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Résumé 

Dans un contexte de changements climatiques, le stress hydrique et la gestion de l'eau sont 

considérées comme une contrainte importante pour le secteur agricole. Ainsi la sélection pour 

la tolérance à la sécheresse est devenue un objectif majeur pour de nombreux programmes de 

sélection. La vulnérabilité à la cavitation est considérée comme un trait d'intérêt pour la 

sélection à une sécheresse extrême, en particulier pour les plantes ligneuses. Pourtant, 

l'étendue de sa variabilité et sa relation avec la tolérance à la sécheresse sont mal documentées 

à l’échelle intra-spécifique, et en particulier dans les espèces cultivées. Dans cette étude, la 

variabilité génétique de la vulnérabilité à la cavitation a été étudiée sur trois dispositifs 

expérimentaux différents avec trois arbres d’intérêt agronomique qui sont menacés par le 

risque de sécheresse: noyer, hévéa et pommier. Une faible ou aucune, variation de la 

vulnérabilité à la cavitation a été trouvée dans les espèces étudiées ainsi qu'entre deux espèces 

de noyers malgré les différences de traits précédemment rapportés. Ces résultats suggèrent 

une canalisation de la résistance à la cavitation dans les organes critiques (branches, tiges). 

Chez le pommier, le porte-greffe est soupçonné de provoquer de la plus étroite résistance à la 

cavitation sur le greffon. Par contre, des différences ont bien étés trouvées sur d’autres traits 

de réponse à la sécheresse comme la régulation stomatique, la chute des feuilles ou encore la 

vulnérabilité à la cavitation dans le pétiole. Ainsi, la vulnérabilité à la cavitation des organes 

critiques n’est pas un paramètre pertinent pour la sélection de la tolérance à la sécheresse, et 

les programmes de sélection sur les espèces étudiées ne semblent pas avoir affecté ce 

paramètre.  

 

 

 

 

 

 

Mots-clés: conductance stomatique, Hevea brasiliensis, hydraulique, Juglans spp, Malus 
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Abstract 

In a context of climatic changes, drought stress and water management are regarded as one of 

the most important constraints for agricultural sector. Thus the selection for drought tolerance 

became a main objective for many breeding programs. Vulnerability to cavitation is 

considered a trait of interest for the selection for extreme drought stress, especially for woody 

species. However, the extent of its variability and its relation to drought tolerance are poorly 

documented on intraspecific level, particularly for cultivated species. In this study the genetic 

variability of vulnerability to cavitation was studied on three different experimental devices 

with three trees of agronomic interest that are threatened by the risk of drought: walnut, 

rubber and apple trees. Low or no variation in xylem vulnerability to cavitation was found in 

the studied species and between two species of walnuts despite differences previously 

reported features. These results suggested a canalization of cavitation resistance on critical 

organs (branches and stems). In apple tree, the rootstock was suspected to cause the narrow 

resistance to cavitation on the scion. On the contrary, differences on other traits in response to 

drought stress such as stomatal regulation, leaf shedding or vulnerability to cavitation on 

petiole were found. Therefore, vulnerability to cavitation of critical organs was not a relevant 

parameter for the selection of drought tolerance and breeding programs on the species studied 

did not appear to affect this parameter.  
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Figure 1. Global drought risk index (DRI) of cropland. 

The country-specific global drought risk index (DRI) is shown for baseline (1961−2006) and projections for 

2050 and 2100. It is calculated using the probability of drought disaster, drought degree, and cropland 

management and irrigation levels of the given place. From Li et al. (2009). 
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Risk of drought stress is predicted to increase in the coming future by several climate models 

(IPCC, 2013) as a result of the increasing surface temperature and the decreasing 

precipitation. However, the degree of drought intensity and the duration are expected to differ 

between regions depend on the specific changes in meteorological factors for the given area. 

Figure 1 shows the projections of global drought risk index (DRI), it is considered as one of 

the parameters indicating effect of meteorological drought on yield reduction. To obtain this 

value, the computation taking into consideration the probability of drought disaster, drought 

degree, and cropland management and irrigation levels of the given place (Li et al., 2009). 

According to the study, projections indicate globally rising DRI for 2050 and 2100: Africa is 

categorized as a continent with the highest DRI value while Oceania is ranked as the lowest. 

Europe will experience the largest change with 157.53% and 267.84% increasing in DRI for 

2050 and 2100 respectively while East Asia will have the smallest change in DRI: 24.90% for 

2050 and 48.28% for 2100. Drought stress hence regards as one of important constraint in 

agricultural sector. 

In order to keep up with the increasing demands of agricultural products, the expansions of 

agricultural activities into marginal areas have been observed (Glantz, 1994). The extensions 

could be explained by limited lands for the cultivation in suitable areas, labors availability, or 

competitiveness of the crop compared to other activities. Developing agricultural activities in 

marginal areas might contribute to a distribution of jobs leading to better livelihood of local 

people and prevent labor migration into cities. However, it put natural resources, especially 

water, under constraints since cultivated species might require more water to obtain the 

optimal yields. As a result, the ability to withstand drought stress while optimizing water and 

nutrition uses is of great interest for breeding program. 

Water plays the important role to maintain turgor pressure and functions of chemical and 

biochemical processes in plants. Under stress of water deficit, these processes are affected. 

Growth is one of the first processes disrupted by drought stress, since cell division, cell 

elongation and expansion required the turgor pressure in the cells (Nonami, 1998). Yield loss 

is another important drought effect on plant. Drought-induced stomatal closure is attributed in 

this reduction in yield because it limits CO2 assimilation during photosynthesis (Chaves, 

1991). In case of severe drought stress, it could induce plant mortality (Allen et al., 2010). 

Although such level of stress is less investigated, it is of great importance for long-living 

species including trees.  
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Species respond differently to drought stress; some could withstand higher level of water 

deficit and/ or survive longer period of drought stress than others via different mechanisms 

(Klos et al., 2009; McDowell et al., 2008; Mueller et al., 2005). Therefore the resistance to 

drought stress appears to be a factor designing not only species habitat but also their 

performance. It is considered as a pertinent factor for species survival especially for long-

living tree species since they might be exposed to several drought stress events in their 

lifetime.  

Traditional breeding and selection programs for agronomic tree species are time consuming 

tasks due to long-immature phase of the species. As a consequence, the potential traits for 

drought tolerance screening in tree species have to take less time to investigate, easier to 

assess and relate with yielding potential. Despite the existence of many traits related to 

drought resistance that could be used for the selection, not many of these traits were tested 

especially in agronomic species. The suitable traits should have following characters: (i) easy 

to assess on large-scale, (ii) to allow the identification of the genotypic variation, (iii) to have 

a sufficient heritability, and (iv) to allow breeders to identify the best and worst genotypes 

(Pita et al., 2005). Among the potential traits, xylem vulnerability to cavitation is considered 

a pertinent criterion for drought tolerance screening (Choat et al., 2012; Maherali and 

DeLucia, 2000; Matzner et al., 2001). With the recent improvement on analytical techniques: 

Cavitron (Cochard, 2002b; Cochard et al., 2005) and air-injection (Ennajeh et al., 2011b), 

xylem vulnerability to cavitation could be rapidly estimated without submitting plant material 

to drought stress. These technical advances enhance the potential of using vulnerability to 

cavitation as a trait for drought tolerance screening. 

Water in xylem conduits is transported under tension. In this metastable state, it is susceptible 

to cavitation (Tyree and Sperry, 1989b). The increasing xylem tension due to drought stress 

could cause the cavitation which is an expansion of air bubble that could fill the conduit and 

cause the emboli. This event leads to a loss of xylem conductance (Tyree and Zimmermann, 

2002). The tension causing cavitation and embolism is differed among species; it might rank 

from value close to zero such as −0.04 MPa which was found on Celastrus orbiculatus 

(Tibbetts and Ewers, 2000) to as low as −14.1 MPa in conifers (Willson et al., 2008). The 

variation in xylem vulnerability to cavitation was found to correlate with drought tolerance of 

the species (Cochard et al., 2008; Maherali et al., 2004; Pockman and Sperry, 2000; Tyree et 

al., 2003): the xerophytes appear to be less vulnerable to cavitation compared to mesophytes  
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and hygrophytes. Genetic variability (Cochard et al., 2007; Wortemann et al., 2011) as well 

as phenotypic plasticity (Awad et al., 2010; Corcuera et al., 2011; Herbette et al., 2010) were 

found within species for xylem vulnerability to cavitation. However, the relationship between 

xylem vulnerability to cavitation and drought resistance is still unclear for this intraspecific 

level. In some studies (Cochard et al., 2008; Kavanagh et al., 1999; Kolb and Sperry, 1999) a 

correlation between both traits was found whereas it was not the case for other studies. 

Although there are several studies on xylem vulnerability to cavitation within tree species, the 

variability of this trait for agronomic species remains to be investigated. Indeed, crop species 

underwent different selection pressure than natural species. Moreover, the effect of selecting 

for yield on vulnerability to cavitation is still unclear (Cochard et al., 2007; Lamy et al., 

2011) as well as the relationship between this trait and drought resistance at the intraspecific 

level. We carry out our study on three agronomic tree species: walnut, rubber and apple trees. 

The three species are chosen because they are different in various ways which will certainly 

allow the opportunity to explore the intra-species variation in xylem vulnerability to 

cavitation. The populations within the chosen species have different distances of relation 

between them. The walnut trees used in this study are cultivars: six of commercialized 

Persian walnuts (J. regia) and six hybrid walnuts (J. regia x J. nigra NG 38). The former are 

fruit-oriented while the latter are wood-oriented walnuts. Among the six Persian walnuts, 

they have different parentages and country of origins. The rubber trees included ten 

commercialized clones used in Thailand. They have closer genetic relation since they are 

derived from Wickham’s rubber populations which are Brazilian rubber seeds, brought back 

to Kew Botanical Garden by Sir Henry Wickham in 1879. The apple trees are progenies of a 

cross between ‘Starkrimson’ and ‘Granny Smith’. The three species we investigated have 

different features with different genetic structures, what increase the likely to find within 

species variation in vulnerability to cavitation. This assumption is supported by the 

distribution of the species and the variation in traits correlated to drought tolerance which 

previously found.  

The choice of these three species was also of agronomic interest, since their productions are 

under constraint of water deficit. The walnut trees, a drought sensitive species, are mainly 

produced in the marginal areas where severe drought stress is likely to occur more often in 

the coming future from the impact of climate change. The natural rubber production in 

Thailand is expanding more and more into non-traditional production areas. The 
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 sustainability of the production in these areas is questioned because of the risk of drought 

stress which is predicted to amplify in the future because of the increasing evaporative 

demand. Some apple productions are in the areas which drought stress might intensify in the 

future but the interest of drought tolerance genotypes is rising mainly from the need to 

economizing irrigation cost in the production. Hence, this study aims to assess the genetic 

variability in xylem vulnerability to cavitation for the three agronomic tree species and to 

assess the relationship with drought resistance. For the latter, Plants were submitted to a 

drought and different trait responses were analyzed in order to gain more insights on the 

variability for drought resistance within investigated species. 
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Figure 2. The projection of annual mean changes in precipitation (P), evaporation (E), relative humidity, 
E – P, runoff and soil moisture for 2081–2100 relative to 1986–2005.  

Global maps show multi-model means of hydrological cycle changes. The means are calculated from the 

Coupled Model Intercomparison Project Phase 5 (CMIP5), the number of models used is indicated in the upper 

right corner of each panel. Hatching indicates regions where the multi-model mean change is less than one 

standard deviation of internal variability. Stippling indicates regions where the multi-model mean change is 

greater than two standard deviations of internal variability and where 90% of models agree on the sign of 

change. From IPCC (2013). 



13 
 

I. Drought stress 

Drought could be defined as a period of time in which water is limited for plant causing a 

depletion of plant water. When the amount of water loss in plant exceeds the amount of water 

that plant could acquire, drought stress occurs. Soil dehydration, high evaporation, osmotic 

binding of water in saline soils or in frozen soil are examples of the causes of drought stress. 

The severity of drought stress depends on many factors such as occurrence and distribution of 

rainfall, evaporative demand and moisture storing capacity of soil.  

Changes in climate and hydrological cycle are predicted for the future (IPCC, 2013). 

Although the degree of changes in these climate and hydrological factors are not consistent 

for all the regions, the increasing dryness in the Mediterranean, the south-western USA and 

southern African is very likely to occur (Figure 2). The decrease in soil moisture predicted for 

large regions over the world augments the risk of drought stress in coming years (IPCC, 

2013). The major trend of changes in climatic conditions that appear to increase the 

frequency and severity of water deficit are the globally rising surface temperature and the 

decreasing precipitation in some regions.  

1. Effects of drought stress 

Drought stress could affect various biological processes in plant depending on duration and 

severity of the stress. At cellular level, water deficit could result in loss of turgor pressure, 

changes in plasma membrane composition and fluidity, changes in water activity and/or 

solute concentration, and interaction between protein and lipid or between proteins. Water 

depletion from cell disturbs the bilayer structure of membrane, resulting in the deformation 

and the increase in membrane porosity. It might also cause the displacement of membrane 

proteins which cause the loss of enzyme activities and membrane’s selectivity. Cellular 

metabolism could also be disturbed by the accumulation of electrolytes from the dehydration 

of protoplasm (Mahajan and Tuteja, 2005). 

On the whole plant level, drought stress could disturb plant growth and development and thus 

it could reduce the crop yield. In addition, it could be a cause of plant mortality when severe 

drought stress occurs. In nature, drought stress from changes in climatic conditions has been 

reported to associate with mortality and shifts in ecosystem (Allen et al., 2010). The climatic- 
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Figure 3. The hypotheses on drought-related mortality mechanisms. 

The relationships are based on hydraulic framework of the intensity and the duration of water deficit. Three 

mechanisms: biotic agents, hydraulic and symplastic failure and carbon starvation are regarded as the main 

causes of plant mortality. The biotic agents such as pathogens and insects could intensify or be intensified by the 

other two mechanisms. The failure in water transport is expected to occur when water stress is intensified 

whereas the carbon starvation is hypothesized to happen with lengthen duration of drought stress. From 

McDowell et al. (2008). 
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related vegetation mortality is found in various regions over the world such as in the 

Australian forest (Rice et al., 2004), the tropical moist forests in Indonesia (Van Nieuwstadt 

and Sheil, 2005), the Amazonian rainforest (Malhi et al., 2009), forest of the south-western 

North America (Breshears et al., 2005) and the Mediterranean and Europe areas (Bigler et al., 

2006; Martínez-Vilalta et al., 2002). 

According to McDowell et al. (2008), the main causes of drought-induced mortality included 

the biotic agents such as pathogens and insects, the hydraulic failure and the carbon 

starvation. The relative contribution of these threats depends on the intensity and the duration 

of stress (Figure 3). When soil cannot supplies sufficient water to compensate water loss from 

plant, the failure of water transportation system is predicted to occur from xylem cavitation 

and embolism (see section on vulnerability to cavitation). This could further prevent water 

supply, cause the desiccation of plant tissues and result in plant mortality. This mechanism is 

likely to occur if the intensity of drought stress is high. The carbon starvation mechanism is 

likely to occur when the duration of drought stress is long but the intensity of drought is not 

high enough to cause the hydraulic failure. Stomatal closure happens early in order to prevent 

the hydraulic failure in plant when facing water stress. This stomatal closure limits carbon 

uptake and thus plant photosynthesis. While the stomata are closed, plant still continues to 

metabolize and its carbon reserves might be used for the metabolism. If stomatal closure and 

limited photosynthesis are prolonged, it could result in the inadequate carbon reserves and the 

carbon starvation. The biotic agents are considered as amplifying factors for hydraulic failure 

and carbon starvation; conversely they are amplified by the other two mechanisms.  

For agriculture, the main concerns of drought effect are the reductions in growth and yield. 

As the quality and quantity of plant growth depend on cell division, cell elongation and cell 

expansion (that required the turgor pressure in the cells), water deficit affects these processes 

(Nonami, 1998). However, the survival is also important, especially for the perennial species 

like trees. Decreased in biomass production is caused by the reduction in photosynthesis. 

During drought stress, stomata close to conserve water. This regulation is limiting the 

pathway for gas exchange and it is also causing leaf temperature to increase; both result in the 

reduction of photosynthesis (McDowell et al., 2008; Shao et al., 2008).  

  



16 
 

 

  



17 
 

The threat of drought stress on agriculture is highlighted by predicted climate changes and the 

food security issue as world population is increasing. There are differences in vulnerability to 

drought stress between regions (Maliva and Missimer, 2012); some might be more vulnerable 

because of the low gap between average water use and the safe yield of a system and the less 

adaptive capacity of the water system and society. For example in some African countries; 

the resources in the normal year might barely sufficient or even insufficient to meet the local 

needs, the possibility to overcome multiple-year drought stress of these countries could be 

very thin. It is thus necessary to improve water use efficiency in agriculture which will 

require the integrative approaches of water resource management, development of drought 

tolerance crop varieties and also the strategy to meet the global food demand with less water. 

2. Defense mechanisms against water deficit 

Species respond differently to drought stress, it depends on various morphological, 

biochemical and physiological responses. Some species could withstand higher level of water 

deficit and/ or survive longer period of drought stress than others (Klos et al., 2009; 

McDowell et al., 2008; Mueller et al., 2005). These differences are the results of defense 

mechanisms against water deficit adopted by the species. The mechanisms to cope with 

drought stress are categorized into drought escape, desiccation tolerance and desiccation 

avoidance strategies (Levitt, 1980). However, these strategies are not exclusive and plants 

might develop a range of response types (Ludlow, 1989).  

Plants that escape drought stress are able to grow and reproduce when there is still sufficient 

moisture. This strategy is found in annual species, especially in arid regions. The species 

might combine the short life cycle with high growth rate and gas exchange during the short 

period of moisture (Maroco et al., 2000). The success of drought escape depends on the 

phenology of plants that matched with periods of soil moisture availability.  

Unlike the annuals, perennial species cannot use the escape as a strategy to cope with drought 

stress because of their long life cycle; hence other strategies are adopted that I develop in the 

two following sections. 

2.1 Drought avoidance mechanisms 

The avoidance mechanisms include the responses that avoiding tissue dehydration while 

maintaining the water potential as high as possible. This includes plant responses to minimize  
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water loss and to maximize water uptake in order to avoid the stress conditions. On one hand, 

water loss could be minimized by stomatal closure, decrease transpirational area through leaf 

growth inhibition and leaf shedding, reduce light absorbance by leaf rolling, increase 

trichome layer density, or change the angle of leaves. On the other hand, water uptake could 

be maximized by reallocation of nutrients to increase root exploration at the expense of shoot 

development (Chaves et al., 2003). The water uptake could also archive by increasing root 

absorption via the activation of aquaporines (Javot and Maurel, 2002). 

Stomatal control is a short term response of plant to water deficit; stomatal closure prevents 

further loss of water from the transpiration and thus maintains or increases the water 

potentials in plant. The stomatal regulation in response to water deficit could be categorized 

into two behaviors according to the continuum of the stomatal functioning: isohydric and 

anisohydric behaviors (Tardieu and Simonneau, 1998). Plants having an isohydric behavior 

close their stomata in response to decreasing soil water potential and increasing 

transpirational demand. The stomatal closure will maintain leaf water potential at a relatively 

constant value despite drought conditions. In contrast, the anisohydric plants keep their 

stomata open and allow decrement in their leaf water potential as drought progress. Actually, 

difference between these two theoretical behaviors is not so clear, and all situations could not 

be classified in only two sets. Isohydric and anisohydric behaviors are rather to be viewed as 

the extreme situations in a continuum of various plant strategies.  

Leaf shedding could be considered as a mechanism of plant to avoid further loss of water but 

on the other hand, it could also be seen a result from failure of stomatal regulation to prevent 

xylem embolism. Leaf shedding occurs later than other processes and it is mostly found when 

plant is facing to a severe drought stress. It allows plants to protect critical organs ensuring 

survival, that is to say keep buds from dehydration. 

2.2 Drought tolerance mechanism 

Desiccation tolerance involves the ability of plant to keep their metabolism functioning under 

low water potential. The main drought tolerance mechanisms are: osmotic adjustment, 

antioxidant systems and resistance to xylem cavitation.  

Osmotic adjustment is considered a critical adaptation process of plant to drought stress; it 

maintains metabolic activities and helps plant to recover after drought stress. When facing 

drought stress, many plants accumulate compatible solutes such as proline, mannitol, and  
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glycine betaine (Chen and Murata, 2002). This accumulation results in an increase in cellular 

osmolarity and leads to an influx of water into cells (Hare et al., 1998). This process could be 

largely varied between plants. However, the osmotic adjustment is not necessary to have a 

consistent benefit with yield since cell turgor maintenance is often associated with slow 

growth (Serraj and Sinclair, 2002).  

The capacity to establish the antioxidant protective mechanisms during drought stress and to 

maintain systems during the rehydration are key factors to the plant recovery (Kranner et al., 

2002). During drought stress, the imbalance between light capture and its utilization because 

of the photosynthesis inhibition leads to an over-excitation of the photosystem II, with a lack 

of electron acceptor. The resulting excess of electrons from the photosystem II increases the 

accumulation of superoxide and hydrogen peroxide (reactive oxygen species, ROS) which 

could damage membrane lipids and proteins. The induction of ROS scavenging enzymes, 

such as glutathione reductase, ascorbate peroxidase, and dehydroascorbate reductase, could 

remove the ROS and prevent the damage from this oxidative stress (Sgherri et al., 1994). The 

efficiency of the antioxidant system is thus a necessary protective system for the plant to 

overcome drought stress.  

The resistance to xylem cavitation is considered an important trait for desiccation tolerance of 

woody species. It is a promising criterion for drought tolerance screening due to the current 

reliable and fast analytical techniques (Cochard et al., 2007; Cochard et al., 2008). Contrary 

to the osmotic adjustment and the antioxidant system that have been subjected to a huge 

number of investigations, knowledge is scarce on the relationship between resistance to 

cavitation and drought tolerance. This is why I conducted the present research. The state of 

art on vulnerability to cavitation is developed in a section devoted to the water properties of 

the plant, in the following lines.  
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II. Water properties and hydraulic architecture 

Water has many important functions in plant: it is a solvent for various substances and helps 

to transport nutrients and hormones across plant’s organs, it is used to maintain turgor 

pressure in cell and driven cell’s expansion, and it is a substrate for photosynthesis and it also 

helps to regulate temperature in plant. Water transportation in plant from soil to leaves is 

possible because of various specific properties of water. This section describes these hydric 

and hydraulic properties of the plant. 

1. Water properties 

Water molecules are polar due to the differences of charge on the molecule; the oxygen atom 

has a higher electro-negativity while the hydrogen atoms are slightly positive. The 

differences in charge of water molecules cause them to attracted to each other (cohesive) and 

to other polar molecules (adhesive). A water molecule could form a maximum of four 

intermolecular hydrogen bonds. Although these hydrogen bonds are relatively weak bonding 

forces compared to the covalent bonds, they are responsible for number of the physical 

properties of water. 

Among liquids, water has the highest latent heat of vaporization or heat of fusion (44 kJ. 

mmol−1) meaning that the changing phase of water from liquid to gas requires high energy. 

This is due to the hydrogen bonds between water molecules. The required energy to achieve 

the changing phase is removed from the liquid and hence cooled it down. This process is 

called the evaporative cooling which is critical to the temperature maintaining in plant. 

In the water body, each molecule is pulled equally in every direction by neighboring liquid 

molecules. However, at the interface of water to other mediums such as air, the molecules at 

the surface are only pulled inward because the lack of cohesion force with the other mediums. 

This creates an internal pressure and this forces water surface to contract to minimal area, 

hence a surface tension. Surface tension is a measurement of the amount of force required to 

break this skin on the surface of water.  

The surface tension and adhesion force are responsible for a capillary action which occurs 

when water climbs upward through a small space such as xylem conduits. In plants, the 

capillary force helps to suspend water inside the xylem while, in the soil, capillary action 

tends to move water upward between the soil particles.  
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2. Water potentials 

Water potential is generally measured as a pressure by using the unit bar or mega Pascal 

(MPa). In plant, it is determined by the force required to move water to a state of free water 

which could be express as following equation: 

p m g               (1) 

where Ψp, Ψπ, Ψm and Ψg are hydrostatic, osmotic, matrix and gravitational potentials 

respectively.  

The hydrostatic potential (Ψp) is considered as the effect of pressure in the given plant organ: 

in cell, this potential is equivalent to turgor pressure which is a positive value whereas it is 

negative in xylem conduits.  

The osmotic potential (Ψπ) is defined as the potential of water molecules to move between 

regions of differing concentrations across a permeable membrane. This movement depends 

on the concentration of solutes (C), the universal gas constant (R, 8.314 J.K−1 mol−1) and the 

absolute temperature (T, Kelvin) as following equation: 

CRT            (2) 

The osmotic potential of pure water is zero while water with solutes has a negative potential. 

The matrix potential (Ψm) quantifies tendency of water to adhere to surface (surface tension), 

it is mostly important for determining soil water potential whereas it could be neglected in 

living cells of plant.  

The gravitational potential (Ψg) defines as energy used to move object up to a fixed reference 

location; for water column in plant, Ψg is decreased by 0.10 MPa every increasing 10 m 

above the reference location.  

Plant water potential is an intermediate value between the soil and atmospheric water 

potential. It is a dynamic value which could vary according to various factors such as organs 

of plant, position of the organ on the tree or time of the day. The water potential of root 

(Ψroot) is more negative than Ψsoil because of higher ion concentration in root cells; water 

could enter the  
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Figure 4. The pressure chamber used for measuring plant water potential.  

The left figure shows pressure chamber diagram with a shoot sealed into it. The chamber is pressurized with 

compressed gas. When the shoot is still intact, water column is under tension (A) but when the shoot is cut water 

column is pulled back into the tissue in response to water tension in the xylem (B). By applying pressure inside 

the chamber, water in the shoot is forced to re-emerge at the cut surface (C). The pressure required to bring back 

water to the cut surface is equal to the tension in xylem. From Taiz and Zeiger (2010).   
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cells by the reverse-osmosis. The leaf water potential (Ψleaf) varies daily with two extreme 

values. The highest value, Ψpd (maximum leaf water potential), is measured before the dawn. 

Indeed, Ψpd reach a value near those of the soil water potential after a long night without 

transpiration. This Ψpd allow thus evaluating the water potential of the soil. The lowest leaf 

water potential (Ψmd, minimum leaf water potential) is the water potential measured at 

midday, when leaf is heavily transpired and the water loss is thus maximal. The estimation of 

water potentials in plant organs such as leaves or shoots is done with the pressure chamber 

(Figure 4) (Scholander et al., 1965).  

3. The ascent of water 

The ascent of water in plant (Figure 5) is explained by the “cohesion-tension” theory (Dixon 

and Joly, 1895). At the evaporation surfaces, in stomatal cavity, water is suspended to tiny 

meniscuses. When water evaporated, the radius of these meniscuses tends to decrease into the 

conduits. This process increases conduit’s capillary forces and generates negative hydrostatic 

pressure (tension) that transmits through the adjacent water molecule. According to Young-

Laplace law, the tension (ΔP) is described as following equation: 

2P
r


           (3) 

when γ is water–air surface tension and r is radius of curve meniscus. Since water molecules 

are very cohesive, this tension pulls whole water columns in xylem upward to compensate 

evaporated water. Therefore, water flow in plant could be considered as a continuous system 

from soil into plant and out to atmosphere (Soil-Plant-Atmospheric Continuum, SPAC). The 

flow (F, kg.s−1) is described as following function: 

F K            (4) 

where K is hydraulic conductance (kg s−1 MPa−1) and ∆Ψ (MPa) is the gradient of water 

potential across the system.  
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Figure 5. The ascent of water in tree according to the tension-cohesion mechanism. 

Water is absorbed along a gradient of decreasing water potentials, from soil into root then transported in xylem 

conduits toward leaves where the evaporation occurred. Motor of this ascent is the evaporative force due to the 

very low atmospheric water potential. From McElrone et al. (2013). 
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3.1 Water absorption and soil-root boundary  

The water molecules are retained between the soil particles in various pore sizes. In very wet 

soil, the soil water potential (Ψsoil) is close to the water potential of pure water at atmospheric 

pressure (close to nil). After gravitational percolation, the water kept in soil is the maximum 

water content which is called field capacity. Plant absorbs water from the soil into plant by 

roots that are in contacted with water in the soil. This absorption is functioning as long as the 

Ψroot is more negative than Ψsoil. The Ψsoil becomes more negative when soil dried out due to 

the increasing surface tension between water and air. This could limit water transport to tree 

roots. The hydraulic conductance of root which is an inverse value of root resistance is 

positively linked to the spatial extension and the density of their root system. Fine root 

exchange surface is crucial for the effectiveness of water extraction; the tree with deep, well-

distributed and dense root system is considered to be more efficient as these traits allow tree 

with better access to soil water reserves as well as nutrients (Levitt, 1980). Once absorbed, 

water crosses root cells through 2 main pathways: apoplastic and symplastic (Figure 6A). In 

the former pathway, water moves between root cells without crossing plasma membrane. In 

the latter pathway, water travels through cytoplasm of root cells, passing from cell to cell via 

plasmodesmata; it could also cross the plasma membrane. At root cortex, the endodermis 

cells are water impermeable due to the lignified casparian bands, hence, water must enter the 

symplastic pathway after crossing the plasma membrane. Here, aquaporines are expected to 

play a critical role in root hydraulic conductance, especially during water stress (Aroca et al., 

2012). 

3.2 Transpiration and stomatal control 

Once water reaches xylem conduits, it travels upward to leaves through these conduits which 

are considered a part of the apoplastic pathway. At the leaf, the gradient of water potential 

pulls water from the xylem conduits into the leaf mesophyll cells. Water molecules evaporate 

into the inter-cellular space in leaf and then exit to the atmosphere.  

The leaves of land plants are covered with cuticle, a waxy layer, which prevents water loss 

and gas exchange from these surface. Both water loss and gas exchange occur through the 

stomatal opening (Figure 6B). The pair of guard cells surrounding the opening regulates 

water loss from transpiration as well as the uptake of carbon dioxide and release of oxygen by 

closing or opening the stoma. The water potential of the air (Ψair) is almost always strongly  
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Figure 6. Water and ions transportation in root (A) and gas exchanges at leaf (B). 

Water transportation in root (A): water crosses root cells through (a) the apoplastic pathway in which water 

moves between root cells without crossing the plasma membrane, (b) the symplastic pathway in which water 

flows through cytoplasm, it crosses the plasma membrane and passes from cell to cell through plasmodesmata. 

While the pathway (c) is the transcellular pathway which water flows across membranes. At leaf, transpiration 

and gas exchanges occur through stomatal opening (B): the blue arrow shows the vapor moves out of leaf while 

CO2 diffuses into leaf is indicated with gray arrow (Taiz and Zeiger, 2010). 
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negative. The actual value depends on the absolute temperature and the relative humidity of 

the air. The Ψair could be calculated as: 

0
air

m

RT eIn
V e

           (5) 

where R is the molar gas constant (8.31 J.mol−1K−1), T is the dry bulb temperature in Kelvin, 
 

  
 is air relative humidity and Vm is the partial molar volume of water (18.0   10−6 m3 mol−1 

). For example, the air with 70% relative humidity could have its water potential ranking 

from −46.56 to −49.65 MPa when air temperature is between 10 to 30 ˚C. 

The majority of water flow through plant is transpired while another small part is used as a 

substrate for photosynthesis. The loss of water via transpiration is a necessity for the uptake 

of water and nutrients from soil and it is also an important mechanism for the temperature 

control in plant.  

Because Stomata control plant transpiration (E) and gas exchanges, it prevents excessive loss 

of water from plant and also plays an important role to keep the balance between water loss 

and carbon uptake. During the day, stomatal closure occurs even under non-restricting soil 

water availability indicating a diurnal circadian rhythm behavior (Gorton et al., 1993; 

Mencuccini et al., 2000). The degree of this regulation depends on several factors such as air 

humidity, temperature and water status of plant. The simple interaction of stomatal regulation 

(  ) is provided (Whitehead, 1998) as following equation without taking into consideration of 

water storage: 

( )s l s soil leaf swE g VPD A g A             (6) 

where VPD is water pressure deficit, Al is leaf area and Asw is sap wood cross sectional area. 

Studies found that the decrement in xylem water potential during the onset of drought stress 

and leaf water potential could trigger stomatal closure (Cochard et al., 2002; Hubbard et al., 

2001; Nardini et al., 2001). This response is believed to prevent drought-induced cavitation 

and runaway air embolism in xylem (Cruiziat et al., 2002). Stomatal closure has been 

reported to occur during soil drying before any change in leaf water potential (Nardini and 

Salleo, 2000). It is considered a result of chemical signaling, the abscisic acid (ABA),  
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Figure 7. Water flow in the soil-plant-atmospheric continuum (SPAC) according to an Ohm’s law 
analogy.  

The Ψ represents water potential in different sections of the plant while the R represents hydraulic resistance. 

Arrows on resistance icons represent variable resistances; however, other resistances are not absolutely static 

under all conditions. From Blum (2010).   
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between roots and shoots. Dehydration of the mesophyll cells triggers the release of ABA 

stored in the chloroplast and it increases the rate of ABA biosynthesis in mesophyll cells. The 

accumulated ABA triggers stomatal closure in guard cells by activating calcium- (Ca2+), 

potassium- (K+) and anion channels (Leung and Giraudat, 1998). 

In order to follow the stomatal regulation, stomatal conductance (gs, mmol m⁻² s⁻¹) is 

measured. It is the rate of passage of water vapor exiting or CO2 entering through the leaf 

stomata. The stomatal conductance, or its inverse the stomatal resistance, is directly related to 

the boundary layer resistance of the leaf and the absolute concentration gradient of water 

vapor from the leaf to the atmosphere. It is under direct biological control of the leaf through 

the turgor of guard cells. Stomatal conductance is used as a reference parameter to assess the 

degree of water stress of species. It is strongly correlated with several photosynthetic 

parameters and is reported to be under genetic control (Percy et al., 1996). Therefore, it is 

considered a useful tool for yield improvement in drought-prone environments because it 

provides crucial information on plant water use efficiency (Jones et al., 1983). 

3.3 Hydraulic properties in xylem: conductance or resistance 

The flow of water in plant is determining from a conductance (K), or a resistance (R = 1/K). 

The hydraulic conductance (K, mmol s–1 MPa–1) of the conduit is calculated as ratio of 

conduit’s diameter (D) and ∆Ψ between two points of the flow: 

DK





          (7) 

The conductance could also be expressed in a unit of the measured segment’s length (L, m) as 

a hydraulic conductivity (Kh, mmol m s–1 MPa–1): 

h
DK L


 


         (8) 

The specific conductivity (Ks, mmol m–1 s–1 MPa–1), a hydraulic conductance of a plant’s 

segment such as branch or petiole as a function of length and conductive surface on the wood 

(As, m2), is calculated as: 

h
s

s s

KD LK
A A


 
 

        (9) 

http://en.wikipedia.org/wiki/Stoma
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Under steady state conditions, water flow in a soil-plant-atmosphere continuum (SPAC) 

could be described according to an analogy of Ohm’s law (Figure 7) as follows: 

root leaf leaf airsoil root

matrix root xylem stomata air

Flow
R R R R R

      
  

 
    (10) 

where, Rmatrix is the resistance due to the soil matrix, Rroot is the root resistance, Rxylem is the 

resistance through the xylem in plant stems, Rstomata is the stomatal resistance, and Rair is the 

aerial resistance. In well hydrated plant, the resistance of leaf represents the majority of 

whole plant resistance which might rank from 26 to 89% depended on the species (Sack and 

Holbrook, 2006).  

The Rxylem in stem are, generally, the lowest; the total Rxylem is a combination of conduit lumen 

and interconduit pit resistances (Rlumen and Rpit, respectively). The Rlumen could be calculated 

according to Hagen-Poiseuille equation as: 

4

128
lumen

LR
D



         (11) 

where L and D are length and diameter of conduit, respectively. Although pits allow the 

passage of water between xylem conduits, they constitute a limiting factor for water flow in 

xylem (Comstock and Sperry, 2000). The resistance of pit (Rpit) is determined by the area-

specific resistance (rp) and the surface area of overlap between conduits (Apit): 

p
pit

pit

r
R

A
          (12) 

The Rpit could be significantly varied across the species but it usually account for 50% or 

more of the total hydraulic resistance in the xylem (Choat et al., 2008). 
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Figure 8. Relative sizes and shapes of xylem sclerenchyma cells in mature wood of some angiosperms and 
gymnosperms. 

Drawings show different types of sclerenchyma cells: fibers, tracheids and vessel elements. In angiosperms, the 

tracheary elements are vessel elements and tracheids and they are specialized for water transport while fibers 

provide mechanical rigidity and support to plants. In gymnosperms, tracheids are not only conductive but they 

also provide support for the trees. Figure is modified from Alden (2009).   
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III. Xylem: cell types and structure  

Majority of water transport occurs in a specific pipe-like structure found in the xylem which 

permits long distance water transportation from roots to leaves. Xylem tissue is composed of 

different cell types that could be classified in two different types: parenchyma and 

sclerenchyma cells. The parenchyma cells are responsible for most of the storage function of 

xylem while sclerenchyma cells, including fibers and tracheary elements (vessel elements and 

tracheids), are involved in mechanical support and water transportation (Figure 8). 

Angiosperms and gymnosperms show big difference for sclerenchyma cells: the formers have 

vessel elements, fibers, parenchyma cells and tracheids are found in some species such as 

oaks and chestnuts, whereas gymnosperms contain tracheids and small amount of 

parenchyma cells. The vessel elements in angiosperms are specialized for water transport and 

fibers provide mechanical support while tracheids in gymnosperms are not only conductive 

but also provide support for the trees (Myburg et al., 2007). 

The mature parenchyma cells serve as carbohydrate reserves; they store starch in their 

functional protoplasm. These cells could differentiate to form callus and generate functional 

xylem cells. Parenchyma cells have some part of their wall which consist of thin primary cell 

wall called primary pit fields. Water and nutrients could pass through them and thus allow 

cell-to-cell movements. Non-living mature tracheary elements are cells without cellular 

contents; they play a passive role in the transport of water through the plant. In order to 

withstand large tension from negative pressure inside the conduits, these cells developed 

thickened secondary wall impregnated with lignin. Tracheids are connected via large 

bordered pits which are concentrated around the ends of the cells. Vessel elements are end-to-

end connected through their large perforation, and these connected vessel elements form a 

vessel.  

Conduit diameters and lengths are largely varied; the span of diameter covers the magnitude 

from below 5 μm for conifer needles to over 500 μm for lianas vessel elements (Ewers, 1985) 

while range of conduit length could be from a few millimeters in tracheids up to several 

meters as demonstrated in previous studies (Ewers and Fisher, 1989a; Zimmermann and Jeje, 

1981). 
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Figure 9. Structure of xylem and interconduit pits in angiosperms (left) and conifers (right).   

Figures on the left side show xylem structure and interconduit pits of angiosperm. (a) Transverse section of 

xylem tissue showing vessels connected through pitted walls. (b) Each vessel is made up of multiple vessel 

elements joined end-on-end through a perforation plate. Vessels are connected through bordered pit pairs with a 

pit membrane derived from two primary cell walls and a middle lamella, (c) SEM image showing 

‘homogeneous’ pit membrane with a uniform deposition of microfibrils across the surface of the membrane. 

Figures on the right side show xylem structure and interconduit pits of conifer. (d) Transverse section of typical 

conifer xylem tissue made up of tracheids with bordered pits located in radial walls. (e) Tracheids consist of a 

single tracheary element and are therefore constrained to shorter lengths than vessels. The architecture of 

bordered pits is similar to that of vessels, with the exception of pit membrane structure. (f) SEM of a typical 

gymnosperm pit membrane with a central thickening (torus) and very porous outer region (margo) (Choat et al., 

2008). 
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Xylem vessels are connected together via pit which are wall structures with no secondary 

wall (Figure 9). In Angiosperms, pit membranes appear homogenous whereas in conifers, a 

thickened and lignified central part of pit membrane is found. This structure is called torus; it 

is usually slightly bigger than the aperture of the pit border and water impermeable. Water 

could move easily through the margo which is a porous network of cellulose fibrils. These pit 

membranes allow water and nutrients passing through, while they help filtering pathogens, air 

and other particles between the connected vessels (Crombie et al., 1985).  

Xylem sap is generally under negative pressure. During the event of drought stress, xylem 

sap in a metastable state might rapidly change to vapor and the conduit could be filled with 

air. The pressure in this air-filled conduit is raised to atmospheric. Because of the present of 

pit membranes, the expansion of air is restricted within a conduit and the connected conduits 

might still be sap-filled. The different xylem pressure between air- and sap-filled conduits 

could cause a deflection of pit membranes. This deflection might increase the membrane 

porosity in angiosperms with homogeneous pit membranes (Choat et al., 2004; Sperry and 

Hacke, 2004). Despite the flexibility of pit membranes, after some cycles of cavitation and 

refilling (Hacke et al., 2001b; Holbrook et al., 2001), pit membranes might lose their 

flexibility and become more vulnerable to air-seeding cavitation (Hacke et al., 2001b). This 

increased vulnerability to cavitation due to embolism and refilling cycle is the phenomenon 

of cavitation fatigue (Hacke et al., 2001b). In gymnosperms, the pressure difference between 

two tracheids might push a torus to block the apertures of the pit-pair and prevent the 

movement of air through the pit. This might serve to isolate embolized tracheids and thus 

prevent the spread of embolisms (Tyree and Sperry, 1989b) to the connected tracheids. Thus, 

the conifer pits are served as safety valves in the hydraulic system of plants. 

Vessel diameter and its distribution are used to characterize wood pattern (Figure 10). In 

angiosperms, there are two main patterns: ring porous and diffuse porous. The vessels of 

early wood in ring porous are much larger than in late wood; well-defined zone of the vessels 

is observed and the transition to the late wood within the same growth ring is abrupt. While in 

diffuse-porous, diameter of the vessels is rather even throughout the growth ring. Ring porous 

and diffuse porous species are found different in the length of their vessels (Zimmermann and 

Jeje, 1981). In general, the ring porous species appeared to have long vessels which could be 

as long as their length of stem while in the diffuse porous, vessel length could be up to 1 m 

long. 
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Figure 10. Cross sections of wood view with light microscopes. 

 Early (A) and late (B) wood of Scots pine tree (Pinus sylvestris L.). The tracheids with large diameter and thin 

cell walls are presented for the early wood, whereas, smaller diameter and thicker cell walls tracheids are visible 

in the late wood. The bordered pits on the radial cell walls are marked by arrows. Large early wood vessels are 

visible (C) as a ring close to boundary of the annual increment in the wood of ‘ring-porous’ oak tree (Quercus 

robur L.). The vessels of silver birch (Betula pendula Roth), a diffuse-porous (D), are almost the same in 

diameter within entire growth ring. From Marciszewska and Tulik (2013). 
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IV. Xylem cavitation and embolism 

Water flowing in xylem under tension (negative pressure) is susceptible to cavitation which 

results as a break of water column in xylem conduits. This situation could occur when tension 

in conduit is high enough to break the cohesive bond between water molecules (Tyree and 

Sperry, 1989b). Conduit then becomes air-filled and non conductive (embolized) resulting in 

reduction of hydraulic conductivity. Water stress and freeze-thaw cycle could initiate 

cavitation in trees (Sperry and Sullivan, 1992; Tyree and Sperry, 1989b). In this study, we 

focus on the drought-induced cavitation.  

The researches on xylem vulnerability to cavitation were intensively conducted on forest 

species in the past two decades. The trait is found to vary largely between species and 

correlate with drought tolerance of the species (Cochard et al., 2008; Maherali et al., 2004; 

Pockman and Sperry, 2000; Tyree et al., 2003). It is also varied at the intra-specific level 

(Corcuera et al., 2011; Herbette et al., 2010; Maherali and DeLucia, 2000; Martínez-Vilalta 

et al., 2002). Because of these reasons, the vulnerability to cavitation is proposed as a 

potential criterion for drought tolerance screening (Choat et al., 2012; Maherali and DeLucia, 

2000; Matzner et al., 2001). However, the information of this trait is scarce for the agronomic 

species. Therefore, in this thesis, I chose to investigate the xylem vulnerability to cavitation 

on three different agronomic species. Following section is devoted to the state of art on this 

trait.    

1. The mechanism of cavitation  

In theory, drought-induced cavitation could be explain with different mechanisms: (i) a loss 

of cohesive force between molecules of water in xylem conduits which called homogeneous 

cavitation, or (ii) a loss of adhesive force between water molecule and conduit walls called 

heterogeneous cavitation (Pickard, 1982). Since the rupture of cohesive force between water 

molecules is expected to occur only at pressure below −20 MPa (Caupin and Herbert, 2006; 

Caupin et al., 2012), homogeneous cavitation is unlikely to occur in trees because the 

required pressure is much lower than the pressure values found in xylem. The cavitation in 

tree is, therefore, accepted as a result of heterogeneous nucleation in xylem conduits (Tyree et 

al., 1994). 
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Figure 11. Air-seeding mechanism through pits. 

The diagram shows intervessel pit structure and the mechanism of cavitation by air-seeding. When cavitation 

event occurs in a vessel, air will expand in the vessel and it is stopped at pit membranes. The surface tension of 

water in the adjacent vessels helps to support pit membranes and the air-water meniscus is held at the opening of 

each pore. When the pressure difference is exceeded the capillary of air-water meniscus, air is pulled through pit 

pores. From McElrone et al. (2013). 

 

Figure 12. Different hypotheses of air-seeding through a conifer bordered pit membrane. 

When the two conduits in contact are water filled, the pit wall lies in the middle of the pit chamber and water 

flows through the margo. When one conduit cavitated, air could enter the water filled conduit in contact through 

margo capillary-seeding (A), by capillary rupture of an air/water meniscus through pores in the margo when 

torus aspiration does not occur. Margo stretch-seeding (B), occurs by elastic stretching allowing the torus to be 

pulled out through the pit aperture or through membrane slippage that allows the torus to move off-center. Seal 

capillary-seeding (C), when the torus is not tightly sealed against the pit border (weak aspiration or poor air 

tightness of torus/pit aperture interface) and (D) margo rupture-seeding, by membrane breakage.  

A B C D
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Air could enter plant through the point where xylem conduit is damaged; however, the main 

source of air in plant is actually the water itself. Plant water is saturated with air at the 

atmospheric pressure and in the metastable state under xylem tension; it could rapidly change 

into vapor and fill the conduit. When vessel is cavitated, air will expand in the vessel and it is 

stopped at pit membranes. The surface tension of water in the adjacent vessels helps to 

support pit membranes and air bubble is held at the opening of each pore. According to the 

air-seeding mechanism (Zimmermann, 1983), cavitation occurs when the pressure gradient 

(∆P) between xylem water (with negative pressure values) and surrounding air (at 

atmospheric pressure) exceeds the capillary forces at the air-water interface (Figure 11). Air 

will be pulled into the conduit and the air bubble will nucleate the phase change to vapor. 

Then water pressure will rise to atmospheric, allowing the conduit to be drained by the 

surrounding transpiration stream. The ∆P between vessels exceeds a certain threshold which 

depends on the radius of the pore in the pit membrane (Tyree and Sperry, 1989b): 

2 cos

m

P
r

 
          (13) 

where τ is the surface tension of water (0.072 Pa m at 25˚C), α is the contact angle between 

the meniscus and the pore and rm is the radius of the meniscus to the radius of the pore in pit 

membrane.  

According to this relationship, pit membrane with larger pores will thus be more vulnerable 

to air-seeding than pits with smaller pores. This holds for angiosperms; however due to 

different pit structures, the air-seeding mechanism in gymnosperms is somewhat different. In 

conifers, following mechanisms are proposed: (i) a capillary rupture of an air/water meniscus 

through pores in the margo without an aspiration of torus (Figure 12A); (ii) a margo stretch-

seeding, the torus to be pulled out through the pit aperture or through membrane slippage that 

allows the torus to move off-center, exposing a portion of the margo in the pit aperture 

(Figure 12B); (iii) a seal capillary-seeding occurs when the torus and the inner wall of the pit 

membrane are not perfectly sealed, this allows air bubbles to pass through pores at the edge 

of the torus (Figure 12C); and a margo rupture-seeding (Figure 12D)which is the rupture in 

the membrane when low xylem tensions break the fibrils in the margo (Cochard, 2006; 

Cochard et al., 2009; Pittermann and Sperry, 2006; Sperry and Tyree, 1990). 
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Figure 13. Stresses in the conduit wall arising from negative sap pressure. 

Two stresses in a water-filled conduit (shaded): hoop stresses are relatively small while bending stresses which 

occur in the wall between an embolized- and a water-filled conduits are larger (A). Bending stresses are related 

to the thickness of the wall (t), its span (b), and the pressure difference, Pi − Po, where Po is the gas pressure 

(near atmospheric) in the embolized conduit and Pi is the pressure of water-filled conduit. Longitudinal view of 

the wall between water-filled (shaded) and embolized conduits (B); the thickened region bearing the bending 

stress, and the porous pits through which air-seeding nucleates cavitation. From Hacke et al. (2001a).  
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2. Resistance to xylem implosion and cavitation resistance 

Because water in xylem is transported under tension, the structure of xylem has to be strong 

enough to withstand this tension and prevent a collapse of the conduit wall. The structural 

traits that control the implosion of xylem involve the transversal mechanical cell wall 

properties and the shape of the vessel. The thickness of the vessel separating wall (t) and the 

relative to its maximum span (b) appear to relate with ability of xylem to endure this tension 

(Awad et al., 2010; Hacke et al., 2001a; Jacobsen et al., 2005) and prevent xylem implosion 

(Figure 13). Under the negative sap pressure, the conduit wall is under two different 

constraints: compressive hoop stresses and bending stresses (Hacke et al., 2001a). The 

compressive hoop stresses encircle the wall while bending stresses arise in the wall between 

sap- and gas-filled conduits. The first stresses are relatively small compared to the latter ones.  

To withstand these stresses, the reinforcement ((t/b)2) against collapse from bending is 

required. The t/b ratio is expected to be able to withstand the lowest tension the conduit held 

while minimizing construction cost. The relationships between mechanical and functional 

properties of xylem have been accumulated with increasing number of researches. In some 

studies, trade-off was found between hydraulic conductivity and mechanical support 

(Christensen‐Dalsgaard et al., 2007; Jagels et al., 2003) whereas it was not the case for other 

(Awad et al., 2012; Pratt et al., 2007; Rosner et al., 2007; Rosner et al., 2008).  

Wood density (d) is defined as the porosity, a ratio between areas occupies by cellulose wall 

over the total area (Hacke et al., 2001a). In some study, this trait is related to drought 

resistance of the species. High d was found with greater ability to withstand high xylem 

tension during drought stress (Ackerly, 2004; Hacke et al., 2000; Hacke et al., 2001a; 

Jacobsen et al., 2005). However, in some other studies (Cochard et al., 2007; Cochard et al., 

2008; Lens et al., 2011); this trait is not associated with cavitation resistance. Furthermore, 

this relationship between d and vulnerability to cavitation which is firstly showed when 

comparing species does not hold within species (Awad et al., 2010; Awad et al., 2012; Mayr 

et al., 2003).  
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Figure 14. Xylem vulnerability curve to drought-induced cavitation. 

The percentage loss of hydraulic conductivity (PLC) measured on sample is plotted as a function of xylem 

pressure (MPa). Data is fitted with exponential sigmoid function (Pammenter and Van der Willigen, 1998) and 

logistic line is obtained. The xylem pressure causing 50% loss of conductivity (P50) which is indicated with the 

solid straight lines and the slope of vulnerability curve (s) are obtained from this fitting. 
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Considering the contrasted findings in the relationships between wood mechanical properties 

and the resistance to cavitation, the researchers might have to look further into the genetic 

control of these traits. It might allow us to assess the question on trade-off between the 

hydraulic and mechanical functions of wood and whether the mechanical traits could be used 

in the screening for drought resistance. 

3. How to evaluate the drought-induced xylem cavitation? 

Drought-induced cavitation is a serious problem for plant since it could lead to shortage in 

water supply then to organ or plant mortality. This is why it is important to measure the 

xylem vulnerability to cavitation of a species or a xylem sample. Xylem vulnerability to 

cavitation is generally quantified by relating degree of embolism as a function of water stress 

intensity (xylem pressure, P). Vulnerability curve (VC) is a representation of this relationship 

(Figure 14). Degree of embolism is generally appreciated by measuring its physiological 

consequence, that is to say the percentage loss of xylem hydraulic conductivity (PLC, %). 

To construct vulnerability curve, the PLC is plotted versus xylem pressure and then data are 

fitted to an exponential sigmoidal function (Pammenter and Van der Willigen, 1998): 

50
( )
25 ( )

100

1
s

P P

PLC
e  





        (14) 

where s is the slope of vulnerability curve and P50 is the pressure causing 50% loss of xylem 

conductivity (MPa). The P50 is commonly used as a parameter to compare the vulnerability to 

cavitation between samples (species, genotype, organs, and environmental effects).  

From this equation, the pressure causing 12% and 88% loss of xylem conductivity (P12 and 

P88) are calculated. They are considered as the air-entry-point in which the embolism begins 

(Sparks and Black, 1999) and the full embolism point which is the pressure before xylem 

becomes totally non-conductive (Domec and Gartner, 2001), respectively. Following 

equations indicate show the calculation for both parameters: 

12 50
50P P
s

           (15)  

88 50
50P P
s

           (16) 
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There is an ongoing debate on the reliability of the method used to measure the vulnerability 

to xylem cavitation (Choat et al., 2010; Cochard et al., 2010; Cochard et al., 2013; Delzon 

and Cochard, 2014; Ennajeh et al., 2011b; Jacobsen and Pratt, 2012; Sperry et al., 2012; 

Tobin et al., 2013; Torres-Ruiz et al., 2014), such that the frequency of cavitation events and 

the physiological importance of resistance to cavitation could be questioned. Because of the 

importance of the reliability of the measure in this PhD work, a specific section devoted to 

the different techniques with their pros and cons are developed, with an emphasis on the care 

to be taken for a reliable analysis.   

3.1 Cavitation and embolism detections 

The cavitation and embolism events are detected via various methods which, in general, 

could be grouped into 3 categories: the acoustic detection (Milburn, 1973; Tyree et al., 1984), 

the anatomic detection (Lo and Salleo, 1991) and the hydraulic detection (Sperry et al., 

1988).  

Acoustic detection 

The acoustic detection is a first method that demonstrated that plants were living under the 

threat of cavitation. When a cavitation occurs, the large negative xylem pressure in the 

conduit is suddenly increases to the atmospheric pressure (close to 0 MPa). The releasing 

energy causes an acoustic emission; it occurs over a very broad spectrum of frequencies, 

from audible to ultrasonic (Milburn, 1973). This method is very limited due to the difficulty 

to determine whether the emission is produced by cavitation events or by other events (in 

case of the ultrasonic emission). Moreover, the method is more qualitative than quantitative 

and it is ‘amnesic’ in the sense that the number of cavitation events that have occurred before 

the onset of the recording is unknown (Cochard et al., 2013).  

The main advantage of the techniques based on the detection of acoustic emission is that they 

are non-destructive and non-invasive and could even be used under field conditions with the 

recent devices (Tyree and Sperry, 1989a). Another advantage of these techniques is a very 

high temporal resolution that could detect the time of occurrence of a cavitation event with 

great accuracy. 
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Figure 15. Observation of embolized vessels in plant. 

A light micrograph shows an air-filled vein in Juglans regia leaf, (A). Cross-section of Pistacia lentiscus stem 

stained with basic fuchsin (B); the functional vessels were stained in red while non-functional ones remained 

unstained. Frozen Juglans regia petiole (C) observed with cryo-SEM. Vessels on the left side of the picture are 

entirely filled whereas on the right side, one-half-filled vessels are presented. Photographs are from Cochard and 

Delzon (2013), Vilagrosa et al. (2012), and Cochard et al. (2000), respectively. 
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Anatomic detection 

The anatomical detection involved the direct observation of air bubbles presentation in the 

xylem lumens of thin axial wood sections. The air bubbles are observed by eye or under a 

light microscope (Figure 15) (Sperry and Tyree, 1988). The difficulty with this technique is 

to obtain reliable observations particularly during the preparation of thin wood section. The 

samples need to be prepared under water to prevent the entrance of air into the xylem 

conduits and the observation need to rapidly done because air bubbles dissolve with time 

(Lewis et al., 1994). The very limited field of observation is another constraint of this 

method; it prevents a quantitative estimation of the total xylem dysfunction with this 

technique. However, in recent years, a number of more sophisticated technologies have been 

used for direct observations of xylem content such as using magnetic resonance imaging 

technology or a high-resolution X-ray computed microtomography system.  

The indirect observation is a dye coloration method; it is a simple yet effective way of 

visualizing the presence of an air embolism in a xylem tissue. A dye like safranin, basic 

fuchsin, alcian blue, phloxine B is perfused into sample with low pressure (Lo and Salleo, 

1991; Peguero-Pina et al., 2011). The results of this observation are in agreement with more 

sophisticated techniques usually found (Cobb et al., 2007; Hietz et al., 2008). The used of 

cryo-scanning electron microscopy (cryo-SME) allows an accurate distinction between the 

water-filled and air-filled conduits (Cochard et al., 2000; Cochard et al., 2004). 

Hydraulic detection 

This principle is the most widely used. In our study, all embolism measurements were done 

using hydraulic techniques which consist to measure the loss of hydraulic conductance in 

xylem conduits due to embolism. The Xyl’EM (Bronkhorst, Montigny-les-Cormeilles, 

France) is a specific instrument devoted to this task. It measures the initial xylem 

conductance (Ki) of sample to be analyzed. Then, after removing the native embolism by 

flushing sample with pressurized solution, the maximum xylem conductance is measured 

(Kmax). The percentage loss of xylem conductivity (PLC) is calculated as follows:  
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max

100 (1 )iKPLC
K

          (17) 

The calculated PLC allows measuring a physiological embolism rate on the sample. In other 

word, this allows evaluating the physiological consequence (loss of conductance) of the 

native embolism. 

3.2 Methods to induce xylem cavitation 

Several methods have been developed in order to explore the vulnerability to cavitation on 

the whole tree or on a segment of the tree. To construct a vulnerability curve, the dehydration 

level has to be controlled. The xylem pressure potential (P, MPa) is the key variable that is 

followed in relation with the embolism rate (Sperry et al., 1988). Cavitation could be induced 

by various methods such as bench dehydration, air pressurization and centrifugation (Cochard 

et al., 2013).  

Bench dehydration 

Bench-dry method (Sperry and Tyree, 1988) is considered a reference method because it is a 

natural way for inducing cavitation. Plant segment is left to dry out and afterward xylem 

pressure is measured using a pressure chamber on non-transpiring covered leaves or with 

stem psychrometers. The relevant pressure is the most negative pressure the plants have 

experienced during the drought treatment, usually during midday. This method requires a 

long time to induce cavitation in xylem. More, it is necessary to use a relatively large sample 

size (typically a leafy branch >1 m long) because very fast dehydration could induce a high 

heterogeneity of water stress in the branch and it should be avoided. The organ is cut from an 

intact plant and left to freely dehydrate in the air.  

The study of Tyree et al. (1992) verified that VCs obtained from intact plants and cut 

branches are similar. However, the latter procedure is preferable as branch water status is 

better controlled.  

To construct a vulnerability curve for evaluating the xylem vulnerability to cavitation, 

samples have to be exposed to several xylem pressures and their embolism rate measured. 

New samples which are exposed to increasing water stress are required. In general, it requires 

sizeable samples to construct a curve and as a consequence, the vulnerability curve obtained  
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Figure 16. Scheme of the set up of the air-injection technique for measurement of xylem vulnerability to 
cavitation.  

A customized pressure sleeve is applied to the center of branch segment where cavitation is induced by air 

pressurization. The distal end of branch segment is connected with a vertical solution-filled tube, solution flows 

from this tube through the segment and exits at the proximal end due to difference in water pressure. The 

solution is collected and weight to calculate flow rate. Modified from Ennajeh et al. (2011b).  

  

Adopted from Ennajeh et al., 2011 
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is usually represented by a population of plants rather than a single plant or genotype. With 

the currently developed techniques: the air-injection technique using “pressure sleeve” and 

the centrifugal technique “Cavitron”, vulnerability curve could be obtained from a single 

sample. 

Air pressurization 

According to air-seeding hypothesis, the rupture of water column occurs because of the 

pressure difference across an air–water meniscus located on xylem walls exceeds a critical 

value. Hence, decreasing P by dehydration under constant atmospheric pressure or increasing 

air pressure while maintaining the xylem pressure close to zero MPa should resulted in the 

same effect on cavitation. This method was firstly introduced by Crombie et al. (1985). 

Various improvements have been carried out for this method, especially with the pressure 

sleeves (Cochard et al., 1992; Salleo et al., 1992). A pressure sleeve is put on the middle of 

sample segment to applied pressurized air (Figure 16). Cavitation is induced by air 

pressurization while the conductance is measured simultaneously by measuring the weight of 

solution flows through sample during a given time interval and at a given pressure. 

Afterward, air pressure in chamber is increased step by step to create higher embolism levels 

and the previous measuring steps are repeated until the complete VC is obtained. 

The advantage of this technique is that cavitation induction could be manipulated with a high 

accuracy and in a short time. In addition, a whole VC could be constructed using only one 

sample within a few hours.  

Centrifugation 

Centrifugal force was used to exposed liquid water in Z-shaped Pyrex glass capillaries to 

large negative pressures (Briggs, 1950). The tensile strength at which cavitation occurred was 

measured; the tension that induced the breaking of the water column is referred as the 

cavitation pressure.  

The principle of centrifugation technique is to spin a sample segment in a centrifuge to lower 

the xylem pressure in the middle part of the sample at a target pressure value. This pressure is 

computed according to the following equation: 

2 2 20.25 ( ( ) )P R R r           (18) 
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Figure 17. Centrifugation techniques for inducing and measuring xylem cavitation. 

Drawing of a rotor and the set up for measurement of xylem vulnerability to cavitation using centrifugal 

technique from Alder et al. (1997); (A). The rotor was machined from a single piece of 7075 T6 aluminum. 

Slots in the main body retained plexiglass ‘L’ shaped reservoirs (a) are contained water. Segments (b) are held 

by thin aluminium plates (c) secured by nuts on the bolts that also hold the lid (d). A maximum of two segments 

could be spun at once, crossing in the middle and held by a sandwich of two retaining plates. Segment 

attachment plates and lid bolts are absent in the top view for clarity. The rotor is attached to the centrifuge shaft 

(f) by a bolt (not shown). During rotation, centrifugal force moves the water in the reservoirs to the position 

indicated by the dotted line in the insert (e), and immerses the segment ends. A drawing from Cochard et al. 

(2002b) and photograph of the set up for measurement of xylem vulnerability to cavitation using centrifugal 

technique ‘Cavitron’ (B). Sample is placed in the rotor with its center on the axis of a centrifuge, and with both 

ends immersed in solution contained in plastic reservoirs. The xylem pressure applied to the sample will thus 

depend both from the centrifugation velocity and the distance of the solution from the rotor axis (R). The 

solution levels are determined by the position of holes in reservoirs’ wall such as there is a difference (r) in 

water level between both reservoirs. This difference in water levels creates a difference in water pressure, 

inducing a flow of the solution (F) through the sample from the upstream reservoir (with higher level of water) 

to downstream reservoir. In the downstream reservoir, the solution level is constant while, in the upstream 

reservoir, the solution level decreases from R-r to R over time proportionally to F. The value of r is determined 

optically during centrifugation by measuring the distance between the air–water meniscuses in the reservoirs. A 

tube is used to refill the system with more solution, hence allowing repetitive measurements.  
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where ρ is the density of water (1,000 kg m−3), ω the angular velocity (rad s−1), R the distance 

(m) from rotation axis to the downstream reservoir and r the difference of water levels 

between two water reservoirs.  

Cavitation is induced in the xylem within seconds after sample is exposed to the spinning. 

This technique has the same advantage than the air injection method but without the 

inconvenience associated with the presence of pressurized air in the sample. It could be used 

with small herbaceous species that are not suitable for the air-injection technique such as 

Arabidopsis (Tixier et al., 2013). The desired xylem pressure could also be obtained with a 

short time after the spinning started and the xylem pressure is known with considerable 

accuracy. 

Alder et al. (1997) developed a method for the measurement of vulnerability to cavitation on 

plant segment with their cut ends immersed in water. It used a customized rotor which could 

accommodate a maximum of two segments to spin at once (Figure 17A). During the spinning, 

water in plexiglass 'L' shaped reservoir is moved to immerse segments’ ends. For this 

method, the cut open xylem conduits at either end of the segment were open to the air. This 

allowed some of the water in them to evaporate and/or to be thrown out by the rotational 

motion. Hence, after a spinning, it was necessary to re-cut the segments underwater to 

remove the air-blocked ends before the measurement of Kh. As a consequence, a segment 

could only be used to one pressure. To complete the vulnerability curve, several segments 

were required (Pockman et al., 1995). In addition, this technique was only applicable on 

segments that most of xylem conduits were rather short. Since after removed the blocked 

conduits at both ends, it is necessary to still had enough of a segment for Kh measurement.  

The Cavitron (Cochard et al., 2005) was later build accordingly (Figure 17B). A sample 

segment (usually around 0.3 m) is spun in a centrifuge while both ends of segment are always 

submerged under water in the reservoirs. The spinning lower xylem pressure in the middle 

part of the sample at a target pressure value and cavitation is induced. Xylem pressure (P) is, 

firstly, set to a reference pressure and the Kmax is measured. Then after, xylem tension is 

increased by increasing the rotation velocity and new sample conductance (Ki) is measured. 

The process is repeated on the same sample with increment in xylem tension until PLC 

reaches more than 90%. 
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Figure 18. Effects of sample length on xylem VCs obtained with Cavitron and air-injection techniques on 
different segment lengths.  

Different shapes of VC were obtained from Cavitron and air-injection techniques, demonstrating open vessel 

artifact. The vulnerability curves from Cavitron (A) are from Cochard et al. (2010); closed symbols represent 

samples of various lengths (different symbols) cut under water and centrifuged with the Cavitron technique and 

open symbols represent samples treated similarly but infiltrated with air at both ends before centrifugation. The 

grey symbols show vulnerability curves obtained with the reference bench dehydration technique. Error bars are 

SE (n = 4). Vulnerability curves in (B) are obtained from air-injection technique (white symbols) with a 

reference technique is shown with closed symbols (Ennajeh et al., 2011a). The length of the pressure sleeve was 

3.5 cm and error bars are SE (n = 6). 
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The improvement of the Cavitron from previous method is that it allows a measurement of 

sample conductance at the same time while sample is spinning which helps to reduce a 

considerable time of the experiment. Moreover, since the ends of segment are always 

immersed under water in the reservoirs, the measurement could be done on the same segment 

until vulnerability curve is completed. 

3.3 Vessel length and reliability of the techniques for measuring xylem vulnerability to 

cavitation 

Among the techniques to induce xylem cavitation, the dehydration or bench-dry technique is 

considered a reference way to induce cavitation. Indeed, dehydration of large branch 

segments is similar to what happened in nature. However, due to it requires a long period of 

time to let the segment to dry off, the use of faster techniques like Cavitron and air-injection 

are increased. Despite several advantages of Cavitron and air-injection technique, there is an 

ongoing debate on the reliability of these techniques especially when measuring xylem 

vulnerability to cavitation on long-vessel species (Choat et al., 2010; Cochard et al., 2010; 

Cochard et al., 2013; Delzon and Cochard, 2014; Ennajeh et al., 2011b; Jacobsen and Pratt, 

2012; Sperry et al., 2012; Tobin et al., 2013; Torres-Ruiz et al., 2014).  

Several studies have pointed out the need in considering vessel length of the species when 

measuring vulnerability to cavitation (Choat et al., 2010; Cochard et al., 2010; Delzon and 

Cochard, 2014; Ennajeh et al., 2011a; Torres-Ruiz et al., 2014). These studies have 

demonstrated that the xylem conduits were found far more vulnerable to cavitation when 

using Cavitron and air-injection methods on segments that have vessel length exceeding the 

segment length.  

The first evidence of this concern comes from a study testing the effects of stem length on the 

vulnerability to cavitation using Cavitron (Cochard et al., 2010): as the samples become 

shorter, they could become more vulnerable to cavitation when spun in the Cavitron (Figure 

18A). The xylem vulnerability to cavitation measured on 4 species with different vessel 

lengths and different techniques is presented. Oak (Quercus robur L.) is a ring-porous species 

with very long vessels. Birch (Betula pendula Roth) is a diffuse-porous species with very 

short vessels. Peach (Prunus persica (L.) Batsch) has vessels of intermediate length and Scots 

pine (Pinus sylvestris L.) is a coniferous species with tracheids. Clear changes in shapes of 

VC from sigmoidal shape (call “s”-shape) to exponential-shape (called r-shape) are observed  
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Figure 19. Schematic representation of the two shapes of xylem vulnerability curve.  

The sigmoidal curve, with s-shape, (solid line) is considered a normal vulnerability curve with a safety range of 

xylem pressure (gray zone) whereas the exponential curve, with r-shape, (dash line) would be an anomalous 

curve without safety pressure zone. This latter type of vulnerability curve is suspect to be a result of cut open 

vessel artifact using the centrifugal or air-injection techniques. From Cochard et al. (2013).  
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when the length of sample used approaching the maximum vessel length of species. The 

anomalous ‘r’-shaped VCs are obtained on samples shorter than the maximum vessel length 

of species that means sample contains vessels that were open at both ends. This is consistent 

with the results obtained from centrifugation technique of other studies (Choat et al., 2010; 

Torres-Ruiz et al., 2014). 

The effect of open vessel artifact was also found (Figure 18B) when measuring xylem 

vulnerability to cavitation with air-injection technique (Ennajeh et al., 2011a). The study 

shows the shift in vulnerability curve when measuring xylem vulnerability to cavitation with 

this technique on plant segments having open vessels at both ends. Several segment lengths 

were tested: 0.18, 0.28, 0.38, 0.57 and 1.50 m long with the air-injection techniques on three 

species having different maximum vessel length. The study shows that the VCs obtained on 

segments having no open vessels result in normal sigmoidal VCs which are concordant with 

the dehydration technique whereas the r-shape VCs were obtained when measuring the 

vulnerability to cavitation on segments having open vessels. Sigmoidal VCs were obtained 

from all segment lengths when measuring vulnerability to cavitation on Betula pendula, a 

species with approximately 0.16 m long maximum vessel length. The measurement on 

Prunus persica demonstrated a shift in VCs from s-type to r-type when the segment length 

was approached a species maximum vessel length (0.42 m). The VCs measured on Quercus 

robur were mostly r-type curves, except from the 1.5 m long segments where intermediate 

curve was obtained. For latter species, maximum vessel length was 1.34 m. 

The sigmoid vulnerability curve (s-shape) is considered as a normal curve of the VC, with a 

safe range of xylem pressure for which embolism rate remains very low. This range of xylem 

pressure closely corresponds to a range of physiological xylem pressures usually found in 

natural habitats of the species. The exponential or “r-shape” curves are considered anomalous 

since they do not have the safety pressure range for the species to operate. As soon as the 

xylem tension is lowered, high embolism rate immediately occurs (Figure 19). Although 

some studies argued that the r-shape VC might not be anomalous (Jacobsen and Pratt, 2012; 

Sperry et al., 2012; Tobin et al., 2013) because their vulnerability to cavitation was similar 

compared to dehydration technique. This high vulnerability would indicate that high 

embolism rate would occur daily. It thus would imply a refilling process acting daily. This 

refilling process is questioned and it is called “miraculous” since the vessel refilling have to 

occur in a network of interconnected conduits under tension. In addition, it would require  
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energy for the refilling with positive pressure. These concerns on the refilling process argue 

for considering r-shape VC as anomalous. The increase in vulnerability to cavitation for short 

segment is believed to be a result of the vessel that was opened to center. While the segment 

is spinning on the Cavitron, air bubbles which formed during the segment preparation might 

enter into the open conduits. These bubbles would initiate cavitation when the xylem tension 

reached a threshold. In intact vessels (not open), the bubbles will be filtered through 

intervessel pit membrane and hence these intact conduits are considered safe from this 

artifact. 

4. Variation of xylem vulnerability to cavitation 

The P50 value could varies in different levels such as across the species, within the species or 

even between different organs on the same plant. These variations are considered as the result 

of the genetic control and/or the adjustment of the individual to environmental conditions, 

that is to say the phenotypic plasticity. In this following section, the variation of xylem 

vulnerability to cavitation is discussed in two aspects: the interspecific variation and the 

intraspecific variation. In addition, on the intraspecific level, the genetic variability and 

phenotypic plasticity are discussed. 

4.1 Interspecific variation 

Numerous studies have shown that the P50 is differed across the species (Choat et al., 2012; 

Maherali et al., 2004; Pockman and Sperry, 2000; Tyree et al., 2003), with a large range of 

variation. The value could be as high as −0.04 MPa which was found on a liana or woody 

vine species, Celastrus orbiculatus (Tibbetts and Ewers, 2000) or very low as −14.1 MPa for 

conifers (Willson et al., 2008). Several studies were carried out to investigate the xylem 

vulnerability to cavitation of herbaceous species such as in common bean (Phaseolus 

vulgaris), fireweed (Chamerion angustifolium), maize (Zea mays) and rice (Oryza sativa) 

with differences vulnerability to cavitation between these species (Cochard, 2002a; Holste et 

al., 2006; Maherali et al., 2009; Mencuccini and Comstock, 1999; Stiller et al., 2005). 

Focusing on broadleaved tree species, the vulnerability to cavitation found on angiosperms 

might rank from −0.09 MPa in Albizia julibrissin (Li et al., 2008) up to −8.12 MPa in 

Ceratonia siliqua according to Cochard et al., unpublished date in Choat et al. (2012). In 

gymnosperms, it could vary from −1.74 MPa in Podocarpus latifolius (Vander Willigen et 
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al., 2000) to −14.1 MPa in Actinostrobus acuminatus and Juniperus pinchotii (Choat et al., 

2012; Willson et al., 2008). 

 

Figure 20. Vulnerability to cavitation (P50) in 10 Prunus species.  

The studied species were categorized into three groups according to the tension causing 50% loss of xylem 

conductivity (ΨPLC50, MPa): the vulnerable species with P50 above −5 MPa (P. Padus, P. Cerasus and P. avium), 

the resistance species with P50 below −6 MPa (P. armeniaca, P. dulcis and P. cerasifera) and the intermediate 

species (P. persica, P. spinosa, P.mahaleb and P. domestica). These three groups are presented with black, 

white and gray histograms, respectively. The values are mean (n = 4 – 5), error bars represent standard error 

(SE). Species not sharing a letter in common are significantly different at 95% confidence interval (Cochard et 

al., 2008). 
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Variation in xylem vulnerability to cavitation was also found between species belonging to 

the same genus such as Prunus (Cochard et al., 2008) and Acer (Lens et al., 2011). 

Significant differences in xylem vulnerability to cavitation were found between ten Prunus 

species in a study of Cochard et al. (2008). These ten species comprised of four wild and six 

cultivated species: P. padus, P. avium, P. spinosa, P. mahaleb, P. cerasifera, P. cerasus, P. 

persica, P. domestica, P. armeniaca, and P. dulcis. They were selected to cover variation in 

water requirements, from hydrophilic to xerophilic types. The P50 of these ten species was 

ranked from −3.5 to −6.3 MPa (Figure 20) and correlated with species habitats supporting the 

relationship between cavitation resistance and drought resistance. In addition, the P50 was 

found to correlate with inter-vessel wall thickness of the species. In Acer (Lens et al., 2011), 

significant variation in P50 was found among seven species; the value was ranked from −1.26 

to −3.33 MPa. The variation in this trait was found strongly correlated with intervessel pit 

membrane thickness, its porosity, pit chamber depth and mechanical strength parameters of 

xylem. A trade-off was also observed between hydraulic safety and efficiency in this study. 

The variation in xylem vulnerability to cavitation across these species was found to correlated 

with their drought tolerance (Choat et al., 2012; Cochard et al., 2008; Delzon et al., 2010; 

Maherali et al., 2004; Pockman and Sperry, 2000; Tyree et al., 2003). In a recent article of 

Choat et al. (2012), xylem vulnerability to cavitation was found related with mean annual 

rainfall (MAP) of the species (Figure 21). Decrease in vulnerability to cavitation was 

observed with the increasing MAP. This is the evidence showing that xylem vulnerability to 

cavitation is involved in the distribution and the resilience of species when facing drought 

stress. 

4.2 Intraspecific variation 

Despite the importance of variation of xylem vulnerability to cavitation on the intraspecific 

level which is crucial for the selection and screening for drought tolerance genotypes of 

agronomic species, fewer researches were conducted on this level. As previously mentioned 

that xylem vulnerability to cavitation varies on the interspecific level and relates to drought 

tolerance of the species, it might possible to find similar variation on the intraspecific level. 

In general, the intraspecific variation is smaller when compared with the interspecific 

variation. In the following section, intraspecific variation of xylem vulnerability to cavitation 

is discussed in term of the genetic variation and the phenotypic plasticity. 
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Figure 21. Vulnerability to cavitation (P50) as a function of mean annual precipitation (MAP) of 480 
species. 

The P50 is xylem tension (MPa) which causes the 50% loss of conductivity whereas the MAP is mean 

precipitation (mm). Significant relationships were found between two traits (P < 0.00001) for both angiosperms 

and gymnosperms (Choat et al., 2012). 
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Genetic variability 

Xylem vulnerability to cavitation of the populations within a species could be varied under 

the genetic control similar to the variation found on the interspecific level. Several studies 

have shown this type of variation such as between clones of eucalyptus (Vander Willigen and 

Pammenter, 1998), between poplar and willow clones (Cochard et al., 2007) and genotypes 

from an apple progeny (Lauri et al., 2011). 

In case of the eucalyptus, the vulnerability to cavitation significantly varied between four 

clones, however, the P50 ranked only from −1.31 to −1.77 MPa (Vander Willigen and 

Pammenter, 1998). The study of Cochard et al. (2007) aimed to investigate the variation of 

vulnerability to cavitation and its relation with yield in five poplars and four willow clones. It 

demonstrated significant differences in xylem vulnerability to cavitation among the poplar 

and willow clones with ranges of P50 being −1.9 to −2.2 and −1.6 to −1.9 MPa, respectively. 

Despite poor correlation in cavitation resistance and wood anatomical traits, the study has 

found a good negative correlation of cavitation resistance with aboveground biomass 

production. Although significant differences in vulnerability to cavitation were found in these 

studies, the range of P50 within species was much narrower than between species. Large 

variation in P50 was found among 90 genotypes from an apple progeny ‘Starkrimson’ x 

‘Granny Smith’ (Lauri et al., 2011). The P50 was ranked from– 3.3 to −5.2 MPa with a good 

heritability (0.79). Large variation among these populations studied could explain by the fact 

that these genotypes were not under any selection pressure. The study also found that stem 

anatomy and morphology were not involved with hydraulic safety which is consistent with 

previous studies (Tyree and Zimmermann, 2002). In addition, there was no trade-off found 

between the hydraulic safety (P50 and s) and the hydraulic efficiency traits.  

Even though there are numerous studies reported the genetic variability of xylem 

vulnerability to cavitation, this might be not the case for some populations. In addition, 

positive results, i.e. detection of a difference, are easier and often published than negative 

results, i.e. lack of variation. Less variation for cavitation resistance between populations than 

within populations was found on several studies, suggesting that this trait is canalized. In wild 

species, the action of natural selection could be categorized according to evolutionary biology 

by comparing neutral genetic differentiation between populations (FST) and genetic variation 

for quantitative traits (QST). Three possible outcomes are: QST > FST, QST = FST, QST < 

FST which indicate diversifying selection, genetic drift, uniform selection, respectively.  
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Low additive genetic variance between population and similar cavitation resistance among 

population appeared as the causes of canalization in cavitation resistance. This uniform 

selection and canalization in vulnerability to cavitation were first demonstrated on Pinus 

populations (Lamy et al., 2011; Sáenz-Romero et al., 2013), and applied on Fagus sylvatica 

(Wortemann et al., 2011). The study explored vulnerability to cavitation between populations 

of Pinus pinaster in a common garden (Lamy et al., 2011)and along the environmental 

gradients from warm and dry to cooler and wetter sites. There was no evidence of variation in 

vulnerability to cavitation along these populations; the averaged P50 was −3.73 ± 0.070 MPa. 

The lack of differences between populations for this trait  was also found on another study on 

the populations of Pinus hartwegii along an altitudinal gradient, from 3,150 m to 3,650 m 

(Sáenz-Romero et al., 2013). The averaged P50 of these populations was −3.42 ± 0.047 MPa. 

Another extensive study of cavitation resistance among 17 populations of Fagus sylvatica 

grown in provenance tests revealed a remarkably constant cavitation resistance across 

populations (Wortemann et al. 2011). The evidence from these studies suggested that genetic 

architecture could narrow trait variability to preserve functional phenotypes in natura. 

Phenotypic plasticity 

Phenotypic plasticity is defined as a modification of the phenotype which allows an organism 

or an organ to acclimate. It is a fundamental ability for organisms to cope with variation in 

environments and includes changes in morphological, physiological, behavioral, 

phonological, etc. The responses could be classified into two groups: a phenotypic variation 

which links to environmental changes and a variation under genotype-by-environment (G x 

E) interaction (Pigliucci, 2005). The G x E reaction is of interest for breeders in an attempt to 

develop plants that could adapt to large ranges of environmental conditions. Various studies 

shown the plasticity of vulnerability to cavitation in response to, for instant, water 

availability, light condition and nutrient availability. 

Many Studies reported that plants grown under dryer environments tend to be less vulnerable 

to cavitation than ones grown at wetter areas. This trend is consisted with what previously 

found in genetic variability of xylem vulnerability to cavitation. It implies that plants might 

acclimate to dry condition and develop abilities to survive in this environment. A study on 

Cordia alliodora (Choat et al., 2007) found significant variation in the P50 of trees grown at 

three tropical rainforests with different mean annual precipitation. In a study of Awad et al. 

(2010) clones of hybrid poplars (Populus tremula x alba) cultivated under contrasted water 
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Figure 22. Pressure causing 50% loss of conductance (P50) of Fagus sylvatica populations. 

The P50 of samples from: (A) shaded (black histogram) and full light-exposed (white histogram), and (B) north- 

and south- facing mountainside (N and S, respectively) distributed along altitudinal gradients, for trees located 

on the N side at elevation 950, 1260 and 1520 m while the S side at elevation 930, 1250, 1565 m. Data are 

means (±SE) of 16 (A) and 6 (B) stems. From Herbette et al. (2010). 

Table 1. Values of pressure causing 50% loss of xylem conductivity (P50) in branches of seedlings of five 
species grown in 4, 16, 36 and 100% of full sunlight. 

 

The P50 values are means of 12 replicates with standard errors in the brackets. Different letters within a species 

indicate significant differences at 95% confidence interval between different irradiance conditions. From 

Barigah et al. (2006). 

A

B

a

b
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regimes shown variation in vulnerability to cavitation. The P50 on well-watered trees was 

−1.82 MPa whereas on the trees grown under drought condition, P50 was lower (−2.45 MPa). 

There was a correlation between the cavitation resistance to the reduction in vessel diameter 

and increase in vessel wall thickness (t/b) 2. Phenotypic variation of xylem vulnerability to 

cavitation was also found between six Pinus pinaster populations from xeric and mesic 

provenances (Corcuera et al., 2011). Trees from xeric site appeared to be less vulnerable to 

drought-induced cavitation than trees from mesic site. Xylem vulnerability to cavitation was 

also found varied on the intraspecific level between C. alliodora trees grown at three sites 

that differed in mean annual precipitation (Choat et al., 2007). These results suggest that 

there is a correlation between the dryness of environmental condition and the resistance to 

cavitation. 

There are also studies demonstrating the effect of light conditions on the vulnerability to 

cavitation. Since light is one of the factors determining plant-water relation, one could expect 

that the xylem vulnerability to cavitation might be modified by this factor. The acclimation to 

light therefore might determine tree survival especially for species grown in the understory 

level. The studies on Fagus sylvatica (Cochard et al., 1999; Herbette et al., 2010) have 

demonstrated that there is a light acclimation effect on vulnerability to cavitation. In the 

former study, it was conducted on both potted saplings and the mature trees grown in the 

forest. Samples which were exposed to light appear to be less vulnerable to cavitation than 

shaded samples: the means of P50 for one year old shoots for light-exposed and shaded were 

−3.22 and −2.43 MPa on the mature trees whereas they were −2.92 and −2.45 MPa on 

saplings, respectively.  These results were confirmed by a study of Herbette et al. (2010) 

(Figure 22) on the same species where light-exposed stems (−3.1 MPa) are less vulnerable to 

cavitation than shade-exposed stems (−2.6 MPa). This study also found difference in P50 

between populations along a latitudinal gradient, but not for an altitudinal gradient. In 

addition, variation also found between populations depending on the mountain side. The 

north-facing mountainside or the northern populations appeared less vulnerable than those 

grown on the southern-side or in the southern populations. Another study from Barigah et al. 

(2006) on seedlings of five species: Acer pseudoplatanus, Betula pendula, Fagus sylvatica, 

Quercus robur and Quercus petraea exposed to different irradiances also shown similar 

effect of light to vulnerability to cavitation (Error! Reference source not found.). Higher 

P50 was found for all species when levels of irradiance decreased.  



72 
 

  



73 
 

Different nutrient conditions are also reported to affect the vulnerability to cavitation. The 

study of Plavcová and Hacke (2012) showed this effect on vulnerability to cavitation of a 

hybrid poplar (Populus trichocarpa × Populus deltoids clone H11-11). The saplings that 

grown with greater nitrogen fertilization (400 ml of 7.5 mM NH4NO3) were more vulnerable 

to cavitation compared to the control saplings (400 ml of 0.75 mM NH4NO3). The P50 of 

basal segment was −1.14 and −1.42 MPa for fertilized and control saplings respectively. 

Within tree variation in xylem vulnerability to cavitation 

Vulnerability to cavitation was also different between organs of the same plant (Hacke and 

Sauter, 1996; Rood et al., 2000; Sangsing et al., 2004; Tyree et al., 1993). The study of Tyree 

et al. (1993) showed that petiole xylems of Juglans regia were more vulnerable to cavitation 

than stem xylems. This finding suggests segmentation in vulnerability to cavitation which 

allows plant discarding expendable organs in order to preserve more important organs from 

dehydration (Zimmermann, 1983). In contrast, some other studies have found that leaf xylem 

such as in the midribs and petioles are less vulnerable to cavitation when compared to branch 

xylem (Hacke and Sauter, 1996; Sangsing et al., 2004). Hacke and Sauter (1996) found that 

petioles of Populus balsamifera, a deciduous tree, were less vulnerable to cavitation 

compared to branches and its roots were the most vulnerable organ. A study on Hevea 

brasiliensis (Sangsing et al., 2004) has also found that xylem in midrib are far less vulnerable 

to cavitation compared to petioles and branches with P50 ranking from −2.72 to −1.22 MPa. 

Furthermore, the study of Cochard et al. (1997) demonstrated that even with the same type of 

organ but at the different positions on an individual tree, vulnerability to cavitation could 

differ. Leaf rachises from the lower canopy layer were found less vulnerable compared to the 

ones from upper layer; the P50 values of leaf rachises of Fraxinus exculsior from upper and 

lower layers were −2.5 and −3.5 MPa, respectively. This contrasted vulnerability to 

cavitation is related to xylem efficiency; the leaf rachises in upper layer had lower leaf 

specific conductance and smaller vessel sizes. 

The vulnerability to cavitation is not only varied because of a genetic control but it is also 

under the influences of environmental condition and the interaction of both. These influences 

need to be clearly understood in order to use the vulnerability to cavitation as a criterion for 

drought tolerance selection in agronomic species. The relationship of this trait with drought 

tolerance within a species has to be firstly studied since the species might adopt different 
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 mechanisms to cope with drought stress. Resistance to cavitation usually comes with trade-

off such as high carbon cost for xylem structure to withstand the implosion. Trade-offs thus 

needs to be explored. Finally, given that drought resistance involves not only the cavitation 

resistance but also others mechanisms, this process have to be studied and the relationships 

with growth performance and yielding potential have to be studied. 
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Table 2. The species, distribution and important characteristics of Juglans. 

Sections Modern distribution Species Characteristics 

Rhysocaryon  

(black 
walnuts) 

America North 
American 

Juglans californica S. Wats., 
Juglans hindsii (Jeps.) 
Rehder, Juglans major (Torr. ex 
Sitsgr.) Heller, Juglans 
microcarpa Berl.,Juglans 
mollis Engelm. ex Hemsl., 
and Juglans nigra L. 

Typically bear four-
chambered nuts with thick 
nutshells and septa; thick, 
indehiscent and adherent 
husks; and are borne singly 
or in pairs. 

Central 
American 

Juglans olanchana Standl. & L. O. 
Williams, Juglans 
steyermarkii Mann., and Juglans 
guatemalensis Mann.  

South 
American 

Juglans australis Griesb.,Juglans 
boliviana (C.DC.) Dode, Juglans 
neotropica Diels, and Juglans 
venezuelensis Mann. 

Cardiocaryon  

(Oriental 
butternuts) 

East Asia Juglans ailantifolia Carr., Juglans 
cathayensis Dode, andJuglans 
mandshurica Maxim. 

Has two-chambered nuts 
with thick nutshells and 
septa, indehiscent and 
persistent husk, and are 
borne in long racemes of up 
to 20 nuts. 

Trachycaryon 

(Butternuts) 

Eastern North America Juglans cinerea L Bears two-chambered nuts 
with thick, rough shells 
featuring distinct sharp 
ridges and furrows on the 
surface, indehiscent and 
persistent husk, and are 
borne in clusters of 2–3 nuts 
on long stalks. 

Juglans  Southeastern Europe 
to China and the 
Himalayas 

Juglans regia L  

(Persian or English walnut) 

 

Juglans sigillata Dode 

(Iron walnut) 

Bears four-chambered nuts 
generally singly or in pairs, 
occasionally three nuts, 
smooth, thin nutshells, and 
papery septa, and a 
dehiscent husk that separates 
easily from the nut. 

Have thick, rough-shelled 
nuts, and characteristic dark-
colored kernels. 

Classification of Juglans according to Louis-Albert Dode (Aradhya et al., 2007) which divided them into four 

sections: Rhysocaryon, Cardiocaryon, Trachycaryon and Juglans 
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V. Rationale for the choice of the species 

In this study, we chose to work on three species: the walnut, the rubber and the apple trees.  

For walnut trees, the studied population included six commercialized Persian walnuts (J. 

regia) and six hybrid walnuts (J. regia x J. nigra NG 38), rubber tree are ten commercialized 

clones from Thailand and apple trees are five genotypes of a cross between ‘Starkrimson’ and 

‘Granny Smith’.  

Their respective ecologies are different and the genetic structure of the populations is varied, 

which give more opportunities to explore the intra-species variation in xylem vulnerability to 

cavitation. In addition, for walnut and rubber trees, we used commercial cultivars and clones, 

respectively; they underwent the selections that aim for different agronomic objective: fruits 

and latex yielding the selection pressures on each species are different leading to different 

genetic structure. The walnut and rubber trees used in this study are commercial cultivars and 

clones respectively; they underwent the selections that aim for different agronomic objective: 

fruits and latex yielding, respectively. The apple genotypes were chosen base on their large 

variation in vulnerability to cavitation (P50) and drought-induced stomatal closure (FTSWc). 

In the case of walnut and rubber trees, despite the potential to find differences in traits 

interested, the plant material we used was probably not the most appropriate. Our choice was 

carried out on plant material that was available at the period of our work. Therefore, the 

studies were carried out using as much as possible genetic diversity materials for each 

species. This is another reason for performing this work on three different species. 

1. Walnut tree 

The genus Juglans contains approximately 20 of deciduous tree species which are native 

from temperate to subtropical climates. Based on fruit morphology, wood anatomy, and 

foliage architecture, the Juglans could be divided into four sections according to Louis-Albert 

Dode (Table 2): Rhysocaryon, Cardiocaryon, Trachycaryon and Juglans (Aradhya et al., 

2007).  

The Juglans have high value for their timber and edible nuts which are common in Europe, 

Asia and America. All species have 32 diploid chromosomes and many species are capable of 

hybridizing with each other (Germain, 2004). Among them, Persian walnut (J. regia) and 

eastern black walnut (J. nigra) have the most commercial values. The origin of Persian  
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Figure 23. Walnut production by country. 

World map show production of walnut with shells (tons) by country. Values are averaged from 1993 to 2013 

(FAO, 2014).  

 

Figure 24. Origin of the walnut production in 2012. 

Distribution of the production of walnut with shells (%) between the top 5 countries: China, Iran, the USA, 

Turkey and Mexico (FAO, 2014). 
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walnut or English walnut was in the mountain chains of central Asia which included the area 

of Turkey and Iran to China and Himalayas. Since its commercialization, it is largely 

cultivated throughout the world (Figure 23). Eastern black walnut is native to eastern USA 

and Canada. It is mostly cultivated for timber but its nuts also commercially used for 

confectioneries and ice cream. Despite some developed cultivars, most of them are still 

derived from wild or seedling trees. In Europe, this eastern black walnut is cultivated for 

timber and used as rootstock for orchard trees (Ramos, 1997). In the past decade, the 

production of walnut with shells was continuously increased. It rose from 1.42 million tons in 

2002 to 3.42 million tons in 2012 according to FAO (2014).  Approximately 50% of the 

production in 2012 came from China, followed by Iran, the USA, Turkey and Mexico while 

the remaining part of the production came from 49 other countries including Ukraine, India, 

Chile, France and Romania (Figure 24). 

Persian walnut is self compatible; however, its genetic structure is rather heterozygous due to 

its dichogamy which encourages the allogamy of the species. Given the large variability in 

the area of distribution, phenology and some other physiological traits within J. regia, 

selection and breeding works were carried out in order to improve climate adaptation, early 

fruiting and high productivity, disease tolerance and high fruit and kernel quality of the 

species (Germain, 2004). Drought tolerance is one of the interesting traits for walnut breeding 

programs, since the important production sites include Mediterranean, semiarid and arid 

regions where more intense drought stress is likely to occur (Aletà et al., 2009; Vahdati et al., 

2009). Currently, walnut production requires irrigation (Reid et al., 2009) in order to ensure 

the optimal growth and productivity since walnuts require hefty amount of water (Fulton and 

Buchner, 2006).  

Studies have been carried out in order to gain better knowledge on drought responses of 

walnuts to water stress (Gauthier and Jacobs, 2011) as an attempt to search for drought 

tolerance varieties for the coming future. The studies report that walnut tree adopts several 

drought avoidance strategies when facing water deficit. It develops deep root system 

(Pallardy and Rhoads, 1993) allowing tree to reach water at the lower soil depth and it has 

sensitive stomata to relative humidity which help in preserving water and preventing the 

occurrence of xylem embolism (Cochard et al., 2002). In addition, walnut would display a 

segmentation of the xylem vulnerability to cavitation with petiole that was more sensitive to 

cavitation than branches (Tyree et al., 1993). This would leave the leaves to shed in order to  
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Figure 25. Natural rubber production by country. 

The world map shows the production of natural rubber (tonnes) by country. Values are averaged from 1993 to 

2013 (FAO, 2014).  

 

 

Figure 26. Distribution of the rubber plantations between regions of Thailand. 

The distribution of rubber plantations (%) was shown between four parts of Thailand between for the years 2006 

and 2011 (RRIT, 2011). 
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protect branches and stem from fully embolism. Studies demonstrated different drought 

responses among Persian walnuts (Aleta et al., 2009; Vahdati et al., 2009). There are 

differences in water use efficiency among the studied genotypes as well as differences in 

germination and growth rates when seedlings were grown under drought stress. These studies 

indicate a genetic potential for the screening of drought tolerance. Nevertheless, there was no 

insight on the genetic variability for the vulnerability to cavitation which is considered one of 

important drought tolerance traits. 

2. Rubber tree 

Para rubber tree, or rubber tree (Hevea brasiliensis Müll.Arg.), a native species from 

Amazonian basin, belongs to the family Euphorbiaceae. It favours warm and humid climates 

with average temperature ranks from 21 to 35°C and annual rainfall of 2,000 to 3,000 mm. In 

nature, the species distributes in the area between latitude of 15°N and 10°S (Duke, 1983). It 

is an important agronomic tree which is extensively cultivated for its latex (natural rubber) in 

various equatorial countries (Figure 25). It matures at the age of 7 to 10 years old, which 

latex tapping could be started.  

The industrialization of this species started after 1839 with the discovering of vulcanization 

by Goodyear Tire and Rubber Company. At that time, latex was collected from the wild 

rubber trees grown in Amazonian forests. In 1876, rubber seeds were transferred from Brazil 

to the Royal Kew Botanical Garden in London by Sir Henry Wickham. The seedlings, 

descendants of these seeds, were later introduced to other countries in Southeast Asia such as 

Sri Lanka, Malaysia, Indonesia, India, Sarawak, and Thailand.  

Several rubber seedlings were firstly introduced in the southern region of Thailand during 

1899−1901 and afterward spread to the East part of country where climate conditions are 

favorable for growth of rubber tree. These 2 regions are considered the traditional production 

areas. During the beginning of natural rubber commercialization in Thailand, the cultivated 

rubber trees were the progeny of these seedlings that were firstly introduced into Thailand 

with rather low productivity. Rubber cultivation in Thailand was intensified due to the 

increasing demand for natural rubber in global market. In 1961, Thai government has 

launched a re-planting program for rubber (Rubber Estate Organization, 2014) in the 

traditional production areas, in order to replace the old native rubber trees with more suitable 

and more productive budded cultivars. Natural rubber production became very profitable  
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Table 3. Examples of the rubber clones recommended by Rubber Research Institute of Thailand (RRIT).  

Class Group Clones for traditional production 
areas 

Clones for marginal production 
areas 

I 1 RRIT 251, RRIT 226, BPM 24, RRIM 
600  

RRIT 408, RRIT 251, RRIT 226, 
BPM 24, RRIM 600 

2 PB 235, PB 255, PB 260 RRII 118, PB 235 

3 Chachoengsao 50 (RRIT 402), AVROS 
2037, BPM 1 

Chachoengsao 50 (RRIT 402), 
AVROS 2037, BPM 1 

II 1 RRIT 218, RRIT 250, RRIT 319, RRIT 
405, RRIT 406, RRIT 410 

RRIT 250, RRIT 319, RRIT 405, 
RRIT 406, RRIT 410, RRIT 411 

2 RRIT 312, RRIT 325, RRIT 403, RRIT 
404, RRIT 407, RRIT 409 

RRIT 312, RRIT 325, RRIT 403, 
RRIT 404, RRIT 407, RRIT 409 

3 RRIT 401, RRIT 414, RRIT415 RRIT 401, RRIT 414, RRIT 415 

III  RRIT 3701, RRIT 3702, RRIT 3901, 
RRIT 3902, RRIT 3903, RRIT3904, 
RRIT 3905, RRIT 3906, RRIT 3907 

RRIT 3710, RRIT 3702, RRIT 3901, 
RRIT 3902, RRIT 3903, RRIT3904, 
RRIT 3905, RRIT 3906, RRIT 3907 

The rubber clones are recommended for the production in traditional and marginal areas of Thailand according 

to the RRIT (2012). Clones were classified into three groups according to their primary product: group 1 

consists of latex production clones, group 2 includes clones that give both latex and wood, and group 3 includes 

clones for wood production. They are also classified according to their productivity and suitability for the 

production into three classes: class I consists of clones for large-scale planting with the production potential 

over 2,500 kg.ha−1.year−1 while class II and class III contains clones with good potentials of growth rate and 

productivity with estimated production potential range of 1,500−2,500 and less than 1,500 kg.ha−1.year−1, 

respectively. 
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activities and, in 1978, several plantation trails were set up at some provinces in the north-

eastern region. It is considered a marginal area for natural rubber in term of water availability 

and soil properties. However, despite unfavorable conditions, growth and production in these 

marginal areas were found to be quite similar to the traditional production regions. The 

success of these production trails marks the beginning of northward expansion of rubber 

production in Thailand. Since then, the cultivation area was increased in these regions due to 

the abundances of lands and labors in the areas. According to RRIT (2011), the rubber 

plantation areas in the Northeast and North Thailand were increased by 12% from 2006 to 

2011 (Figure 26).  

Since 1991, Thailand has become the first producer and exporter of natural rubber in the 

world market with approximately 2.65 million tons of annual natural rubber production 

(averaged values from 1993 to 2013). Other important natural rubber producers consist of 

Indonesia, Malaysia, India and China which produced 0.53 to 2.05 million tons (FAO, 2014). 

Nowadays, natural rubber production (cultivation, transformation and trading) is one of the 

most important activities contributing to livelihood of around 10% of the Thai population. 

Various rubber clones have been developed during the commercialization of the species. 

They are varied in vigor, growth, latex productivity, disease resistance, and tolerance to 

abiotic stress. However, only few clones were commercially used. In Thailand, most of 

rubber trees planted are the clone RRIM600; it occupied more than 80% of the total 

production areas (RRIT, 2011).  

In general, the rubber clones recommended to the growers in Thailand (RRIT, 2012) could be 

categorized according to two factors: (i) the yielding potential and the suitability of the clones 

in large-scale production and (ii) the main product of the clones which could be the latex 

(Group 1) the latex and wood  (Group 2) and the wood (Group 3). For latex yield, rubber 

clones are divided into three classes: Class I consists of clones for large-scale planting with 

the production potential over 2,500 kg.ha−1.year−1 while Class II and Class III contains clones 

with good potentials of growth rate and productivity with estimated production potential 

range of 1,500−2,500 and less than 1,500 kg.ha−1.year−1, respectively (Pratummintra, 2005). 

Considering lower production potential and some unknown information on clones’ traits, the 

clones in Class II and III are recommended to grow in a limit area. Examples of 

recommended rubber clones for planting in Thailand are presented in Table 3 for both 

traditional and marginal production areas (RRIT, 2012). 
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Despite the economical profits, the expansion of rubber plantations northward into the 

marginal areas puts natural rubber production under a greater risk of drought stress. 

According to the Rubber Research Center of Thailand (RRIT, 2012), the suitable areas for 

rubber plantation should have at least 1,250 mm of annual rainfall with 120−150 raining days 

and without a dry period longer than 4 months. The average annual rainfall in these new 

plantation areas is just at the limit of the amount required by rubber tree (Thai Meteorological 

Department, 2012). Although the climate models has predicted the increasing in 

precipitations over Southeast Asia in the future, the increasing surface temperature and the 

longer dry period (IPCC, 2013) might amplify the risk of drought stress in these non-

traditional production areas. Studies have shown that drought stress could affect growth 

(Chandrashekar et al., 1998; Manmuen et al., 1993) and latex yield (Raj et al., 2005; Rao et 

al., 1998; Wichichonchai and Manmeun, 1992) of rubber trees. Hence several practices such 

as weeding, mulching, ground cover cropping, branch pruning and, in case of severe drought, 

irrigation have been adopted for the cultivation (Office of the Rubber Replanting Aid Fund, 

2003). Though these practices could prevent/decrease the damage from drought stress, they 

are very labor-intensive tasks and costly. Considering the intensive labor tasks for water 

management and the possibility of extreme drought events in the coming future (Chinvanno, 

2011; IPCC, 2014), screening clones for drought tolerance become a subject of interest for 

rubber breeding programs. 

The possibility of finding drought tolerant clones are highlighted by the differences in 

responses to water stress as demonstrated by various studies (Priyadarshan et al., 2005; Raj et 

al., 2005; Rao et al., 1990; Sangsing and Rattanawong, 2012). 

3. Apple tree 

The domesticated apple (Malus domestica Borkh.), originated from the central Asia, is one of 

the most cultivated temperate fruit species. It is widely distributed from the high latitudes in 

Europe, North America, and Asia to the high altitude equatorial zones. Most of apple 

cultivars are diploid (2n=2x=34) but many successful cultivars are triploids (3x=51). Triploid 

cultivars have larger fruit and are of value to the industry, but they need crossed pollination to 

have satisfactory yields, (Brown, 2003). Currently, there are over 10,000 named apples 

existing nowadays, yet not so many varieties are widely produced for international trade 

(Hampson, 2003). In commercialized apple production, vegetative propagation is used; the  



86 
 

 

Figure 27. Origin of the apple production in 2012. 

Distribution of the apple productions (%) between the top five countries: China, USA, Turkey, Poland and India 

(FAO, 2014). 

 

Figure 28. World distribution of the apple production. 

World map shows the annual production of apples (tons) by country. The values represent mean obtained on 

from the period 2002−2012 (FAO, 2014).  
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selected cultivars are budded/ grafted on clonal rootstocks. While the scion varieties are 

selected for their fruit quality and quantity, the rootstocks are chosen for their vigor, 

persistent root system, disease resistance, and suitability to the environmental conditions of 

plantation. 

In 2012, there were 76.38 million tons of apples produced over the world (Figure 27); the 

majority of the production (37.00 million tons) was from China, followed by the production 

from the USA (4.11 million tons), Turkey (2.89 million tons), Poland (2.88 million tons) and 

India (2.20 million tons), respectively. The rest of the production came from other smaller 

producers such as Italy, Iran, Chile, Russia and France (FAO, 2014).   

Although most of the production is situated in the temperate zone, apple tree is also cultivated 

in semi-arid and arid regions as shown in Figure 28. In general, soil water content in apple 

orchard is maintained close to field capacity throughout the growing season because of a high 

water requirement of apple tree to maintain the optimal yield (Dragoni et al., 2003; Green et 

al., 2003). Hence, the production in drought-prone is heavily relies on irrigation system to 

ensure tree survival and productivity (Wertheim, 2003). Despite the availability of heat-

tolerance varieties such as ‘Granny Smith’ and ‘Fuji’ and the development of irrigation 

techniques which ensure optimal irrigation doses (O'Rourke, 2003), searching for drought 

tolerance varieties is still a topic of interest for apple breeding programs since various apple 

production sites are under increasing risk of drought stress. 

The studies on drought tolerance mechanisms were usually carried out on the root system 

(rootstock) and the aerial part (scion). On grafted tree, the degree of drought tolerance has to 

be considered as an interaction between rootstock and scion, since there are evidences of the 

influence of rootstocks (Landsberg and Jones, (1981). For apple tree, the rootstock influences 

water and nutrition uptakes, water transport, and canopy and tree size (Cohen and Naor, 

2002; Li et al., 2002). Various studies were carried out on ecophysiological traits related to 

drought response; however, most were focused on the rootstocks. Differences in drought 

tolerance were reported for apple rootstock, and they were studied for both root and leaf 

traits. The tolerant rootstocks tend to produce larger root dry matter which enhance hydraulic 

conductance in roots and therefore, allow the tree to be more tolerance to drought stress 

(Atkinson et al., 1999). Few studies were carried out on the scion in relation to drought 

tolerance. The study of Angelocci and Valancogne (1993) shows good correlation between  
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apple leaf area and its water use. As an isohydric species, the apple tree closes its stomata 

early when facing soil water deficit. In the study of Regnard et al. (2009), they found that 

stomatal conductance of an apple progeny is strongly decreased with increased water vapor 

deficit (VPD). Massonnet et al. (2007) reported differences in water use strategies between 

the apple cultivars ‘Braeburn’ and ‘Fuji’, which result from different stomatal regulations. 

Atkinson et al. (2000) also showed differences in the stomatal response to water deficit on 9 

different rootstocks. 

Lauri et al. (2011) have found large variation for various anatomical and hydraulic traits in a 

progeny of ‘Starkrimson’ x ‘Granny Smith’, with high broad sense heritability (   ). The 

heritability is the proportion of observed differences on a trait among individuals of 

population that is due to genetic differences. For the broad sense heritability, it reflects all the 

genetic contributions to a population's phenotypic variance including additive, dominant, and 

multigenic interactions, as well as maternal and paternal effects, where individuals are 

directly affected by the parent phenotype. Following are means of the whole progeny of some 

interesting traits with their first and seventh octiles values in the brackets: vessel density 65.8 

  10−5 μm−2 (55.0   10−5 to 75.7   10−5), hydraulic vessel diameter 18.9 μm (17.2 to 20.6), 

hydraulic conductivity 0.26 mmol s−1 MPa−1 m (0.14 to 0.35) and P50 −4.3 MPa (−5.2 to 

−3.3). The      values of these traits are: 0.70, 0.77, 0.77 and 0.79, respectively. Considering 

both the large diversity and the high heritability in cavitation resistance and hydraulic 

efficiency traits of the stem, they indicate a great potential for the screening of drought 

tolerance in this species. 
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OBJECTIVES OF THE STUDY 
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The literature shows that xylem vulnerability to cavitation in forest species could vary not 

only between species (Cochard et al., 2008; Maherali et al., 2004; Pockman and Sperry, 

2000; Tyree et al., 2003) but also within the populations of many forest tree species 

(Corcuera et al., 2011; Herbette et al., 2010; Maherali and DeLucia, 2000; Martínez-Vilalta 

et al., 2002). Moreover, at the interspecific level, relationship was found between the 

vulnerability to cavitation and drought tolerance (Choat et al., 2012; Cochard et al., 2008; 

Delzon et al., 2010; Maherali et al., 2004; Pockman and Sperry, 2000; Tyree et al., 2003). 

These findings suggested xylem vulnerability might be used as a criterion for drought 

tolerance screening. The possibility of using this trait was highlighted by the current reliable 

and fast analytical techniques (Cochard et al., 2007; Cochard et al., 2008). 

To use xylem vulnerability to cavitation as a drought tolerance screening criterion, firstly, the 

investigation on the variation of this trait within the interested population and its heritability 

had to be carried out. Secondly, it was necessary to clearly understand the sources of 

variation of xylem vulnerability to cavitation since this trait was not only under genetic 

control but also under the influences of environmental condition and the interaction of both. 

Thirdly, the relationship between xylem vulnerability to cavitation and drought tolerance had 

to verified on the intraspecific level. Given that drought tolerance involves not only the 

cavitation resistance but also others mechanisms, it was important to also understand these 

mechanism. Finally, the relationship of this trait with growth and yield performances had to 

be studied. To date, the knowledge of these aspects on agronomic species is still scarce.  

This study was carried out with the anticipation to improve the insights on the variation of 

vulnerability to cavitation, especially for agronomic tree species and the possibility of using 

this trait in drought tolerance screening. Hence the main objectives of this study were: 

(i) to investigate the variability of xylem vulnerability to cavitation on tree species of 

agronomic interest, and 

(ii) to test, if any, the relationship between xylem vulnerability to cavitation and the 

tolerance to a severe drought. 

Three species: walnut tree, rubber tree and apple tree were chosen for this study. The walnut 

trees used in this study were accessions comprised of six of commercialized Persian walnuts 

(J. regia) and six hybrid walnuts (J. regia x J. nigra NG 38). The rubber trees included ten 
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commercialized clones used in Thailand and the apple trees were five genotypes from a cross 

between ‘Starkrimson’ and ‘Granny Smith’. These three species are threatened by drought, 

have high economical values and vastly cultivated in a large range over the world.  

We chose these three tree species because of the opportunity to explore the variability of 

vulnerability to cavitation in plant materials with different features, especially the differences 

on their sensitivity to cavitation and their genetic structure. The three species originated from 

different climatic regions and subsequently, they were differed in the sensitivity to drought 

stress. Walnut and apple trees originated from dryer regions of central Asia, they thus could 

be cultivated in Mediterranean, semi-arid and arid areas. Rubber tree came from tropical 

region of Brazil and it occupied mostly within warm and wet conditions of tropical region. 

Populations of the chosen species were expected to have enough genetic variability which 

allowed the variation of interested traits. For the populations of walnut and rubber trees, 

differences in drought responses, geological distribution, growth and yield were used to 

assume the genetic variability of these respective populations. These different features 

suggested the possibility of variation in vulnerability to cavitation. The choice of apple trees 

relied on the finding from Lauri et al. (2011) which large variations in P50 and desiccation 

avoidance behavior were found among the progeny. Five genotypes with contrasted drought 

tolerance strategies were selected for this study.  

Another reason for choosing them is that we had access to these plant materials thanks to 

collaboration with Dr. Pierre-Eric LAURI (INRA Montpellier) and Pr. Jean-Luc REGNARD 

(Montpellier SupAgro, Montpellier) for apple tree and thanks to collaboration with 

researchers from the Rubber Research Institute of Thailand (RRIT) including Miss Ratchanee 

RATANAWONG for rubber tree, while genotypes of walnut tree were planted in our site 

(INRA Crouël). 

The principal method for measuring xylem vulnerability to cavitation in this study was the 

Cavitron, a centrifugation technique that allows a measurement of water flow through sample 

while it was exposing to different level of stress (different velocity of the spinning). For the 

experiment on walnut and rubber trees, we also tested the protocols, the techniques and 

sample conditions on the vulnerability to cavitation of the species. These sub-experiments  

  



96 
 

 

  



97 
 

aimed to find the most suitable method to carry out the measurement of xylem vulnerability 

to cavitation with the Cavitron and to compare the result with air-injection technique. 

Drought tolerance is a complex process and might involve many mechanisms; therefore, it is 

important to understand whole plant response to drought stress to be able to identify any 

pertinent trait for the selection. In the experiment on rubber and apple trees, tree response 

such as stomatal regulation, embolism rate, leaf water potential and growth were followed 

through the progression of drought stress. The sensitivity to drought stress of the studied 

populations was monitored via changes in growth and embolism rate during the experiment. 

The following section describes in detail the aims of the experiment for each tree species.  

Walnut tree 

The investigated walnut trees were Persian (Juglas regia) and hybrid (J. regia x J. nigra NG 

38) walnuts. The former are fruit-oriented while the latter are wood-oriented. Aim of this 

study was to evaluate the genetic variation of vulnerability to cavitation in these Juglans 

accessions. By using these two species, it not only allowed us to study the variation of xylem 

vulnerability to cavitation within the species but also permitted a comparison of variability 

between two species. In addition, to improve the accuracy of the Cavitron technique to assess 

xylem vulnerability to cavitation with this species, analytical methods were tested. Then 

after, xylem vulnerability to cavitation in six Persian and six hybrid walnuts was measured 

using the most suitable protocol. Structural traits in relation with xylem vulnerability to 

cavitation also explored for the six Persian walnuts. 

Rubber tree   

The studied rubber trees (Hevea brasiliensis) include ten commercialized clones from 

Thailand: BPM 24, PB 217, PB 235, PB 260, PB 5/51, RRII 105, RRII 118, RRIM 600, 

RRIT 251 and RRIT 408. All of them derived from a single population called ‘Wickham’s 

population’. They were Brazilian rubber seeds, brought back to Kew Botanical Garden by Sir 

Henry Wickham in 1879. Since this introduction of rubber trees, commercialized clones were 

developed in different research centers located in different countries over the world.  

Two main objectives in this study were to investigate: the genetic variability of xylem 

vulnerability to cavitation between these clones and the response to a severe drought. 
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Before the investigation of vulnerability to cavitation, the feasibility of techniques for 

measuring this trait was explored, given that the suitability of centrifugation “Cavitron” and 

air-injection techniques had not been tested with this species. Different protocols for the 

measurement and different sample conditions were studied to improve the protocol of 

measurement. Afterward, genetic variability of xylem vulnerability to cavitation was carried 

out on the ten rubber clones. In addition to the genetic variability in xylem vulnerability to 

cavitation, the plasticity of this trait was also studied. Samples of two rubber clones: RRIM 

600 and RRIT 251 from trees grown at three different locations were measured. These 

locations differ in mean annual rainfall and thus in the water regime of their respective 

plantation. 

Lastly, the experiments on plant responses to drought stress were carried out on one-year-old 

trees of these clones. It aimed to compare clones for their drought response for young 

individual of this species and to help in identifying pertinent traits for drought tolerance 

screening. 

Apple tree 

The apple genotypes used in this study belong to a progeny from a cross between 

‘Starkrimson’ and ‘Granny Smith’. Among the 122 individuals of the progeny, five of them: 

B0023, B0057, B0070, B0097 and B0111 were chosen. They were differed in vulnerability to 

cavitation (P50) and drought-induced stomatal closure (FTSWc). Cavitation resistance was 

focused as a desiccation tolerance trait while stomatal regulation was chosen as a trait 

representing avoidance behavior in this study. Genotype B0023 was characterized as a 

cavitation sensitive and water spending genotype (P50 = −2.52 MPa, FTSWc = 72%), B0057 a 

tolerant and water saving genotype (P50 = −5.84 MPa, FTSWc = 82%), B0070 a tolerant and 

water spending genotype (P50 = −6.77 MPa, FTSWc = 46%), B0097 a cavitation sensitive and 

water saving genotype (P50 = −3.66 MPa, FTSWc = 93%) and B0111 a cavitation sensitive 

and water spending (P50 = −3.70 MPa, FTSWc = 49%). 

Objective of this experiment was to investigate their response to a severe drought in relation 

with both traits (P50 and FTSWc). The experiment on plant response to a severe drought was 

conducted during two growing seasons in 2012 and repeated in 2013. Between these two 

experimental years, apple trees were grown with different irrigation regimes: in 2012, trees 

were grown at full field capacity whereas in 2013, trees were grown under mild drought 
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stress. We expected that by lower the available water during growth period will enhance 

different responses to drought stress from these genotypes.  
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METHODOLOGY 

I. Plant materials and experimental designs      

1. Walnut trees: the investigation of xylem vulnerability to cavitation  

 2. Rubber trees         

2.1 The investigation of xylem vulnerability to cavitation   
Feasibility of the techniques and effects of sample conditions on xylem 

vulnerability to cavitation      

Variation in xylem vulnerability to cavitation    

2.2 The responses to drought stress      

3. Apple trees          

3.1 The investigation of xylem vulnerability to cavitation    

3.2 The responses to drought stress     

II. Methods          

1. Measurements of xylem vulnerability to cavitation    

1.1 Evaluation of the vessel length       

1.2 Cavitron         

1.3 Air-injection         

2. Measurements of hydric traits      

2.1 Stomatal conductance        

2.2 Leaf and stem water potential       

2.3 Stomatal response to water potential      

2.4 Xylem embolism        

3. Measurement of soil water content       

4. Measurement of leaf and growth traits      

4.1 Leaf area and leaf mass per area      

4.2 Tree growth         

5. Measurements of wood traits       

5.1 Wood density         

5.2 Wood anatomical traits       

III. Statistical analysis    
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Table 4. Persian walnut cultivars used in the study with their origins and parents. 

Cultivar Origin Parentage 

Chandler The USA Pedro x UC56-224 

Fernette France Franquette x Lara 

Fernor France Franquette x Lara 

Franquette France Unknown 

Lara France Tulare x Chico 

Serr The USA Payne x PI 159568 

The origins and parentages of six Persian walnut cultivars: Chandlers (Ch), Fernettes (Ft), Fernors (Fo), 

Franquettes (Fq), Laras (La), and Serrs (Se) are listed. 
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This chapter is dealing with the vegetative materials, the experimental designs and methods 

for conducting the interested traits in this thesis. Firstly, plant materials of the three species: 

walnut, rubber and apple trees and experimental designs or the respective species are 

presented. After that, the methods used in the study are listed.  

I. Plant materials and experimental designs 

1. Walnut trees: the investigation of xylem vulnerability to cavitation 

The investigation on xylem vulnerability to cavitation using Cavitron technique was 

conducted on two species of Juglans: Persian walnuts (Juglans regia L.) and hybrid walnuts 

(J. regia x J. nigra). Branch samples were harvested from 15 to 20 years old trees grown in 

orchard at INRA site Crouël, Clermont-Ferrand in south-central France (45°46′27″N, 

3°8′36″E; altitude 338 m).  

The Persian walnut trees were comprised of 48 individuals from six cultivars: Chandlers (Ch, 

4 individuals), Fernettes (Ft, 3), Fernors (Fo, 4), Franquettes (Fq, 17), Laras (La, 15), and 

Serrs (Se, 4). They are important commercial cultivars for nut productions in France and the 

USA with different origins and parentages (McGranahan and Gale, 1994) (Table 4). On 

October 2011, 17 branches were randomly harvested from some of the 48 Persian walnut 

trees for a preliminary test with the Cavitron. The branches were mature, current year, at the 

least 0.45 m long and harvested from the southern side of the canopy (fully exposed to 

sunlight). After they were harvested, branches were immediately defoliated, wrapped with 

moist paper then placed in plastic bag to avoid dehydration and stored in cold storage (4°C) 

for maximum three days before the analysis was completed. These branches were used to test 

the suitable length of sample (0.28 and 0.38 m) and the direction of water flow through 

sample while spinning on the Cavitron (sense and antisense flows). The results from these 

measurements were used as a protocol for further investigation of xylem vulnerability to 

cavitation.  

Three to six branches were collected from each individual Persian walnut tree on November 

2011 for the investigation of genetic variability of vulnerability to cavitation. The sampling 

was done following similar harvesting and preparing protocol previously mentioned. Twenty 

branches were randomly chosen from these sampled populations for native embolism  
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Figure 29. Genetic diversity of 30 Wickham rubber clones based on seven microsatellite markers 
(Darwin, Cirad software for genetic diversity assessment).  

Nine out of ten clones used in this study are presented in the diagram except clone RRIT 408 which has not been 

analyzed for its genetic. Figure is provided by André Clément-Demange, UMR AGAP, CIRAD, Montpellier.   

  

BPM 24A

PB 217

PB 235

PB 260

PB 5/51

RRIT 105

RRII 118

RRIM 600

RRIT 251

Number Clone
1 AVROS2037
2 BPM24A
3 BPM24B
4 GT1
5 Harbel1
6 Nab17
7 OY1
8 PB217
9 PB235
10 PB260
11 PB28/59
12 PB280
13 PB5/51
14 PB86
15 PR107
16 PR255
17 PR261
18 Reyan88-13
19 RRIC100
20 RRIC103
21 RRIC121
22 RRII105
23 RRII118
24 RRIM600
25 RRIM612
26 RRIM703
27 RRIV1
28 TJIR1
29 Yunyan77-2
30 RRIT251
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measurement while the rest were stored in cold storage (4°C) up to 30 days before the 

analysis of their xylem vulnerability to cavitation. In addition, four leaves from each 

harvested branch were collected for the analysis of leaf mass per area (LMA).  

To enhance the genetic diversity and to increase the possibility to explore the variation in 

xylem vulnerability to cavitation, further investigation on xylem vulnerability to cavitation 

was carried out using six wood-oriented hybrid walnuts (J.regia x J. nigra cv NG 38): F1, F2, 

H3, J3, N1 and N3. For each hybrid, 0.60 − 1.00 m long, current year branch (n = 8 – 10) 

were collected on November 2013. Native embolism was immediately measured after 

branches were harvested on 12 representative branches. Xylem vulnerability to cavitation was 

measured afterward on four samples for each hybrid. 

The vulnerability curve (VC) of these samples was constructed by plotting PLC versus xylem 

tension. For each curve, the raw data were fitted using the sigmoid function (equation 14). 

The features of xylem vulnerability to cavitation (P12, P50 and P88) were then calculated. The 

samples of Persian walnut branches were kept in a freezer and later, some of them were used 

for wood density measurement and observation of wood anatomy.  

2. Rubber trees 

The study on this species was carried out on ten commercial rubber clones from Thailand: 

BPM 24, PB 217, PB 235, PB 260, PB 5/51, RRII 105, RRII 118, RRIM 600, RRIT 251 and 

RRIT 408. These clones were derived from the rubber seeds of Wickham rubber populations 

which transferred from Brazil to the Royal Botanical Garden Kew, London in 1876 by Sir 

Henry Wickham. The chosen clones were considered to vary in their genetic structure. Nine 

out of the ten clones were analyzed for their genetic based on seven microsatellite markers 

(Clément-Demange, personal communication, June 7, 2013); they were well-distributed over 

30 Wickham rubber clones (Figure 29). The clone RRIT 408 (PB 5/51 x RRIC 101), a 

recently selected clone for the cultivation in marginal areas of Thailand, was not included in 

this analysis. This clone was reported to have high growth rate and high latex yield (RRIT, 

2012).  

The variability of xylem vulnerability to cavitation and the clonal response to drought stress 

were the two main investigations for this species.  
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Figure 30. The vulnerability curves (VC) obtained from Cavitron technique. 

The left panel shows sigmoid VC obtained from 0.27 m long branch of PB 260 grown at UBP, Clermont-

Ferrand while right panel shows r-shape VC measured on 0.37 m long branches of RRIM 600 grown in 

Thailand.  
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2.1 The investigation of xylem vulnerability to cavitation 

Feasibility of the techniques and effects of sample conditions on xylem vulnerability to 

cavitation 

Preliminary studies of the vulnerability to cavitation previously studied using Cavitron gave 

two completely different results (Figure 30): on one occasion, sigmoid VC was obtained from 

a 0.27-m-long branch of PB 260 grown at UBP, Clermont-Ferrand while r-shape VCs were 

obtained from 0.37-m-long branch samples of RRIM 600 from Thailand. Therefore, the 

feasibility of using Cavitron for the measurement of xylem vulnerability to cavitation on this 

species has to verified. Then after, the sample conditions: the age of sample, the exposure to 

sunlight and the size of sample were tested with Cavitron. In addition, air-injection technique 

was also tested with this species and compared with the result from Cavitron.  

Three rubber clones (PB 235, RRIM 600 and RRIT 251) grown on the field at Surat Thani 

Rubber Research Center in southern region of Thailand (9˚40'27"N, 99˚6'40"E; altitude 19 m) 

were chosen for these tests. This plantation is in a traditional cultivation area with 2,333.95 ± 

124.30 mm of average annual rainfall and 173 ± 3 days of average number of annual rainy 

day. For each clone, approximately 1.00 m long branches were randomly harvested from 

three or four individual trees (n = 20/clone) with the age range of 7 – 10 years old on April, 

2012. The branches of RRIM 600 and RRIT 251 clones were all fully exposed to sunlight but 

differed in age: current year and previous year branches (n = 10 for each age/clone). They 

were designated for a comparison of the effect of sample age on vulnerability to cavitation 

and also a comparison of the measurement techniques. Branches of PB 235 were all current 

year but differed in their exposure to sunlight; half of the samples (n = 10) were fully exposed 

to sunlight whereas another half (n = 10) were shaded branches. These samples were for the 

test of the sunlight effect on vulnerability to cavitation. 

After the branches were cut from trees, they were immediately defoliated and put in a black 

plastic bag with moist paper to reduce water loss. They were later cut again to have 0.60 m in 

length and prepared for shipping to France by wrapped both cutting ends with paraffin, 

treated with pesticide and stored in sealed plastic bags. When these samples arrived at the 

laboratory in France, six samples were randomly chosen and immediately measured for  



110 
 

 

Figure 31. Three rubber plantation sites. 

The map indicating rubber plantations which experimentations were took place. Plantation at Surat Thani 

province is considered in a traditional production area while sites at Nong Khai and Khon Kaen are considered 

marginal areas for natural rubber production.   

 

Figure 32. Experimental set up at Nong Khai Rubber Research Center for plant responses to drought 
stress on ten commercial rubber clones. 

The experiments were conducted on ten rubber clones: BPM 24, PB 217, PB 235, PB 260, PB 5/51, RRII 105, 

RRII 118, RRIM 600, RRIT 251 and RRIT 408. Each clone consisted of 10 one-year-old trees, planted in 0.93 

m3 pots filled with 0.83 m3 sandy loam soil. 
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native embolism while the rest were rewrapped with moist paper, placed in sealed plastic bag 

and stored at 4°C up to 10 days  before they were used for the analysis of xylem vulnerability 

to cavitation.  

Variation of xylem vulnerability to cavitation 

The investigations on genetic variability and phenotypic plasticity of xylem vulnerability to 

cavitation were carried out using Cavitron technique following a protocol deducted from the 

previous experiments on the feasibility of the techniques and the sample conditions.  

The study on genetic variability of xylem vulnerability to cavitation was conducted on ten 

rubber clones planted in the field at Nong Khai Rubber Research Center (18˚09'30"N, 

103˚09'31"E; altitude 171 m) on March 2013. The average annual rainfall ranging at this 

location was 1,770.70 ± 96.26 mm with 128 ± 3 of averaged rainy days. This site is 

considered a marginal area for natural rubber production and under risk of drought stress. For 

each clone, 6 – 8 branches, at least 0.60 m long, were randomly harvested from one year old 

trees. They were immediately defoliated and afterward prepared as previously described and 

then, shipped to France. The defoliated leaves were collected (n = 40/clone) for the 

measurements of LMA.  

Phenotypic plasticity of xylem vulnerability to cavitation was studied on two rubber clones 

(RRIM600 and RRIT251) from three locations: Khon Kaen, Nong Khai and Surat Thani 

(Figure 31). The plantation at Khon Kaen (16˚48'21"N, 103˚08'22"E; altitude 252 m) is also 

considered in a marginal production area with the average annual rainfall of 1,256.30 ± 66.87 

mm and 109 ± 3 days of rain. Branches from Nong Khai and Surat Thani were harvested 

from the same locations previously used. For both clones, ten current year branches were 

harvested from 1 – 2 years old trees from each location on November 2013. Branches were 

harvested from the sun-exposed part of the canopy. They were prepared and shipped to 

laboratory in France following the earlier mentioned protocol.  

Immediately after branch samples arrived at laboratory in France, branches were randomly 

chosen for the measurement of native embolism (n = 20 and 12 branches, for the two 

respective experiments). The remaining branches were rewrapped with moist paper, putted in 

plastic bag and stored in cold storage (4°C) up to 20 days before they were measured for their 

vulnerability to cavitation. The features of xylem vulnerability to cavitation (P12, P50 and P88) 

of these samples were later obtained. 
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Table 5. Environmental conditions at Nong Khai site during November 2012 – March 2013.  

 

Mean 
monthly 

temperature 
(°C) 

Mean RH 
(%) 

Number of 
rainy days 

Total amount 
of rainfall 

(mm) 

Mean PAR  

(μmol m−2 s−1) 

Nov 2012 25.42 ± 0.93 70.58 ± 2.43 0 0.00 652.53 ± 136.46 

Dec 2012 18.30 ± 0.54 67.76 ± 1.46 0 0.00 715.12 ± 55.28 

Jan 2013 21.92 ± 0.64 69.06 ± 1.74 3 26.50 833.47 ± 135.31 

Feb 2013 24.93 ± 0.89 63.93 ± 3.16 0 0.00 1,125.08 ± 110.04 

Mar 2013 26.13 ± 0.53 61.63 ± 1.34 3 33.60 766.82 ± 266.39 

The averaged monthly temperature, relative humidity (RH), number of rainy days, total amount of rainfall and 

averaged photosynthetically active radiation (PAR) are presented. The data are conducted from local weather 

station at the NRRC, Nong Khai during drought experiment from November, 2012 to March, 2013. 

 

 
 
 

Figure 33 Diagram of a rubber leaf.  

A compound rubber leaf consists with three leaflets. The red line indicates a separate point where petiole was 

cut off the leaf for the measurement of petiole PLC while the rest of leaf was used for the measurement of 

midday leaf water potential (Ψmd).  

A compound rubber 
leaf

Leaflet

Petiolule

PetiolePetiole
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2.2 Plant responses to drought stress 

The experiment on plant response to drought stress was carried out using ten rubber clones (n 

= 6/clone). Trees were planted in 0.93 m2 pots filled with sandy loam soil at Nong Khai site 

on November 11, 2011 (Figure 32). The trees were one year old, watered to full field capacity 

with a water supply of 15 liters twice a week. This experiment was conducted in a dry season 

from November, 2012 to March, 2013. During the experiment, the monthly average 

temperature ranked from 18.30 to 26.13 °C, 61.63 to 70.58 %RH, 3 rainy days in January and 

March with total amount of rainfall 26.5 and 33.60 mm, respectively while monthly average 

photosynthetically active radiation (PAR) was ranked from 652.53 to 1,125.08 μmol m−2 s−1 

(Table 5).  

Trees were divided into a control and a stress group (n = 3). Because the trees were varied in 

their size and total leaf area, trees in stress group were selected to be as much as homogenous 

in their respective characters. On December 7, 2012, water supply was withheld from trees in 

stress group and the soil was left to dry down for 11 weeks to generate drought stress. During 

this time, water supply was strictly controlled for all trees. The occasionally rains were 

prevent to contact with the soil in pots by a transparent coverage. This rain exclusion system 

was removable; the covers were moved in before the rain and removed afterward to prevent 

the accumulation of temperature in the pots.  

The progress of soil drying was followed by a survey of soil water content (SWC, %) along 

with tree growth and changes in hydric traits. Growth parameters were included tree height 

and numbers of leaves; they were measured every four weeks. The hydric traits of interest 

were the midday stomatal conductance (gs, mmol m−2 s−1) the leaf water potential at midday 

(Ψmd, MPa) and the loss of xylem conductivity (PLC, %) in petiole. The measurements of gs 

and Ψmd were performed between 12:00 and 14:00. The gs was randomly measured on a 

leaflet from three different compound leaves situated on the lowest flush of each tree. 

Successively after the gs measurement, one of these compound leaves was covered with 

plastic bag and removed for Ψmd and petiole PLC measurements. A petiole segment at least 

0.10 m long was separated from the compound leaf (Figure 33) under water and kept 

submerged for PLC measurement while the rest of leaf was used for Ψmd measurement. The 

petiole segments were re-cut under water to obtain 0.05 m long segments before they were 

attached to the Xyl’EM apparatus for the measurement of their embolism.  
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Table 6. The P50 and FTSWc values of five apple genotypes selected for this experiment. 

Genotype P50 FTSWc, % 

B0023 −2.52 65.0 

B0057 −5.84 75.6 

B0070 −6.77 45.0 

B0097 −3.66 95.0 

B0111 −3.70 26.0 

The 50% loss of xylem conductivity (P50) and the critical fraction of transpirable soil water (FTSWc) are 

presented. The P50 indicates cavitation resistance thus, the safety of xylem water transport and the FTSWc 

indicates sensitivity of stomatal regulation to drought stress. 

  

 

Figure 34. Variation in hydraulic efficiency (FTSWc) and safety (P50, MPa) of 122 apple genotypes. 

A progeny derived from ‘Starkrimson’ x ‘Granny Smith’. Five selected genotypes: B0023 (■), B0057 (□), 

B0070 (●), B0097 (○) and B0111 (▲) are presented. 
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Due to leaf shedding and different number of leaves on the lowest flush of the trees, when 

there was no more leaf left for the gs measurement on a tree, the measurement was moved up 

to a higher flush for all trees. The relative stomatal conductance (gs /gs max, %) was calculated 

using the midday stomatal conductance from stressed trees (gs) and the midday stomatal 

conductance averaged from the control trees (gs max) measured on the same day. 

Afterward, the gs /gs max was plotted versus Ψmd and fitted with sigmoid function according to 

equation 14 to calculate water potential causing 12, 50 and 88% of stomatal closure (gs 12, gs 

50 and gs 88). The petiole vulnerability to cavitation was also obtained by plotting the petiole 

PLC versus Ψmd. The features of petiole vulnerability to cavitation (P12, P50 and P88) and the 

relative shed leaf area, the xylem tensions causing 12, 50 and 88 percent of leaf shedding 

(LS12, LS50 and LS88, respectively) were calculated and the safety margins of petiole and 

branch were later calculated.  

3. Apple trees 

Five genotypes (B0023, B0057, B0070, B0097 and B0111) out of 122 genotypes available 

from a progeny of ‘Starkrimson’ x ‘Granny Smith’ were selected for this study. The progeny 

is characterized by a strong variability of tree vigor and architectural traits (Segura et al., 

2008; Segura et al., 2006; Segura et al., 2007). The progeny has been studied for their 

hydraulic safety and water saving behavior (Lauri et al., 2011; Regnard et al., 2009). We 

chose the five genotypes from their contrast characters in hydraulic safety and water saving 

behavior which were representing by the pressure causing 50 percent loss in xylem 

conductivity (P50, MPa) and the critical fraction of transpirable soil water (FTSWc, %) which 

was soil water content that the transpiration rate of tree started to decline, respectively 

(Figure 34). The P50 of five genotypes ranked from −2.52 to −6.77 MPa while it was −3.05 

and −5.70 MPa for the parents: ‘Starkrimson’ and ‘Granny Smith’, respectively while the 

FTSWc of five genotypes ranked from 26.0 to 95.0% with value of 70.0 and 81.0% for the 

parents ‘Starkrimson’ and ‘Granny Smith’, respectively (Table 6). 

The selected genotypes were grafted on M9 rootstocks by professional breeder (n = 

40/genotype). They were planted in ten-liter-pots filled with mixed loam soil on March 2012 

at INRA site Crouël, Clermont-Ferrand (Figure 35). They were grown in a greenhouse under 

the average temperature of 17.09 ˚C, 65.95% RH and average PAR of 105.47 µmol photons  
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Figure 35. Five apple genotypes grown in greenhouse at INRA site Crouël, Clermont-Ferrand. 

The five genotypes: B0023, B0057, B0070, B0097 and B0111 (n = 40/genotype) were grown under optimal 

condition in the greenhouse for three months before drought experiment was begun in 2012.  
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m−2s−1 for three months. During this period, they received 0.50 liter of water through drip 

irrigation every two days. These trees were used for the measurement of vulnerability to 

cavitation and the plant response to drought stress during the growing season of 2012 and 

2013.  

3.1 The xylem vulnerability to cavitation 

The xylem vulnerability to cavitation was measured with Cavitron on non-stress stem 

samples. This measurement aimed to verify the intraspecific variation previous reported on 

vulnerability to cavitation from the study of Lauri et al. (2011) since this trait is known to 

vary not only by genetic control (Cochard et al., 2007; Lauri et al., 2011; Vander Willigen 

and Pammenter, 1998) but also by the influence of environmental conditions (Choat et al., 

2007; Cochard et al., 1999; Corcuera et al., 2011; Herbette et al., 2010; Plavcová and Hacke, 

2012) or by the combination of both.  

On July, 2012, 4 – 5 trees/genotype were harvested for the measurement of xylem 

vulnerability to cavitation using Cavitron technique. Trees were at least 0.75 m in height 

when they were cut. The harvested stem was divided into two parts: the distal part was used 

for native embolism measurement while the proximal part was used for measurement of 

vulnerability to cavitation. By plotting the PLC with xylem tension and fitted the data with 

sigmoid function, the features of vulnerability to cavitation (P12, P50 and P88) were obtained. 

All leaves from these harvested trees were collected and measured for leaf area (LA), in 

addition, 30 leaves/ genotypes were used for LMA measurement. 

3.2 The response to drought stress 

Plant response to drought stress was conducted in two growing seasons of 2012 and 2013. 

For the experiment in 2012, the trees were divided into two groups: control (n = 6/genotype) 

and stress (n = 30/genotype) for the investigation of plant response to a drought stress. We 

covered soil surface with white plastic to minimize water loss from soil evaporation and 

therefore, water loss can be assumed as plant transpiration.  

The traits of interest for this experiment included: SWC (%), tree growth (stem length, 

number of leaves and stem diameter) and hydric traits (gs, Ψmd and stem PLC). We select 

three homogenous trees from each genotype and each treatment to follow the changes in tree 

growth, SWC and gs throughout the experiment. The measurements of Ψmd and stem PLC  
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were conducted on the other remained treatment trees (n = 3/each measurement). After the 

reference measurement of the interested traits were done, drought stress was applied to trees 

in stress group by completely withholding the irrigation on July 20, 2012 and the soil was left 

to dry down for 31 days. Stem length, number of leaves and stem diameter were recorded 

every ten days while pot weight and hydric trait (gs and Ψmd) were measured twice a week for 

both control and stressed trees. The time to harvest stems for PLC measurement was decided 

according to Ψmd; when Ψmd reached the values of interest predicted by vulnerability curve. 

The gs was measured between 11:00 and 13:00 on three tagged leaves of each tree; these 

leaves were located at a relatively similar level on all trees. The Ψmd was successively 

measured on a random leaf/tree which located close to the leaves used for gs measurement. If 

the Ψmd of interest was reached; stems were consecutively harvested for PLC measurement. 

Stem was cut at 0.05 m above the grating point, put in moist plastic bag and immediately 

brought into laboratory. Then after 0.10 m long segment was cut from the center of the stem 

and it was measured for PLC; the cutting was done under water to prevent air to infiltrate the 

cut segment. After the measurement on day 31 of drought stress, irrigation was resumed for 

the harvested trees at the rate of 0.50 liter of water every two days. They were kept in 

greenhouse with optimal cultivation practices for the experiment in 2013. 

For the experiment in 2013, only the regrown trees from stress group were used (n = 

18/genotype). On March 2013, new irrigation scheme, 0.25 liters of water/tree, was applied 

twice a week; lower irrigation rate was expected to enhance different response to drought 

stress of the five genotypes. They were grown with this new irrigation scheme for four 

months then trees were divided into two groups: a control (n = 3/genotype) and a stress (n 

=15/genotype). Three most homogenous trees from stress group were selected for the 

measurements of tree growth traits, SWC and gs throughout the experiment. The experiment 

was conducted following a similar protocol used in 2012. After reference measurements, 

irrigation was completely withheld for trees in stress group and the soil was left to dry down 

for 33 days from August, 2013. 

The relative stomatal conductance (gs /gs max, %) was calculated using the midday stomatal 

conductance from stressed trees (gs) and the midday stomatal conductance averaged from the 

control trees (gs max) measured on the same day. Afterward, the gs /gs max was plotted versus 

Ψmd and fitted with sigmoid function according to equation 14 the features of stomatal 

regulation (gs 12, gs 50 and gs 88) were obtained and safety margin was calculated. 
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II. Methods 

1. The measurements of xylem vulnerability to cavitation 

The xylem vulnerability to cavitation was measured with Cavitron technique (Cochard, 

2002b; Cochard et al., 2005) or air-injection technique (Ennajeh et al., 2011). Before samples 

were measured for this trait using the two techniques, they were checked for the presence of 

open vessels using air infiltration technique (Ewers and Fisher, 1989; Zimmermann and Jeje, 

1981). After branches were cut in the air to obtain the desired length, they were successively 

infiltrated with compressed air (0.10 MPa) at one end while the other end was submerged 

under water. Because compressed air cannot pass through vessel end walls, the air bubbles 

observed are indicated that the present of open to center vessels. Only samples with intact 

vessels (no air bubble observed) were used for the measurement of xylem vulnerability to 

cavitation with Cavitron or air-injection technique.  

1.1 Cavitron 

The xylem tension (P) on Cavitron was firstly set to a reference pressures (−0.75 or −1.00 

MPa) and the Kmax was determined. Then, the tension was increased stepwise with −0.25 or 

−0.50 MPa increment and new sample conductance (Ki) was determined. The PLC was 

computed according to the equation 17 and the procedures were repeated until more than 

90% PLC was obtained. The VC was later fitted with the sigmoid function (Pammenter and 

Van der Willigen, 1998) as indicated in equation 14. The P50 and s, the slope of VC were 

determined from the fitting then, P12 and P88 were calculated according to the equation 15 

and 16. The P12 is considered as the “air entry point” which the embolism begins (Sparks and 

Black, 1999) while P88 is the tension before xylems becomes totally non-conductive or “full 

embolism point” (Domec, 2001). 
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Figure 36. The supplies used in air-injection technique and the set up for measuring xylem vulnerability 
to cavitation on a rubber branch. 

The figure presents: a steel pressure sleeve, rubber corks for sealing sample with the sleeve, the perfusion tube 

and the set up for the measurement. Barked was peeled off at the center of segment and then inserted into the 

sleeve. Its proximal end was attached to the perfusion solution filled tube and a tube with cotton was attached to 

its distal end to collect the solution that flow through sample. The tube with cotton was weight for the 

calculation of hydraulic conductance. 
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1.2 Air-injection 

The pressure sleeve was made with a 7.50-cm-long three-ways stainless steel tube with a 

diameter of 2.50 cm from Swagelok Company. A branch segment was prepared by re-cut 

both ends to obtain a desired length (0.37 m long) in the air. Bark was peeled off at the center 

of the branch where pressure sleeves will be placed; this will allow the air to enter the vessels 

and induce xylem embolism. The portion of the segment in contact with compressed air 

inside the chambers was 3.5 cm. The branch was then inserted into the sleeves with 

compression fittings placed at both ends of the tube. Rubber corks were used to seal the 

sleeves and the sample (Figure 36).  

Air pressure in the sleeves was firstly set at reference level (1.00 MPa) and hydraulic 

conductance (K) of sample was calculated as: 

FK
P

          (19) 

where F and P were the flow rate through sample and the pressure in perfusion solution filled 

tube that connected to distal end of sample, respectively. The F was calculated from the 

weight of solution collected for 1 minute from the proximal end of branch segment. The PLC 

was calculated using equation 17 and air pressure in chamber is increased by 0.50 MPa 

stepwise until more than 90% PLC was obtained. The VC was constructed by plotting PLC 

versus P then fitted with sigmoid curve using equation 14. The P12, P50 and P88 were then 

obtained. 

2. Measurements of plant hydric traits 

The hydric traits of interest: the soil water content, the water potential, the stomatal 

conductance and the xylem embolism were measured. Afterward, the features of stomatal 

regulation to drought stress and xylem vulnerability to cavitation as well as the safety margin 

of the interested organs were calculated. 

2.1 The soil water content 

The progression of drought was followed through the change of soil water content which was 

calculated as:  
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SWC = 100 × (fresh weight – dry weight) / dry weight   (20) 

In the experiment on rubber tree, the soil was sampled from each pot at two depths from soil 

surface: 0.30 and 0.60 m. The cylindrical soil core sampler was used to obtain 101.38 cm3 of 

the soil from each depth. They were later mixed and weight for soil fresh weight, oven-dried 

at 105˚C for 24 hours then after, soil dry weight was measured and SWC was calculated. The 

sampled soil was returned to the pots afterward to maintain soil volume in the pots. 

For apple tree, SWC was calculated from the mass of whole pot. After irrigation was given in 

the morning and the exceeded water was left to drain off for two hours, pots were weighted 

on digital balance (n = 3/genotypes) to obtain a fresh weight of the soil. Similar soil mixture 

and at the same amount which was used to fill pots was oven-dried for 48 hours. It was later 

weight for a dry weight. To facilitate the measurement, both soil masses were included pot 

weight. 

2.2 Leaf water potential 

In succession of the gs measurement, leaves were removed from the trees for Ψmd 

measurement. Before the leaf was removed, it was covered with a plastic bag along with its 

petiole. The pressure chambers: Plant water status console model 3005F1 (Soilmoisture 

Equipment Corp., CA, USA) and Model 1505D Pressure chamber (PMS Instrument, OR, 

USA) for experiment on rubber and apple trees, respectively. 

2.3 Stomatal conductance 

Midday stomatal conductance (gs, mmol m−2 s−1) was measured using the porometer AP4 

Delta-T (Cambridge, U.K.) for experiment on rubber trees and the porometer Li-1600 Steady 

State (LI-COR, Nebraska, USA) for experiment on apple trees. These measurements were 

conducted only under full sun condition during the midday from 12:00 to 14:00 and from 

11:00 to 13:00 for rubber and apple trees, respectively. 

Relative stomatal conductance (gs/gs max, %) was later calculated using stomatal conductance 

of stressed tree (gs) and averaged stomatal conductance of the control trees (gs max) on the 

same experimental day. The gs/gs max allows a better comparison of stomatal regulation 

between trees by reducing the variation of gs from environmental fluctuation between the 

measurements. 
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In order to find the relationship between stomatal closure and the reduction in plant water 

potential, the gs/gs max was plotted versus Ψmd. Data was later fitted with sigmoid function 

according to equation 14 to obtain water potential causing 50 percent of stomatal closure (gs 

50) and s value. Then after, water potentials causing 12, and 88 percent of stomatal closure (gs 

12 and gs 88 respectively) were calculated as: 

12 50
50

s sg g
s

           (21) 

        (22) 

2.4 Xylem embolism 

The embolism rate on petioles or branches was measured with Xyl’EM, embolism meter 

following a procedure described by Cruiziat et al. (2002). The long sample was re-cut under 

water and the segment with a desire length (0.10 m long for branch or stem samples and 0.05 

m long for petiole samples) was collected from the middle part of sample. The proximal end 

of segment was then attached to the hydraulic apparatus and Ki of sample was firstly 

measured. Segment was then flushed with pressurized solution of KCl 10 mM and CaCl2 1 

mM for five minutes to eliminate formed embolism in the conduits. The flushing is repeated 

until the K measured was stable and the Kmax was determined. The PLC was calculated 

according to equation 17. 

In this study, xylem embolism may be referred as a native embolism or just the PLC. For the 

native embolism, it is a prerequisite measurement proposed and explained by Awad et al. 

(2010). Before the measurement of xylem vulnerability to cavitation, representative branch or 

stem samples were selected for this measurement. Low and rather homogenous native 

embolism was expected from these samples. The xylem vulnerability to cavitation was only 

measured on the conductive vessels. Therefore using sample with high native embolism rate 

may overestimate its vulnerability to cavitation since the remained functioning conduits were 

likely to be more cavitation resistance. The PLC was measured on petioles of rubber tree and 

stems of apple trees. This trait was measured through the progression of drought stress for the 

respective species. 

 
  

12 50
50

s sg g
s

 88
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2.5 Safety margin 

Plant hydraulic safety margin can be determined using different threshold tensions related to 

safety and efficiency of xylem transport (Choat et al., 2012; Markesteijn et al., 2011; Meinzer 

et al., 2009). In this study, the hydraulic safety margin of rubber and apple trees studied was 

calculated according to following hypotheses: (i) stomatal regulation should occur to prevent 

the critical embolism in petiole and (ii) if stomatal regulation fails to prevent high embolism 

rate in petiole, the embolism should induce leaf shedding and therefore prevent loss of 

hydraulic conductivity in critical organs (branches and stems).  

In the drought experiment of rubber tree, safety margin of petiole and branch were calculated 

from gs 50 and LS50 with P50 of the respective organs while for apple tree, the safety margin of 

stem was calculated from gs 50 and P50 of stem.  

3. Measurements of leaf and growth traits 

Leaf area (LA, m2) was measured using leaf area meter LI-3000A (LI-COR inc.) and the size 

of individual leaf (cm2) was estimated. Some of these leaves were then dried at 70˚C for 48 

hours in a gravity convection oven, weighted for their dry weight and the leaf mass per area 

(LMA, g m−2) was calculated as following equation: 

LMA = leaf dry weight / LA       (23) 

During the experiment of drought stress on rubber and apple trees; changes in stem height, 

diameter and total leaf area were measured as the indicator for drought sensitivity. The total 

leaf area was estimated from the size of individual leaf and number of leaves at a given time. 

In addition, we used the total leaf area of rubber tree to calculate a relative shed leaf area (LS, 

%), the drought-induced shed leaf area to the averaged shed leaf area of the control trees. It is 

necessary to use the relative value for a comparison since leaf shedding was observed on both 

control and stressed trees during drought experiment. Afterward, LS was plotted against Ψmd 

and fitted with sigmoid function (Pammenter and Van der Willigen, 1998) in equation 14 

then, LS50 and s were obtained. The LS12 and LS88 were calculated following these equations: 

12 50
50LS LS
s

           (24) 
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88 50
50LS LS
s

          (25) 

Stem height was measured for rubber and apple trees then the relative growth rate (RGR), the 

change in relative growth over time, was calculated from the logarithm of tree height over 

drought stress experiment for both species. Changes in stem diameter were recorded for the 

apple trees during the experiment of drought stress. 

4. Measurements of wood density and wood anatomical traits  

4.1 Wood density 

Wood density or wood infradensity (WD, g cm−3) was measured on segments from the 

proximal part of samples used in the measurement of xylem vulnerability to cavitation. The 3 

cm long segment was firstly separated; it was cut again in half lengthwise and the pit was 

eliminated. Because this measurement was carried out on the frozen wood samples, it is 

necessary to rehydrate the sample by placing them in de-ionized water under vacuum for at 

least an hour. Fresh volume (Vs, cm3) of the segments was obtained by a water displacement 

method on an analytical balance according to the principle of Archimedes. Then the segments 

were oven-dried at 70˚C for 2 days and their dry weights (M0) were measured. The WD was 

calculated as the following equation: 

0 / sWD M V          (26) 

4.2 Wood anatomical traits 

In this study, wood anatomical traits were observed on branch samples of six Persian walnut 

cultivars studied. Two to three 20-lm-thick cross sections were taken using a sledge 

microtome from the central part of branch segments used for vulnerability to cavitation 

measurement. The cross sections were bleached and rinsed with water, stained for 30 seconds 

with a 1:2 mixture of Safranin (0.5 percent in 50 percent ethanol) and Astra Blue (1 percent 

in water), dehydrated in an ethanol series (50, 75 and 96 percent) and mounted on microscope 

slide. 

The cross sections were observed under an optical microscope (X 20) and photographed with 

a digital camera (AxioCam HR, Zeiss). Wood anatomy was deciphered by image analysis 

using ImageJ software (Rasband, 1997-2009). The vessels were isolated by automatic  



132 
 

  



133 
 

segmentation then their diameters (μm), density (number mm−2) and the lumen vessel area 

(Av, %) were measured and calculated. 

III. Statistical analysis 

The analysis of variance (ANOVA) was used to test the effects of interested parameters on 

the xylem vulnerability to cavitation. These parameters included sample conditions: length, 

age, light exposure and water availability in plantation, as well as direction of water flow 

through sample while spinning on Cavitron and genetic variation of the studied species. The 

traits related to plant response to drought stress: SWC, Ψmd, gs/ gs max, PLC, LS and safety 

margin were also analyzed. When significant differences were found, Duncan's multiple 

range test or Tuekey-Kramer Multiple Comparison with P-value < 0.05 were used. 
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RESULTS AND DISCUSSION 

I. Is there any variability for xylem vulnerability to cavitation resistance in walnut trees 

(Juglans spp.)? 

II. Clonal variability for vulnerability to cavitation and other drought related traits in 

Hevea brasiliensis Müll.Arg. 

III. Genetic variation in plant response to drought stress among five apple genotypes from a 

progeny of ‘Starkrimson’ x ‘Granny Smith’ 

IV. General discussion  
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This chapter is divided into two sections: the result and discussion for each species and the 

general discussion for this whole work. Firstly, the results are presented and discussed 

successively the experiment on the three species. Experiments on walnut and rubber trees are 

submitted to publication and they are thus presented in a format ready to publish. The results 

of experiments on apple tree are divided into two sections: the variation in xylem 

vulnerability to cavitation and the responses of tree to drought stress. Following these results 

is the discussion for the apple tree.  

Then, in a second part of this chapter, the results obtained are integrated in a general 

discussion about the variability for the xylem vulnerability to cavitation in agronomic species 

and the potential of this trait in breeding program as a trait for drought tolerance screening. 
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Abstract 

Drought tolerance selection is a current challenge for breeding program in an attempt to 

ensure agricultural productivity especially under the global context of increasing intensity 

and frequency of drought. In tree species, xylem vulnerability to cavitation is among the most 

important traits related to drought-induced mortality. It can be rapidly evaluated, hence 

ensuring large-scale screening for drought resistance. Genetic variability and phenotypic 

plasticity for this trait are well studied in natural populations; however, it is yet to be studied 

for cultivated tree species. In this work, genetic variability in xylem vulnerability to 

cavitation of six Persian walnuts (Juglans regia L.) and six hybrid walnuts (J. regia x J. 

nigra) was investigated. In addition, methods for measuring xylem vulnerability to cavitation 

using the centrifuge technique ‘Cavitron’ were evaluated in order to improve the accuracy of 

the technique. The Cavitron technique was found suitable to assess xylem vulnerability to 

cavitation on this species using 0.38 m rotor which is large enough to analyze samples with 

intact vessels. Despite differences wood anatomical traits, xylem vulnerability to cavitation 

among Persian walnuts studied was similar. Very narrow variations on xylem vulnerability to 

cavitation were also found among hybrid walnuts and only slightly differences were observed 

when compared the two species even though previous studies have shown differences in 

various traits among these species. These results suggested the uniform-selection which 

leading to canalization in cavitation resistance for cultivated Juglans.  
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Introduction 

The importance of water resource management grows vastly while agriculture is the largest 

user of this resource. One of the concerns for water resource management is to improve the 

agricultural water use. In addition, drought has been predicted to occur more frequently and 

become severer (IPCC, 2014). In this context and to ensure crop productivity, the selection 

for drought tolerance crops is one the main challenge, especially for perennial crops.  

Long-distance water transport takes place in xylem conduits under negative pressure. The 

ascent of water is driven by evaporative force (Dixon and Joly, 1894). Even though the 

tension is necessary to bring up water, the great tensions that develop in xylem conduits due 

to drought stress can be critical to plant survival. Water in conduits is in a metastable state 

and susceptible to cavitation (Tyree and Sperry, 1989). The expansion of air bubble can fill 

the conduit and embolized it, leading to a loss of xylem conductance (Zimmermann, 1983). 

Studies showed that xerophilous species have higher resistance to xylem cavitation than 

hygrophilous ones (Maherali et al., 2004; Pockman and Sperry, 2000; Tyree et al., 2003). 

The vulnerability to cavitation is then considered as a critical trait for drought tolerance of 

woody species (Choat et al., 2012).  

Vulnerability to cavitation is an intrinsic property of the conductive elements of the xylem 

(Cochard, 2006; Tyree et al., 1994; Tyree and Ewers, 1991) and can be evaluated without 

submitting the plant material to a long period of drought. This trait was found to vary at the 

intra-specific level in many forest tree species (Corcuera et al., 2011; Herbette et al., 2010; 

Maherali and DeLucia, 2000; Martínez-Vilalta et al., 2002). The variation in this trait can be 

due to genetic difference (Cochard et al., 2007; Wortemann et al., 2011) and/or phenotypic 

plasticity (Awad et al., 2010; Corcuera et al., 2011; Herbette et al., 2010). This trait thus 

appears to be a relevant criterion for screening genotypes for drought tolerance. For forest 

trees, the genetic diversity was mainly found within populations (Lamy et al., 2011; 

Wortemann et al., 2011) with few differences between populations, indicating that this trait is 

genetically canalized for natural populations (Lamy et al., 2011). The genetic variability for 

vulnerability to cavitation needs to be further tested on cultivated fruit trees. First, they are 

submitted to different selection pressures than natural populations, and they are not submitted 

to natural selection pressures that could reduce the variability. Second, the effect from 

selecting for yield on vulnerability to cavitation is unclear since there are contrasting data on  
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the relationship between yield traits and vulnerability to cavitation (Cochard et al., 2007; 

Lamy et al., 2011).  

Walnuts (Juglans spp.) are economical important tree species. The most important species are 

the Persian walnut (J. regia L.) and the eastern black walnut (J. nigra L.) which are cultivated 

for nut and wood production in America, Europe and Asia. The important cultivation areas 

are included in Mediterranean, semiarid and arid regions (Aletà et al., 2009; Vahdati et al., 

2009) that can be considered as marginal production areas for this species in term of water 

availability. Since walnut requires large amount of water to ensure optimal growth and 

productivity (Fulton and Buchner, 2006), irrigation is needed for this crop species (Reid et 

al., 2009). To date, few studies have been carried out to investigate genetic and phenotypic 

variability in physiological responses of this genus to environmental factors, especially 

responses to drought stress under the context of climate changes (Gauthier and Jacobs, 2011).  

Walnut is considered as a drought avoidant (Lucier and Hinckley, 1982). It displays several 

desiccation avoidance mechanisms such as deep root system (Pallardy and Rhoads, 1993), 

stomatal sensitivity to relative humidity (Cochard et al., 2002), and drought-induced leaf 

abscission (Tyree et al., 1993). These traits help to prevent extensive cavitation development 

during water stress. Previous study of Aletà et al. (2009) pointed out the intraspecific 

variation in water use efficiency among Persian walnut genotypes which suggested that there 

is a difference in drought responses among the genotypes. In addition, a study of Vahdati et 

al. (2009) also demonstrated differences in drought response between Persian walnuts for 

germination and growth. However, there is no insight on the genetic variability for drought 

tolerance traits, especially for vulnerability to cavitation. 

In this study, we evaluated the genetic diversity of vulnerability to cavitation in Juglans spp. 

First, we tested several methods for measuring the vulnerability to cavitation in order to 

improve the accuracy of vulnerability curves in this tree species. Then, we investigated this 

trait in six cultivars of Juglans regia and six hybrids J. regia x J. nigra in relation with xylem 

structural traits. We hypothesized that the vulnerability to cavitation is much higher for 

hybrids than for commercial cultivars, as the variability could be enhanced by inter-specific 

cross (Cochard et al., 2008).  

Materials and methods 

1. Plant materials 
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The measurements on vulnerability to cavitation on Persian walnuts were conducted on 15 – 

20 years old walnut trees grown outdoors at INRA site Crouël at Clermont-Ferrand in south-

central France (45°46′27″N, 3°8′36″E; altitude 338 m). They were comprised of 48 

individuals trees from 6 cultivars; Chandlers (Ch, 4 individuals), Fernettes (Ft, 3), Fernors 

(Fo, 4), Franquettes (Fq, 17), Laras (La, 15), and Serrs (Se, 4). Seventeen branches were 

randomly sampled in order to verify the analytical technique with Cavitron, on October 2011. 

Then, three to six branches were collected from each studied trees to investigate the level of 

vulnerability to cavitation among the cultivars, on November 2011. Selected branches were 

current year, mature, from the sun-exposed part of the canopy and with at least 0.45 m in 

length. Branches were immediately defoliated and four representative leaves were collected 

for the analysis of leaf mass per area (LMA). Twenty branches were randomly chosen from 

these samples for native embolism measurement while the rest were stored in cold storage 

(4°C) up to 30 days before the analysis of their xylem vulnerability to cavitation.  

Furthermore, 0.60-1.00 m long branches were collected from six wood-oriented hybrid 

walnuts (J. regia x J. nigra): F1, F2, H3, J3, N1 and N3 on November 2013. For each hybrid, 

current year branches (n = 8 to 10) were collected from sunlight exposed part of two 

individual trees. The sampling was carried out as mentioned before. 

2. Leaf mass per area (LMA) 

Four leaves from each stem of Persian walnuts used for the analysis of xylem vulnerability to 

cavitation were measured for leaf mass per area (g m−²). Leaf area was determined with leaf 

area meter LI-3000A (LI-COR inc.) and dry mass was measured on leaves after drying at 

70˚C for 48 hours in a kiln.  

3. Native embolism  

Native embolism was measured with Xyl’EM following the procedure described by Cruiziat 

et al. (2002) on branches of both Persian (n = 15) and the hybrid (n = 12) walnuts. This 

prerequisite was proposed and explained by Awad et al. (2010). A 0.10 m-long segment was  
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cut under water from the center of the collected branches, and then its proximal end was 

attached to the hydraulic apparatus. Initial hydraulic conductance (Ki) was measured under 

low pressure (6 − 9 kPa) using a solution of KCl 10 mM and CaCl2 1 mM. Then, after the 

segments were perfused with the same solution at 0.15 MPa to remove embolism, maximum 

hydraulic conductance (Kmax) was determined under low pressure. The percentage loss of 

xylem conductivity (PLC) was calculated as followed:  

max

100 (1 )iKPLC
K

          (1) 

4. Estimation of the maximal vessel length 

Cut open vessels on sample have been known to be more sensitive to cavitation than intact 

vessels and can yield abnormal r-shape vulnerability curve when measuring xylem 

vulnerability to cavitation using Cavitron (Cochard et al., 2010). Before branch segments 

were subjected to the measurement of xylem vulnerability to cavitation with this technique, 

they were checked for the presence of open vessels using air infiltration technique (Ewers and 

Fisher, 1989; Zimmermann and Jeje, 1981). After branches were cut in the air to obtain the 

desired length (0.28 and 0.38 m long), they were successively infiltrated with compressed air 

(0.10 MPa) at each end while another end was submerged under water. Air bubbles were 

observed when vessels were cut open.  

5. Xylem vulnerability to cavitation 

The xylem vulnerability to cavitation was measured with the Cavitron (Cochard, 2002; 

Cochard et al., 2005). The principle of this technique is to use centrifugal force to increase 

the tension in the water columns while measuring the decrease of hydraulic conductance. 

Branches were prepared by peeling the barks at both ends and cutting in the air to obtain a 

fixed length. We first used 0.28 and 0.38 m long branches on Persian walnuts in order to test 

the effect of sample length on the measurements. Then, the following measurements were 

performed on 0.38 m long segments. We also tested the effect of the water flow direction on 

the measurements (sense and antisense flows). During the spinning on the Cavitron, water 

flows from upstream reservoir where there is larger amount of water to downstream reservoir 

(Cochard, 2002). The flow direction was controlled by the relative position of the reservoirs  
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at the sample ends. The flow from proximal to distal end of sample is called sense flow while 

the flow from distal to proximal end is the antisense flow. Xylem pressure (P) was, at first, 

set to a reference pressure (−0.75 MPa) and the Kmax was determined. The xylem pressure 

was then set to more negative pressure and the new sample conductance (Ki) was determined. 

The procedure was repeated for more negative pressures (with −0.25 or −0.50 MPa 

increments) until PLC reached at least 90%. PLC of the stem was computed according to the 

eq. 1. After measurement, samples were stored at −30°C for further analysis on wood 

anatomy. The vulnerability curve (VC) was later constructed by plotting PLC versus xylem 

water tension. For each curve, the raw data were fitted using the sigmoid function 

(Pammenter and Van der Willigen, 1998): 

50
( )
25 ( )

100

1
s

P P

PLC
e  





        (2) 

Where P50 (MPa) is the pressure causing 50% loss of xylem conductivity and s is the slope of 

VC. The xylem water potential causing 12 and 88% loss of xylem conductivity (P12 and P88 

respectively) were calculated according to the eq. 3 and 4 as follows: 

12 50
50P P
s

           (3)  

88 50
50P P
s

           (4) 

The P12 is considered as the “air entry point”; which the embolism begins (Sparks and Black, 

1999) while P88 is the “full embolism point” which is the tension before xylem becomes 

totally non-conductive (Domec and Gartner, 2001).  

6. Wood density and wood anatomical traits 

Wood infradensity (WD, g.cm-3) was measured for each sample on two segments from the 

proximal part of the samples used for xylem vulnerability analysis. The WD was determined 

by the following equation: 

0

s

MWD
V

          (5) 
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Figure 1. Effects of sample size (A) and water flow direction (B) on the xylem vulnerability to cavitation 

of walnut branches.  

Vulnerability curves show the mean percentage loss of xylem conductivity (PLC, %) plotted versus the xylem 

water potential. Lines are logistic fitted to the data and error bars are SE (n = 3 to 6). (A), xylem vulnerability to 

cavitation was measured on 28-cm-long segments (■) and 38-cm-long segments (□). (B), xylem vulnerability 

curves obtained when water flows from the bottom to up of the sample (●, sense flow) or from up to bottom of 

the sample (○, antisense flow). Normal sigmoidal curves were obtained from both senses of water flow; 

however, the antisense flow gave data that fitted better to the logistic line (R2 = 0.979 and 0.994 for sense and 

antisense flows, respectively). 
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Where Vs is the fresh volume (cm3) and M0 is the dry mass (g). 

Fresh volumes of three mm long segments were measured according to the principle of 

Archimedes by water displacement on an analytical balance. In order to gain the fresh 

volume as accurately as possible, sample segments were previously fully hydrated by placing 

them in deionised water under vacuum. Thereafter, samples were dried in drying kiln at 70˚C 

for 2 days and their dry weights were measured. 

For wood anatomy analyses, cross sections of the middle part of the samples were prepared 

and dyed with Safranin. They were observed under an optical microscope (X 20) and images 

were recorded by a digital camera (AxioCam HR, Zeiss). Wood anatomy was deciphered by 

image analysis using ImageJ software (Rasband, 1997-2009). The vessels were isolated by 

automatic segmentation then their diameters (D, μm), density (VD, number mm−2) and the 

lumen vessel area (Av, %) were measured. 

7. Statistics 

The analysis of variance (ANOVA) was used to test the effects of the following parameters 

on the vulnerability to cavitation: length of branch segments, sense of water flows and walnut 

cultivars. When significant differences were found, Duncan's multiple range test with P-value 

< 0.05 was carried out. 

Results 

1. Methodological analysis on the measurement of vulnerability to cavitation 

The VCs obtained with 0.28 and 0.38 m long segments appeared to have slight differences in 

shape, and their respective mean P50 were significantly different (P < 0.05) with values of 

−1.65 MPa and −1.99 MPa respectively (Figure 1A). Air bubbles were observed on some 

branch segments of 0.28 m long while none was observed on 0.38 m long branches, when 

infiltrated them with air. These results indicated that maximum vessel length of the walnut 

cultivars studied was shorter than 0.38 m and can be longer than 0.28m. We tested both water 

flow directions through sample while spinning on the Cavitron (Figure 1B). VCs from both 

sense and antisense flows were sigmoidal and did not show significant difference in P50 

(−1.99 and −2.02 MPa, respectively). However, data set from antisense flow fitted better to 

the logistic line than data set from sense flow. The coefficient of determination (R2) for sense  
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Figure 2. Xylem vulnerability to cavitation of Persian walnut cultivars (A) and hybrid walnut cultivar (B).  

Vulnerability curves show the percentage loss of xylem conductivity (PLC, %) plotted versus the xylem water 

potential. Measurements were conducted on (A) six cultivars of J. regia: Chandlers (Ch, n = 15), Fernettes (Ft, n 

= 13), Fernors (Fo, n = 10), Franquettes (Fq, n = 67), Laras (La, n = 42), and Serrs (Se, n = 18) and (B) six 

hybrids of J. regia x J. nigra: F1, F2, H3, J3, N1 and N3 (n = 4). Dots are mean values with fitted logistic lines 

and bars are SE.  
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and antisense flows were 0.979 and 0.994 respectively. We thus continued the analyses with 

0.38 m long samples and antisense flow. 

2. Xylem vulnerability to cavitation on Persian and hybrid walnuts 

Values of LMA of the six Persian walnut cultivars ranged from 108.8 to 114.7 g.m−2 and did 

not vary significantly (P > 0.05). These results ensured that branch samples were subjected to 

the same environmental conditions, and that there were no different light effects on the 

studied traits between the cultivars studied. This was an important test since light conditions 

were known to affect the VC (Cochard et al., 1999; Herbette et al., 2010). 

Native embolism measured on Persian walnuts ranged from 22.71 to 38.41% (   = 30.70 ± 

5.82%) while on hybrids it ranged from 13.80 to 27.14% (   = 19.09 ± 7.08%), neither did 

show significant differences between mean values in native embolism (P < 0.05). This test 

was a prerequisite in order to avoid the effect of the native embolism on the vulnerability to 

cavitation measured with Cavitron.  

Vulnerability curves are shown in Figure 2 (A) for 6 Persian walnut cultivars and (B) for 6 

hybrid walnuts. The vulnerability to cavitation parameters (P12, P50, P88 and s) obtained for 

the two species tested are presented in Table 1. Both the vulnerability curves and P50 values 

were not significantly different among Persian walnut cultivars, mean P50 ranking from −1.93 

to −1.98 MPa. Most of variability was observed within cultivar (67.28%) while the other 

sources of variation in P50 were attributed to tree-cultivar interaction (15.36%), tree effect 

(15.04) while only 2.32% was the effect of cultivars. Weak but significant differences were 

found for P12, P88 and s parameters between cultivars. No significant differences were found 

for xylem vulnerability to cavitation parameters (P > 0.05) among hybrid walnut tested. For 

P50, values ranked from −2.05 to −2.23 MPa, the variation was mostly observed within 

hybrids (78.35%). When compared 2 walnut species tested, significant differences were 

found for all vulnerability to cavitation parameters (Table 1 and 2, P < 0.05). Hybrids 

walnuts appeared to be less vulnerable to cavitation than Persian walnuts (P50 = −2.16 and 

−1.97 MPa respectively); 80.96% of variance was found between the provenances while the 

rest of variation was contributed by variation between cultivars (19.02%). Nevertheless, for 

P88 and s parameters, the variation was found mostly between cultivars (66.02 and 66.70% 
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Table 1. Parameters of xylem vulnerability to cavitation in walnut cultivars. 

 Cultivars P12 (MPa) P50 (MPa) P88 (MPa) s (%/MPa) 

J. regia Chandler (Ch) 

Fernor (Fo) 

Franquette (Fq) 

Fernette (Ft) 

Lara (La) 

Serr (Se) 

−1.29 (0.04) a 

−1.25 (0.04) a 

−1.40 (0.02) b 

−1.33 (0.04) ab 

−1.29 (0.02) a 

−1.34 (0.03) ab 

−1.95 (0.03) a 

−1.94 (0.03) a 

−1.98 (0.01) a 

−1.96 (0.02) a 

−1.97 (0.02) a 

−1.93 (0.02) a 

−2.61 (0.04) ab 

−2.62 (0.03) ab 

−2.56 (0.02) a 

−2.58 (0.03) ab 

−2.65 (0.03) b 

−2.52 (0.04) a 

78.04 (3.77) bc  

73.98 (2.57) c 

89.46 (2.20) a 

81.68 (3.81) abc 

76.14 (2.29) c 

88.84 (4.65) ab 

Mean −1.34 (0.01) A −1.97 (0.01) A −2.59 (0.01) A 83.41 (1.37) B 

J. regia x J.nigra F1 

F2 

H3 

J3 

N1 

N3 

−1.34 (0.07) a 

−1.84 (0.08) a 

−1.35 (0.19) a 

−1.58 (0.11) a 

−1.81 (0.27) a 

−1.84 (0.16) a 

−2.07 (0.04) a 

−2.23 (0.06) a 

−2.05 (0.08) a 

−2.20 (0.08) a 

−2.20 (0.13) a 

−2.23 (0.08) a 

−2.80 (0.03) a 

−2.62 (0.10) a 

−2.75 (0.23) a 

−2.82 (0.07) a 

−2.59 (0.02) a 

−2.62 (0.06) a 

68.77 (3.51) a  

143.38 (32.41) a 

88.46 (22.99) a 

82.02 (6.28) a 

230.24 (114.54) a 

149.31 (2.95) a 

Mean −1.63 (0.07) B −2.16 (0.03) B −2.70 (0.04) B 127.03 (21.81) A 

Xylem pressure causing 12, 50 and 88% loss of xylem hydraulic conductivity (P12, P50 and P88) and the slope of the vulnerability curve (s) were calculated from the curves of 

vulnerability to cavitation in 6 cultivars of J. regia and in 6 hybrids of J. regia x J. nigra. Values represent means with standard error in the brackets, n = 4 for each hybrids 

while n ≥ 10 for each J. regia cultivars. Means were compared between J. regia cultivars, between hybrids and between two species. Values with different letters are 

significantly different at P < 0.05 (Duncan's multiple range test). 
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respectively) while for P12 the variation was equally distributed between provenances and 

between cultivars (Table 2).  

3. Wood density and wood anatomical traits 

The means of WD for 6 studied Persian walnut cultivars varied from 0.39 to 0.45 g.cm-3 with 

significant differences (P < 0.05) between Se and the following cultivars; Fo, Fq, Ft and La 

while it was similar to Ch (Table 3). Statistical analysis indicated no significant difference (P 

> 0.05) between the six cultivars for the mean values of D and VD. However, significant 

difference (P < 0.05) was found for Av (Table 3) between the cultivars Ch and Se showing the 

highest Av and the cultivar ‘Ft’ showing the lowest Av.  

Discussion 

The investigation on genetic variability in xylem vulnerability to cavitation is of interest for 

breeding program in drought tolerance. For Persian walnut production, the importance of 

exploring this trait is highlighted by the location of this crop species in drought prone areas. It 

may help breeders to select for more suitable genotypes/ cultivars which will survive in 

unfavorably dry conditions with less irrigation inputs for the coming future.  

The centrifugal technique ‘Cavitron’ (Cochard, 2002; Cochard et al., 2005) is an efficient and 

rapid method for large scale investigations on xylem vulnerability to cavitation (Corcuera et 

al., 2011; Lamy et al., 2011; Wortemann et al., 2011). Nevertheless, this method can only be 

applied to species having short conduits, since conduits that are longer than the sample length 

generate a measurement artifact and an abnormal shape of the VC (Cochard et al., 2010; 

Martin-StPaul et al., 2014). The results on maximum vessel length measured on Persian 

walnuts indicated that 0.38 m long segments, but not 0.28 m long ones, were longer than 

maximum vessel length, and resulted in a sigmoid VC. From these results, we recommend 

using 0.38 m long segments for the building of VC of walnut tree. We also recommend 

working with the antisense flow direction since it gave better-fit to logistic line data when 

compared to the sense flow. A slightly faster increase in embolism rate in the latter case 

would be due to higher number of cut open vessels at the proximal end that embolized quickly 

when nuclei are seeded into them by measurement flows. 

Native embolism can lead to an underestimation of xylem vulnerability to cavitation when 

only few conduits are still functional during measurements (usually the most resistant  
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Table 2. Correlations of xylem vulnerability to cavitation parameters between Persian and hybrid walnuts. 

 P12 (MPa) P50 (MPa) P88 (MPa) s (%/MPa) 

R2 P R2 P R2 P R2 P 

Between species 0.50 < 0.0001 0.81 < 0.0001 0.34 0.002 0.33 < 0.0001 

Between cultivars 0.50 < 0.0001 0.19 0.330 0.66 0.075 0.67 < 0.0001 

Values indicate correlation of determinations (R2) and P values (P). Significant correlations are shown with bold letters (P < 0.05). 

 

Table 3. Wood anatomical traits of 6 Persian walnut cultivars. 

Cultivar Chandler (Ch) Fernor (Fo) Franquette (Fq) Fernette (Ft) Lara (La) Serr (Se) 

WD (g.cm-3) 0.42 (0.01) ab 0.45 (0.02) a 0.45 (0.01) a 0.43 (0.01) a 0.43 (0.01) a 0.39 (0.01) b 

D (μm) 75.46 (4.48) a 72.09 (2.13) a 76.80 (2.31) a 75.07 (3.09) a 81.46 (6.03) a 80.68 (4.39) a 

VD (number. mm-2) 42.56 (5.69) a 44.16 (4.61) a 35.32 (4.40) a 41.32 (2.91) a 31.89 (5.55) a 46.26 (3.50) a 

Av (%) 0.27 (0.02) a 0.19 (0.01) ab 0.20 (0.01) ab 0.17 (0.01) b 0.21 (0.03) ab 0.27 (0.03) a 

Wood density (WD) was measured on Chandlers (Ch, n = 15), Fernettes (Ft, n = 13), Fernors (Fo, n = 10), Franquettes (Fq, n = 68), Laras (La, n = 42), and Serrs (Se, n = 18) 

while vessel diameter (D), vessel density (VD) and vessel lumen area (Av) were analyzed on five branches for each cultivar. Values represent means with standard error in the 

brackets. Values with different letters are significantly different at P < 0.05 (Duncan's multiple range test). 



161 
 

conduits to cavitation). The rather low native embolism we measured here ensured that 

xylems of the samples were not greatly embolized by previous drought or frozen stresses. 

This indicates that xylem vulnerability to cavitation was measured on large proportion of 

functional conduits avoiding any bias.  

The P50 values obtained in this study (means of P50 = −1.95 and −2.16 MPa for Persian and 

hybrid walnuts respectively) were in accordance with the previous results obtained from J. 

regia L. cv Lara (Tyree et al., 1993) and J. nigra x J. regia cv NG38 (Cochard et al., 2002) 

with different analytical techniques. The P50 values for the current year branches from these 

previous studies were −2.10 MPa. Similar xylem vulnerability to cavitation found for the six 

cultivars of Persian walnuts is rather surprising since differences in drought resistance traits 

were observed from previous studies between cultivars. For example, differences in δ13C were 

found between 22 Persian walnuts from different provenance regions, indicating a variation in 

water use efficiency (Aletà et al., 2009). The cultivars from drought-prone provenance 

regions were found more efficient in water use. This assumption arises from a great 

vulnerability to cavitation that was highlighted when comparing Prunus species (Cochard et 

al., 2008). Despite significant differences found for some of wood anatomical traits between 

cultivars of Persian walnut, the values were remarkably close. These results may contribute to 

similar vulnerability to cavitation found among the Persian walnuts found in this study since 

previous studies have demonstrated correlation between these two traits (Baas et al., 2004; 

Hacke et al., 2001).   

Because of the lack of difference between these Persian walnut cultivars, we decided 

investigating the vulnerability to cavitation in J. regia x J. nigra hybrids in order to enhance 

the range in genetic diversity. However, we also found similar vulnerability to cavitation 

among hybrid walnuts studied, only weak significant differences were found when compared 

this trait between the species. These similar/slightly differences in cavitation resistance 

suggesting ‘uniform selection’ on this trait in walnut trees hence canalizing cavitation 

resistance of the studied walnuts. This finding is consistent with the results of previous studies 

on Pinus (Lamy et al., 2011; Lamy et al., 2014) which indicating no genetic variability in 

cavitation resistance among Pinus populations. Altogether these results suggested that 

vulnerability to cavitation does not vary in branch of walnut tree and that differences in 

drought resistance rely rather on drought avoidance traits, segmentation in xylem 

vulnerability to cavitation between branch and petiole was reported in walnut tree (Tyree et  
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al., 1993). A variation in cavitation resistance of petiole could thus be expected for petiole in 

walnut cultivars.  

Differences between cultivars and hybrids were found for various traits such as the budburst 

date, the heat requirement and the growth rate (Charrier et al., 2011; Poirier et al., 2004), 

despite small difference in cavitation resistance. It is thus possible to carry out selection 

program for other interested traits without effect on xylem vulnerability to cavitation. In 

addition, a rather low cavitation resistance for these commercial cultivars indicates a great 

potential for breeding program to improve on this trait. The challenge will be to find 

genotypes that are more resistance to cavitation such as populations from extremely dry 

locations.  
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Figure 37. The vulnerability curves (VC) measured on stems of five apple genotypes. 

The measurement was carried out with the Cavitron technique on 0.37 m long stem segments of five apple 

genotypes: B0023, B0057, B0070, B0097 and B0111. The loss of xylem conductivity (PLC, %) was plotted 

versus xylem pressure (MPa) and fitted with the sigmoidal function (Pammenter and Van der Willigen, 1998) to 

obtain the VC. Dots are means of 4 samples and error bars are SE.  

Table 7. Vulnerability to cavitation traits for five genotypes of apple tree. 

Genotype P12 (MPa) P50 (MPa) P88 (MPa) S (%/MPa) 

B0023   −2.21 (±0.17)   −3.14 (±0.09) a  −4.08 (±0.19) a  54.47 (±8.56) a  

B0057  −1.75 (±0.47)   −3.25 (±0.19) ab  −4.76 (±0.36) b  34.78 (±8.59) c  

B0070  −2.03 (±0.42)   −3.58 (±0.18) b  −5.13 (±0.11) c  32.87 (±5.54) c  

B0097  −2.02 (±0.23)   −3.08 (±0.13) a  −4.15 (±0.13) a  47.46 (±5.96) ab  

B0111  −1.78 (±0.29)   −3.05 (±0.16) a  −4.32 (±0.16)
 a 

  39.99 (±6.19)
 bc

  

The xylem pressure causing 12%, 50% and 88% loss of xylem conductivity (P12, P50 and P88) and the slope of 

the VC (s) are shown. Values are means (n = 4) with SE in the brackets and different letters indicating significant 

differences between genotypes at 95% confidence interval. 
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The study of plant response to drought stress was carried out on five apple genotypes: B0023, 

B0057, B0070, B0097 and B0111, a cross of ‘Starkrimson’ x ‘Granny Smith’. In a previous 

study of Lauri et al., (2011), these five genotypes displayed contrast behaviors in drought 

tolerance mechanisms including the cavitation resistance and the water saving behavior. In 

this study, the vulnerability to cavitation was firstly measured on non-stress stem samples to 

verify whether the genetic variability of this trait which was found from the previous studyof 

Lauri et al. (2011) has been still preserved. Then, plant responses to drought stress were 

investigated. This experiment was conducted in two growing seasons of 2012 and 2013 where 

trees were grown with the irrigation at full field capacity (0.50 liter of water/tree, twice a 

week) and with half of the irrigation previously given (0.25 liter of water/tree, twice a week), 

respectively. The reduction of irrigation in the latter year was aimed to increase the possibility 

to observe the differences in plant responses to drought stress between genotypes. Trees were 

grown with these irrigation schemes for three and four month respectively before the 

irrigation was withheld in the stressed trees. The soil was left to dry down for 31 days for the 

experiment in 2012 and 33 days in 2013. The changes in soil water content (SWC), stomatal 

conductance (gs), stem embolism rate (PLC) and growth of tree in height (RGR) and stem 

diameter were measured along the time progression.  

Results 

1. Vulnerability to cavitation of the non-stressed apple trees  

Xylem vulnerability to cavitation was measured on non-stressed stems of apple trees. After 

stem was harvested; it was divided into two parts. The distal part immediately used for native 

embolism measurement while the proximal part successively used for vulnerability to 

cavitation measurement using Cavitron. 

The average native embolism of five genotypes ranked from 5.03% to 9.23% with mean value 

of 6.96% SE ±1.42. There was no significant difference found between means of the five 

genotypes. These results ensured that the following measurement of vulnerability to cavitation 

on the proximal part will be conduct on conductive stems and if the differences in cavitation 

resistance were found; it would due to the genetic variation between the five genotypes. 
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Table 8. Leaf and stem traits for five apple genotypes for the experiment in 2012 and 2013. 

Year Genotypes 
Number of leaves  

(number tree−1) 
Leaf size (cm2) Total leaf area (m2) LMA (g m−2) Stem height (m2) Stem diameter (mm) 

2012 

B0023 40.33 (±2.96) 43.40 (±3.28) ab 0.177 (±0.027) 58.50 (±1.03)  1.58 (±0.10) * 12.07 (±0.38) 

B0057 38.33 (±0.88) 35.29 (±0.54) c 0.135 (±0.005) * 60.80 (±1.52)  1.50 (±0.02) * 11.40 (±0.70) 

B0070 39.00 (±1.08)    ** 36.36 (±1.81) c 0.141 (±0.004) 59.11 (±1.03) 1.51 (±0.02) * 11.30 (±0.46) 

B0097 34.00 (±1.53)  49.20 (±1.55) a 0.167 (±0.011) * 61.95 (±0.78) 1.59 (±0.05) * 10.20 (±0.31) 

B0111 35.00 (±2.65) 38.10 (±1.52) bc 0.133 (±0.010) 62.83 (±0.77) 1.56 (±0.08) * 10.97 (±0.57) 

2013 

B0023 38.33 (±0.88) a 35.29 (±0.54) 0.134 (±0.008) 55.12 (±1.97) 0.97 (±0.04) ** 10.02 (±0.23) ab 

B0057 37.67 (±2.19) a 44.06 (±6.24) 0.111 (±0.005) ** 60.72 (±6.00) 0.97 (±0.01) ** 10.78 (±0.38) a 

B0070 28.67 (±0.88) b  * 46.74 (±2.12) 0.127 (±0.009) 65.55 (±0.83) 0.85 (±0.01) ** 11.73 (±0.42) a 

B0097 31.67 (±1.20) b 40.46 (±3.96) 0.133 (±0.004) ** 59.60 (±1.58) 0.87 (±0.05) ** 8.80 (±0.66) b 

B0111 30.00 (±2.08) b 40.77 (±3.29) 0.123 (±0.017) 57.74 (±1.45) 0.89 (±0.04) ** 10.00 (±0.21) ab 

The number of leaves, leaf size, total leaf area and stem height of five apple genotypes: B0023, B0057, B0070, B0097 and B0111 are presented. Values are means (n = 3 − 4) 

with SE in the brackets. Significant differences between genotypes at 95% confidence interval are indicated with different letters whereas the asterisks show significant 

differences found between two experimental years.   
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The proximal part of stem was re-cut to the length of  0.37 m  segment for the Cavitron. This 

length was sufficient to obtain intact vessels at the center. It was  confirmed by a negative 

observation of air bubbles when the segment has been infiltrated by compressed air. The VCs 

obtained from stem segments were sigmoid for all genotypes (Figure 37). The features of 

vulnerability to cavitation of five genotypes: P12, P50 and P88 and slope of the VC (s) were 

calculated (Table 7). The P12 of five genotypes was ranked from −1.75 to −2.21 MPa. There 

was no significant difference found between the means at 95% confidence interval while there 

were significant differences found between means of P50, P88 and s.   

2. Responses of the five apple genotypes to drought stress  

For the experiment in 2012, there were similarity of leaf and stem straits in five genotypes of 

trees while in the experiment in 2013, there were significant differences found on number of 

leaves and stem diameter between genotypes at 95% confidence interval (Table 8). 

Comparing the two experimental years, there were significant differences found between 

means of five genotypes on some traits (P < 0.05), including the number of leaves of B0070, 

the total leaf area of B0057 and B0097 and the height of stem for all genotypes. The 

interested hydric traits have been measured before the drought stress was applied. These 

values were used as references and were labeled as day 0 in the following figures and tables.  

In the experiment of 2012 and 2013 respectively, SWC of the studied apple genotypes was 

ranked from 70.30% to 76.03% and 42.81% to 52.65% before the irrigation was withheld. 

There were no significant differences of genotypes in both experiments. At the later periods 

of time, soil was dried down by the tree transpiration. At the same period of time of the 

experiment, there were no significant differences (P > 0.05) in SWC between the genotypes 

except on day 24th and 31st of the drought stress in 2012 experiment. Therefore, the SWC 

(Figure 38) was presented as mean values of the five genotypes. From day 17th onward, SWC 

became rather constant in both experiments, with value ranked from 24.39% to 27.47% and 

from 26.24% to 30.23% for the 2012 and 2013experiment respectively. On the last day of the 

drought stress, SWC reached the values of 24.39 and 26.24% for the former and latter year.  
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Figure 38. Changes in soil water content (SWC, %) during the drought experiments in 2012 and 2013. 

During the time of growing, 0.50 and 0.25 liters of water were applied to each tree twice a week for the 

experiment in 2012 and 2013 respectively. After the day ‘0’ reference measurement, irrigation was completely 

withheld from stressed trees and soil was left to dry down for 31 days in 2012 and 33 days in 2013. The 

decrement in SWC was observed as the time progress with significant differences (P < 0.05) between days. The 

averaged values (n = 15 − 20) from studied five genotypes (B0023, B0057, B0070, B0097 and B0111) were 

presented with standard error bars. Different letters present significant differences between the measuring days. 

The minuscule and the majuscules letters show the differences between days for the experiment in 2012 and 

2013 respectively. 
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While apple trees were receiving the irrigation regularly, midday leaf water potential (Ψmd) of 

five genotypes was ranked from −0.34 to −0.43 MPa and −0.89 to −1.06 MPa for experiment 

in 2012 and 2013 respectively. There was no significant difference found between genotypes 

in both years (P > 0.05). However, Ψmd of five genotypes was significantly lower in 2013 as a 

result of less irrigation when compared to the experiment in 2012. Although the duration of 

drought stress was lasted for 31 days for the experiment in 2012, Ψmd was only measured for 

24 days. This described that the 24-day measurement Ψmd had nearly reached the value of −10 

MPa, the maximum pressures applicable to the pressure chamber used in this study.  

When the irrigation stopped, reduction in Ψmd was observed along the progression of time 

(Figure 39). For the experiment in 2012, there were significant differences (P < 0.05) found 

between genotypes on day 12th, 14th, 17th and 24th of the drought stress. The genotype B0070 

significantly reached lower Ψmd when compared to the other four genotypes on day 12th and 

14th of the drought stress (Ψmd = −3.39 ±0.05 and −3.47 ±0.11 MPa, respectively). On day 

17th, the genotype B0023 obtained significantly higher Ψmd (−2.75 ±0.14 MPa) while on day 

24th, the Ψmd of B0111 (−9.71 MPa) was significantly lower when compared to other 

genotypes. In 2013 experiment, there were significant differences in Ψmd between genotypes 

found on day 21st and 33rd of the drought stress while the Ψmd of B0023 obtained significantly 

higher when compared to other genotypes. 

The stomatal conductance (gs) of five genotypes before drought stress was ranked from 

249.54 to 396.67 mmol m−2 s−1 and from 276.40 to 326.40 mmol m−2 s−1 for the experiment in 

2012 and 2013 respectively. The significant difference was not found either between the 

genotypes or between the two experimental years. When compared changes in stomatal 

regulation between the genotypes, the relative stomatal conductance (gs /gs max) was calculated. 

As the drought progressed, a declining trend in gs /gs max was observed for all genotypes. 

While significant differences at 95% confidence interval were mostly observed on the gs /gs 

max between the genotypes for the experiment in 2012, significant difference was not found in 

the experiment of 2013 on a given day of the drought stress (Table 9). The gs /gs max was 

plotted against Ψmd and data was fitted with sigmoid function (Pammenter and Van der 

Willigen, 1998) as indicated in equation 14. The calculation of xylem tensions (MPa) which 

caused 12, 50 and 88% of stomatal closure (gs 12, gs 50 and gs 88, respectively) (Table 10). 

Significant differences were found only on gs 50 between the five apple genotypes in 2012, in  
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Figure 39. Evolutions of midday leaf water potential (Ψmd, MPa) and stem embolism (PLC, %) of five 
apple genotypes during the drought experiment in 2012 and 2013. 

Surveys of Ψmd and stem PLC as a function of drought stress time (days) of the five apple genotypes studied 

(B0023, B0057, B0070, B0097 and B0111). Dots were mean values (n = 3) with SE as error bars. The values at 

day 0 had been measured before drought stress was applied. When the measurement on this day was finished, 

irrigation was withheld and the soil was left to dry down for 31 and 33 days for the experiment in 2012 and 2013 

respectively. Different letters indicated significant differences at 95% confidence interval: the minuscule letters 

indicated the differences between the five genotypes whereas the majuscules showed the differences between the 

stress days. 
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which B0057 and B0097 had significantly higher gs 50 when compared to the other three 

genotypes.  

Before drought was applied, the stem embolism was low and there were significant 

differences (P > 0.05) between five genotypes. The averaged stem embolism of the five 

genotypes was 6.66 ± 1.39% and 8.92 ± 0.98% for the experiment in 2012 and 2013 

respectively. Stem embolism increased as the drought progressed (Figure 39). In 2012 

experiment, low stem embolism rate was maintained at the least until at day 10th of the 

drought where the averaged embolism of the five genotypes was 8.38 ± 0.89%. From day 13th 

onward, the stem embolism increased successively  for all genotypes and on day 30th, the 

averaged stem embolism rate of the five genotypes reached approximately 87.9 ± 1.08%. 

Significant difference was not observed on the stem embolism rate between the five 

genotypes studied on the given experimental day. In 2013 experiment, the averaged stem 

embolism rose to 23.41 ± 3.52% on day 18th of the drought stress and there were significant 

differences (P < 0.05) found between the five genotypes. On this day, the genotypes B0057 

and B0070 obtained significantly lower stem embolism when compared to the other 

genotypes. These differences between the genotypes were also found on day 21st of the 

drought stress. However, from day 24th onward, there was no significant difference found on 

the stem embolism between the genotypes. On day 33rd before the termination of drought 

experiment, the averaged stem embolism of the five apple genotypes was 83.66 ± 4.30%.  

The hydraulic safety margin was calculated (Table 11) as the difference in pressure caused 

88% of stomatal closure (gs 88) and xylem pressure caused 12% or 50% loss of xylem 

conductivity in stem (P12 or P50). They were named gs 88 − P12 and gs 88 − P50 respectively. 

The gs 88 was obtained from the drought experiment in 2012 and 2013 while the P12 and the 

P50 were estimated with Cavitron technique. The gs 88 − P12 and the gs 88 − P50 from the 2012 

experiment were negative for all the genotypes while positive values were found on the gs 88 − 

P12 of B0023 and the gs 88 − P50 of all the genotypes in the 2013 experiment. The differences 

between genotypes of both years for the respective traits were not significant at 95% 

confidence interval.  

The effect of the drought stress on the tree growth was observed via the RGR (m d−1), the 

change in relative growth over time. Here, we compared the RGR between the five genotypes 

studied and between control (C) and stressed (S) groups (Table 12). There was no significant 

difference found on the RGR between five apple genotypes within each group (P > 0.05) for  
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Table 9. Evolution in relative stomatal conductance (gs /gs max) of five apple genotypes during the drought experiment in 2012 and 2013. 

Stress duration 
(days) 3 5 7 10 12 14 17 21 24 

20
12

 

B0023 76.99 (±3.74) b 82.9 (±7.69) 68.17 (±3.54) a 88.39 (±11.33) a 59.96 (±5.64) a 52.43 (±4.29) ab 55.00 (±5.44) a 33.15 (±4.48) ab 19.83 (±3.74) bc 

B0057 110.90 (±10.24) a 95.72 (±5.50) 54.40 (±3.00) b 67.08 (±3.89) b 45.33 (±7.93) ab 59.71 (±7.34) a 32.45 (±4.50) b 21.18 (±2.39) bc 12.67 (±1.98) c 

B0070 77.29 (±11.21) b 103.21 (±4.28) 78.04 (±5.08) a 64.10 (±8.02) b 30.81 (±3.37) bc 34.22 (±3.06) c 33.43 (±4.36) b 32.61 (±4.77) ab 37.26 (±2.84) a 

B0097 93.61 (±10.00) ab 86.82 (±2.94) 55.14 (±2.34) b 25.94 (±1.73) c 25.46 (±2.54) c 48.68 (±3.61) abc 21.31 (±3.14) b 38.59 (±10.16) a 23.37 (±3.39) b 

B0111 81.36 (±3.91) b 90.52 (±3.06) 74.19 (±3.39) a 71.41 (±3.27) ab 44.85 (±8.73) ab 43.93 (±5.10) bc 30.07 (±3.81) b 15.35 (±1.69) c 16.00 (±4.14) bc 

Mean 88.03 (±3.87) A 91.84 (±2.83) A 65.99 (±2.94) B 63.39 (±5.61) B 41.28 (±3.47) CD 47.79 (±2.65) C 34.45 (±3.24) DE 28.18 (±2.88) EF 21.83 (±2.39) F 

Stress duration 
(days) 3 6 17 20 24 26 31   

20
13

 

B0023 80.73 (±4.73) 32.06 (±6.40) 28.86 (±3.51) 20.64 (±1.01) 10.66 (±1.99) 16.25 (±2.17) 2.57 (±0.20)   

B0057 109.46 (±6.07) 52.80 (±5.66) 52.69 (±10.26) 23.68 (±2.61) 12.54 (±1.22) 24.45 (±2.63) 3.12 (±0.59)   

B0070 111.84 (±8.41) 47.93 (±8.60) 29.98 (±5.78) 26.62 (±1.44) 12.81 (±1.85) 20.41 (±4.41) 3.68 (±0.67)   

B0097 86.10 (±7.37) 54.78 (±4.98) 17.98 (±4.63) 26.15 (±1.63) 12.52 (±1.64) 7.89 (±1.97) 4.18 (±0.33)   

B0111 97.79 (±5.67) 44.62 (±4.88) 34.26 (±5.64) 25.01 (±2.31) 6.36 (±1.93) 13.84 (±2.35) 4.53 (±0.84)   

Mean 97.58 (±4.19) A 46.44 (±4.43) B 32.76 (±5.23) C 24.42 (±1.03) D 10.98 (±1.06) E 16.57 (±2.27) E 3.62 (±0.31) F   

The gs /gs max of B0023, B0057, B0070, B0097 and B0111 during the two drought experiments. It was computed using the gs of stressed trees whereas the gs max was measured 

from control trees. Values were means (n = 9) with SE in the brackets. Different letters indicate significant difference at 95% confidence interval; the minuscule letters 

indicate the difference between five genotypes whereas the majuscules show the difference between the stress days. 
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the experiment in both years. However, there were significant differences found for this trait 

when compared RGR of C and S trees in 2012 on B0057, B0097 and B0111 as well as on 

B0057 in 2013. 

Discussion 

In this study, the five apple genotypes appeared to be more vulnerable to drought-induced 

cavitation when compared with the previous report of Lauri et al. (2011), except for B0023 

which was less vulnerable (Table 13). In addition, the variation in xylem vulnerability to 

cavitation (P50) between the five studied genotypes was much smaller when compared with 

the study of Lauri et al. (2011). The coefficient of variance (CV), a ratio of the standard 

deviation to the mean of the apple tree P50 was 0.39 in the previous study while, in this study, 

it reduced to 0.07. The narrow variation in P50 was rather disappointed since we chose these 

genotypes for the extent of genetic variability of this trait. Nevertheless, it was still possible to 

categorize the genotypes into two distinctive groups: the tolerant (B0057 and B0070) and the 

sensitive (B0023, B0097 and B0111).  

It has already been reported that the differences in environmental conditions can induce 

variation in vulnerability to cavitation of the species (Herbette et al., 2010). This may explain 

the differences found for vulnerability to cavitation between the two studies since there was a 

large difference between the plant materials used. In the previous study, samples of the 

analysis of xylem vulnerability to cavitation were the annual 7-year-old branches, own-rooted 

trees planted in the field at the Melgueil INRA Montpellier Experimental Station (south-east 

of France). In this study, 4-month-old stems were used for the measurement.  They were 

grafted trees planted in pots and cultivated under greenhouse conditions at Clermont-Ferrand. 

Indeed, a phenotypic plasticity for this trait was also observed in other studies (Awad et al., 

2010; Corcuera et al., 2011). Moreover, it was also possible that different cavitation 

resistance might be the effect of rootstock. It is still uncertain whether the rootstocks can 

modify the xylem vulnerability to cavitation of the species. Some studies demonstrated that 

rootstock can modify hydric properties of the scion and resulted in different response to 

drought stress (Atkinson et al., 2003; Bauerle et al., 2011; Feng et al., 2011; Jones et al., 

1989; Tramontini et al., 2013). However, this was not always the case for some other studies 

(Trifilò et al., 2007). While in the previous study of Lauri et al. (2011), sample branches were 

from own-rooted trees, M9 was used as a rootstock in this study. The M9 (Malling IX) 

rootstock was characterized as an early fertility and dwarfing rootstock. Although known to 
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Table 10. Features of stomatal regulation of five apple genotypes for the drought experiment in 2012 and 2013. 

Year Genotypes gs 12 (MPa) gs 50 (MPa) gs 88 (MPa) s (% MPa) 

2012 

B0023 −0.60 (±0.25) −3.73 (±0.06) b −6.85 (±0.28) 16.22 (±1.30) 

B0057 0.55 (±0.08) −2.23 (±0.30) a −5.01 (±0.66) 18.54 (±2.13) 

B0070 −0.36 (±0.13) −3.09 (±0.26) b −5.81 (±0.54) 18.77 (±1.98) 

B0097 0.89 (±1.20) −2.01 (±0.29) a −4.90 (±1.75) 28.99 (±12.80) 

B0111 −1.10 (±0.15) −3.05 (±0.20) b −5.00 (±0.54) 27.56 (±5.55) 

2013 

B0023 −1.48 (±0.02) −1.78 (±0.07) −2.07 (±0.11) 177.69 (±24.08) 

B0057 −1.17 (±0.03) −1.59 (±0.31) −2.00 (±0.62) 426.80 (±246.48) 

B0070 −1.39 (±0.17) −2.08 (±0.24) −2.76 (±0.34) 77.90 (±15.35) 

B0097 −1.49 (±0.14) −2.24 (±0.25) −2.99 (±0.36) 69.81 (±10.19) 

B0111 −1.54 (±0.11) −1.89 (±0.33) −2.25 (±0.56) 434.87 (±298.91) 

Xylem tensions (MPa) causing 12, 50 and 88% of stomatal closure (gs 12, gs 50 and gs 88, respectively) of apple genotypes: B0023, B0057, B0070, B0097 and B0111 were 

obtained from the sigmoid function fitted to the relationship between relative stomatal conductance (gs /gs max) with the midday leaf water potential (Ψmd). Values were means 

(n = 3) with SE in brackets. Different letters indicated significantly differences between genotypes at 95% confidence interval. Significant difference was not found between 

genotypes for the traits measured in 2013.   
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be sensitivity to water logging, relatively low frost hardiness and susceptible to drought, it 

was widely used in Europe because of the low shoot vigorous which made it suitable for high 

density planting. 

In the study of Jones et al. (1989), higher vulnerable to cavitation was observed in a scion 

grafted on the dwarfing M9 rootstock compared with the scion grafted on vigorous rootstock 

M25. Similar trend of vulnerability to cavitation was also found in the study of Bauerle et al. 

(2011). The study indicated that scion grafted on the vigor rootstock was more tolerant to 

water deficit compared with the grafting on the dwarf one with higher resistance to cavitation. 

These results presumed an effect of a modification in xylem vessel diameter.  In the former 

case, a reduction of scion vessel diameter was observed when tree was submitted to drought 

stress, while in the latter case of dwarfing rootstock, it did not substantially shift. The 

reduction in vessel diameter helped to increase conduit ressitance to cavitation (Awad et al., 

2010; Hacke et al., 2001a; Jacobsen et al., 2005). Therefore, small variation in xylem 

vulnerability to cavitation and higher vulnerability found in this study compared to the study 

of Lauri et al. (2011) might be a result of the M9 rootstock concealing original adjustment 

ability of the scion genotypes to water deficit. From these results, further investigation is 

needed to verify the source of variability of xylem vulnerability to cavitation, particularly on 

the vulnerability to cavitation. Beyond the interest for this study, it is of fundamental and 

applied interest. 

During the experiment of drought stress, tree transpiration caused depletion of the soil water 

which could be seen from the reduction of SWC, thus lower water potential in trees and 

exposed their xylem to the risk of cavitation and embolism. Despite similar reduction in SWC, 

the decrement of Ψmd was differed between the genotypes. It suggested that the genotypes 

were different in transpiration rate as soil evaporation assumed to be nil from covered soil 

surface.  

Isohydric behavior of the apple tree (Regnard et al., 2009) was confirmed by the observation 

of stomatal regulation; when facing drought stress, the apple trees closed their stomata to 

prevent excessive water loss through transpiration. However, as not all stomata were closed, 

stomatal regulation only helped to delay the occurrence of critical embolism in stem and stem 

embolism rate was continuously increased as time progress. Similar total leaf area and LMA  
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Table 11. Hydraulic safety margin of five apple genotypes. 

Year Safety margin (MPa) B0023 B0057 B0070 B0097 B0111 

2012 

gs 88 − P12 
−4.65 

(±0.25) 

−3.27  

(±0.66) 

−3.87  

(±0.54) 

−2.88  

(±1.75) 

−3.24  

(±0.44) 

gs 88 − P50 
−3.17 

(±0.28) 

−1.76  

(±0.51) 

−2.23  

(±0.32) 

−1.82  

(±0.65) 

−1.95  

(±0.54) 

2013 

gs 88 − P12 
0.13  

(±0.23) 

−0.26 

(±0.62) 

−0.76  

(±0.34) 

−0.97  

(±0.16) 

−0.49 

(±0.56) 

gs 88 − P50 
1.07  

(±0.11) 

1.25 

(±0.44) 

0.82  

(±0.52) 

0.09 

(±0.36) 

0.80 

(±0.26) 

The hydraulic safety margin (MPa) for the five apple genotypes (B0023, B0057, B0070, B0097 and B0111) 

were calculated as the differences in tension causing 88% of stomatal closure (gs 88) and xylem pressure causing 

12% or 50% loss of xylem conductivity (P12 or P50). The gs 88 was obtained from drought experiment while the 

P12 and the P50 were values estimated with the Cavitron. They were named gs 88 − P12 and gs 88 − P50, 

respectively. Values were means (n = 3) with SE in brackets. 

Table 12. The relative growth rate (RGR) of control (C) and stressed (S) trees of five apple genotypes from 
the experiment in 2012 and 2013. 

Year Genotypes 
RGR (m d−1) 

C S 

2012 

B0023 0.0075 (±0.0004) 0.0036 (±0.0016) 

B0057 0.0062 (±0.0007) a 0.0031 (±0.0002) b 

B0070 0.0067  (±0.0019) 0.0031 (±0.0002) 

B0097 0.0085 (±0.0009) a 0.0024 (±0.0007) b 

B0111 0.0068 (±0.0004) a 0.0017 (±0.0009) b 

2013 

B0023 0.0065 (±0.0014) 0.0020 (±0.0013) 

B0057 0.0100 (±0.0022) a 0.0032 (±0.0010) b 

B0070 0.0058 (±0.0008) 0.0066 (±0.0008) 

B0097 0.0061 (±0.0002) 0.0054 (±0.0017) 

B0111 0.0069 (±0.0013) 0.0048 (±0.0010) 

The relative growth rate (RGR) of B0023, B0057, B0070, B0097 and B0111; it was calculated from the relative 

growth in stem height over the duration of drought stress. The values were averaged (n = 3) with SE in the 

brackets. Different letters indicated significant difference at 95% confidence interval when compared RGR to 

control (C) and stressed (S) trees from the same genotype.  
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of the five genotypes studied suggested that the differences in stomatal regulation were results 

of genetic variation in stomatal sensitivity to drought stress of the genotypes. 

In 2012 experiment, B0023 was the genotype that kept their stomata opened the longest. On 

day 17th of the  drought stress, its gs/gs max was remained higher than 50% while other 

genotypes had their gs/gs max dropped lower than 50% since day 10th or 12th of the drought 

stress. However, it was the genotype B0057 still maintained gs/gs max higher than 50% up to 

day 17th of the drought stress while the other genotypes contained their gs/gs max lower than 

50% since day 6th of the drought stress. Considering the progression of Ψmd and stomatal 

regulation, the studied genotypes close their stomata at a rather high water potential. The gs 12 

in the year 2012 experiment occurred at the water potential of −0.13 ± 0.29 MPa while it 

occurred at much lower water potential in the year 2013 experiment (−1.41 ± 0.06 MPa). 

High gs 12 found in 2012 was the result of a fast decreasing in gs/gs max despite of a small 

change in Ψmd. It is important to note that Ψmd was maintained at a fairly high level for at least 

10 days before it reached the tension of P12. In addition, after the P12 was reached, more rapid 

evolutions in hydric traits were observed. This was consistent to a result of Lakso’s study 

(1979) which shown a fast decline in stomata conductance at a critical Ψ which usually 

occurred between −1.8 to −2.2 MPa. 

The stomata sensitivity to the drought stress (gs 50) of the five genotypes from the experiment 

in 2012 was in agreement with the previous finding from Lauri et al. (2011); B0023, B0070 

and B0111 were categorized as water spending genotypes while B0057 and B0097 were 

water saving genotypes. However, waned differences were found in stomatal regulation 

between the five genotypes in the 2013 experiment (Figure 40). The differences observed 

between two experimental years could be a result of the tree conditions. In 2012 experiment, 

the trees were only four months old before drought experiment began, the root system might 

not completely develop and there were few carbon reserves in the trees. This was not the case 

for the experiment in 2013 in which roots of these trees were more developed and there were 

some carbon reserves. Well-developed roots in the pots allowed more contacting surfaces for 

the trees to soil particles and more access to soil water. This could explain the higher Ψmd and 

lower stem embolism rate that were generally found in the 2013 experiment when compared 

to the 2012 experiment.  
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Table 13. Xylem vulnerability to cavitation of the five apple genotypes from two different studies. 

Genotype B0070 B0057 B0111 B0097 B0023 

P50 
(MPa) 

Lauri et al., 2011 −6.77 −5.84 −3.70 −3.66 −2.52 

This study −3.58 −3.25 −3.05 −3.08 −3.14 

The pressure causing 50% loss of xylem conductivity (P50) reported by Lauri et al. (2011)  when compared to 

the P50 obtained in this study. The genotypes were presented according to their vulnerability to cavitation 

reported by Lauri et al. (2011) from the most tolerant to the most sensitive. In both studies, the values obtained 

used the same technique (Cavitron). 

 

Figure 40. Variation in xylem vulnerability (P50) and stomatal regulation (gs 50) of five apple genotypes. 

The P50 and gs 50 of the five genotypes studied: B0023, B0057, B0070, B0097 and B0111 were presented. The 

P50, a tension causing 50% loss of xylem conductivity, obtained from Cavitron while gs 50, a pressure causing 

50% reduction of relative stomatal conductance, obtained from drought experiment in 2012 and 2013. There was 

no correlation found between the two variables (R2 = 0.018 and 0.007 for 2012 and 2013 respectively). 

  

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-4.0 -3.5 -3.0 -2.5 -2.0

g s
50

(M
Pa

)

P50 (MPa)

2012

-4.0 -3.5 -3.0 -2.5 -2.0
P50 (MPa)

2013



 

215 
 

The low and negative safety margin found in this study indicated that the apple trees chose to 

open their stomata despite the facing stress water deficit. This resulted consistently to a study 

of Beikircher et al. (2013) which suggested that apple cultivars tended to optimize the carbon 

gain by keeping their stomata opened. Since this study was carried out using the genotypes 

from a progeny which has not been submitted to any selection pressure, it was possible to find 

traits that might be rare to find from selected population. We also could not rule out a 

possibility of a methodological bias when calculating this safety margin because the pressure 

used for the calculation of gs 88 was Ψmd, measured on leaf whereas for P12 and P50, the tension 

was in stem. Therefore, the negative safety margin had to be confirmed. It might be necessary 

to consider the traits measured on the same organ to calculate a safety margin. 

The result of the study indicated that the drought stress affected RGR of B0057, B0097 and 

B0111. In case of B0111, the reduction RGR might be from the vulnerable conduits. The 

conduits of B0111 might experience greater tension when facing water deficit. Its water 

spending behavior was also vulnerable to cavitation, xylem dysfunction was evidence for this 

genotype. This could largely restrict growth when the tree exposed to the drought stress. 

Conversely, a significant reduction in RGR of B0057 and B0097 appeared to be a result of 

their water saving behavior. Although water saving strategy helped delaying cavitation and 

embolism, it also restricted gas exchange and might greatly limit the growth of tree. The 

result suggested a trade-off between growth and water saving behavior. However, this result 

could not determine the effect of drought stress on yield or tree survival. Therefore, further 

investigation also needed to assess these issues. 

In conclusion, our results confirmed different combination strategies of drought tolerance 

which were previously reported for this progeny. Despite much narrower variation in 

cavitation resistance, the five genotypes still exhibited clear variability of stomata regulation 

in response to the drought stress. Since a trade-off with growth was only found on water 

saving behavior and not on vulnerability to cavitation of the apple trees, it suggested a 

selection for genotypes with the combination of water spending and cavitation resistant for 

the cultivation. The further investigation would be to identify the sources of variability of 

xylem vulnerability to cavitation and the effect of rootstock on this trait.  
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IV. General discussion 

In this section, discussion on the within-species variation of xylem vulnerability to cavitation 

in three agronomic trees was raised and then the potential of using this trait as a criterion for 

drought tolerance screening would follow.  

1. The variability of the xylem vulnerability to cavitation 

The investigation of genetic variability of vulnerability to cavitation in agronomic species was 

the first objective of this PhD work. This was why this specific section devoted to the issue. 

This research chose to study the three agronomic tree species:  walnut tree, rubber tree and 

apple tree. These species are prominent in economical value, vastly cultivated all over the 

world, and drought threatening. The chosen species and their respective populations differed 

in various ways which offered more opportunities to explore the intraspecific variation in 

xylem vulnerability to cavitation. Walnut and apple trees originated from dryer regions of 

central Asia whereas the rubber tree was from tropical region of Brazil. These trees thus 

differed in drought sensitivity as seen from the distribution of the species. Walnut and apple 

trees could be cultivated in Mediterranean, semi-arid and arid areas while the cultivation areas 

of rubber tree are mostly limited within wetter environments of tropical region. The selected 

accessions (clone, cultivar or progenies from a cross) have been previously reported 

differently in various traits. In Juglans accessions, the variations were reported  in water use 

efficiency (Aletà et al., 2009), budburst date, heat requirement and growth rate (Charrier et 

al., 2011; Poirier et al., 2004). In addition, the comparison between Persian (J. regia) and 

hybrid (J. regia x J. nigra NG 38) walnuts enhanced the genetic diversity of our studied 

populations and thus increased the chance to find variation of vulnerability to cavitation. This 

highlighted assumption arose from a great variation in vulnerability to cavitation when 

comparing Prunus species (Cochard et al., 2008). The study found that P50 of the 10 Prunus 

species studied was ranked from −3.5 to −6.3 MPa. For the chosen ten rubber clones, despite 

that they all derived from small population, many studies shown high genetic polymorphism 

in the populations (Besse et al., 1994; Lekawipat et al., 2003), with differences in growth 

(Chandrashekar et al., 1998) and latex yielding (Priyadarshan et al., 2005). The two latter 

traits also found to vary in rubber clones grown in sub-optimal areas, indicatedputative 

differences between clones in drought tolerance. For the five apple genotypes, they were 

selected from 122 individuals of a progeny for their 
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contrasted vulnerability to cavitation and stomata response to drought which previously 

reported in Lauri et al., (2011). Although the vulnerability to cavitation could vary according 

to the growth conditions, it expected that the selected genotypes to maintain the genetic 

differences at the least for cavitation resistance. 

There was no significant difference between the populations of Persian and hybrid walnuts, 

the average P50 values were −1.97 and −2.16 MPa respectively. There were weak but 

significant differences in P50 when comparing the two species. Considering the variations of 

origin, parentage, phenology and water use efficiency of the walnut accessions studied, very 

similar vulnerability to cavitation among them is rather unexpected. This lack of variability in 

xylem vulnerability to cavitation within studied Persian walnut cultivars could explain by 

small different in their wood anatomical traits as these two traits are strongly linked (Ackerly, 

2004; Hacke et al., 2000; Hacke et al., 2001a; Jacobsen et al., 2005). More vulnerability 

found in Persian walnuts compared with the hybrid walnuts could explain by the relationship 

between xylem vulnerability to cavitation and wood properties (Baas et al., 2004; Hacke et 

al., 2001; Markesteijn et al., 2011). Because high wood density related to higher 

reinforcement of xylem structure ((t/b)2) which prevented the xylem implosion from high 

negative tension in xylem (Awad et al., 2010; Hacke et al., 2001a; Jacobsen et al., 2005), 

species with higher wood density  assumed to be less vulnerable to cavitation. Various studies 

such as Chave et al., 2009; Poorter et al., 2010; Preston et al., 2006 suggest the invest 

correlationship between wood density and tree growth rate, thus the slow-growing hybrid 

walnut trees (Charrier et al., 2011) were expected to be less vulnerable to cavitation when 

compared with Persian walnuts.   

The ten rubber clones also exhibited similar xylem vulnerability to cavitation when compared 

their branch P50; the values range was from −1.73 to −2.02 MPa. These P50 values were in the 

same range with other studies (Chen et al., 2010; Sangsing and Rattanawong, 2012; Sangsing 

et al., 2004) in which P50 varied from −1.22 to −2.42 MPa. These differences in P50 from the 

literatures might be a result of the differences in plant material used between the studies and 

the phenotypic plasticity of this trait. Studies of Sangsing and Rattanawong (2012) and 

Sangsing et al. (2004) were conducted on potted 1.5-year-old trees of two rubber clones: 

RRIM 600 and RRIT 251 and grown at Bangkok, Thailand. The P50 values found in these 

studies were higher (−1.22 to −1.91 MPa). In the study of Chen et al. (2010), which 

conducted in southern Yunnan of China, used two-year-old rubber tree from a local  
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commercial nursery. The study did not mention the name of clone used and trees were potted 

grown. Although there were significant differences found in P50 of the five apple genotypes 

studied, the diversity of this trait was much smaller when compared to the previous study by 

Lauri et al. (2011). It was rather disappointed that this progeny was chosen for their extent of 

the genetic variability, particularly on their contrast on vulnerability to cavitation. In the study 

of Lauri et al. (2011), the coefficient of variance of P50 was 0.39 while in this study, it was 

reduced to 0.07. 

There was an assumption, on one hand, that the similarity or the small variations of xylem 

vulnerability to cavitation found on branches of walnut and rubber trees were a result of 

genetic canalization, at least within the commercial populations. The uniform selection and 

canalization in vulnerability to cavitation were first demonstrated on Pinus populations (Lamy 

et al., 2011; Lamy et al., 2014; Sáenz-Romero et al., 2013). There was no genetic variability 

in cavitation resistance found; neither between 513 genotypes of Pinus pinaster in a common 

garden (Lamy et al., 2011) and along the environmental gradients from warm and dry to 

cooler and wetter sites nor between the populations of Pinus hartwegii along an altitudinal 

gradient, from 3,150 m to 3,650 m (Sáenz-Romero et al., 2013). The average P50 was −3.73 

and−3.42 MPa for the two studies respectively. This assumption is also applied to Fagus 

sylvatica (Wortemann et al., 2011) which the cavitation resistance of 17 Fagus sylvatica 

populations which grew in provenance tests revealed a remarkable constant cavitation 

resistance across populations. The evidences from these studies suggested that genetic 

architecture could narrow trait variability to preserve functional phenotypes in natura. The 

agronomic species have generally undergone different selection pressure (Gepts, 2004; 

Purugganan and Fuller, 2009) and therefore the genetic variation in xylem vulnerability to 

cavitation could entirely differ from natural populations. Considering that resistance to 

cavitation usually came with trade-off such as high carbon cost for xylem structure and high 

hydraulic resistance, this trait might only contributed to the species survival and not entirely 

correlate to more desire traits of species with agronomic proposes. This might explain rather 

vulnerable and low variability of cavitation resistance in cultivated walnut accessions and 

rubber clones, while the apple genotypes which did not undergo the selection, showed higher 

variability for this trait.  

On the other hand, there was assumption that narrow diversity of vulnerability to cavitation 

found between the apple genotypes was an effect of rootstock. Several studies demonstrated 
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that rootstock could modify hydric properties of the scion and result in different responses to 

drought stress (Atkinson et al., 2003; Bauerle et al., 2011; Feng et al., 2011; Jones et al., 

1989; Tramontini et al., 2013), particularly on the modification of vessel diameter (Bauerle et 

al.,2011). The latter study found more vulnerable to cavitation from the scion grafted on 

dwarfing rootstock (including the M9 which was used in this study) when compared with 

grafted on vigorous rootstock. The study suggested that the differences in vulnerability to 

cavitation originated from different abilities to reduce vessel diameter in response to water 

deficit. A reduction in scion vessel diameter was observed from scion grafted on vigorous 

rootstock whereas it did not shift when using dwarfing rootstocks. This led to a consideration 

that grafting on dwarfing rootstock might mask the original adjustment of scion to cope with 

water stress and resulted in similar response among the genotypes. In addition, since there 

was no adjustment in response to drought stress, it resulted in weaker cavitation resistance. 

The suspicion on the influence of rootstock to vulnerability to cavitation of the scion found on 

apple trees brought forth the question on xylem vulnerability to cavitation of walnut and 

rubber trees. In commercial production, these two species ware also grafted on rootstocks: 

walnut cultivars are mostly grafted on seed-grown J. regia, occasionally J. nigra or J. hindsii 

while seed-grown RRIM 600 is mostly used as a rootstock in rubber production in Thailand. 

To date, the knowledge on responses of rootstock to drought stress, especially on the 

cavitation resistance is still lacking. 

While most of the investigations on xylem vulnerability to cavitation were conducted on 

critical organs such as branches and stems, fewer were performed on petiole. In this study, the 

vulnerability to cavitation on petiole was conducted on rubber trees and clonal variation was 

found (P50 = −1.15 to −1.65 MPa). This finding led to a hypothesis proposal that the genetic 

canalization for this trait only held for critical organ bearing buds (branches or stems); but it 

would vary in less vital organ such as petiole. The finding of more vulnerable xylem vessels 

in petiole when compared with in branch indicating vulnerability segmentation also could be 

found on other species such as in Populus balsamifera and Alnus glutinosa (Hacke and 

Sauter, 1996), and in Acer saccharinum (Tsuda and Tyree, 1997). More vulnerable xylem in 

petiole would allow the vessels embolizing at a fairly high water potential and lead to leaf 

shedding. This ability let plant discarding transpiration organs in order to preserve more 

important ones from dehydration (Barigah et al., 2013; Zimmermann, 1983). The 

vulnerability segmentation also appears to hold true for walnut tree. Previous studies of Tyree 

et al. (1993) shown that petiole of J. regia cv Lara was more vulnerable to cavitation than its 
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 branch (P50 = −1.15 and −1.40 MPa for petiole and branch, respectively). This result 

suggested that walnut tree allowed xylems in petiole embolizing and leaves shedding when 

facing drought stress. Therefore, more vulnerable conduits of petiole regarded as a benefit for 

the trees survival rather than a drawback.  

2. The potential of using xylem vulnerability to cavitation in breeding 

programs 

Pita et al. (2005) recommended the potential traits for drought tolerance screening were that; 

they should  be easily assessed on the large-scale, allowed the identification of genotypic 

variation, had a sufficient heritability and allowed breeders identifying the best and the worst 

genotypes. In this study there were two aspects to consider whether xylem vulnerability to 

cavitation is a pertinent trait related to drought stress and it could be used for drought 

tolerance screening in breeding program: the technical and the scientific issues. 

2.1 The technical issue 

It was a benefit of current methods of Cavitron and air-injection that the time required for 

measuring the xylem vulnerability to cavitation has been shortened. The main advantage of 

these methods compared with the classical bench-drying method was that plant materials had 

not been required to expose to drought stress before they were used for the measurement. 

Instead, these current methods generated cavitation on non-stressed plant materials using 

centrifugal force and air pressurization. In addition, since it was possible to control a precise 

level of stress by adjusting the spinning velocity or the air pressure for the respective 

methods, it allowed us to complete a vulnerability curve using a single sample. Therefore, 

complete vulnerability curves could obtain from several samples within a day.  

In this study, sigmoid shape vulnerability curves have been obtained when using samples with 

intact vessels at the center. Open-vessel artifact has been confirmed (Cochard et al., 2010; 

Martin-StPaul et al., 2014) by the experiments on walnut and rubber trees in which r-shape 

vulnerability curves were obtained on short sample segments. This problem restricted the use 

of Cavitron with long-vessels species such as ring porous species or most of tropical species 

that have long vessels. Fortunately, the sample size is not a limitation when using air-injection 

technique hence it can be applied on the species with long vessels. The air-injection technique  

considerably required more analytical time when compared with the Cavitron.  At present,  
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only a single sample could be analyzed at a time with a set of pressure sleeve and perfusion 

tube. It considerably took more time to prepare and connect the sample with the system; when 

combining with time to induce embolism, only approximately five samples a day could be 

managed. However, as the equipments and the set up for this technique were far less 

sophisticated when compared with the Cavitron; it possible managed several samples at a 

time. This could be done either by multiplying the number of sleeves and perfusion tubes or 

by fabricating new sleeve that connected multiple samples. The idea is taken from the outlets 

of Xyl’EM apparatus which up to six samples could be attached and cavitation caouldbe 

induced on these samples at the same time. In addition, because the equipments used in air-

injection technique couldbe easily moved and set for the measurement, it can be brought into 

a field and the measurement could be conducted shortly after samples were harvested. This 

might greatly reduced the artificial embolism from the preparation and transportation of the 

samples. 

The effects of sample’s age, light condition and sampling region observed in this study and in 

other studies (Cochard et al., 1999; Cochard et al., 2007; Herbette et al., 2010) highlighted 

the importance of the sampling design. To obtain as much as possible homogenous samples 

for the analysis, several precautions have to be seriously considered. It was also essential for 

the analysis conducted on samples with rather low and homogenous native embolism. This 

issue raised by Awad et al. (2010) suggested that if vulnerable curve constructed from 

stressed sample, the measurement would be done on the remaining functional vessels which 

were likely more resistant to cavitation. Therefore, the measurement underestimated the 

xylem vulnerability to cavitation of the sample. Moreover, it was also important to consider 

the directions of sap flow through sample when measuring vulnerability to cavitation with 

Cavitron. Significantly shifted was found in vulnerability to cavitation between the 

measurement with sense flow and antisense flow directions. This variation could be important 

to determine the variability of xylem vulnerability to cavitation of the species studied 

particularly if the difference for this trait was small between the studied accessions. 

2.2 The scientific issue 

In this study, despite the differences previously found on other traits and the genetic variation 

was expected to be large between studied populations, only weak intraspecific variation was 

found for xylem vulnerability to cavitation among the studied populations on their vital 

organs; branches for walnut and rubber trees, and stems for apple trees. It was still unclear  
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whether the selection for yield could affect vulnerability to cavitation of the species. In some 

studies, trade-off was found between cavitation resistance and productivity (Cochard et al., 

2007; Wikberg and Ogren, 2004) while in some other studies, no trade-off was found 

(Cochard, 2002; Sangsing et al., 2004a; 2004b). In this study, we chose to experiment on 

young rubber and apple trees because drought stress could cause a severe damage or mortality 

especially in the orchard where irrigation limited. For this reason, we could only monitor the 

effect of drought stress on growth and not on yield. The effect of drought stress on rubber 

trees was not obvious between the stressed and the control trees for all clones. Reason for the 

similarity in RGR was presumably a result of plant phenology in which tree growth was 

normally halted during a dry period (Chandrashekar et al., 1998) and therefore the variation 

of RGR between control and stressed trees was not significant. On apple trees, small variation 

in P50 was responsible to no clear different in RGR between cavitation tolerance and sensitive 

genotypes.  

Conversely, genetic variation of xylem vulnerability to cavitation found on petioles between 

ten rubber clones suggested that it could be used for the screening for drought tolerance. 

Vulnerable petioles allowed leaves to shed and prevented hydraulic failure in vital organs; 

this ability could be regarded as a desiccation avoidance trait of the species. Apart from 

genetic variation in vulnerability to cavitation of petiole, other traits related to desiccation 

avoidance including stomatal regulation and leaf shedding on rubber and apple trees were also 

observed. If cavitation resistance in critical organs was rather similar to the studied species, 

the future selection program can be firstly focused on these differences in drought avoidance 

traits. The selection for genotypes with high ability to avoid drought stress such as sensitive 

stomata and vulnerable xylems in petiole might help to prolong the occurrence of embolism in 

critical organs when faced drought episode. 

It seemed to be a logical choice for the production in marginal areas to choose the genotypes 

that their vital organs rather vulnerable to cavitation, particularly on rubber trees. However, 

because these avoidance traits could limit gas exchange, adopting these behaviors might 

significantly halt tree growth during drought period as demonstrated by significant reduction 

of RGR of apple trees. The RGR of apple genotypes with water saving strategy significantly 

reduced during drought stress period while the effect on genotypes with water spending 

ability was not significant. This problem might not be a significant hiatus for fruit trees but in 

natural rubber production, growth rate especially during immature period was very important.  
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According to RRIT (2012), tapping (latex harvesting) can be done when rubber tree girth 

(stem diameter at 1.5 m above ground) is at least 0.50 m. Tapping on the immature trees could 

reduce latex production and tree growth. Therefore discontinuously growth during drought 

period could greatly prolong the immature period of rubber tree and affect the rubber 

production.  

The averaged dry rubber yield of rubber clones in Thailand (RRIT, 2012) appeared positively 

linked with cavitation resistance of petiole found in this study. High-yielding clones 

producing dry rubber from 1,969 – 2,200 kg/ha/year such as RRIT 251, RRIT 408 and RRII 

188 had more cavitation resistant petioles whereas lower yielding clones such as RRIM 600 

(dry rubber yield = 1,644 kg/ha/year) had less cavitation resistant petioles.  

Indeed, drought tolerance required an optimal combination of desiccation tolerance and 

desiccation avoidance to ensure yield and survival. Therefore, within these studied species, 

the accessions with moderate adaptation to desiccation avoidance might be chosen as a 

compromising method for drought tolerant selection while carrying out further investigation 

explored the vulnerability to cavitation of the vital organs on larger populations to broaden the 

genetic diversity beyond the commercial populations. 
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CONCLUSIONS AND PERSPECTIVES 
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The conclusions of this study were that small to none variations in xylem vulnerability to 

cavitation were found on the three species studied. The narrow variability of this trait on 

branches of two walnut species and rubber clones studied was a result of genetic canalization 

from uniform selection while rather small differences found on stems of apple genotypes were 

caused by the effect of rootstock inhibiting scion adjustment to water deficit. The hypothesis 

of genetic canalization of xylem vulnerability to cavitation was only applied to  the critical 

organs bearing buds; however, on less vital organ (petioles) xylem vulnerability to cavitation 

was genetically varied and vulnerability segmentation was found. These findings needed to be 

thoroughly investigated by testing the respective variability for branches and petioles in 

several species including both deciduous and evergreen species. 

The investigation should also consider other traits related to desiccation avoidance such as 

stomatal regulation and leaf shedding since genetic variation was found for these traits among 

the studied populations and they seemed to be more correlated with traits of agronomic 

interest (growth and yield) than the cavitation resistance of the critical organs. These traits 

related to desiccation avoidance can be considered as a first step on drought tolerance 

screening for our studied species while the next step would be an exploration of the 

vulnerability to cavitation on larger populations to broaden the genetic diversity beyond the 

commercial population. 

Further investigation had to carry out to clarify source of the variability of vulnerability to 

cavitation, especially the environmental plasticity and the effects of rootstock. Firstly, the 

environmental plasticity; it might be more relevant  to the selection program to confirm the 

responses to drought stress on field grown rubber and apple trees since this would reflect the 

actual environmental conditions that trees had to grow for commercial production. Moreover, 

the experiment on mature trees would also allow the evaluation of drought stress effects on 

yield which had not been done on this study. Secondly, from the result of narrower 

vulnerability to cavitation on stems of the five apple genotypes studied, we proposed that 

rootstock has modified the vulnerability to cavitation of scion. However, since the knowledge 

on response of rootstock to drought stress was still lacking thus further investigation was 

needed. Testing this hypothesis needed to compare the response to water deficit of own-root 

genotypes with grafted genotypes and might be also the compatibility of scions and 

rootstocks.  
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Regarding to the measurement of xylem vulnerability to cavitation, This study proposed a 

protocol with precautions for homogenous sampling and measurement techniques for the 

Cavitron as followed: 

(i) Samples should be collected from non-stress trees hence low native embolism 

could be expected. Before the measurement of vulnerability to cavitation, 

representative populations had to be taken for native embolism measurement. It 

was important to measure the vulnerability to cavitation on samples with low and 

rather homogenous native embolism to avoid a bias from measuring vulnerability 

to cavitation on the remaining more resistance vessels. 

(ii) Light condition, sample age and tree age might affect xylem vulnerability to 

cavitation of the samples. Apart from making sure that the samples were as much 

as possible homogenous in the age of samples themselves and the tree age, 

Sampling from the fully exposed to sunlight area such as the southern-side of the 

canopy or at the top of the canopy were recommended. 

(iii) Samples should be harvested with possible maximum length; this would allow 

them to be re-cut to obtain a desire length for the analysis with minimum artificial 

embolism from the sample preparation. It might be necessary to do a cutting under 

tap water to prevent air infiltrating the vessels when the samples were prepared. 

(iv) After samples were harvested, they should be immediately defoliated, wrapped in 

moist paper and plastic bag to minimize transpiration. Wrapping samples with wax 

or paraffin could help reducing transpiration from the samples, particularly for a 

long period of transportation. The harvested samples should be kept in cold 

storage (approximately 4°C) while they were waiting for the analysis. It was 

previously proposed that the maximum storage time was up to 30 days after the 

harvest for the measurement of xylem vulnerability to cavitation; however, this 

value might be varying according to the species and storage conditions. It might 

necessary to verify the maximum storage time for the species studied or closely 

observed the variation of xylem vulnerability to cavitation measured between the 

measurement dates. 

(v) The segments, which would be used for the measurement of vulnerability to 

cavitation, should contain only the intact vessels at their center. Using segments 

with open-to-center vessels could result in the overestimation of vulnerability to 

cavitation from open vessel artifact. This open vessel artifact could be checked by 
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infiltrating one end of the sample with compressed air while another end 

submerging under water. If vessels were opened to center, air bubbles would be 

observed from the submerged end. Only samples with intact vessels should be 

used for the analysis. 

(vi) Directions of water flow through the segments while they were spinning on 

Cavitron could cause the variation of vulnerability to cavitation thus all the 

measurements should be conducted with similar flow direction. Here, working 

with the antisense flow where bigger water reservoir was placed at the distal end 

of segment and smaller reservoir at the proximal end was recommended. The 

reason for this recommendation was that because the sense flow could  result in a 

slightly faster increasing in embolism rate due to a higher number of cut open 

vessels at the proximal end that quickly embolized when nuclei were  seeded into 

them by measurement flows. 

This protocol should ensure the accurate estimation of xylem vulnerability to cavitation using 

Cavitron technique.   
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Variabilité génétique de la tolérance à la sécheresse d’arbres d’intérêts agronomiques: rôle de la 
vulnérabilité à la cavitation du xylème. 

Résumé 

Dans un contexte de changements climatiques, le stress hydrique et la gestion de l'eau sont considérées 
comme une contrainte importante pour le secteur agricole. Ainsi la sélection pour la tolérance à la 
sécheresse est devenue un objectif majeur pour de nombreux programmes de sélection. La 
vulnérabilité à la cavitation est considérée comme un trait d'intérêt pour la sélection à une sécheresse 
extrême, en particulier pour les plantes ligneuses. Pourtant, l'étendue de sa variabilité et sa relation 
avec la tolérance à la sécheresse sont mal documentées à l’échelle intra-spécifique, et en particulier 
dans les espèces cultivées. Dans cette étude, la variabilité génétique de la vulnérabilité à la cavitation a 
été étudiée sur trois dispositifs expérimentaux différents avec trois arbres d’intérêt agronomique qui 
sont menacés par le risque de sécheresse: noyer, hévéa et pommier. Une faible ou aucune, variation de 
la vulnérabilité à la cavitation a été trouvée dans les espèces étudiées ainsi qu'entre deux espèces de 
noyers malgré les différences de traits précédemment rapportés. Ces résultats suggèrent une 
canalisation de la résistance à la cavitation dans les organes critiques (branches, tiges). Chez le 
pommier, le porte-greffe est soupçonné de provoquer de la plus étroite résistance à la cavitation sur le 
greffon. Par contre, des différences ont bien étés trouvées sur d’autres traits de réponse à la sécheresse 
comme la régulation stomatique, la chute des feuilles ou encore la vulnérabilité à la cavitation dans le 
pétiole. Ainsi, la vulnérabilité à la cavitation des organes critiques n’est pas un paramètre pertinent 
pour la sélection de la tolérance à la sécheresse, et les programmes de sélection sur les espèces 
étudiées ne semblent pas avoir affecté ce paramètre.  

Mots-clés: conductance stomatique, Hevea brasiliensis, hydraulique, Juglans spp, Malus domestica, 
stress hydrique, sécheresse, vulnérabilité à la cavitation. 

 

Genetic variability of drought tolerance of trees of agronomic interest: the role of vulnerability 
to xylem cavitation. 

Abstract 

In a context of climatic changes, drought stress and water management are regarded as one of the most 
important constraints for agricultural sector. Thus the selection for drought tolerance became a main 
objective for many breeding programs. Vulnerability to cavitation is considered a trait of interest for 
the selection for extreme drought stress, especially for woody species. However, the extent of its 
variability and its relation to drought tolerance are poorly documented on intraspecific level, 
particularly for cultivated species. In this study the genetic variability of vulnerability to cavitation 
was studied on three different experimental devices with three trees of agronomic interest that are 
threatened by the risk of drought: walnut, rubber and apple trees. Low or no variation in xylem 
vulnerability to cavitation was found in the studied species and between two species of walnuts despite 
differences previously reported features. These results suggested a canalization of cavitation resistance 
on critical organs (branches and stems). In apple tree, the rootstock was suspected to cause the narrow 
resistance to cavitation on the scion. On the contrary, differences on other traits in response to drought 
stress such as stomatal regulation, leaf shedding or vulnerability to cavitation on petiole were found. 
Therefore, vulnerability to cavitation of critical organs was not a relevant parameter for the selection 
of drought tolerance and breeding programs on the species studied did not appear to affect this 
parameter.  

Keywords: drought, Hevea brasiliensis, hydraulic, Juglans spp., Malus domestica, stomatal 
conductance, vulnerability to cavitation, water stress.  




