) = − 1

Vd,k
(µP,k + µI,kvC,k + µZ,kv

2
C,k), k ∼ EV , (4.8.6)

where µP,k, µI,k, µZ,k ∈ R are free control parameters. With this choice, the ac side can be approx-

imated by a ZIP model, i.e. by the parallel connection of a constant impedance (Z), a constant current

source (I) and a constant power device (P), see Fig. 4.15. The injected power (4.8.2) is thus given by:

P̂k(vC,k) = P ?V,k − µI,kvC,k − µZ,kv2
C,k, k ∼ EV , (4.8.7)

with P ?V,k := P ?k +Q?k − µP,k. Then the parameters P ?V,k, µI,k, µZ,k represent respectively the constant

absorbed power, absorbed current and impedance of the equivalent ZIP model. Note that consistency

with a ZIP loads simply follows by taking all parameters strictly positive. The dynamics of the PQ and

Figure 4.15: Circuit equivalent for PQ units (left) and voltage–controlled units (right).



4.8. PRIMARY CONTROL: MODELING & DESIGN 79

voltage–controlled units can be finally represented by the following scalar port–Hamiltonian systems Si:

i ∼ EP


q̇C,i = −Gi∇Hi + ui + iC,i

vC,i = ∇Hi
0 = P ?P,i − vC,ii0,i

k ∼ EV


q̇C,k = −(Gk + µZ,k)∇Hk − µI,k + uk + iC,k

vC,k = ∇Hk
0 = P ?V,k − vC,ki0,k

(4.8.8)

with scalar states the electric charges in the capacitors qC,i, qC,k, scalar port variables vC,i, vC,k the

capacitors voltages, ui, uk the converters currents, iC,i, iC,k the network currents, Gi, Gk the capacitor

conductances and the Hamiltonian energy functions

Hi(qC,i) =
1

2Ci
q2
C,i, Hk(qC,k) =

1

2Ck
q2
C,k.

The aggregated model is then given by:

˙[
qP

qV

]
=

[
−GP 0

0 −(GV +GZ)

][
∇HP
∇HV

]
+

[
uP

uV

]
−

[
0

ūI

]
+

[
iP

iV

]
[
vP

vV

]
=

[
∇HP
∇HV

] (4.8.9)

constrained by:

P ?P,i = vP,iuP,i, i ∼ EP , P ?V,k = vV,kuV,k, k ∼ EV (4.8.10)

with the following definitions.

- State space vectors qP := col(qC,i) ∈ Rp, qV := col(qC,k) ∈ Rv.

- Energy functions

HP (qP ) :=

p∑
i=1

Hi(qC,i), HV (qV ) :=

v∑
k=c+1

Hk(qC,k).

- External sources ūI := col(µI,i) ∈ Rv.

- Port variables iP := col(iC,i) ∈ Rp, iV := col(iC,k) ∈ Rv, uP := col(ui) ∈ Rp, uV := col(uk) ∈ Rv

and vP := col(vC,i) ∈ Rp, vV := col(vC,k) ∈ Rv.

- Dissipation matrices GP := diag{Gi}, GV := diag{Gk}, GZ := diag{µZ,k}.

Remark 4.8.2. With the following choice of the control parameters:

µP,k = −dkVd,kvnom
C , µI,k = dkVd,k, µZ,k = 0, (4.8.11)

the primary control (4.8.6) reduces to:

δk(vC,k) = −dk(vC,k − vnom
C ), (4.8.12)

that is the widely diffused voltage droop control [69, 142, 123], where dk is called droop coefficient

and vnom
C is the nominal voltage of the hvdc system. Hence, the droop control can be interpreted

as an appropriate parallel connection of a current sink with a constant power device. This should
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be contrasted with the model provided in [8, 13], where it is modeled as a current source in parallel

connection with an impedance.

4.8.3 Fast dc transmission lines

We consider the aggregated model of the dc transmission lines established in Section 4.3, whose expres-

sion is recalled to enhance readability. The model is given by:

ST :

ẋT = −RT∇HT + vT

iT = ∇HT .
(4.8.13)

The following assumption is made.

Assumption 4.8.3. The dynamics of the dc transmission lines evolve on a time–scale that is much

faster than the time–scale at which the capacitors dynamics evolve.

This assumption is a generalization of a fairly standard assumption in traditional power systems,

where this typically holds because of the very slow dynamics of generation and utilization units compared

to transmission units [131, 7]. From (4.8.13) it is easy to obtain:

i?T = GT vT , (4.8.14)

where i?T is the steady–state vector of line currents and GT := R−1
T the conductance matrix of the

transmission lines.

Remark 4.8.4. Note that Assumption 4.8.3 may not hold anymore while considering very long dc

transmission lines, for which a slower dynamics is expected. However, as it will be clear from the next

analysis, since line dynamics (4.8.13) are linear, analogous results can be obtained by removing the

mentioned assumption.

4.8.4 Interconnected model

In order to obtain the reduced, interconnected model of the hvdc transmission system under Assumption

4.8.1, Assumption 4.8.3, we need to consider the interconnection laws determined by the incidence

matrix (4.8.1). Let define the node and edge vectors:

V :=

VPVV
0

 ∈ Rc+1, Ve :=

vPvV
vT

 ∈ Rm, Ie :=

iPiV
iT

 ∈ Rm. (4.8.15)

Using the definition of the incidence matrix (4.8.1) and the Kirchhoff’s currents and voltages laws

expressed by (3.5.27), we have:

[KCL] 0p = iP + BP i?T , 0v = iV + BV i?T , −1>n iP − 1>n iV = 0,

[KVL] VP = vP , VV = vV , vT = B>P VP + B>V VV
(4.8.16)

Recalling (4.8.14), it is easy to obtain:

iP = −BPGTB>P vP − BPGTB>V vV
iV = −BVGTB>P vP − BVGTB>V vV ,

(4.8.17)
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that can be rewritten as: [
iP

iV

]
= −

[
LP Lm
L>m LV

][
vP

vV

]
, (4.8.18)

with

LP := BPGTB>P , LV := BVGTB>V , Lm := BPGTB>V . (4.8.19)

Now, it suffices to replace (4.8.18) into (4.8.9), to obtain the overall (reduced) interconnected model:

˙[
qP

qV

]
= −

[
LP +GP Lm
L>m LV +GV +GZ

][
∇HP
∇HV

]
+

[
uP

uV

]
+

[
0

ūI

]
[
vP

vV

]
=

[
∇HP
∇HV

] (4.8.20)

constrained by:

P ?P,i = vP,iuP,i, i ∼ EP , P ?V,k = vV,kuV,k, k ∼ EV . (4.8.21)

Remark 4.8.5. Since hvdc transmission systems are usually employed for transmitting power from

remote areas and/or to connect ac networks at different frequencies, their peculiarity with respect to

generalized dc grids is the absence of loads, in the sense that they act as pure transmission systems.

Nevertheless, the model (4.8.20) can be employed for the modeling of dc grids with loads without loss

of generality. Loads can be in fact represented either by PQ units (constant power loads) or by voltage–

controlled units with assigned parameters (ZIP loads). This model – which is nonlinear because of the

constraints (4.8.21) – should be contrasted with standard linear models adopted in literature, where

loads are supposed to be modeled as constant current sources, see for example [8, 177].

Remark 4.8.6. It is interesting to note that the matrix:

L :=

[
LP Lm
L>m LV

]
∈ Rc×c (4.8.22)

can be interpreted as the Laplacian matrix associated to the weighted undirected graph Ḡw, obtained

from the hvdc transmission system (unweighted directed) graph G↑ by: 1) eliminating the reference

node and edges connected to it; 2) assigning as weights of the transmission edges the value of their

conductances. Similar definitions are also encountered in [8, 177].

4.8.5 Conditions for existence of an equilibrium point

From an electrical point of view, the reduced system (4.8.20) is a linear capacitive–resistive circuit,

where at each node a constant power device is attached. It has been observed in experiments and

simulations that the presence of constant power devices may seriously affect the dynamics of linear

RLC circuits hindering the achievement of a stable behavior of the state variables — the dc voltages

in the present case [14, 97, 9, 129]. A first objective is thus to determine conditions on free control

parameters of the system (4.8.20) that guarantee the existence of an equilibrium point and that this is

at least locally asymptotically stable.

In order to present the main result on existence of equilibria for the system (4.8.20), we first introduce

the following Lemma, that is reported in [9] and that we recall here fore sake of completeness.
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Lemma 4.8.7. Consider m quadratic equations of the form fi : Rn → R,

fi(x) :=
1

2
x>Aix+ x>Bi, i ∈ [1,m], (4.8.23)

where Ai = A>i ∈ Rn×n, Bi ∈ Rn and define:

A(T ) :=

m∑
i=1

tiAi, B(T ) :=

m∑
i=1

tiBi, P(T ) :=

m∑
i=1

tiPi. (4.8.24)

If the following LMI [
A(T ) B(T )

B>(T ) 2P(T )

]
> 0, (4.8.25)

is feasible, then equations

fi(x) = −Pi, i ∈ [1,m] (4.8.26)

have no solution.

Proof. Write equations (4.8.26) in vector form as f(x) = −P and define the set

F := {f(x) : x ∈ Rn}, (4.8.27)

that is the image of Rn under the quadratic map f : Rn → Rm. Let us minimize a linear function∑m
i−1 tizi on F provided that A(T ) > 0 :

α := min
z∈F

m∑
i=1

tizi = min
x

m∑
i=1

tifi(x) = −1

2
B(T )A(T )−1B(T ). (4.8.28)

On the other hand, using the definition of P(T ) and if

− P(T ) < min
z∈F

m∑
i=1

tizi, (4.8.29)

it means that the hyperplane
m∑
i=1

tizi =
1

2
[α− P(T )] (4.8.30)

strictly separates −P and F , hence equations (4.8.26) have no solution. Finally, using Schur’s comple-

ment, the inequalities

A(T ) > 0, P(T ) >
1

2
B>(T )A(T )−1B(T ) (4.8.31)

are equivalent to (4.8.25), thus completing the proof. ���

We are now ready to formulate the following proposition, that establishes necessary, control parameters–

dependent, conditions for the existence of equilibria of the system (4.8.20).

Proposition 4.8.8. Consider the system (4.8.20)–(4.8.21), for some given P ?P := col(P ?P,i) ∈ Rp,

P ?V := col(P ?V,i) ∈ Rv. If there exist two diagonal matrices TP ∈ Rp×p, TV ∈ Rv×v such that:

Υ(TP , TV ) > 0, (4.8.32)
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with

Υ(TP , TV ) :=

TP (LP +GP ) + (LP +GP )TP TPLm + L>mTV 0

L>mTP + TV Lm TV (LV +GV +GZ) + (LV +GV +GZ)TV TV ūV

0 ū>V TV −2(1>TPP
?
P + 1>TV P

?
V )

 ,
(4.8.33)

the system does not admit an equilibrium point.

Proof. Setting the left–hand of the differential equations in (4.8.20) to zero, we have:

0 =− (LP +GP )v?P − Lmv?V + u?P ,

0 =− L>mv?P − (LV +GV +GZ)v?V + u?V − ūV .

Left–multiplying the first and second set of equations by v?P,i and v?V,k respectively, with i ∼ EP , k ∼ EV ,

we get

P ?P,i = v?P,i(L>P,i +GP,i)v
?
P + v?P,iL>m,iv?V ,

P ?V,k = v?V,kLm,kv?P + v?V,k(L>V,k +GV,k +GZ,k)v?V + v?V,kūV,k.

After some manipulations it is easy to rewrite

p?i =
1

2
(v?)>Aiv?, i ∼ EP ∪ EV , (4.8.34)

with

Ai := eie
>
i

[
LP +GP Lm
L>m LV +GV +GZ

]
+

[
LP +GP Lm
L>m LV +GV +GZ

]
eie
>
i ,

Bi := eie
>
i

[
0

ūV

]
, p?i := e>i

[
P ?P
P ?V

]
,

where ei ∈ Rc is the i-th Euclidean basis vector and v? := col(v?P , v
?
V ) ∈ Rc. Let consider the map

f(v?) : Rc → Rc with components

fi(v
?) =

1

2
(v?)>Aiv?, i ∼ EP ∪ EV

and denote F the image of Rc under this map. The problem of solvability of such equations can be

formulated using Lemma 4.8.7, i.e. if the LMI (4.8.32) holds, then p? is not in F , that completes the

proof. ���

The LMI (4.8.32) implicitly determines a necessary condition for the existence of an equilibrium

point for (4.8.20). This can be formulated with the following corollary.

Corollary 4.8.9. Consider the system (4.8.20)–(4.8.21), for some given P ?P := col(P ?P,i) ∈ Rp, P ?V :=

col(P ?V,i) ∈ Rv. Then the system admits an equilibrium point only if there are no diagonal matrices

TP ∈ Rp×p, TV ∈ Rv×v that verify (4.8.32).

Remark 4.8.10. Note that the feasibility of the LMI (4.8.32) depends from system parameters, among

which GZ , ūV and P ?V are free (primary) control parameters. Since the feasibility condition is only

necessary for the existence of equilibria for (4.8.20), it is of interest to determine regions for these

parameters that implies non–existence of an equilibrium point.
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4.8.6 Conditions for power sharing

As already discussed in Section 4.4, in practice one may be interested in determining conditions for

the existence of equilibria that possess two suitable properties: a proportional distribution of power

among the terminals and vicinity of the voltages near the nominal value [13, 8]. In this subsection we

address the first problem, while the latter is left for future investigation. More precisely, using the same

approach adopted for the problem of existence of equilibria, we determine additional conditions for the

existence of equilibria that possess the power sharing property, that we define as follows.

Definition 4.8.11. Let v? := (v?P , v
?
V ) an equilibrium point for (4.8.20)–(4.8.21), P̂V (v?) := col(P̂k(v?C,k)) ∈

Rv, i.e. the collection of power injected by voltage–controlled units, as defined by (4.8.7), and Γ :=

diag{γk} ∈ Rv×v, a positive definite matrix. Then v? is said to possess the power sharing property with

respect to Γ if:

ΓP̂V (v?) = 1v. (4.8.35)

This property consists in having guaranteed an appropriate (proportional) power distribution among

the terminals. A typical choice for the weights γk is the nominal power ratings of the hvdc terminals.

We next show, through the following lemma, that is possible to reformulate such a control objective as

a set of quadratic constraints on the (assumed existent) equilibrium point.

Lemma 4.8.12. Let v? = (v?P , v
?
V ) an equilibrium point for (4.8.20)–(4.8.21), Γ := diag{γk} ∈ Rv×v,

a positive definite matrix. Then v? possesses the power sharing property with respect to Γ if an only if

the quadratic equations
1

2
(v?)>Aps

k v
? + (Bps

k )>v? = pps
k , k ∼ EV , (4.8.36)

with:

Aps
k : = −2

[
0 0

0 ΓGZ

]
eke
>
k , Bps

k := −eke>k

[
0

ΓūV

]
, pps

k := e>k

[
0

ΓP ?V

]
,

admit a solution.

Proof. From the definition (4.8.35) we have:

γkP̂k(vC,k) = 1, k ∼ EV , (4.8.37)

that, recalling (4.8.7), is equivalent to:

γk(P ?V,k − µI,kvC,k − µZ,kv2
C,k) = 1. (4.8.38)

After some straightforward manipulations, it is easy to see that these can be rewritten as (4.8.36),

completing the proof. ���

An immediate implication of this lemma is given in the following proposition, that establishes

necessary conditions for the existence of an equilibrium point that possesses the power sharing property.

Proposition 4.8.13. Consider the system (4.8.20)–(4.8.21), for some given P ?P , P ?V , Γ. If there exist

three diagonal matrices TP ∈ Rp×p, TV , T
ps
V ∈ Rv×v, such that:

Υ(TP , TV ) + Υps(T
ps
V ) > 0, (4.8.39)
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with

Υps := −

0 0 0

0 2T ps
V ΓGZ T ps

V ΓūV

0 T ps
V ΓūV 2T ps

V (1v − ΓP ?V )

 (4.8.40)

and Υ(TP , TV ) defined as in (4.8.33), the system does not admit an equilibrium point.

Proof. The proof is similar to the proof of Proposition 4.8.8. Using Lemma 4.8.12 the power sharing

constraints can be indeed rewritten as quadratic equations, similarly to (4.8.34). Hence, it suffices to

apply Lemma 4.8.7 to the quadratic equations (4.8.34), (4.8.36) to complete the proof. ���

4.8.7 Conditions for local stability of a given equilibrium point

We now present a result on stability of a given equilibrium point, that is obtained by straghtforward

application of Lyapunov’s first method.

Proposition 4.8.14. Consider the system (4.8.20)–(4.8.21) and assume that v? = (v?P , v
?
V ) is an

equilibrium point. Define

G?P := diag

{
P ?P,i

(v?P,i)
2

}
, G?V := diag

{
P ?V,i

(v?V,i)
2

}
(4.8.41)

and the matrix:

J(v?) := −

[
C−1
P (LP +GP +G?P ) C−1

P Lm
C−1
V L>m C−1

V (LV +GV +GZ +G?V )

]
. (4.8.42)

Then if:

- all eigenvalues λi of J are such that Re{λi [J(v?)]} < 0, the equilibrium point v? is locally asymp-

totically stable;

- there exist an eigenvalue λi of J such that Re{λi [J(v?)]} > 0, the equilibrium point v? is unstable.

Proof. A first–order approximation of the state matrix around v? is given by:[
CP v̇P

CV v̇V

]
= −

[
LP +GP Lm
L>m LV +GV +GZ

][
vP

vV

]
+

[
∂iP
∂vP

∂iP
∂vV

∂iV
∂vP

∂iV
∂vV

]
(v?P ,v

?
V )

. (4.8.43)

Differentiating (4.8.21) with respect to vP , vV , it is easy to obtain:

0p×p =
∂iP
∂vP

· diag{vP,i}+ diag{iP,i}, 0v×v =
∂iV
∂vV

· diag{vV,i}+ diag{iV,i}, (4.8.44)

from which, using definitions (4.8.41), follows

∂iP
∂vP

(v?P ) = −G?P v?P ,
∂iV
∂vV

(v?V ) = −G?V v?V . (4.8.45)

The proof is then completed replacing into (4.8.43) and using Lyapunov’s first method. ���
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1 4

2 3

Figure 4.16: Four–terminal hvdc transmission system.

Table 4.4: Four–terminal hvdc transmission system parameters.

Value Value Value Value Value
Gi 0 Ω−1 P ?V,1 180 MW P ?P,2 −200 MW P ?V,3 90 MW P ?P,4 −240 MW

Ci 20 µF G12 0.1 Ω−1 G14 0.04 Ω−1 G23 0.41 Ω−1 G24 0.2 Ω−1

4.8.8 An illustrative example

In order to validate the result on existence of equilibria and power sharing for the system (4.8.20)–

(4.8.21) we next provide an illustrative, simple, example. We consider the four–terminal hvdc transmis-

sion system depicted in Fig. 4.16, the parameters of which are given in Table 4.4. Since c = 4, t = 5,

the graph associated to the hvdc system has n = 4 + 1 = 5 nodes and m = c + t = 4 + 5 = 9 edges. We

then make the following assumptions.

- Terminal 1 (T1) and terminal 3 (T3) are equipped with primary control, from which follows that

there are p = 2 PQ units and v = 2 voltage–controlled units. More precisely we consider the

following primary control:

δk(vC,k) = −dk(vC,k − vnom
C ), k = {1, 3} (4.8.46)

that is the well–known voltage droop control, where dk is a free control parameter, while vnom
C is

the nominal voltage of the hvdc system, see also Remark 4.8.2.

- Power has to be equally shared among terminal 1 and terminal 3, from which follows Γ = I2 in

Definition 4.8.11.

The next results are obtained investigating feasibility of the LMIs (4.8.32), (4.8.39) as a function

of the free control parameters d1, d3. For this purpose, CVX, a package for specifying and solving

convex programs, has been used to solve the semidefinite programming feasibility problem. In Fig.

4.17 it is shown — using a gridding approach — the regions of the (positive) parameters d1, d3 that
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Figure 4.17: Feasibility regions of the LMI (4.8.8) on the plane (Vd,1d1, Vd,3d3) of droop control param-
eters. Regions are yellow-coloured if the LMI is feasible and blue–coloured if the LMI is unfeasible.

guarantee feasibility (yellow) and unfeasibility (blue) of the LMI (4.8.32), while in Fig. 4.18 the same

is done with respect to the LMI (4.8.39). We deduce that a necessary condition for the existence of

an equilibrium point is that control parameters are chosen inside the blue region of Fig. 4.17, while a

necessary conditions for the existence of an equilibrium point that further possesses the power sharing

property is that control parameters are chosen inside the blue region of Fig. 4.18.
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Figure 4.18: Feasibility regions of the LMI (4.8.39) on the plane (Vd,1d1, Vd,3d3) of droop control pa-
rameters. Regions are yellow–coloured if the LMI is feasible and blue–coloured if the LMI is unfeasible.
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Chapter 5

Related works

5.1 Introduction

This chapter is devoted to further contributions of the author, that can be presented as alternative

interpretations, extensions or applications of the results obtained in the previous chapters. The pur-

pose is to show the generality of the proposed methods as well as to provide some guidelines for future

research. The sections that are here presented constitute abridged version of papers and reports of the

author, as detailed below.

Section 5.2, see also [140], focuses on modeling of ac microgrids, using an approach similar to the

one illustrated in Chapter 3. The main objective is to provide a guideline for control engineers attracted

by this fundamental application for Smart Grids to assess the importance of the main dynamical com-

ponents of a three-phase inverter-based microgrid as well as the validity of different models used in the

power literature. For this purpose, we present the microgrid concept, discuss its main components, their

modes of operation, as well as corresponding control schemes. This paves the path for —starting from

fundamental physics — presenting detailed dynamical models of the individual microgrid components

and clearly stating the underlying assumptions which lead to the standard reduced model representation.

Section 5.3, see also [53, 52, 180] is dedicated to modeling and analysis of an extremely simplified

model of an electric power system, that is constituted by a synchronous generator connected to a resis-

tive load. The same (but simplified) approach used in Chapter 3 is employed. Under some assumptions

preliminary stability results of the generator when it is fed by constant mechanical torque and constant

electrical field excitation are given. Although the result is not particularly interesting per se, it is the

authour belief that it provides an insightful starting point for extending the methodology to larger

power networks containing, e.g., multiple generators.

5.2 Ac microgrids: modeling

5.2.1 Motivation & contributions

We have witnessed in the recent years a significant increase in the use of renewable energies worldwide

[154]. Unlike fossil-fueled thermal power plants, most renewable power plants are relatively small in

89
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terms of their generation power. An important consequence of this smaller size is that most renewable

power plants are connected to the low voltage (LV) and medium voltage (MV) levels. Such generation

units are commonly denoted as distributed generation (DG) units [3]. In addition, most renewable DG

units are interfaced to the network via ac inverters. The physical characteristics of such power electronic

devices largely differ from the characteristics of synchronous generators (SGs), which are the standard

generating units in existing power systems. Hence, different control and operation strategies are needed

in networks with a large amount of renewable DG units [63, 163, 154].

One potential solution to facilitate the integration of large shares of renewable DG units are micro-

grids [98, 74, 63, 89, 35, 149]. A microgrid gathers a combination of generation units, loads and energy

storage elements at distribution or sub-transmission level into a locally controllable system, which can

be operated either in grid-connected mode or in islanded mode, i.e., in a completely isolated manner

from the main transmission system. The microgrid concept has been identified as a key component in

future electrical networks [35, 51, 99, 149].

Many new control problems arise for this type of networks. Their satisfactory solution requires the

development of advanced model-based controller design techniques that often go beyond the classical

linearization-based nested-loop proportional-integral (PI) schemes. This situation has, naturally, at-

tracted the attention of the control community as it is confronted with some new challenging control

problems of great practical interest.

It is clear that to carry out this task it is necessary to develop a procedure for assembling math-

ematical models of a microgrid that reliably capture the fundamental aspects of the problem. Such

models have been developed by the power systems and electronics communities and their pertinence

has been widely validated in simulations and applications [36, 88, 122, 111]. However, these are reduced

or simplified, i.e., linearized, models that are typically presented without any reference to the reduction

procedure—hampering the understanding of the physical phenomena behind them.

We focus on purely inverter–based networks, since inverter-interfaced units are the main new el-

ements in microgrids compared to traditional power systems. For modeling of traditional electro-

mechanical SG-based DG units, the reader is referred to standard textbooks on power systems [96, 106,

7]. The main contributions are summarized as follows.

(C1) Provide a detailed comprehensive model derivation of a microgrid based on fundamental physics

and combined with detailed reviews of the microgrid concept, its components and their main operation

modes.

(C2) Answer the question, when an inverter can be modeled as a controllable ac voltage source and

depict the necessary underlying model assumptions.

(C3) Show that the usual power flow equations can be obtained from a network with dynamic line

models via a suitable coordinate transformation (called dq-transformation) together with a singular

perturbation argument.

(C4) By combining the two latter contributions, recover the reduced-order microgrid model currently

widely used in the literature.

We emphasize that the aim of the present section is not to give an overarching justification for the
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final (simplified) model, but to provide a comprehensive overview of the modeling procedure for main

microgrid components together with their dynamics, as well as of the main necessary assumptions,

which allow the reduction of model complexity. Which of the presented models (if any) is appropriate

for a specific control design and analysis cannot be established in general, but has to be decided by the

user. Any model used in simulation and analysis necessarily involves certain assumptions. Therefore, it

is of great importance that the user is aware of the pertinence of the employed model to appropriately

assess the implications of a model-based analysis.

The remainder of the section is structured as follows. The microgrid concept is reviewed in Sub-

section 5.2.2. A detailed dynamical model of a microgrid is derived in Subsection 5.2.3. In particu-

lar, common operation modes of inverter-interfaced units are discussed therein. The model reduction

yielding models of inverters as ac voltage sources and phasorial power flow equations is conducted in

Subsection 5.2.4.

5.2.2 The microgrid concept

Microgrids have attracted a wide interest in different research and application communities over the

last decade [144, 74, 122, 149]. However, the term “microgrid” is not uniformly defined in the literature

[98, 74, 63, 89, 35, 59, 149]. Based on [63, 74, 149], the following definition of an ac microgrid is employed

in this survey paper.

Definition 5.2.1. An ac electrical network is said to be an ac microgrid if it satisfies the following

conditions.

i) It is a connected subset of the LV or MW distribution system of an ac electrical power system.

ii) It possesses a single point of connection to the remaining electrical power system. This point of

connection is called point of common coupling (PCC).

iii) It gathers a combination of generation units, loads and energy storage elements.

iv) It possesses enough generation and storage capacity to supply most of its loads autonomously

during at least some period of time.

v) It can be operated either connected to the remaining electrical network or as an independent island

network. The first operation mode is called grid-connected mode and the second operation mode

is called islanded, stand-alone or autonomous mode.

vi) In grid-connected mode, it behaves as a single controllable generator or load from the viewpoint of

the remaining electrical system.

vii) In islanded mode, it is a locally controllable system, that is frequency, voltage and power can be

actively controlled within the microgrid.

According to Definition 5.2.1, the main components in a microgrid are DG units, loads and energy

storage elements. Typical DG units in microgrids are renewable DG units, such as photovoltaic (PV)

units, wind turbines, fuel cells (FCs), as well as microturbines or reciprocating engines in combination

with SGs. The latter two can either be powered with biofuels or fossil fuels [103, 59].

Typical loads in a microgrid are residential, commercial and industrial loads [98, 89, 103]. It is

also foreseen to categorize the loads in a microgrid with respect to their priorities, e.g., critical and

non-critical loads. This enables load shedding as a possible operation option in islanded mode [98, 103].
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Finally, storage elements play a key-role in microgrid operation [103, 59]. They are especially

useful in balancing the power fluctuations of intermittent renewable sources and, hence, to contribute

to network control. Possible storage elements are, e.g., batteries, flywheels or supercapacitors. The

combination of renewable DGs and storage elements is also an important assumption for the inverter

models derived in this paper. An illustration of an exemplary microgrid is given in Fig. 5.1.

Most of the named DG and storage units are either dc sources (PV, FC, batteries) or are often

operated at variable or high-speed frequency (wind turbines, microturbines, flywheels). Therefore, they

have to be connected to an ac network via ac or dc-ac inverters [63, 154]. For ease of notation, such

devices are simply called “inverters” in the following. Overviews on existing test-sites and experimental

microgrids around the globe are provided in the survey papers [74, 10, 103, 121, 67]. As a consequence,

fundamental network control actions, such as frequency or voltage control, have to be performed by

inverter-interfaced units. This fact represents a fundamental difference to the operation of conventional

power systems, where mainly SG units are responsible for network control. Therefore and since the

modeling of SGs is a well-covered topic in the literature [96, 7, 106], we focus in the following on micro-

grids with purely inverter-interfaced DG and storage units. Also, it is straight-forward to incorporate

SG-based units into the microgrid model presented hereafter.

5.2.3 Physical modeling & inner–loop control

In Chapter 3 it was shown that generalized electric power systems can be represented by a directed

graph, where the power units correspond to edges and the buses correspond to nodes. In this section a

similar procedure is applied to describe the dynamics of an ac inverter–based microgrid. According to

such a procedure and in particular — under Assumption 3.4.1 — we consider only two types of power

units: inverters — that we call converter units — and transmission units. We next provide a graph

description of the system topology and appropriate models of the individual units.

Graph description

In line with this approach, an inverter-based microgrid can be represented by an unweighted directed

graph G↑ where inverters and transmission lines correspond to edges and buses correspond to nodes.

We call a bus an converter bus when a inverter unit is connected to it and a load bus when a load is

connected to it. Moreover, we call a bus a transmission bus when no inverter units or loads are connected

to it. All buses associates a potential and we call a bus a reference bus when all buses potentials are

measured with respect to it. The reference bus is assumed to be at ground potential. Converter, load

and reference buses are boundary buses, while the transmission buses are interior buses. We further

assume, as in Chapter 3, that transmission (interior) buses are eliminated via Kron–reduction [160],

from which follows that if c is the number of three–phase converter buses and r is the number of three–

phase load buses, then the total number of buses (nodes) is n + 1 = 3c + 3r + 1. Without loss of

generality we assume that the set of nodes N can be partitioned into three ordered subsets called NI ,
NR and the one–element set N0, associated to inverter, load nodes and the reference node respectively.

We call V ∈ Rn+1 the vector of node potentials. We also mentioned that is common practice to define

power units such that their interaction with the environment is modeled by a voltage capacitor at their

interaction port. In the case of ac microgrids it is easy to see that both inverters, loads and tranmission

units share a capacitor at the converter buses to which they are attached. For simplicity then, we make

the following assumption.
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Figure 5.1: Schematic representation of a microgrid. The microgrid is composed of several DG units,
loads and storage devices. The DG units are inverter-interfaced photovoltaic (PV), fuel cell (FC) and
wind power plants. In addition, a power generation unit is connected to the network via a synchronous
generator (SG). The point of connection of the microgrid to the main network is called point of common
coupling (PCC).

Assumption 5.2.2. All (possibly lossy) capacitors in parallel connection at a given bus are replaced

by an equivalent capacitor, whose dynamics is included in the inverter dynamics.

Consequently, all capacitors shared by tranmission units at their ports can be safely neglected,

while capacitors shared by inverters need to be replaced by equivalent capacitors. Let 3t the number

of transmission edges — associated to the t three–phase transmission units — that connect converter

buses. Since, there is a converter edge between every converter bus and the reference bus, there are in

total m = 3c+3t edges. Without loss of generality we assume that the set of edges E can be partitioned

into three ordered subsets called EI , ER and ET associated to converter, load and transmission edges

respectively. We call (Ve, Ie) ∈ Rm × Rm the vectors pair associated to edge voltages and currents

respectively. The topology of the ac microgrids is fully described by the directed graph G↑ to which are

associated the vectors V, Ve, Ie and the following incidence matrix

B =

[
Ic+r Bnet
−1>c+r 0

]
⊗ I3 ∈ R(n+1)×m. (5.2.1)
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Figure 5.2: Typical circuit of a two-level three-phase inverter with LC output filter to convert a dc into
a three-phase ac voltage. The inverter is constructed with insulated-gate bipolar transistors (IGBTs)
and antiparallel diodes. The dc voltage is denoted by vDC ∈ R, the three-phase ac voltage generated by
the inverter with vabc ∈ R3, vabc = col(va, vb, vc) and the three-phase grid-side ac voltage by vG ∈ R3,
vG = col(vGa

vGb
, vGc

). The components of the output filter are an inductance Lf , a capacitance Cf
and two resistances Rf1 , respectively Rf2 . Typically, the resistance Rg and the inductance Lg represent
a transformer or an output impedance. At the open connectors denoted by “o“ the circuit can be
grounded if desired.

The submatrix Bnet⊗I3 ∈ Rn×3t, represents the incidence matrix of the sub–graph G↑net, that is obtained

by eliminating the reference node and edges that are connected to it. The incidence matrix Bnet thus

fully captures the topology of the ac microgrid network. To avoid confusion we refer to G↑ as the ac

microgrid graph and to G↑net as the ac network graph.

Inverters

Recall that inverters are key components of microgrids. The main elements of inverters are power semi-

conductor devices [48, 112]. An exemplary basic hardware topology of the electric circuit of a two-level

three-phase inverter constructed with insulated-gate bipolar transistors (IGBTs) and antiparallel diodes

is shown in Fig. 5.2. The conversion process from dc to ac is usually achieved by adjusting the on- and

off-times of the transistors. These on- and off-time sequences are typically determined via a modula-

tion technique, such as pulse-width-modulation [48, 112]. To improve the quality of the ac waveform,

e.g., to reduce the harmonics, the generated ac signal is typically processed through a low-pass filter

constructed with LC elements. Further information on the hardware design of inverters and related

controls is given in [48, 112, 178].

In microgrids, two main operation modes for inverters can be distinguished [166, 127]: grid-forming

and grid-feeding mode. The latter is sometimes also called grid-following mode [89] or PQ control

[105], whereas the first is also referred to as voltage source inverter (VSI) control [105]. The main

characteristics of these two different operation modes are as follows [105, 89, 166, 127].

i) Grid-forming mode (also: VSI control).

The inverter is controlled in such way that its output voltage can be specified by the designer.

This is typically achieved via a cascaded control scheme consisting of an inner current control and

an outer voltage control as shown in Fig. 5.3, based on [127]. The feedback signal of the current
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control loop is the current through the filter inductance, while the feedback signal of the voltage

control loop is the inverter output voltage vabc : R+ → R3. The inner loop of the control cascade

is not necessary to control the output voltage of the inverter and can hence also be omitted.

Nevertheless, it is often included to improve the control performance.

ii) Grid-feeding mode (also: grid-following mode, PQ control).

The inverter is operated as power source, i.e., it provides a pre-specified amount of active and

reactive power to the grid. The active and reactive power setpoints are typically provided by a

higher-level control or energy management system, see [127, 22, 72]. Also in this case, a cascaded

control scheme is usually implemented to achieve the desired closed-loop behavior of the inverter,

as illustrated in Fig. 5.4. As in the case of a grid-forming inverter, the inner control loop is a

current control the feedback signal of which is the current through the filter inductance. However,

the outer control loop is not a voltage, but rather a power (or, sometimes, a current) control. The

feedback signals of the power control are the active and reactive power provided by the inverter.

In both aforementioned operation modes, the current and voltage control loops are, in general,

designed with the objectives of rejecting high frequency disturbances, enhancing the damping of the

output LC(L) filter and providing harmonic compensation [124, 19, 111, 122]. Furthermore, nowadays,

most inverter-based DG units, such as PV or wind plants, are operated in grid-feeding mode [127].

However, grid-forming units are essential components in ac power systems, since they are responsible

for frequency and voltage regulation in the network. Therefore, in microgrids with a large share of

renewable inverter-based DG units, grid-forming capabilities often also have to be provided by inverter-

interfaced sources [105, 89]. It is convenient to partition the set EI into two subsets, i.e., EI = EF ∪EP ,
such that EF contains f edges associated to grid-forming inverters — that we call grid–forming edges —

and EP contains p = c− f edges associated to grid-feeding inverters — that we call grid–feeding edges.

Grid–forming edges

A suitable model of a grid-forming inverter for the purpose of control design and stability analysis of

microgrids is derived. There are many control schemes available to operate an inverter in grid-forming

mode, such as PI control in dq-coordinates [122], proportional resonant control [56, 153] or repetitive

control [167, 79] among others. An overview of the most common control schemes with an emphasis

on H∞ repetitive control is given in [178]. For a comparison of different control schemes, the reader is

referred to [104]. The assumption below is key for the subsequent model derivation.

Assumption 5.2.3. Whenever an inverter operated in grid-forming mode connects an intermittent

renewable generation source, it is equipped with a fast-reacting storage.

Assumption 5.2.3 implies that the inverter can increase and decrease its power output within a

certain range. This is necessary if the inverter should be capable of providing a fully controllable

voltage also when interfacing an intermittent renewable DG unit to the network. Furthermore, since

the storage element is assumed to be fast-reacting, the dc-side dynamics can be neglected in the model.

The capacity of the required dc storage element depends on the specific source at hand. Generally,

the standard capacitive elements of an inverter don’t provide sufficient energy storage capacity and

an additional storage component, e.g., a battery or flywheel, is required if an inverter is operated in

grid-forming mode [154] See [30] for a survey of energy storage technologies in the context of power

electronic systems and renewable energy sources.



96 CHAPTER 5. RELATED WORKS

vDC
2

vDC
2

vDC

Rf1 Lf

Cf

Rf2

va
Rg Lg vGa

vb vGb

vc vGc

Modulator

Current controller

Voltage controller

iref

vref

D
ig
it
al

si
gn

al
p
ro
ce
ss
or

(D
S
P
)

vabc

if,abc

Figure 5.3: Schematic representation of an inverter operated in grid-forming mode based on [127].
Bold lines represent electrical connections, while dashed lines represent signal connections. The current
through the filter inductance is denoted by if,abc ∈ R3 and the inverter output voltage by vabc ∈ R3.
Both quantities are fed back to a cascaded control consisting of an outer voltage and an inner current
control. The reference signal vref ∈ R3 for the voltage controller is set by the designer, respectively a
higher-level control. The IGBTs of the inverter are then controlled via signals generated by a modulator.
The control structure can also be reduced to a pure voltage control.
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Figure 5.4: Schematic representation of an inverter operated in grid-feeding mode based on [127]. Bold
lines represent electrical connections, while dashed lines represent signal connections. As in Fig. 5.3,
the current through the filter inductance is denoted by if,abc ∈ R3 and the inverter output voltage
by vabc :∈ R3. In grid-feeding mode, both quantities are fed back to a cascaded control consisting of
an outer power and an inner current controller. The reference active and reactive powers Pref ∈ R,
respectively Qref ∈ R, are set by the designer or a higher-level control.
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Due to the large variety of available control schemes, it is difficult to determine a standard closed-

loop model of an inverter operated in grid-forming mode together with its inner control and output

filter. Therefore, the approach taken in this work is to represent such a system as a generic dynamical

system. Note that the operation of the IGBTs of an inverter occurs typically at very high switching

frequencies (2-20 kHz) compared to the network frequency (45-65 Hz). It is therefore common practice

[105, 63, 122, 111, 34] to model an inverter in network studies with continuous dynamics by using the

so-called averaged switch modeling technique [48, 34], i.e., by averaging the internal inverter voltage

and current over a suitably chosen time interval such as one switching period.

Consider a grid-forming inverter located at the i-th node of a given microgrid, i.e., i ∈ EF . Denote

its three-phase symmetric output voltage by vabc,i : R+ → R3 with phase angle αi : R+ → S and

amplitude
√

2
3Vi : R+ → R+, i.e.,

vabc,i =

√
2

3
Vi

 sin(αi)

sin(αi − 2
3π)

sin(αi + 2
3π)

 .
Furthermore, denote by ωi := α̇i the frequency of the voltage vabc,i. Denote the state vector of the

inverter with its inner control and output filter by xi ∈ Rm, its input vector by vref,i ∈ R3 and its

conjugated interacion port variables by (vabc,i, iabc,i) ∈ R3×R3, see Fig. 5.3. Let fi : Rm×R3×R3 → Rm

and hi : Rm × R3 → R3 denote continuously differentiable functions and νi denote a nonnegative

real constant. Then, the closed-loop inverter dynamics with inner control and output filter can be

represented in a generic manner as

νiγiẋi = fi(xi, vref,i, iabc,i),

vabc,i = hi(xi, vref,i),
(5.2.2)

where the positive real constant γi denotes the time-drift due to the clock drift of the processor used

to operate the inverter, see [137] for further details.

One key objective in microgrid applications is to design suitable higher-level controls to provide a

reference voltage vref,i for the system (5.2.2) [64]. Within the hierarchical control scheme discussed,

e.g., in [66, 64] this next higher control level corresponds to the primary control layer of a microgrid.

Let zi ∈ Rp denote the state vector of this higher-level control system, ui ∈ Rq its control input vector

and vref,i its output vector. Furthermore, let gi : Rp×Rq → Rp and wi : Rp×Rq → R3 be continuously

differentiable functions. Then, the outer control system of the inverter can be described by

γiżi = gi(zi, ui),

vref,i = wi(zi, ui).
(5.2.3)

Combining (5.2.2) and (5.2.3) yields the overall inverter dynamics:

Si : i ∼ EF


γiżi = gi(zi, ui),

νiγiẋi = fi(xi, wi(zi, ui), iabc,i),

vabc,i = hi(xi, wi(zi, ui)).

(5.2.4)

Let define the state vectors z := col(zi) ∈ Rpf , x : col(xi) ∈ Rmf , the control input vector u :=
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col(ui) ∈ Rqf , with i ∼ EF and the matrices

Γ : = diag(γi) ∈ Rf×f , V := diag(νi) ∈ Rf×f ,

Hence the aggregated model of grid–forming edges can be obtained collecting the dynamical systems

Si with i ∼ EF , thus giving:

SF :


[Γ⊗ Ipf ] ż = g(z, u)

[V Γ⊗ Imf ] ẋ = f(x,w(z, u), iabc)

vabc,i = hi(xi, wi(zi, ui)), i ∼ EF .

(5.2.5)

Grid–feeding and load edges

As already discussed in Subsection 5.2.3, grid-feeding inverters are typically operated as current or power

sources. In order to achieve such behavior, the control methods employed to design the inner control

loops of grid-forming inverters (see Subsection 5.2.3) can equivalently be applied to operate inverters

in grid-feeding mode. The current or power reference values are typically provided by a higher-level

control, e.g., a maximum power point tracker (MPPT) [127].

We define the sets NL := NP ∪NR, EL := EP ∪ ER the sets that contain the nodes, respectively the

eddges, associated to grid-feeding inverters and loads and let l := p + r. As done for the model of a

grid-forming inverter in (5.2.4), let xi ∈ R` denote the state vector, (vabc,i, iabc,i) ∈ R3 ×R3 denote the

conjugated interaction port variables, fi : R` × R3 → R` and hi : R` × R3 → R3 denote continuously

differentiable functions and κi denote a nonnegative real constant. We assume then a generic dynamic

model of the form

Si : i ∼ EL

{
κiẋi = fi(xi, iabc,i),

vabc,i = hi(xi, iabc,i).
(5.2.6)

In addition to grid-feeding inverters, the model (5.2.6) can equivalently represent impedance (e.g., R

parallel to L), current- or power-controlled loads. Furthermore, a large variety of other load behaviors

can be modeled by (5.2.6). We refer the reader to [96, 158] for further details on load modeling. Let

define the state vector xL := col(xi) ∈ Rrl, with i ∼ EL and the matrix

K := diag(κi) ∈ R`l×`l.

Hence the aggregated model of grid–feeding and load edges can be obtained collecting the dynamical

systems Si with i ∼ EL, thus giving:

SL :

{
[K ⊗ I`l] ẋL = fL(xL, iabc)

vabc,i = hi(xi, iabc,i), i ∼ EL.
(5.2.7)

Transmission lines edges

We recall that the set of transmission lines and transformers interconnecting the different network

nodes i ∼ N is given by ET . In order to describe the dynamics of a transmission line, a π–model —

that consists of the parallel connection of two capacitors by means of an RL–series impedance — has

been considered in Chapter 3. However, under Assumption 5.2.2, dc lines reduces to a more simple

RL–series impedance. This is justified, as explained before, by the definition of an equivalent capacitor

at the output of each inverter. In light of Assumption 3.4.1 and to ease presentation, we solely use
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the term power lines to refer to the network interconnections in the following sections. Also, note that

it is straight-forward to extent the modeling approach presented hereafter to more detailed power line

models and to DG units interfaced to the network via SGs. Using the model of transmission edges given

by (3.5.6), but represented in standard state–space form, the aggregated model of transmission edges

can be written as

ST :

{
(LT ⊗ I3)ẋT = −(RT ⊗ I3)xT + vT

iT = xT .
(5.2.8)

with state vector xT ∈ R3t the aggregated line currents, conjugated interaction port variables

(vT , iT ) ∈ R3t × R3t and matrices

LT := diag(Li) ∈ Rt×t, RT := diag(Ri) ∈ Rt×t.

The three-phase interconnection laws can be obtained using the incidence matrix B⊗ I3 and Kirchhoff’s

current and voltage laws expressed by (3.5.28), from which it is easy to obtain

iabc = (B ⊗ I3)iT , (B> ⊗ I3)vabc = vT .

Hence, the dynamical system representing the network is given by

(LT ⊗ I3)ẋT = −(R⊗ I3)xT + (B> ⊗ I3)vabc

iabc = (B ⊗ I3)xT
(5.2.9)

Interconnected model

For the construction of the interconnected model, we next transform the model (5.2.9) into dq-coordinates

by means of the transformation Tdq introduced in Subsection 2.2.3. This coordinate transformation is

instrumental for the model reduction carried out in Subsection 5.2.4. Let

ϑ := mod2π (ωcomt) ∈ S, (5.2.10)

where the operator1 mod2π is added to respect the topology of the torus. Applying the transformation

Tdq with transformation angle ϑ to the signals vabc,i and iabc,i, i ∼ EI , gives

v̂dq,i := Tdq(ϑ)vabc,i =

[
V̂d,i

V̂q,i

]
, îdq,i := Tdq(ϑ)iabc,i =

[
Îd,i

Îq,i

]
,

where the superscript ” ·̂ ” is introduced to denote signals in dq-coordinates with respect to the angle ϑ.

This notation is used in the subsequent section, where a reduced-order model of a microgrid is derived

by using several dq-transformation angles. Furthermore, following standard notation in power systems,

the constant ϑ̇ = ωcom is referred to as the rotational speed of the common reference frame. Likewise,

the signal xT,i becomes

x̂T,dq,i := Tdq(ϑ)xT,abc,i =

[
X̂T,d,i

X̂T,q,i

]
.

1The operator mod2π : R → [0, 2π), is defined as follows: y = mod2π{x} yields y = x − k2π for some integer k, such
that y ∈ [0, 2π).
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Note that

ˆ̇xT,dq,i = Ṫdq(ϑ)xT,i + Tdq(ϑ)ẋT,i = ωcom

[
−X̂T,q,i

X̂T,d,i

]
+ Tdq(ϑ)ẋT,i.

Hence, the transmission line in dq-coordinates reads as

Li ˆ̇xT,dq,i = Li

(
ωcom

[
−X̂T,q,i

X̂T,d,i

]
+ Tdq(ϑ)ẋT,i

)
= −Rix̂T,dq,i + Liω

com

[
−X̂T,q,i

X̂T,d,i

]
+ v̂dq,i,

îT,dq,i = x̂T,dq,i.

(5.2.11)

Let define the aggregated voltages and currents of the converter edges, in dq-coordinates

v̂dq := col(v̂dq,i) ∈ R2c, îdq := col(̂idq,i) ∈ R2c. (5.2.12)

Similarly, the aggregated voltages and currents of the transmission edges, in dq-coordinates, read:

v̂T,dq := col(v̂T,dq,i) ∈ R2t, x̂T,dq := col(x̂T,dq,i) ∈ R2t.

Bu further introducing the matrix X := diag{J2Liω
com} ∈ R2t×2t, the aggregated model (5.2.9) finally

becomes:

(L⊗ I2) ˙̂xT,dq = (−R⊗ I2 + X )x̂T,dq + (B> ⊗ I2)v̂dq

îdq = (B ⊗ I2)x̂T,dq.
(5.2.13)

To obtain the interconnected model, it suffices now to combine (5.2.5), (5.2.7) and (5.2.13), thus

leading to the following differential equations

[Γ⊗ Ipf ] ż = g(z, u)

[V Γ⊗ Imf ] ẋ = f(x,w(z, u),B ⊗ T>dq(ϑ)x̂T,dq)

[K ⊗ I`l] ẋL = fL(xL,B ⊗ T>dq(ϑ)x̂T,dq)

[L⊗ I2] ˙̂xL,dq = (−R⊗ I2 + X )x̂T,dq + (B> ⊗ I2)v̂dq,

(5.2.14)

Note that the voltage at the nodes are expressed by

v̂dq = [Ic ⊗ Tdq(ϑ)] vabc, (5.2.15)

with

vabc,i = hi(xi, wi(zi, ui)), i ∼ EF , vabc,k = hk(xk, iabc,k), k ∼ EL. (5.2.16)

5.2.4 A reduced model for primary control design

For the purpose of deriving a model that is suitable for stability analysis, it is customary to make the

following assumptions on (5.2.14), (5.2.15), where ε stands for a generic small positive real constant.

Assumption 5.2.4. νi < ε in (5.2.4), i ∼ EF . Therefore, ẋi(t) = 0m for all t ≥ 0. Furthermore,

vabc,i = wi(zi, ui), i ∼ EF .
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Assumption 5.2.5. κk < ε in (5.2.6), k ∼ EL. Therefore, ẋk(t) = 0r for all t ≥ 0. Furthermore, the

instantaneous power balance at each node k ∈ NL can be described by a ZIP model [96], i.e.,

Pk(v̂dq,k, îdq,k) = −
(
aP,k‖v̂dq,k‖22 + bP,k‖v̂dq,k‖2 + cP,k

)
:= P ∗k (‖v̂dq,k‖2),

Qk(v̂dq,k, îdq,k) = −
(
aQ,k‖v̂dq,k‖22 + bQ,k‖v̂dq,k‖2 + cQ,k

)
:= Q∗k(‖v̂dq,k‖2),

where aP,k, bP,k, cP,k, aQ,k, bQ,k and cQ,k are real constants and Pk(v̂dq,k, îdq,k) and Qk(v̂dq,k, îdq,k) are

power are calculated according to the definition provided in Subsection 2.2.5.

Assumption 5.2.6. L < εIt in (5.2.13). Therefore, ˙̂xT,dq(t) = 02t for all t ≥ 0.

Assumption 5.2.4 is equivalent to the assumption that the inner current and voltage controllers

track the voltage and current references instantaneously and exactly. Usually, the current and voltage

controllers in (5.2.2) (see also Fig. 5.3) are designed such that the resulting closed-loop system (5.2.2)

has a very large bandwidth compared to the control system located at the next higher control level

represented by (5.2.3) [105, 36, 111]. If this time-scale separation is followed in the design of the

system (5.2.4), the first part of Assumption 5.2.4 can be mathematically formalized by invoking singular

perturbation theory [91], [95]. The second part of Assumption 5.2.4 expresses the fact that the inner

control system (5.2.2) is assumed to track the reference vref,i = wi(zi, ui) exactly, independently of the

disturbance iabc,i. Typical values for the bandwidth of (5.2.2) reported in [111, 122] are in the range of

400− 600 Hz, while those of (5.2.3) are in the range of 2− 10 Hz.

Assumption 5.2.5 implies that the dynamics of loads and grid-feeding units can be neglected. This

assumption is also frequently employed in microgrid and power system stability studies, where loads are

often modeled as either constant impedance (Z), constant current (I) or constant power loads (P) or a

combination of them (ZIP) [96, 158]. Similarly, grid-feeding units with positive active power injection

are represented by setting aP,k = aQk
= 0 and bP,k or cP,k to negative values. The values for bQ,k and

cQ,k should be chosen in dependency of the reactive power contribution of the unit.

Assumption 5.2.6 is standard in power system analysis [96, 62, 132, 7, 106, 59]. The usual justification

of Assumption 5.2.6 is that the line dynamics evolve on a much faster time-scale than the dynamics of

the generation sources. In the present case, Assumption 5.2.6 is justified whenever Assumption 5.2.4 is

employed, since the line dynamics (5.2.13) are typically at least as fast as those of the internal inverter

controls (5.2.2), see, e.g., [122]. Again, Assumption 5.2.6 can be mathematically formalized by invoking

singular perturbation arguments [91], [95].

Under Assumption 5.2.4, the model of each grid-forming inverter (5.2.4) reduces to

γiżi = gi(zi, ui),

vabc,i = wi(zi, ui), i ∼ EF .
(5.2.17)

The model (5.2.17) represents the inverter as an ac voltage source, the amplitude and frequency of

which can be defined by the designer. The system (5.2.17) is a very commonly used model of a grid-

forming inverter in microgrid control design and analysis [105, 63, 89, 136]. The model simplification

from (5.2.4) to (5.2.17) is illustrated in Figure 5.5.

Furthermore, often a particular structure of (5.2.17) is used in the literature [144, 145, 134, 136, 4,

114]. As discussed in Subsection 2.2.2, a symmetric three-phase voltage can be completely described

by its phase angle and its amplitude. In addition, it is usually preferred to control the frequency of the

inverter output voltage, instead of the phase angle. Hence, a suitable model of the inverter at the i-th
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Figure 5.5: Simplified representation of an inverter operated in grid-forming mode as ideal control-
lable voltage source. Bold lines represent electrical connections, while dashed lines represent signal
connections.

node is given by [136, 134]

γiα̇i = ωi = uδi ,

Vi = uV
i ,

vabc,i = vabc,i(αi, Vi),

(5.2.18)

where uδi : R+ → R and uVi : R+ → R are control signals.

Usually, it is also assumed that the active and reactive power output is measured and processed

through a filter to obtain the power components corresponding to the fundamental frequency [122, 36,

111]

γiτPi
Ṗmi = −Pmi + Pi, γiτPi

Q̇mi = −Qmi +Qi. (5.2.19)

Here, Pi and Qi are the active and reactive power injections of the inverter, Pmi : R+ → R and

Qmi : R+ → R their measured values and τPi ∈ R>0 is the time constant of the low pass filter.

Note that whenever the particular form (5.2.18), (5.2.19) of (5.2.3) is considered and the measured

and filtered power signals are used as feedback signals in the controls uδi , respectively uV
i , then the

bandwidth of the overall control system is limited by the bandwidth of the measurement filter. Hence,

if τPi
� νi, then Assumption 5.2.4 is justified.

With Assumption 5.2.5, (5.2.6) can be represented by the algebraic relation

Pk(v̂dq,k, îdq,k) = P ∗k (‖v̂dq,k‖2), Qk(v̂dq,k, îdq,k) = Q∗k(‖v̂dq,k‖2), k ∼ EL. (5.2.20)

Finally, under Assumption 5.2.6, the network interconnections (5.2.13) are also static and given by

îdq = B ⊗ I2 (R⊗ I2 −X )
−1 B> ⊗ I2v̂dq. (5.2.21)

In the following, a more compact representation of (5.2.18) - (5.2.21) is derived. To this end, it is
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convenient to recall that αi is the angle of the voltage at the i-th node with initial condition α0i
, i ∼ N

and define

δi := α0i
+

∫ t

0

(α̇i − ωcom)dτ ∈ S, i ∼ N . (5.2.22)

Let $ : R+ → S and consider the mapping Tδ : S→ R2×2,

Tδ($) :=

[
cos($) sin($)

− sin($) cos($)

]
. (5.2.23)

which applied to any x ∈ R2 represents a rotational transformation. Note that, with δi defined in

(5.2.22),

αi − δi = mod2π (ωcomt) = θ, i ∼ N ,

and that straightforward algebraic manipulations yield

Tdq(θ) = Tδ(δi)Tdq(αi).

Hence, by construction,

v̂dq,i = Tdq(θ)vabc,i = Tδ(δi)Tdq(αi)vabc,i = Tδ(δi)Vi

[
0

1

]
, (5.2.24)

which makes it convenient to define

vdq,i :=

[
Vd,i

Vq,i

]
= Vi

[
0

1

]
, i ∼ N . (5.2.25)

The variables vdq,i are referred to as local dq-coordinates of vabc,i in the following. It is now convenient

to represent (5.2.24) in the complex plane

V̂qd,i := V̂q,i + jV̂d,i = (cos(δi) + j sin(δi))Vqd,i = ejδiVqd,i, (5.2.26)

where Vqd,i = Vq,i + jVd,i, i ∼ N . Equivalently, let

Îqd,i := Îq,i + jÎd,i = ejδiIqd,i (5.2.27)

and define

V̂qd :=V̂q + jV̂d ∈ Cc, Îqd := Îq + jÎd ∈ Cc,

Vqd :=Vq + jVd ∈ Cc, Iqd := Iq + jId ∈ Cc.
(5.2.28)

Then, with X := diag(Xi) = diag(Liω
com) ∈ Rt×t, we can rewrite (5.2.21) as

Îqd = B (R+ jX)
−1 B>V̂qd. (5.2.29)

Note that the reactances Xi = Liω
com are calculated at the frequency ωcom, which, under the made

assumptions, should be chosen as the (constant) synchronous frequency of the network—denoted by

ωs ∈ R in the following. Typically, ωs ∈ 2π[45, 65] rad/s.

Remark 5.2.7. The form (5.2.28) is a very popular representation and these complex quantities are



104 CHAPTER 5. RELATED WORKS

often denoted as phasors [7, 178]. Furthermore, by using Euler’s formula [75], (5.2.28) can also be

rewritten in polar form. Note, however, that, unlike, e.g., [7, 178], other authors define a phasor as a

complex sinusoidal quantity with a constant frequency [59].

Define the admittance matrix of the electrical network by

Y := B (R+ jX)
−1 B> ∈ Cc×c (5.2.30)

and

Gii :=Re(Yii), Bii := Im(Yii), Yik := Gik + jBik := −Yik, i 6= k.

Moreover, it follows immediately that

Yik =

0 if nodes i and k are not connected

−(Ri + jXi)
−1 if nodes i and k are connected by line i

and

Gii + jBii =
∑
i∼ET,i

(Ri + jXi)
−1,

where ET,i denotes the set of transmission edges associated to node i. Inserting (5.2.26) and (5.2.27)

into (5.2.29) yields

Iqd = diag
(
e−jδi

)
Ydiag

(
ejδi
)
Vqd. = Ŷ(δ)Vqd. (5.2.31)

Recall that Vqd and Iqd defined in (5.2.28) are expressed in local dq-coordinates. By making use of

(5.2.25) and (5.2.30), (5.2.31) can be written component-wise as

Iqd,i = Iq,i + jId,i (5.2.32)

with:

Iq,i = GiiVi −
∑
k∼Ni

(Gik cos(δik) +Bik sin(δik))Vk,

Id,i = BiiVi −
∑
k∼Ni

(Bik cos(δik)−Gik sin(δik))Vk,
(5.2.33)

i ∼ N , where, for ease of notation, angle differences are written as δik := δi − δk. Furthermore, using

the definition of power provided in Subsection 2.2.5, together with (5.2.25) and (5.2.33), the power flows

in the network are given by

Pi = ViIq,i = GiiV
2
i −

∑
k∼Ni

(Gik cos(δik) +Bik sin(δik))VkVi

Qi = −ViId,i = −BiiV 2
i +

∑
k∼Ni

(Bik cos(δik)−Gik sin(δik))VkVi.
(5.2.34)

The equations (5.2.34) are the standard power flow equations used in most recent work on microgrid

stability analysis, e.g., [144, 136, 4, 114].

Remark 5.2.8. Note that for any other choices of the transformation angle in local dq-coordinates Vdi 6=
0. This is usually the case when modeling SGs, since the angle of the internal machine electromagnetic
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force (EMF) is in general not known. Then, the equations (5.2.34) become slightly more involved, see

[7].

Furthermore, in local dq-coordinates, the particular inverter model (5.2.18), (5.2.19), is given by

γiδ̇i = ωi − ωcom = uδi − ωcom,

γiτPi
Ṗmi = −Pmi + Pi,

Vi = uVi ,

γiτPiQ̇
m
i = −Qmi +Qi,

(5.2.35)

with Vqd,i = Vi (see (5.2.25)) and Pi and Qi given by (5.2.34).

Recall (5.2.20) and note that

‖v̂dq,k‖2 = ‖V̂qd,k‖2 = ‖Vqd,k‖2 = Vk, k ∈ EL.

Defining the vectors

δI :=col(δi) ∈ Sf , VI := col(Vi) ∈ Rf ,

uδ :=col(uδi ) ∈ Rf , uV := col(uVi ) ∈ Rf ,

PI :=col(Pi) ∈ Rf , QI := col(Qi) ∈ Rf ,

PL :=col(Pk) ∈ Rl, Q` := col(Qk) ∈ Rl,

P ∗L :=col(P ∗k (Vk)) ∈ Rl, Q∗L := col(Q∗k(Vk)) ∈ Rl,

with Pi, Pk, Qi, and Qk given by (5.2.34), as well as the matrix

T := diag(τPi
) ∈ Rf×f ,

the system (5.2.18) - (5.2.21) can be written equivalently by means of (5.2.20), (5.2.35), (5.2.34) as

Γδ̇I = uδ − ωcom1f ,

ΓT Ṗm = −Pm + PI ,

VI = uV ,

ΓTQ̇m = −Qm +QI ,

0l = PL − P ∗L,

0l = QL −Q∗L,

(5.2.36)

where the last 2l algebraic equations correspond to the power balances at nodes k ∼ EL.
This section has illustrated the main modeling steps and assumptions, which lead from the detailed

microgrid model (5.2.14), (5.2.15) to the model (5.2.36), (5.2.34). The model (5.2.36), (5.2.34) is

frequently used in the analysis and control design of microgrids [144, 145, 24, 135, 136, 4, 114, 138, 139].

Some of the mentioned work is conducted under additional assumptions such as instantaneous power

measurements [144, 4, 114], constant voltage amplitudes [144, 24, 4, 135] or small phase angle differences

[145, 138, 139]. In addition, ideal clocks are usually assumed, i.e., Γ = If .
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5.3 Synchronous generator connected to a resistive load: anal-

ysis

5.3.1 Motivation & contributions

A typical power network consists of a large number of synchronous generators interconnected through

transmission lines and supplying electrical power to loads. The stability of the entire network depends

up on the ability of individual synchronous generators to reach their post-fault equilibria. The rep-

resentation of synchronous generators by means of an appropriate mathematical model that, on one

hand, capture the complicated nonlinear phenomena while, on the other hand, are amenable for analysis

and control design is critical for power system stability analysis. With the latter objective in mind,

power engineers have developed simplified, reduced order models for synchronous generators, that ne-

glect some fast transients and losses. In particular, it is assumed that the electrical magnitudes can be

represented via (first harmonic) phasors, and the dynamics is reduced to a second or third order model

see [96]. These reductions “destroy” the physical structure of the system, leading to some approximate

rationalizations of the new quantities, e.g., the concept of “voltage behind the reactance”, and an awk-

ward interpretation of basic physical concepts like energy and dissipation, which are introduced only

for mathematical convenience see [58].

In this section — proceeding from a bond graph representation of the synchronous generators, a

port–Hamiltonian, first–principles model of a synchronous generator connected to a load is derived,

without the aforementioned simplifying assumptions (section 5.3.2). This leads to an energy–based

description of the generation system, where all elements preserve their original physical interpretation,

paving the road for the energy–based analysis. For, an appropriate dq–transformation is employed,

allowing to rewrite the system equations in a more convenient form for stability analysis. A quotient

system after this transformation and after eliminating rotor angle dynamics admit equilibria. The

section is concluded with some preliminary results on stability analysis of equilibria using an energy

shaping technique (Subsection 5.3.3).

5.3.2 Physical modeling

In this subsection a port-Hamiltonian representation of a three–phase synchronous generator connected

to resistive loads is derived by applying energy–based modeling technique as in Chapter 3. The obtained

model represents the trivial case for a generalized power system, where we have just one generator, no

transmission lines and a static and linear load connected to the generator.

A synchronous generator can be defined as a multi–domain system characterized by both mechanical

and electrical variables, i.e an electromechanical system. The model, derived starting from physical

principles such as Maxwell equations and Newton’s 2nd law, is basically the most direct way to describe

dynamics in terms of certain specific physical quantities (magnetic flux and voltages, angles, momenta

and torques). Nevertheless the complete model is given not only by ordinary differential equations

(ODE) but also by algebraic constraints expressing flux-currents relations (DAE). The generator rotor

circuit is formed by a field circuit and one amortisseur circuit, the last is divided in d and q axis circuits.

The stator is formed by three-phase windings spatially distributed 2π
3 mechanical radians in order to

generate three-phase voltages at machine terminals. For convenience magnetic saturation effects are

negligible. Therefore using bond graph modeling ([44]) a model of the synchronous generator connected

to resistive loads can be obtained as in Fig. 5.6, where the higher part refer to the electrical dynamics
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Figure 5.6: Bond graph model of a three-phase synchronous machine.

while the lower part to the mechanical one. Non standard element IC ensure then the electromechanical

coupling.

By straightforward computations, the following equations (for the details see [96], [179]) can be

easily derived:
˙

Ψs

Ψr

p

θ

 =


−Rs` 0 0 0

0 −Rr 0 0

0 0 −d −1

0 0 1 0

∇H+


0 0

Br 0

0 1

0 0


[
Ef

Tm

]
, (5.3.1)

with associated energy function:

H(x) =
1

2

[
Ψs Ψr

]>
L−1(θ)

[
Ψs Ψr

]
+

1

2J
p2. (5.3.2)

where: Ψs := col(ψs,a, ψs,b, ψs,c) and Ψr := col(ψfd, ψkd, ψkq) represent three–phase stator and

rotor flux linkages; Rs` = Rs+R`, with Rs = diag(rs, rs, rs) representing three–phase stator resistances

and Rell = diag(r`, r`, r`) representing three–phase resistive loads; Rr = diag(rfd, rkd, rkq) represents

resistances of rotor field and amortisseur windings; Ef represent the voltage applied across the rotor

field winding; θ, ω and p represent angular displacement, angular velocity and momentum of rotor

respectively with respective to stationary rotor reference frame axis; Tm represents the mechanical

torque applied to the rotor; H is the total energy in the synchronous machine; J is the rotational

inertia of the rotor,

L(θ) :=

[
Lss Lrs

L>rs Lrr

]
, Br :=

[
1 0 0

]>
, (5.3.3)

where Lss(θ), Lrs(θ), Lrr refer to stator and rotor self- and mutual inductances. For the structure of

these self– and mutual dependencies and their explicit dependency on θ the reader is referred to [96].
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In shorthand notation (5.3.1) can be written in standard port–Hamiltonian form as follows

ẋ = [J (x)−R(x)]∇xH(x) + g(x)u

y = g(x)>∇xH(x)
(5.3.4)

where

J (x) :=


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , R(x) :=


Rs` 0 0 0

0 Rr 0 0

0 0 d 0

0 0 0 0

 , g(x) =


0 0

Br 0

0 1

0 0

 . (5.3.5)

It is evident from the equations above that the matrices J (x),R(x), g(x) are independent of the state

x. Nevertheless, it is easy to see that the inductances given in (5.3.3) depend upon θ and hence are

functions of time t, which makes the analysis more difficult. To eliminate this dependency on time we

refer the stator side electrical quantities to the rotor side by using the dq transformation introduced in

Section 2.2, picking as transformation angle ϑ = θ. Hence we have:

xdq := T (x)x, T (x) :=


Tdq(θ) 0 0 0

0 I3 0 0

0 0 1 0

0 0 0 1

 (5.3.6)

so that in the new coordinates the Hamiltonian energy function reads:

H(xdq) =
[
Ψ>dq Ψ>r

]>
L−1
dq

[
Ψ>dq Ψ>r

]
+

1

2J
p2 (5.3.7)

with

Ldq :=

[
Tdq(θ) 0

0 I3

]
L(θ)

[
Tdq(θ) 0

0 I3

]>
=

[
Ldq Ldqr

L>dqr Lrr

]
.

From (5.3.6) we calculate the matrix

Tx :=
∂T (x)

∂x
x+ T (x) =


Tdq(θ) 0 0

∂Tdq(θ)
∂θ Ψs

0 I3 0 0

0 0 1 0

0 0 0 1

 =


Tdq(θ) 0 0 −J2Ψdq

0 I3 0 0

0 0 1 0

0 0 0 1

 , (5.3.8)

where in the last equivalence we used:[
∂Tdq(θ)

∂θ

]
Ψs =

[
∂Tdq(θ)

∂θ

]
Tdq(θ)Ψdq = −J2Ψdq. (5.3.9)

Therefore using (5.3.6) we have

ẋdq = Txẋ =Tx [(J −R)∇xH+ gu] = Tx (J −R) T >x ∇xdq
H(xdq) + Txgu.

Summarizing we have

ẋdq = [J̄ (xdq)− R̄]∇xdq
H(xdq) + ḡu (5.3.10)
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where

Ĵ (xdq) = TxJ T >x =


0 0 −J2Ψdq 0

0 0 0 0

J2Ψdq 0 0 −1

0 0 1 0

 , (5.3.11)

and

R̂ = TxRT >x = bdiag(Rs`, Rr, d, 0) ĝ = Txg = g (5.3.12)

From (5.3.7) we have ∂H(z)
∂θ = 0 hence the right hand side of (5.3.10) is independent of θ. Therefore

we can decompose the dynamics of the system in to the dynamics of z = col(Ψ>d ,Ψ
>
r , p) and θ as follows

ż = [J̃ (z)− R̃]∇zH(z) + g̃u (5.3.13)

θ̇ =
p

J
(5.3.14)

where

J̃ (z) :=

 0 0 −J2Ψdq

0 0 0

J2Ψdq 0 0

 , R̃ :=

Rs` 0 0

0 Rr 0

0 0 d

 , g̃ :=

 0 0

Br 0

0 0

 . (5.3.15)

Consider now the following quotient system after eliminating θ

ż =
[
J̃ (z)− R̃

]
∇zH(z) + g̃u. (5.3.16)

It can be easily seen that for a given constant input u = ū the nonlinear system given by (5.3.16),

in general, has more than one equilibrium points.

5.3.3 Stability analysis

Now consider the quotient system given by (5.3.16):

ż =
[
J̃ (z)− R̃

]
∇zH(z) + g̃ū. (5.3.17)

Note that this should verify the following power balance equation

Ḣ(z) = −∇zH(z)>R̃∇zH(z) + ū>y (5.3.18)

where ū>y is the power externally supplied to the system and the first term on the right-hand side

represents the energy dissipation due to the resistive elements in the system. The right hand side of

(5.3.18) in general will not be nonpositive. Thus, in most cases, the Hamiltonian function ceases to

act as a Lyapunov function for stability studies of a forced equilibrium. By means of energy shaping

techniques under some conditions we can construct a Lyapunov function using Hamiltonian and external

power supplied. In order to proceed we recall the following theorem from [110].

Theorem 5.3.1. Consider the system with constant u = ū

ẋ = [J (x)−R(x)]∇xH(x) + g(x)ū (5.3.19)

with x̄ is an equilibrium and F := J (x)−R(x) is invertible. Assume the function K(x) = −F−1(x)g(x)
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satisfy
∂Kij

∂xk
=
∂Kkj

∂xi
∀ i, k ∈ n̄, j ∈ m̄ (5.3.20)

where n and m are cardinalities of x and ū, respectively. Then there exists locally smooth functions

C1, . . . , Cm satisfying

Kij(x) =
∂Cj
∂xi

(x) ∀i ∈ n̄ , j ∈ m̄. (5.3.21)

The function V defined by

V(x) := H(x)− Σmj=1ūjCj(x)

has an extremum at x̄, and V̇ (x) ≤ 0. If the function V(x) also has minimum at x̄ then V qualifies as

Lyapunov function. Further if the largest invariant set contained in {x | V̇(x) = 0} is equal to {x̄} then

x̄ is locally asymptotically stable.

♦

We now apply the above theorem to the quotient system (5.3.17). Define F̃ := J̃ − R̃, rm = rs+ r`,

and assume z̄ is an equilibrium of (5.3.17), i.e.

F (z̄)∇zH(z̄) + g̃ū = 0. (5.3.22)

As F (z) is assumed to be invertible we have ∇zH(z̄) + F−1(z̄)g̃ū = 0. Define

K := −F−1g̃1 =


0 − 1

Ψ2
d+Ψ2

q+rmd
J2

RrBr 0

0 rm
Ψ2

d+Ψ2
q+rmd

 ∈ R6×2. (5.3.23)

In order to construct a Lyapunov function using power balancing technique as described in [110] we

need to express integral ū>
∫ t

0
y(τ)dτ as a function of z1 for which we need to satisfy following Poincare’s

condition
∂Kij

∂zk
=
∂Kkj

∂zi
∀ i, k ∈ n̄, j ∈ m̄. (5.3.24)

From (5.3.23) we have :

∂K12

∂z2
=
∂K12

∂Ψq
=
−Ψ2

d + Ψ2
q − rmd

(Ψ2
d + Ψ2

q + rmd)2
,

∂K22

∂z1
=
∂K12

∂Ψs
=
−Ψ2

d + Ψ2
q + rmd

(Ψ2
d + Ψ2

q + rmd)2

∂K12

∂z6
=
∂K12

∂p
= 0,

∂K62

∂z1
=
∂K62

∂Ψd
=

−2Ψdrm
(Ψ2

d + Ψ2
q + rmd)2

(5.3.25)

From the above we have ∂K12

∂z2
6= ∂K22

∂z1
and ∂K12

∂z7
6= ∂K72

∂z1
which violates Poincare’s condition (5.3.24).

When we assume the resistance value rm = 0 then the matrix K given by (5.3.23) does satisfy the

Poincare’s condition (5.3.24). and we can express ū>
∫ t

0
y(τ)dτ as a function of z1. With this assumption

let

K̃ =


0 −J2

1
Ψ2

d+Ψ2
q

RrBr 0

0 0

 . (5.3.26)

V (z1) = H(z1)− Σ2
j=1ūjCj(z1) (5.3.27)
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where Casimirs, Cjs, are given by the equations satisfying

Kij(z1) =
∂Cj
∂zi

∀i ∈ n̄1 & j ∈ m̄ (5.3.28)

Using (5.3.26), the Cjs satisfying (5.3.28) are given by

C1 =
Ψf

Rf
, C2 = tan−1

(
Ψq

Ψd

)
. (5.3.29)

Let

V(z) := H(z)−
[
EfΨf

Rf
+ Tm tan−1

(
Ψq

Ψd

)]
. (5.3.30)

From above V is bounded from below and by construction has extremum at all equilibrium points of

the system given by (5.3.17) with rm = 0. Let R̃1 = {0, Rr, d}. We have

V̇(z) = ∇zV (z)ż = (∇zH()− K̃ū)>(F (z)∇zH(z) + g̃ū)

= ∇zH(z)>F (z)∇zH(z) +∇zH(z)>g̃ū− (K̃ū)>F (z)∇zH(z)− (K̃ū)>(g̃ū)

= −∇zH(z)>R̃∇zH(z)−
E2
f

Rf
≤ 0

for all z. In above we used the facts that ∇zV(z) = ∇zH(z)− K̃ū, (K̃ū)>F (z) = gū and (Kū)>(gū) =
E2

f

Rf
. Further, if the largest invariant set contained in {z | V̇(z) = 0} is equal to {z̄} then z̄ is locally

asymptotically stable.

Remark 5.3.2. In the stability analysis we showed that it is necessary to assume rm = rs + rl = 0

in order to satisfy Poincare‘s integrability condition and to apply the energy shaping technique given in

[110]. The assumption rm = 0 physically means that there are no losses in the stator winding and the

stator terminals are short circuited. We assumed the existence of unique equilibrium for (5.3.17), but

in general the system (5.3.17) might admit more than one equilibrium. Obtaining the stability results

by lifting these assumptions is the topic of future research.
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Chapter 6

Conclusions

6.1 Summary

In the recent years we have witnessed notable changes in the power systems landscape, which require on

one hand to rethink the overall system architecture, and on the other hand to revisit modeling, analysis

and control techniques that better account for the high penetration of renewable energy sources. With

this work, we aimed to contribute, if modestly, to bridge the gap between theory and applications,

providing methods that allow a rigourous analysis of modern power systems architectures, yet preserving

their physical characterization. Letting aside the preliminary notions introduced in Chapter 2, main

contributions of this work were presented in two self–contained chapters, namely Chapter 3 and Chapter

4, while tangential contributions were provided in Chapter 5. Hence, brief discussions on the obtained

results are presented separately.

A first contribution of this work —- developed in Chapter 3 — is thus the formulation of a generalized

approach for the modeling of electric power systems. This is based on a suitably defined combination

of port–Hamiltonian models of the single components and a graph description of the system topology.

The proposed approach have the following unprecedented features: it preserves components identities

and full nonlinear dynamics; it reveals explicit information about the energy properties of the system,

through the port–Hamiltonian formulation; it allows to treat highly diversified components on an equal

footing; it is suitable for plug & play operation of the components, which can be described by appro-

priate modification of the graph and, consequently, of the associated incidence matrix. The first two

aspects are particularly relevant. Firstly, they pave the road to a rigourous stability analysis, based on

Lyapunov’s theory, in which Lyapunov’s candidate can be chosen starting from physical motivations.

Secondly, they make the model suitable for the construction of reduced models, where the underlying

assumptions are well understood and physically justified. Last but not least, it should be noted that

the proposed method applies mutatis mutandi to the case where the components are described by port

(not necessarily Hamiltonian) nonlinear systems. Since port descriptions of most of the components of

modern power systems are available in literature (as port–Hamiltonian as well), the proposed approach

provides a simple modeling procedure that can be adopted by practitioners with no need of a deep

knowledge of the port–Hamiltonian framework. The modeling procedure was applied to multi–terminal

hvdc transmission system in Section 4.3, using the port–Hamiltonian framework, and to ac microgrids

in Section 5.2, using a port description of the components.

The second part of this work — developed in Chapter 4 — is dedicated to multi–terminal hvdc

113
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transmission systems. Starting from a full port–Hamiltonian model of the overall system, we provided

a unified approach for modeling, analysis and control of these systems. After reviewing the traditional

control architecture, analysis and design of two fundamental layers of control were carried out, namely

for the inner–loop and primary control layers.

For what concern the inner–loop control different results were obtained. First of all, a new, decentral-

ized PI controller, based on passivity arguments (PI–PBC), was presented as an alternative to standard

control strategies based on vector control. The proposed controller ensures global asymptotic stability

in nominal operating conditions for any positive gain. Unfortunately, there are some drawbacks: sta-

bility proof is not valid in perturbed conditions; the controller has clear performance limitations, which

are determined by an extremely slow zero dynamics. A similar analysis was carried out with respect to

the output employed by standard vector control strategies, showing that unappropriate choice of the

gains may lead to instability of the controller, as well as of the uncontrolled variables, independently

from the operating conditions. Hence a time–consuming and expensive procedure to tune the gains of

the controller is required to complete the design. In order to overcome the performance limitations of

the PI–PBC, we proposed to add an outer–loop, which, under the assumption of nominal operating

condition, was shown to neatly improve time responses while inheriting the same stability properties of

the PI–PBC. The mentioned results were validated by simulations. Although it is still unclear how the

behavior of the PI–PBC plus outer–loop is affected by perturbed operating conditions (see Subsection

4.7.5 for more details), we believe that it should be considered a serious competitor of the standard

vector control for the inner–loop control of hvdc transmission systems.

The problem of primary control was further addressed in this work. A first step towards the definition

of this control problem is the construction of an appropriate, physically–motivated, reduced model of

the inner–loop controlled hvdc transmission system. Under reasonable time–scale assumptions, a re-

duced nonlinear model was derived, which should be contrasted with the linear models usually adopted

in literature. Main novelties in the obtained models are indeed the approximation of inner–loop PQ

controlled units with constant power devices (instead of current sources) and the formulation of a gen-

eralized class of primary controllers — including the voltage droop control — which can be equivalently

described by ZIP models. Finally, the inner–loop controlled system was reduced to a linear capacitive

resistive circuit where at each node a constant power device is attached . Moving from this model, we

established necessary conditions for the existence of equilibria and the fulfillment of the power sharing

property, in terms of feasibility of linear matrix inequalities (LMIs). This allows to establish regions of

controller parameters, for which it is impossible to have a constant steady state and an appropriate,

pre–specified power distribution. In order to validate the obtained results, such regions were established,

via numerical calculations, for a simple four–terminal benchmark.

Two additional contributions are contained in Chapter 5. Firstly, we addressed the problem of

construction of a reduced model, suitable for primary control, of an ac microgrid. A full nonlinear

model of an inner–loop controlled microgrid, obtained using the approach developed in Chapter 3, was

obtained. Then, it was shown that — under reasonable time–scale assumptions — it is possible to

recover the standard model employed in literature, which is typically presented without any reference

to the reduction procedure, hampering the understanding of the physical phenomena behind it. A

second contribution concerns the analysis of an extremely simplified model of an electric power system,

that is constituted by a synchronous generator connected to a resistive load, and for which stability

results were obtained starting from the port–Hamiltonian model.
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6.2 Future works

In the same way that the main contributions to this work were presented in two self-contained chapters,

future research guidelines are discussed separately below.

One of the main advantages of describing electric power system using a port–Hamiltonian represen-

tation is that information about energy properties of the system is explicitly revealed. A major interest

is thus to establish stability properties of the full model of an electric power system, starting from its

energy–based description. An application to a trivial power system model was presented in Section

5.3, where energy–based techniques were used to determine conditions for the stability of a synchronous

generator connected to a resistive load. Although the presented model is not particularly interesting per

se, it is the author’s belief that it provides an insightful starting point for extending the methodology

to more complex power systems. An analysis of a (reduced model) of a synchronous generator attached

to an infinite bus is carried out in [115], where the problem of almost global asymptotic stability is

analyzed. The proposed model is of particular interest for the analysis since it clearly outlines the

problem of stability of a generator under sinusoidal excitations. An extension to generalized power

system, based on synchronous generators, is tentatively proposed in [28]. Unfortunately, stability holds

only under very strong assumptions, which are rarely verified in practice.

Before starting a discussion on future works and perspectives on multi–terminal hvdc transmission

systems we find convenient to make the following considerations. Multi–terminal hvdc transmission

systems are a relatively new option in the power systems scenario and there is no broad consensus on

the control architecture to be adopted. However, a diffused approach is to mimick the control archi-

tecture employed for conventional (ac) power systems, based on synchronous generators. This leads

to one of the main bedrock for the control of converter–based electric power systems: the time–scale

separation induced by appropriate design of the different layers of control [46, 65, 131]. Roughly speak-

ing, power converters are operated sufficiently fast by an inner–loop control so that a stable behavior

is ensured and they can be seen as elementary electrical units from the higher level of control, that is

the primary control. If stability and fast reponses are guaranteed, then the problems of inner–loop and

primary control can be separated. However, it is rarely questioned whether this time–scale separation

is necessary for a correct and safe operation of the system or, this is merely done to simplify the control

design. Bearing in mind this preamble, we next discuss possible extensions of the results presented in

this work, obviously starting from the lower level of control, that is the inner–loop control.

As already discussed, the behavior of the system controlled via the modified PI–PBC was proved

fast and stable in case of nominal operating conditions, via Lyapunov’s stability analysis. Hence, a

Lyapunov function for the error system is known. Unfortunately, the behavior of the controlled system

is still unclear in presence of perturbations. Performed simulations suggest that stability is always pre-

served, but yet the systems is unable to achieve fast transient responses. This obviously constitutes a

serious drawback if we want to induce a time–scale separation by means of the inner–loop control, since

responses are not fast enough. On the other hand, we proved that the standard vector controllers are

characterized by fast responses independently from the operating conditions, but they may experience

instability. Certainly, a question of interest is how to tune the gains of the modified PI–PBC or, even-

tually, how to modify once again the PI–PBC in order to ensure good performances of the system. Or

viceversa, how to tune the gains of the vector controllers to ensure stability [150, 172]. Nevertheless, one
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may question whether our interest should be focused on performances and stability of the inner–loop

control and not on the problem of inner–loop and primary control as a whole. Moreover, it should be

noted that in the case of the modified PI–PBC, a Lyapunov function is known for the error system (in

nominal conditions), which is already a good starting point to formulate a modified Lyapunov function

for the perturbed error system. A future extension of the modified PI–PBC is thus to determine a

further modification of the controller and/or conditions for stability in the case of perturbed conditions.

The inclusion of primary control objectives, i.e. power sharing and vicinity of the voltage near their

nominal value, would be likely the next step.

Putting aside for a moment the discussion on control system architecture, let assume that the

standard control design based on time–scale separation is followed, e.g. with appropriate tuning of the

modified PI–PBC or of the vector controllers. Hence, as shown in Section 4.8, the inner–loop controlled

system can be reduced to a linear capacitive resistive circuit where at each node a constant power device

is attached. The existence and stability of equilibria for LTI circuit with constant power devices is an

open problem in literature [9, 146, 113, 14, 97]. Noting that necessary conditions, in the form of LMIs

feasibilities, were derived, it is of particular interest to understand in which measure these are affected

by system parameters, among which: free controller parameters, line resistances (and eventually filters)

and values of the absorbed and injected constant powers. When (local) stability can be proved, it is

also of particular interest to determine an estimation of the region of attraction. Moreover, a possible

extension of the proposed model is to account for a distributed primary control design, where exchange

of information between different units is allowed [8]. Again, it would be of interest to verify how this

design would affect conditions on existence of equilibria and power sharing. Further open challenges

regard sufficiency of the conditions and inclusion of additional conditions for the vicinity of the voltages

near the nominal value. It is also interesting to note that the same theory used to determine necessary

conditions for existence of equilibria in hvdc systems has an equivalent characterization in ac circuits.

Then, a further possibility is to investigate the problem of existence of equilibria in the case of ac grids.



Bibliography

[1] Ieee guide for planning dc links terminating at ac locations having low short-circuit capacities.

IEEE Std 1204-1997, pages i–, 1997. 49

[2] A.M. Abbas and P.W. Lehn. PWM based VSC-HVDC systems – a review. In Power Energy

Society General Meeting, 2009. PES ’09. IEEE, pages 1–9, July 2009. 47, 48, 52

[3] Thomas Ackermann, Göran Andersson, and Lennart Söder. Distributed generation: a definition.

Electric power systems research, 57(3):195–204, 2001. 90

[4] N. Ainsworth and S. Grijalva. A structure-preserving model and sufficient condition for frequency

synchronization of lossless droop inverter-based AC networks. IEEE Transactions on Power

Systems, 28(4):4310–4319, Nov 2013. 101, 104, 105

[5] H. Akagi. Instantaneous Power Theory and Applications to Power Conditioning. Wiley, Newark,

2007. 46, 64

[6] H. Akagi, E.H. Watanabe, and M. Aredes. Instantaneous Power Theory and Applications to

Power Conditioning. IEEE Press Series on Power Engineering. Wiley, 2007. 29

[7] P.M. Anderson and A.A. Fouad. Power system control and stability. J.Wiley & Sons, 2002. 1, 8,

26, 32, 38, 57, 80, 90, 92, 101, 104, 105

[8] M. Andreasson, M. Nazari, D. V. Dimarogonas, H. Sandberg, K. H. Johansson, and M. Ghand-

hari. Distributed Voltage and Current Control of Multi-Terminal High-Voltage Direct Current

Transmission Systems. ArXiv e-prints, November 2013. 46, 58, 80, 81, 84, 116

[9] N. Barabanov, R. Ortega, R. Grino, and B. Polyak. On existence and stability of equilibria of

linear time-invariant systems with constant power loads. Circuits and Systems I: Regular Papers,

IEEE Transactions on, PP(99):1–8, 2015. 46, 81, 116

[10] M. Barnes, J. Kondoh, H. Asano, J. Oyarzabal, G. Ventakaramanan, R. Lasseter, N. Hatziar-

gyriou, and T. Green. Real-world microgrids-an overview. In IEEE Int. Conf. on System of

Systems Engineering, 2007. SoSE ’07, pages 1 –8, april 2007. 92
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droop control dynamic analysis of multiterminal vsc-hvdc grids for offshore wind farms. Power

Delivery, IEEE Transactions on, 26(4):2476–2485, Oct 2011. 46, 58, 79

[124] Milan Prodanovic and Timothy C Green. Control and filter design of three-phase inverters for

high power quality grid connection. IEEE Transactions on Power Electronics, 18(1):373–380,

2003. 95

[125] L. Qiu and E. J. Davison. Performance limitations of non-minimum phase systems in the ser-

vomechanism problem. pages 337–349, 1993. 65

[126] H.S. Ramadan, H. Siguerdidjane, and M. Petit. A robust stabilizing nonlinear control design

for vsc-hvdc systems: A comparative study. In Industrial Technology, 2009. ICIT 2009. IEEE

International Conference on, pages 1–6, Feb 2009. 61

[127] Joan Rocabert, Alvaro Luna, Frede Blaabjerg, and Pedro Rodriguez. Control of power converters

in AC microgrids. IEEE Transactions on Power Electronics, 27(11):4734–4749, Nov 2012. 94, 95,

96, 98

[128] Daniel Salomonsson. Modeling, Control and Protection of Low-Voltage DC Microgrids. PhD

thesis, KTH, Electric Power Systems, 2008. 45

[129] S. Sanchez, R. Ortega, R. Gri no, G. Bergna, and M. Molinas-Cabrera. Conditions for existence

of equilibrium points of systems with constant power loads. In Decision and Control, 2013 52nd

IEEE Conference on, Firenze, Italy, 2013. 59, 60, 81

[130] S.R. Sanders and G.C. Verghese. Lyapunov-based control for switched power converters. Power

Electronics, IEEE Transactions on, 7(1):17–24, Jan 1992. 45, 46

[131] P.W. Sauer. Time-scale features and their applications in electric power system dynamic modeling

and analysis. In American Control Conference (ACC), 2011, pages 4155–4159, June 2011. 45, 80,

115

[132] P.W. Sauer and M.A. Pai. Power system dynamics and stability. Prentice Hall, 1998. 101

[133] Frank Schettler, Hartmut Huang, and Norbert Christl. Hvdc transmission systems using voltage

sourced converters design and applications. In Power Engineering Society Summer Meeting, 2000.

IEEE, volume 2, pages 715–720. IEEE, 2000. 49

[134] Johannes Schiffer, Adolfo Anta, Truong Duc Trung, Jörg Raisch, and Tevfik Sezi. On power

sharing and stability in autonomous inverter-based microgrids. In 51st Conference on Decision

and Control, pages 1105–1110, Maui, HI, USA, 2012. 101, 102

[135] Johannes Schiffer, Darina Goldin, Jörg Raisch, and Tevfik Sezi. Synchronization of droop-

controlled microgrids with distributed rotational and electronic generation. In 52nd Conference

on Decision and Control, pages 2334–2339, Florence, Italy, 2013. 105



126 BIBLIOGRAPHY

[136] Johannes Schiffer, Romeo Ortega, Alessandro Astolfi, Jörg Raisch, and Tevfik Sezi. Conditions

for stability of droop-controlled inverter-based microgrids. Automatica, 50(10):2457–2469, 2014.

101, 102, 104, 105

[137] Johannes Schiffer, Romeo Ortega, Christian Hans, and Jörg Raisch. Droop-controlled inverter-

based microgrids are robust to clock drifts. American Control Conference, 2015. To appear.

97

[138] Johannes Schiffer, Thomas Seel, Jörg Raisch, and Tevfik Sezi. A consensus-based distributed

voltage control for reactive power sharing in microgrids. In 13th European Control Conference,

pages 1299–1305, Strasbourg, France, 2014. 105

[139] Johannes Schiffer, Thomas Seel, Jörg Raisch, and Tevfik Sezi. Voltage stability and reactive

power sharing in inverter-based microgrids with consensus-based distributed voltage control. IEEE

Transactions on Control Systems Technology, 2014. Submitted. 105

[140] Johannes Schiffer, Daniele Zonetti, Romeo Ortega, Aleksandar M. Stankovic, Tevfik Sezi, and

Jörg Raisch. Modeling of microgrids - from fundamental physics to phasors and voltage sources.

CoRR, abs/1505.00136, 2015. 2, 8, 12, 25, 29, 77, 89

[141] M.M. Seron, J.H. Braslavsky, and G.C. Goodwin. Fundamental Limitations in Filtering and

Control. Springer Publishing Company, Incorporated, 1st edition, 2011. 65

[142] S. Shah, R. Hassan, and J. Sun. HVDC transmission system architectures and control - a review.

In Control and Modeling for Power Electronics (COMPEL), 2013 IEEE 14th Workshop on, pages

1–8, June 2013. 46, 58, 74, 79

[143] D. Shuai and X. Zhang. Input-output linearization and stabilization analysis of internal dynamics

of three-phase AC/DC voltage-source converters. In Electrical Machines and Systems (ICEMS),

2010 International Conference on, pages 329–333, Oct 2010. 61

[144] J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Synchronization and power sharing for droop-

controlled inverters in islanded microgrids. Automatica, 49(9):2603 – 2611, 2013. 91, 101, 104,

105

[145] J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Voltage stabilization in microgrids using quadratic

droop control. In 52nd Conference on Decision and Control, pages 7582–7589, Florence, Italy,

2013. 101, 105

[146] John W Simpson-Porco, Florian Dorfler, and Francesco Bullo. On resistive networks of constant-

power devices. Circuits and Systems II: Express Briefs, IEEE Transactions on, 62(8):811–815,

2015. 116

[147] J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991. 19

[148] Cole Stijn. Steady-state and dynamic modelling of VSC HVDC systems for power system Simu-

lation. PhD thesis, PhD dissertation, Katholieke University Leuven, Belgium, 2010. 58, 61

[149] Goran Strbac, Nikos Hatziargyriou, Joao Pecas Lopes, Carlos Moreira, Aris Dimeas, and Dimitrios

Papadaskalopoulos. Microgrids: Enhancing the resilience of the European megagrid. IEEE Power

and Energy Magazine, 13(3):35–43, 2015. 90, 91



BIBLIOGRAPHY 127

[150] Jon Are Suul, Marta Molinas, Lars Norum, and Tore Undeland. Tuning of control loops for grid

connected voltage source converters. In Power and Energy Conference, 2008. PECon 2008. IEEE

2nd International, pages 797–802. IEEE, 2008. 61, 72, 115

[151] Joshua Adam Taylor, Sairaj V. Dhople, and Duncan S. Callaway. Power systems without fuel.

CoRR, abs/1506.04799, 2015. 2, 7, 9, 32, 45

[152] Rodrigo Teixeira Pinto. Multi-Terminal DC Networks System Integration, Dynamics and Control.

PhD thesis, Delft University of Technology, 2014. 45, 47, 48, 49, 57, 58, 61

[153] Remus Teodorescu, Frede Blaabjerg, Marco Liserre, and P Chiang Loh. Proportional-resonant

controllers and filters for grid-connected voltage-source converters. IEE Proceedings-Electric

Power Applications, 153(5):750–762, 2006. 95

[154] Remus Teodorescu, Marco Liserre, and Pedro Rodriguez. Grid converters for photovoltaic and

wind power systems, volume 29. John Wiley & Sons, 2011. 89, 90, 92, 95

[155] J.-L. Thomas, S. Poullain, and A. Benchaib. Analysis of a robust DC-bus voltage control system

for a VSC transmission scheme. In AC-DC Power Transmission, 2001. Seventh International

Conference on (Conf. Publ. No. 485), pages 119–124, Nov 2001. 52, 61

[156] M.A. Torres. Estudio de un sistema VSC-HVDC y aplicación de método de control basado en

pasividad. Master’s thesis, Universidad de Concepción, Chile, March 2007. 51, 52

[157] N. Tsolas, A. Arapostathis, and P.P. Varaiya. A structure preserving energy function for power

system transient stability analysis. IEEE Transactions on Circuits and Systems, 32(10):1041–

1049, Oct 1985. 31

[158] Thierry Van Cutsem and Costas Vournas. Voltage stability of electric power systems, volume 441.

Springer, 1998. 98, 101

[159] A.J. van der Schaft. L2-gain and passivity techniques in nonlinear control. Communications and

control engineering. Springer, Berlin, 2000. 16, 22, 23, 46, 63

[160] Arjan van der Schaft. Characterization and partial synthesis of the behavior of resistive circuits

at their terminals. Systems & Control Letters, 59(7):423 – 428, 2010. 34, 43, 50, 92

[161] Arjan van der Schaft and Dimitri Jeltsema. Port-hamiltonian systems theory: An introductory

overview. Foundations and Trends R© in Systems and Control, 1(2-3):173–378, 2014. 16

[162] Pravin Varaiya, Felix Fulih Wu, and Rong-Liang Chen. Direct methods for transient stability

analysis of power systems: Recent results. Proceedings of the IEEE, 73(12):1703–1715, 1985. 31

[163] Pravin P Varaiya, Felix F Wu, and Janusz W Bialek. Smart operation of smart grid: Risk-limiting

dispatch. Proceedings of the IEEE, 99(1):40–57, 2011. 90

[164] Til Kristian Vrana, Jef Beerten, Ronnie Belmans, and Olav Bjarte Fosso. A classification of {DC}
node voltage control methods for {HVDC} grids. Electric Power Systems Research, 103:137 –

144, 2013. 58

[165] Peng Wang, L. Goel, Xiong Liu, and Fook Hoong Choo. Harmonizing AC and DC: A hybrid

AC/DC future grid solution. Power and Energy Magazine, IEEE, 11(3):76–83, May 2013. 45



128 BIBLIOGRAPHY

[166] Xiongfei Wang, Josep M Guerrero, Frede Blaabjerg, and Zhe Chen. A review of power electronics

based microgrids. Journal of Power Electronics, 12(1):181–192, 2012. 94

[167] George Weiss, Qing-Chang Zhong, Tim C Green, and Jun Liang. H∞ repetitive control of DC-AC

converters in microgrids. IEEE Transactions on Power Electronics, 19(1):219–230, 2004. 95

[168] P.E. Wellstead. Introduction to Physical System Modelling. Mathematics in Science and Engi-

neering series. Academic Press, 1979. 15, 16, 24

[169] JanC. Willems. Dissipative dynamical systems part i: General theory. Archive for Rational

Mechanics and Analysis, 45(5):321–351, 1972. 22

[170] R. Wu, S.B. Dewan, and G.R. Slemon. Analysis of an ac-to-dc voltage source converter using pwm

with phase and amplitude control. Industry Applications, IEEE Transactions on, 27(2):355–364,

Mar 1991. 51, 52

[171] Lie Xu, B.R. Andersen, and P. Cartwright. Control of vsc transmission systems under unbalanced

network conditions. In Transmission and Distribution Conference and Exposition, 2003 IEEE

PES, volume 2, pages 626–632 vol.2, Sept 2003. 51, 58, 61

[172] Li Yaping, Yang Shengchun, Wang Ke, and Zeng Dan. Research on pi controller tuning for vsc-

hvdc system. In Advanced Power System Automation and Protection (APAP), 2011 International

Conference on, volume 1, pages 261–264, Oct 2011. 61, 72, 115

[173] A. Yazdani and R. Iravani. Voltage–Sourced Controlled Power Converters – Modeling, Control

and Applications. Wiley IEEE, 2010. 47, 48, 52, 57, 58, 60, 66

[174] Hai-Sheng Yu, Ke-You Zhao, Lei Guo, and Hai-Liang Wang. Maximum torque per ampere

control of pmsm based on port-controlled hamiltonian theory. In Zhongguo Dianji Gongcheng

Xuebao(Proceedings of the Chinese Society of Electrical Engineering), volume 26, pages 82–87,

2006. 36

[175] Lidong Zhang, Lennart Harnefors, and H.-P. Nee. Interconnection of two very weak ac systems

by vsc-hvdc links using power-synchronization control. Power Systems, IEEE Transactions on,

26(1):344–355, Feb 2011. 49

[176] Lidong Zhang and H.-P. Nee. Multivariable feedback design of vsc-hvdc connected to weak ac

systems. In PowerTech, 2009 IEEE Bucharest, pages 1–8, June 2009. 61

[177] J. Zhao and F. Dörfler. Distributed control and optimization in DC microgrids. Automatica, 61:18

– 26, 2015. 46, 58, 81

[178] Q. Zhong and T. Hornik. Control of power inverters in renewable energy and smart grid integra-

tion. John Wiley & Sons, 2012. 94, 95, 104

[179] D. Zonetti. An hamiltonian approach to power systems modeling. Université de Paris-Sud XI,
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Modélisation de systèmes électriques de puissance avec propriétés de stabilité – Pour
traiter les systèmes non linéaires, à grande échelle, multi–domaine tels que les systèmes électriques
de puissance, nous avons remarqué dans les dernières années un intérêt croissant pour les techniques
de modélisation, analyse et contrôle basées sur la notion d’énergie. L’énergie est en fait un concept
fondamental en science et en ingénierie, où typiquement les systèmes dynamiques sont regardés comme
des dispositifs de transformation d’énergie. Cette perspective est particulièrement utile pour étudier
des systèmes non linéaires assez complexes, qui peuvent être décomposés en sous-systèmes plus simples,
caractérisés au niveau énergétique, et qui, à travers leurs interconnexions, déterminent le comportement
global du système tout entier. Il représente bien évidemment le langage le plus naturel et intuitif pour
représenter les systèmes électriques de puissance. En particulier, l’utilisation de systèmes Hamiltoniens
à Ports a eu un impact très fort dans différentes applications, plus précisément dans le cas de systèmes
mécaniques, électriques et électromécaniques. Dans ce contexte alors, l’approche Hamiltonien à Ports
représentent sans doute une base solide qui montre une nouvelle façon d’aborder les problèmes d’analyse
et contrôle de systèmes électriques de puissance. Basée sur cette approche, la thèse est structurée en
trois étapes fondamentales:

i) Modélisation d’une classe très générale de systèmes électriques de puissance, basée sur la théorie
des graphes et la formulation en Systèmes Hamiltoniens à Ports des composantes.

ii) Modélisation, analyse et commande de systèmes de transmission de courant continu haute tension.
Avec l’intention de construire un pont entre la théorie et les éventuelles applications, un des
objectifs fondamentaux consiste à établir des relations évidentes entre les solutions adoptées dans
la pratique et les solutions obtenues à travers une analyse mathématique précise.

iii) Travaux apparentés de l’auteur, dans différents domaines des systèmes électriques de puissance:
systèmes ac conventionnels et micro réseaux.

Mots clés: systèmes électriques de puissance, passivité, systèmes port–Hamiltoniens, théorie des
graphes, architectures de contrôle, contrôle PI, analyse non linéaire, systèmes multi–terminal de trans-
mission hvdc.

Energy-based modeling and control of electric power systems with guaranteed stability
properties – To deal with nonlinear, large scale, multi domain, systems, as power systems are, we have
witnessed in the last few years an increasing interest in energy-–based modeling, analysis and controller
design techniques. Energy is one of the fundamental concepts in science and engineering practice,
where it is common to view dynamical systems as energy-transformation devices. This perspective is
particularly useful in studying complex nonlinear systems by decomposing them into simpler subsystems
which, upon interconnection, add up their energies to determine the full systems behavior. This is
obviously the most natural and intuitive language to represent power systems. In particular, the use of
port—Hamiltonian (pH) systems has been already proven highly successful in many applications, namely
for mechanical, electrical and electromechanical systems. The port-Hamiltonian systems paradigm
therefore provides a solid foundation, which suggests new ways to look at power systems analysis and
control problems. Based on this framework, this thesis is structured in three main steps:

i) Modeling of a generalized class of electric power systems, based on graph theory and port-
Hamiltonian representation of the individual components.

ii) Modeling, analysis and control of multi terminal hvdc transmission systems. With the intention
to bridge the gap between theory and applications, one of the main concerns is to establish
connections between existing engineering solutions, usually derived via ad hoc considerations,
and the solutions stemming from theoretical analysis.

iii) Additional contributions of the author in other fields of electric power systems, including tradi-
tional ac power systems an microgrids.

Keywords: electric power systems, passivity, port–Hamiltonian systems, graph theory, control archi-
tectures, PI control, nonlinear analysis, multi–terminal hvdc transmission systems.
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