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Résumé 

 

 La réduction des émissions de méthane (CH4) des ruminants permet de limiter les 

impacts environnementaux négatifs de leur élevage et d’améliorer leur efficacité digestive. 

Dans le rumen, le CH4 est majoritairement produit par les méthanogènes à partir de 

l’hydrogène (H2). La disponibilité de l’H2 pour ces micro-organismes est réduite en limitant 

sa production par les protozoaires (via un apport de lipides ou extraits de plantes dans la 

ration) ou en stimulant des voies utilisatrices d’H2 compétitives à la méthanogenèse (via un 

apport alimentaire de nitrate). Aucune étude n’a porté sur l’association de stratégies 

alimentaires jouant à la fois sur la production et l’utilisation d’H2 pour diminuer les émissions 

de CH4. Notre objectif était de comprendre l’importance des différentes voies métaboliques de 

l’H 2 dans le rumen. Nous avons émis l’hypothèse que manipuler simultanément la production 

et l’utilisation de l’H2 permet une diminution plus importante des émissions de CH4 plutôt que 

d’agir sur un seul niveau. Nos résultats expérimentaux ont montré l’additivité de l’association 

lipides du lin-nitrate  sur la méthanogenèse des bovins. Cet effet était persistant mais non 

bénéfique pour les performances digestives et laitières des animaux. L’association saponine 

de thé-nitrate n’a pas été efficace pour réduire les émissions de CH4 car l’effet dépressif de 

la saponine sur les protozoaires n’a pas été observé. Cette thèse ouvre la possibilité d’étudier 

le potentiel anti-méthanogène de nouvelles associations de stratégies alimentaires ayant des 

mécanismes d’action différents dans le rumen. Les conditions d’utilisation de ces stratégies en 

élevage devront être délimitées, et leur rentabilité prouvée, pour être acceptées par l’éleveur.  

 

 

Mots clés: Fermentation; Hydrogène; Méthane; Microbiote; Ruminants; Stratégies de 

réduction. 

  



 
 

Abstract 

 
 Reduction of methane (CH4) emissions from ruminants may limit the negative 

environmental impacts of their breeding and may improve their digestive efficiency. In the 

rumen, CH4 is mainly produced by methanogens from hydrogen (H2). Hydrogen availability 

for these micro-organisms is reduced by limiting its production by protozoa (via lipids or 

plants extracts supplementation in diets) or by stimulating pathways competing with 

methanogenesis for H2 consumption (via nitrate supplementation in diets). No study tested 

association of dietary strategies acting on both H2 production and consumption to reduce CH4 

emissions. Our objective was to understand the importance of the different H2 metabolic 

pathways in the rumen. We assumed that simultaneous manipulation of H2 production and 

consumption reduces CH4 emissions to a higher extent than acting on a single pathway. Our 

experimental results showed the additive CH4-mitigating effect of the association lipids from 

linseed-nitrate supplemented to bovine. This effect was persistent but not beneficial for 

digestive and lactating performances of animals. The association tea saponin-nitrate was not 

efficient to reduce CH4 emissions, as the depressive effect of saponin towards protozoa has 

not been observed. This PhD thesis opens the possibility to study the anti-methanogenic 

potential of new association of dietary strategies having different mechanisms of action in the 

rumen. Conditions of use of these strategies at the breeding scale will have to be delineated, 

and their cost effectiveness proved to be accepted by farmers. 

 

 

Keywords: Fermentation; Hydrogen; Methane; Microbiota; Mitigation strategy; Ruminants. 
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I.  CONSTRAINTS OF RUMINANTS BREEDING IN THE (FUTURE) 

AGRICULTURAL CHALLENGE: PRODUCE MORE AND BETTER 

WITH FEWER RESOURCES 

 

 Nowadays, the world population is significantly increasing, and is expected to pass 

from 7 billion (2014) to more than 9 billion in 2050 (Steinfeld et al., 2006). In addition, the 

individual level of consumption of animal products increased for the last 40 years in 

developing countries: between 1962 and 2003, meat and milk consumption passed 

respectively from 10 to 29 kg/person/year, and from 28 to 48 kg/person/year. Consequently, 

to fulfil the increasing demand of livestock products, a rise of meat and milk production is 

expected in the future (Figure 1), and development of sustainable systems of animal 

production that do not directly compete with mankind for foodstuffs is clearly necessary. In 

this global context, ruminants play a major role in the human food supply chain by 

converting non-consumable fibrous feedstuff for humans to highly nutritional products. 

However, ruminants are criticized for their high contribution to greenhouse gas (GHG) 

emissions, and their impact on climate change is a major concern worldwide (Steinfeld 

et al., 2006). 

 

 

Figure 1 Past and projected meat and milk production in developed and developing countries 
from 1970 to 2050 (from Steinfeld et al., 2006) 
 

1.1. Interest of ruminants production: valorization of forage to highly nutritional products 

for human consumption 

 

 Ruminants own a specific compartment at the beginning of their digestive tract, the 

rumen, in which feeds are fermented by microbes. This digestive particularity offers them the 

ability of producing human food using fibrous feedstuff that cannot be directly used by 

Meat Milk 
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humans and mono-gastric animals. On the contrary, pigs and chicken diets based on cereals 

are competitive with human food. However, among the future human protein sources, their 

feed conversion ratio (25 kg feed/kilogram edible weight) is the highest compared to pork 

(9.1), poultry (4.5) and crickets (2.1) (van Huis, 2013). Nowadays, ruminants are almost the 

sole source of milk for humans, by providing 644 million tons of milk (fat-protein corrected 

milk), among which dairy cattle is the main producer (Figure 2). Ruminants also provide 77.3 

million tons of meat (carcass weight) representing 29% of the overall world meat production 

(Figure 2) (Gerber et al., 2013b).  

 Beside this major economic role, ruminants managed in extensive system also have a 

major role in terms of ecosystem services such as landscape management (Harrison et al., 

2010). Among others, they help to maintain herbaceous areas difficult to access such as 

mountainous areas and prevent the development of weed and shrub species responsible for 

fire development and losses in plant biodiversity. 

 

 

Figure 2 Contribution of ruminants to the overall world meat and milk production (from 
Gerber et al., 2013b) 
 

1.2. Downside of ruminants breeding: contribution to greenhouse gases emissions via 

enteric methane production 

 

 Ruminants’ production is accused of having a significant impact on the environment at 

the local and global level. Locally, the main issues concern intensive operations that 

contaminate the air, land or water with nitrogenous compounds and phosphorous releases. 

Globally, ruminants are pointed out for their contribution to GHG emissions, which occurs in 

Meat Milk 
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both intensive and extensive systems (Steinfeld et al., 2006). Carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) are the main GHG from anthropic origin (77, 14 and 8% of 

total GHG produced, respectively), with a global warming potential (GWP) of 1, 25 and 298 

(IPCC, 2007). According to latest estimations (Gerber et al., 2013b), contribution of livestock 

supply chain to total anthropogenic GHG emissions raises at 14.5%, with CH4, N2O and CO2 

emissions representing 44, 29 and 27%, respectively (expressed as CO2-equivalent). 

Ruminants are mostly involved in CH4 emissions, which represent 80% of CH4 emissions 

from the livestock supply chain, the remaining 20% coming from manure management (Gill 

et al., 2010). In ruminants, 87% of CH4 is produced in the rumen and eructated in the 

atmosphere, the remaining coming from the rest of the digestive tract (Murray et al., 1976). In 

France, cattle contributes more than 90% to total enteric CH4 emissions (Figure 3; Vermorel 

et al., 2008). 

 

Figure 3 Contribution of cattle, sheep and goat to total methane emissions from ruminants in 
France (from Vermorel et al., 2008) 
 

 In addition to be the main GHG emitted at the farm level, CH4 released by ruminants 

constitutes an energetic loss for the animal, ranging from 2 to 12% of gross energy intake 

(GEI) by the animal (Johnson and Johnson, 1995) (versus 0.4% of digestible energy intake for 

pigs for instance; Noblet and van Milgen, 2004). Consequently, reduction of enteric CH4 

emissions from ruminants is desirable as a strategy to reduce global GHG emissions, without 

altering their productivity and their feed conversion efficiency. 

 Several strategies have been tested worldwide to limit methanogenesis (Grainger and 

Beauchemin, 2011; Gerber et al., 2013a; Knapp et al., 2014). Most of them consist in 

manipulating rumen parameters via feeding (modification of diet composition, 
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supplementation of dietary additives) or biotechnologies (defaunation, use of probiotics, 

exogenous microbial products or vaccines). Genetic selection of low CH4-emitting animals is 

a more recent strategy. However, none of these strategies reduce CH4 emissions on the long-

term without losses in animals’ performances, while being cheap and safe for the animal and 

the consumers. In this PhD thesis, we chose to work on dietary strategies as they allow getting 

results in a shorter term than other strategies. 

 

II.  HOW TO REDUCE METHANE EMISSIONS FROM RUMINANTS VIA 

DIETARY STRATEGIES? OBJECTIVES AND SCIENTIFIC APPRO ACH 

OF THIS PHD THESIS 

 

 In the rumen, microbes find their energy in the form of ATP through dehydrogenation 

reactions releasing hydrogen (H2). As soon as produced, H2 is used by methanogenic archaea, 

a microbial group distinct from Eubacteria, to reduce CO2 into CH4 according to the following 

equation: CO2 + 4H2 � CH4 + 2 H2O. Methanogenesis is essential for an optimal 

performance of the rumen by avoiding H2 accumulation which would inhibit fermentations. 

Consequently, H2 and methanogenic archaea are the two determining parameters of CH4 

production in the rumen. 

 Recent results suggest that a reduction of methanogenic archaea activity can be 

achieved by a reduction of H2 availability for these microorganisms (Popova, 2011). To 

reduce H2 availability in the rumen, we classified the different dietary CH4-mitigating 

strategies proposed by Gerber et al. (2013a) in two groups: 

 1/ Strategies reducing H2 production (Table 1). This can be reached by limiting the 

number of protozoa in the rumen. Indeed, they are important H2 producers and they would be 

involved in 10 to 35% of CH4 production according to the diets (Morgavi et al., 2010). 

Addition of lipids or plants extracts (tannins, saponins, essential oils) in diets may reduce the 

number of protozoa in the rumen. 

 2/ Strategies stimulating H2 consumption by other pathways (Table 2). Biochemical 

pathways using H2 and/or chemicals directly inhibiting methanogenic archaea would allow 

reducing the proportion of H2 directed towards methanogenesis. In this objective, diets 

including H2-sinks (nitrate, sulfate), propionate enhancers (organic acids, high concentrate 

diets) or methanogens’ inhibitors (chloroform) have been tested. 
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 Today, a lot of these dietary strategies have been tested individually to reduce 

methanogenesis, but to our knowledge no studies reported the effects of the association of a 

strategy acting on H2 production with a strategy acting on H2 utilization. 

 

 The objective of this PhD thesis was to better understand the importance of the 

different metabolic pathways of H2 (production AND utilization) in the rumen, in order 

to propose and evaluate new dietary strategies to mitigate CH4 emissions. We assumed 

that manipulating at the same time production and utilization of H2 allows a more important 

reduction of CH4 emissions than acting on a single pathway (production OR utilization). To 

deal with this hypothesis, the scientific program of this PhD thesis was based on different 

approaches: 

 1/ Bibliographical approach. A literature review detailed the biological processes of H2 

production and consumption in the rumen. In addition, a quantitative analysis of the literature 

(meta-analysis) aimed at studying the influence of a variation of rumen protozoa 

concentration on CH4 emissions. 

 2/ Experimental approach. We tested in vivo the CH4-mitigating effect of different 

dietary strategies fed alone or in association to non-lactating and dairy cows. The originality 

of our approach consisted in combining strategies having different mechanisms of action on 

the rumen H2 pool. Measurements of CH4 emissions were linked with measurements of 

digestive efficiencies and animals’ performances. When possible, rumen fermentations 

(fermentative and microbial parameters) were also analyzed in order to explain the 

mechanisms of action of tested strategies. In terms of rumen microbiota analysis, we mainly 

focused on populations producing (protozoa) and using (methanogens) H2. To complete this 

in vivo approach, we estimated in vitro and in presence of different H2-sinks, the distribution 

of H2 in the fermentation end-products. 

 

A final critical analysis of the overall results was made in the last section of this manuscript. 
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Table 1 Overview of dietary enteric methane-mitigating strategies tested in ruminants to decrease hydrogen production (adapted from Gerber et 
al., 2013a) 

 

  

  

Active 
compound 

CH4-mitigating effect 
Long term 

effect 
established 

Risk for 
environment 
and animal 

Effect on digestibility and 
animals’ performances 

Reference (Review or meta-
analysis; Experimental studies) 

Lipids Significant effect of medium-chain 
(lauric, myristic acid) and 
polyunsaturated (linoleic and 
especially linolenic acid) fatty acids 

Yes No Reduction of performances 
with doses higher than 4% 
added fat 

Rasmussen and Harrison, 2011; 
Beauchemin et al., 2009; 
Machmüller et al., 2000; Martin et 
al., 2011; Martin et al., 2008 

Tannins Variable effect according to tested 
source and dose 

No No Frequent reduction of 
digestive efficiencies 

Goel and Makkar, 2012; Animut et 
al., 2008; Grainger, 2009; 
Poungchompu et al., 2009 

Saponins Variable effect according to tested 
source and dose 

No No Variable effect according 
to tested source and dose 

Holtshausen et al., 2009; Zhou et 
al., 2012 

Essential oils Variable effect according to tested 
source and dose 

No No Variable effect according 
to tested source and dose 

Benchaar and Greathead, 2011; 
Calsamiglia et al., 2007; 
Klevenhusen et al., 2011; Shinkai 
et al., 2012 
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Table 2 Overview of dietary enteric methane-mitigating strategies tested in ruminants to modify hydrogen consumption (adapted from Gerber et 
al., 2013a) 

Mechanism of 
action in the 

rumen 

Active 
compound 

CH4-mitigating effect 
Long term 

effect 
established 

Risks for environment 
and animal 

Effect on 
digestibility and 

animals’ 
performances 

Reference (Review or meta-
analysis; Experimental studies) 

Hydrogen-
sinks 

Nitrate Significant and linear 
dose response effect 

Yes Risks of blood metHb; 
Nitrogen release poorly 

studied 

No Lee and Beauchemin, 2014b; 
El-Zaiat et al., 2014; Nolan et 
al., 2010; Van Zijderveld et al., 
2011; Veneman et al., 2014 

Sulfate Significant effect No Risks of 
polioencephalomalacia 

Not studied Van Zijderveld et al., 2010 

Nitroethane Significant effect No Not studied Not studied Anderson et al., 2006; Brown 
et al., 2011 

Propionate 
enhancers 

Malic acid, 
fumaric acid 

Variable effect No No No Bayaru et al., 2001; Foley et 
al., 2009; Wood et al., 2009 

Ionophores 
(monensin) 

Variable effect. May 
also have a toxic effect 
towards protozoa 

No Not studied No Appuhamy et al., 2013; Guan, 
2006; McGinn et al., 2004 

Methanogens 
inhibitors 

Chloroform, 
BCM, BES, 
Cyclodextrin 

Significant effect No Not sudied No Abecia et al., 2012; Knight et 
al., 2011; Mohammed et al., 
2004 

Fungal 
metabolites 

Variable effect No Not studied Not studied Morgavi et al., 2013; Ramírez-
Restrepo et al., 2014 

BCM: bromochloromethane; BES: 2-bromo-ethane sulfonate; metHb: methemoglobin
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CHAPTER 1: Ruminal hydrogen production: importance of 

eukaryotes 

 

 

 In the rumen, dihydrogen (further named hydrogen or H2) is produced by bacteria, 

protozoa and fungi during feed fermentation. This process is essential as it allows products 

reduced during feed fermentation (coenzymes and pyruvate) to be oxidized and used in 

further fermentative reactions. 

 Two oxidation-reduction1 reactions are involved in H2 production (Figure 4). In the 

first redox reaction (1: Prodred + 2H+ + 2e- + Fedox � Prodox + Fedred + 2H+ + 2e-), the 

reduced product (Prod) is oxidized thanks to a ferredoxin (Fed). In the second redox reaction 

(2: Fedred + 2H+ + 2e- ↔ Fedox + H2), the reduced Fed is oxidized leading to H2 synthesis. 

 The three following sections will describe i) the mechanisms of Fed reduction in 

prokaryotes and eukaryotes (first redox reaction in Figure 4), ii) the production of H2 during 

the oxidation of Fed (second redox reaction in Figure 4), and iii) the solubility and 

concentration of H2 in this digestive compartment. 

 

Figure 4 Oxidation-reduction reactions involved in H2 production (Prodred = reduced product, 
Prodox = oxidized product, Fedox = oxidized ferredoxin and Fedred = reduced ferredoxin) (from 
Hegarty and Gerdes, 1999) 
 

I.  FERREDOXIN REDUCTION IN RUMEN MICROBES 

 

1.1. Definition and microbial distribution of ferredoxin 

 

 Ferredoxins are proteins able to shuttle electrons from a donor to an acceptor. This 

property is achieved thanks to the presence of an iron-sulfur cluster (Fe2S2 or Fe4S4) at the 

                                                 
1 Oxidation-reduction reactions (or redox reactions) involve two redox couples exchanging electrons. 
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core of the protein. The redox state of the iron (Fe) atoms reflects the redox state of the Fed: 

when Fe is reduced (Fe3+), the Fed is reduced and when Fe is oxidized (Fe2+), the Fed is 

oxidized (Stiefel and George, 1994). 

 Ferredoxins have been reported in a wide range of bacteria from various biological 

environments (review of Yoch and Valentine, 1972). In the rumen, their presence have been 

reported in methanogenic archaea (Thauer et al., 1977), in several genera of bacteria such as 

Ruminococcus, Selenomonas, Megasphaera and Desulfovibrio (Glass et al., 1977; Michel and 

Macy, 1990; Valentine and Wolfe, 1963), in the entodiniomorphid and holotrich orders of 

protozoa (Paul et al., 1990; Yarlett et al., 1985) and in the anaerobic fungus Neocallismatix 

spp. (Rees et al., 1998; Yarlett et al., 1986). 

 

1.2. Ferredoxin production during microbial feed fermentation 

 

 Reduced Fed are produced during feed fermentation. As carbohydrates are the 

predominant components in ruminants’ diet, Fed are mostly reduced during the fermentation 

of sugars into volatile fatty acids (VFA). To a minor extent, Fed are also reduced during 

protein fermentation (Czerkawski, 1986). 

 

1.2.1. Production of reduced ferredoxins during carbohydrates fermentation 

 When carbohydrates enter the rumen, they are hydrolyzed by several microbial 

exogenous enzymes which act in synergy to generate glucose or xylulose. The subsequent 

fermentation of these two products leads to VFA, which are the main source of energy for the 

ruminant. In prokaryote, the fermentation of glucose mainly generates acetate, butyrate and 

propionate, whereas in eukaryote, acetate and butyrate are mainly synthesized (Jarrige et al., 

1995; Williams and Coleman, 1997).  

 The production of reduced Fed during glucose fermentation is different between VFA. 

In prokaryotes (bacteria; Figure 5), the production of two moles acetate or one mole butyrate 

from glucose generates 8 and 4 moles reduced Fed. The production of propionate requires 4 

moles reduced Fed. In eukaryotes (protozoa and fungi; Figure 6), the production of two moles 

acetate from one mole glucose leads to the production of 8 or 12 moles reduced Fed, 

depending on the fermentative route (through malate). The formation of one mole butyrate 

generates 4 moles reduced Fed. Finally, knowing that the ratio of acetate to propionate to 

butyrate to valerate is approximately 66:19:11:4 in the rumen (Sauvant et al., 2011), it is clear 

that glucose fermentation to VFA results in an important production of reduced Fed. 
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Figure 5 Carbohydrates hydrolysis and glucose fermentation pathway in prokaryotes. 
Reactions leading to the production of reduced ferredoxins are in green. Reactions leading to 
the production of oxidized ferredoxins are in red. (from Fonty et al., 1995; Prescott et al., 
2010) 

 

Figure 6 Carbohydrates hydrolysis and glucose fermentation pathway in eukaryotes including 
hydrogenosome. Reactions leading to the production of reduced ferredoxins are in green. 
Reactions leading to the production of oxidized ferredoxins are in red. (from Müller, 1993; 
Williams and Coleman, 1997) 
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1.2.2. Production of reduced ferredoxins during protein fermentation 

 Proteins entering the rumen are hydrolyzed by exogenous enzymes to generate amino 

acids (AA). During further microbial fermentation of AA, Fed are also reduced (Wu, 2013; 

Figure 7). 

 

Figure 7 Microbial fermentation of amino acids in the rumen: exemple of glutamine and 
asparagine, which serve as substrates for the microbial synthesis of all other amino acids. 
Reactions leading to the production of reduced ferredoxins are in green. (from Wu, 2013) 
 

1.3. Mechanisms of ferredoxin reduction 

 

 Ferredoxins are reduced during the oxidation of coenzymes in both prokaryotes and 

eukaryotes, but also during pyruvate oxidation in eukaryotes only (Figure 5, Figure 6). 

  

1.3.1.  Ferredoxin reduction from coenzymes  

 Ferredoxin reduction from coenzymes2 takes place in the cytoplasmic membrane of 

rumen prokaryotes and in the cytosol or in the hydrogenosome of eukaryotes (more details 

about hydrogenosome will be given in following sections). The reaction is carried out by a 

coenzyme dehydrogenase which uptakes the electrons from coenzymes reduced during feed 

fermentation to the oxidized Fed (Valentine and Wolfe, 1963). The reaction catalyzed by the 

NAD(P)H dehydrogenase is:  

                                                 
2 Coenzymes are organic compounds which include non-vitamin and vitamin derivatives. Adenosine 
triphosphate (ATP) responsible for phosphate transfer is an example of non-vitamin derivative. Vitamin 
derivatives include nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate 
(NADP+) derivating from vitamin B3 (niacin) or flavin-adenine dinucleotide (FAD) and flavin mononucleotide 
(FMN) derivating from vitamin B2 (riboflavin). These coenzymes serve as reversible carriers of reducing 
equivalents. (Broderick, J. B. 2001. Coenzymes and cofactors. Encyclopedia of life sciences, Nature Publishing 
Group.) 
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NAD(P)H + H+ + 2 Fedox � NAD(P)+ + 2 Fedred + 2H+ + 2e- 

And the reaction catalyzed by the FADH dehydrogenase is:  

FADH + H+ + 2 Fedox � FAD + 2 Fedred + 2H+ + 2e- 

Where NAD(P)H + H+ and FADH + H+ are the reduced coenzymes, Fedox is the oxidized 

Fed, NAD+ and FAD are the oxidized coenzymes, Fedred is the reduced Fed and e- is the 

electron. As the standard reduction potential of NAD and FAD are more positive than the one 

of Fed (more precisions about thermodynamic laws are given in chapter 2), the NAD(P)H and 

FADH dehydrogenases can work only in the direction of Fed reduction, and the reverse 

direction is strongly inhibited by NAD(P)H, H+ or FADH, H+ (Gottschalk, 1986). 

 Whereas eukaryotes and some bacteria such as Ruminococcus albus do not require 

additional electron carriers (Glass et al., 1977), some bacteria require a cytochrome 

(cytochrome c) which is an intermediate electron carrier between the coenzyme and the Fed 

(Dolla et al., 1990). This transport of electrons through different electron carriers is named the 

electron transport chain. The presence of cytochrome b, a sub-unit of cytochrome c, has been 

detected in different rumen bacterial species such as Prevotella (White et al., 1962), 

Fibrobacter succinogenes (Reddy and Bryant, 1977), Selenomonas ruminantium (Stewart et 

al., 1997) and Wolinella succinogenes (Kern and Simon, 2009; Kröger et al., 2002). 

 Then, Fed reduction allows re-generating coenzymes into their oxidized form. As the 

concentration of coenzymes is fixed in the rumen, this process is essential to let the 

fermentations going on (Hegarty and Gerdes, 1999). To our knowledge, very few information 

exists about the concentration of coenzymes in the rumen. Indeed, coenzymes concentration is 

difficult to measure as they are quickly metabolized and their dosage requires an extraction 

from the cell followed by purification. In an in vivo experiment, the concentration of NAD 

analyzed from cells pellets from the ruminal fluid of dairy cows fed a barley or an oat based 

diet averaged 3.21 and 2.29 µM, respectively (Abdouli and Schaefer, 1986). 

 

1.3.2. Direct ferredoxin reduction from pyruvate 

 In rumen eukaryotes, Fed reduction also occurred during the direct oxidation of 

pyruvate. This process occurs in the cytosol but may also occur within a specific organelle 

called the hydrogenosome (Martin and Müller, 2007; Müller et al., 2012). 

 

 Structure and occurrence of hydrogenosomes. Hydrogenosomes are membrane-bound 

organelles (Figure 8) which have only been reported in several anaerobic or microaerophilic 

unicellular eukaryotes. They share some similarities with mitochondria as they both use 
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pyruvate as a major substrate leading to the production of acetyl-CoA and ATP (Müller, 

1993). However, as they do not co-exist with mitochondria, it was hypothesized that these two 

organelles come from the same symbiont which would have evolved differently according to 

its environment. In aerobic environment, this symbiont would have generated the 

mitochondria and in anaerobic environment, it would have created the hydrogenosome. 

Genomes comparison validated this assumption, as hydrogenosomal genome appeared to be 

highly related to mitochondrial genome (Akhmanova et al., 1998; Martin, 2005). 

 Hydrogenosomes have been reported in several rumen protozoa: Polyplastron 

multivesiculatum (Paul et al., 1990), Eudiplodinium maggi and Epidinium ecaudatum (Yarlett 

et al., 1984), Dasytricha ruminantium (Yarlett et al., 1981), Isotricha prostoma and Isotricha 

intestinalis (Yarlett et al., 1983). This organelle has also been reported in some rumen fungi 

such as Neocallimastix patriciarum (Yarlett et al., 1986). Nevertheless, hydrogenosomes have 

not been detected in some protozoal species such as Entodinium caudatum, Entodinium 

simplex and Diploplastron affine (Yarlett et al., 1984). On the contrary, they host a mitosome, 

a recently discovered organelle which does not produce energy, and whose function has not 

been clarified (Hackstein, 2010). For these species, H2 production and associated mechanisms 

take place in the cytosol of the cell. 

 

 

Figure 8 Electron micrograph of rumen fungus (Neocallimastix patriciarum) showing 
hydrogenosome organelles. The scale bar represents 1 µm, the red arrow points out one 
hydrogenosome. (from Yarlett et al., 1986) 
 

 Mechanism of pyruvate oxidation. Eukaryotes directly reduce pyruvate to acetyl-CoA, 

which is further converted to acetate or butyrate (Yarlett et al., 1985). The conversion of one 

mole pyruvate to one mole acetyl-CoA is performed by a pyruvate-ferredoxin oxidoreductase 

through the reduction of two moles Fed: 

Pyruvate + 2 Fedox � Acetyl-CoA + 2 Fedred 
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This reaction is direct as no electron carriers such as cytochromes or coenzymes are required 

between the pyruvate and the Fed (Müller et al., 2012). 

 

II.  HYDROGEN PRODUCTION DURING FERREDOXIN OXIDATION  

 

 To ensure continuous fermentations, reduced Fed need to be oxidized. This process is 

concomitant to the production of H2 by a hydrogenase. Hydrogenases are present in a large 

number of prokaryotes (Schwarz and Friedrich, 2003) and eukaryotes (Müller et al., 2012). 

They are responsible for the reduction or oxidation of H2: 

2H+ + 2e- ↔ H2 

 The direction of this reversible reaction depends on the redox potential of the 

environment (Vignais and Colbeau, 2004). The rumen being a highly reducing environment 

(Eh = -150 to -400 mV; Marden, 2007), the reaction is directed towards H2 production. 

 

2.1.General composition and classification of hydrogenases in anaerobic environments 

 

 Most hydrogenases are metallo-enzymes. Their catalytic site consists of a heterodimer, 

which is a protein complex made of two different sub-units. The first sub-unit is the iron-

sulfur cluster [Fe2-S2, Fe3-S4 or Fe4S4] which is responsible for the transport of electrons to 

the second sub-unit, or active site (Beinert et al., 1997). Hydrogenases can be sorted into three 

classes according to the metal atoms of their active site (general reviews about hydrogenases: 

Vignais et al., 2001; Vignais and Colbeau, 2004): 

 

- The [Ni-Fe] hydrogenases are the most numerous ones and are found in both bacteria 

and archaea. They are divided into four groups. The first group gathers respiratory 

hydrogenases which are responsible for H2 oxidation coupled to the reduction of 

electron acceptors (NO3
-, SO4

2-, CO2, O2…). Hydrogenases of the second group are 

responsible for the activation of the expression of hydrogenase structural genes (Barz 

et al., 2010). The third group of hydrogenases is associated to the coenzymes 

dehydrogenase in charge of the reduction of H2 and the oxidation of reduced cofactors 

(NAD(P)H, H+). The last and fourth group of hydrogenases is mostly involved in the 

disposal of reducing equivalents produced during carbon monoxide or formate 

oxidation. 
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- The [Fe-Fe] hydrogenases active site consists of a [Fe-Fe] subunit, also called H-

cluster. These hydrogenases are found in anaerobic prokaryotes, but they also are the 

only type of hydrogenases found in eukaryotes such as protozoa or fungi. In these 

microorganisms, they are exclusively located in the hydrogenosomes. These enzymes 

are mostly involved in H2 production. Due to their occurrence in very diverse 

microbes, they can be associated to various electron acceptors and donors. 

 

- The [Fe-S] cluster free hydrogenases are found in some specific methanogenic 

archaea. These enzymes do not contain nickel as they mostly grow under nickel 

limited environment. They also differ from the [Ni-Fe] and [Fe-Fe] hydrogenases by 

their primary and tertiary structures and, by the fact that, iron is not redox active. 

Consequently, they have specific cofactors and they do not catalyze the oxidation or 

the reduction of H2. On the contrary, they are mostly involved in the reduction of 

methylene groups. 

 

2.2. Hydrogenases involved in ruminal hydrogen production 

 

 The rumen anaerobic environment offers good conditions for the production and 

activity of hydrogenases, as oxygen (O2) negatively affects most of hydrogenases activity (La 

Penna, 2010; Stripp et al., 2009). Indeed, O2 would react with the active site of the enzyme, 

creating a superoxide (E0 = +0.9V) which may be released only in the presence of an electron 

acceptor with a higher standard reduction potential. More detailed thermodynamics approach 

will be given in Chapter 2. 

 Hydrogenases have been purified and detected in several rumen bacterial species such 

as Bacteroides clostridiiformis, Butyrivibrio fibrisolvens, Eubacterium limosum, 

Fusobacterium necrophorum, Megasphaera elsdenii, Ruminococcus albus and Ruminococcus 

flavefaciens (Joyner et al., 1977; Van Dijk et al., 1979). The presence of hydrogenases has 

also been reported in ruminal protozoa and fungi (Paul et al., 1990; Yarlett et al., 1981; 

Yarlett et al., 1986). 

 To our knowledge, hydrogenases composition has poorly been studied. Using 

radioactivity, it was reported that Wolinella succinogenes owns a [Ni-Fe] hydrogenase 

(Unden et al., 1982). Recent sequencing of cDNA coding for a small piece of hydrogenase 

(“H-cluster”) showed that Megasphaera elsdenii, several species of the genus Desulfovibrio 

and rumen eukaryotes host [Fe-Fe] hydrogenases. Phylogenetic analyses also revealed that 
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there is few relationship between [Fe-Fe] hydrogenases from prokaryotes and eukaryotes 

(Boxma et al., 2007). 

 

2.3. Balance of hydrogen production in the rumen during microbial feed fermentation 

 

 Within rumen microbes, hydrogenases are responsible for the oxidation of two moles 

reduced Fed while producing one mole H2 (Gottschalk, 1986): 

2 Fedred + 2H+ + 2e- ↔ 2Fedox + H2 

Consequently, we can now calculate the molar production of H2 during carbohydrates 

fermentation (Table 3). The production of one mole acetate or one mole butyrate from one 

mole glucose generates 2 moles H2 whereas 1 mole H2 is required to produce one mole 

propionate. These results are similar to Sauvant et al., 2011. As eukaryotes preferentially 

ferments glucose to acetate and butyrate (Williams and Coleman, 1997), they are considered 

as important H2-producers. 

 

Table 3 Molar H2 production during fermentation of one mole glucose 

VFA 
Moles from one 
mole glucose 

Reduced ferredoxin 
production (moles) 

H2 production (moles) 

Acetate 2 +8 +4 
Butyrate 1 +4 +2 
Propionate 2 -4 -2 

 

 Concerning protein fermentation, the balance of H2 production is less evident to 

calculate as it is dependent on AA profiles. However, it has been estimated that when 

microbes grow on AA as the sole N source, H2 would be produced at a rate of 0.58 moles per 

kilogram of microbes, assuming a microbial composition of 53 g protein/100g dry microbial 

matter (Mills et al., 2001). 

 

III.  RUMEN HYDROGEN SOLUBILITY AND CONCENTRATION 

 

 After its production, H2 diffuses through the cell cytoplasmic membrane to the ruminal 

environment in a dissolved form. The diffusion rate is dependent on the microbial cell 

physiology (cell size and form) and on the external H2 concentration: the higher the external 

dissolved H2 concentration, the lower is the diffusion rate of H2 out of the cell. This maintains 

an equilibrated gradient between the cell and its environment (Boone et al., 1989). The 
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external H2 concentration is in turn an equilibrium between dissolved and gaseous H2 

concentrations. 

   

3.1. Dissolved hydrogen concentration in the rumen liquid phase 

 

3.1.1. Hydrogen solubility and maximum theoretical concentration 

 The theoretical maximum H2 concentration in the liquid phase of the rumen (dissolved 

H2) is related to its solubility. Hydrogen solubility in water (µM/atm) is a function of 

temperature (T, K) and salinity (S, ‰). Its calculation involves the determination of Bunsen 

solubility coefficient (β, ml dissolved H2 in 1 mL H2O; Wiesenburg and Guinasso, 1979):  

ln β = A1 + A2 × 100
� + �3 × ln � �

100� + � × (�1 + �2 × �
100 + �3 × �

100�) 
Where A1 = -47.8948, A2 = 65.0368, A3 = 20.1709, B1 = -0.082225, B2 = 0.049564 and B3 

= -0.0078689. 

 Then, at ruminal temperature (39°C or 312K) and assuming a null salinity in the 

rumen, β is equal to 0.0166 ml H2/ml H2O. By applying the equation of ideal gas law in 

normal pressure (1.01325 × 105 Pa) and temperature (273K) conditions, the β solubility of H2 

is 740.9 µM. Consequently, the maximum concentration of dissolved H2 in the rumen is 740.9 

µM assuming there is no other dissolved gas in the liquid. This result is coherent, knowing the 

standard H2 solubility (759 µM) at 30°C in water with zero salinity (Wiesenburg and 

Guinasso, 1979). 

 

3.1.2. Observed rumen dissolved hydrogen concentration 

  

 Measure of dissolved H2 concentrations. Owing to the high volatility of H2 and its 

high turnover time (0.08 sec; Smolenski and Robinson, 1988), the dosage of dissolved H2 

concentrations is not easy. In the literature, two studies succeeded to measure in situ dissolved 

H2 concentrations in the rumen. In the first one (Hillman et al., 1985), dissolved H2 diffused 

in a Clark-type oxygen electrode placed within the rumen. Hydrogen concentration was 

determined via a mass spectrometer. In the second one (Smolenski and Robinson, 1988), 

dissolved H2 was uptaken by a carrier gas (helium) passing through a probe immerged into the 

rumen. The gas mixture was then heated in order to separate helium from H2, and H2 

concentration was measured with a gas chromatograph. 
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. Other developed methods are based on point-by-point analysis by gas chromatography 

of gas extracted from rumen juice. Rumen fluid was sampled in a syringe and H2 was 

extracted via two methods: i) H2 was gasified by heating the sample (Hungate, 1967) or by 

injecting the sample into a basic solution (Robinson et al., 1981); ii) Nitrogen (N) was 

diffused into the sample and after mixing and collection of upper gas, H2 concentration was 

determined according to N dilution (Czerkawski and Breckenridge, 1971; Wang et al., 2014). 

 

 Observed ruminal dissolved H2 concentrations. In a normal functioning rumen and 

outside feeding time, the basal concentration of dissolved H2 is low, ranging between 0.6 and 

3.4 µM (Table 4). This corresponds to a range between 0.081 and 0.459% of its maximal 

solubility. Two factors induce variations in these concentrations: the diet composition and the 

feeding time (Janssen, 2010). Dissolved H2 concentrations increased from 2 to 3 hours 

postfeeding due to the increase in fermentation (Figure 9; Czerkawski and Breckenridge, 

1971). This postfeeding rise is all the more important as diets are rich in quickly and readily 

fermentable feed (e.g. high grain diets). 

 

Table 4 Dissolved hydrogen concentration in the rumen of ovine or cattle. 

Reference 
Animal 
species 

Diet 
Dissolved H2 
concentrations 

Hungate (1967) Bovine 100% lucerne hay 0.6-1.3 µM 

Hillman et al. (1985) Ovine 100% grass hay 0.6-3.4 µM 

Smolenski et Robinson 
(1988) 

Bovine 
High forage diet (composition 

not mentioned)  
1-1.4 µM (20 µM 10 min 

postfeeding) 

Robinson et al. (1981) Bovine 75% grain + 25% hay 
1 µM (15 µM 1 h 

postfeeding) 

Czerkawski et al. 
(1971) 

Ovine 
Molassed sugar beet before H2 

measurement (complete diet not 
mentioned) 

48 µM (20 min 
postfeeding 

1-2 µM (5 h postfeeding) 

Morgavi et al. (2012) Ovine 
58% lucerne pellet + 25% 
cracked maize grain + 17% 

prairie hay 

22.6 µM (3 h 
postfeeding) 
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Figure 9 Ruminal dissolved hydrogen concentrations of sheep given 500 g molassed sugar 
beet pulp at time 0 (from Czerkawski and Breckenridge, 1971) 
 

3.2. Equilibrium between dissolved and gaseous hydrogen in the dorsal sac 

 

3.2.1. Theoretical equilibrium between dissolved and gaseous hydrogen 

 The presence of a dissolved gas in a liquid phase necessarily involves the presence of 

its gaseous form. Then, according to the dissolved H2 concentration in the rumen, it may be 

possible to calculate the theoretical partial pressure of gaseous H2 in the dorsal sac of this 

digestive compartment according to the Henry’s law (Sander, 1999): 

�� = ��
��

 

Where KH is the Henry’s law constant (M/atm), ca is the concentration of H2 in the liquid 

phase (M) and pg is the partial pressure of H2 in the gaseous phase (atm). 

 The Henry’s law constant KH depends on the medium temperature as the equilibrium 

between dissolved and gaseous phase is dependent on this parameter: 

�� = ��� × exp	 −� �1� − 1
���" 

Where KH
θ is KH at standard temperature conditions (KH

θ = 7.8×10-4 M/atm), A is a constant 

depending on the enthalpy of the solution (A = 500K), T is the temperature in the medium and 

Tθ is the standard temperature (Tθ = 298K). Finally, at rumen temperature (T = 312K), KH is 

equal to 0.000841 M/atm. Consequently, if dissolved H2 concentrations reach its maximum 

(ca = 740.9 µM), the theoretical partial pressure of H2 would be 0.88 atm (88% H2). 
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 However, a recent in vitro ruminal study showed that an increase of dissolved H2 

concentrations is not necessarily linked with an increase of gaseous H2 (Wang et al., 2014). In 

that study, the authors concluded that the equilibrium between dissolved and gaseous H2 may 

not completely respect Henry’s law, probably because of mass-transfer3 limitation. Indeed, 

the transfer of H2 from the rumen liquid phase to the rumen gaseous phase may be affected by 

the diffusity coefficient of this gas and by the mixing efficiency of this digestive compartment 

(Pauss et al., 1990). Then, H2 may accumulate in certain part of the rumen, limiting the 

possibility to calculate gaseous H2 concentrations from dissolved H2 concentrations measured 

in one part of the rumen, and vice versa. This also highlights the importance of in vivo 

measurement of H2 concentrations in both phases. Nonetheless, to our knowledge, such 

experiment has still not been carried out. 

 

3.2.2. Observed hydrogen concentrations in the rumen gaseous phase 

 

 Measure of gaseous H2 concentration in the dorsal sac of the rumen. Several methods 

have been applied to measure H2 concentrations in the rumen gaseous phase. With non-

canulated cows, gas has always been sampled by rumenocentesis, and gas composition was 

analyzed by gas chromatography (Jouany and Senaud, 1979; McArthur and Miltimore, 1961; 

Moate et al., 1997; Moate et al., 2013; Moate et al., 2014) or by the Orsat gas analyzer4 

(Olson, 1940). With cannulated cows, gas has been collected with a bag attached to the 

cannula and filled thanks to rumen contraction (Barry et al., 1977) or with a syringe inserted 

through the plug of the rumen cannula (Moate et al., 2013). Gas composition was analyzed by 

gas chromatography. 

 

 Observed gaseous H2 concentrations. Partial pressure of H2 in the gaseous phase of 

bovine and ovine rumen ranges between 0.023 and 26.5% (Table 5). Several factors may 

explain the within-experiment variability. Gaseous H2 concentrations are higher during the 2 h 

following meals (Barry et al., 1977; Jouany and Senaud, 1979) and when rapidly-degradable 

substrates are fed (Barry et al., 1977). Bloated animals after legumes feeding may have higher 

gaseous H2 proportions, probably linked with a rumen dysfunction (Olson, 1940). However, 

Moate et al. (1997) did not observe differences in gaseous H2 between bloated and non-

                                                 
3 Mass transfer is defined as the movement of a mass from one phase to another. 
4 The Orsat gas analyser system is based on absorption of gases of interest by specific chemical solutions. 
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bloated dairy cows. Between-experiments variability in gaseous H2 concentrations may be 

explained by the presence or absence of rumen cannula: cannulated animals have lower H2 

proportions than non-cannulated animals, probably because of air exchange via the cannula 

between the rumen and its external environment (Moate et al., 2013).  
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Table 5 Composition of rumen headspace gas (adapted from Hegarty and Gerdes, 1999) 

Reference 
Animal 
species 

Diet 

Rumen headspace gas 
composition (%) 

CO2 CH4 H2 

Olson, 1940 Bovine 

Sweet clover 
- Non bloated 
- Bloated 

 
60.7 
62.0 

 
0.14 
15.3 

 
9.36 
0.31 

Alfalfa 
- Non bloated 
- Bloated 

 
53.5 
59.8 

 
0.05 
18.4 

 
26.5 
0.05 

McArthur and 
Miltimore, 1961 

Bovine Unspecified 65.4 26.8 0.18 

Barry et al., 1977 Ovine 

100% hay 
- before feeding 
- feeding time 
- 2 h postfeeding 

 
47.1 
24.5 
47.5 

 
36.2 
12.0 
33.0 

 
0.033 
0.046 
0.062 

80% hay, 20% concentrate 
- before feeding 
- feeding time 
- 2 h postfeeding 

 
54.3 
35.7 
68.4 

 
26.1 
16.3 
24.8 

 
0.023 
0.319 
0.135 

Jouany and 
Senaud, 1979 

Ovine 

40% dehydrated lucerne, 9% wheat 
straw, 51% concentrate 

- 1 h postfeeding 
- 5 h postfeeding 
- 10 h postfeeding 

 
 

62.6 
57.3 
45.0 

 
 

32.0 
32.8 
35.7 

 
 

1.68 
1.10 
0.05 

Moate et al., 
1997 

Bovine 
White clover pasture 

- Non bloated 
- Bloated 

 
75.8 
75.0 

 
23.1 
23.5 

 
<0.10 
<0.10 

Moate et al., 
2013 

Bovine 
54% grain, 46% alfalfa hay 

- Non-cannulated 
- Cannulated 

 
49.8 
13.4 

 
26.1 
3.8 

 
0.14 
0.03 

Moate et al., 
2014 

Bovine 

Alfafa hay (AH), grain, dry or ensiled 
grape marc (DGM or EGM) 

- 76% AH, 24% grain 
- 50% AH, 27% DGM, 23% grain 
- 50% AH, 27% EGM, 23% grain 

 
 

62.8 
60.1 
61.3 

 
 

37.1 
39.8 
38.6 

 
 

0.11 
0.13 
0.11 

Average 
SD 

  
54.4 
15.31 

23.9 
12.29 

2.1 
6.27 

SD: Standard deviation 
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CHAPTER 2: Methanogenesis, not a unique pathway using 

hydrogen in the rumen 

 

 

 Hydrogenases activity can be inhibited by an accumulation of H2 in their environment, 

with bacterial hydrogenases ([Ni-Fe] hydrogenases) being even more sensitive than protozoal 

hydrogenases ([Fe-Fe] hydrogenases) (Fourmond et al., 2013). Consequently, to ensure 

continuity of fermentation in the rumen, it is essential to maintain a low H2 concentration via 

efficient mechanisms of removal and uptake of H2. 

  

I.  METHANE PRODUCTION 

 

 Methane production is the main pathway using H2. Czerkawski (1986) estimated that 

48% of produced H2 would be used towards this pathway. With a different approach, a more 

recent mechanistic model even increased this percentage to 80% with the assumption that 

methanogenesis uses the excess of H2 which has not been used by other H2 using pathways 

(Mills et al., 2001). 

 In the rumen, hydrogenotrophic methanogens use H2 as an energy source for their 

growth while producing CH4: 

CO2 + 4H2 � CH4 + 2H2O 

The linear and positive relationship between rumen H2 concentration and CH4 production has 

been emphasized in four in vitro experiments (Czerkawski et al., 1972; Hungate, 1967; Wang 

et al., 2014; Zaiß and Kaltwasser, 1979): correlation between dissolved H2 and CH4 

concentration in headspace would average 0.92 (Wang et al., 2014) and Zaiß and Kaltwasser 

(1979) reported a correlation of 0.90 between hydrogenase activity and methanogenesis. 

 The microbial mechanisms under CH4 production involve interspecies H2 transfer 

between H2-producers and methanogens (Wolin et al., 1997). The most studied example of 

this H2 transfer is the symbiotic relationship between methanogens and protozoa (Finlay et al., 

1994; Newbold et al., 1995; Stumm et al., 1982; Ushida and Jouany, 1996; Vogels et al., 

1980): methanogens are positioned on the protozoa to reduce the distance for diffusion of H2 

from the hydrogenosome. These methanogens associated with protozoa would be responsible 

for between 9 and 25% of methanogenesis in rumen fluid (Newbold et al., 1995). A recent 

analysis of the literature highlighted a positive relationship between protozoa and CH4 
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emissions: a reduction of 0.12 log10 protozoa cells/mL would reduce CH4 by 1 g/kg DMI 

(Morgavi et al., 2010). By an in vitro approach, Entodinium species were found to be the 

protozoal genus contributing the most to CH4 emissions, followed by Epidinium caudatum. 

Polyplastron had the lowest contribution (Newbold et al., 1995). 

 

II.  VOLATILE FATTY ACIDS SYNTHESIS 

 

 Volatile fatty acids synthesis would be responsible for 19-33% of the H2 uptake 

(Czerkawski, 1986; Mills et al., 2001). Only propionate and valerate formation uses H2, with 

one mole H2 required per mole produced propionate or valerate. 

 Two propionate precursors have been tested to reduce CH4 emissions. Firstly, based 

on stoichiometry, the conversion of one mole fumarate to propionate would reduce CH4 

emissions by 5.6L (Newbold et al., 2005). However, fumaric acid tested in vivo, showed a low 

and variable anti-methanogenic effect which is not dose-dependent (4% CH4 reduction per 

percent added fumaric acid, on average). A reduction of CH4 emissions (g/kg DMI) of 21.8% 

was reported when supplying 2.0% of fumaric acid to male steers (Bayaru et al., 2001). In 

beef cattle, CH4 emissions (g/kg DMI) raised by 10.2% while feeding 2.4% of fumaric acid 

(Beauchemin and McGinn, 2006). In dairy cattle, 2.5% of fumaric acid did not affect CH4 

emissions (g/kg DMI; Van Zijderveld et al., 2011a). In sheep supplied with 10% of fumaric 

acid, CH4 emissions (g/kg DMI) were reduced by 57% (Wood et al., 2009). The contradictory 

CH4 mitigating effect of fumarate was also reported when analyzing several in vitro 

experiments by a meta-analysis approach (Ungerfeld et al., 2007). These authors calculated 

that only 48% of added fumarate would be converted into propionate, confirming previous 

results (Newbold et al., 2005). They assumed that this incomplete conversion of fumarate may 

be caused by its rapid disappearance in the rumen. 

 Secondly, the anti-methanogenic effect of malic acid seems to be low (2% CH4 

reduction per percent malic acid, on average), but more repeatable with doses equal or higher 

than 2%. Malic acid at a dose of 1.2% did not affect CH4 emissions (g/kg DMI) of dairy cows 

(Doreau et al., 2014b). With a dose of 2.0% fed to male steers, malic acid reduced CH4 

emissions (g/kg DMI) by 17.3% (Lila et al., 2004). Using malic acid at doses of 3.5 and 7.5%, 

CH4 emissions (g/kg DMI) of heifers were linearly reduced from 2.7% to 9.2%, respectively 

(Foley et al., 2009). 
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III.  MICROBIAL BIOMASS SYNTHESIS 

 

 According to calculations, bacteria and protozoa would be composed of 6.23 H 

atoms/100 g cells (Reichl and Baldwin, 1975; Table 6). Then, H2 is essential for microbial 

synthesis, but their requirement level is variable in the literature. Czerkawski (1986) estimated 

that 12% of produced H2 is used for microbial growth. In the model of Mills et al. (2001), this 

percentage is much lower, considering that 0.6% of H2 would be directed towards microbial 

growth. This important difference between the two studies must come from the different ways 

of calculation of microbial composition. Mills et al. (2001) estimated that microbes require H2 

only when they grow with non-protein nitrogen (NPN), and this requirement was assessed at 

0.41 moles H2 per kilogram of microbes. This requirement level has been set considering 

polysaccharide-free microbial dry matter, whereas previous studies took into account the 

storage polysaccharide (Benchaar et al., 1998). Consequently, in order to precisely assess the 

amount of H2 used for microbial biomass synthesis, it will be necessary to standardize the 

methods of calculation. 

 The between-experiment variability in H2 requirement for microbial growth may also 

come from the level of nutrients deficiency in the diets. Indeed, when the crude protein (CP) 

content of the diet is low, microbes have to use NPN source, which increases microbial 

growth efficiency and then, H2 uptake (Leng, 2014). 

 

Table 6 Bacterial composition (from Reichl and Baldwin, 1975) 

 
Protein Nucleic acid Polysaccharide Lipid Ash 

Bacteria (g/100g dry cells) 54.46 9.08 20.16 11.54 4.76 

Bacteria (mol/100g cells) 0.474 0.028 0.124 0.019 -- 

Hydrogen (atoms/mol) 7.59 12 10 55.8 -- 

 

IV.  BIOHYDROGENATION OF POLY-UNSATURATED FATTY ACIDS 

 

 Czerkawski (1986) and Mills et al. (2001) estimated that only between 1 and 2.6% of 

H2 is uptaken for biohydrogenation, which consists in H saturation of double bonds of 

unsaturated fatty acids. This means that the reduction in CH4 emissions observed in several 

experiments testing polyunsaturated fatty acids (PUFA) in ruminants diets (Beauchemin and 

McGinn, 2006; Beauchemin et al., 2009; Chung et al., 2011; Martin et al., 2008) cannot be 

solely explained by biohydrogenation. 
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 For instance, we can assume that a complete saturation of oleic acid (C18:1), linoleic 

acid (C18:2) and linolenic acid (C18:3) requires 1, 2 and 3 moles H2, respectively. When 

applying these coefficients to the experiment of Martin et al. (2008), feeding 5.8% linseed oil 

(49.2% C18:3; 21.3% C18:2; 15.1% C18:1) to lactating cows eating 14.7 kg DM would 

reduce CH4 emissions by 25.1 g/day. However in this experiment, CH4 was reduced by 268.9 

g/day which was 10 times more than theoretically calculated, showing the absence of 

relationship between the quantity of saturated double bonds and the extent of CH4 inhibition. 

In other words, this difference highlights that the CH4 mitigating effect of PUFA is only partly 

due to H2 uptake for biohydrogenation. Other reasons may explain the negative effects of 

lipids on methanogenesis. PUFA must have a toxic effect on protozoa which are important H2 

producers (Doreau and Ferlay, 1995). The degradation of diet digestibility with high doses of 

PUFA (more than 5% added fat in Martin et al., 2008) must reduce H2 production and 

availability for methanogens. As lipids are mostly digested in the intestine, H2 production in 

the rumen is reduced when fed in substitution of carbohydrates. 

 

V. OTHER HYDROGEN-SINKS COMPETING METHANOGENESIS 

 

 In aerobic environment, oxygen (O2) is the most important H2-sink, due to its high 

affinity for H2 (O2 + 2H2 = 2H2O). Inversely, in anaerobic environment, CO2, propionate 

precursors (Hattori and Matsui, 2008; Henderson, 1980; Reddy and Peck, 1978), nitrate, 

sulfate (Laverman et al., 2012; Van Zijderveld et al., 2010), iron or manganese (Lovley, 1991; 

Nealson and Saffarini, 1994) can play the role of H2-sink. When all these electrons acceptors 

are present in an anaerobic environment, thermodynamic laws define the ranking of molecules 

reduction. 

 

5.1. Thermodynamic laws governing the affinity of electrons acceptors for hydrogen 

 

 Reactions between H2 and electrons acceptors are oxidation-reduction reactions, which 

involve two redox couples exchanging electrons. Each couple is composed of an oxidant (Ox) 

and a reducer (Red): 

Couple 1 (Ox1/Red1): Red1 = Ox1 + ne- (Oxidation) 

Couple 2 (Ox2/Red2): Ox2 + ne- = Red2 (Reduction) 

Final equation balance: Red1 + Ox2 = Ox1 + Red2 
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 Each redox couple is characterized by an equilibrium constant between the oxidant 

and the reducer, named the “standard reduction potential” (E0, V) which measures the 

tendency of the reducing agent to lose electrons ( 

Table 7). The exchange of electrons between two couples is spontaneously possible if the 

variation ∆E0 between their standard reduction potential is positive (exergonic reaction): 

∆E0 = E0 (Reduction) - E0 (Oxidation) > 0 

Should this not be the case (∆E0 < 0), the reaction would require energy (endergonic reaction). 

The affinity between two redox couples is determined by the “Gibbs free energy” (∆G) 

liberated during their reaction: 

∆G = -nF × ∆E0 

Where n = number of electrons involved in the process, F = Faraday constant (96.500 

kJ/V/mol) and ∆E0 = the difference of standard reduction potentials between the two redox 

couples (V). In spontaneous process, ∆G is negative and the lower it is, the higher will be the 

free energy liberated. This means that redox couples with negative E0 will tend to give 

electrons to redox couples with the more positive E0. Then, in an given environment, H2 will 

have a decreasing affinity for O2, NO3
-, MnO4

-, Fe3+, Fumarate, SO4
2- and CO2 (Table 8).  

 
Table 7 Standard reduction potentials of several common redox couples at pH = 7 (Prescott et 
al., 2010; Tratnyek and Macalady, 2000) 
Redox couples Reduction half-reaction E0 (V) 
H+/H2 2H+ + 2e- � H2 -0.42 

Fedox/Fedred Fedox + e- � Fedred -0.42 

NAD(P)+/NAD(P)H NAD(P)+ + 2H+ + 2e- � NAD(P)H + H+ -0.32 
CO2/CH4 CO2 + 8H+ + 8e- � CH4 + 2H2O -0.25 
SO4

2-/HS- SO4
2- + 9H+ + 8e- � HS- + 4H2O -0.21 

FAD/FADH2 FAD + 2H+ +2e- � FADH2 -0.18 
Fumarate/Succinate HOOCCH=CHCOOH + 2H+ + 2e- � HOOC(CH2)2COOH +0.03 
NO3

-/NO2
- NO3

- + 2H+ + 2e- � NO2
- + H2O +0.42 

Fe3+/Fe2+ Fe3+ + e- � Fe2+ +0.77 
O2/H2O O2 + 4H+ + 4e- � 2H2O +0.82 
MnO4

-/Mn2+ MnO4
- + 8H+ + 5e- � Mn2+ + 4H2O +0.84 

NO2
-/NH4

+ NO2
- + 8H+ + 6e- � NH4

+ + 2H2O +0.90 
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Table 8 Gibbs free energy liberated between H2 and several electron acceptors 
Redox couples ∆G (kJ) 
O2/H2O -239 

NO3
-/NO2

- -162 
MnO4

-/Mn2+ -122 
Fe3+/Fe2+ -115 
Fumarate/succinate -87 
SO4

2-/HS- -41 
CO2/CH4 -33 

 

5.2. Electrons acceptors tested in rumen 

 

 The rumen being an anaerobic environment, O2 cannot be used to oxidize H2. Others 

electrons acceptors have been tested in the rumen to reduce methanogenesis with the 

hypothesis that they can efficiently compete for H2, reducing its availability for CH4 

production. To our knowledge, fumarate (mentioned above), nitrate and sulfate are the only 

other electrons acceptors which have been tested in vivo. 

 Four moles H2 would be used in the reduction of 1 mole nitrate to 1 mole ammonia 

(via nitrite production by a periplasmic reductase; Iwamoto et al., 2001; Simon et al., 2003) or 

in the reduction of 1 mole sulfate to 1 mole hydrogen sulfide. Consequently, knowing that 4 

moles H2 are also required to produce 1 mole CH4, theoretically, 1 mole nitrate or sulfate in 

diets would reduce CH4 production by 1 mole (22.4 L). In in vivo experiments, nitrate or 

sulfate effectively reduced CH4 production (Table 9). Methane reduction efficiency, 

calculated as the ratio between observed CH4 emissions and expected CH4 emissions based on 

stoichiometry, ranged between 42 and 119%. The inefficient use of nitrate and sulfate may be 

explained by the higher proportion of acetate in the rumen of animals supplemented with 

nitrate, which synthesis produces H2 counteracting the reduction of H2 availability caused by 

these two chemicals (Nolan et al., 2010; Hulshof et al., 2012; Veneman et al., 2014). 
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Table 9 Efficiency of methane reduction when supplementing ruminants with electrons 
acceptors.  

Reference 
Animal 
species 

Electron 
acceptor 

Dose 
(% DM) 

CH4 reduction 
(g/kg DMI) Efficiency1 

(%) 
Expected Observed 

Van Zijderveld et al., 2010 Ovine Nitrate 2.6 6.7 5.9 89 

Van Zijderveld et al., 2011 Cattle Nitrate 2.1 5.4 3.0 56 

Hulshof et al., 2012 Cattle Nitrate 2.2 5.7 6.1 107 

Nolan et al., 2012 Ovine Nitrate 2.5 6.5 4.8 74 

Veneman et al., 2014 Cattle Nitrate 2.0 5.2 4.6 89 

Veneman et al., 2014 Cattle Nitrate 2.0 5.2 6.1 119 

Van Zijderveld et al., 2010 Ovine Sulfate 2.6 6.7 2.8 42 
1 Efficiency was calculated as the ratio between observed in vivo CH4 emissions and expected CH4 
emissions based on stoichiometry. 

 

 Supplementation of animals with nitrate or sulfate presents risks for their health, 

which explain why large scale use of these two chemicals is still not authorized in animal 

nutrition. Indeed, rapid ingestion by animals of high doses of nitrate may induce nitrite 

accumulation in the rumen which enters blood through the rumen wall, leading to the 

conversion of hemoglobin (Hb) to methemoglobin (metHb; Lewis, 1951). Contrary to Hb, 

metHb cannot transport oxygen and its accumulation may become life-threatening. Hydrogen 

sulfide coming from sulfate reduction may be eructated by the animal and re-enter the body 

during respiration. Inhalation of this gas by ruminants may induce polyoencephalomalacia 

which is a neurologic disorders characterized by necrosis of the cerebral cortex (Gould, 1998). 

Consequently, to counter the negative effects of nitrate and sulfate, it would be interesting to 

test novel electron acceptors. 

 Knowing the Gibbs free energy liberated during the redox reaction between H2 and 

iron (Table 8), we assumed that iron III (Fe3+) can also be an efficient electrons acceptor in 

the rumen, by diverting one electron from methanogenesis. We tested this hypothesis 

(unpublished data) using an automated in vitro rumen batch culture system (Muetzel et al., 

2014). Five sources of iron (4 mM; iron II sulfate, iron II chloride, iron II acetate, iron III 

sulfate and iron III chloride) were incubated for 48 h with a substrate made of hay and 

concentrate (50:50) and a pasture-fed bovine inoculum. The iron II sources were used to know 

the outcome of iron II coming from iron III reduction. Both iron II and iron III sources 

reduced methanogenesis. Iron CH4-mitigating efficiencies, calculated as the ratio between 
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expected CH4 emissions based on stoichiometry and observed CH4 emissions, ranged between 

84 and 93% for iron II sources and averaged 84% for iron III sources. 

 As iron II presented the same CH4-mitigating efficiency than iron III, we made two 

assumptions. Firstly, we assumed that iron may enhance another pathway using H2 such as 

microbial biomass. To test this effect, iron II acetate (4 mM) and iron II chloride (4 mM) were 

incubated again for 48 h with glucose as the sole protein-free substrate to quantify the effect 

of iron on microbial growth. We observed that iron increased the concentration in insoluble 

proteins (Figure 12), indicating that iron may enhance H2 uptake via a better microbial 

biomass synthesis. An additional dose-response study may highlight to which extent microbes 

are sensitive to iron availability. Anyway, knowing the low contribution of microbes in the 

use of H2, other mechanisms must be involved in the CH4-mitigating effect of iron. 

 Then, owing to the change in color of the medium within the first 10 h incubation 

(from green to dark black, Figure 10), we assumed that iron III and II are reduced in another 

form of iron while using electrons. In the rumen, knowing the average pH ([5.5;6.5]; Lettat, 

2012) and Eh ([-150;-350]mV; Marden, 2007; personal database), diagrams of iron minerals 

indicate that iron should be in the form of vivianite (Fe3(PO4)2.8(H2O)) and/or magnetite 

(Fe3O4) (Figure 11). Then, to reduce iron III to iron, it may be 3 rather than 1 electron which 

would be deviated from methanogenesis.  

 

 

Figure 10 Color of the medium after 48 h incubation with hay and concentrate (50:50) 
supplemented with (left bottle) or without (right bottle) iron sources. 
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Figure 11 Forms of iron minerals according to Eh and pH (A: vivianite; B: siderite; Lemos et 
al., 2007). Vertical and horizontal lines respectively correspond to pH and Eh ranges 
commonly found in ruminal conditions. The red square represents all the possible 
combinations of pH and Eh in the rumen, with associated forms of iron. 
 

 

Figure 12 Insoluble protein concentration during 48 h incubation with hay and concentrate 
(50:50) supplemented with iron II acetate (4 mM) and iron II chloride (4 mM). Error bars 
indicate standard deviation.  
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CHAPTER 3: Emissions of gaseous hydrogen from the 

rumen: small energetic losses 

 

 

 Rumen stoichiometric models aiming to predict CH4 emissions generally assume that 

the amount of H2 produced is equal to the amount of H2 used on a molar basis (Alemu et al., 

2011; Benchaar et al., 1998; Mills et al., 2001). This hypothesis means that the H2 recovery in 

CH4, VFA and microbial synthesis would be equal to 100%, with no H2 gas emitted from the 

animal. Consequently, few in vivo studies measured concentrations of H2 emissions. 

However, results from these studies showed that H2 emissions occur, even if they generally 

remain low, hardly detectable and represent a low percentage of GEI (less than 1% GEI). 

 

I.  FACTORS OF VARIATION OF GASEOUS HYDROGEN EMISSIONS 

 

1.1. Measurement of hydrogen emissions 

 

 In the literature, two methods have been used to quantify gaseous H2 emissions. In 

both of them, animals were placed in respiratory chambers but these methods differed in 

terms of gas sampling method. The first one consisted in manual sampling of gas with a 

syringe in the chamber air intake and exhaust ducts (Van Zijderveld et al., 2011). In the 

second method, gas was automatically sampled via a shunt from the air intake and exhaust 

duct going directly to a gas analyzer (Pinares-Patiño et al., 2012a). 

 Gas composition was then analyzed by gas chromatography. Two detectors have been 

used, having different detection levels: an electrochemical H2 detector with a detection level 

of 5 to 10 ppm (Pinares-Patiño et al., 2012a) and a Quintron Breathtracker with a detection 

level of 1 to 2 ppm (Van Zijderveld et al., 2011).  

   

1.2. Factors influencing hydrogen emissions 

 

1.2.1.  Intake level and meals frequency 

 The higher the amounts of DMI, the lower are H2 and CH4 emissions (% GEI). Indeed, 

the comparison of gaseous emissions of sheep fed increasing amounts of forage (DMI ranging 

from 0.40 kg forage/day to 1.60 kg/day) showed that CH4 and H2 emissions were linearly 
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reduced: from 8.39% GEI to 6.02% GEI for CH4 and from 0.052% GEI to 0.034% GEI for H2 

(Hammond et al., 2013). 

 A low frequency of meals distribution induces higher postfeeding peaks of H2 

emissions associated to lower CH4 emissions. One study compared H2 emissions of two 

groups of sheep fed the same diet (60:40 mixture of lucerne hay and wheat grain) distributed 

either two or eight times per day (Swainson et al., 2011; Figure 13). Daily CH4 emissions 

were lower for sheep fed twice daily (3.47 vs 6.35% GEI) whereas H2 emissions were similar 

between the two groups (0.061% GEI). However, sheep fed twice daily presented high peaks 

of H2 emissions till 40 ppm one hour postfeeding, directly followed by peaks of CH4 

emissions (up to 180 ppm). Gaseous emissions recovered lower and basal value within 3 h for 

H2 (0 ppm) and 7 h for CH4 (40 ppm). Inversely, sheep fed eight times a day presented more 

regular gaseous emissions within a day, which never reached values higher than 15 ppm for 

H2 and which ranged between 80 and 160 ppm for CH4. 
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Figure 13 Daily methane and hydrogen emissions kinetics (ppm) of sheep fed 2 (upper graph) 
or 8 (lower graph) times daily. The arrows indicate times of feeding. (from Swainson et al., 
2011) 
 

1.2.1.  Diet composition and additives supplementation 

 High starch diets reduce CH4 emissions without necessarily reducing H2 emissions. A 

comparison between sheep fed either grass or a 60:40 mixture of lucerne hay and wheat grain 

showed that H2 emissions from animals fed the high concentrate diet represented 0.115% 

GEI, which was six times more than the sheep fed grass (0.019% GEI) (Pinares-Patiño et al., 

2010). Inversely, CH4 emissions were lower for sheep fed the high concentrate diet (7.31 vs 

11.66% GEI). However, it was recently shown that steers fed 92.5% of concentrates 

significantly emitted less H2 than steers fed a mixed diet with 52% concentrates (1.47 vs 

1.79% GEI) whereas CH4 emissions (% GEI) were reduced by 37% with the high concentrate 

diet (Rooke et al., 2014). 

 Some chemicals supplemented in the diet of ruminants for reducing CH4 emissions 

give rise to H2 emissions. While inhibiting methanogenesis by 4.6% GEI with 0.2% of 
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hemiacetal of chloral and starch in diet, H2 emissions were detected in rams up to 1.7% GEI 

(Johnson, 1972). Similarly, using the same inhibitor with half of previous dosage (CH4 

reduction of 3.94% GEI), H2 emissions represented 0.8% GEI (Johnson, 1974). More 

recently, using 2.1% nitrate to reduce CH4 by 1% GEI, dairy cows emitted more than 0.017% 

GEI, which was 2.5 times more than control cows (0.006% GEI; Figure 14; Van Zijderveld et 

al., 2011). When having a closer look to the kinetics, one may observe that the peak of 

gaseous H2 caused by nitrate is situated 2 h postfeeding and 1 h before the postprandial peak 

of CH4 emissions from control cows. Hydrogen release with nitrate supplementation may be 

explained by the punctual inhibiting effect of this chemical towards hydrogenotrophic 

methanogens (Iwamoto et al., 2001; Van Zijderveld et al., 2010). 

 

 

Figure 14 Methane and hydrogen emissions kinetics of dairy cows supplemented with nitrate. 
The arrow indicates time of feeding. (from Van Zijderveld et al, 2011b) 
 

 Finally, H2 emissions represent a low spoilage of energy (from 0.006 to 1.8% GEI) 

which is not used by the animal to produce VFA or microbial biomass. These low H2 levels 

point out that the molecule is quickly metabolized in the rumen. The relationship between H2 

and CH4 emissions is different between in vitro and in vivo experiments, as a positive and 

linear relationship has been reported in vitro between these two factors (chapter 2). In vivo, 

this relationship would be dependent on H2 concentrations: above 0.1% GEI, a rise of H2 

emissions may be associated with a reduction of CH4 emissions (Johnson, 1974, 1972; 

Pinares-Patiño et al., 2010; Van Zijderveld et al., 2011). Inversely, under 0.1% GEI, H2 and 

CH4 emissions are either not correlated (Swainson et al., 2011) or positively correlated 

(Hammond et al., 2013). 
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II.  CAUSES OF HYDROGEN EMISSIONS AND CONSEQUENCES 

 

2.1. Two potential causes of hydrogen emissions 

 

 To our knowledge, no in vivo experiment reported simultaneous measurements of 

dissolved H2 in the liquid phase of the rumen, gaseous H2 in the dorsal sac of the rumen and 

emissions of H2 from the rumen. However, knowing the relationship between dissolved and 

gaseous H2, we assume that an increase of H2 emissions is linked to an evacuation of 

excessive gaseous H2 coming from high dissolved H2 concentrations in the liquid phase. 

Different scenarii may explain a build-up of H2 in the rumen liquid phase: i) an increase in H2 

production with a constant H2 use, ii/ a constant H2 production with a lower H2 use. 

 The first scenario may be applied in the case of an increase of DMI, a higher 

percentage of starch in diet or a lower feed frequency inducing the arrival of a large amount of 

feed in the rumen quickly fermented to H2. In that case, the rate of production of H2 may 

overload the capacity of methanogens to use H2 (Rooke et al., 2014), therefore resulting in H2 

emissions (Swainson et al., 2011). Conversely, the second scenario may be applied while 

using anti-methanogenic strategies such as nitrate. Nitrate was shown to reduce the quantity 

of methanogens (Van Zijderveld et al., 2011), which are consequently not sufficient enough to 

compensate for the arrival of H2 following ingestion. 

 

2.2. Consequences of hydrogen emissions 

 

 Hydrogen is an indirect GHG: it does not interact with solar and terrestrial radiations, 

but it perturbs the global distribution of important GHG such as CH4 and ozone (O3), by 

reacting with hydroxyl radicals. However, before considering H2 emissions as a new source of 

pollution from ruminants, two factors have to be kept in mind. Firstly, despite some 

variations, H2 emissions from ruminants remain at very low levels. Secondly, the GWP for H2 

is 5.8, which is much lower than CH4 (GWP = 21) (Derwent et al., 2006).  
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Abstract 

A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane 

emission from ruminants. A database was built from 59 publications reporting data from 76 in 

vivo experiments. The experiments included in the database recorded methane production and 

rumen protozoa concentration measured on the same groups of animals. Quantitative data 

such as diet chemical composition, rumen fermentation and microbial parameters, and 

qualitative information such as methane mitigation strategies were also collected. In the 

database, 31% of the experiments reported a concomitant reduction of both protozoa 

concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments 

tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a 

variation in methane emission without changes in protozoa numbers indicating that 

methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments 

that used chemical compounds as an antimethanogenic treatment belonged to this group. The 

relationship between methane emission and protozoa concentration was studied with a 

variance-covariance model, with experiment as a fixed effect. The experiments included in 

the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 

cells/ml corresponding to the average standard error of the mean of the database for this 

variable. To detect potential interfering factors for the relationship, the influence of several 

qualitative and quantitative secondary factors was tested. This meta-analysis showed a 

significant linear relationship between methane emission and protozoa concentration: CH4 

(g/kg dry matter intake) = -30.7 + 8.14 × protozoa (log10 cells/ml) with 28 experiments (91 

treatments), root mean square error = 1.94 and adjusted R² = 0.90. The proportion of butyrate 

in the rumen positively influenced the least square means of this relationship. 

 

Keywords: methane, protozoa, meta-analysis, ruminant, volatile fatty acids 

 

Implications 

Our meta-analysis allows the effect of a variation in rumen protozoa concentration on 

methane emission to be quantified when protozoa ranged between 4.5 and 7.3 log10 cells/ml. 

From selected experiments, a reduction of 0.12 log10 protozoa cells/ml induced a significant 

reduction of 1g methane/kg dry matter intake. Among the experiments of the database, 31% 

reported a reduction of both protozoa concentration and methane emission, most of these 

using lipids. However, a reduction of methane emission with no change in protozoa was 
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reported in 21% of the experiments, showing that protozoa are not the only factor responsible 

for reduced methanogenesis. 

 

Introduction 

In the rumen, methanogens produce methane (CH4) mainly from carbon dioxide (CO2) and 

hydrogen (H2) released during fermentation of feeds by bacteria, protozoa and fungi. Protozoa 

are involved in methanogenesis through their high production of butyrate (C4) and acetate 

(C2), two volatile fatty acids (VFA) whose biosynthesis liberates 2 and 4 moles of H2 

respectively, per mole of fermented glucose (Sauvant et al., 2011). Half of this H2 is used by 

methanogens inside or in close association with protozoa cells, to produce CH4 (Czerkawski, 

1986; Williams and Coleman, 1992). Hence it was hypothesized that the reduction of rumen 

protozoa concentration might be an efficient way to decrease CH4 emission (Finlay et al., 

1994). Previous experiments testing experimental defaunation reported CH4 reduction ranging 

from 13% to 35% in vivo (Hegarty, 1999; Morgavi et al., 2008; Morgavi et al., 2012) and 

from 9% to 25% in vitro (Newbold et al., 1995). However, the relationship between protozoa 

concentration and CH4 emission is not precisely quantified. Preliminary work on a limited 

number of publications indicated that these two parameters were positively correlated 

(Morgavi et al., 2010). This finding prompted us to carry out a deeper analysis of the effects 

of a variation in protozoa concentration on CH4 emission, by applying a meta-analysis 

approach with a variance-covariance model (Sauvant et al., 2008). To this end, we 

exhaustively gathered evidence from experiments reporting simultaneous measurements of 

CH4 emission and rumen protozoa concentrations on the same groups of animals. To refine 

the study, we also tested the influence of qualitative and quantitative interfering factors for 

this relationship. 

 

Material and methods 

 

Selection of publications 

We included in the database only publications reporting in vivo data of both CH4 emission and 

rumen protozoa concentration measured on the same groups of animals. To find publications, 

bibliographical databases of editorial platforms (Web of Knowledge, ScienceDirect and 

Google Scholar) were interrogated, with methane, protozoa and ruminants as keywords. 

Unpublished experiments from our research group (INRA, UMR1213 Herbivores) were also 

added. Quantitative factors (intake, chemical composition of the diet, total tract digestibility, 
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rumen VFA concentrations, rumen pH, rumen bacteria and methanogen concentrations, and 

rumen sampling time relative to feeding time) were added to the database when available, 

with standard errors (s.e.) and statistical differences between treatments. Reported data of 

rumen parameters in kinetics were averaged. Qualitative factors (animal species, CH4 

mitigation strategies, and techniques for measuring CH4 emission and protozoa concentration) 

were also collected. Publications using CH4 emission calculated from equations instead of 

actual measures were excluded. 

When relevant, treatments testing an additive or supplement were characterized by the main 

active compound in the additive (e.g. C18:1n-9 for rapeseed, diallyl disulfide for garlic, or 

tannin for Quillaja saponaria), by the quantity of the additive and of the main active 

compound in dry matter, and by the physical form of the additive (grain, powder, oil). For 

linseed, sunflower, rapeseed, soya, coconut and cottonseed, when the lipid values were not 

available, the quantity of the main fatty acid was calculated from tables of composition and 

nutritive value of raw ingredients (Sauvant et al., 2004). An experiment was defined as one 

control treatment and at least one experimental treatment testing one or several CH4 

mitigation strategies with the same basal diet. When relevant, one publication could supply 

different experiments, if controls were different. The final curated database contained 59 

papers (number of experiments Nexp = 76, number of treatments Nt = 219) including 6 

unpublished experiments (Nt = 24) from our research group. The list of published papers used 

is given in Supplementary material S1. 

 

Coding of experiments 

Experiments were first classified into four groups according to their CH4 mitigation strategy. 

The group “biotechnology” (Nexp=13, Nt=35) consisted of experiments testing experimental 

defaunation, probiotics (Lactobacillus, Propionibacterium, Saccharomyces, Trichosporon), 

prebiotics (galacto-oligosaccharides) or exogenous microbial products (fibrolytic enzyme, 

secondary metabolites from Monascus). The group “additives” (Nexp=26, Nt=64) consisted 

of experiments testing chemical compounds (iodopropane, nitrate, sulfate), organic acids 

(malate, fumarate) or plants rich in tannin, saponin or essential oil (anacardic acid, diallyl 

disulfide, carvacrol, allyl isothiocyanate). The group “feed components” (Nexp=25, Nt=74) 

consisted of experiments testing lipids (C12:0, C14:0, C18:1n-9, C18:2n-6, C18:3n-3), 

forages (Cichorium intybus, Lolium perenne, Trifolium repens, Trifolium pratense, Medicago 

sativa, Vigna unguiculata) or cereal grains (wheat, maize, barley). The group “association” 

(Nexp=12, Nt=46) grouped experiments associating several strategies. 
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Experiments were further coded according to the distribution of the additive. Experiments 

with a “dose-response effect” tested different amounts of an additive (Nexp=41, Nt=105). 

Experiments with a “source effect” tested different sources of an active compound given at 

equal doses (e.g. the comparison between tannins originating from chestnut tree or acacia, 

Nexp=21, Nt=62). Experiments with a “form effect” tested different forms of an additive 

given at equal doses (e.g. the comparison between linseed fatty acids supplied as seed or oil, 

Nexp=2, Nt=6). Experiments testing experimental defaunation were considered as having a 

dose-response effect with protozoa as the active compound (Nexp=7, Nt= 17). 

Experiments were then sorted into four classes according to their variations in CH4 or 

protozoa: no variation of either parameters, variation in protozoa concentration only, variation 

in CH4 emission only or variation in both parameters. Protozoa concentration was expressed 

as log10 cells/ml, to ensure normal distribution of residues. Three experiments reporting 

protozoa concentration as proportion of protozoal 18S rDNA per total bacterial 16S rDNA, or 

as log gene copies of protozoal 18S rRNA/g of fresh matter, could not be used, as conversion 

to log10 cells/ml was not possible. Methane emission were expressed in g per kg dry matter 

intake (DMI) to allow interpretation of data from animals with different levels of DM intake, 

i.e. large and small ruminants. Two papers had to be excluded, as DMI was not mentioned. 

Experiments were considered as reporting a significant variation in protozoa or CH4 if the 

within-experiment variation of the parameter was respectively higher than one or two times 

the database average standard error of the mean (s.e.m.) for the parameter. The threshold 

levels for protozoa and CH4 were then 5.3 log10 cells/ml (2.2 × 105/ml) and 1.1 g/kg DMI, 

respectively. 

 

Statistical analysis 

Description of the meta-design. The relationship between the four CH4 mitigation strategies 

and their effects on protozoa concentration or CH4 emission was assessed with three chi 

square tests. The effect of the following classes on CH4 mitigation strategies was tested: (i) 

variation in protozoa vs. no variation in protozoa, (ii) variation in CH4 vs. no variation in CH4, 

and (iii) variation in protozoa and/or CH4. 

In addition, the relationship between quantitative factors (see further) and rumen protozoa 

concentration (log10 cells/ml) or CH4 emission (g/kg DMI) was examined to gain a better 

understanding of the effect of these factors on the relationship between CH4 and protozoa. 

This analysis was performed using all the experiments in the database except for those testing 

defaunation, as they presented a high leverage effect. A one-way ANOVA was used to test 
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wether protozoa or CH4 varied according to qualitative factors. In order to elucidate the 

relationship between protozoa or CH4 and quantitative factors, various and complementary 

approaches were taken. Firstly, global correlation was calculated using all treatments 

irrespective of the experiment. Secondly, the between-experiment correlation was calculated 

using for each experiment, the mean of each factor and the mean of the protozoa 

concentration or of the CH4 emission. Thirdly, the within-experiment correlation was 

calculated with a general linear model (GLM) using experiments with a reliable within-

experiment variation of protozoa concentration or CH4 emission: 

#$�%&' = ( +	() + 	* × �'&%&+&$ +	*) 	× �'&%&+&$ + ,   [1] 

#$�%&' = ( +	() + 	* × -./ +	*) 	× -./ + ,   [1’] 

where α = the overall intercept, αi = the fixed effect of the experiment i on the overall 

intercept α, β = the overall slope, βi = the fixed effect of the experiment i on the slope and e = 

the random residual error. 

 

Response of CH4 emission to a variation in rumen protozoa concentration. The average 

response law was sought using experiments that had a sufficient variation in rumen protozoa 

concentration between control and treatment (average within-experiment variation of 5.3 log10 

cells/ml). Five experiments using defaunated animals were excluded, as justified above. A 

GLM was applied to determine the relationship between CH4 (g/kg DMI) and rumen protozoa 

concentration (log10 cells/ml):  

-./ = ( +	() + 	* × �'&%&+&$ +	*) 	× �'&%&+&$ + ,   [2] 

where α, αi, β, βi, and e were as defined in equation 1. A quadratic adjustment was also tested 

and compared with the linear one. The experiment effect was included in the model as a fixed 

factor. Given that quantitative and qualitative factors differed between experiments and that 

they were not documented for all treatments, one of the major aims of this work was to study 

and explain how these factors might affect the relationship between protozoa and CH4 

emission. Normality of residuals was tested (Anderson-Darling test) and normalized residuals 

were calculated. Treatments with high normalized residuals (Nout, less than -3 or greater than 

+3) were identified and discarded from the model as statistical outliers if they also had a high 

leverage effect based on Hi calculation and Cook distance (Sauvant et al., 2008). 

 

Determination of factors influencing the response law. Potential interfering factors for the 

response of CH4 to protozoa were investigated. The interfering quantitative factors tested 

were: intake level (g DMI/day per kg BW), total tract digestibility of organic matter (OM), 
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NDF, starch and CP (%), rumen total concentration of VFAs (mmol/l), proportions of C2, C4 

and propionate (C3) (mol/100mol), C2/C3 and (C2+C4)/C3 ratios (mol/mol), pH and 

concentrations of bacteria and methanogens (cells/ml) in rumen fluid. The interfering 

qualitative factors tested were: method of CH4 measurement (SF6, chamber), CH4 mitigation 

strategy (biotechnology, additives, feed components, association), animal species (large or 

small ruminants), method of distribution of the additive (dose-response, source, form) and 

rumen sampling time (before feeding, i.e. more than six hours after last feeding; after feeding, 

i.e. less than six hours after last feeding; and average of before and after feeding). 

The influence of these factors on the response law of CH4 to protozoa was tested in a three-

step process as described previously (Loncke et al., 2009). The first step consisted in 

highlighting the interfering factors influencing the three parameters of the model: slopes, least 

square means (LSMeans) and residuals (i.e. the difference between observed CH4 emission 

and emission predicted by the response law). A factor influencing the slopes or residuals may 

explain differences in variations of CH4 emission between experiments for a similar variation 

in protozoa concentration. A factor influencing the LSMeans may explain the differences in 

CH4 emission between experiments for a same level of protozoa. Slopes and LSMeans of each 

experiment used in the determination of the response law were calculated and their correlation 

with quantitative factors was tested. Residuals (observed minus predicted CH4 emission) were 

calculated for all the treatments in the database, except for experiments testing defaunation, in 

order to ensure a normal distribution of the residuals. The relationship between residuals and 

quantitative factors was tested using the GLM procedure with experiment as a fixed factor: 

0,1234$51 = ( +	() + 	* × 6$�%&' +	*) 	× 6$�%&' + ,   [3] 

where α, αi, β, βi, and e were as defined in equation 1. A reliable within-experiment response is 

achieved only with a minimal variation of the factor. Thus for each factor, the within-

experiment variation was calculated and the experiments presenting the 25% lowest variations 

were not included in the GLM. The influence of qualitative factors on the model parameters 

was tested with a one-way ANOVA. 

In the second step of the analysis, the significant interfering factors were included 

individually in equation 2. Quantitative factors were tested as additional covariable, either in 

substitution of the experiment effect (equation [4]) or in addition to the experiment effect 

(equation [4’]): 

-./ = ( + 	*	 × �'&%&+&$ + 7 × 6$�%&' + ,   [4] 

-./ = ( +	() + 	* × �'&%&+&$ +	*) 	× �'&%&+&$ + 7 × 6$�%&' +	7) × 6$�%&' + 	,[4’] 
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where α, αi, β, βi, and e were as defined in equation 1, γ= the linear term for the factor and γi = 

the fixed effect of the experiment i on the factor slope. This approach allows the identification 

of factors able to replace the experiment effect while explaining a part of the variability 

between experiments not explained by the model. Qualitative factors were added as fixed 

effects to the equation 2 with the experiment effect nested within the factor: 

-./ = ( +	()	(6$�%&') + 	* × �'&%&+&$ + 	6$�%&' + 6$�%&'	 × �'&%&+&$ + ,  [5] 

where α, β and e were as defined in equation 1 and αi = the fixed effect of the experiment i 

(nested within the qualitative factor) on the overall intercept α. In a third step, significant 

interfering quantitative factors were included simultaneously in equation 2 to rank them in 

terms of how much they contributed to the relationship between CH4 and protozoa. 

At each step of the meta-analysis process, graphical observations were made to check the 

coherence of relationships, and to identify obviously abnormal values. All statistical analyses 

were carried out using Minitab, Version 16. Statistical significance was considered at P≤0.05 

and a trend was declared at P<0.1. 

 

Results 

 

Description of the meta-design 

A summary of the main database parameters is given in Table 1. Information is presented 

separately for large and small ruminants, represented by 37 experiments with dairy and beef 

cattle and 39 experiments with sheep and goats. No statistical difference was observed 

between animal species for CH4 emission (g/kg DMI, P=0.707; g/kg LW, P=0.207), intake 

level (g DMI/day per kg BW, P=0.492), gross energy of the diet (MJ/kg DM, P=0.452) or 

diet CP and OM content (g/kg DM, P=0.103 and P=0.645, respectively). In contrast, small 

ruminants had a more fibrous diet with a higher NDF content (g/kg DM, P<0.001) and a 

lower diet OM digestibility (%, P=0.001), inducing a higher proportion in the rumen of C2 

and lower proportions of C3 and C4 (mol/100mol, P<0.001) than in large ruminants. Rumen 

protozoa concentration (log10 cells/ml) tended to be lower in small than in large ruminants 

(P=0.075).  

The CH4 emission tended to be higher when expressed in g/kg digestible OM intake 

(P=0.074), and lower when expressed as a percentage of gross energy intake (P=0.097), in 

small compared to large ruminants. On these reduced datasets presenting measurements of 

OM digestibility or gross energy intake, CH4 emission expressed in g/kg DMI did not differ 

between small and large ruminants (P=0.899 and P=0.481, respectively). 
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Table 1 Description of the complete database: methane emission, intake, diet composition and rumen parameters in large and small ruminants 

 Large ruminants  Small ruminants Species effect 
P-value  Nt Mean s.d. Min Max  Nt Mean s.d. Min Max 

Methane emission (g/kg DMI) 96 18.7 6.4 2.4 36.3  115 19.0 5.7 7.9 40.5 0.707 
Methane emission (g/kg DOMI) 49 27.9 10.2 3.7 51.9  72 30.7 6.9 13.0 50.9 0.074 
Methane emission (g/kg LW) 73 0.44 0.21 0.09 1.17  104 0.48 0.23 0.10 1.39 0.207 
Methane emission (% of GE intake) 78 5.99 1.68 2.30 10.80  67 5.50 1.86 2.36 10.41 0.097 
Intake (g DMI/day per kg BW) 77 24.9 9.3 11.5 43.2  100 25.9 9.6 11.5 46.4 0.492 
Dietary composition (g/kg DM) 

OM 69 916.0 30.0 800.0 966.0  62 913.4 33.3 804.0 949.0 0.645 
NDF 77 367.0 89.4 169.0 671.0  97 441.1 83.4 239.0 678.0 <0.001 
Starch 33 227.9 129.0 22.3 472.0  6 224.0 44.2 158.0 253.0 0.943 
CP 81 155.3 33.0 59.0 230.0  101 146.6 37.2 25.1 256.0 0.103 

Gross energy (MJ/kg DM) 44 18.4 1.2 16.7 21.7  46 18.5 1.0 16.4 20.0 0.578 
Concentrate: Forage (%) 92 46.2 16.6 0.0 90.0  117 23.5 26.0 0.0 83.0 <0.001 
OM total tract digestibility (%) 59 69.2 5.5 52.0 83.0  68 64.1 10.6 39.9 83.3 0.001 
Rumen parameters 

Protozoa (log10 cells/ml) 100 5.58 0.80 0.00 6.80  107 5.22 1.86 0.00 7.31 0.075 
Total VFA (mmol/l) 85 108.0 25.0 44.7 165.3  112 90.9 31.6 22.9 171.1 <0.001 
C2 (mol/100mol) 89 62.1 4.8 48.2 74.3  112 69.5 4.4 60.3 79.1 <0.001 
C3 (mol/100mol) 89 21.8 4.2 12.2 36.0  112 18.4 4.1 9.5 27.5 <0.001 
C4 (mol/100mol) 89 11.5 2.0 6.7 16.1  112 8.9 2.3 5.4 16.0 <0.001 
C2/C3 89 2.99 0.79 1.34 6.07  112 4.02 1.20 2.34 8.22 <0.001 
(C2+C4)/C3 89 3.54 0.91 1.54 6.89  112 4.54 1.35 2.54 9.35 <0.001 
pH 81 6.40 0.40 5.06 7.33  92 6.60 0.33 5.66 7.16 <0.001 

Min = Minimum; Max = Maximum; Nt = number of treatments; DMI = dry matter intake; LW = live weight; GE = gross energy; DOMI = digestible organic 
matter intake; OM = organic matter; VFA = volatile fatty acids; C2 = acetate; C3 = propionate; C4 = butyrate. 
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 To measure CH4 emission, 31 experiments (Nt=88) used the SF6 tracer technique and 45 

experiments (Nt=131) used open or closed chambers. Protozoa concentration was determined 

from rumen samples taken before feeding (Nexp=19, Nt=64), after feeding (Nexp=34, Nt=89) 

and both before and after feeding (Nexp=17, Nt=47). This information was unclear or not 

reported in six experiments (Nt=19). To determine protozoa concentrations, counting 

chambers were used in 70 experiments (Nt=201) and six experiments (Nt=18) used qPCR. 

Information on CH4 emission (g/kg DMI) and protozoa concentration (log10 cells/ml) was 

collected for 70 experiments (Nt=198). The distribution of these experiments according to 

their variation in CH4 or protozoa is presented in Table 2. 

 

Table 2 Number of experiments without or with significant within-experiment variation of 
protozoa concentration (log10 cells/ml) or methane emission (g/kg dry matter intake) 

 No protozoa variation  Protozoa variation 
 No CH4 variation CH4 variation  No CH4 variation CH4 variation 
Biotechnology 

Defaunation 2 0  3 2 
Pro/Prebiotics, 
Microbial products 

2 3  1 0 

Additives 
Chemicals 0 2  0 0 
Organic acids 2 2  0 0 
Plant extracts      

Tannins 1 0  2 2 
Saponins 5 1  2 0 

Essentials oil 1 3  0 1 

Feed components 
Lipids 1 4  1 10 
Forages 5 0  1 1 
Concentrates 0 0  1 1 

Association 0 0  3 5 

 

The chi square tests showed that no variation in protozoa was mostly observed in experiments 

from the “additives” strategy, whereas all the experiments in the “association” strategy 

reported variation in protozoa (P=0.004). Conversely, if the effect on protozoa was not 

considered, no specific strategy affected CH4 emission (P=0.376). Looking simultaneously at 

their effects on protozoa concentration and/or CH4 emission, strategies were statistically 

related to specific effects on these parameters (P=0.032). No variation in either protozoa or 

CH4 was observed in 19 experiments, in particular those testing different forages. Conversely, 

15 experiments reported a variation in CH4 with no variation in protozoa, mostly experiments 
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testing chemicals or essential oils. Fourteen experiments reported a reduction of protozoa 

concentration with no change in CH4 emission. A reduction of protozoa concentration was 

associated with a reduction of CH4 emission in 22 experiments. Experiments testing tannins 

and lipids were the most numerous in this last group. 

Table 3 reports the correlations between rumen protozoa concentration and quantitative 

factors. With a global analysis approach, rumen protozoa were negatively correlated to OM 

and CP total tract digestibility (P=0.001), rumen total VFA concentration (P=0.001), C3 

proportion (P<0.001) and bacteria concentration (P=0.005). Using the same approach, rumen 

protozoa concentration was positively correlated to rumen pH (P=0.019), proportion of C2 

(P<0.001) and the ratios C2/C3 and (C2+C4)/C3 (P<0.001). Similar trends were observed 

with the between-experiment analysis approach, except for rumen pH and bacteria which 

were no longer correlated to protozoa. With the within-experiment approach, intake, NDF 

digestibility, rumen proportion of C2 and the ratios C2/C3 and (C2+C4)/C3 were positively 

correlated with protozoa (P<0.001, P=0.018, P=0.009, P=0.047 and P=0.039, respectively) 

whereas rumen proportion of C3 was again negatively correlated to this parameter (P=0.003). 

In none of these approaches were rumen proportion of C4 and number of methanogens 

correlated to protozoa. The rumen protozoa were significantly affected by animal species, 

CH4 mitigation strategy and rumen sampling time (P=0.027, P=0.031, P=0.006, respectively; 

data not shown) and a tendency was observed with the method of distribution (dose-response, 

source, form) of the additive (P=0.061; data not shown). 

Table 4 reports the correlations between CH4 emission and quantitative factors. With a global 

approach, CH4 emissions were negatively correlated with intake (P=0.016), C3 proportion 

(P<0.001) and rumen methanogens (P=0.012) and positively correlated with OM and NDF 

digestibility (P<0.001 and P=0.002), C2 and C4 proportions (P=0.012 and P<0.001), C2/C3 

and (C2+C4)/C3 ratios (P=0.007 and P=0.001), rumen pH (P<0.001) and bacteria 

concentration (P=0.017). With the between-experiment approach, OM digestibility, C4 

proportion and rumen pH were also positively correlated with CH4 (P=0.008, P=0.030 and 

P=0.013, respectively) and C3 proportion and methanogen concentration were negatively 

correlated with CH4 (P=0.009 and P=0.016). The within-experiment approach yielded the 

same information as the between-experiment approach, except that C2 proportion was 

positively correlated with CH4 (P<0.001) unlike C4 proportion (P=0.169). Methane emission 

was not significantly affected by animal species, CH4 mitigation strategy, CH4 method of 

measurement or the method of distribution of the additive (dose-response, source, form) 

(P=0.131, P=0.431, P=0.084, P=0.331, respectively; data not shown). 
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Table 3 Global correlation, between and within-experiment (equation 1) relationship between rumen protozoa concentration and quantitative 
factors 

 Rumen protozoa concentration (log10 cells/ml) 

  Global  Between experiment  Within-experiment 

Quantitative factors Nt r P-value  Nexp r P-value  Nexp Nt Slope P-value 

Intake (g DMI/day per kg BW) 151 -0.068 0.405  55 -0.079 0.564  27 83 2.618 <0.001 
Total tract digestibility (%) 

OM 125 -0.299 0.001  43 -0.326 0.033  21 68 1.254 0.382 
NDF 125 -0.032 0.725  45 -0.089 0.563  18 57 4.305 0.018 
Starch 31 -0.221 0.233  10 -0.253 0.480  4 13 -0.537 0.355 
CP 71 -0.495 <0.001  28 -0.561 0.002  11 32 -0.009 0.997 

Rumen parameters             
Total VFA (mmol/l) 164 -0.249 0.001  57 -0.243 0.068  25 80 -0.372 0.921 
C2 (mol/100mol) 168 0.365 <0.001  59 0.361 0.005  26 82 2.310 0.009 
C3 (mol/100mol) 168 -0.435 <0.001  59 -0.452 <0.001  26 82 -2.432 0.003 
C4 (mol/100mol) 168 -0.035 0.656  59 -0.062 0.643  26 82 0.665 0.159 
C2/C3 168 0.462 <0.001  59 0.528 <0.001  26 82 0.426 0.047 
(C2+C4)/C3 168 0.460 <0.001  59 0.525 <0.001  26 82 0.512 0.039 
pH 154 0.188 0.019  54 0.217 0.116  23 74 0.116 0.065 
Methanogens (cells/ml) 28 0.117 0.555  12 -0.010 0.975  3 8 4.090 0.717 
Bacteria (cells/ml) 67 -0.340 0.005  22 -0.320 0.146  13 45 -6.200 0.725 

Nexp = number of experiments; Nt = number of treatments; DMI = dry matter intake; OM = organic matter; VFA = volatile fatty acids; C2 = acetate; C3 = 
propionate; C4 = butyrate.  
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Table 4 Global correlation, between and within-experiment (equation 1’) relationship between methane emission and quantitative factors 

 Methane emission (g/kg DMI) 

  Global  Between experiment  Within-experiment 

Quantitative factors Nt r P-value  Nexp r P-value  Nexp Nt Slope P-value 

Intake (g DMI/day per kg BW) 159 -0.191 0.016  59 -0.196 0.138  34 99 0.038 0.382 
Total tract digestibility (%) 

OM 121 0.369 <0.001  42 0.404 0.008  21 69 0.292 0.002 
NDF 121 0.278 0.002  44 0.269 0.077  22 65 0.356 0.001 
Starch 31 0.082 0.661  10 0.019 0.958  7 25 0.053 0.809 
CP 67 0.085 0.492  27 0.162 0.420  12 32 -0.176 0.285 

Rumen parameters             
Total VFA (mmol/l) 172 0.018 0.819  61 0.008 0.951  33 102 0.046 0.879 
C2 (mol/100mol) 176 0.188 0.012  63 0.174 0.171  35 106 0.280 <0.001 
C3 (mol/100mol) 176 -0.333 <0.001  63 -0.328 0.009  35 106 -0.312 <0.001 
C4 (mol/100mol) 176 0.269 <0.001  63 0.274 0.030  35 106 0.049 0.169 
C2/C3 176 0.204 0.007  63 0.188 0.139  35 106 0.075 <0.001 
(C2+C4)/C3 176 0.238 0.001  63 0.225 0.077  35 106 0.087 <0.001 
pH 160 0.293 <0.001  57 0.328 0.013  28 84 0.004 0.399 
Methanogens (cells/ml) 28 -0.468 0.012  12 -0.673 0.016  9 22 0.262 0.097 
Bacteria (cells/ml) 67 0.291 0.017  22 0.373 0.088  10 34 -0.770 0.910 

Nexp = number of experiments; Nt = number of treatments; DMI = dry matter intake; OM = organic matter; VFA = volatile fatty acids; C2 = acetate; C3 = 
propionate; C4 = butyrate. 
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Effects of a variation of rumen protozoa concentration on CH4 emission  

The within-experiment relationship between rumen protozoa concentration and CH4 emission 

is presented in Figure 1. When protozoa concentration ranged between 4.5 and 7.3 log10 

cells/ml (0.3 and 206×105 cells/ml), the response law relating CH4 emission (g/kg DMI) to 

rumen protozoa concentration (log10 cells/ml) was linear (equation 2): 

CH4 = -30.74 (s.e. 5.09)***  + 8.14 (s.e. 0.85)***  × protozoa 

Where Nt = 91, Nexp = 28, residual mean square error (r.m.s.e.) = 1.94, R² = 0.93, adjusted 

R² = 0.90 and Nout = 0. 

 

 

Figure 1 Relationship between methane emission and rumen protozoa concentration (raw 
data). The black dashed line represents the average within-experiment relationship (equation 
2). 
 

Effects of interfering factors for the response law relating CH4 to protozoa 

Table 5 presents the correlations between slopes and LSMeans of experiments from equation 

2 with quantitative factors. One experiment presenting a very high slope value had to be 

excluded to get a normal distribution of slopes (P=0.210) and LSMeans (P=0.141). The 

digestibility of OM and CP and the rumen proportion of C4 were positively correlated to 

LSMeans (P=0.013, P<0.001 and P=0.017, respectively) and slopes were correlated with 

intake (P=0.018) and CP digestibility (P=0.016). No other significant correlation was 

observed. 
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Table 5 Correlations between slopes and LSMeans of experiments from equation 2 with 
quantitative factors 

Quantitative factors Nexp 
Slope  LSMeans 

r P-value  r P-value 

Intake (g DMI/day per kg BW) 26 -0.460 0.018  -0.320 0.111 
Total tract digestibility (%) 

OM 20 0.113 0.635  0.544 0.013 
NDF 17 0.151 0.564  -0.080 0.759 
Starch 4 -0.126 0.874  0.657 0.343 
CP 10 0.731 0.016  0.911 <0.001 

Rumen parameters       
Total VFA (mmol/l) 25 -0.369 0.069  0.062 0.770 
C2 (mol/100mol) 25 -0.153 0.465  -0.122 0.560 
C3 (mol/100mol) 25 0.192 0.357  0.003 0.988 
C4 (mol/100mol) 25 0.021 0.919  0.474 0.017 
C2/C3 25 -0.257 0.216  -0.196 0.348 
(C2+C4)/C3 25 -0.259 0.211  -0.158 0.450 
pH 22 -0.096 0.670  -0.083 0.712 
Methanogens (cells/ml) 3 0.890 0.301  -0.753 0.458 
Bacteria (cells/ml) 13 0.161 0.600  -0.183 0.550 

Nexp = number of experiments; LSMeans = least square means; DMI = dry matter intake; OM = 
organic matter; VFA = volatile fatty acids; C2 = acetate; C3 = propionate; C4 = butyrate. 
 

Table 6 gives the within-experiment correlation between quantitative factors and residuals 

determined from equation 2 for all the experiments in the database. The distribution of 

calculated residuals did not significantly differ from normality (P=0.054). They were 

positively correlated to rumen proportion of C2 (P=0.008) and the ratios C2/C3 and 

(C2+C4)/C3 (P<0.001) and negatively correlated to rumen proportion of C3 (P=0.013). No 

qualitative factors influenced slopes or LSMeans but residuals were influenced by method of 

CH4 measurement, CH4 mitigation strategy, distribution of additive, animal species and 

rumen sampling time (P=0.003, P=0.021, P=0.003, P=0.018 and P=0.006, respectively; data 

not shown). 
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Table 6 Within-experiment relationship between the residuals (observed CH4 minus predicted CH4 with equation 2) and quantitative factors 
(equation 3) 

Quantitative factors Var Nexp Nt Nout Intercept (s.e.) P-value Slope (s.e.) P-value r.m.s.e. R² 

Intake (g DMI/day per kg BW) 0.3 41 119 2 13.5 (5.60) 0.019 -0.402 (0.213) 0.062 2.970 0.88 
Total tract digestibility (%) 

OM 1.8 32 94 3 -10.7 (7.49) 0.157 0.202 (0.113) 0.078 3.118 0.86 
NDF 2.3 31 92 3 -1.2 (4.73) 0.806 0.096 (0.085) 0.265 3.206 0.80 
Starch 0.3 8 27 0 -9.5 (31.75) 0.769 0.123 (0.337) 0.719 4.205 0.68 
CP 1.2 20 50 2 5.2 (5.44) 0.350 -0.029 (0.090) 0.752 2.492 0.91 

Rumen parameters           
Total VFA (mmol/l) 4.0 43 128 4 2.3 (3.48) 0.514 0.009 (0.035) 0.800 3.131 0.88 
C2 (mol/100mol) 1.1 43 126 1 -23.2 (9.97) 0.023 0.420 (0.154) 0.008 3.183 0.87 

C3 (mol/100mol) 1.1 43 125 1 12.4 (3.65) 0.001 -0.436 (0.172) 0.013 3.325 0.84 
C4 (mol/100mol) 0.7 46 135 3 3.4 (2.96) 0.257 0.020 (0.283) 0.945 3.147 0.86 
C2/C3 0.2 43 123 1 -5.3 (2.37) 0.028 2.544 (0.667) <0.001 3.086 0.88 
(C2+C4)/C3 0.3 42 121 1 -5.5 (2.44) 0.027 2.216 (0.603) <0.001 3.164 0.87 
pH 0.1 40 119 3 6.6 (17.62) 0.709 -0.466 (2.717) 0.864 3.219 0.87 
Methanogens (cells/ml) 0.2 10 23 0 1.1 (1.92) 0.582 0.756 (0.370) 0.064 3.435 0.81 
Bacteria (cells/ml) 1.0 14 48 1 0.7 (0.93) 0.485 -0.002 (0.004) 0.647 2.777 0.92 

Var = minimum within-experiment variation level of the tested factor; Nexp = number of experiments; Nt = number of treatments; Nout = number of outliers; 
s.e. = standard error; r.m.s.e. = residual mean square error; DMI = dry matter intake; OM = organic matter; VFA = volatile fatty acids; C2 = acetate; C3 = 
propionate; C4 = butyrate.  
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Table 7 Relationship between methane emission (g/kg dry matter intake) and rumen protozoa concentration (log10 cells/ml) with quantitative 
factors in addition (equation 4’) or in substitution (equation 4) of the experiment effect 

       Protozoa  Factor    

Quantitative factors Nexp Nt Nout Intercept (s.e.) P-value  Slope (s.e.) P-value  Slope (s.e.) P-value  r.m.s.e R² 

Equation 2 28 91 0 -30.7 (5.1) <0.001  8.14 (0.85) <0.001  - -  1.94 0.93 
With experiment effect (equation 4’) 

Intake (g DMI/day per kg BW) 24 74 0 -28.3 (6.5) <0.001  8.51 (0.99) <0.001  -0.202 (0.223) 0.371  2.02 0.94 
OM digestibility (%) 18 59 0 -38.7 (7.8) 0.001  8.14 (0.87) <0.001  0.101 (0.098) 0.309  1.82 0.92 
CP digestibility (%) 10 30 0 -15.0 (9.5) 0.131  8.12 (1.12) <0.001  -0.273 (0.108) 0.020  1.61 0.89 
C2 (mol/100mol) 23 73 0 -42.9 (10.3) <0.001  5.97 (0.93) <0.001  0.376 (0.164) 0.027  1.68 0.95 
C3 (mol/100mol) 23 73 1 -0.7 (7.2) 0.918  4.98 (0.90) <0.001  -0.578 (0.142) <0.001  1.53 0.96 
C4 (mol/100mol) 23 73 0 -24.0 (5.3) <0.001  6.13 (0.91) <0.001  0.527 (0.226) 0.024  1.68 0.95 
C2/C3 23 73 1 -24.3 (4.8) <0.001  5.50 (0.86) <0.001  2.437 (0.619) <0.001  1.54 0.96 
(C2+C4)/C3 23 73 1 -23.6 (4.8) <0.001  5.39 (0.85) <0.001  2.110 (0.515) <0.001  1.53 0.96 

Without experiment effect (equation 4) 
Intake (g DMI/day per kg BW) - 74 1 -7.1 (8.1) 0.385  5.01 (1.38) 0.001  -0.229 (0.099) 0.023  6.11 0.18 
OM digestibility (%) - 59 1 -30.4 (8.0) <0.001  5.16 (1.00) <0.001  0.253 (0.059) <0.001  4.22 0.38 
CP digestibility (%) - 30 0 -30.6 (11.7) 0.015  5.67 (1.27) <0.001  0.247 (0.076) 0.003  3.00 0.43 
C2 (mol/100mol) - 73 1 -8.2 (9.0) 0.362  4.19 (1.54) 0.008  0.009 (0.115) 0.937  6.07 0.12 
C3 (mol/100mol) - 73 1 1.04 (11.2) 0.927  3.33 (1.57) 0.038  -0.182 (0.156) 0.245  6.01 0.14 
C4 (mol/100mol) - 73 2 -21.9 (8.2) 0.010  4.77 (1.25) <0.001  1.093 (0.274) <0.001  5.48 0.28 
C2/C3 - 73 1 -9.2 (8.8) 0.303  4.58 (1.65) 0.007  -0.214 (0.570) 0.709  6.06 0.12 
(C2+C4)/C3 - 73 1 -8.0 (8.8) 0.368  4.25 (1.65) 0.012  -0.002 (0.530) 0.996  6.07 0.12 

Nexp = number of experiments; Nt = number of treatments; Nout = number of outliers; s.e. = standard error; r.m.s.e. = residual mean square error; DMI = dry 
matter intake; OM = organic matter; C2 = acetate; C3 = propionate; C4 = butyrate. 
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None of the qualitative factors appeared significant when included in the model with the 

experiment effect nested within the factor (equation 5, data not shown). Table 7 shows the 

response law relating CH4 to protozoa with significant quantitative factors added to or 

substituted for the experiment effect. Added to experiment effect, CP digestibility and C3 

proportion were negatively correlated to CH4 emission (P=0.020 and P<0.001), whereas C2 

and C4 proportions and the ratios C2/C3 and (C2+C4)/C3 were positively correlated to CH4 

emission (P=0.027, P=0.024, P<0.001 and P<0.001, respectively). Substituted for experiment 

effect, OM and CP digestibility and rumen C4 proportion were positively correlated to CH4 

emission (P<0.001, P=0.003 and P<0.001, respectively), whereas intake was negatively 

correlated to CH4 emission (P=0.023). When simultaneously including these four quantitative 

factors in equation 2 together with protozoa concentration (data not shown), protozoa 

concentration (P=0.028) and C4 proportion (P=0.018) explained 39% and 48% of the 

variability, experiment effect excluded. Intake and digestibility of OM and CP digestibility 

were not significant. 

 

Discussion 

The database was well-balanced for animal species, with almost the same number of 

treatments between small and large ruminants. A confounding effect between diet 

composition and animal species was noteworthy, with large ruminants having a diet richer in 

energy than small ruminants. This led to differences in rumen fermentation profiles, with 

lower proportion of C2 and higher proportion of C3 in large ruminants. However, CH4 

emission (expressed in g/kg DMI or g/kg LW) and protozoa concentration (log10 cells/ml) 

were homogeneously distributed between animal species. Consequently, it appears unlikely 

that any potential animal species effect would be revealed in further analyses.  

 

Influence of CH4 mitigation strategy on CH4 and protozoa 

Although the database was not built to evaluate mitigation strategies for their effect on CH4 

emission and rumen protozoa, the chi square tests highlighted that most experiments testing 

lipids or tannins reduced both protozoa concentration and CH4 emission. This information 

confirmed that a potential mode of action of these compounds on methanogenesis is through 

protozoal inhibition. These additives may change protozoa membrane permeability, leading to 

cell lysis (Doreau and Ferlay, 1995; Goel et al., 2005). As reported in a previous review, the 

effect of these compounds is variable depending on the source, the mode and the length of 

administration (Popova et al., 2011). This could explain the variability of the effects of these 
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additives on protozoa concentration. As an example, lipid effect on protozoa is dependent on 

the fatty acid profile, with a higher effect of medium chain fatty acids than polyunsaturated 

ones, which was confirmed by our data: lauric acid tended to reduce protozoa more markedly 

than polyunsaturated fatty acids (Jordan et al., 2006). 

Defaunation studies did not necessarily observe a reduction of CH4 emission. Difference in 

diets may explain this variable effect as removal of protozoa has a more marked effect on 

methanogenesis with high concentrate diets (Hegarty, 1999). However, this effect was not 

clearly seen in our database, as two out of four experiments reporting no variation in CH4 

emission after defaunation used a diet with 83% of concentrate. Conversely, in the two 

experiments showing a reduction of CH4 emission after defaunation, animals were fed a diet 

with more than 60% of concentrate. 

Chemicals, essential oils and organic acids were identified as methanogenesis reducers 

without affecting protozoa. Two different mechanisms can be pointed out for these additives. 

On the one hand, some essential oils are known to directly inhibit growth and activity of 

methanogens inducing a direct reduction of CH4 emission (Calsamiglia et al., 2007). On the 

other hand, some chemicals and organic acids divert H2 from methanogenesis to other 

pathways. For example, nitrate and sulfate are reduced to ammonia and hydrogen sulfide, 

respectively, with the consumption of four moles of H2 (Ungerfeld and Kohn, 2006). 

Enhancing C3 synthesis with malate or fumarate, which are precursors of C3, is another way 

to divert H2 from methanogenesis (Ungerfeld et al., 2007). However, experiments testing 

organic acids in our database were inconclusive, as already reported in a previous review 

(Hook et al., 2010). A part of added fumarate may be used for C2 production, balancing the 

effect on C3 production (Ungerfeld et al., 2007). 

Finally, in our dataset, forage modification, addition of probiotics, prebiotics or exogenous 

microbial products had a weak influence on protozoa concentration, while their effect on CH4 

emission was variable. The mechanisms of action of these additives on CH4 emission remain 

to be clarified. Probiotics and prebiotics may either enhance specific microbial groups able to 

use excess H2 for C3 synthesis, or stimulate microbial growth leading to a higher H2 

consumption for microbial biomass synthesis (Jeyanathan et al., 2014). However, in one 

experiment testing probiotics, CH4 yield was reduced by 25% with no changes in ruminal 

fermentation and protozoa (Lettat, 2012). 
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Effects of a variation in protozoa concentration on CH4 emission 

To our knowledge, only one publication has established a quantitative relationship between 

numbers of protozoa and CH4 emission (Morgavi et al., 2010). In that work using a dataset of 

21 experiments, the number of protozoa explained 47% of the variability in CH4 emission 

(r.m.s.e. = 3.25). Methane was reduced by 1g CH4/kg DMI by every decrease of 0.12 log10 

protozoa cells/ml. In agreement with these findings, we showed that rumen protozoa 

concentration explained 93% of the variability in CH4 emission, and that a reduction of 0.12 

log10 protozoa cells/ml induced a reduction of 1g CH4/kg DMI (r.m.s.e. = 1.94). Our analysis 

is more reliable than the previous work as it included seven additional experiments and 

presented a lower r.m.s.e. In addition, our approach distinguished between intra and inter-

experiment effects, and focused more specifically on experiments with a significant within-

experiment variation of protozoa concentration. The equation 2 can be used to quantify with a 

good accuracy the impact of changes in protozoa concentration (in the range 4.5-7.3 log10 

cells/ml) on CH4 emission in the wide diversity of intake level and diet composition defined 

by the meta-design. However, the significant experiment effect implies that this equation 

cannot accurately estimate the absolute CH4 emission from a measured protozoa 

concentration. Consequently, the study of interfering factors is required. 

 

Interfering factors for the response law relating CH4 to protozoa 

One aim of this study was to improve our understanding of the relationship between CH4 and 

protozoa by testing different quantitative and qualitative potential interfering factors. A 

reliable interfering factor can be accepted if its inclusion into the response law does not lead 

to a large variation in the initial equation slope (protozoa linear term). When including the 

experiment effect, the slopes associated with CP digestibility, VFA proportions and the ratios 

C2/C3 and (C2+C4)/C3 were significant, but the r.m.s.e. of the overall equations were only 

slightly improved. However, the change in the mean slope (or its s.e.) associated with 

protozoa demonstrated confounding effects between quantitative interfering factors and 

experiment effect. A positive relationship between the C2/C3 ratio and CH4 emission has 

already been quantified by a meta-analysis approach (Sauvant et al., 2011). With the present 

database, a similar relationship was observed (P<0.05, data not shown), and the residuals of 

this relationship were evidenced to be positively correlated to rumen protozoa (P<0.001, data 

not shown). 

When substituting for the experiment effect, intake, OM and CP digestibility, and rumen 

proportion of C4 significantly influenced the response law relating CH4 to protozoa, but 
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strongly modified the slope associated with protozoa, and markedly increased the r.m.s.e. This 

result shows that taking into account experimental effects provides the most precise estimate 

of the influence of protozoa on CH4 production. 

When simultaneously adding intake, OM and CP digestibility and rumen proportion of C4 in 

equation 2, C4 proportion was the main interfering quantitative factor, with a strong 

contribution to the explained variability. It is known that protozoa preferentially ferment OM 

to C4 rather than to C2 or C3 (Williams and Coleman, 1992; Brossard et al., 2004). 

Surprisingly, in our database, we did not find any significant relationship between protozoa 

and C4, showing that C4 concentration cannot be considered as a direct indicator of rumen 

protozoa activity. Other microbial populations may be responsible for C4 production, such as 

Butyrivibrio fibrisolvens (Stewart et al., 1997). Unfortunately, our database contained limited 

information about quantity or diversity of other rumen microbes, precluding further analyses. 

The response law relating CH4 to protozoa is independent of qualitative factors such as 

method of CH4 measurement, animal species or CH4 mitigation strategy. No effect of 

mitigation strategies was observed on the relationship between protozoa and CH4, as only 

experiments showing a relevant within-experiment variation of protozoa concentration were 

included in the analysis, which strongly oriented the selection towards experiments testing 

lipids (nearly half of the eligible experiments). 

 

Conclusion 

By building an exhaustive database from experiments with data for CH4 emission and rumen 

protozoa concentration on the same groups of animals, we showed that a reduction of 

protozoa concentration was in most cases indicative of a reduction of CH4 emission. We also 

quantitatively assessed the effect of a variation in protozoa concentration on CH4 emission. 

We showed that this relationship was positively influenced by the proportion of butyrate in 

the rumen. 
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Table 10 Steps and associated experiments conducted during the PhD thesis and justification for selection of animals and dietary treatments 

Steps 
Associated 
experiment 
(approach) 

Animal type 
Number 

Experimental design 
Dietary treatments 

Justification 
Perspective 

Animals Dietary treatments 

1 & 4 
1 

(In vivo) 

Non-lactating cows 
n = 4 

2 × 2 factorial design 
 

1/ CON: 50% hay + 50% concentrate 
2/ NIT: CON + 2.3% nitrate (from calcium nitrate) 
3/ LIN: CON + 2.6% added lipids (from linseed oil) 
4/ LIN+NIT: CON + 2.3% nitrate + 1.0% added 
lipids 

Physiologically 
stable animals 

• High-starch diet to favor protozoa 
• NIT and LIN  doses calculated to reach 15-

20% CH4 reduction when fed individually 
and 30-40% reduction when fed in 
association 

Fundamental and 
mechanistic 

study 

2 
2 

(In vivo) 

Lactating cows 
n = 8 

Randomized block 
design 

1/ CON: 54% maize silage + 6% hay + 40% 
concentrate 
2/ LIN+NIT: CON + 1.8% nitrate (from calcium 
nitrate) + 3.5% added lipids (from extruded linseed) 

Animals farm 
of interest 

• Basal diet close to farm conditions 
• Lower NIT dose to avoid health issues 

with producing animals 
• Extruded linseed chosen as favored in 

animal feed production (pelleting process 
is more difficult with oil) 

On-farm 
applicability 

3 & 4 

3 
(In vivo) 

Non-lactating cows 
n = 4 

2 × 2 factorial design 

1/ CON: 50% hay + 50% concentrate 
2/ NIT: CON + 2.3% nitrate (from calcium nitrate) 
3/ TEA: CON + 0.5% saponin (from tea) 
4/ TEA+NIT: CON + 2.3% nitrate + 0.5% saponin 

Physiologically 
stable animals 

• High-starch diet to favor protozoa 
• NIT and TEA  doses calculated to reach 

15-20% CH4 reduction when fed 
individually and 30-40% reduction when 
fed in association 

Fundamental and 
mechanistic 

study 

3 
Lactating cows 

n = 7 
2 × 2 crossover design 

1/ CON: 54% maize silage + 6% hay + 40% 
concentrate 
2/ TEA: CON + 0.5% saponin (from tea) 

Animals farm 
of interest 

• Basal diet close to farm conditions 
• TEA dose similar to the experiment with 

non-lactating cows 

On-farm 
applicability 

5 
4 

(In vitro) 

Non-lactating cows 
n = 2 

2 repeated incubations 

1/ CON: 50% hay + 50% concentrate 
2/ CON + 1, 2, 4 or 6 mM nitrate (from ammonium 
nitrate) 

Physiologically 
stable animals 

• Basal diet close to diet fed in experiments 
1 and 3 to non-lactating cows 

• Nitrate doses chosen from literature review Fundamental and 
mechanistic 

study 
Non-lactating cows 

n = 2 
2 repeated incubations 

1/ CON: 100% glucose 
2/ CON + 1, 2, 4 or 6 mM nitrate (from ammonium 
nitrate) 

Physiologically 
stable animals 

• Basal diet chosen to favor microbial 
biomass synthesis 

• Nitrate doses chosen from literature review 
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I.  EXPERIMENTAL STRATEGY OF THE PHD THESIS 

 

 The literature review highlighted the importance of ruminal H2 pool in 

methanogenesis. Nowadays, dietary CH4-mitigating strategies aimed at reducing its 

availability for methanogens via a reduction of its production or a modification of its 

utilization. In the meta-analysis, we reported that lipids and plant extracts would be the most 

pertinent strategies to reduce H2 production via a reduction of protozoa, whereas nitrate would 

be the best user of H2 competing with methanogenesis. However, these strategies have been 

tested individually to reduce methanogenesis, but no studies reported the CH4-mitigating 

effect of their association. 

 We assumed that simultaneous manipulation of H2 production AND utilization allows 

a more important reduction of CH4 emissions than when acting on a single pathway 

(production OR utilization). Consequently the originality of our experimental approach 

consisted in associating lipids or plant extract with nitrate, in order to combine dietary 

strategies having different mechanisms of action on the rumen H2 pool. Then, this PhD thesis 

was divided into 5 steps, corresponding to 4 experiments (Table 10), which objectives were: 

 

Step 1. 1/ To evaluate the effect of association of feeding strategies acting on H2 production 

(lipids from linseed, toxic effect towards protozoa) and H2 utilization (nitrate from calcium 

nitrate , H2-sink through nitrate reduction to nitrite and ammonia) on CH4 emissions, diet 

digestibility and N balance of non-lactating cows. 2/ To understand the CH4-mitigating effect 

of these feeding strategies fed alone or in association by focusing on rumen H2 pool and 

fermentation parameters. 

 

Step 2. 1/ To evaluate the long-term effect of linseed plus nitrate on CH4 emissions, 

lactating performances of dairy cows and animal health (blood metHb, nitrate and nitrite 

residues in milk and processed milk products). 2/ To check the effect of linseed plus nitrate on 

total tract digestibility, N balance and rumen fermentation after long-term supplementation. 

 

Step 3. 1/ To evaluate the CH4-mitigating effect and associated ruminal mechanisms of 

another feeding strategy acting on H2 production (saponin from tea, toxic effect towards 

protozoa) fed alone or in association with nitrate to non-lactating cows. 2/ To assess effect of 

tea saponin on diet digestibility, N balance and lactating performances. 
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Step 4. To understand the effect of tested CH4-mitigating strategies fed alone (linseed, tea 

saponin, nitrate) or in association (linseed plus nitrate or tea saponin plus nitrate) on the 

quantity, activity and diversity of rumen microbiota from non-lactating cows. 

 

Step 5. 1/ To study the dose response effect of nitrate on in vitro production of rumen 

fermentation end-products such as gas (CH4 and H2), VFA and microbial biomass (estimated 

from insoluble protein). 2/ To understand the CH4-mitigating mechanisms of nitrate by 

estimating metabolic H2 distribution between rumen fermentation end-products. 

 

II.  MATERIALS AND METHODS 

 

 During this PhD thesis, two new techniques have been developed in the team and will 

be detailed in the next sections: i) continuous and in vivo measurement of enteric CH4 

emissions with open chambers; ii) continuous and in situ measurement of dissolved H2 

concentration in the rumen. 

 

2.1. Continuous and in vivo measurement of enteric methane emissions: open chambers 

 

 Quantification of individual CH4 emissions is an essential measurement in this work. 

Currently, our team has the skills and expertise in the quantification of CH4 emissions using 

the SF6 tracer technique. However, this method does not give indications about daily kinetics 

of emissions (Johnson et al., 1994). Inversely, the chamber technique is considered as the 

reference technique, and has the advantage to continuously quantify CH4 (and CO2) emissions 

of ruminants, which provides interesting information to explain fermentation pattern (Pinares-

Patiño and Waghorn, 2012). Consequently, four open chambers for cattle were built by the 

team in 2012 and were firstly used during this PhD thesis.  

 

2.1.1. Description of the system and measuring principle 

 To measure kinetics of enteric CH4 (and CO2) emissions of cattle, our system 

comprised 3 main components: 

1/ The open chamber was 2.2 m high, 3.6 m long and 2.1 m wide, giving a volume of 16.6 

m³. Floor dimensions gave the animal a 2 m² movement area, which was close to its stall 

condition. The chambers were made of steel with transparent polycarbonate walls allowing 
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sight contact between animals and with the farm personnel. Chambers had front and rear 

doors, with the front doors used for animal feeding and the rear doors used to enter or milk the 

animals, or to remove feces and urine collected once daily in a wheeled box. 

2/ The ventilation system produced an airflow between 500 and 1000 m³/h. There was no 

automated controller to adjust the airflow to the size and type of animal or to the gas 

concentrations in chambers. In our experiments, airflow was manually set and averaged 

750±50 m³/h (approximately 45 air changes per h) in each chamber. Air entered the chamber 

through an aperture at the bottom of the rear door (20 cm high, 2.1 m long). The air exited the 

chamber thanks to the air extractor via the exhaust duct situated at the top of the chamber, 

above the head of the animal. Airflow in the exhaust duct of each chamber was continuously 

measured (CP300, KIMO, Montpon-Ménestérol, France) and recorded with one data point 

every 5 min (KT-210-AO, KIMO, Montpon-Ménestérol, France). 

3/ The gas analyzer (Ultramat 6, Siemens, Karlsruhe, Germany) alternatively measured 

concentration (ppm) of gases (CH4 and CO2) in the barn (ambient air) and in the four 

chambers at a 0.1 Hz sample frequency (one data every 10 sec) for 5 min every 25 min. Gas 

sample from ambient air was taken at the bottom of the rear doors from the four chambers, 

where entered the airflow. Gas samples from each chamber were taken from the exhaust duct. 

When entering the analyzer, gas samples were dried with a filter. The analyzer was fitted with 

a data recording system (Nanodac Invensys, Eurotherm Automation SAS, Dardilly, France). 

 

 

Figure 15 Description of the system for continuous monitoring of enteric CH4 emissions from 
cattle. The yellow arrows linked with the dotted line indicate the direction of the air flow 
within the open chamber, from the inflow to the outflow. 
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 The gas analyzer operated with an infrared (IR) detector, using the principle that some 

gases are able to absorb specific wavelengths of IR rays (Figure 16). A transmitter sent an 

infrared radiation which was divided into two beams: i) the reference beam which passed 

through a reference cell with nitrogen gas (N2) resistant to IR rays; ii) the measurement beam 

which passed though the measurement cell with the gas sample to analyze. As CH4 and CO2 

absorb IR radiation (CH4: 3-9 µm; CO2: 14 µm), the concentration of CH4 and CO2 was 

positively correlated with the amount of absorbed IR rays. Then, the reference and 

measurement beams arrived in the receiving cell with the detector. They were compared using 

the reference beam as a baseline, and the amount of exiting IR rays was quantified. According 

to the calibration curve, the concentration of CH4 and CO2 were finally calculated. 

 

 

 Figure 16 Functional schematic of the methane and carbon dioxide gas analyzer 
 

2.1.2. System setup and functioning 

 The week before starting measurement, the gas analyzer was calibrated with a defined 

gas mixture of CH4 (650 ppm) and CO2 (700 ppm), and with a pure gas (N2) which allowed 

blank calibration. During the measurement week, airflow and gas data were collected daily, 

and treated with an home-made Excel macro to calculate CH4 emissions (L/day): 
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1/ For each chamber and ambient, CH4 data were averaged over the 5-min interval and 

interpolated by linear regression to get one data point every 5 min. 

2/ For each data point and for each chamber, ambient CH4 concentration was subtracted to 

CH4 concentration of each chamber.  

3/ For each chamber, CH4 emissions (L/day) were calculated from CH4 concentration (ppm) 

and airflow (L/h): 

-./	(8/3$:) 	= 	-./	(��;) × 10<= × $2'65&> × 24 

  

 Since the gas going into the analyzer was dried, we assumed that to obtain CH4 

emissions in the environmental sampling conditions, it was necessary to apply the Wexler 

equation on airflow data (Pinares-Patiño et al., 2012b). This equation required to get the 

temperature (T), pressure (P) and relative humidity (RH) in the chamber (exhaust duct) to 

calculate the volume mixing ratio of water vapor (VMR): 

@A0 = ($B + $� × � +	$C × �� + $/ × �C + $D × �/ + $= × �D + $E × �=) × 0.
F  

With a1, a2, a3, a4, a5, a6 and a7 being the coefficients of water vapor (6.11, 0.44, 1.43 × 10-2, 

2.65 × 10-4, 3.02 × 10-6, 2.04 × 10-8 and 6.39 × 10-11, respectively). The VMR was then used 

to calculate the dry gas flow (DGF), which is the airflow (L/h) corrected for environmental 

conditions: 

GH# = �2'65&>	 × (100 − @A0
100 ) 

The airflow corrected for environmental conditions was converted to have the airflow in 

standard condition of temperature and pressure (STP, L/h): 

��F = F	 × GH#
� + 273.15	× 273.15

1013.25 

Finally, CH4 emissions (L/day) were calculated from CH4 concentrations (ppm) and STP 

(L/h): 

-./	(8/3$:) 	= 	-./	(��;) × 10<= × ��F × 24 

However, the difference between uncorrected and corrected CH4 emissions by environmental 

parameters was low (~3%), leading us to the conclusion that this correction is not appropriate 

in our experimental conditions. 
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2.2. Continuous monitoring of rumen dissolved hydrogen concentration: adaptation of a 

H2-sensor to the rumen environment 

 

 According to the literature review (chapter 1), only two methods allow in situ and 

continuous measurement of dissolved H2 concentrations in the rumen. Hillman et al. (1985) 

used a Clark-type oxygen electrode placed within the rumen and connected to a mass 

spectrometer. In the method of Smolenski and Robinson (1988), dissolved H2 is uptaken by a 

carrier gas passing through a probe immerged into the rumen and connected to a gas 

chromatograph. These methods have two disadvantages: i) they require important equipment 

(mass spectrometer) and large-size probes which may disturb the ruminal environment; ii) the 

response time is quite long (90% response in 2 min) whereas the turnover time of H2 in the 

rumen is much quicker (0.08 sec). Consequently, we chose to adapt a H2-sensor commonly 

used in marine research for in situ and continuous measurement of dissolved H2 concentration 

in the rumen.  

  

2.2.1. Description of the system and measuring principle 

 

Figure 17 Description of the system for in situ and continuous monitoring of dissolved H2 
concentration in the rumen 
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 For in situ and continuous measurement of dissolved H2 concentration in the rumen, 

the system included 3 components (Figure 17): 

1/ The H2-sensor (H2-500, Unisense, Denmark) was 17 cm long and diameters were 22 mm 

at the top and 0.6 mm at the tip. The limit of quantification of H2 concentration was 0.3 µM 

and the sensor gave a 90% response in 3-15 sec. The glass-made tip hosted a Clark-type 

electrode made of a silver cathode (reference electrode) and a platinum anode, which both 

bathed into a conductive solution (or electrolyte). The tip was closed by a silicone membrane 

allowing ruminal dissolved H2 to diffuse into the sensor. 

2/ The current amplifier or monometer (Microsensor Monometer Version 1.0, Unisense, 

Denmark) generated an electric current flowing in the H2-sensor in a closed-circuit system, 

from the cathode to the anode, and from the anode to the cathode through the electrolyte. The 

electrical voltage (800 mV), dependent on the composition of the gas to analyze, was set 

according to manufacturer instructions. 

3/ The computer set with the Sensor Trace Basic software (Version 3.1.3., Unisense, 

Denmark) calculated and recorded dissolved H2 concentrations every second. 

 

 Concentration of dissolved H2 was measured in a two-step process: 

1/ Dissolved H2 in rumen content diffused into the sensor through the silicone membrane until 

reaching an equilibrium concentration.  

2/ Dissolved H2 was oxidized at the anode. Electrons flowed from the anode to the cathode 

(opposite direction of the electric current), generating a low-intensity electric signal measured 

by the monometer. Protons remained in the electrolyte until their reduction with electrons 

coming out of the cathode. 

 

 Then, higher was H2 concentration in the rumen and in the sensor electrolyte, higher 

was the electric signal generated during electrons flow. In other words, the electric signal 

measured by the monometer was positively correlated with dissolved H2 concentration. 

 

2.2.1. System setup and functioning 

 According to manufacturer instructions, a pre-polarization period was applied before 

using the sensor, during which it was simply connected to the monometer set to its electrical 

voltage (800 mV). This process was essential to let the sensor retrieving a stable and weak 

baseline, via elimination of H2 which could have accumulated in the electrolyte during 
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storage. Then, longer was the period of non-activity of the sensor, longer was the time 

required for pre-polarization (from 10 minutes to 8 hours). 

 After pre-polarization, the sensor was calibrated with a defined gas mixture of H2 and 

H2-free inert bulk carrier gas (80% H2 - 20% CO2). Knowing that H2 solubility is dependent 

on salinity and temperature (Wiesenburg and Guinasso, 1979), the sensor was placed in a 

water bath at 39°C in order to reach similar conditions to the rumen. As the sensor linearly 

detected partial pressure of H2, a two-point calibration curve was created as recommended by 

Unisense: the sensor was immerged into the water bath without bubbling (0 µM H2) and the 

electric signal read by the monometer after stabilization was recorded (first calibration point). 

Then, the defined gas mixture of H2 was allowed to bubble until stabilization and recording of 

the electric signal (second calibration point). Knowing that the maximum concentration of 

dissolved H2 in the rumen is 740.9 µM (see literature review for calculation), the dissolved H2 

concentration is 740.9×0.8 = 592.7 µM when a 80% H2 gas is bubbling. 

 

 After completing these two steps, the sensor was ready for measurement. Before 

inserting the sensor into the rumen through the cannula, it was protected with a custom-made 

plastic cap, and ballasted with a 1-kg weight to ensure continuous measurement of dissolved 

H2 concentration at the bottom of the rumen (Figure 18). 

 

 

Figure 18 Protection cap of the H2-sensor 
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 The sensor in its protection was connected to the monometer via a 10-m wire 

extension protected in a plastic tube. After insertion of the sensor into the rumen, the 

protected wire was attached to the cow with a harness, to make sure the animal cannot move 

the device. The cannula was closed with a plastic cork to limit rumen liquid and gas leakage 

(Figure 19). 

 

Figure 19 Hydrogen sensor setup on the animal 
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STEP 1: Additive effect between dietary linseed oil and nitrate 

as methane emission-reducer in cattle 

 

Objective 

1/ To evaluate the effect of association of feeding strategies acting on H2 production (lipids from linseed, toxic 

effect towards protozoa) and H2 utilization (nitrate from calcium nitrate, H2-sink through nitrate reduction to 

nitrite and ammonia) on CH4 emissions, diet digestibility and N balance of non-lactating cows. 

2/ To understand the CH4-mitigating effect of these feeding strategies by focusing on rumen H2 pool and 

fermentation parameters. 

 
Experimental approach 

 

 

 

 

 

 

 

 

 

 

 

Main results 

 Diet  P-Value 

 CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed 

× nitrate 

DM intake (kg/day) 12.4 12.3 12.3 12.2 0.59 0.22 0.35 0.86 

CH4 emissions (g/kg DM intake) 25.0 19.4 20.7 17.0 0.70 <0.01 <0.01 0.18 

DM digestibility (%) 63.7 64.1 64.0 63.3 0.77 0.85 0.65 0.43 

N balance (% of N intake) 7.4 11.8 4.0 4.8 2.25 0.20 0.03 0.35 

Rumen protozoa (log10/mL, 0 h) 5.87 5.71 5.55 5.73 0.060 0.91 0.03 0.02 

Rumen C2/C3 (0 h) 4.74 4.68 3.97 4.41 0.221 0.39 0.04 0.26 

Rumen H2 concentrations (µM) 3.6 45.3 4.0 21.0 14.10 0.07 0.41 0.39 

 
Conclusion 
Nitrate plus lipids from linseed have an additive CH4-mitigating effect without altering digestibility and N 

balance. These two dietary strategies have different modes of action on the rumen H2 pool. Further work is 

necessary to assess the long-term effect of this association on methanogenesis, rumen microbiota and animal 

performances. 

WEEK 1 2 3 4 5 

Daily intake      

Blood metHb (3 h after morning feeding, once a week)      

Kinetics of rumen dissolved H2 concentrations (during 6 h after morning 
feeding, one day/cow) 

     

Total tract digestibility, N balance (6 days) 
Rumen fermentation (0 and 3 h after morning feeding, twice a week) 

     

Daily kinetics of CH4 emissions (4 days) 
Daily kinetics of rumen pH (6 days) 

     

4 non-lactating cows 2 × 2 Factorial design CON: 50% hay + 50% pelleted concentrate 
NIT : CON + 2.3% nitrate (from calcium nitrate) 
LIN : CON + 2.6% added lipids (from linseed oil) 
LIN+NIT : CON + 1.0% added lipids + 2.3% nitrate 

 
4 experimental periods of 5 weeks (wk 1 to 2 = Adaptation; wk 3 to 5 = Measurement) 



Linseed plus nitrate reduce methanogenesis  Results 

75 
 
 

Additive effect between dietary linseed oil and nitrate as methane 

emission-reducer in cattle 

 

 

 

J. Guyader*, M. Eugène*, B. Meunier*, M. Doreau*, D.P. Morgavi*, M. Silberberg*, Y. 

Rochette*, C. Gerard†, C. Loncke‡ and C. Martin* 

 

 
* INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; Clermont 

Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000 Clermont-Ferrand, France;  
† InVivo Nutrition et Santé Animales, Talhouët, F-56250 Saint Nolff, France;  
‡ INZO, Rue de l’église, BP 50019, F-02407 Chierry Cedex, France. 

 

Corresponding author: Cécile Martin. Email: cecile.martin@clermont.inra.fr 

 

 

 

 

 

 

Accepted in Journal of Animal Science, in revision 

  



Linseed plus nitrate reduce methanogenesis  Results 

76 
 
 

Abstract 

The objective of this study was to test the effect of linseed oil and nitrate fed alone or in 

combination on methane (CH4) emissions and diet digestibility in cows. The experiment was 

conducted as a 2 × 2 factorial design using 4 multiparous non-lactating Holstein cows (initial 

BW 656 ± 31 kg). Each experimental period lasted 5 weeks, with measures performed in the 

final 3 weeks (wk 3 to wk 5). Diets given on a DM basis were: 1) control (CON, 50% natural 

grassland hay and 50% concentrate), 2) CON with 4% linseed oil (LIN), 3) CON with 3% 

calcium nitrate (NIT), 4) CON with 4% linseed oil plus 3% calcium nitrate (LIN+NIT). Diets 

were offered twice daily and were formulated to deliver similar amounts (DM basis) of CP 

(12.2%), starch (25.5%) and NDF (39.5%). Feed offer was restricted to 90% of voluntary 

intake (12.4 kg DMI/d). Total tract digestibility and N balance were determined from total 

feces and urine collected separately for 6 d during wk 4. Daily CH4 emissions were quantified 

using open chambers for 4 d during wk 5. Rumen fermentation and microbial parameters were 

analyzed from samples taken before and 3 h after the morning feed. Rumen concentrations of 

dissolved hydrogen (H2) were measured continuously up to 6 h post-feeding using a H2 

sensor. Compared with CON, linseed oil and nitrate decreased (P < 0.01) CH4 emissions 

(g/kg DMI) by 17 and 22%, respectively, when fed alone and by 32% when combined. The 

LIN diet reduced CH4 production throughout the day, increased (P = 0.02) propionate 

proportion and decreased (P = 0.03) ruminal protozoa concentration compared with CON. 

The NIT diet strongly reduced CH4 production 3 h post-feeding, with a simultaneous increase 

in rumen dissolved H2 concentration, suggesting that nitrate does not only act as an electron 

acceptor. As a combined effect, linseed plus nitrate also increased H2 concentrations in the 

rumen. Diets had no effect (P > 0.05) on total tract digestibility of nutrients, except with 

linseed oil which tended to reduce (P < 0.10) fiber digestibility. Nitrogen balance (% of N 

intake) was positive for all diets but retention was lesser (P = 0.03) with linseed oil. This 

study demonstrates an additive effect between nitrate and linseed oil for reducing 

methanogenesis in cows without altering diet digestibility. 

 

Keywords: hydrogen, lipid, methane mitigation, nitrate, ruminant 
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Introduction  

Enteric methane (CH4) from ruminants is one of the most important greenhouse gas at the 

farm level (Gerber et al., 2013), and represents an energy loss to the animal (2-12% of GE 

intake; Johnson and Johnson, 1995). Lipids and nitrate (NO3
-) emerged as persistent and 

viable dietary options for mitigating CH4 emissions from ruminants (Doreau et al., 2014a). 

Linseed reduced methanogenesis (-5.6% per 1% added fat; Doreau et al., 2011) but this effect 

was not always reported (Chung et al., 2011; Veneman et al., 2014). Linseed, rich in 

polyunsaturated fatty acids (PUFA), may improve animal product quality (Scollan et al., 

2001; Chilliard et al., 2009), but fat doses greater than 5% may lower animals’ performance 

(McGinn et al., 2004; Martin et al., 2008). In the diet, NO3
- repeatably reduced CH4 emissions 

(-10% per 1% added NO3
-; Lee and Beauchemin, 2014), but its use as a urea substitute still 

requires investigations into its possible impacts on animal health, digestive parameters and 

residuals in animal products for human consumption. 

In the rumen, CH4 is mainly produced by methanogens using carbon dioxide (CO2) and 

hydrogen (H2). Both are fermentation end-products, but as H2 is limiting, modulating its 

concentration could reduce methanogenesis (Hegarty and Gerdes, 1999). Linseed and NO3
- 

affect the rumen H2 pool in unique ways. Linseed reduces H2 production mainly through its 

toxic effect against rumen protozoa, which are major H2 producers (Morgavi et al., 2010). As 

fat is not fermented in the rumen, substitution of rumen fermentable substrates for lipids may 

also reduce H2 production. To a lesser degree, PUFA can reduce H2 availability in the rumen 

by consuming H2 during biohydrogenation (Czerkawski, 1986). Nitrate modifies H2 

consumption by reducing the number of methanogens (Van Zijderveld et al., 2010) and by 

acting as a H2-sink (Lewis, 1951). 

As these dietary treatments share different mechanisms of action, we hypothesized that their 

combination would have an additive effect that leads to lesser net methanogenesis than when 

they are individually fed. However, as a feeding strategy should reduce CH4 emissions 

without adverse effect on animals’ digestive efficiency, performance and health, our 

hypothesis was tested in an in vivo experiment with dry cows designed to evaluate the effect 

of linseed plus nitrate on: 1) CH4 emissions and mechanisms involved in methanogenesis 

(rumen H2 pool and fermentation); 2) diet digestibility and nitrogen balance. 
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Materials and methods 

The experiment was conducted at the animal facilities of the Experimental Unit UERT at the 

INRA’s Theix Research Centre (Saint-Genès-Champanelle, France) from January to June 

2013. Procedures involving animals were performed in accordance with French Ministry of 

Agriculture guidelines for animal research and with the applicable EU guidelines and 

regulations on experiments with animals. The experiment was approved by the local 

Auvergne-region ethics committee on animal experimentation, approval number CE50-12. 

 

Animals, experimental design and diets 

Four multiparous non-lactating Holstein cows fitted with rumen cannulas (initial average BW 

of 656 ± 31 kg and age of 6.7 ± 1.5 years, mean ± SD) and habituated to handling were 

housed in individual stalls during the experiment. The cows were randomly assigned to 4 

dietary treatments in a 2 × 2 factorial design, using either calcium nitrate or linseed oil at two 

different doses (0 and 3% for calcium nitrate; 0 and 4% for linseed oil). Each experimental 

period lasted 5 weeks, with measures performed in the final 3 weeks (wk 3 to wk 5). The 

diets, given on a DM basis, were: 1) control (CON), 2) CON with 4% linseed oil (LIN), 3) 

CON with 3% calcium nitrate (NIT), 4) CON with 4% linseed oil and 3% calcium nitrate 

(LIN+NIT). The doses of linseed oil (Vandeputte Savonnerie et Huilerie, Mouscron, 

Belgium) and calcium nitrate (75% NO3
- in DM; Phytosem, Pont-du-Château, France) were 

calculated to achieve a theoretical CH4 reduction of 20% when distributed alone (Martin et 

al., 2008; Van Zijderveld et al., 2011; Hulshof et al., 2012). 

Ingredients and chemical composition of the experimental diets are reported in Table 1. The 

CON diet consisted of 50% natural grass hay (harvested in semi-mountainous and permanent 

grassland areas) and 50% concentrate (DM basis). Diets were formulated at the beginning of 

the experiment to meet at least the ME requirements for maintenance of non-lactating cows 

(INRA, 2010) and to get sufficient and similar levels of NDF (to avoid any risk of acidosis; 

Krause and Oetzel, 2006), starch (to favor protozoa development; Jouany, 1989), and CP. 

Diet levels of fermentable N were kept moderate in order to assess the effect of nitrate on N 

output. Diets were adjusted to have the same N and Ca concentrations by including urea and 

calcium carbonate in the non-NIT diets (i.e. CON and LIN). Calcium carbonate was used as it 

has low solubility in the rumen and thus avoids the formation of calcium salts with lipids 

(Keyser et al., 1985). A commercial mineral-vitamin premix was added in equal amounts to 
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all diets. Forage was distributed without further processing. All other ingredients including 

linseed oil or nitrate or both were pelleted in concentrates (InVivo NSA, Chierry, France). 

 

Table 1 Ingredients and chemical composition of the experimental diets 
 Diet1 
Item CON NIT LIN LIN+NIT 
Ingredient, % of DM     

Hay 50.00 50.00 50.00 50.00 
Pelleted concentrate     

Wheat 25.23 25.23 25.23 25.23 
Maize 15.00 15.00 15.00 15.00 
Calcium nitrate2 0 3 0 3 
Linseed oil 0 0 4 4 
Calcium carbonate 1.7 0 1.7 0 
Urea 1.22 0 1.22 0 
Dehydrated beet pulp 4.08 4 0.08 0 
Molasses beet 1 1 1 1 
Binder 1 1 1 1 
Mineral-vitamin mix 0.75 0.75 0.75 0.75 
Aroma 0.02 0.02 0.02 0.02 

Chemical composition 
OM, % of DM 91.3 91.5 91.8 91.8 
CP, % of DM 12.7 12.2 12.1 11.7 
NDF, % of DM 40.1 40.2 38.8 38.7 
ADF, % of DM 23.3 23.1 22.2 22.2 
Starch, % of DM 25.4 25.7 25.7 25.3 
Ether extract, % of DM 2.08 1.90 4.66 3.12 
Total fatty acids, % of DM 1.61 1.24 3.53 2.05 
GE, MJ/kg of DM 17.4 16.6 18.3 17.7 

Fatty acid, % of total fatty acids 
C16:0 18.56 24.55 14.18 20.38 
C18:0 1.98 2.58 4.92 6.56 
C18:1 n-9 19.53 22.90 23.13 28.60 
C18:2 n-6 47.50 29.33 24.89 21.22 
C18:3 n-3 8.01 7.72 29.37 17.63 

1 CON = control; NIT = diet CON containing 3% calcium nitrate; LIN = diet CON containing 4% 
linseed oil; LIN+NIT = diet CON containing 4% linseed oil and 3% calcium nitrate. 
2 5Ca(NO3)2.NH4NO3.10H2O; 75% NO3

- in DM. 

 

Feeding and management 

Two weeks before starting the experiment, cows were fed CON ad libitum. Then, throughout 

the experiment, offered feed was restricted to 90% of individual voluntary feed intakes (1.8 

times ME requirements for maintenance) to ensure complete consumption. The LIN, NIT and 
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LIN+NIT concentrates were progressively supplied by replacing the CON concentrate. The 

LIN concentrate was distributed at maximal dose after a 5-d transition period. The NIT and 

LIN+NIT concentrates were distributed at their maximal dose after a 10-d transition period. 

Throughout the experiment, feed was offered twice daily (66% at 0800 h and 34% at 1600 h 

for hay; 60% between 0800 and 0930 h in 3 equal portions and 40% between 1600 and 1630 h 

in 2 equal portions for concentrates). Distribution of concentrates was fractionated to reduce 

the risk of methemoglobinemia (metHb; Morris et al., 1958). Forage-to-concentrate ratio 

(50:50) was kept as close as possible to the target ratio by adjusting the amounts of hay and 

concentrates offered daily. Cows had free access to water throughout the experiment. 

 

Measurements and analyses 

Intake. Feed intake was weighed and recorded daily throughout the experiment to estimate 

DMI. There were no refusals during the experiment. Samples of each feed (200 g of hay and 

concentrates) were taken on 2 days in wk 4 and wk 5 of each period. One sub-sample was 

used to determine DM content (103°C for 24 h) and another sub-sample was stored at 4°C 

before being pooled at the end of the experiment. These pooled samples were ground down 

using an Ultra Centrifugal Mill (0.75 mm sieve; Retsch GmbH, Haan, Germany) and analyzed 

for chemical composition. 

Organic matter was determined by ashing at 550°C for 6 h (method 942.05; AOAC, 2005). 

Total N was analyzed by combustion according to the Dumas method (method 968.06; 

AOAC, 2005), and CP content was calculated as N × 6.25. Fiber (NDF and ADF) was 

determined by sequential procedures (Van Soest et al., 1991) after pretreatment with amylase, 

and expressed exclusive of residual ash. Starch was analyzed using an enzymatic method 

(Faisant et al., 1995). The GE was analyzed by isoperibolic calorimetry (C200 model, IKA, 

Staufen, Germany). Ether extract (EE) was determined after acid hydrolysis (method 954.02; 

AOAC, 2005), and fatty acid (FA) composition was determined by gas chromatography of 

methyl esters (method 969.33; AOAC, 2005). 

 

Cow liveweights and methemoglobinemia. Cows were weighed at the beginning of the 

experiment and at the end of each experimental period. Levels of blood metHb were measured 

on all cows 3 h after morning feeding (1100 h) on the day before the start of the experiment 

(control blood) and then at d 3 and 5 (1% calcium nitrate in the diet), d 10 (2% calcium nitrate 

in the diet) and d 12, 17, 19 and 22 (3% calcium nitrate in the diet) of each experimental 
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period for cows fed NIT and LIN+NIT. Blood from cows fed CON and LIN was not analyzed 

as we assumed that there was no risk of metHb. Blood (10 mL) was sampled from the jugular 

vein into K2-EDTA collection tubes (Venosafe, Terumo, Guyancourt, France) and packed on 

ice for metHb content to be determined by spectrophotometry (UV-160, Shimadzu, Marne-

La-Vallée, France) within 1 h at the nearest hospital (CHU Gabriel Montpied, Clermont-

Ferrand, France; method of Kaplan, 1965). A metHb threshold value was set at 30% 

hemoglobin (Hb). Any animal meeting this cut-off would be removed from the experiment 

and treated with 1% methylene blue (The United States Pharmacopeial Convention, 2008). 

 

Diet digestibility and nitrogen balance. Total tract digestibility and N balance were 

determined from total and separate collection of feces and urine for 6 days during wk 4 of 

each experimental period. To separate urine from feces, cows were fitted with flexible pipes 

(Doreau et al., 2014b) connected to a 30-L flask containing 500 mL of 3 M sulfuric acid to 

achieve a urine pH < 3 and thus avoid N volatilization. Feces and urine were removed once 

daily. 

Each morning, after weighing and mixing of feces, a 1% fresh aliquot was used for DM 

determination (103°C for 24 h) and a 0.5% fresh aliquot was pooled across days for each 

animal and frozen (-20°C). At the end of the experiment, pooled samples were thawed, dried 

(60°C for 72 h) and ground (1-mm screen) to determine OM, N, NDF and ADF content as 

previously described.  

Each morning, after weighing urine, a 0.5% fresh aliquot was pooled across days for each 

animal and frozen (-20°C). At the end of the experiment, the N content of thawed urine was 

determined by the Kjeldahl method (method 2001.11; AOAC, 2005) as it was impossible to 

apply the Dumas method on fresh urine. 

 

Rumen fermentation parameters. Total rumen contents were sampled (~200 g) from the 

ventral sac through the cannula before (0745 h) and 3 h after (1100 h) the morning feed on 2 

non-consecutive days (d 3 and 5) in wk 4 of each experimental period. The samples were 

strained through a polyester monofilament fabric (250 µm pore size) and filtrate was 

subsampled for subsequent analyses. For VFA analysis, 0.8 mL of filtrate was mixed with 0.5 

mL of a 0.5 M HCl solution containing 2% (w/v) metaphosphoric acid and 0.4% (w/v) 

crotonic acid. For ammonia-nitrogen (NH3-N) analysis, 1 mL of filtrate was mixed with 0.1 

mL of 5% orthophosphoric acid. For lactate and nitrate-nitrite concentrations analysis, 3 mL 
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and 20 mL of filtrate, respectively, were collected without preservative (Sar et al., 2004). All 

these samples were stored at -20°C until analysis. For protozoa counts, 2 mL of filtrate was 

mixed with 2 mL of methyl green-formalin solution and stored away from direct light until 

counting. 

Concentrations of VFA and NH3-N were analyzed by gas chromatography with a flame 

ionization detector and by colorimetry, respectively (Morgavi et al., 2008). Lactate 

concentrations were determined by colorimetry (D/L-lactic acid, BioSentec, Auzeville-

Tolosane, France). Nitrate and nitrite concentrations were analyzed by colorimetry (method 

EPA 353.2; SmartChem 200, Unity Scientific, Brookfield, USA; Laboratoire Vétérinaire et 

Biologique, Lempdes, France). Protozoa were counted by microscopy and categorized as 

either small (< 100 µm) or large (> 100 µm) entodiniomorphs, or as holotrichs (Dasytricha or 

Isotricha) (Williams and Coleman, 1992). Data for protozoa were log10-transformed before 

statistical analysis. 

 

Monitoring pH and dissolved H2 concentration in the rumen. Rumen pH was monitored 

continuously over wk 5 using commercial boluses (eBolus, eCow, Exeter, UK). One day 

before measurement, the boluses were calibrated using buffer solutions (pH 4 and 7; HM 

Digital, Culver City, CA). One bolus per cow was immersed in the ventral sac of the rumen. 

Data were then recorded every 15 min during 6 full days, after which the boluses were 

removed. At the end of each experimental period, data were uploaded by telemetry to a digital 

tablet before being transferred to a computer. 

The dynamics of dissolved H2 concentrations in the rumen were successively measured on 

each cow in wk 3 (one day per cow) with a H2 sensor (H2-500, Unisense, Denmark). The 

electrode was connected to a microsensor monometer via a 10-m wire extension (Unisense, 

Denmark), and the monometer was connected to a portable computer running Sensor Trace 

Basic software (Version 3.1.3; Unisense, Denmark). The sensor was polarized (800 mV) once 

in wk 3 (8 h before the start of measurement) and calibrated daily by immersion in a water 

bath at 39°C bubbling with a 80% H2/20% CO2 gas mixture. The sensor and wire extension 

were protected using a custom-made plastic cap and tube (Figure 1). The system was ballasted 

with a 1-kg weight and introduced into the cow’s ventral sac through the cannula at 30 min 

before the morning feed (i.e. 0730 h). The setup was fitted taking care to avoid gas and liquid 

leakage from the rumen. Dissolved H2 concentration readings were recorded every second for 
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6 h after the morning feed. For an easier use of the sensor, it was essential to remove it when 

the rumen was not full i.e. before the afternoon feeding. 

 

 
 

 
 
Figure 1. Use of H2-sensor (Unisense, Denmark): A. Overall setup with sensor, monometer 
and computer; B. Protection cap of the sensor. 
 

Methane and carbon dioxide emissions. In wk 5, animals were placed in open chambers (1 

animal/chamber) for 4 consecutive days. Individual total CH4 and CO2 emissions were 

measured continuously from d 1 (0730 h) to d 5 (0730 h). 

Each chamber was 2.2 m high, 3.6 m long and 2.1 m wide, giving a volume of 16.6 m³. The 

chambers were made of steel with clear polycarbonate walls allowing sight contact between 

animals and with the farm personnel. Chambers had front and rear doors, with the front doors 

used for animal feeding and the rear doors used to enter the animals and to remove feces and 

urine collected in a wheeled recovery box. Front and rear doors were never simultaneously 

opened in order to avoid an air stream into the chamber. The feces and urine recovery boxes 

were removed each morning and immediately replaced with new ones in order to minimize 
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chamber opening time (5 min per chamber on average). When rear doors were closed, front 

doors were opened (5 min per chamber on average) for morning (1 portion of hay at 0800h, 3 

portions of concentrates at 0800, 0830 and 0930h) and afternoon (1 portion of hay at 1600h, 2 

portions of concentrates at 1600 and 1630h) feeding. 

The chambers operated at a slight negative pressure, with an air flow oscillating between 700 

and 800 m³/h (approximately 45 air changes per h). Airflow entered the chamber through an 

aperture at the bottom of the rear door (0.42 m²) and exited through an exhaust duct situated at 

the top of the chamber, over the head of the animal. Airflow in the exhaust duct of each 

chamber was continuously measured (CP300, KIMO, Montpon-Ménestérol, France) and 

recorded with one datapoint every 5 min (KT-210-AO, KIMO, Montpon-Ménestérol, France).  

Concentration of gases in the barn and in the 4 chambers was alternatively analyzed at a 0.1 

Hz sample frequency for 5 min every 25 min using an infrared detector (Ultramat 6, Siemens, 

Karlsruhe, Germany) and recorded (Nanodac Invensys, Eurotherm Automation SAS, 

Dardilly, France). The detector was manually calibrated the day before each measurement 

period using pure N2 and a mixture of CH4 (650 ppm) and CO2 (700 ppm) in N2. Missing data 

between 2 measurement intervals were recovered by linear regression. Chamber doors were 

never opened during gas analysis, so no data was deleted. Real-time gas emissions in a 

chamber were calculated by the difference between chamber and ambient gas concentrations 

multiplied by the airflow corrected for temperature, relative humidity and pressure according 

to the Wexler equation (Pinares-Patiño et al., 2012). 

 

Statistical analyses 

Except for metHb, data were analyzed using the MIXED procedure of SAS (Version 9.2; SAS 

Institute, 2009). Gaseous emissions (CH4 and CO2) and rumen fermentation parameters 

measured during several days (n = 4 and 2 days, respectively) were averaged per period 

before being included in the statistical analyses. The model included the random effect of cow 

(n = 4) and fixed effects of period (n = 4), nitrate (CON and LIN versus NIT and LIN+NIT), 

linseed (CON and NIT versus LIN and LIN+NIT) and the interaction nitrate × linseed. 

Rumen fermentation data obtained before and after feeding (VFA, NH3-N, lactate, protozoa, 

nitrate and nitrite concentrations) were analyzed using the same model and for the 2 sampling 

hours separately. Continuous measurements of ruminal pH, dissolved H2 concentrations and 

CH4 emissions were analyzed by repeated time. Several covariance structures were compared, 

and compound symmetry (CS) was selected as it resulted in the lowest values for the Akaike’s 
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information criteria. The model included the fixed effects of period, hour, nitrate, linseed, 

nitrate × linseed and the interactions between hour and dietary treatments (linseed × hour, 

nitrate × hour, linseed × nitrate × hour). Differences among treatments were tested using the 

PDIFF option. Data were considered significant at P < 0.05. Least squares means are reported 

throughout. 

 

Results 

 

Liveweight and blood methemoglobin 

Animals gained on average 26.5 kg per experimental period, with a final BW at the end of the 

trial of 762 ± 47 kg. For diets containing nitrate (NIT and LIN+NIT), blood metHb gradually 

increased the first 12 d of adaptation period, but no animal exceeded 26.3% metHb (Figure 2). 

 

 

Figure 2 Boxplot of blood metHb levels of non-lactating cows fed diets containing 3% 
calcium nitrate with or without 4% linseed oil (n = 8). The box represents the quartiles with 
the median at the center and the vertical lines represent the maximum and minimum value 
within 1.5 interquartile range of the higher and lower quartile, respectively. Values greater 
than 1.5 interquartile range are considered as outliers and are identified with a star. Blood was 
analyzed during the 3-wk adaptation period, the arrow indicates the start of the measurement 
period.  
 

Methane and carbon dioxide emissions 

Dry matter intake of cows while in chambers was the same as outside, showing the absence of 

stress of animals, and that CH4 determination in our experimental conditions accurately 

reflected emissions throughout the trial. Methane production was different among diets 
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irrespective of the unit of expression (Table 2; P < 0.01). Compared with CON, CH4 (g/d) 

was 18, 23 and 33% lesser for LIN, NIT and LIN+NIT, respectively. An additive CH4-

mitigating effect between linseed and nitrate (linseed × nitrate, P > 0.05) was observed when 

CH4 was expressed as a function of DMI, digested DM, digested OM or as a percentage of 

GE intake. When expressed per kg of digested NDF, CH4 emissions from cows fed nitrate-

containing diets were lesser than emissions from cows fed other diets (P = 0.01). With 

LIN+NIT, CH4 emissions were close to those of animals fed NIT showing the absence of 

additive effect between nitrate and linseed. 

Diets affected the daily pattern of CH4 emissions in different ways (Figure 3). For CON, 2 

peaks of CH4 production were observed at around 2 h after feeding, with the largest peak after 

the morning feeding that represented 66% of the total daily ration. The CH4 emissions pattern 

of LIN was similar to CON but emissions of LIN were consistently lesser throughout the day. 

In contrast to CON, with NIT and LIN+NIT, the peaks were not observed, and CH4 emissions 

increased at 3 h post-feeding. Contrary to CH4, CO2 emissions (g/d or g/kg DMI) were not 

affected by dietary treatments. 

 

Table 2 Methane and carbon dioxide emissions of non-lactating cows fed diets containing 
linseed oil and calcium nitrate alone or in association (n = 4) 

 Diet2  P-value3 

Item1 CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed × 

nitrate 
DM intake, kg/d 12.4 12.3 12.3 12.2 0.59 0.22 0.35 0.86 
Methane emissions         

g CH4/d 308.6 238.1 252.7 206.8 9.61 <0.01 <0.01 0.08 
g CH4/kg DM intake 25.0 19.4 20.7 17.0 0.70 <0.01 <0.01 0.18 
g CH4/kg digested DM 39.3 30.3 32.4 27.0 1.18 <0.01 <0.01 0.14 
g CH4/kg digested OM 36.8 28.3 30.3 25.1 1.06 <0.01 <0.01 0.12 
g CH4/kg digested NDF 55.9 43.1 47.1 43.1 2.42 0.01 0.06 0.07 
% of GE intake 7.2 5.8 5.6 4.8 0.20 <0.01 <0.01 0.24 

Carbon dioxide emissions         
g CO2/d 9191 9323 8988 8789 562.1 0.84 0.06 0.35 
g CO2/kg DM intake 745 757 732 721 28.1 0.98 0.19 0.49 

1 Data were collected during 4 consecutive days in wk 5. 
2 CON = control; NIT = diet CON containing 3% calcium nitrate; LIN = diet CON containing 4% 
linseed oil; LIN+NIT = diet CON containing 4% linseed oil and 3% calcium nitrate. 
3 Linseed = main effect of linseed (CON and NIT versus LIN and LIN+NIT); Nitrate = main effect of 
nitrate (CON and LIN versus NIT and LIN+NIT); Linseed × nitrate = interaction between main effects 
of linseed and nitrate. 
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Figure 3 Daily methane production pattern of non-lactating cows fed diets containing linseed oil and calcium nitrate alone or in association (n = 
4). Errors bars indicate SD. Treatments consisted of control diet (CON), CON containing 3% calcium nitrate (NIT), CON containing 4% linseed 
oil (LIN) and CON containing 4% linseed oil and 3% calcium nitrate (LIN+NIT). The arrows indicate time of feeding. Symbols indicate hourly 
statistical comparison (†P<0.10; *P<0.05; **P<0.01; ***P<0.001) between treatments: linseed = main effect of linseed (CON and NIT versus 
LIN and LIN+NIT); nitrate = main effect of nitrate (CON and LIN versus NIT and LIN+NIT); linseed × nitrate = interaction between main 
effects of linseed and nitrate. 
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Rumen fermentation parameters 

Mean rumen pH was greater for NIT and LIN+NIT compared with CON and LIN (Table 3; 

+0.23 units on average; P = 0.03). Diet LIN+NIT showed significantly greater pH values 

compared with CON during daytime, starting 3 h after the morning feeding (Figure 4). Mean 

dissolved H2 concentrations in the rumen tended (P = 0.07) to be greater for diets including 

nitrate compared with other diets (+89%). The H2 concentration was constantly low up to 6 h 

post-feeding for CON and LIN (3.8 µM; Figure 5) but showed a significant jump as early as 1 

h post-feeding nitrate (NIT and LIN+NIT). Hydrogen concentrations started to decrease 2 h 

post-feeding for LIN+NIT and at 3 h post-feeding for NIT. Compared with CON, H2 

concentrations were on average 5.9 and 12.6 times greater for LIN+NIT and NIT treatments, 

respectively. 

Concentrations of total VFA were similar among diets before and after feeding. Linseed- 

containing diets increased propionate proportions before and after feeding (P = 0.02), leading 

to lesser acetate: propionate and (acetate + butyrate): propionate ratios compared with other 

diets. Nitrate-containing diets modified VFA profiles after feeding only (P = 0.01), with 

greater acetate and lesser propionate proportions, inducing greater acetate: propionate and 

(acetate + butyrate): propionate ratios compared with other diets. At least, nitrate-containing 

diets increased NH3-N (+20%; P = 0.04) concentrations before feeding. Nitrate concentrations 

in the rumen were lesser than the limit of quantification (13.3 mg/L or 0.22 mM). 
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Figure 4 Daily pattern of rumen pH of non-lactating cows fed diets containing linseed oil and calcium nitrate alone or in association (n= 4). 
Errors bars indicate SD. Treatments consisted in control diet (CON), CON containing 3% calcium nitrate (NIT), CON containing 4% linseed oil 
(LIN) and CON containing 4% linseed oil and 3% calcium nitrate (LIN+NIT). The arrows indicate time of feeding. Symbols indicate hourly 
statistical comparison (†P<0.10; *P<0.05; **P<0.01; ***P<0.001) between treatments: linseed = main effect of linseed (CON and NIT versus 
LIN and LIN+NIT); nitrate = main effect of nitrate (CON and LIN versus NIT and LIN+NIT); linseed × nitrate = interaction between main 
effects of linseed and nitrate. 
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Figure 5 Rumen dissolved hydrogen concentrations up to 6 h after feeding non-lactating cows with diets containing linseed oil and calcium 
nitrate alone or in association (n = 4). Treatments consisted in control diet (CON), CON containing 3% calcium nitrate (NIT), CON containing 
4% linseed oil (LIN) and CON containing 4% linseed oil and 3% calcium nitrate (LIN+NIT). The arrow indicates time of morning feeding. 
Symbols indicate hourly statistical comparison (†P<0.10; *P<0.05; **P<0.01; ***P<0.001) between treatments: linseed = main effect of linseed 
(CON and NIT versus LIN and LIN+NIT); nitrate = main effect of nitrate (CON and LIN versus NIT and LIN+NIT); linseed × nitrate = 
interaction between main effects of linseed and nitrate. 
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Table 3 Rumen fermentation characteristics of non-lactating cows fed diets containing linseed 
oil and calcium nitrate alone or in association (n = 4) 

  Diet2  P-value3 

 Item1 
Time after 
feeding (h) 

CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed 
× nitrate 

Total VFA, mM 0 73.8 72.7 69.4 71.4 6.42 0.93 0.56 0.75 
3 111.9 102.6 102.6 107.7 6.52 0.74 0.74 0.28 

VFA composition,  
mol/100 mol 

        

Acetate (A) 0 70.9 69.5 69.5 69.6 1.00 0.53 0.53 0.43 
3 70.2 73.4 67.0 73.1 1.07 0.01 0.15 0.23 

Propionate (P) 0 15.0 15.0 17.6 16.0 0.59 0.20 0.02 0.23 
3 15.8 14.8 19.4 15.4 0.95 0.01 0.02 0.06 

Butyrate (B) 0 10.3 11.4 9.0 10.4 0.71 0.08 0.11 0.81 
3 10.4 8.7 10.1 8.4 1.20 0.19 0.82 0.98 

Minor VFA4 0 3.79 4.15 3.58 3.94 0.321 0.31 0.54 1.00 
3 3.77 3.08 3.54 3.10 0.197 0.01 0.46 0.37 

A:P 0 4.74 4.68 3.97 4.41 0.221 0.39 0.04 0.26 
3 4.48 5.03 3.52 4.79 0.233 <0.01 0.01 0.09 

(A+B):P 0 5.43 5.44 4.48 5.06 0.230 0.20 0.02 0.22 
3 5.14 5.62 4.07 5.34 0.278 <0.01 0.01 0.08 

NH3-N, mM 0 5.84 6.79 4.87 6.68 0.555 0.04 0.34 0.44 
3 15.11 14.34 16.15 14.35 0.932 0.22 0.59 0.60 

Total lactate, mM 0 0.56 0.65 0.57 0.65 0.039 0.06 0.81 0.97 
3 0.83 0.71 0.78 0.68 0.107 0.24 0.69 0.91 

Nitrate, mg/L5 0 <LoQ <LoQ <LoQ <LoQ -- -- -- -- 
3 <LoQ <LoQ <LoQ <LoQ -- -- -- -- 

Nitrite, mg/L 0 0.12 0.58 0.12 0.83 0.246 0.07 0.66 0.66 
3 0.24 0.45 0.24 0.37 0.168 0.32 0.79 0.79 

pH Mean 6.20 6.30 6.07 6.42 0.101 0.03 0.94 0.15 
Hydrogen, µM Mean 3.58 45.28 4.03 21.00 14.097 0.07 0.41 0.39 

1 Data were collected during 2 non-consecutive days in wk 4. 
2 CON = control; NIT = diet CON containing 3% calcium nitrate; LIN = diet CON containing 4% 
linseed oil; LIN+NIT = diet CON containing 4% linseed oil and 3% calcium nitrate. 
3 Linseed = main effect of linseed (CON and NIT versus LIN and LIN+NIT); Nitrate = main effect of 
nitrate (CON and LIN versus NIT and LIN+NIT); Linseed × nitrate = interaction between main effects 
of linseed and nitrate. 

4 Minor VFA = sum of isobutyrate, isovalerate, valerate and caproate. 
5 LoQ = Limit of Quantification = 13.3 mg/L or 0.22 mM. 
 
The diet LIN decreased (P = 0.03) total protozoa concentration in the rumen before feeding 

whereas NIT did not affect this population. The toxic effect of linseed towards protozoa was 

not observed when associated with nitrate (P = 0.02; Table 4). Compared with CON, diet LIN 

reduced total protozoa concentration by specifically acting on entodiniomorphs (-52%). 
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Inversely, diet NIT tended to increase (P = 0.09) large entodiniomorphs and increased (P = 

0.02) Isotricha before feeding. 

 

Table 4 Rumen protozoa populations of non-lactating cows fed diets containing linseed oil 
and calcium nitrate alone or in association (n = 4) 

  Diet2  P-value3 

 Item1 
Time after 
feeding (h) 

CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed × 

nitrate 
Total protozoa, 
log10/mL 

0 5.87 5.71 5.55 5.73 0.060 0.91 0.03 0.02 
3 5.71 5.49 5.37 5.58 0.080 0.95 0.14 0.03 

Entodiniomorphs, 
log10/mL 

         

Small 
(<100 µm) 

0 5.86 5.68 5.54 5.71 0.057 0.95 0.03 0.02 
3 5.69 5.46 5.36 5.56 0.080 0.86 0.16 0.03 

Large 
(>100 µm) 

0 4.09 4.18 3.66 4.01 0.110 0.09 0.03 0.29 
3 3.97 4.00 3.62 3.97 0.109 0.14 0.13 0.18 

Holotrichs, 
log10/mL 

         

Dasytricha 
(<100 µm) 

0 3.51 3.65 2.67 3.58 0.497 0.29 0.35 0.42 
3 3.49 3.78 2.75 3.69 0.521 0.23 0.40 0.51 

Isotricha 
(>100 µm) 

0 1.90 3.19 2.29 3.11 0.484 0.02 0.63 0.47 
3 2.88 3.25 2.53 2.89 0.494 0.42 0.42 1.00 

1 Data were collected during 2 non-consecutive days in wk 4. 
2 CON = control; NIT = diet CON containing 3% calcium nitrate; LIN = diet CON containing 4% 
linseed oil; LIN+NIT = diet CON containing 4% linseed oil and 3% calcium nitrate. 
3 Linseed = main effect of linseed (CON and NIT versus LIN and LIN+NIT); Nitrate = main effect of 
nitrate (CON and LIN versus NIT and LIN+NIT); Linseed × nitrate = interaction between main effects 
of linseed and nitrate. 
 
Diet digestibility and nitrogen balance 

Daily DM and OM intake were not affected by treatments and averaged 12.4 kg DMI/d 

(Table 5). Fiber intake was reduced with linseed-containing diets (P < 0.01) compared with 

other diets. Linseed associated with nitrate had a similar reducing effect towards fiber intake. 

Total tract digestibility of DM and OM was not affected by diets and linseed supplemented 

alone or in association with nitrate tended to reduce (P < 0.10) fiber digestibility. 

Total N losses (% of N intake) were greater for diets including linseed compared with other 

diets (P = 0.03) leading to lesser N retention for LIN and LIN+NIT (P = 0.03; Table 6). This 

was not related to differences in daily fecal N losses between diets, but to numerically greater 

urinary N losses with linseed-containing diets (P = 0.08). 

  



Linseed plus nitrate reduce methanogenesis  Results 
 

93 
 
 

Table 5 Daily nutrient intake and total tract digestibility of non-lactating cows fed diets 
containing linseed oil and calcium nitrate alone or in association (n = 4) 

 Diet2  P-value3 

Item1 CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed × 

nitrate 
Daily nutrient intake, kg/d         

DM 12.4 12.3 12.5 12.3 0.55 0.09 0.73 0.51 
OM 11.4 11.3 11.4 11.3 0.51 0.14 0.74 0.45 
NDF 5.0 5.0 4.8 4.7 0.22 0.08 <0.01 0.41 
ADF 2.9 2.9 2.8 2.7 0.13 0.05 <0.01 0.76 

GE intake, MJ/d 216.8 205.1 228.5 217.2 9.67 <0.01 <0.01 0.88 
Total tract digestibility, %         

DM 63.7 64.1 64.0 63.3 0.77 0.85 0.65 0.43 
OM 68.1 68.5 68.3 67.9 0.64 0.98 0.76 0.50 
NDF 44.8 45.2 44.2 40.1 1.58 0.22 0.07 0.14 
ADF 44.5 45.1 42.9 38.4 2.11 0.31 0.06 0.20 

1 Data were collected during 6 consecutive days in wk 4. 
2 CON = control; NIT = diet CON containing 3% calcium nitrate; LIN = diet CON containing 4% 
linseed oil; LIN+NIT = diet CON containing 4% linseed oil and 3% calcium nitrate. 
3 Linseed = main effect of linseed (CON and NIT versus LIN and LIN+NIT); Nitrate = main effect of 
nitrate (CON and LIN versus NIT and LIN+NIT); Linseed × nitrate = interaction between main effects 
of linseed and nitrate.  
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Table 6 Nitrogen balance of non-lactating cows fed diets containing linseed oil and calcium 
nitrate alone or in association (n = 4) 

 Diet2  P-value3 

Item1 CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed × 

nitrate 
N intake, g/d 252.5 242.5 242.5 227.5 11.59 <0.01 <0.01 0.13 
Fecal N losses         

g/d 101.6 95.4 94.8 96.8 4.28 0.47 0.37 0.18 
As % of N intake 40.1 39.4 39.5 42.5 1.18 0.27 0.25 0.10 

Urinary N losses         
g/d 133.1 117.7 135.8 120.2 6.13 0.02 0.61 0.99 
As % of N intake 52.5 48.8 56.5 52.7 1.82 0.09 0.08 0.97 

Total N losses         
g/d 234.7 213.0 230.6 217.0 9.12 0.01 0.99 0.45 
As % of N intake 92.6 88.3 96.0 95.2 2.25 0.20 0.03 0.35 

N retained         
g/d 18.5 28.3 10.7 11.8 5.82 0.26 0.03 0.36 
As % of N intake 7.4 11.8 4.0 4.8 2.25 0.20 0.03 0.35 

1 Data were collected during 6 consecutive days in wk 4. 
2 CON = control; NIT = diet CON containing 3% calcium nitrate; LIN = diet CON containing 4% 
linseed oil; LIN+NIT = diet CON containing 4% linseed oil and 3% calcium nitrate. 
3 Linseed = main effect of linseed (CON and NIT versus LIN and LIN+NIT); Nitrate = main effect of 
nitrate (CON and LIN versus NIT and LIN+NIT); Linseed × nitrate = interaction between main effects 
of linseed and nitrate. 

 

Discussion 

 

Effect of nitrate on cows’ health 

In the rumen, nitrate is converted to nitrite and then ammonia. While nitrate is non-toxic, 

nitrite can be poisonous for the animal. If nitrite accumulates in the rumen, it can pass through 

the rumen wall into the blood and convert Hb to metHb, which cannot then transport oxygen 

to the tissues (Lewis, 1951). The level of blood metHb determines the severity of symptoms, 

which are brown mucous membrane discoloration, depressed feed intake and animal 

performances, and even coma and death in extreme cases (Bruning-Fann and Kaneene, 1993). 

Throughout this experiment, animals were unaffected by nitrate supplementation, as shown by 

the BW gain, the constant intake, and the low rumen concentrations of nitrate and nitrite and 

blood metHb. Nitrate feeding requires precise management of its distribution and careful 

control of animal health status. To deal with these issues, the use of slow-release encapsulated 

nitrate was shown to be effective at mitigating CH4 emissions of lambs (3.4% nitrate in DM, 

inducing a 9.7% CH4 reduction per percent added nitrate; El-Zaiat et al., 2014) or beef heifers 
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(2.3% nitrate in DM, inducing a 8.0% CH4 reduction per percent added nitrate; Lee et al., 

2014a, b) without raising blood metHb levels. 

 

Methane emissions  

We observed that supplying 2.6% added fat from linseed oil reduced CH4 (g/kg DMI) by 

17%, corresponding to a 6.5% reduction in CH4 per percentage unit of added lipids from 

linseed. This result is in the range of previous meta-analysis data reporting that CH4 (g/kg 

DMI) is reduced by 4.4% per percentage unit of fat (irrespective of lipid source) added to diet 

(Grainger and Beauchemin, 2011) or by 5.6% per percentage unit of linolenic acid from 

linseed (Doreau et al., 2011). Conversely, Veneman et al. (2013) did not explain the absence 

of any CH4-mitigative effect (g/kg DMI, g/kg milk) of a similar level of linseed oil in 

lactating cows. 

Nitrate fed alone reduced CH4 (g/kg DMI) by 22%, corresponding to a 9.8% reduction per 

percentage unit of nitrate fed. This result is in the range of previous experimental data 

reporting a CH4 (g/kg DMI) reduction of between 7.9 and 12.2% per percentage unit of added 

nitrate in the diet of sheep (Nolan et al., 2010; Van Zijderveld et al., 2010) or cattle (Van 

Zijderveld et al., 2011; Hulshof et al., 2012; Veneman et al., 2013). The CH4-mitigating effect 

of nitrate is consequently greatly repeatable whatever the diet and the ruminant species. 

The association of nitrate and linseed oil reduced CH4 (g/kg DMI) by 32%. This result 

showed for the first time that there is a positive and additive effect between nitrate and linseed 

oil on methanogenesis. Theoretically, as these dietary strategies have different mechanisms of 

action, CH4 reduction should reach 39% for a fully additive effect. Several reasons may 

explain the difference between theoretical and observed CH4 reduction. First, we suggest that 

linseed reduced H2 production and that nitrate only acted on this reduced H2 pool. Then, 

according to stoichiometry and considering that control CH4 emissions is equal to 100, CH4 

emissions corrected for the CH4-mitigating effect of LIN (17%) would be 100 – 100 × 0.17 = 

83. These CH4 emissions corrected for the CH4-mitigating effect of NIT (22%) would be 83 – 

83 × 0.22 = 65. In total, this corresponds to an expected CH4 reduction of 35% with 

LIN+NIT, which is close to the observed level of CH4 reduction. In addition, LIN+NIT had 

lesser FA content compared with LIN, which may be linked to unnoticed pellets 

manufacturing issues. Knowing that 1% added fat from linseed reduced CH4 by 6.5%, the 

difference in FA content between LIN+NIT (1.0% added fat) and LIN (2.6% added fat) 

corresponded to a CH4 mitigation potential of 10.4%, suggesting a fully additive effect 
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between linseed oil and nitrate. At least, the formation of calcium salts via the reaction 

between lipids and soluble calcium from calcium nitrate may reduce the additive effects of 

LIN+NIT (Keyser et al., 1985). 

The association of nitrate and linseed oil appears interesting: this same level of CH4 reduction 

with linseed oil or nitrate fed individually could not be achieved without greater risks of 

metHb for nitrate or lesser diet digestibility for linseed oil. Other kinds of antimethanogenic 

combinations have shown various interactions. Tea saponin and soybean oil reduced CH4 

(g/kg DMI) from lambs by 27% and 14%, respectively, when distributed alone and by 19% 

when fed in association (Mao et al., 2010). Again in lambs, CH4 (g/kg DMI) was reduced by 

25% by chestnut tannin, 14% by coconut oil and 33% by the association chestnut tannin plus 

coconut oil (Liu et al., 2011). A fully additive effect was observed with two H2-sink products 

fed to lambs, with a CH4 reduction of 32% with nitrate, 16% with sulfate and 47% with nitrate 

plus sulfate (Van Zijderveld et al., 2010). 

 

Mechanisms of CH4 reduction: focus on rumen fermentation parameters 

The reduction in CH4 emissions observed in this trial did not cause a rumen dysfunction, as 

VFA concentration was not affected by diet and pH was only marginally modified. Two 

factors may explain the CH4-mitigating effect of linseed oil. On the one hand, lipids from 

linseed oil half-reduced the rumen concentration of protozoa, although not as strongly as in 

previous experiments testing similar levels of lipids (-82% in a silage-based diet, Chung et al., 

2011; -84% in a concentrate-rich hay-based diet, Ueda et al., 2003). The anti-protozoal effect 

of linseed combined with nitrate was less evident, probably because of the lesser fat content in 

LIN+NIT compared with LIN. Protozoa are known to be important H2 producers via their 

hydrogenosomes (Morgavi et al., 2012) and their reduction is often associated with a decrease 

in methanogenesis (Guyader et al., 2014). Consequently, in this study, linseed 

supplementation reduced H2 production, but as dissolved H2 concentrations in the rumen were 

not affected by lipids, we assume that methanogens also used less H2. On the other hand, 

linseed oil increased propionate proportion which is a H2-consuming pathway competing with 

methanogenesis (Newbold et al., 2005). Most literature reports do not show an effect of 

linseed on rumen VFA composition (Chung et al., 2011; Doreau et al., 2009; Martin et al., 

2011). To a minor extent, H2 may have been consumed during PUFA biohydrogenation, but 

this pathway would deviate only 1 to 2.6% of ruminal H2 (Czerkawski, 1986). The lesser CH4 
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emissions throughout the day from LIN cows compared with CON cows indicated that linseed 

oil continuously modified rumen fermentation and microbial parameters. 

Nitrate is an electron acceptor in several anaerobic environments. Its CH4-mitigating effect is 

assumed to be related to a reduction of H2 availability for methanogens due to its reduction to 

nitrite and ammonia (Ungerfeld and Kohn, 2006). To our knowledge, ours is the first study to 

report a post-feeding pattern of dissolved H2 concentrations in the rumen. The CON and LIN 

diets presented stable and low rumen H2 concentrations (3.8 µM on average), which are in the 

range of concentrations (0.1 to 50 µM) given by a literature review (Janssen, 2010). However, 

adding nitrate to the diet with or without linseed oil induced a peak in rumen dissolved H2 

concentrations up to 2 h post-feeding (up to 88 µM on average), coinciding with a drop in 

CH4 emissions and a rise of gaseous H2 (measured in wk 5 of the last two experimental 

periods; data not shown) as already reported by Van Zijderveld et al. (2011). In presence of 

nitrate, the excess of dissolved H2 further released in belched gas means that H2 was produced 

at a greater rate than it was utilized. This may result from a toxic effect of nitrate (Van 

Zijderveld et al., 2010) or nitrite (Iwamoto et al., 2001) on H2-users such as methanogens. 

This putative action is transient, lasting for 3 h post-feeding, as shown by the increase in CH4 

emissions from nitrate-fed cows up to levels similar to control-diet cows. 

 

Diet digestibility and nitrogen balance 

Supplying diets with linseed oil (2.6% added fat) did not affect total tract digestibility of DM 

and OM but tended to reduce total tract fiber digestibility to a same extent when fed alone or 

in association with nitrate. This result is not consistent with a previous study on lambs 

supplemented with crude linseed (2.4% added fat; Machmüller et al., 2000). These different 

results may be explained by the forms of linseed which affect availability of lipids supply: 

linseed oil would have a more negative effect on total tract digestibility than extruded and 

crude linseed (Martin et al., 2008). Adding 3% calcium nitrate as a substitute for urea did not 

reduce total tract digestibility confirming previous experiments on sheep fed hay and 4% 

potassium nitrate (Nolan et al., 2010) and on dairy cows fed maize silage and 2.8% calcium 

nitrate (Van Zijderveld et al., 2011). Nitrate neither affected N retention nor the distribution of 

N losses between urine and feces. Similar results were obtained with dairy cows (2.6% 

nitrate; Van Zijderveld et al., 2011), steers (2.3% nitrate; Lee et al., 2014a) and lambs (2.3% 

nitrate; Li et al., 2012) fed isonitrogenous diets, showing that nitrate can substitute urea as a 

source of non-protein N. 
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The association of nitrate and linseed oil is an efficient strategy to decrease CH4 yields in non-

lactating cows without altering diet digestibility. Linseed oil supplementation reduced CH4 

emissions throughout the day, while nitrate had a transient but marked action from when fed 

up to 3 h post-feeding. Methane production was further reduced when both linseed and nitrate 

were fed in association. Linseed oil reduced H2-producers like protozoa, whereas nitrate acted 

as a H2-sink and may have inhibited rumen H2-users, as suggested by the rise of dissolved H2 

concentrations with this dietary treatment. Further work to characterize the quantity, activity 

and diversity of rumen microbiota should clarify the mechanisms behind the effects of these 

dietary treatments. In addition, it will be necessary to assess the long-term CH4-mitigative 

effect of linseed oil associated with nitrate on farmed ruminants. Finally, the effect of nitrate 

on animal performances and the absence of residues in ruminant end-products still need 

further research. 
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STEP 2: Long-term methane mitigating effect of linseed plus 

nitrate supplemented to dairy cows 

 

Objective 

1/ To evaluate the long-term effect of association of feeding strategies acting on H2 production (lipids from 

linseed, toxic effect towards protozoa) and H2 utilization (nitrate from calcium nitrate, H2-sink through nitrate 

reduction to nitrite and ammonia) on CH4 emissions, lactating performances of dairy cows and animal health 

(blood metHb, nitrate and nitrite residues in milk and processed milk products). 

2/ To check the effect of linseed plus nitrate on total tract digestibility, N balance and rumen fermentation after 

long-term supplementation. 

 

Experimental approach 

 

 

 

 

 

WEEK 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Daily intake and milk yield 
Milk composition (once a week) 

              

Nitrate and nitrite residues in milk and milk 
products (once a week) 

              

Blood metHb (3.5 h after morning feeding, 
once a week) 

              

Daily kinetics of CH4 emissions (2 days)               

Total tract digestibility, N balance (5 days) 
Rumen fermentation (3.5 h after morning 
feeding, once a week) 

              

 

Main results 

• Throughout the experiment, intake and milk production tended to be lower for dairy cows supplemented 

with LIN+NIT, but feed efficiency was similar between diets. 

• From wk 4 to 17, average metHb level was 1.2%. No additional nitrate and nitrite residues were 

detected in milk and processed milk products from cows fed LIN+NIT. 

• Diet LIN+NIT reduced CH4 emissions by 29%, with a persistent effect throughout the 4 months of the 

experiment. 

• Digestibility of nutrients and N balance were similar between diets. Diet LIN+NIT reduced total VFA 

concentration and increased C2/C3 ratio and protozoa concentration postfeeding. 

 
Conclusion 

The association of linseed plus nitrate is an efficient and long-term CH4-mitigating strategy, which does not alter 

diet digestibility, N efficiency or animal health. However, the energetic benefits of the decreased CH4 emissions 

did not appear beneficial for the animal. 

16 lactating cows 8 animals 

LIN+NIT : CON + 1.8% nitrate (from calcium nitrate) 

+ 3.5% added lipids (from extruded linseed) 

17 weeks of experiment (wk 1 to 3 = Adaptation; wk 4 to 17 = Measurement) 

8 animals 

CON: 54% corn silage + 6% hay + 40% pelleted concentrate 
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Abstract 

The objective of this experiment was to study the long-term effect of linseed plus nitrate on 

CH4 emission and performance in dairy cows. We also assessed the effect of this feeding 

strategy on the presence of nitrate and nitrite residues in milk products, total tract apparent 

digestibility, N balance and rumen fermentation. Sixteen lactating Holstein cows were 

allocated to 2 groups in a randomized design conducted in parallel for 17 weeks. Diets were 

(dry matter basis): 1) control (54% corn silage, 6% hay, and 40% concentrate) or 2) control 

plus 3.5% added fat from linseed and 1.8% nitrate (LIN+NIT). Diets were equivalent in terms 

of crude protein (16%), starch (28%), and neutral detergent fiber (33%), and were offered 

twice daily. Cows were fed ad libitum, except during wk 5, 16, and 17 in which feed was 

restricted to 95% of dry matter intake (DMI) to ensure complete consumption of meals. Milk 

production and DMI were measured weekly. Nitrate and nitrite concentration in milk and 

milk products was determined monthly. Daily methane emissions were quantified in open 

chambers (wk 5 and 16). Total tract apparent digestibility, N balance, and rumen fermentation 

parameters were determined at the end of the experiment (wk 17). Daily DMI tended to be 

lower with LIN+NIT from wk 4 to 16 (-5.1 kg/d on average). The LIN+NIT diet decreased 

milk production during 6 non-consecutive weeks (-2.5 kg/d on average). Nitrate or nitrite 

residues were not detected in milk and associated products of cows fed either diet. The 

LIN+NIT diet reduced CH4 emissions to a similar extent at the beginning (wk 5) and end (wk 

16) of the trial: CH4 reduction averaged 46% (g/d), 29% (g/kg DMI), and 35% (g/kg milk). 

Both diets did not affect N efficiency and nutrients apparent digestibility. In the rumen, 

LIN+NIT did not affect protozoa number but reduced total volatile fatty acid concentration by 

12% and propionate concentration by 31%. We concluded that linseed plus nitrate has a long-

term methane-reducing effect in dairy cows. We also found a concomitant negative effect on 

milk production, despite a similar feed efficiency between diets. Further work is required to 

optimize the doses of linseed plus nitrate to avoid reduced cows performance. The 

consumption of milk products from animals fed nitrate is safe for human consumption in 

terms of nitrate and nitrite residues. 

 

Keywords: linseed plus nitrate, long-term, methane, milk product, ruminant 
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Introduction 

Linseed and nitrate are both proven dietary strategies for reducing CH4 emissions from 

ruminants (Gerber et al., 2013). If used extensively, they could significantly abate enteric CH4 

emissions at a national scale (Doreau et al., 2014). However, the combination of these two 

feeding strategies on CH4 production has not been studied before. In a short-term experiment 

on non-lactating cows, we reported that the combination of linseed oil (4% of DM) plus 

nitrate (2.25% of DM) reduced methanogenesis by 32% without affecting apparent diet 

digestibility. Compared to linseed oil and nitrate fed individually, the effect of this 

combination on CH4 production was additive (Guyader et al., 2014a), because these two 

dietary strategies share different modes of action in the rumen. Polyunsaturated lipids from 

linseed are thought to act as inhibitors of H2-producers such as protozoa (Guyader et al., 

2014a), whereas nitrate is thought to act as a H2-sink, competing with methanogenesis. Nitrate 

and nitrite are also toxic to methanogens (Guyader et al., 2014c). 

In-practice, the use of these strategies at farm scale requires further investigation into their 

potential long-term effects. Linseed (3% added lipids) had a persistent CH4-mitigating effect 

on dairy cows for up to 1 yr (Martin et al., 2011). The long-term CH4-mitigating effect of 

nitrate (2.1% of DM) fed over 3 mo has been demonstrated in dairy cows (Van Zijderveld et 

al., 2011). However, the long-term CH4-reducing effect of dietary linseed plus nitrate has not 

been tested. 

Another issue to assess before practical application of linseed plus nitrate as an animal 

nutrition strategy is the potential for adverse effects of nitrate supplementation on human and 

animal health. To our knowledge, the effect of dietary nitrate on milk quality, including the 

absence of nitrate and nitrite residues in milk, has not been tested, whereas excess nitrite from 

nitrate reduction in the mouth may promote gastric irritation in humans (Weitzberg and 

Lundberg, 2013). One study did show an absence of additional nitrate and nitrite residues in 

meat when lambs were fed 3.4% encapsulated nitrate (El-Zaiat et al., 2013). Nitrate may also 

alter animal health by increasing the concentration of blood methemoglobin (metHb; Lewis, 

1951). Without adaptation (Lee and Beauchemin, 2014), nitrite from nitrate reduction can 

accumulate in the rumen, passing through the blood and leading to subclinical 

methemoglobinemia (30-40% of metHb; Bruning-Fann and Kaneene, 1993). 

The main objective of this experiment was to investigate the long-term effect of linseed plus 

nitrate on CH4 emissions and lactation performance in dairy cows. As a secondary objective, 

nitrate metabolism was assessed by measuring metHb levels in blood and nitrate and nitrite 
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levels in milk and processed milk products. We also evaluated the effect of linseed plus 

nitrate on total tract apparent digestibility, N balance, and rumen fermentation parameters at 

the end of the experiment. 

 

Materials and methods 

The experiment was conducted at the UERT experimental dairy cow facilities at the INRA’s 

Saint-Genès-Champanelle-based research centre in France from January to May 2014. All 

procedures involving animals were performed in accordance with French Ministry of 

Agriculture guidelines for animal research, and all applicable European guidelines and 

regulations on animal experimentation (http://www2.vet-lyon.fr/ens/expa/acc_regl.html). 

 

Animals, Diets and Feeding 

Sixteen lactating (including 7 primiparous) Holstein cows were used. At the start of the 

experiment, cows had an average milk yield of 33.4 ± 7.1 kg/d at 61 ± 23 DIM, and an 

average BW of 706 ± 67 kg. The experiment was conducted for 17 wk as a randomized block 

design where cows were separated into 2 groups balanced for calving date and milk 

production. Cows were housed in a freestall barn except during the 2 measurement periods 

(wk 5 and wk 16-17 for CH4 and digestibility measurements) in which they were housed 

individually. 

The first group of cows (n = 8 of which 4 primiparous) was fed the control diet (CON), and 

the second group of cows (n = 8 of which 3 primiparous) was fed CON with 9.8% extruded 

linseed and 2.4% calcium ammonium nitrate (75% NO3 in DM) on a DM basis (LIN+NIT). 

The doses of extruded linseed and nitrate were estimated to reduce CH4 emission by 10 to 

15% when fed alone (Doreau et al., 2014) and by 20 to 30% when fed together. Diets were 

formulated to meet the requirements of lactating dairy cows (30 kg daily milk production 

without BW change) and to be equivalent in terms of CP, gross energy (GE) and starch 

content (INRA, 2010; Table 1). On a DM basis, diets were composed of 54% corn silage, 6% 

natural grassland hay, and 40% concentrate given as pellets (InVivo NSA, Longué Jumelles, 

France). 
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Table 1 Ingredients and chemical composition of the experimental diets 
 Diet1 
Item CON LIN+NIT 
Ingredients, % of DM 

Corn silage2 54.00 54.00 
Hay 6.00 6.00 
Pelleted concentrate   

Corn 11.88 12.00 
Barley 3.36 2.52 
Soybean meal 5.24 1.28 
Rapeseed meal 2.00 3.12 
Sunflower meal 0.00 0.80 
Extruded linseed3 0.00 9.80 
Soybean hulls 6.60 2.00 
Wheat bran 6.00 4.20 
Dehydrated beet pulp 0.94 0.00 
Calcium ammonium nitrate4 0.00 2.40 
Urea 0.80 0.00 
Calcium carbonate 1.13 0.00 
Dicalcium phosphate 0.44 0.26 
Beet molasses  1.20 1.20 
Mineral-vitamin premix 0.20 0.20 
Sodium chloride 0.17 0.18 
Fungicide 0.02 0.02 
Flavoring5 0.02 0.02 

Chemical composition6, % of DM 
OM 93.06 93.50 
CP 15.81 15.59 
NDF 34.74 31.91 
ADF 18.20 16.58 
Starch 27.98 28.78 
Ether extract, % of DM 3.23 6.75 
Total fatty acid, % of DM 2.54 5.86 
Gross energy, MJ/kg of DM 17.64 18.37 
FA profile, % of total FA 

C16:0 16.87 13.89 
C18:0 2.40 2.74 
C18:1 n-9 25.06 23.34 
C18:2 n-6 43.24 31.59 
C18:3 n-3 9.06 25.05 

1 CON = diet control; LIN+NIT = diet CON containing 10% extruded linseed and 1.8% nitrate on a DM basis. 
2 Fermentation characteristics of fresh silage juice: pH = 3.57; Acetic acid = 0.74 g/100g; Lactic acid = 3.01 
g/100g; N-NH3 = 0.02 g/100g. 
3 Extruded linseed, InVivo NSA, Longué Jumelles, France 
4 Calcium ammonium nitrate (5Ca(NO3)2.NH4NO3.10H2O; Phytosem, Pont-du-Château, France) contained 75% 
NO3 on a DM basis. 
5 Gusti, Nutriad, Chester, England. 
6 Average of chemical composition from samples (n = 3) taken in wk 5, 16 and 17. 
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Two weeks before starting the experiment, all cows were fed CON diet ad libitum. Then, 

LIN+NIT-group animals were diet-adapted by progressively replacing CON concentrate with 

LIN+NIT concentrate over a 2-wk adaptation period to achieve the dose of 2.4% calcium 

ammonium nitrate at the beginning of wk 3. Hay was offered once daily (0800 h) and corn 

silage mixed with concentrates was offered twice daily (66% at 0930 h and 34% at 1600 h). 

All cows were fed ad libitum except during measurement weeks in which offered feed was 

restricted to 95% of individual voluntary feed intake to ensure complete consumption of the 

diet. Forage-to-concentrate ratio was kept as close as possible to the target ratio by adjusting 

the amounts of offered feed every week based on quantity and composition of the refusals of 

the previous week. Cows had free access to water throughout the experiment. 

 

Measurements and Analyses 

Liveweight and Blood Methemoglobin. Animals were weighed the week before starting the 

experiment (wk 0) then in wk 5, 10, 14, and 20. Blood metHb levels were measured 3.5 h 

after morning feeding on cows fed LIN+NIT and compared with levels of control samples 

taken on these same animals in wk 0. Blood was then sampled twice a week from wk 1 to wk 

3 (adaptation to nitrate) and once a week from wk 4 to the end of the experiment (wk 17). 

Blood (10 mL) was sampled from the tail vein into K2-EDTA collection tubes (Venosafe, 

Terumo, Guyancourt, France) then carried on ice to the nearest hospital (CHU Gabriel 

Montpied, Clermont-Ferrand, France) to determine metHb concentrations by 

spectrophotometry within 1 h (UV-160, Shimadzu, Marne-La-Vallée, France; Kaplan, 1965). 

 

Intake. Offered feed and refusals were weighed and recorded daily throughout the experiment. 

During the 2 measurement periods (wk 5 and wk 16-17), samples (200 g) of hay and 

concentrates were taken once a week, and samples (200 g) of corn silage were taken twice a 

week. For each feed sample, one aliquot was used to determine DM content (103°C for 24 h) 

and the other aliquot was stored at 4°C (hay and concentrates) or -20°C (corn silage) until 

analysis of chemical composition. Refusals were measured for DM when they exceeded 2 

kg/d per animal during measurement weeks. Composition of refusals was identified as forage 

(hay, corn silage) or concentrate, and their chemical composition was considered similar to 

that of feed. 

Chemical composition analyses were carried out on fresh (hay, concentrates) or freeze-dried 

(corn silage) feedstuff samples after grinding (1 mm) (InVivo Labs, Chierry, France). Organic 



Persistency of methane mitigation by linseed plus nitrate Results 

111 
 
 

matter was determined by ashing at 550°C for 6 h (method 942.05; AOAC, 2005). Total N 

was analyzed by combustion according to the Dumas method (method 968.06; AOAC, 2005), 

and CP content was calculated as N × 6.25. Fiber (NDF and ADF) was determined by 

sequential procedures (Van Soest et al., 1991) after pretreatment with amylase and sulfuric 

acid, and was expressed exclusive of residual ash. Starch was analyzed using an enzymatic 

method (Faisant et al., 1995), and gross energy was analyzed by adiabatic bomb calorimetry 

(C200 model, IKA, Staufen, Germany). Ether extract was determined after acid hydrolysis 

(method 954.02; AOAC, 2005), and FA composition was determined by gas chromatography 

of methyl esters (method 969.33; AOAC, 2005). Juice from fresh corn silage was obtained by 

maceration to analyze pH, N-NH3 (Kjeldahl method, method 2001.11; AOAC, 2005), acetic 

and lactic acid (gas chromatography with a flame ionization detector) concentrations (InVivo 

Labs, Chierry, France). 

 

Methane Emissions. Daily total CH4 emissions were measured continuously using 4 open 

chambers (1 animal per chamber) in wk 5 and 16. Each animal spent 2 consecutive days (48 

h) in a chamber to measure the CH4 emissions of the 8 animals from a same group within the 

week. Animals were allocated to the same chamber for both measurement periods. 

The chambers (16.6 m³) were made of steel uprights with clear polycarbonate walls allowing 

sight contact between animals and with the farm personnel. They operated at a slight negative 

pressure, with an airflow oscillating between 700 and 800 m³/h (approximately 45 air 

renewals per hour). Airflow entered the chamber through an aperture at the bottom of the rear 

door (0.42 m²), and exited through an exhaust duct situated at the top of the chamber, over the 

head of the animal. Airflow in the exhaust duct of each chamber was continuously measured 

(CP300, KIMO, Montpon-Ménestérol, France), and recorded once every 5 min (KT-210-AO, 

KIMO, Montpon-Ménestérol, France). Concentration of gases in the barn and in the 4 

chambers was alternatively analyzed at a 0.1 Hz sample frequency for 5 min every 25 min 

using an infrared detector (Ultramat 6, Siemens, Karlsruhe, Germany) and recorded (Nanodac 

Invensys, Eurotherm Automation SAS, Dardilly, France). Gas concentrations between 2 

measurement intervals in the barn and in the chambers were estimated by linear regression. 

The detector was manually calibrated the day before each measurement week using pure N2 

and a mixture of CH4 (650 ppm) and CO2 (700 ppm) in N2. 

Chamber rear doors were opened twice daily: in the morning for milking and to remove feces 

and urine, and in the afternoon for milking. Chamber front doors were opened 3 times a day 
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for feeding. Front and rear doors were not simultaneously opened in order to avoid an air 

stream into the chamber. In total, the doors of each chamber were opened for 30 min per 24 h. 

Data collected while doors were open were deleted and a proportional calculation was applied 

to recover 24-h CH4 emissions. 

 

Diet Apparent Digestibility and Nitrogen Balance. Total tract apparent digestibility and N 

balance were determined from total and separate collection of feces and urine for 5 d during 

wk 17. To separate urine from feces, cows were fitted with flexible tubes connected to a 30-L 

flask containing 500 mL of 3 M sulfuric acid to achieve a urine pH lower than 3 and thereby 

avoid N volatilization. Feces and urine were removed once daily. 

Every day, after weighing and mixing of feces, a 1% fresh aliquot was used to determine DM 

(103°C for 24 h), and another 1% fresh aliquot was pooled across days for each animal and 

frozen (-20°C). At the end of the experiment, pooled samples were thawed, freeze-dried, and 

ground (1 mm) to determine OM, N, NDF, and ADF content as previously described for feed 

(InVivo Labs, Chierry, France). 

For urine, every day after weighing, a 1% fresh aliquot was pooled across days for each 

animal and frozen (-20°C). At the end of the experiment, after thawing, the N content of urine 

was determined by the Kjeldahl method (method 2001.11; AOAC, 2005 ; InVivo Labs, 

Chierry, France). 

 

Milk Yield and Composition. Throughout the experiment, milk yield was determined daily. 

For determination of milk composition (fat, protein, lactose, and urea concentration), 

individual milk samples (30 mL) mixed with potassium bichromate (Merck, Fontenay-Sous-

Bois, France) were taken and stored at 4°C before analysis within 2 d (Galilait, Theix, 

France). Samples were taken at morning and afternoon milking 2 d per week when animals 

were in the CH4 chambers (wk 5 and 16). Milk fat, protein, and lactose content were analyzed 

by infrared spectrometry with a 3-channel spectrophotometer (MilkoScan, Foss Electric, 

Hillerod, Denmark; method 972.16; AOAC, 1990). Milk urea concentration was analyzed by 

the dimethylamino-4-benzaldehyde colorimetric method (Potts, 1967). 

For analysis of nitrate and nitrite residues in individual milk, samples (300 mL) from the 

morning milking were taken once a week in wk 5, 9, 13, and 17. For analysis of nitrate and 

nitrite residues in pooled milk and milk products, the morning milk of all animals was pooled 

by diet in wk 9 and 17. Pooled milk was sampled (100 mL) and local farmhouse-style 
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products were made (yoghurts, whey, curd and 6-wk ripened Saint-Nectaire cheese). All 

samples were stored at 4°C before analysis within 2 d (Eurofins Analytics, Nantes, France). 

Nitrate and nitrite residues in individual milk samples were analyzed by ion chromatography 

(method 993.30; AOAC, 1990) with a limit of quantification (LoQ) of 10 mg/kg for nitrate 

and 5 mg/kg for nitrite. In pooled milk samples and processed milk products, nitrate and 

nitrite residues were analyzed by spectrometry after nitrate reduction with cadmium (ISO 

14673; ISO, 2004) with a LoQ of 5 mg/kg for nitrate and 0.5 mg/kg for nitrite. 

 

Rumen Fermentation Parameters. On the last day of wk 17, rumen samples were collected 3.5 

h after the morning feeding by stomach tubing (Shen et al., 2012). Samples were strained 

through a polyester monofilament fabric (250 µm pore size) and the filtrate was subsampled 

for VFA and NH3 concentration analyses and protozoa counting. For VFA analysis, 0.8 mL of 

filtrate was mixed with 0.5 mL of a 0.5 M HCl solution containing 2% (w/v) metaphosphoric 

acid and 0.4% (w/v) crotonic acid. For NH3 analysis, 1 mL of filtrate was mixed with 0.1 mL 

of 5% orthophosphoric acid. These samples were stored at -20°C until analysis. For protozoa 

counting, 2 mL of filtrate was mixed with 2 mL of methyl green-formalin saline solution, and 

stored at room temperature in the dark until counting. 

Concentrations of VFA and NH3 were analyzed by gas chromatography with a flame 

ionization detector and by colorimetry, respectively (Morgavi et al., 2008). Protozoa were 

counted by microscopy, and categorized as either small (< 100 µm) or large (> 100 µm) 

entodiniomorphs, or as holotrichs (Dasytricha or Isotricha) (Williams and Coleman, 1992). 

Data for protozoa were log10-transformed before statistical analysis. 

 

Statistical Analyses 

Data were analyzed using the MIXED procedure of SAS (Version 9.4; SAS Institute, 2009). 

All statistical models included the animal nested within diet as random effect.  

Data collected throughout the experiment (intake, milk production and composition) or on 

two occasions (CH4 emissions) were averaged per week as there was no statistical difference 

between days within a week. The statistical model included diet (n = 2), week (n = 17 for 

intake and milk and n = 2 for CH4), and diet × week interaction as fixed effects. Week was 

treated as a repeated measurement. For intake, milk production and composition (except for 

urea), data collected the week before starting the experiment (wk 0) were used as covariates. 

For continuous measures of CH4 emissions, the model included diet (n = 2), week (n = 2), 
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hour (n = 24), diet × week and diet × hour interactions as fixed effects. Hour was treated as a 

repeated measurement. As the interaction diet × week was not statistically significant, 

averaged data of the two weeks are presented in Figure 4. For the repeated measurements, 

several covariance structures were tested (variance component, autoregressive, compound 

symmetry, unstructured, and toeplitz) and structure with the lowest Akaike’s information 

criteria was chosen. Then, variance component was always used as covariance structure, 

except for daily CH4 emissions where compound symmetry was used. 

Data collected at the end of the experiment (apparent digestibility, N balance, rumen 

fermentation and microbial parameters) were analyzed with diet (n = 2) as fixed factor.  

Differences between diets were considered significant at P ≤ 0.05, and trends were discussed 

at 0.05 < P ≤ 0.1. Least squares means are reported throughout. 

 

Results 

 

Liveweight and Blood Methemoglobin 

During the 17-wk experiment, cows fed CON or LIN+NIT lost on average 32 and 22 kg to 

reach a final BW of 697 ± 62 kg and 662 ± 67 kg, respectively. During the 3-wk period of 

adaptation to nitrate, the maximum metHb level was 13.0% (Figure 1). From wk 4 to wk 17, 

average metHb level was 1.2%. Maximum metHb level peaked at 30.8% for one cow in wk 

17, whereas average metHb level for all other cows on that week averaged 4.4%. 
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Figure 1 Boxplot of blood metHb levels of lactating cows fed 10% extruded linseed plus 
1.8% nitrate (n = 8) during 17 weeks. In wk 0, animals were fed a control diet. Linseed and 
nitrate were firstly incorporated in wk 1. Blood was analyzed in wk 0 and then twice a week 
during wk 1, 2 and 3 and once a week from wk 4 to 17. The box represents the quartiles with 
the median within the box, and the vertical lines represent the maximum and minimum value 
within 1.5 interquartile range of the higher and lower quartile, respectively. Values greater 
than 1.5 interquartile range are considered as outliers and are identified with a star. The 
arrows indicate the measurement weeks. 
 

Intake and Milk Yield 

Daily DMI was similar between diets in wk 1, 2, 3, and 17 (Figure 2) and tended to be lower 

with LIN+NIT from wk 4 to 16 (-5.1 kg/d on average; P ≤ 0.10). This tendency between diets 

was also observed for DM and OM intake (P = 0.070 and P = 0.078, respectively) when cows 

were in chambers for 2 d for CH4 measurements (wk 5 and 16; Table 2). Fiber intakes were 

lower with LIN+NIT (P = 0.008 for NDF and P = 0.007 for ADF) whereas dietary treatments 

did not affect gross energy intake (Table 2).   

We found no between-diet difference in milk production over two thirds of the experiment 

(11 wk out of 17; Figure 3), whereas in wk 4, 5, 7, 9, 10, and 17, milk production was lower 

with LIN+NIT (-2.5 kg/d on average; P ≤ 0.05). During the 2 d in chambers (wk 5 and 16), 

cows fed LIN+NIT also tended to produce less milk (-2.8 kg/d on average; P = 0.078; Table 

2). Feed efficiency was similar between diets in wk 5 and tended to be higher for LIN+NIT in 

wk 16 (diet × week, P = 0.079; Table 2). 
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Figure 2 Dry matter intake of lactating cows fed a control diet (CON; n = 8) or CON 
supplemented with 10% extruded linseed plus 1.8% nitrate (LIN+NIT; n = 8) during 17 
weeks (averages of 4 days per week). Errors bars indicate SD. Symbols indicate weekly 
statistical comparison between CON and LIN+NIT (†P ≤ 0.10; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 
0.001). Arrows indicate measurement weeks. 
 

 

 

Figure 3 Milk yield of lactating cows fed a control diet (CON; n = 8) or CON supplemented 
with 10% extruded linseed plus 1.8% nitrate (LIN+NIT; n = 8) during 17 weeks (averages of 
4 days per week). Errors bars indicate SD. Symbols indicate weekly statistical comparison 
between CON and LIN+NIT (†P ≤ 0.10; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001). Arrows 
indicate measurement weeks. 
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Table 2 Daily nutrient intake, milk yield and composition, and methane emissions of lactating cows fed a control diet (n = 8) or a diet 
supplemented with a combination of linseed and nitrate (n = 8) 

 Diet1 

SEM 
P-value Item2 CON LIN+NIT 

Week number3 5 16 5 16 Diet Week Diet × Week 
Nutrient intake 

DM, kg/d 20.8 20.7 18.8 17.3 1.00 0.070 0.182 0.293 
OM, kg/d 19.4 19.2 17.6 16.2 0.93 0.078 0.183 0.292 
NDF, kg/d 7.25 7.19 6.03 5.55 0.338 0.008 0.204 0.326 
ADF, kg/d 3.80 3.80 3.13 2.88 0.177 0.007 0.205 0.319 
Gross energy, MJ/d 367.5 364.3 345.3 318.0 17.82 0.183 0.172 0.276 

Milk yield and composition 
Milk yield, kg/d 32.6 29.9 28.9 28.1 1.05 0.078 0.001 0.052 
Feed efficiency4, kg milk/kg DMI 1.57 1.46 1.58 1.67 0.064 0.148 0.888 0.079 
Fat, g/d 1393.1 1205.7 1030.3 1075.1 91.67 0.060 0.198 0.045 
Protein, g/d 1031.0 996.9 851.4 865.3 45.24 0.026 0.615 0.243 
Lactose, g/d 1654.6 1501.8 1489.3 1365.5 54.60 0.060 <0.001 0.608 
Urea, g/d 7.5 6.1 2.4 2.0 0.55 <0.001 0.061 0.223 
Fat, g/kg 41.9 39.1 36.5 39.1 2.23 0.298 0.961 0.185 
Protein, g/kg 31.5 33.2 29.4 30.9 0.78 0.045 0.009 0.902 
Lactose, g/kg 50.7 50.1 51.9 48.8 0.72 0.948 0.002 0.027 
Urea, mg/dL 22.2 19.4 8.7 7.7 1.51 <0.001 0.216 0.524 

Methane emission 
g CH4/d 470.6 459.1 254.0 247.6 34.13 <0.001 0.640 0.895 
g CH4/kg DM intake 21.5 20.8 14.6 15.3 1.30 0.003 1.000 0.310 
g CH4/kg milk 14.0 14.8 9.4 9.3 1.02 0.002 0.560 0.516 
% of gross energy intake 6.1 5.9 4.0 4.2 0.36 0.001 0.988 0.307 

1 CON = diet control; LIN+NIT = diet CON containing 10% extruded linseed and 1.8% nitrate on a DM basis. 2 Average of 2 d in chambers in wk 5 and 16. 
For intake, milk yield and composition, a covariate (data obtained in wk 0) was included in the statistical model. 3 Number of weeks of distribution of dietary 
treatment. 4 Feed efficiency = milk yield/DMI. 
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In chambers, milk fat and lactose concentrations were similar between diets, whereas 

LIN+NIT reduced milk protein (P = 0.045) and urea (P < 0.001) contents by 6.8% and 60.6%, 

respectively. For both diets, nitrate and nitrite concentrations in individual milk samples, 

pooled milk samples, and milk products were lower than the LoQ, except for curd from CON 

in wk 17 and cheese from CON and LIN+NIT in wk 9 in which low nitrite concentrations 

were detected (1.5 mg/kg). 

 

Methane Emissions 

Diet LIN+NIT reduced CH4 emissions by 29.3% when expressed in grams per kilogram of 

DMI (P = 0.003), and by 35.1% when expressed in grams per kilogram of milk (P = 0.002). 

Whatever the mode of expression of CH4 emission, there was no significant effect of week or 

diet × week interaction (Table 2). This shows that CH4 emissions of CON and LIN+NIT were 

similar between the 2 wk of measurements, and that the difference between diets was 

repeatable, even after 11 wk of dietary treatments. 

Methane emissions for a 24-h period, averaged for the 2 wk of measurements, are presented in 

Figure 4. Methane emissions were similar between diets during the 4 h preceding the morning 

feeding, then LIN+NIT reduced CH4 emissions for the first 12 h after the morning meal (P ≤ 

0.05). 

 

Diet Apparent Digestibility and Nitrogen Balance 

Apparent digestibility of DM, OM, and NDF was similar between diets, and averaged 67.5, 

69.4, and 50.6%, respectively (Table 3). The LIN+NIT diet tended to reduce ADF (-3.8%; P 

= 0.070) and CP (-2.9%; P = 0.074) apparent digestibility. 
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Figure 4 Daily CH4 production pattern of lactating cows fed a control diet (CON; n = 8) or CON supplemented with 10% extruded linseed plus 
1.8% nitrate (LIN+NIT; n = 8) during 17 weeks (raw data; averages of 2 days and 2 weeks of CH4 measurement; wk 5 and 16). Errors bars 
indicate SD. Symbols indicate hourly statistical comparison between CON and LIN+NIT (†P ≤ 0.10; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001). 
Arrows indicate time of feeding. 
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Nitrogen intake was 22% lower with LIN+NIT (P = 0.001). Consequently, LIN+NIT led to 

lower fecal N losses, urinary N losses, and N retained in milk (P = 0.016, P < 0.001, and P = 

0.003, respectively). However, N distribution was unaffected by diet. On average for both 

diets, 35.7% (P = 0.074), 24.1% (P = 0.071), and 29.9% (P = 0.937) of N intake was directed 

towards feces, urine, and milk, respectively. Finally, N balance was positive and similar 

between diets and averaged 52.6 g/d or 10.5% of N intake. 

 

Table 3 Total tract apparent digestibility and nitrogen balance of lactating cows after 17 
weeks feeding a control diet (n = 8) or a diet supplemented with a combination of linseed and 
nitrate (n = 8)  
 Diet1  

P-value Item2 CON LIN+NIT SEM 
Total tract apparent digestibility, % 

DM 67.8 67.2 0.74 0.531 
OM 69.8 69.0 0.73 0.458 
NDF 51.3 49.9 1.11 0.393 
ADF 47.5 43.7 1.35 0.070 
CP 65.8 62.9 1.05 0.074 
Starch 98.5 97.9 0.24 0.109 

N intake, g/d 548.1 425.1 21.56 0.001 
Fecal N losses 

g/d 187.3 156.8 7.88 0.016 
% of N intake 34.2 37.1 1.05 0.074 

Urinary N losses 
g/d 138.2 96.1 5.74 <0.001 
% of N intake 25.4 22.7 0.98 0.071 

Total fecal and urinary N losses 
g/d 325.5 253.0 11.16 <0.001 
% of N intake 59.6 59.7 1.36 0.939 

Milk N output 
g/d3 163.5 126.1 7.24 0.003 
% of N intake 29.9 29.8 1.05 0.937 

N Balance4 
g/d 59.1 46.1 9.87 0.365 
% of N intake 10.5 10.5 1.73 0.990 

1 CON = diet control; LIN+NIT = diet CON containing 10% extruded linseed and 1.8% nitrate on a 
DM basis. 
2 Average of 5 d of total tract apparent digestibility and N balance measurement in wk 17. No 
covariate was included in the statistical model. 
3 Milk N output = (milk yield × milk protein concentration)/average N content in milk (6.38 g N/g 
milk protein). 
4 N balance = N intake - total fecal and urinary N losses - milk N output. 
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Rumen Fermentation and Microbial Parameters 

Concentration of NH3 in the rumen did not change with diets (Table 4). Diet LIN+NIT 

reduced total VFA (-12 mM; P = 0.020) and propionate concentrations (-8 mM; P = 0.003) 

without affecting acetate and butyrate concentrations. These differences in VFA profile 

induced an increase in C2/C3 and C2+C4/C3 ratios (P = 0.003) with LIN+NIT. 

Total concentration of protozoa in the rumen tended to increase with LIN+NIT (+53%; P = 

0.052). This was linked to a higher concentration of small entodiniomorphs and Dasytricha (P 

= 0.047 and P = 0.014, respectively). Concentrations of large entodiniomorphs and Isotricha 

were unaffected by diets. 

 

Table 4 Fermentation parameters and protozoal concentration in the rumen of lactating cows 
after 17 weeks feeding a control diet (n = 8) or a diet supplemented with a combination of 
linseed and nitrate (n = 8)  
 Diet1  

P-value Item2 CON LIN+NIT SEM 
NH3, mM 10.14 10.97 1.648 0.736 
VFA concentration, mM 

Total VFA 104.1 91.7 3.35 0.020 
Acetate (C2) 58.6 56.9 1.95 0.561 
Propionate (C3) 25.6 17.6 1.65 0.003 
Butyrate (C4) 15.2 14.1 1.61 0.635 
Minor VFA3 4.71 3.08 0.577 0.055 

C2/C3 2.36 3.27 0.170 0.003 
(C2+C4)/C3 2.99 4.08 0.213 0.003 
Total protozoa, log10/mL 5.03 5.32 0.095 0.052 
Entodiniomorphs, log10/mL 

Small (< 100 µm) 5.01 5.31 0.095 0.047 
Large (> 100 µm) 3.39 3.11 0.217 0.387 

Holotrichs, log10/mL 
Dasytricha (< 100 µm) 2.22 3.02 0.191 0.014 
Isotricha (> 100 µm) 3.24 2.48 0.115 0.140 

1 CON = diet control; LIN+NIT = diet CON containing 10% extruded linseed and 1.8% nitrate on a 
DM basis. 
2 Data from rumen samples taken the last day of wk 17. No covariate was included in the statistical 
model. 
3 Minor VFA = sum of isobutyrate, isovalerate, valerate and caproate. 
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Discussion 

 

Intake, Milk Production, and Nitrogen Balance 

Throughout the experiment, intake and milk production tended to be lower for dairy cows 

supplemented with LIN+NIT. As feed efficiency (kg of milk per kg of feed) was similar 

between diets, the lower intake may explain the lower milk production. The lower intake with 

LIN+NIT is difficult to explain because diets had similar net energy content. In addition, in a 

short-term experiment, intake was similar between non-lactating cows fed with or without 

linseed plus nitrate (Guyader et al., 2014a). Individual nitrate supplementation at higher doses 

than here (1.8%) did not reduce intake of restricted-fed dairy cows (2.1%, Van Zijderveld et 

al., 2011; 2.0%, Veneman et al., 2014) and sheep (2.5%, Nolan et al., 2010; 2.6%, Van 

Zijderveld et al., 2010) but tended to reduce DMI of dairy cows (2.0%, Veneman et al., 2014) 

and steers (2.3%, Hulshof et al., 2012) fed ad libitum. Linseed applied at doses higher than 

here (3.5% added fat) did not have a negative effect on the intake or milk production of dairy 

cows (5.1% added fat, Ferlay et al., 2013; 4% added fat, Veneman et al., 2014) fed ad libitum 

or restricted. One study reported a lower DMI (-7%) by lactating cows fed a grass silage-

based diet supplemented with linseed (3% added fat; Martin et al., 2011). The only study that 

simultaneously used linseed plus nitrate (4% added fat plus 2.3% nitrate) on cows did not 

result in intake changes, but the cows were non-lactating and not fed ad libitum (Guyader et 

al., 2014a). Consequently, we hypothesize that LIN+NIT fed together ad libitum may have an 

inhibitory effect on voluntary intake linked to a tendency for lower ADF apparent 

digestibility. Earlier reviews have highlighted the negative correlation between fiber 

digestibility and voluntary intake through a lower passage rate of particles from the rumen 

and greater rumen filling (Allen, 1996). Further work would help determine the optimal 

quantity of dietary LIN+NIT that can be provided without reducing intake, which is also an 

essential step towards making this feeding strategy acceptable at the farm scale. 

The LIN+NIT diet had no effect on concentration and production of fat and lactose. This 

result confirms previous experiments on dairy cows supplemented with nitrate (2.1% nitrate 

in a corn silage based diet; Van Zijderveld et al., 2011) or with incremental amounts of 

extruded linseed (up to 5.1% added fat in hay- or corn silage-based diets; Ferlay et al., 2013). 

The LIN+NIT diet reduced milk protein concentration by 7% (-2.2 g/kg milk) and milk 

protein production by 15% (-155.6 g/d). In dairy cows fed 2.1% nitrate, Van Zijderveld et al. 

(2011) also reported reduced milk protein concentrations (-5% or -1.4 g/kg of milk) but no 
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effect on milk protein production whereas milk yield was stable. The reduced milk protein 

content may not be linked to linseed supplementation, as milk protein content of dairy cows 

was not affected by 3.5% added fat from extruded linseed in hay- or corn silage-based diets 

(Ferlay et al., 2013). 

Nitrogen balance was positive for both diets, even if it may be overestimated because volatile 

N losses from faeces and urine, dermal and scurf N losses were not taken into account 

(Spanghero and Kowalski, 1997). Nevertheless, N balance was similar between diets with the 

same N distribution between milk, feces and urine. In addition, average N efficiency (N in 

milk/N intake) was similar between CON and LIN+NIT (30%) and close to the data given in 

the literature (25%, with a range between 15 and 40%; Calsamiglia et al., 2010). This result 

shows that dairy cows use nitrate in the same way as they use other N sources. With 

LIN+NIT, milk urea concentration and production were 12.6 mg/dL and 4.6 g/d less, 

respectively, than CON. This marked decrease was surprising and in contradiction with 

previous experiments on dairy cows showing no effect of extruded linseed (1.1% added fat; 

Pezzi et al., 2007) or nitrate (2.1% nitrate; Van Zijderveld et al., 2011) on milk urea content. 

We assumed that the between-diet difference in milk urea comes from the lower N intake of 

animals fed LIN+NIT, as N intake is known to correlate positively with milk urea (Spek et al., 

2013). 

The main concern when using nitrate in animal nutrition is its potential negative effect on 

animal and human health. To avoid increase of blood metHb in animals (Lewis, 1951), 

progressive adaptation to nitrate is essential (Lee and Beauchemin, 2014). In addition, it is 

important that nitrate is homogenously incorporated in the ration, not top dressed, to avoid 

swift ingestion of the daily dose. By applying these recommendations, we did not observe 

rises in metHb levels in animals fed LIN+NIT, similarly to a previous experiment on dairy 

cows fed 2.1% nitrate (Van Zijderveld et al., 2011). However, we cannot explain the greater 

metHb level observed in the last week of the experiment. In terms of human health, nitrate 

and nitrite are common food additives used for their anti-bacterial properties against lethal 

pathogens (European Food Safety Authority, 2009). However, an excess of nitrite from nitrate 

reduction in the mouth may promote gastric inflammation (Weitzberg and Lundberg, 2013). 

Regulations have been adopted to keep concentrations of nitrate and nitrite residues within 

recommended daily allowances for nitrate and nitrite intake (3.75 and 0.13 mg/kg BW per 

day, respectively; European Food Safety Authority, 2009), and Europe has limited nitrate 

concentration in drinking water to 50 mg/L (Benjamin, 2000). Nitrate intake mainly comes 
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from vegetables (60 to 80%), water (15 to 20%) and animal-based products (10 to 15%), 

while 80 to 85% of nitrite exposure comes from conversion of nitrate in the mouth. 

Vegetables such as spinach can contain up to 1,614 mg nitrate per kg. Here, nitrate and nitrite 

residues in milk or milk products were lower than the LoQ of the technique (5 mg/kg for 

nitrate and 0.5 mg/kg for nitrite), except in cheese from CON and LIN+NIT (1.5 mg/kg 

nitrite). These novel data confirm previous work on lamb meat (El-Zaiat et al., 2013), and 

show that animals can metabolize nitrate and nitrite without transferring residues into animal 

products. Consequently, long-term supplementation with nitrate (4 months) can be safely 

proposed in ruminant nutrition without risks for human health, as a CH4-mitigating strategy 

and a source of non-protein nitrogen to replace urea. 

Methane Emissions and Associated Digestive Mechanisms 

In our experiment using open chambers, CH4 emissions of dairy cows fed CON averaged 21.2 

g/kg DMI. This value is close to the estimate calculated by an equation based on OM content 

of the diet and OM digestibility (21.4 g/kg DMI; Sauvant et al., 2011), and is also in 

accordance with the average CH4 emission of cattle fed diets without supplementation of 

CH4-mitigating treatments (20.7 g/kg DMI, number of treatments = 33) as compiled from a 

database used for a previous meta-analysis (Guyader et al., 2014b). 

The reduction in CH4 emission (g/kg of DMI) averaged 29% when dairy cows were 

supplemented with 1.8% nitrate plus 3.5% added fat from extruded linseed, corresponding to 

our expected theoretical CH4 reduction. This confirms our previous results obtained on non-

lactating cows supplemented with 2.2% nitrate plus 4% added fat from linseed oil (Guyader et 

al., 2014a) and shows that LIN+NIT can efficiently reduce CH4 emissions regardless of the 

physiological stage of cows. We also observed a severe CH4-mitigating effect of LIN+NIT 

just after feeding, which was most probably linked to the effect of nitrate quickly metabolized 

in the rumen. This result agrees with previous studies (Van Zijderveld et al., 2010; Guyader et 

al., 2014a). Methane reduction with LIN+NIT corresponds to a saving of 2% of gross energy 

intake, without positive responses on apparent digestibility, weight gain or body condition 

score (data not shown) of the animals. The absence of relationship between CH4 reductions 

and dairy cow performance has also been reported previously (Van Zijderveld et al., 2011). 

The CH4-mitigating effect of LIN+NIT was maintained throughout the 4 months of the 

experiment, indicating that this dietary strategy could be applied on farms. The long-term 

CH4-mitigating effect of nitrate (2.1%) and extruded linseed (2.5% added fat) fed individually 
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to dairy cows was also maintained during 3 mo (Van Zijderveld et al., 2011) and 1 yr (Martin 

et al., 2011), respectively. 

The LIN+NIT diet did not change rumen protozoa concentration as previously observed with 

non-lactating cows supplemented with 2.2% nitrate plus 4% added fat from linseed (Guyader 

et al., 2014a). Diet LIN+NIT increased the acetate/propionate and 

(acetate+butyrate)/propionate ratios due to a decrease in ruminal propionate which is normally 

a competitive pathway of methanogenesis (Martin et al., 2010). This contrasts with our 

previous work in which LIN+NIT did not change rumen fermentation parameters (Guyader et 

al., 2014a). However, in the present work, the relationship between CH4 production and 

rumen fermentation and microbial parameters should be interpreted with caution given the 

large differences in time scale between CH4 measurement periods and rumen samplings 

through stomach tubing. Consequently, the CH4-mitigating effect of LIN+NIT would not be 

explained by a reduction in acetate and butyrate synthesis, nor by a reduction in protozoa 

which are important H2-producers. Other mechanisms must be involved in the CH4-mitigating 

effect of LIN+NIT. Both supplements may act as H2 sinks. Based on stoichiometric 

calculation and assuming complete reduction of nitrate to nitrite and ammonia, and complete 

biohydrogenation of polyunsaturated fatty acids, the reduction of 1 mol nitrate reduces CH4 

by 1 mol, and the biohydrogenation of 1 mol C18:1, C18:2, and C18:3 reduces CH4 by 0.25, 

0.50 and 0.75 mol, respectively. Extending this calculation here, 325.8 g/d of nitrate ingested 

by dairy cows would have reduced CH4 by 5.25 mol/d (or 90.1 g/d) and 600.9 g of fatty acid 

ingested by dairy cows (23, 32, and 25% of C18:1, C18:2, and C18:3, respectively) would 

have reduced CH4 by 0.87 mol/d (or 14.9 g/d). In total, H2 consumption by LIN+NIT would 

have reduced CH4 emissions by 105.0 g/d, explaining 49% of the observed CH4 reduction. 

The remaining decrease can thus be explained by non-stoichiometric processes. The LIN+NIT 

diet may also act on rumen microbiota. Previous work showed that nitrate reduced both 

quantity (2.6% nitrate to sheep, Van Zijderveld et al., 2010) and activity (2.3% nitrate to non-

lactating cows, Guyader et al., 2014c) of methanogens. The anti-methanogenic effect of 

polyunsaturated fatty acid has also been demonstrated in pure culture of methanogens (Prins 

et al., 1972) and in previous experiments with cattle (4% added fat, Guyader et al., 2014c; 

3.5% added fat, C. Martin, unpublished data). In addition, H2 production must have been 

lowered with LIN+NIT owing to a lower quantity of fermentable substrates in the rumen 

(lower DMI, quantity of carbohydrates due to lipids substitution and fiber digestibility) which 

directly reduced CH4 emissions. 
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Conclusions 

The association of linseed plus nitrate is an efficient feeding strategy to reduce CH4 emissions 

in the long-term without altering diet apparent digestibility, N efficiency or animal health. 

However, the energetic benefits of the decreased CH4 emissions to the animals were not 

observed. Additional data is needed on changes in rumen microbiota in order to fully 

understand the CH4-mitigating effect of the association of linseed plus nitrate. Moreover, to 

make this dietary strategy acceptable by farmers, further work is required to optimize the 

doses of linseed plus nitrate in an effort to avoid concomitant reduction in intake and milk 

production. A life cycle assessment will also be needed to evaluate the environmental benefit 

and economic cost of this dietary strategy in order to raise the prospects of using this strategy 

at farm level. 
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STEP 3: Absence of methane mitigating effect of tea saponin 

fed to non-lactating and lactating cows 

 

Objective 

1/ To test the effect of a different feeding strategy acting on H2 production (saponin from tea, toxic effect 

towards protozoa) on CH4 emissions and associated ruminal mechanisms of non-lactating and lactating cows. 

2/ To assess its effect on diet digestibility, N balance and lactating performances. 

 

Experimental approach 
 

 

 

 

 

 

WEEK 1 2 3 4 5 

Daily intake      

Blood metHb (3 h after morning feeding, once a week)      

Total tract digestibility, N balance (6 days) 
Rumen fermentation (3 h after morning feeding, twice a week) 

     

Daily kinetics of CH4 emissions (4 days)      

 

 

Experimental approach 

 

 

 

 

 

 

 

WEEK 1 2 3 4 5 

Daily intake, milk yield      

Total tract digestibility, N balance 
Rumen fermentation (3.5 h after morning feeding, once a week) 

     

Daily kinetics of CH4 emissions (2 days) 
Milk composition (once a week) 

     

 

 

 

4 non-lactating cows 2 × 2 Factorial design CON-1: 50% hay + 50% pelleted concentrate 

NIT-1 : CON + 2.3% nitrate (from calcium nitrate) 

TEA-1: CON + 0.5% saponin (from tea) 

TEA+NIT-1 : CON + 0.5% saponin + 2.3% nitrate 

4 experimental periods of 5 weeks (wk 1 to 3 = Adaptation; wk 4 to 5 = Measurement) 

Trial 1 

8 lactating cows 2 × 2 Crossover design CON-2: 54% corn silage + 6% hay + 40% pelleted 
concentrate 
TEA-2: CON + 0.5% saponin (from tea) 

Trial 2 

4 experimental periods of 5 weeks (wk 1 to 3 = Adaptation; wk 4 to 5 = Measurement) 
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Main results 

 

• Intake tended to be reduced by tea saponin (-12% in trial 2). Milk yield was reduced by 18% without 

modification in its composition. 

• Methane emissions from non-lactating and lactating cows were unaffected by tea saponin. This plant 

extract also poorly modified rumen fermentation parameters. 

• Tea saponin did not affect N balance but tended to improve fiber digestibility in both experiments. 

 
 
Conclusion 

Tea saponin tended to reduce zootechnical performances of cattle, without reducing their CH4 emissions 

whatever the physiological stage. We assume that the active compound of the plant was degraded during the 

pelleting process. This plant extract tended to increase fiber digestibility of lactating cows, without affecting N 

balance. Further work is required to improve tea saponin palatability and to confirm its positive effect on fiber 

digestibility. 

  

Trial 1 Trial 2 
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Absence of methane-mitigating effect of tea saponin fed to non-

lactating and lactating cows 
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Abstract 

Two in vivo trials were conducted to study the effect of tea saponin alone (or in association 

with nitrate) on methane emissions and digestive processes in cows. Trial 1 was designed as a 

2 × 2 factorial design on four rumen cannulated non-lactating cows fed four diets: 1/ control 

(CON-1) consisting of hay and concentrate (50:50 on a DM basis), 2/ control with 0.5% tea 

saponin (TEA-1), 3/ control with 2.3% nitrate (NIT-1) and 4/ control with 0.5% tea saponin 

and 2.3% nitrate (TEA+NIT-1). Trial 2 was carried out on eight lactating cows fed two diets 

in a 2 × 2 crossover design: 1/ control (CON-2) consisting of maize silage, hay and 

concentrate (54:6:40 on a DM basis) and 2/ control with 0.5% tea saponin (TEA-2). In both 

trials, each experimental period lasted five weeks including two last weeks of measurement 

during which animals were restricted fed between 90-95% of ad libitum intake. Intake and 

milk production were daily measured all along trials. Daily methane emissions were 

quantified using open chambers, total tract digestibility and nitrogen balance were determined 

from total feces and urine collected separately, rumen fermentation parameters and protozoal 

concentration were analyzed from samples taken after morning feeding. In both trials, tea 

saponin tended to reduce DM intake (-12% in trial 2). Milk production was reduced (-18%) 

with TEA-2, most likely because of the tendency for lower intake as feed efficiency was 

similar between diets. Methane emissions (g/kg dry matter intake) were similar between 

CON-1 and TEA-1, and were reduced to the same extent with NIT-1 and TEA+NIT-1 (-28% 

on average). On dairy cows, methane emissions (g/kg dry matter intake) were increased by 

14% with TEA-2. Total tract digestibility and nitrogen balance were similar among diets in 

the two trials, except for ADF digestibility which tended to be improved with TEA-2 (+8%). 

Ruminal fermentative parameters (ammonia, lactate, and volatile fatty acids ratios) were 

poorly changed by diets: we observed an increase of acetate and a decrease of butyrate with 

nitrate-containing diets in trial 1, and an increase of acetate with tea saponin in trial 2. 

Whatever trial, protozoa concentrations were similar among diets. We conclude that tea 

saponin was not efficient to reduce methane emissions from cattle in our experimental 

conditions. Further work is required to confirm positive effect of this plant extract on fiber 

digestibility. 

 

Keywords: cattle, digestibility, methane, nitrate, tea saponin 
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Implications 

The use of plant extracts as saponins may be a natural method to mitigate methane emissions 

from ruminants. Diets supplemented with tea saponin included into pelleted concentrates 

failed to reduce methane emissions in non-lactating and lactating cows. The tendency of this 

plant extract to improve fiber digestibility in lactating cows needs to be confirmed. Milk 

production was reduced, most likely because of the tendency for lower intake, but feed 

efficiency was similar between diets. We suspect that the plant active compound in tea 

saponin was denatured during the pelleting process. 

 

Introduction 

Saponins have been considered as promising natural substances for methane (CH4) mitigation 

in ruminants. This plant extract would have a toxic effect on protozoa through the formation 

of complex with sterols present in their membrane, inducing cell lysis (Goel and Makkar, 

2012). However, the in vivo effect of saponins on methanogenesis and protozoa in the rumen 

presents contradictory results according to the source and supplemented dose. The decrease of 

protozoa (between 58 and 88%) with saponins supplementation either involved a reduction (-

13% with 1% sarsaponin from Yucca schidigeria, YS; Lila et al., 2005), an increase (+14% 

with 4% saponin from Medicago sativa; Klita et al., 1996), or no variation (up to 0.13% 

saponins from YS and Quillaja saponaria, QS; Pen et al., 2007; Holtshausen et al., 2009) in 

CH4 emissions. 

Recent reviews highlighted a high anti-methanogenic potential for tea saponin (Wang et al., 

2012; Gerber et al., 2013). This novel saponin is extracted from the seeds, leaves and roots of 

the tea tree from Japan (Camellia sinensis) or Sri Lanka (Camellia assamica). Reduction of 

CH4 emissions (g/kg dry matter intake, DMI) with tea saponin (0.25 to 0.5% of DM) 

supplemented to sheep (Yuan et al., 2007; Mao et al., 2010; Zhou et al., 2011) or steers (Li 

and Powers, 2012) averaged 26% per percentage added tea saponin. Mao et al. (2010) related 

this CH4-mitigating effect with a significant reduction of ruminal protozoa concentration (-

41%). In addition, the association of dietary strategies acting on both protozoa (linseed, 

saponin) and methanogens (nitrate) additively lowered methanogenesis in vitro (saponin from 

QS plus nitrate; Patra and Zhongtang, 2013), and in vivo (linseed plus nitrate fed to cows; 

Guyader et al., 2014b). Tea saponin would also improve in vitro organic matter (OM) 

digestibility (+21%; Wei et al., 2012) but this effect has never been tested in vivo. 
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The objective of this study was to test the effect of tea saponin alone or in association with 

nitrate fed to lactating and non-lactating cows on CH4 emissions, diet digestibility, 

fermentation parameters and protozoa concentration in the rumen. 

 

Material and methods 

Two experiments were conducted at the animal facilities of the Experimental Unit UERT at 

the INRA’s Theix Research Centre (Saint-Genès-Champanelle, France). Trial 1 was led from 

January to June 2013 and trial 2 was led from January to April 2014. Procedures involving 

animals were performed in accordance with the French Ministry of Agriculture guidelines for 

animal research and with the applicable EU guidelines and regulations on experiments with 

animals (http://www2.vet-lyon.fr/ens/expa/acc_regl.html). 

 

Experimental design and animal feeding in trial 1 

Four multiparous non-lactating Holstein cows fitted with rumen cannulas (initial average BW 

of 658 ± 26 kg, mean ± s.d.) were randomly assigned to four dietary treatments in a 2 × 2 

factorial design, using either calcium nitrate or tea saponin at two different doses (0 and 3% 

for calcium nitrate; 0 and 0.5% for tea saponin). Each experimental period lasted five weeks, 

with measures performed in the final two weeks (weeks 4 & 5). All along the experiment, 

animals were housed in individual stalls. On a dry matter (DM) basis, diets were: 1) control 

(CON-1), 2) CON-1 with 0.5 % tea saponin (TEA-1), 3) CON-1 with 2.3% nitrate (NIT-1), 4) 

CON-1 with 0.5% tea saponin and 2.3% nitrate (TEA+NIT-1). The doses of tea saponin and 

nitrate were calculated to achieve a theoretical CH4 reduction of 20% (Mao et al., 2010; Van 

Zijderveld et al., 2011) and 40% when distributed alone or in association, respectively. 

Diet CON-1 consisted of 50% natural grass hay and 50% concentrate (DM basis; Table 1) and 

met the maintenance requirements of non-lactating cows (INRA, 2010). Diets were 

formulated to get similar levels of starch (26.0%), protein (12.2%), NDF (40.1%) and calcium 

(Ca, 0.67%). Diets were adjusted to have the same nitrogen (N) and Ca concentrations by 

including urea and calcium carbonate in CON-1 and TEA-1. Forage was distributed without 

further processing and all other ingredients including tea saponin or nitrate or both were 

pelleted in concentrates (InVivo NSA, Chierry, France). 

Two weeks before starting the experiment, cows were fed CON-1 ad libitum. Then, all along 

the trial, feed was restricted to 90% of individual voluntary feed intakes to ensure complete 

consumption of the diet. At the beginning of each experimental period, TEA-1, NIT-1 and 

TEA+NIT-1 concentrates were progressively supplied by replacing CON-1 concentrate. The 



Effect of tea saponin on methanogenesis in cattle Results 

136 
 

TEA-1 concentrate was distributed at maximal dose after a 5-day transition period, whereas 

the NIT-1 and TEA+NIT-1 concentrates were distributed at their maximal dose after a 10-day 

transition period. 

Feeds were offered twice daily (66% at 0800 h and 34% at 1600 h for hay; 60% between 0800 

and 0930 h in three equal portions and 40% between 1600 and 1630 h in two equal portions 

for concentrates). Forage-to-concentrate ratio was kept as close as possible to the target ratio 

by adjusting the amounts of feed offered daily based on the composition of the refusals of the 

previous day. Cows had free access to water throughout the experiment. 

 

Table 1 Ingredients and chemical composition of the experimental diets (trial 1) 
 Diet1 
 CON-1 NIT-1 TEA-1 TEA+NIT-1 
Ingredients (% of DM) 

Hay 50.00 50.00 50.00 50.00 
Pelleted concentrates 
Wheat 25.23 25.23 25.23 25.23 
Maize 15.00 15.00 15.00 15.00 
Calcium nitrate2 0 3.00 0 3.00 
Tea saponin extract3 0 0 0.77 0.77 
Calcium carbonate 1.70 0 1.70 0 
Urea 1.22 0 1.22 0 
Dehydrated beet pulp 4.08 4.00 3.31 3.23 
Molasses beet 1.00 1.00 1.00 1.00 
Binder 1.00 1.00 1.00 1.00 
Mineral-vitamin mix 0.75 0.75 0.75 0.75 
Aroma 0.02 0.02 0.02 0.02 

Chemical composition (% of DM) 
OM 91.3 91.5 91.4 91.4 
CP 12.7 12.2 12.4 11.6 
NDF 40.1 40.2 40.2 40.0 
ADF 23.3 23.1 23.1 23.1 
Starch 25.4 25.7 26.3 26.4 

GE (MJ/kg of DM) 17.4 16.6 17.5 16.5 
1 CON-1 = diet control; NIT-1 = diet CON-1 containing 2.3% nitrate; TEA-1 = diet CON-1 containing 
0.5% tea saponin; TEA+NIT-1 = diet CON-1 containing 0.5% tea saponin and 2.3% nitrate. 
2 5Ca(NO3)2.NH4NO3.10H2O; 75% NO3 in DM (Phytosem, Pont-du-Château, France). 
3 688 g saponins/kg of DM according to supplier (Choisun Tea Sci-Tech Co. Ltd., Hangzhou, 
Zhejiang, China) indications. 

 

Experimental design and animal feeding in trial 2 

Eight lactating Holstein cows (four primiparous and four multiparous) were used. At the 

beginning of the experiment, the average BW was 629 ± 53 kg, milk production was 29 ± 7 
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kg and number of days in milk was 106 ± 21 days. Cows were separated into two groups 

balanced for number of primiparous, calving date, and milk production. The two groups were 

conducted in a 2 × 2 crossover design. Each experimental period lasted five weeks with the 

two last weeks for measurement (weeks 4 & 5). Cows were housed in a freestall barn except 

during the measurement weeks in which they were tied individually. 

 

Table 2 Ingredients and chemical composition of the experimental diets (trial 2) 
 Diet1 
 CON-2 TEA-2 
Ingredients (% of DM) 

Maize silage 54.00 54.00 
Hay 6.00 6.00 
Pelleted concentrates   

Maize 11.88 11.88 
Barley 3.36 2.96 
Soybean meal 5.24 5.24 
Rapeseed meal 2.00 2.00 
Soybean hulls 6.60 6.60 
Wheat bran 6.00 5.24 
Dehydrated beet pulp 0.94 0.94 
Urea 0.80 0.80 
Calcium carbonate 1.13 1.13 
Dicalcium phosphate 0.44 0.44 
Molasses beet 1.20 1.60 
Mineral-vitamin mix 0.20 0.20 
Salt 0.17 0.17 
Fungicide 0.02 0.02 
Aroma 0.02 0.02 
Tea saponin extract2 0.00 0.76 

Chemical composition (% of DM) 
OM 93.0 93.1 
CP 16.1 16.1 
NDF 35.1 35.6 
ADF 18.4 18.7 
Starch 28.2 27.8 

GE (MJ/kg of DM) 17.7 17.9 
1 CON-2= diet control; TEA-2 = diet CON-2 containing 0.5% tea saponin. 
2 689 g saponins/kg of DM according to supplier (Choisun Tea Sci-Tech Co. Ltd., Hangzhou, 
Zhejiang, China) indications. 

 
Each group of cows received two dietary treatments consisting in (on a DM basis): 1) control 

(CON-2), 2) CON-2 with 0.5% tea saponin (TEA-2). Dosage of tea saponin and manufacturer 

were similar to trial 1 but the extract came from different batches as purchased separately. 

Diet CON-2 was made of 54% maize silage, 6% hay and 40% pelleted concentrates (InVivo 
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NSA, Longué-Jumelles, France; Table 2) and met the requirements of lactating dairy cows 

(INRA, 2010). Diets were equivalent in terms of starch (28.0%), crude protein (16.1%) and 

fiber (35.4%). 

Two weeks before starting the experiment, cows were fed ad libitum with CON-2. Then, all 

along the experiment, cows were fed ad libitum, except during measurement weeks in which 

offered feed was restricted to 95% of individual voluntary feed intake. At the beginning of 

each experimental period, TEA-2 concentrate was progressively supplied by replacing CON-2 

concentrate, to achieve the maximal dose after a one week transition period. During the 

experiment, hay was offered once daily (0800 h) and maize silage mixed with concentrates 

was distributed two times per day (66% at 0930 h and 34% at 1600 h). Forage-to-concentrate 

ratio was kept as close as possible to the target ratio by adjusting the amounts of feed offered 

weekly based on the composition of the refusals of the previous week. Cows had free access 

to water throughout the experiment. 

 

Measurements and analyses for trials 1 & 2 

 

Intake. During the 2 trials, offered feed and refusals were weighed and recorded daily to 

estimate DMI. Feed (hay and concentrate for trial 1; silage, hay and concentrate for trial 2) 

were sampled as described previously (Guyader et al., 2014b). Briefly, one sample of each 

feed was taken on two days during weeks 4 and 5. For each sample, one aliquote was used to 

determine DM (103°C for 24h) and another aliquote was stored at 4°C (hay and concentrate) 

or -20°C before freeze drying (maize silage). Refusals DM content was determined if they 

exceeded 1 kg/day and per animal in weeks 4 and 5. At the end of the experiment, each feed 

samples were pooled per treatment and ground (1 mm screen) before chemical analyses 

(InVivo Labs, Saint-Nolff, France for trial 1; InVivo Labs, Chierry, France for trial 2). 

Organic matter was determined by ashing at 550°C for 6h (method 942.05; AOAC, 2005). 

Fiber (NDF and ADF) was determined by sequential procedures (Van Soest et al., 1991) after 

pretreatment with amylase, and expressed exclusive of residual ash. Total N was analyzed by 

combustion according to the Dumas method (method 968.06; AOAC, 2005), and CP content 

was calculated as N × 6.25. Starch was analyzed using an enzymatic method (Faisant et al., 

1995) and gross energy (GE) was analyzed by isoperibolic calorimetry (C200 model, IKA, 

Staufen, Germany). 
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Liveweight and blood methemoglobin. Animals were weighed at the end of each experimental 

period. In trial 1, levels of blood methemoglobin (metHb) were controlled 3h after morning 

meal for animals fed nitrate (NIT-1 and TEA+NIT-1). One control sample was taken from all 

animals the week preceding the start of the experiment. Then, blood was sampled at days 3, 5, 

10, 12, 17, 19 and 29 of each experimental period. Blood was sampled from jugular vein and 

packed onto ice before metHb content analysis (Kaplan, 1965) within 1h at the nearest 

hospital (CHU Gabriel Montpied, Clermont-Ferrand, France). 

 

Methane emissions. Kinetics of CH4 emissions were determined using open chambers in week 

4 as described in Guyader et al. (2014b), during four (trial 1) and two (trial 2) consecutive 

days. Chambers rear doors were opened twice daily for cleaning and milking, and front doors 

were opened for each feed distribution (five times per day for trial 1 and three times per day 

for trial 2). In total, doors were opened on average 15 min/day (trial 1) and 30 min/day (trial 

2). As far as possible, doors were not opened during gases concentration analysis or deleted if 

it was the case. Air fluxes were not corrected for environmental data, as trial 1 showed that 

this correction did not influence final values. 

 

Digestibility and nitrogen balance. Total tract digestibility of nutrients and N balance were 

determined via daily total and separate collection of feces and urine in week 5. Collection 

lasted six days in trial 1 and five days in trial 2. Each day, after weighing and mixing of feces, 

one aliquote (1%) was used to determine DM (103°C for 24 h) and another aliquote (1%) was 

pooled per week and per animal before freezing (-20°C). At the end of trials, samples were 

defrosted and dried (trial 1) or freeze-dried (trial 2) before grinding (1 mm screen). Chemical 

composition (OM, NDF, ADF, CP) was analyzed similarly to feed. 

Urine was collected in vessels containing 500 mL sulfuric acid 3 M to maintain a urine pH 

lower than 3 to avoid N volatilization. Each day, after weighing, one aliquote (1%) was 

pooled per week and per animal before freezing (-20°C). At the end of each trial, samples 

were defrosted and N content was determined according to Kjeldahl method (InVivo Labs, 

Chierry, France; method 2001.11; AOAC, 2005) as it was not possible to apply the Dumas 

method on fresh urine. In trial 1, a second aliquote (0.25%) was diluted (1:4) with distilled 

water and pooled per week and per animal before freezing (-20°C). At the end of the trial, 

samples were defrosted and concentration in derivatives of puric bases (DPB; xanthin, 

hypoxanthin, allantoïne, uric acid) was determined by high pressure liquid chromatography 

(Shingfield and Offer, 1999) to assess microbial synthesis within the rumen. 
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Rumen fermentation parameters. Rumen content was sampled in the ventral sac of each cow 

through the cannula, 3h after morning meal, during two non-consecutive days in week 5 (trial 

1) or by stomach tubing, 3.5h after the morning meal, on the last day of week 5 (trial 2). All 

rumen samples were strained through a polyester monofilament fabric (250 µm pore size) and 

filtrate was subsampled for volatile fatty acids (VFA, 0.8 mL filtrate in 0.5 mL of a 0.5 M 

HCl solution containing 2% (w/v) metaphosphoric acid and 0.4% (w/v) crotonic acid), 

ammonia (NH3, 1 mL filtrate in 0.1 mL of 5% orthophosphoric acid), and protozoa (2 mL 

filtrate in 2 mL of methyl green-formalin solution) concentrations analyses. In trial 1, lactate 

(3 mL filtrate without preservative), nitrate and nitrite (20 mL filtrate without preservative) 

concentrations were also determined as well as dynamics of rumen pH which was followed 

during six consecutive days in week 4 with boluses (eBolus, eCow, Exeter, United Kingdom; 

Guyader et al., 2014b). 

Samples were stored at -20°C before analysis, except for protozoa samples which were stored 

at room temperature and away from direct light until counting. Concentrations of VFA and 

NH3 were analyzed by gas chromatography with a flame ionization detector and by 

colorimetry, respectively (Morgavi et al., 2008). Lactate concentrations were determined by 

colorimetry (D/L-lactic acid, BioSentec, Auzeville-Tolosane, France). Nitrate and nitrite 

concentrations were analyzed by spectrometry (Laboratoire Vétérinaire et Biologique, 

Lempdes, France). Protozoa were counted by microscopy and categorized as either small 

(<100 µm) or large (>100 µm) entodiniomorphs, or as holotrichs (Dasytricha or Isotricha) 

(Williams and Coleman, 1992). Protozoa concentrations were log10-transformed before 

statistical analysis. 

 

Milk yield and composition in trial 2. Milk production was daily quantified. Milk composition 

was determined at each milking on samples (30 mL) taken one day in week 4, mixed with 

potassium bichromate (Merck, Fontenay Sous Bois, France), and stored at 4°C. Milk fat, 

protein and lactose content were analyzed by infrared spectrometry with a 3-channel 

spectrophotometer (Galilait, Theix, France; method 972.16; AOAC, 1990) and urea 

concentration was determined by colorimetry (Galilait, Theix, France; Potts, 1967). 

 

Statistical analyses 

All statistical analyses were carried out with the mixed procedure of SAS (Version 9.2; SAS 

Institute, 2009). As sampling day effect (n = 2 for rumen fermentation parameters in trial 1; n 
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= 4 or 2 for CH4 emissions in trials 1 and 2, respectively) was never significant, this factor 

was not considered in subsequent analyses, and all data were averaged per period. 

In trial 1, the statistical model included the random effect of cow (n = 4) and fixed effects of 

period (n = 4), nitrate (CON-1 and TEA-1 versus NIT-1 and TEA+NIT-1), tea saponin (CON-

1 and NIT-1 versus TEA-1 and TEA+NIT-1) and the interaction nitrate × tea saponin. In trial 

2, one animal passed away during the second period after a fall not linked with the trial. All 

data for this animal were deleted in further statistical analyses. The statistical model included 

the animal (n = 7) as random effect, and period (n = 2) and diet (n = 2) as fixed effects. 

Daily kinetics of ruminal pH (trial 1) and CH4 emissions (trials 1 and 2) were analyzed by 

repeated time. Hour (n = 24 for both trials) was treated as a repeated measurement with 

compound symmetry as covariance structure. In trial 1, the model included the fixed effects of 

period, hour, nitrate, tea saponin, nitrate × tea saponin and the interactions between hour and 

dietary treatments (tea saponin × hour, nitrate × hour, tea saponin × nitrate × hour). In trial 2, 

the model included period, diet, hour and diet × hour interactions as fixed effects. 

Differences between diets were considered significant at P<0.05, and trends were discussed at 

0.05≤P≤0.1. Least squares means are reported throughout. 

 

Results 

 

Trial 1 on non-lactating cows 

 

Animals weight and metHb levels. At the end of the trial, animals weighed 699 ± 42 kg, which 

corresponded to an average weight gain of 10 kg per animal and per period. Levels of blood 

metHb progressively increased until the end of the second week of adaptation, before going 

down and remaining at stable and low levels at the beginning of measurement weeks 

(Supplementary material Figure S1). The maximal level reached by one animal fed NIT-1 was 

25.9% on day 12. 

 

Intake, diet digestibility and nitrogen balance (Table 3). Both nitrate and tea saponin reduced 

daily intake (DM, OM, NDF, ADF and GE; P<0.05), with an additive effect between tea 

saponin and nitrate (tea saponin × nitrate, P>0.05). Nutrient digestibility was similar between 

diets (P>0.05), with an average DM digestibility of 63.7%. Saponin-containing diets (TEA-1 

and TEA+NIT-1) tended to improve NDF digestibility (P=0.126) and nitrate-containing diets 



Effect of tea saponin on methanogenesis in cattle Results 

142 
 

(NIT-1 and TEA+NIT-1) tended to increase ADF digestibility (P=0.073). Nitrogen balance 

was positive (+17.3 g/day) and similar between diets. 

 

Table 3 Daily nutrient intake, total tract digestibility and N balance of non-lactating cows fed 
diets containing tea saponin and calcium nitrate alone or in association (n = 4; trial 1) 

 Diet1  P-value2 
 

CON-1 NIT-1 TEA-1 TEA+NIT-1 SEM Saponin Nitrate 
Saponin 
× nitrate 

Daily nutrient intake   
DM (kg/day) 12.3 12.0 12.0 11.8 0.40 0.032 0.040 0.914 
OM (kg/day) 11.2 11.0 11.0 10.7 0.37 0.032 0.048 0.756 
NDF (kg/day) 4.93 4.84 4.83 4.71 0.164 0.032 0.047 0.758 
ADF (kg/day) 2.86 2.79 2.77 2.71 0.095 0.018 0.044 0.962 
GE (MJ/day) 214 200 210 194 6.9 0.021 <0.001 0.548 

Total tract digestibility (%)   
DM 62.8 63.8 64.5 63.7 1.15 0.270 0.845 0.220 
OM 66.9 67.9 68.1 67.7 1.11 0.336 0.451 0.180 
NDF 42.3 43.7 45.2 44.6 2.60 0.126 0.697 0.369 
ADF 41.9 44.8 44.3 45.3 2.83 0.160 0.073 0.331 
CP 59.1 54.4 58.6 55.1 3.35 0.972 0.241 0.852 

N balance (g/day)         
N intake 247.5 232.5 242.5 217.5 8.54 0.003 <0.001 0.050 
N in feces 102.1 108.4 99.2 97.9 10.22 0.458 0.778 0.671 
N in urine 123.1 106.6 133.4 103.2 9.47 0.638 0.016 0.363 
N in feces + urine 225.2 215.0 232.6 201.1 14.56 0.763 0.089 0.339 
N balance 25.0 20.4 6.8 16.9 10.79 0.286 0.778 0.459 

1 CON-1 = diet control; NIT-1 = diet CON-1 containing 2.3% nitrate; TEA-1 = diet CON-1 containing 
0.5% tea saponin; TEA+NIT-1 = diet CON-1 containing 0.5% tea saponin and 2.3% nitrate. 
2 Saponin = main effect of tea saponin (CON-1 and NIT-1 versus TEA-1 and TEA+NIT-1); Nitrate = 
main effect of nitrate (CON-1 and TEA-1 versus NIT-1 and TEA+NIT-1); Saponin × nitrate = 
interaction between main effects of tea saponin and nitrate. 

 

Methane emissions (Table 4). Animals fed TEA-1 produced the same quantities of CH4 

(expressed as g/day, g/kg DMI, g/kg digested DM, g/kg digested OM, g/kg digested NDF, % 

of GE intake) than animals fed CON-1. Animals fed nitrate-containing diets (NIT-1 and 

TEA+NIT-1) produced the same quantities of CH4 but in a lower amount than CON-1 (-28% 

on average; P<0.05). Kinetics of CH4 emissions (Supplementary material Figure S2) 

confirmed the absence of CH4-mitigating effect of tea saponin fed alone all along the day. 

Inversely, nitrate-containing diets induced lower emissions during 3h following meals before 

rising to similar levels than CON-1. 
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Table 4 Methane emissions of non-lactating cows fed diets containing tea saponin and 
calcium nitrate alone or in association (n = 4; trial 1) 

 Diet1  P-value2 

 CON-1 NIT-1 TEA-1 TEA+NIT-1 SEM Saponin Nitrate 
Saponin 
× nitrate 

g CH4/day 312.3 219.2 294.0 206.3 13.37 0.248 <0.001 0.830 
g CH4 /kg DMI 25.4 18.6 24.6 17.8 1.41 0.529 0.001 0.973 
g CH4 /kg dDM 40.5 29.1 38.3 28.1 2.30 0.446 0.002 0.768 
g CH4 /kg dOM 37.9 27.4 36.3 26.4 2.11 0.488 0.001 0.846 
g CH4 /kg dNDF 60.2 42.5 55.2 41.4 4.29 0.395 0.003 0.571 
% of GE intake 7.3 5.6 7.0 5.4 0.42 0.519 0.003 0.956 

1 CON-1 = diet control; NIT-1 = diet CON-1 containing 2.3% nitrate; TEA-1 = diet CON-1 containing 
0.5% tea saponin; TEA+NIT-1 = diet CON-1 containing 0.5% tea saponin and 2.3% nitrate. 
2 Saponin = main effect of tea saponin (CON-1 and NIT-1 versus TEA-1 and TEA+NIT-1); Nitrate = 
main effect of nitrate (CON-1 and TEA-1 versus NIT-1 and TEA+NIT-1); Saponin × nitrate = 
interaction between main effects of tea saponin and nitrate. 

 

Rumen fermentation parameters and protozoa concentrations (Table 5). Tea saponin fed 

alone increased total VFA concentrations after feeding compared to CON-1 (+19%; P<0.05) 

without modifying VFA profile. Diets supplemented with nitrate (NIT-1 and TEA+NIT-1) 

increased acetate proportion (+10% on average; P<0.01), reduced butyrate proportion (-39% 

on average; P<0.01) and reduced ammonia concentrations (-23.6% on average; P<0.05). No 

treatment affected nitrite concentrations and nitrate was never detected in the rumen. Average 

daily pH was similar between diets (6.20 on average), despite a reduction for TEA-1 between 

3 and 5h after the morning meal and between 1 and 4h after the afternoon meal 

(Supplementary material Figure S3). Saponin-containing diets (TEA-1 and TEA+NIT-1) 

tended to increase protozoa concentration (P<0.10).  
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Table 5 Daily average pH, rumen fermentation characteristics and protozoa concentration 3 h 
after feeding non-lactating cows with diets containing tea saponin and calcium nitrate alone or 
in association (n = 4; trial 1) 

  Diet1  P-value2 

CON-1 NIT-1 TEA-1 TEA+NIT-1 SEM Saponin Nitrate 
Saponin 
× nitrate 

Total VFA (mM) 101.50 98.43 120.58 98.13 5.515 0.013 0.003 0.011 
VFA profile (%)         

Acetate (C2) 67.83 75.53 69.10 73.56 1.512 0.787 0.003 0.234 
Propionate (C3) 16.57 14.68 16.39 16.38 1.911 0.489 0.397 0.401 
Butyrate (C4) 11.64 7.01 11.08 7.16 0.854 0.813 0.002 0.678 
Minor VFA3 3.97 2.78 3.43 2.93 0.382 0.563 0.040 0.322 

C2/C3 4.27 5.33 4.46 4.65 0.554 0.507 0.120 0.260 
(C2+C4)/C3 5.00 5.82 5.18 5.11 0.628 0.501 0.347 0.279 
NH3-N (mM) 18.32 14.84 18.42 13.15 1.790 0.570 0.016 0.525 
Total lactate (mM) 0.80 0.80 0.93 0.51 0.196 0.624 0.214 0.210 
Nitrite (mg/L) 0.24 4.17 0.24 1.63 1.756 0.482 0.172 0.482 
pH4 6.24 6.31 6.01 6.22 0.104 0.137 0.187 0.480 
Total protozoa (log10/mL) 5.38 5.40 5.53 5.58 0.146 0.067 0.655 0.875 

1 CON-1 = diet control; NIT-1 = diet CON-1 containing 2.3% nitrate; TEA-1 = diet CON-1 containing 
0.5% tea saponin; TEA+NIT-1 = diet CON-1 containing 0.5% tea saponin and 2.3% nitrate. 
2 Saponin = main effect of tea saponin (CON-1 and NIT-1 versus TEA-1 and TEA+NIT-1); Nitrate = 
main effect of nitrate (CON-1 and TEA-1 versus NIT-1 and TEA+NIT-1); Saponin × nitrate = 
interaction between main effects of tea saponin and nitrate. 
3 Minor VFA = sum of isobutyrate, isovalerate, valerate and caproate. 
4 Daily average. 

 

Trial 2 on lactating cows 

 

Animals lost 11 kg on average per period, to end with a final BW of 608 ± 33 kg. 

 

Intake, diet digestibility and nitrogen balance (Table 6). Diet TEA-2 numerically reduced 

daily DMI (-2.3 kg/day), and did not affect intake of OM, NDF, ADF and GE. Nutrients 

digestibility (DM, OM, NDF, CP) was similar between diets with an average DM digestibility 

of 66.2%, but TEA-2 tended to improve ADF digestibility (+8%; P<0.10). N balance was 

positive and similar between CON-2 and TEA-2 (+54.6 g/day on average). 
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Table 6 Daily nutrient intake, total tract digestibility and N balance of lactating cows fed a 
diet containing tea saponin (n = 7; trial 2) 
 Diet1   
 CON-2 TEA-2 SEM P-value 
Daily nutrient intake 

DM (kg/day) 20.0 17.7 1.23 0.109 
OM (kg/day) 18.6 16.5 1.15 0.111 
NDF (kg/day) 7.04 6.31 0.434 0.143 
ADF (kg/day) 3.69 3.31 0.227 0.139 
GE (MJ/day) 354 316 21.8 0.129 

Total tract digestibility (%) 
DM 65.8 66.6 0.78 0.362 
OM 67.5 68.4 0.77 0.359 
NDF 48.3 52.1 1.55 0.147 
ADF 43.9 47.9 1.38 0.086 
CP 63.9 63.0 0.99 0.345 

N balance (g/day) 
N intake 515.6 457.4 33.02 0.118 
N in feces 186.4 169.2 14.07 0.254 
N in urine 136.3 120.6 5.75 0.112 
N in feces + urine 322.8 289.8 18.36 0.199 
N in milk 143.9 123.0 14.54 0.486 
N balance 52.2 56.9 12.74 0.878 

1 CON-2 = diet control; TEA-2 = diet CON-2 containing 0.5% tea saponin. 

 

Milk production and methane emissions (Table 7). Diet TEA-2 reduced milk production by 

18% (23.6 versus 28.9 kg/day; P<0.001) without affecting milk content in fat (34.3 g/kg on 

average), protein (30.8 g/kg on average), lactose (50.5 g/kg on average) and urea (20.0 mg/dL 

on average). Feed efficiency was similar between CON-2 and TEA-2 (1.39 kg milk/kg DMI 

on average). 

Expressed in g/day, CH4 emissions were similar between CON-2 and TEA-2, and were higher 

for TEA-2 when expressed in g/kg DMI (+12.7%; P<0.001), g/kg milk (+20.9%; P<0.05), 

g/kg digested nutrients (+11.9% for OM; P<0.05) or as a percentage of GE intake (+12.8%; 

P<0.001). These differences between diets were maintained all along the day as observed on 

daily kinetics of CH4 emissions (Supplementary material Figure S4). 
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Table 7 Milk production and CH4 emission of lactating cows fed a diet containing tea saponin 
(n = 7; trial 2) 
 Diet1   
 CON-2 TEA-2 SEM P-value 
Milk yield (kg/day) 28.9 23.6 1.97 <0.001 
Feed efficiency2 (kg milk/kg DMI) 1.45 1.33 0.083 0.251 
Fat concentration (g/kg) 30.3 38.2 3.48 0.321 
Protein concentration (g/kg) 31.6 29.9 0.70 0.326 
Lactose concentration (g/kg) 50.2 50.7 0.92 0.052 
Urea concentration (mg/dL) 21.7 18.2 4.36 0.611 
CH4 emissions 

g CH4/day 435.2 442.2 38.69 0.840 
g CH4 /kg DMI 21.3 24.7 1.10 0.004 
g CH4/kg milk 15.1 19.1 1.22 0.018 
g CH4 /kg dDM 32.5 37.0 1.61 0.021 
g CH4 /kg dOM 34.1 38.7 1.69 0.023 
g CH4 /kg dNDF 126.2 133.2 5.99 0.454 
% of GE intake 6.01 6.89 0.310 0.006 

1 CON-2 = diet control; TEA-2 = diet CON-2 containing 0.5% tea saponin. 
2 Feed efficiency = milk yield/DMI. 

 

Rumen fermentation parameters and protozoa concentrations (Table 8). Concentrations in 

NH3 and total VFA were similar between CON-2 and TEA-2 (15.1 and 105.2 mM, 

respectively). The VFA profile differed only in acetate proportion, which was higher for 

TEA-2 (+6.2%; P<0.05) inducing a tendency for a higher C2/C3 ratio compared to CON-2 

(P<0.10). Protozoa concentrations were similar between diets (5.1 log10/mL on average). 

 

Table 8 Rumen fermentation characteristics and protozoa concentration 3 h after feeding 
lactating cows with a diet containing tea saponin (n = 7; trial 2) 
 Diet1   
 CON-2 TEA-2 SEM P-value 
NH3-N (mM) 16.08 14.15 2.763 0.643 
Total VFA (mM) 107.07 103.32 10.720 0.806 
VFA profile (%) 

Acetate (C2) 55.68 61.87 2.005 0.035 
Propionate (C3) 23.25 20.47 1.650 0.185 
Butyrate (C4) 16.57 13.72 1.429 0.199 
Minor VFA2 4.26 3.95 0.326 0.516 

C2/C3 2.49 3.07 0.226 0.062 
(C2+C4)/C3 3.26 3.75 0.272 0.176 
Total protozoa (log10/mL) 5.02 5.18 0.117 0.360 
1 CON-2 = diet control; TEA-2 = diet CON-2 containing 0.5% tea saponin. 
2 Minor VFA = sum of isobutyrate, isovalerate, valerate and caproate. 
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Discussion 

 

Intake and reduction of lactating performances in cows fed tea saponin 

In both trials, intake was reduced by tea saponin supplementation, even if the plant extract 

was included into pelleted concentrates which should have improved its palatability thanks to 

the presence of aroma. We also faced difficulties to feed tea saponin as a powder, as handling 

of the powder led to respiratory irritation problems for users and animals refused to eat it. 

This issue has never been highlighted in previous studies testing this plant extract (Mao et al., 

2010; Zhou et al., 2011; Li and Powers, 2012). 

Tea saponin clearly reduced milk production without affecting milk composition. The 

reduction of milk yield can be explained by the tendency for a lower DMI, as feed efficiency 

was similar between diets. To our knowledge, the negative effect of tea saponin on lactating 

performances of dairy cattle has never been observed. Instead, inconsistent results have been 

reported on beef cattle and lambs. Mao et al. (2010) did not observe differences in growth of 

lambs supplemented with 0.5% tea saponin. With steers, Li and Powers (2012) reported no 

effect of 0.05% tea saponin on the average daily weight gain, whereas a higher dose (0.11%) 

reduced the average daily weight gain by 80% linked to a drop of DMI (-27%). Overall results 

show that a dose response study on dairy cattle is required to complete this work. 

 

Absence of positive methane mitigating effect of tea saponin 

Tea saponin supplementation (0.5% DM) did not affect CH4 emissions (g/kg DMI) of non-

lactating cows and increased CH4 emissions (g/kg DMI) of lactating cows, after 4 weeks of 

feeding saponin. This result is linked to the absence of the expected reduction of ruminal 

protozoa in both studies suggesting an adaptation of this population. Indeed, in sheep, a 

decrease of protozoa number after 4 days of feeding saponins (Sesbania sesban) was reported 

but this population recovered 10 days later (Newbold et al., 1997). The absence of CH4-

mitigating effect of tea saponin was reported previously on steers but animals were fed low 

tea saponin doses (0.11% maximum; Li and Powers, 2012). However, with similar doses than 

ours (0.5% tea saponin), CH4 emissions (g/kg DMI) were reduced by 27% (Mao et al., 2010) 

and 11% (Zhou et al., 2011) in sheep, and were linked to a reduction of protozoa 

concentrations (-41% and -43% of total bacterial 16S rDNA, respectively) after 3-8 weeks 

saponin feeding. 

Several reasons may explain the inefficiency of our tea saponin extract on methanogenesis 

and on associated rumen microbial and fermentative parameters. In our trials, tea saponin was 
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included into granulated concentrates whereas it was distributed as a powder in other studies. 

During the pelleting process, the saponin was heated (~40°C), which may have damage its 

anti-methanogenic and -protozoal properties. Indeed, a modification of the miscellaneous 

structure of QS was already observed after heating between 20 and 60°C (Mitra and Dungan, 

1997). An animal species effect (sheep versus cattle) may be also considered. Finally, we 

cannot exclude an effect of the batch production; plant maturity, geographical area of 

production and extraction methods are three parameters affecting the final concentration and 

quality of the saponin (Li and Powers, 2012). 

The mode of action of nitrate to mitigate methanogenesis is different from saponins as it does 

not reduce protozoa. Nitrate may not only act as a hydrogen-sink but may also have a direct 

inhibiting effect towards rumen methanogens (Guyader et al., 2014a). Nitrate fed alone 

reduced CH4 emissions related to DMI by 27%, corresponding to a 12% reduction per 

percentage unit of nitrate fed. This result confirms once more time the efficiency and 

repeatability of the nitrate CH4-mitigating effect in cattle (Hulshof et al., 2012; Guyader et al., 

2014b; Veneman et al., 2014). Moreover, a recent meta-analysis reported a linear dose-

response effect of nitrate (0.3 to 1.2 g/kg BW/day) on enteric CH4 emissions with a reduction 

of 12% of CH4 yield (g/kg DMI) per 0.1 g added nitrate/kg BW/day (Lee and Beauchemin, 

2014). Association of nitrate plus tea saponin did not accentuate the CH4-mitigating effect of 

nitrate, suggesting that the CH4 reduction with this association was linked to the nitrate effect. 

Nitrate fed alone or in association with tea saponin to non-lactating cows increased acetate 

without changing propionate concentrations in the rumen, which confirmed previous findings 

(Nolan et al., 2010; Hulshof et al., 2012; Veneman et al., 2014). Increased acetate 

concentration may compensate the hydrogen deficiency in the rumen (Janssen, 2010) linked 

to nitrate reduction. 

 

Improvement of fiber digestibility with tea saponin 

Tea saponin did not modify diet digestibility of non-lactating cows, whereas with lactating 

cows, it tended to improve ADF digestibility (+4 units). To our knowledge, our study is the 

first one to show a beneficial effect of tea saponin on nutrient digestibility of cattle. This 

effect was not reported on goats supplemented with low doses (0.04, 0.06 and 0.08%; Zhou et 

al., 2012). Generally, saponins have an undermined effect on diet digestibility, which seems 

to be linked to their source and dose. Only Pen et al. (2007) observed an increased NDF 

digestibility (+3.7 units) on ovine supplemented with 0.08% saponin from QS. Most authors 

reported no effect of saponins on diet digestibility in bovine (0.03% saponin from YS or QS, 
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Holtshausen et al., 2009) or in ovine (0.13% saponin from YS, Pen et al., 2007; 1-4% saponin 

from Medicago sativa, Klita et al., 1996). A depressive effect on fiber digestibility was even 

shown with 0.5 and 1% saponin from YS (-2.6 and -2.9 units, respectively; Lila et al., 2005) 

and with 1% saponin extracted from the tropical tree Sapindus saponaria (-3 units, Hess et al., 

2004). 

Nitrate supplementation did not affect diet digestibility and N balance in both trials, 

confirming previous studies on sheep (Nolan et al., 2010) and lactating cows (Van Zijderveld 

et al., 2011; Guyader et al., 2014b) supplemented up to 2.5% nitrate. Nitrate was well 

metabolized by the animals and can substitute urea as a non-protein N source in diets low in 

fermentescible N content (Leng, 2008). Moreover, the absence of animals’ health issue in 

terms of methemoglobinemia supports the use of this chemical at the farm scale under 

controlled conditions. It is recommended to feed animals with maximum doses of 1% nitrate 

(Doreau et al., 2014) and to apply a long enough adaptation period (Lee and Beauchemin, 

2014). 

In conclusion, tea saponin supplementation did not reduce CH4 emissions and rumen protozoa 

concentrations in cattle. The inefficiency may be explained by the denaturation of the active 

compound of the plant when heating during the pelleting process. To test this hypothesis, an 

in vitro experiment may be carried out to compare gas production and composition and 

protozoa number with pelleted or non-pelleted tea saponin supplementation. This plant extract 

tended to increase fiber digestibility of lactating cows, without improving animals’ 

performances. Further work is required to improve tea saponin palatability and to confirm its 

positive effect on digestibility via a dose response study. 
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Supplementary File – for Online Publication Only 

 

 

Supplementary Figure S1. Boxplot of blood metHb levels of non-lactating cows fed diets 
containing 2.3% nitrate with or without 0.5% tea saponin (n = 8; trial 1). The box represents 
the quartiles with the median at the center and the vertical lines represent the maximum and 
minimum value within 1.5 interquartile range of the higher and lower quartile, respectively. 
Values greater than 1.5 interquartile range are considered as outliers and are identified with a 
star. Blood was analyzed during the three weeks adaptation period, the arrow indicates the 
start of the measurement period. 
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Supplementary Figure S2. Daily CH4 production pattern of non-lactating cows fed diets containing 2.3% nitrate with or without 0.5% tea 
saponin (n = 4; trial 1). Errors bars indicate s.d. Treatments consisted in diet control (CON-1), diet CON-1 containing 2.3% nitrate (NIT-1), diet 
CON-1 containing 0.5% tea saponin (TEA-1) and diet CON-1 containing 0.5% tea saponin and 2.3% nitrate (TEA+NIT-1). The arrows indicate 
time of feeding. Symbols indicate hourly statistical comparison († = P<0.10; * = P<0.05; ** = P<0.01; *** = P<0.001) between treatments:  
saponin = main effect of tea saponin (CON-1 and NIT-1 versus TEA-1 and TEA+NIT-1); nitrate = main effect of nitrate (CON-1 and TEA-1 
versus NIT-1 and TEA+NIT-1); saponin × nitrate = interaction between main effects of tea saponin and nitrate.  
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Supplementary Figure S3. Daily pattern of rumen pH of non-lactating cows fed diets containing 2.3% nitrate with or without 0.5% tea saponin 
(n = 4; trial 1). Errors bars indicate s.d. Treatments consisted in diet control (CON-1), diet CON-1 containing 2.3% nitrate (NIT-1), diet CON-1 
containing 0.5% tea saponin (TEA-1) and diet CON-1 containing 0.5% tea saponin and 2.3% nitrate (TEA+NIT-1). The arrows indicate time of 
feeding. Symbols indicate hourly statistical comparison († = P<0.10; * = P<0.05; ** = P<0.01; *** = P<0.001) between treatments:  saponin = 
main effect of tea saponin (CON-1 and NIT-1 versus TEA-1 and TEA+NIT-1); nitrate = main effect of nitrate (CON-1 and TEA-1 versus NIT-1 
and TEA+NIT-1); saponin × nitrate = interaction between main effects of tea saponin and nitrate.  
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Supplementary Figure S4. Daily CH4 production pattern of lactating cows fed a diet containing 0.5% tea saponin (n = 7; trial 2). Errors bars 
indicate s.d. Treatments consisted in diet control (CON-2) and diet CON-2 containing 0.5% tea saponin (TEA-2). The arrows indicate time of 
feeding. Symbols indicate hourly statistical comparison between CON-2 and TEA-2 († = P<0.10; * = P<0.05; ** = P<0.01; *** = P<0.001). 
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STEP 4: Dietary nitrate inhibits rumen methanogenic archaea 

without influencing genes coding for microbial nitrate or 

nitrite reductases 

 

Objective 

To study the effect of CH4-mitigating strategies acting on H2 production (lipids from linseed or saponin from tea, 

toxic effect towards protozoa) and H2 utilization (nitrate from calcium nitrate, H2-sink through nitrate reduction 

to nitrite and ammonia) on abundance, activity and diversity of rumen microbiota from non-lactating cows. 

 

Experimental approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rumen samples taken in wk 5 (FD1) or wk 4 (FD2) 3 h after morning feeding 

Total nucleic acids extraction (DNA and RNA) and cDNA synthesis 

 

Abundance (DNA) and gene expression (cDNA) analysis by real-time PCR: 

• Total bacteria (rrs) & methanogens (mcrA) 

• Nitrate reducing bacteria (napA and narG /1) 

• Nitrite reducing bacteria (nirK /2)  

 

Diversity (DNA and cDNA) analysis with MiSeq, Illumina: 

• Bacteria, protozoa, methanogens, fungi 

1 

2 

Philippot et al., 2007 

In progress 
(Annex 1) 

4 non-lactating cows 2 × 2 Factorial design CON: 50% hay + 50% pelleted concentrate 

NIT : CON + 2.3% nitrate (from calcium nitrate) 

LIN : CON + 2.6% added lipids (from linseed oil) 

LIN+NIT : CON + 1.0% added lipids + 2.3% nitrate 

4 non-lactating cows 2 × 2 Factorial design CON: 50% hay + 50% pelleted concentrate 

NIT : CON + 2.3% nitrate (from calcium nitrate) 

TEA : CON + 0.5% saponin (from tea) 

TEA+NIT : CON + 0.5% saponin + 2.3% nitrate 

FD 1 

FD 2 
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Main results 

 

• Total rumen bacteria abundance was similar between diets. 

• Methanogens abundance was reduced by nitrate- and lipids- containing diets in FD1 but not in FD2. 

Methanogens activity was reduced by 2.3 folds on average in diets including nitrate (NIT and LIN+NIT 

in FD1; NIT and TEA+NIT in FD2). 

• Relative abundance of napA, narG and nirK DNA copies were similar between diets in FD1 and FD2. 

Only narG activity was detected without difference between dietary treatments. 

 

Conclusion 

Lipids from linseed, saponin from tea, nitrate and their association (linseed plus nitrate and linseed plus tea 

saponin) act differently on rumen microbiota. Linseed reduced methanogens abundance, which may be explained 

by a toxic effect of fatty acids. Tea saponin did not affect targeted microbial population. Nitrate fed alone or in 

association with linseed or tea saponin did not affect nitrate and nitrite reducing bacteria, but had a toxic effect 

towards abundance and activity of methanogens, probably linked to nitrite toxicity. Further work is in progress 

to assess the effect of these three dietary treatments on diversity of rumen microbiota.  

FD 1 FD 2 
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Dietary nitrate inhibits rumen methanogenic archaea without 

influencing genes coding for microbial nitrate or nitrite reductases 
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Abstract 

This work assessed the effect of nitrate fed alone or in association with linseed or tea saponin 

on the abundance and activity of rumen bacteria, methanogens and nitrate and nitrite 

reductases. Two 2 × 2 factorial design experiments (FD1 and FD2) were performed using four 

non-lactating cows each. Diets were: 1) control, 2) control with 2.3% nitrate, 3) control with 

4% linseed oil (FD1) or 0.77% tea saponin (FD2), and 4) control with 2.3% nitrate and 4% 

linseed oil (FD1) or 0.77% tea saponin (FD2). Rumen content was sampled after morning 

feeding at the end of each experimental period. Extracted nucleic acids were used for 

microbial quantification and gene expression analysis by qPCR. Targeted genes were: rrs 

(total bacteria), mcrA (methanogens), narG, napA and nirK (nitrate and nitrite reductase). 

Total bacteria abundance was similar among diets. Nitrate fed alone or in association with 

linseed reduced methanogens abundance and mcrA expression (FD1). Nitrate fed alone or in 

association with tea saponin only reduced mcrA expression (FD2). Abundance and expression 

of narG, napA and nirK were unaffected by diets. Dietary nitrate inhibited rumen 

methanogens but did not affect microbial genes coding for nitrate or nitrite reductases.  

 

Keywords: Methanogens; Nitrate; Nitrate reductase; Nitrite reductase; Rumen 
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Background 

We found a methane (CH4)-mitigating effect of nitrate (2.3% in dry matter, DM) fed alone or 

in association with linseed oil (2.6% added fat in DM, [8]) or tea saponin (0.5% saponin in 

DM; Guyader et al., personal communication) in non-lactating cows. The predominant 

pathway of nitrate metabolism in the rumen is the reduction of nitrate to nitrite and nitrite to 

ammonia which consumes four moles of hydrogen (H2) [14] thus reducing H2 availability for 

methanogens. Another pathway of nitrate reduction consists in denitrification to produce 

gaseous nitrous oxide (N2O) [23]. These mechanisms require the presence of bacteria known 

to reduce nitrate or nitrite such as Selenomonas ruminantium, Veillonella parvula and 

Wolinella succinogenes [11]. However, the quantity of these rumen bacteria was not affected 

when nitrate was supplemented to goats (1% in DM; [2]) or steers (1.2% in DM; [15]). 

Nevertheless, the effect of nitrate supplementation on both abundance and expression of 

universal genes coding for nitrate reductases in the rumen has never been assessed. In 

addition, whereas N2O has been detected in eructated gaseous emissions of dairy cattle 

supplemented with 2.1% nitrate in DM [22], the abundance and expression of genes targeting 

nitrite reductases in the rumen have never been studied. 

Sheep fed a corn silage-based diet had reduced abundance of rumen methanogens when 

supplemented with 2.1% nitrate (in DM) [26]. We also observed that nitrate supplementation 

induced a rise of dissolved H2 concentrations in the rumen of cows following ingestion [9]. 

These results suggest that nitrate may not only act as a H2-sink but may also have a direct 

inhibiting effect on rumen methanogens. Nevertheless, the abundance and activity of 

methanogens in the rumen of cattle supplemented with nitrate is unknown. 

The objective of this work was to assess the effect of nitrate fed alone or in association with 

linseed or tea saponin on i) the abundance and activity of methanogens, and ii) the abundance 

and expression of microbial genes targeting nitrate and nitrite reductases in the rumen of 

cows. 

 

Materials and methods 

The experiment was conducted at the animal experimental facilities of INRA’s Herbivores 

Research Unit (UERT, Saint-Genès-Champanelle, France) from January to June 2013. All 

procedures involving animals were conducted in accordance with the French Ministry of 

Agriculture guidelines for animal research, and all applicable European guidelines and 

regulations on animal experimentation. The experiment was approved by the Auvergne 

regional ethic committee for animal experimentation, approval number CE50-12. 
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Animals, experimental design and feeding management 

Eight non-lactating Holstein cows were separated into two groups conducted in parallel 

according to 2 × 2 factorial designs. Within each experiment, four cows were randomly 

assigned to four dietary treatments during 5-week experimental periods. In factorial design 1 

(FD1), diets were on a DM basis: 1) control diet (CON, 50% natural grassland hay and 50% 

concentrate), 2) control diet with 4% linseed oil (LIN; 2.6% added fat), 3) control diet with 

3% calcium nitrate (NIT; 2.3% nitrate), and 4) control diet with 4% linseed oil plus 3% 

calcium nitrate (LIN+NIT; 2.6% added fat plus 2.3% nitrate) [8]. In factorial design 2 (FD2), 

diets were on a DM basis: 1) control diet (CON, 50% natural grassland hay and 50% 

concentrate), 2) control diet with 0.77% tea saponin (TEA; 0.5% saponin), 3) control diet with 

3% calcium nitrate (NIT; 2.3% nitrate), and 4) control diet with 0.77% tea saponin plus 3% 

calcium nitrate (TEA+NIT; 0.5% saponin plus 2.3% nitrate). Chemical composition of diets 

CON and NIT were similar between the two experiments. 

 

Rumen content sampling for microbial analysis 

At the end of each experimental period, rumen contents of cows were sampled over two days. 

Whole rumen content samples (200 g) were taken, through the cannula, from multiple sites 

within the rumen. Sampling was done 3 h after the morning feeding when CH4 emissions 

differences between diets measured on the same animals were maximal [8]. A part of each 

sample (~30 g) was mixed with 30 mL ice cold PBS pH 6.8 and homogenized using a 

Polytron grinding mill (Kinematica GmbH, Steinhofhalde, Switzerland) for three cycles of 1 

min with intervals of 1 min on ice. Then, approximately 0.5 g were transferred to a 2.5 mL 

Eppendorf tube and mixed with 1 mL of RNAlater® Stabilization Solution (Applied 

Biosystems, Austin, TX, USA). Tubes were immediately stored at -80°C until total nucleic 

extractions which were done within 3 months of storage. Remaining rumen samples were 

used to determine DM of rumen content (103°C for 24h). 

 

Total nucleic acids extraction and cDNA synthesis 

Total nucleic acids (DNA and RNA) were co-extracted from all samples by bead-beating and 

phenol-chloroform extraction followed by saline-alcohol precipitation [24]. The yield and 

purity of extracted DNA and RNA were assessed using a Nanodrop Lite Spectrophotometer 

(Thermo Fisher Scientific, Wilmington, USA), by measuring the absorbance intensity at 260 

nm and the absorbance ratio 260/280, respectively. RNA integrity was estimated with an 

Agilent RNA 6000 Nano Kit on an Agilent 2100 bioanalyzer (Agilent Technologies, Santa 
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Clara, CA, USA) according to the manufacturer’s instructions. RNA Integrity Number (RIN) 

and the ratio between ribosomal RNA (rRNA) 23S/16S were calculated using the Software 

2100 Expert, version B 02.08. SI648 (SR2; Agilent Technologies, Waldbronn, Germany). 

Following extraction and quality assessment, RNA was reverse transcribed using the Reverse 

Transcriptase Kit with random primers (Promega, Madison, USA) according to 

manufacturer’s instructions, on a T-100 thermocycler (BioRad, Hercules, USA). Both DNA 

and cDNA were stored at -20°C before subsequent analyses within 2 months following DNA 

extraction and cDNA synthesis. 

 

Quantification and gene expression of microbial communities 

Samples from each cow from the two sampling days of each experimental period were pooled 

by mixing an equal quantity of DNA or cDNA reaction volume, respectively. Quantification 

of gene targets were performed on microbial DNA and cDNA by quantitative PCR (qPCR) 

using a Step One Plus apparatus (Applied Biosystems, Villebon sur Yvette, France). 

Reactions were run in triplicate in 96-well plates, using 15.5 µL of 1X Takara SYBR Premix 

Ex Taq (Lonza, France), 0.25 µmoles of each forward and reverse primer and 20 ng of DNA 

or 2 µL of cDNA in a final volume of 20 µL. In this study, we used universal primers 

targeting the bacterial rrs gene and methanogenic specific primers, which were both designed 

for the rumen ecosystem. We also used universal primers to target nitrate and nitrite reductase 

genes; however, these pairs of primers were designed based on sequences recovered from 

non-rumen ecosystems. Primers description, average amplification efficiency, slope and R2 of 

qPCR are described in Table 1, as required by MIQE guidelines for PCR [4]. Negative 

controls without templates were run in each assay to assess overall specificity. 

Abundance of total bacteria (based on rrs DNA copies) was assessed using absolute 

quantification. Standard curve [19], amplification and melting curve were carried out as 

previously described [7]. Abundance of methanogenic archaea (based on mcrA DNA copies) 

was also assessed using absolute quantification, with standard curve prepared as previously 

described [19]. Level of expression of the functional mcrA gene (based on mcrA cDNA 

copies) was assessed using relative quantification with rrs cDNA copies used as reference. 

For both mcrA gene quantification and expression analyses, amplification and melting curve 

programs were performed as previously described [5]. 

Copy number and level of expression of genes involved in nitrate and nitrite reduction were 

analyzed by targeting two genes coding for a membrane-bound (narG) and a periplasmic 

(napA) nitrate reductase commonly found in bacteria from anaerobic estuarine sediments [25] 
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and one gene coding for a nitrite reductase found in bacteria from soil (nirK [10]). The 

presence of these three genes in rumen metagenomes was checked using the metagenomics 

RAST server [18]: narG and napA were already described in the rumen, whereas nirK was 

not reported. The qPCR program was the same as for total bacteria. Abundance (based on 

DNA copies) and activity (based on cDNA copies) of these genes were assessed using relative 

quantification with rrs as the reference gene (DNA rrs or cDNA rrs).  

 

Table 1 Description of primers (sequences, product size, average amplification efficiency, 
slope and R2) used for quantifying abundance and activity of total bacteria, methanogenic 
archaea and nitrate and nitrite reductases by qPCR 

Organism or 
enzyme 

Target 
gene 

Primer set Primer sequences 5’-3’ 
Product 
size (bp) 

Efficiency Slope R² 

Total bacteria 
[7] 

rrs 
520 F 

799 R2 
AGCAGCCGCGGTAAT 

CAGGGTATCTAATCCTGTT 
280 1.88 -3.64 0.999 

Methanogenic 
archaea [5] 

mcrA 
qmcrA F 
qmcrA R 

TTCGGTGGATCDCARAGRGC 
GBARGTCGWAWCCGTAGAATCC 

140 1.96 -3.43 0.995 

Nitrate 
reductase [25] 

napA 
napA 1F 
napA 1R 

GTYATGGARGAAAAATTCAA 
GARCCGAACATGCCRAC 

111 2.01 -3.29 0.999 

narG 
narG 2F 
narG 2R 

CTCGAYCTGGTGGTYGA 
TTYTCGTACCAGGTSGC 

89 1.97 -3.39 1.000 

Nitrite 
reductase [10] 

nirK 
nirK876 F 

nirK1040 R 
ATYGGCGGVAYGGCGA 

GCCTCGATCAGRTTRTGGTT 
165 1.99 -3.34 0.999 

 

Quantitative PCR calculations and statistical analysis 

Technical triplicates were averaged while checking overlaying of amplification plots at 

threshold cycle (Ct) value. Absolute quantification of total bacteria and methanogenic archaea 

were expressed as log10 rrs or mcrA copies/g DM rumen content, respectively. Relative 

quantification and expression of genes coding for nitrate (narG and napA) or nitrite (nirK) 

reductases, as well as gene expression of mcrA were assessed by the Ct of the qPCR and the 2-

∆Ct method [16]: 

2<∆MN =	2<(MN	N�O�PN	�PQP<MN	OOR) 
Data were analyzed using the MIXED procedure of SAS (Version 9.2; SAS Institute, 2009) 

and for the two experiments separately. The statistical model included the random effect of 

cow (n = 4) and fixed effects of period (n = 4), nitrate (CON and LIN versus NIT and 
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LIN+NIT in FD1; CON and TEA versus NIT and TEA+NIT in FD2), linseed (CON and NIT 

versus LIN and LIN+NIT in FD1), tea saponin (CON and NIT versus TEA and TEA+NIT in 

FD2) and the interaction linseed × nitrate (FD1) or tea saponin × nitrate (FD2). Data were 

considered significant at P≤0.05. Trends were discussed at 0.05<P≤0.1. Least square means 

are reported throughout. 

 

Results 

 

Total nucleic acids were extracted with similar yields and purity for the 2 experiments. 

Electropherograms obtained for RNA integrity analysis presented two peaks corresponding to 

the 16S and 23S rRNA. Diets did not affect RIN which averaged 7.30 and 7.24 for FD1 and 

FD2, respectively. 

 

Abundance and activity of total bacteria and methanogens 

Diets did not change abundance of total bacteria that averaged 7.31 and 7.45 log10 rrs copies/g 

DM rumen content for FD1 and FD2, respectively (Tables 2 and 3). For control diets, 

abundance of methanogens was similar between the two experiments. In FD1, abundance of 

methanogens was reduced by nitrate-containing diets (NIT and LIN+NIT; 5.01 log10 mcrA 

copies/g DM rumen content on average) as compared to CON and LIN (5.18 log10 mcrA 

copies/g DM rumen content on average; P=0.01). Linseed-containing diets (LIN and 

LIN+NIT) also tended to reduce abundance of methanogens (P<0.10). Inversely, 

methanogens abundance was similar among diets in FD2. 

Expression of mcrA was reduced by nitrate-containing diets for both experiments (P<0.05; 

Tables 2 and 3). The level of mcrA expression with NIT and LIN+NIT compared to CON and 

LIN was reduced by 2.5 folds in FD1. Similarly, the level of mcrA expression was reduced by 

2.1 folds with NIT and TEA+NIT compared to CON and TEA in FD2. 
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Table 2 Abundance of total bacteria, and abundance and activity of methanogenic archaea in 
the rumen of non-lactating cows supplemented with nitrate fed alone or in association with 
linseed oil (FD1, n = 4) 

 Diet1  P-Value2 

Item CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed 
× nitrate 

Total bacteria (rrs) 
Concentration  
(log10 copies/g DM 
rumen content) 

7.44 7.24 7.27 7.27 0.056 0.13 0.23 0.14 

Methanogenic archaea (mcrA) 
Concentration  
(log10 copies/g DM 
rumen content) 

5.30 4.97 5.05 5.05 0.056 0.01 0.06 0.01 

Activity  
(2-∆Ct × 106) 

23.91 10.49 21.54 8.19 3.384 0.01 0.51 0.99 

1CON = control; NIT = diet CON including 2.3% nitrate from calcium nitrate; LIN = diet CON 
including 2.6% added fat from linseed oil; LIN+NIT = diet CON including 2.6% added fat from 
linseed oil plus 2.3% nitrate from calcium nitrate. 
2 Linseed = main effect of linseed oil (CON and NIT versus LIN and LIN+NIT); Nitrate = main effect 
of nitrate (CON and LIN versus NIT and LIN+NIT); Linseed × nitrate = interaction between main 
effects of linseed oil and nitrate. 

 

Table 3 Abundance of total bacteria, and abundance and activity of methanogenic archaea in 
the rumen of non-lactating cows supplemented with nitrate fed alone or in association with tea 
saponin (FD2, n = 4) 

 Diet1  P-Value2 

Item CON NIT TEA TEA+NIT SEM Nitrate Saponin 
Saponin × 

nitrate 

Total bacteria (rrs) 
Concentration  
(log10 copies/g DM 
rumen content) 

7.44 7.43 7.37 7.54 0.066 0.24 0.78 0.19 

Methanogenic archaea (mcrA) 
Concentration  
(log10 copies/g DM 
rumen content) 

5.37 5.38 5.24 5.47 0.090 0.24 0.80 0.29 

Activity  
(2-∆Ct × 106) 

18.67 7.40 16.08 8.28 4.463 0.004 0.70 0.44 

1CON = control; NIT = diet CON including 2.3% nitrate from calcium nitrate; TEA = diet CON 
including 0.5% saponin from tea; TEA+NIT = diet CON including 0.5% saponin from tea. 
2 Saponin = main effect of tea saponin (CON and NIT versus TEA and TEA+NIT); Nitrate = main 
effect of nitrate (CON and TEA versus NIT and TEA+NIT); Saponin × nitrate = interaction between 
main effects of tea saponin and nitrate. 
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Quantification and expression of genes coding for nitrate or nitrite reductases 

Relative abundance of napA, narG and nirK DNA copies were similar between diets for both 

experiments (Tables 4 and 5). In FD1, the 2-∆Ct values for DNA copies of napA, narG and 

nirK averaged 0.77, 10.06 and 13.40, respectively. These values averaged 1.61, 15.26 and 

24.04, respectively in FD2. Expression of napA and nirK genes was below the detection 

limits. Expression of narG was detected at similar levels between all diets: the 2-∆Ct values 

were equal to 1.85 and 1.31 in FD1 and FD2, respectively. 

 

Table 4 Abundance and activity of nitrate (napA and narG) and nitrite (nirK) reductases in 
the rumen of non-lactating cows supplemented with nitrate fed alone or in association with 
linseed oil (FD1, n = 4) 

 Diet1  P-Value2 

Item2 CON NIT LIN LIN+NIT SEM Nitrate Linseed 
Linseed × 

nitrate 

Nitrate reductase (napA) 
Concentration (2-∆Ct × 106) 0.79 0.75 0.82 0.73 0.123 0.61 0.96 0.84 
Activity (2-∆Ct × 106) <LD <LD <LD <LD -- -- -- -- 

Nitrate reductase (narG) 
Concentration (2-∆Ct × 106) 10.80 10.05 10.42 8.96 1.281 0.42 0.58 0.78 

Activity (2-∆Ct × 106) 1.90 2.09 1.54 1.87 0.474 0.60 0.56 0.88 
Nitrite reductase (nirK) 

Concentration (2-∆Ct × 106) 14.39 16.20 12.19 10.83 2.173 0.92 0.13 0.49 

Activity (2-∆Ct × 106) <LD <LD <LD <LD -- -- -- -- 

<LD = below limit of detection 
1CON = control; NIT = diet CON including 2.3% nitrate from calcium nitrate; LIN = diet CON 
including 2.6% added fat from linseed oil; LIN+NIT = diet CON including 2.6% added fat from 
linseed oil plus 2.3% nitrate from calcium nitrate. 
2 Linseed = main effect of linseed oil (CON and NIT versus LIN and LIN+NIT); Nitrate = main effect 
of nitrate (CON and LIN versus NIT and LIN+NIT); Linseed × nitrate = interaction between main 
effects of linseed oil and nitrate. 
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Table 5 Abundance and activity of nitrate (napA and narG) and nitrite (nirK) reductases in 
the rumen of non-lactating cows supplemented with nitrate fed alone or in association with tea 
saponin (FD2, n = 4) 

 Diet1  P-Value2 

Item2 CON NIT TEA TEA+NIT SEM Nitrate Saponin 
Saponin × 

nitrate 

Nitrate reductase (napA) 
Concentration (2-∆Ct × 106) 1.33 1.83 1.77 1.52 0.313 0.54 0.74 0.10 
Activity (2-∆Ct × 106) <LD2 <LD <LD <LD -- -- -- -- 

Nitrate reductase (narG) 
Concentration (2-∆Ct × 106) 14.22 16.18 16.44 14.18 1.503 0.92 0.94 0.21 
Activity (2-∆Ct × 106) 1.31 1.45 1.07 1.41 0.276 0.31 0.55 0.66 

Nitrite reductase (nirK) 

Concentration (2-∆Ct × 106) 22.77 25.92 25.26 22.21 2.329 0.98 0.74 0.13 

Activity (2-∆Ct × 106) <LD <LD <LD <LD -- -- -- -- 

<LD = below limit of detection 
1CON = control; NIT = diet CON including 2.3% nitrate from calcium nitrate; TEA = diet CON 
including 0.5% saponin from tea; TEA+NIT = diet CON including 0.5% saponin from tea. 
2 Saponin = main effect of tea saponin (CON and NIT versus TEA and TEA+NIT); Nitrate = main 
effect of nitrate (CON and TEA versus NIT and TEA+NIT); Saponin × nitrate = interaction between 
main effects of tea saponin and nitrate. 

 

Discussion 

 

Absence of dietary treatment effect on total bacteria concentration 

The abundance of total bacteria in the rumen of non-lactating cows fed nitrate (2.3% in DM) 

alone or in association with linseed (2.6% added fat in DM) or tea saponin (0.5% saponin in 

DM) was similar between diets. Our results are in accordance with the literature since nitrate 

(2.1% in DM) and lipids from soybean (up to 4.4% added fat in DM) fed individually to sheep 

[26] or steers [6] did not affect total abundance of ruminal bacteria. The effect of tea saponin 

on total bacteria has never been studied, but Mao et al., (2010) [17] reported no effect on the 

concentration of cellulolytic bacteria (Ruminococcus flavefaciens and Fibrobacter 

succinogenes) in the rumen of sheep supplemented with the same plant extract at a similar 

dose (0.5% tea saponin in DM). To our knowledge, this is the first report showing that there 

was no additional effect on rumen total bacteria abundance when combining nitrate with 

linseed or tea saponin. 
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Nitrate toxicity on rumen methanogens 

In our study, 2.3% nitrate fed alone reduced CH4 emissions of non-lactating cows by 25% on 

average [8], slightly reduced mcrA DNA copies in FD1 (-0.17 log10 mcrA copies/g DM rumen 

content) and mcrA expression in the two experiments (-2.3 folds). The negative effect of 

nitrate on methanogens’ abundance estimated by qPCR has already been highlighted in sheep 

supplemented with 2.1% nitrate (-0.7 log10/mL of rumen contents; [26]). The inhibitory effect 

of nitrate and other derivative N-compounds (nitrite, nitric oxide and nitrous oxide) on 

Methanosarcina barkeri, Methanobacterium bryantii and Methanobacterium formicicum has 

also been reported in in vitro experiments with soil and salt marsh sediments [3, 13]. 

However, the negative effect of nitrate on mcrA expression in the gastrointestinal tract of 

animals has never been reported before. 

Nitrate is known to reduce CH4 emissions of ruminants by acting as a H2-sink during its 

reduction to nitrite and ammonia [14]. As a consequence, nitrate would have an indirect effect 

on methanogens activity by decreasing H2 availability. According to our results, nitrate would 

also have a direct toxic effect on methanogens as suggested by the rise of dissolved H2 

concentration in the rumen and of gaseous H2 emissions eructated during the 3 h following 

nitrate supplementation to sheep [26] and cows [9]. Then, as long as nitrate consumes H2, 

rumen H2 availability is low and methanogens activity decreases. When nitrate has been 

reduced, the derivative N-compounds act as methanogen inhibitors, and rumen dissolved H2 

concentrations and gaseous H2 emissions increase. Similar findings have been reported in a 

previous work studying the effect of nitrate on methane production and fermentation by 

slurries of human fecal bacteria [1]. 

To our knowledge, the effect of associating nitrate to linseed or tea saponin on methanogens 

population has never been studied. While reducing CH4 emissions by 17% [8], linseed tended 

to reduce the abundance of methanogens in the rumen of non-lactating cows (-0.09 log10 mcrA 

copies/g DM rumen content) without affecting their activity. This result confirms a previous 

in vivo experiment in which the ruminal concentration of methanogens in dairy cows, fed a 

corn silage-based diet supplemented with linseed (up to 5% added fat in DM) was 

significantly reduced 3 h after feeding (-0.47 log10 mcrA copies/µg DNA; [20]). In our study, 

we suggest that methanogens reduction with linseed is associated to a decrease in H2 

availability, as protozoa which are important H2-producers in the rumen were reduced by 52% 

in LIN compared to CON [8]. Tea saponin did not change the abundance or activity of rumen 

methanogens. Our results strengthen previous observations [17, 27] and correlate with the 

absence of CH4-mitigating effect of this plant extract supplemented to the same animals 
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(Guyader et al., personal communication). Diets LIN+NIT and TEA+NIT reduced 

methanogens abundance and activity to a similar extent than when NIT was fed alone, 

suggesting that the effect was due to nitrate alone. However, LIN+NIT fed to these same 

animals additively reduced CH4 emissions (-32%; [8]). 

Absence of nitrate effect on microbial genes coding for nitrate and nitrite reductases 

By a culture-based approach, it was already reported that some rumen bacteria (S. 

ruminantium, V. parvula and W. succinogenes) can reduce nitrate to nitrite and ammonia [11]. 

Moreover, qPCR data showed that rumen abundance of S. ruminantium and V. parvula was 

not affected in goats fed with 1% nitrate in DM [2]. Similarly, V. parvula (rrs gene copy 

number) remained stable in steers supplemented with 1.2% of nitrate [15]. Inversely, the 

number of W. succinogenes increased considerably in the rumen of goats supplemented with 

1% nitrate in DM (from less than 1.0 × 102 to 1.2 × 103 cells/mL) [2]. Based on the above 

information, we can affirm that the effect of nitrate supplementation on microbes involved in 

nitrate metabolism in ruminants remains unclear and needs more investigation. 

The present paper is the first one to target particular genes coding for nitrate reductases for 

assessing the potential activity of nitrate reduction that covers both identified and not-yet 

identified nitrate-reducing rumen microbes. We focused on the abundance and activity of 

genes coding for membrane-bound (narG) and periplasmic (napA) nitrate reductases. We first 

confirmed the presence of these genes in the rumen ecosystem by interrogating published 

rumen metagenomes; these genes are also present in the genomes of S. ruminantium, W. 

succinogenes and V. parvula [18]. However, we cannot exclude that the abundance and 

expression of targeted genes may be linked with bacterial sediment ingested with feed. 

Both nitrate reductase genes narG and napA were detected but their abundance was not 

affected by nitrate supplementation. These results confirm a previous work in which narG 

relative abundance from S. ruminantium was similar between steers receiving or not 1.2% 

nitrate in DM [15]. Expression of narG was also not affected by diets. The level of expression 

of napA was low suggesting that this gene was not expressed, or that the level of expression 

was below the detection limits. 

A recent work reported that N2O emissions occurred when dairy cattle were fed up to 2.1% 

nitrate in DM [22], suggesting that rumen nitrate degradation may partially follow the 

denitrification pathway (nitrate to nitrite to nitric oxide to nitrous oxide) [12, 23]. In our 

experiment, abundance and activity of nitrite reductase, performing the reduction of nitrite to 

nitric oxide, were evaluated by monitoring nirK, which is found in bacteria from soil but not 

clearly annotated in published rumen metagenomes. Although this gene was detected in 
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rumen microbial DNA, its abundance was not affected by nitrate supplementation and, 

additionally, its level of expression was below the detection limits. Further work should assess 

the effect of nitrate supplementation on both N2O emissions and on the abundance and 

expression of other genes (e.g. nirS, [21]) known to be involved in the reduction of nitrite to 

N2O. 

 

Concluding remarks 

We showed an inhibitory effect of dietary nitrate on the activity of rumen methanogens in 

non-lactating cows. Abundance and expression of narG and napA genes coding for nitrate 

reductases and nirK gene coding for a nitrite reductase were not affected by nitrate 

supplementation. Further work is required to assess the effect of nitrate on other nitrate and 

nitrite reductases which have been recently found within the rumen metagenome. The use of 

high throughput sequencing methods is in progress to assess the effect of dietary nitrate on the 

rumen microbiota diversity. 
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STEP 5: Dose response effect of nitrate on hydrogen 

distribution between rumen fermentation end-products: an in 

vitro approach 

 

Objective 

1/ To study the dose response effect of nitrate on in vitro production of rumen fermentation end-products such as 

gas (CH4 and H2), VFA and microbial biomass (estimated from insoluble protein). 

2/ To understand the CH4-mitigating mechanisms of nitrate by estimating metabolic H2 distribution between 

rumen fermentation end-products.  
 

Experimental approach 

 

 

 

 

HOUR 1 … 3 … 8 … 12 … 24 … 32 … 48 

Kinetics of gas production (total, CH4 and H2; 
exp 1 and 2) 

             

pH, VFA and NH4
+ concentrations (exp 1)              

pH (48 h), kinetics of VFA, NH4
+ and insoluble 

proteins concentrations (exp 2) 
             

 

 
 

 

 

Main results 

 

• In exp 1 and 2, total gas and CH4 production linearly decreased as nitrate doses increased. Nitrate 

reduced CH4 production during the first 10 h of incubation. Hydrogen emissions were detected only 

with high doses of nitrate, after 10 h incubation. 

• Rumen fermentation parameters including microbial biomass synthesis (calculated from insoluble 

protein concentration in exp 2) were poorly affected by nitrate. 

• Estimated H2 balance indicated that 23% (6mM nitrate; exp 1) of H2 was not used for production of 

studied rumen fermentation end-products. 

 

Conclusion 
Nitrate is an efficient CH4-mitigating strategy, but with doses higher than 4 mM, in vitro fermentations were 

negatively affected. Estimation of H2 distribution between studied rumen fermentation end-products suggest that 

nitrate enhances another H2 consuming pathway. 

In vitro system 2 repeated incubations Dose response: CON (50% hay + 50% concentrate) 

+ 0, 1, 2, 4 or 6 mM nitrate (from ammonium nitrate) 

2 repeated incubations Dose response: CON (100% glucose) 

+ 0, 1, 2, 4 or 6 mM nitrate (from ammonium nitrate) 

Estimation of metabolic H2 distribution between rumen fermentation end-products (mmoles): 

• H2 production = 2 × acetate + 2 × butyrate 

• H2 consumption = 4 × CH4 + 1 × propionate + 4 × NO3
- + 0.41 × microbial biomass (insoluble 

protein) 

• H2 balance = H2 production – H2 consumption – H2 emissions  

Exp 2 

Exp 1 Exp 2 

Exp 1 
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Dose response effect of nitrate on hydrogen distribution between 

rumen fermentation end-products: an in vitro approach 
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Abstract 

The objective of this work was to study the in vitro dose response effect of nitrate on 

hydrogen distribution between rumen fermentation end-products. Five nitrate concentrations 

(0, 1, 2, 4 and 6 mM) were tested in two in vitro experiments. In experiment 1, a mixture of 

hay and concentrate (50:50) was used to calculate efficiencies of methane reduction and to 

study differences between fermentation profiles. In experiment 2, glucose was used as the sole 

protein-free substrate to quantify the effect of nitrate dosage on microbial synthesis. In both 

experiments, two 48 h-incubations were carried out using bovine rumen contents as inoculum. 

Total gas production and composition was automatically analyzed throughout the incubations. 

In experiment 1, volatile fatty acids (VFA) and ammonium concentrations were analyzed 

from samples taken after 48-h incubation. In experiment 2, VFA, ammonium and insoluble 

protein concentrations were analyzed from samples collected at various time points. In 

experiment 1, total gas production was decreased with the highest dose of nitrate (P=0.019). 

Methane emissions tended to linearly decrease as nitrate doses increased (P=0.079). Kinetics 

of methane emissions showed that hydrogen removal via nitrate reduction occurred mainly 

during the first 10 h-incubation. The apparent yield of methane reduction relative to control 

incubations exceeded 100% with nitrate doses higher than 4 mM. Gaseous hydrogen 

production was similar between treatments, despite numerically higher hydrogen emissions 

for nitrate concentrations above 4 mM. Concentrations and proportions of VFA were not 

affected by treatments. Proportions of unaccounted hydrogen in total hydrogen produced were 

similar and positive for all treatments, despite a numerical increase as nitrate doses increased. 

Experiment 2 showed that insoluble protein concentrations were not affected by nitrate. In 

this in vitro work, we confirmed that nitrate acts as an electron acceptor in the rumen. We also 

suggest that nitrate or its reduced forms have a direct inhibiting effect towards methanogens, 

as indicated by the release of gaseous hydrogen and the high efficiencies of methane 

reduction. 
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Highlights 

• Increasing nitrate dose linearly reduces methane emissions in vitro. 

• High doses of nitrate inhibit overall gas production. 

• High doses of nitrate do not reduce methane by only acting as an electron acceptor. 

• Nitrate does not enhance microbial synthesis. 

 

Keywords: hydrogen, in vitro, methane, microbial biomass, nitrate, rumen 

 

Introduction 

In the rumen, hydrogen (H2) is produced by bacterial and protozoal hydrogenases after the 

reoxidation of coenzymes or pyruvate generated during the synthesis of volatile fatty acids 

(VFA): the production of one mole acetate or butyrate generates two moles H2 (Hegarty and 

Gerdes, 1999). Since an increased H2 concentration inhibits the normal function of microbial 

enzymes in the rumen, H2 disposal is essential. Most of the H2 is used to reduce carbon 

dioxide (CO2) to methane (CH4) consuming 4 moles H2 per mole CH4 produced. Then, 

methanogenesis uses between 48 and 80% of H2 (Czerkawski, 1986; Mills et al., 2001). 

Between 19 and 33% of H2 is used for VFA synthesis, as one mole H2 is required per mole 

propionate or valerate produced. And finally, 0.6 to 12% of H2 is used for microbial growth, 

as 0.41 moles H2 are required per kg of microbes. 

Considering the importance of H2 in CH4 production by ruminants, several CH4 mitigation 

strategies aimed at reducing the availability of H2 for microbial H2-users such as 

methanogens. One of these strategies is to supply nitrate (NO3
-) to the animals’ diet. This 

additive would act as an electron acceptor reducing the amount of H2 formed by 4 molar 

equivalents of H2 through its reduction to nitrite (NO2
-) and ammonium (NH4

+). A recent 

meta-analysis reported that 1% NO3
- added to the diet of cattle reduced CH4 emissions by 

10% on average (Lee and Beauchemin, 2014). However, the dose response effect of NO3
- on 

both CH4 emissions and rumen fermentation has not been reported or studied, due to the risks 

of blood methemoglobinemia for animals supplemented with high doses of this additive 

(Lewis, 1951). 

Recent work also highlighted that NO3
- reduced the number and/or activity of methanogens 

(Van Zijderveld et al., 2010; Guyader et al., 2014c), changed fermentation profile towards 

acetate production (Veneman et al., 2014) and increased dissolved H2 concentration in the 

rumen (Guyader et al., 2014b) and H2 emissions (Van Zijderveld et al., 2011). These results 
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suggest that NO3
- may not only act as an electron acceptor in the rumen and that its CH4-

mitigating effect may involve other mechanisms. The study of H2 fluxes towards fermentation 

end-products such as methanogenesis, VFA synthesis and microbial biomass, with different 

doses of NO3
- may allow a better understanding of the effect of this additive in the ruminal 

environment. 

The objective of this work was to deepen the understanding of the CH4-mitigating 

mechanisms of NO3
- by studying its dose response effect on i) CH4 emissions and microbial 

fermentation profile, and ii) the distribution of H2 between fermentation end-products. Due to 

the risk of blood metHb for animals fed high doses of NO3
- (Lee and Beauchemin, 2014), an 

in vitro approach was favored and two experiments were carried out. In the first experiment, a 

hay and concentrate based substrate was used in order to get close to ruminants diet 

conditions. The apparent yield of CH4 reduction with different NO3
- concentrations and their 

effects on fermentation profiles were studied. In the second experiment, glucose was used as 

the sole protein-free substrate to quantify the effect of NO3
- on microbial synthesis. 

 

Material and methods 

 

Two in vitro experiments, each one consisting in two repeated incubations, were carried out at 

AgResearch Grasslands (Palmerston North, New Zealand) with a fully automated incubation 

system (Muetzel et al., 2014) using ammonium nitrate (NH4NO3) as the source of NO3
-. 

 

Design of experiments 

In experiment 1, a general purpose substrate (GP) was composed of a mixture of hay (500 

g/kg), barley (290 g/kg), soybean (100 g/kg), molasses (100 g/kg), dicalcium phosphate (5.5 

g/kg), salt (3 g/kg) and minerals and vitamins (1.5 g/kg) on a dry matter (DM) basis. The 

substrate was ground in a Wiley mill to pass a 1-mm screen. Treatments were: 1/ control (10 

mg GP/ml medium), 2/ control plus 1 mM NO3
-, 3/ control plus 2 mM NO3

-, 4/ control plus 4 

mM NO3
- and 5/ control plus 6 mM NO3

-. Duplicate bottles for each treatment served as 

technical replicates. 

In experiment 2, the substrate was composed of D-glucose (GLU) only. Treatments were: 1/ 

control (6.67 mg GLU/ml medium), 2/ control plus 1 mM NO3
-, 3/ control plus 2 mM NO3

-, 

4/ control plus 4 mM NO3
- and 5/ control plus 6 mM NO3

-. Four bottles were prepared per 

treatment: two bottles served as technical replicates for gas analysis whereas the two other 

ones served as technical replicates for frequent sample collection. 
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Batch culture incubations 

Rumen contents were obtained from two ruminally fistulated cows. Within the two 

experiments, one different donor cow was used per incubation. The donor animals were kept 

on pasture at Grasslands animal facility. Samples were taken manually at 0830 h from the 

dorsal part of the rumen and were immediately placed in pre-warmed thermos and transported 

to the laboratory. The rumen contents were then strained through one layer of cheesecloth and 

diluted (20% v/v) with a warm (39°C), reduced and CO2-saturated buffer solution (Mould et 

al., 2005). The medium was continuously subjected to a CO2 stream and maintained at 39°C 

in a water bath before starting incubations. Treatments were incubated in pre-warmed (39°C) 

bottles filled with 60 ml buffered rumen fluid and purged with a CO2 stream. Immediately 

after filling with the medium, the bottles were sealed with a butyl rubber stopper and placed 

on a shaker in an incubator and connected via a 23-gauge needle to the pressure sensor and 

valve setup. Samples were incubated for 48 h at 39°C. 

 

Sampling and gas measurement 

Before starting the incubation, a sample (1.8 ml) of the medium was collected for subsequent 

analysis of NH4
+, VFA (experiment 1 and 2) and insoluble protein (experiment 2 only). 

In the two experiments, kinetics of gas production and composition were determined 

throughout the incubations using an automated in vitro gas production system with a gas 

chromatograph attached for automatic CH4 and H2 analysis (Muetzel et al., 2014). In 

experiment 1, gas kinetics were determined in all bottles for 48 h. After 48 h incubation, the 

bottles were removed from the incubator, opened and pH was immediately measured. 

Samples (1.8 ml) were taken for subsequent analysis of NH4
+ and VFA. In experiment 2, gas 

kinetics were determined for 48 h in two bottles out of the four bottles per treatment. The two 

other bottles were used for sampling (1.8 ml) after 1, 3, 8, 12, 16, 24, 32, and 48 h incubation 

for NH4
+, VFA and insoluble protein analysis. At 48 h, the remaining bottles from the gas 

measurement were also collected as described above and pH was measured. 

All samples were centrifuged (21,000×g at 4°C for 10 min). For NH4
+ and VFA analysis, 0.9 

ml of the supernatant was transferred in a micro centrifuge tube containing 0.1 ml of internal 

standard solution (19 mM ethyl butyrate in 20% (v/v) phosphoric acid), mixed well, and kept 

at -20°C over night. When insoluble protein concentration was analyzed, the remaining 

supernatant was discarded and the pellet was washed once with a saline solution (0.85% 

NaCl, w/v) and stored at -20°C until processed. 
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Thawed fluid samples were clarified by centrifugation (21,000×g at 4°C for 10 min) and 0.8 

ml of the supernatant was transferred into a 2 ml crimp cap gas chromatography vial for VFA 

analysis and 0.1 ml was collected for NH4
+ analysis. Volatile fatty acids were analyzed by gas 

chromatography (Attwood et al., 1998) and NH4
+ was analyzed by a colorimetric method 

(Chaney and Marbach, 1962). Thawed pellets were suspended in 750 µl SDS (1%, w/v), using 

an Eppendorf MixMate at 2,000 rpm for 10 min. The samples were then heated to 100°C for 

10 min to solubilize the proteins and then centrifuged (21,000×g at room temperature for 10 

min). The supernatant (300 µl) was then transferred in a micro centrifuge tube containing 1 ml 

acetone (100%, w/w) for protein precipitation. After incubation (-30°C for 2 h), precipitated 

proteins were centrifuged (21,000×g at 4°C for 10 min) and washed with 600 µl acetone 

(75%, w/w). The final pellet was suspended in 300 µl SDS (1%, w/w) and the concentration 

of insoluble protein was determined using the Pierce BCA assay (Thermo Scientific, 

Rockford, USA). 

 

Calculations and statistical analyses 

For each incubation, a logistic model (France et al., 2000) was fitted to the 48 h gas 

production (total, CH4 and H2) data using least squares regression. The resulting logistic 

parameters were used to calculate gas production at 32 h. Yield of CH4 reduction for a 

treatment was calculated as the ratio between observed CH4 reduction for this treatment 

(ml/g) relative to its expected CH4 reduction (ml/g) based on stoichiometry. Expected CH4 

reduction was calculated assuming that one mole NO3
- reduces CH4 production by one mole. 

Concentrations of NH4
+ were corrected for the amount of NH4

+ added from ammonium 

nitrate. Insoluble protein production was calculated by subtracting the initial insoluble protein 

concentrations in the medium from the concentrations of each bottle. 

The VFA production data (at 48 and 32 h in experiments 1 and 2, respectively) were used to 

calculate net H2 production (mmol/bottle) assuming that i) the formation of VFA was solely 

derived from carbohydrates fermentation to hexoses and pentoses; ii) the production of one 

mole acetate or one mole butyrate generates two moles H2. Methane (at 32 h in both 

experiments) and propionate (at 48 and 32 h in experiments 1 and 2, respectively) production, 

NO3
- reduction and microbial biomass synthesis (at 32 h in experiment 2 only) were 

considered as H2 consuming pathways. The amount of H2 directed towards these pathways 

(mmol/bottle) was calculated considering that the synthesis of one mole CH4 and propionate 

requires four and one mole H2 respectively and that NO3
- reduction to NH4

+ requires four 
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moles H2. The amount of H2 required for microbial biomass synthesis (mmol/bottle) was 

calculated using the following equation: 

H2 towards microbial biomass = (ISP × a × b)/c 

With ISP = insoluble protein concentrations (mg/ml), a = the volume of medium in each 

bottle (60 ml), b = the microbial requirement of H2 when they grow without preformed amino 

acids (0.41 moles H2/kg microbes; Mills et al., 2001) and c = the percentage of proteins in 

bacteria (54.46 g proteins/100g dry bacterial cells; Reichl and Baldwin, 1975). Finally 

unaccounted H2 was calculated as the difference between estimated H2 production 

(mmol/bottle) and H2 consumption and gaseous H2 (mmol/bottle). 

Data from duplicate bottles were averaged for statistical analyses. The dose effect of NO3
- on 

gas production at 32 h (total gas, ml/g; CH4, ml/g and % of total gas; H2, ml/g and % of total 

gas; yield of CH4 reduction), on fermentation parameters at 48 h for experiment 1 and 32 h for 

experiment 2 (pH; NH4
+, mM; VFA, mmol/g; insoluble protein, mg/ml; acetate, propionate 

and butyrate, %; acetate/propionate and (acetate+butyrate)/propionate) and on H2 metabolism 

(H2 produced, consumed, emitted and unaccounted, mmol/bottles) was analyzed using the 

MIXED procedure of SAS (Version 9.4; SAS Institute, 2009). The statistical model included 

the fixed effect of NO3
- dosage (n = 5), and run (n = 2) was considered as a random effect. 

Differences between diets were tested using the PDIFF option. The effect of increasing level 

of NO3
- was assessed through linear, quadratic and cubic orthogonal contrasts using the 

CONTRAST statement of SAS. As NO3
- doses were not equidistant, the IML procedure was 

used to calculate coefficients for unequally spaced contrasts. Cubic effect was not significant 

and consequently its effect was not presented in the tables of results. Data were considered 

significant at P<0.05, and trends were discussed at 0.05<P<0.1. 
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Table 1 In vitro dose response effect of nitrate on gas production and composition after 32 h incubation, and on fermentation parameters after 48 
h incubation with GP substrate (50% hay and 50% concentrate; experiment 1) 
 Nitrate dose (mM) 

SED 
P-Value1 

Item 0 1 2 4 6 Dose L Q 
Gas production and composition  

Total gas production (ml/g) 259.7a 253.4a 248.4a 236.5a 191.6b 20.15 0.019 0.003 0.114 
CH4 production (ml/g) 42.9a 42.1a 38.6a 30.3ab 18.7b 9.67 0.079 0.013 0.460 
CH4 production (% of total gas) 16.5 16.6 15.5 12.6 9.2 3.75 0.229 0.044 0.589 
H2 production (ml/g) 0.26 0.25 0.26 1.17 1.90 1.160 0.460 0.114 0.628 
H2 production (% of total gas) 0.10 0.10 0.11 0.53 1.12 0.671 0.451 0.114 0.524 
Efficiency of CH4 reduction (%) -- 26.8 80.0 119.1 152.5 -- -- -- -- 

Fermentation parameters  
pH 6.18a 6.21a 6.24ab 6.27b 6.29b 0.066 0.042 0.007 0.295 
NH4

+ (mM) 30.31 27.95 30.37 29.75 32.42 2.984 0.666 0.354 0.501 
Total VFA (mmol/g) 6.71 6.65 6.45 6.99 6.48 0.642 0.408 0.898 0.568 
Acetate (% of total VFA) 60.2 61.1 61.7 62.1 62.2 3.66 0.838 0.353 0.645 
Propionate (% of total VFA) 19.7 19.3 19.2 20.0 21.1 3.41 0.857 0.406 0.577 
Butyrate (% of total VFA) 14.9 14.5 14.1 13.6 12.4 1.39 0.182 0.032 0.768 
Acetate/butyrate 3.07 3.18 3.23 3.20 3.10 0.702 0.989 0.989 0.648 
(Acetate+butyrate)/propionate 3.83 3.93 3.97 3.88 3.71 0.747 0.964 0.687 0.606 

a, b Means in the same row with different superscripts differ (P<0.05). 
1 Orthogonal contrasts for L = linear and Q = quadratic effects. 
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Results 

 

Experiment 1 

After 32 h incubation with GP substrate, total gas production was not different between 

control and 1, 2 and 4 mM NO3
-, and was reduced by 26% with 6 mM NO3

- (P=0.019; Table 

1). Methane production expressed in ml/g tended to linearly decrease as NO3
- concentrations 

increased (P=0.079), whereas no difference between treatments was observed when CH4 was 

expressed as a percentage of total gas produced. Yield of CH4 reduction was lower than 100% 

with 1 and 2 mM NO3
-, but exceeded 100% with concentrations higher than 4 mM. The 

kinetics of CH4 production (ml/g) indicated that the decrease in CH4 emissions occurred 

during the first 10 h of incubation (Figure 1) and after 10 h, the rate of CH4 production 

appeared similar to the control treatment. 

 

Figure 1 In vitro dose response effect of nitrate on kinetics of methane production during 48 
h incubation with GP substrate (50% hay and 50% concentrate; experiment 1) 
 

Nitrate did not alter gaseous H2 emissions expressed in ml/g or as a percentage of total gas 

produced (Table 1). However, more H2 emissions occurred after 10 h and 15 h incubation for 

NO3
- doses of 4 and 6 mM, respectively (Figure 2). 

The final pH linearly increased from 6.18 in the control to 6.29 for 6 mM NO3
- (P=0.042; 

Table 1). The concentrations of NH4
+ and of total VFA production were not affected by NO3

- 

and averaged 30.2 mM and 6.7 mmol/g, respectively. Nitrate levels did not affect proportions 

of acetate, propionate, and butyrate, which averaged 61.5%, 19.9%, and 13.9%, respectively. 
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Consequently, the ratios acetate/propionate and (acetate+butyrate)/propionate were similar 

between treatments. 

Total production and consumption of H2 was not affected by treatments and averaged 5.11 

and 4.43 mmol/bottle, respectively (Table 2). Unaccounted H2 was positive and tended to 

increase with increasing levels of nitrate (from 11% in control to 23% with 6 mM NO3
-; 

P=0.099). 

 

 

Figure 2 In vitro dose response effect of nitrate on kinetics of hydrogen production during 48 
h incubation with GP substrate (50% hay and 50% concentrate; experiment 1) 
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Table 2 In vitro dose response effect of nitrate on calculated hydrogen production and distribution between fermentation end-products with GP 
substrate (50% hay and 50% concentrate; experiment 1) 
 Nitrate dose (mM) 

SED 
P-Value1 

Item 0 1 2 4 6 Dose L Q 
H2 production (mmol/bottle)   

From acetate 4.11 4.14 4.05 4.44 4.13 0.652 0.748 0.655 0.603 
From butyrate 1.02a 0.98a 0.92a 0.96a 0.81b 0.035 0.025 0.006 0.397 
Total 5.13 5.12 4.97 5.39 4.94 0.649 0.612 0.887 0.524 

H2 consumption (mmol/bottle)   
For methane 3.89a 3.83a 3.51a 2.75ab 1.70b 0.879 0.079 0.013 0.460 
For propionate 0.67 0.65 0.63 0.70 0.68 0.052 0.457 0.342 0.644 
For nitrate reduction 0.00 0.24 0.48 0.96 1.44 0.000 -- -- -- 
Total 4.56 4.72 4.62 4.41 3.82 0.828 0.578 0.188 0.451 

H2 emission (mmol/bottle) 0.01 0.01 0.01 0.03 0.04 0.026 0.459 0.114 0.629 
H2 unaccounted (mmol/bottle) 0.56 0.39 0.35 0.96 1.08 0.231 0.099 0.026 0.341 
H2 unaccounted (% of produced H2) 10.9 7.6 6.9 18.3 23.0 6.67 0.227 0.059 0.389 
a, b Means in the same row with different superscripts differ (P<0.05). 
1 Orthogonal contrasts for L = linear and Q = quadratic effects.  
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Table 3 In vitro dose response effect of nitrate on gas production and composition, and fermentation parameters after 32 h incubation with GLU 
substrate (100% glucose; experiment 2) 
 Nitrate dose (mM) 

SED 
P-Value1 

Item 0 1 2 4 6 Dose L Q 
Gas production and composition   

Total gas production (ml/g) 350.8a 339.4a 323.8ab 290.5bc 274.5c 18.33 0.022 0.003 0.631 
CH4 production (ml/g) 31.0a 26.2ab 22.1b 12.8c 11.2c 6.01 0.002 <0.001 0.067 
CH4 production (% of total gas) 8.8a 7.7ab 6.8b 4.3c 4.1c 1.56 0.002 0.001 0.048 
H2 production (ml/g) 0.29 0.20 0.34 0.35 0.22 0.153 0.809 0.948 0.531 
H2 production (% of total gas) 0.09 0.06 0.11 0.12 0.08 0.051 0.774 0.760 0.468 
Efficiency of CH4 reduction (%) -- 136.7 126.0 129.2 93.5 -- -- -- -- 

Fermentation parameters   
pH 6.08a 6.09a 6.14b 6.17b 6.21c 0.062 0.003 <0.001 0.538 
NH4

+ (mM) 9.44a 10.11a 12.56ab 17.14c 15.09bc 1.737 0.018 0.004 0.063 
Insoluble protein (mg/ml) 0.26 0.20 0.22 0.22 0.17 0.053 0.641 0.276 0.923 
Total VFA (mmol/g) 7.08 6.92 6.84 5.30 4.82 1.168 0.155 0.036 0.826 
Acetate (% of total VFA) 42.9a 45.3ab 44.8a 51.6bc 57.8c 2.04 0.020 0.004 0.250 
Propionate (% of total VFA) 42.8a 41.6ab 41.5ab 36.9b 31.0c 2.03 0.027 0.006 0.175 
Butyrate (% of total VFA) 13.4 11.8 13.0 11.3 11.2 1.27 0.100 0.041 0.614 
Acetate/propionate 1.01a 1.10ab 1.08a 1.41b 1.87c 0.096 0.012 0.003 0.069 
(Acetate+butyrate)/propionate 1.33a 1.39ab 1.40ab 1.71b 2.23c 0.112 0.013 0.003 0.061 

a, b Means in the same row with different superscripts differ (P<0.05). 
1 Orthogonal contrasts for L = linear and Q = quadratic effects. 
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Table 4 In vitro dose response effect of nitrate on calculated hydrogen production and distribution between fermentation end-products with GLU 
substrate (100% glucose; experiment 2) 
 Nitrate dose (mM) 

SED 
P-Value1 

Item 0 1 2 4 6 Dose L Q 
H2 production (mmol/bottle) 

From acetate 2.31 2.33 2.33 2.06 2.11 0.441 0.692 0.289 0.934 
From butyrate 0.72 0.63 0.68 0.47 0.42 0.152 0.085 0.021 0.996 
Total 3.03 2.96 3.01 2.53 2.53 0.589 0.393 0.123 0.948 

H2 consumption (mmol/bottle) 
For methane 2.11a 1.78ab 1.50b 0.87c 0.76c 0.408 0.002 <0.001 0.067 
For propionate 1.15 1.14 1.08 0.74 0.57 0.154 0.076 0.016 0.609 
For nitrate reduction 0.00 0.24 0.48 0.96 1.44 0.000 -- -- -- 
For microbial biomass 0.012 0.009 0.010 0.010 0.008 0.0021 0.604 0.276 0.958 
Total 3.27 3.12 3.07 2.58 2.78 0.507 0.065 0.021 0.144 

H2 emission (mmol/bottle) 0.01 0.00 0.01 0.01 0.00 0.003 0.819 0.869 0.520 
H2 unaccounted (mmol/bottle) -0.24 -0.15 -0.07 -0.06 -0.25 0.265 0.902 0.986 0.408 
H2 unaccounted (% of produced H2) -7.8 -4.7 -1.8 -3.3 -13.3 11.88 0.870 0.659 0.415 
a, b Means in the same row with different superscripts differ (P<0.05). 
1 Orthogonal contrasts for L = linear and Q = quadratic effects. 
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Experiment 2 

When glucose was used as substrate, total gas production linearly decreased from 350.8 to 

274.5 ml/g as NO3
- doses increased from 0 to 6 mM NO3

- (Table 3). Methane production 

(ml/g and % of total gas) was linearly reduced with NO3
-, ranging from 8.8% of total gas 

produced in the control treatment to 4.1% of total gas produced for 6 mM NO3
- (P=0.002). 

Except for 6 mM NO3
-, the reduction in CH4 emission was higher than the stoichiometrically 

calculated reduction. Nitrate did not affect gaseous H2 emissions expressed in ml/g or as a 

percentage of total gas produced. 

After 32 h incubation, the pH linearly increased from 6.08 to 6.21 with increasing nitrate 

concentrations (P=0.003). Nitrate increased NH4
+ concentrations (P=0.018) but did not affect 

the production of insoluble protein which averaged 0.22 mg/ml. Kinetics of insoluble protein 

production also confirmed the absence of treatment effect throughout the incubation (Figure 

3). Nitrate did not affect total VFA production, but increased the proportion of acetate 

(P=0.020) while reducing the proportion of propionate (P=0.027). These results led to a linear 

increase of the ratios acetate/propionate (P=0.012) and (acetate+butyrate)/propionate 

(P=0.013). 

 

 

Figure 3 In vitro dose response effect of nitrate on kinetics of insoluble protein during 48 h 
incubation with GLU substrate (100% glucose; experiment 2) 
 

Treatments did not affect total H2 production which averaged 2.82 mmol/bottle, but total H2 
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H2 used for microbial biomass were similar between treatments and averaged 0.010 

mmol/bottle. Finally, unaccounted H2 was similar and close to zero for all treatments. 

 

Discussion 

 

Dose response effect of nitrate on gaseous emissions and rumen fermentation profile 

With 6 mM NO3
-, total gas production was decreased by 26% and 22% with GP and GLU 

substrates, respectively. Similar observations were made in previous in vitro experiments 

testing similar or higher NO3
- doses with alfalfa hay (13 mM; Bozic et al., 2009), wheat straw 

and concentrate (5 and 10 mM; Sakthivel et al., 2012) or alfalfa hay and concentrate (5 and 10 

mM; Patra and Zhongtang, 2013; 2014). These results indicate that NO3
- at a level greater 

than 5 mM inhibits in vitro rumen fermentation. However, NO3
- did not affect production and 

composition of VFA with GP substrate. This is in accordance with Patra and Zhongtang 

(2014), but in contrast to Bozic et al. (2009) where in vitro NO3
- supplementation reduced 

propionate proportion in total VFA. In the present work, the stability of propionogenesis may 

be explained by an equilibrium between two opposite actions of nitrate on the H2 pool: i) a 

reduction of H2 availability for nitrate reduction (electron sink); ii) an increase of H2 

availability via its direct toxic effect towards methanogens as indicated by the observed higher 

gaseous H2 emissions (Janssen, 2010). 

In the two in vitro experiments of this study, CH4 emissions were linearly reduced with 

increasing concentrations of NO3
-. The kinetics of CH4 emissions with GP substrate indicated 

that NO3
- acts rapidly during the first 10 h. This observation can be related to the quick 

absorption of NO3
- by rumen microbes: in vitro, microbes used NO3

- within 10 h incubation in 

the medium (Shi et al., 2012). In vivo on sheep fed 1.3 g NaNO3/kg metabolic weight, the 

concentration of NO3
- was decreased by 50% within 5 h postfeeding (Sar et al., 2004). In the 

rumen of cows fed 3% calcium nitrate, NO3
- was not even detected 3 h after feeding (Guyader 

et al., 2014a). 

When GP diet was used as a substrate, the observed CH4 inhibition was higher than the 

stoichiometrically calculated inhibition at levels of NO3
- exceeding 4 mM, and increased as 

NO3
- doses increased. In contrast, when GLU was used, the apparent yield of CH4 reduction 

was higher than 100%, independent of the NO3
- concentration. This observation indicated that 

the assumption that NO3
- only acts as an electron acceptor is not sufficient enough to 

understand the CH4-mitigating mechanisms of NO3
-. While the conversion of NO3

- to NH4
+ 

requires electrons, a release of gaseous H2 is an indicator for a direct inhibition of 
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methanogens, and the decrease in gas production indicates a direct inhibitory effect on 

fermentative microorganisms. As long as NO3
- is deviating electrons, no H2 emissions will be 

observed, and only after 10 to 15 h when the NO3
- is exhausted, gaseous H2 is observed. 

These results confirm previous in vitro (Zhou et al., 2011) and in vivo (Van Zijderveld et al., 

2010; Guyader et al., 2014c) results showing that NO3
- have a toxic effect towards 

methanogens. However, the direct toxicity of NO3
- against methanogens is dose and substrate 

dependent, and becomes evident only at concentrations above 4 mM with GP substrate and no 

such a toxic effect was observed when GLU was used as a substrate. 

 

Dose response effect of nitrate on H2 metabolic fluxes 

Total H2 production calculated from acetate and butyrate concentrations was similar between 

treatments, when GP substrate was used. Differences were only observed for H2 consuming 

pathways such as methanogenesis. For the control treatment, 76% of H2 was directed towards 

methanogenesis and 13% towards propionate synthesis. These percentages were in the range 

of previous estimations of H2 distribution between fermentation end-products (Czerkawski, 

1986; Mills et al., 2001). 

Unaccounted H2 represented between 6.9 and 23.0%, which may be either captured in 

microbial biomass (Czerkawski, 1986; Mills et al., 2001) or derived from substrates other 

than glucose on which the calculation is based on (Wolin, 1960). In this balance, we assumed 

a full transformation of NO3
- to NH4

+, which is supported by the high efficiencies of NO3
- 

reduction. Unaccounted H2 was similar to the control at low level of NO3
-, but higher levels 

increased the percentage of unaccounted H2. Two hypotheses were tested in order to 

understand how missing H2 can be used. Firstly, we assumed that formate which production 

may require H2 via the formate-hydrogen lyase, accumulated in the medium, as shown in 

previous monoculture of Ruminococcus flavefaciens (Wolin et al., 1997). This intermediate of 

rumen fermentation was also observed in vitro when CH4 emissions were inhibited with 

propynoic acid or ethyl 2-butynoate (Ungerfeld et al., 2006). However, although in the present 

incubation formate was not determined, no formate was found in response to 2 and 8 mM 

NO3
- in separate in vitro incubations with GP substrate (data not shown). 

Assuming that microbes require 0.41 moles H2 per kg microbes (Mills et al., 2001), it was 

expected that microbial biomass was increased with high doses of NO3
-, using a part of 

unaccounted H2. However, treatments did not affect insoluble protein concentrations, showing 

that NO3
- did not enhance microbial synthesis. This result confirms previous in vitro 

experiments reporting an absence of NO3
- (5 and 10 mM doses) effect on bacterial and 
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protozoal concentrations (Zhou et al., 2011; Patra and Zhongtang, 2013; 2014). This is also in 

accordance with an in vivo experiment reporting no difference in microbial protein supply 

based on urinary excretion of purine derivatives of non-lactating cows supplemented with 

NO3
- (2.3% in DM; Guyader et al., 2014a). In addition, the estimated percentage of H2 

directed towards microbial biomass was very low and ranged between 0.3 and 0.3%, 

confirming the low contribution of microbes to H2 consumption (Mills et al., 2001). 

 

Conclusions 

Nitrate is an efficient CH4-mitigating strategy but it can be used only to a limited extent, 

before fermentation is negatively affected. The in vitro threshold appears to be between 2 to 4 

mM, which would correspond to a supplementation to animals situated between 1.2 and 2.5% 

of DM. The difference between observed and theoretical CH4 production shows that this 

additive acts as an electron acceptor, but its mechanisms of action must also involve a direct 

toxic effect on methanogens. In addition, the study of H2 distribution between fermentation 

end-products shows that NO3
- must enhance another unknown H2 consuming pathway, 

different from H2 emitted or captured for NO3
- reduction, and for production of CH4, VFA or 

microbial biomass. 
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 Methane released by ruminants is the main greenhouse gas at the farm level (Veysset 

et al., 2010) and constitutes an energetic loss for the animal, ranging from 2 to 12% of its GEI 

(Johnson and Johnson, 1995). Therefore, this PhD thesis takes part in the global context of 

CH4 mitigation, in order to reduce the negative environmental impacts of ruminants while 

improving their feed efficiency. 

 Knowing that H2 is the limiting substrate of methanogenesis in the rumen, the 

objective of this PhD thesis consisted in studying the importance of the different H2 metabolic 

pathways (production and consumption), in order to determine the more efficient way to 

manipulate H2 pool in the rumen. The final purpose of this work consists in proposing new 

dietary CH4-mitigating strategies. We assumed that acting on both reduction of H2 production 

and stimulation of H2 consumption by a competitive pathway to methanogenesis decreases 

CH4 production to a higher extent than when acting on a single pathway. 

 Our scientific approach was divided in two parts. Firstly, the bibliographical approach 

detailed the biological and thermodynamic mechanisms of H2 production and utilization in the 

rumen via a classic literature review. In addition, a meta-analysis reported the relationship 

between rumen protozoa and CH4 emissions. Secondly, the experimental approach assessed 

the effect of association of dietary strategies on CH4 emissions of non-lactating and lactating 

cows. The originality of our work consisted in associating dietary treatments with different 

mechanisms of action on H2 pool (reducing H2 production or consuming H2). Moreover, the 

distribution of H2 between fermentation end-products was estimated in vitro with a strategy 

acting on H2 utilization. 

 In the following discussion, we will focus on the main original results obtained during 

this PhD thesis. This section will be divided into three parts: 

1/ we will give an experience feedback on new equipment acquired during this PhD thesis 

(CH4-open chambers and H2-sensors), and we will assess precision and accuracy of CH4 

emissions and rumen dissolved H2 concentrations obtained in cows fed control diets. 

2/ we will assess the relevance of the tested CH4-mitigating strategies on methanogenesis, but 

also on overall digestive and zootechnical performances. Rumen fermentation mechanisms of 

these CH4-mitigating strategies will be highlighted, by relating them with distribution of H2 in 

the different fermentation end-products and with modification in the microbiota. 

3/ we will discuss the possibility of a practical use at the farm scale of the most efficient CH4-

mitigating dietary strategy tested in this PhD thesis. 
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I.  PRECISION AND ACCURACY OF METHANE EMISSIONS AND 

RUMINAL DISSOLVED HYDROGEN CONCENTRATIONS IN COWS 

FED CONTROL DIETS 

 

 During this PhD thesis, two new methods were implemented in the team to monitor 

cows’ individual kinetics of i) enteric CH4 emissions using open chambers and ii) rumen 

dissolved H2 concentrations using H2-sensors. In the following section, we will give an 

experience feedback on these two devices and we will assess the precision and accuracy of 

our data obtained on cows fed control diets by comparing them with the literature. 

 

1.1. Precision and accuracy of methane emissions 

 

Table 11 Compiled data of methane emissions obtained in the experiments of this PhD thesis 

with non-lactating and lactating cows 

 
Experimental design 

 Methane emissions 
(± SD) 

Experiment Animal (n) 
Forages 

(% of DM) 

Methane 
measurement 

technique 

Days in 
chambers 

 

g/day 
g/kg 
DMI 

% of 
GEI 

1 & 3 
Non-

lactating 
cows (8) 

Grass hay 
(50) 

Open 
chambers 

4 

 
310.5 

(± 16.50) 
25.2 

(± 1.56) 
7.2 

(± 0.45) 

2 & 3 
Lactating 
cows (15) 

Corn silage, 
grass hay 

(60) 

Open 
chambers 

4 or 2 

 
450.9 

(± 111.77) 
21.2 

(± 3.50) 
6.0 

(± 0.99) 

n: number of animals; SD: Standard deviation 

 

 In this PhD thesis (Table 11), 8 non-lactating cows (experiments 1 and 3) were fed a 

same control hay-based diet in restricted conditions (90% of ad libitum intake). Their CH4 

emissions were measured in open chambers for 4 consecutive days. Fifteen lactating cows 

(experiments 2 and 3) were fed ad libitum a same control corn silage-based diet. During 

measurement of their CH4 emissions in open chambers for 4 or 2 days, animals were 

restricted fed (95% of ad libitum intake). 
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1.1.1. Experience feedback on open chambers for cattle 

 Our open chambers allowed to measure daily kinetics of enteric CH4 emissions in 

cattle (see experiment 1 for a detailed description of chambers). Chambers were designed to 

be spacious and comfortable for the animals (4-cm thick mattress, 2.5-m² lying area) in order 

to avoid disturbance of cows’ behavior and performances during their stay inside. In addition, 

animals were used to be attached in the barn before to be moved in open chambers. The levels 

of DMI in chambers averaged 12.4 (day-to-day coefficient of variation, CV = 1.3%) for non-

lactating and 21.2 (day-to-day CV = 2.0%) kg/day for lactating cows, and were similar to the 

levels of DMI measured the week preceding or following CH4 measurement (12.4 kg/day, 

day-to-day CV = 1.1% for non-lactating cows; 20.8 kg/day, day-to-day CV = 3.6% for 

lactating cows). The constant DMI and milk production of cows between inside and outside 

chambers reflected that animals easily adapted to open chambers and that our experimental 

conditions are good enough to measure accurate CH4 emissions in cows. 

 In our experimental conditions, the day-to-day variability of CH4 emissions (g/day) 

within animals was low and similar between non-lactating and lactating cows (4.1%, on 

average). This variability level was comparable with data reported in the literature, which 

ranged between 4.3 and 7.2% for animals placed in respiration chambers for a minimum of 3 

consecutive days (dairy and beef cattle, n = 87, Blaxter and Clapperton, 1965; dairy cattle, n = 

16, Grainger et al., 2007). 

 Variability of CH4 emissions (g/day) between animals averaged 5.3% for non-lactating 

cows fed a hay-based diet and 24.8% for lactating cows fed a corn silage-based diet. These 

levels remained comparable with reviews cited previously (8.1%, no indication about diets, 

Blaxter and Clapperton, 1965; 17.8%, 75% forage in diet, Grainger et al., 2007). The higher 

variability of CH4 emissions between lactating cows is consistent with their higher DMI 

variability (18.6% for lactating cows fed sub ad libitum versus 7.9% for dry cows restricted 

fed). Then, we also confirmed a previous study reporting that the CV between animals is 

larger when intake is not restricted (Grainger et al., 2007). 
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Table 12 Equations used to estimate CH4 emissions of cows fed control diets in all experiments of this PhD thesis 

Reference n Animals 
Methane 

measurement 
technique 

Forage 
(% of DM) 

DMI%BW 
[min-max] 

CH4 (g/day) 
[min-max] 

Equation1 
RMSE 
(unit) 

R² 

Sauvant et 
al., 2011 
[1] 

976 
Dairy and beef 

cattle, sheep and 
goat2 

Chambers (n=976) 60 
1.61 

[0.56-4.01] 
NA4 CH4 (g/day) = (7.14 + 0.22 × DOM) / DMI 

2.70 
(g/kg DMI) 

0.81 

Mills et al., 
2003 [2] 

159 
Dairy cattle 

(n=159) 
Chambers (n=159) 55 NA3 

479.5 
[325.0-605.9] 

CH4 (g/day) = (5.93 + 0.92 × DMI) × Z 
1.82 

(MJ/day) 
0.60 

Ellis et al., 
2007 [3] 

172 
Dairy (n=89) and 
beef cattle (n=83) 

Chambers (n=101) 
SF6 (n=42) 

Others (n=29) 
75 

2.25 
[NA] 

236.8 
[56.4-499.6] 

CH4 (g/day) = (3.27 + 0.74 × DMI) × Z 
0.28 

(MJ/day) 
0.68 

Ellis et al., 
2007 [4] 

83 Beef cattle (n=83) 
Chambers (n=44) 

SF6 (n=37) 
Others (n=2) 

80 
1.99 
[NA] 

183.2 
[56.4-345.1] 

CH4 (g/day) = (3.96 + 0.561 × DMI) × Z 
0.26 

(MJ/day) 
0.44 

Ellis et al., 
2007 [5] 

89 
Dairy cattle 

(n=89) 

Chambers (n=57) 
SF6 (n=5) 

Others (n=27) 
70 

2.37 
[NA] 

286.9 
[86.5-499.6] 

CH4 (g/day) = (3.23 + 0.809 × DMI) × Z 
0.26 

(MJ/day) 
0.65 

Ramin and 
Huhtanen, 
2013 [6] 

207 
Dairy (n=145) and 
beef (n=62) cattle 

Chambers (n=207) 70 
2.18 

[0.78-5.23] 
218.7 

[9.2-541.7] 
CH4 (g/day) = (20 + 35.8 × DMI − 0.50 × 

DMI²) × 0.71427 
NA -- 

Sauvant 
and 
Nozière, 
2013 [7] 

450 
Dairy and beef 

cattle, sheep and 
goat2 

Chambers (n=450) 60 
1.61 

[0.56-4.01] 
NA4 

CH4 (g/day) = (45.42 – 6.66 × (DMI:BW) + 
0.75 × (DMI:BW)² + 19.65 × PC – 35.0 × 
PC² - 2.69 × (DMI:BW) × PC) × DOMI 

2.3 
(g/kg DOM) 

-- 

n: number of treatments; RMSE: residual mean square error; NA: non-available 
1 Z = conversion factor between CH4 expressed in MJ/day to CH4 expressed in g/day = 20.0638; DOM (% of DM) = digestible OM in diet = OM content of 
the diet (% of DM) × OM digestibility (0-1); DMI (kg/day) = dry matter intake; PC = concentrate proportion (0-1); DOMI = digestible OM intake (kg/day) = 
DOM × DMI 
2 Proportions not available 
3 DMI = 19.6 kg/day, with minimum and maximum: 12.5 and 28.4 kg/day 
4 CH4 = 18.3 g/kg DMI, with minimum and maximum: 13.6 and 23.0 g/kg DMI 
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1.1.2.  Comparison of methane emissions with the literature 

 

 Daily pattern of CH4 emissions. In the experiments of this PhD thesis, animals were 

fed twice daily and the daily patterns of CH4 emissions were similar between cows fed the 

control diets. Methane emissions increased quickly following feed intake to reach a peak 2 h 

after feeding, and then decreased progressively until the next feeding. These daily patterns of 

methanogenesis according to feeding frequency are in accordance with previous observations 

(Grainger et al., 2007; Janssen, 2010; Van Zijderveld et al., 2010). 

 

 Difference between non-lactating and lactating cows. Expressed in g/day, CH4 

emissions of non-lactating cows fed a hay-based diet were lower than lactating cows fed a 

corn silage-based diet (310.5 versus 450.9 g/day). This expected result is explained by the 

lower intake level of non-lactating cows compared to lactating cows (12.4 versus 21.2 kg 

DMI/day). Indeed, the positive correlation between CH4 emissions (g/day) and DMI is well 

known (Reynolds et al., 2011; Ramin and Huhtanen, 2013). 

 Inversely, when expressed in g/kg DMI or as a percentage of GEI, CH4 emissions of 

non-lactating cows (hay-based diet) were higher than lactating cows (corn silage-based diet; 

25.2 versus 21.2 g/kg DMI; 7.2 versus 6.0% GEI). This difference may be explained by two 

confounded effects. The first one is related to the higher intake level of lactating cows 

compared to non-lactating cows, which decreased the feed retention time in the rumen, 

lowering the time for microbial fermentation of feed substrates (Reynolds et al., 2011). The 

second one is related to the forage nature of the basal diet. Forage preservation may affect 

enteric CH4 production which tends to be lower when forages are ensiled than when they are 

dried (Martin et al., 2010). From direct comparisons, Doreau et al. (2011) also reported that 

lactating cows fed silage-based diets produce less CH4 (g/per kg milk) than those fed hay-

based diets. 

 

 Comparison of observed and predicted CH4 emissions. In order to assess the 

coherence of our CH4 emissions, data from individual cows fed control diets were confronted 

to CH4 emissions estimated with equations from the literature. To predict enteric CH4 

emissions, several equations are available in the literature, which are based on various criteria 

such as intake level, diet composition, production level of animals or rumen fermentation 

parameters. In the present work, we selected 7 predictive equations (Table 12) for the 

following reasons: 
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1/ They predict CH4 emissions from the level of DMI (Ellis et al., 2007; Mills et al., 2003; 

Ramin and Huhtanen, 2013) which is the main determinant of CH4 production (Reynolds et 

al., 2011; Ramin and Huhtanen, 2013), and/or from the level of digestible OM (DOM) in the 

diet (Sauvant et al., 2011; Sauvant and Nozière, 2013) which is a good predictor of CH4 

emissions, as it is statistically related with the level of fermented OM in the rumen (Sauvant et 

al., 2011). 

2/ They were developed from large database built with in vivo data collected from animals fed 

diets containing proportions of concentrate (20-50%) overlying those of our experimental 

diets (40-50% concentrate). 

3/ They were developed from data of CH4 emissions mostly measured with chambers, as 

realized in this work (93% with chambers versus 4% with SF6 versus 3% with other 

techniques). 

 

 We adopted two approaches for comparison of observed and predicted CH4 emissions 

(g/day). To compare absolute values, a T-test was applied between observed and predicted 

CH4 emissions for each equation. To check variations in CH4 emissions, the relationship 

between observed and predicted CH4 emissions was tested for each equation using the general 

linear model (GLM) procedure: 

Observed CH4 = α + β × predicted CH4 

Where α = the overall intercept and β = the overall slope. Non-significant intercepts were 

considered as equal to 0. Slopes were compared to 1 by calculating T (T = (slope – 1)/SDslope), 

which was compared to tα obtained from the T-Student table (α = 0.05). If T> tα, the slope was 

considered different from 1. Statistical analyses were performed with Minitab (Version 16). 

 When considering all data from lactating or non-lactating cows fed control diets 

(Table 13; Figure 20), we showed that absolute data between observed and predicted CH4 

emissions were positively correlated (average R² = 76.6% on average) whatever the equation 

(P<0.001). Absolute CH4 emissions between observed and predicted were similar (P>0.05) 

with equations 2, 5, 6 and 7, whereas observed CH4 emissions were significantly higher than 

predicted with equations 1, 3 and 4 (average bias = +142.5, +68.0 and +119.1 g/day, 

respectively; P<0.05). Concerning variations between observed and predicted CH4 emissions, 

all intercepts tended or were equal to 0, and slopes of regressions were significantly equal to 1 

(P<0.05) for all equations, except for equations 4 and 6. The differences between observed 

and predicted CH4 emissions with equations 1, 3 and 4 may be explained by i) the different 

animal species and type of cattle production (equation 1 is proposed for sheep and cattle, 
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equation 4 is proposed for beef cattle), and ii) the higher concentrate proportion in our 

experiments (40-50%) compared with the average concentrate proportion in the dataset used 

to generate the equations 3 and 4 (20-25%). 

 

Table 13 Comparison and relationship between observed and predicted CH4 emissions 

(g/day) of lactating and non-lactating cows (n=23) used in the experiments of this PhD thesis. 

Equation 
Predicted 

CH4 (±SD)1 
P-Value 
(T-test) 

Intercept 
(SE) 

Slope 
(SE) 

Slope = 1 R² RMSE 

[1] 
259.6 

(±78.4) 
<0.001 

74.2† 
(40.70) 

1.26***  
(0.150) 

Yes 0.77 55.3 

[2] 452.8 
(±98.7) 

0.112 
-53.3ns 
(54.83) 

1.01***  
(0.118) 

Yes 0.77 54.8 

[3] 
334.1 

(±79.4) 
0.023 

-15.7ns 
(50.50) 

1.25***  
(0.147) 

Yes 0.77 54.8 

[4] 
283.0 

(±60.2) 
<0.001 

-64.7ns 
(56.14) 

1.65***  
(0.194) 

No 0.77 54.8 

[5] 
358.3 

(±86.8) 
0.148 

-7.8ns 
(49.60) 

1.14***  
(0.135) 

Yes 0.77 54.8 

[6] 
350.2 

(±65.6) 
0.064 

-116.8† 
(67.56) 

1.48***  
(0.190) 

No 0.74 58.4 

[7] 
362.4 

(±90.6) 
0.195 

6.7ns 
(48.68) 

1.09***  
(0.131) 

Yes 0.77 55.5 

SE: Standard error 
1 Observed CH4 emissions averaged 402 ± 112.8 g/day. 
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Figure 20 Relationship between observed and predicted methane production (g/day) of lactating (n=15) and non-lactating (n=8) cows fed control 
diets in the different experiments of this PhD thesis
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1.2. Precision and accuracy of ruminal dissolved hydrogen concentrations 

 

 This PhD thesis is the first work reporting kinetics of dissolved H2 concentrations in 

the rumen of fistulated cows using indwelling H2-sensors (experiment 1). 

 

1.2.1. Experience feedback on H2-sensors 

 We succeeded to adapt an H2-sensor (commonly used in marine research) for 

continuous and in situ measurement of dissolved H2 concentration in the rumen. This system 

counteracted the main disadvantages of previous H2-measurement devices (detailed in 

Materials and methods section of this manuscript): i) it measured kinetics of dissolved H2 

concentrations, ii) it detected quick modification of H2 concentrations (90% response in 15 

sec) which was important knowing that the turnover time of H2 in the rumen is ~0.08 sec, and 

iii) it had a low limit of H2 quantification (0.3 µM). 

 From a practical point of view, the full system did not require important equipment, 

and the sensor size was rather small which did not disturb the ruminal environment. However, 

the glass-made tip of the sensor was very fragile, and the sensor required a strong home-made 

protection prior to its insertion into the rumen, and this was very challenging if the animal just 

ate. To counteract this issue, we inserted the sensor before morning feeding and removed it 

before afternoon feeding. Kinetics of dissolved H2 concentrations were measured for 5 h 

postfeeding. 

 As we only had one available and functional H2-sensor, measurements were carried 

out only one day per cow per experimental period. Then, for the whole experiment, we 

collected 4 daily kinetics obtained on 4 cows fed the control diet. For this reason, variability 

between days was impossible to estimate for this measure. 

 Rumen dissolved H2 concentrations of the 4 non-lactating cows fed a same control diet 

presented an important inter-animal variability. Figure 21 shows that the highest variability 

levels were observed during the time outside feeding time (from 2.5 to 3 h after feeding). This 

result highlights the importance of repeating the measurement for several days for a same 

animal. In our case, this was impossible because of limitation in H2-sensors availability. 
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Figure 21 Average rumen dissolved hydrogen concentrations and methane emissions up to 5 
h after feeding a similar hay-based diet to four non-lactating cows. Errors bars indicate SD. 
The arrow indicates time of feeding. 
 

1.2.2. Comparison of ruminal dissolved hydrogen concentrations with the literature 

 During the 5 h after feeding, dissolved H2 concentration in the rumen of cows fed a 

hay-based diet averaged 4.1 µM with an interval situated between 2.5 and 7.2 µM. These 

concentrations were low, but in the range of previous observations (0.1-50 µM) given by 

Janssen (2010). 

 The maximum ruminal dissolved H2 concentrations (7.2 µM) was observed less than 1 

h after feeding. This postprandial peak of rumen dissolved H2 concentration was situated 

upstream of the observed postprandial peak of CH4 emissions, coinciding with previous 

observations (Swainson et al., 2011). This postfeeding H2 peak probably corresponded to the 

release of H2 coming from fermentation of fresh feed ingested. This pattern was in accordance 

with previous studies on cattle or sheep, which also observed a rise of ruminal dissolved H2 

concentrations between 10 min and 3 h after feeding (Morgavi et al., 2012; Robinson et al., 

1981; Smolenski and Robinson, 1988). As for CH4 emissions, we assume that the extent and 

time of the postfeeding H2 peak is dependent on the fermentation rate of diet components and 

on the feeding frequency. 

 

 The aim of this PhD thesis was to propose new dietary strategies to mitigate CH4 

emissions in ruminants via a modification of H2 availability in the rumen. Quantification 

of individual CH 4 emissions was an essential measurement in this work, as well as 
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dissolved H2 concentrations in the rumen as indicator of H2 availability. Monitoring 

kinetics of these two parameters allowed getting a better insight of mechanisms involved 

in CH4 mitigation. Consequently, four open CH4 chambers for cattle were implemented 

in the team and H2-sensors were adapted to the rumen environment. Overall results 

indicate that in our experimental conditions, kinetics of CH4 emissions were precise and 

accurate. Data on H2 kinetics were original, but additional research is required to assess 

the reproducibility and repeatability of measurements. In conclusion, we confirm that 

these two devices were adapted to evaluate the efficiency and understand the 

mechanisms of actions of the selected dietary CH4-mitigating strategies. 
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Table 14 Compiled data from the literature on the effects of lipids from linseed supplementation to cattle or sheep on methane emissions, total 

tract digestibility and nitrogen balance 

Reference 
Animal 
species 

Forages 
(% of DM) 

Linseed form 
Added fat1 
(% of DM) 

Methane reduction 
(g/kg DMI, % per 
1% added C18:3) 

Effect on total 
tract digestibility 

Effect on 
nitrogen balance 

Experiment 1, 
this PhD thesis 

Dry cows Grass hay (50) Linseed oil 2.6 -6.6 No effect No effect 

Machmüller et al., 
2000 

Lambs 
Corn silage, grass hay 

(76) 
Crude linseed 2.4 -6.0 No effect NA 

Martin et al., 2008 Dairy cows 
Corn silage, grass hay 

(65) 

Crude linseed 
Extruded linseed 

Linseed oil 

4.2 
4.4 

5.8 

-2.5 
-6.0 
-9.0 

dOM3: -4% 
dNDF3: -7% 
dADF3: -6% 

NA 

Chung et al., 2011 Dry cows Grass hay (48) Crude linseed 5.6 -0.91 
dOM: -3% 
dNDF: -7% 
dADF: -18% 

NA 

 Dry cows Barley silage (48) Crude linseed 4.8 -6.8 
dOM: -7% 

dNDF: -20% 
dADF: -28% 

NA 

Martin et al., 2011 Dairy cows Grass silage/hay (57) Extruded linseed 3.0 -4.7 NA NA 

 Dairy cows Pasture (79) Extruded linseed 2.0 -8.1 NA NA 

Veneman et al., 
2014 

Dairy cows Grass/maize silage (NA) Linseed oil 2.62 -0.59 NA NA 

Dairy cows Corn silage (NA) Linseed oil 2.62 +0.4 NA NA 

AVERAGE     -4.6   
NA: Data not available 
1 Based on ether extract content of the diet 
2 Values based on estimation, knowing that in our experiment, 4% linseed oil = 2.6% added fat 
3 Extent of reduction in total tract digestibility similar between treatments 
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Table 15 Compiled data from the literature on the effects of tea saponin (C. sinensis or assamica) supplementation to cattle or sheep on methane 

emissions, total tract digestibility and nitrogen balance 

Reference 
Animal 
species 

Forages 
(% of DM) 

Distribution 
method of tea 

saponin powder 

Tea saponin (% of DM) 
(% of active saponin 

compound ) 

Methane reduction 
(g/kg DMI, % per 
1% added saponin) 

Effect on total 
tract digestibility 

Effect on 
nitrogen balance 

Experiment 3, 
this PhD thesis 

Dry cows Grass hay (50) In a pellet 0.77 (0.52) -4.0 No effect No effect 

 Dairy cows 
Corn silage, 

grass hay (60) 
In a pellet 0.76 (0.52) +17.9 dADF: +8% No effect 

Yuan et al., 
2007 

Adult sheep 
Lucerne hay 

(60) 
Mixed with feed 0.5 (NA) -17.4 NA NA 

Mao et al., 2010 Lambs 
Chinese wild 

rye (60) 
Mixed with feed 0.4 (NA) -68.7 NA NA 

Zhou et al., 
2011 

Adult sheep 
Chinese wild 

rye (60) 
Mixed with feed 0.4 (0.24) -26.51 NA NA 

Li and Powers, 
2012 

Steers Corn silage (46) Mixed with feed 
0.25 (0.06) 
0.50 (0.12) 

-29.2 
-1.0 

NA No effect 

AVERAGE     -26.4   
NA: Data not available 
1 DMI was not available. We assumed that DMI was similar to Mao et al. (2010) 
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Table 16 Compiled data from the literature on the effects of nitrate supplementation to cattle or sheep on methane emissions, total tract 

digestibility and nitrogen balance 

Reference 
Animal 
species 

Forages 
(% of DM) 

Nitrate source 
Nitrate dose 
(% of DM) 

Methane reduction 
(g/kg DMI, % per 
1% added nitrate) 

Effect on 
total tract 

digestibility 

Effect on 
nitrogen 
balance 

Experiment 1, 
this PhD thesis 

Dry cows Grass hay (50) Calcium nitrate 2.3 -9.6 No effect No effect 

Experiment 3, 
this PhD thesis 

Dry cows Grass hay (50) Calcium nitrate 2.3 -11.7 No effect No effect 

Nolan et al., 2010 Adult sheep Oaten hay (100) 
Potassium 

nitrate 
2.5 -9.5 No effect NA 

Van Zijderveld et al., 
2010 

Adult sheep 
Corn silage, barley 

straw (90) 
Calcium nitrate 2.6 -12.2 NA NA 

Van Zijderveld et al., 
2011 

Dairy cows 
Corn silage, dried 

alfalfa, barley straw (66) 
Calcium nitrate 2.1 -7.9 No effect No effect 

Hulshof et al., 2012 Steers Sugar cane (60) Calcium nitrate 2.2 -12.3 NA NA 

Li et al., 2012 Lambs NA Calcium nitrate 2.3 -15.4 No effect No effect 

El-Zaiat et al., 2014 Lambs Grass hay (60) Calcium nitrate 3.4 -9.7 NA NA 

Lee et al., 2014a Steers Forage (55) Calcium nitrate 2.3 -8.0 NA No effect 

de Raphélis-Soissan 
et al., 2014 

Adult sheep Oaten hay (100) Calcium nitrate 2.0 -7.5 NA NA 

Lund et al., 2014 Dairy cows 
Grass/clover/corn silage 

(58) 
Calcium nitrate 2.0 -12.5 NA NA 

Veneman et al., 2014 Dairy cows Grass/corn silage (NA) Calcium nitrate 2.0 -6.8 NA NA 

 Dairy cows Corn silage (NA) Calcium nitrate 2.0 -8.2 NA NA 

AVERAGE     -10.1   
NA: Data not available 
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II.  OVERALL EFFECT OF DIETARY STRATEGIES ON METHANE 

EMISSIONS AND COWS’ PERFORMANCES 

 

2.1. Additive methane-mitigating effect of strategies acting on hydrogen production and 

consumption: validation of our initial hypothesis 

 

 The purpose of this PhD thesis consisted in proposing new efficient dietary CH4-

mitigating strategies acting on H2 availability for methanogens. We assumed that decreasing 

H2 production AND stimulating H2 consumption by a competitive pathway to 

methanogenesis, reduce CH4 production to a higher extent than when acting on a single 

pathway. 

 To reduce methanogenesis via a reduction of H2 production, we chose to test lipids 

from linseed and tea saponin. Indeed, our meta-analysis (Guyader et al., 2014) and previous 

reviews (Beauchemin et al., 2008; Doreau et al., 2011; Gerber et al., 2013a) highlighted that 

lipids and plant extracts would have a toxic effect towards protozoa, which are the main H2-

producers in the rumen. For lipids, we focused on PUFA from linseed (linolenic acid, C18:3), 

which have been reported as the most efficient PUFA to mitigate CH4 (Doreau et al., 2011). 

In addition, linseed supplemented to ruminants has nutritional benefits by improving milk and 

meat fatty acids profiles (Chilliard et al., 2009; Scollan et al., 2001). Concerning plant 

extracts, we selected tea saponin, as it would be the most promising saponin source reducing 

CH4 among the large family of plant extracts (Gerber et al., 2013a; Wang et al., 2012). 

Moreover, an in vitro experiment showed its positive effect on OM digestibility (Wei et al., 

2012). 

 To reduce H2 availability for methanogenesis, the other strategy consisted in 

supplementing animals with additives consuming H2 (instead of methanogens) and without 

affecting protozoa. In our literature review, we reported that nitrate may act as a H2-sink in 

the rumen, and recent reviews showed that all published experiments using this additive 

resulted in CH4 mitigation (Doreau et al., 2014a; Lee and Beauchemin, 2014b).  

  The doses of linseed, tea saponin and calcium nitrate used in the present work were 

determined in order to reach a 15-20% CH4 reduction when these treatments were fed 

individually (Doreau et al., 2011; Lee and Beauchemin, 2014a; Mao et al., 2010). Assuming 

an additive effect on H2 availability in the rumen, their association (nitrate plus linseed and 

nitrate plus tea saponin) was expected to reduce CH4 emissions by 30-40%. 



General discussion 

213 
 

 To be adopted by farmers and consumers, a feeding strategy reducing CH4 emissions 

must do so, without adverse effects on animals’ digestive efficiency, performances, quality of 

products and health. For these reasons, the overall effect of the different selected dietary 

strategies was assessed by considering not only methanogenesis but also all the parameters 

cited above. For linseed and tea saponin, we closely monitored their effect on diet 

digestibility, knowing that more than 5% added fat may reduce in vivo total tract digestibility 

of diets (Martin et al., 2010; Martin et al., 2008), and that tea saponin may improve in vitro 

nutrients digestibility (Wei et al., 2012). In addition, having in mind that nitrate is a N source 

with a potential toxicity for animals (methemoglobinemia; Lee et al., 2014b) and human 

health (nitrate and nitrite accumulation in animals products), we also carefully assessed nitrate 

effect on N release, animals’ health and the concentration of N-derivatives compounds in 

milk. 

 

2.1.1. Effect of linseed fed individually to reduce hydrogen production in the rumen on 

methane emissions and overall cows’ performances 

 Lipids from linseed (4% linseed oil in DM corresponding to 2.6% added fat) fed 

individually to non-lactating cows (n = 4 in experiment 1) did not affect intake, total tract 

diets digestibility and N balance. These results were in accordance with the literature, 

reporting that less than 4% added fat in a diet does not alter animals’ intake, digestive 

processes and performances (Table 14). However, Martin et al. (2011) observed a reduction 

of DMI (-7%) without effect on milk yield of lactating cows fed grass silage supplemented 

with extruded linseed (3% added fat in DM). 

 Daily pattern of CH4 emissions indicated that linseed acted all along the day (Figure 3, 

experiment 1). Its supplementation decreased daily CH4 emissions (g/kg DMI) by 17.2% on 

average, corresponding to a CH4 reduction of 6.6% per percent added fat in the diet. This 

result was in accordance with the majority of previous in vivo studies (Table 14) and with a 

meta-analysis reporting that 1% additional linolenic acid in the diet induces a 5.6% CH4 

reduction (Doreau et al., 2011). 

 The CH4-mitigating effect of lipids is not systematic (Chung et al., 2011; Veneman et 

al., 2014). The extent of CH4 decrease with lipids is proportional to the level and availability 

of lipids supply (Martin et al, 2010; Doreau et al., 2011), but these two factors did not explain 

data of Chung et al., (2011) and Veneman et al., (2014). In the trial of Veneman et al. (2014), 

lactating cows from New Zealand were used. We assumed that the CH4-mitigating effect of 

linseed is dependent on the rumen microbiota, which is related to animals’ environmental 
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growing and living conditions. This hypothesis was confirmed in an in vitro experiment, 

using rumen inoculum from NZ cows fed pasture, in which we reported that linseed oil used 

in our in vivo experiment (experiment 1) did not modify in vitro CH4 production or rumen 

fermentation parameters (Muetzel et al., unpublished data). This supports the interest of 

current international programs such as the Global Rumen Census, which compare the 

diversity of microbial communities from rumen samples taken on a large diversity of 

ruminants throughout the world. 

 

 In conclusion, we confirmed that linseed oil supplementation to cattle (2.6% 

added fat in DM) is an efficient CH4-mitigating strategy without reducing digestive 

efficiency in cows. 

 

2.1.2. Effect of tea saponin fed individually to reduce hydrogen production in the rumen 

on methane emissions and overall cows’ performances 

 Tea saponin (0.5% saponin in DM) failed to reduce CH4 emissions (g/kg DMI) in the 

experiment with non-lactating cows (n = 4 in experiment 3) and enhanced methanogenesis in 

the experiment with lactating cows (n = 8 in experiment 3). These results were in 

contradiction with previous data on sheep or cattle supplemented with tea saponin doses 

ranging between 0.05% up to ~0.40% of DM (Table 15). These differences may come from a 

bad quality of our tea saponin product and/or an alteration of the active compound during 

pelleting. Plant maturity, geographical area of production and extraction methods are three 

parameters affecting the final concentration and quality of the saponin (Li and Powers, 2012). 

In our experiments, we estimated the quantity of active compound in the tea saponin extract 

from the origin certificate of the Chinese supplier, but assessing the activity of our extract 

would have been useful before starting the trials. Moreover, we included the tea saponin 

extract in pelleted concentrates, as handling of the powder form led to respiratory irritation 

problems for users and feed refusals for animals. This issue has never been highlighted 

previously, whereas this plant extract was distributed as a powder and mixed with the diet in 

other studies (Table 15). We assume that pelleting denatured the active compound of tea 

saponin during heating (~40°C). A modification of the miscellaneous structure of Quillaja 

saponin was already observed after heating between 20 and 60°C (Mitra and Dungan, 1997).  

 In the present work, diet digestibility and N balance of non-lactating cows were 

unchanged by tea saponin supplementation (0.5% in DM). Inversely, ADF digestibility was 

improved by 8% when lactating cows were fed the same dose of this plant extract. To our 
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knowledge, this is the first report showing a positive effect of tea saponin on in vivo fiber 

digestibility. A positive effect of tea saponin on OM digestibility was reported in vitro (+21%; 

Wei et al., 2012), whereas no effect on nutrients digestibility was reported in vivo with goats 

supplemented with lower doses than those tested in our experiments (0.04 to 0.08% of DM; 

Zhou et al., 2012). 

 Tea saponin supplemented to lactating cows tended to reduce feed intake by 12% and 

significantly reduced milk yield by 18% compared to control, whereas this same plant extract 

did not affect DMI of non-lactating cows restricted fed. We assume that the lower intake 

explained the lower milk production as feed efficiency was similar between cows fed control 

with or without tea saponin. This finding agreed with Li and Powers (2012) who reported that 

tea saponin (0.11% in DM) reduced DMI of growing steers by 27% leading to a drop of their 

average daily weight gain of 80%. However, 0.4% tea saponin did not affect feed intake and 

growth of lambs (Mao et al., 2010). 

 

 Overall results on the effects of tea saponin supplementation in diets of ruminants 

are contrasted. Additional research is necessary to give a reliable conclusion about its 

effect on animals’ performances, diet digestibility and CH4 emissions. 

 

2.1.3. Effect of nitrate fed individually to modify hydrogen consumption in the rumen on 

methane emissions and overall cows’ performances 

 Nitrate (2.3% of DM) fed individually to non-lactating cows (n = 4 in experiment 1; n 

= 4 in experiment 3) never affected intake, total tract digestibility and N balance. Previous 

studies on sheep or cattle also reported the absence of nitrate effect on these parameters and 

animals’ performances (Table 16), except for Hulshof et al. (2012; -6% DMI without 

affecting growth performance). 

 Nitrate decreased CH4 emissions to a similar extent in our two experiments, with a 

reduction averaging 10.7% of CH4 yield (g/kg DMI) per percent added nitrate. This result was 

in accordance with the literature: on average, CH4 emissions were reduced by 10% per 

percent added nitrate, whatever the animal species and the nature of the basal diet (Table 16). 

Then, overall results show the efficiency and repeatability of the nitrate CH4-mitigating effect 

between studies. Moreover, a recent meta-analysis reported a linear dose-response effect of 

nitrate (0.3 to 1.2 g/kg BW/day) on enteric CH4 emissions with a reduction of 12% of CH4 

yield (g/kg DMI) per 0.1 g added nitrate/kg BW/day (Lee and Beauchemin, 2014b). 
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 Kinetics of CH4 emissions measured in open chambers indicated that dietary nitrate 

affected methanogenesis during the 3 h postfeeding in our experimental conditions (Figure 2, 

experiment 1). This result agreed with previous observations on sheep and cattle (Van 

Zijderveld et al., 2010; Van Zijderveld et al., 2011) and suggests that nitrate acts as a H2-sink 

shutting down postprandial CH4 production which is normally at its maximum. 

 

 Overall results show that nitrate effect on CH4 emissions is systematic and 

repeatable between studies, without altering digestive performances and N balance. 

 

2.1.4. Effect of association of strategies acting on hydrogen production and consumption 

in the rumen on methane emissions and overall cows’ performances 

 We assumed that supplementing ruminants with CH4-mitigating strategies acting on 

both production and use of H2 reduces methanogenesis to a larger extent than when these 

strategies are fed individually. To test this hypothesis, two associations of strategies were 

tested on non-lactating cows: linseed plus nitrate (1.0% added fat plus 2.3% nitrate in DM; n 

= 4 in experiment 1) and tea saponin plus nitrate (0.5% saponin plus 2.3% nitrate in DM; n = 

4 in experiment 3). 

 As tea saponin fed individually failed to decrease methanogenesis, we assumed that 

the observed CH4 reduction (g/kg DMI; -28%) with tea saponin plus nitrate was fully 

explained by the nitrate effect. Consequently, this association of feeding strategies did not 

allow us to test our hypothesis and will not be further discussed. 

 For the first time, we observed a positive interaction between linseed and nitrate, as 

their association reduced CH4 yield (g/kg DMI) by 32%. As these dietary strategies have 

different mechanisms of action, we expected a 39% CH4 reduction for a fully additive effect 

(-17% and -22% CH4 reduction for linseed and nitrate fed alone, respectively). According to 

stoichiometry and considering that control CH4 emissions is equal to 100, CH4 emissions 

corrected for the CH4-mitigating effect of linseed fed individually (17%) would be 100 – 100 

× 0.17 = 83. Then, these CH4 emissions corrected for the CH4-mitigating effect of nitrate fed 

individually (22%) would be 83 – 83 × 0.22 = 65. In total, this corresponds to an expected 

CH4 reduction of 35% with linseed plus nitrate. But, the fat content in linseed plus nitrate was 

lower than in linseed fed individually (-1.6 % of DM), corresponding to a CH4 mitigation 

potential of 10.7%. When applying the same stoichiometry estimation than previously, we 

obtained an expected CH4 reduction of 27% with linseed plus nitrate. In both cases, observed 

CH4 reduction with this dietary association was close to expected, and confirmed a fully 
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additive effect between these two strategies. This result is original and supports our initial 

assumption according to which decreasing H2 pool in the rumen by acting on both H2 

production and consumption decreases CH4 production to a higher extent than when acting on 

a single pathway. In addition, we showed that linseed plus nitrate (3.5% added fat plus 1.8% 

nitrate in DM) fed to lactating cows (n = 8 in experiment 2) during 4 months induced a 

constant reduction of CH4 yield (g/kg DMI; -29%). This persistent effect showed the absence 

of adaptation of rumen microbiota. These results also suggest that the CH4-mitigating effect 

of linseed plus nitrate is repeatable whatever the physiological stage of the cows. 

 Association of linseed (1.0% added fat in DM) to nitrate (2.3% of DM) did not modify 

N balance and total tract digestibility of non-lactating cows, confirming the effect observed 

when these dietary strategies were individually fed. Similarly, nitrate (1.8% of DM) plus 

linseed (3.5% added fat in DM) fed to lactating cows did not affect N balance, but tended to 

reduce ADF digestibility (-8%). This highlights the importance of studying the dose-response 

effect of this association on cattle digestibility. 

 Linseed plus nitrate supplemented to lactating cows tended to reduce ad libitum intake 

and milk production throughout our 4-month experiment. As feed efficiency (kg of milk per 

kg of feed) was similar between diets, we assumed that the lower intake explained the lower 

milk production. This is in contradiction with our results on non-lactating cows, for which we 

did not observe a detrimental effect of linseed plus nitrate on intake. As shown previously, in 

some cases, nitrate or linseed fed individually can reduce intake. Consequently, we showed 

that linseed plus nitrate is an efficient CH4-mitigating strategy without improving cows’ 

performances. We suggest that further studies should focus on the dose-response effect of this 

association on animals’ performances. 

 

 In conclusion, linseed plus nitrate is an efficient strategy to reduce CH4 emissions 

in the long-term without altering digestive processes. However, the energetic benefits 

from the decreased CH4 emissions did not appear beneficial for the dairy cows. 

 

2.2. Rumen fermentative and microbial mechanisms involved in selected methane-

mitigating strategies 

 

 To understand the mechanisms involved in the regulation of H2 availability and CH4 

emissions, we studied the effects of the selected dietary strategies on rumen fermentation and 

microbiota. 
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2.2.1. Relationship between observed methane emissions and VFA profile  

 In the rumen, H2 is mainly produced during acetate (C2) and butyrate (C4) synthesis, 

as two moles H2 are generated per mole C2 or C4 produced. Inversely, the synthesis of one 

mole propionate (C3) or valerate (C5) consumes one mole H2. Then a rise of C2 and/or C4 

concentrations may indicate a higher H2 availability in the rumen, whereas a rise of C3 and/or 

C5 concentrations may indicate a lower H2 availability. As a result, knowing the key role of 

H2 availability in methanogenesis, the ratio C2/C3 is positively correlated with CH4 emissions 

expressed as a percentage of GEI (Sauvant et al., 2011; Figure 22).  

 Linseed fed alone to non-lactating cows (experiment 1) reduced C2/C3 ratio compared 

to control, via an increase of C3 concentration in the rumen. This result may explain a part of 

the observed CH4-mitigating effect of linseed. To our knowledge, we are the first ones to 

report this effect, as most studies reported an absence of effect of linseed on rumen VFA 

composition (Chung et al., 2011; Doreau et al., 2009; Martin et al., 2011). 

 Tea saponin, fed alone to non-lactating or lactating cows (experiment 3) did not 

modify VFA profiles, except that it tended to increase C2/C3 ratio via a higher C2 

concentration for lactating cows. This effect may explain why, for this particular group of 

cows, this plant extract led to higher CH4 emissions compared to cows fed control treatment. 

Previous studies did not observe changes in VFA profiles in the rumen of sheep and goats 

supplemented with similar dosage of this plant extract (Mao et al., 2010; Yuan et al., 2007; 

Zhou et al., 2011). 

 Nitrate fed alone or in association with tea saponin (experiment 3) or linseed 

(experiments 1 and 2) to non-lactating or lactating cows increased C2/C3 ratio by increasing 

C2 or reducing C3 concentrations. These results confirmed previous findings reporting an 

increase of C2 and C4 concentrations and/or a decrease of C3 concentration in the rumen of 

animals fed this H2-sink at a similar dosage (Hulshof et al., 2012; Nolan et al., 2010; 

Veneman et al., 2014). We assumed that this pattern is due to a reduction of H2 availability in 

the rumen because of H2 consumption for nitrate reduction. Acetate concentration may 

increase to compensate for the H2 deficiency, and C3 concentration may decrease because of 

the lack of H2 (Janssen, 2010).  

 For a more global approach, we related the observed C2/C3 ratios with CH4 emissions 

(% of GEI) for each experiment and dietary treatment of this PhD thesis, and we compared 

these results with the relationship of Sauvant et al. (2011; Figure 22). Data from diets without 

CH4-mitigating effect fit with the relationship, as low C2/C3 ratios were associated to low 

CH4 emissions. Inversely, the highest C2/C3 ratios were observed with diets presenting the 
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best CH4-mitigating effect (nitrate and/or linseed-supplemented diets). Then, the curvilinear 

positive relationship between CH4 and C2/C3 ratio was not applicable in those cases. 

 

 Results on control and tea saponin-supplemented diets confirmed the positive 

relationship between CH4 emissions and VFA profiles. Nevertheless, this equation may 

be inaccurate with CH4-mitigating dietary treatments such as linseed and nitrate-

supplemented diets. This finding suggests that, in those specific cases, others interfering 

fermentative and/or microbial processes need to be taken into account to estimate CH4 

emissions. 

 

 
Figure 22 Relationship between C2/C3 ratio and methane emissions (adapted from Sauvant et 
al., 2011). Colored points indicate the position of our data obtained in the four experiments of 
this PhD thesis (rumen samples taken 3 to 3.5 h following the morning meal). 
 

2.2.2. Relationship between observed methane emissions and rumen microbiota 

 To our knowledge, the relationship between rumen microbial biomass synthesis and 

CH4 emissions has never been studied. In this work, CH4 emissions were reduced by linseed 

and nitrate fed alone or in association with linseed or tea saponin, whereas excretion of purine 

derivatives in the urine of non-lactating cows (experiments 1 and 3), as indicator of microbial 

biomass synthesis in the rumen, was not affected by dietary treatments (data not shown). We 

concluded that there was no relationship between rumen microbial biomass synthesis and CH4 

emissions in non-lactating cows (Figure 23). 
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Figure 23 Relationship between methane emissions and excretion of purine derivatives in the 
urine of non-lactating cows fed different dietary CH4-mitigating strategies acting on the 
rumen hydrogen pool (experiments 1 and 3) 
 

 When looking at specific rumen microbial populations of these same animals, we 

observed that total bacteria concentrations were never affected by treatments (experiments 1 

and 3). Compared to control diets, linseed fed alone to non-lactating cows (experiment 1) 

reduced protozoa (before feeding, -53%) and methanogens (after feeding, -8%) 

concentrations, while reducing CH4 emissions (g/kg DMI) by 17%. The inhibiting effect of 

linseed towards protozoa was not observed when associating it with nitrate. For non-lactating 

cows, this may be caused by the lower dose of added fat in this diet (1.0% added fat in linseed 

plus nitrate versus 2.6% added fat in linseed). For lactating cows, this may be linked to a 

lower representativity of rumen samples taken by stomach tubing. In addition, rumen content 

was sampled after feeding whereas the defaunating effect of linseed fed alone was only 

observed before feeding. When relating observed CH4 emissions with rumen protozoa 

concentrations obtained in cows fed linseed alone, we confirmed in vivo the positive 

relationship between these two parameters that we already highlighted in our meta-analysis 

(Guyader et al., 2014; Figure 24). 

 Tea saponin did not modify methanogens concentration or activity (experiment 3). 

Moreover, we did not observe the expected inhibiting effect on protozoa, explaining the 

absence of CH4-mitigating effect of this plant extract fed to non-lactating and lactating cows 

after 4 weeks of feeding saponin. These results suggest an adaptation of rumen microbiota. 

Indeed, in sheep, a decrease of protozoa number after 4 days of feeding saponins (Sesbania 

sesban) was reported but this population recovered 10 days later (Newbold et al., 1997). 
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 Nitrate fed alone or in association with linseed or tea saponin did not modify protozoa 

concentrations whereas CH4 emissions (g/kg DMI) were reduced from -22 to -32%. Then, 

those dietary treatments confirmed that protozoa concentrations is not the only factor 

regulating methanogenesis and that other factors may be implied. Besides, quantity and 

activity of methanogens were reduced in the rumen of non-lactating cows fed diets including 

nitrate. 

 

 

Figure 24 Position of observed rumen protozoa concentration and methane emissions from 
non-lactating cows fed control diet (CON) or CON supplemented with 2.6% added fat (LIN) 
(experiment 1, this PhD thesis) among the experiments selected to study the relationship 
between these two parameters by meta-analysis (adapted from Guyader et al., 2014). 
 

 These results confirm the importance of detailing rumen microbiota composition 

to understand the mechanisms involved in CH4-mitigation. Such approaches should take 

into account the interactions between microbes and should describe the microbial 

populations in terms of quantity, activity and diversity. 

 

2.2.3. Nitrate reduction and lipids biohydrogenation: stoichiometric yield of methane 

reduction 

 In the rumen, it is commonly accepted that nitrate follows Dissimilatory Nitrate 

Reduction to Ammonium (DNRA), which consists in the reduction of 1 mole nitrate to 1 mole 

nitrite which is further reduced to 1 mole ammonia. The overall process consumes 4 moles 

H2. Knowing that 4 moles H2 are also required to produce 1 mole CH4, it is considered that 

one mole added nitrate reduced CH4 production by 1 mole, assuming a full conversion of 

nitrate to ammonia. In this PhD thesis, nitrate reduction (2.3% in DM) fed alone or in 
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association with tea saponin to non-lactating cows explained 82% of observed CH4 reductions 

(g/day), which is close to the reported efficiencies in the literature (88% on average; Hulshof 

et al., 2012; Van Zijderveld et al., 2011; Veneman et al., 2013). 

 Rumen biohydrogenation of 1 mole C18:1, C18:2 or C18:3 consumes 1, 2 or 3 moles 

H2, respectively. Then, assuming that a full biohydrogenation of unsaturated fatty acids 

occurs, one mole added C18:1, C18:2 or C18:3 reduced CH4 production by 0.25, 0.50 or 0.75 

moles. In the present work, biohydrogenation of lipids from linseed (2.6% added fat) fed 

alone to non-lactating cows only explained 11% of observed CH4 reductions. This result is in 

accordance with a previous study on dairy cows fed a corn silage-based diet supplemented 

with 4.2 to 5.8% added fat from linseed (10% on average; Martin et al., 2008). 

 Fed to non-lactating cows, nitrate reduction (2.3% in DM) plus linseed 

biohydrogenation (1.0% added fat in DM) explained 72% of observed CH4 reduction. 

Similarly, nitrate reduction (1.8% in DM) plus linseed biohydrogenation (3.5% added fat in 

DM) fed to lactating cows explained 46% of observed CH4 reduction. 

 

 We conclude that nitrate has a higher potential for H 2 consumption than PUFA. 

Nevertheless, this sole mechanism cannot fully explain the CH4-mitigating effect of these 

dietary strategies. 

 

2.2.4. Relationship between methane emissions and gaseous hydrogen losses 

 In the literature, few studies simultaneously measured in vivo gaseous H2 losses and 

CH4 emissions on the same animals. Nevertheless, a negative relationship would exist in vivo 

between these two parameters. Indeed, sheep fed pelleted diets presented higher H2 emissions 

than sheep fed fresh perennial ryegrass (0.115 versus 0.019% GEI), while emitting less CH4 

(Pinares-Patiño et al., 2010). Similarly, lactating cows supplemented with nitrate presented 

lower CH4 emissions and higher H2 emissions (0.017 versus 0.006% GEI) than when they 

were fed a control diet (Van Zijderveld et al., 2011). We assumed that gaseous H2 emissions 

come from an excess of dissolved H2 concentrations in the rumen. In addition to measuring 

CH4 emissions, we monitored ruminal dissolved H2 concentrations and gaseous H2 emissions 

(data not show) of non-lactating cows fed a control diet with or without linseed (LIN, 2.6% 

added fat), nitrate (NIT, 2.3% nitrate) or linseed plus nitrate (LIN+NIT, 1.0% added fat plus 

2.3% nitrate) (experiment 1). Animals fed diets including nitrate (NIT and LIN+NIT) 

presented higher dissolved H2 concentrations (33.1 versus 3.8 µM on average, respectively; 

Figure 5 in experiment 1) and gaseous H2 emissions (4.5 L/h versus 0 L/h on average 1 h after 
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feeding, respectively) than animals fed CON and LIN. Then, similarly to gaseous H2, we 

observed a significant negative relationship between CH4 emissions (g/kg DMI) and dissolved 

H2 concentrations (µM) in the rumen of these animals (Figure 25): CH4 = 22.6***  - 0.181**  × 

H2, with RMSE = 2.56 and R² = 0.46. This pattern may be explained by the toxic effect of 

nitrate on quantity and activity of methanogens, as reported for the first time in this work 

(experiments 1 and 3). 

 

 

Figure 25 Relationship between methane emissions and dissolved hydrogen concentrations in 
the rumen of non-lactating cows fed different dietary CH4-mitigating strategies acting on the 
rumen hydrogen pool (experiment 1) 
 

 Consequently, gaseous H2 losses can occur when feeding animals with CH4-

mitigating strategies, but they represent small energetic losses and cannot by themselves 

explain observed CH4 reductions. 

 

2.3. Overview of the mechanisms of action of dietary strategies: estimation of hydrogen 

distribution between rumen fermentation end-products 

 

 To get a global view on the mechanisms of action of selected CH4-mitigating dietary 

strategies (experiments 1, 2 and 3), we calculated the production and distribution of H2 in the 

different rumen fermentation end-products (Figure 26). Production of H2 was estimated from 

VFA and microbial biomass synthesis, knowing that 2 moles H2 are generated per mole C2 or 

C4 produced, and 0.58 moles H2 are produced per kg dry microbial matter growing on AA 

(Mills et al., 2001). Daily productions of individual VFA and dry microbial matter were 
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estimated from rumen fermentable organic matter content in diets and from microbial proteins 

production in the rumen (Nozière et al., 2010; Sauvant and Nozière, 2013). To estimate H2 

consumption, five pathways were considered: methanogenesis (4 moles H2 / mole CH4), VFA 

synthesis (1 mole H2 / mole C3 or C5), microbial biomass synthesis (0.41 moles H2 / kg dry 

microbial matter growing on NPN; Mills et al., 2001), nitrate reduction (1 mole H2 / mole 

reduced nitrate) and lipids biohydrogenation (1, 2, and 3 moles H2 / mole saturated C18:1, 

C18:2 and C18:3). We assumed that the totality of nitrate intake was reduced to ammonia via 

DNRA, and that the totality of C18:1, C18:2 and C18:3 intake was saturated during 

biohydrogenation. Detailed methods of calculations are given in Annex 2. 

 

 

Figure 26 Selected hydrogen producing (red arrows) and consuming (green arrows) pathways 
for estimation of hydrogen distribution between rumen fermentation end-products 
 

 To our knowledge, this work is the first to calculate production and distribution of H2 

in rumen fermentation end-products, when CH4-mitigating strategies acting on ruminal H2 

availability are fed to non-lactating and lactating cows. The recovery rate of H2 averaged 104 

± 11.2 %, which means that H2 consuming pathways considered in our approach fully 

explained total H2 produced. Among the different potential bias in each calculation step, one 

may come from the fact that H2 production during dietary proteins fermentation was not 

considered, as this estimation would require more information on AA profile. Then, we can 

use these H2 balances to summarize the mechanisms involved in the regulation of H2 

availability and CH4 emissions by our tested CH4-mitigating strategies (Figure 27; detailed 

data are provided in Annex 2) 

 In control diets, methanogenesis, C3 and C5 production, and microbial biomass 

synthesis respectively consumed 97.8% (91.1-102.1), 14.4% (10.5-18.7), and 0.33% (0.31-
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0.36) of total produced H2. Our in vitro approach (experiment 4) also gave similar results with 

control treatment (50% hay - 50% concentrate; 95 and 16% of produced H2 were consumed 

for CH4 and VFA production, respectively). These results were close to previous data 

obtained by a modelling approach, which reported that these fermentation pathways consume 

48-80%, 19-33% and 0.6-12% of total consumed H2 (Czerkawski, 1986; Mills et al., 2001). 

Overall results agree with the low contribution of microbial biomass synthesis in H2 

consumption and regulation of H2 availability in the rumen. 

 As tea saponin supplementation poorly affected CH4 emissions and rumen 

fermentation pathways, we logically did not find differences in the distribution of H2 between 

fermentation end-products, compared to control treatments. Inversely, as reported in the 

analysis of VFA profiles, linseed fed alone (experiment 1) modified H2 distribution between 

rumen fermentation end-products, as 13.3% of produced H2 was directed towards C3 and C5 

synthesis versus 10.5% in control treatment. A small part of produced H2 was also used for 

lipids biohydrogenation (1.90%), confirming the low contribution of lipids biohydrogenation 

in direct H2 consumption (1 to 2.6% reported in Czerkawski, 1986). To improve rumen H2 

balance with linseed, further approach should consider the inhibiting effect of PUFA on 

protozoa, which induced a lower H2 production not taken into account in applied equations. 

 Nitrate reduction pathway consumed on average 21% of produced H2 in the rumen. In 

diets including this H2-sink, the sum of H2 proportions directed towards nitrate reduction and 

methanogenesis was almost equal to the H2 proportion directed towards methanogenesis in 

control diets. This highlights the equilibrium in the distribution of H2 between these two 

pathways. To get a more precise rumen H2 balance with nitrate, gaseous H2 losses should be 

taken into account. Indeed, we observed that nitrate supplementation increased dissolved H2 

concentrations in the rumen (experiment 1), probably because of a direct toxic effect towards 

quantity and activity of methanogens (experiments 1 and 3). We assume that excess H2 in the 

rumen was released in a gaseous form. Moreover, quantities of consumed H2 during nitrate 

reduction in the rumen should be adjusted to take into account that a part of nitrate may have 

been converted to gaseous N2O produced via denitrification, as recently reported in cows 

(Neumeier et al., 2014; Petersen et al., 2014) and sheep (de Raphélis-Soissan et al., 2014). 

During denitrification, 2 moles nitrate are reduced to 1 mole nitrous oxide, while consuming 5 

moles H2. 
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Figure 27 Estimation of hydrogen distribution (% of produced hydrogen) between rumen 
fermentation end-products in the experiments of this PhD thesis. Detailed figures are given in 
Annex 2. 
 

 In conclusion, mechanisms of selected CH4-mitigating strategies involved 

modifications in rumen fermentation processes related to shifts in microbiota. This work 

confirms the interest of simultaneous study of fermentative and microbial parameters, 

in order to understand the mechanisms involved in the regulation of rumen H2 

availability.  

 

III.  PRACTICAL USE OF ASSOCIATION OF METHANE MITIGATING 

STRATEGIES ACTING ON HYDROGEN PRODUCTION AND 

CONSUMPTION: FOCUS ON LINSEED PLUS NITRATE 

 

 While testing the CH4-mitigating effect of linseed plus nitrate, we showed that acting 

on both H2 production and consumption decreased methanogenesis to a higher extent than 

when acting on a single pathway. However, before considering the practical use of this dietary 

strategy at the farm scale, several recommendations deserve to be highlighted. 

 

3.1. Animals’ health and zootechnical performances 

 

3.1.1. Is nitrate a safe non-protein nitrogen source in substitution for urea ? 

 Knowing the low efficiency of N utilization in ruminants (25% on average; 

Calsamiglia et al., 2010), one may ask about the effect of feeding nitrate on animals’ N 

metabolism. Indeed, potential risk of using nitrate as a NPN source substituting urea is a low 
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utilization by the animal resulting in additional N release in the form of nitrate, nitrite or 

ammonia, which would contribute to N pollution from agriculture. However, we confirmed 

that nitrate supplemented to non-lactating or lactating cows did not increase the quantity of N 

excreted in urine, feces and milk compared to cows supplemented with urea (Van Zijderveld 

et al., 2011). Then, to avoid excessive N losses, we recommend nitrate supplementation in 

substitution for urea to animals fed diets not already containing nitrate (such as nitrate-

fertilized pasture) or diets deficient in degradable N (such as corn silage, sugar cane, sugar 

beet, molasses or cassava-based diets) (Leng, 2008). 

 Potential risk of nitrate poisoning of animals is one of the major limitations of its 

utilization in animal nutrition. Indeed, in the rumen, nitrate is converted to nitrite and then 

ammonia. If nitrite accumulates in the rumen, it can pass through the rumen wall into the 

blood and convert Hb to metHb, which cannot then transport oxygen to the tissues (Lewis, 

1951). The level of blood metHb determines the symptoms severity: first symptoms are 

depressed feed intake, milk production and weight gain, then animals become more 

susceptible to infections, have more reproductive failure and present brown mucous 

membrane discoloration, to finish with respiratory distress, coma, cyanosis, and even death 

(Bruning-Fann and Kaneene, 1993). 

 In this work, nitrate was gradually introduced in the diet of cows (up to 2.3% in DM) 

during a 10 to 15-day adaptation period. During this period, we observed a gradual increase of 

blood metHb levels, without apparition of clinical symptoms. Following this period, blood 

metHb recovered low levels situated between 1.2 and 10.5% on average. We also showed the 

absence of nitrate poisoning during its long-term (4 months) supplementation to lactating 

cows. Our data were in accordance with the literature on cattle, but higher than data reported 

on sheep fed doses close to our experimental conditions (Table 17). These high values of 

metHb in our experiments are difficult to explain, but may come from a combination of 

several factors such as animal species, length of adaptation period, and feeding frequency. 

Cattle would be more susceptible to nitrate poisoning compared to sheep (Leng, 2008). In 

addition, within a species, some animals would have more risks of developing 

methemoglobinemia: erythrocytes (red blood cells) phenotype would affect activity of the 

enzyme responsible for metHb reduction (Godwin, 2014). Our adaptation period was shorter 

than in other experiments from the literature, and animals acclimatized to nitrate during a long 

adaptation period have lower risks of blood metHb (Lee and Beauchemin, 2014b). In the 

present work, a restricted feeding was always applied. However, for a same amount of nitrate 

in diet, a fractionated feeding throughout the day limits the risk of blood metHb via a slow 
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release of the additive in the rumen (Figure 28; Callaghan et al., 2014). With the same 

mechanism, ad libitum feeding reduces the risk of blood metHb compared to restricted 

feeding. 

 

Figure 28 Effect of feeding a same amount of nitrate to steers consuming the dose within 5 
min (fast) or 45 min (slow) on blood methemoglobin (from Callaghan et al., 2014) 
 

 Then, from a practical point of view, we emphasize the importance that farmers do not 

directly deal with nitrate utilization, to avoid its excessive and uncontrolled distribution. 

Solutions must be thought according to feeding frequency, in order to match rumen H2 

production from feed fermentation with nitrate concentration. For animals continuously eating 

small quantities of feed, solutions would consist in the use of nitrate-supplemented lick 

blocks. However, because of the uncontrolled and variable access between animals, the use of 

slow-release encapsulated nitrate may be a safer solution, and gave similar extent of CH4 

abatement without raising blood metHb levels (El-Zaiat et al., 2014). For animals eating their 

meals in a fractionated manner, one may consider including the nitrate in the TMR in its raw 

form or included in pellets as performed in this PhD thesis. 
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Table 17 Compiled data from the literature on the effects of nitrate supplementation to cattle or sheep on blood methemoglobin levels 

Reference 
Animal 
species 

Forages 
(% of DM) 

Voluntary 
intake (%) 

Time before 
full dose 
(days) 

Nitrate dose 
(% of DM) 

Blood sampling 
(h after feeding) 

Average 
metHb1 (%) 

Maximum 
metHb2 (%) 

Experiment 1, 
this PhD thesis 

Dry cows Grass hay (50) 90 10 2.3 3 10.5 26.3 

Experiment 2, 
this PhD thesis 

Dairy cows 
Corn silage, grass hay 

(60) 
953 14 1.8 3.5 1.2 30.8 

Experiment 3, 
this PhD thesis 

Dry cows Grass hay (50) 90 10 2.3 3 4.5 25.9 

Sar et al., 2004 Adult sheep 
Timothy/lucerne hay 

(80) 
Maintenance 

level 
7 0.7 NA 9.2 18.4 

Nolan et al., 2010 Adult sheep Oaten hay (100) NA 18 2.5 NA 0.6 2.8 

Van Zijderveld et al., 
2010 

Adult sheep 
Corn silage, barley straw 

(90) 
953 21 2.6 3 0.5 7.0 

Van Zijderveld et al., 
2011 

Dairy cows 
Corn silage, dried 

alfalfa, barley straw (66) 
95 21 2.1 3 3.9 19.0 

Li et al., 2012 Lambs NA Ad libitum 7 2.3 3 0.6 1.2 

de Raphélis-Soissan 
et al., 2014 

Adult sheep Oaten hay (100) 
Maintenance 

level 
14 2.0 2.5 14.0 45.0 

El-Zaiat et al., 2014 Lambs Grass hay (60) Ad libitum 21 3.4 6 1.08 <1.1 

Lee et al., 2014b Steers Forage (55) 75 20 
0.7 

1.3-1.9 
2.6-3.9 

3 
<1 
8.6 
3.3 

<1 
23.6 
13.6 

 Steers Forage (55) Ad libitum 21 2.0 NA 8.4 23.6 

NA: Data not available 
1 After adaptation period 
2 Throughout the experiment 
3 Ad libitum during adaptation period, 95% restricted during measurement weeks 
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3.1.2. Required research on nutrients digestibility and zootechnical performances 

 In this PhD thesis, linseed plus nitrate fed to non-lactating (1.0% added fat plus 2.3% 

nitrate in DM) or lactating (3.5% added fat plus 1.8% nitrate in DM) cows did not modify 

total tract digestibility of DM, OM and NDF compared to control diets. Nevertheless, this 

association tended to reduce ADF digestibility, intake and milk production of dairy cows, 

even if feed efficiency was similar between diets. Then, before using association of linseed 

plus nitrate as a CH4-mitigating feeding strategy at the breeding scale, an additional dose 

response study is required to determine the optimal dosage for maintaining animals’ 

performances. 

 To our knowledge, the impact of nitrate supplementation on reproduction 

performances of cows still requires further research. Indeed nitrate has been reported to lower 

conception rate (0.7 mg/kg BW; Davison et al., 1964) and to cause abortions in beef and dairy 

cattle (Sonderman and Odde, 1993). The death of the fetus would be induced by a decrease in 

oxygen concentration in fetal arterial blood in dams fed nitrate and by a rise of nitrate 

concentration in the placenta.  

 

3.2. Quality of animals’ products and societal perception 

 

3.2.1. Benefits of linseed and nitrate for quality of animals’ products 

 In addition to be an efficient CH4-mitigating strategy, linseed plus nitrate may improve 

the quality of milk and meat from ruminants. Indeed, previous studies reported that linseed 

supplementation improves milk and meat fatty acids profiles by increasing the quantities of 

PUFA, which have well-known positive effects on human health (anticarcinogenic and 

antiatherogenic; Chilliard et al., 2009; Scollan et al., 2001). Besides, the advantages of using 

linseed in animal feed are largely promoted by private companies, such as in the French 

initiative “Bleu-Blanc-Coeur”. To complete the present work, characterization of milk fatty 

acids profile of samples taken from dairy cows fed linseed plus nitrate is under progress. 

  Concerning nitrate, a potential risk of its supplementation would be the accumulation 

of nitrate and nitrite in animals’ products for human consumption. Indeed, even if nitrite is a 

common food preservative, an excess of nitrite in humans diet may promote gastric 

inflammation (Weitzberg and Lundberg, 2013). For the first time, we reported the absence of 

nitrate and nitrite residues in milk and home-made milk products (yoghurts, whey, curd and 6-

wk ripened Saint-Nectaire cheese) from cows fed nitrate (1.8% of DM) plus linseed (3.5% 

added fat in DM; experiment 2) during 4 months. This result completes the work carried out 
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by El-Zaiat et al. (2014), who also did not detect nitrate and nitrite residues in meat of lambs 

fed nitrate (3.4% of DM). Consequently, based on current knowledge, the consumption of 

milk and meat from animals fed linseed plus nitrate does not seem to be an issue for human 

health. 

 

3.2.2. Negative perception of nitrate by consumers and farmers  

 In public opinion, nitrate is viewed as a chemical product used as a crop fertilizer, and 

is frequently associated with water pollution and health hazards. Then, despite the absence of 

risks in the consumption of milk and meat from cows fed linseed plus nitrate, one may expect 

some hesitation of consumers to buy such products. Trainings and dialogue with them may 

reduce their time for acceptance of this dietary strategy. From farmers point of view, knowing 

the severe legislation on agricultural nitrate release (EU nitrate directive 91/676/EEC), they 

may apprehend using this additive in animals’ diets, even if it does not induce additional N 

losses. Moreover, as the relationship between CH4 emissions abatement and improvement of 

animals’ performances has never been reported, farmers’ willingness to participate in the 

global effort of CH4 mitigation may be only enhanced if they receive direct governmental 

subsidies. However, in the case that emissions taxes would be implemented, the major 

difficulty for governments would be the on-farm measurement of CH4-emissions (Gerber et 

al., 2010). Anyway, to our knowledge, in the French and European legislations, nitrate has 

been authorized as a raw feed material, but not as an animal feed additive, even if several 

reports support its utilization as a CH4-mitigating strategy at national (Doreau and Benoît, 

2013) or international (Gerber et al., 2013a) levels. 

 

3.3. Environmental benefits of using linseed plus nitrate: importance of a global approach 

 

 We reported the long-term (4 months) CH4-mitigating effect of linseed plus nitrate, 

which suggests that rumen microbiota do not adapt to this dietary treatment and supports its 

application at the farm scale. However, to consider applicability of this dietary strategy, two 

other environmental criteria remain to be discussed. 

 

3.3.1. Nitrous oxide emissions 

 Nitrate supplementation may induce N2O emissions from the ruminants and/or from 

manure fermentation, if excessive dietary nitrate is released in urine (de Raphélis-Soissan et 

al., 2014; Neumeier et al., 2014; Petersen et al., 2014). Nitrous oxide is the third GHG at the 
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global level (8% of total GHG produced), with a GWP of 298 (IPCC, 2007). Then, we highly 

encourage further studies to monitor N2O emissions to assess the global GHG mitigating 

efficiency of linseed plus nitrate. To our knowledge, only one study used this type of 

approach, and showed that the CH4-mitigating efficiency of nitrate was lowered by 18% due 

to the rise in N2O emissions from eructation or manure of sheep supplemented with this 

additive (de Raphélis-Soissan et al., 2014). 

 

3.3.2. Environmental effectiveness of linseed and nitrate production 

 To assess applicability of wide scale supplementation of linseed plus nitrate in 

ruminants’ nutrition, it will be important to analyze its global effect on GHG emissions at the 

chain level (from feed production to the farm gate) via a life cycle assessment (LCA). By this 

approach, one study already reported the effect of individual supplementation of extruded 

linseed (1.1% added fat in DM for summer; 2.8% added fat in DM in winter) and nitrate 

(1.0% in DM in summer and winter) on GHG changes at the farm scale, using a Dutch dairy 

farm model (Van Middelaar et al., 2014). They assume that 1% added fat or nitrate reduced 

enteric CH4 emissions by 6.1 and 9.4% on average, respectively. Compared to a reference 

dairy farm (840 kg CO2-equivalents/T fat and protein-corrected milk), supplementation of 

extruded linseed reduced emissions by 9 kg CO2-equivalents/T fat and protein-corrected milk, 

whereas supplementation of nitrate reduced emissions by 32 kg CO2-equivalents/T fat and 

protein-corrected milk. 

 With a more global approach, Doreau et al. (2014) assessed the national potential 

abatement of CO2-equivalents up to year 2030 if French cattle was supplemented with either 

additional fat (whatever the source; 3.5% added fat in DM only for cows receiving more than 

1 kg concentrate daily) or nitrate (1% in DM only for cows receiving diets short in 

fermentable protein). They assumed a mean abatement of enteric CH4 emissions of 4 and 10% 

per percent added fat and nitrate, respectively. They resulted that, at the French scale, fat may 

present a higher GHG abatement potential than nitrate (1.89 M T CO2-equivalents versus 0.48 

M T CO2-equivalents in 2030). Similar approaches need to be considered to assess the global 

environmental impact of linseed plus nitrate supplementation to cattle, but we assumed an 

additive positive effect between these two dietary strategies. 
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3.4. Economical aspect 

 

 The final aspect to assess applicability of a CH4-mitigating strategy is the cost 

effectiveness (€/T CO2-equivalents reduced) of its application, which is calculated by dividing 

the decrease in labor income of farm (€/year) by the decrease in GHG emissions at the chain 

level (kg CO2-equivalents/year) (Van Middelaar et al., 2014). At the farm scale with a Dutch 

dairy farm model, nitrate (1.0% in DM in summer and winter) supplementation would be 

more cost-effective than extruded linseed (1.1% added fat in DM for summer; 2.8% added fat 

in DM in winter) supplementation (241€/T CO2-equivalents reduced versus 2,594€/T CO2-

equivalents reduced; Van Middelaar et al., 2014). 

 At the national scale, Doreau et al. (2014) confirmed these results using the French 

model. They first showed that fat supplementation to ruminants is the best strategy for global 

abatement of GHG emissions in French agriculture, even if it is the most expensive one 

(Figure 29). This would be mainly due to high production costs and poor availability of raw 

material causing high importation costs. They also reported that nitrate (1% in DM only for 

cows receiving diets short in fermentable protein) supplementation is more cost-effective than 

fat (3.5% added fat in DM only for cows receiving more than 1 kg concentrate daily) 

supplementation (38€/T CO2-equivalents reduced versus 267€/T CO2-equivalents reduced). 

Both studies cited above highlighted a range of uncertainties in their calculations, because of 

variability in feed prices which has a strong impact on costs of option (Doreau et al., 2014a). 

From these results, we suggest that linseed plus nitrate supplementation to cattle would be an 

expensive CH4-mitigating option, even if it would result in a high annual abatement of CO2-

equivalents. 
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Figure 29 Place of several options for enteric methane mitigation in a global abatement cost 
curve for French agriculture (from Doreau et al., 2014a)  
 

 We conclude that linseed plus nitrate can be proposed as a CH4-mitigating 

strategy in ruminant nutrition under controlled conditions. Linseed already has a good 

public image thanks to its positive effect on quality of ruminants’ end-products. For the 

first time, we showed that the consumption of dairy products from nitrate-fed animals 

does not seem an issue for the human health. Further work should detail the cost-

effectiveness of this strategy. 
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This PhD thesis deepened the knowledge about the importance of the different 

metabolic pathways of H2 in the rumen, in order to propose and evaluate new dietary 

strategies to mitigate CH4 emissions in ruminants. We assumed that manipulating at the same 

time production AND utilization of H2 in the rumen allows a more important reduction of 

CH4 emissions than acting on a single pathway (production OR utilization). With the 

bibliographical approach, we selected dietary strategies with different modes of action on 

rumen H2 metabolism: lipids from linseed or tea saponin for their potential to decrease H2 

production through their toxic effect on protozoa, and chemical components such as nitrate 

for their potential to consume H2 without affecting protozoa. To test our hypothesis, these 

strategies were fed alone or in association to non-lactating and lactating cows. Tea saponin 

plus nitrate did not allow us to accept or refuse our hypothesis, as tea saponin had no effect on 

rumen protozoa concentrations. On the contrary, we reported a fully additive and long term 

CH4-mitigating effect of linseed plus nitrate. To complete this work, several perspectives can 

be drawn to improve knowledge on involved mechanisms, and to study the on-farm 

applicability of using association of dietary treatments acting differently on the rumen H2 

pool. 

 

I.  DEEPER CHARACTERIZATION OF THE RUMEN MICROBIOTA 

INVOLVED IN HYDROGEN METABOLISM AND METHANE 

PRODUCTION 

 

 Few studies have related in the same trial variations of CH4 production with the 

characteristics of the ruminal microbial ecosystem. The originality of our approach will be to 

combine a quantitative approach (daily production of CH4) to a cognitive approach (microbial 

parameters) of digestive processes in order to understand the observed phenomena. We 

already reported that linseed reduced protozoa (H2-producers) and methanogens (H2-

consumers) concentrations, and that nitrate inhibited quantity and activity of methanogens 

without influencing genes coding for microbial nitrate or nitrite reductases. To deepen this 

work, we aimed at assessing the effect of the different tested CH4-mitigating strategies tested 

on non-lactating cows (experiments 1 and 3) on rumen meta-transcriptome (functional 

diversity, ARN) using the MiSeq technology of Illumina and by targeting together bacteria, 

archaea and protozoa as applied previously on DNA (Kittelmann et al., 2013; Annex 1). This 

approach was unfortunately unsuccessful, for unknown reasons. Work is now under progress 

to analyze, by the same approach, the rumen meta-genome (sequences diversity, DNA) of 
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bacteria, archaea and protozoa in these same samples. The integration of overall collected data 

will allow a better understanding of ruminal methanogenesis and associated biological 

phenomena. 

 

II.  STUDY OF THE EFFECT OF PELLETING PROCESS ON TEA SAPONIN 

 

 Tea saponin included in a pellet failed to reduce methanogenesis of non-lactating and 

lactating cows. We explained this result by the absence of effect of this plant extract on 

protozoa. We suspect that the plant active compound was denatured during granulation. To 

check this hypothesis, an in vitro experiment will be carried out soon. The effect of two tea 

saponin forms (powder versus pelleted) at different doses will be tested on CH4 production 

and protozoa concentrations after 24 h in vitro incubation with rumen inoculum from cattle. If 

it turns out that it is the pelleting process which denatured the substance, one can consider 

further research to develop solutions for a better ingestion of tea saponin by animals without 

prior process. 

 

III.  IMPROVEMENT OF LINSEED PLUS NITRATE ACCEPTABILITY 

 

 Linseed plus nitrate persistently decreased methanogenesis. However, the energetic 

benefits from the decreased CH4 emissions did not appear beneficial for the animal. On the 

contrary, linseed plus nitrate tended to reduce animals’ digestibility and performances. 

Solving this issue is essential for on-farm acceptance of this dietary strategy. More studies are 

also required to secure the mode of distribution of nitrate, which may lead to animals’ health 

issues when quickly ingested. Additional research on genetic selection of animals presenting 

lower risks of developing metHb may also be considered. At the consumer level, acceptance 

of linseed plus nitrate in ruminants’ nutrition will be facilitated if the beneficial effect of 

linseed on the nutritional value of animals’ products and if the absence of nitrate residues in 

animal products is confirmed. In this objective, systematic control of the quality of animals’ 

products has to be considered. 
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IV.  OPENING TO OTHER ASSOCIATION OF DIETARY STRATEGIES 

ACTING ON THE RUMEN HYDROGEN POOL 

 

 This PhD thesis showed that the association of dietary strategies having different 

mechanisms of action to reduce H2 availability in the rumen reduced CH4 emissions to a 

greater extent than when strategies were fed individually. Then, this work opens up the field 

of possibilities about testing other association of strategies. Linseed may be replaced by other 

lipids sources such as grape marc, sunflower or canola seeds, which CH4-mitigating effect has 

already been reported. Nitrate may be replaced by other additives known to modify H2 

consumption such as sulfate, nitro-ethane or nitro-oxypropanol. Electrons acceptors such as 

iron or manganese still require further research. In any cases, for on-farm applicability, a CH4-

mitigating dietary strategy has to be efficient on the long term with no adverse effect on 

animals’ health, performances and products quality for human consumption. In addition, life 

cycle assessment should be applied to analyze the cost and environmental effectiveness of the 

selected dietary strategy. 
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I.  ANNEX 1 - ANALYSIS OF RUMEN MICROBIOTA DIVERSITY BY  

HIGH THROUGHPUT SEQUENCING METHODS 

 

 Total nucleic acids (DNA and RNA) were co-extracted from rumen samples taken 

from non-lactating cows (experiments 1 and 3) preserved with RNAlater® and stored at -

80°C (Popova et al., 2011). RNA reverse-transcribed to cDNA was used to describe the 

rumen functional diversity by targeting the cDNA copies of 16S (bacteria, archaea) or 18S 

(protozoa) rRNA. 

 

 

 

  

Figure 1 Framework of samples preparation and analysis of rumen microbiota diversity with 
MiSeq technology (Illumina) 
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1.1. Samples preparation (Figure 1) 

 

 Separate PCR were run in duplicate for each target species (bacteria, archaea and 

protozoa) and using for each sample: 5 µL PCR Buffer (10X), 6 µL MgCl2 (25 mM), 1 µL 

dNTPs, 2.5 µL forward and 2.5 µL reverse primers (10 pM), 0.25 µL HotStar Taq DNA 

polymerase Taq, 1 µL cDNA template and 31.75 µL water molecular biology grade. Each 

forward and reverse primers contained (Figure 2): i) an Illumina adaptor (5’- AAT GAT ACG 

GCG ACC ACC GAG ATC TAC AC-3’ and 5’- CAA GCA GAA GAC GGC ATA CGA 

GAT-3’, respectively) common to the three target species, ii) a unique 8-base barcode for 

multiplexed sample identification (Kozich et al., 2013), iii) a 10-base pad common to the 

three target species for limiting primer dimmers (5’-TAT GGT AATT-3’ and 5’-AGT CAG 

TCAG-3’, respectively), and iv) the group-specific primer (Table 1) with a 2-base linker 

specific for each target species. The pad sequence was selected so that the combined pad, 

linker, and gene-specific primer would have a melting temperature over 60°C. Amplification 

program consisted of one denaturation step (95°C, 15 min), 30 cycles of denaturation (95°C, 

20 sec), touchdown annealing (65°C to 55°C, 30 sec) and elongation (72°C, 5 min), and one 

final elongation step (72°C, 10 min). Theoretical lengths of amplicons were ~364, 309 and 

355 base pairs (bp) for bacteria, archaea and protozoa, respectively. The duplicate PCR 

products were pooled to obtain a final volume of 100 µL. 

 

Figure 2 Dual barcoded primers used for multiplexed sequencing with MiSeq technology. 
Forward and reverse barcodes combination is different for each sample and target species. 
Linker and primers are similar among samples but different between target species. 
 
 

Table 1 Primers used for analysis of diversity of rumen microbiota by MiSeq technology 

Organism-Target region 
(Reference) 

Primer set (Linker)-Primer sequences 5’-3’ 

Bacteria-16S 
(Klindworth et al., 2013) 

S-DBact-0564-a-S-15 
S-DBact-0785-b-A-18 

(GT)-AYTGGGYDTAAAGNG 
(CC)-TACNVGGGTATCTAATCC 

Archaea-16S 
(Klindworth et al., 2013) 

S-DArch-0349-a-S-17 
S-DArch-0519-a-A-16 

(CT)-GYGCASCAGKCGMGAAW 
(CC)-TTACCGCGGCKGCTG 

Protozoa-18S 
(Sylvester et al., 2004) 

Syl316-F 
Syl539-R 

(GC)-GTCTTCGWTGGTAGTGTATT 
(CT)-CTTGCCCTCYAATCGTWCT 
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 Amplicons were purified and concentrated to a final 30 µL volume using the 

QIAquick PCR purification kit (Qiagen, Valencia, CA, USA). They were then loaded onto a 

2% agarose gel into three separate pools (3 × 10 µL). Bands were visualized, excised under 

ultraviolet radiation, and gel purified with the GENECLEAN Turbo kit (Qiagen) according to 

manufacturer instruction. Concentration of gel-purified amplicons loaded onto a 2% agarose 

gel was estimated using a low DNA mass Ladder (Invitrogen Corporation, Carlsbad, CA, 

USA), and an imaging system Chemimager (Alpha Innotech, San Leandro, CA, USA). 

 

1.2. Construction of the library and sequencing steps (Figure 1) 

 

 The final library was constructed by pooling samples with a mixing ratio of 8:1:1 for 

bacteria, protozoa and archaea, respectively (Kittelmann et al., 2013). The library was loaded 

for one Nanorun on a MiSeq sequencer (Illumina). Analysis steps consisted in (Illumina, 

2010): 

1/ Hybridization on flow cell: Double stranded DNA or cDNA were denaturated and single 

stranded fragments attached to the inside surface of a flow cell. 

2/ Bridge amplification: This pre-sequencing amplification step allowed creation of millions 

of single stranded copies from template DNA or cDNA. 

3/ Sequencing-by-synthesis: Each sequencing cycle consisted in i) addition of the four 

different labeled nucleotides and a DNA polymerase; ii) ligation of the labeled nucleotides to 

the first base of a single stranded fragment thanks to the enzyme; iii) laser excitation, lecture 

of the fluorescence emitted for each ligated nucleotide, identification of the first base of the 

fragment, knowing that fluorescence was different between nucleotides; iv) washout of non-

used nucleotides. Each cycle added one nucleotide to each single stranded fragment. 

Sequencing cycles were 250-times repeated to get a minimum of 500 000 single stranded 

sequences (reads). The minimum number of single reads per sample was then calculated as 

the ratio between the minimum number of single reads generated during the run, out of the 

number of samples in the original library. 

 This approach was recently developed in the laboratory. In this experiment, we faced 

some difficulties during library preparation and sequencing. Thought several optimizations 

(new design of sequencing primer, PCR optimization) were made, we never obtained good 

sequencing yield. This approach gave good results with DNA libraries from other projects, 

which suggest that the reverse transcription of RNA to cDNA may be a step introducing 

biases in further sample manipulation. Currently, work is under progress to assess, by an 
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automated method (fluidigm amplification followed by MiSeq sequencing) the diversity of 

bacteria, archaea and protozoa in the same rumen samples, by targeting genes coding for 16S 

and 18S rRNA from genomic DNA. 

 

1.3. Advantages and disadvantages of the technique (Di Bella et al., 2013; Kozich et al., 

2013) 

 

 In terms of samples preparation, multiplex sequencing is a cost-effective method, 

which allowed simultaneous processing of a large number of samples in a single run. 

Concerning sequencing, until recently, the Roche 454-sequencing technique was widely 

applied to assess rumen microbiota diversity. This expensive technique provides a small 

number of long reads (until 700 bp) allowing a high precision for species identification. 

Inversely, the MiSeq technology as used in this thesis gives the largest number of sequences 

per euro, which allowed covering a larger diversity of microbiota. However, compared to 

454-sequencing, species identification is less precise, due to the shorter reads length. 

 

 

II.  ANNEX 2 - CALCULATIONS USED TO ESTIMATE IN VIVO RUMINAL 

HYDROGEN PRODUCTION AND CONSUMPTION 

 

2.1. Hydrogen consumption during methane production 

  

 Quantities of H2 (moles/day) consumed in the rumen for methanogenesis (H2utilCH4) 

were estimated knowing that 4 moles H2 are required to produce 1 mole CH4: 

H2utilCH4 = (mCH4/MCH4) × 4 

Where mCH4: daily CH4 production (g/day); MCH4 = molecular weight of CH4 (16 g/mol). 

 

2.2. Hydrogen production and consumption during VFA synthesis 

 

 Quantities of H2 produced and consumed during VFA synthesis were calculated from 

observed rumen VFA profile and total VFA production estimated from the rumen fermentable 

organic matter content in diets (Nozière et al., 2010). 
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2.2.1. Calculation of rumen fermentable organic matter in diets 

 Rumen fermentable organic matter (MOF, g/kg DM) was calculated according to the 

equation 42 in Sauvant and Nozière, 2013: 

MOF = MOD – (PDIA + AMDint + NDFDint + AGDint + PF) 

Where MOD: digestible organic matter in diet (g/kg DM); PDIA: protein digestible in the 

intestine (g/kg DM); AMDint: starch digestible in the intestine (g/kg DM); NDFDint: NDF 

digestible in the intestine (g/kg DM); AGDint: fatty acid digestible in the intestine (g/kg DM); 

PF: products from silage fermentation. MOD was calculated by multiplying the organic 

matter content of the diets (OM, g/kg DM) by in vivo measurement of total tract organic 

matter digestibility (dOM, %). PDIA was estimated from diets composition and from the 

levels of PDIA in the individual ingredients given by INRA tables (INRA, 2010). AMDint 

was estimated from the level of starch reaching the duodenum (equation 31; Sauvant and 

Nozière, 2013), which was estimated by subtracting the theoretical amount of degraded starch 

in the rumen (equation 13; Sauvant and Nozière, 2013) to the total starch content of the diets. 

NDFDint was estimated from dOM (equations 33, 34 and 35; Sauvant and Nozière, 2013). 

AGDint was estimated from the fatty acid content of the diets (equations 36 and 37; Sauvant 

and Nozière, 2013). PF was estimated from INRA tables (INRA, 2010) and from the 

percentage of silage in diets. 

 

2.2.2. Calculation of total and individual VFA production 

 Total VFA produced (tVFAprod, moles/day) were calculated according to Nozière et 

al., 2010: 

tVFAprod = [(8.36 - 1.1 × (PCO - 0.43)) × MOF/1000] × DMI 

Where PCO: percentage of concentrate in the diets; DMI: daily DM intake (kg/day). From 

tVFAprod, individual VFA productions (Cxprod, moles/day) were calculated with the observed 

in vivo VFA profile in the rumen: 

C2prod = tVFAprod × C2 proportion in the rumen 

C3prod = tVFAprod × C3 proportion in the rumen 

C4prod = tVFAprod × C4 proportion in the rumen 

C5prod = tVFAprod × C5 proportion in the rumen 
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2.2.3. Calculation of hydrogen production and consumption during VFA synthesis 

 The amount of H2 produced during VFA synthesis (H2prodVFA, moles/day) was finally 

calculated knowing that 2 moles H2 are generated per mole C2 or C4 produced:  

H2prodVFA = 2 × C2prod + 2 × C4prod 

 The quantities of H2 consumed during VFA synthesis (H2utilVFA, moles/day) were 

calculated knowing that 1 mole H2 is required to produce 1 mole C3 or C5: 

H2utilVFA = 1 × C3prod + 1 × C5prod 

  

2.3. Hydrogen production and consumption during microbial biomass synthesis 

 

 Microbes growing on amino acids would produce 0.58 moles H2 per kg dry microbial 

matter whereas microbes growing on NPN would consume 0.41 moles H2 per kg dry 

microbial matter (Mills et al., 2001). Then, to calculate the amount of H2 produced and 

consumed by microbes in our experiments, we first estimated the production of dry microbial 

matter from calculated microbial proteins production in the rumen (MAMIC, kg/day; equation 

47, Sauvant and Nozière, 2013): 

MAMIC = (40.7 + 75.6 × 10-3 × MOF + 8.07 × PCO) × DMI 

Where MOF, PCO and DMI were as previously defined. 

 The production of microbial organic matter (MOM, kg/day) was then calculated 

knowing that the factor of conversion between microbial protein and nitrogen content is 6.25, 

and that 100 g MOM is made of ~9 g N (lab database): 

MOM = (MAMIC/6.25) × (100/9) 

 The production of microbial dry matter (MSM, kg/day) was finally estimated knowing 

that 100 g microbial dry matter would be made of 87.1 g microbial organic matter (Dijkstra et 

al., 1992): 

MSM = ((MOM × 100)/87.1))/1000 

 We estimated that 70% of N supplied in diets of our experiments came from amino 

acids, the rest coming from NPN. Then, production of H2 from microbes growing on amino 

acids (H2prodMIC, moles/day) was estimated as follow:  

H2prodMIC = MSM × 0.58 × 0.70 

 Quantities of H2 consumed by microbes growing on NPN (H2utilMIC, moles/day) were 

calculated as follow: 

H2utilMIC = MSM × 0.41 × 0.30 
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2.4. Hydrogen consumption during nitrate reduction and lipids biohydrogenation 

 

 Quantities of H2 consumed during nitrate reduction (H2utilNO3, moles/day) or lipids 

biohydrogenation (H2utilFA, moles/day) were estimated for diets including nitrate or lipids, 

knowing that the reduction of one mole nitrate to one mole ammonia requires 4 moles H2 and 

that biohydrogenation of 1 mole C18:1, C18:2 or C18:3 requires 1, 2 or 3 moles H2: 

H2utilNO3 = (mNO3/MNO3) × 4 

H2utilFA = (mC18:1/MC18:1) + 2 × (mC18:2/MC18:2) + 3 × (mC18:3/MC18:3) 

Where mNO3: added nitrate (g/day); MNO3: molecular weight of nitrate (62 g/mol); mC18:1: 

added C18:1 (g/day); MC18:1: molecular weight of C18:1 (282.5 g/mol); mC18:2: added C18:2 

(g/day); MC18:2: molecular weight of C18:2 (280.5 g/mol); mC18:3: added C18:3 (g/day); 

MC18:3: molecular weight of C18:3 (278.5 g/mol). 

 

2.5. Estimated quantities of produced and consumed hydrogen in the three in vivo 

experiments of this thesis 

  

 Details of estimated quantities of produced and consumed H2 in the three in vivo 

experiments of this thesis are presented in Table 2. 
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Table 2 Estimated quantities of produced and consumed hydrogen in the four in vivo experiments of this thesis testing methane-mitigating 
strategies having different effects on the rumen hydrogen pool 
 Production of H2 (moles/day)  Consumption of H2 (moles/day) 

Experiment 
From C2 and 
C4 synthesis 

From microbes 
synthesis 

Total  
For CH4 
synthesis 

For C3 and 
C5 synthesis 

For microbes 
synthesis 

For nitrate 
reduction 

For lipids 
biohydrogenation 

Total 

Experiment 1 (N.L. cows) 
CON 83.9 0.85 84.7  77.2 8.8 0.26 0.0 0.00 86.3 
LIN 80.6 0.86 81.5  63.2 10.8 0.26 0.0 1.55 75.8 
NIT 85.9 0.85 86.8  59.5 8.3 0.26 18.3 0.00 86.3 
LIN+NIT 84.3 0.85 85.2  51.7 8.5 0.26 18.3 0.14 78.8 
          

Experiment 2 (L. cows) 
CON 113.2 1.35 114.6  116.2 21.4 0.41 0.0 0.00 138.0 
LIN+NIT 103.0 1.15 104.2  62.7 13.9 0.35 21.0 3.85 101.7 
          

Experiment 3 (N.L. cows) 
CON 80.0 0.84 80.9  78.1 9.1 0.25 0.0 0.00 87.4 
TEA 80.9 0.83 81.7  73.5 8.9 0.25 0.0 0.00 82.6 
NIT 83.3 0.83 84.1  54.8 7.9 0.25 17.8 0.00 80.7 
TEA+NIT 79.8 0.81 80.6  51.6 8.6 0.25 17.5 0.00 77.9 
          

Experiment 3 (L. cows) 
CON 105.3 1.27 106.6  108.8 18.6 0.39 0.0 0.00 127.7 
TEA 99.9 1.14 101.1  110.6 14.5 0.34 0.0 0.00 125.4 

N.L. cows: non-lactating cows; L. cows: lactating cows. 
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