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Abstract

High-performance heterogeneous materials have been increasingly used nowadays for their
advantageous overall characteristics resulting in superior structural mechanical performance.
The pronounced heterogeneities of materials have significant impact on the structural behavior
that one needs to account for both material microscopic heterogeneities and constituent
behaviors to achieve reliable structural designs. Meanwhile, the fast progress of material
science and the latest development of 3D printing techniques make it possible to generate
more innovative, lightweight, and structurally efficient designs through controlling the
composition and the microstructure of material at the microscopic scale.

In this thesis, we have made first attempts towards topology optimization design of
multiscale nonlinear structures, including design of highly heterogeneous structures, mate-
rial microstructural design, and simultaneous design of structure and materials. We have
primarily developed a multiscale design framework, constituted of two key ingredients:
multiscale modeling for structural performance simulation and topology optimization for
structural design. With regard to the first ingredient, we employ the first-order computational
homogenization method FE2 to bridge structural and material scales. With regard to the
second ingredient, we apply the method Bi-directional Evolutionary Structural Optimization
(BESO) to perform topology optimization. In contrast to the conventional nonlinear design
of homogeneous structures, this design framework provides an automatic design tool for non-
linear highly heterogeneous structures of which the underlying material model is governed
directly by the realistic microstructural geometry and the microscopic constitutive laws.

Note that the FE2 method is extremely expensive in terms of computing time and storage
requirement. The dilemma of heavy computational burden is even more pronounced when it
comes to topology optimization: not only is it required to solve the time-consuming multiscale
problem once, but for many different realizations of the structural topology. Meanwhile we
note that the optimization process requires multiple design loops involving similar or even
repeated computations at the microscopic scale. For these reasons, we introduce to the design
framework a third ingredient: reduced-order modeling (ROM). We develop an adaptive
surrogate model using snapshot Proper Orthogonal Decomposition (POD) and Diffuse
Approximation to substitute the microscopic solutions. The surrogate model is initially built
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by the first design iteration and updated adaptively in the subsequent design iterations. This
surrogate model has shown promising performance in terms of reducing computing cost and
modeling accuracy when applied to the design framework for nonlinear elastic cases. As
for more severe material nonlinearity, we employ directly an established method potential-
based Reduced Basis Model Order Reduction (pRBMOR). The key idea of pRBMOR is to
approximate the internal variables of the dissipative material by a precomputed reduced basis
computed from snapshot POD. To drastically accelerate the computing procedure, pRBMOR
has been implemented by parallelization on modern Graphics Processing Units (GPUs). The
implementation of pRBMOR with GPU acceleration enables us to realize the design of
multiscale elastoviscoplastic structures using the previously developed design framework in
realistic computing time and with affordable memory requirement.

We have so far assumed a fixed material microstructure at the microscopic scale. The
remaining part of the thesis is dedicated to simultaneous design of both macroscopic structure
and microscopic materials. By the previously established multiscale design framework,
we have topology variables and volume constraints defined at both scales. In this model,
the material microstructures are optimized simultaneously in response to the macroscopic
solution, which results in the nonlinear equilibrium problem at the interface of the two scales.
We treat the material optimization process as a generalized nonlinear constitutive behavior,
and therefore the nonlinear scale-interface equilibrium problem can be resolved naturally
within the multiscale framework by the FE2 method. The proposed model enables to obtain
optimal structures with spatially varying properties realized by the simultaneous design of
microstructures. Note that the designed structure with varying constitutive behaviors due to
the microstructures is constituted in fact by only one base material, which greatly favors the
3D printing setting that a single material can usually be used for fabrication.

In addition, by treating the optimization process of material microstructure as a gener-
alized constitutive behavior, we can improve the design efficiency drastically by a straight-
forward application of the existing ROMs for nonlinear materials. For this purpose, we
apply directly the reduced database model Numerically EXplicit Potentials (NEXP) for the
representation of the generalized constitutive behavior. By this model, we build a priori a
database from a set of numerical experiments in the space of effective strain. Each value
in the database corresponds to the strain energy density evaluated on a material microstruc-
ture, optimized in accordance to the imposed effective strain value. As a result of this
off-line phase, we have the effective strain-energy and stress-strain relations required for
the macroscopic equilibrium solution given in the explicit manner. It has been shown that
this explicit NEXP approximation can well serve the simultaneous design purpose providing
ultra-resolution structures at a significantly reduced computational cost.
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Chapter 1

Introduction

In this Chapter, the background and motivations of the thesis are firstly presented in Section
1.1. Literature review on related subjects, including linear and nonlinear topology optimiza-
tion, multiscale modeling methods, model reduction strategies in multiscale modeling and
simultaneous structure and materials design are given in Section 1.2. The outline of the thesis
is presented lastly in Section 1.3.

1.1 Background and motivations

Various optimization methods for structural size, shape, topology designs have been devel-
oped and widely employed in engineering applications. Among which, topology optimization
has been recognized as one of the most effective tools for least-weight and performance de-
sign, especially in aeronautics and aerospace engineering [182]. Most of existing researches
of topology optimization focused on the design of monoscale structures, in other words the
considered structures are made of homogeneous materials.

In the recent years, there is an increasing use of high-performance heterogeneous materials
such as fibrous composite, concrete, metallic porous material and metal alloy for their
advantageous overall characteristics, which result in superior structural mechanical response
and service performance. Though from the structural level point of view these materials can
be considered homogeneous and conventional design approaches for homogeneous structures
can still be used, the pronounced heterogeneities have significant impact on the structural
behavior. Therefore, in order to allow for reliable mechanical designs, one needs to account
for material microscopic heterogeneities and constituent behaviors so as to accurately assess
the structural performance.

Meanwhile, the fast progress made in the field of material science allows us to control the
material microstructure composition to an unprecedented extent [56]. The overall behavior
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of heterogeneous materials depends strongly on the size, shape, spatial distribution and
properties of the constituents. With all these in mind, one comes up naturally with the idea
that designing materials simultaneously along with the design of structures would result in
higher-performance structures. In addition, the recently emerging and rapidly developing
techniques of 3D printing or additive manufacturing, such as fused deposition modeling,
stereolithography, selective laser sintering, etc., provide the capability of manufacturing
extremely fine and complex microstructures, which make it possible to generate more
innovative, lightweight, and structurally efficient designs.

Motivation 1

The primary motivation of the thesis is to make first attempts towards topology optimiza-
tion design of nonlinear highly heterogeneous structures. Generally speaking, topology
optimization design of multiscale structures (Figure 1.1) can be viewed as an extension of
conventional monoscale design except that the material constitutive law is governed by one
or multiple Representative Volume Elements (RVEs) defined at the microscopic scale. In the
case of linear elasticity, topology optimization design of a structure made of the RVE is a
rather straightforward application of conventional linear design routine [133, 78], because
the effective or homogenized constitutive behavior of the considered RVEs can be explicitly
determined by homogenization analysis.

Element RVE

Topology Optimization
fext fext

Fig. 1.1 Illustration of topology optimization of multiscale structures [152].

When nonlinearities are present at the microscopic scale, i.e., nonlinear RVEs are un-
der consideration, topology optimization design of such multiscale structures is a rather
challenging task. Firstly, as will be discussed subsequently in Section 1.2.1, nonlinear
topology optimization is not at all a trivial task even for homogeneous structures due to the
increased computing cost and the required solution stabilization schemes, not to mention
highly heterogeneous multiscale structures. Secondly, the multiscale dilemma in terms of
heavy computational burden (see Section 1.2.2) is even more pronounced in topology opti-
mization: not only is it required to solve the time-consuming multiscale problem once, but
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for many different realizations of the structural topology. For these reasons, there has been
very limited research in the literature on topology optimization design of multiscale nonlinear
structures before the recent works from the author and his collaborators [152, 153, 54].

Motivation 2

The second motivation of the thesis is to design simultaneously the topologies of both
macroscopic structure and microscopic materials. In other words, by topology optimization
one determines not only the optimal spatial material layout distribution at the macroscopic
structural scale, but also the optimal local use of the cellular material at the microscopic scale,
as schematically shown in Figure 1.2. The subject of simultaneous topology optimization
design of both structure and materials can be found in early works [e.g., 144, 125, 176]. By
this thesis, we revisit the subject with an emphasis on solving the nonlinear scale-interface
equilibrium within a multiscale analysis framework [151, 154].

Macro structure

x1

x2

ρ(x) = 0 or 1

Micro cellular materials

point A

point B

y1

y2

η(xA, y) = 0 or 1

η(xB, y) = 0 or 1

y1

y2

Ω

Ω
xA

Ω
xB

Fig. 1.2 Illustration of simultaneous topology optimization of structure and materials [151].

Concerning simultaneous design, the microscale material topologies are optimized in
response to the macroscale equilibrium solution, the optimized materials in turn result in
a variation of the macroscale constitutive behavior. The equilibrium of the scale-interface
is therefore nonlinear, which has been well acknowledged in [e.g., 144, 12]. However, in
practice it has never been specifically dealt with before the author’s works [151, 154], in
particular the microscale material design is treated integrally as a generalized nonlinear
constitutive behavior and the nonlinear equilibrium due to the locally optimized or adapted
materials is solved within a nonlinear multiscale analysis framework. One particular advan-
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tage of doing so is that we can improve the design efficiency by straightforward application
of the existing model reduction strategies for nonlinear heterogeneous materials [154].

Motivation 3

The third motivation of the thesis is to develop computer codes for the designs of nonlinear
structures and of materials with extreme constitutive properties. The compactly developed
codes including all ingredients for topology optimization would be beneficial in terms of
presenting the methods and attracting more research interests. In addition, the compactness
and extensibility of the codes make it possible to serve for further academic researches and
also for educational purposes.

This motivation is inspired by the 99-line Matlab code in the seminal article by Sigmund
[133] and other subsequent educational codes [e.g., 78, 27, 5, 140], which have significantly
contributed to the popularity and to the development of topology optimization. We have
also benefited from these educational papers. For instance, in Chapter 3 [152] we apply the
discrete level-set method [27] to carry out topology optimization. Chapters 2 and 4 on the
design of multiscale structures [153, 54] and Chapters 5 and 6 on the simultaneous design of
structure and materials [151, 154] are all built on top of the 88-line code framework [5] along
with the evolutionary design scheme [78]. In Appendix A, we provide one of the developed
codes for the design of extreme materials in Matlab

1.2 Literature review on related subjects

In the following, Section 1.2.1 gives the literature review on the developments of linear and
nonlinear topology optimization. Section 1.2.2 presents multiscale modeling methods and
the Reduced-Order Modeling (ROM) strategies for them. Section 1.2.3 reviews conventional
approaches on simultaneous topology optimization of structure and materials together with
our recently proposed alternative approach.

1.2.1 Topology optimization

Since the seminal paper by Bendsøe and Kikuchi [10], topology optimization has undergone
a remarkable development in both academic research [12, 79, 38] and industrial applications
[182]. Various approaches have been proposed, such as density-based methods [9, 179],
evolutionary procedures [160, 161, 181, 77], level-set methods [128, 149, 3, 22], all with the
same purpose of finding an optimal structural topology or material layout within a given
design domain subjected to constraints and boundary conditions as is shown in Figure 1.3.
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The key merit of this approach over shape or sizing optimizations is that it does not require a
presumed topology.

Originally, topology optimization was considered as a 0-1 discrete problem or a binary
design setting, which is known as ill-conditioned upon Kohn and Strang [93–95]. The
major challenge lies in solving a large-scale integer programming problem, where the high
computing cost typically precludes the use of gradient free algorithms. Bendsøe and Kikuchi
[10] relaxed the problem by assuming porous microstructures at a lower separated scale.
Similar treatments were followed in [65, 139, 2]. Shortly after, Bendsøe proposed another
density-based method with a much more simplified assumption [9], also known as Solid
Isotropic Material with Penalty (SIMP) [179, 126].

Design region Ω

ΓD ΓN

?

ΓD ΓN

Ω

Fig. 1.3 Illustration of structural topology optimization [153].

Another popular approach, named Evolutionary Structural Optimization (ESO), was
initially proposed by Xie and Steven [160] based on a heuristic element removal strategy. It
has been reported that the ESO method corresponds to a sequential linear programming ap-
proximate method for certain cases [141]. Despite its popularity [161], the ESO method was
also largely argued [133] or even criticized [180] mainly for lacking restitution mechanisms
for material removal. To circumvent the deficiencies, Bi-directional Evolutionary Structural
Optimization [BESO, 123, 181, 77] and soft-killing BESO [78, 79] were later developed,
allowing both material removal and addition.

Apart from the above-mentioned approaches, there exist several alternative approaches
such as the bubble method [45], topological derivative [137], level-set method [e.g., 128, 149,
3, 22, 146] and phase filed method [16]. For more critical review and detailed comparison of
the various design approaches, one may kindly refer to [134].

Early works on topology optimization were restricted to linear structural designs. Con-
tinuous efforts have been conducted to extend topology optimization to nonlinear structural
designs considering various sources of nonlinearity, such as geometrical nonlinearity [e.g.,
21, 60, 121, 20, 167, 147, 104], material nonlinearity [e.g., 170, 14, 106, 171, 127, 168, 15]
and both geometrical and material nonlinearities simultaneously [e.g., 89, 82, 81]. In the case
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of geometrical nonlinearity, the main difficulty of nonlinear topology optimization raises
primarily from the existence of compliant or ersatz materials at void regions. The excessively
distorted elements at void regions during topology optimization result in the instability of
Newton-Raphson (NR) solution process [e.g., 21, 121, 20, 167]. To stabilize the numerical so-
lution, several remedy schemes have been proposed by for instance excluding internal forces
of void elements [21], removing low-density elements [20], including additional connectivity
parameterization [167], or recently a variant interpolation scheme [147]. In the case of
material nonlinearity, such as plasticity, one needs to define material interpolations between
the intermediate density values and elastic material modulus, plastic hardening modulus and
yield stress when employing density-based methods [e.g., 106, 171, 127, 168, 15, 91]. These
material interpolation models need to be adjusted carefully so as to guarantee optimization
solutions, while the choice of them lacks physical interpretation. As compared to continu-
ously defined methods, ESO-type methods [79] and discrete level-set methods [e.g., 27, 150]
omit naturally the definition of supplementing pseudo-relationships between intermediate
densities and their constitutive behaviors for the sake of their discrete nature, resulting in
algorithmic advantages. The robustness and performance of discrete methods have been
shown for the design of nonlinear structures [82, 81] and recently for nonlinear multiscale
structures [152, 153, 54].

1.2.2 Multiscale modeling

Brute-force approaches such as direct modeling the microstructure at the coarse scale model
are practically not feasible because of the prohibitive computational expense. Instead,
homogenization is usually applied to bridge both structural and material scales [e.g., 65,
72, 73, 109]. The key hypotheses of homogenization are the separation of scales and the
periodicity, as is shown in Figure 1.4. It is assumed that the microscopic length scale is
much smaller than the macroscopic length scale such that the RVE model can be considered
as periodically ordered pattern, whilst the RVE is large enough to be dealt with using the
continuum mechanics theory. By means of homogenization, one may evaluate the effective or
homogenized constitutive behavior of the considered RVE and then use it to serve marcroscale
assessment [e.g., 66, 163, 164, 156].

However, this approach encounters difficulties when geometrical and physical nonlin-
earities are present at the material scale. For such reason, computational homogenization
approaches have been proposed [e.g. 136, 111, 46, 96, 62, 110, 87, 88] and largely developed
in the last decade [61] in order to assess the macroscopic influence of microscopic hetero-
geneities and nonlinearities. Note that within the finite element analysis framework, this
approach is also known as FE Square method [FE2, 46]. In general, it asserts that each point
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Fig. 1.4 Illustration of a twoscale structure and periodically patterned RVE [152].

of the macroscopic discretization is associated with a RVE of the (nonlinear) microstructured
material. Then for each macroscopic equilibrium iteration a nonlinear load increment needs
to be computed for each of the (many) RVEs. In return the average stress across the RVE is
then used as the macroscopic stress tensor without requiring explicit constitutive relations at
the macroscopic scale.

A downside of this very general FE2 method is the high computational burden. First,
many nonlinear load steps need to be computed at the microscopic level which leads to a
prohibitive amount of computing time. Second, when path-dependent constitutive behaviors
are considered at the microscopic scale, the microscopic degrees of freedom and the history
variables describing the material state need to be stored for each point within each RVE which
leads to a significant amount of additional storage requirements. One straightforward solution
to alleviate the computational requirements is parallel computing [46, 113], because the
microscale problems are independent, embarrassingly parallel. Note that, the implementation
of parallel computing contributes significantly in terms of limiting the computing time, but
not necessarily reduces the computing cost due to additional interchanges between the two
scales. For this reason, one needs to turn to alternative strategies by means of model reduction
or simplification.

ROM has been systematically researched and widely used in the fields of computational
mechanics in order to reduce computing cost, data storage requirements as well as computing
time [122, 47]. Some other applications can also be found for the representation of material
mircrostructure [e.g., 57, 156] and structural optimization design [e.g., 159, 124]. In terms
of reducing the computing effort for the evaluation of nonlinear RVEs at the microscopic
scale, numerous ROMs can be found in literature for the representation or approximation
of the effective constitutive behavior of nonlinear heterogeneous materials, using reduction



8 Introduction

strategies such as Proper Orthogonal Decomposition [POD, 172], Proper Generalized De-
composition [PGD, 97, 44, 37], hyper-reduction [e.g., 112, 74], material map model [143],
eigendeformation-based reduction [120, 169], Nonuniform Transformation Field Analysis
[NTFA, 107, 108], and Numerical EXplicit Potentials [NEXP, 173, 174, 99]. Note that, by
simultaneous use of parallel computing and ROM [52], a further reduction in computational
time can be achieved in multiscale analysis [53].

In the case of elasticity, the database-type methods such as material map model [143, 142]
and NEXP [173] have shown promising performances in terms of both modeling accuracy
and computing efficiency. The general idea of this type of methods is to compute off-
line a certain number of RVE problems as a database, then the effective RVE behavior is
approximated using the precomputed database by means of interpolation schemes. The
on-line macroscale computation uses then directly the cheaper approximated constitutive
behavior of the RVE without demanding to solve full-scale RVE problems. These methods
apply for viscoelastic materials [145] and nonlinear hyperelastic materials [143, 142, 174] and
have also been extended for stochastic nonlinear elastic materials [32, 33]. The development
of ROMs for the representation of RVE involving path-dependent constitutive laws, such
as plasticity, is a more challenging subject under development. Here, we refer to NTFA
method [e.g., 107, 108, 49, 50] and adaptive POD approach as implemented in [112, 74].
In particular, NTFA reduces the inelastic strain field found in a microstructured material
to a finite dimensional but spatially heterogeneous basis of nonuniform transformation
strains. Generally speaking, all these established ROMs apply straightforwardly to topology
optimization of multiscale nonlinear structures as long as the macroscopic equilibrium
solution is provided.

1.2.3 Simultaneous structure and materials design

Topology optimization has not only been applied for structural designs, but also for material
microstructural design [23]. By means of inverse homogenization, the SIMP method has
also been used for tailoring material microstructures with prescribed constitutive properties
[131, 132], extreme thermal expansion coefficients [135, 63], extreme viscoelastic behavior
[166, 4, 30, 86], maximum stiffness and fluid permeability [67, 68] and recently hyperelastic
properties [148]. Similar problems have also been addressed by level-set methods [28, 29],
ESO-type methods [83, 84]. Some other works [e.g., 116, 55, 117, 177, 118, 138, 64, 90, 6]
fall also into this context. Up till now, topology optimization design of materials with extreme
constitutive properties (Figure 1.5) follows a rather standard routine [155].

With the established material microstructural design models, one comes up naturally
with the idea of simultaneous or integrate designs of both material and structure. The most
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Fig. 1.5 Material microstructures (50% porosity): the first two with extreme bulk moduli, the
third with extreme shear modulus, and the last one with negative Poisson’s ratio [155].

commonly applied strategy is designing a universal material microstructure at the microscopic
scale either for a fixed [138, 85] or simultaneously changed [39, 183, 165, 162, 70] structure
at the macroscopic scale. Zhang et al. [176] made a step further by designing several different
cellular materials for different layers of a layered structure. In fact, an earlier attempt to
the topic traces back to [125], where simultaneous optimal designs are performed for both
structure and element-wisely varying cellular materials following a decomposed design
procedure [13, 144]. This work has later been extended to 3D [34] and to account for
hyperelasticity [114]. Some more specific simultaneous designs can be found in [129, 130,
102, 58, 59, 35] for structural topology and composite laminate orientations and in [105] for
structural topology and closed liquid cell materials. Another recent work in [1] demonstrates
the efficient solution of the design problem by using a spectral coarse basis preconditioner
and without assuming the separation of length scales.

Due to the intensive computational cost, the nonlinear scale-interface equilibrium [144,
12] due to the locally optimized or adapted materials was neglected in early works [e.g.
125, 34, 176] conjecturing that both scale design variables were updated simultaneously
and no converged local material design results were required for macroscopic structural
equilibrium. Unlike previous design approaches, this nonlinearity has not been neglected but
specially addressed in our recent work [151] treating the microscale material design integrally
as a generalized nonlinear constitutive behavior and the nonlinear scale-interface equilibrium
problem is resolved by the FE2 method. In precise, complete microscale optimizations
are solved for each macroscale displacement increment. The nonlinear scale-interface
equilibrium is searched by means of the NR method using the effective stresses evaluated
on the optimized material microstructural topologies. It has been shown that this FE2-based
design approach can provide similar topology solutions in comparison to the iterative design
approach [e.g., 85, 165], while requiring much less computing cost due to the reduced
interchange between the two scales. Another advantage of treating the material optimization
process as a generalized constitutive behavior is that the existing model reduction strategies
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for nonlinear heterogeneous materials can be applied straightforwardly to improve the design
efficiency, as we have shown in [154].

1.3 Outline of the thesis

This thesis is organized in the following manner:
In the current Chapter we have presented the motivations of the thesis that we intend to

made first attempts towards topology optimization design of multiscale nonlinear structures,
including design of highly heterogeneous structures, material microstructural design, and
simultaneous design of structure and materials. We have also reviewed the state of the art of
the related subjects, which appears in [J8].

In Chapter 2 we develop primarily a multiscale design framework for topology optimiza-
tion of multiscale nonlinear structures. Highly heterogeneous structures made of nonlinear
elastic RVE are considered. Conventional first-order computational homogenization FE2

method is adopted to bridge the two separate scales. Topology optimization is carried out
using the BESO method for macroscopic structural stiffness maximization with a constraint
on material volume usage. For the sake of its discrete nature, the BESO method omits natu-
rally the definition of supplementing pseudo-relationships between intermediate densities
and the moduli as required when employing SIMP-type models, resulting in algorithmic
advantages, especially in dealing with multiscale nonlinear structures. In contrast to the
conventional nonlinear design of homogeneous structures, this design framework provides an
automatic design tool by which the considered material models can be governed directly by
the realistic microstructural geometry and the microscopic constitutive models. The content
of this Chapter comes primarily from [J4] and [J8].

With the intention to alleviate the heavy computational burden of the design framework
presented in Chapter 2, we develop a POD-based adaptive surrogate model in Chapter 3 for
the RVE solutions at the microscopic scale. We note that the optimization process requires
multiple design loops involving similar or even repeated computations at the microscopic
scale which perfectly suits the surrogate learning process. The surrogate model is constructed
in an on-line manner: initially built by the first design iteration is then updated adaptively
in the subsequent design iterations. The displacement fields are treated as snapshots and a
reduced basis is obtained by snapshot POD. The surrogate model is built by interpolating
the POD projection coefficients in terms of the effective strain using Diffuse Approximation.
The surrogate model has shown promising performance in terms of reducing computing cost
and modeling accuracy when applied to the design framework for nonlinear elastic cases.
The content of this Chapter has been given in [J4].
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In Chapter 4 we make a step further towards the design of multiscale elastoviscoplastic
structures. In order to realize such design in realistic computing time and with affordable
memory requirement, we employ directly an established method potential-based Reduced
Basis Model Order Reduction (pRBMOR) with GPU acceleration [53] to resolve the mi-
croscopic problems for this severe material nonlinearity. The pRBMOR implementation
allows for memory and CPU time savings by factors of 105 and beyond with respect to FE
simulations. With regard to topology optimization, the sensitivities of the design variables for
nonlinear dissipative problems are derived in a clear and rigorous manner using the adjoint
method. In addition, a stabilization scheme controlling the number of recovered elements is
implemented to enhance previous versions of BESO updating scheme for linear designs. The
content of this Chapter has been given in [J7].

We have so far assumed always a fixed material microstructure at the microscopic scale.
Since Chapter 5, we are focused on the simultaneous design of both macroscopic structure
and microscopic materials.Within the same established multiscale design framework, we
define topology variables and volume fraction constraints at both scales. In this model,
the material microstructures are optimized in response to the macroscopic solution, which
results in the nonlinearity of the equilibrium problem of the interface of the two scales. This
model treats the optimization process of material microstructure as a generalized nonlinear
constitutive behavior, and the nonlinear equilibrium problem can be resolved naturally within
the multiscale design framework by the FE2 method. The proposed model enables to obtain
optimal structures with spatially varying properties realized by the simultaneous design
of microstructures at the microscopic scale. Note that the designed structure with varying
constitutive behaviors due to the microstructures are constituted in fact by only one base
material, which greatly favors 3D printing setting that a single material can usually be used
for fabrication. The content of this Chapter has been given in [J3].

Treating the material optimization process as a generalized constitutive behavior (Chapter
5) enables us to improve the design efficiency drastically by straightforward application
of the existing ROMs for nonlinear materials. We apply therefore in Chapter 6 a reduce
database model Numerically EXplicit Potentials (NEXP) [173] to approximate this general-
ized constitutive behavior. By this model, we build a priori a database from a set of numerical
experiments in the space of effective strain. Each value in the database corresponds to the
strain energy density evaluated on a material microstructure, optimized in accordance to the
imposed effective strain value. By tensor decomposition, a continuous representation of the
strain energy density is built as a sum of products of one dimensional interpolation functions.
As a result of this off-line phase, we have the effective strain-energy and stress-strain rela-
tions required for the macroscopic equilibrium solution given in the explicit manner. The
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explicit NEXP approximation can well serve the simultaneous design purpose providing
ultra-resolution structures at a significantly reduced computational cost. The content of this
Chapter has been given in [J5].

In Chapter 7 we conclude the thesis and give perspectives on future research.
The developments in the thesis gave rise to a number of prototype computer codes. We

attach in Appendix A our recent educational article [J6] regarding design of materials using
topology optimization and energy-based homogenization approach together with a Matlab
code.

The sequence of Chapters is presented in an order of progressive difficulty: from linear
to nonlinear problems, from uniform to spatially varying heterogeneity with progressive
introduction of reduced-order modeling strategies. However every Chapter may be need
independency, physical definitions and assumptions are reinvoked when necessary at the
beginning of successive Chapters.



Chapter 2

Topology optimization framework for
multiscale nonlinear structures

This chapter introduces a topology optimization framework for multiscale nonlinear struc-
tures. As an extension of the conventional monoscale design except that the material
constitutive law is governed by one or multiple RVEs defined at the microscopic scale,
the developed general multiscale design framework is constituted of two key ingredients:
multiscale modeling for structural performance simulation and topology optimization for
structural design. This framework will serve as a basis for the developments presented in the
subsequent Chapters.

With regard to the first ingredient, we employ the first-order computational homoge-
nization method FE2 [46] to bridge structural and material scales. By this method, a clear
separation of scales is asserted and periodicity is assumed at the microscopic scale. With
regard to the second ingredient, we apply the BESO method for its robustness and the
performance of the resulting structures in nonlinear designs [81, 79]. The BESO method is
based on an evolutionary mechanism that the topological change is realized by gradually
material removal and addition.

In the following, in Section 2.1 we firstly summarize and review the FE2 method. The
implementation of a unified periodic boundary conditions [157] is given in Section 2.2.
Finite element discretization formulations are presented in Section 2.3. The FE2-based
nonlinear topology optimization model using the BESO method is given in Section 2.4.
The summarized general multiscale design framework is presented in Section 2.5. Section
2.6 carries out the designs of a twoscale cantilever structure made of periodically patterned
anisotropic short-fiber reinforced composite with nonlinear elastic behaviors and the nonlinear
design results are compared with monoscale design results of the corresponding homogeneous
structures. We give the concluding remarks in Section 2.7.
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2.1 FE2 method

The FE2 method assumes the hypothesis of the separation of scales and periodicity as is the
case already shown in Figure 1.4. By Finite Element Analysis (FEA), each material point
(Gauss integration point) at the macroscopic scale is attributed with a prescribed RVE. At the
macroscopic scale the material appears to be homogeneous but with unknown mechanical
properties. These mechanical properties are related to the heterogeneities of the RVE at the
microscopic scale which contribute strongly to the overall mechanical response observed at
the larger scale.

Let x and y denote the position of a point at the macro and micro scales, respectively.
Within the macroscopic domain Ω, the macroscopic displacement ū(x), the macroscopic
strain ε̄(x) and the macroscopic stress σ̄(x) are considered. Their microscopic counterparts
at the microscopic scale are the displacement u(x,y), the infinitesimal strain ε(x,y) and
the stress σ(x,y). While the constitutive model for each material phase of the RVE at the
microscopic scale is assumed to be known, the explicit macroscale constitutive relations that
can account for the microstructural heterogeneities are rarely ever at hand. Therefore, the
macrocale stress can often only be computed as a function of the microsale stress state by
means of volume averaging over the associated RVE domain Ωx through

σ̄(x) = ⟨σ(x,y)⟩ = 1
|Ωx|

∫
Ωx

σ(x,y) dΩx, (2.1)

in which σ(x,y) is evaluated by solving the boundary value problem of the RVE by con-
straining ⟨ε(x,y)⟩ equal to ε̄(x), i.e.,

ε̄(x) = ⟨ε(x,y)⟩ = 1
|Ωx|

∫
Ωx

ε(x,y) dΩx, (2.2)

where Periodic Boundary Conditions (PBC) are usually applied to define this constraint in
accordance with the assumed periodicity assumption. Note that when cracks, voids and rigid
inhomogeneities are present in the RVE, the foregoing definitions for the macroscopic stress
and stain tensors need to be extended [109].

In addition to the scale bridging relations (2.1) and (2.2), the macroscopic stress σ̄

needs to be in equilibrium with the external tractions t̄∗ on the Neumann boundary ∂ΩN

(body forces are out of consideration) and the displacements have to satisfy the Dirichlet
conditions ū = ū∗ on ∂ΩD:

div σ̄(x) = 0 in Ω, σ̄ · n̄ = t̄ = t̄∗ on ∂ΩN, ū = ū∗ on ∂ΩD. (2.3)
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A schematic illustration of the FE2 method is given in Figure 2.1 and also can be seen
later in Figure 2.3. In summary, the FE2 method consists of the following steps:

1. evaluate the macroscale strain ε̄(x) with an initially defined setting;
2. define PBC on the associated RVE according to ε̄(x);
3. evaluate the microscale stress σ(x,y) by solving the RVE problem;
4. compute the macroscale stress σ̄(x) via volume averaging σ(x,y);
5. evaluate the tangent stiffness tensor C̄tan(x) at the macroscale point x;
6. update the displacement ū(x) using the NR method;
7. repeat steps 2-6 until the macroscale equilibrium is achieved.

Macro scale: 

Micro scale:

Solving B.V.P

Fig. 2.1 Illustration of first-oder computational homogenization scheme [153].

Note that it is usual the case that there exists no explicit closed-form expression of C̄tan at
the macroscopic scale when nonlinearities are present at microscopic scale. One possible but
time-consuming solution is to approximate it using a perturbation method [46]. To be precise,
the structural response is evaluated for a small strain variation δε at the converged solution.
The tangent stiffness tensor C̄tan could be reconstructed by exciting each of the components
of δε. An alternative perturbation approach based on nodal condensation is given in [96].
It is worth noting that computing the tangent stiffness tensor by the perturbation method
requires solving the RVE problem four (in 2D) or six (in 3D) additional times whose cost is
not negligible. For this reason, it is also suggested to use the initial elastic stiffness tensor
during the NR solution process [e.g, 46, 172].
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2.2 Periodic boundary conditions

The formulation of the periodic RVE can be derived in a systematic way using the twoscale
asymptotic expansion method [65], or following a process which is also valid for random
media [109], which is followed in this paper. Upon the assumption of periodicity at the
microscopic scale, the displacement field of the microstructure can be written as the sum of a
macroscopic displacement field and a periodic fluctuation field u∗ [109]

u(x,y) = ε̄(x) · y + u∗(y). (2.4)

Because u∗(y) is periodic, its strain average ⟨ε(u∗)⟩ equals zero, and the average of the
microscale strain thus equals directly to the macroscale strain

⟨ε(x,y)⟩ = ε̄(x). (2.5)

In order to compute microscopic stress field, the boundary value problem induced by an
overall strain ε̄(x) has to be solved at the microscopic scale on the RVE: find σ, ε,u∗ such
that σ(x,y) = C(y) : (ε̄(x) + ε(u∗(y)))

div σ(x,y) = 0, u∗ periodic, σ · n anti-periodic,
(2.6)

where C(y) is the linear elastic tensor at the microscopic scale; “periodic” indicates that all
components of u∗ take identical values on points of the opposite sides of the boundary ∂Ωx;
“anti-periodic” indicates that all components of σ · n take opposite values on points of the
opposite sides of ∂Ωx, deduced from the periodicity of σ and the fact that the normal vectors
n at opposite sides of ∂Ωx are opposite.

y 

1+y 

1-

y1

y2

y 0
1

y 0
2

j j

Fig. 2.2 An illustrative 2D rectangular RVE [152].
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In practice, Eq. (2.4) cannot be directly applied to the boundaries since the periodic
fluctuation part u∗ is generally unknown. The general expression is usually transformed
into a certain number of explicit constraints between the corresponding pairs of nodes on
the opposite surfaces of the RVE [157]. Consider an RVE such as one periodic cellular
microstructure in Figure 2.2, the displacements on a pair of opposite boundaries areu(x,y)k+ = ε̄(x) · yk+ + u∗(y)

u(x,y)k− = ε̄(x) · yk− + u∗(y),
(2.7)

where superscripts “k+” and “k−” denote the pair of two opposite parallel RVE boundary
surfaces that are oriented perpendicular to the k-th direction. The periodic fluctuation part
u∗ can be eliminated through the difference between the displacements on the two opposite
surfaces

uk+ − uk− = ε̄(x) · (yk+ − yk−), (2.8)

in which the difference ∆yk = (yk+−yk−) is constant for every pair of the parallel boundary
surfaces. With specified ε̄(x), the right side becomes constant and such equations can be
easily applied in the FEA as nodal displacement constraint equations.

The application of (2.8) guarantees automatically the “periodic” condition of u∗ in (2.6).
As for the “anti-periodic” condition of the tractions along the boundaries σ · n in (2.6), it
has been proved in [158] that it can be also guaranteed by the application of (2.8) within the
displacement-based FEA framework. The average stress field can be evaluated as the ratio of
resultant traction forces on the boundary surfaces to the corresponding areas of the boundary
surfaces upon [157]

σ̄ij = ∆yj

|V |

∫
Sj

σijdSj = (Pi)j

Sj

, (no summation over j), (2.9)

where Sj is the area of the boundary surface which is oriented perpendicular to the jth
direction and (Pi)j is the resultant traction force acting in the ith direction on boundary
surface Sj .

2.3 Finite element discretization

Within the context of FEA, the Voigt notation is employed and the effective stress tensor σ̄

and strain tensor ε̄ are represented by 6-dimensional vectors
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σ̄ ≡ (σ̄11, σ̄22, σ̄33, σ̄23, σ̄13, σ̄12)T ,

ε̄ ≡ (ε̄11, ε̄22, ε̄33, 2ε̄23, 2ε̄13, 2ε̄12)T .
(2.10)

As is shown in Figure 2.3, an RVE is attributed to each Gauss integration point. Without
loss of generality, nonlinear elasticity is assumed and body forces are neglected. The
macroscopic displacement solution is solved using the iterative NR method:K̄(k)

tan∆ū(k+1) = f̄ext − f̄ (k)
int (ū(k))

ū(k+1) = ū(k) + ∆ū(k+1).
(2.11)

Here, k indicates the current iteration, f̄ext and f̄int are the vector forms of the macroscale
external and internal forces, and ū is the macroscale displacement. K̄tan is the consistent
macroscale tangent stiffness matrix

K̄tan =
Ne∑
e=1

∫
Ωe

B̄T C̄tanB̄dΩe, (2.12)

in which Ne is the total number of elements in the macroscale design domain and Ωe denotes
the region of element e. C̄tan is the macroscale tangent stiffness. The matrix B̄ relates the
strain at material point x and the element displacement vector ūe within the considered
element

ε̄(x) = B̄T (x)ūe. (2.13)

Solving B.V.P

Macro scale Micro scale

Fig. 2.3 Illustration of the implementation of FE2 in the FEA framework [152].

After solving the boundary value problem of the RVE for the given prescribed overall
strain load, the macroscopic stress σ̄ at each integration point can be evaluated via (2.9).
Thereafter, the macroscale internal force vector f̄int in (2.11) can be evaluated using the
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effective stresses returned from the RVE computations

f̄int =
Ne∑
e=1

∫
Ωe

B̄T σ̄dΩe. (2.14)

The incremental procedure of (2.11) is repeated until the external and internal forces are in
balance.

2.4 Topology optimization model

The following contents are presented with the consideration of the multiscale problem setting
presented in Section 2.1. Basic definitions of the the topology optimization model are given
firstly in Section 2.4.1. Sensitivity analysis with respect to the design variables is derived in
Section 2.4.2. The BESO variables updating scheme is presented in Section 2.4.3.

2.4.1 Model defintions

Topology design variables ρ = (ρ1, . . . , ρNe)T , are defined in an element-wise manner, where
Ne is the total number of elements in the macroscale design domain. Within the framework
of the BESO method (and others) the design variables take values of either 0 or 1, denoting
void and solid materials,

ρe = 0 or 1, e = 1, . . . , Ne. (2.15)

whereas in practice an extremely small value ρmin is attributed to voids to prevent the stiffness
matrix singularity.

In linear elastic problems, topology design variables are usually associated with the
material Young’s modulus or the element stiffness [133]. In general nonlinearity, when there
is no closed-form representation of the material’s constitutive law, which is the case for
multiscale problems, topology design variables are defined is association with the element
internal force vector f̄ e

int as
f̄ e
int = ρe

∫
Ωe

B̄T σ̄ dΩe, (2.16)

where the effective stress σ̄ is computed via the volume averaging relation (2.1). The
microscale stress is determined from an underlying nonlinear microscale equilibrium problem
subjected to a prescribed overall strain. In practice, for void elements the microscale solutions
can be saved and their effective stresses are set directly to zero.
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Two types of design objectives are usually adopted in nonlinear structural designs when
the macroscale external force f̄ext is imposed, namely the end-compliance

fc = f̄T
extū, (2.17)

and the complementary work

fw = lim
n→∞

[
1
2

n∑
i=1

(
f̄ (i)
ext + f̄ (i−1)

ext

)T
∆ū(i)

]
, (2.18)

where n is the number of load increments. The latter is applied to avoid degenerated
topologies, especially when dealing with geometrical nonlinearity [21]. Without loss of gen-
erality, the end-compliance fc is considered. The minimization of the macroscopic structural
end-compliance considering a constraint on material volume usage can be formulated as

min
ρ

: fc(ρ, ū)
subject to : r̄(ρ, ū) = 0

: V (ρ) = ∑
ρeve = Vreq

: ρe = 0 or 1, e = 1, . . . , Ne.

(2.19)

Here V (ρ) is the total volume of solid elements, Vreq is the required volume of solid elements
and ve is the volume of element e. ū is the displacement solution at the convergence and
r̄(ρ, ū) is the residual at the macroscopic scale

r̄(ρ, ū) = f̄ext −
Ne∑
e=1

ρe

∫
Ωe

B̄T σ̄ dΩe. (2.20)

2.4.2 Sensitivity analysis

To implement topology optimization, sensitivity of the design objective with respect to design
variables needs to be provided. The derivation of the sensitivity requires using the adjoint
method [21]. Introducing a vector of Lagrangian multipliers λ, one may rewrite the objective
(2.19) in the following form without modifying the objective value

f ∗
c (ρ) = f̄T

extū + λT r̄, (2.21)

where the term λT r̄ equals zero when the equilibrium of (2.20) is achieved, i.e., f ∗
c = fc.

Note that f̄ext is invariant to the variation of design variables ∂ f̄ext/∂ρe = 0 and according
to the residual definition (2.20), the derivative of the modified objective function f ∗

c with
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respect to ρe equals

∂f ∗
c

∂ρe

= f̄T
ext
∂ū
∂ρe

+ λT

(
∂r̄
∂ū

∂ū
∂ρe

−
∫

Ωe

B̄T σ̄ dΩe

)
. (2.22)

With the purpose of eliminating ∂ū/∂ρe, regrouping the terms with ∂ū/∂ρe in (2.22)
yields

∂f ∗
c

∂ρe

=
(
f̄T
ext − λT K̄tan

) ∂ū
∂ρe

− λT
∫

Ωe

B̄T σ̄ dΩe, (2.23)

in which
K̄tan = − ∂r̄

∂ū
(2.24)

is the macroscale tangent stiffness matrix. Recall the symmetry of K̄tan, i.e., K̄T
tan = K̄tan,

the first term of the right-hand side of (2.23) can be eliminated by imposing λ as the solution
of the following self-adjoint problem

K̄tanλ = f̄ext, (2.25)

and yields
∂fc

∂ρe

= ∂f ∗
c

∂ρe

= −λT
∫

Ωe

B̄T σ̄ dΩe. (2.26)

2.4.3 BESO updating scheme

In the BESO method [79], an evolutionary ratio cer is defined to determine the required
volume of material usage at each design iteration following

V (l) = max
{
Vreq, (1− cer)V (l−1)

}
, (2.27)

in which V (l) and V (l−1) denote the required volumes of the solid at the current (l-th) iteration
and the previous iteration, respectively. Note that in general the volume of the solid of the
structure decreases iteratively until the required volume Vreq is achieved.

At each design iteration, the sensitivity numbers which denote the relative ranking of the
elemental sensitivities are used to determine material removal and addition. The sensitivity
number for the considered objective is defined as the opposite of the sensitivity divided by
the element volume

αe = −∂fc

∂ρe

1
ve

. (2.28)

Note that the division by element volumes can be omitted when uniform mesh is used.
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In order to avoid mesh-dependency and checkerboard pattern, sensitivity numbers are
smoothed by means of a filtering scheme [101, 133]

αe =
∑Ne

j=1 wejαj∑Ne
j=1 wej

, (2.29)

where wej is a linear weight factor

wej = max(0, rmin −∆(e, j)), (2.30)

determined according to the prescribed filter radius rmin and the element center-to-center
distance ∆(e, j). A schematic illustration of the filtering scheme is shown in Figure 2.4,
where a checkerboard filed is filtered with rmin = 1.5 and rmin = 3 times of element length
le, respectively. It can be seen that the concerned field is smoothed by the filter scheme, for
which reason the sensitivity numbers of void elements can be naturally obtained. By this
scheme, void elements neighboring to the regions of high sensitivity numbers have higher
potentiality to be recovered in the next iteration.
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0.8

1
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min

Fig. 2.4 A checkerboard field and filtered fields (rmin = 1.5le and 3le).

It has been examined that the topology and the objective may encounter difficulties
for convergence due to the discrete nature of the BESO material model. To improve the
convergence of the solution, one may simply average the current sensitivity numbers with
with their historical information [80]

α(l)
e ← (α(l)

e + α(l−1)
e )/2. (2.31)

For variables updating, a threshold of sensitivity number αth is determined by means of a
bisection algorithm from all sensitivity numbers satisfying the target volume at the current
design iteration [77]. The design variables are updated according to

ρe = max {ρmin, sign(αe − αth)} , (2.32)
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which means solids will be switched to voids if αe is lower than αth, accordingly voids will
be switched back to solids when αe is higher than αth. The evolutionary design process stops
when the objective value or the structural topology reaches the convergence.

2.5 Multiscale design framework

The general algorithm for the multiscale design framework consisted of topology optimization
and FE2 is outlined in Algorithm 1. Generally speaking, there exist three layers in this
framework. The very outer layer is the optimization which loops until the design solution has
reached the design convergence δopt. The middle and inner layers are the nested macroscopic
and microscopic boundary value problems, i.e., FE2. In the middle layer the iterative NR
solution procedure at the macroscopic scale for each load increment loops until the residual
attains the convergence criterion δf . The inner layer is implicitly contained through solving
the RVE problems and each of them is a complete nonlinear equilibrium problem subjected to
the PBC according to the associated effective strain value ε̄. From this framework illustration,
we can clearly view the multiscale dilemma in terms of heavy computational burden and
enormous storage requirements.

Algorithm 1 Multiscale design framework.
1: Initial ρ0;
2: while ∥ρi+1 − ρi∥ > δopt {i+ +} do
3: loop over all macro time steps {j + +}
4: while ∥f̄ext − f̄int∥ > δf {k + +} do
5: loop over macroscale Gauss points
6: compute the effective strain ε̄;
7: define PBC on the associated RVE upon ε̄;
8: compute σ from solving the RVE problem;
9: compute the effective stress through σ̄ = ⟨σ⟩;

10: compute the effective tangent stiffness C̄tan;
11: end loop
12: NR update: K̄tan∆ū = f̄ext −

∑
ρe

∫
Ωe

B̄T σ̄dΩe;
13: end while
14: end loop
15: compute fc and sensitivities ∂fc/∂ρ;
16: update ρ using the BESO scheme;
17: end while
18: return ρ.
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2.6 Numerical examples

This section presents two test examples. For the purpose of comparison, topology opti-
mization design for a homogeneous structure in the case of nonlinear elasticity is firstly
presented in Section 2.6.1. The second example in Section 2.6.2 deals with the design of a
heterogeneous structure made of short-fiber reinforced composite, which is constituted by a
nonlinear elastic matrix and rigid elastic fibers.

2.6.1 Design of a nonlinear homogeneous structure

A cantilever discretized into 100×50 square shaped bilinear elements is considered as shown
in Figure 2.5. Element dimensions are 1 × 1 mm2 and the structure is assumed in plane
strain condition. The left end of the cantilever is fixed and an external force is applied on the
middle point of the right edge. In regard to topology optimization, inefficient or redundant
materials are gradually removed according to the sensitivity ranking from an initial full solid
design in an evolutionary rate of cer = 2%. Sensitivity numbers are filtered within a local
zone controlled by a filter radius rmin = 6 mm. The constraint on the volume fraction of
solid is set to 60%. For the purpose of comparison, the linear elastic topology design result
obtained using the same parameter set is also given in Figure 2.5.

Mesh size

100 x 50 

fext

Fig. 2.5 Illustration of a cantilever and its linear topology design of 60% volume fraction.

In regard to nonlinear design, the present work is limited to nonlinear elasticity subjected
to small deformations. The considered nonlinear constitutive behavior is governed by an
isotropic compressible potential of the form

w(ε) = 9
2κεm + ε0σ0

1 +m

(
εeq

ε0

)1+m

. (2.33)

Here κ denotes the bulk modulus, εm = Tr(ε)/3 is the hydrostatic strain, and εeq is the
equivalent strain defined by εeq =

√
2εd : εd/3 with εd = ε− εm1 and 1 being the second-

order identity tensor. m is the strain-hardening parameter such that 0 ≤ m ≤ 1. σ0 and ε0
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are the flow stress and reference strain, respectively. The stress-strain relationship is provided
by:

σ = ∂w(ε)
∂ε

= κTr(ε)1 + 2
3
σ0

ε0

(
εeq

ε0

)m−1
εd. (2.34)

This is a commonly used constitutive model for the representation of a number of nonlinear
mechanical phenomena [e.g., 40, 119, 173]. In particular, the cases m = 0 and m = 1
correspond to perfectly rigid plastic and linearly elastic materials, respectively.

The following numerical parameters are chosen for the current test case: m = 0.5,
κ = 20 MPa, σ0 = 1 MPa, and ε0 = 1. Nonlinear topology optimization designs are carried
out for three different load forces 0.01 N, 0.2 N and 0.4 N and the corresponding topology
design results are shown in Figures 2.6(a), (b) and (c), respectively. The nonlinear design
algorithm gives almost identical topology design result as is the case in linear elasticity when
the load force is small, as can be viewed from Figure 2.6(a) and the linear topology solution
in Figure 2.5. When the load force increases, the topology design result varies in response
to the load force value as can be observed from Figures 2.6(b) and (c) for fext = 0.2 N and
0.4 N, respectively. From Figure 2.6, one observes that material moves towards the left end
of the cantilever to resist the increasing load force. The equivalent stress fields of the three
topologies are also given in Figure 2.6 on exaggeratedly deformed meshes. For the purpose
of illustrations, the elements neighboring to the loading tip with high stress concentration are
removed from the stress field plots.

x10-3

0.5 1 1.5 2 2.5 3 3.5 4 4.5

MPa

(a). fext = 0.01 N, fc = 2.5e-5 J.

0.01 0.02 0.03 0.04 0.05 0.06

MPa

(b). fext = 0.2 N, fc = 0.067 J.

0.02 0.04 0.06 0.08 0.1

MPa

(c). fext = 0.4 N, fc = 0.456 J.

Fig. 2.6 Nonlinear topology designs for three different loading cases and their equivalent
stress fields (deformation exaggerated 10 times).
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2.6.2 Design of a nonlinear heterogeneous structure

In this example, a twoscale cantilever structure made of periodically patterned anisotropic
short-fiber reinforced composite as shown in Figure 2.7 is to be designed. Following [173],
both the matrix (phase 1) and the fibers (phase 2) are assumed to be isotropic and compressible
materials characterized by the governing potential of (2.33). The matrix material is highly
nonlinear: m(1) = 0.5, κ(1) = 20 MPa, σ(1)

0 = 1 MPa, and ε
(1)
0 = 1. The fibers are

assumed to be linear elastic and much more rigid than the matrix: m(2) = 1, κ(2) = 20 MPa,
σ

(2)
0 = 1000 MPa, and ε(2)

0 = 1. The RVE (Figure 2.5) is discretized into 20 × 20 square
bilinear elements. The equivalent stress fields within the RVE in cases of biaxial stretching
and uniaxial stretching combined with shear are shown in Figure 2.8.

Mesh size

100 x 50 

Fig. 2.7 Illustration of a twoscale cantilever made of periodically patterned short-fiber
reinforced composite.
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Fig. 2.8 Equivalent stress fields (deformation exaggerated 50 times) of the short-fiber rein-
forced RVE for biaxial stretching (left, ε̄11 = ε̄22 = 0.002, ε̄12 = 0) and uniaxial stretching
with shear (right, ε̄11 = 0.001, ε̄22 = 0, ε̄12 = 0.002).

Topology optimization is carried out for the macroscale structure with the same BESO
parameters that are used in the previous example in Section 2.6.1, i.e., the evolutionary rate
cer = 2%, the filter radius rmin = 6 mm, the volume fraction constraint is 60%. It important
to emphasize that it requires solving 4 × 100 × 50 (4 Gauss integration points for each
element) nonlinear RVE boundary value problems for each iteration of each load increment.
This number would decrease progressively with iterations as the removed elements are no
longer evaluated for the structural response.
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(a). f̄ext = 0.01 N, fc = 2.2e-5 J. (b). f̄ext = 0.2 N, fc = 0.051 J. (c). f̄ext = 0.4 N, fc = 0.317 J.

Fig. 2.9 Nonlinear topology designs for the twoscale heterogeneous structure.

For the purpose of comparison, designs are also carried out for the same three load forces,
i.e., 0.01 N, 0.2 N and 0.4 N as considered in Section 2.6.1 and the corresponding design
results are shown in Figures 2.9(a), (b) and (c). The topology shown in Figure 2.9 is similar
to the topologies of Figures 2.5 and 2.6(a), indicating that an external force load at the
level of 0.01 N does not result in much difference in the design results. However, when the
external load is increased to 0.2 N and 0.4 N, one can observe obvious topological differences
between the design results shown in Figures 2.9(b), (c) and 2.6(b), (c), respectively, which
are due to the existence of the reinforcing fibers. The presence of fibers also results in lower
end-compliance values, i.e., increased stiffness, of the design results (Figures 2.9 and 2.6).
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Fig. 2.10 The equivalent stress fields of the case b in Figure 2.9 for the macro structure
(deformation exaggerated 10 times) and for the micro RVEs at selected points (deformation
exaggerated 50 times).
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The equivalent stress field of the topology solution in Figure 2.9(b) is given in Figure 2.10
together with the equivalent stress fields of the RVEs at several selected points. The elements
neighboring the loading tip with high stress concentration are removed from the macroscale
field plot for the purpose of illustration. From the deformed RVEs shown in Figure 2.10, one
can observe that the RVEs at points A and D are under compression, the RVE at point B is
under tension, and the RVE at point C is subjected to a mechanical shear state, which are
in agreement with their macroscale deformation states. One may also note from the stress
fields that the presence of fibers results in higher stress concentrations at the interface of
the matrix and the fibers. The higher stress concentrations are responsible for the initial
material failure or crack at the microscopic scale which cannot be detected when using the
conventional monoscale fracture analysis [e.g., 36]. At the microscopic scale, there is also a
potential application in stress-related topological designs [e.g., 41, 100, 69, 19, 178, 25, 24]
by including a stress constraint to limit the maximum stress at the microscopic scale.

2.7 Concluding remarks

In this Chapter we have developed a multiscale design framework through a synthesis of
topology optimization and multiscale modeling. In contrast to the conventional nonlinear
design of homogeneous structures, this design framework provides an automatic design
tool by which the considered material models can be governed directly by the realistic
microstructural geometry and the microscopic constitutive models.

The main difficulty of such design lies on the unbearable computational burden and data
storage requirement due to multiple realizations of FE2 computation. In Chapters 3 and 4,
we will present model reduction strategies to alleviate the computational burden for the cases
of nonlinear elasticity and elastovisoplasticity, respectively.

By introducing topology design variables to the microscopic scale, the currently devel-
oped multiscale design framework can also be extended to perform simultaneous topology
optimization of structure and materials at the two scale. This subject will be presented in
Chapters 5 and 6.



Chapter 3

POD-based adaptive surrogate for the
design of multiscale structures

This Chapter is dedicated to alleviate the multiscale dilemma in terms of heavy computational
burden of the multiscale design framework developed in Chapter 2. We note that the
optimization design process requires multiple design loops involving similar or even repeated
computations at the microscopic scale which potentially suits the surrogate learning process.
We therefore develop an adaptive surrogate model in this Chapter using snapshot POD and
Diffuse Approximation for the solution of the microscopic problems.

The proposed method is an non-intrusive reduction approach which is an alternative to
the intrusive approach [172]. The reduced basis is extracted by means of snapshot POD
where the displacement solutions at the microscopic scale are treated as snapshots. The
surrogate model is constructed using Diffuse Approximation [115], variant of Moving Least
Squares [98]. The surrogate is constructed in an on-line manner: initially built during the
first optimization design iteration is then updated in the following design iterations.

With the purpose of demonstrating the independence of the multiscale design framework
developed in Chapter 2 to the applied topology optimization model, in this Chapter we
choose a discrete level-set method [27] instead of the BESO method to perform topology
optimization. Similar to the BESO method, the discrete version of level-set method can
straightforwardly link the RVE to the solid region of the structure without defining a pseudo-
relationship between the intermediate values and the considered RVE.

The remainder of the Chapter is organized in the following manner: we review firstly in
Section 3.1 the multiscale design framework using a discrete level-set model for topology
optimization. Section 3.2 gives the POD-based adaptive surrogate constructed using snapshot
POD and Diffuse Approximation. Section 3.3 showcases the performance of the surrogate
model by two examples. Concluding remarks are given in Section 3.4
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3.1 Multiscale design framework

The following framework is presented with the consideration of the multiscale problem
setting (FE2) presented in Section 2.1. Matrix and vector forms are applied in accordance
with the Finite Element Method (FEM). The macroscopic stress σ̄ and strain ε̄ represent
their vector forms following the Voigt notation (2.10).

3.1.1 Discrete level-set model

An initial level-set function ϕ(x, t0) is constructed as a signed distance function upon the
discretized initial structural topology as shown in Figure 3.1 following ϕ(xe, t0) < 0 if ρe = 1

ϕ(xe, t0) > 0 if ρe = 0,
(3.1)

where xe denotes the center of the eth element and ρe is its pseudo-density. By constructing
ϕ(xe, t0) ̸= 0, ρe = 1 or 0 indicate element e is occupied by solid or void material corre-
spondingly in sense of discrete topology optimization design, and no intermediate value is
attributed to ρe.

Fig. 3.1 A rectangular plate with two square holes and its discretized level-set function

The initialized level-set function ϕ(x, t0) is then be updated to ϕ(x, t) corresponding a
new structural topology by solving the “Hamilton-Jacobi” evolution equation

∂ϕ(x, t)
∂t

+ ϑn|∇ϕ(x, t)| = 0, (3.2)

where t is a pseudo-time defined corresponding to different optimization iterations. The
normal velocity field ϑn determines geometric motion of the boundary of the structure and is
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chosen based on the shape derivative of the design objective. The updated level-set function
ϕ(x, t) is then mapped to the discretized design domain through

ρe =

 1, if ϕ(xe, t) ≤ 0,
0, if ϕ(xe, t) > 0.

(3.3)

Note that, in practice in order to prevent the singularity of the stiffness matrix, a small value
is attributed to ρe to denote void elements.

3.1.2 Optimization model

With the aforementioned definitions, we have in fact introduced the concept of element
pseudo-density in terms of level-set function ρ(ϕ) to perform the discretized topology
optimization. At the macroscopic scale, material constitutive behavior is implicitly given in
terms of the effective stress-strain relationship evaluated by the FE2 method. In analogy to
(2.16), topology design variables are defined in association with the element internal force
vector f̄ e

int

f̄ e
int = ρe

∫
Ωe

B̄T σ̄ dΩe, (3.4)

where σ̄ is the effective stress computed from the microscale stress, which is determined
through solving the corresponding RVE problem.

The same optimization model as (2.19) is adopted for the minimization of the macroscopic
structural end-compliance subjected to one constraint on material volume usage:

min
ρ(ϕ)

: fc = f̄T
extū

subject to : r̄(ρ, ū) = 0
: V (ρ) = ∑

ρeve = Vreq

: ρe = 0 or 1,∀e = 1, . . . , Ne,

(3.5)

where ρ = (ρ1, . . . , ρNe) is the vector of the element pseudo-densities. In the following, we
will denote ρ(ϕ) by ρ to alleviate the notation. V (ρ) is the total volume of solid elements
and Vreq is the required volume of solid elements, ve is the volume of element e. ū is the
displacement solution at the convergence and r̄(ρ, ū) is the macroscale residual.

The augmented Lagrangian method is applied to convert the original constrained opti-
mization problem (3.5) into an unconstrained problem as presented in [8, 103, 27]

L = fc + λ(k)(V (ρ)− Vreq) + 1
2Λ(k) (V (ρ)− Vreq)2, (3.6)
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where λ(k) is the Lagrangian multiplier and Λ(k) is the penalty parameter updated iteratively
with the optimization iteration k using the scheme [103]:

λ(k+1) = λ(k) + 1
Λ(k) (V (ρ)− Vreq), Λ(k+1) = αΛ(k), (3.7)

where α ∈ (0, 1) is a parameter to be fixed by the user (see Section 3.3). The initial values of
λ and Λ are decided according to the physical responses considered [103, 27].

In order to update the level-set function ϕ(x, t) and therefore the structural topology
ρ(ϕ), the normal velocity ϑn needs to be determined in (3.2). Conventionally, ϑn is chosen
as a descent direction for the Lagrangian L using its shape derivative [149, 3]. The normal
velocity ϑn within an element e at design iteration k is derived as

ϑn|e = − ∂L
∂ρe

= −∂fc

∂ρe

− λ(k)ve −
ve

Λ(k) (V (ρ)− Vreq), (3.8)

with
∂fc

∂ρe

= −
(
K̄−1

tanf̄ext
)T
∫

Ωe

B̄T σ̄ dΩe, (3.9)

as is derived in Section 2.4.2.

It worth noting that the standard evolution equation of (3.2) can not nucleate new void
regions during the optimization process [3]. An additional forcing term based on the topo-
logical derivative of the design objective can be integrated into (3.2) to nucleate new holes
within the structure [22]. In this work we follow the initial algorithm [149, 3], for which a
topology with “sufficient” holes is initially defined. The initial layout of holes is arbitrarily
fixed. Though new holes can not be nucleated, the initially defined holes which can merge
and split during the design, providing sufficient freedom for topological design or at least
sufficient enough for practical applications.

3.2 POD-based adaptive surrogate

The adaptive surrogate model is constructed through coupling snapshot POD and Diffuse
Approximation. The first level of reduction is achieved by snapshot POD, allowing to expand
a displacement field as a linear combination of the truncated modes. Secondly, the surrogate
model based on Diffuse Approximation is built to express the POD projection coefficients as
functions of the effective strain tensors.
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3.2.1 Snapshot POD

We consider a D-dimensional (D = 2 or 3) RVE of N points subjected to a time-dependent
loading ε̄(t) during a time interval I = [0, T ] discretized by M instants {t1, t2, . . . , tM}. Let
u(i) ∈ RDN denote the DN -dimensional nodal displacement vector called snapshot recorded
at the instant ti ∈ I . The reduced-order displacement vector ũ(t) ∈ RDN may be written
[172]

ũ(t) = µ +
m∑

i=1
φiαi(ε̄(t)), (3.10)

where m≪ min(M,DN), µ = 1/M ∑M
i=1 u(i) is the average displacement, φi ∈ RDN are

constant vectors and coefficients αi(ε̄(t)) are scalar functions of pseudo-time t. φi are the
eigenvectors of the eigenvalue problem

Cuφi = λiφi, (3.11)

where Cu is the covariance matrix

Cu = DuDT
u , (3.12)

where Du is the deviation matrix of dimensionality DN ×M composed of centered nodal
displacement vectors as columns

Du = {u(1) − µ, . . . ,u(M) − µ}. (3.13)

The coefficients α(i)
j for the i-th snapshot u(i) are the projections of this snapshot on the basis

α
(i)
j = φT

j u(i). (3.14)

The size of the truncated basis m is chosen in consideration of the reconstruction error of Du

ϵ = 1−
∑m

i=1 λi∑M
j=1 λj

< δ, (3.15)

where δ is a prescribed tolerance.

3.2.2 Interpolation of the projection coefficients

The surrogate model for each of the projection coefficients αi, i = 1, . . . ,m, with respect to
average stain ε̄ in (3.10) is constructed using the method of Diffuse Approximation [17], an
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extension of Moving Least Squares

αi(ε̄) ≈ α̃i(ε̄) = pT (ε̄)a(i)(ε̄), (3.16)

where p = [p1, p2, . . . ]T is the polynomial basis vector. In 2D case, the polynomial basis
vector expressed in terms of the macroscale effective strain is

p = [1, ε̄11, ε̄22, ε̄12, . . . ]T . (3.17)

The superscript of the vector of coefficients a(i) = [a(i)
1 , a

(i)
2 , . . . ]T indicates that the

coefficient vector is dependent on the projection coefficients and they are the minimizers of
functional defined by

J(a(i)) = 1
2

M∑
k=1

wk

(
pT (ε̄)a(i)(ε̄)− αi(ε̄(tk))

)2
, (3.18)

in which wk are the weights depending on the Euclidean distance between ε̄ and ε̄(tk)

wk = wref

(
dist (ε̄, ε̄(tk))

rdiff

)
, (3.19)

where rdiff is a radius defining the local influence zone. wref is chosen here as a piecewise
cubic spline expressed as [18]

wref(s) =

 1− 3s2 + 2s3, if 0 ≤ s ≤ 1,
0, if s ≥ 1.

(3.20)

3.2.3 Adaptive POD-based surrogate

An illustrative flowchart of the approximation procedure is given in Figure 3.2. With
a given admissible value of macroscale strain ε̄∗, the corresponding approximated POD
projection coefficients from α̃1 to α̃m are locally interpolated using Diffuse Approximation.
Substituting the approximated coefficients into (3.10), we have the reduced order solution of
the displacement filed

ũ(ε̄∗) = µ + Φα̃(ε̄∗), (3.21)

with Φ = {φ1, . . . ,φm} the truncated POD basis.
The surrogate is applied to provide microscale RVE solutions instead of performing

FEA. Detailed solution scheme of the microscale RVE problem is given in Algorithm 2.
Computations during the first time step of the first optimization iteration are performed
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Neighboring points

Approximated points 

Fig. 3.2 Illustration of the approximation procedure of the surrogate model.

using FEA to initialize the surrogate. The surrogate is then used for the microcale solutions
in the following computations when there are enough neighboring points to perform the
approximation. I (ε̄∗, ε̄(tk)) in Algorithm 2 is a counting function

I (ε̄∗, ε̄(tk)) =

 1, if dist (ε̄∗, ε̄(tk)) ≤ rdiff ,

0, if dist (ε̄∗, ε̄(tk)) > rdiff ,
(3.22)

which counts the number of points within the local influence zone rdiff

rdiff = dist ((ε̄max
11 , ε̄max

22 , ε̄max
12 ), (ε̄min

11 , ε̄min
22 , ε̄min

12 ))
Nratio

, (3.23)

defined as a ratio Nratio of the Euclidean distance between the maximum and minimum strain
components in the surrogate. Napprox is the required number which is given in accordance
with the surrogate size and also the order of the applied polynomial.

When there is no enough points within the local influence zone, the micro problem
is solved using full FEA and the results are used to update the POD basis Φ and enrich
the surrogate database. In this work, the scale of the surrogate is kept constant after its
initialization which means the enrichment includes current analysis results while excludes
the same number of previous results. At one hand, the previous results no longer contribute
in the following designs as the structural topology varies; at the other hand, the Diffuse
Approximation becomes more and more expensive in computing as the scale of the surrogate
database grows.
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Algorithm 2 Microscale RVE solutions.
1: given ε̄∗, i, j, k;
2: define PBC on RVE upon ε̄∗;
3: if i = 1 and j = 1 then
4: solve the RVE problem using FEA;
5: extract Φ and saving the coefficients;
6: else if

∑
k I (ε̄∗, ε̄(tk)) < Napprox or k ≥ Nsub then

7: solve the RVE problem using FEA;
8: update Φ and enrich the surrogate database;
9: else

10: solve the RVE problem using the surrogate;
11: end if
12: compute the effective stress σ̄∗;
13: compute the effective tangent stiffness C̄tan;
14: return σ̄∗ and C̄tan.

In case when the macroscopic convergence in Algorithm 1 can not be reached after a
certain number of iterations, i.e., ∥f̄ext − f̄int∥ > δf , we can either shrink the local influence
zone rdiff , or force to use full FEA to update the surrogate. The later solution is recommended
in the consideration of both aspects of analysis accuracy and the convergence efficiency. In
this algorithm, full FEA is applied to perform microscale computation after a certain number
of macroscopic iterations, i.e., k ≥ Nsub.

3.3 Numerical examples

The benchmark cantilever problem [3] is considered in this section with anisotropic material
defined at microscopic scale. As illustrated in Figure 3.3, the macroscopic structure is
discretized into 32× 20 four-node plane strain elements where each element has four Gauss
integration points. Each Gauss point at the macroscopic structure corresponds to a considered
RVE at the microscopic scale. The material property of the solid phase in the RVE is
assumed to be isotropic with a nonlinear elastic constitutive behavior as shown in Figure 3.3.
Conventional unreduced FE2 approach requires 32× 20× 4 independent RVE analyses at the
microscopic scale for one time evaluation of the macroscopic equilibrium. For the sake of
simplicity, the initial elastic stiffness matrix have been kept during the NR iterative solution
procedure. In order to perform sensitivity analysis, tangent stiffness matrix is evaluated using
the perturbation method only at the convergence of the solution.
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Fig. 3.3 Illustration of a twoscale cantilever made of nonlinear porous material.

3.3.1 Test case 1

In the first test case, the value of the external loading force is set to 0.5 N and the considered
volume constraint is 40%. The parameters in (3.7) is set as α = 0.9, λ = −10−8,Λ = 4×107.
The tolerance error in (3.15) is set as δ = 10−6. The extracted POD modes vary adaptively
during the optimization procedure and the size of the reduced basis is 5 and stays constant.
In Figure 3.4, we show the resultant tractions, used in (2.9) of the first 5 final POD modes
along with the associated normalized eigenvalues λi/λmax. The ratio in (3.23) to define the
influence zone is set as Nratio = 20, and the required number of approximating points in
Algorithm 2 is set as Napprox = 7.

Mode 1, λ1/λ1=1.00 Mode 2, λ2/λ1=2.17.10-1 Mode 3, λ3/λ1=2.03.10-1

Mode 4, λ4/λ1=8.51.10-6 Mode 5, λ5/λ1=1.91.10-6

Fig. 3.4 Resultant tractions on the RVE boundaries of the first 5 POD modes.

The structural topological evolution at the macroscopic scale is given in Figure 3.5.
Usually topology optimization gives a symmetric design result when isotropic material
constitutive behavior is considered due to the symmetry of the cantilever problem. However,
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the final structural design obtained here is no longer symmetric due to the anisotropy of the
considered RVE at the microscopic scale. The convergence histories of the strain energy and
the volume ratio are demonstrated in Figures 3.6(a) and (b), respectively.

Initial topology Iteration 5 Iteration 9

Iteration 14 Iteration 20 Final topology

Fig. 3.5 Topological evolution of the design process.

During the loading phase of the first optimization iteration, the periodic homogenizations
of the RVE at the microscopic scale are performed using full FEA. Since the second opti-
mization iteration, both FEA and the surrogate model are used for the microscopic analysis.
Figure 3.6(c) gives the percentage of FEA usage in each optimization iteration. It can be seen
that less than 4% microscopic analysis require full FEA due to the usage of surrogate model,
which significantly reduces computational cost. The jumps in Figure 3.6(c) correspond to
comparatively large volume and topological variations which require more usage of FEA in
order to update the POD basis and enrich the surrogate database.
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Fig. 3.6 Optimization history: (a) convergence history of the strain energy, (b) convergence
history of the volume ratio, (c) the ratio of FEA usage in each iteration.
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The same optimization design has also been performed without using the surrogate. The
unreduced FE2 approach gives an exactly the same optimization design result as the reduced
model where the relative errors of the objective are less than 10−5. The iterative computing
time using the unreduced FE2 decreases as the volume ratio decreases (see Figure 3.6(b), i.e.,
the number of micro analysis required in each substep of macroscopic computing decreases
from the maximum 0.8 × 32 × 20 × 4 to finally 0.4 × 32 × 20 × 4. Generally speaking,
it requires around two hours of computing for each optimization iteration on a HP Z420
Workstation when using the unreduced sequential FE2. In contrast, the reduced FE2 approach
requires only ten minutes of computing on average for each design iteration apart from
the first design iteration. More saving in computation can be expected using the reduced
approach when larger scale problems are considered.
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Fig. 3.7 Microscale equivalent strain distributions at selected points.

Figure 3.7 depicts the equivalent strain distributions at the microscopic scale at selected
points. One may note that the existence of the holes in the RVE concentrates much higher
strains and hence stresses at the microscopic scale than the homogenized macroscopic values.
Moreover, different micro strain distributions manifest the difference of the local loading
statuses of the selected points, where point c in the center the structure obviously suffers more
mechanical loads than typical points (a,b,d) located off the main loading region. The higher
stress concentration may result in the initial material failure or crack at the microscopic scale.
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3.3.2 Test case 2

In order to evaluate the performance of the surrogate model when encountering more non-
linearity and more severe topological changes, the external loading force is increased to 1.5
N and the considered volume ratio constraint is decreased to 32%. The parameters in (3.7)
is set as α = 0.9, λ = −10−7,Λ = 7 × 106. The tolerance error in (3.15) is set as in the
previous case of δ = 10−6. Correspondingly, the number of retained POD modes increases
to 6 during the first iterations and then to 7 during the following iterations until the end. The
resultant tractions of the first 7 of the final POD modes are shown in Figure 3.8 together with
their associated normalized eigenvalues λi/λmax. The ratio in (3.23) to define the influence
zone is set as Nratio = 20, and the required number of approximating points in Algorithm 2
is set as Napprox = 7.

Mode 1, λ1/λ1=1.00 Mode 2, λ2/λ1=2.05.10-1 Mode 3, λ3/λ1=1.93.10-1

Mode 5, λ5/λ1=3.08.10-5 Mode 6, λ6/λ1=6.79.10-6

Mode 4, λ4/λ1=1.25.10-4

Mode 7, λ7/λ1=1.32.10-6

Fig. 3.8 Resultant tractions on the RVE boundaries of the first 7 POD modes.

The structural topological evolution at the macroscopic scale given in Figure 3.9 is similar
to the previous case during the first iterations while differs later due the applied lower volume
ratio constraint. The convergence histories of the strain energy and of the volume ratio are
demonstrated in Figs. 3.10(a) and (b), respectively.

Likewise, the surrogate model is initialized during the loading phase of the first optimiza-
tion iteration. Both the surrogate model and FEA are used in the following optimization
iterations. Figure 3.10(c) gives the percentage of FEA usage in each optimization iteration.
Similar to the previous case, less than 4% microscopic analysis require full FEA except a
jump from 2% in iteration 20 to 17% in iteration 21. A detailed illustration of the topological
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Initial topology Iteration 8 Iteration 16

Iteration 21 Iteration 24 Final topology

Fig. 3.9 Topological evolution of the design process.

evolution around iteration 21 is given in Figure 3.11. It can be seen that a branch of the
structure splits in iteration 21. Such a severe topological variation results in a large variation
of the structural physical response and hence the surrogate built according to the previous
calculations is no longer accurate enough. Therefore, an increased number of full FEA is
required to recompute the set of the reduced basis. The surrogate model is updated thereafter
and the usage ratio of FEA drops back below 4% and decreases to 0% in the following
iterations as the structural topology converges, meaning that all computations are performed
using the surrogate model.
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Fig. 3.10 Optimization history: (a) convergence history of the strain energy, (b) convergence
history of the volume ratio, (c) the ratio of FEA usage in each iteration.

For the purpose of comparison, the same optimization design has also been performed
using the unreduced FE2 approach which gives exactly the same optimization design result
as obtained above where the relative errors of the objective for each design iteration are
less than 10−5. As shown in Figure 3.10(b), the number of micro analysis required in
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each substep of macroscopic computing varies from the maximum 0.8 × 32 × 20 × 4 to
finally 0.32 × 32 × 20 × 4. Due to the increased nonlinearity, more substeps have to be
taken to reach the macro convergence and thereafter the average computing time for each
optimization augments to around three hours. Similarly, more substeps are required to reach
the macro convergence when using the surrogate and average computing time required by
the reduced approach increases to fifteen minutes, which is nevertheless a significant gain in
time compared to the time required using the unreduced approach.

Iteration 20 Iteration 21 Iteration 22 Iteration 23

Fig. 3.11 Intermediate design topologies from iteration 20 to iteration 23.

Figure 3.12 depicts the equivalent strain distributions at the microscopic scale at selected
points. Because of the increase of the external loading force and the decrease of the volume
ratio constraint, larger deformations can be observed from the equivalent strain distributions
at the microscopic scale. The micro strain distributions clearly manifest the difference of the
loading status in different structural branches. The micro strain distributions at points b and c
are quite similar because they are located in the same branch of the structure.
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Fig. 3.12 Microscale equivalent strain distribution at selected points.
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3.4 Concluding remarks

We have developed in this Chapter a POD-based adaptive surrogate model for the solutions
at the microscopic scale dedicated to alleviate the heavy computational burden for the
multiscale design framework developed in Chapter 2. The surrogate model has shown
promising performance in terms of reducing computing cost and modeling accuracy when
applied to the design framework for nonlinear elastic cases.

For moderate nonlinearities such as the case considered here, it could be an easier solution
to build the interpolating relationship directly between the effective stress and strain which
may perform well. However, the present strategy using the field interpolation is more accurate
and the on-line learning procedure is more suitable for capturing nonlinear features.

In the next Chapter, we will make a step further towards the design of multiscale elas-
toviscoplastic structures. In order to realize such design in realistic computing times and
with affordable memory requirements, we will employ directly the pRBMOR method, a
specifically developed ROM for material nonlinear homogenization involving viscoplastic-
ities. In addition, the computing time will be drastically reduced by implementing GPU
parallelization.





Chapter 4

Topology optimization of multiscale
elastoviscoplastic structures

In this Chapter, we make a step further towards the design of multiscale elastoviscoplastic
structures (Figure 4.1) using the multiscale design framework developed in Chapter 2. This
subject is extremely challenging from both aspects of topology optimization and multiscale
modeling. Firstly, unlike linear designs, topology optimization of elastovisoplastic structures
encounters instability issues during the iterative solution process and the evaluation of
sensitivities is more demanding. Secondly, the consideration of path-dependent plastic
behavior at the microscopic scale results in significantly augmented computational burden in
terms of computing time and storage requirement when using the FE2 method.

Fig. 4.1 Design of a twoscale structure made of porous elastoviscoplastic materials [54].

With regard to topology optimization, the BESO method is applied again for its algorith-
mic advantage of the discrete nature in designing multiscale structures. Unlike the previous
versions of the BESO updating scheme for linear or nonlinear elastic designs, a stabilization
scheme controlling the number of recovered elements is implemented in order to stabilize the
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design process. In addition, the sensitivities of the design variables for nonlinear dissipative
problems are derived in a clear and rigorous manner using the adjoint method.

In order to render the computational burden of FE2, the computationally demanding
nonlinear microscale problem is substituted by the pRBMOR method [52, 53, 51]. This part
of work was performed in collaboration with Felix Fritzen from University of Stuttgart [54].
Our contribution consists in the modification of the proposed multiscale design framework to
accommodate the pRBMOR method. In addition, the pRBMOR method is implemented in
parallel on GPUs [53, 51], which further speeds up the computation.

This Chapter is organized in the following manner: the multiscale design framework
is reviewed in Section 4.1 with a detailed derivation of the sensitivity analysis and an
implementation of a stabilization scheme controlling material addition. Section 4.2 presents
the microscopic modeling of an elastoviscoplastic porous material and a brief summary of
pRBMOR. In Section 4.3 numerical examples of a viscoplastic porous metal with nonlinear
hardening are investigated. Concluding remarks are given in Section 4.4

4.1 Topology optimization model

The following framework is presented with the consideration of the multiscale problem
setting (FE2) presented in Section 2.1. Matrix and vector forms are applied in accordance
with the FEM. The macroscopic stress σ̄ and strain ε̄ represent their vector forms following
the Voigt notation (2.10).

4.1.1 Model definitions

The basic definitions are in analogy to the definitions given in Section 2.4.1. We have
the design domain Ω discretized into Ne finite elements and each element e is assigned a
topology design variable ρe. Topology design variables are defined in analogy to (2.16) that
the macroscopic element internal force vector f̄ e

int is associated topology variable ρe

f̄ e
int = ρe

∫
Ωe

B̄T σ̄dΩe. (4.1)

The effective stress σ̄ occurring in (4.1) is computed via the volume averaging relation
σ̄ = ⟨σ⟩, in which the microscopic stress σ is determined from an underlying nonlinear
microscale simulation subjected to a prescribed overall strain ε̄. More precisely, not only the
current load is required, but due to the dissipative material behavior the entire load path has
to be applied to the RVE in order to account for the path-dependency of the microscopic (and
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thus macroscopic) constitutive response. In practice, for void elements the effective stress is
set to zero.

Displacement-controlled loading is applied in the sequel due to stability considera-
tions (e.g., [106, 127, 31, 168, 82, 81]). In the following the objective of the design opti-
mization is to maximize the structural stiffness. This is equivalent to the maximization of the
mechanical work expended in the course of the deformation process. In practice, the total
mechanical work, which is expressed in an equivalent form of the complementary external
work, fw is approximated by numerical integration using the trapezoidal rule, i.e.

fw ≈
1
2

nload∑
i=1

(
f̄ (i)
ext + f̄ (i−1)

ext

)T
∆ū(i). (4.2)

Here nload is the total number of displacement increments, ∆ū(i) is the i-th increment of the
nodal displacement vector and f̄ (i)

ext is the external nodal force vector at the i-th load increment.
During the optimization the material volume fraction is prescribed. Then the optimization
problem can be formulated as [81]

max
ρ

: fw(ρ, ū)
subject to : r̄(ρ, ū) = 0

: V (ρ) = ∑
ρeve = Vreq

: ρe = 0 or 1, e = 1, . . . , Ne.

(4.3)

Here V (ρ) is the total volume of solid elements, Vreq is the required volume of solid elements
and ve is the volume of element e. ū is the displacement solution at convergence and r̄(ρ, ū)
is the residual at the macroscopic scale defined in analogy to (2.20)

r̄ = f̄ext −
Ne∑
e=1

ρe

∫
Ωe

B̄T σ̄dΩe. (4.4)

4.1.2 Sensitivity analysis

In order to perform the topology optimization, the sensitivity of the objective function fw

with respect to the topology design variables ρ needs to be provided. Similar to the procedure
presented in Section 2.4.2, the derivation of the sensitivity requires using the adjoint method
(see, e.g., [21, 31]). Lagrangian multipliers µ(i), λ(i) of the same dimension as the vector
of unknowns ū are introduced in order to enforce zero residual r̄ at times ti−1 and ti for
each term of the quadrature rule (4.2). Then the objective function fw can be rewritten in the
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following form without modifying the original objective value as

f ∗
w = 1

2

nload∑
i=1

(
f̄ (i)
ext + f̄ (i−1)

ext

)T
∆ū(i) +

(
λ(i)

)T
r̄(i) +

(
µ(i)

)T
r̄(i−1). (4.5)

Due to the asserted static equilibrium the residuals r̄(i) and r̄(i−1) have to vanish. The
objective value is, thus, invariant with respect to the values of the Lagrangian multipliers λ(i)

and µ(i) (i = 1, . . . , nload), i.e.

f ∗
w

(
ρ;
{
λ(i),µ(i)

}
i=1,...,nload

)
= fw (ρ) . (4.6)

This equivalence holds also for the sensitivity with respect to changes of the order parame-
ter ρe in the element e

∂f ∗
w

∂ρe

= ∂fw

∂ρe

. (4.7)

In the following ∂f ∗
w/∂ρe is computed with properly determined values of λ(i) and µ(i)

leading to certain simplifications of the derivation. In order to formally describe these
derivations, we introduce a partitioning of all degrees of freedom (DOF) into essential (index
E; associated with Dirichlet boundary conditions) and free (index F; remaining DOF) entries.
For a vector w and a matrix M we have

w ∼

wE

wF

 , M ∼

MEE MEF

MFE MFF

 . (4.8)

In the current context, the displacements ūE on the Dirichlet boundary are prescribed and,
hence, they are independent of the current value of ρ. This implies that

∂∆ū
∂ρe

= ∂

∂ρe

∆ūE

∆ūF

 =
 0
∂ (∆ūF) /∂ρe

 (4.9)

holds for arbitrary times t, i.e. for ū = ū(i) or ū = ū(i−1). The components f̄ext,F of the force
vector f̄ext vanish at all times ti and the only (possibly) non-zero components are the reaction
forces f̄ext,E

f̄ (i)
ext =

f̄ (i)
ext,E

0

 . (4.10)
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Equations (4.9) and (4.10) imply

(
f̄ (j)
ext

)T ∂∆ū(i)

∂ρe

= 0. (4.11)

Hence the expansion

∂

∂ρe

((
f̄ (j)
ext

)T
∆ū(i)

)
=
∂ f̄ (j)

ext

∂ρe

T

∆ū(i) +
(
f̄ (j)
ext

)T ∂∆ū(i)

∂ρe

(4.12)

for arbitrary time indices i, j = 1, . . . , nload can be reduced into

∂

∂ρe

((
f̄ (j)
ext

)T
∆ū(i)

)
=
∂ f̄ (j)

ext

∂ρe

T

∆ū(i). (4.13)

Therefore, the sensitivity of the modified objective in (4.5) equals

∂f ∗
w

∂ρe

= 1
2

nload∑
i=1


∂ f̄ (i)

ext

∂ρe

+ ∂ f̄ (i−1)
ext

∂ρe

T

∆ū(i) +
(
λ(i)

)T ∂r̄i

∂ρe

+
(
µ(i)

)T ∂r̄i−1

∂ρe

 . (4.14)

According to the residual definition (4.4), the derivatives of r̄(j) at the equilibrium of the j-th
load increment with respect to ρe can be expanded as

∂r̄(j)

∂ρe

= ∂ f̄ (j)
ext

∂ρe

−
∫

Ωe

B̄T σ̄(j)dΩe − K̄(j)
tan
∂∆ū(j)

∂ρe

, (4.15)

with

K̄(j)
tan = − ∂r̄(j)

∂ū(j) (4.16)

the global FE tangent stiffness matrix of the nonlinear mechanical system at the equilibrium
of the j-th load increment. With the result of (4.15), (4.14) can be reformulated as

∂f ∗
w

∂ρe

= 1
2

nload∑
i=1

∂ f̄ (i)
ext

∂ρe

T (
∆ū(i) + λ(i)

)
+
∂ f̄ (i−1)

ext

∂ρe

T (
∆ū(i) + µ(i)

)
−
(
λ(i)

)T
∫

Ωe

B̄T σ̄(i)dΩe −
(
µ(i)

)T
∫

Ωe

B̄T σ̄(i−1)dΩe

−
(
λ(i)

)T
K̄(i)

tan
∂∆ū(i)

∂ρe

−
(
µ(i)

)T
K̄(i−1)

tan
∂∆ū(i−1)

∂ρe

. (4.17)
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As mentioned before, the aim is to find proper values of the Lagrangian multipliers λ(i)

and µ(i) such that the sensitivities can be explicitly and efficiently computed. From the
consideration of (4.10), the first two terms can be canceled by setting

λ
(i)
E = −∆ū(i)

E and µ
(i)
E = −∆ū(i)

E . (4.18)

Accounting further for the structure of the sensitivities of ū in (4.9) and for the symmetry of
the tangent stiffness operator we have

∂f ∗
w

∂ρe

= 1
2

nload∑
i=1

− (λ(i)
)T
∫

Ωe

B̄T σ̄(i)dΩe −
(
µ(i)

)T
∫

Ωe

B̄T σ̄(i−1)dΩe

−
(
K̄(i)

tan,FEλ
(i)
E + K̄(i)

tan,FFλ
(i)
F

)T ∂∆ū(i)
F

∂ρe

−
(
K̄(i−1)

tan,FEµ
(i)
E + K̄(i−1)

tan,FFµ
(i)
F

)T ∂∆ū(i−1)
F

∂ρe

. (4.19)

In order to avoid evaluating the unknown derivatives of ū(i)
F and ū(i−1)

F , i.e., eliminating
the last two lines of (4.19), the values of λ

(i)
F and µ

(i)
F are sought as following by solving the

adjoint systems with the prescribed values λ
(i)
E = −∆ū(i)

E and µ
(i)
E = −∆ū(i)

E at the essential
nodes:

λ
(i)
F =

(
K̄(i)

tan,FF

)−1
K̄(i)

tan,FE∆ū(i)
E , (4.20)

and

µ
(i)
F =

(
K̄(i−1)

tan,FF

)−1
K̄(i−1)

tan,FE∆ū(i)
E . (4.21)

These two relations (4.20) and (4.21) together with (4.18) completely determine the values
of Lagrangian multipliers λ(i) and µ(i). Finally, ∂f ∗

w/∂ρe can be computed via

∂f ∗
w

∂ρe

= −1
2

nload∑
i=1

[(
λ(i)

)T
∫

Ωe

B̄T σ̄(i)dΩe +
(
µ(i)

)T
∫

Ωe

B̄T σ̄(i−1)dΩe

]
. (4.22)

The computation of the sensitivity persists in solving two linear systems of equations
once for all elements. Note that because the proportional loading is increased at a constant
rate ˙̄u0

E, i.e.

∆ū(i)
E = ∆t(i) ˙̄u0

E, (4.23)
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the solution of the second linear system can therefore be omitted by means of the recursion
formula

µ
(i)
F = ∆t(i)

∆t(i−1) λ
(i−1)
F . (4.24)

4.1.3 BESO updating scheme

The BESO updating scheme for the design of elastoviscoplastic structures follows in great
part the basic procedure presented in Section 2.4.3 except for an addition of a stabilization
scheme controlling the number of recovered elements at each design iteration and minor
modifications on certain implementations.

In contrast to the proposal applied in Section 2.4.3 for the determination of the volume of
material usage at the current design iteration, a linear decay of the volume fraction is used in
the present work, i.e.

V (l) = max
{
Vreq, V

(l−1) − cerV
(0)
}
. (4.25)

Here, the evolutionary ratio cer determines the percentage of material to be removed and V (0)

is the initial material volume corresponding to full solid structure in the current context.
The sensitivity numbers of the elements that are used to determine material removal and

addition is defined as
αe = ∂f ∗

w
∂ρe

1
ve

, (4.26)

The sensitivity numbers are further modified to remove numerical artifacts by linear the
filtering scheme (2.29).The filter is also responsible for material addition as the sensitivity in
a void element is zero. An interpretation of the filter is that void regions next to highly loaded
regions are considered as highly sensitive to the overall response as switching them back to
solid elements can lead to an unloading in the highly loaded surrounding solid elements.

Note that at certain design iterations when severe topological changes happen, the
sensitivity numbers in the affected zones are several orders of magnitude larger than the
sensitivity numbers at other design iterations, the introduction of this abnormal historical
information as did in (2.31)

α(l)
e ← (α(l)

e + α(l−1)
e )/2 (4.27)

will no longer stabilize but perturb the following design evolution. Therefore, unlike in
previous implementations by, [e.g., 80, 81, 77], in the current work this stabilization scheme
is invoked only when the required material usage volume Vreq is reached, i.e. towards the end
of the optimization loop.
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In order to stabilize the design process in dealing with nonlinear dissipative structures,
the basic BESO update scheme presented in Section 2.4.3 is further enhanced with an
introduction of two additional threshold parameters αth

del and αth
add for material removal and

addition, respectively,

ρ(l+1)
e =


0 if αe ≤ αth

del and ρ(l)
e = 1,

1 if αth
add < αe and ρ(l)

e = 0,
ρ(l)

e otherwise.
(4.28)

The present scheme indicates that solid elements are removed when their sensitivity numbers
are less than αth

del and void elements are recovered when their sensitivity numbers are greater
than αth

add. The parameters αth
del and αth

add are obtained from the following iterative algorithm:

1. Let αth
add = αth

del = αth, where the value αth is determined iteratively such that the
required material volume usage is met at the current iteration.

2. Compute the admission ratio car, which is defined as the volume of the recovered
elements divided by the total volume of the current design iteration. If car ≤ cmax

ar ,
the maximum admission ratio, then skip the next steps; otherwise, αth

del and αth
add are

redetermined in the next steps.
3. Determine αth

add iteratively using only the sensitivity numbers of the void elements
until the maximum admission ratio is met, i.e. car ≈ cmax

ar .
4. Determine αth

del iteratively using only the sensitivity numbers of the solid elements until
the required material volume usage is met at the current iteration.

The introduction of cmax
ar stabilizes the topology optimization process by controlling the

number of recovered elements. Normally, cmax
ar is set to a value greater than 1% so that it

does not suppress the merit of the element recovery scheme.

4.2 Microscopic modeling

In this Section, the considered material microstructure and the nonlinear constitutive law are
given firstly in Section 4.2.1. The computational complexity of the implementation of the
considered microscopic model within the topology optimization framework is estimated in
Section 4.2.2. The basic concepts of pRBMOR-based model reduction for microscopic mate-
rial modeling with GPU acceleration are briefly reviewed in 4.2.3. To be in consistent with
the source papers [51], we apply the exact notation rules in the Section for the presentation
of the pRBMOR method.
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4.2.1 Elastoviscoplastic porous material

A porous metal made of a ductile, elastoviscoplastic matrix with properties related to alu-
minum is considered. The periodic RVE used in [51] containing 20 spherical pores with
identical radii is considered (see also Figure 4.2). The porosity of the RVE is 10 %. The FE
discretization consists of a total of 140,508 nodes and 90,940 quadratic tetrahedral elements.
An elastoviscoplastic over-stress model based on a von Mises yield criterion is used for the
ductile matrix. It fits into the Generalized Standard Material framework [GSM, 71], which is
a key requirement of the model reduction technique proposed in the following Section 4.2.3.
Every GSM is characterized by two potentials: the Helmholtz free energy density ψ and the
dissipation potential φ. Alternatively to φ, its Legendre transform φ∗ referred to as the dual
dissipation potential can be used.

Fig. 4.2 Periodic RVE (left: geometry; right: finite element discretization)

In the small strain framework considered in this work, the free energy depends on the
total strain ε, the plastic strain tensor εp and the isotropic hardening variable q. The additive
split

ψ(ε, εp, q) = ψe(εe) + ψh(q) (4.29)

into an elastic strain energy ψe depending on the elastic strain εe = ε− εp and the hardening
potential ψh is considered. For the present application Young’s modulus E =75 GPa and
Poisson’s ratio ν =0.3 are assumed. The strain energy then reads

ψe(εe) = 1
2εe · C[εe], C = E

3(1− 2ν)I ⊗ I + E

1 + ν

(
Is − 1

3I ⊗ I
)
. (4.30)
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The yield stress σF is defined as a function of the isotropic hardening variable q. It consists
of an exponentially saturating part and a linear hardening contribution via (see also [51])

σF(q) = σ0 − r(q), r(q) = −∂ψh(q)
∂q

= −
(
h∞q + σ∞

h

[
1− exp

(
h∞ − h0

σ∞
h

q

)])
.

(4.31)

The static variable r is referred to as the thermodynamic conjugate to q. The parameters
h∞ = 400 MPa, h0 = 10, 000 MPa and σ0 = σ∞

h = 100 MPa were used. Note that the
hardening behavior described by these parameters is highly nonlinear (Figure 4.3). The yield
function is defined as

F (σ, r) = ∥dev(σ)∥ −
√

2
3 (σ0 − r(q)) . (4.32)

The material is elastic for F < 0 and elastoviscoplastic for F > 0. In the particular case
of F = 0, a plastically neutral load state on the yield surface is defined, i.e. no inelastic
processes take place.

 0

 50

 100

 150

 200

 0  0.05  0.1

Fig. 4.3 Nonlinear yield stress as a function of the hardening variable q

In the following we focus on a formulation of the dissipative process as a function of the
thermodynamic driving forces by using the dual dissipation potential φ∗. The evolution of
the internal variables (namely of the plastic strain tensor εp and of the hardening variable q)
is then determined by the dual dissipation potential

φ∗(σ, r) =
√

2
3
ε̇0σD

n+ 1

max{F (σ, r), 0}√
2/3σD

n+1

(4.33)
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via the relations

ε̇p = ∂φ∗(σ, r)
∂σ

, q̇ = ∂φ∗(σ, r)
∂r

. (4.34)

The parameters n = 10, ε̇0 = 0.01 s–1 and σD = 25 MPa were chosen in analogy to [51].
The viscoplastic behavior described by the proposed model mimics the behavior of ductile
aluminum.

4.2.2 Estimation of the computational complexity

The major part of the computational cost of multiscale simulations involving nonlinearities is
represented by the repetitive solution of nonlinear problems on the microscale. This concerns
both CPU time and memory demands. In the particular context of multiscale topology
optimization the overall CPU time TCPU and memory cost Cmem can be estimated as

TCPU = TµO(ntopngpnloadn
eq
iter), Cmem = nµ

dataO(ngp), (4.35)

with the number of topology iterations ntop, the number of integration points of the macroscale
problem ngp, the number of load increments nload, the average number of (macroscopic)
nonlinear equilibrium iterations per load increment neq

iter, the amount of data per microscale
problem nµ

data. An important factor is the average CPU time for the solution of one (equili-
brated) load increment of the microscale problem Tµ which includes the time for iterations on
the RVE level in order to attain the equilibrium state in the presence of nonlinearities. Both
Tµ and nµ

data depend strongly on the spatial discretization ofΩµ. Unfortunately, the discretiza-
tion level of the microstructure can usually not be overly coarse due the geometric complexity
of heterogeneous materials and the required accuracy of the microscale simulation. Similarly,
the other influence factors (ntop, ngp and neq

iter, nload) are merely modifiable. In order to obtain
a reasonable overall reduction of TCPU and Cmem it is, thus, indispensable to reduce both the
microscopic solution time Tµ and the amount of microscopic information nµ

data significantly,
i.e. by several orders of magnitude, without changing the spatial discretization. Model order
reduction can be an appropriate tool for this.

4.2.3 Model reduction using the pRBMOR

In order to reduce computational effort by several orders of magnitude the authors have
recently proposed a ROM for Generalized Standard Materials: the pRBMOR [52] which
makes use of ideas originating from the nonuniform transformation field analysis [NTFA,
107, 108, 48]. The pRBMOR was extended in [53] in order to account for heterogeneously
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distributed hardening states on the microscopic scale. In the same work algorithmic consid-
erations have shown that the pRBMOR can be parallelized on many core systems such as
GPUs. A specific GPU library was developed within Nvidia’s CUDA framework. It was
shown that the pRBMOR with the novel high performance GPU implementation attains an
overall reduction of the CPU time and, simultaneously, of the memory requirements on the
order of 104 and beyond [53, 51].

Importantly, the mechanical predictions of the ROM show a sufficient accuracy with
respect to the local and the effective stress predictions. Thereby, the pRBMOR qualifies
as a tool for the application in nonlinear multiscale topology optimization, where classical
computational homogenization methods [e.g., 46, 96, 110] would lead to unacceptable
numerical costs. The method has successfully been applied in FE2 in terms of the FE2R (FE
Square Reduced) method [51]. In the following we briefly summarize the key ideas of the
pRBMOR approach. For further algorithmic and theoretical details we refer to [52, 53, 51].

The key idea in the pRBMOR is the utilization of a reduced basis for the internal variables,
i.e. for the plastic strain and for the hardening variables. This is a major difference to other
mechanical model reduction techniques which, instead, aim at a reduced representation of the
displacement field. In the pRBMOR the reduced basis is extracted from preceding nonlinear
simulations using a snapshot POD and the respective basis functions are called modes. In the
reduced setting the approximations of the internal state are expressed via

εp(x, t) ∼ ε̂p(x, t) ≈ P̂ (x)ξ̂(t), q̂(x, t) ≈ Q̂(x)λ̂(t). (4.36)

The operators P̂ (x) and Q̂(x) (referred to as relocalization operators) are column-wise
composed of the plastic modes µ̂(α)(x) and of the hardening modes q̂(β)(x), respectively.
Based on micromechanical ideas going back to the transformation field analysis [42, 43]) it
can be shown that the strain and stress fields

ε(x, t) ∼ ε̂(x, t) = Êe(x)ε̂(t) + Êp(x)ξ̂(t) (4.37)

σ(x, t) ∼ σ̂(x, t) = Ŝe(x)ε̂(t) + Ŝp(x)ξ̂(t) (4.38)

solve the microscopic mechanical problem for arbitrary macroscopic strain ε̄ and mode
activity ξ̂. The operators Êe, Êp, Ŝe and Ŝp are obtained from linear precomputations in
the presence of eigenstress fields induced by the plastic modes µ̂(α)(x) and from linear
elastic homogenization. Hence all microscopic fields can be expressed as functions of
the macroscopic variables ε̂, ξ̂ and λ̂. Making use of these local fields and introducing the
effective thermodynamic driving forces τ̂ (for ξ̂) and R̂ (for λ̂) an effective mixed incremental
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potential

Π̄∗(ξ̂, λ̂, τ̂ , R̂; ε̂) = ⟨ψ⟩ − ⟨ψn⟩+ ∆ξ̂ · τ̂ + ∆λ̂ · R̂−∆t ⟨φ∗⟩ (4.39)

is defined. Here ψn is the free energy evaluated at time tn, ∆ξ̂ and ∆λ̂ are the increments
of the macroscopic reduced variables and all other terms are evaluated at the current time
t = ∆t+ tn. Although Π̄∗ depends heavily on ε̂ it shall be emphasized that ε̂ is an external
control parameter. Following the derivations in [52, 53] the saddle point of Π̄∗ implies a root
of the nonlinear function

f̂(ξ̂, λ̂, τ̂ , R̂) != 0̂ =


τ̂ − Âε̂− D̂ξ̂
R̂ +

〈
Q̂T∂qψ

〉
∆ξ̂ −∆t D̂−1

〈
ŜT

p ∂σφ
∗
〉

∆λ̂−∆t Ĥ
−1 〈

Q̂TĤ∂rφ
∗
〉

 , (4.40)

emerging from the necessary conditions of the inf-sup-condition. Here, the auxiliary matrices
are

D̂ = −
〈
ŜT

p Ĉ
−1Ŝp

〉
, Â = −

〈
ŜT

p

〉
, Ĥ = ∂r̂

∂q̂
= − ∂2ψ

∂q̂ ∂q̂
, Ĥ =

〈
Q̂TĤQ̂

〉
, (4.41)

defining the mode interaction matrix D̂, the strain sensitivity of the modes Â, the local
and the global hardening matrices Ĥ and Ĥ, respectively. The solution of (4.40) yields the
increments of the reduced variables ∆ξ̂, ∆λ̂ and the respective driving forces τ̂ , R̂. The
effective stress can then be computed from the linear relation

σ̂ = Ĉε̂− ÂTξ̂, (4.42)

with Ĉ being the homogenized linear elastic stiffness matrix.

4.2.4 Implementation of pRBMOR

With the above presented reduction strategy, the microscopic solution in the mutliscale
design framework (Algorithm 1) can now be substituted by pRBMOR with GPU acceleration.
Algorithm 3 presents the off-line phase for the initialization of pRBMOR. The on-line phase
for the implementation of pRBMOR on GPUs is outlined in Algorithm 4. The overall load is
prescribed in several load steps. During each load step several NR iterations are performed
in order to meet the static equilibrium conditions on the structural/macroscopic scale, i.e. the
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Algorithm 3 Preanalysis for pRBMOR (off-line phase)
1: define the RVE model;
2: solve the RVE problem for different loadings;
3: compute correlation matrix and extract the reduced bases;
4: perform linear eigenstress analysis;
5: extract system matrices and pRBMOR data;

Algorithm 4 RVE solutions on GPUs (on-line phase)
1: read data of all macro Gauss points;
2: read pRBMOR data: ε̄, ξ̂, λ̂,∆ε̄;
3: initialize GPU: allocate memory and load data;
4: loop over all Gauss points
5: relocate microscopic state;
6: compute residual and Jacobian on the GPU;
7: iterate reduced variables ξ̂, λ̂;
8: end loop
9: return residual, stiffness matrices and ξ̂, λ̂.

design scale. At each of these iterations we compute at each of the ngp macroscopic Gauss
integration points the strain ε̄. Then the current state consisting of the current strain ε̄

and the internal variables ξ̂, λ̂ are written to a binary file (usually located on a RAM disc
although I/O times have a small impact on the overall computing times). In the next step,
the computing procedure is called for all ngp integration points simultaneously using an
external C/C++ program. The results of the computing procedure are the effective stress σ̄,
the algorithmic tangent operator C̄tan and the new reduced states ξ̂, λ̂. These variables are
written to a binary file which is then further processed at the macroscopic scale in order
to assemble the global stiffness matrix and the nodal force residual. Note that in order to
apply the pRBMOR in twoscale simulations a robust time integrator is required as well as
an accurate algorithmic tangent stiffness matrix. In the following the pRBMOR is used
based on the FE2R implementation with GPU acceleration proposed in [51]. A homotopy
method is applied to improve the robustness of the time integration procedure and to obtain a
meaningful algorithmic tangent operator.

4.3 Numerical examples

A cantilever design problem similar to the one studied in [12] is considered. The two-
dimensional problem setting is illustrated in Figure 4.4. The elastoviscoplastic RVE presented
in Section 4.2.1 is assumed at the microscopic scale. The dimension of the cantilever is



4.3 Numerical examples 59

Fig. 4.4 Illustration of a two-scale cantilever structure with associated porous microstructure

assumed to be 2 m×1 m. The left end of the cantilever is clamped and displacement loading
at a portion of the right-end edge (25%) is prescribed.

Two variations of the cantilever problem are investigated: first, the BESO method is
used in the absence of dissipative effects but with consideration of the effective elastic
properties of the microstructure (see Section 4.3.1). The linear designs are computed in order
to first investigate the properties of the BESO for the elastic design process and in order
to gather information regarding the coarsest possible mesh resolution that is sufficient to
provide meaningful results at balanced computational expense. Then, nonlinear topology
optimization using the new BESO-FE2R approach are performed in Section 4.3.2. The
optimal topologies obtained in the linear optimization are used in nonlinear simulations in
order to quantify the improvements of the structural design due to application of the nonlinear
BESO-FE2R approach (see Section 4.3.4).

Square shaped bilinear elements are used for the FE discretization of the cantilever and
plane strain conditions are assumed. For the elastic case (BESO) various mesh resolutions
ranging from 32 × 16 up to 256× 128 elements are considered in order to examine con-
vergence of the objective function with respect to mesh refinements. For the inelastic case
(BESO-FE2R) two different mesh densities are considered (see Section 4.3.2 for details). All
outputs (e.g. forces, energies) are specified relative to the depth d of the cantilever, i.e. per
unit length.

In the following, all parameters involved in the BESO method are held constant for all
topology optimizations except for cer. The evolution rate, which determines the percentage
of removed material at each design iteration, is set to cer = 0.01 for the linear optimization.
For the nonlinear design problem the values 0.01 and 0.02 are considered. The maximum
admission ratio corresponding to the maximum percentage of recovered material that is
allowed per iteration is set to cmax

ar = cer. In the following ny denotes the number of elements
in vertical direction and nx = 2ny is the mesh resolution in horizontal direction. The filter
radius is set to rmin = ny/16 le in each of the following linear and nonlinear simulations.
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4.3.1 Linear elastic topology optimization

For the linear elastic topology optimization, the homogenized stiffness of the porous mi-
crostructure is used at each macroscopic integration point of the design domain that is
associated with the solid (micro-heterogeneous) material. By using the effective stiffness C̄,
the microstructural geometry and the distribution of the material parameters within the
microstructure are captured at a negligible computational investment. More precisely, the
evaluation of C̄ requires the solution of the linear RVE problem for six linearly independent
load cases once in the preprocessing. While the effective stiffness tensor is not completely
isotropic due to the random position of the pores, approximations of the effective bulk
modulus K̄ and of the shear modulus Ḡ can be computed by means of projecting C̄ onto the
two isotropic projectors

3K̄ = P1 · C̄ = 1
3I ⊗ I · C̄, 2Ḡ = 1

5P2 · C̄ = 1
5 (Is − P1) · C̄. (4.43)

The deviation of C̄ from its isotropic approximation is on the order of 0.5%, i.e., in the linear
regime almost isotropic properties are predicted. Therefore near symmetric topologies are
expected. A tip deflection of 10 mm is applied.

The linear design process for the considered two-dimensional problem is computationally
rather inexpensive and can be performed on a standard laptop computer using a Matlab based
implementation. Figure 4.5 outlines the converged solutions for the linear elastic porous
material (i.e. in the absence of dissipative effects) for three mesh resolutions ranging from
64× 32 to 256× 128 elements. The volume fraction of the solid (micro-porous) material is
60%.

Fig. 4.5 Design solutions for linear elasticity for the three mesh resolutions 64× 32, 128× 64
and 256× 128 elements (left to right; macroscopic volume fraction of solid material 60%)

Convergence was attained after 42 to 54 topology iterations depending on the mesh
resolution, respectively. Although these numbers depend on the convergence criterion, they
give an indication on the number of required optimization cycles. Notably, the number
of iterations was almost independent of the discretization (i.e. of the number of design
variables). For all mesh densities dis-symmetric final designs are observed. The degree of
the dis-symmetry is surprising when considering the marginal anisotropy of the effective
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Fig. 4.6 Objective function fw for the linear design problem as a function of the number of
elements in y- direction ny (with nx = 2ny)

linear elastic material behavior. A closer investigation of the design iterations showed that
the slight anisotropy of the material results in minor dissymmetries during the initial design
iterations. These are then conserved and/or amplified during the optimization.

The objective function fw determined during the automatic topology optimization is
plotted over the number of elements along the vertical direction ny in Figure 4.6, stating only
minor variations with respect to varying mesh resolution. The physical dimension of fw is
kJ/mm due to the dependence of the overall strain energy on the depth d of the structure. The
small variation of the designs with respect to variations of the FE discretization confirms
that the chosen BESO with stabilization is robust and that the related parameters are well
calibrated. It is found that ny =16 elements in the vertical direction might not be sufficient
due to overly pronounced discretization errors in the macroscopic FE problem. Therefore,
ny = 32 and 64 are investigated in the nonlinear topology optimization, i.e. 64× 32 and
128× 64 elements are considered.

4.3.2 Nonlinear structural design using the FE2R

In the following the same tip deflection of 10 mm is applied, but instead of using the
homogenized linear properties of the porous material, the FE2R method is used in order
to account for the viscoplasticity of the solid material with consideration of the highly
nonlinear hardening law. Based on the results of the linear elastic topology optimization a
mesh resolution of ny = 64 elements in vertical direction (i.e. 128× 64 = 8192 elements in
total) is considered as the maximum mesh density for the nonlinear two-scale optimization.
Additionally, ny = 32 is considered for computationally less expensive comparison designs
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as well as and in order to investigate the influence of different parameters of the optimization
procedure as well as the influence of the mesh density in the presence of nonlinearities.
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Fig. 4.7 left: comparison of the macroscopic force-displacement curve for the nonlinear
designs for cer = 0.02 and cer = 0.01; middle, right: objective function versus the void
volume fraction ρv (middle) and the number of topology iterations ntop (right); top: ny = 32;
bottom: ny = 64

Fig. 4.8 Topology iterations 17-21 (left to right) for ny = 64, cer = 0.02: an important
topological change from 17→ 18 (two connecting rods disappear) requires several subsequent
steps in order to recover good values of Φ (see bottom right graph in Figure 4.7)

The impact of a variation of the parameter cer is studied for both mesh resolutions.
Therefore the BESO-FE2R algorithm was applied using cer = 0.01 and 0.02. The intention of
this comparison is to investigate the effect of the step size used in the topology optimization.
During the topology iterations the volume fraction of the solid is continuously reduced, i.e.
after each nonlinear FE simulation on the macroscale the current target volume fraction is
reduced until the prescribed volume fraction is attained. Only then, pure rearrangements of
the existing solid are performed in order to reduce the objective function. Another option
producing a distinctly increased computational cost would be to converge for each of the
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intermediate volume fractions c(l) to the respective optimal design before further reduction
of c. Since the computational expense for converging also the intermediate designs is very
large, small values of cer are investigated. The thereby induced smaller adjustments of the
intermediate solid volume fractions lead to almost converged intermediate designs. They
could can help to understand the effect of converged intermediate designs on the final result
of the optimization process. The four optimizations yielded the objective values

• fw(cer = 0.02, ny = 32) = 0.05839 kJ/mm after 26 iterations,
• fw(cer = 0.01, ny = 32) = 0.05854 kJ/mm after 41 iterations,
• fw(cer = 0.02, ny = 64) = 0.05861 kJ/mm after 27 iterations,
• fw(cer = 0.01, ny = 64) = 0.05843 kJ/mm after 45 iterations.

These values suggest that (i) the mesh resolution and (ii) the volume fraction change per
design iteration cer are both of minor importance for the inelastic design.

For both mesh densities it can be observed in Figure 4.7 that drops of the objective
function under an increment of the void volume fraction ρv occur. This is due to sudden and,
at the same time, distinct topological changes such as disappearing rod-like connectors. An
example for such a sudden change in the topology is illustrated in Figure 4.8 for ny = 64,
cer = 0.02 for iterations 17-21. The void volume fraction grows linearly from 32% (it. 17) to
40% (it. 21 onwards). The values of the objective function reported in Figure 4.7 confirm that
– despite further material removal – the stiffness of the structure increases after iteration 18.
This increase is due to a favorable rearrangement of the remaining material.

n
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cer = 0.02 cer = 0.01

n
y

=
64

Fig. 4.9 BESO-FE2R designs; cer = 0.02 (left) and 0.01 (right); tip deflection ū = 10 mm

The four final designs are compared in Figure 4.9. It is found that all designs tend
to be dissymmetric. Interestingly, the topologies obtained for cer = 0.01 are almost mesh
independent. A detailed comparison of the two designs for cer = 0.01 is carried out in
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Figure 4.10. It is found that the designs have 89.9 % of the solid material in common, which
confirms that the two designs differ only moderately.

In order to solve the four two-scale design problems provided in this section alone, a total
of 139 two-scale FE problems were simulated involving the solution of approximately 30 mio.
load increments on the RVE level. Remarkably, these computations were conducted within
little more than one week using a single GPU. These numbers clearly show the computational
capability of the proposed technique and the impossibility to solve the same problem without
sophisticated model reduction methods.

Fig. 4.10 Detailed design comparison for cer = 0.01 for the different mesh densities; left:
common region; right: additional material for ny = 32 (magenta) and ny = 64 (blue); tip
deflection ū = 10 mm

4.3.3 Investigation of the influence of the load amplitude

In addition to the already demanding multiscale topology optimizations presented before,
additional computations were carried out in order to investigate the influence of the load
amplitude on the final design. Therefore, all four optimizations (for the two different mesh
densities and for the two different values of cer) were re-launched using seven instead
of three load increments that lead to a final tip deflection of 20 mm instead of 10 mm.
Figure 4.11 shows the final designs obtained. The computational effort for these optimizations
is considerably increased over the previous computations. Interestingly, the number of
topology iterations ntop was found to be almost independent of the mesh size (26 (ny = 32)
vs. 25 (ny = 64) iterations cer = 0.02; and 46 (ny = 32) vs. 44 (ny = 64) iterations for
cer = 0.01). Moreover, the number of design iterations is almost the same as before despite
the doubling of the tip deflection.

The optimal objective functions obtained using the BESO-FE2R are

• fw(cer = 0.02, ny = 32) = 0.1872 kJ/mm after 26 iterations,
• fw(cer = 0.01, ny = 32) = 0.1859 kJ/mm after 46 iterations,
• fw(cer = 0.02, ny = 64) = 0.1859 kJ/mm after 25 iterations,
• fw(cer = 0.01, ny = 64) = 0.1888 kJ/mm after 44 iterations.
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Fig. 4.11 BESO-FE2R designs for the increased tip deflection of 20 mm for different parame-
ters cer, ny
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Fig. 4.12 Results of the optimization for the tip deflection of 20 mm: left: comparison
of the macroscopic force-displacement curve for the nonlinear designs for cer = 0.02 and
cer = 0.01; middle, right: objective function versus the void volume fraction ρv (middle) and
the number of topology iterations ntop (right)

The force-displacement curve and the objective function versus the (macroscopic) void
volume fraction and number of iterations are reported in Figure 4.12. For the increased load
amplitude the nonlinearity of the overall mechanical response is much more pronounced. As
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in the previous investigation, sudden changes of the topology (such as disappearing rod-like
connectors) induce discontinuities in the objective function which are compensated for by
material rearrangement in subsequent iterations.

For the increased loading, the four designs differ more than before. By closer exami-
nation, the two designs for the finer mesh are rather closely related having 88.8 % of the
solid elements in common. The design for ny = 32, cer = 0.01 (top right in Figure 4.11) is
similar related to the corresponding design of the finer mesh after mirroring with respect to
the horizontal axis (with 88.4 % of the solid elements being identical). From mechanical con-
siderations the mirroring of the mesh is a transformation leading to an equivalent mechanical
design given the symmetric boundary conditions in the chosen linear kinematic framework.
Thus the designs can be considered to be in good agreement one to another which suggests a
certain robustness of the BESO-FE2R algorithm, although the resemblance could be doubted
at first sight.

Finally, the design for the fine mesh and cer = 0.01 for the two different load amplitudes
(10 and 20 mm tip deflection) are compared in Figure 4.13. Remarkably, the designs have
91.7 % elements in common. Hence, the final design can be considered to be sufficiently
robust with respect to moderate variations in the amplitude of the boundary conditions.

Fig. 4.13 Comparison of the two designs for the finer mesh; left to right: final design for
ū = 10mm, ū = 20mm, comparison (gray: common, blue: additional for 10 mm, magenta:
additional for 20 mm)

4.3.4 Comparison to linear designs

Two different designs are investigated for the mesh consisting of 128× 64 elements: (i) the
design optimized using linear elasticity in Section 4.3.1 and (ii) the design obtained using
the nonlinear BESO-FE2R (using the result of cer = 0.01). The different geometries are
subjected to the same loading (tip displacement of 20 mm at 25% of the right hand side of the
cantilever) and with consideration of the nonlinearity by using the FE2R. The nonlinear two-
scale problem is solved for the elastic design and the objective function is computed. For the
elastic design the objective function is 0.1839 kJ/mm while the BESO-FE2R nonlinear design
attains 0.1888 kJ/mm. Figure 4.14 shows the different topologies and the force-displacement
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curves of the two designs are compared. Geometrically, the linear design differs considerably
from the nonlinear one. Since the mechanical response of the structure is mostly linear for
the first half of the loading, the linear design can outperform the nonlinear design up to a
tip deflection of 7.5 mm which can be seen from the force displacement curve. However,
the structure optimized for a tip deflection of 20 mm and consideration of the nonlinearity
of the material behavior outperforms the topology optimized for elastic loading for higher
tip deflections. Although the objective values are almost identical, the nonlinear design has
major advantages in the second half of the loading which is governed by the nonlinearity
of the material behavior. Thereby the chosen topology optimization criterion is validated.
Note that the number of design iterations for the elastic and the inelastic design are almost
identical for all considered loadings (47 for elastic vs. 45 for 10 mm and 44 for 20 mm
inelastic tip deflection respectively).
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Fig. 4.14 Comparison of different designs: elastic BESO (left) vs. nonlinear BESO-FE2R

design (right); macroscopic force-displacement curve (middle)

4.4 Concluding remarks

In this Chapter we have extended the multiscale design framework for multiscale elastovis-
coplastic structures with the implementations of the pRBMOR method and GPU paralleliza-
tion. While the computational effort is still considerable, the use of pRBMOR renders the
solution of the problem feasible on standard workstations with Nvidia GPUs. Using the FE2

computing scheme directly without reduction, the design problem could only be solved at a
computational investment that would be beyond nowadays (and likely future) capabilities.
Hence the proposed method allows, at moderate computational expense, to tackle problems
that were unanswerable before.

The computational findings state that the optimal designs generally depend on the pa-
rameters chosen for the BESO method. However, the main topological and morphological
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features show certain invariance with respect to the parameters. This is quantified by the
rather large amount of common elements (see Section 4.3.2). The impact of the nonlinearity
on the final design is most obvious when comparing the optimal elastic design to the inelastic
one in terms of both their topological appearances and physical performances.

Although the designs are generally rather similar, the differences in the details of the
designs are an indicator that further research for dissipative nonlinear topology optimization
could help to obtain more robust and efficient design schemes. During the optimization
sudden design changes having a major impact on the objective function are encountered.
Possible extensions of the algorithm could include multiple design iterations at constant
volume fraction of the solid phase in these cases. This could help to improve also the
robustness of the design process for larger values of the eveolutionary ratio cer, thereby
helping to further reduce the computation time.

The ultimate goal would be to optimize simultaneously the microstructure and the
macroscopic design. The extension of the current multiscale design framework to simul-
taneous design of both the structure and the underlying microstructures could be realized
by the induction of additional design variables at the microscopic scale. Nevertheless, the
problem becomes extremely computational time-consuming due the enormous number of
sub-optimization problems, especially for nonlinear cases. In the next Chapter, we will start
to extend the multiscale design framework for simultaneous topology optimization at both
scales in linear elasticity.



Chapter 5

Simultaneous topology optimization of
structure and materials

We have so far assumed a fixed material microstructure at the microscopic scale. The ultimate
goal of multiscale design would be to simultaneously optimize both the structure and the
underlying microstructures. Designing materials simultaneously along with the design of
structures would result in higher-performance structures. In addition, the recently emerging
and rapidly developing techniques of 3D printing provide the capability of manufacturing
extremely fine and complex microstructures, which make it possible to generate more
innovative, lightweight, and structurally efficient designs.

In this chapter we extend the multiscale design framework by introducing additional
topology variables at the microscopic scale to perform simultaneous topology optimization
of structure and material microstructures in the linear case. By the previously established
multiscale design framework, we have topology variables and volume constraints defined
at both scales. Cellular material models are defined in a pointwise manner. In this model,
the material microstructures are optimized in response to the macroscopic solution, which
results in the nonlinear equilibrium problem at the interface of the two scales. We treat the
material optimization process integrally as a generalized nonlinear constitutive behavior,
and the nonlinear scale-interface equilibrium problem can be resolved naturally within the
multiscale framework by the FE2 method.

As stated in [12] and tested by ourselves [155] (Appendix A), the SIMP model is sensitive
to the choice of initial guess, loadings, and other parameters. Appendix A presents our recent
educational article regarding design of materials using topology optimization and energy-
based homogenization approach in Matlab. In the contrast, the BESO method has shown
a very robust and efficient performance in material designs for its heuristic design scheme
[83, 85, 165]. In this work, we employ the BESO method for the designs at both scales.
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This Chapter is organized in the following manner: Section 5.1 reviews the general
mathematical formulation of the simultaneous material and structural design. Section 5.2
presents the initial stiffness NR solution scheme. Section 5.3 gives the topology optimization
models for both macro- and microscopic scale problems; Section 5.4 showcases the developed
model by several numerical test examples. Concluding remarks are given in Section 5.5

5.1 Problem statement and decomposition

Generalized mathematical formulations for simultaneous cellular material and structure
designs can be found in [144] and its application for continuous models has been given
by [125]. Let x and y denote positions of a point at macroscopic and microscopic scales,
respectively. The structural compliance minimization problem is stated in terms of two levels
of design variables: the pointwise topology variable ρ(x) at the macroscopic scale (structure)
and the pointwise topology variable η(x, y) at the microscopic scale (material).

Recall [12], using the principle of minimum potential energy, the minimum compliance
problem in a displacement-based formulation is:

max
(ρ,η)∈Aad

min
u∈U

{
1
2

∫
Ω
Cijkh (x, ρ(x), η(x, y)) ∂ui

∂xj

∂uk

∂xh

dΩ− l(u)
}
. (5.1)

Here Cijkh (x, ρ, η) is the fourth-order elastic stiffness tensor at material point x depending
on both values of ρ(x) and η(x, y) at the two sales. U denotes the space of kinematically
admissible displacement fields and l(u) is the loading potential term. Note that though (5.5)
is defined under a linear assumption, Cijkh may depend in a nonlinear way on the design
variables. Aad is the assembled admissible set of design variables and consists of two defined
admissible sets Aρ and Aη for ρ(x) and η(x, y), respectively,

Aad = {ρ, η | ρ(x) ∈ Aρ, η(x, y) ∈ Aη} . (5.2)

In the case of discrete topology design models [e.g., BESO, 165, 151], Aρ and Aη are
simply defined as:

Aρ =
{
ρ | ρ = 0 or 1,

∫
Ω
ρ(x)dΩ = V s

req

}
, (5.3)

and
Aη =

{
η | η = 0 or 1,

∫
Ωx

η(x, y)dΩx = V x
req

}
, (5.4)

where V s
req and V x

req are the allowed material volume at the macro and micro scales, respec-
tively. Note that, V x

req can vary from point to point.
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In the case of continuous topology optimization models [e.g., SIMP, 125, 176, 114], the
elastic stiffens tensor and V x

req for macroacale point x are functions of ρ(x). In the current
context, the discrete-valued ρ(x) indicates only the existence of an additional fine scale
(ρ = 1) or not (ρ = 0). We can therefore extract ρ(x) outside Cijkh and the remaining elastic
stiffness tensor Cijkh is dependent on η(x, y), i.e.

max
(ρ,η)∈Aad

min
u∈U

{
1
2

∫
Ω
ρ(x) Cijkh (x, η(x, y)) ∂ui

∂xj

∂uk

∂xh

dΩ− l(u)
}
. (5.5)

The separation of the two scale variables and the interchange of the equilibrium and local
optimizations of (5.5) result in a reformulated displacement-based problem

max
ρ∈Aρ

min
u∈U

{∫
Ω
w̄ (x, u, η(x, y)) dΩ− l(u)

}
, (5.6)

where the pointwise maximization of the strain energy density w̄

w̄ = max
η∈Aη

1
2 ρ(x)Cijkh (x, η(x, y)) ∂ui

∂xj

∂uk

∂xh

(5.7)

is treated as a subproblem for the prescribed ρ(x) and u(x) at the macroscale point x. From
the reformulated form of (5.6), a hierarchical iterative solution strategy is straightforwardly
established for the simultaneous material and structure design.

The outer maximization problem of (5.6) is the “master” problem dealing with the
macroscale material distribution in terms of ρ(x) for the macroscale structure. The inner
maximization problems of (5.6), i.e., (5.7), are the “slave” problems corresponding to the
stiffness maximizations of the microscale materials in terms of η(x, y) for the evaluated
macroscale strain. The middle layer minimization problem of (5.6) seeks kinematically
admissible equilibrium displacements for the locally optimum energy function, for the given
distribution of the macroscale topology of ρ(x). Note that, since the locally optimum energies
depend on the displacement field in a complex fashion via the optimization problems of (5.7),
the equilibrium statement of (5.6) is in fact a constitutively nonlinear elastic problem.

5.2 Initial stiffness NR solution scheme

In order to solve the nonlinear scale-interface equilibrium problem of (5.6), the incremental
computational homogenization approach [FE2, 46] (Section 2.1) is used to bridge the two
separated scales. Generally speaking, FE2 solves two nested boundary value problems, one
at the macroscopic scale and another at the microscopic scale. Because the constitutive
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behaviors can be implicitly represented by the stress-strain relationships, the determination
of the homogenized elastic stiffness tensor of the optimized cellular microstructure is no
longer required in the presented algorithm.

The material model defined at the microscopic scale is optimized upon the macroscale
strain value at associated integration point. Then the effective stress is evaluated on the
optimized microscale material microstructure and returned to the upper scale. With the
effective stress-strain relationship, scale-interface nonlinear equilibrium is then resolved by
means of the NR method. The macroscale topology is then optimized using the converged
solution. A schematic illustration is shown in Figure 5.1. Unlike in Chapters 2 and 3 where
nonlinearities come from material nonlinear constitutive behaviors, the nonlinearity here
is due to the optimization of microscopically defined materials. This nonlinearity can be
viewed as a generalized nonlinear constitutive behavior. In summary, the FE2-based solution
scheme consists of the following steps:

1. evaluate the macroscale strain ε̄(x) with an initially defined setting;
2. define PBC on the associated material model according to ε̄(x);
3. optimize the topology η of the associated material model as indicated in (5.7);
4. evaluate the microscale stress σ(x,y) on the optimized material topology η;
5. compute the macroscale stress σ̄(x) via volume averaging σ(x,y);
6. evaluate the consistent stiffness tensor C̄(x) at macroscale point x;
7. update the displacement solution using the NR method;
8. repeat steps 2-7 until the macroscale equilibrium is achieved.

Solving B.V.P

Macro scale Micro scale

Fig. 5.1 FE2-based simultaneous topology optimization of structure and materials [151].

Due to the particularity of the concerned nonlinearity, conventional NR solution scheme
using tangent stiffness matrix is not applicable here. As can be observed in Figure 5.2, the
tangent stiffness matrix for ū(1) is in fact the linear stiffness matrix K̄opt(ū(1)) itself. Using
this stiffness matrix results in the divergence of the solution of the scale-interface nonlinear
equilibrium. The solution of this type of nonlinearity itself is still an open issue according to
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Fig. 5.2 Initial stiffness NR solution scheme [151].

the authors’ knowledge. We propose to use an initial stiffness NR solution scheme based on
a reasonable hypothesis that the structure constituted by the optimized materials (K̄opt(ūsol)),
is stiffer than the other structures (K̄opt(ū(1)), . . . ) corresponding to the other admissible
solutions. In this scheme, the applied initial stiffness matrix K̄0 is constructed assuming
the microscale material is full of solid material. Though not rigorous enough, this solution
scheme is capable of dealing with this scale-interface nonlinearity with satisfactory as can be
seen from numerical tests in Section 5.4.

5.3 Topology optimization models

The definitions of topology optimization model is given in section 5.3.1. The decomposed
optimization models and corresponding sensitivity analysis are given in section 5.3.2. The
BESO method is then briefly reviewed in section 5.3.3. The simultaneous design framework
is then presented in section 5.3.4.

5.3.1 Model definitions

Within the context of FEA, both topology design variables

ρ = (ρ1, . . . , ρNs)T i = 1, . . . , Ns

ηx = (ηx
1 , . . . , η

x
Nx

)T j = 1, . . . , Nx (5.8)

written in vector form, are defined in an element-wise manner at both scales. Ns and Nx

are the numbers of discrete elements at the macro- and microscales, respectively. Here, the
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superscript x of ηx denotes a vector of microscale topology variables at each macroscale
point x. By discrete topology optimization, both types of variables take values of either 0
or 1. Note that in practice in order to prevent the singularity of the stiffness matrix, a small
value is attributed to ρi or ηj to denote void elements. Consistently with the FE2 computing
scheme, each Gauss integration point x of the macroscopic structural mesh is attributed with
a cellular material model ηx. For Ngp Gauss integration points, N ×Ngp cellular material
models are defined concurrently at the microscopic scale.

At the macroscopic scale, topology design variables are defined is association with the
element internal force vector f̄ i

int in analogy to (2.16)

f̄ i
int = ρi

∫
Ωi

B̄T σ̄ dΩi, i = 1, . . . , Ns (5.9)

where the effective stress σ̄ is computed via the volume averaging relation σ̄(x) = ⟨σ(x,y)⟩,
where the microscopic stress is computed on the optimized material topology subjected to a
prescribed overall strain. In practice, for void elements the optimization at the microscopic
scale can be saved and their effective stresses are set directly to zero.

At the microscopic scale, consider the cellular material model corresponding to material
point x, the stiffness matrix Kx

j of the jth element is defined explicitly in terms of ηx
j as

Kx
j = ηx

j Kx
0 , j = 1, . . . , Nx (5.10)

where Kx
0 is the stiffness matrix of the element with full solid material when ηj = 1.

The simultaneous optimization problem of (5.5) is equivalent to the minimization of
the macroscopic compliance fc subjected to macroscopic and microscopic material volume
fraction constraints

min
ρ,ηx

: fc = f̄T
extū

subject to : r̄(ū,ρ,η) = 0
: Vρ = ∑

ρivi = V s
req

: Vη = ∑
ηjv

x
j = V x

req

: ρi = 0 or 1, i = 1, . . . , Ns

: ηx
j = 0 or 1, j = 1, . . . , Nx.

(5.11)

where f̄T
ext is the macroscale external force vector. Vρ and Vη are the total volumes of solid

elements at the two scales, respectively. V s
req and V x

req are the required volumes of solid
elements defined at the two scales, respectively. vi is the volume of macroscale element i,
and vx

j is the volume of the microscale element j of the material model attached on macro
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point x. ū is the converged macroscale displacement solution. r̄(ū,ρ,ηx) stands for the
force residual at the macroscopic scale

r̄(ū,ρ,ηx) = f̄ext −
N∑

i=1
ρi

∫
Ωi

BT σ̄dΩi. (5.12)

where Ωi denotes the region occupied by the ith element.

5.3.2 Decomposed optimization models

Equation (5.11) is the discretized model of the optimization problem (5.5). As presented in
Section 5.1, the simultaneous design model of (5.5) can be equivalently split into a “master”
problem of (5.6) and “slave” problems of (5.7) due to the nature of separability of the design
variables ρ(x) and η(x, y), which are defined at the two scales, respectively.

The discretized model of the ‘master” problem of (5.6) is formulated as

min
ρ

: fc(ρ, ū)
subject to : r̄(ū,ρ,η) = 0

: Vρ = ∑
ρivi = V s

req

: ρi = 0 or 1, i = 1, . . . , Ns

(5.13)

in terms of ρ defined at the macroscopic structural scale, where the micro-scale variables
η which decide structural constitutive behaviors are implicitly included in the equilibrium
equation r̄(ū,ρ,η) = 0, which is solved by FE2-based solution scheme (Section 5.2).

For a given value of ρ = ρ∗ and the corresponding displacement solution ū = ū∗, with
the assumption that cellular material models ηx are defined only at material points where
ρ∗(x) = 1, the discretized models of “slave” problems (5.6), the microscale material stiffness
maximizations subjected to microscale material volume fraction constraints, are defined in
the following form

max
ηx

: w̄(ηx)

subject to : Kx(ηx)ux = 0
: ⟨ε(ux)⟩ = ε̄(x)
: Vη = ∑

ηjv
x
j = V x

req

: ηj = 0 or 1, j = 1, . . . , Nx.

(5.14)

Note that there exists no external force at the microscopic scale. The microscale systems are
constrained by means of the imposed periodic boundary conditions, satisfying the equality
between ⟨ε(ux)⟩ and ε̄(x).
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To implement topology optimization, sensitivities of design variables need to be provided.
According to (5.9) and (5.13), the sensitivity for the nonlinear design problem at macroscopic
scale is evaluated as [12]

∂fc

∂ρi

= −λT
∫

Ωi

B̄T σ̄dΩi, (5.15)

where λ is the adjoint solution of
K̄tanλ = f̄ext. (5.16)

where K̄tan is the tangent stiffness matrix at the convergence ūsol of the NR solution process.
As has been shown in Figure 5.2, the tangent stiffness matrix for a certain displacement
solution is the corresponding elastic stiffness matrix itself, i.e., K̄tan(ūsol) = K̄(ūsol) and
therefore λ = ūsol. The evaluation of (5.15) can be further simplified to

∂fc

∂ρi

= −ūT
sol

∫
Ωi

B̄T σ̄dΩi, (5.17)

where Ωi denotes the region occupied by the ith element.

In the contrary, the design problem at the microscopic scale is self-adjoint [12] and
therefore its sensitivity is evaluated according (5.10) and (5.14)

∂w̄(ηx)
∂ηx

j

= 1
2 (ux

j )T Kx
0ux

j . (5.18)

5.3.3 BESO updating scheme

The applied BESO updating scheme for macroscale structural topology optimization follows
exactly the scheme presented in Section 2.4.3 with the sensitivity numbers defined as

ᾱi = −∂fc

∂ρi

1
vi

. (5.19)

The same updating scheme is adopted for microscale material topology optimization
except for a minor modification on the filtering scheme. In order to maintain the structural
periodicity during the optimization, special attention needs to be paid on the filtering near
the boundary region. The filtering domain is enlarged periodically in accordance with the
filtering radius rmin as shown in Figure 5.3. The sensitivity numbers for microscale material
design is defined as

αx
j = ∂w̄(ηx)

∂ηx
j

1
vx

j

. (5.20)
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Fig. 5.3 Illustration of periodic filtering scheme.

5.3.4 Simultaneous design framework

The simultaneous design framework is outlined in Algorithm 5. Generally speaking, there
exist three layers in this framework according to (5.6). The very outer layer is the global
structural optimization which loops until the design solution ρ reaches convergence. The
inner layer is the local cellular material optimization with respect to ηx with prescribed
overall strain value ε̄(x) at Gauss point x. The middle layer ensures compatibility between
the two scales, which corresponds to the nonlinear scale-interface equilibrium.

The presented algorithm is defined in a general manner. With minor modifications and
additional constraints, the presented algorithm can mutate to various types of design problems.
For instance, when topology optimization is limited to a single scale, the presented algorithm
corresponds to standard structural topology optimization [79] and material microstructure
designs [83]. When an universal microstructure η is assumed and designed at the microscopic
scale, the algorithm corresponds to the approaches developed in [85, 165], depending on
the definition at the macroscopic scale. When the discrete BESO method is replaced by
the continuous SIMP model, the algorithm corresponds to variants of [125, 176], where the
nonlinear scale-interface equilibrium is solved by the FE2 method.

5.4 Numerical examples

In this section, four numerical examples are considered. In section 5.4.1, optimal designs
of periodic cellular materials are performed upon different prescribed overall strains. In
section 5.4.2, cellular materials are designed for a bridge-type structure, where optimization
is performed only at the microscopic scale for the purpose of illustrating the FE2-based
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Algorithm 5 Simultaneous design framework.
1: Initialize ρ0 and K0;
2: while ∥ρi+1 − ρi∥ > δopt {i+ +} do
3: while ∥f̄ext − f̄int∥ > δf do
4: loop over all macro Gauss points
5: compute the effective strain ε̄(x);
6: define PBC on the associated material model upon ε̄(x) ;
7: initialize microscale material topology ηx

0 ;
8: while ∥ηx

j+1 − ηx
j ∥ > δx

opt {j + +} do
9: compute w̄x and sensitivities ∂w̄x/∂ηx;

10: update ηx using the BESO scheme;
11: end while
12: compute σ̄ = ⟨σ⟩ on the optimized material;
13: end loop
14: NR update: K̄0∆ū = f̄ext −

∑
ρi

∫
Ωi

B̄T σ̄dΩi;
15: end while
16: compute fc and sensitivities ∂fc/∂ρ;
17: update ρ using BESO scheme;
18: end while
19: return ρ and ηx.

nonlinear computing procedure. In section 5.4.3, simultaneous material and structural design
is performed for the same bridge-type structure. The last section 5.4.4 further considers the
simultaneous design of a half Messerschmitt-Bölkow-Blohm (MBB) beam structure at both
macroscopic and microscopic scales.

5.4.1 Cellular material designs

Material microstructure designs are considered in this example as the inner problem of (5.6).
The square RVE of cellular material is discretized into 80× 80 4-node bilinear elements and
M = 80× 80 density design variables are correspondingly defined. Young’s modulus and
Poisson’s ratio of solid material are set to 1 and 0.3, respectively. Volume constraint of solid
material is 60%. The evolution rate in BESO method is set to cer = 0.02. In order to obtain
the so called one-length scale microstructure [12], i.e., avoid too detailed microstructures
inside the cells, the filter radius is set to rmin = 12.

Due to the applied periodic boundary conditions, an initial guess design has to be defined
to trigger topological changes. Here four soft elements are assigned at the center of the design
domain [83], as shown in Figure 5.4. We consider three representative loading cases where
the macroscopic strains are: (1, 0, 0)T , (0, 0, 1)T , and (1.2, 0.8, 0.5)T . The design evolutions
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and results of the three test cases are shown in Figure 5.4(a), (b) and (c), correspondingly.
It can be seen that the design results for horizontal stiffness maximization (Figure 5.4a)
and shear modulus maximization (Figure 5.4b) are quite similar to the design results in
[83, 116, 177]. Moreover, the spatial periodicity is also guaranteed due to the imposed
periodic boundary conditions and periodic filtering scheme, as can be seen from all three test
cases.

(a). Overall prescribed strain ε̄ = (1, 0, 0)T , iterations 1, 3, 6, 19, 32 (from left to right).

(b). Overall prescribed strain ε̄ = (0, 0, 1)T , iterations 1, 5, 14, 30, 40 (from left to right).

(c). Overall prescribed strain ε̄ = (1.2, 0.8, 0.5)T , iterations 2, 12, 22, 42 (from left to right).

Fig. 5.4 The topological evolutions of the optimal design of cellular materials

5.4.2 Material design of a bridge-type structure

For the purpose of illustrating the FE2-based nonlinear computing procedure, a simple bridge-
type structure as shown in Figure 5.5 is considered, where optimization design is performed
only at the inner layer of the problem in (5.6). The bridge-type structure is discretized into
quadrilateral 8-node elements. By reduced integration scheme, four Gauss integration points
are defined for each finite element. Each integration point is attributed with a cellular material
model discretized into 80× 80 4-node bilinear elements, which means in total Ngp = 4× 8,
32 cellular material models are considered concurrently at the microscopic scale. Young’s
modulus and Poisson’s ratio of solid material at the microscopic scale are set to be 1 and 0.3,
respectively. Volume constraint for each cellular material model is set to 60%. The evolution
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rate and filter radius in the BESO method are set to cer = 0.02 and rmin = 12, the same as
defined in the first example.

Macro 

structure

Element

Micro cellular material

Mesh size

80 x 80 

Fig. 5.5 Illustration of the bridge-type structure for cellular material design.

The evolution of cellular materials in reaching the macroscopic equilibrium is shown
in Figure 5.6. The initial macroscopic structural stiffness matrix K0 with solid materials
is used to perform the iterative resolution. The displacement convergence criterion is
δ = ∥u(k+1) − u(k)∥2/∥u(k)∥2 ≤ 10−2. Figure 5.6(a) can be viewed as a more detailed
design solution of the composite laminate orientation design [58]. The design solution
varies iteratively from Figure 5.6(a) to (f) upon the nonlinear iterative resolution scheme as
presented in section 5.2.

The difference between Figure 5.6(a) and (f) demonstrates the necessity of considering
the nonlinearity of the middle layer macro-micro interface problem of (5.6). Note that,
Figure 5.6 is a zoomed view of the design results, where the optimized cellular materials
corresponding to the Gauss points are enlarged for the purpose of illustration. Upon the
homogenization theory, the optimized cellular material only represents the optimal solution
at the microscopic scale for that material point, i.e., Gauss integration point. Therefore, the
optimized cellular materials represent only the optimal solutions at the associated Gauss
points while are not necessarily contiguous with each other.

5.4.3 Simultaneous design of a bridge-type structure

Since this example, optimal designs are performed simultaneously at both macroscopic and
microscopic scales. The same bridge-type structure of Figure 5.5 is considered again here in
Figure 5.7 while with much finer discretization in order to describe the structural topological
changes. The macroscopic structure is discretized into 40 × 20 4-node bilinear elements,
which means in total Ngp = 4 × 40 × 20, 3200 cellular material models are considered
concurrently at the microscopic scale. At the macroscopic scale, N = 40× 20, 800 density
design variables are accordingly defined. For the purpose of limiting the computational
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(a) substep 1, δ = 0.487, c(1) = 3.39��

(b) substep 2, δ = 0.217, c(2) = 7.29

(c) substep 3, δ = 0.078, c(3) = 9.55

(d) substep 4, δ = 0.034, c(4) = 10.98

(e) substep 5, δ = 0.017, c(5) = 11.73

(f) substep 6, δ = 0.009, c(6) = 12.13

Fig. 5.6 Evolution of cellular materials reaching the macroscopic equilibrium.

requirement, microscopic cellular material model is discretized into 40× 40 4-node bilinear
elements with M = 40× 40 design variables. There exist in total N +Ngp ×M = 5120800
topology design variables in this design problem. At structural sale, volume constraint of
solid material is set to 60%. The other related parameters in the BESO method are evolution
rate cer = 0.02 and filter radius rmin = 3. At the microscopic material scale, volume
constraints are also set to 60%, the evolution rate and filter radius in the BESO method are
cer = 0.02 and rmin = 6.

For the purpose of illustrating the nonlinearity due to the adaptation of microstructures, a
comparison between the first substep and the converged solutions in the first design iteration
is shown in Figure 5.8. The same displacement convergence criterion is used as in the
previous example. For each structural design iteration, it takes 7 substeps to reach the
macroscopic equilibrium. An obvious difference between the two solutions can be observed.
The topological evolution of the macroscopic structure together with the converged cellular



82 Simultaneous topology optimization of structure and materials

Element

Macro 

structure
Micro cellular material

Mesh size

40 x 40 

Mesh size

40 x 20 

Fig. 5.7 Illustration of the bridge-type structure for simultaneous design.

materials is shown in Figure 5.9. The convergence histories of the compliance and of the
volume ratio at the macroscopic scale are demonstrated in Figs. 5.10(a) and (b). It takes
several more iterations to converge where however invisible differences can be found among
the topology results of the last iteration. For which reason, we only kept the historical
information before the design iteration with the converged topologies. Similar treatment is
used in the following example. The standard monoscale solution obtained using the BESO
method with linear elasticity is given in Figure 5.11(b) for the purpose of comparison with
Figure 5.11(a). Some typical microstructures obtained in the nonlinear twoscale design is
also given in Figure 5.11(c).

(a) substep 1, δ = 0.316, c(1) = 4.65�� (b) substep 7, δ = 0.005, c(7) = 16.21

Fig. 5.8 The initial and converged design solutions of the first design iteration.

Similar to the previous example,the optimized cellular material only represents the op-
timal solution at the microscopic scale for that material point satisfying the assumptions
of scale-separation and periodicity. The optimized cellular materials represent only the the
optimal solutions at associated Gauss points while are not necessarily contiguous. For manu-
facturing consideration, denser material points need to be considered at the macroscopic scale
and then image-based interpolation schemes such as developed in [156] can be employed for
generating intermediate microstructures.
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(a) iteration 7�� (b) iteration 12

(c) iteration 19 (d) iteration 31

Fig. 5.9 Evolution of cellular materials and structure during the simultaneous designs.
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Fig. 5.10 Convergence histories of compliance and volume ratio at the macroscopic scale.

Each individual macroscopic design iteration can also be viewed as an independent design
problem with fixed topology and with varying microstructures (section 5.4.2), therefore the
illustrated cellular material topologies from Figure 5.9(a) to (f) can be viewed as the optimal
design solutions for the six macroscopic structures. Similarly, the final simultaneous optimal
design Figure 5.9(f) can also be interpreted as the general case of the simultaneous structural
topology and laminate orientation designs [129, 59], where however the orientation variables
are defined in an element-wise manner. In this work anisotropic cellular materials are defined
in a point-wise manner, which of course requires more intensive computational requirement.
As can be observed in Figure 5.9(f), uniaxial materials may be sufficient at the main branches
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(a) Nonlinear two-scale design result (b) Linear single-scale design result 

(c) Some typical microstructures in figure (a)

Fig. 5.11 Comparison between the nonlinear twoscale and linear monoscale solutions.

of the structure; while in order to have a higher structural performance, anisotropic materials
have to be used at the joints of the main branches due to the more complex internal forces.

5.4.4 Simultaneous design of a half MBB beam

The so-called MBB beam [12] is further considered in this example. The same example has
also been investigated in [125] for the simultaneous design using the continuous SIMP model,
and recently in [58] for composite laminate orientation design. Due to the symmetry of the
problem, only half MBB beam is considered, as shown in Figure 5.12. The macroscopic
structure is discretized into 40× 16 4-node bilinear elements, which means in total Ngp =
4×40×16, 2560 cellular material models are considered concurrently at the microscopic scale.

Element

Macro structure Micro cellular material

Mesh size

40 x 40 

Mesh size

40 x 16 

Fig. 5.12 Illustration of the half MBB beam problem for simultaneous design.
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(a) substep 1, δ = 0.301, c(1) = 44.07�� (b) substep 6, δ = 0.009, c(6) = 138.33

Fig. 5.13 The initial and converged design solutions of the first design iteration.

(a) iteration 6 (b) iteration 12

(c) iteration 18 (d) iteration 35

Fig. 5.14 Evolution of cellular materials and structure during the simultaneous designs.

At the macroscopic structure, N = 40 × 16, 640 density design variables are accordingly
defined. Microscopic cellular material model is discretized into 40 × 40 4-node bilinear
elements with M = 40× 40 design variables. There exist in total N +Ngp ×M = 4096640
topology design variables in this design problem. Volume constraints of solid material are
set to 60% at both scales. The other parameters for the BESO method at the both scales are
the same as defined the previous example.

Similarly, a comparison between the first substep and the converged solutions in the first
design iteration is given in Figure 5.13. The same displacement convergence criterion is
used as in the previous examples. In this example, it takes around 6 substeps to reach the
macroscopic equilibrium for each design iteration. The simultaneous evolutions of both
cellular materials and structure are shown in Figure 5.14. The convergence histories of the
compliance and the volume ratio at the macroscopic scale are demonstrated in Figs. 5.15(a)
and (b), respectively. The standard monoscale solution obtained using BESO with linear
elasticity is given in Figure 5.16(b) for the purpose of comparison with Figure 5.16(a). Some
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Fig. 5.15 Convergence histories of compliance and volume ratio at the macroscopic scale.

(a) Nonlinear two-scale design result (b) Linear single-scale design result 

(c) Some typical microstructures in figure (a)

Fig. 5.16 Comparison between the nonlinear twoscale and linear monoscale solutions.

typical microstructures obtained in the nonlinear twoscale design are also given in Figure
5.16(c). Similar to previous examples, the optimized cellular material only represents the
optimal solution at the microscopic scale for that material point satisfying the assumptions of
scale-separation and periodicity. The optimized cellular materials represents only the optimal
solutions at the associated Gauss points while are not necessarily contiguous with each other.

Though the macroscopic structural topological evolution in Figure 5.14 is quite similar
to conventional mono-scale structural topology design result, it is however the result of
considering the optimized cellular materials. Each individual design result in Figure 5.14 is
in fact an optimal design solution for the considered macroscopic structure. From Figure
5.14(f), we can see that uniaxial materials are obtained along the main branches, while
anisotropic materials are obtained at the joints of the main branches.
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5.5 Concluding remarks

In this chapter we have extended the multiscale design framework for simultaneous topology
optimization of structure and material microstructures. The proposed model enables to obtain
optimal structures with spatially varying properties realized by the simultaneous design of
microstructures. Note that the designed structure with varying constitutive behaviors due to
the microstructures are constituted in fact by only one base material, which greatly favors the
process of 3D printing that a single material can usually be used for fabrication.

In this work the nonlinear macro-micro interface equilibrium is solved using the initial
stiffness NR solution scheme at the expense of the convergence rate. A more efficient iterative
solution scheme needs to be constructed for higher computing efficiency which however is
still an open issue for the moment.

The simultaneous design results in also an intensive computational cost even for the linear
case. In the current work, we have treated the optimization process of material microstructure
as a generalized constitutive behavior, which means that the design efficiency can be improved
drastically by a straightforward application of the existing ROMs for nonlinear materials.
In the next Chapter, we apply directly the reduced database model NEXP [173] for the
representation of the generalized constitutive behavior.





Chapter 6

Reduced database model for material
microsctructure optimizations

This Chapter builds upon Chapter 5 on simultaneous topology optimization of both structure
and materials. As has been shown in Chapter 5, the simultaneous design framework requires
intensive computational cost due to large number of repetitive local material microstructure
optimizations. Note that one particular feature of simultaneous design strategy is treating
the optimization process of material microstructure as a generalized nonlinear constitutive
behavior. With this feature in mind, this Chapter is dedicated to improve the simultaneous
design efficiency by a straightforward application of the NEXP model [173] to approximate
the material microstructure behavior.

The NEXP model was initially developed intending to represent the effective behaviors
of nonlinear elastic composites at small strains and extended later for finite strains [174]. By
the NEXP model, a database is built from a set of numerical experiments of local material
optimizations in the space of macroscale strain. Each value in the database corresponds to
the strain energy density evaluated on a material microstructure, optimized according to the
imposed macroscopic strain. By tensor decomposition, a continuous representation of the
strain energy density is built as a sum of products of one dimensional interpolation functions.
As a result of this off-line step, the effective strain-energy and stress-strain relations required
for macroscale structural evaluation and optimization are provided in a numerically explicit
manner. The results given by the reduced database model are compared with full-scale results.
The explicit material behavior representation given by the NEXP model is then used to serve
the simultaneous design at a negligible computational cost.

The remainder of this Chapter is organized in the following manner: Section 6.1 briefly
reviews the simultaneous design framework. Section 6.2 gives the generalized constitutive
behavior of locally optimized materials. Section 6.3 presents the construction strategy of the
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reduced database model. Section 6.4 gives the structural topology optimization model using
the constitutive represented by the reduced database model. Section 6.5 gives the general
design algorithm. Section 6.6 showcases the developed model by means of numerical test
examples. Concluding remarks are given in Section 6.7

6.1 Simultaneous design framework

Recall Section 5.1, we briefly review the simultaneous design framework. In analogy to (5.1),
the general formulation for the minimum compliance problem is [12]

max
(ρ,η)∈Aad

min
u∈U

{
1
2

∫
Ω
Cijkh (x, ρ(x), η(x, y)) ∂ui

∂xj

∂uk

∂xh

dΩ− l(u)
}
. (6.1)

Following [13, 144], the separation of the two scale variables and the interchange of the
equilibrium and local optimizations of (6.1) result in a reformulated problem as (5.6)

max
ρ∈Aρ

min
u∈U

{∫
Ω
w̄ (x, u, η(x, y)) dΩ− l(u)

}
, (6.2)

where the pointwise maximization of the strain energy density w̄

w̄ = max
η∈Aη

1
2 ρ(x)Cijkh (x, η(x, y)) ∂ui

∂xj

∂uk

∂xh

(6.3)

is treated as a subproblem defined in analogy to (5.7).
In the case of discrete topology design models [e.g., BESO, 165, 151], Aρ and Aη are

simply defined as

Aρ =
{
ρ | ρ = 0 or 1,

∫
Ω
ρ(x)dΩ = V s

req

}
, (6.4)

Aη =
{
η | η = 0 or 1,

∫
Ωx

η(x, y)dΩx = V x
req

}
, (6.5)

in analogy to (5.3) and (5.4), where V s
req and V x

req are the allowed material volume at the
macro and micro scales, respectively. Note that V x

req can vary from point to point.
Note that, because cellular materials at the microscopic scale are optimized in response to

the current strain loading statuses (Figure 6.1) while the optimized cellular materials in turn
update the macroscopic constitutive behavior, the scale interface equilibrium is therefore in
general nonlinear even when linear models are assumed at both scales. To solve the nonlinear
scale-interface equilibrium problem, the FE2 method is employed to bridge the two separated
scales with the initial stiffness NR solution scheme (Section 5.2).
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6.2 Generalized material constitutive behavior

The simultaneous design framework (6.2) requires solving at the microscopic scale the
material stiffness maximization problem (6.3)

max
η

: w̄(x, ε̄)
subject to : div σ(x, y) = 0

: ⟨ε(x, y)⟩ = ε̄(x)
: V (η) =

∫
Ωx ηdΩx = V x

req

: η(x, y) = 0 or 1, y ∈ Ωx

(6.6)

for each given value of ε̄(x), imposed as PBC on the cellular material model. Upon the
assumption of periodicity, the microscopic displacement field is a sum of a macroscopic
displacement field and a periodic fluctuation field u∗, whose volume average over Ωx equals
zero (⟨ε(u∗)⟩ = 0) leading to ⟨ε(x, y)⟩ = ε̄(x) [109].

BESO

Fig. 6.1 Illustration of the microscopic material optimization procedure.

For an optimized cellular material with a specified topology η = η∗ as shown in Figure
6.1, we have the following effective stress-strain relationship at the macroscopic scale

σ̄ = C̄hom(η∗) : ε̄, (6.7)

where C̄hom(η∗) is the homogenized elastic tensor, which can be determined by solving
the microscale boundary value problem for six independent overall strain values in general
3D case. Note that, with chosen optimization algorithm and volume constraint V x

req, the
optimized value η∗ in (6.6) is dependent only on the imposed overall macroscale strain tensor
value ε̄ and thus we can restate (6.7) as

σ̄ = C̄hom(ε̄) : ε̄, (6.8)

where C̄hom(ε̄) depends on ε̄ through solving (6.6) in a nonlinear manner.
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Let w̄(x, ε̄) denote the macroscale strain energy density

w̄(x, ε̄) = 1
2⟨σ : ε⟩ = 1

2|Ωx|

∫
Ωx

σ : ε dΩx (6.9)

at macroscopic point x of the optimized local material with strain ε̄. Based on Hill’s energy
condition [75], we have

⟨σ : e⟩ = σ̄ : ε̄. (6.10)

It is worth noting that for the strain-based formulation, the equilibrium problem (6.2)) remains
convex after the local material optimizations [12]. The effective stress-strain relationship can
be derived as [76]

σ̄ = ∂w̄(x, ε̄)
∂ε̄

. (6.11)

Note that, when the microscale optimization problem settings are identical for all
macroscale points, i.e., V x

req is set to a constant value, which is the case in the follow-
ing context, the variable x denoting the associated macroscale point in w̄(x, ε̄) can therefore
be omitted. In viewing the local material optimization process of (6.6) as a particular regime
of material nonlinearity, the main objective of the present work is to construct an explicit
representation of w̄(ε̄) over the tensor space E spanned by ε̄ such that the simultaneous
design can be performed with an effective stress-strain relationship provided at an extremely
reduced computational cost. Note that there is no closed-form expression of w̄(ε̄) over E

when the local material is constituted by multiple physically or geometrically nonlinear
material phases. For such reason, we choose to follow the NEXP strategy [173] to construct
an approximate expression of w̄(ε̄) using a precomputed database.

6.3 Reduced database model (NEXP)

In the following, we make a step further and extend the NEXP model to represent the new
regime of nonlinearity due to locally optimized materials.

6.3.1 Basic reduction strategy

The NEXP model aims to construct an explicit approximation or response surface w̄(ε̄)
over E using a precomputed database and interpolation schemes (see Figure 6.2), with an
expectation that w̃(ε̄) approaches enough to w̄(ε̄)

w̄(ε̄) ≈ w̃(ε̄) =
∑

q

Nq(ε̄)w̄q, (6.12)
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where Nq are interpolation functions and w̄q are the strain energy density values stored in the
database, which are evaluated by means of a set of numerical experiments over a test space
E . It is important to emphasize that w̄q used to construct the response surface as indicated in
Figure 6.2 corresponds to the energy density of a locally optimized material for a given test
value ε̄q. Once the database model is built, the effective stress-strain relationship and tangent
elastic stiffness tensor C̄tan can be explicitly obtained as

σ̄ ≈
∑

q

∂Nq(ε̄)
∂ε̄

w̄q, (6.13)

and

C̄tan ≈
∑

q

∂2Nq(ε̄)
∂ε̄∂ε̄

w̄q, (6.14)

provided the interpolation functions Nq are at least twice continuously differentiable.

Fig. 6.2 Interpolated strain energy density function w̃(ε̄) from values w̄q.

6.3.2 Notations and test space

We employ Voigt notation and the average stress tensor σ̄ and strain tensor ε̄ are represented
by 6-dimensional vectorsσ̄ = (σ̄1, σ̄2, σ̄3, σ̄4, σ̄5, σ̄6)T ≡ (σ̄11, σ̄22, σ̄33, σ̄23, σ̄13, σ̄12)T ,

ε̄ = (ε̄1, ε̄2, ε̄3, ε̄4, ε̄5, ε̄6)T ≡ (ε̄11, ε̄22, ε̄33, 2ε̄23, 2ε̄13, 2ε̄12)T .
(6.15)

In the 3D case, the strain energy density function for one macroscopic point x can now
be expressed over a six-dimensional vector space

w̄(ε̄) = w̄(ε̄1, ε̄2, . . . , ε̄6) (6.16)



94 Reduced database model for material microsctructure optimizations

and individual components of (6.13) and (6.14) are given by

σ̄i ≈
∑

q

∂Nq(ε̄)
∂ε̄i

w̄q, C̄tan
ij ≈

∑
q

∂2Nq(ε̄)
∂ε̄i∂ε̄j

w̄q. (6.17)

In this work, following [173] we discretize the test space E into a regular field ∆ =
∆1×∆2×· · ·×∆D, where ∆i are one-dimensional domains corresponding to the components
ε̄i and D = 3 or 6 for 2D and 3D problems, respectively. Each dimension is discretized
into p nodes and in total we have pD nodes in the database. Because linear material models
are assumed at both scales, the determination of the interval of ∆i is straightforward. All
components of ε̄ can be scaled between −1 and 1 by dividing the maximum component term

ε̂ = 1
ε̄max

ε̄ ∈ [−1, 1]× · · · × [−1, 1], (6.18)

where
ε̄max = max (|ε̄1|, |ε̄2|, . . . , |ε̄6|). (6.19)

Correspondingly, we have

w̄(ε̄) = ε̄2
maxw̄(ε̂), σ̄ = ε̄max

∂w̄(ε̂)
∂ε̂

, C̄tan = ∂w̄2(ε̂)
∂ε̂∂ε̂

(6.20)

in which w̄(ε̂) is the strain energy density evaluated using the scaled effective strain ε̂.

It is worth noting that if the considered material optimization problem possesses symme-
tries, then many computations can be avoided. Moreover, the adopted space discretization
strategy can be further optimized or improved which is of essential importance in saving
computational cost for the 3D case.

6.3.3 Separation of variables and interpolation

Still following [173], the precomputed full database is further approximated by a sum of
products of one-dimensional interpolation functions via higher-order tensor decomposition.
The tensor decomposed database requires only one-dimensional interpolations for effective
stress and tangent matrices evaluations, which further reduces computing time.

Let W denote the hypermatrix which stores the database. It can be approximated in a
tensor decomposed representation [92]

W ≈
R∑

r=1
φr

1 ⊗ φr
2 ⊗ · · · ⊗ φr

6, (6.21)
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where φr
j are real-valued vectors corresponding to the effective strain tensor components ε̄j

and R is the number of expanded terms. The vectors φr
j involved in (6.21) are determined by

solving the following least square problem for a given value of R

inf
φr

j

∥∥∥∥∥W−
R∑

r=1
φr

1 ⊗ φr
2 ⊗ · · · ⊗ φr

6

∥∥∥∥∥
2

, (6.22)

where r = 1, . . . , R, j = 1, . . . , 6 and ∥ · ∥ is the Frobenius norm. Iterative solution such as
alternated least squares is required to solve this nonlinear minimization problem [26, 175].
In this work, tensor decomposition of W is realized using [7].

Once the decomposed vectors in (6.21) are obtained, the continuous representation of
w̄(ε̄) written in terms of separated components can be constructed by interpolation

w̄(ε̄1, ε̄2, . . . , ε̄6) ≈
R∑

r=1
φ̃r

1(ε̄1)φ̃r
2(ε̄2) · · · φ̃r

6(ε̄6), (6.23)

where φ̃r
j(ε̄j) are the interpolated values of φr

j

φ̃r
j(ε̄j) =

Q∑
q=1

Nq(ε̄j){φr
j}q, (6.24)

in which Nq is the one-dimensional C 2 interpolation function associated with the node q, Q
denotes the number of nodes supporting the shape functions Nq(ε̄j) whose values at ε̄j are
different from zero. With (6.23), the effective stress can be evaluated by

σ̄j(ε̄1, ε̄2, . . . , ε̄6) ≈
R∑

r=1

∏
k ̸=j

φ̃r
k(ε̄k)

 ∂φ̃r
j(ε̄j)
∂ε̄j

 , (6.25)

with
∂φ̃r

j(ε̄j)
∂ε̄j

=
Q∑

q=1

∂Nq(ε̄j)
∂ε̄j

{φr
j}q. (6.26)

Similarly, we have effective stiffness matrix reformulated as

Ctan
ij (ε̄1, ε̄2, . . . , ε̄6) ≈

R∑
r=1

 ∏
k ̸=i,j

φ̃r
k(ε̄k)

 ∂φ̃r
i (ε̄i)
∂ε̄i

∂φ̃r
j(ε̄j)
∂ε̄j

 if i ̸= j, (6.27)

and

Ctan
ij (ε̄1, ε̄2, . . . , ε̄6) ≈

R∑
r=1

∏
k ̸=j

φ̃r
k(ε̄k)

 ∂2φ̃r
j(ε̄j)
∂ε̄2

j

 if i = j, (6.28)
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with
∂2φ̃r

j(ε̄j)
∂ε̄2

j

=
Q∑

q=1

∂2Nq(ε̄j)
∂ε̄2

j

{φr
j}q. (6.29)

In this work, one-dimensional C 2 cubic spline shape functions are chosen, though we
may employ other more advanced interpolation schemes such as diffuse approximation [156].
For a multidimensional strain domain, this reduced database model requires computing the
coefficients of one-dimensional spline functions, which further reduces both computing time
and operational complexity in the on-line phase.

6.4 Structural topology optimization

Substituting the local material optimization process by the NEXP approximated solution-
dependent nonlinear material behavior, as shown in Figure 6.3, the original simultaneous
twoscale design problem (6.1) can now be transformed back to a conventional monoscale
nonlinear structural design problem

max
ρ∈Aρ

min
u∈U

{
1
2

∫
Ω
ρ(x)Cijkh(u)∂ui

∂xj

∂uk

∂xh

dΩ − l(u)
}
, (6.30)

where elastic stiffness tensor Cijkh(u) is dependent on the displacement solution u. The
explicit representation of this nonlinear behavior has been constructed in the previous Section
6.3 using the NEXP model.

Macro scale Micro scale

Solving NEXP

Microstructure (   )

Fig. 6.3 Illustration of the monoscale structural design with NEXP model.

In analogy to (5.9), the vector of topology design variables ρ = (ρ1, . . . , ρNs)T is defined
in an element-wise manner in association with the element internal force vector f̄ i

int

f̄ i
int = ρi

∫
Ωi

B̄T σ̄ dΩi, i = 1, . . . , Ns (6.31)
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where the effective stress σ̄ is computed via the NEXP approximation and Ns is the number
of discretized elements for the considered structure.

In analogy to (5.13), we can equivalently express (6.30) in a discretized form as the
minimization of structural compliance [12]

min
ρ

: fc(ρ, ū)
subject to : r̄(ū,ρ) = 0

: Vρ = ∑
ρivi = V s

req

: ρi = 0 or 1, i = 1, . . . , Ns

(6.32)

where f̄ext is external force vector. V (ρ) and V s
req are the total volume of solid elements and

the required volume of solid elements, respectively. vi is the volume of the i-th element.
r̄(ū,ρ) stands for the force residual at the macroscopic scale

r̄(ū,ρ) = f̄ext −
N∑

i=1
ρi

∫
Ωi

BT σ̄dΩi. (6.33)

where Ωi denotes the region occupied by the ith element.

Similar to (5.15), the sensitivity for the nonlinear design problem is evaluated according
to the definitions in (6.32) and (6.33) as [12]

∂fc

∂ρi

= −λT
∫

Ωi

B̄T σ̄dΩi, (6.34)

where λ is the adjoint solution of

K̄tan(ūsol)λ = f̄ext. (6.35)

where K̄tan is the tangent stiffness matrix at the convergence ūsol of the NR solution process.
As has been shown in Figure 5.2, the tangent stiffness matrix for a certain displacement
solution is the corresponding elastic stiffness matrix itself, i.e., K̄tan(ūsol) = K̄(ūsol) and
therefore λ = ūsol. The evaluation of (6.34) can be further simplified to

∂fc

∂ρi

= −ūT
sol

∫
Ωi

B̄T σ̄dΩi, (6.36)

which can be analytically approximated using the NEXP model

∂fc

∂ρi

≈ −ūT
sol

∫
Ωi

B̄T ∂w̃(ε̄)
∂ε̄

dΩi. (6.37)
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Algorithm 6 NEXP database construction (off-line phase, Section 6.3)
1: define the cellular material model;
2: define the discretized test domain ∆ ∈ RD;
3: solve local optimization (6.6) for each node of ∆;
4: store the strain energy density values into W as the database;
5: decompose W into a separated form in terms of (ε̄1, . . . , ε̄6);
6: build w̃(ε̄) as a sum of products of the 1D interpolation functions.

Algorithm 7 Topology optimization (on-line phase, Section 6.4)
1: initialize ρ0 and K0;
2: while ∥ρi+1 − ρi∥ > δopt do
3: while ∥f̄ext − f̄int∥ > δf do
4: loop over all macro Gauss points
5: compute the effective strain ε̄;
6: compute the effective stress σ̄ ≈ ∂w̃/∂ε̄;
7: end loop
8: NR update: K̄0∆ū = f̄ext −

∑
ρi

∫
Ωi

B̄T σ̄dΩi;
9: end while

10: compute fc and sensitivities ∂fc/∂ρ;
11: update ρ using BESO scheme;
12: end while
13: return ρ.

6.5 General design algorithm

The general design algorithm for multiscale structural topology optimization consists of
two phases. The off-line phase builds the approximate constitutive model w̃(ε̄) for locally
optimized materials following the NEXP strategy presented in Section 6.3. The main
steps involved in the off-line phase are summarized in Algorithm 6. The on-line design
phase follows the design framework presented in Algorithm 5 except for the local material
optimization process is now substituted by the NEXP approximation using the precomputed
constitutive model w̃(ε̄). The on-line design phase with NEXP approximation is summarized
in Algorithm 7.

Algorithm 7 eventually gives the optimal structural topology at the structural scale,
where the corresponding local optimal material topologies are not yet obtained. In order
to retrieve local material topologies, one just needs to perform local material topology
optimizations [151, 155] using the converged solution at the final converged structural
topology. This twoscale design strategy requires significantly less computational efforts than
the simultaneous design strategy given in Chapter 5.
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Micro cellular material

Mesh size

40 x 40 

Inital guess A Inital guess B

Fig. 6.4 Illustration of the cellular material model and two initial material guesses.

6.6 Numerical examples

In this section, several numerical examples are considered. In Section 6.6.1, the NEXP
model is constructed for a considered local material design problem and preliminary tests
on its performance are given. In Section 6.6.2, the design of the twoscale bridge-type
structure (Section 5.3 in [151]) is revisited for a further validation of the constructed NEXP
model. Two twoscale structures with fine discretization are considered for design following
Algorithm 7 in Sections 6.6.3 and 6.6.4 using the constructed NEXP model in Section 6.6.1.

6.6.1 Preliminary numerical tests

Firstly, we consider a discretized cellular material model at the microscopic scale defined
as shown in Figure 6.4. The square RVE of cellular material is discretized into 40 × 40
4-node plane stress bilinear elements and the same number of density design variables are
correspondingly defined. Young’s modulus and Poisson’s ratio of the solid material are set to
1 and 0.3, respectively. The volume fraction of the solid material within the microstructure
is set to 60%, i.e. a micro-porosity of 40% is assumed. By the BESO method, redundant
or inefficient material is gradually removed from the structure until the prescribed volume
constraint is reached. The evolution rate in the BESO is set to cer = 0.02, which determines
the percentage of removed material at each design iteration. In order to obtain the so called
one-length scale microstructure [12], i.e., avoid too detailed microstructures inside the cell,
sensitivities are filtered within a local zone controlled by a filter radius rmin = 6. Following
[83, 84], two initial material guesses are considered for design. Initial guess A assigns four
soft elements at the center of the design domain to trigger topological changes. Initial guess
B assigns four soft elements at the four corners. The material microstructures optimized
from initial guess A and B for several representative loading cases are shown in Figs. 6.5
and 6.6. As argued in [12], different initial guesses may lead to different microstructures
which may possess similar material properties due to the non-uniqueness of the solution.
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Fig. 6.5 Several representative material designs from initial guess A for loading cases:
ε̄ = (1.0, 0, 0)T , (1.0, 0.8, 0)T , (1.0, 1.0, 0)T , (1.0, 0.7, 0.8)T , (0, 0, 1.0)T .

Fig. 6.6 Several representative material designs from initial guess B for loading cases:
ε̄ = (1.0, 0, 0)T , (1.0, 0.8, 0)T , (1.0, 1.0, 0)T , (1.0, 0.7, 0.8)T , (0, 0, 1.0)T .
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Fig. 6.7 The first 5 normalized modes for the three strain components.

Sometimes the microstructural topologies obtained from different initial guesses are in fact
the shifted versions of the same topology. In the following tests, all material microstructures
are designed from initial guess A.

The NEXP model is built over the strain domain ∆ = ∆1×∆2×∆6 = [−1, 1]×[−1, 1]×
[−1, 1] in the 2D case. After comparing different test results and with the consideration of
implementation efficiency, we choose to discretize each dimension of the strain space into
p = 21 uniformly distributed points, which means in total 213 local material optimizations are
performed. Detailed comparison of the NEXP models using different discretization choices
can be found in [173, 174]. Following the Algorithm 6, an explicitly represented strain
energy density and effective strain relationship is constructed. With a relative reconstruction
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Fig. 6.8 Comparison of the exact and approximate values evaluated using FEM and NEXP.

error in (6.22) chosen as 0.01, we obtain R = 9 truncated modes in each dimension for
the reduced approximation w̃(ε̄1, ε̄2, ε̄6). It is worth noting that when the cellular material
design problem is symmetrically defined for both its geometry and boundary conditions, the
decomposed modes should possess similar symmetric features. The first 5 of the 9 normalized
modes are selected and illustrated in Figure 6.7 with expected symmetries. Such symmetries
help reduce the number of precomputations during the off-line phase, in particular for 3D
problems. In this 2D case, the symmetry of ε̄6 reduces the number of precomputations by
half. The bi-symmetry of ε̄1 and ε̄2 further reduces the number of precomputations to one
fourth. Therefore in total only one eighth precomputations are required in 2D case for the
construction of the database.

To validate the performance, we compare the values evaluated using the NEXP model and
the exact computations. A first comparison is given in Figure 6.8, where ε̄2 = 0.2, ε̄6 = 0.8
are fixed and ε̄1 varies from −1 to 1. Several observations can be found from Figure 6.8.
Firstly, the approximate values given by the NEXP model are in very good agreement with
the exact solutions. Secondly, the strain energy density is a convex function over the effective
strain space. Thirdly, the selected optimal material microstructures show the tendency of
topological variation along ε̄1, which is the reason for the nonlinearity of (6.30). Another
validation is given in Figure 6.9, where ε̄1 = −0.1, ε̄6 = 0.5 are fixed and ε̄2 varies from −1
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Fig. 6.9 Comparison of the exact and approximate values evaluated using FEM and NEXP.

to 1. Similar observations can be found in Figure 6.9 as in Figure 6.8. Note that, since the
tangent stiffness matrix is not required in the present work (see Algorithm 7), we did not
validate the second order derivatives of the NEXP model.

6.6.2 Design of a twoscale bridge-type structure

To further validate the NEXP model constructed in Section 6.6.1, we revisit the twoscale
bridge-type structure design problem in Section 5.4.3 as shown in Figure 6.10. The macro-
scopic structure is discretized into 40× 20 4-node bilinear elements and the same number of
topology design variables are correspondingly defined. Each element possesses four Gauss
integration points, which means in total Ngp = 4× 40× 20 = 3200 cellular material models
with 40% porosity are considered at the microscopic scale. The same cellular material model
is considered as in Section 6.6.1.

Before comparing optimal structural topologies, we compared firstly the equilibrium
convergence for pure structural analysis using the simultaneous design strategy in Chapter 5
and the reduced strategy proposed in the current work. With the displacement convergence
criterion set as δ = ∥ū(k+1) − ū(k)∥2/∥ū(k)∥2 ≤ 10−2, it took 7 substeps to reach the
macroscopic structural equilibrium using the unreduced strategy at a cost of 10 minutes
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Fig. 6.10 Illustration of the twoscale bridge-type structure (Fig. 5.7 in Section 5.4.3).

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Substeps of the iterative resolution

R
e

la
v
a

n
t 
d

is
p

l.
 v

a
ri
a

ti
o

n

Unreduced strategy
10 mins/substep

Reduced strategy NEXP
30 s/substep

Fig. 6.11 Comparison of the convergence histories of unreduced and reduced strategies.

computing for each substep on a personal computer. In the contrast, the reduced approach
requires only 30 seconds for each substep computation and gives a similar convergence
history as shown in Figure 6.11. Following the general design algorithm presented in Section
6.5, the retrieved optimal cellular material topologies at the convergence obtained by the
reduced strategy are given in Figure 6.12(a). It is important to emphasize that the optimized
cellular material topologies only represent the optimal solutions at the microscopic scale for
the associated material point satisfying the assumptions of scale-separation and periodicity.
The optimized cellular materials in neighboring Gauss points are not necessarily contiguous
with each other. For the purpose of comparison, the optimal cellular material topologies at
the convergence obtained by the unreduced strategy are shown in Figure 6.12(b). Though the
unreduced strategy gives more complex material mircrostructures than the reduced strategy in
certain local regions, the two topologies in Figure 6.12 in general have very similar structural
tendencies and their structural compliance values are also very close.

In the next step, topology optimization is performed at the macroscopic structural scale
using the NEXP model. Volume constraint at the macroscopic scale is also set to 60%.
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(a). Design with the reduced strategy, c = 16.13. (b). Design with the unreduced strategy, c = 16.21.

Fig. 6.12 Comparison of the material designs using reduced and unreduced strategies.

The other related parameters in the BESO method are evolution rate cer = 0.02 and filter
radius rmin = 3. By the BESO method, it takes 39 design iterations to reach the final design
as shown in Figure 6.13(a), where each design iteration requires 7 substeps to reach the
equilibrium. For the purpose of comparison, Figure 6.13(b) gives the twoscale designed
topology obtained using the unreduced strategy (Chapter 5). As expected, an obvious
topological difference between the two designs can be observed in Figure 6.13. Note that,
Figs. 6.8 and 6.9 are just two of the selected validation cases for the NEXP approximation.
The approximation accuracy cannot be guaranteed for all possible cases as it is shown in
Figs. 6.8 and 6.9. Moreover, even slight approximation errors result in a variation of the
structural performance, which leads to a different topological evolution.

(a). Design with the reduced strategy, c = 20.09. (b). Design with the unreduced strategy, c = 20.23.

Fig. 6.13 Comparison of the twoscale topologies using reduced and unreduced strategies.

A detailed comparison of the two topology optimization procedures is shown in Figure
6.14. The two topology evolutions at the structural scale follows similar topological variations
at the beginning iterations. The first obvious difference appears at iteration 13, where the
unreduced strategy initiates two holes inside the two inner branches (Figure6.14(d)) while the
reduced strategy doesn’t (Figure6.14(a)). Such differences are reasonable due to the NEXP
approximation error. As the optimization continues, the inner holes grow (Figure6.14(e) and
(f)) by the unreduced strategy and the topology eventually converges to Figure 6.13(b). On
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(a). Iteration 13, c = 16.91. (b). Iteration 19, c = 18.26. (c). Iteration 25, c = 19.83.

(d). Iteration 13, c = 17.20. (e). Iteration 19, c = 18.55. (f). Iteration 25, c = 19.87.

Fig. 6.14 Intermediate iterations of reduced (a,b,c) and unreduced (d,e,f) strategies.

the other hand, the initiated holes in the latter iteration (Figure6.14(b) and (c)) by the reduced
strategy eventually disappear and the structure converges to another local optima Figure
6.13(a). As can be observed from 6.13 and Figs. 6.14, the reduced strategy unexpectedly
produces design solutions with even lower compliance values than those obtained by the
unreduced strategy. To the best knowledge of the authors, the reason may be twofold. Firstly,
this phenomenon may be due to the numerical issues in topology optimization procedure,
where Figure 6.13(a) is the converged design result at iteration 39 while Figure 6.13(b) the
converged design result at iteration 31. It is natural to have an improved objective value with
additional design iterations. Secondly, another reason for this phenomenon lies in the NEXP
approximation error, which indicates that the NEXP approximated material is slightly stiffer
than the real material behavior. The above results also imply that though the NEXP model
may not perfectly replace the nonlinear behavior of local material optimization, it can still
produce local optimal designs at an extremely reduced computational cost.

6.6.3 Design of a finely discretized twoscale bridge-type structure

With the same NEXP model to approximate the nonlinear material behavior of local material
optimizations, we are now capable of designing a much larger scale or finely discretized
twoscale bridge-type structure of the previous example in Figure 6.10. The macroscopic
structure is discretized into 120 × 60 4-node bilinear elements and the same number of
topology design variables are correspondingly defined. The same cellular material model
with 60% material usage, i.e., 40% porosity as considered in the first example is attributed to
each macroscopic integration point.
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Topology optimization is performed at the macroscopic structural scale using the NEXP
material model. Volume constraint at the macroscopic structure is also set to 60%. The
other related parameters in the BESO method are evolution rate cer = 0.02 and filter radius
rmin = 5. By the BESO method, it takes 37 design iterations to reach the final design
as shown in Figure 6.15(a), where each design iteration requires 6 substeps to reach the
equilibrium with the same criterion considered in Section 6.6.2. The considered structure is
too finely discretized to be optimized using the simultaneous design strategy [151] (in total
120 × 60 × 4 local problems), for this reason we only give the linear design result using
isotropic porous material with 40% porosity in Figure 6.15(b) for comparison. Upon [11],
the effective Young’s modulus and Poisson’s ratio for the isotropic porous material with 40%
porosity obtained by inverse homogenization [132] corresponding the Hashin-Shtrikman
(HS) upper bound equal to 0.34 and 0.3, respectively. The NEXP model approximates the
behavior of an anisotropic material with 40% material porosity which has a maximized strain
energy value for the given strain status. As expected, structure in Figure 6.15(a) optimized
using the NEXP model has a much lower compliance than the one in Figure 6.15(b) optimized
using the assumed porous material corresponding to the HS upper bound. At the same time,
an obvious difference can be observed from the two topologies in Figure 6.15, which again
implies the necessity of twoscale material and structure design.

(a). Design with the NEXP material, c = 27.61. (b). Design with the HS upper bound, c = 37.85.

Fig. 6.15 Comparison of topology designs using the NEXP material and the SIMP material.

The optimized structure topology together with its retrieved optimal cellular material
topologies are shown in Figure 6.16. Due to the fine discretization at the structural scale,
the detailed optimal microstructures can barely be observed from the retrieved twoscale
topology. For a better visualization of microscopic material topology layout, we have
selected and zoomed three local zones as shown in Figure 6.16. As can be observed, uniaxial
materials may be sufficient at the main branches of the structure; while in order to have
a better structural performance, anisotropic materials have to be used at the joints of the
main branches due to the more complex loading status. It takes 10 hours for all 37 iterations
on the personal computer for solving such a large-scale problem with the NEXP model.
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Retrieving microscopic material topologies at the final converged solution itself requires
additional 2 hours computing time. Assuming 6 substeps required in average for each
structural design iteration and 2 hours computing time for each substep of each design
iteration, then the simultaneous design strategy (Chapter 5) would require in total more than
400 hours (37× 6× 2) computing time, which is obviously not affordable. It is important to
notice that the local material optimization problems are independent from each other and
one can further reduce the computing time by combining the reduced strategy and parallel
computing.

Fig. 6.16 Design of bridge-type structure with retrieved local optimal material topologies.

6.6.4 Design of a twoscale half MBB beam with fine discretization

Another benchmark problem, so-called MBB beam [12] is further considered in this example.
Similar tests have also been investigated in [125, 151] for the simultaneous material and
structure design, and recently in [58] for composite laminate orientation design. Due to
the symmetry of the problem, only half MBB beam is considered, as shown in Figure 6.17.
The macroscopic structure is discretized into 100× 40 4-node bilinear elements. The same
cellular material model with 40% porosity as considered in Section 6.6.1 is attributed to each
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macroscopic integration point, in total 4 × 100 × 40, 16000 cellular material models are
considered at the microscopic scale.

Similar to the previous example, topology optimization is performed at the macroscopic
structural scale using the NEXP model. Volume constraint at the macroscopic structure
is also set to 60%. The other related parameters in BESO algorithm are evolution rate
cer = 0.02 and filter radius rmin = 5. Figure 6.18(a) gives the converged design topology
at the 35 iteration. It requires 6 substeps in average for each design iteration to reach the
equilibrium with the criterion considered in Section 6.6.2. Comparison designs are given in
Figs. 6.18(b) and (c), where Figure 6.18(b) is designed using the isotropic material with 40%
porosity corresponding to the upper HS bound [11] and the structural topology in Figure
6.18(c) is designed with a prescribed holed microstructure with 40% porosity assumed at the
microscopic scale. Obvious differences can be observed from the three topologies and the
structure in Figure 6.18(a) is the stiffest among the three.

Element

Macro structure Micro cellular material

Mesh size

40 x 40 

Mesh size

100 x 40 

Fig. 6.17 Illustration of a finely discretized twoscale half MBB beam.

(a). Design with the NEXP material, c = 187.72. (b). Design with the HS upper bound, c = 318.33.

(c). Design with a prescribed microstructure of 40% porosity, c = 359.25.

Fig. 6.18 Comparison of topology designs using the different material models.
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Fig. 6.19 Design of half MBB beam with retrieved local optimal material topologies.

Figure6.19 gives the optimized structure topology together with its retrieved optimal
cellular material topologies. Three local zones are selected and zoomed for a better visualiza-
tion of microscopic material topologies. This test takes around 6 hours for all 35 iterations
on the personal computer. Retrieving microscopic material topologies at the final converged
solution requires one additional hour computing. Assuming 6 substeps required in average
for each structural design iteration and one hour computing for each substep of each design
iteration, then the simultaneous design strategy [151] would require in total more than 200
hours computing time for solving this problem on the personal computer. In the contrast,
using the current strategy with an approximate NEXP material model, it requires only 7 hours
computing to reach the final twoscale topology design, which can still be further reduced
with parallel computing.

6.7 Concluding remarks

In this Chapter, we have proposed to use the NEXP model to approximate the nonlinear
behavior of locally optimized or adapted materials within the developed simultaneous design
framework. It has been shown that this explicit NEXP approximation can well serve the
simultaneous design purpose providing ultra-resolution structures at a significantly reduced
computational cost.
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This work extends the NEXP model to a new regime of nonlinearity. At the same time
this work inherits also limitations of the NEXP model, such as the choices of test space
discretization, interpolation scheme, tensor decomposition strategy, etc. The computational
cost in the off-line and the on-line phases linearly depends on the number of points in the
database and the number of integration points in the considered structure, respectively. It
is important to note that the local material optimization problems are independent meaning
the tasks are largely parallel. By simultaneous use of parallel computing and of the NEXP
model (as did in Chapter 4), further reduction can be straightforwardly achieved.

The proposed simultaneous design framework is in general independent of the type of
design variables and of the optimization model. Other types of design variables such as
geometrical or even manufacturing process parameters can be considered instead of topology
design variables for both scales. More realistic material models may further be considered
at the microscopic scale with the consideration of more complex material and geometrical
nonlinearities. It would be highly promising that the NEXP model has a good performance in
approximating the nonlinearity of local optimization or adaptation of more realistic materials.

In addition, the decoupled approach using NEXP model also suits other macroscopically
defined objectives, such as displacements or stresses. As opposed to the macroscopically
defined objectives, when the design objective is defined locally at the microscopic scale,
the decoupled approach encounters difficulties and more specifically developed ROMs are
required.



Chapter 7

Conclusion and perspectives

In this work, we have developed firstly in Chapter 2 a multiscale design framework constituted
by two ingredients: topology optimization and multiscale modeling. In contrast to the
conventional nonlinear design of homogeneous structures, this design framework provides an
automatic design tool for nonlinear highly heterogeneous structures of which the underlying
material model is governed directly by realistic microstructural geometry and microscopic
constitutive laws.

With regard to the computational and data storage requirements due to multiple realiza-
tions of multiscale computing, we have introduced to the design framework a third ingredient
reduced-order modeling. We have developed in Chapter 3 an adaptive surrogate model for
the solutions at the microscopic scale, which has shown promising performance when applied
to the design framework for nonlinear elastic cases. As for more severe material nonlinearity,
we have employed directly in Chpater 4 the pRBMOR model with GPU acceleration, which
enables us to realize the design of multiscale elastoviscoplastic structures in realistic com-
puting times and with affordable memory requirements. Note that without reduced-order
modeling, the computational investment required for such designs is beyond nowadays (and
likely future) capabilities. Hence the proposed multiscale design framework by the synthesis
of the three ingredients allows, at moderate computational expense, to tackle problems that
were unanswerable before.

In pursuing higher-performance structures, in Chapter 5 we have extended the multiscale
design framework by introducing additional design variables at the microscopic scale to
perform simultaneous design of structure and material microstructures. In particular, we
treat the material optimization process integrally as a generalized nonlinear constitutive
behavior and propose an initial stiffness NR solution scheme to resolve this specific nonlinear
equilibrium problem. The proposed model enables to obtain optimal structures with spatially
varying properties realized by the simultaneous design of microstructures, which greatly
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favors the 3D printing setting that a single material can usually be used for fabrication. We
have improved the design efficiency in Chapter 6 by a straightforward application of the
NEXP model to approximate the generalized nonlinear constitutive behavior. It has been
shown that the explicit NEXP approximation can well serve the simultaneous design purpose
providing ultra-resolution structures at a significantly reduced computational cost.

To the best knowledge of the author, design of multiscale structures is a relatively new
field that there has been very limited research, especially for nonlinear cases. Many potential
developments for the proposed multiscale design framework can be carried out with respect
to any of the three ingredients: topology optimization, multscale modeling and reduced-order
modeling. In the following we give our perspectives on potential extensions based on the
proposed multiscale design framework.

- As can be observed from Figure 2.10, the presence of microstructures results in high
concentrations with stress values much higher than the effective values evaluated at the
macroscopic scale. These stress concentrations may result in the initial material failure
or crack at the microscopic scale. Therefore, there is a necessity to limit or constrain the
maximum stress values at the microscopic scale rather than at the macroscopic scale when
it comes to the design of heterogeneous structures such as laminated composite, concrete
and alloy structures.

- In the Chapters 2-4, we have assumed a fixed RVE at the microscopic scale. By the
developed multiscale design framework, we can consider as well a set of RVEs with variant
microstructures and material compositions. As for model reduction, it would require
an individual ROM for each considered RVE. The ultimate goal would be simultaneous
design of structure and the underlying RVEs in terms of geometrical or even manufacturing
process parameters. Nevertheless, developing an individual ROM for each of the feasible
RVEs is obviously impractical due to the enormous number of potential RVEs. In such
case, one potential strategy is to develop specific parameterized ROMs to serve the design
requirements.

- As have been discussed in the Section 5.4.3 and can be seen from Figure 5.11(a), the
connectivity among the optimized material microstructures is not guaranteed due to the
assumption of a clear separation of scales. Such designs with unconnected microstructures
are not manufacturable from practical point of view. This could be alleviated by imposing
an artificial length ratio and connect the optimized microstructres at the neighboring
Gauss points by certain transitional microstructures, however the expected mechanical
performance is no longer guaranteed consequently. Alternatively, one may apply more
sophisticated the so-called marco-meso models with the implementations of higher-order
homogenization schemes, where the length ratio is explicitly defined.
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Abstract This paper presents a Matlab code for the opti-
mal topology design of materials with extreme properties.
For code compactness, an energy-based homogenization
approach is adopted rather than the asymptotic approach.
The effective constitutive parameters are obtained in terms
of element mutual energies. A corresponding solution
scheme with periodic boundary conditions is implemented.
With a single constraint on material volume fraction, this
code allows to maximize or minimize objective functions
constituted by homogenized stiffness tensors such as bulk
modulus, shear modulus and Poisson’s ratio. The complete
Matlab code built on top of the 88-line code (Andreassen
et al. Struct Multidiscip Optim 43(1):1–16, 2011) is given
in the Appendix.

Keywords Topology optimization · Microstructure ·
Homogenization · Periodic boundary conditions · Matlab

Nomenclature

ε Aspect ratio between the macro and micro scales
η Numerical damping coefficient
λ Lagrange multiplier
ρe Element density design variable
ρnew

e Updated element density variable
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ε
∗(kl)
pq Periodic fluctuation strain fields

ε
0(kl)
pq Unit test strain fields

ε0ij Prescribed strain fields

ε
A(kl)
pq Superimposed strain fields

ϑ Upper bound of volume fraction
Be Term obtained from the optimality condition
c Objective function
d Spatial dimension
EH

ijkl Homogenized elasticity tensor in index notation

EH
ij Homogenized elasticity tensor in matrix notation

E0 Solid material Young’s modulus
Ee Element Young’s modulus
Eijkl Elasticity tensor in index notation
Emin Void material Young’s modulus (Ersatz material)
m Design variable move limit
N Number of finite elements
p Penalization factor
q

ij
e Element e mutual energy

Qij Summed element mutual energies
u Microscale displacement field
u∗ Microscale periodic fluctuation field
uε Macroscale displacement field depending on ε

v Microscale Y-periodic admissible displacement
fields

ve Element volume

wk
i Periodic displacement prescribed on opposite

nodes
x Macroscale cartesian coordinate
Y Base cell domain
y Microscale cartesian coordinate
y0
j Base cell size in direction j

W̄ Periodic displacement prescribed on the cell
F External force vector



L. Xia, P. Breitkopf

K Global stiffness matrix
k0 Element stiffness matrix with unit Young’s

modulus
ke Element stiffness matrix
U Global displacement vector
uA(ij)

e Element displacement vector for load case ij

1 Introduction

Topology optimization (Bendsøe and Kikuchi 1988) was
first employed for the material design by Sigmund (1994)
via an inverse homogenization approach. This was followed
by a series of systematic works (e.g., Sigmund and Torquato
1997; Sigmund 2000; Gibiansky and Sigmund 2000). The
subject has been later successively addressed by the density-
based approach (e.g., Neves et al. 2000; Guest and Prévost
2007; Zhang et al. 2007), level-set method (e.g., Challis
et al. 2008; Wang et al. 2014), topological derivative (e.g.,
Amstutz et al. 2010), and ESO-type method (e.g., Huang
et al. 2011). Figures 1, 2 and 3 show some representative
extremal microstructures designed by topology optimiza-
tion. Functionally graded material and structure designs
have been given by Paulino et al. (2009) and Almeida et al.
(2010). Another closely related area of research is concur-
rent material and structural design (e.g., Rodrigues et al.
2002; Zhang and Sun 2006; Xia and Breitkopf 2014a, 2015).

After the 99-line Matlab code in the seminal article by
Sigmund (2001), a series of educational papers with com-
pact Matlab implementations have significantly contributed
to the popularity and to the development of topology opti-
mization. These include a coupled level set method using
the FEMLAB package by Liu et al. (2005), the ESO method
by Huang and Xie (2010), the discrete level-set method by
Challis (2010), the 199-line code for Pareto-optimal tracing
with the aid of topological derivatives by Suresh (2010), the
88-line Matlab code by Andreassen et al. (2011), the Matlab
code for the generation of polygonal meshes (PolyMesher)
and the topology optimization framework (PolyTop) that
are based on Talischi (2012a, b), and a parallel computing
implementation (Mahdavi et al. 2006).

The present authors have also benefited from these edu-
cational papers, for instance, the multi-component struc-

tural system designs (Xia et al. 2012, 2013) are given
within the framework of the 99-line code (Sigmund 2001).
The reduced multiscale topology optimization (Xia and
Breitkopf 2014b) uses the discrete level-set method (Chal-
lis 2010). Moreover, the authors’ recent work on con-
current material and structural design (Xia and Breitkopf
2014a, 2015) builds on top of the 88-line code framework
(Andreassen et al. 2011) along with the ESO optimizer
(Huang and Xie 2010).

The present work extends the 88-line code to the opti-
mal design of materials with extreme properties. We follow
the design strategy proposed by Sigmund (1994), where the
homogenized material constitutive parameters are evaluated
in terms of element mutual energies. For effective mate-
rial property prediction, rather than using the conventional
asymptotic expansion (Guedes and Kikuchi 1990), we adopt
an equivalent energy-based homogenization approach that
employs average stress and strain theorems (Hashin 1983).
It will be shown in Section 6 that the applied design algo-
rithm with the Matlab implementation (see the Appendix)
can generate extremal microstructures with similar topology
configurations as in Figs. 1, 2 and 3.

The remainder of the paper is organized as follows:
in Section 2, homogenization theory is briefly reviewed.
Section 3 presents the implementation of periodic bound-
ary conditions. Section 4 gives the optimization model.
Section 5 explains the Matlab implementation. Section 6
gives several numerical examples using the proposed code.
Conclusions are drawn in Section 7. The Matlab implemen-
tation is given in the Appendix.

2 Homogenization

Within the scope of linear elasticity, the equivalent con-
stitutive behavior of periodically patterned microstructures
(Fig. 4) can be evaluated using the homogenization method
(Guedes and Kikuchi 1990). Consider a single cell Y in R3

Y =]0, y0
1 [×]0, y0

2 [×]0, y0
3 [, (1)

where y0
1 , y

0
2 , and y0

3 are the dimensions of the base cell in
the three directions.

Following the asymptotic homogenization, the
macroscale displacement field uε(x) depending on the

Fig. 1 Microstructures with
maximized bulk moduli: the first
two from Sigmund (2000), the
third from Zhang et al. (2007),
the last from Amstutz et al.
(2010) (from left to right)
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Fig. 2 Microstructures with
maximized shear moduli: the
first two from Neves et al.
(2000), the third from Huang
et al. (2011), the last from
Amstutz et al. (2010) (from left
to right)

the aspect ratio ε between the macro and micro scales is
expanded as

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) . . . , y = x/ε,

(2)

where the involved functions are dependent on the global
macroscopic variable x and the local microscopic variable
y. The dependence on y = x/ε implies that a quantity varies
within a very small neighborhood of a macroscopic point
x, which may be viewed as “stretching” the microscale so
it becomes comparable to the macroscale. When ε � 1,
the dependence on y can be considered periodic for a fixed
macroscopic point x.

When only the first order terms of the asymptotic expan-
sion in (2) are considered, the homogenized stiffness tensor
EH

ijkl is given by averaging the integral over the the base cell
Y as

EH
ijkl = 1

|Y |
∫

Y

Eijpq(ε0(kl)
pq − ε∗(kl)

pq )dY, (3)

where the Einstein index summation notation is used and
ε
∗(kl)
pq is the Y-periodic solution of∫
Y

Eijpqε∗(kl)
pq

∂vi

∂yj

dY =
∫

Y

Eijpqε0(kl)
pq

∂vi

∂yj

dY, (4)

where v is Y-periodic admissible displacement field and
ε
0(kl)
pq corresponds to the three (2D) or six (3D) linearly
independent unit test strain fields.

With the intention of presenting a compact Matlab code,
the energy-based approach which employs average stress
and strain theorems is adopted in this work instead of the
asymptotic approach. The energy-based approach imposes
the unit test strains directly on the boundaries of the base
cell, inducing ε

A(kl)
pq which corresponds to the superim-

posed strain fields (ε
0(kl)
pq − ε

∗(kl)
pq ) in (3). According to

Hashin (1983), these are two equivalent approaches for
the prediction of material effective properties. A detailed
implementation of periodic boundary conditions is given in
Section 3.

With the intension to favor effective existing algorithms
used in topology optimization, (3) is rewritten in an equiv-
alent form in terms of element mutual energies (Sigmund
1994)

EH
ijkl = 1

|Y |
∫

Y

Epqrsε
A(ij)
pq εA(kl)

rs dY. (5)

In finite element analysis, the base cell is discretized into N

finite elements and (5) is approximated by

EH
ijkl = 1

|Y |
N∑

e=1

(uA(ij)
e )T keuA(kl)

e , (6)

where uA(kl)
e are the element displacement solutions corre-

sponding to the unit test strain fields ε0(kl), and ke is the
element stiffness matrix. In 2D cases, we note that 11 → 1,
22 → 2, and 12 → 3, allowing to write (6) in an expanded
form
⎡
⎣ EH

11 EH
12 EH

13
EH
21 EH

22 EH
23

EH
31 EH

32 EH
33

⎤
⎦ =

⎡
⎣ Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤
⎦ , (7)

where the terms Qij

Qij = 1

|Y |
N∑

e=1

q
(ij)
e , (8)

are the sums of element mutual energies q
(ij)
e

q
(ij)
e = (uA(i)

e )T keu
A(j)
e . (9)

3 Periodic boundary conditions (PBC)

The strain fields ε
A(kl)
pq in (5) are evaluated by solving the

base cell equilibrium problem subjected to the unit test
strains ε

0(kl)
pq . Under the assumption of periodicity, the dis-

placement field of the base cell subjected to a given strain

Fig. 3 Microstructures with
minimized negative Poisson’s
ratios: the first two from
Amstutz et al. (2010), the last
two from Wang et al. (2014)
(from left to right)
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x1
x2 y1

y2

Fig. 4 Illustration of a material point constituted by periodically
patterned microstructures

ε0ij can be written as the sum of a macroscopic displacement
field and a periodic fluctuation field u∗

i (Michel et al. 1999)

ui = ε0ij yj + u∗
i . (10)

In practice, (10) cannot be directly imposed on the
boundaries because the periodic fluctuation term u∗

i is
unknown. This general expression needs to be transformed
into a certain number of explicit constraints between the cor-
responding pairs of nodes on the opposite surfaces of the
base cell (Xia et al. 2003). Consider a 2D base cell as shown
in Fig. 5, the displacements on a pair of opposite boundaries
are{

uk+
i = ε0ij y

k+
j + u∗

i

uk−
i = ε0ij y

k−
j + u∗

i ,
(11)

where superscripts “k+” and “k−” denote the pair of two
opposite parallel boundary surfaces that are oriented per-
pendicular to the k-th direction (k = 1, 2, 3). The periodic
term u∗

i can be eliminated through the difference between
the displacements

uk+
i − uk−

i = ε0ij (y
k+
j − yk−

j ) = ε0ij	yk
j . (12)

For any given parallelepiped base cell model, 	yk
j is con-

stant. In the case of Fig. 5, we have 	y1
1 = y0

1 , 	y1
2 = 0

y1+y1-

y1

y2

y0
1

y0
2

j j

Fig. 5 A 2D rectangular base cell model

and 	y2
1 = 0, 	y2

2 = y0
2 . Thus, with a specified ε0ij , the

right-hand side becomes a constant

uk+
i − uk−

i = wk
i , (13)

since wk
i = ε0ij	yk

j . This form of boundary conditions can
be directly imposed in the finite element model by con-
straining the corresponding pairs of nodal displacements.
At the same time, this form of boundary conditions meets
the periodicity and the continuity requirements for both dis-
placement as well as stress when using displacement-based
finite element analysis (Xia et al. 2006).

4 Optimization model

4.1 Modified SIMP approach

The base cell is discretized into N finite elements and
the same number of density design variables ρ ∈ R

N

are correspondingly defined. Using the modified SIMP
approach (Sigmund 2007), the element Young’s modulusEe

is defined as

Ee(ρe) = Emin + ρ
p
e (E0 − Emin), (14)

whereE0 is the Young’s modulus of solid material andEmin

is the Young’s modulus of the Ersatz material, which is an
approximation for void material using compliant material
(Allaire et al. 2004) to prevent the singularity of the stiffness
matrix. ρe takes values between 0 and 1, with these limits
corresponding to the Ersatz and solid materials respectively.
p is a penalization factor introduced to drive the density
distribution closer towards the so-called black-and-white
solution.

The mathematical formulation of the optimization prob-
lem reads as follows

min
ρ

: c(EH
ijkl(ρ))

s.t. : KUA(kl) = F(kl), k, l = 1, . . . , d
: ∑N

e=1 veρe/|Y | ≤ ϑ

: 0 ≤ ρe ≤ 1, e = 1, . . . , N

(15)

where K is the global stiffness matrix, UA(kl) and F(kl) are
the global displacement vector and the external force vector
of the test case (kl) respectively. d is the spatial dimension,
ve denotes the element volume, and ϑ is the upper bound
on the volume fraction. The objective c(EH

ijkl) is a func-
tion of the homogenized stiffness tensors. For instance, in
the 2D case, the maximization of the material bulk modulus
corresponds to the minimization of

c = − (E1111 + E1122 + E2211 + E2222) , (16)
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and the maximization of material shear modulus corre-
sponds to the minimization of

c = −E1212. (17)

4.2 Numerical solution of the homogenization equations

When both the geometry and the loading exhibit sym-
metries, which is the case here, the periodic boundary
conditions presented in Section 3 can be simplified to con-
ventional boundary conditions (Hassani and Hinton 1998b).
To keep the derivations general, such simplification is not
applied in the present work. Instead, the periodic boundary
conditions are imposed in a direct manner (see Section 3).
With regard to the finite element solution of (13), the
direct solution scheme eliminating the redundant unknowns
is adopted here. Note that, apart from the direct solution
scheme, there exist two other types of solution schemes
using penalty methods and Lagrange multipliers (Michel
et al. 1999).

Separating the global displacement vector U into four
parts: Ū1 denotes the prescribed displacement values, U2

denotes the unknowns corresponding to the interior nodes,
U3 and U4 denote unknowns corresponding to the nodes
located on the opposite boundaries of the base cell satisfying
U4 = U3 +W̄, where W̄ is a prescribed value computed via
a given ε0(kl) according to (13). The equilibrium equation in
(15) can be expanded to

⎡
⎢⎢⎣
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Ū1

U2

U3

U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
F1
F2
F3
F4

⎤
⎥⎥⎦ , (18)

where F1 is an unknown vector and equals to the reaction
forces at the nodes with prescribed displacements, F2 = 0,
and F3 + F4 = 0 due to the periodicity assumption. Note
that K is symmetric, i.e. Kij = Kji in (18). Eliminating
the first row, adding the third and fourth rows, and using the
relationship U4 = U3 + W̄, (18) reduces to

[
K22 K23 + K24

sym. K33 + K34 + K43 + K44

] [
U2

U3

]

= −
[

K21

K31 + K41

]
Ū1 −

[
K24

K34 + K44

]
W̄.

(19)

and allows for the solution of the system.

4.3 Optimality criteria method

Once the displacement solution is obtained, the optimization
problem (15) is solved by means of a standard optimality

criteria method. Following (Bendsøe and Sigmund 2003),
the heuristic updating scheme is formulated as

ρnew
e =

⎧⎨
⎩
max(0, ρe − m) if ρeB

η
e ≤ max(0, ρe − m)

min(1, ρe + m) if ρeB
η
e ≥ min(1, ρe + m)

ρeB
η
e otherwise,

(20)

where m is a positive move limit, η is a numerical damping
coefficient, andBe is obtained from the optimality condition
as (Bendsøe and Sigmund 2003)

Be = − ∂c
∂ρe

λ ∂V
∂ρe

, (21)

where the Lagrange multiplier λ is chosen by means of a
bisection algorithm to enforce the satisfaction of the con-
straint on material volume fraction. The sensitivity of the
objective function ∂c/∂ρe is computed using the adjoint
method (Bendsøe and Sigmund 2003)

∂EH
ijkl

∂ρe

= 1

|Y |pρ
p−1
e (E0 − Emin)(u

A(ij)
e )T k0uA(kl)

e , (22)

in accordance with the objective definition, where k0 is the
element stiffness matrix for an element with unit Young’s
modulus. When a uniformmesh is used, the element volume
ve is set to 1 and therefore ∂V /∂ρe = 1.

In order to ensure the existence of the solution to the
optimization problem (15), sensitivity and density filter-
ing schemes are used following (Andreassen et al. 2011)
to avoid the formation of checkerboard pattern and the
mesh-dependency issue.

5 Matlab implementation

In this section the Matlab code (see Appendix) is explained.
The present code is built on top of the 88-line code
(Andreassen et al. 2011). The first 38 lines are left
unchanged. Material properties are defined in lines 4 to 6.
The element stiffness matrix and the corresponding nodal
informations are defined in lines 8 to 17. Matrices that are
to be used for sensitivity and density filtering are predefined
in lines 19 to 38. The design domain is assumed to be rect-
angular and discretized into square plane stress elements.
The main program is called from the Matlab prompt by the
command

topX(nelx,nely,volfrac,penal,rmin,ft)

where nelx and nely denote the number of elements
along the horizontal and vertical directions respectively,
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volfrac is the prescribed volume fraction, penal is the
penalization factor p, rmin is the filter radius, and ft spec-
ifies whether sensitivity filtering (ft=1) or density filtering
(ft=2) is to be used.

The following subsections present the original parts of
code developed in the scope of the current work. Apart from
these, two minor changes are made to the original 88-line
code: line 103, the stop condition is set to 1e-9 to enforce
the satisfaction of the volume fraction constraint; line 111,
mean(xPhys(:)) is used for programming consistency.

5.1 Lines 39–56: periodic boundary conditions

Periodic boundary conditions (Section 3) are defined in
lines 39 to 56. e0 defines the three unit test strain fields.
The base cell shown in Fig. 6 is discretized into 3 × 3
elements for the purpose of illustration. The degrees of free-
dom (DOFs) are divided into four sets as presented in (18)

⎧⎪⎪⎨
⎪⎪⎩

d1 = {7, 8, 31, 32, 25, 26, 1, 2}
d15 = {11, 12, 13, 14, 19, 20, 21, 22}
d3 = {3, 4, 5, 6, 15, 16, 23, 24}
d4 = {27, 28, 29, 30, 9, 10, 17, 18},

(23)

where d1 contains the DOFs of the four corner points (A, B,
C, D), d3 contains the DOFs on the left and bottom bound-
aries except the corner DOFs, d4 contains the DOFs on the
right and top boundaries except the corner DOFs, and d2
contains the remaining inner DOFs. In practice, one has to
fix at least one node to avoid rigid body motion when solv-
ing the PBC problem. When point A is chosen to be fixed,
points B, C, D are prescribed with values corresponding to
the three unit test strain fields computed according to (13) in
lines 51 to 55. wfixed in line 56 corresponds to wk

i in (13)
and W̄ in (19), is the constant difference vector between the
DOFs of d3 and d4.
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Fig. 6 A base cell discretized into 3 × 3 elements

Fig. 7 Two initial guess topologies for a 100 × 100 base cell

5.2 Lines 57–71: initialization

In the 2D case, the base cell model needs to be evaluated
three times corresponding to the three unit test strain fields.
Lines 58–60 preallocate three cells qe, Q and dQ to store
the element mutual energies, the summed mutual energies,
and the sensitivities of the summed mutual energies.

Lines 61–69 give the initial guess of material topology
layout (the left figure in Fig. 7). In structural compliance
minimization designs (Sigmund 2001), the initial guess usu-
ally consists of a uniformly distributed density field to avoid
local minimum designs. However, this cannot be employed
for material designs because the applied periodic boundary
conditions would result in a uniformly distributed sensi-
tivity field, thus making the variable update impossible.
The influence of an initial guess on the final designs has
been thoroughly discussed in Sigmund and Torquato (1997),
Sigmund (2000), and Gibiansky and Sigmund (2000), how-
ever the specific initial guesses are not provided. Following
Amstutz et al. (2010), we simply define a circular region
with softer material at the center of the base cell as shown
in Fig. 7.

5.3 Lines 76–93: finite element solution, objective and
sensitivity analysis

The system in (19) is assembled and solved in lines 76–81.
Cells qe, Q, and dQ are evaluated in lines 83–90. Line 91
calculates the objective function in (16) for the maximiza-
tion of material bulk modulus. Sensitivities are computed
lines 92 and 93, and stored in dc and dv.

6 Illustrative examples

As discussed by Sigmund and Torquato (1997), Sigmund
(2000) and Gibiansky and Sigmund (2000), topology opti-
mization design of materials with extreme properties allows
for multiple local minima. The initial guess of material



Design of materials using topology optimization and energy-based homogenization approach in Matlab

topology layout, the shape of base cell, filter radius, penal-
ization factor and other parameters all have influence on
the design solution. In the following examples, we show
how to use the present Matlab code to design materials with
extreme properties. All of the following tests are performed
using Matlab 8.4.0.150421 (R2014b).

6.1 Material bulk modulus maximization

According to Bendsøe and Sigmund (2003), the so-called
one-length scale microstructures can be obtained by setting
the filter radius to a comparatively large value, saying 10 %
of the cell length at the beginning iterations, then gradually
decease its value during the optimization process. Here, we
simply set the filter radius to 5. The penalization factor is set
to 3. Materials with maximized bulk moduli shown in Fig. 8
can be obtained by calling

topX(100,100,0.5,3,5,1)

and

topX(100,100,0.5,3,5,2)

respectively. Both filtering schemes converge after around
200 iterations, however the sensitivity filtering scheme fails
in giving a clear structural layout.

To favor solutions with clearly discernible topolo-
gies, Bendsøe and Sigmund (2003) proposed to gradually
increase the penalization factor during the optimization
process. Note that the topology may be driven closer
towards a black-white solution if the penalization value
is increased. It should be noted however, that the prob-
lem in (15) is non-convex for values of p > 1. Thus,
while high penalization values will result in cleaner topolo-
gies, the algorithm is more likely to get trapped in a local
minimum.

Fig. 8 Materials with maximized bulk moduli obtained using sensi-
tivity filtering (left, c = −0.4388, iteration 163) and density filtering
(right, c = −0.6537, iteration 216) with penalty factor p = 3 and
filter radius r = 5

Fig. 9 Materials with maximized bulk moduli obtained using sensi-
tivity filtering (left, c = −0.5636, iteration 269) and density filtering
(right, c = −0.6207, iteration 160) with penalty factor p = 5 and
filter radius r = 5

In this work, the penalization factor is set as a constant
value, thus we simply increase the value to 5. Recalling

topX(100,100,0.5,5,5,1)

and

topX(100,100,0.5,5,5,2)

respectively, we obtain materials shown in Fig. 9. It can
be observed that the increased penalization value results in
clearer topology layout in the case of sensitivity filtering,
while has little influence in the case of density filtering.

Similar to the implementation of penalization, filtering
scheme is applied here to regularize the problem in (15), that
means a smaller filter radius will result in a better solution
because higher frequency details are allowed by the low-
pass filer, thus enriching the solution. To show the influence
of the filter radius on the solutions, the same problem is
solved again with filter radius r = 2 by calling

topX(100,100,0.5,5,2,1)

Fig. 10 Materials with maximized bulk moduli obtained using sensi-
tivity filtering (left, c = −0.6793, iteration 183) and density filtering
(right, c = −0.6540, iteration 129) with penalty factor p = 5 and
filter radius r = 2
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and

topX(100,100,0.5,5,2,2)

respectively. As shown in Fig. 10, the decreased filter radius
value results in a more detailed microstructure when using
sensitivity filtering, while a slightly varied microsctructure
in the case of density filtering. As expected, both materials
in Fig. 10 possess higher bulk moduli than those in Fig. 9
due to the decreased filter radius value.

We note that when using sensitivity filtering (left figure
in Fig. 8) the minimum is obtained at iteration 10, after
which the algorithm diverges. This is a common phe-
nomenon for all the following tests when using sensitivity
filtering. Sensitivity filtering scheme is fully heuristic in
nature and was developed for the specific case of com-
pliance minimization (Sigmund 2001). Thus, there is no
guarantee it will perform well for material designs. In the
contrary, density filtering scheme does not suffer from the
concerned issue and has more robust performances accord-
ing to Figs. 8, 9, and 10. Therefore, density filtering scheme
is in general more preferable for the design of material
microstructures.

The present Matlab code also allows the design of rectan-
gular base cells. The two rectangular microstructures shown
in Fig. 11 are obtained by calling

topX(150,100,0.5,5,2,1)

Fig. 11 Materials with maximized bulk moduli obtained using sensi-
tivity filtering (top, c = −0.6730, iteration 345) and density filtering
(bottom, c = −0.6317, iteration 349) with penalty factor p = 5 and
filter radius r = 2

and

topX(150,100,0.5,5,2,2)

using sensitivity filtering and density filtering respectively.
Again, it can be observed that a small value for the filter
radius results in a more detailed microstructure in the case
sensitivity filtering is used.

From these results, it can be argued that the results
obtained using density filtering are less sensitive to the
choice of optimization parameters such as penalization
factor and filter radius.

6.2 Material shear modulus maximization

To design materials with maximized shear moduli, one may
simply replace lines 91 and 92 of the code by

c=-Q(3,3);

dc=-dQ{3,3};

and the corresponding designs in Fig. 12 can be obtained by
calling

topX(100,100,0.5,3,5,1)

and

topX(100,100,0.5,3,5,2)

respectively. Compared to the maximization of material
bulk modulus, material shear modulus maximization design
is less sensitive to the choice of filtering scheme and does
not require a high penalization factor to enforce topologi-
cally clear designs.

Replacing min(nelx,nely)/3 by min(nelx,
nely)/6 in line 64, we consider another initial guess with
a smaller circular region at the center of the base cell (the
right figure in Fig. 7). With the modified initial guess, the

Fig. 12 Materials with maximized shear moduli obtained using sen-
sitivity filtering (left, c = −0.1256, iteration 12) and density filtering
(right, c = −0.1213, iteration 72) with penalty factor p = 3 and filter
radius r = 5
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same function calls result in different material topology
designs in Fig. 13. The difference between the results in
Figs. 12 and 13 indicates that the choice of initial mate-
rial topology guess has an severe influence on the final
designs. As argued by Bendsøe and Sigmund (2003), dif-
ferent initial guesses may lead to different microstructures
which may possess similar material properties due to the
non-uniqueness of the solution. Sometimes the microstruc-
tural topologies obtained from different initial guesses are
in fact the shifted versions of the same topology. It is also
suggested to start with an old design to a similar problem,
which may save considerable amount of computing time as
can be seen from a recent work by Andreassen et al. (2014)
for 3D material designs with negative Poisson ratio.

By decreasing the convergence criterion from 0.01 to
0.001, i.e, replacing line 73 by

while (change > 0.001)

materials with higher shear moduli as shown in Fig. 14
can be achieved by the same function calls as above while
requiring more design iterations. Discussion on this topol-
ogy transition has been given in a recent review paper
(Sigmund and Maute 2013) that “The optimization rapidly
finds a fairly good design but requires a very large number
of iterations for just slight improvements in objective func-
tion but rather large changes in geometry.” (page 1045), and
“To the best of our knowledge remedies for this issues are
unknown and we pose it as a challenge to the community to
come up with more efficient updates for continuous variable
approaches.” (page 1046).

6.3 Materials with negative Poisson’s ratio

The design of materials with negative Poisson’s ratio μ =
E1122
E1111

using topology optimization is a challenging subject.
As shown by Sigmund (1994), the construction of negative

Fig. 13 Materials with maximized shear moduli obtained from a
modified initial guess using sensitivity filtering (left, c = −0.1118,
iteration 58) and density filtering (right, c = −0.1043, iteration 64)
with penalty factor p = 3 and filter radius r = 5

Fig. 14 Materials with maximized shear moduli obtained from the
modified initial guess using sensitivity filtering (left, c = −0.1175,
iteration 179) and density filtering (right, c = −0.1057, iteration 734)
with the convergence criterion set as 0.001, penalty factor p = 3 and
filter radius r = 5

Poisson’s ratio materials with the present model using an
OC-type optimizer is difficult. Successful design of nega-
tive Poisson’s ratio materials requires imposing additional
constraints for instance on isotropy or on bulk modulus.
In order to consider multiple constraints in the design, one
can either use a specially developed OC-type method (Yin
and Yang 2001)), or employ more versatile mathemati-
cal programming optimizers such as the method of mov-
ing asymptotes (MMA) (Svanberg 1987) implemented by
Bendsøe and Sigmund (2003) and more recently by
Andreassen et al. (2014) and Wang et al. (2014).

In order to construct negative Poisson’s ratio materials
with the present model, we propose to define a relaxed form
of objective function

c = E1122 − βl(E1111 + E2222), (24)

where β ∈ (0, 1) is a fixed parameter defined by the user
and exponential l is the design iteration number. With this
objective function, optimizer tends to maximize material
horizontal and vertical stiffness moduli at the beginning
iterations. When the optimization process advances, i.e., l

increases, optimizer tends to minimize the value of E1122

such that materials with negative Poisson’s ratios are con-
structed.

Choosing β = 0.8, one need to replace lines 91 and 92
of the Matlab code by

c = Q(1,2)-(0.8ˆloop)*(Q(1,1)+Q(2,2));

dc = dQ{1,2}-(0.8ˆloop)*(dQ{1,1}+dQ{2,2});

and modify line 105 to

xnew = max(0,max(x-move,min(1,...

min(x+move,x.*(-dc./dv/lmid)))));
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Fig. 15 Materials with negative Poisson’s ratio obtained using sen-
sitivity filtering (left, μ = −0.346, volumefraction = 0.5, not con-
verged) and density filtering (right, μ = −0.239, volumefraction =
0.437, not converged) with penalty factor p = 3 and filter radius r = 5

omitting the numerical damping coefficient. The damping
coefficient has to be removed here because both positive and
negative sensitivities appear when the objective function of
(24) is considered. The constraint on the material volume
fraction may not be active during the optimization process
as can be seen from the following tests. Design solutions are
more sensitive to the choice of the initial guess and other
parameters as compared to the previous two cases. As the
numerical damping coefficient is removed, the move limit
is decreased from 0.2 to 0.1 to stabilize the algorithm, i.e.,
modifying line 102 to

l1=0; l2=1e9; move = 0.1;

With all these modifications to the Matlab code, calling

topX(100,100,0.5,3,5,1)

and

topX(100,100,0.5,3,5,2)

Fig. 16 Materials with negative Poisson’s ratio obtained from a
modified initial guess using sensitivity filtering (left, μ = −0.323,
volumefraction = 0.5, not converged) and density filtering (right,
μ = −0.448, volumefraction = 0.5, iteration 113) with penalty factor
p = 3 and filter radius r = 5

results in the materials with negative Poisson’s ratio as
shown Fig. 15. Note that neither result of the two shown in
Fig. 15 is a converged solution. When employing sensitiv-
ity filtering scheme, the design process oscillates between
two topologies after around 40 iterations and after around
30 iterations in the case of density filtering. The volume
fraction constraint is not active in the case of density filter-
ing, which implies that the solution reached a stable state
where any addition of material results in a worse topol-
ogy (volumefraction = 0.437). Theoretically speaking, the
Lagrange multiplier λ in (21) should equal zero within this
context. A zero-valued Lagrange multiplier would trigger
a division by zero error in the OC update scheme. This is
fortunately avoided thanks to an unintentional particular-
ity of the bisection algorithm used to find this Lagrange
multiplier: the lowest value it could ever take is λmin ≈
(10−9 − 0)/2 = 5 × 10−10, thus allowing the algorithm to
continue.

As in Section 6.2, we consider an alternative ini-
tial guess (the right figure in Fig. 7). Substituting
min(nelx,nely)/6 in line 64, the same function calls
result in the designs shown in Fig. 16. The left figure in
Fig. 16 is one of the two states when oscillation begins after
around 50 iterations when using sensitivity filtering. The
right figure in Fig. 16 with Poisson’s ratio μ = −0.446
is a converged solution at iteration 113 when using den-
sity filtering, where note that the volume fraction constraint
is satisfied. It is shown by this example that the OC-
type optimizer is able to generate well-designed negative
Poisson’s ratio materials without defining additional con-
straints provided that the tuning parameters are carefully
adjusted.

7 Conclusions

This paper extends the 88-line code (Andreassen et al.
2011) to the design of materials with extreme properties.
The adoption of an energy-based homogenization approach
instead of the asymptotic approach significantly simplifies
the numerical implementation. Periodic boundary condi-
tions and the elimination of the redundant unknowns are
presented in detail together with the corresponding numeri-
cal implementation.

The present code uses an OC-type optimizer with a single
constraint on volume fraction and is able to design materi-
als with extreme bulk and shear modulus. With a proposed
relaxed objective function (24), the present code also allows
to construct materials with negative Poisson’s ratio without
introducing additional constraints such as symmetry or on
isotropy.

Note that the discussions on the influence of the opti-
mization parameters and the filtering schemes on the
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solutions in the present work are mostly based on pure
observations. More rigorous explanations would require
further investigations.
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