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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die mathematische Untersuchung von Systemen gekoppelter

partieller Differentialgleichungen, die von der Modellierung elektrostatisch betriebener mikroelek-

tromechanischer Systeme mit allgemeiner Permittivität herrühren. Eine Herleitung verschiedener

Modelle wird vorgestellt, die es dem Leser ermöglicht, eine Einsicht in die diversen physikalischen As-

pekte zu erlangen, die entsprechend der jeweiligen Anwendung in Betracht gezogen werden können.

In jedem Fall koppeln alle adäquaten Systeme ein entweder semi- oder quasilineares hyperbolisches

oder parabolisches Evolutionsproblem für die Auslenkung einer elastischen Membran mit einem el-

liptischen freien Randwertproblem, das das elektrostatische Potential in dem Gebiet zwischen der

elastischen Membran und einer starren Bodenplatte determiniert.

In der Folge wird das qualitative Verhalten der Lösungen zweier verschiedener gekoppelter Probleme

studiert. Genauer beinhalten beide betrachteten Systeme das elliptische freie Randwertproblem zur

Bestimmung des elektrostatischen Potentials, das lediglich entsprechend der Wahl des Permittiv-

itätsprofils variiert. Eher kleine oder große Auslenkungen der Membran beschreibend, kommt ein

entweder semi- oder quasilineares parabolisches Evolutionsproblem hinzu. Für beide Systeme wird

gezeigt, dass sie für alle beliebigen positiven Werte λ der angelegten Spannung lokal bezüglich Zeit

wohlgestellt sind. Kleine Werte λ der angelegten Spannung, die einen gewissen kritischen Wert

λ⇤ nicht überschreiten, lassen sogar global in der Zeit existierende Lösungen zu. Im semilinearen

Fall wird für ein gegen Null konvergierendes Längenverhältnis des Geräts Konvergenz der Lösungen

des vollen gekoppelten Problems gegen diejenigen des entkoppelten sogenannten Small-Aspect Ratio

Models nachgewiesen.

Des Weiteren wird ein Thema behandelt, das erst mit der Berücksichtigung nicht-konstanter Permit-

tivitätsprofile Bedeutung erlangt – die Richtung der Membranauslenkung oder, in mathematischer

Ausdrucksweise, das Vorzeichen der Lösung des Evolutionsproblems. Mit Hilfe des parabolischen

Vergleichsprinzips werden strukturelle Bedingungen an das Potential sowie das Permittivitätsprofil

spezifiziert, die Nicht-Positivität der Membranauslenkung garantieren. Für gewisse Permittivitäts-

profile wird schließlich bewiesen, dass Singularitäten nach endlicher Zeit auftreten können, sobald

die angelegte Spannung einen bestimmten kritischen Wert λ⇤ überschreitet. Die Arbeit schließt mit

einer numerischen Analyse des semilinearen Problems, die insbesondere die Betrachtung des vollen

gekoppelten Problems rechtfertigt, indem sie wesentliche qualitative Unterschiede zwischen den Lö-

sungen des weitverbreiteten Small-Aspect Ratio Models und denen des vollen gekoppelten Modells

aufzeigt.

Schlüsselwörter: Mikroelektromechanische Systeme (MEMS), Permittivität, partielle Differ-

entialgleichungen, freie Randwertprobleme, nichtlineare Evolutionsgleichungen, Singularitäten nach

endlicher Zeit
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Abstract

Of concern is the mathematical investigation of systems of coupled partial differential equations

arising from the modelling of electrostatically actuated microelectromechanical systems with gen-

eral permittivity profile. A derivation of different models is presented that enables the reader to

establish an understanding of the various physical modelling aspects that might be taken into ac-

count according to the particular application. Howsoever, all suitable systems couple an either semi-

or quasilinear hyperbolic or parabolic evolution problem for the displacement of an elastic membrane

with an elliptic moving boundary problem that determines the electrostatic potential in the region

between the elastic membrane and a rigid ground plate.

Subsequently the qualitative behaviour of the solutions of two different coupled problems is studied.

More precisely, both systems under consideration consist of the elliptic free boundary problem for

the determination of the electrostatic potential, which varies solely according to the choice of the

permittivity profile. Describing rather small or large deflections of the membrane, an either semi- or

quasilinear parabolic evolution problem is added. Both systems are shown to be well-posed locally in

time for all arbitrary positive values λ of the applied voltage. Small values λ of the applied voltage,

that do not exceed a certain critical value λ⇤, do even allow globally in time existing solutions. For

the semilinear case we establish the convergence of solutions to the full coupled problem towards

those of the decoupled so-called small-aspect ratio model, as the aspect ratio of the device tends to

zero.

Furthermore, a topic is addressed that is of note not till non-constant permittivity profiles are

taken into account – the direction of the membrane’s deflection or, in mathematical parlance, the

sign of the solution to the evolution problem. By means of the parabolic comparison principle

structural conditions on the potential and on the permittivity profile are specified which guarantee

non-positivity of the membrane’s displacement. For certain permittivity profiles we finally prove

that finite-time singularities may occur as soon as the applied voltage exceeds a certain critical

value λ⇤. We complete the work by a numerical analysis of the semilinear problem that in particular

justifies the consideration of the full coupled problem by revealing substantial qualitative differences

of the solutions to the widely-used small-aspect ratio model and the full coupled problem.

Keywords: Microelectromechanical systems (MEMS), permittivity, partial differential equations,

free boundary value problem, nonlinear evolution equations, finite-time singularities
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Résumé

La thèse concerne l’investigation mathématique des systèmes d’équations aux dérivées partielles cou-

plées, qui découlent de la modélisation des microsystèmes électromécaniques avec une permittivité

générale. Une dérivation des différents modèles est présentée, ce qui permet au lecteur d’acquérir

une compréhension des nombreux aspects physiques qui peuvent être pris en considération confor-

mément à l’application visée. Quoi qu’il en soit, tous les systèmes appropriés couplent une équation

d’évolution semi- ou quasilinéaire qui est soit hyperbolique soit parabolique pour modéliser la défor-

mation d’une membrane élastique et un problème elliptique à frontière libre. Ce dernier détermine

le potentiel électrique dans la région située entre la membrane élastique et une plaque à la masse.

Ci-après le comportement qualitatif des solutions de deux différents problèmes couplés est étudié.

Plus précisément, les deux systèmes considérés se composent d’un problème elliptique à frontière

libre pour la détermination du potentiel électrique, qui varie exclusivement en fonction du choix du

profil de permittivité. Un problème d’évolution parabolique semilinéaire ou quasilinéaire est ajouté,

décrivant respectivement des petites ou des grandes déformations de la membrane.

Il est montré que les deux systèmes sont localement bien posés dans le temps pour n’importe quelle

valeur λ > 0 de la tension électrique appliquée. Pour de petites valeurs λ de la tension électrique

appliquée, n’excédant pas une certaine valeur critique λ⇤, permettent même une solution unique

qui existe globalement et pas que localement. Pour le cas semilinéaire la convergence des solutions

du problème couplé vers celles du modèle élancé (small-aspect ratio model) est établie, lorsque le

rapport hauteur/largeur tend vers zéro.

De plus, l’utilisation de profils de permittivité non-constants rend non-triviale l’étude du signe de la

solution du problème d’évolution ou en termes mécaniques l’étude de la direction de la déformation

de la membrane. En employant le principe du maximum parabolique des conditions structurelles au

potentiel et au profil de permittivité sont spécifiées pour garantir la non-positivité de la déformation

de la membrane. Enfin, la formation de singularités en temps fini pour certains profils de permit-

tivité du moment que la tension électrique excède une certaine valeur critique λ⇤ est prouvée. Le

travail est terminé par une analyse numérique du problème semilinéaire, qui en particulier justifie la

considération du problème entier couplé en démontrant des différences qualitatives entre les solutions

du small-aspect ratio model communément utilisé et celles du problème couplé.

Mots clés: Microsystèmes électromécaniques (MEMS), permittivité, équations aux dérivées

partielles, problème à frontière libre, équation d’évolution nonlinéaire, singularités en temps fini
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1 | Introduction

Moving boundary problems or synonymously free boundary value problems frequently arise in a

natural way when describing complex physical or chemical phenomena in nature and technique. They

denote systems of partial differential equations which are in particular characterised by the fact that

they are to be solved for a domain whose boundary is not known a priori and thus itself constitutes

a part of the solution. Due to this coupling between the components of the full solution moving

boundary problems are inherently nonlinear, making their analytical and numerical investigation

evidently rather involved. On the other hand their intricate and nonlinear nature provides a more

accurate description of complex processes than linear or nonlinear models on fixed domains. As

a consequence in the last decades the investigation of moving boundary problems has received

remarkable attention in applied mathematics. In this spirit, the present thesis is devoted to an

analysis of free boundary value problems describing the dynamic behaviour of microelectromechanical

systems.

Microelectromechanical systems (MEMS) constitute a technology of miniaturised devices whose

dimensions range between some micrometres and one millimetre. Being typically made up of a

sensor, a transistor as well as a mechanical actuator, MEMS sense the environment and act on

it by combining microelectronics with non-electronic activities from micromechanics, fluidics or

optics. Whereas the component of microsensors is already well developed, the understanding and

construction of microactuators still pose a challenge and thus also deserve study in different fields

of science [9]. The underlying technology is based on the approach of generating mechanical motion

by for instance electrostatic, thermal, hydraulic, magnetic or other forces which act by reason of a

perception of the environment by a sensor.

Due to their low manufacturing costs, their low demand for energy, their high reliability and in

particular their tremendous versatility, MEMS have found their way into numerous branches of

industry and science. The automotive industry, telecommunications or the biomedical industry

shall be instanced here in order to provide an insight into the enormous range of applications. As

inertial sensors MEMS are used for the activation of airbags [6] and for the protection of hard disks

or for mechanical image stabilisation in optic devices, to mention only few examples. Furthermore,

1



Chapter 1. Introduction 2

MEMS are applied as micro pumps [11] and micro valves [20] in micro fluidics.

As mentioned above there are various different microactuation principles, each having advantages

for particular requirements. For instance micromagentic actuation exhibits remarkable advantages

such as high forces, large deflections, low input impedances and thus, the involvement of only low

voltages [9], once it is integrated in MEMS devices. However, since key components for micromag-

netic actuation are three-dimensional, other microactuation principles are still favoured in general,

but nonetheless, micromagnetic actuators are for instance beneficial in the context of MEMS devices

with high aspect ratio. In the framework of this thesis MEMS devices are studied which perform

mechanical motion by electrostatic actuation. Being initially in a configuration in which the me-

chanical components are separate, a voltage is applied across the device such that the components

are at different electric potentials/electric charges. This imbalance of potentials/charges acting on

each other induces attractive or repulsive forces which are described by Coulomb’s law.

More precisely, a certain type of an idealised electrostatically actuated MEMS device is investigated

which consists of a rigid ground plate and an elastic membrane that is suspended above the former

and held fixed at its boundary. Moreover, the deformable elastic membrane is assumed to be of

infinitely small thickness and features a certain dielectric permittivity profile. In order to cause a

mechanical deflection of the latter, a voltage is applied across the device such that the ground plate

and the membrane are at different electric potentials which induces a Coulomb force and thus gives

rise to a deformation of the membrane. A sketch of such a MEMS device is offered in Figure 1.1.

A necessity in order to understand the mode of operation of the device is to gain knowledge about

the membrane’s deformation on the one hand and about the electrostatic potential in the region

occupied by the ground plate and the membrane on the other hand.

In fact, in the mathematical modelling of the dynamics of electrostatically actuated MEMS devices a

strong coupling between those two quantities becomes apparent. More precisely, an elliptic problem

is to be solved for the electrostatic potential in a domain whose boundary evolves with time as

the membrane deflects with time. To describe the dynamics of the free boundary a further partial

differential equation is to be specified.

In order to avoid the handling of the resultant difficulties, researchers have heretofore exploited the

fact that in a multitude of applications the aspect ratio of the device, i.e. the ratio of height and

length of the device, is rather small. More precisely, the assumption of a negligibly small aspect

ratio allows an explicit expression for the electrostatic potential, whereby the coupled problem is

reduced to a single evolution equation whose right-hand side features a singularity in the moment

the membrane touches down on the ground plate. However, it is worthwhile to mention that the

assumption of a vanishing aspect ratio is not reasonable in all applications [1]. As examples for

MEMS devices high aspect ratio turbines and micromotors may be mentioned.



3

Figure 1.1: Sketch of the investigated idealised MEMS device.

Hitherto, various theoretical contributions in engineering science, physics and mathematics have

been dedicated to the investigation of MEMS devices in order to better understand their behaviour

and thus to advance the corresponding technology. Whereas a multitude of them treats the case of a

vanishing aspect ratio (see for instance [18, 20, 21, 25, 26, 27, 29, 33, 39]), pioneering results on the

coupled problem go back to Escher, Laurençot and Walker. In their recent contributions the authors

take different physical modelling aspects into account but always assume the permittivity profile f

to be constant. The work [32] deals with stationary solutions in the semilinear regime, whereas

in [14] the semilinear evolution problem is investigated. Moreover, the reader shall be referred to

the works [13, 15, 34, 35], each of them again assuming the permittivity to be constant but taking

other different physical aspects, such as large deflections or bending effects, into account. Further

investigations of qualitative properties of MEMS systems may be found in [36, 37, 38]. However,

none of the above mentioned works is concerned with a coupled system, including the additional

feature of a general permittivity profile f = f(x,u(t,x)). To the best of the author’s knowledge,

this thesis together with the related papers [41, 40, 17, 16, 12] constitute the first contribution in

that direction.

It is the intention of this thesis to analyse different coupled systems of partial differential equations

characterising the dynamic behaviour of MEMS devices constructed as described above. In order

to specify the different components of the analysis, the introduction is closed by outlining the

organisation of this thesis.

The purpose of Chapter 2 is to provide an overview of the various mathematical models describing

the dynamic behaviour of electrostatically actuated MEMS devices according to their appearance
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in applications. We end up with two coupled systems consisting of an either semi- or quasilinear

parabolic evolution problem for the membrane’s displacement and an elliptic moving boundary

problem determining the electrostatic potential in the region between the deformable membrane

and the rigid ground plate.

Chapters 3–5 are then devoted to a qualitative analysis of these two coupled problems. More

precisely, in Chapter 3 both problems are shown to be well-posed locally in time for all arbitrarily

large values λ of the applied voltage. Moreover, it is proved that the solutions exists even globally

in time, provided that the applied voltage does not exceed a critical value λ⇤; see also [40] for the

results on the semilinear case.

Chapter 4 is restricted to the case of a semilinear evolution problem describing the membrane’s

displacement. The convergence of solutions to the coupled problem towards those of the widely-

used reduced small-aspect ratio model is established, as the aspect ratio tends to zero [40].

The direction of the membrane’s deflection as well as finite-time singularities are the subjects teated

in Chapter 5, c.f. also the works [41, 17, 16]. Structural conditions are specified for different classes of

permittivity profiles which ensure that the membrane deflects towards the ground plate. In addition,

these non-positive solutions are shown to cease to exist after a finite time of existence under certain

additional assumptions.

The thesis is completed by a numerical investigation of the semilinear coupled problem. Finite

elements and the Crank–Nicolson method are introduced as they are used to serve the purpose of

numerically computing approximate solutions to the full coupled problem. The results reveal in

particular considerable differences in the qualitative behaviour of solutions to the semilinear coupled

problem and its decoupled counterpart [12].



2 | The Modelling

In this chapter the equations governing the dynamic behaviour of an idealised electrostatically

actuated MEMS device with general permittivity profile are derived.

The investigated type of MEMS devices consists of two quadrilateral components – a flat rigid

ground plate and an elastic membrane that is suspended above the former. The elastic membrane is

coated with a thin conducting film on its upper surface and it features in addition a certain dielectric

permittivity profile.

In our investigations all ingredients of the system are assumed to be homogeneous in one lateral

direction so that we may in fact restrict the analysis to a cross section of the device. Denoting by x̃

and z̃ the horizontal and vertical direction, respectively, we consider the ground plate to be located

at height z̃ = −h and the undeflected membrane at z̃ = 0, both having the length 2l. Moreover,

the length 2l of the device is assumed to be large compared to the gap size h of the undeformed

configuration, which means that we are in the regime of a small aspect ratio ε = h
l ⌧ 1.

x = −1

z = −1

x = 1

z = 0

 = (1 + z)f = (1 + z)f

 = 0

 = f

u(t,x)

Ω (u)

Figure 2.1: Cross section of the investigated idealised MEMS device.

An application of a voltage V to the conducting film on the membrane, such that the grounded

plate and the membrane are at different electric potentials, induces a deformation of the elastic

membrane assumed to be only in z̃-direction. We denote the deformation at time t̃ ≥ 0 and position

x̃ 2 L := (−l, l) by ũ = ũ(t̃, x̃). The second quantity of general interest, the electrostatic potential

5
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at time t̃ ≥ 0 and a certain position (x̃, z̃) in the region between the ground plate and the elastic

membrane is denoted by ψ̃ = ψ̃(t̃, x̃, z̃). It is worthwhile to mention again that the shape of this

region changes with time as the membrane deflects with time. Finally we denote the permittivity

profile of the membrane by f = f
(

x̃, ũ(t̃, x̃)
)

.

2.1 | A Nonlinear Elasticity Model

For the nonce the time variable t̃ appears as a parameter, whence it is temporarily suppressed in

the notation.

Governing Equations for the Electrostatic Potential. Pursuant to Gauß’

law of electrodynamics the electrostatic potential is harmonic in the region

Ω̃(ũ) := {(x̃, z̃);−l < x̃ < l,−h < z̃ < ũ(x̃)}

between the rigid ground plate and the membrane, that is

ψ̃x̃x̃ + ψ̃z̃z̃ = 0, (x̃, z̃) 2 Ω̃(ũ).

Furthermore, the fixed plate at z̃ = −h is grounded, i.e. at zero potential, whereas the membrane

is at potential V f
(

x̃, ũ(x̃)
)

. These boundary conditions are expressed by the equations

ψ̃(x̃,−h) = 0, ψ̃
(

x̃, ũ(x̃)
)

= V f
(

x̃, ũ(x̃)
)

, x̃ 2 L.

Governing Equations for the Membrane’s Deformation. By means of

nonlinear elasticity theory we first derive the governing equations for the case of static plate defor-

mations under the hypotheses of Love–Kirchhoff. In particular this includes the assumption that

vectors normal to the middle surface remain normal to the middle surface after deformation. We

refer the reader for instance to [8] for a detailed view on these hypotheses. Finally we assume the

elastic plate to be of infinitely small thickness which reduces the more general model for plate de-

formations to one describing deformations of elastic membranes. If no ambiguity is to be feared we

use both expressions suitably.

The total potential energy Ep of the configuration, which is generated due to the deformation of the

elastic plate, is constituted by the pointwise sum of stretching energy Es, bending energy Eb and
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electrostatic energy Ee, i.e. it holds

Ep(ũ) = Es(ũ) + Eb(ũ) + Ee(ũ).

Denoting by τ > 0 the tension constant of the plate, the stretching energy is given by

Es(ũ) = τ

Z l

−l

✓
q

1 +
(

ũx̃(x̃)
)2 − 1

◆

dx̃. (2.1)

The integral describes the variation of the plate’s length from 2l, i.e. from the situation in which

deformation is absent.

The likewise involved bending energy is proportional to the L2-norm of the plate’s curvature. More

precisely, it is given by

Eb(ũ) =
b

2

Z l

−l

 

∂x

 

ũx̃(x̃)
p

1 + (ũx̃(x̃))2

!!2
p

1 + (ũx̃(x̃))2 dx̃,

where the coefficient b, describing the flexural rigidity of the plate, is defined as

b =
2α3Y

3(1− ν)2
.

The parameters in this ratio denote the thickness α of the plate, the Young modulus Y and the

Poisson ratio ν.

Finally, the electrostatic energy is given by

Ee(ũ) = −ε0
2

Z l

−l

Z ũ(x̃)

−h

⇣

rψ̃(x̃, z̃)
⌘2

dz̃ dx̃ = −ε0
2

Z

Ω̃(ũ)

⇣

rψ̃(x̃, z̃)
⌘2

d(x̃, z̃),

with ε0 being the permittivity of free space. The variation of Ee corresponds to the work of the

force on the elastic plate that is induced by the electric field with potential ψ̃(x̃, z̃).

Consequently, the total potential energy of the system is given by

Ep(ũ) = τ

Z l

−l

⇣

p

1 + (ũx̃(x̃))2 − 1
⌘

dx̃ +
b

2

Z l

−l

 

∂x̃

 

ũx̃(x̃)
p

1 + (ũx̃(x̃))2

!!2
p

1 + (ũx̃(x̃))2dx̃

− ε0
2

Z

Ω̃(ũ)

⇣

rψ̃(x̃, z̃)
⌘2

d(x̃, z̃).
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Derivation of the Euler-Lagrange Equation. Due to Hamilton’s principle of

least action the partial differential equation describing the dynamics of the plate’s deformation is

the Euler–Lagrange equation which is obtained by minimising a suitable energy functional.

The time dependent part of the problem is considered in a second step, whereas in a first step

we derive the Euler–Lagrange equation in terms of static deflections. To this end we define the

Lagrangian

L : L⇥W 4
2 (L) −! R

by

L(x̃, ũ) = − τ
⇣

p

1 + (ũx̃)2 − 1
⌘

− b

2
∂x̃

 

ũx̃
p

1 + (ũx̃)2

!2
p

1 + (ũx̃)2

+
ε0
2

Z ũ

−h

⇣

ψ̃x̃(x̃, z̃)
⌘2

+
⇣

ψ̃z̃(x̃, z̃)
⌘2

dz̃

=− τ
⇣

p

1 + (ũx̃)2 − 1
⌘

− b

2

ũx̃x̃

(1 + (ũx̃)2)5/2
+

ε0
2

Z ũ

−h

⇣

ψ̃x̃(x̃, z̃)
⌘2

+
⇣

ψ̃z̃(x̃, z̃)
⌘2

dz̃

and minimise the according energy functional

Z l

−l
L(x̃, ũ) dx̃ (2.2)

by means of calculus of variations. The problem of minimising an integral over an infinite dimen-

sional function space is then treated as the problem of minimising a function of a single real-valued

variable.1

In order to accomplish the latter problem assume that ũ = ũ(x̃) is the current minimiser of (2.2),

satisfying

ũ 2 W 4
2,D(L), ũ(x̃) > −h, x̃ 2 [−l, l]. (2.3)

Then, given σ 2 R and a function v 2 C1
c (L), we introduce the notation

w(σ)(x̃) := ũ(x̃) + σv(x̃), x̃ 2 [−l, l],

and derive the necessary condition for ũ being a minimiser of (2.2) by computing the first variation

δEp(ũ; v) =
d

dσ
Ep(ũ+ σv)|σ=0 = δ

⇣

Es(ũ; v) + Eb(ũ; v) + Ee(ũ; v)
⌘

|σ=0 (2.4)

1In physics and engineering it is common to consider regularity assumptions as physically given and thus to presume
the validity of the Euler–Lagrange equations. Mathematically speaking we therefore just verify the necessary condition
for the existence of an extremum of the functional.
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and finally checking the condition δEp(ũ; v) = 0. For the stretching term one obtains

d

dσ
Es(ũ+ σv) =

d

dσ

✓

τ

Z l

−l

p

1 + (wx̃)2 − 1 dx̃

◆

= τ

Z l

−l

ũx̃ vx̃ + σ(vx̃)
2

p

1 + (ũx̃)2 + 2σũx̃ vx̃ + σ2(vx̃)2
dx̃

and therefore, using the fact that v is compactly supported in the interval L,

δEs(ũ; v) = τ

Z l

−l

ũx̃vx̃
p

1 + (ũx̃)2
= −τ

Z l

−l
v∂x̃

 

ũx̃
p

1 + (ũx̃)2

!

dx̃. (2.5)

For the bending term, note that

∂x̃

 

wx̃
p

1 + (wx̃)2

!

=
wx̃x̃

(1 + (w̃x̃)2)3/2
,

whence we may write

d

dσ
Eb(ũ+ σv) =

d

dσ

0

@

b

2

Z l

−l

 

∂x̃

 

wx̃
p

1 + (wx̃)2

!!2
p

1 + (wx̃)2 dx̃

1

A

=
d

dσ

✓

b

2

Z l

−l

(wx̃x̃)
2

(1 + (wx̃)2)5/2
dx̃

◆

= b

Z l

−l

(ũx̃x̃ + σvx̃x̃)vx̃x̃

(1 + (ũx̃)2 + 2σũx̃vx̃ + σ2(vx̃)2)5/2
dx̃− 5b

2

Z l

−l

(

ũx̃vx̃ + σ(vx̃)
2
)(

ũx̃x̃ + σ(vx̃x̃)
)2

(

1 + ũ2x̃ + 2σũx̃vx̃ + σ2(vx̃)2
)7/2

dx̃

and again using that v(±l) = 0 we obtain

δEb(ũ; v) = b

Z l

−l

ũx̃x̃

(1 + (ũx̃)2)5/2
vx̃x̃ dx̃− 5b

2

Z l

−l

ũx̃(ũx̃x̃)
2

(1 + (ũx̃)2)7/2
vx̃ dx̃

= b

Z l

−l
∂2
x̃

✓

ũx̃x̃

(1 + (ũx̃)2)5/2

◆

v dx̃+
5b

2

Z l

−l
∂x̃

✓

ũx̃(ũx̃x̃)
2

(1 + (ũx̃)2)7/2

◆

v dx̃.

(2.6)

It finally remains to take the electrostatic energy into account and to calculate δEe(ũ+ σv). In the

sequel this is done by an application of the transport theorem, c.f. [4, XII, Theorem 2.11] or [28,

Theorem 5.2.2] for instance. To this end, given σ 2 R, v 2 C1
c (L) and w(σ)(x̃) = ũ(x̃) + σv(x̃)

as above, we pick σ0 > 0 such that the choice of ũ as in (2.3) implies that w(σ)(x̃) > −h for all

x̃ 2 [−l, l] and all σ 2 [−σ0,σ0] and such that we may introduce the well-defined and connected

open set

Ω̃σ := {(x̃, z̃) 2 L⇥ (−h,1);−h < z̃ < w(σ)(x̃)} , σ 2 [−σ0,σ0].

In addition, there exists a representation

Ω̃σ = φ
(

σ; Ω̃(ũ)
)

,
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of Ω̃σ via the (global) diffeomorphism

φ(σ; x̃, z̃) :=

✓

x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

, (x̃, z̃) 2 Ω̃(ũ) = Ω̃0.

In order to be able to handle the electrostatic energy with a variational approach it is necessary to

investigate the problem for ψ̃ corresponding to the variation w of the minimiser ũ in direction v.

For this purpose denote by ψ̃(σ; ũ, v) 2 W 2
2 (Ω̃σ) the solution to

ψ̃x̃x̃(σ; ũ, v) + ψ̃z̃z̃(σ; ũ, v) = 0, (x̃, z̃) 2 Ω̃σ, (2.7)

ψ̃(σ; ũ, v) =
h+ z̃

h+ w(σ)(x̃)
V f

(

x̃,w(σ)(x̃)
)

, (x̃, z̃) 2 ∂Ω̃σ. (2.8)

Moreover, we introduce the velocity V of the path {ψ̃(σ; ũ, v);σ 2 (−σ0,σ0)}, defined as2

V :=
d

dσ
ψ(σ; ũ, v)|σ=0, (x̃, z̃) 2 Ω̃(ũ). (2.9)

and show that also V satisfies (2.7)–(2.8) in the limit σ = 0. To this end, observe that (2.7) is

equivalent to3

ψ̃x̃x̃

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

+ ψ̃z̃z̃

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

= 0, (x̃, z̃) 2 Ω̃(ũ),

whence a differentiation of this equation with respect to σ yields

ψ̃x̃x̃σ

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

+ ψ̃x̃x̃z̃

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

v(x̃)
h+ z̃

h+ ũ(x̃)

+ ψ̃z̃z̃σ

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

+ ψ̃z̃z̃z̃

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

v(x̃)
h+ z̃

h+ ũ(x̃)
= 0,

(2.10)

for all (x̃, z̃) 2 Ω̃(ũ). Then, letting σ ! 0 in (2.10), we first find that

Vx̃x̃(x̃, z̃) + Vz̃z̃(x̃, z̃) + v(x̃)
h+ z̃

h+ ũ(x̃)

⇣

ψ̃x̃x̃z̃(x̃, z̃) + ψ̃z̃z̃z̃(x̃, z̃)
⌘

= 0, (x̃, z̃) 2 Ω̃(ũ),

whence by (2.7)

Vx̃x̃(x̃, z̃) + Vz̃z̃(x̃, z̃) = 0, (x̃, z̃) 2 Ω̃(ũ).

2Note that in fact V is a function of the variables x̃ and z̃ in the sense that

V(x̃, z̃) = d

dσ
 (σ; ũ, v)|σ=0(x̃, z̃).

3In fact  ̃
(

σ; ũ, v
)

is a function of the variables x̃ and z̃. For the sake of simplicity we suppress the dependence of

 ̃ of ũ and v and use the notation  ̃
(

σ; x̃, z̃
)

.
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In addition, one can infer from the boundary condition (2.8) that

ψ̃

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

=
h+ z̃

h+ ũ(x̃)
V f

(

x̃, ũ(x̃) + σv(x̃)
)

, (x̃, z̃) 2 ∂Ω̃(ũ),

and differentiating this identity with respect to σ yields

ψ̃σ

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

+ ψ̃z̃

✓

σ; x̃, z̃ + σv(x̃)
h+ z̃

h+ ũ(x̃)

◆

v(x̃)
h+ z̃

h+ ũ(x̃)

=
h+ z̃

h+ ũ(x̃)
V fũ

(

x̃, ũ(x̃) + σv(x̃)
)

v(x̃)

for (x̃, z̃) 2 ∂Ω̃(ũ). Finally, as σ ! 0 we find that

V(x̃, z̃) = v(x̃)
h+ z̃

h+ ũ(x̃)

⇣

V fũ
(

x̃, ũ(x̃)
)

− ψ̃z̃(x̃, z̃)
⌘

, (x̃, z̃) 2 ∂Ω̃(ũ). (2.11)

Since v 2 C1
c (L) and h+ z̃ = 0 for z̃ = −h, one may in particular extract from equation (2.11) the

identities

V(±l, z̃) = 0, z̃ 2 (−h, 0),

V(x̃,−h) = 0, x̃ 2 L, (2.12)

V(x̃, ũ(x̃)) = v(x̃)
⇣

V fũ
(

x̃, ũ(x̃)
)

− ψ̃z̃

(

x̃, ũ(x̃)
)

⌘

, x̃ 2 L.

Having this preliminary knowledge at hand, we are finally prepared to consider the energy

Ee(ũ+ σv) = −ε0
2

Z

Ω̃σ

(

ψ̃x̃(σ; x̃, z̃)
)2

+
(

ψ̃z̃(σ; x̃, z̃)
)2

d(x̃, z̃)

or, more precisely, its derivative with respect to σ at σ = 0. Firstly, invoking [28, Thm. 5.2.2] yields

the identity

δEe(ũ; v) = − ε0

Z

Ω̃(ũ)
ψ̃x̃(x̃, z̃)Vx̃(x̃, z̃) + ψ̃z̃(x̃, z̃)Vz̃(x̃, z̃) d(x̃, z̃)

− ε0

Z

Ω̃(ũ)
div

 

(

ψ̃x̃(x̃, z̃)
)2

+
(

ψ̃z̃(x̃, z̃)
)2

2
φσ(0, x̃, z̃)

!

d(x̃, z̃)

(2.13)

and using (2.7) one can readily see that

div
⇣

V
⇣

ψ̃x̃, ψ̃z̃

⌘⌘

= Vx̃ψ̃x̃ + Vψ̃x̃x̃ + Vz̃ψ̃z̃ + Vψ̃z̃z̃

= Vx̃ψ̃x̃ + Vz̃ψ̃z̃ + V
⇣

ψ̃x̃x̃ + ψ̃z̃z̃

⌘

= Vx̃ψ̃x̃ + Vz̃ψ̃z̃

(2.14)
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holds true for all (x̃, z̃) 2 Ω̃(ũ). Then, fusing the findings (2.13) and (2.14) leads to the equation

δEe(ũ; v) = − ε0

Z

Ω̃(ũ)
div

⇣

V(x̃, z̃)
⇣

ψ̃x̃(x̃, z̃), ψ̃z̃(x̃, z̃)
⌘⌘

d(x̃, z̃)

− ε0

Z

Ω̃(ũ)
div

 

(

ψ̃x̃(x̃, z̃)
)2

+
(

ψ̃z̃(x̃, z̃)
)2

2
φσ(0, x̃, z̃)

!

d(x̃, z̃).

Allowing for the identity

φσ(0; x̃, z̃) =

✓

0, v(x̃)
h+ z̃

h+ ũ(x̃)

◆

, (x̃, z̃) 2 Ω̃(ũ),

an application of the Green–Riemann integration theorem reveals

δEe(ũ; v) = − ε0

Z

∂Ω̃(ũ)
V(x̃, z̃)ψ̃x̃(x̃, z̃) dz̃ + ε0

Z

∂Ω̃(ũ)
V(x̃, z̃)ψ̃z̃(x̃, z̃) dz̃

+
ε0
2

Z

∂Ω̃(ũ)
v(x̃)

h+ z̃

h+ ũ(x̃)

⇣

(

ψ̃x̃(x̃, z̃)
)2

+
(

ψ̃z̃(x̃, z̃)
)2
⌘

dx̃.

Then, exploiting the relations v(±l) = 0, h+ z̃ = 0 for z̃ = −h, and the boundary conditions (2.12)

for V , the above integrals vanish at the lateral boundaries and on the ground plate at z̃ = −h,

whereby we obtain

δEe(ũ; v) = ε0V

Z l

−l
v(x̃)fũ

(

x̃, ũ(x̃)
)

⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

ũx̃(x̃)− ψ̃z̃

(

x̃, ũ(x̃)
)

⌘

dx̃

− ε0

Z l

−l
v(x̃)

⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

ψ̃z̃

(

x̃, ũ(x̃)
)

ũx̃(x̃)−
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

dx̃

− ε0
2

Z l

−l
v(x̃)

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

dx̃.

From the boundary condition ψ̃
(

x̃, ũ(x̃)
)

= V f
(

x̃, ũ(x̃)
)

, x̃ 2 L, we may deduce the equality

ψ̃z̃

(

x̃, ũ(x̃)
)

ũx̃(x̃) = V
⇣

fx̃
(

x̃, ũ(x̃)
)

+ fũ
(

x̃, ũ(x̃)
)

ũx̃(x̃)
⌘

− ψ̃x̃

(

x̃, ũ(x̃)
)

,

and it follows that

δEe(ũ; v) = ε0V

Z l

−l
v(x̃)fũ

(

x̃, ũ(x̃)
)

⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

ũx̃(x̃)− ψ̃z̃

(

x̃, ũ(x̃)
)

⌘

dx̃

− ε0V

Z l

−l
v(x̃)ψ̃x̃

(

x̃, ũ(x̃)
)

⇣

fx̃
(

x̃, ũ(x̃)
)

+ fũ
(

x̃, ũ(x̃)
)

ũx̃(x̃)
⌘

dx̃

+
ε0
2

Z l

−l
v(x̃)

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃,u(x̃))
)2
⌘

dx̃.
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This equation may finally be rewritten as

δEe(ũ; v) =
ε0
2

Z l

−l
v(x̃)

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

dx̃

− ε0V

Z l

−l
v(x̃)

⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

fx̃
(

x̃, ũ(x̃)
)

+ ψ̃z̃

(

x̃, ũ(x̃)
)

fũ
(

x̃, ũ(x̃)
)

⌘

dx̃.

(2.15)

Recalling (2.4) as well as the equality

δEp(ũ; v) = δ
⇣

Es(ũ; v) + Eb(ũ; v) + Ee(ũ; v)
⌘

= 0

as a necessary condition for ũ being a minimiser of the energy functional (2.2), we may see by (2.5),

(2.6) and (2.15) that this is satisfied for all suitable functions v, if and only if ũ complies with the

Euler–Lagrange equation

0 = τ∂x̃

 

ũx̃
p

1 + (ũx̃)2

!

− b∂2
x̃

✓

ũx̃x̃

(1 + (ũx̃)2)5/2

◆

− 5b

2
∂x̃

✓

ũx̃(ũx̃x̃)
2

(1 + (ũx̃)2)7/2

◆

− ε0
2

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

+ ε0V
⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

fx̃
(

x̃, ũ(x̃)
)

+ ψ̃z̃

(

x̃, ũ(x̃)
)

fũ
(

x̃, ũ(x̃)
)

⌘

.

Heretofore, static deflections of the elastic plate are discussed and it remains to take the dynamics

into account. This means that from now on the time variable t̃ explicitly returns to the notation.

More precisely, denoting by ρ the mass density per unit volume of the plate and recalling that α

denotes its thickness, due to Newton’s Second Law the sum of all forces is equal to ραũt̃t̃(t̃, x̃) and

we get

ραũt̃t̃(t̃, x̃)− τ∂x̃

 

ũx̃
p

1 + (ũx̃)2

!

+ b∂2
x̃

✓

ũx̃x̃

(1 + (ũx̃)2)5/2

◆

+
5b

2
∂x̃

✓

ũx̃(ũx̃x̃)
2

(1 + (ũx̃)2)7/2

◆

= −ε0
2

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

+ ε0V
⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

fx̃
(

x̃, ũ(x̃)
)

+ ψ̃z̃

(

x̃, ũ(x̃)
)

fũ
(

x̃, ũ(x̃)
)

⌘

.

Lastly, the superposition of the elastic and electrostatic forces is combined with a damping force

−aũt̃ which is linearly proportional to the velocity ũt̃ with damping constant a. That is, we obtain

ραũt̃t̃(t̃, x̃) + aũt̃ − τ∂x̃

 

ũx̃
p

1 + (ũx̃)2

!

+ b∂2
x̃

✓

ũx̃x̃

(1 + (ũx̃)2)5/2

◆

+
5b

2
∂x̃

✓

ũx̃(ũx̃x̃)
2

(1 + (ũx̃)2)7/2

◆

= −ε0
2

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

+ ε0V
⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

fx̃
(

x̃, ũ(x̃)
)

+ ψ̃z̃

(

x̃, ũ(x̃)
)

fũ
(

x̃, ũ(x̃)
)

⌘

.

Fusing the above considerations we end up with the following coupled system of partial differential

equations. The elliptic free boundary value problem for the electrostatic potential in the region

determined by the grounded plate at z̃ = −h and the membrane at z̃ = ũ(t̃, x̃), both of length 2l,
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reads

ψ̃x̃x̃ + ψ̃z̃z̃ = 0, t̃ > 0, (x̃, z̃) 2 Ω̃(ũ), (2.16)

ψ̃(t̃, x̃, z̃) =
h+ z̃

h+ ũ(t̃, x̃)
f
(

x̃, ũ(t̃, x̃)
)

, t̃ > 0, (x̃, z̃) 2 ∂Ω̃(ũ), (2.17)

where the conditions ψ̃ = 0 and ψ̃ = V f
(

x̃, ũ(t̃, x̃)
)

on the ground plate and the membrane, respec-

tively, are continuously extended to the lateral boundaries (±l, z̃), z̃ 2 (−h, 0). The dynamics of the

deflection ũ is thus described by the fourth-order equation

ραũt̃t̃ + aũt̃ + Ã1(ũ) = − ε0
2

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

+ ε0V
⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

fx̃
(

x̃, ũ(x̃)
)

+ ψ̃z̃

(

x̃, ũ(x̃)
)

fũ
(

x̃, ũ(x̃)
)

⌘

,
(2.18)

where Ã1(ũ) is the quasilinear fourth-order differential operator defined by

Ã1(ũ) := −τ∂x̃

 

ũx̃
p

1 + (ũx̃)2

!

+ b∂2
x̃

✓

ũx̃x̃

(1 + (ũx̃)2)5/2

◆

+
5b

2
∂x̃

✓

ũx̃(ũx̃x̃)
2

(1 + (ũx̃)2)7/2

◆

.

Furthermore, we assume the membrane to be clamped at its boundary (±l, 0) and to have a certain

initial deflection ũ⇤(x̃) at time t̃ = 0. This is expressed by the clamped boundary conditions

ũ(t̃,±l) = ũx̃(t̃,±l) = 0, t̃ > 0,

and the initial conditions

ũ(0, x̃) = ũ⇤(x̃), ũt̃(0, x̃) = ũ⇤⇤(x̃), x̃ 2 L,

respectively.

2.1.1 Remark

We briefly discuss two variants of the above modelling by distinguishing energy conserving and

energy dissipating systems. Whereas the first occurs when damping effects are neglected, the latter

corresponds to the case of no inertial effects.

(1) We assume to be in an energy conserving Hamiltonian regime in which damping is not taken

into account. The total energy of the system is defined as the pointwise difference of kinetic

energy Ek and potential energy Ep. The kinetic energy at any instant in time is described by

the functional

Ek(ũ) =
ρα

2

Z l

−l

(

ũt̃
)2
dx̃.

Immediately taking dynamics into account, given 0 < t1 < t2 < 1, Hamilton’s principle means
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to minimise the action of the system, i.e. the double integral

Z t2

t1

Z l

−l
L(t̃, x̃, ũ) dx̃ dt̃,

where the Lagrangian L is now given by4 L : (t1, t2)⇥ L⇥W 2,4
2

(

(t1, t2)⇥ L
)

! R,

L(t̃, x̃, ũ) = ρα

2
ũ2
t̃
− τ

⇣

p

1 + (ũx̃)2 − 1
⌘

− b

2

ũx̃x̃

(1 + (ũx̃)2)5/2

+
ε0
2

Z ũ

−h

⇣

ψ̃x̃(x̃, z̃)
⌘2

+
⇣

ψ̃z̃(x̃, z̃)
⌘2

dz̃,

and the corresponding Euler–Lagrange equation, obtained by a straightforward adaption of

the above calculations, reads

ραũt̃t̃ + Ã1(ũ) = − ε0
2

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

+ ε0V
⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

fx̃
(

x̃, ũ(x̃)
)

+ ψ̃z̃

(

x̃, ũ(x̃)
)

fũ
(

x̃, ũ(x̃)
)

⌘

.

(2) Being in the energy dissipating regime where inertial effects are neglected, we shall see in the

following that the corresponding evolution equation may formally be perceived as a gradient

flow system.

(i) Let H be a Hilbert space over R with inner product (·, ·)H and let E 2 C(H,R) denote

a continuous functional on H. Given v 2 H, assume that

δE(v;w) :=
d

dσ
E(v + σw)|σ=0

exists in H for all w 2 H. Under this hypothesis assume in addition that there is a

z(v) 2 H such that
(

z(v),w
)

H
= δE(v;w), w 2 H.

Note that z(v) is uniquely determined if it exists. We call z(v) the generalised gradient

of E at v and use the notation

rE(v) := z(v).

If E 2 C1(H,R) then rE(v) exists for all v 2 H with

DE(v)w =
(

rE(v),w
)

H
, w 2 H.

(ii) Given T > 0, consider v 2 C1
(

(0,T ),H
)

and assume that rE
(

v(t)
)

exists in H for all

4Note that W 2,4
2

(

(t1, t2)⇥ L
)

denotes the usual anisotropic Sobolev space with respect to t̃ and x̃.
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t 2 (0,T ). If v complies with the equation

v0(t) = −rE
(

v(t)
)

, t 2 (0,T ), (2.19)

then we say that v is a solution to the gradient flow system associated to E on (0,T ).

(iii) Suppose that E is contained in C1(H,R) and v 2 C1
(

(0,T ),H
)

is a solution to (2.19)

on (0,T ). Then E
(

v(t)
)

is decreasing on (0,T ). Indeed E
(

v(·)
)

is differentiable on (0,T )

and the chain rule yields

d

dt
E
(

v(t)
)

=
(

rE(v(t)), v0(t)
)

H
= −krE

(

v(t)
)

k2H , t 2 (0,T ). (2.20)

Interpreting E as an energy the last equation reveals the energy dissipation of the system.

Moreover, if the path v(t) avoids any critical point of E the dissipation is strict.

(iv) Taking H = L2(L) and E(ũ) = Ep(ũ) with ũ 2 W 4
2,D(L) we deduce from (2.5), (2.6) and

(2.15) that formally

rEp(ũ) = −A1(ũ)−
ε0
2

⇣

(

ψ̃x̃(x̃, ũ(x̃))
)2

+
(

ψ̃z̃(x̃, ũ(x̃))
)2
⌘

+ ε0V
⇣

ψ̃x̃

(

x̃, ũ(x̃)
)

fx̃
(

x̃, ũ(x̃)
)

+ ψ̃z̃

(

x̃, ũ(x̃)
)

fũ
(

x̃, ũ(x̃)
)

⌘

.

This means that if ρ = 0 and a = 1 equation (2.18) may be perceived as the gradient flow

system associated to Ep in L2(L).

Scaling – Introduction of Dimensionless Variables. Now dimensionless variables are

introduced and the above terms and equations are rewritten in dimensionless form. To that effect,

the electrostatic potential is scaled with the applied voltage,

ψ =
ψ̃

V
,

the time is scaled with a damping timescale of the system,

t =
τ

al2
t̃,

and the variables x̃ and z̃ as well as ũ are scaled with the length l and the gap size h of the undeflected

configuration, respectively,

x =
x̃

l
, z =

z̃

h
, u =

ũ

h
. (2.21)

Furthermore, the aspect ratio of the device is denoted by ε = h/l. The rescaled dimensionless
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problem for the electrostatic potential thus reads

ε2ψxx + ψzz = 0, t > 0, (x, z) 2 Ω(u(t)),

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(

x,u(t,x)
)

, t > 0, (x, z) 2 ∂Ω(u(t)),

where the region Ω(u(t)) is now given by

Ω(u(t)) = {(x, z) 2 (−1, 1)⇥ (−1,1);−1 < z < u(t,x)} .

In dimensionless form the evolution of the membrane’s deflection is specified by the equation

ρα
hτ2

a2l4
utt +

hτ

l2
ut +A1(u) = −ε0V

2

2

✓

1

l2
(

ψx(x,u(x))
)2

+
1

h2
(

ψz(x,u(x))
)2
◆

+ ε0V
2

✓

1

l2
ψx

(

x,u(x)
)

fx
(

x,u(x)
)

+
1

h2
ψz

(

x,u(x)
)

fu
(

x,u(x)
)

◆

,

(2.22)

with A1(u) given by

A1(u) = −τε

l
∂x

 

ux
p

1 + ε2(ux)2

!

+
bε

l3
∂2
x

✓

uxx

(1 + ε2(ux)2)5/2

◆

+
5bε3

2l3
∂x

✓

ux(uxx)
2

(1 + ε2(ux)2)7/2

◆

.

Multiplying (2.22) by l2/hτ and using the definition of ε then leads to the equation

ρατ

a2l2
utt + ut +A(u) = − ε0V

2

2ε2hτ

⇣

ε2
(

ψx(x,u(x))
)2

+
(

ψz(x,u(x))
)2
⌘

+
ε0V

ε2hτ

⇣

ε2ψx

(

x,u(x)
)

fx
(

x,u(x)
)

+ ψz

(

x,u(x)
)

fu
(

x,u(x)
)

⌘

,

with the rescaled quasilinear fourth-order differential operator

A(u) :=
l2

hτ
A1(u) = −∂x

 

ux
p

1 + ε2(ux)2

!

+
b

l2τ
∂2
x

✓

uxx

(1 + ε2(ux)2)5/2

◆

+
5bε2

2l2τ
∂x

✓

ux(uxx)
2

(1 + ε2(ux)2)7/2

◆

.

Lastly, by introduction of the parameters

γ :=

p
ρατ

al
, β :=

b

τ l2
, λ = λ(ε) :=

ε0V
2

2ε2hτ
,

the deflection of the thin elastic plate in terms of nonlinear elasticity may be determined by the
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evolution equation

γ2utt + ut +A(u) = −λ
⇣

ε2
(

ψx(x,u(x))
)2

+
(

ψz(x,u(x))
)2
⌘

+ 2λ
⇣

ε2ψx

(

x,u(x)
)

fx
(

x,u(x)
)

+ ψz

(

x,u(x)
)

fu
(

x,u(x)
)

⌘

,

with

A(u) = −∂x

 

ux
p

1 + ε2(ux)2

!

+ β∂2
x

✓

uxx

(1 + ε2(ux)2)5/2

◆

+
5

2
βε2∂x

✓

ux(uxx)
2

(1 + ε2(ux)2)7/2

◆

and the according boundary and initial conditions

u(t,±1) = ux(t,±1) = 0, t > 0,

u(0,x) = u⇤(x), ut(0,x) = u⇤⇤(x), x 2 (−1, 1).

Here, γ is the systems quality factor5, β measures the relative importance of tension and rigidity

and λ is a ratio of a reference electrostatic force to a reference elastic force. It is proportional to the

square of the applied voltage and serves as a tuning parameter for the system.

2.2 | A Simplified Linear Elasticity Model

In the previous section, a general model for the dynamic behaviour of an electrostatically actuated

MEMS device has been derived by means of nonlinear elasticity theory. Allowing also for large

deflections of the membrane, it is the characteristic of the governing elasticity terms to be nonlinear.

However, in many engineering applications it is reasonable to only require the device to feature

small membrane deflections and thus to restrict the mathematical investigations to a linear elasticity

model. It is the purpose of this section to derive the analgon of the above model by means of linear

elasticity theory.

Starting from the unscaled regime, in a first step, we assume (ũx̃)
2 to be small, i.e. (ũx̃)

2 ⌧ 1, and

consider the Taylor series expansion

p

1 + (ũx̃)2 ' 1 +
1

2
(ũx̃)

2 + . . .

of the term
p

1 + (ũx̃)2 around (ũx̃)
2 = 0, ignoring all but the first two terms.6 The linearised

5Recall that γ =
p
⇢↵⌧/al is a measure for the damping of an oscillating system. Small values γ refer to strongly

damped systems and thus indicate a large rate of decay of oscillations.
6Note that the constant first term in the Taylor series expansion just voids the constant length in the stretching

energy, whence we include the second term (ũx̃)
2/2 as well.
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stretching energy may then be written as

Es(ũ) =
τ

2

Z l

−l
(ũx̃

(

x̃)
)2

dx̃.

As before, given σ 2 R and a function v 2 C1
c (L), we introduce for x̃ 2 [−l, l] the variation

w(σ)(x̃) = ũ(x̃) + σv(x̃) of ũ(x̃) in the direction of v. We then find that

d

dσ
Es(ũ+ σv) =

d

dσ

✓

τ

2

Z l

−l
(wx̃)

2 dx̃

◆

= τ

Z l

−l
ũx̃vx̃ + σ(vx̃)

2 dx̃

whence, using that v is compactly supported in L,

δEs(ũ; v) = τ

Z l

−l
ũx̃vx̃ dx̃ = −τ

Z l

−l
ũx̃x̃v dx̃.

We proceed similarly in order to obtain the a linearised version of the bending term. Again requiring

(ũx̃)
2 ⌧ 1 to be small, we consider the Taylor series expansion

 

∂x̃

 

ũx̃
p

1 + (ũx̃)2

!!2
p

1 + (ũx̃)2 =
(ũx̃x̃)

2

(1 + (ũx̃)2)5/2
' (ũx̃x̃)

2 + . . .

around (ũx̃)
2 = 0, whence the linearised bending energy reads

Eb(ũ) =
b

2

Z l

−l

(

ũx̃x̃(x̃)
)2

dx̃.

Therefore, we find that

d

dσ
Eb(ũ+ σv) =

d

dσ

✓

b

2

Z l

−l
(wx̃x̃)

2 dx̃

◆

= b

Z l

−l
ũx̃x̃vx̃x̃ + σ(vx̃x̃)

2 dx̃

and thus finally

δEb(ũ; v) = b

Z l

−l
ũx̃x̃vx̃x̃ dx̃ = b

Z l

−l
ũx̃x̃x̃x̃v dx̃.

With the same scaling as above, the Euler–Lagrange equation in the regime of linear elasticity reads

γ2utt + ut − uxx + βuxxxx = −λ
⇣

ε2
(

ψx(x,u(x))
)2

+
(

ψz(x,u(x))
)2
⌘

+ 2λ
⇣

ε2ψx

(

x,u(x)
)

fx
(

x,u(x)
)

+ ψz

(

x,u(x)
)

fu
(

x,u(x)
)

⌘ (2.23)

for t > 0 and x 2 (−1, 1).
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2.3 | The Mathematical Models Under Study

Based on the previous two sections, it is the purpose of the present one to give a brief overview of

the different variants of the very general nonlinear and linear elasticity models, respectively, which

reflect different physical assumptions, as they are adequate for different applications. Even if there

are more variants conceivable, the presented elaboration is restricted to those models which are

investigated more detailed in the subsequent chapters.

To this end, denoting by u = u(t,x), t > 0, x 2 I := (−1, 1), the membrane’s deformation, the

elliptic problem governing the electrostatic potential of the system at any instant t ≥ 0 of time

always reads

ψxx + ψzz = 0, t > 0, (x, z) 2 Ω(u), (2.24)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(

x,u(t,x)
)

, t > 0, (x, z) 2 ∂Ω(u), (2.25)

where the region Ω(u(t)) between the rigid ground plate at z = −1 and the elastic membrane at

z = u(t,x) at any instant of time is given by

Ω(u) = {(x, z) 2 (−1, 1)⇥ (−1,1); −1 < z < u(t,x)}.

Depending on the choice of the evolution equation for the membrane’s displacement, only the per-

mittivity profile might vary, being either a function f = f(x), f = f
(

u(t,x)
)

or f = f
(

x,u(t,x)
)

. In

the above elliptic moving boundary value problem this does only influence the boundary condition

accordingly.

The situation is more involved for the choice of an appropriate model describing the dynamics of

the thin elastic plate’s displacement. Within the scope of both approaches – the linear and the

nonlinear elasticity theory – in the following analysis we make two physical assumptions which have

significant effects on the mathematical classification of the resulting equations.

First of all, we restrict the further investigations to viscosity-dominated systems, i.e. to a setting in

which damping effects dominate over inertial effects. More precisely, this means that the parameter

γ appearing in front of the inertial term is assumed to be very small, i.e.

γ =

p
ρατ

al
⌧ 1,

and thus that we ignore the inertial term γ2utt in the equations. Note that the highest-order time

derivative thus appears in the shape of the damping term ut which is of first order. This restriction

is of course not relevant for all possible MEMS devices but for instance to model the dynamic
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behaviour of micro pumps [48] or micro grippers [49].

One may furthermore act on the assumption that membranes or infinitely thin plates do not resist

bending, i.e. they have no flexural rigidity. This is the case if

b =
2α3Y

3(1− ν)2
= 0 =) β =

b

τ l2
= 0,

and thus the spatial higher-oder terms

β∂2
x

✓

uxx

(1 + ε2(ux)2)5/2

◆

+
5

2
βε2∂x

✓

ux(uxx)
2

(1 + ε2(ux)2)7/2

◆

or βuxxxx,

in the nonlinear or linear elasticity regime, respectively, are eliminated. Deformations due to bending

are thus neglected, which means that the governing equations are reduced from fourth-order to

second-order (spatial) equations. Representatives for MEMS devices for which the suppression of

bending effects is reasonable are certain micro pumps or the Grating Light Valve, respectively [45,

p. 239].

Combining the above two physical assumptions we end up with a model influenced by stretching,

damping and electrostatic forces. Note that those models are not admissible for all kinds of appli-

cations, but that on the other hand there exist applications for which a negligence of inertial and

bending effects is reasonable.

It finally remains to take different varying permittivity profiles into account. The simplest case of a

constant permittivity f ⌘ 1 has extensively been studied in the recent time and is thus not a subject

in the present study. It is rather the main objective of this thesis to consider the case in which the

membrane exhibits a certain varying dielectric permittivity profile, itself depending either on the

spatial variable x 2 I, the membrane’s displacement u = u(t,x), or even both. More precisely, the

permittivity profile is given by a function of one of the three following types:

• [x 7! f(x)] : I ! R;

• [u 7! f(u)] : (−1,1) ! R;

• [(x,u) 7! f(x,u)] : I ⇥ (−1,1) ! R.

Depending on the choice of the dielectric permittivity profile, also the right-hand side of the evolution

equation differs. Denoting the right-hand side in any case by gε,λ(u), if f = f(x), it is given by

gε,λ(u) := −λ
⇣

ε2
(

ψx(x,u)
)2

+
(

ψz(x,u)
)2
⌘

+ 2λε2ψx(x,u)f
0(x), (2.26)

where f 0 denotes the derivative of f with respect to x. In the case f = f(u), the right-hand side
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reads

gε,λ(u) := −λ
⇣

ε2
(

ψx(x,u)
)2

+
(

ψz(x,u)
)2
⌘

+ 2λψz(x,u)f
0(u), (2.27)

f 0 denoting the derivative of f with respect to u, and finally in the case f = f(x,u) we have

gε,λ(u) := −λ
⇣

ε2
(

ψx(x,u)
)2

+
(

ψz(x,u)
)2
⌘

+ 2λ
⇣

ε2ψx(x,u)fx(x,u) + ψz(x,u)fu(x,u)
⌘

, (2.28)

fx and fu denoting the partial derivatives of f with respect to its first and second variable, respec-

tively.

Reviewing the above considerations as a whole, we end up with the quasilinear parabolic initial-

boundary value problem

ut − ∂x

 

ux
p

1 + ε2(ux)2

!

= gε,λ(u) t > 0, x 2 I, (2.29)

u(t,±1) = 0, t > 0, (2.30)

u(0,x) = u⇤(x), x 2 I, (2.31)

in the regime of nonlinear elasticity, whence in the linear elasticity setting the analogue problem is

a semilinear parabolic initial-boundary value problem which reads

ut − uxx = gε,λ(u) t > 0, x 2 I, (2.32)

u(t,±1) = 0, t > 0, (2.33)

u(0,x) = u⇤(x), x 2 I, (2.34)

with a right-hand side according to the choice of the dielectric permittivity profile f .

2.3.1 Remark (1) Note that in both cases, (2.29)–(2.31) and (2.32)–(2.34), the evolution problem

for the membrane’s displacement is strongly coupled to the elliptic moving boundary problem

(2.24)–(2.25) in the following way. On the one hand the solution to the elliptic free boundary

value problem is to be determined in the domain Ω(u(t)) which changes its shape with time as

the membrane deflects with time. The coupling is thus observably in the boundary conditions

for ψ. On the other hand, the right-hand side of the evolution equation for the membrane’s

deformation u exhibits a nonlinear and nonlocal dependence of the gradient of the potential

ψ.

(2) Observe that the above reasoning is formal in the sense that several regularity properties are

used which are not verified rigorously, e.g.

– the Gâteaux-differentiability of Ep at ũ in (2.4);
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– the differentiability of the path {ψ(σ;u);σ 2 (−σ0,σ0)} with respect to σ, c.f. (2.9),

– the additional spatial regularity of ψ used to derive (2.10)

(3) In the mathematical and numerical analysis in this thesis the main attention is devoted to the

linear elasticity model (2.32)–(2.34) with the most general permittivity profile f = f(x,u), as

far as possible. Nonetheless, the nonlinear elasticity model (2.29)–(2.31) is analysed precisely.

It should be mentioned that for the latter model the presented results are partly based on joint

works with Joachim Escher.





3 | Local Well-Posedness and Global

Existence

As a first aspect in the mathematical analysis of the coupled systems derived in Chapter 2 we address

the questions of existence and uniqueness of solutions. Both when the membrane’s displacement is

determined in the semilinear regime (2.32)–(2.34) as well as when it is described by the quasilinear

problem (2.29)–(2.31), it turns out that the answers to those questions strongly depend on the

applied voltage. More precisely, we show that the systems possess locally in time existing unique

solutions for all arbitrarily large values λ of the applied voltage, and that solutions exist even globally

in time, provided that the applied voltage does not exceed a certain critical value λ⇤.

Section 3.1 deals with the semilinear problem (2.32)–(2.34) arising from linear elasticity theory,

whereas Section 3.2 is addressed to its quasilinear counterpart (2.29)–(2.31) arising from nonlinear

elasticity theory.

3.1 | On the Semilinear Case

Based on the work [40] this section is devoted to results on local well-posedness and global existence of

solutions to the coupled system of partial differential equations consisting of the semilinear parabolic

initial boundary value problem

ut − uxx = −λ
⇣

ε2
(

ψx(x,u)
)2

+
(

ψz(x,u)
)2
⌘

+ 2λ
⇣

ε2ψx(x,u)fx(x,u) + ψz(x,u)fu(x,u)
⌘

, t > 0, x 2 I, (3.1)

u(t,±1) = 0, t > 0, (3.2)

u(0,x) = u⇤(x), x 2 I, (3.3)

25
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describing the time evolution of the displacement u = u(t,x) of the membrane, and the elliptic free

boundary value problem

ε2ψxx + ψzz = 0, t > 0, (x, z) 2 Ω(u(t)), (3.4)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(

x,u(t,x)
)

, t > 0, (x, z) 2 ∂Ω(u(t)), (3.5)

characterising the electrostatic potential ψ = ψ(t,x, z) in the region

Ω(u(t)) = {(x, z) 2 (−1, 1)⇥ (−1,1);−1 < z < u(t,x)},

determined by the rigid ground plate at z = −1 and the elastic membrane at z = u(t,x). It is

worthwhile to mention again the meaning of the two parameters ε and λ occurring in the above

equations. The first one, ε = h/l > 0, denotes the aspect ratio of the device, i.e. the ratio of the

gap size h between the two plates in the undeformed configuration, to the half l of the device length

before scaling. The second parameter λ > 0 is proportional to the square of the applied voltage

and is shown to have a considerable influence on the behaviour of the solution to (3.1)–(3.5). In

particular, the system (3.1)–(3.5) is shown to be locally well-posed for all arbitrarily large values

λ > 0 of the applied voltage. Moreover, we prove that the solution might even exist forever, provided

that the applied voltage is small enough, i.e. smaller than a certain critical value λ⇤.

Before going into detail, it is valuable to briefly outline the general ideas of the proof. As already

performed in [40] we follow the lines of [14], where the authors study the above system with constant

permittivity f ⌘ 1. According to that the problems (3.1)–(3.3) and (3.4)–(3.5) are considered

separately. In a first step the moving boundary problem (3.4)–(3.5) for ψ is transformed into an

elliptic boundary problem on the fixed rectangle Ω := I ⇥ (−1, 0). Indeed, to stand to benefit from

the fixed geometry is not totally free of cost as we now have to deal with an elliptic differential

operator of second order with non-constant coefficients, depending on u, ux and uxx. However, the

latter problem is shown to be well-posed for a given function u (see Theorem 3.1.3 below). Having

the solution of the transformed elliptic problem at hand, the second step consists in investigating the

evolution problem (3.1)–(3.3) for the membrane’s displacement u. This problem can be characterised

as a nonlocal semilinear heat equation, whereby one may reformulate it as an abstract parameter

dependent Cauchy problem and finally apply a fixed-point argument in order to infer that also the

evolution problem is well-posed.

Although one may basically apply the methods used in [14, Theorem1 & 2], the reasoning requires

additional endeavour for handling a general varying permittivity profile f = f
(

x,u(t,x)
)

. Revealing

of that are the following two lemmas on the regularity of the Nemitskii operator induced by the

function f : [−1, 1]⇥ [−1,1) ! R.
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3.1.1 Lemma (Global Lipschitz Continuity of the Nemitskii Operator, [40, Lemma 3.1])

Given f 2 C3
(

[−1, 1]⇥ R,R
)

and S ⇢ W 2
2 (I), consider the Nemitskii operator

Nf : S −! W 2
2 (I), v 7−! f(·, v(·))

induced by f . If S is bounded in W 2
2 (I) then Nf is globally Lipschitz continuous. That is, there

exists a constant cf ,L = cf ,L(S) > 0 such that

kNf (v1)−Nf (v2)kW 2
2 (I)

 cf ,L kv1 − v2kW 2
2 (I)

for all v1, v2 2 S.

The proof is an immediate consequence of the mean value theorem in integral form applied to

Nf (v1)−Nf (v2) and its derivatives of first and second order in the L2(I)-norm.

3.1.2 Corollary (Boundedness of Nf , [40, Corollary 3.2])

Under the assumptions of Lemma 3.1.1 the operator Nf is uniformly bounded, i.e. there exists a

constant cf ,B = cf ,B(S) > 0 such that

kNf (v)kW 2
2 (I)

 cf ,B

for all v 2 S.

If no ambiguity is to be feared both, the function f : [−1, 1] ⇥ [−1,1) ! R and the Nemitskii

operator Nf are subsequently denoted by f , i.e. we write Nf (v) = f(v) for v 2 W 2
2 (I).

Following the lines of [14] we now realise the above introduced concept for the proof of local well-

posedness of the coupled system (3.1)–(3.5) and transform the moving boundary problem (3.4)–(3.5)

to the fixed rectangle Ω := I ⇥ (0, 1).

Given q 2 (2,1) and an arbitrary function v 2 W 2
q (I) taking values in (−1,1), we define the

diffeomorphism

Tv : Ω(v) −! Ω, Tv(x, z) :=

✓

x,
1 + z

1 + v(x)

◆

. (3.6)

The according inverse is given by

T−1
v (x, ⌘) = (x, (1 + v(x)) ⌘ − 1) , (x, ⌘) 2 Ω. (3.7)

Introducing the function ' : Ω ! R, defined as the composition ' :=  ◦ T−1
u(t), the membrane’s
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deformation u = u(t,x) may be determined according to the transformed evolution problem

ut − uxx =− λ

 

"2
⇣

−
(

fx(x,u)
)2

+
(

(fu(x,u)ux
)2
⌘

− 2
1 + "2(ux)

2

1 + u
fu(x,u)'η(t,x, 1) +

1 + "2(ux)
2

(1 + u)2
(

'η(t,x, 1)
)2

!

, t > 0, x 2 I, (3.8)

u(t,±1) = 0, t > 0, (3.9)

u(0,x) = u⇤(x), x 2 I. (3.10)

The equivalent formulation of (3.4)–(3.5) on the fixed rectangle Ω reads

(

Lu(t)'
)

(t,x, ⌘) = 0, t > 0, (x, ⌘) 2 Ω, (3.11)

'(t,x, ⌘) = ⌘f(x,u), t > 0, (x, ⌘) 2 @Ω, (3.12)

with the transformed v-dependent elliptic differential operator

Lvw := "2wxx − 2"2⌘
vx

1 + v
wxη +

1 + "2⌘2(vx)
2

(1 + v)2
wηη + "2⌘

 

2

✓

vx

1 + v

◆2

− vxx

1 + v

!

wη (3.13)

of second order. Finally, (c.f. [14]) for q 2 [2,1) and  2 (0, 1) the set

Sq() :=
n

u 2W 2
q,D(I); kukW 2

q,D(I) < 1/ and − 1 +  < u(x) for x 2 I
o

,

with

W 2α
q,D(I) :=

8

<

:

W 2α
q (I), 2↵ 2 [0, 1/q)

{

u 2 W 2α
q (I); u(±1) = 0

 

, 2↵ 2 (1/q, 2]

is introduced.

We are now in a position to prove that for a given membrane’s displacement u the transformed

elliptic boundary value problem (3.11)–(3.12) on Ω possesses a unique solution.

3.1.3 Theorem (Solution to the Elliptic Problem on Ω, [40, Theorem 3.3])

Let  2 (0, 1), " > 0, and q > 2. Given v 2 Sq() and f 2 C3
(

[−1, 1]⇥ [−1,1),R
)

there is a unique

solution 'v 2 W 2
2 (Ω) to the problem

(Lv'v) (x, ⌘) = 0, (x, ⌘) 2 Ω, (3.14)

'v(x, ⌘) = ⌘f(x, v), (x, ⌘) 2 @Ω. (3.15)
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In addition, defining the function ṽ by ṽ(x) := v(−x) for x 2 I and assuming that f
(

x, v(x)
)

=

f
(

−x, v(x)
)

for x 2 I, one obtains

'ṽ(x, ⌘) = 'v(−x, ⌘), (x, ⌘) 2 Ω.

Proof. (i) Given v 2 Sq(), for (x, ⌘) 2 Ω define the function

Fv(x, ⌘) := Lv

(

⌘f(x, v)
)

= "2⌘
⇣

fxx(x, v) + 2fxv(x, v)vx + fvv(x, v)(vx)
2 + fv(x, v)vxx

⌘

− 2"2⌘
vx

1 + v

⇣

fx(x, v) + fv(x, v)vx

⌘

+ "2⌘

 

2

✓

vx

1 + v

◆2

− vxx

1 + v

!

f(x, v).

(3.16)

Since v 2 Sq() and f(v) 2 W 2
2 (I) thanks to Corollary 3.1.2, one may verify that Fv belongs to

L2(Ω) with

kFvkL2(Ω)  c(, "). (3.17)

Therefore the assumptions of [14, Lemma 6] are fulfilled,1 whence there exists a unique solution

φv 2W 2
2,D(Ω) to the problem

−Lvφv = Fv, (x, ⌘) 2 Ω, (3.18)

φv = 0, (x, ⌘) 2 @Ω, (3.19)

with homogenised boundary conditions, satisfying

kφvkW 2
2 (Ω)  c(, ") kFvkL2(Ω) . (3.20)

The function 'v, defined by

'v(x, ⌘) := φv(x, ⌘) + ⌘f(x, v), (x, ⌘) 2 Ω,

then obviously solves (3.11)–(3.12). Furthermore, combining (3.17) and (3.20) with the fact that

kf(v)kW 2
2 (I)

 cf ,B, one obtains

k'vkW 2
2 (Ω)  kφvkW 2

2 (Ω) + k⌘f(x, v)kW 2
2 (Ω)  c(, "). (3.21)

Eventually, the uniqueness of φv 2 W 2
2,D(Ω) implies that 'v 2 W 2

2 (Ω) is the unique solution to

(3.11)–(3.12).

(ii) It remains to prove that 'v is even with respect to x 2 I. Given v 2 Sq(), the function ṽ defined

1The proof of [14, Lemma 6] is based on [22, Theorem. 8.3] and [31, Theorem. 9.1].
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by ṽ(x) := v(−x) for x 2 I, obviously belongs to Sq(). The properties of Lṽ and Fṽ together with

the assumption f
(

x, v(x)
)

= f
(

−x, v(x)
)

, x 2 I, ensure that the function (x, ⌘) 7! φv(−x, ⌘) =:

φ̃(x, ⌘) solves (3.18)–(3.19) with ṽ instead of v:

−Lṽφ̃(x, ⌘) = − "2φ̃xx(x, ⌘) + 2"2⌘
ṽx(x)

1 + ṽ(x)
φ̃xη(x, ⌘)−

1 + "2⌘2
(

ṽx(x)
)2

(1 + ṽ(x))2
φ̃ηη(x, ⌘)

− "2⌘

 

2

✓

ṽx(x)

1 + ṽ(x)

◆2

− ṽxx(x)

1 + ṽ(x)

!

φ̃η(x, ⌘)

= − Lvφv(−x, ⌘)
= Fv(−x, ⌘)

= "2⌘
⇣

fxx
(

−x, v(−x)
)

+ 2fxv
(

−x, v(−x)
)

vx(−x)

+ fvv
(

−x, v(−x)
)(

vx(−x)
)2

+ fv
(

−x, v(−x)
)

vxx(−x)
⌘

− 2"2⌘
vx(−x)

1 + v(−x)
⇣

fx
(

−x, v(−x)
)

+ fv
(

−x, v(−x)
)

vx(−x)
⌘

+ "2⌘

 

2

✓

vx(−x)
1 + v(−x)

◆2

− vxx(−x)
1 + v(−x)

!

f
(

−x, v(−x)
)

= Fṽ(x, ⌘).

Consequently, φ̃(x, ⌘) = φv(−x, ⌘) solves (3.18)–(3.19) with ṽ instead of v and the uniqueness of the

solution to (3.18)–(3.19) implies that

φṽ(x, ⌘) = φv(−x, ⌘), (x, ⌘) 2 Ω.

The definition of 'v(x, ⌘) = φv(x, ⌘) + ⌘f(x, v) together with the fact that f is even with respect to

x 2 I then readily yields

'ṽ(x, ⌘) = 'v(−x, ⌘), (x, ⌘) 2 Ω.

This completes the proof.

Having solved the transformed elliptic boundary problem (3.11)–(3.12) on the fixed rectangle Ω for

a given displacement u, in pursuance of the introductory words on the concept of this section we

are now left with handling the evolution problem (3.8)–(3.10). For this purpose we prove in the

subsequent lemma that the right-hand side of (3.8) is globally Lipschitz continuous and bounded as

a function gε : Sq() ! W 2σ
2,D(I), where σ 2 [0, 1/2). Those two properties do then give rise to the

fact that the evolution problem for the membrane’s displacement may be solved by methods of the

semigroup theory.
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3.1.4 Lemma (Properties of gε, [40, Lemma 3.4])

Let  2 (0, 1), " > 0 and q > 2. Moreover, let f 2 C3
(

[−1, 1]⇥ [−1,1),R
)

. Then, with 'v 2W 2
2 (Ω)

denoting the unique solution to (3.14)–(3.15), for 2σ 2 [0, 1/2) the mapping

gε : Sq() −! W 2σ
2,D(I),

v 7−! "2
⇣

−
(

fx(x, v)
)2

+
(

fv(x, v)
)2
(vx)

2
⌘

− 2
1 + "2(vx)

2

1 + v
fv(x, v)@η'v(·, 1) +

1 + "2(vx)
2

(1 + v)2
(

@η'v(·, 1)
)2

has the following properties:

(i) gε is globally Lipschitz continuous. That is, there is a constant cL = cL(, ") > 0 such that

kgε(v1)− gε(v2)kW 2σ
2,D(I)  cL(, ") kv1 − v2kW 2

q (I)

for all v1, v2 2 Sq().

(ii) gε is uniformly bounded. That is, there exists a constant cB = cB(, ") > 0 such that

kgε(v)kW 2σ
2,D(I)  cB(, ")

for every v 2 Sq().

Proof. (i) Given v 2 Sq(), define the bounded linear operator

A(v) 2 L
(

W 2
2,D(Ω),L2(Ω)

)

, A(v)φ := −Lvφ.

[14, Lemma 6] guarantees that A(v) is invertible with inverse operator A(v)−1 2 L
(

L2(Ω),W
2
2,D(Ω)

)

,

satisfying
∥

∥A(v)−1
∥

∥

L(L2(Ω),W 2
2,D(Ω))

 c(, "). (3.22)

As mentioned in the proof of [14, Proposition 5], by arguments concerning the continuity of pointwise

multiplication in Sobolev spaces one obtains

kA(v1)−A(v2)kL(W 2
2,D(Ω),L2(Ω))  c(, ") kv1 − v2kW 2

q (I)
(3.23)

for v1, v2 2 Sq(). Moreover, again as in the proof of [14, Proposition 5] the identity

A(v1)
−1 −A(v2)

−1 = A(v1)
−1 [A(v2)−A(v1)]A(v2)

−1
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in L
(

L2(Ω),W
2
2,D(Ω)

)

allows to infer from (3.22) and (3.23) that

∥

∥A(v1)
−1− A(v2)

−1
∥

∥

L(L2(Ω),W 2
2,D(Ω))


∥

∥A(v1)
−1
∥

∥

L(L2(Ω),W 2
2,D(Ω))

kA(v2)−A(v1)kL(W 2
2,D(Ω),L2(Ω))

∥

∥A(v2)
−1
∥

∥

L(L2(Ω),W 2
2,D(Ω))

 c(, ") kA(v2)−A(v1)kL(W 2
2,D(Ω),L2(Ω))

 c(, ") kv1 − v2kW 2
q (I)

(3.24)

where v1, v2 2 Sq(). Furthermore, owing to the boundedness and the Lipschitz continuity of f(v)

in W 2
2 (I) (cf. Lemma 3.1.1 and Corollary 3.1.2), for v1, v2 2 Sq() there holds

kFv1 − Fv2kL2(Ω)  c(, ") kv1 − v2kW 2
q (I)

. (3.25)

A combination of (3.24), (3.25) and (3.22) with the Lipschitz continuity of f(v) in W 2
2 (I) yields2

the existence of a constant c(, ") > 0 such that

k'v1 − 'v2kW 2
2 (Ω)

 kφv1 − φv2kW 2
2 (Ω) + 2 kf(v1)− f(v2)kW 2

2 (I)


∥

∥

(

A(v1)
−1 −A(v2)

−1
)

Fv1

∥

∥

W 2
2,D(Ω)

+
∥

∥A(v2)
−1(Fv1 − Fv2)

∥

∥

W 2
2,D(Ω)

+ 2 kf(v1)− f(v2)kW 2
2 (I)

 c(, ") kv1 − v2kW 2
q (I)

+ c(, ") kFv1 − Fv2kL2(Ω)

+ 2 kf(v1)− f(v2)kW 2
2 (I)

 c(, ") kv1 − v2kW 2
q (I)

(3.26)

for v1, v2 2 Sq(). One may then invoke [43, Chapter 2, Theorem 5.4] to obtain

k@η'v(·, 1)kW 1/2
2 (I)

 c k'vkW 2
2 (Ω) . (3.27)

Fusing (3.26) and (3.27) leads to

k@η'v1(·, 1)− @η'v2(·, 1)kW 1/2
2 (I)

 c(, ") kv1 − v2kW 2
q (I)

(3.28)

for v1, v2 2 Sq(), whence the mapping

Sq() −!W
1/2
2 (I), v 7−! @η'v(·, 1) (3.29)

2Observe that k⌘f(v)kW2

2
(Ω) 

p
2kf(v)kW2

2
(I)  2kf(v)kW2

2
(I).
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is globally Lipschitz continuous. The continuity of pointwise multiplication3

W
1/2
2 (I) ·W 1/2

2 (I) ,!W 2σ1
2 (I), 2σ1 < 1/2,

according to [2, Theorem 4.1] implies that the mapping

Sq() −! W 2σ1
2 (I), v 7−!

(

@η'v(·, 1)
)2

(3.30)

is globally Lipschitz continuous4. That W 2
q (I) is continuously embedded in W 1

1(I), together with

the continuity of pointwise multiplication W 1
1(I) ·W 1

q (I) ,! W 1
q (I) yields that the mapping

Sq() −! W 1
q (I), v 7−! 1 + "2(vx)

2

(1 + v)2
(3.31)

is globally Lipschitz continuous. Applying the continuity of pointwise multiplication

W 1
q (I) ·W 2σ1

2 (I) ,! W 2σ
2 (I) = W 2σ

2,D(I), 2σ < 2σ1 < 1/2,

to the Lipschitz continuous mappings (3.30) and (3.31) one may deduce the Lipschitz continuity of

Sq() −! W 2σ
2,D(I), v 7−! 1 + "2(vx)

2

(1 + v)2
(

@η'v(·, 1)
)2
.

Thanks to Lemma 3.1.1 the mapping

Sq() −! W 1
2 (I), v 7−! fv(x, v) (3.32)

is globally Lipschitz continuous and using the continuity of the embeddings

W 1
q (I) ·W 1

q ,! W 1
q (I), W 1

1(I) ·W 1
q ,! W 1

q (I)

one obtains the global Lipschitz continuity of the mapping

Sq() −! W 1
q (I), v 7−! 1 + "2(vx)

2

1 + v
. (3.33)

As a consequence of the continuity of pointwise multiplication W 1
q (I) ·W 1

2 (I) ,! W 1
2 (I) and

W 1
2 (I) ·W

1/2
2 (I) ,! W ρ

2 (I) = W ρ
2,D(I), 0 < 2σ < 2σ1 < ⇢ < 1/2,

3In what follows all arguments concerning the continuity of pointwise multiplication in Sobolev spaces are due to
[2].

4In the whole contribution global Lipschitz continuity means that the Lipschitz constant does not depend on
v1, v2 2 Sq() but only on the parameters " and .
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applied to the mappings (3.29), (3.32) and (3.33), their pointwise product

Sq() −!W
ρ
2,D(I), v 7−! 2

1 + "2(vx)
2

1 + v
fv(x, v)@η'v(·, 1)

is globally Lipschitz continuous. Moreover, one may invoke Lemma 3.1.1 as well as Corollary 3.1.2

and the continuity of pointwise multiplication W 1
2 (I)·W 1

2 (I) ,!W 1
2 (I) to conclude that the mapping

Sq() −!W 1
2 (I), v 7−!

(

fx(x, v)
)2

is globally Lipschitz continuous. Finally, by combining some of the already mentioned arguments

one obtains that the mapping

Sq() −!W 1
2 (I), v 7−!

(

fv(x, v)
)2
(vx)

2

is globally Lipschitz continuous. As a sum of globally Lipschitz continuous functions, eventually the

mapping gε : Sq() !W 2σ
2,D(I) is globally Lipschitz continuous. This yields the first assertion of the

lemma.

(ii) First of all, thanks to part (i) there exists a constant cL = cL(, ") > 0 such that

kgε(v1)− gε(v2)kW 2σ
2,D(I)  cL(, ") kv1 − v2kW 2

q (I)

for all v1, v2 2 Sq(). Furthermore, by definition of gε there holds

kgε(0)kW 2σ
2,D(I)  "2k

(

fx(x, 0)
)2kW 2σ

2,D(I) + 2kfv(x, 0)@η'0(x, 1)kW 2σ
2,D(I)

+ k
(

@η'0(x, 1)
)2kW 2σ

2,D(I).
(3.34)

The first term on the right-hand side of (3.34) may be estimated by means of the continuity of the

embedding W 2
2 (I) ,!W 2σ

2,D(I), 2σ < 1/2, as in (i), and the boundedness of f(v) in W 2
2 (I), so that

"2k
(

fx(x, 0)
)2kW 2σ

2,D(I)  c(")c2f ,B. (3.35)

To control the second term of (3.34) one can invoke the continuity of pointwise multiplication

W 1
2 (I) ·W

1/2
2 (I) ,! W 2σ

2,D(I),

together with [43, Chapter 2, Theorem 5.4] as well as (3.21) and again the boundedness of f(v) in

W 2
2 (I). Altogether this leads to

kfv(x, 0)@η'0(x, 1)kW 2σ
2,D(I)  cf ,Bc(, "). (3.36)
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As for (3.36), combining the continuity of the embedding of W 1/2
2 (I) in W 2σ

2,D(I) with [43, Chapter

2, Theorem 5.4] and (3.21) yields

k
(

@η'0(x, 1)
)2kW 2σ

2,D(I)  c(, "). (3.37)

Fusing (3.35), (3.36) and (3.37) one finally obtains

kgε(0)kW 2σ
2,D(I)  c(, ").

Therefore, observing that 0 2 Sq(), one may deduce that gε : Sq() ! W 2σ
2,D(I) is bounded by a

constant depending only on  and ":

kgε(v)kW 2σ
2,D(I)  kgε(v)− gε(0)kW 2σ

2,D(I) + kgε(0)kW 2σ
2,D(I)

 cL(, ") kvkW 2
q (I)

+ kgε(0)kW 2σ
2,D(I)

 cL(, ")


+ c(, ")

=: cB(, ").

This completes the proof.

Thanks to the above lemma we are now in a position to employ arguments from the semigroup theory

in order to verify the local existence of a unique solution (u, ) to the coupled problem (3.1)–(3.5).

3.1.5 Theorem (Local Well-Posedness, [40, Theorem 3.5])

Let q 2 (2,1) and " > 0. Given an initial value u⇤ 2 W 2
q,D(I) with u⇤(x) > −1 for x 2 I, and

f 2 C3
(

[−1, 1]⇥ [−1,1),R
)

, the following holds true:

(i) For each voltage value λ > 0 there exists a unique maximal solution (u, ) to (3.1)–(3.5) on

the maximal interval [0,T ) of existence in the sense that

u 2 C1
(

[0,T ),Lq(I)
)

\ C
(

[0,T ),W 2
q,D(I)

)

satisfies (3.1)–(3.3) with

u(t,x) > −1, t 2 [0,T ), x 2 I,

and  2W 2
2

(

Ω(u(t))
)

solves (3.4)–(3.5) on Ω(u(t)) for each t 2 [0,T ).

(ii) If for each ⌧ > 0 there is (⌧) 2 (0, 1) such that u(t) 2 Sq((⌧)) for t 2 [0,T )\ [0, ⌧ ], then the

solution (u, ) to (3.1)–(3.5) exists globally in time, which means that T = 1.

(iii) If u⇤(x) = u⇤(−x) and f(x, r) = f(−x, r) for all x 2 I and r 2 (−1,1), then for every

t 2 [0,T ), u = u(t,x) and  =  (t,x, z) are even with respect to x 2 I as well.
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Again the proof of this result relies on the proof of [14, Theorem 1].

Proof. (i) In order to stand to benefit from arguments of the semigroup theory, (3.8) subject to the

boundary condition (3.9) and the initial condition (3.10) must be reformulated as a Cauchy problem.

For that purpose let p 2 (1,1) and define the differential operator5

A 2 L
(

W 2
p,D(I),Lp(I)

)

, Av := −@2xv. (3.38)

Then, (3.8) subject to (3.9) and (3.10) may be perceived as the abstract parameter-dependent

semilinear Cauchy problem

u̇+Au = −λgε(u), t > 0, (3.39)

u(0) = u⇤, (3.40)

with the function gε introduced in Lemma 3.1.4. The proof is now performed by employing a fixed

point argument to (3.39)–(3.40). To this end let

{

e−tA; t ≥ 0
 

denote the (analytic) heat semigroup on Lp(I) corresponding to −A. By assumption there is a

 2 (0, 1/2) such that

u⇤ 2 Sq(2). (3.41)

Fixing 1/2 − 1/q < 2σ < 1/2 with 2σ 6= 1/q, [14, Lemma 7] guarantees the existence of constants

M ≥ 1 and ! > 0 such that6

∥

∥e−tA
∥

∥

L(W 2
q,D(I))

+ t
−σ+1+ 1

2
( 1
2
− 1

q
) ∥
∥e−tA

∥

∥

L(W 2σ
2,D(I),W 2

q,D(I))
 Me−ωt, t ≥ 0. (3.42)

Given ⇤ := /M , thanks to Lemma 3.1.4 there exist positive constants cL(, ") and cB(, ") such

that

kgε(v1)− gε(v2)kW 2σ
2,D(I)  cL(, ") kv1 − v2kW 2

q,D(I) , v1, v2 2 Sq(⇤), (3.43)

and

kgε(v)kW 2σ
2,D(I)  cB(, "), v 2 Sq(⇤), (3.44)

respectively. For ⌧ > 0 we now define the space

Vτ := C
(

[0, ⌧ ],Sq(⇤)
)

5Since for v 2 W 2
p,D(I) it holds that Av = −@2

xv 2 Lp(I) ,! Lr(I) for r  p, we write A = Ap for Ap 2
L
(

W 2
p,D(I),Lp(I)

)

.
6The proof of [14, Lemma 7] is based on results of [3], [23] and [50].
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and subsequently for t 2 [0, ⌧ ] and v 2 Vτ the operator

G(v)(t) := e−tAu⇤ − λ

Z t

0
e−(t−s)Agε

(

v(s)
)

ds. (3.45)

With the objective of establishing the existence of a fixed point of (3.45) we now verify that G

defines a contraction on Vτ for a certain ⌧ . To this end we introduce the functional

I(⌧) :=
Z τ

0
e−ωss

σ−1− 1
2
( 1
2
− 1

q
)
ds  I(1) :=

Z 1

0
e−ωss

σ−1− 1
2
( 1
2
− 1

q
)
ds, (3.46)

which is finite thanks to the positivity of ! and the choice of σ. Given v 2 Vτ and t 2 [0, ⌧ ] it follows

from (3.41), (3.42) and (3.44) that

kG(v)(t)kW 2
q,D(I) 

∥

∥e−tAu⇤
∥

∥

W 2
q,D(I)

+ λ

Z t

0

∥

∥

∥
e−(t−s)Agε

(

v(s)
)

∥

∥

∥

W 2
q,D(I)

ds


∥

∥e−tA
∥

∥

L(W 2
q,D(I))

ku⇤kW 2
q,D(I)

+ λ

Z t

0

∥

∥

∥
e−(t−s)A

∥

∥

∥

L(W 2σ
2,D(I),W 2

q,D(I))

∥

∥gε
(

v(s)
)∥

∥

W 2σ
2,D(I)

ds

 1

2

∥

∥e−tA
∥

∥

L(W 2
q,D(I))

+ λcB(, ")

Z t

0

∥

∥

∥e−(t−s)A
∥

∥

∥

L(W 2σ
2,D(I),W 2

q,D(I))
ds

 1

2
Me−ωt + λMcB(, ")

Z t

0
e−ω(t−s)(t− s)

σ−1− 1
2
( 1
2
− 1

q
)
ds

 M

2
+ λMcB(, ")I(⌧).

(3.47)

Note that the heat semigroup is a positive contraction semigroup on L1(I), whence it is additionally

submarkovian.7 Due to this fact and since W 2
q,D(I) ,! L1(I) with embedding constant 2 and

u⇤ > 2− 1, one can deduce from (3.42) and (3.44) that

G(v)(t) ≥ e−tA(2− 1)− λ

Z t

0
e−(t−s)Agε

(

v(s)
)

ds

≥ 2− 1− λ

Z t

0

∥

∥

∥e−(t−s)Agε
(

v(s)
)

∥

∥

∥

L1(I)
ds

≥ 2− 1− 2λ

Z t

0

∥

∥

∥e−(t−s)A
∥

∥

∥

L(W 2σ
2,D(I),W 2

q,D(I))

∥

∥gε
(

v(s)
)∥

∥

W 2σ
2,D(I)

ds

≥ 2− 1− 2λMcB(, ")

Z t

0
e−ω(t−s)(t− s)

σ−1− 1
2
( 1
2
− 1

q
)
ds

≥ −1 + 2− 2λMcB(, ")I(⌧).

(3.48)

7This follows from the parabolic maximum principle.
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Finally, (c.f. [14]) one may infer from (3.42) and (3.43) that

kG(v1)−G(v2)kW 2
q,D(I)

= λ

∥

∥

∥

∥

Z t

0
e−(t−s)A

⇥

gε
(

v1(s)
)

− gε
(

v2(s)
)⇤

ds

∥

∥

∥

∥

W 2
q,D(I)

 λ

Z t

0

∥

∥

∥e−(t−s)A
∥

∥

∥

L(W 2σ
2,D(I),W 2

q,D(I))

∥

∥gε
(

v1(s)
)

− gε
(

v2(s)
)∥

∥

W 2σ
2,D(I)

ds

 λMcL(, ")

Z t

0
e−ω(t−s)(t− s)

σ−1− 1
2
( 1
2
− 1

q
) kv1(s)− v2(s)kW 2

q,D(I) ds

 λMcL(, ")I(⌧) kv1 − v2kC([0,τ ],W 2
q,D(I)) .

(3.49)

Availing ourselves of the fact that I(⌧) ! 0 as ⌧ ! 0, the estimates (3.47), (3.48) and (3.49) imply

that there exists ⌧⇤ := ⌧⇤(λ,, ", q,σ) > 0 sufficiently small such that

G : Vτ⇤ −! Vτ⇤

defines a contraction. Since Vτ⇤ is a complete metric space one may eventually invoke Banach’s

fixed-point theorem to conclude that there exists a unique fixed point

u = G(u) 2 Vτ⇤ .

This shows that (3.39) possesses a unique mild solution on [0, ⌧⇤] with u⇤ 2W 2
q,D(I). It follows from

general parabolic theory (c.f. [3]) that this mild solution is also a strong solution

u 2 C1
(

[0,T ),Lq(I)
)

\ C
(

[0,T ),W 2
q,D(I)

)

\ C
(

(0,T )),W 2+2σ
2,D (I)

)

for some maximal time T 2 [⌧⇤,1). It satisfies

u(t,x) > −1, t 2 [0,T ), x 2 I.

Lastly, observe that

 (t) = 'u(t) ◦ Tu(t) (3.50)

belongs to W 2
2

(

Ω(u(t))
)

and solves (3.4)–(3.5) for each t 2 [0,T ), with Tu(t) as introduced in (3.6).

(ii) We prove the contraposition of the assertion. Assume that T <1. Then there exist ⌧⇤ > 0 and

t⇤ 2 [0,T ) \ [0, ⌧⇤] such that u(t⇤) /2 Sq((⌧⇤)) for all (⌧⇤) 2 (0, 1). This means that either

lim
t!T

min
x2[−1,1]

u(t,x) = −1 or lim
t!T

ku(t)kW 2
q (I)

= 1.



39 3.1. On the Semilinear Case

(iii) It remains to show that u and  are even with respect to x 2 I, provided that u⇤ and f are.

For that purpose suppose that u⇤(x) = u⇤(−x) for all x 2 I, and denote by u be the corresponding

maximal solution to (3.39)–(3.40) with maximal time T 2 (0,1] of existence. Then, introducing

the function ũ defined by ũ(t,x) := u(t,−x), t 2 [0,T ), x 2 I, and using the additional assumption

that f
(

x,u(t,x)
)

= f
(

−x,u(t,x)
)

for t 2 [0,T ), x 2 I, one may infer from (3.39) that

ũt(t,x) +Aũ(t,x) = −λgε
(

−x,u(t,−x)
)

.

The definitions of gε and ũ yield

−λgε
(

−x,u(t,−x)
)

=− λ

 

"2
⇣

−
(

fx(−x,u(t,−x))
)2

+
(

fu(−x,u(t,−x))ux(t,−x)
)2
⌘

− 2
1 + "2

(

ux(t,−x)
)2

1 + u(t,−x) fu
(

−x,u(t,−x)
)

@η'u(−x, 1)

+
1 + "2

(

ux(t,−x)
)2

(

1 + u(t,−x)
)2

(

@η'u(−x, 1)
)2

!

,

=− λ

 

"2
⇣

−
(

fx(−x, ũ(t,x))
)2

+
(

fu(−x, ũ(t,x))ũx(t,x)
)2
⌘

− 2
1 + "2

(

ũx(t,x)
)2

1 + ũ(t,x)
fu
(

−x, ũ(t,x)
)

@η'ũ(x, 1)

+
1 + "2

(

ũx(t,x)
)2

(

1 + ũ(t,x)
)2

(

@η'ũ(x, 1)
)2

!

.

Finally, using the assumption that f
(

x,u(t,x)
)

= f
(

−x,u(t,x)
)

for all x 2 I one may observe that

−λgε
(

−x,u(t,−x)
)

= −λgε
(

x, ũ(t,x)
)

,

which eventually leads to

ũt(t,x) +Aũ(t,x) = −λgε
(

x, ũ(t,x)
)

.

The uniqueness of the solution to (3.39)–(3.40) therefore implies that u coincides with ũ so that

u(t, ·) is even on I for all t 2 [0,T ). That  (t, ·, z) is even follows from (3.50), using the fact that

'u(t)(t, ·, ⌘) is even thanks to Theorem 3.1.3. Thus, the proof is complete.

Before proving the at the outset mentioned result on global existence, it is worthwhile to make the

following observation, which is of particular relevance in further parts of this work.
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3.1.6 Corollary

Let u⇤ 2 Sq() satisfy u⇤(x)  0 for all x 2 I, and assume that the implication

v 2 Sq(), v(x)  0 8x 2 I =) gε(v) 2 Sq(), gε
(

v(x)
)

≥ 0 8x 2 I (3.51)

holds true. Then the solution u to (3.1)–(3.3) satisfies

u(t,x)  0, t 2 [0,T ), x 2 I.

Proof. Pick T⇤ 2 (0,T ) and introduce the set

S−
q () := {v 2 Sq(); v(x)  0 for x 2 I}.

Given u⇤ 2 S−
q (), it then suffices to show that u(t,x)  0 for all t 2 [0,T⇤] and x 2 I. To this end,

let ⌧ 2 (0,T⇤] and introduce the space

V−
τ := C

(

[0, ⌧ ],S−
q ()

)

.

The proof of Theorem 3.1.5, c.f. (3.47), (3.48) and (3.49), already provides evidence that there exists

⌧⇤  ⌧ such that

G : Vτ⇤ −! Vτ⇤

is a contractive self mapping. Since the semigroup {e−tA; t ≥ 0} corresponding to −A is positive,

the assumption (3.51) yields that, given v 2 V−
τ⇤ , it follows that

G(v)(t) = e−tAu⇤ − λ

Z t

0
e−(t−s)Agε

(

v(s)
)

ds  0, t 2 [0, ⌧⇤].

Therefore also

G : V−
τ⇤ −! V−

τ⇤

defines a contractive self mapping. As in the proof of Theorem 3.1.5 we can now conclude that

G possesses a unique fixed point G(u)(t) = u(t) 2 S−
q () on [0, ⌧⇤], being the unique solution

u 2 C1
(

[0, ⌧⇤),Lq(I)
)

\ C
(

[0, ⌧⇤),W
2
q (I)

)

which satisfies

u(t,x)  0, t 2 [0, ⌧⇤], x 2 [−1, 1].

By a finite number of the above fixed-point iteration this reasoning may be extended to the interval

[0,T⇤].

In Theorem 3.1.5 it is proved that the solution to (3.1)–(3.5) exists locally in time for all voltage

values λ. However, the next theorem is addressed to global existence. It turns out that the solution
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(u, ) to (3.1)–(3.5) exists even globally in time, if λ is smaller than a critical value λ⇤.

3.1.7 Theorem (Global Existence, [40, Theorem 3.7])

Let q 2 (2,1), " > 0 and λ > 0. Furthermore, given f 2 C3
(

[−1, 1]⇥[−1,1),R
)

and u⇤ 2W 2
q,D(I),

satisfying −1 < u⇤(x) for x 2 I, let (u, ) denote the corresponding solution to (3.1)–(3.5) on the

maximal interval [0,T ) of existence. Then, given  2 (0, 1), there exist λ⇤ := λ⇤(, ") > 0 and

⇤ := ⇤(, ") > 0 such that T = 1 and u(t) 2 Sq(⇤) for t ≥ 0, provided that λ 2 (0,λ⇤).

The proof performs exactly as the one in [14] for the case of constant permittivity. Hence, merely

the main steps of the proof are mentioned here for the sake of completeness.

Proof. Given u⇤ 2 Sq(), let (u, ) be the corresponding solution to (3.1)–(3.5) on the maximal

interval [0,T ) of existence. We pick ⇤ := /M with M as in (3.42) and put λ⇤ := λ⇤(, ", q,σ) > 0

such that

λ⇤M max {cL(, "), cB(, ")} I(1)  1

2
<

1

2⇤
(3.52)

and

2λ⇤McB(, ")I(1)  ⇤. (3.53)

Using λ  λ⇤ and recalling the relation (3.46), i.e. I(⌧)  I(1) < 1, one may infer from the

estimates (3.47)–(3.49) that for each ⌧ > 0 the mapping G defines a contractive self mapping on Vτ .

More precisely, G complies with the estimates

kG(u)(t)kW 2
q,D(I) 

M

2
+ λ⇤M max {cL(, "), cB(, ")} I(1) <

1

⇤

and

G(u)(t) ≥ −1 + 2− 2λ⇤McB(, ")I(1) ≥ −1 + ⇤,

implying that G : Vτ ! Vτ is a self mapping. In addition, it is shown in (3.49) that

kG(v1)(t)−G(v2)(t)kW 2
q,D(I)  λMcL(, ")I(⌧) kv1 − v2kC([0,τ ],W 2

q,D(I)) ,

where

λMcL(, ")I(⌧)  λ⇤McL(, ")I(1) < 1.

Thus, G : Vτ ! Vτ is a contraction which allows of invoking Banach’s fixed-point theorem as in the

proof of Theorem 3.1.5 to deduce that

G(u)(t) = e−tAu⇤ − λ

Z t

0
e−(t−s)Agε

(

u(s)
)

ds, t 2 [0, ⌧ ],
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possesses a unique fixed point u 2 Vτ . Since the above reasoning is true for all arbitrarily chosen

⌧ > 0, we may eventually conclude that T = 1 and u(t) 2 Sq(⇤) for all t ≥ 0.

3.2 | On the Quasilinear Case

It is the intention of this section to present a local well-posedness as well as a global existence result

for the coupled system consisting of the quasilinear evolution problem

ut − @x

 

ux
p

1 + "2(ux)2

!

= −λ
(

"2 2
x(x,u) +  2

z(x,u)
)

+ 2λ
(

"2 x(x,u)fx(x,u) +  z(x,u)fu(x,u)
)

, t > 0, x 2 I, (3.54)

u(t,±1) = 0, t > 0, (3.55)

u(0,x) = u⇤(x), x 2 I, (3.56)

characterising the time evolution u = u(t,x) of the membrane’s displacement, and the elliptic moving

boundary problem

"2 xx +  zz = 0, t > 0, (x, z) 2 Ω(u(t)), (3.57)

 (t,x, z) =
1 + z

1 + u(t,x)
f
(

x,u(t,x)
)

, t > 0, (x, z) 2 @Ω(u(t)), (3.58)

describing the behaviour of the electrostatic potential  =  (t,x, z) in the region

Ω(u(t)) = {(x, z) 2 I ⇥ (−1,1);−1 < z < u(t,x)}

between the ground plate and the elastic membrane. Similar to what is shown in the previous section

we verify local existence and uniqueness of the solution (u, ) to (3.54)–(3.58) for all arbitrary values

λ of the applied voltage, as well as global existence, provided that the applied voltage does not exceed

a critical value λ⇤.

As in [17] for the case of a spatially varying permittivity profile f = f(x) and in [16] for f =

f
(

u(t,x)
)

, the performance of the proofs is based on the methods used in [15].

Following the lines of Section 3.1, the first step in the investigation of (3.54)–(3.58) is to observe that

for a given v 2 Sq() the transformed elliptic moving boundary problem on the fixed rectangular

domain Ω = I ⇥ (−1, 0) possesses a unique solution ' 2W 2
2 (Ω). Since the statement is exactly the

same as in Theorem 3.1.3 in Section 3.1 we just replicate the result without giving the proof.

Let  2 (0, 1), " > 0, and q 2 (2,1). Given v 2 Sq() and f 2 C3
(

[−1, 1]⇥R,R
)

, there is a unique
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solution 'v 2W 2
2 (Ω) to the problem

(Lv'v)(x, ⌘) = 0, (x, ⌘) 2 Ω, (3.59)

'v(x, ⌘) = ⌘f(x, v), (x, ⌘) 2 @Ω, (3.60)

satisfying the a priori estimate

k'vkW 2
2 (Ω)  c(, ") (3.61)

with a positive constant c(, "). In addition, defining the function ṽ by ṽ(x) := v(−x) for all x 2 I

and assuming that f
(

x, v(x)
)

= f
(

−x, v(x)
)

, x 2 I, one obtains that

'ṽ(x, ⌘) = 'v(−x, ⌘), (x, ⌘) 2 Ω.

The basic idea for handling the evolution problem (3.54)–(3.56) may be described as follows. De-

noting for the sake of better readability by ' 2 W 2
2 (Ω) the unique solution to (3.59)–(3.60), the

transformed quasilinear initial boundary value problem

ut − @x

 

ux
p

1 + "2(ux)2

!

= −λgε(u), t > 0, x 2 I, (3.62)

u(t,±1) = 0, t > 0, (3.63)

u(0,x) = u⇤(x), x 2 I, (3.64)

with gε given by

gε(u) = "2
⇣

−
(

fx(x,u)
)2

+
(

(fu(x,u)ux
)2
⌘

− 2
1 + "2(ux)

2

1 + u
fu(x,u)'η(t,x, 1) +

1 + "2(ux)
2

(1 + u)2
(

'η(t,x, 1)
)2

is perceived as an abstract parameter-dependent quasilinear Cauchy problem. At this point the

main two differences between the semilinear problem and its quasilinear counterpart become ap-

parent. In order to employ the instrument of semigroup theory to the latter, firstly a suitable

evolution operator UAε(w), induced by the quasilinear second-order differential operator Aε(w)v =

−vxx/
(

1 + "2(wx)
2
)3/2

, has to be introduced. One can see later on that in this context the re-

sults derived in [15] may be literally adopted. As also pointed out in [15], the second differ-

ence consists in proving regularity properties of the right-hand side of (3.62). More precisely, on

the one hand, the transformed right-hand side gε(u) has to be globally bounded as a mapping

gε : Sq() ! W 2σ
2,D(I), 2σ 2 [0, 1/2), as shown in Lemma 3.1.4. On the other hand, the quasilinear

nature of the evolution problem requires that the Lipschitz continuity of its right-hand side is to
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be verified in weaker norms than for the semilinear case. These explanatory notes are formalised in

Proposition 3.2.4 stated below.

The general concept for proving well-posedness of the quasilinear problem is similar to the one in

Section 3.1 for the semilinear case. We first prove a Lipschitz estimate for the Nemitskii operator

Nf induced by the permittivity profile f . It becomes clear in the course of this section that also

the Lipschitz continuity of Nf is to be proved in the above mentioned weaker norms. Having this

Lipschitz estimate at hand we may then derive some technical auxiliary results which in the end

enable us to apply the arguments of the proof of [15, Theorem 1.1] in order to proof local well-

posedness and global existence.

3.2.1 Lemma (Global Lipschitz Continuity of the Nemitskii Operator II)

Given q 2 (2,1) and  2 (0, 1), let Sq() be defined as above. Moreover, let ⇠ 2 [0, (q − 1)/q).

Then the Nemitskii operator

Nf : W
2−ξ
q (I) −! W 2−ξ

q (I), v 7−! f(·, v(·))

induced by f 2 C3
(

[−1, 1] ⇥ R,R
)

is globally Lipschitz continuous in the following sense. There

exists a constant cf ,L > 0 such that

kNf (v1)−Nf (v2)kW 2−ξ
q (I)

 cf ,Lkv1 − v2kW 2−ξ
q (I)

for all v1, v2 2 Sq().

As usual we denote both the function f : [−1, 1]⇥ R ! R as well as the Nemitskii operator Nf , by

f if no ambiguity is to be feared, i.e. Nf (v) = f(x, v) for v 2 Sq(). Moreover, given v 2 Sq(),

in the following the notation Nf (v)
0 = fx(x, v) + fv(x, v)vx is used for the total derivative of Nf (v)

with respect to x, and we write v0 = vx if this is appropriate for the sake of better readability.

Proof. Given v1, v2 2 Sq(), observe that v1, v2 and hence for s 2 [0, 1] also v1+s[v2−v1] is bounded

in C1
(

[−1, 1],R
)

by a uniform constant depending only on . As a simple consequence of the mean

value theorem in integral form and the continuity of the embedding W 2−ξ
q (I) ,! Lq(I) we therefore
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obtain

kf(x, v1)− f(x, v2)kqLq(I)
=

Z

I
|f(x, v1(x))− f(x, v2(x))|qdx

=

Z

I

∣

∣

∣

∣

Z 1

0
fv
(

x, v1(x) + s[v2(x)− v1(x)]
)

(v2(x)− v1(x)) ds

∣

∣

∣

∣

q

dx

 max
x2[−1,1]
s2[0,1]

(

fv
(

x, v1(x) + s[v2(x)− v1(x)]
))q

Z

I
|v2(x)− v1(x)|q dx

 ckv1 − v2kqLq(I)
 ckv1 − v2kq

W 2−ξ
q (I)

.

It remains to verify the estimates

kfx(x, v1)− fx(x, v2)kW 1−ξ
q (I)

 c kv1 − v2kW 2−ξ
q (I)

(3.65)

and

kfv(x, v1)v01 − fv(x, v2)v
0
2kW 1−ξ

q (I)
 c kv1 − v2kW 2−ξ

q (I)
(3.66)

for suitable constants c > 0. To this end, firstly observe that by means of the mean value theorem

in integral form one may prove Nfx ,Nfv 2 Lip
(

W 1
q (I),W

1
q (I)

)

. Since W
2−ξ
q (I) is continuously

embedded in W 1
q (I) this implies in addition that

Nfx ,Nfv 2 Lip
(

W 2−ξ
q (I),W 1

q (I)
)

.

The inequality (3.65) now follows immediately and we are left with proving (3.66). To this end note

that pointwise multiplication W 1
q (I) ·W 1−ξ

q (I) ,! W
1−ξ
q (I) is continuous (c.f. [2, Theorem 4.1]),

whereby we obtain

kfv(x, v1)v01 − fv(x, v2)v
0
2kW 1−ξ

q (I)

 kfv(x, v1)
(

v01 − v02
)

k
W 1−ξ

q (I)
+ k

(

fv(x, v1)− fv(x, v2)
)

v02kW 1−ξ
q (I)

 ckfv(x, v1)kW 1
q (I)

kv01 − v02kW 1−ξ
q (I)

+ ckfv(x, v1)− fv(x, v2)kW 1−ξ
q (I)

kv02kW 1
q (I)

.

(3.67)

Using in (3.67) that fv is contained in Lip
(

W
2−ξ
q (I),W 1

q (I)
)

and that v2 2 Sq() finally yields the

existence of a constant cf ,L = cf ,L(, f) > 0 such that

kfv(x, v1)v01 − fv(x, v2)v
0
2kW 1−ξ

q (I)
 cf ,Lkv1 − v2kW 2−ξ

q (I)
. (3.68)

This completes the proof.

Prior to proving Lipschitz continuity of gε in suitable norms, Lipschitz continuity of 'v with respect

to v 2 Sq() in suitable norms is to be verified (see Lemma 3.2.3 below). The associated proof is an
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adaption of [15, Lemma 2.6] to a non-constant permittivity profile so that the following auxiliary

result on the function Fv introduced in (3.16) is indispensable.

3.2.2 Lemma

Let f 2 C3
(

[−1, 1] ⇥ R,R
)

. Then, given ⇠ 2 [0, (q − 1)/q) and ↵ 2 (⇠, 1), there exists a constant

c = c(, ") > 0 such that

kFv1 − Fv2kW−α
2,D(Ω)  c(, ")kv1 − v2kW 2−ξ

q (I)
, v1, v2 2 Sq().

Proof. Recall that, given v 2 Sq(), the function Fv, defined on Ω as

Fv(x, ⌘) = Lv

(

⌘f(x, v)
)

= "2⌘
(

fxx(x, v) + 2fxv(x, v)v
0 + fvv(x, v)(v

0)2 + fv(x, v)v
00
)

− 2"2⌘
v0

1 + v

(

fx(x, v) + fv(x, v)v
0
)

+ "2⌘

 

2

✓

v0

1 + v

◆2

− v00

1 + v

!

f(x, v)

= "2⌘Nf (v)
00 − 2"2⌘

v0

1 + v
Nf (v)

0 + "2⌘

 

2

✓

v0

1 + v

◆2

− v00

1 + v

!

Nf (v)

satisfies Fv 2 L2(Ω) ,! W−α
2,D(Ω) as stated in (3.17). Now, given v1, v2 2 Sq(), we show that there

exists a constant c > 0 such that the dual pairing h(Fv1 − Fv2),µi of Fv1 − Fv2 2 W−α
2,D(Ω) and

µ 2 Wα
2,D(Ω) \ {0} complies with the estimate

h(Fv1 − Fv2),µi 
Z

Ω
|(Fv1 − Fv2)µ| d(x, ⌘)  ckv1 − v2kW 2−ξ

q (I)
kµkWα

2,D(Ω),

whereby one may then conclude that

kFv1 − Fv2kW−α
2,D(Ω) := sup

µ2Wα
2,D(Ω)\{0}

hFv1 − Fv2 ,µi
kµkWα

2,D(Ω)
 ckv1 − v2kW 2−ξ

q (I)
.

To this end we observe firstly that8

Z

Ω
|(Fv1 − Fv2)µ| d(x, ⌘)

 "2
Z

Ω

∣

∣

(

Nf (v1)
00 −Nf (v2)

00
)

µ
∣

∣ d(x, ⌘)

+ 2"2
Z

Ω

∣

∣

∣

∣

✓

v01
1 + v1

Nf (v1)
0 − v02

1 + v2
Nf (v2)

0

◆

µ

∣

∣

∣

∣

d(x, ⌘)

+ "2
Z

Ω

∣

∣

∣

∣

∣

 

2

✓

v01
1 + v1

◆2

− v001
1 + v1

!

Nf (v1)−
 

2

✓

v02
1 + v2

◆2

− v002
1 + v2

!

Nf (v2)µ

∣

∣

∣

∣

∣

d(x, ⌘)

(3.69)

8Note that we use 0  ⌘  1 throughout the following estimates.
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and estimate the terms on the right-hand side separately. For this purpose we firstly observe that

the differential operator9 D2
x : W

2
2 (Ω) ! L2(Ω), h(x, ⌘) 7! @2xh(x, ⌘), is linear and bounded and may

be extended such that D2
x 2 L

(

W 2−α
2 (Ω),W−α

2 (Ω)
)

. Observing that

Z

Ω

∣

∣

(

Nf (v1)
00 −Nf (v2)

00
)

µ
∣

∣ d(x, ⌘) 
∥

∥Nf (v1)
00 −Nf (v2)

00
∥

∥

W−α
2 (Ω)

kµkWα
2,D(Ω)

 kNf (v1)−Nf (v2)kW 2−α
2 (Ω) kµkWα

2,D(Ω),

the continuity of the embedding W 2−ξ
q (I) ,!W 2−α

2 (I) together with the Lipschitz continuity of the

Nemitskii operator Nf (v) = f(x, v), proved in Lemma 3.2.1, thus lead to the estimate

Z

Ω

∣

∣

(

Nf (v1)
00 −Nf (v2)

00
)

µ
∣

∣ d(x, ⌘)  c kNf (v1)−Nf (v2)kW 2−ξ
q (I)

kµkWα
2,D(Ω)

 ckv1 − v2kW 2−ξ
q (I)

kµkWα
2,D(Ω)

(3.70)

for the first term. Regarding the second term, one readily obtains

Z

Ω

∣

∣

∣

∣

✓

v01
1 + v1

Nf (v1)
0 − v02

1 + v2
Nf (v2)

0

◆

µ

∣

∣

∣

∣

d(x, ⌘)


 

∥

∥

∥

∥

v01
1 + v1

(

Nf (v1)
0 −Nf (v2)

0
)

∥

∥

∥

∥

W−α
2 (Ω)

+

∥

∥

∥

∥

✓

v01
1 + v1

− v02
1 + v2

◆

Nf (v2)
0

∥

∥

∥

∥

W−α
2 (Ω)

!

kµkWα
2,D(Ω)

so that the continuity of the pointwise multiplications

W 1
q (Ω) ·W−α

2 (Ω) ,!W−α
2 (Ω) and W 1−ξ

q (I) ·W 1
q (I) ,!W 1−ξ

q (I) ,!W−α
2 (I)

leads to the inequality

Z

Ω

∣

∣

∣

∣

✓

v01
1 + v1

Nf (v1)
0 − v02

1 + v2
Nf (v2)

0

◆

µ

∣

∣

∣

∣

d(x, ⌘)


∥

∥

∥

∥

v01
1 + v1

∥

∥

∥

∥

W 1
q (I)

∥

∥Nf (v1)
0 −Nf (v2)

0
∥

∥

W−α
2 (Ω)

kµkWα
2,D(Ω)

+

∥

∥

∥

∥

v01
1 + v1

− v02
1 + v2

∥

∥

∥

∥

W 1−ξ
q (I)

∥

∥Nf (v2)
0
∥

∥

W 1
q (I)

kµkWα
2,D(Ω).

Moreover, again thanks to Lemma 3.2.1 by additionally using the facts that W 1−ξ
q (I) is a multipli-

cation algebra and that each v 2 Sq() is bounded in C1
(

[−1, 1],R
)

by a uniform constant c() > 0,

9If h 2W 2
2 (Ω) depends only on x 2 I the simplified notation D2

xh(x) = h00(x) is used.
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we find that

Z

Ω

∣

∣

∣

∣

✓

v01
1 + v1

Nf (v1)
0 − v02

1 + v2
Nf (v2)

0

◆

µ

∣

∣

∣

∣

d(x, ⌘)

 c() kNf (v1)−Nf (v2)kW 2−ξ
q (I)

kµkWα
2,D(Ω)

+ c(, f)kv01 − v02kW 1−ξ
q (I)

kµkWα
2,D(Ω) + c(, f)kv1 − v2kW 1−ξ

q (I)
kµkWα

2,D(Ω)

 c(, f)kv1 − v2kW 2−ξ
q (I)

kµkWα
2,D(Ω).

(3.71)

Finally, fusing the arguments used in [15, Lemma 2.5] with Lemma 3.2.1 in order to estimate the

third term, one may verify that also the inequality

Z

Ω

∣

∣

∣

∣

∣

 

2

✓

v01
1 + v1

◆2

− v001
1 + v1

!

Nf (v1)−
 

2

✓

v02
1 + v2

◆2

− v002
1 + v2

!

Nf (v2)µ

∣

∣

∣

∣

∣

d(x, ⌘)

 c(, f)kv1 − v2kW 2−ξ
q (I)

kµkWα
2,D(Ω)

(3.72)

holds true. A combination of the estimates (3.70)–(3.72) eventually yields

Z

Ω
|(Fv1 − Fv2)µ| d(x, ⌘)  c(, ", f)kv1 − v2kW 2−ξ

q (I)
kµkWα

2,D(Ω)

and with the introductory words the proof is complete.

As a combination of the previous lemma with results from [15] we obtain Lipschitz continuity of 'v

as formulated in the following lemma.

3.2.3 Lemma

Let f 2 C3
(

[−1, 1] ⇥ R,R
)

. Then, given ⇠ 2 [0, (q − 1)/q) and ↵ 2 (⇠, 1), there exists a constant

c = c(, ") > 0 such that

k'v1 − 'v2kW 2−α
2,D (Ω)  c(, ")kv1 − v2kW 2−ξ

q (I)
, v1, v2 2 Sq().

Proof. As in [15, Section 2] we pick v 2 Sq() and introduce the bounded linear operator

A(v) 2 L
(

W 1
2,D(Ω),W

−1
2,D(Ω)

)

\ L
(

W 2
2,D(Ω),L2(Ω)

)

,

defined as

A(v)φ := −Lvφ, φ 2 W 1
2,D(Ω).
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[15, Lemma 2.2] yields the existence of a unique solution φv 2W 2
2,D(Ω) to the problem

−Lvφv = Fv, (x, ⌘) 2 Ω,

φv = 0, (x, ⌘) 2 @Ω.

This implies in particular that A(v) is invertible and that the relation φv = A(v)−1Fv holds true on

Ω. Moreover, one may check that 'v = φv + ⌘Fv (c.f. also the proof of Theorem 3.1.3 in Section

3.1). In addition, it is proved in [15, Lemma 2.3] that, given ✓ 2 [0, 1]\{1/2}, there exists a uniform

constant c = c(, ") > 0 such that

kA(v)−1kL(W θ−1
2,D (Ω),W θ+1

2,D (Ω))  c(, "), v 2 Sq().

Finally, [15, Lemma 2.4] states that, given ⇠ 2 [0, (q − 1)/q) and ↵ 2 (⇠, 1), there exists a further

constant c = c(, ") > 0 such that A(v) is Lipschitz continuous in the following norms:

kA(v1)−A(v2)kL(W 2
2,D(Ω),W−α

2,D(Ω))  c(, ")kv1 − v2kW 2−ξ
q (I)

, v1, v2 2 Sq().

Having these preliminaries at hand pick v1, v2 2 Sq() and note that 'v1 − 'v2 = φv1 − φv2 2
W 2−α

2,D (Ω). This allows the following calculation.

k'v1 − 'v2kW 2−α
2,D (Ω)  kA(v1)

−1
(

Fv1 − Fv2

)

kW 2−α
2,D (Ω) + k

(

A(v1)
−1 −A(v2)

−1
)

Fv2kW 2−α
2,D (Ω)

 kA(v1)
−1kL(W−α

2,D(Ω),W 2−α
2,D (Ω))kFv1 − Fv2kW−α

2,D(Ω)

+ kA(v1)
−1[A(v2)−A(v1)]A(v2)

−1kL(W−α
2,D(Ω),W 2−α

2,D (Ω))kFv2kW−α
2,D(Ω)

 kA(v1)
−1kL(W−α

2,D(Ω),W 2−α
2,D (Ω))kFv1 − Fv2kW−α

2,D(Ω)

+ kA(v1)
−1kL(W−α

2,D(Ω),W 2−α
2,D (Ω))kA(v1)−A(v2)kL(W 2

2,D(Ω),W−α
2,D(Ω))

· kA(v2)
−1kL(L2(Ω),W 2

2,D(Ω))kFv2kL2(Ω)

Now using that

kA(v)−1kL(W θ−1
2,D (Ω),W θ+1

2,D (Ω))  c(, "), v 2 Sq(),

for all ✓ 2 [0, 1] \ {1/2} and that

kA(v1)−A(v2)kL(W 2
2,D(Ω),W−α

2,D(Ω))  c(, ")kv1 − v2kW 2−ξ
q (I)

, v1, v2 2 Sq(),

thanks to [15, Lemma 2.3 & Lemma 2.4], one may conclude that

k'v1 − 'v2kW 2−α
2,D (Ω)  c(, ")kFv1 − Fv2kW−α

2,D(Ω) + c(, ")kFv2kL2(Ω)kv1 − v2kW 2−ξ
q (I)

.



Chapter 3. Local Well-Posedness and Global Existence 50

Finally, recalling that Fv is uniformly bounded in L2(Ω) for all v 2 Sq(), we invoke Lemma 3.2.2

and end up with

k'v1 − 'v2kW 2−α
2,D (Ω)  c(, ")kv1 − v2kW 2−ξ

q (I)
, v1, v2 2 Sq().

This completes the proof.

Fusing the above presented results we are now able to verify that the evolution equations’s right-hand

side gε is globally Lipschitz continuous and uniformly bounded in suitable norms.

3.2.4 Proposition (Properties of gε)

Let  2 (0, 1), " > 0 and q 2 (2,1). Moreover, let f 2 C3
(

[−1, 1]⇥ R,R
)

. Then, with 'v 2W 2
2 (Ω)

denoting the unique solution to (3.59)–(3.60), for 2σ 2 [0, 1/2), the mapping

gε : Sq() −! W 2σ
2,D(I),

v 7−! "2
⇣

−
(

fx(x,u)
)2

+
(

(fu(x,u)ux
)2
⌘

− 2
1 + "2(ux)

2

1 + u
fu(x,u)@η'v(·, 1) +

1 + "2(ux)
2

(1 + u)2
(@η'v(·, 1))2

has the following properties:

(i) gε is uniformly bounded in W 2σ
2,D(I). That is, there is a constant cB = cB(, ") > 0 such that

kgε(v)kW 2σ
2,D(I)  cB(, ")

for every v 2 Sq().

(ii) Given ⇠ 2 [0, 1/2) and ⌫ 2 [0, (1 − 2⇠)/2), gε complies with the following global Lipschitz

inequality. There exists a constant cL = cL(, ") > 0 such that

kgε(v1)− gε(v2)kW ν
2,D(I)  cL(, ")kv1 − v2kW 2−ξ

q,D (I)

for all v1, v2 2 Sq().

Proof. Part (i) of the proposition contains exactly the same statement as in Lemma 3.1.4 of Section

3.1. We are thus left with proving part (ii). To this end, given v 2 Sq(), we introduce the notation

h1(v) := "2
⇣

−
(

fx(x, v)
)2

+
(

(fv(x, v)v
0
)2
⌘

, h2(v) :=
1 + "2(v0)2

1 + v
fv(x, v)@η'v(t,x, 1)

as well as

h3(v) :=
1 + "2(v0)2

(1 + v)2
(

@η'v(t,x, 1)
)2
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and write gε(v) as

gε(v) := h1(v)− 2h2(v) + h3(v).

Having the previous Lemma 3.2.3 in mind, the Lipschitz continuity of h3 with respect to v 2 Sq()

in the corresponding topologies may be literally adopted from the proof of [15, Proposition 2.1].

Thus, there exists a constant c = c(, ") > 0 such that

kh3(v1)− h3(v2)kW ν
2,D(I)  c(, ")kv1 − v2kW 2−ξ

q,D (I)
, v1, v2 2 Sq(), (3.73)

for ⇠ 2 [0, 1/2) and ⌫ 2 [0, (1− 2⇠)/2). In order to verify the Lipschitz continuity of h2 we see that

kh2(v1)− h2(v2)kW ν
2 (I) 

∥

∥

∥

∥

1 + "2(v01)
2

1 + v1
fv(x, v1)

⇣

@η'v1(x, 1)− @η'v2(x, 1)
⌘

∥

∥

∥

∥

W ν
2 (I)

+

∥

∥

∥

∥

✓

1 + "2(v01)
2

1 + v1
fv(x, v1)−

1 + "2(v02)
2

1 + v2
fv(x, v2)

◆

@η'v2(x, 1)

∥

∥

∥

∥

W ν
2 (I)

(3.74)

and introduce the notation

N1 :=

∥

∥

∥

∥

1 + "2(v01)
2

1 + v1
fv(x, v1)

⇣

@η'v1(x, 1)− @η'v2(x, 1)
⌘

∥

∥

∥

∥

W ν
2 (I)

,

N2 :=

∥

∥

∥

∥

✓

1 + "2(v01)
2

1 + v1
fv(x, v1)−

1 + "2(v02)
2

1 + v2
fv(x, v2)

◆

@η'v2(x, 1)

∥

∥

∥

∥

W ν
2 (I)

.

Since pointwise multiplication

W 1
q (I) ·W 1

2 (I) ·W
1/2−α
2 (I) ,! W ν

2 (I)

is continuous (c.f. [2, Theorem 4.1]) N1 complies with the estimate

N1  c

∥

∥

∥

∥

1 + "2(v01)
2

1 + v1

∥

∥

∥

∥

W 1
q (I)

kfv(x, v1)kW 1
2 (I)

k@η'v1(x, 1)− @η'v2(x, 1)kW 1/2−α
2 (I)

.

Moreover, using that v1 2 Sq() and that fv(x, v1) is bounded in the sense of Corollary 3.1.2 it

follows from the properties of the trace operator as stated in [24, Theorem 1.5.1.1] that

N1  c(, f) k'v1 − 'v2kW 2−α
2 (Ω) .

Finally using the Lipschitz continuity of 'v in the sense of Lemma 3.2.3 we end up with

N1 =

∥

∥

∥

∥

1 + "2(v01)
2

1 + v1
fv(x, v1)

⇣

@η'v1(x, 1)− @η'v2(x, 1)
⌘

∥

∥

∥

∥

W ν
2 (I)

 c(, f)kv1 − v2kW 2−ξ
q (I)

. (3.75)
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As for N2 observe that

N2 
 

∥

∥

∥

∥

1 + "2(v01)
2

1 + v1

(

fv(x, v1)− fv(x, v2)
)

∥

∥

∥

∥

W 1−ξ
q (I)

+

∥

∥

∥

∥

✓

1 + "2(v01)
2

1 + v1
− 1 + "2(v02)

2

1 + v2

◆

fv(x, v2)

∥

∥

∥

∥

W 1−ξ
q (I)

!

k@η'v2(x, 1)kW 1/2
2 (I)


 

∥

∥

∥

∥

1 + "2(v01)
2

1 + v1

∥

∥

∥

∥

W 1
q (I)

kfv(x, v1)− fv(x, v2)kW 1−ξ
q (I)

+

∥

∥

∥

∥

1 + "2(v01)
2

1 + v1
− 1 + "2(v02)

2

1 + v2

∥

∥

∥

∥

W 1−ξ
q (I)

kfv(x, v2)kW 1−ξ
q (I)

!

k@η'v2(x, 1)kW 1/2
2 (I)

since pointwise multiplications

W 1−ξ
q (I) ·W 1/2

2 (I) ,!W ν
2 (I) and W 1

q (I) ·W 1−ξ
q (I) ,!W 1−ξ

q (I)

are continuous. Again using that v2 2 Sq() and once more invoking [24, Theorem 1.5.1.1] to see

that k@η'v2(x, 1)kW 1/2
2 (I)

 k'v2kW 2
2 (Ω)  c leads to the estimate

N2  c(, f)
⇣

kfv(x, v1)− fv(x, v2)kW 1−ξ
q (I)

+ kv01 − v02kW 1−ξ
q (I)

⌘

.

In the proof of Lemma 3.2.1 it is shown that

kfv(x, v1)− fv(x, v2)kW 1−ξ
q (I)

 c(, f)kv1 − v2kW 2−ξ
q (I)

,

whereby N2 eventually satisfies

N2 =

∥

∥

∥

∥

✓

1 + "2(v01)
2

1 + v1
fv(x, v1)−

1 + "2(v02)
2

1 + v2
fv(x, v2)

◆

@η'v2(x, 1)

∥

∥

∥

∥

W ν
2 (I)

 c(, f)kv1 − v2kW 2−ξ
q (I)

.

(3.76)

Combining (3.75) and (3.76) proves the Lipschitz continuity of h2, i.e. the inequality

kh2(v1)− h2(v2)kW ν
2 (I)  c(, f)kv1 − v2kW 2−ξ

q (I)
. (3.77)

We are hence left with verifying an analogue estimate for h1. For this purpose observe that continuity
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of pointwise multiplication leads to

kh1(v1)− h1(v2)kW ν
2 (I)


∥

∥

∥

(

fx(x, v1)
)2 −

(

fx(x, v2)
)2
∥

∥

∥

W ν
2 (I)

+
∥

∥

∥

(

fv(x, v1)
)2
(v01)

2 −
(

fv(x, v2)
)2
(v02)

2
∥

∥

∥

W ν
2 (I)

.
(3.78)

Regarding the Lipschitz continuity of the first term on the right-hand side of (3.78) observe that

pointwise multiplication W
1−ξ
q (I) ·W 1

2 (I) ,! W ν
2 (I) is continuous and recall that (c.f. the proof of

Lemma 3.2.1) Nfx 2 Lip
(

W
2−ξ
q (I),W 1

q (I)
)

. This readily yields

∥

∥

∥

(

fx(x, v1)
)2−

(

fx(x, v2)
)2
∥

∥

∥

W ν
2 (I)

kfx(x, v1)− fx(x, v2)kW 1−ξ
q (I)

kfx(x, v1) + fx(x, v2)kW 1
2 (I)

c(, f)kv1 − v2kW 2−ξ
q (I)

.

(3.79)

Furthermore, the second term on the right-hand side of (3.78) may be treated as follows. Using

again that pointwise multiplication W
1−ξ
q (I) · W 1

2 (I) ,! W ν
2 (I) is continuous and moreover that

W 1
2 (I) is a multiplication algebra, we find that

∥

∥

∥

(

fv(x, v1)
)2
(v01)

2−
(

fv(x, v2)
)2
(v02)

2
∥

∥

∥

W ν
2 (I)


∥

∥fv(x, v1)v
0
1 − fv(x, v2)v

0
2

∥

∥

W 1−ξ
q (I)

+
∥

∥fv(x, v1)v
0
1 + fv(x, v2)v

0
2

∥

∥

W 1
2 (I)


∥

∥fv(x, v1)v
0
1 − fv(x, v2)v

0
2

∥

∥

W 1−ξ
q (I)

+
⇣

kfv(x, v1)kW 1
2 (I)

kv01kW 1
2 (I)

+ kfv(x, v2)kW 1
2 (I)

kv02kW 1
2 (I)

⌘

.

We finally recall that v1, v2 2 Sq() and that fv(x, v1) and fv(x, v2) are uniformly bounded in W 2
2 (I)

to deduce from (3.68) in Lemma 3.2.1 that

∥

∥(fv(x, v1))
2(v01)

2 − (fv(x, v2))
2(v02)

2
∥

∥

W ν
2 (I)

 c(, f)kv1 − v2kW 2−ξ
q (I)

. (3.80)

Fusing (3.79) and (3.80) yields the Lipschitz continuity of h1 with respect to v 2 Sq() in the sense:

kh1(v1)− h1(v2)kW ν
2 (I)  c(, f)kv1 − v2kW 2−ξ

q (I)
, v1, v2 2 Sq(), (3.81)

whereby the assertion is proved after combining (3.73), (3.77) and (3.81).

We are now prepared to verify the following result on local existence and uniqueness of solutions to

(3.54)–(3.58). As already mentioned, the proof is performed as the one of [15, Theorem 1.1].

3.2.5 Theorem (Local Well-Posedness)

Let q 2 (2,1) and " > 0. Given an initial value u⇤ 2 W 2
q,D(I) with u⇤(x) > −1 for all x 2 I, and
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f 2 C3
(

[−1, 1]⇥ R,R
)

, the following holds true:

(i) For each voltage value λ > 0 there exists a unique maximal solution (u, ) to (3.54)–(3.58) on

the maximal interval [0,T ) of existence in the sense that

u 2 C1
(

[0,T ),Lq(I)
)

\ C
(

[0,T ),W 2
q,D(I)

)

satisfies (3.54)–(3.56) with

u(t,x) > −1, t 2 [0,T ),x 2 I,

and  2W 2
2

(

Ω(u(t))
)

solves (3.57)–(3.58) for each t 2 [0,T ).

(ii) If for each ⌧ > 0 there is a (⌧) 2 (0, 1) such that u(t) 2 Sq
(

(⌧)
)

for t 2 [0,T ) \ [0, ⌧ ], then

the solution (u, ) to (3.54)–(3.58) exists globally in time, meaning that T = 1.

(iii) If u⇤(x) = u⇤(−x) and f(x, r) = f
(

−x, r) for all x 2 I and r 2 (−1,1), then u = u(t,x) and

 =  (t,x, z) are even with respect to x 2 I for all times t 2 [0,T ) as well.

Proof. (i) Following [15] we fix q 2 (2,1), 2 (0, 1) and ⇠ 2 (0, (q − 1)/q) and introduce the set

Zq() :=
n

w 2 W 2−ξ
q,D (I); kwk

W 2−ξ
q (I)

 1/
o

.

The identity

@x

 

vx
p

1 + "2(vx)2

!

= − vxx
(

1 + "2(vx)2
)3/2

then serves as a motivation to define for w 2 Zq() the linear differential operator

Aε(w) 2 L
(

W 2
q,D(I),Lq(I)

)

, Aε(w)v := − vxx
(

1 + "2(wx)2
)3/2

of second order such that (3.54)–(3.56) may be perceived as the abstract Cauchy problem

u̇+Aε(u)u = −λgε(u), t > 0, (3.82)

u(0) = u⇤. (3.83)

Moreover, thanks to [15, Lemma 3.1] we know that the operator Aε(w) generates a strongly continu-

ous analytic semigroup on Lq(I).10 The Cauchy problem (3.82)–(3.83) may be solved by introducing

so-called evolution operators in the sense of [3, Section II]. To this end, fix ⇢ 2 (0, 1) and ⌧ > 0 and

10Note that the proof of [15, Lemma 3.1] uses the general statement in [3, Section I, Theorem 1.2.2].
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define the set

Wτ () :=

(

w : [0, ⌧ ] ! Zq(); max
0t,sτ

kw(t)− w(s)k
W 2−ξ

q (I)

|t− s|ρ <1
)

.

It is proved in [15, Proposition 3.1], that if w = w(t) is Hölder continuous in t in the sense that w is

contained in Wτ (), then Aε(w) generates a unique parabolic evolution operator UAε(w)(t, s), 0 
s  t  ⌧ , possessing W 2

q,D(I) as a regularity subspace. Furthermore, each linear operator

UAε(w)(t, s) is positive from Lq(I) to Lq(I) for all 0  s  t  ⌧ . Having the boundedness and

Lipschitz continuity of gε in terms of Proposition 3.2.4 at hand one may now literally follow the lines

of the proof of [15, Theorem 1.1] to conclude that there exists a constant ⇤   such that11

G(v)(t) := UAε(v)(t, 0)u⇤ − λ

Z t

0
UAε(v)(t, s)gε

(

v(s)
)

ds, t 2 [0, ⌧ ],

defines for each v 2 Wτ () with v(t) 2 Sq(⇤), t 2 [0, ⌧ ], a contractive self mapping on the complete

metric space

Vτ :=
⇣

{

v 2 Wτ (); v(t) 2 Sq(⇤), t 2 [0, ⌧ ]
 

, d
⌘

,

where d denotes the metric induced by C
(

[0, ⌧ ],W 2−ξ
q (I)

)

. Therefore one may deduce from Banach’s

fixed-point theorem that there exists a unique fixed point

u = G(u) 2 Vτ

of G. As in the semilinear case this finally proves part (i) of the theorem, as it implies that for each

λ > 0 (3.82)–(3.83) possesses a unique non-extendable solution

u 2 C1
(

[0,T ),Lq(I)
)

\ C
(

[0,T ),W 2
q,D(I)

)

for some T 2 (⌧ ,1], satisfying

u(t,x) > −1, t 2 [0,T ), x 2 I.

Parts (ii) and (iii) may be proved as in the semilinear case as well.

3.2.6 Theorem (Global Existence)

Let q 2 (2,1), " > 0 and λ > 0. Furthermore, given f 2 C3
(

[−1, 1] ⇥ R,R
)

and u⇤ 2 W 2
q,D(I)

satisfying u⇤(x) > −1 for x 2 I, let (u, ) denote the corresponding solution to (3.54)–(3.58) on

the maximal interval [0,T ) of existence. Then, given  2 (0, 1), there exist λ⇤ = λ⇤() > 0 and

11In fact ⇤ is given as ⇤ = /c⇤(), where c⇤() ≥ 1 is a suitable constant related to the evolution operator UA(w);
see (3.11) in [15].



Chapter 3. Local Well-Posedness and Global Existence 56

c = c() > 0 such that T = 1 with u(t,x) ≥ −1 +  for all t 2 [0,1) and x 2 I, provided

that λ 2 (0,λ⇤) and ku⇤kW 2
q (I)

 c(). In that case u enjoys the following additional regularity

properties:

u 2 BUCρ
(

[0,1),W 2−ρ
q,D (I)

)

\ L1

(

[0,1),W 2
q,D(I)

)

(3.84)

for some small ⇢ > 0.

3.2.7 Remark (1) The proof of Theorem 3.2.6 may be literally adopted from the one of [15,

Theorem 1.1 (iv)], where the authors demonstrate that G is a contractive self mapping on Vτ

for all ⌧ ≥ 0, provided that the applied voltage λ > 0 is smaller than a certain critical value λ⇤

and the initial value u⇤ is bounded in the W 2
q (I)-norm by a certain constant c() > 0. Note

that the latter condition is not required in the semilinear case.

(2) It is worthwhile to mention that temporally global solutions u do never touch down on the

ground plate, not even in infinite time. Moreover, note that they are bounded in W 2
q (I) by a

uniform constant.

(3) It follows from general parabolic theory (c.f. [3]), that the globally existing mild solution is

also a strong solution enjoying the additional regularity stated in (3.84).

The section is completed by making the observation that Corollary 3.1.6 in Section 3.1 on the sign

property of the solution u does likewise hold true in the quasilinear case. Thus, we have the following

corollary.

3.2.8 Corollary

Let u⇤ 2 Sq() satisfy u⇤(x)  0 for all x 2 I and assume that the implication

v 2 Sq(), v(x)  0 8x 2 I =) gε(v) 2 Sq(), gε(v(x)) ≥ 0 8x 2 I (3.85)

holds true. Then the solution u to (3.54)–(3.56) satisfies

u(t,x)  0, t 2 [0,T ), x 2 I.



4 | The Small-Aspect Ratio Limit

As mentioned in the introduction the analysis of coupled systems of partial differential equations

has only recently become part of the mathematical investigation of microelectromechanical systems.

Irrespective of the precise physical regime for an adequate choice of the governing equations de-

scribing the dynamics of the membrane’s displacement u – suppose for instance the linear elasticity

setting (2.32)–(2.34) or its nonlinear elasticity counterpart (2.29)–(2.31) – the displacement of the

elastic membrane causes a change of the shape of the domain Ω
(

u(t)
)

occupied by the ground plate

and the overlying membrane. This gives rise to a coupling between the problem for the electro-

static potential  and the membrane’s displacement u. On the one hand  is to be determined by

a free boundary value problem in the domain Ω(u(t)). On the other hand the right-hand side of

the evolution equation for u involves the partial derivatives of the potential  signifying a further

coupling in the system. Roughly speaking, this strong coupling between the two problems makes

their mathematical analysis rather complex, whereby it has heretofore been and it still is a quite

common approach in MEMS research to make an assumption which reduces the initial nonlocal

coupled problem to an uncoupled semilinear evolution equation for u.

For pioneering contributions to the understanding of the full coupled problem the reader is again

referred to the works [32] and [14]. It is the intention of this chapter to generalise a convergence

result on the small-aspect ratio limit obtained in [14] for f ⌘ 1 to the case of a general permittivity

profile f = f
(

x,u(t,x)
)

. To this end, consider the system

ut − uxx = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
⌘

+ 2λ
⇣

"2 x(x,u)fx(x,u) +  z(x,u)fu(x,u)
⌘

, t > 0, x 2 I, (4.1)

u(t,±1) = 0, t > 0, (4.2)

u(0,x) = u⇤(x), x 2 I, (4.3)

57
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arising from the linear elasticity approach for the membrane’s displacement, together with the elliptic

moving boundary problem

"2 xx +  zz = 0, (x, z) 2 Ω(u(t)), (4.4)

 (t,x, z) =
1 + z

1 + u(t,x)
f
(

x,u(t,x)
)

, (x, z) 2 @Ω(u(t)), (4.5)

for the electrostatic potential in the region

Ω
(

u(t)
)

:= {(x, z) 2 I ⇥ (−1,1);−1 < z < u(t,x)}.

A common approach in order to decouple the problems (4.1)–(4.3) and (4.4)–(4.5) is to consider the

aspect ratio " of the respective MEMS device to be fairly small, i.e. "⌧ 1, or in fact even " = 0. In

this case the potential is computed as if the two plates were locally parallel and the resulting explicit

expression for  avoids the coupling via the right-hand side of (4.1). The full coupled problem is

then reduced to a semilinear parabolic initial boundary value problem possessing a singularity in

the instant the elastic membrane touches down on the ground plate. In detail, setting " = 0 in (4.4)

yields the reduced problem

 zz(t,x, z) = 0, t > 0, (x, z) 2 Ω(u(t)), (4.6)

 (t,x, z) =
1 + z

1 + u(t,x)
f
(

x,u(t,x)
)

, t > 0, (x, z) 2 @Ω(u(t)), (4.7)

for the electrostatic potential whose solution  :=  0 may be explicitly stated as

 (t,x, z) =
1 + z

1 + u(t,x)
f
(

x,u(t,x)
)

, t > 0, (x, z) 2 I ⇥ (−1, 0). (4.8)

Inserting the likewise computable partial derivative

 z(t,x, z) =
f
(

x,u(t,x)
)

1 + u(t,x)

into the evolution equation for the membrane displacement in the case " = 0, i.e. into the equation

ut − uxx = −λ
(

 z(t,x,u)
)2

+ 2λ z(t,x,u)fu(x,u), t > 0, x 2 I, (4.9)
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implies that the displacement u := u0 finally satisfies the so-called small-aspect ratio model

ut − uxx = −λ
 

f
(

x,u(t,x)
)

1 + u(t,x)

!2

+ 2λ
f
(

x,u(t,x)
)

1 + u(t,x)
fu
(

x,u(t,x)
)

, t > 0, x 2 I, (4.10)

u(t,±1) = 0, t > 0, (4.11)

u(0,x) = u⇤(x), x 2 I. (4.12)

Problem (4.10)–(4.12) is a reduced model for the elastic behaviour of the system. It is uncoupled

from the potential equation and may be solved independently. However, note that the evolution

equation (4.10) is still nonlinear.

Denoting for " > 0 the solution to (4.1)–(4.5) by (uε, ε), we shall see in this section that as " tends

to zero, the corresponding sequence (uε, ε)ε converges in a certain sense to the solution (u0, 0)

of the small-aspect ratio model (4.10)–(4.12) with  0 given in (4.8). More precisely, we prove the

following result.

4.0.9 Theorem (Small-Aspect Ratio Limit, [40, Theorem 4.1])

Let λ > 0, q 2 (2,1), 2 (0, 1), f 2 C3
(

[−1, 1] ⇥ R,R
)

, and let u⇤ 2 Sq() with u⇤ < 1 +K0 for

x 2 I. For " > 0 let (uε, ε) be the unique solution to (4.1)–(4.5) on the maximal interval [0,T ) of

existence. Then there are ⌧ > 0, "⇤ 2 (0, 1), and ⇤ 2 (0, 1), depending only on q and , such that

T ≥ ⌧ and uε(t) 2 Sq(⇤) for all t 2 [0, ⌧ ] and for all " 2 (0, "⇤). Moreover, the small-aspect ratio

problem (4.10)–(4.12) has a unique solution

u0 2 C1
(

[0, ⌧ ],Lq(I)
)

\ C
(

[0, ⌧ ],W 2
q,D(I)

)

satisfying u0(t) 2 Sq(⇤) for all t 2 [0, ⌧ ] and such that the convergences

uε −! u0 in C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

, ✓ 2 (0, 1),

and

 ε(t)χΩ(uε(t)) −!  0(t)χΩ(u0(t)) in L2

(

I ⇥ (−1, 0),R
)

, t 2 [0, ⌧ ], (4.13)

hold true as " ! 0. Here,  0 is the potential given in (4.8). Furthermore, there exists a Λ() > 0

such that the above results hold true for each ⌧ > 0 provided that λ 2 (0, Λ()).

In order to prove Theorem 4.0.9 first of all some preparations are done. For that purpose fix

λ > 0, q 2 (2,1),  2 (0, 1), and let u⇤ 2 Sq() with u⇤(x) < 1 + K0 for x 2 I. For " > 0 let

(uε, ε) denote the unique solution to (4.1)–(4.5) which is defined on the maximal interval [0,T ) of

existence. In the following, (Ki)i≥1 and K denote positive constants depending only on q and ,

but not on " > 0 sufficiently small.
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Set

⇤ :=


2M
< , (4.14)

where M ≥ 1 is the constant defined in (3.42). Moreover, define

⌧ε := sup
{

t 2 [0,T );uε(s) 2 Sq(⇤) 8 s 2 [0, t]
 

.

The choice of ⇤ <  implies that if u⇤ belongs to Sq(), then we also have u⇤ 2 Sq(⇤). Since

by Theorem 3.1.5 the solution uε is continuous in t 2 [0,T ) for all sufficiently small " > 0, there

must exist t > 0 such that uε(s) 2 Sq(⇤) for all s 2 [0, t]. Consequently we have that ⌧ε > 0.

Furthermore, the definition of Sq(⇤) together with the continuity of the embedding of W 2
q (I) in

C1
(

[−1, 1],R
)

yields the existence of a constant K1 > 0 such that for all " > 0

−1 + ⇤  uε(t,x)  1 +K0, t 2 [0, ⌧ε], x 2 [−1, 1], (4.15)

kuε(t)kW 2
q (I)

+ kuε(t)kW 1
1(I)  K1, t 2 [0, ⌧ε]. (4.16)

As a consequence of (4.16) and since f 2 C3
(

[−1, 1]⇥R,R
)

, cf. Corollary 3.1.2, there is an "⇤ 2 (0, 1),

depending only on q and , such that

"2⇤ k@xuε(t)k2L1(I)  K2 < 1 (4.17)

and

"2⇤

⇣

∥

∥fx
(

uε(t)
)∥

∥

2

W 1
2 (I)

+
∥

∥fu
(

uε(t)
)∥

∥

2

W 1
2 (I)

+
∥

∥fx
(

uε(t)
)∥

∥

2

L1(I)

⌘

 K3 (4.18)

for t 2 [0, ⌧ε], " 2 (0, "⇤]. For " 2 (0, "⇤) set

'ε(t) := 'uε(t) =  ε(t) ◦ T−1
uε(t)

, t 2 [0, ⌧ε],

with T−1
uε(t)

given by (3.7) and

φε(t,x, ⌘) := 'ε(t,x, ⌘)− ⌘f
(

x,uε(t,x)
)

, t 2 [0, ⌧ε], (x, ⌘) 2 Ω. (4.19)

The groundwork for the proof of Theorem 4.0.9 is the derivation of appropriate a priori estimates

on the family (φε)ε, implying that it converges to zero in L2(Ω) as " ! 0, c.f. (4.55). This yields

in particular the convergence stated in (4.13). It is additionally crucial for the convergence of the

according displacements (uε)ε, c.f. the proof of Theorem 4.0.9. For this purpose in Lemma 4.0.11 the

analysis of [32, Section 3] and [14, Lemma 12] is extended to the case of a nonconstant permittivity

profile. We start by giving an L1(Ω)-bound for φu(t).
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4.0.10 Lemma ([40, Lemma 4.2])

Let  2 (0, 1), " > 0 and q 2 (2,1). Given f 2 C3
(

[−1, 1]⇥R,R
)

and u 2 Sq(), there is a constant

K4 > 0 such that

kφu(t)kL1(Ω)  K4

for t 2 [0,T ).

Proof. From the Sobolev embedding theorem combined with Corollary 3.1.2 we get

kf
(

u(t)
)

kL1(I)  ckf
(

u(t)
)

kW 2
2 (I)

 ccf ,B := K̃4.

Defining on Ω the function w by w(x, ⌘) := K̃4 we observe that

(Lw)(x, ⌘) = 0, t > 0, (x, ⌘) 2 Ω,

w(x, ⌘) = K̃4 ≥ ⌘kf
(

u(t)
)

kL1(I) ≥ ⌘f(x,u), t > 0, (x, ⌘) 2 @Ω,

whence the maximum principle yields that w is a supersolution to (3.11)–(3.12) on Ω, i.e.

w(x, ⌘) ≥ 'u(x, ⌘), (x, ⌘) 2 Ω. (4.20)

Similarly, we define for (x, ⌘) 2 Ω the function w(x, ⌘) := −K̃4, to see that

(Lw)(x, ⌘) = 0, t > 0, (x, ⌘) 2 Ω,

w(x, ⌘) = −K̃4  −⌘kf
(

u(t)
)

kL1(I)  ⌘f(x,u), t > 0, (x, ⌘) 2 @Ω.

Again by the maximum principle we obtain that w is a subsolution to (3.11)–(3.12) on Ω, i.e.

w(x, ⌘)  'u(x, ⌘), (x, ⌘) 2 Ω. (4.21)

Finally, (4.20) and (4.21) may be used to conclude that

−K̃4 − ⌘f(x,u)  'u(x, ⌘)− ⌘f(x,u)  K̃4 − ⌘f(x,u)

and thus

−2K̃4  φu(x, ⌘)  2K̃4,

whence eventually

kφu(t)kL1(Ω)  2K̃4 =: K4

for all t 2 [0,T ). This proves the assertion.
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4.0.11 Lemma ([40, Lemma 4.3])

There is a constant K5 > 0 such that, for all " 2 (0, "⇤) and t 2 [0, ⌧ε], there holds

k@xφε(t)kL2(Ω) +
1

"

⇣

kφε(t)kL2(Ω) + k@ηφε(t)kL2(Ω)

⌘

 K5, (4.22)

1

"
k@xηφε(t)kL2(Ω) +

1

"2
k@ηηφε(t)kL2(Ω)  K5, (4.23)

1

"
k@ηφε(t, ·, 1)kW 1/2

2 (I)
 K5. (4.24)

Proof. Fix " 2 (0, "⇤) and t 2 [0, ⌧ε]. Then note that by Lemma 4.0.10 there exists a constant

K4 > 0 such that

kφu(t)kL1(Ω)  K4, t 2 [0, ⌧ε],

and thanks to (4.15), (4.16) and the boundedness of f
(

uε(t)
)

in W 2
2 (I) the function

Fε(t,x, ⌘) := Fuε(t)(x, ⌘)

= "2⌘
⇣

fxx(x,uε) + 2fxu(x,uε)@xuε + fuu(x,uε)
(

@xuε
)2

+ fu(x,uε)@xxuε

⌘

− 2"2⌘
@xuε

1 + uε

⇣

fx(x,uε) + fu(x,uε)@xuε

⌘

+ "2⌘

 

2

✓

@xuε

1 + uε

◆2

− @xxuε

uε

!

f(x,uε)

complies for t 2 [0, ⌧ε] and (x, ⌘) 2 Ω with the estimate

kFε(t)kLq(Ω)

 "2

 

kfxx(x,uε)kLq(I) + 2kfuu(x,uε)kLq(I)k@xuεk2L1(I)

+ kfu(x,uε)kL1(I)k@xxuεkLq(I) + 2

∥

∥

∥

∥

@xuε

1 + uε

∥

∥

∥

∥

L1(I)

kfx(x,uε)kLq(I)

+ 2

∥

∥

∥

∥

∥

(

@xuε
)2

1 + uε

∥

∥

∥

∥

∥

L1(I)

kfu(x,uε)kLq(I) + 2

∥

∥

∥

∥

@xuε

1 + uε

∥

∥

∥

∥

2

L1(I)

kf(x,uε)kLq(I)

+

∥

∥

∥

∥

@xxuε

1 + uε

∥

∥

∥

∥

Lq(I)

kf(x,uε)kL1(I)

!

 K6"
2.

Together with Hölder’s inequality this leads to

kFε(t)kLp(Ω)  2(q−p)/pqkFε(t)kLq(Ω)  K7"
2, p 2 [1, q). (4.25)

Multiplying (3.18) by φε, integrating over Ω and using the Green–Riemann formula together with
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the boundary condition (3.19) as in [32, Lemma 11] or [14], respectively, leads to the equation

Z

Ω
Fεφε d(x, ⌘)

= "2
Z

Ω
@xφε − ⌘

@xuε

1 + uε

(

@ηφε
)2
d(x, ⌘) +

Z

Ω

✓

@ηφε

1 + uε

◆2

d(x, ⌘)

+ "2
Z

Ω
⌘

 

2

✓

@xuε

1 + uε

◆2

− @xxuε

1 + uε

!

φε@ηφε d(x, ⌘).

(4.26)

Introducing for t 2 [0, ⌧ε] and (x, ⌘) 2 Ω the function

µ(t,x, ⌘) := "2⌘

 

2

✓

@xuε

1 + uε

◆2

− @xxuε

1 + uε

!

,

(4.26) is equivalent to the identity

Z

Ω
φε
(

Fε − µ@ηφε
)

d(x, ⌘)

= "2
Z

Ω

✓

@xφε − ⌘
@xuε

1 + uε
@ηφε

◆2

d(x, ⌘) +

Z

Ω

✓

@ηφε

1 + uε

◆2

d(x, ⌘).

(4.27)

By means of the inequality (a− b)2 ≥ a2/2− b2, as well as (4.15) and (4.17), the right-hand side of

(4.27) may be estimated from below as

Z

Ω
φε
(

Fε − µ@ηφε
)

d(x, ⌘)

≥ "2

2
k@xφεk2L2(Ω) − "2k@xuεk2L1(I)

∥

∥

∥

∥

@ηφε

1 + uε

∥

∥

∥

∥

2

L2(Ω)

+

∥

∥

∥

∥

@ηφε

1 + uε

∥

∥

∥

∥

2

L2(Ω)

≥ "2

2
k@xφεk2L2(Ω) +K8k@ηφεk2L2(Ω),

(4.28)

with K8 = (1−K2)/(1 +K0)
2 < 1. Next, thanks to (4.15) we obtain the relation

kµkLq(Ω) 
2"2

2⇤
k@xuεk2L2q(I)

+
"2

⇤
k@xxuεkLq(I)  K9"

2. (4.29)

In addition, we clearly have

Z

Ω
φε
(

Fε − µ@ηφε
)

d(x, ⌘)  kφε(Fε − µ@ηφε)kL1(Ω).
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Together with Lemma 4.0.10, (4.25) and Hölder’s inequality this yields

Z

Ω
φε
(

Fε − µ@ηφε
)

d(x, ⌘)

 ckφεkL1(Ω)

(

kFεkL1(Ω) + kµkL2(Ω)k@ηφεkL2(Ω)

)

 cK4

(

K7"
2 +K9"

2k@ηφεkL2(Ω)

)

 K10"
2 +K10"

2k@ηφεkL2(Ω).

(4.30)

Fusing (4.28) and (4.30) we obtain

"2

2
k@xφεk2L2(Ω) +K8k@ηφεk2L2(Ω)  K10"

2 +K10"
2k@ηφεkL2(Ω),

whence finally

"2k@xφεk2L2(Ω) + k@ηφεk2L2(Ω)  K11"
2. (4.31)

For x 2 I there holds φε(x, 1) = 0 and therefore kφεkL2(Ω) 
p
2k@ηφεkL2(Ω). A combination of this

fact with (4.31) then readily gives

k(φε)xkL2(Ω) +
1

"

(

kφεkL2(Ω) + k@ηφεkL2(Ω)

)

 K̃5,

which is (4.22), i.e. the first statement of the lemma.

In a next step (4.23) is verified. To this end we define the functions

⇠ε := @ηηφε and !ε := @xηφε,

multiply (3.18) by ⇠ε, integrate over Ω and use [24, Lemma 4.3.1.2 & Lemma 4.3.1.3] to find that

−
Z

Ω

(

Fε + µ@ηφε
)

⇠ε d(x, ⌘)

=

Z

Ω
"2@xxφε⇠ε − 2"2⌘

@xuε

1 + uε
!ε⇠ε +

1 + "2⌘2(@xuε)
2

(1 + uε)2
⇠2ε d(x, ⌘)

=

Z

Ω

 

⇠2ε
(1 + uε)2

+ "2
✓

!ε − ⌘
@xuε

1 + uε
⇠ε

◆2
!

d(x, ⌘).

(4.32)

In order to estimate the right-hand side of (4.32) from below we use again the inequality (a− b)2 ≥
a2/2− b2 to obtain

−
Z

Ω
(Fε + µ@ηφε)⇠ε d(x, ⌘) ≥

Z

Ω

 

⇠2ε
(1 + uε)2

+
"2

2
!ε − "2⌘2

✓

@xuε
1 + uε

◆2

⇠2ε

!

d(x, ⌘).
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(4.17) and (4.15) then lead to leads to

−
Z

Ω
(Fε + µ@ηφε)⇠ε d(x, ⌘) ≥

Z

Ω
(1−K2)

⇠2ε
(1 + uε)2

+
"2

2
!2
ε d(x, ⌘)

≥ K12

⇣

k⇠εk2L2(Ω) + "2k!εk2L2(Ω)

⌘

.

(4.33)

For the right-hand side of (4.33) we introduce the notation

Qε :=
q

k⇠εk2L2(Ω) + "2k!εk2L2(Ω).

By means of Hölder’s inequality, (4.25) and (4.29) this term may be estimated as follows.

Q2
ε 

1

K12
k(Fε + µ@ηφε)⇠εkL1(Ω)

 1

K12

(

kFεkL2(Ω) + kµ@ηφεkL2(Ω)

)

k⇠εkL2(Ω)

 1

K12

⇣

K7"
2 + kµkL2(Ω)k@ηφεkL2q/(q−2)(Ω)

⌘

k⇠εkL2(Ω)

 K13"
2
⇣

1 + k@ηφεkL2q/(q−2)(Ω)

⌘

Qε.

Hence, we have

Qε  K13"
2
⇣

1 + k@ηφεkL2q/(q−2)(Ω)

⌘

. (4.34)

We now want to further estimate Qε by considering the term k@ηφεkL2q/(q−2)(Ω). For this purpose

we use the Gagliardo–Nirenberg inequality [44]

k@ηφεkL2q/(q−2)(Ω)  K14k@ηφεk2/qW 1
2 (Ω)

k@ηφεk(q−2)/q
L2(Ω)

and observe that by (4.31)

k@ηφεk(q−2)/q
L2(Ω)  K15"

(q−2)/q.

Fusing the last two relations leads to the estimate

k@ηφεkL2q/(q−2)(Ω)  K14k@ηφεk2/qW 1
2 (Ω)

k@ηφεk(q−2)/q
L2(Ω)

 K14K15"
(q−2)/qk@ηφεk2/qW 1

2 (Ω)

= K14K15"
(q−4)/q

⇣

"2k@ηφεk2L2(Ω) + "2k⇠εk2L2(Ω) + "2k!εk2L2(Ω)

⌘1/q

 K14K15"
(q−4)/q

(

K11"
4 +Q2

ε

)1/q

 K16

⇣

"+ "(q−4)/qQ2/q
ε

⌘

.

(4.35)
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Combining (4.34) and (4.35) we find that

Qε  K13"
2
⇣

1 + k@ηφεkL2q/(q−2)(Ω)

⌘

 K13"
2
⇣

1 +K16

⇣

"+ "(q−4)/qQ2/q
ε

⌘⌘

 K17

⇣

"2 + "(3q−4)/qQ2/q
ε

⌘

.

An application of Young’s inequality yields

K17"
(3q−4)/qQ2/q

ε  K18"
(3q−4)/(q−2) +

2

q
Qε,

whence

Qε  K17"
2 +K17"

(3q−4)/qQ2/q
ε

 K17"
2 +

2

q
Qε +K18"

(3q−4)/(q−2)

 K19"
2
⇣

1 + "q/(q−2)
⌘

 K20"
2.

(4.36)

Having (4.36) at hand we may conclude that

k⇠εkL2(Ω) + "k!εkL2(Ω) 
p
2Qε 

p
2K20"

2

and dividing both sides of this inequality by "2 we end up with

1

"2
k⇠εkL2(Ω) +

1

"
k!εkL2(Ω) 

p
2K20,

which is (4.23), i.e. the second statement of the lemma.

Lastly, it remains to prove (4.24). For this purpose observe that as a consequence of (4.22) and

(4.23) we have

1

"
k@ηφεkW 1

2 (Ω) 
1

"
k@ηφεkL2(Ω) +

1

"2
k@ηηφεkL2(Ω) +

1

"
k@xηφεkL2(Ω)

 1

"
k@ηφεkL2(Ω) +

p
2K20

 K̃5 +
p
2K20.

(4.37)

Together with [43, Chapter 2, Theorem 5.4] this implies

k@ηφε(·, 1)kW 1/2
2 (I)

 ck@ηφεkW 1
2 (Ω)  K5".
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This is (4.24), whence the last assertion of the lemma is verified and withK5 ≥ max{K̃5,
p
2K20,K5}

the proof is complete.

As a corollary of Lemma 4.0.11 we obtain the subsequent lemma.

4.0.12 Lemma ([40, Lemma 4.4]) (i) There is a ⌧ > 0, depending only on q,λ and , such that

⌧ε ≥ ⌧ for all " 2 (0, "⇤).

(ii) There is Λ := Λ() > 0 such that ⌧ε = T = 1 for all " 2 (0, "⇤) provided that λ 2 (0, Λ).

In other words Lemma 4.0.12 says that for all arbitrarily small " 2 (0, "⇤) the maximal time T of

existence is strictly positive such that for " 2 (0, "⇤) the solutions (uε, ε) to (4.1)–(4.5) have a

common interval of existence. Again the corresponding proof works as the one of [14, Lemma 13],

except that one has to handle some additional terms which come into play due to the fact that f is

not assumed to be constant.

Proof. (i) We show that uε(t) 2 Sq(⇤) for all t 2 [0, ⌧ ] \ [0, ⌧ε], whence the assertion follows from

the definition of ⌧ε. Using the results in [2] on pointwise multiplication in Sobolev spaces as in the

proof of Lemma 3.1.4, a combination of the relations (4.15), (4.16), (4.18), (4.24) and Corollary 3.1.2

implies that, given 2σ 2 (1/2− 1/q, 1/2), there exists a constant K21 > 0 such that

kgε
(

uε(t)
)

kW 2σ
2 (I)  K21. (4.38)

Having (4.38) at hand, by means of (3.42) and the fact that u⇤ 2 Sq() we may deduce from the

variation-of-constant formula that (cf. (3.47)) for t 2 [0, ⌧ε],

kuε(t)kW 2
q,D(I)  Me−ωtku⇤kW 2

q,D(I)

+ λ

Z t

0
e−ω(t−s)(t− s)

σ−1− 1
2
( 1
2
− 1

q
)kgε

(

uε(t)
)

kW 2σ
2,D(I) ds

 Me−ωt


+ λK21M

Z t

0
e−ω(t−s)(t− s)

σ−1− 1
2
( 1
2
− 1

q
)
ds

 M


+ λMK21I(t).

(4.39)

Furthermore, as in (3.48) by additionally using (4.38) we obtain that

uε(t) ≥ (− 1)− λ

Z t

0
ke−(t−s)Agε

(

uε(s)
)

kL1(I) ds

≥ (− 1)− 2λ

Z t

0
e−ω(t−s)(t− s)

σ−1− 1
2
( 1
2
− 1

q
)kgε

(

uε(s)
)

kW 2σ
2,D(I) ds

≥ −1 + − 2λK21MI(t).

(4.40)
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Since I(t) ! 0 as t ! 0 we can conclude that there exists ⌧ > 0, depending only on q and , such

that

I(t) < 1

λK21
and I(t) < (2M − 1)

4λM2K21

holds true for all t 2 [0, ⌧ ]. Fusing the first inequality for I with (4.39) and the second one with

(4.40) leads to

kuε(t)kW 2
q,D(I) 

M


+ λMK21I(t) <

2M


=

1

⇤

and

uε(t) ≥ −1 + − 2λK21MI(t) > −1 +


2M
= −1 + ⇤,

both inequalities holding for all t 2 [0, ⌧ ]. Hence the first assertion of the lemma is verified.

(ii) In order to prove the second statement of the lemma we set

Λ⇤() :=
1

K21I(1)
, Λ⇤⇤() :=

(2M − 1)

4M2K21I(1)

and

Λ() := min {Λ⇤(), Λ⇤⇤()} ,

and take λ 2 (0, Λ()). This implies that for all t > 0 we obtain the relations

1

λK21
>

1

Λ()K21
≥ 1

Λ⇤()K21
= I(1) ≥ I(t)

and
(2M − 1)

4λM2K21
>

(2M − 1)

4Λ()M2K21
≥ (2M − 1)

4Λ⇤⇤()M2K21
= I(1) ≥ I(t),

whence we conclude that, given λ 2 (0, Λ()), the inequalities

I(t) < 1

λK21
and I(t) < (2M − 1)

4λM2K21

hold true for every ⌧ > 0. Due to (i) this implies that ⌧ε ≥ ⌧ for every ⌧ > 0 and therefore

⌧ε = T = 1 for all " 2 (0, "⇤). This completes the proof.

With the above preparations we are now able to present the proof of Theorem 4.0.9.

Proof of Theorem 4.0.9:

In a first step we prove that the family (uε)ε converges to the solution u0 of the small-aspect ratio

model in C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

, as " to zero. Since

@tuε − @xxuε = −λgε
(

uε(t)
)

, t 2 [0, ⌧ ], x 2 I, (4.41)
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with gε defined in Lemma 3.1.4 and ⌧ as in Lemma 4.0.12, it follows from the definition of gε, (4.15),

(4.16), (4.17), and the continuity of the embeddings W 1/2
2 (I) ,! L2q(I) ,! Lq(I) that, for t 2 [0, ⌧ ],

k@tuε(t)kLq(I)  k@xxuε(t)kLq(I)
+ λ

∥

∥gε
(

uε(t)
)∥

∥

Lq(I)

 K22 + λ

 

"2
∥

∥fx
(

x,uε(t)
)∥

∥

2

L2q(I)
+ c"2

∥

∥fu
(

x,uε(t)
)∥

∥

2

L1(I)
k@xuε(t)k2L1(I)

+ 2

∥

∥

∥

∥

∥

1 + "2
(

@xuε(t)
)2

1 + uε(t)

∥

∥

∥

∥

∥

L1(I)

∥

∥fu
(

x,uε(t)
)∥

∥

L1(I)
k@η'ε(t, ·, 1)kLq(I)

+

∥

∥

∥

∥

∥

1 + "2
(

@xuε(t)
)2

(

1 + uε(t)
)2

∥

∥

∥

∥

∥

L1(I)

k@η'ε(t, ·, 1)k2L2q(I)

!

 K22 + λ

 

c"2
∥

∥fx
(

x,uε(t)
)∥

∥

2

L1(I)
+ cK2

∥

∥f
(

x,uε(t)
)∥

∥

2

W 1
1(I)

+
2c

⇤
(1 +K2)

∥

∥f
(

x,uε(t)
)∥

∥

2

W 1
1(I)

⇣

k@ηφε(t, ·, 1)kW 1/2
2 (I)

+ ckf
(

x,uε(t)
)

k2W 2
2 (I)

⌘

+
c

2⇤
(1 +K2)

⇣

k@ηφε(t, ·, 1)k2
W

1/2
2 (I)

+ 2ck@ηφε(t, ·, 1)kW 1/2
2 (I)

kf
(

x,uε(t)
)

kW 2
2 (I)

+ ckf
(

x,uε(t)
)

k2W 2
2 (I)

⌘

!

.

Finally, again using [43, Chapter 2, Theorem 5.4], the boundedness of f
(

uε(t)
)

in W 2
2 (I) due to

Corollary 3.1.2 and (4.18) we end up with

k@tuε(t)kLq(I)  K22 + λ

 

c"2
∥

∥fx
(

x,uε(t)
)∥

∥

2

L1(I)
+ cK2

∥

∥f
(

x,uε(t)
)∥

∥

2

W 1
1(I)

+
2c

⇤
(1 +K2)

∥

∥f
(

x,uε(t)
)∥

∥

2

W 1
1(I)

⇣

kφεkW 2
2 (I)

+ ckf
(

x,uε(t)
)

k2W 2
2 (I)

⌘

+
c

2⇤
(1 +K2)

⇣

ckφεk2W 2
2 (I)

+ 2ckφεkW 2
2 (I)

kf
(

x,uε(t)
)

kW 2
2 (I)

+ ckf
(

x,uε(t)
)

k2W 2
2 (I)

⌘

!

 K(λ).

Having in mind that in addition kuε(t)kW 2
q (I)

 K1 for t 2 [0, ⌧ ] by (4.16), one may observe that

the family (uε)ε2(0,ε⇤) is bounded in

C1
(

[0, ⌧ ],Lq(I)
)

\ C
(

[0, ⌧ ],W 2
q (I)

)

and thus also in C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

, ✓ 2 (0, 1). This enables us to deduce from [51, Corollary
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4] that the sequence (uε)ε2(0,ε⇤) is relatively compact in C
(

[0, ⌧ ],W 2θ
q (I)

)

, whence there exists a

subsequence ("k)k≥1 of positive real numbers, "k & 0, and u0 2 C
(

[0, ⌧ ],W 2θ
q (I)

)

such that

uεk −! u0 in C
(

[0, ⌧ ],W 2θ
q (I)

)

(4.42)

as k ! 1. Moreover, for ✓ 2 ((q+1)/2q, 1) the embedding W 2θ
q (I) ,! W 1

1(I) is continuous, whence

one may conclude that

uεk −! u0 in C
(

[0, ⌧ ],W 1
1(I)

)

. (4.43)

Since with (uε)ε2(0,ε⇤) also the subsequence (uεk)k≥1 is contained in C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

, the con-

vergence in (4.42) implies that

ku0(t)− u0(s)kW 2θ
q (I) = lim

k!1
kuεk(t)− uεk(s)kW 2θ

q (I)  c|t− s|1−θ

for all s, t 2 [0, ⌧ ], s 6= t, and ✓ 2 (0, 1). Eventually, we have u0 2 C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

, and as a

consequence of (4.15) and (4.43)

− 1 + ⇤  u0(t,x)  1 +K0, t 2 [0, ⌧ ], x 2 [−1, 1]. (4.44)

Next, we prove that the right-hand side of the full evolution equation (4.1) converges to the right-

hand side of the small-aspect ratio model (4.10) in an appropriate sense. Using the relations (4.19)

and (4.24) leads to

lim
ε!0

sup
t2[0,τ ]

∥

∥@η'ε(t, ·, 1)− f
(

uε(t)
)∥

∥

W
1/2
2 (I)

= lim
ε!0

sup
t2[0,τ ]

k@ηφε(t, ·, 1)kW 1/2
2 (I)

 lim
ε!0

"K5 = 0.
(4.45)

Similarly, using in addition the uniform boundedness of f
(

uε(t)
)

in W 2
2 (I), as well as the continuity

of the embeddings W
1/2
2 (I) ,! L2q(I) ,! Lq(I), one obtains

lim
ε!0

sup
t2[0,τ ]

∥

∥

∥

(

@η'ε(t, ·, 1)
)2 −

(

f(uε(t))
)2
∥

∥

∥

Lq(I)

 lim
ε!0

sup
t2[0,τ ]

✓

∥

∥

∥

(

@ηφε(t, ·, 1)
)2
∥

∥

∥

Lq(I)
+ 2

∥

∥@ηφε(t, ·, 1)f
(

uε(t)
)∥

∥

Lq(I)

◆

 lim
ε!0

sup
t2[0,τ ]

⇣

k@ηφε(t, ·, 1)k2L2q(I)
+ 2ccf ,B k@ηφε(t, ·, 1)kLq(I)

⌘

 lim
ε!0

sup
t2[0,τ ]

⇣

c k@ηφε(t, ·, 1)k2W 1/2
2 (I)

+ c k@ηφε(t, ·, 1)kW 1/2
2 (I)

⌘

 lim
ε!0

(

c"2K2
5 + c"K5

)

=0.

(4.46)
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Furthermore, the convergence uεk ! u0 in C
(

[0, ⌧ ],W 1
1(I)

)

implies that

lim
k!1

sup
t2[0,τ ]

∥

∥

∥

∥

∥

1
(

1 + uεk(t)
)2 − 1

(

1 + u0(t)
)2

∥

∥

∥

∥

∥

L1(I)

= 0. (4.47)

Finally, using (4.44), Corollary 3.1.2 and once more (4.43) one may invoke the mean value theorem

for integrals to obtain

lim
k!1

sup
t2[0,τ ]

∥

∥

∥

∥

∥

fu
(

x,uεk(t)
)

1 + uεk(t)
− fu

(

x,u0(t)
)

1 + u0(t)

∥

∥

∥

∥

∥

L1(I)

 lim
k!1

sup
t2[0,τ ]

 

∥

∥

∥

∥

fu
(

x,uεk(t)
)

✓

1

1 + uεk(t)
− 1

1 + u0(t)

◆∥

∥

∥

∥

L1(I)

+

∥

∥

∥

∥

1

1 + u0(t)

⇥

fu
(

x,uεk(t)
)

− fu
(

x,u0(t)
)⇤

∥

∥

∥

∥

L1(I)

!

 lim
k!1

sup
t2[0,τ ]

 

cf ,B

∥

∥

∥

∥

1

1 + uεk(t)
− 1

1 + u0(t)

∥

∥

∥

∥

L1(I)

+
1

⇤
kfu

(

x,uεk(t)
)

− fu
(

x,u0(t)
)

kL1(I)

!

 lim
k!1

sup
t2[0,τ ]

1

⇤
sup

s2[0,1]
kfuu

(

x,uεk(t) + s[u0(t)− uεk(t)]
)

kL1(I)kuεk(t)− u0(t)kL1(I)

= 0.

(4.48)

We now introduce the function

h(v) :=

✓

f(x, v)

1 + v

◆2

− 2
f(x, v)

1 + v
fv(x, v), v 2W 2θ

q (I),

and show that gεk(uεk) converges to h(u0) in C
(

[0, ⌧ ],Lq(I)
)

as k ! 1. To this end, observe that

lim
k!1

sup
t2[0,τ ]

∥

∥gεk
(

uεk(t)
)

− h
(

u0(t)
)∥

∥

Lq(I)

 lim
k!1

sup
t2[0,τ ]

 

"2k

∥

∥

∥

(

fx(x,uεk(t))
)2
∥

∥

∥

Lq(I)
+ "2k

∥

∥

∥

(

fu(x,uεk(t))
)2(

@xuεk(t)
)2
∥

∥

∥

Lq(I)

+ 2

∥

∥

∥

∥

∥

1 + "2k
(

@xuεk(t)
)2

1 + uεk(t)
fu
(

x,uεk(t)
)

@η'εk(t, ·, 1)−
f
(

x,u0(t)
)

1 + u0(t)
fu
(

x,u0(t)
)

∥

∥

∥

∥

∥

Lq(I)

+

∥

∥

∥

∥

∥

∥

1 + "2k
(

@xuεk(t)
)2

(

1 + uεk(t)
)2

(

@η'εk(t, ·, 1)
)2 −

 

f
(

x,u0(t)
)

1 + u0(t)

!2
∥

∥

∥

∥

∥

∥

Lq(I)

!
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and thus

lim
k!1

sup
t2[0,τ ]

∥

∥gεk
(

uεk(t)
)

− h
(

u0(t)
)∥

∥

Lq(I)

 lim
k!1

sup
t2[0,τ ]

 

"2k
∥

∥fx
(

x,uεk(t)
)∥

∥

2

L1(I)
+ "2kc

∥

∥fu
(

x,uεk(t)
)∥

∥

2

L1(I)
k@xuεk(t)k2L1(I)

+ 2c k@η'εk(t, ·, 1)kLq(I)

∥

∥

∥

∥

∥

fu
(

x,uεk(t)
)

1 + uεk(t)
− fu

(

x,u0(t)
)

1 + u0(t)

∥

∥

∥

∥

∥

L1(I)

+ 2c

∥

∥

∥

∥

∥

fu
(

x,u0(t)
)

1 + u0(t)

∥

∥

∥

∥

∥

L1(I)

∥

∥@η'εk(t, ·, 1)− f
(

x,u0(t)
)∥

∥

Lq(I)

+ 2"2kc

∥

∥

∥

∥

∥

(

@xuεk(t)
)2

1 + uεk(t)

∥

∥

∥

∥

∥

L1(I)

∥

∥fu
(

x,uεk(t)
)∥

∥

L1(I)
k@η'εk(t, ·, 1)kLq(I)

+ c k@η'εk(t, ·, 1)k2L2q(I)

∥

∥

∥

∥

∥

1
(

1 + uεk(t)
)2 − 1

(

1 + u0(t)
)2

∥

∥

∥

∥

∥

L1(I)

+ c

∥

∥

∥

∥

∥

1
(

1 + u0(t)
)2

∥

∥

∥

∥

∥

L1(I)

∥

∥

∥

(

@η'εk(t, ·, 1)
)2 −

(

f(x,u0(t))
)2
∥

∥

∥

Lq(I)

+ c"2k

∥

∥

∥

∥

@xuεk(t)

1 + uεk(t)

∥

∥

∥

∥

2

L1(I)

k@η'εk(t, ·, 1)k2L2q(I)

!

.

Then combining (4.16) and (4.24) with the boundedness of f
(

uεk(t)
)

and f
(

u0(t)
)

in W 2
2 (I) and

with the relations (4.45)–(4.48) one ends up with

lim
k!1

sup
t2[0,τ ]

∥

∥gεk
(

uεk(t)
)

− h
(

u0(t)
)∥

∥

Lq(I)

 lim
k!1

sup
t2[0,τ ]

 

c"2k + c"2k +
⇣

c k@ηφεk(t, ·, 1)kW 1/2
2 (I)

+ c
⌘

∥

∥

∥

∥

∥

fu
(

x,uεk(t)
)

1 + uεk(t)
− fu

(

x,u0(t)
)

1 + u0(t)

∥

∥

∥

∥

∥

L1(I)

+ c
∥

∥@η'εk(t, ·, 1)− f
(

x,u0(t)
)∥

∥

Lq(I)

+ "2k

⇣

c
∥

∥@ηφεk(t, ·, 1) + f
(

x,uεk(t)
)∥

∥

W
1/2
2 (I)

+ c
⌘

+
⇣

c k@ηφεk(t, ·, 1)k2W 1/2
2 (I)

+ c k@ηφεk(t, ·, 1)kW 1/2
2 (I)

+ c
⌘

∥

∥

∥

∥

∥

1
(

1 + uεk(t)
)2 − 1

(

1 + u0(t)
)2

∥

∥

∥

∥

∥

L1(I)

+ c
∥

∥

∥

(

@η'εk(t, ·, 1)
)2 −

(

f(x,u0(t))
)2
∥

∥

∥

Lq(I)

+ "2k

⇣

c k@ηφεk(t, ·, 1)k2W 1/2
2 (I)

+ c k@ηφεk(t, ·, 1)kW 1/2
2 (I)

+ c
⌘

!

= 0,
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that is,

gεk
(

uεk(t)
)

−! h
(

u0(t)
)

=

 

f
(

x,u0(t)
)

1 + u0(t)

!2

− 2
f
(

x,u0(t)
)

1 + u0(t)
fu
(

x,u0(t)
)

(4.49)

in C
(

[0, ⌧ ],Lq(I)
)

.

We are now left with showing that u0 is the unique solution to the small-aspect ratio model (4.10).

Rewriting (4.10) as the abstract Cauchy problem

v̇0 +Av0 = −λh
(

v0(t)
)

, t 2 [0, ⌧ ],

v0(0) = u⇤,
(4.50)

with the operator A as in (3.39), the unique solution to (4.50) is given by the variation-of-constant

formula

v0(t) = e−tAu⇤ − λ

Z t

0
e−(t−s)Ah

(

v0(s)
)

ds, t 2 [0, ⌧ ].

Furthermore, recalling the identity (4.41) the fact that (uεk)k≥1 is a subsequence of (uε)ε2(0,ε⇤)
implies that for every k ≥ 1 it holds that

u̇εk +Auεk = −λgεk
(

uεk(t)
)

, t 2 [0, ⌧ ],

uεk(0) = u⇤,
(4.51)

with unique solution

uεk(t) = e−tAu⇤ − λ

Z t

0
e−(t−s)Agεk

(

uεk(s)
)

ds, t 2 [0, ⌧ ].

Let in addition w be the unique solution to the Cauchy problem

ẇ +Aw = −λh
(

u0(t)
)

, t 2 [0, ⌧ ],

w(0) = u⇤.
(4.52)

Now defining for each k ≥ 1 the function

#k(t) := uεk(t)− w(t), t 2 [0, ⌧ ],

a combination of (4.51) and (4.52) yields

#̇k +A#k = −λ
⇣

gεk
(

uεk(t)
)

− h
(

u0(t)
)

⌘

, t 2 [0, ⌧ ],

#k(0) = 0.
(4.53)

Since gεk(uεk) − h(u0) 2 C
(

[0, ⌧ ],Lq(I)
)

by (4.49) one may apply [42, Lemma 7.1.1] to conclude
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that #k 2 C1−θ
(

[0, ⌧ ],W 2θ
q,D(I)

)

for ✓ 2 (0, 1), k ≥ 1, and that in addition there exists a constant

C > 0, not depending on ⌧ , gεk , and h, such that

lim
k!1

kuεk(t)− w(t)kC1−θ([0,τ ],W 2θ
q (I))  lim

k!1
Cλ kgεk(uεk)− h(u0)kL1([0,τ ],Lq(I))

= 0.

In other words,

uεk −! w in C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

as k ! 1 for ✓ 2 (0, 1). In view of (4.43) the uniqueness of the limit function implies that

w = u0 2 C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

so that (4.52) may be rewritten as

u̇0 +Au0 = −λh
(

u0(t)
)

, t 2 [0, ⌧ ],

u0(0) = u⇤.
(4.54)

The uniqueness of the solution to the small-aspect ratio model (4.10) implies in addition that

the solutions v0 to (4.50) and u0 to (4.54), respectively, coincide. Thus, one may conclude that

v0 = u0 2 C1−θ
(

[0, ⌧ ],W 2θ
q (I)

)

is the unique solution to the small-aspect ratio model (4.10). Lastly,

u0 belongs to Sq(⇤) for all t 2 [0, ⌧ ] thanks to (4.44) and the continuity properties of uε. This

implies in particular that not only a subsequence but the whole family (uε)ε2(0,ε⇤) converges to u0
in C1−θ

(

[0, ⌧ ],W 2θ
q (I)

)

, ✓ 2 (0, 1), as " tends to 0.

Finally, we are left with verifying the convergence in (4.13). To this end, recall that for " > 0

Tε : Ω(uε) −! Ω, Tε(x, z) :=

✓

x,
1 + z

1 + uε(x)

◆

,

such that the corresponding Jacobian is given by

DTε(x, z) =

 

1 0

− (1+z)∂xuε

(1+uε)
2

1
1+uε

!

with determinant

det
(

DTε(x, z)
)

=
1

1 + uε(x)
≥ 1

1 +K0
.

Since

'ε(t) = 'uε(t) =  ε(t) ◦ T−1
ε and φε(t) = 'ε(t)− ⌘f

(

uε(t)
)

,
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the transformation formula for integrals yields

k'ε(t)− ⌘f
(

uε(t)
)

k2L2(Ω) =

Z 1

−1

Z uε(t)

−1

✓

 ε(t)−
1 + z

1 + uε(t)
f
(

uε(t)
)

◆2
d(x, z)

1 + uε(t)

≥ 1

1 +K0

∥

∥

∥

∥

 ε(t)−
1 + z

1 + uε(t)
f
(

uε(t)
)

∥

∥

∥

∥

2

L2(Ω(uε(t)))

.

(4.55)

Additionally observing that thanks to (4.22) in Lemma 4.0.11 there holds

lim
ε!0

k'ε(t)− ⌘f
(

uε(t)
)

k2L2(Ω) = lim
ε!0

kφε(t)k2L2(Ω)  lim
ε!0

"2K2
2 = 0,

together with (4.54) this implies

lim
ε!0

∥

∥

∥

∥

 ε(t)−
1 + z

1 + uε(t)
f
(

uε(t)
)

∥

∥

∥

∥

L2(Ω(uε(t)))

= 0.

In other words,

 ε(t)χΩ(uε(t)) −!  0(t)χΩ(u0(t)) in L2

(

I ⇥ (−1, 0),R
)

,

as "! 0, where  0 is given in (4.8) with u = u0. This completes the proof.
⇤





5 | On Some Qualitative Properties

of Solutions

In the previous parts of this work we have seen different mathematical models for the characterisation

of the dynamic behaviour of MEMS devices. In addition to choosing an either linear or nonlinear

elasticity approach, we have in particular distinguished between the small-aspect ratio model and

the full problem, coupling the moving boundary problem for the potential  with an either semi- or

quasilinear evolution problem for the membrane’s displacement u. Moreover, different permittivity

profiles f give rise to different equations and might thus have a certain influence on the qualitative

behaviour of solutions. It turns out, that there exist indeed qualitative differences of the solutions to

the different systems and that these differences become apparent not till non-constant permittivity

profiles are taken into account.

This chapter is divided into two sections. The first one, Section 5.1, is devoted to sign-properties

of the solution u to the evolution problem for the displacement of the elastic membrane. It deals

with the question, if the membrane always deflects towards the ground plate or if other scenarios,

such as a sign-changing or a positive deflection, are possible. Section 5.2 is concerned with the

phenomenon of the so-called pull-in instability, i.e. with the situation in which the pull-in voltage

exceeds a certain critical value and thus causes a singularity of the solution after finite time.

5.1 | Non-Positivity of the Membrane’s Displacement

Since parabolic maximum principles1 are available for both settings the semilinear as well as the

quasilinear evolution problem (see i.e. [19, 47, 30]) we do not explicitly distinguish between these

two cases. More precisely, in the regime of a positive aspect ratio " > 0 we consider the moving

1The established literature frequently refers to the maximum principle, including in this notion in fact several
different maximum principles as well as comparison principles.

77



Chapter 5. On Some Qualitative Properties of Solutions 78

boundary problem

"2 xx +  zz = 0, t > 0, (x, z) 2 Ω(u(t)), (5.1)

 (t,x, z) =
1 + z

1 + u(t,x)
f , t > 0, (x, z) 2 @Ω(u(t)), (5.2)

coupled with an either semi- or quasilinear initial boundary value problem for the displacement u

of the membrane. In the sequel this evolution problem for u is rewritten as the general abstract

parameter-dependent Cauchy problem

ut +A(u)u = −λgε(u), t > 0, (5.3)

u(0) = u⇤, (5.4)

where for a given v 2 Sq() the differential operator A(v) 2 L(W 2
q,D(I),Lq(I)), q > 2, is defined as2

A(v)u := − uxx
(

1 + "2(vx)2
)3/2

, u 2W 2
q,D(I),

in the quasilinear case arising from the nonlinear elasticity theory, whereas for the semilinear case,

arising from a linear elasticity approach, we set A(v) ⌘ A(0) for all v 2 Sq() and obtain

A(0)u = −uxx, u 2W 2
q,D(I).

As before, given v 2 Sq(), we denote by {e−tA(v); t ≥ 0} the semigroup on Lq(I) corresponding to

−A(v). The exact structure of the right-hand side −λgε(u) is then determined by the choice of the

permittivity profile f . Almost the same notation is used for the small-aspect ratio model, i.e. in the

situation of a formally vanishing aspect ratio " = 0. As we have seen in the previous chapter, given

an explicit expression for the potential  , the small-aspect ratio model may be rewritten as

ut +A(u)u = −λg0(u), t > 0, (5.5)

u(0) = u⇤. (5.6)

In the same way as for " > 0 the structure of the right-hand side −λg0(u) might vary, depending on

the choice of the function f . In order to be able to reveal sign-properties of the according solutions

by means of the parabolic maximum principle, the challenge is thus to investigate the respective

right-hand side −λgε(u) or −λg0(u) of the evolution equation regarding its sign. It is worthwhile

to explicitly mention again, that this challenge strongly depends on the choice of the permittivity

profile f .

2Note that as in (3.38) in Section 3.1 the subscript q for the operator Aq(v) := A(v) 2 L
(

W 2
q,D,Lq(I)

)

is suppressed
since Aq(v)w 2 Lq ,! Lp for 1 < q  p <1.
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More precisely, in the case of a constant permittivity profile f ⌘ 1 the full evolution equation (5.3)

reads

ut +A(u)u = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
⌘

, t > 0. (5.7)

With  (t,x, z) = (1+ z)/(1+ u(t,x)) for t > 0, (x, z) 2 I ⇥ (−1, 0), the corresponding small-aspect

ratio equation (5.5) is given by

ut +A(u)u = − λ

(1 + u)2
, t > 0. (5.8)

It may be readily deduced from the parabolic maximum principle that, given a non-positive initial

value u⇤  0, both equations (5.7) and (5.8) always provide non-positive solutions u. In other words,

a constant permittivity profile f ⌘ 1 immediately implies that the membrane always deflects towards

the ground plate.

The situation is rather different in the case of a spatially varying permittivity profile f = f(x).

Denoting by f 0(x) the derivative of f with respect to x, the full evolution equation (5.3) is given by

ut +A(u)u = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2 − 2"2 x(x,u)f

0(x)
⌘

, t > 0, (5.9)

whereas the according small-aspect ratio equation (5.5) for a computed  (t,x, z) = f(x)(1+z)/(1+

u), t > 0, (x, z) 2 I ⇥ (−1, 0), reads

ut +A(u)u = −λ
✓

f(x)

1 + u

◆2

, t > 0. (5.10)

Invoking again the parabolic maximum principle, one may observe that for f = f(x) the small-aspect

ratio model always possesses non-positive solutions, provided that the initial value u⇤ is non-positive.

On the other hand, due to the additional term 2"2 x(x,u)f
0(x) in (5.9), this is not at all clear for

the full problem. Although the initial deflection u⇤ is non-positive, after a certain time the deflection

might become positive or change its sign.

In the setting where f depends only on the deformation u of the membrane, i.e. when f = f(u) the

full evolution equations reads

ut +A(u)u = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2 − 2 z(x,u)f

0(u)
⌘

, t > 0, (5.11)

with f 0(u) denoting the derivative of f with respect to u. With  (t,x, z) = f(u)(1+ z)/(1+u), t >

0, (x, z) 2 I ⇥ (−1, 0), the associated small-aspect ratio equation is given by

ut +A(u)u = −λ
 

✓

f(u)

1 + u

◆2

− 2
f(u)

1 + u
f 0(u)

!

, t > 0. (5.12)
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One may thus observe that in the case f = f(u) neither in the coupled setting nor in the small-

aspect ratio regime an immediate statement about the sign of the solution u is possible. Additional

information on the potential  and on the permittivity profile f is necessary in order to deduce a

statement from the maximum principle.

The situation is similar when the permittivity profile f depends on both x and u. The full equation

is then given by

ut +A(u)u = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2

+ 2
(

"2 x(x,u)fx(x,u) +  z(x,u)fu(x,u)
)

⌘

, t > 0,
(5.13)

whereas the small-aspect ratio equation reads

ut +A(u)u = −λ
 

✓

f(x,u)

1 + u

◆2

− 2
f(x,u)

1 + u
fu(x,u)

!

, t > 0. (5.14)

The remaining part of this section is eventually devoted to the proof of non-positivity of the mem-

brane’s displacement u, provided that the initial displacement u⇤ is non-positive and the potential

 satisfies certain boundary conditions.

The corresponding results have already been published in [41] for the case of a spatially varying

permittivity f = f(x) and in [16] for the case in which f depends on the membrane’s displacement.

In the scope of this work the proof is in addition extended to the most general setting f = f(x,u).

To this end, pick ⌧ 2 (0,T ). It suffices to show that u(t)  0 on [0, ⌧ ]. Since u is obtained by

a fixed-point iteration based on the variation-of-constant formula induced by (5.3)–(5.4), we may

assume without loss of generality3 that u is represented by the identity

u(t) = UA(u)(t, 0)u⇤ − λ

Z t

0
UA(u)(t, s)gε

(

u(s)
)

ds

in C
(

[0, ⌧ ],W 2
q (I)

)

, where UA(u) denotes the evolution operator introduced in Section 3.2. Thanks

to the positivity of the heat semigroup it is thus enough to prove that gε(v(t,x)) ≥ 0 for a given

v 2W 2
q (I) with v(t,x)  0 for (t,x) 2 [0, ⌧ ]⇥ I. It turns out that in what follows the time variable

t 2 [0, ⌧ ] appears as a parameter. In order to lighten the notation, we therefore omit the time and

introduce the following general notation.

• v 2W 2
q (I), q 2 (2,1), such that v(x)  0 for all x 2 I;

• Ω(v) is the domain corresponding to v;

•  2W 2
2 (Ω(v)) is the solution to (5.1)–(5.2).

3In general, ⌧ > 0 is obtained by a continued but finite application of Banach’s fixed point theorem.
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As a combination of the Cauchy–Schwarz inequality and the mean value theorem for integrals we

obtain the following lemma.

5.1.1 Lemma

Let f 2 C
(

[−1, 1]⇥ [−1, 0],R
)

. Then, given x 2 I, there exists z0 = z0(x) 2 [−1, v] such that

✓

f(x, v(x))

1 + v(x)

◆2

 ( z(x, z0))
2.

Proof. As in [13, Lemma 7] and [41, Lemma 4.1] we deduce from the boundary condition for the

solution  to (5.1)–(5.2) and the Cauchy–Schwarz inequality that

(

f(x, v(x))
)2

1 + v(x)
=

(

 (x, v(x))−  (x,−1)
)2

1 + v(x)

=
1

1 + v(x)

 

Z v(x)

−1
 z(x, z) dz

!2


Z v(x)

−1

(

 z(x, z)
)2
dz, x 2 I.

(5.15)

By the mean value theorem for integrals we find that given x 2 I, there exists a z0 = z0(x) 2
[−1, v(x)] such that

Z v(x)

−1

(

 z(x, z)
)2
dz =

(

v(x) + 1
)(

 z(x, z0)
)2
. (5.16)

Combining (5.15) and (5.16), one finally obtains

 

f
(

x, v(x)
)

1 + v(x)

!2


(

 z(x, z0)
)2
, x 2 I,

and the proof is complete.

The following theorem is a generalisation of [41] and [16], where the cases f = f(x) and f = f(u)

are treated, respectively.

5.1.2 Theorem (Non-Positivity of u)

Let f 2 C1
(

[−1, 1]⇥ [−1, 0],R
)

be positive and assume that the boundary conditions

 zz(x,−1) ≥ 0 and  zz(x, v(x)) ≥ 0, x 2 I, (5.17)
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hold true for the solution  to (5.1)–(5.2). Then, if

0 < "2  min
x2[−1,1],
r2[−1,0]

(

f(x, r)
)2 − 4

(

fr(x, r)
)2

2
(

fx(x, r)
)2 . (5.18)

and u⇤(x)  0, x 2 I, the unique solution u to (5.3)–(5.4) satisfies

u(t,x)  0, (t,x) 2 [0,T )⇥ I.

Proof. Let v 2W 2
q (I) with v(x)  0 for all x 2 I. We prove that gε(v) ≥ 0. To this end, firstly note

that the elementary inequalities

2 x(x, v(x))fx(x, v(x)) 
(

 x(x, v(x))
)2

+
(

fx(x, v(x))
)2
, x 2 I,

and

 z(x, v(x))fv(x, v(x)) 
1

4

(

 z(x, v(x))
)2

+
(

fv(x, v(x))
)2
, x 2 I,

hold true. They readily yield the estimate

gε(v) = "2
(

 x(x, v(x))
)2

+
(

 z(x, v(x))
)2 − 2"2 x(x, v(x))fx(x, v(x))

− 2 z(x, v(x))fv(x, v(x))

≥
(

 z(x, v(x))
)2 − "2

(

fx(x, v(x))
)2 − 2 z(x, v(x))fv(x, v(x))

≥ 1

2

(

 z(x, v(x))
)2 − "2

(

fx(x, v(x))
)2 − 2

(

fv(x, v(x))
)2
.

Moreover, as a consequence of the non-positivity of v one obtains the inequality

✓

f(x, v(x))

1 + v(x)

◆2

≥
(

f(x, v(x))
)2
, x 2 I.

Together with the assumption (5.18) on " this leads to the estimate

gε(v) ≥
1

2

⇣

(

 z(x, v(x))
)2 −

(

f(x, v(x))
)2
⌘

≥ 1

2

 

(

 z(x, v(x))
)2 −

✓

f(x, v(x))

1 + v(x)

◆2
!

. (5.19)

Fusing (5.19) with Lemma 5.1.1 eventually yields

gε(v) ≥
1

2

⇣

(

 z(x, v(x))
)2 −

(

 z(x, z0)
)2
⌘

,

where z0 = z0(x) 2 [−1, v(x)]. Thanks to Hopf’s maximum principle we have that

 z(x,−1) ≥ 0, x 2 I. (5.20)
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Moreover, since  satisfies (5.1), the function ⌘, defined by ⌘(x, z) :=  zz(x, z) for (x, z) 2 Ω(v), so

does as well. Additionally observing that on the lateral boundary it holds that

⌘(±1, z) = 0, z 2 (−1, 0),

and by assumption

⌘(x,−1) ≥ 0 and ⌘(x,u(x)) ≥ 0, x 2 I,

an application of the elliptic maximum principle yields

 zz(x, z) ≥ 0, (x, z) 2 Ω(v). (5.21)

From (5.20) and (5.21) one may now infer that  z(x, z) is non-negative on Ω(v) and increasing in

z 2 [−1, v(x)), implying that

0   z(x, z0)   z(x, v(x)), x 2 I. (5.22)

This finally proves

gε(v) ≥ 0.

To summarise, we have shown that v  0 implies gε(v) ≥ 0 and with the introductory words of this

section the proof is complete.

It remains to discuss the above Theorem 5.1.2 for permittivity profile f depending only on the spatial

variable x 2 I or on the membrane’s displacement u, respectively. Recall that in the general setting

f = f(x,u) the fundamental condition (c.f. (5.18)) on " or f , respectively, reads

0 < "2  min
x2[−1,1],
r2[−1,0]

(

f(x, r)
)2 − 4

(

fr(x, r)
)2

2
(

fx(x, r)
)2 . (5.23)

Thus, if f depends only on the membrane’s displacement u then condition (5.18) is modified to

min
r2[−1,0]

f(r) ≥ 2 min
r2[−1,0]

|f 0(r)|. (5.24)

Note that this condition does not depend on " > 0.

In the case f = f(x) the term −4
(

fr(x, r)
)2

in (5.18) vanishes and the proof of Theorem 5.1.2

applies to the case f = f(x) if we require that (c.f. [41])

0 < "  min
x2[−1,1]

f(x)p
2|f 0(x)|

. (5.25)
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However, one may observe that (5.25) is not sharp. Following the lines of the proof of Theorem

5.1.2, a direct calculation shows that (5.25) might be improved such that the theorem holds true

under the condition

0 < "  min
x2[−1,1]

f(x)

|f 0(x)| . (5.26)

The above observations are summarised in the following corollary.

5.1.3 Corollary

(i) Given a positive f 2 C1([−1, 1],R), assume that the solution  to (5.1)–(5.2) complies with the

inequalities

 zz(x,−1) ≥ 0 and  zz(x, v(x)) ≥ 0, x 2 I, (5.27)

Then, if the condition

0 < "  min
x2[−1,1]

f(x)

|f 0(x)| . (5.28)

is satisfied and u⇤(x)  0 for all x 2 I the unique solution u to (5.3)–(5.4) satisfies

u(t,x)  0, (t,x) 2 [0,T )⇥ I.

(ii) Let f 2 C1
(

[−1, 0],R
)

be positive and assume that the inequalities

 zz(x,−1) ≥ 0 and  zz(x, v(x)) ≥ 0, x 2 I, (5.29)

hold true for the solution  to (5.1)–(5.2). Then, if f complies with the condition

min
r2[−1,0]

f(r) ≥ 2 min
r2[−1,0]

|f 0(r)|. (5.30)

and u⇤(x)  0 for all x 2 I, the unique solution u to (5.3)–(5.4) satisfies

u(t,x)  0, (t,x) 2 [0,T )⇥ I.

5.2 | Non-Existence of Global Solutions

Depending on the individual application of the MEMS-based device it might be either an explicitly

desired effect to apply a voltage value that leads to a touchdown of the membrane on the ground

plate, or, in contrast, the contact of the two plates could damage the device. The understanding

of this touchdown behaviour is one of the major objectives in the mathematical investigation of

MEMS-based devices. In the present work this topic is addressed as follows. In Chapter 3 it is

shown for the semilinear as well as the quasilinear setting that there exists a critical value λ⇤ > 0
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such that the unique solution (u, ) to the coupled problem exists forever, provided that the applied

voltage λ > 0 is smaller than λ⇤. In this case we have uniform bounds on u in the W 2
q (I)-norm and

the membrane does never touch down on the ground plate, not even in infinite time. Contrariwise,

we shall see in this section that there is another critical value λ⇤ ≥ λ⇤ such that the solution u ceases

to exists after a finite time T of existence, provided that λ > λ⇤ and " is small enough.4 In this

case the membrane’s displacement develops a singularity in the sense that one of the following two

phenomena may be observed. Either the membrane touches down on the ground plate, i.e.

lim inf
t!T

min
x2[−1,1]

u(t,x) = −1,

or u becomes unbounded in the W 2
q (I)-norm, i.e.

lim sup
t!T

ku(t)kW 2
q (I)

= 1.

For a constant permittivity profile f ⌘ 1 this is shown in [14, Theorem 2(ii)]. The present work covers

spatially varying permittivity profiles f = f(x), x 2 I, for both the semilinear and the quasilinear

case (c.f. [41] and [17], respectively) and permittivity profiles f = f(u) for the quasilinear case (c.f.

[16]). Hitherto it is still an open problem to verify the existence of finite-time singularities when

f = f(x,u) depends on both x 2 I and the displacement u of the membrane.

The general concept of the according proofs is to derive a differential inequality for a certain energy

functional and to integrate this inequality with respect to the time t in order to get an upper bound

for the maximal time T of existence. The main difference between the semilinear and the quasilinear

case consists in the choice of the functional, as we will see in the subsequent paragraphs.

5.2.1 | Finite-Time Singularities in the Semilinear Setting

Restricting the analysis to the case of spatially varying permittivity profiles, we now address the

appearance of finite-time singularities for the system consisting of the elliptic moving boundary

problem

"2 xx +  zz = 0, t > 0, (x, z) 2 Ω(u), (5.31)

 (t,x, z) =
1 + z

1 + u(t,x)
f(x), t > 0, (x, z) 2 @Ω(u), (5.32)

4If f = f(u) the result may even be improved as in this case there is no condition on " > 0.
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for the electrostatic potential  , coupled with the semilinear initial boundary value problem

ut − uxx = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
⌘

+ 2λ"2 x(x,u)f
0(x), t > 0, x 2 I, (5.33)

u(t,±1) = 0, t > 0, (5.34)

u(0,x) = u⇤(x), x 2 I. (5.35)

We shall see that there exists a voltage value λ⇤ > 0 such that the solution u to (5.33)–(5.35) cannot

exist globally in time, provided that " > 0 is small enough. More precisely, we prove the following

result.

5.2.1 Theorem (Finite-Time Singularities, [41, Theorem 5.1])

Let f 2 C2([−1, 1],R) be positive with f(−1) = f(1) and denote by u 2 C
(

[0,T ),W 2
q (I)

)

the

solution to (5.33)–(5.35). Assume in addition that

u(t,x)  0, (t,x) 2 [0,T )⇥ I.

Then there exists λ⇤ > 0 such that T < 1, provided that λ > λ⇤ and " 2
(

0, 1/
p
λ
⇤

. That is, we

have either

lim sup
t!T

ku(t)kW 2
q (I)

= 1 or lim inf
t!T

min
x2[−1,1]

u(t,x) = −1.

Before proving the above theorem, it is convenient to provide some preliminary definitions and

results. In the subsequent argumentation we follow the lines of [14, Theorem 1.2 (ii)]. For x 2 I

define

'(x) :=
⇡

4
cos

⇣⇡x

2

⌘

and µ :=
⇡2

4
. (5.36)

Then µ is the principal eigenvalue of the L2(I)-realisation of −@2x subject to homogeneous Dirichlet

boundary conditions, i.e.

− 'xx = µ' in I, '(±1) = 0. (5.37)

Observe in addition that k'kL1(I) = 1. Denoting by u be the solution to (5.33)–(5.35) on its maximal

interval [0,T ) of existence we introduce the functional

Eα(t) :=

Z

I
'(x)

⇣

u+
↵

2
u2
⌘

(t,x) dx, t 2 [0,T ), (5.38)

where ↵ 2 (0, 1) is a free parameter to be determined later. Recall that by Theorem 3.1.5 we know

that u(t,x) > −1 and by assumption one has u(t,x)  0. In summary,

− 1 < u(t,x)  0, (t,x) 2 [0,T )⇥ I. (5.39)
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As a first consequence of (5.39) notice that

−1  ↵− 2

2
 Eα(t)  0, t 2 [0,T ).

In addition to the above facts, by differentiating the boundary condition (5.32) one obtains the

identity

 x

(

t,x,u(t,x)
)

= f 0(x)−  z

(

t,x,u(t,x)
)

ux(t,x), (5.40)

for all (t,x) 2 (0,T ) ⇥ I. Equation (5.40) plays a crucial role in the proof of the above theorem as

it is used several times in the subsequent reasoning. To summarise, we state the following general

assumptions for the lemmas in this section:

• f 2 C2
(

[−1, 1],R
)

with f(x) > 0 for all x 2 I and f(−1) = f(1);

• u 2 C
(

[0,T ),W 2
q (I)

)

, q 2 (2,1), is the solution to (5.33)–(5.35), satisfying (5.39);

•  2W 2
2

(

Ω(u(t))
)

is the solution to (5.31)–(5.32);

• ",λ,↵,β > 0 are parameters, being determined later;

• µ, ' and Eα are given as defined in (5.36) and (5.38), respectively.

The rough concept of the proof of Theorem 5.2.1 is to derive a differential inequality for the functional

Eα and to integrate this inequality with respect to t in order to get an upper bound for the maximal

time T of existence.

According to this concept, the first lemma yields a differential equation for the functional Eα, which

is the basis for the following estimates.

5.2.2 Lemma ([41, Lemma 5.2])

Given t 2 (0,T ), there holds5

dEα

dt
+ µEα + ↵

Z

I
'(ux)

2 dx

= −λ
Z

I
'(1 + ↵u)

(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx+ λ"2

Z

I
'(1 + ↵u)(f 0)2 dx.

Proof. Having (5.40) at hand, multiplication of the evolution equation (5.33) by '(1 + ↵u) and

5For the sake of better readability we suppress the variables in the calculations if no ambiguity is possible.
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integration over I with respect to x leads to

Z

I
'(1 + ↵u)(ut − uxx) dx =− λ

Z

I
'(1 + ↵u)

⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
⌘

dx

+ 2λ"2
Z

I
'(1 + ↵u) x(x,u)f

0 dx

=− λ

Z

I
'(1 + ↵u)

(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx

+ λ"2
Z

I
'(1 + ↵u)(f 0)2 dx.

(5.41)

Moreover, using the definition of Eα, one may verify that

dEα

dt
=

d

dt

Z

I
'
⇣

u+
↵

2
u2
⌘

dx =

Z

I
'(1 + ↵u)ut dx, t 2 (0,T ). (5.42)

Next, thanks to the eigenvalue problem (5.37) and the boundary condition (5.34), twice integrating

by parts yields

µEα = µ

Z

I
'
⇣

u+
↵

2
u2
⌘

dx

= −
Z

I
'xx

⇣

u+
↵

2
u2
⌘

dx

=

Z

I
'x(1 + ↵u)ux dx

= −
Z

I
'(1 + ↵u)uxx dx− ↵

Z

I
'(ux)

2 dx, t 2 (0,T ).

(5.43)

Combining (5.42) and (5.43), one obtains

dEα

dt
+ µEα + ↵

Z

I
'u2x dx =

Z

I
'(1 + ↵u)(ut − uxx) dx, t 2 (0,T ),

and finally, fusing this equation with (5.41), we end up with

dEα

dt
+ µEα + ↵

Z

I
'(ux)

2 dx

= −λ
Z

I
'(1 + ↵u)

(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx+ λ"2

Z

I
'(1 + ↵u)(f 0)2 dx

for t 2 (0,T ). This is the assertion of the lemma.

As one may see later on, the following lemma serves as a useful manipulation in order to estimate

the right-hand side of the above obtained differential equation for Eα.
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5.2.3 Lemma ([41, Lemma 5.3])

Given t 2 [0,T ), it holds

Z

I
'f

(

1 + "2(ux)
2
)

 z(x,u) dx

=

Z

Ω(u(t))
'

✓

"2( x)
2 + ( z)

2 +
µ"2

2
 2

◆

d(x, z)− µ"2

6
(f(1))2

− "2

2

Z

I
'xf

2ux dx+ "2
Z

I
'ff 0ux dx.

Proof. The idea of the proof is to multiply equation (5.31) by ' and to integrate over Ω(u(t)) with

respect to x and z. Thanks to the Green–Riemann integration formula as well as to the boundary

conditions for  and ', respectively, for t 2 [0,T ) we calculate the following:

0 = "2
Z

Ω
 xx' d(x, z) +

Z

Ω
 zz' d(x, z)

= −
Z

Ω
'
(

"2( x)
2 + ( z)

2
)

d(x, z)− "2
Z

Ω
'x  x d(x, z)

+

Z

I
' (x,u)

(

−"2 x(x,u)ux +  z(x,u)
)

dx

= −
Z

Ω
'
(

"2( x)
2 + ( z)

2
)

d(x, z)− "2

2

Z

Ω
'x( 

2)x d(x, z)

+

Z

I
'f

(

−"2 x(x,u)ux +  z(x,u)
)

dx

= −
Z

Ω
'
(

"2( x)
2 + ( z)

2
)

d(x, z)− "2

2

Z

Ω
'x( 

2)x d(x, z)

+

Z

I
'f

(

1 + "2(ux)
2
)

 z(x,u) dx− "2
Z

I
'ff 0ux dx,

where in the last step again the identity (5.40) is used. Finally, due to (5.37) and (5.32) there holds

Z

Ω
'x( 

2)x d(x, z) = −
Z

Ω
'xx 

2 d(x, z)−
Z

I
'x

(

 (x,u)
)2
ux dx

−
Z 0

−1
'x(−1)(1 + z)2

(

f(−1)
)2
dz +

Z 0

−1
'x(1)(1 + z)2

(

f(1)
)2
dz

= −
Z

Ω
'xx 

2 d(x, z)−
Z

I
'xf

2ux dx−
⇥

'x(−1)− 'x(1)
⇤

(

f(1)
)2

3

= −
Z

Ω
'xx 

2 d(x, z)−
Z

I
'xf

2ux dx+

(

f(1)
)2

3

Z

I
'xx dx

= µ

Z

Ω
' 2 d(x, z)−

Z

I
'xf

2ux dx− µ
(

f(1)
)2

3
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for t 2 [0,T ), whereby one obtains

Z

I
'f

(

1 + "2(ux)
2
)

 z(x,u) dx

=

Z

Ω
'
(

"2( x)
2 + ( z)

2 +
µ"2

2
 2
)

d(x, z)− µ"2

6

(

f(1)
)2

− "2

2

Z

I
'xf

2ux dx+ "2
Z

I
'ff 0ux dx

for t 2 [0,T ), as claimed.

The next result is an easy consequence of the Cauchy–Schwarz inequality and the boundary condition

(5.32).

5.2.4 Lemma ([41, Lemma 5.4])

Given t 2 [0,T ), it holds
Z

I
'

f2

1 + u
dx 

Z

Ω(u(t))
'( z)

2 d(x, z).

Proof. As performed in (5.15) in Lemma 5.1.1 one may deduce from the boundary condition (5.32)

for  and from the Cauchy–Schwarz inequality that

f2

1 + u

Z u

−1
( z)

2 dz, (t,x) 2 [0,T )⇥ I.

Owing to the non-negativity of ', we may multiply both sides of this inequality by ' and integrate

over I with respect to x to obtain

Z

I
'

f2

1 + u
dx 

Z

Ω
' 2

z d(x, z), t 2 [0,T ).

This completes the proof.

As a last auxiliary step for the proof of Theorem 5.2.1 we define for t 2 [0,T ) the functional

Φλ(t) :=

Z

I
'
(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx (5.44)

and derive a lower bound for it in the subsequent lemma.

5.2.5 Lemma ([41, Lemma 5.5])

Given t 2 [0,T ) and β > 0, there holds

Φλ(t) ≥
1

β

✓

−µ"
2M2

6
− M2

4β
− "2cf +

m2

1 + Eα(t)

◆

− M2"2

4β2

Z

I
'(ux)

2 dx,
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where the constants m,M and cf are defined by

m := min
x2[−1,1]

f(x), M := max
x2[−1,1]

f(x), and cf :=

Z

I
'f |f 00| dx. (5.45)

Proof. Fix t 2 [0,T ). Since we have

Z

I
'f

(

1 + "2(ux)
2
)

 z(x,u) dx  βΦλ +
1

4β

Z

I
'
(

1 + "2(ux)
2
)

f2 dx, t 2 [0,T ),

for β > 0, by the weighted Young inequality, we may apply Lemma 5.2.3 to obtain

Φλ(t) =

Z

I
'
(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx

≥ 1

β

Z

I
'f

(

1 + "2(ux)
2
)

 z(x,u) dx− 1

4β2

Z

I
'f2 dx− "2

4β2

Z

I
'f2(ux)

2 dx

=
1

β

 

Z

Ω
'( z)

2 d(x, z)− µ"2
(

f(1)
)2

6
− "2

2

Z

I
'xf

2ux dx+ "2
Z

I
'ff 0ux dx

+ "2
Z

Ω
'( x)

2 d(x, z) +
µ"2

2

Z

Ω
' 2 d(x, z)

!

− 1

4β2

Z

I
'f2 dx− "2

4β2

Z

I
'f2(ux)

2 dx

for t 2 [0,T ). With the constants m,M and cf , introduced in (5.45), we may infer from Lemma

5.2.4, the non-negativity of ', and the integration by parts formula that

Φλ(t) ≥
1

β

✓

m2

Z

I

'

1 + u
dx− µ"2M2

6
− "2

2

Z

I
'xf

2ux dx+ "2
Z

I
'ff 0ux dx− M2

4β

◆

− "2M2

4β2

Z

I
'(ux)

2 dx

=
1

β

 

m2

Z

I

'

1 + u
dx− µ"2M2

6
+
"2

2

Z

I
u'xxf

2 dx+ "2
Z

I
u'xff

0 dx

+ "2
Z

I
'ff 0ux dx− M2

4β

!

− "2M2

4β2

Z

I
'(ux)

2 dx

=
1

β

 

m2

Z

I

'

1 + u
dx− µ"2M2

6
+
"2

2

Z

I
u'xxf

2 dx− "2
Z

I
'u(f 0)2 dx

− "2
Z

I
'uff 00 dx− M2

4β

!

− "2M2

4β2

Z

I
'(ux)

2 dx

for t 2 [0,T ). At this point, we may deduce from (5.37), again the non-negativity of ', and the
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non-positivity of u that, given t 2 [0,T ), it holds that

Φλ(t) ≥
1

β

✓

m2

Z

I

'

1 + u
dx− µ"2M2

6
− µ"2

2

Z

I
'uf2 dx− "2

Z

I
'uff 00 dx− M2

4β

◆

− "2M2

4β2

Z

I
'(ux)

2 dx

≥ 1

β

✓

m2

Z

I

'

1 + u+ α
2u

2
dx− µ"2M2

6
− "2

Z

I
'uff 00 dx− M2

4β

◆

− "2M2

4β2

Z

I
'(ux)

2 dx.

Observing that we may apply Jensen’s inequality with the convex function [r 7! 1/(1 + r)] and the

probability measure '(x) dx, using the definition of the constant cf and the fact that −1 < u(t,x)

for all (t,x) 2 [0,T )⇥ I, we finally end up with

Φλ(t) ≥
1

β

✓

−µ"2M2

6
− M2

4β
− "2cf +

m2

1 + Eα

◆

− "2M2

4β2

Z

I
'(ux)

2 dx, t 2 [0,T ).

Eventually the proof is complete.

With the preliminary material from the above lemmas we are now able to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Let ↵ 2 (0, 1) to be determined later. We first derive a differential

inequality for the energy functional Eα. Invoking Lemma 5.2.2, for t 2 (0,T ) we have

dEα

dt
+ µEα + ↵

Z

I
'(ux)

2 dx

= −λ
Z

I
'(1 + ↵u)

(

1 + "2(ux)
2
)(

 z(x,u)
)2

dx+ λ"2
Z

I
'(1 + ↵u)(f 0)2 dx.

Using the fact that ' is non-negative and that 1+↵u ≥ 1−↵ for (t,x) 2 (0,T )⇥ I, c.f. (5.39), one

further obtains

dEα

dt
+ µEα + ↵

Z

I
'(ux)

2 dx

 −λ(1− ↵)Φλ(t) + λ"2
Z

I
'(1 + ↵u)(f 0)2 dx, t 2 (0,T ),

(5.46)

with Φλ introduced in (5.44). Lemma 5.2.5 yields the following estimate for Φλ(t) on (0,T ):

Φλ(t) ≥
1

β

✓

−µ"2M2

6
− M2

4β
− "2cf +

m2

1 + Eα

◆

− M2"2

4β2

Z

I
'(ux)

2 dx. (5.47)

Here, β > 0 is a further free parameter to be determined later and the constants m,M and cf are
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defined in (5.45). Fusing (5.46) and (5.47) leads to

dEα

dt
+ µEα + ↵

Z

I
'(ux)

2 dx

 λ(1− ↵)

β

✓

µ"2M2

6
+
M2

4β
+ "2cf − m2

1 + Eα

◆

+
λ(1− ↵)M2"2

4β2

Z

I
'(ux)

2 dx+ λ"2
Z

I
'(f 0)2 dx, t 2 (0,T ).

Since −1  Eα(t) for all t 2 [0,T ) by introducing the further constant

df :=

Z

I
'(f 0)2 dx

one obtains

dEα

dt
+

✓

↵− λ(1− ↵)M2"2

4β2

◆Z

I
'(ux)

2 dx

 µ+
λ(1− ↵)

β

✓

µ"2M2

6
+
M2

4β
+ "2cf − m2

1 + Eα

◆

+ λ"2df , t 2 (0,T ).

Now we use the freedom of choosing ↵ in such a way that we are able to control the λ-dependent

term ux. More precisely, we choose

↵ =
λ(1− ↵)M2"2

4β2
,

which is equivalent to

↵ =
λM2"2

4β2 + λM2"2
2 (0, 1).

Consequently, we obtain the following differential inequality for Eα on (0,T ):

dEα

dt
 µ+ λ"2df +

λ

β

✓

µ"2M2

6
+
M2

4β
+ "2cf − m2

1 + Eα

◆

.

Choosing

"  1p
λ

and β =
p
λ

then implies

dEα

dt
 µ+ df +

p
λ

✓

µM2

6λ
+

M2

4
p
λ
+
cf

λ
− m2

1 + Eα

◆

, t 2 (0,T ).



Chapter 5. On Some Qualitative Properties of Solutions 94

Denoting the right-hand side of the last inequality by Fλ(Eα), i.e. defining

Fλ(Eα) := µ+ df +
p
λ

✓

µM2

6λ
+

M2

4
p
λ
+
cf

λ
− m2

1 + Eα

◆

, t 2 (0,T ),

one may observe that Fλ is increasing on (−1,1) and that Eα is non-positive. This yields

dEα(t)

dt
 Fλ(Eα(t))  Fλ(0), t 2 (0,T ). (5.48)

Since

Fλ(0) = µ+ df +
p
λ

✓

µM2

6λ
+

M2

4
p
λ
+
cf

λ
−m2

◆

is strictly decreasing in λ and positive for small values of λ, it follows that one may find λ⇤ > 0 large

enough, such that Fλ⇤(0) = 0. Integrating inequality (5.48) with respect to t then implies

T  − 1

Fλ(0)
<1,

provided that λ > λ⇤, and the proof is complete.
⇤

5.2.6 Remark (1) Observe that λ⇤ depends only on the constants

m = min
x2[−1,1]

f(x), M = max
x2[−1,1]

f(x),

cf =

Z

I
'f |f 00| dx df =

Z

I
'(f 0)2 dx,

but not on any further properties of f .

(2) Theorem 5.2.1 provides an upper bound for the maximal time T of existence for all " 2
(0, 1/

p
λ].

(3) Observe that Lemma 5.2.2 and Lemma 5.2.3 require only that f 2 C1
(

[−1, 1],R
)

and Lemma

5.2.4 does even hold true for f 2 C
(

[−1, 1],R
)

.

Finally, we complete this section by fusing some of the previous observations. In Theorem 5.1.2

conditions are specified which ensure that solutions emerging from non-positive initial values stay

non-positive for all times t of existence. For spatially varying permittivity profiles the above men-

tioned conditions are even improved in Corollary 5.1.3 (i). In addition, the non-positivity of u

appears as a crucial condition for the verification of the appearance of finite-time singularities, c.f.

Theorem 5.2.1. Thus, combining Theorem 5.1.2 with Corollary 5.1.3 and Theorem 5.2.1 advices us
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to introduce the constant

mf ,λ := min

⇢

min
x2[−1,1]

f(x)

|f 0(x)| ,
1p
λ

}

and to formulate the following corollary. Note that we are still restricted to the regime of spatially

varying permittivity profiles.

5.2.7 Corollary

Let f 2 C2
(

[−1, 1,R]
)

be positive with f(−1) = f(1) and denote by u 2 C
(

[0,T ),W 2
q (I)

)

the

solution to (5.33)–(5.35) with corresponding initial value u⇤(x)  0, x 2 I. Assume in addition that

 zz(x,−1) ≥ 0 and  zz(x, v(x)) ≥ 0 (5.49)

for all x 2 I and all v 2W 2
q (I), satisfying v(x)  0, x 2 I. Then there exists a critical voltage value

λ⇤ > 0 such that T <1, provided that λ > λ⇤ and " 2 (0,mf ,λ). That is, we have either

lim sup
t!T

ku(t)kW 2
q (I)

= 1 or lim inf
t!T

min
x2[−1,1]

u(t,x) = −1.

5.2.2 | Finite-Time Singularities in the Quasilinear Setting

Similar to what is done in the semilinear case, we now study conditions which ensure that the

solution u to the quasilinear evolution problem develops a singularity after a finite time of existence.

For constant permittivity profiles f ⌘ 1 the according result is published in [13], where the authors

study the time evolution of a certain energy functional in order to derive an upper bound for maximal

time T of existence. The same approach with even the same energy functional may be used for non-

constant permittivity profiles f = f(x) and f(u), respectively, as we will see in the following (c.f.

also [17, 16]). In order to not go beyond the scope of this work we focus here on the case in which

the permittivity profile f depends on the membrane’s displacement u. The case of spatially varying

permittivity profiles is just briefly discussed without going into details.

Spatially Varying Permittivity Profiles; f = f(x). Given a spatially varying

permittivity profile f = f(x), x 2 I, we consider the moving boundary problem

"2 xx +  zz = 0, t > 0, (x, z) 2 Ω(u(t)), (5.50)

 (t,x, z) =
1 + z

1 + u(t,x)
f(x), t > 0, (x, z) 2 @Ω(u(t)), (5.51)
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coupled with the quasilinear parabolic evolution problem

ut − @x

 

ux
p

1 + "2(ux)2

!

= −λ
⇣

"2
(

 x(x,u(t,x))
)2

+
(

 z(x,u(t,x))
)2
⌘

+ 2λ"2 x(x,u(t,x))f
0(x), t > 0,x 2 I, (5.52)

u(t,±1) = 0, t > 0, (5.53)

u(0,x) = u⇤(x), x 2 I. (5.54)

The following theorem on finite-time singularities of the solution u to (5.52)–(5.54) may be verified.

5.2.8 Theorem (Finite-Time Singularity; f = f(x); [17])

Let q 2 (2,1), " > 0 and λ > 0. Moreover, given a positive f 2 C1
(

[−1, 1],R
)

and an initial datum

u⇤ 2 W 2
q,D(I), satisfying −1 < u⇤(x)  0 for all x 2 I, denote by (u, ) the unique solution to

(5.50)–(5.54) on the maximal interval [0,T ) of existence and assume that

(A1) maxx2[−1,1] f(x) <
p
2minx2[−1,1] f(x);

(A2) minx2[−1,1] f(x) = f(−1) = f(1);

(A3) u(t,x)  0, (t,x) 2 [0,T )⇥ I.

Then there exist "⇤ > 0 and λ⇤ = λ⇤("⇤) > 0 such that the maximal existence time T of the unique

solution u to (5.52)–(5.54) is finite,6 provided that " 2 (0, "⇤) and λ > λ⇤. In this case either

lim inf
t!T

min
[−1,1]

u(t,x) = −1 or lim sup
t!T

ku(t)kW 2
q (I)

= 1.

As mentioned above we omit the according proof in order to not going beyond the scope of this

thesis and refer the reader to [17] for more detailed information. Nevertheless it is worthwhile to

mention that the non-positivity of u as stated in (A3) is crucial for the proof.

Permittivity Profiles Depending on the Membrane’s Displacement; f = f(u).

In this paragraph we study the coupled system consisting of the elliptic free boundary value problem

"2 xx +  zz = 0, t > 0, (x, z) 2 Ω(u(t)), (5.55)

 (t,x, z) =
1 + z

1 + u(t,x)
f
(

u(t,x)
)

, t > 0, (x, z) 2 @Ω(u(t)), (5.56)

6Letting δ := 2min(f2)−max(f2), we have in fact λ⇤ = 1/(δ").
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and the quasilinear parabolic evolution problem

ut − @x

 

ux
p

1 + "2(ux)2

!

= −λ
⇣

"2
(

 x(x,u(t,x))
)2

+
(

 z(x,u(t,x))
)2
⌘

+ 2λ z(x,u(t,x))f
0
(

u(t,x)
)

, t > 0, x 2 I, (5.57)

u(t,±1) = 0, t > 0, (5.58)

u(0,x) = u⇤(x), x 2 I. (5.59)

The permittivity profile is considered to be a function depending on the displacement u of the

membrane and f 0(u) denotes the derivative of f with respect to u. We prove that under certain

conditions the solution u to the quasilinear parabolic initial boundary value problem (5.57)–(5.59)

develops a singularity after a finite time T of existence. More precisely, as in the semilinear and the

quasilinear setting with f = f(x) either a blow-up of the W 2
q (I)-norm of u or a touchdown takes

place.

5.2.9 Theorem (Finite-Time Singularity; f = f
(

u(t,x)
)

, [16, Theorem 3.4])

Let q 2 (2,1), " > 0 and λ > 0. Moreover, given a positive f 2 C2
(

[−1, 0],R
)

and an initial datum

u⇤(x)  0, x 2 I, denote by (u, ) the unique solution to (5.55)–(5.59) on the maximal interval

[0,T ) of existence and assume that the following conditions hold true:

(A1) maxx2[−1,0] f(r) <
p
2minr2[−1,0] f(r);

(A2) f
0(r)  0, r 2 [−1, 0],

(A3) u(t,x)  0, (t,x) 2 [0,T )⇥ I;

(A4)  zz(t,x,−1) ≥ 0 and  zz

(

t,x,u(t,x)
)

≥ 0, t 2 [0,T ), x 2 I.

Then the maximal existence time T of the unique solution u to (5.57)–(5.59) is finite. More precisely,

there exists 7 λ⇤ > 0 such that either

lim inf
t!T

min
x2[−1,1]

u(t,x) = −1 or lim sup
t!T

ku(t)kW 2
q (I)

= 1

for all λ > λ⇤.

As already mentioned the proof of this result relies on an appropriate estimate of an energy functional

which then leads to an upper bound for the maximal time T of existence of the solution (u, ) to

(5.55)–(5.59). In the sequel we provide the essential steps for the estimate of the energy functional

in the form of several technical lemmas. Those auxiliary results are finally fused in a separate proof

of Theorem 5.2.9.
7Letting δ := 2min(f2)−max(f2), we have in fact λ⇤ = 1/(δ").
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As a starting point we state a representation of  x on the membrane u

 x(x,u(t,x)) =
(

f 0(u(t,x))−  z(x,u(t,x))
)

ux(t,x), (t,x) 2 (0,T )⇥ I, (5.60)

which is of special importance as it is frequently used in the following. Furthermore,  x vanishes on

the ground plate, i.e.

 x(x,−1) = 0, x 2 I. (5.61)

Note that both identities, (5.60) and (5.61) may be derived from the boundary condition (5.56).

The following lemma provides an integral identity based on the equation (5.55) for  .

5.2.10 Lemma ([16, Lemma 3.5])

Given f 2 C1
(

[−1, 0],R
)

there holds

1

2

Z

I

(

1+"2(ux)
2
)(

 z(x,u)
)2
dx

=

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx+
1

2

Z

I

(

 z(x,−1)
)2 − 2 z(x,−1)f(u) dx

− "2
Z

I
f(u)f 0(u)(ux)

2 dx+
"2

2

Z

I

(

f 0(u)ux
)2
dx− "2

Z

Ω
 xf

0(u)ux d(x, z).

Proof. Thanks to Fubini’s theorem and the Green–Riemann integration formula and the boundary

condition (5.61) we find that

−"2
Z

Ω
 x

(

 zx − f 0(u)ux
)

d(x, z)

= −"
2

2

Z

Ω

(

( x)
2
)

z
d(x, z) + "2

Z

Ω
 xf

0(u)ux d(x, z)

= −"
2

2

Z

I

(

 x(x,u)
)2
dx+ "2

Z

Ω
 xf

0(u)ux d(x, z).

Using the identity (5.60) then leads to

−"2
Z

Ω
 x

(

 zx − f 0(u)ux
)

d(x, z)

= −"
2

2

Z

I

(

f 0(u)ux −  z(x,u)ux
)2
dx+ "2

Z

Ω
 xf

0(u)ux d(x, z)

= −"
2

2

Z

I

(

f 0(u)ux
)2
dx+ "2

Z

I
 z(x,u)f

0(u)(ux)
2 dx

− "2

2

Z

I

(

 z(x,u)ux
)2
dx+ "2

Z

Ω
 xf

0(u)ux d(x, z).

(5.62)

As above, invoking the Green–Riemann integration formula as well as the boundary conditions (5.56)
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and (5.60), we obtain

"2
Z

Ω
 xx

(

 z − f(u)
)

d(x, z)

= "2
Z

Ω

(

 x( z − f(u))
)

x
d(x, z)− "2

Z

Ω
 x

(

 zx − f 0(u)ux
)

d(x, z)

= "2
Z

∂Ω
 x

(

 z − f(u)
)

dz − "2
Z

Ω
 x

(

 zx − f 0(u)ux
)

d(x, z)

= "2
Z

I

(

 z(x,u)ux
)2
dx− "2

Z

I
 z(x,u)f(u)(ux)

2 dx

− "2
Z

I
 z(x,u)f

0(u)(ux)
2 dx+ "2

Z

I
f(u)f 0(u)(ux)

2 dx

− "2
Z

Ω
 x

(

 zx − f 0(u)ux
)

d(x, z).

(5.63)

Fusing (5.62) and (5.63) then yields

"2
Z

Ω
 xx

(

 z − f(u)
)

d(x, z) = "2
Z

Ω
 xf

0(u)ux d(x, z)−
"2

2

Z

I

(

f 0(u)ux
)2
dx

+
"2

2

Z

I

(

 z(x,u)ux
)2
dx+ "2

Z

I

(

f 0(u)−  z(x,u)
)

f(u)(ux)
2 dx.

(5.64)

Similarly, again due to Fubini’s theorem we may derive the identity

Z

Ω
 zz

(

 z − f(u)
)

d(x, z)

= −
Z

Ω
 zzf(u) d(x, z) +

1

2

Z

I

(

 z(x,u)
)2 −

(

 z(x,−1)
)2
dx

=

Z

I

(

 z(x,−1)−  z(x,u)
)

f(u) dx+
1

2

Z

I

(

 z(x,u)
)2 −

(

 z(x,−1)
)2
dx.

(5.65)

Multiplying now equation (5.50) by  z − f(u), integrating over Ω and using the above equations

(5.64) and (5.65) we find that

0 =

Z

Ω

(

"2 xx +  zz

)(

 z − f(u)
)

d(x, z)

= "2
Z

Ω
 xf

0(u)ux d(x, z)−
1

2

Z

I

(

 z(x,−1)
)2 − 2 z(x,−1)f(u) dx

+
1

2

Z

I

(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx−

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx

+ "2
Z

I
f(u)f 0(u)(ux)

2 dx− "2

2

Z

I

(

f 0(u)ux
)2
dx.
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Finally, the last equation is equivalent to

1

2

Z

I

(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx

=

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx+
1

2

Z

I

(

 z(x,−1)
)2 − 2 z(x,−1)f(u) dx

− "2
Z

I
f(u)f 0(u)(ux)

2 dx+
"2

2

Z

I

(

f 0(u)ux
)2
dx− "2

Z

Ω
 xf

0(u)ux d(x, z),

whence the proof is complete.

Subsequently, a further manipulation of the first term of the above obtained integral equality is

verified.

5.2.11 Lemma ([16, Lemma 3.6])

Given f 2 C1
(

[−1, 0],R
)

, the following equation holds true:

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx

=

Z

Ω
"2( x)

2 + ( z)
2 d(x, z) + "2

Z

I
f(u)f 0(u)(ux)

2 dx

− f(0) "2
Z 0

−1
(1 + z)

(

 x(1, z)−  x(−1, z)
)

dz.

Proof. Using the boundary condition (5.56) for  it follows that

Z

∂Ω
 z dx = −

Z

I
 z(x,u)f(u) dx. (5.66)

Similarly, by recalling in addition the identity (5.60), we find that

Z

∂Ω
 x dz = −

Z

I
 x(x,u)f(u)ux dx+ f(0)

Z 0

−1
(1 + z)

(

 x(1, z)−  x(−1, z)
)

dz

= −
Z

I

(

f 0(u)−  z(x,u)
)

f(u)(ux)
2 dx+ f(0)

Z 0

−1
(1 + z)

(

 x(1, z)−  x(−1, z)
)

dz.

(5.67)

Now multiplying the equation (5.55) by  and integrating over Ω one obtains

0 =

Z

Ω

(

"2 xx +  zz

)

 d(x, z)

= −
Z

Ω
"2( x)

2 + ( z)
2 d(x, z) +

Z

Ω
"2( x )x + ( z )z d(x, z).

A reapplication of the Green–Riemann integration formula together with (5.66) and (5.67) finally
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yields

0 = −
Z

Ω
"2( x)

2 + ( z)
2 d(x, z) + "2

Z

∂Ω
 x dz −

Z

∂Ω
 z dx

= −
Z

Ω
"2( x)

2 + ( z)
2 d(x, z) +

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx

− "2
Z

I
f(u)f 0(u)(ux)

2 dx+ "2f(0)

Z 0

−1
(1 + z)

(

 x(1, z)−  x(−1, z)
)

dz.

This is equivalent to

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx

=

Z

Ω
"2( x)

2 + ( z)
2 d(x, z) + "2

Z

I
f(u)f 0(u)(ux)

2 dx

− "2f(0)

Z 0

−1
(1 + z)

(

 x(1, z)−  x(−1, z)
)

dz,

whereby the proof is complete.

In the following lemma we provide a subsolution to the elliptic problem (5.55)–(5.56) for  .

5.2.12 Lemma ([17, Lemma 3.7])

Given a positive f 2 C
(

[−1, 0],R
)

we introduce the notation

m := min
r2[−1,0]

f(r)

and define ⌘(x, z) := (1 + z)m for (x, z) 2 Ω. Then ⌘ is a subsolution to (5.55)–(5.56), i.e. we have

⌘(x, z)   (x, z), (x, z) 2 Ω.

Proof. It is clear that ⌘ satisfies the equation (5.55), i.e.

"2⌘xx + ⌘zz = 0 = "2 xx +  zz, (x, z) 2 Ω.

Moreover, on the lateral components of the boundary it holds that

⌘(±1, z) = (1 + z)m  (1 + z)f(0) =  (±1, z), z 2 (−1, 0).

Finally, we have

⌘(x,−1) = 0 =  (−1, z), x 2 I,
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on the ground plate, as well as

⌘
(

x,u(x)
)

= (1 + u)m  (1 + u)f
(

u(x)
)

 f
(

u(x)
)

=  
(

x,u(x)
)

, x 2 I,

on the membrane.8 Thus, the elliptic maximum principle yields the assertion.

Using the fact that ⌘ is a subsolution to (5.55)–(5.56) now leads to the following result on the sign of

 x on the lateral boundaries. In some sense the results is reminiscent of Hopf’s maximum principle.

5.2.13 Lemma ([16, Lemma 3.8])

Given a positive f 2 C ([−1, 0],R) with m = f(0), the potential  satisfies

± x(±1, z)  0, z 2 (−1, 0).

Proof. The statement readily follows from an application of Lemma 5.2.12:

 x(1, z) = lim
h&0

 (1− h, z)−  (1, z)

−h

= lim
h&0

 (1− h, z)− (1 + z)f(0)

−h

 lim
h&0

⌘(1− h, z)− (1 + z)f(0)

−h
= 0.

Similarly one deduces  x(−1, z) ≥ 0 for all z 2 (−1, 0).

5.2.14 Corollary ([16, Corollary 3.9])

Given a positive f 2 C1
(

[−1, 0],R
)

, the inequality

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dz ≥
Z

Ω
"2( x)

2 + ( z)
2 d(x, z) + "2

Z

I
f(u)f 0(u)(ux)

2 dx

holds true.

Proof. From Lemma 5.2.11 we know that the identity

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx =

Z

Ω
"2( x)

2 + ( z)
2 d(x, z)

+ "2
Z

I
f(u)f 0(u)(ux)

2 dx− f(0) "2
Z 0

−1
(1 + z)

(

 x(1, z)−  x(−1, z)
)

dz

8Recall that u(t,x)  0 on [0,T )⇥ I by Theorem 5.1.2.



103 5.2. Non-Existence of Global Solutions

holds true. Having in mind that f is positive by assumption we may invoke Lemma 5.2.13 to deduce

that

−f(0)
(

 x(1, z)−  x(−1, z)
)

≥ 0, z 2 (−1, 0),

whereby the assertion immediately follows.

By simple calculations one may derive the following two auxiliary results.

5.2.15 Lemma ([16, Lemma 3.10])

The estimate
Z

I

(

 z(x,−1)
)2 − 2 z(x,−1)f(u) dx ≥ −

Z

I

(

f(u)
)2
dx

holds true for every f 2 C
(

[−1, 0],R
)

.

Proof. We readily see that

(

 z(x,−1)
)2 − 2 z(x,−1)f(u) +

(

f(u)
)2

=
(

 z(x,−1)− f(u)
)2 ≥ 0,

whereby
(

 z(x,−1)
)2 − 2 z(x,−1)f(u) ≥ −

(

f(u)
)2
.

An integration over I with respect to x completes the proof.

5.2.16 Lemma ([16, Lemma 3.11])

Given an f 2 C1
(

[−1, 0],R
)

, we obtain the inequality

−"2
Z

Ω
 xf

0(u)ux d(x, z) ≥ −"
2

4

Z

Ω
( x)

2 d(x, z)− "2
Z

I

(

f 0(u)ux
)2
dx.

Proof. Again we use the elementary observation

0 
✓

1

2
 x − f 0(u)ux

◆2

=
1

4
( x)

2 −  xf
0(u)ux +

(

f 0(u)ux
)2

to get the inequality

− xf
0(u)ux ≥ −1

4
( x)

2 −
(

f 0(u)ux
)2
.

Integration over Ω yields

−"2
Z

Ω
 xf

0(u)ux d(x, z) ≥ −"
2

4

Z

Ω
( x)

2 d(x, z)− "2
Z

Ω

(

f 0(u)ux
)2
d(x, z).
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Finally, using u(x)  0 for all x 2 I, guaranteed by Theorem 5.1.2, Fubini’s theorem leads to

−"2
Z

Ω
 xf

0(u)ux d(x, z) ≥ −"
2

4

Z

Ω
( x)

2 d(x, z)− "2
Z

I
(u+ 1)

(

f 0(u)ux
)2
dx

≥ −"
2

4

Z

Ω
( x)

2 d(x, z)− "2
Z

I

(

f 0(u)ux
)2
dx

and the proof is complete.

Given t 2 [0,T ), we introduce the Dirichlet form associated to (5.55), i.e.

Φλ(t) :=
λ

2

Z

I
"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
dx (5.68)

and fuse the above lemmas to obtain a lower bound for the above introduced Dirichlet form of

(5.55)–(5.56) in terms of a weighted L2(I)-norm of the permittivity profile f . Similar as above we

use the notation

m := min
r2[−1,0]

f(r) and M := max
r2[−1,0]

f(r).

5.2.17 Lemma

Given f 2 C
(

[−1, 0],R
)

, there holds

Z

Ω

3

4
"2( x)

2 + ( z)
2d(x, z) ≥

Z

I

(

f(u)
)2

1 + u
dx.

Proof. Again as in (5.15) in Lemma 5.1.1 we deduce from the boundary condition (5.56) for  and

a trivial application of Cauchy–Schwarz’s inequality that

(

f(u)
)2

1 + u

Z u

−1
( z)

2 dz.

Integrating this inequality with respect to x 2 I and using Fubini’s theorem yields

Z

I

(

f(u)
)2

1 + u
dx 

Z

Ω
( z)

2 d(x, z) 
Z

Ω

3

4
"2( x)

2 + ( z)
2 d(x, z),

which is the statement of the lemma.

5.2.18 Lemma ([16, Lemma 3.12])

Let f 2 C1
(

[−1, 0],R
)

be positive with m = f(0). Then the functional Φλ(t), introduced in (5.68),
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complies with the inequality

Φλ(t) ≥ λ

✓

2m2

1− E(t)
−M2 − "2

Z

I
 z(x,u)f

0(u)(ux)
2 dx

◆

.

Proof. First we use the identity (5.60) to find that

Φλ(t) =
λ

2

Z

I
"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
dx

=
λ

2

Z

I

(

1 + "2(ux)
2
)(

 z(x,u)
)2
dx+

λ"2

2

Z

I

(

f 0(u)ux
)2
dx

− λ"2
Z

I
 z(x,u)f

0(u)(ux)
2 dx.

Invoking Lemma 5.2.10 and Corollary 5.2.14 we obtain

Φλ(t) = λ

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f(u) dx+
λ

2

Z

I

(

 z(x,−1)
)2 − 2 z(x,−1)f(u) dx

− λ"2
Z

I
f(u)f 0(u)(ux)

2 dx+ λ"2
Z

I

(

f 0(u)ux
)2
dx− λ"2

Z

I
 z(x,u)f

0(u)(ux)
2 dx

− λ"2
Z

Ω
 xf

0(u)ux d(x, z)

≥ λ

Z

Ω
"2( x)

2 + ( z)
2 d(x, z)− λ"2

Z

Ω
 xf

0(u)ux d(x, z) + λ"2
Z

I

(

f 0(u)ux
)2
dx

+
λ

2

Z

I

(

 z(x,−1)
)2 − 2 z(x,−1)f(u) dx− λ"2

Z

I
 z(x,u)f

0(u)(ux)
2 dx.

Hence, thanks to Lemma 5.2.15 and Lemma 5.2.16 we obtain the estimate

Φλ(t) ≥ λ

Z

Ω

3

4
"2( x)

2 + ( z)
2 d(x, z)− λ"2

Z

I
 z(x,u)f

0(u)(ux)
2 dx− λ

2

Z

I
(f(u))2 dx.

Recalling Corollary 5.2.17 and applying Jensen’s inequality to the convex function [r 7! 1/(1 + r)]

and the probability measure dx/2 we finally end up with

Φλ(t) ≥ λ

Z

I

(

f(u)
)2

1 + u
dx− λ"2

Z

I
 z(x,u)f

0(u)(ux)
2 dx− λ

2

Z

I

(

f(u)
)2

dx

≥ 2λm2

1− E(t)
− λ"2

Z

I
 z(x,u)f

0(u)(ux)
2 dx− λM2,

which completes the proof.

We are finally prepared to prove Theorem 5.2.8. From now on we explicitly mention the time vari-

able t when it is requested from the context.
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Proof of Theorem 5.2.8:

Given t 2 [0,T ), we introduce the functional

E(t) := −1

2

Z

I
u(t,x) dx.

Since we know that −1 < u(t,x)  0 for all (t,x) 2 [0,T )⇥ I, cf. Theorem 5.1.2, it follows that

0  E(t) < 1, t 2 [0,T ).

Using the evolution equation (5.57) and the definition of Φλ(t) gives

dE

dt
(t) = −1

2

"

ux
p

1 + "2(ux)2

#x=1

x=−1

+
λ

2

Z

I
"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
dx

− λ

Z

I
 z(x,u)f

0(u) dx

≥ −1

"
+Φλ(t)− λ

Z

I
 z(x,u)f

0(u) dx.

(5.69)

Fusing this inequality with the estimate

Φλ(t) ≥ λ

✓

2m2

1− E(t)
−M2 − "2

Z

I
 z(x,u)f

0(u)(ux)
2 dx

◆

from Lemma 5.2.18 leads to

dE

dt
(t) ≥ −1

"
+ λ

✓

2m2

1− E(t)
−M2

◆

− λ

Z

I

(

1 + "2(ux)
2
)

 z(x,u)f
0(u) dx.

By a combination of the assumption (A2) with the fact that  z(x, z) ≥ 0, cf. (5.22), we end up with

the differential inequality

dE

dt
(t) ≥ −1

"
+ λ

✓

2m2

1− E(t)
−M2

◆

:= Fλ(E(t)).

Observe that Fλ is (strictly) increasing on [0, 1) which implies that

dE

dt
(t) ≥ Fλ(E(t)) ≥ Fλ(0). (5.70)

Furthermore, evaluating Fλ in E ⌘ 0 yields

Fλ(0) = −1

"
+ λ

(

2m2 −M2
)

.

By assumption we know that δ := 2m2 −M2 is positive. Thus, if λ > λ⇤ := 1/(δ") it follows that
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Fλ(0) > 0. Integrating the inequality (5.70) with respect to t then implies that 1 ≥ E(0) + Fλ(0)T

and eventually

T <
1

Fλ(0)
<1.

This completes the proof.
⇤

5.2.19 Remark

It is worthwhile to compare the assumptions of Theorem 5.2.9 with those of Theorem 5.2.8, where

the case f = f(x) is treated.

(1) Theorem 5.2.9 holds true for any " > 0 (provided that λ is accordingly large enough). This is

in contrast to Theorem 5.2.8, where we have to assume that " > 0 is small (and λ accordingly

large enough).

(2) As one may see in Section 5.1, the condition (A4) on  zz to be non-negative on the membrane

and on the ground plate is crucial in order to prove non-positivity of the membrane’s displace-

ment u(t,x). But, moreover, in the present study, where the permittivity profile f depends

on u, this assumption on  zz is also necessary in order to verify the occurrence of finite-time

singularities, even if we already know that u(t,x)  0.





6 | Numerical Investigations

This chapter is devoted to the numerical investigation of the system coupling the semilinear evolution

problem, arising from a linear elasticity approach, with the associated elliptic moving boundary

problem.

As performed in Chapter 3 for the analytical investigation, we first transform the elliptic moving

boundary problem for the electric potential  to the fixed rectangle Ω := I ⇥ (−1, 0). In the

numerical computations we may thus benefit from a relatively simple geometry. The price to pay for

this advantage is that the transformed elliptic problem has non-constant coefficients depending on

the displacement u and its spatial derivatives up to order two. However, in the subsequent sections

we consider the system coupling the evolution problem

ut − uxx = −λ
 

"2
⇣

−
(

fx(x,u)
)2

+
(

fu(x,u)ux
)2
⌘

− 2
1 + "2(ux)

2

1 + u
fu(x,u)'η(t,x, 1) +

1 + "2(ux)
2

(1 + u)2
(

'η(t,x, 1)
)2

!

, t > 0, x 2 I, (6.1)

u(t,±1) = 0, t > 0, (6.2)

u(0,x) = u⇤(x), x 2 I, (6.3)

for the membrane’s displacement with the elliptic problem

(

Lu(t)'
)

= 0, t > 0, (x, ⌘) 2 Ω, (6.4)

'(t,x, ⌘) = ⌘f(x,u), t > 0, (x, ⌘) 2 @Ω, (6.5)

determining the transformed electric potential in the region Ω = I ⇥ (−1, 0). Recall that for u(t) 2
Sq(), the differential operator Lu(t) is given by

Lu(t)' = "2'xx − 2"2⌘
ux

1 + u
'xη +

1 + "2⌘2(ux)
2

(1 + u)2
'ηη + "2⌘

 

2

✓

ux

1 + u

◆2

− uxx

1 + u

!

'η.

109
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Separating the treatments of the semilinear parabolic problem for u and the the elliptic problem

for ', we address in Section 6.1 the solution of the elliptic problem by means of the Finite-element

method. Section 6.2 is then concerned with the problem of numerically determining the membrane’s

displacement u using the Crank–Nicolson method. There is a wide range of literature on the men-

tioned numerical methods. Howsoever the reader is referred to the textbooks [8, 5, 7] as pertinent

references for more details on the following elaboration.

6.1 | Approximate Solution of the Elliptic Moving Bound-

ary Problem

Let u = u(t) 2 Sq() be a given membrane’s displacement at a fixed time t ≥ 0 and f 2 C3
(

[−1, 1]⇥
R
)

.1 We consider the elliptic boundary value problem

(Lu') (t,x, ⌘) = 0, t > 0, (x, ⌘) 2 Ω, (6.6)

'(t,x, ⌘) = ⌘f(x,u), t > 0, (x, ⌘) 2 @Ω, (6.7)

of second order in the region Ω = I ⇥ (−1, 0). From Theorem 3.1.3 we know that this problem

possesses a unique solution ' = '(t) 2 W 2
2 (Ω). In this section the basic concepts for a numerical

treatment of (6.6)–(6.7) are presented.

Homogenisation of the Boundary Conditions. As it is common practice

we start by reducing the above problem to one with homogeneous boundary conditions. To this end,

recall from the proof of Theorem 3.1.3 that the function φ = φ(u) 2 H1
0 (Ω), defined by

φ(x, ⌘) := '(x, ⌘)− ⌘f(x,u), (x, ⌘) 2 Ω,

is the unique solution to the homogeneous boundary value problem

−Luφ = Fu, (x, ⌘) 2 Ω, (6.8)

φ = 0, (x, ⌘) 2 @Ω, (6.9)

where Fu(x, ⌘) := Lu

(

⌘f(x,u)
)

for (x, ⌘) 2 Ω.

1Again the time t appears as a parameter, whence it is omitted in the notation.
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A Variational Formulation. In the following a suitable variational formulation

of the problem (6.8)–(6.9) is derived which then serves as a basis for the numerical computation of

' = φ+ ⌘f(x,u) by means of the finite-element method. For this purpose, we consider the operator

Lu in divergence form

−Luφ = −@x
(

a11(u)φx + a12(u)φη
)

− @η
(

a21(u)φx + a22(u)φη
)

− b1(u)φx − b2(u)φη,

where

a11(u) := "2, a12(u) := −"2⌘ ux

1 + u
,

a21(u) := a12(u), a22(u) :=
1 + "2⌘2(ux)

2

(1 + u)2
,

b1(u) := "2
ux

1 + u
, b2(u) := −"2⌘

✓

ux

1 + u

◆2

,

multiply the equation (6.8) by a testfunction µ 2 H1
0 (Ω) and integrate over Ω. This leads to

Z

Ω
Fu µd(x, ⌘) = −

Z

Ω

(

Luφ
)

µd(x, ⌘)

= −
Z

Ω
@x

✓

"2φx − "2⌘
ux

1 + u
φη

◆

µd(x, ⌘)−
Z

Ω
@η

✓

−"2⌘ ux

1 + u
φx +

1 + "2⌘2(ux)
2

(1 + u)2
φη

◆

µd(x, ⌘)

− "2
Z

Ω

ux

1 + u
φxµd(x, ⌘) + "2

Z

Ω
⌘

✓

ux

1 + u

◆2

φηµd(x, ⌘).

Thanks to the Green–Riemann integration theorem and the fact that µ vanishes at the boundary

@Ω we then find that
Z

Ω
Fu µd(x, ⌘)

= "2
Z

Ω
φxµx d(x, ⌘)− "2

Z

Ω
⌘
ux

1 + u
φηµx d(x, ⌘)− "2

Z

Ω
⌘
ux

1 + u
φxµη d(x, ⌘)

+

Z

Ω

1 + "2⌘2(ux)
2

(1 + u)2
φηµη d(x, ⌘)− "2

Z

Ω

ux

1 + u
φxµd(x, ⌘) + "2

Z

Ω
⌘

✓

ux

1 + u

◆2

φηµd(x, ⌘).

(6.10)

Given φ,µ 2 H1
0 (Ω) we now define the bilinear form

a(φ,µ) :=

Z

Ω
(rφ)TArµ+ bTrφµd(x, ⌘), (6.11)

with the matrix A given by

A(x, ⌘,u) :=

 

"2 −"2⌘ ux
1+u

−"2⌘ ux
1+u

1+ε2η2(ux)2

(1+u)2

!

(6.12)
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and the vector b defined by

b(x, ⌘,u) :=

0

@

−"2 ux
1+u

"2⌘
⇣

ux
1+u

⌘2

1

A . (6.13)

6.1.1 Lemma (Continuity of a)

The bilinear form a : H1
0 (Ω)⇥H1

0 (Ω) ! R defined in (6.11) is continuous, i.e. there exists a constant

C > 0 such that

|a(φ,µ)|  CkφkH1(Ω)kµkH1(Ω)

for all φ,µ 2 H1
0 (Ω).

Proof. Since u = u(t) 2 Sq() we know that kukC1([−1,1])  c and k1/(1 + u)kL1([−1,1])  c for a

positive constant c that depends on . Using in addition the fact that 0  ⌘  1 the Cauchy–Schwarz

inequality readily yields the existence of a constant C = C(",) such that

|a(φ,µ)|  CkφkH1(Ω)kµkH1(Ω)

for all φ,µ 2 H1
0 (Ω), which is the assertion.

Though the bilinear form a : H1
0 (Ω) ⇥ H1

0 (Ω) ! R is continuous, it is in general not coercive.

Nonetheless, introducing the principal part aπ : H1
0 (Ω)⇥H1

0 (Ω) ! R of a, defined by

aπ(φ,µ) :=

Z

Ω
(rφ)TArµd(x, ⌘), φ, µ 2 H1

0 (Ω)

with A as in (6.12), we may state the following results in this direction.

6.1.2 Lemma

The principal part aπ : H1
0 (Ω)⇥H1

0 (Ω) ! R of the bilinear form a is elliptic (uniformly in u 2 Sq()).

That is, there exists a constant C = C(",) > 0 such that

aπ(φ,φ) ≥ Ckφk2H1(Ω)

for all φ 2 H1
0 (Ω).

Proof. As in [32, Lemma 5] we show that the matrix

A(x, ⌘,u) :=

 

"2 −"2⌘ ux
1+u

−"2⌘ ux
1+u

1+ε2η2(ux)2

(1+u)2

!
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defined in (6.12) is positive definite uniformly in u 2 Sq(). To this end, denote by

t := "2 +
1 + "2⌘2(ux)

2

(1 + u)2
and d :=

"2

(1 + u)2

the trace and the determinant of A, respectively. As A is obviously symmetric both eigenvalues

µ± =
1

2

⇣

t±
p

t2 − 4d
⌘

are real-valued, which in particular implies that t2 ≥ 4d. In order to prove that A is positive definite

(uniformly in u 2 Sq()) we are thus left with showing uniform positivity of µ−. For this purpose

observe that the fact that u is contained in Sq() implies that −1 +   u for all x 2 I and that

there exists a constant c = c() > 0 such that kukC1([−1,1])  c(). Due to this we may deduce the

inequalities
1

c()
+ "2  t  "2 +

1 + "2c()2

2
and d ≥ "2

c()2
.

Together with the relation

µ− ≥ 1

2

⇣

t−
p

t2 − 4d
⌘

≥ d

t
() t− 2

d

t
≥
p

t2 − 4d() 4
d2

t2
≥ 0

this yields

µ+ ≥ µ− ≥ d

t
≥ "2

c()2t
≥ "22

c()2
(

"22 + 1 + "2c()2
) > 0.

Having the positive definiteness of A at hand, we may now readily infer that the principal part aπ
of a is coercive. More precisely, we have

aπ(φ,φ) =

Z

Ω
(rφ)TArφ d(x, ⌘) ≥ µ−

Z

Ω
|rφ|2d(x, ⌘) ≥ ckφkH1(Ω), φ 2 H1

0 (Ω), (6.14)

as a consequence of the Poincaré–Friedrichs inequality.

Given the coercivity of the principal part aπ of a, it is worthwhile to discuss a condition under which

the entire bilinear form a is coercive. This is realised by the following corollary and the subsequent

remark.

6.1.3 Corollary

Given u = u(t) 2 Sq(), the bilinear form a : H1
0 (Ω)⇥H1

0 (Ω) ! R is coercive if the inequality

inf
(x,η)2Ω

✓

µ−

cp
− div b(x, ⌘)

2

◆

=: ↵0 > 0 (6.15)

is satisfied, where cp denotes Poincaré constant of Ω.
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Proof. We know from (6.14) in the proof of Lemma 6.1.2 that

a(φ,φ) =

Z

Ω
(rφ)TArφ d(x, ⌘) +

Z

Ω
bTrφφd(x, ⌘) ≥ µ−

Z

Ω
|rφ|2d(x, ⌘) +

Z

Ω
bTrφφd(x, ⌘).

Thanks to the identity

Z

Ω
bTrφφd(x, ⌘) = 1

2

Z

Ω
bTr(φ2)d(x, ⌘) = −1

2

Z

Ω
div b φ2d(x, ⌘),

together with the assumption and the definition of cp this may be further estimated as

a(φ,φ) ≥ µ−

Z

Ω
|rφ|2d(x, ⌘)− 1

2

Z

Ω
div b φ2d(x, ⌘)

=

✓✓

µ− − ↵0

cp

◆

+
↵0

cp

◆Z

Ω
|rφ|2d(x, ⌘)− 1

2

Z

Ω
div b φ2d(x, ⌘)

≥ ↵0

cp

Z

Ω
|rφ|2d(x, ⌘) +

Z

Ω

✓✓

µ−

cp
− ↵0

◆

− div b
2

◆

φ2d(x, ⌘)

≥ ↵0

cp

Z

Ω
|rφ|2d(x, ⌘).

The equivalence of the norms ||rφ||L2(Ω) and ||φ||H1(Ω) finally completes the proof.

6.1.4 Remark

Condition (6.15) to ensure coercivity of a is obviously true if div b is non-positive which is equivalent

to the relation

2
(ux)

2

1 + u
 uxx

pointwise on I. However, this inequality is only meaningful if uxx is non-negative. In the stationary

case with f ⌘ 1 the evolution equation becomes

−uxx = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
⌘

, x 2 I,

whence uxx is obviously non-negative. In the more general case of a varying permittivity profile

Section 5.1 provides conditions which ensure the non-positivity of the according right-hand side.

However, even if the bilinear form a is in general not coercive it is proved in Section 3.1 that the

elliptic moving boundary problems (6.6)–(6.7) and (6.8)–(6.9) possess locally in time existing unique

solutions.

Having the definition of the bilinear form a at hand and using the notation (·, ·)L2(Ω) for the L2(Ω)-

inner product, a suitable variational formulation2 of (6.8)–(6.9) reads as follows:

2Note that the above proceeding does not uniquely lead to the bilinear form a defined in (6.11). In (6.10) the
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Find φ 2 H1
0 (Ω) such that a(φ,µ) =

(

Fu,µ
)

L2(Ω)
for all µ 2 H1

0 (Ω).

Since a(⌘f ,µ) =
(

Fu,µ
)

we may equivalently use the variational formulation

Find ' 2 H1(Ω) such that a(',µ) = 0 for all µ 2 H1
0 (Ω) and '− ⌘f 2 H1

0 (Ω).

Discretisation. In order to apply the finite-element method we start by partitioning

the given domain Ω into finitely many subdomains, also called elements. More precisely, we consider

the uniform and regular partition

RN := {R1,R2, . . . ,RN}

of Ω = I ⇥ (−1, 0) into N = NxNη rectangles of horizontal length hx = 2/Nx and vertical length

hη = 1/Nη.

x = −1

⌘ = −1

x = 1

⌘ = 0

Figure 6.1: Partition of Ω with Nx = 8 and Nη = 5.

Referring to

Pm :=
n

µ(x, ⌘) =
X

k,l≥0,
k+lm

aklx
k⌘l

o

as the set of polynomials of degree  m in two variables, we chose the D-dimensional subspace

VN :=
{

µ 2 C(Ω);µ|R 2 P1(x, ⌘) 8R 2 RN and µ|∂Ω = 0
 

of H1
0 (Ω) as ansatz space, with D < 1. We are now in a position to define the discrete variational

formulation of (6.8)–(6.9). It reads

Find φN 2 VN such that a
(

φN ,µN

)

=
(

Fu,µN

)

L2(Ω)
for all µN 2 VN .

integration by parts of the mixed term, which includes φxη, is performed with respect to the variable ⌘. One might
as well perform the integration with respect to x.
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Given a basis {γ1, . . . , γD} of the ansatz space VN , the Galerkin approximation φN may be written

as

φN (x, ⌘) =
D
X

i=1

φN (xi, ⌘i)γi(x, ⌘)

and is characterised by the identities

a
(

φN , γj
)

=
(

Fu, γj
)

L2(Ω)
, j = 1, . . . ,D,

or equivalently by the equations

D
X

i=1

φN (xi, ⌘i)a
(

γi, γj
)

=
(

Fu, γj
)

L2(Ω)
, j = 1, . . . ,D.

Thus, introducing the matrix

AN := [a(γi, γj)]
D
i,j=1

as well as the vectors

ΦN := [φN (xj , ⌘j)]
D
j=1 and FN :=

h

(

Fu, γj
)

L2(Ω)

iD

j=1

we may finally state the linear system of equations

ANΦN = FN

which is to be solved in order to determine the Galerkin approximation.

6.2 | Approximate Solution of the Parabolic Evolution Prob-

lem

For the time being we assume ' 2 H2(Ω) to be given and devote this section to the computation of

an approximative solution to the semilinear parabolic initial boundary value problem

ut − uxx = −λ
 

"2
⇣

−
(

fx(x,u)
)2

+
(

fu(x,u)ux
)2
⌘

− 2
1 + "2(ux)

2

1 + u
fu(x,u)'η(t,x, 1) +

1 + "2(ux)
2

(1 + u)2
(

'η(t,x, 1)
)2

!

, t > 0, x 2 I, (6.16)

u(t,±1) = 0, t > 0, (6.17)

u(0,x) = u⇤(x), x 2 I, (6.18)
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for the membrane’s displacement u. The general approach is to firstly discretise with respect to time

which yields to an elliptic boundary problem for each discrete instant of time. This elliptic problem

is then solved by means of the Galerkin method as in Section 6.1.

For the sake of better readability we denote the right-hand side of the evolution equation by −λgε(u)
so that (6.16) may be rewritten as

ut − uxx = −λgε(u), t > 0, x 2 I.

The Variational Formulation. In order to obtain the variational formulation of

the above problem we fix t 2 [0,T ) and multiply the evolution equation (6.16) by a testfunction

v 2 H1
0 (I). Integration over I with respect to x yields

Z

I
(ut − uxx)v dx = −λ

Z

I
gε(u)v dx,

and via integration by parts

Z

I
utv + uxvx dx = −λ

Z

I
gε(u)v dx.

Introducing the bilinear form

a(u, v) :=

Z

I
ux(x)vx(x) dx

and the variational formulation corresponding to (6.16)–(6.18) reads

Find u : (0,T ) ! H1
0 (I) such that for all t 2 (0,T )

(ut(t), v)L2(I) + a(u(t), v) = −λ(gε(u(t)), v)L2(I) for all v 2 H1
0 (I),

u(0) = u⇤.

One-Step Time Discretisation. In order to approximately solve the above stated

variational formulation of (6.16)–(6.18) we subdivide the interval [0,T ) of existence3 into Nt equidis-

tant subintervals of length ⌧ := T/Nt, i.e. we have

0 =: t0 < t1 < . . . < tNt−1 < tNt := T .

3If T = 1 we consider ⌧ to be given and introduce the time levels tn := n⌧ for n = 0, 1, 2, . . .. That is, we formally
set Nt = 1.
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The solution is then computed by a so-called one-step procedure, i.e. the solution u(ti) 2 H1
0 (I) at

a time level ti is computed by exploiting the knowledge about u(ti−1) 2 H1
0 (I) at the previous time

level ti−1. More precisely, the term ut is approximated by the difference quotient

ut(t) ⇡
u(ti)− u(ti−1)

⌧
.

Furthermore, by introducing the parameter ✓ 2 [0, 1] and using the approximations

a
(

u(ti−1 + ✓⌧), v
)

⇡ ✓a
(

u(ti), v
)

+ (1− ✓)a
(

u(ti−1), v
)

and

(

−λgε(u(ti−1 + ✓⌧)), v
)

L2(I)
⇡ ✓

(

−λgε(u(ti)), v
)

L2(I)
+ (1− ✓)

(

−λgε(u(ti−1)), v
)

L2(I)

at a time ti−1+✓
(

ti−ti−1

)

= ti−1+✓⌧ between two time levels ti−1 and ti we obtain the approximation

(

u(ti), v
)

L2(I)
−
(

u(ti−1), v
)

L2(I)
+ ⌧

(

✓a
(

u(ti), v
)

+ (1− ✓)a
(

u(ti−1), v
))

= ⌧
⇣

✓
(

−λgε(u(ti)), v
)

L2(I)
+ (1− ✓)

(

−λgε(u(ti−1)), v
)

L2(I)

⌘

for all v 2 H1
0 (I). Eventually, we conclude that the approximate solution to (6.16)–(6.18) is com-

puted by successively solving for each time level ti, i = 0, 1, . . . ,Nt, a sequence of variational problems

which read as follows:

Find uτ (ti) 2 H1
0 (I) such that

(

uτ (ti), v
)

L2(I)
+ ⌧✓

⇣

a
(

uτ (ti), v
)

−
(

−λgε(uτ (ti)), v
)

L2(I)

⌘

=
(

uτ (ti−1), v
)

L2(I)
− ⌧(1− ✓)

⇣

a
(

uτ (ti−1), v
)

−
(

−λgε(uτ (ti−1)), v
)

L2(I)

⌘

for all v 2 H1
0 (I).

It is worthwhile to briefly contemplate different values of the parameter ✓ 2 [0, 1]. For ✓ = 0 the

above approach yields the explicit Euler scheme

(

uτ (ti), v
)

L2(I)
+ ⌧a

(

uτ (ti−1), v
)

=
(

uτ (ti−1), v
)

L2(I)
+ ⌧

(

−λgε(uτ (ti−1)), v
)

L2(I)
,

whereas the choice ✓ = 1 leads to the implicit Euler scheme

(

uτ (ti), v
)

L2(I)
+ ⌧a

(

uτ (ti), v
)

=
(

uτ (ti−1), v
)

L2(I)
+ ⌧

(

−λgε(uτ (ti)), v
)

L2(I)
.

The case ✓ = 1/2 is here of special interest as it used to obtain the numerical results presented in

Section 6.3. It leads to the Crank–Nicolson method in which the solution is determined according
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to the scheme

(

uτ (ti), v
)

L2(I)
+
⌧

2
a
(

uτ (ti), v
)

=
(

uτ (ti−1), v
)

L2(I)
− ⌧

2
a
(

uτ (ti−1), v
)

+
⌧

2

⇣

(

−λgε(uτ (ti)), v
)

L2(I)
+
(

−λgε(uτ (ti−1)), v
)

L2(I)

⌘

.

In order to integrate this one-step time discretisation procedure into an applicable numerical scheme

a space discretisation remains to be implemented. The corresponding relevant aspects are introduced

in the subsequent paragraph.

Space Discretisation. For the spatial discretisation again the finite-element method

is used. To this end we subdivide the interval I = (−1, 1) into Nx subintervals of equidistant length

h := hx, i.e. we have

I := {I1, I2, . . . , INx},

where each subinterval Ik = [xk−1,xk] , k = 1, . . . ,Nx, is of length h = 2/Nx. Note that for the

sake of simplification we use the same values Nx and h = hx as for the discretisation of the elliptic

problem in the previous section.

As finite-element space we chose the (Nx − 1)-dimensional subspace Vh ⇢ H1
0 (I) as

Vh :=
{

v 2 C
(

[−1, 1]
)

; v|I 2 P1(x) 8I 2 I and v(±1) = 0
 

.

We are now in a position to formulate the fully discrete variational formulation of (6.16)–(6.18) at

each time level ti, i = 0, 1, . . . ,Nt. It reads

Find uτ ,h(ti) 2 Vh such that

(

uτ ,h(ti), vh
)

L2(I)
+
⌧

2

⇣

a
(

uτ ,h(ti), vh
)

−
(

−λgε(uτ ,h(ti)), vh
)

L2(I)

⌘

=
(

uτ ,h(ti−1), vh
)

L2(I)
−
⇣⌧

2
a
(

uτ ,h(ti−1), vh
)

−
(

−λgε(uτ ,h(ti−1)), vh
)

L2(I)

⌘

.

for all vh 2 Vh.

In order to represent the Galerkin approximation and the ansatz functions we introduce the nodal

basis given by γk 2 Vh, k = 1, . . . , d, with d := Nx − 1, such that

γk(x) =

8

>

>

>

<

>

>

>

:

(x− xk−1)/(xk − xk−1), xk−1  x  xk,

(xk+1 − x)/(xk+1 − xk), xk  x  xk+1,

0, elsewise.
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The Galerkin approximation uτ ,h may then be written as

uτ ,h(x) =

d
X

k=1

uτ ,h(xk)γk(x)

and is at each time level ti characterised by the identities

(

uτ ,h(ti), γl
)

L2(I)
+
⌧

2
a
(

uτ ,h(ti), γl
)

=
(

uτ ,h(ti−1), γl
)

L2(I)
− ⌧

2
a
(

uτ ,h(ti−1), γl
)

+
⌧

2

⇣

(

−λgε(uτ ,h(ti)), γl
)

L2(I)
+
(

−λgε(uτ ,h(ti−1)), γl
)

L2(I)

⌘

,

for l = 1, . . . , d, or equivalently by the equations

d
X

k=1

uτ ,h(ti,xk)
(

γk, γl
)

L2(I)
+
⌧

2

d
X

k=1

uτ ,h(ti,xk)a
(

γk, γl
)

=
d
X

k=1

uτ ,h(ti−1,xk)
(

γk, γl
)

L2(I)
− ⌧

2

d
X

k=1

uτ ,h(ti−1,xk)a
(

γk, γl
)

+
⌧

2

2

4

 

−λgε
 

d
X

k=1

uτ ,h(ti,xk)γk

!

, γl

!

L2(I)

+

 

−λgε
 

d
X

k=1

uτ ,h(ti−1,xk)γk

!

, γl

!

L2(I)

3

5 ,

for l = 1, . . . , d.

Similar as in the previous section we now define the stiffness matrix K and the mass matrix M as

K := [a(γk, γl)]
d
k,l=1 and M :=

⇥

(γk, γl)L2(I)

⇤d

k,l=1
,

respectively, as well as the vectors

uti,h := [uτ ,h(ti,xk)]
d
k=1 and G

(

uti,h

)

:=

2

4

 

−λgε
 

d
X

k=1

uτ ,h(ti,xk)γk

!

, γl

!

L2(I)

3

5

d

l=1

. (6.19)

We are then in a position to state the nonlinear system of equations

⇣

M+
⌧

2
K

⌘

u
T
ti,h

− ⌧

2
G
(

uti,h

)

=
⇣

M− ⌧

2
K

⌘

u
T
ti−1,h

+
⌧

2
G
(

uti−1,h

)

, (6.20)

which is to be solved at each time level ti in order to determine the Galerkin approximation of

(6.16)–(6.18).

Finally, a justification for using the above described Crank-Nicolson method is left open. In this

regard the following remark is formulated, c.f. for instance [5, 46].
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6.2.1 Remark

Using piecewise linear elements the fully discrete one-step ✓-method complies for ✓ 2 [1/2, 1] with

the estimate

ku(ti)− uτ ,h(ti)kH1(I)  c(⌧ + h)

for the global truncation error if u 2 C2
(

[0,T ],H1
0 (I)

)

\C
(

[0,T ],H2(I)
)

. Under stronger regularity

assumptions on u the according estimate may even be improved in the case ✓ = 1/2, i.e. for the

Crank-Nicolson method. More precisely, it holds that

ku(ti)− uτ ,h(ti)kH1(I)  c(⌧2 + h)

if u 2 C3
(

[0,T ],H1
0 (I)

)

\ C
(

[0,T ],H2(I)
)

. Given ✓ 2 [0, 1/2] one obtains

ku(ti)− uτ ,h(ti)kH1(I)  ch

under the additional assumption ⌧  c(✓)h2 if u 2 C2
(

[0,T ],H1
0 (I)

)

\ C
(

[0,T ],H2(I)
)

. Note that

the respective regularity assumptions on u are satisfied if the initial datum is sufficiently smooth.

Solving the Nonlinear System of Equations Via Newton’s Method.

In the context of this work the new iterate uτ ,h(ti) at each time level ti, i = 1, . . . ,Nt, is computed

by solving the above derived nonlinear system of equations (6.20) via Newton’s method. For this

purpose we rewrite (6.20) in the form

F
(

uti,h

)

:=
⇣

M+
⌧

2
K

⌘

u
T
ti,h

− ⌧

2
G
(

uti,h

)

−
h⇣

M− ⌧

2
K

⌘

u
T
ti−1,h

+
⌧

2
G
(

uti−1,h

)

i

= 0. (6.21)

Note that the term in the squared brackets is a known quantity from the last preceding time level

ti−1. Due to the structure of the remaining two terms in (6.21) we obtain the Jacobian matrix

F
0
(

uti,h

)

=
⇣

M+
⌧

2
K

⌘

− ⌧

2
G

0
(

uti,h

)

. (6.22)

of F
(

uti,h

)

with respect to u
T
ti,h

.

Newton’s method applied to (6.21) at the time level ti thus results in the following scheme, whose

description is inspired by the notation used in MATLAB.

u0 = uti−1,h;

F0 = F(u0);

Fk = F0;
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k = 0;

while kFkk/kF0k > 

Compute Jacobian matrix F
0
(

uk

)

=
(

M+ τ
2K

)

− τ
2G

0
(

uk

)

;

sk = F
0
(

uk

)

\Fk;

uk+1 = uk − sk;

Compute potential Φ = Φ
(

uk+1

)

;

Evaluate right-hand side G
(

uk+1

)

at current Φ
(

uk+1

)

;

Evaluate nonlinear function Fk+1 = F
(

uk+1

)

at current iterate uk+1;

Replace k = k + 1;

end

uti,h = uk;

It is worthwhile to finally examine the computation of the Jacobian matrix in (6.22) carefully.

More precisely, since the first summand
(

M+ τ
2K

)

is known, we may focus our attention on the

computation of G0
(

uti,h

)

. To this end, we slightly modify the notation and write gε
(

x,u,ux,'η(x, 1)
)

instead of gε(u) in order express the actual dependence of gε on x,ux and 'η, where by reason of the

coupling 'η itself depends on u. Moreover, we abstain from mentioning the time level ti explicitly

in the notation. According to (6.19) the l-th component Gl

(

uti,h

)

of the vector G
(

uti,h

)

is hence

given as

Gl

(

uti,h

)

= −λ
Z

I
gε
(

x,uτ ,h,u
0
τ ,h,'η(x, 1)

)

γl(x) dx.

Using the notation uk := uτ ,h(ti,xk) we may then compute the entry
⇥

G
0
(

uti,h

)⇤

lk
= @Gl

(

uti,h

)

/@uk

of the tangent matrix G
0
(

uti,h

)

as follows.4

@Gl

(

uti,h

)

@uk
= −λ

Z

I

✓

@2gεγkγl + @3gεγ
0
kγl + @4gε

@'η(x, 1)

@uk
γl

◆

dx.

It remains to consider the derivative ∂ϕη(x,1)
∂uk

. For this purpose define β(x, ⌘) := ⌘f
(

x,u(t,x)
)

, (x, ⌘) 2
Ω, and recall that '(x, ⌘) = φ(x, ⌘) + β(x, ⌘) depends on u due to the coupling, whence we may

write
@'

@uk
=

@φ

@uk
+

@β

@uk
.

Following the assumption @u@η'(ti,x, 1) = @η@u'(ti,x, 1) the idea is to firstly compute the derivative

@φ/@uk. To this end recall that the approximate solution to the elliptic problem (6.6)–(6.7) is

4Note that ∂2gε, ∂3gε and ∂4gε denote the partial derivatives of gε with respect to its second, third and fourth
component, respectively.
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determined by the solution ΦN of the linear system

ANΦN = FN (6.23)

of equations. Thus, we have ΦN = A
−1
N FN and therefore

@ΦN

@uk
=
@A−1

N

@uk
FN +A

−1
N

@FN

@uk
= −A

−1
N

@AN

@uk
A

−1
N FN +A

−1
N

@FN

@uk
.

Since the same discretisation with respect to x is used for both ' and u, at each ⌘-discretisation

level ⌘n, n 2 {1, . . . ,Nη + 1} we have the representation

φ(x, ⌘n) =
D
X

j=1

φ(xj , ⌘n)γj(x).

Therefore, the i-th component [FN ]i of the vector FN in (6.23) evaluated at ⌘ = ⌘n is given by

[FN ]i =

Z

I
Fu(⌘n,x,u)γi(x) dx,

whence


@[FN ]i
@uk

]

=

Z

I

@Fu(⌘n,x,u)

@u
γk(x)γi(x) dx. (6.24)

Moreover, with A = A(⌘n) and b = b(⌘n) both evaluated at ⌘n,

[AN ]lm =

Z

I
γ0l(x)A

(

x,uti,h,u
0
ti,h

)

γ0m(x)b
(

u0ti,h
)T
γ0l(x)γm(x) dx

is the lm-th element of the matrix AN at ⌘ = ⌘n, whence we may compute the lmk-th element



@[AN ]

@uk

]

lmk

=

Z

I
γ0l(x)

(

@2A(x,uti,h,u
0
ti,h

)γk(x) + @3A(x,uti,h,u
0
ti,h

)γ0k(x)
)

γ0m(x)

+
@bT

@uk
γ0k(x)γ

0
l(x)γm(x) dx

of the tensor of order three as the derivative of AN with respect to uk. Thus, we have

@ΦN

@uk

and it remains to calculate @~βN/@uk, with ~βN denoting the vector of function values of β at the

grid points, if

~'N := ΦN + ~βN

is considered to determine the approximate solution 'N corresponding to '. It turns out that in
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fact @~βN/@uk is already known from the computation in (6.24) as a consequence of the definition of

β.

Finally, in the implementation the derivative of @'/@u with respect to ⌘, evaluated at ⌘ = 1, is

realised by the difference quotient

@'η(ti,x, 1)

@u
=

1

−hη

✓

@'

@u
(ti,xk, 1− hη)−

@'

@u
(ti,xk, 1)

◆

.

6.3 | Numerical Results

This section is devoted to the presentation of a selection of numerical results obtained by the above

described procedure. According to the analytical investigation in the previous chapters the focus

is not on the performance of the developed numerical methods but on illustrating the qualitative

behaviour of solutions. In particular differences between the full coupled problem and the small-

aspect ratio limit are revealed.

As in Chapter 2 we consider the general coupled system consisting of the semilinear evolution

problem

ut − uxx = gε,λ(u), t > 0, x 2 I, (6.25)

u(t,±1) = 0, t > 0, (6.26)

u(0,x) = u⇤(x), x 2 I, (6.27)

together with the moving boundary problem

"2 xx(x,u) +  zz(x,u) = 0, t > 0, (x, z) 2 Ω
(

u(t)
)

, (6.28)

 (t,x, z) =
1 + z

1 + u(t,x)
f , t > 0, (x, z) 2 @Ω

(

u(t)
)

, (6.29)

2 where the right-hand side gε,λ(u) of the evolution equation (6.25) as well as the boundary condition

(6.29) are specified corresponding to the choice of the permittivity profile f , being as usual either a

function f = f(x), f = f(u(t,x)) or f = f(x,u(t,x)).

The implementation is performed in MATLAB.5 For all subsequently presented results the discreti-

sation is implemented with Nx = 80 and Nη = 40. Furthermore, the numerical integration is realised

by a Gauß–Legendre quadrature (see e.g. [46, 10]) with two Gauß points in each direction, i.e. we

use two Gauß points per interval Ii and four Gauß points per rectangle Ri.

5Version 8.4.0.150421 (R2014b).
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Constant Permittivity. In this paragraph the coupled problem (6.25)–(6.29) is

considered for a constant permittivity f ⌘ 1. In this case the right-hand side of (6.25) is given by

gε,λ(u) = −λ
⇣

"2
(

 x(x,u)
)2

+
(

 z(x,u)
)2
⌘

, t > 0, x 2 I.

The solution of the coupled problem is compared to the solution of its reduced counterpart, where

the potential is given by

 (t,x, z) =
1 + z

1 + u(t,x)
, t ≥ 0, (x, z) 2 Ω(u(t)),

and the membrane’s displacement satisfies the small-aspect ratio model

ut − uxx = −λ 1
(

1 + u(t,x)
)2 , t > 0, x 2 I, (6.30)

u(t,±1) = 0, t > 0, (6.31)

u(0,x) = u⇤(x), x 2 I. (6.32)

Figure 6.2, to be read top down, illustrates the time evolution of the membrane’s displacement for

the coupled as well as for the reduced problem. In both settings the initial deflection is chosen to be

u⇤(x) =
(

x2 − 1
)

/5 and the value of the applied voltage amounts λ = 0.6. Although a singularity

in form of a touchdown at x = 0 seems likely, this phenomenon may not yet be observed by the

methods implemented in the framework of this thesis.

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

(a) Coupled problem

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

(b) Small-aspect ratio model

Figure 6.2: Comparison of the coupled problem and the small-aspect ratio model for f ⌘ 1 and

λ = 0.6.

Howsoever, an improvement of the implementation is worthwhile so that the phenomenon of the

pull-in instability becomes numerically visible.
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A Permittivity Profile f = f(x, u). We consider in this paragraph the coupled

problem (6.25)–(6.29) for permittivity profiles f = f
(

x,u(t,x)
)

, whence the right-hand side of (6.25)

is given by

gε,λ(u) = −λ
⇣

"2
(

 x(x,u)
)2
+
(

 z(x,u)
)2
⌘

+2λ
⇣

"2 x(x,u)fx(x,u)+ z(x,u)fu(x,u)
⌘

, t > 0, x 2 I.

Figure 6.3 illustrates the evolution of the membrane’s displacement for a permittivity profile

f
(

x,u(t,x)
)

:= x2
(

1 + u(t,x)
)4

+ 0.1

and different initial data.

Reading from the bottom up we see in Figure 6.3(a) that, starting from the undeflected configuration

u⇤ ⌘ 0, the solution instantaneously becomes positive in all points except the boundary points

x = ±1.

In Figure 6.3(b), to be read from the bottom up, we see that even if the initial deflection is negative

(except in x = ±1), for instance if u⇤ = (x2 − 1)/10 the solution u becomes positive.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

(a) u⇤ ⌘ 0

−1 −0.5 0 0.5 1

−0.1

0

0.1

0.2

0.3

0.4

(b) u⇤(x) = (1 + x)2/10

Figure 6.3: Approximate solution uτ ,h for " = 0.25,λ = 0.5, f(x,u) = x2(1 + u)4 + 0.1 and different

initial data.

Qualitative Differences Between the Coupled Problem and the Cor-

responding Small-Aspect Ratio Model for f = f(x). The reduced small-

aspect ratio model (6.33)–(6.35) is able to capture various qualitative properties of the coupled

system (6.25)–(6.29), such as evenness with respect to x 2 I, the existence of a pull-in voltage λ⇤,
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as well as global existence for small values λ < λ⇤ of the applied voltage. In the case of a constant

permittivity profile even the sign property (of u) is conserved when reducing the model to the small-

aspect ratio regime. Moreover, the sequence ( ε,uε)ε of unique solutions to (6.25)–(6.29) converges

to the unique solution ( 0,u0) of (6.33)–(6.35) as " tends to zero. However, this paragraph serves the

purpose of providing numerical evidence which strengthens the conjecture that there are phenomena

in the coupled system which cannot be observed in the small-aspect ratio model. More precisely,

we specify permittivity profiles f = f(x) leading to positive deformations u of the membrane in the

coupled setting, whereas in stark contrast to that positivity of u0 is impossible as a consequence of

the maximum principle (c.f. the discussion in Section 5.1). The results presented in this paragraph

are based on the work [12], jointly with Joachim Escher and Pierre Gosselet.

Given spatially varying permittivity profiles f = f(x), we compare the coupled system (6.25)–(6.29),

with gε,λ(u) given by

gε,λ(u) = −λ
⇣

"2
(

 x(x,u)
)2
+
(

 z(x,u)
)2
⌘

+ 2λ"2 x(x,u)f
0(x), t > 0, x 2 I,

to its reduced counterpart, where the potential may be explicitly stated as

 (t,x, z) =
1 + z

1 + u(t,x)
f(x), t ≥ 0, (x, z) 2 Ω(u(t)),

and the membrane’s displacement evolves according to the small-aspect ratio model

ut − uxx = −λ
✓

f(x)

1 + u(t,x)

◆2

, t > 0, x 2 I, (6.33)

u(t,±1) = 0, t > 0, (6.34)

u(0,x) = u⇤(x), x 2 I. (6.35)

Figures 6.4 and 6.5 illustrate for a permittivity profile

f(x) := x8 + 0, 1

the approximate solution to (6.25)–(6.29) at different time levels for decreasing values of the aspect

ratio " and λ = 1. More precisely, the initial displacement is chosen to be u⇤ ⌘ 0 and the remaining

curves – to be read from bottom up – represent the approximate membrane’s displacement at every

tenth time level, where T = 1 and Nt = 100.

In the numerical experiments depicted in Figure 6.4 one may observe that for " 2 {0.4, 0.6}, starting

from u⇤ ⌘ 0, the solution immediately becomes positive at all interior points x 2 I and increases

with time.
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(a) ε = 0.6

−1 −0.5 0 0.5 1

0

1

2

3

·10−2

(b) ε = 0.4

Figure 6.4: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 1 and different " > 0.

For " = 0.2, " = 0.15 and " = 0.1 (c.f. Figure 6.5) the solution shows a different behaviour. Given

" = 0.2, the temporarily increasing solution develops also negative values at small time levels before

it becomes strictly positive everywhere except in the boundary points (c.f. Figure 6.5(a)). In contrast

to that is the evolution of the approximate solution for " = 0.1 illustrated in Figure 6.5(b). Also

starting from the zero displacement, the membrane abruptly deflects towards the ground plate in

all points x 2 I.

−1 −0.5 0 0.5 1

0

2

4

6

8

·10−3

(a) ε = 0.2

−1 −0.5 0 0.5 1

−4

−2

0

·10−3

(b) ε = 0.1

Figure 6.5: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 1 and " 2 {0.1, 0.2}.

Moreover, the value " = 0.15 seems to be a threshold value with regard to the evolution of the

solution’s sign. Starting from the initial deflection u⇤ ⌘ 0, the magenta curve in Figure 6.6 illustrates

the approximate solution at time level t = 1/100, whence the blue curve represents all further iterates



129 6.3. Numerical Results

at time levels t = 10/100, 20/100, 30/100, . . . until the maximal computing time T = 2 is reached.

That is, the blue curve in Figure 6.6 might be a steady state for the aspect ratio " = 0.15 and a

value λ = 1 of the applied voltage. Since for " = 0.2 the deflection becomes positive after a certain

number of time steps and for " = 0.1 the solution immediately becomes negative, it seems as if for

" = 0.15 the solution is hesitant to decide whether it behaves according to the full coupled problem

or according to the small-aspect ratio model.

−1 −0.5 0 0.5 1

−1

0

1

2

·10−3

Figure 6.6: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 1 and " = 0.15.

For larger values λ of the applied voltage the situation is similar as one may see in Figures 6.7 and

6.8 that the displacement of the membrane evolves as for λ = 1 but with larger absolute function

values.

−1 −0.5 0 0.5 1

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

(a) ε = 0.4

−1 −0.5 0 0.5 1

0

1

2

3

4

·10−2

(b) ε = 0.2

Figure 6.7: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 5 and different " > 0.
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Figure 6.7, to be read from the bottom up, illustrates the time evolution of the membrane’s dis-

placement for λ = 5 and " 2 {0.2, 0.4}. As in the case λ = 1 Figure 6.7(a) shows that in the regime

" = 0.4 the solution instantaneously becomes positive at all interior points x 2 I, whereas u initially

takes also negative values when choosing " = 0.2.

That also for λ = 5 in the setting " = 0.1 the membrane instantaneously evolves towards to ground

plate and that there seems to be a steady state for " = 0.15 may be observed in Figure 6.8.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

·10−2

(a) ε = 0.15

−1 −0.5 0 0.5 1
−3

−2

−1

0

·10−2

(b) ε = 0.1

Figure 6.8: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 5 and different " > 0.

A question arising from the presented results might be if though u becomes less positive as " de-

creases, the results hypothesise that, for every fixed " > 0, one may find a voltage value λ > 0 and

a permittivity profile f = f(x) such that the solution u always becomes positive in the course of

time. It is worthwhile to mention again that this is not possible in the small-aspect ratio regime.

In contrast to what is observed for the coupled system, Figures 6.9(a) and 6.9(b) show that the

situation is rather different in the small-aspect ratio regime. In both figures the time evolution of

the membrane’s displacement is to be read top down. Choosing the same permittivity profile and

applying voltages λ 2 {1, 5} as in Figure 6.4, 6.5 and 6.8, respectively, one may thus observe that

in the small-aspect ratio regime the solution immediately becomes strictly negative in all interior

points x 2 I and is decreasing in time.
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−1 −0.5 0 0.5 1
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(a) λ = 1

−1 −0.5 0 0.5 1
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−4
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0

·10−2

(b) λ = 5

Figure 6.9: Approximate solution uτ ,h to the small-aspect ratio model with u⇤ ⌘ 0 for f(x) = x8+0.1

and different λ.

The above illustrated results suggest that there is a change of the qualitative behaviour of the

solution to the full coupled problem for a threshold value " > 0 as " tends to zero in the following

sense. Starting from the zero initial displacement, in particular for large values of " the membrane’s

displacement immediately becomes positive and is increasing in time (c.f. Figure 6.4). However,

another interesting observation is illustrated in Figure 6.10.

−1 −0.5 0 0.5 1

0

2

4

6

·10−2

Figure 6.10: Approximate solution uτ ,h with u⇤ ⌘ 0 for " = 0.85,λ = 1 and f(x) = x8 + 0.1.

It seems that not only for an aspect ratio " tending to zero the qualitative behaviour of the solution

differs in a way that increasing positive solutions become sign-changing and finally negative decreas-

ing solutions. Figure 6.10 shows the approximate displacement of the membrane at different time

levels for " = 0.85. One may observe that the solution is sign-changing with positive peaks near
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the boundary points x = ±1 and non-positive/negative function values in a subinterval of I around

x = 0.

6.3.1 Remark (1) Theorem 4.0.9 apparently implies that given a positive permittivity profile

f = f(x), there exists an "0 > 0 such that u(t,x)  0 on [0,T )⇥ [−1, 1] for all " 2 (0, "0).

(2) The above presented numerical results suggest the supposition that there are " > 0,λ > 0, and

smooth permittivity profiles f = f(x) > 0 such that u(t,x) > 0 for all x 2 I and all t 2 (0,T ).

If this is true in view of Theorem 5.2.1 there must be " > 0, λ > 0, and f = f(x) such that a

touchdown of the membrane in finite time is impossible. This means in particular that either

the corresponding solution exists globally in time or a blow-up of the W 2
q (I)-norm takes place

in finite time.

(3) The phenomena observed in the above illustrations are not restricted to the permittivity profile

f(x) = x8 + 0.1. Similar results may be obtained for instance if f(x) = x2k + 0.1 with

k 2 {1, 2, 3, . . .} or if f(x) = exp (ax2) with a 2 [1, 3].
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