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Abstract

The investigations presented in this manuscript focus on the numerical approximation of
the magnetohydrodynamics (MHD) equations and on their stabilization for problems in-
volving either large kinetic Reynolds numbers or multiphase flows. We validate numerically
a new Large Eddy Simulation (LES) model, called entropy viscosity, on flows driven by
precessing cylindrical containers or counter-rotating impellers (Von Karman flow). These
studies are performed with SFEMaNS MHD-code developed by J.-L.. Guermond and C.
Nore since 2002 for axisymmetric geometries. This code is based on a spectral decomposi-
tion in the azimuthal direction and a Lagrange finite element approximation in a meridian
plane. We adapt a pseudo-penalization method to report the action of rotating impellers
that extends the range of SFEMaNS’s applications to any geometry. We also present an
original approximation method of the Navier-Stokes equations with variable density. This
method uses the momentum as variable and stabilizes both mass and momentum equations
with the same entropy viscosity.

Key words: Multiphase flows, entropy viscosity, pseudo-penalization method, level set
method, magnetohydrodynamics

Résumé

Les travaux présentés dans ce manuscrit se concentrent sur l’approximation numérique
des équations de la magnétohydrodynamique (MHD) et sur leur stabilisation pour des
problémes caractérisés par des nombres de Reynolds cinétique élevés ou par des écoule-
ments multiphasiques. Nous validons numériquement un nouveau modéle de Simulation
des Grandes Echelles (ou Large Eddy Simulations, LES), dit de viscosité entropique, sur
des écoulements de cylindre en précession ou créés par des turbines contra-rotatives (écoule-
ment de Von Karman). Ces études sont réalisées avec le code MHD SFEMaNS développé
par J.-L. Guermond et C. Nore depuis 2002 pour des géométries axisymétriques. Ce code
est basé sur une décomposition spectrale dans la direction azimutale et des éléments finis
de Lagrange dans un plan méridien. Nous adaptons une méthode de pseudo-pénalisation
pour prendre en compte des turbines en mouvement, ce qui étend le code SFEMaNS a des
géométries quelconques. Nous présentons aussi une méthode originale d’approximation
des équations de Navier-Stokes & densité variable qui utilise la quantité de mouvement
comme variable et la viscosité entropique pour stabiliser les équations de la masse et du
mouvement.

Mots clés: Ecoulements multiphasiques, viscosité entropique, méthode de pseudo-pénalisation,
méthode de level set, magnétohydrodynamique
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Introduction

1.1 Context and motivations

The magnetohydrodynamic (MHD) equations describe the interactions between a fluid
conductor of electricity and the ambient magnetic field. The evolution of the magnetic
field is governed by the Maxwell equations in the quasi-static limit while the Navier-Stokes
equations describe the evolution of the fluid’s velocity field. The coupling is handled by
the action of the Lorentz force and the Ohm law. The non dimensionalization of these
equations involves two dimensionless parameters: the kinetic Reynolds number R, and
the magnetic Reynolds number R,, that characterize the ratio of the convective time
with the kinetic and ohmic diffusion times. MHD phenomena take place in a large range
of problems such as industrial processes (aluminium production in Hall-Héroult cells or
Liquid Metal Battery), natural phenomena (generation of magnetic field in astrophysics) or
laboratory experiments. The numerical approximation of such problems may give relevant
information to improve the efficiency of experimental or industrial set ups and presents one
asset: they are easier to put in place. However, most of these applications involve either
large kinetic Reynolds numbers that makes the dynamics of the flow too rich to be fully
approximated with present computational resources, or immiscible multiphase flows which
require to report of the evolution of the density, solution of a conservation law presenting
singularities due to the discontinuity of densities between two adjacent fluids. To overcome
these difficulties the scientific community develops stabilization methods that aim either
at approximating the large scales of flows with too rich dynamics to be fully approximated
(called LES for Large Eddy Simulation) or at reducing the spurious oscillations generated
when approximating discontinuous solutions.

In that frame this PhD thesis proposes to face these difficulties by using a nonlinear
stabilization method called entropy viscosity. This method was developed by Guermond
et al [36, 37, 38] and consists of adding an artificial viscosity made proportional to the
residual of an energy equation. It allows to dissipate the energy accumulated by the
approximations due to the presence of large gradients that are not represented correctly by
the mesh. It can also be seen as a way to select the unique entropy solution of Kruzkov [61]
for conservation laws or to approximate a suitable solution of the Navier-Stokes equations
in the sense of Scheffer [101]. In both cases it allows to approximate a physical solution,
meaning a solution that does not produce energy. On one hand we propose to enhance the
benefit of the entropy viscosity as a LES method for approximating solutions of problems
with large kinetic Reynolds numbers. In echoes of previous studies of the team where
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1.2. THESIS OUTLINE

this PhD took place, this study is performed on two physical problems where the fluid is
either driven by a precessing cylindrical container or by counter rotating impellers. These
problems are subjects of current experiments in CEA Saclay and future experiments in
Dresden (Germany) which, unlike natural phenomena with many unknown parameters,
would allow future comparisons with our numerical results. The numerical simulations
of these problems are done with SFEMaNS code (Spectral/Finite Element for Maxwell
and Navier-Stokes), developed for the past decade by Guermond and Nore in cylindrical
coordinates. As this code uses a Fourier expansion in the azimuthal direction and Lagrange
finite elements in a meridian plane, the representation of rotating impellers becomes a
challenge which is overcome by adapting a pseudo-penalization technique of Pasquetti et
al [89]. On the other hand we also extend the range of SFEMaNS code to multiphase flows.
Such problems present two main difficulties: tracking the evolution of interfaces between
immiscible fluids and dealing with time independent algebra for computational efficiency.
While we propose to track the evolution of interfaces with a level set method, we present
a new approximation method, inspired from Guermond et al [41]. This methods uses the
momentum, equal to the density times the velocity field, as variable for the Navier-Stokes
equations. Its main novelty relies on reducing spurious oscillations, that may emerge
when considering large ratios of density and viscosity, by stabilizing both the mass and the
momentum equations with the same entropy viscosity. The correct behavior of this method
is investigated using numerous tests cases. Eventually all the developments of this thesis
expand the range of SFEMaNS code action to many geophysical or MHD applications.
The use of the entropy viscosity enables to increase the range of parameters in numerical
simulations in the quest to the still out-reach experimental ones.

1.2 Thesis outline

This dissertation is composed of six chapters and one french substantial summary in ap-
pendix. After a chapter of introduction, chapters 2 and 3 describe the SFEMaNS code
and the entropy viscosity method, that we use to numerically approximate the solutions of
hydrodynamic or magnetohydrodynamic problems. Chapter 4 aims to validate the entropy
viscosity as a stabilization method for high Reynolds number simulations in the frame of
Large Eddy Simulations (LES). In chapter 5 we introduce a new method to approximate
multiphase flow problems. A conclusion of the present studies and their prospects are given
in the final chapter.

Chapter 1 - Introduction. We describe the magnetohydrodynamic equations and
their nondimensionalization that leads to the use of the kinetic Reynolds number R, and
the magnetic Reynolds number Ry,. In reference to chapter 5, the Navier-Stokes equations
are described for constant and variable density problems.

Chapter 2 - Magnetohydrodynamics and SFEMaNS MHD-code. In this chap-
ter we present the numerical code used to approximate MHD problems. Details on the nu-
merical method used, a mixing of Fourier and Finite elements, are given. We also describe
the code operation and restrictions before we present the past and recent developments to
enhance all its possibilities.

Chapter 3 - Nonlinear stabilization method: entropy viscosity. We give an
overview of present Large Eddy Simulation (LES) models and introduce the entropy vis-
cosity as a new LES model. We draw attention to consistency and diffusive properties

12



CHAPTER 1. INTRODUCTION

of entropy viscosity and explain its connection to suitable weak solutions in the sense of
Scheffer [101]. Eventually details on its implementation in the SFEMaNS code are given
and its consistency property is checked with analytical tests.

Chapter 4 - Large Eddy Simulation with entropy viscosity. This chapter is
devoted to validate the entropy viscosity as a LES method. The chapter is split in to two,
first the entropy viscosity is used to approximate the solution of a Von Kérméan Sodium
(VKS) set-up. It proves to be efficient as it is in agreement with Direct Numerical Simu-
lations (DNS) performed on a finer mesh and recovers previous experimental or numerical
results of similar set-ups. Next two configurations of precessing cylinders are presented in
the form of an article in preparation. The entropy viscosity is used to extend the range
of kinetic Reynolds numbers studied for one configuration after being validated with DNS
comparisons at R, = 4000. Then a MHD study of both configurations is performed with
DNS to determine the most favorable one to the generation of magnetic field.

Chapter 5 - Applications to multiphase flows with momentum based ap-
proximation. We present, in the form of an article in preparation, a new approximation
method for multiphase flow problems that involves a momentum based approximation for
the Navier-Stokes equations and the entropy viscosity as a stabilization method for both
mass and momentum equations. The method is validated for a set of tests involving grav-
ity, rotating containers, surface tension and MHD effects. We note that the method has
been used to study Liquid Metal Batteries (LMB) instabilities in [46].

Chapter 6 - Conclusion and prospects. Finally we sum up the main results
obtained during this PhD thesis and introduce possible developments connected to large
Reynolds number computations and studies of Liquid Metal Battery instabilities.

1.3 Magnetohydrodynamic equations

The magnetohydrodynamic equations describe the reciprocal actions between the magnetic
field and the velocity field inside an electrical conducting fluid. As we plan to study
hydrodynamic instabilities due to the presence of a magnetic field or dynamo effect, i.e.,
conversion of kinetic energy into magnetic energy, we give details about the MHD equation
formulations we use. We refer to [79, 98| for a full description of the MHD equations and
note that all equations described in this section are considered on a domain Q C R3 and
for time ¢t > 0. They also involve boundaries and initial conditions that are not specified.

1.3.1 Navier-Stokes Equations

We start to describe the evolution of an incompressible Newtonian fluid governed by the
Navier-Stokes equations that we write:

1 1
Ju+ (Vxu) x u—vAu = —;Vp + ;f, (1.3.1)

Vou = 0, (1.3.2)

where u is the velocity field, p the density, v the kinematic viscosity, f a body force and p
the hydrodynamic pressure equal to pu; + P with P the fluid pressure. One can note that
the vector fields are in bold so we can differentiate them from a scalar field, this notation is
kept all along this dissertation. We write these equations with the hydrodynamic pressure
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1.3. MAGNETOHYDRODYNAMIC EQUATIONS

because the SFEMaNS code uses this formulation. Since we consider only one fluid, we can
notice that the density and the kinematic viscosity are constant (in time and space). To
get dimensionless equations, we introduce a reference length scale L,¢f, a reference velocity
Uvet, a reference time scale Tret, a reference pressure Pos and a reference body force fref.
Equation (1.3.1) can now be rewritten in the following dimensionless form:

Uref U2 f VUref Pref fref
ou+ == (Vxu) x u— Au=—-———Vp—+ f. 1.3.3
Tret ! Lref( ) Lot eref P ( )

2
We set Tref := Lyef/Uref, Pref = pU]?ef7 Sret = pLU—reff and introduce the kinetic Reynolds

T

number:

L
R, = Uret ref7 (134)

v

so the Navier-Stokes equations become:
1

Jru+ (Vxu) x u — R—Au =—-Vp+f{, (1.3.5)

e
V-u = 0. (1.3.6)

Remark 1.3.1. We note that the variables, such as the velocity field u, or the operators, such
as the time derivative 0y, are written the same way independently from being dimensionless
or with dimension.

Extension to multiphase flow problems

In the frame of chapter 5, we introduce the momentum m = pu with p the density
and u the velocity field. The Navier-Stokes system is then composed of the mass and
momentum equations which can be written in the following dimensionless form:

Op+ V-(m) =0, (1.3.7)
O¢(m) + V:(m®u) — P%V-(na(u)) =—-Vp+f, (1.3.8)
Vou =0, (1.3.9)

where £(u) = V¥u = 1(Vu+(Vu)T) is the strain rate tensor. The scalar field = pv is the
distribution of dynamic viscosity. To write these equations in a non-dimensionalized form,
we introduce the reference length scale L., the reference velocity U.er so the reference
time scale 1S Lyef/Urer. The reference density and dynamic viscosity are denoted ppef and
Nret Tespectively, so we can define the Reynolds number by:

_ PretUref Let
Tref

R. (1.3.10)

1.3.2 Maxwell Equations

The Maxwell equations govern the evolution of the magnetic field H. Before writing these
equations in a conducting domain, we introduce the induction field B, the electrical field
E and the electric displacement field D, so we have:

8B = —VXE, (1.3.11)

VxH = j+ 9;D + xu, (1.3.12)

14



CHAPTER 1. INTRODUCTION

VD =y, (1.3.13)
VB =0, (1.3.14)

where j is the current density, x the charge density and u the velocity field of the body
considered. In the following we only consider these equations in the quasi-static approxima-
tion, meaning the velocity u is way smaller than the speed of light. It allows to disregard
the terms connected to x and 9;D (see [79, 98] for more details). As a consequence,
equations (1.3.12) and (1.3.13) can be rewritten:

UxH = j, (1.3.15)

V-D = 0. (1.3.16)
Before writing the equations in a dimensionless form we consider Ohm’s law:
j=0o(E+ux uH), (1.3.17)
and the two constitutive relations:
D =¢E, (1.3.18)
B = uH, (1.3.19)

where o is the electrical conductivity, € the electrical permittivity and g the magnetic
permeability. The last three equations allow us to remove the variable E from the equations,
so we only need to consider the following equations:

0,(uH) = —VX(%VXH) + U (u x (uH)), (1.3.20)

V-(uH) = 0. (1.3.21)

To get dimensionless equations, we introduce a reference length scale L¢f, a reference
time scale T}ef so we can define a reference velocity Uyer = I%“f We also use the vacuum

ref

permittivity €g as reference permittivity and the vacuum permeability pg as reference per-

meability. This allows us to rewrite the Maxwell equations in the following dimensionless
form:

0, (uH) = —Riw(%wﬂ) U (u x (H)), (1.3.22)

m

V.(uH) = 0. (1.3.23)

where we define the magnetic Reynolds number:

Ry, = 11000 LyetUret. (1324)

1.3.3 Magnetohydrodynamic Equations

The magnetohydrodynamic equations describe the coupling between a magnetic field and
a velocity field in an electrically conducting fluid. While the action of the fluid velocity
on the magnetic field is already visible in the Maxwell equations (1.3.22), the feedback of
the magnetic field on the fluid’s velocity is represented by the Lorentz force, defined by
fr, ;== j x B. Using Ohm’s law (1.3.17) and (1.3.19), this force can be written as follows:

fr = (VxH) x (uH). (1.3.25)

15



1.3. MAGNETOHYDRODYNAMIC EQUATIONS

After switching the term f with f7, in equation (1.3.5), the dimensionless MHD equations
are:
oru+ (Vxu) x u — R%Au =—-Vp+ A(VxH) x (uH),
Ou(H) = — 7V (L9 H) + U (u x (uH)),
Vau =0,

V:(uH) =0,

(1.3.26)

H2

with A = % where we denote H,.f the reference magnetic scale. To remain consistent
PY et

with the formulation of these equations in the SFEMaNS code, we use the Alfvén velocity:

Urer = 4 /“—;Href. As a consequence, we set A = 1.

16



SFEMaNS MHD-code

This chapter is dedicated to describe the SFEMaNS MHD-code developed in Fortran90
since 2002 by J.-L. Guermond et al. [31, 33, 35]. Firstly, we give details about the restric-
tions on the domain of computation and the three main problem set-ups. We also present
the numerical approximation method implemented in SFEMaNS. Eventually we show the
code’s possibilities and the developments implemented during this PhD period.
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2.1 Framework

The SFEMaNS code is born with the idea to develop a code that can study dynamo effect
with a hybrid spectral /Lagrange finite element formulation using the velocity field u and
the magnetic field H as variables for the MHD equations. Before describing the main
set-up that the code offers, we show the domain restrictions we are subjected to.
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2.1. FRAMEWORK

Domain geometry: axisymmetric hypothesis

The code uses cylindrical coordinates (7,0, z) so a spectral/finite element method can
be applied. This method, detailed in section 2.2, consists in using a Fourier decomposition
in the azimuthal direction and solves the problem in a meridian plane with Lagrange finite
elements. While this choice allows to reduce the computational cost of simulations, it also
implies that the computation domain, denoted by €2, must be axisymmetric (due to the
O-periodicity).

The choice of an axisymmetric geometry may seem restrictive as we cannot study back-
ward step problems for hydrodynamics study, the dynamo effect of a Von Karmén set-up
as in the Cadarache experiment (presence of blades fitted on a rotating disk) or other prob-
lems with non axisymmetric geometry. However, we consider that this hypothesis allows
us to approximate most of physical situations with dynamo effect (geodynamo, stellar dy-
namo) and some laboratory experiments (with cylinder, sphere and torus). This restriction
is however circumvented by implementing a pseudo-penalization method in SFEMaNS so
non axisymmetric domains for the Navier-Stokes equations can be taken into account, we
refer to section 2.4 for more details.

Domain decomposition: simply connected insulating sub-domain hypothesis
In order to take into account a large range of problems, we divide the domain Q of
computation into the three following parts:

e a conducting fluid domain, denoted by (). r, where the conductivity, permeability,
viscosity and density of the fluid are assumed constant and positive.

e a conducting solid domain, denoted by €. s, where the velocity of the solid is imposed.
This sub-domain is assumed to be a finite union of disjoint solid domains Q7 ; with

positive constant conductivity o; and permeability p;.

e an insulating domain, called vacuum and denoted by €2,, where the electrical con-
ductivity o is zero and the relative magnetic permeability p is 1.

We note that, unlike the Maxwell equations that need to be approximated in all of the
sub-domains, the Navier-Stokes equations are only solved in €2, ;. All of these sub-domains
are assumed to be axisymmetric so we can approximate the problem sub-domain per sub-
domain. Due to the zero conductivity of the insulating domain, the Maxwell equations
cannot be written as equation (1.3.22) in €,. As a consequence, we only consider a simply
connected domain €2,. This extra hypothesis, combined to the condition VxH = 0 in €,
allows us to look for a magnetic field of the form H = V¢ with ¢ a scalar field defined on
Q,. We can show, by taking the divergence of (1.3.11), that ¢ is solution of:

10 Ap = 0. (2.1.1)

We call ¢ the vacuum potential and refer to [31] for more details on the Maxwell equations
numerical approach. This decomposition allows to study the mutual retro-action between
the fluid’s velocity field and the magnetic field in €2,  while realistic boundary or interface
conditions can be represented by the presence of an insulating domain or containers walls.

Hydrodynamic, Magnetic or MHD set-up
SFEMaNS allows to solve the Maxwell and the Navier-Stokes equations either inde-
pendently or by coupling them. As a result we can study three main kind of problems:
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e hydrodynamic set-up, where only the Navier-Stokes equations (1.3.5) are approxi-
mated after setting an adequate forcing f.

e magnetic set-up, where the Maxwell equations (1.3.22) are solved with a velocity
field defined by the user.

e magnetohydrodynamics, where we solve the equations (1.3.26).

We note that hydrodynamics study may lead to find stationary or statistically stationary
velocity fields that can later be injected in the Maxwell equations to analyse the conversion
of kinetic energy into magnetic energy. The influence of a stationary magnetic field on a
fluid can also be investigated while studying the Navier-Stokes equations alone with the
corresponding Lorentz force. These strategies may avoid to compute the full MHD equa-
tions but require a good knowledge of the problem that can only come from experiments
or full MHD numerical studies.

2.2 Numerical approximation

The SFEMaNS code approximates the MHD equations using a hybrid Fourier/Finite el-
ement formulation. The Fourier decomposition allows to approximate the problem’s so-
lutions for each Fourier mode independently, modulo nonlinear terms. These nonlinear
terms are always made explicit, with second order extrapolation in time, so the algebra of
the problem is time independent. It induces a computational gain as the stiffness matrices
only need to be assembled and preconditioned at initialization.

2.2.1 Fourier discretization

To present the Fourier discretization, we choose a number M such that all variables are
approximated over M + 1 complex Fourier modes. Thus all numerical approximations of
a function f are written in the generic form:

f(r,0,z,t) = Z fit(r,z, t)e imé (2.2.1)

where (r,0, z) are the cylindrical coordinates and t is the time. The function f;" takes
values in finite element spaces defined later. We note that SFEMaNS does not directly

m,COs fm SlIl

approximate the f;" but some functions f,~ defined below. As we only

considerer real valued functions, for all m in [| — M , M| we have:

= (2.2.2)

So we can now rewrite (2.2.1) as follows:
0 cos m ,CO8 m,sin
f(r,0,z,t) = (r,z,t) + Z cos(mf) + f,7 sin(m@), (2.2.3)

where f0 % = f) and for 1 < m < M, we have f;""°" = 2R(f/") and f," Sin =23(f)
with R(f;*) and 3(f;7") the real and imaginary parts of the complex f;*. Introducing
the functions cos,, = cos(m#), sin,, = sin(m#b) and a basis functions (¢;);e.; of the finite
element space of the meridian plane results in (¢; cosm) je smefjo,m() U (@5 Sihum) je rme[, M)
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being a basis of the functions approximation spaces. The formulation (2.2.3) allows to
approximate each Fourier component (cosine and sine) independently modulo the compu-
tation of the nonlinear terms. Moreover only real valued functions are approximated which
allows to avoid dealing with complex spaces.

2.2.2 Finite Element representation

We give details on the numerical approximation of a MHD problem in the meridian plane.
Firstly we describe the spaces of approximation where the functions live, then we explain
the time marching of the algorithm for a MHD set-up. We end up by giving details
of the scheme used to approximate the Navier-Stokes equations. We only describe the
Navier-Stokes formulation so it facilitates us to show the modifications we did to take into
account non axisymmetric configurations, see section 2.4.1, or variable density problems,
see chapter 5.

Spaces of Approximation

To introduce the space of approximations where the variables u, p , H and ¢ live,
we define Qg? , 2D 02D meridian sections of Qepr Qeys, . We also consider {7Tp,},+0

c,8
a family of meshes of the meridian plane Q2P

composed of disjoint triangular cells K
of diameters at most h. For given h > 0, we assume we can divide the mesh 7 in a
conducting (fluid and solid) and an insulating meshes, so we can write 7 = 7, U 7, with

n= 7;16’11 U 7;16’8. The approximation of the solutions of the Navier-Stokes equations in a
meridian plane involves Taylor-Hood, P /IP1, finite elements. So we introduce the following

two real spaces of finite dimension:
Vi = {Vh € CUQLD)svilk € P VK € ECJ}’
M = {Qh € CoUD); an|x € P VK € Ec’f} :

At a given time, the velocity field u and the pressure p are approximated in the respective
spaces:

M
Vy, = {v— Z vi(r, 2)e* v e VIP vk = vk, —MSkSM}7
k=—M

M
M, = {Qh: > afr2)e™qf € MPP, qf = q; ", —MSkSM}-
k=—M

For detailed purpose about Navier-Stokes approximation, we also define the sub-space V, o
of V}, whose elements are zero in (). ; boundaries, denoted 01 ;. In the same way, we
introduce the two real spaces of finite dimension:

XH2D {bh € CO(Q2D); by | € P§, VK € 7;5} ,

X020 i= {on € C°(RP); pnlic € B3 VE € Ty}

with Iy € {1,2} to approximate the Maxwell equations. So for a given time, the magnetic
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field H and the scalar potential ¢ are respectively approximated in:

M
XH .= {b = Z b (1, 2)e™™; bl € XhH’QD, —M<Ek< M} ,
k=—M

M
Xff = {(p = Z O (1, 2)etk?: ok ¢ X;f’2D, —-M<k< M} .
=M

Time marching

To present the time marching of the code for a MHD problem, we introduce a time step
7 and denote by f™ the approximation of a function f at the time ¢, = n7. We note that
the Maxwell and the Navier-Stokes equations are not solved simultaneously, meaning we
first approximate the solution of the Navier-Stokes equations. Then the updated velocity
field is used to approximate the Maxwell equations. So the time marching of a MHD
approximation can be summarized by the three following steps:

e initialization of the velocity fields u®, u', the dynamical pressure p°, p!, the magnetic
field HY, H' and the vacuum potential ¢°, ¢!.

n+1

e computation of u”t! and p after we compute the nonlinear terms with extrapo-

lation involving u™, u"”~!, H" and H" !

e computation of H"*! and ¢! after nonlinear terms are computed with extrapola-
tion involving u™*!, H® and H" 1.

As this manuscript focuses on the Navier-Stokes equations approximation and their sta-
bilization for high Reynolds numbers flows and variable density problems, we propose to
describe the Navier-Stokes equations approximation in the following. Details on the ap-
proximations of the Maxwell equations in the SFEMaNS code can be found in [31] and [33].
We just note that the approximations of the variables H and ¢ of the Maxwell equation
are second order in time and second and a half order in space in L?-norm.

Navier-Stokes equations weak formulation

The approximation of the Navier-Stokes equations is based on a rotational form of the
prediction-correction projection method detailled in [43]. The main idea of this algorithm
is to determine a prediction u of the velocity field u by solving:

3"t —4u" +urt 1
5 - FAu““ + Vp" = f(tns1), (2.2.4)
€

where we do not report nonlinear effects. As this first step does not take into account the
incompressibility hypothesis, a correction of the predicted velocity field u is applied by

solving:
& 3un+1 o 3ﬁn+1
—_—— + V(" —-p" + R%V-ﬁ”“) =0,

2T (2.2.5)

Vaut! = 0.
Apart from accounting for incompressibility, this correction step allows to get consistent
boundary conditions on the pressure due to the presence of the quantity V-a"*t!. We

refer to [43] for more details on this algorithm. The implementation of this algorithm in
SFEMaNS involves a scalar field " *!, solution of:
3

— Ayt = - = varth (2.2.6)
27
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It allows us to remove the variable u from the equation (2.2.4) by noticing that:
2T
R LR v 2.2.7
u u 3 (0 ( )

As a consequence the SFEMaNS code focuses on approximating the predicted velocity u
that we abusively denote u. The Navier-Stokes approximation then consists in approximat-
ing a velocity field u”*!, that matches the Dirichlet boundary conditions of the problem,
solutions of the following formulation for all v in Vy, o:

— v+ —Vu"" Vv =—
5. U - u

—4u” + un—l " 4wn _ 1][)”_1
| = e+ )

+/m“—wmmﬂxmwww,@m)
Q

where u*"*! = 2u” —u” ! and Vu: Vv = Zij O;ju;0;v;. The pressure is then updated
by solving 11 and §"*! in M), solutions of:

3
l/vwwﬁvq:t/wﬁﬁv% (2.2.9)
Q 27 Jo

/@W“:/ﬁvw“, (2.2.10)
Q Q

for all ¢ in Mj,. Eventually the pressure is computed as follows:

1
pn+1 _ pn 4+ Q]Z)n—i-l o 75n+1‘ (2.2.11)
R,
We note that the precision of this scheme, measured in L?-norm, is second order in time
for pressure and velocity while it is third order in space for the velocity and second order
in space for the pressure.

Remark 2.2.1. The good behavior of the code has been checked over more than twenty an-
alytical tests involving hydrodynamic, magnetic and magnetohydrodynamic problems. We
refer to |74] for a description of the first seven analytical tests implemented in SFEMaNS.

Remark 2.2.2. As we do not correct the predicted velocity @ (now denoted u) via equation
(2.2.7), we recently implement a penalty method on the divergence of the velocity. This
method consists in adding the term —CV(V-u) in the left hand side of the Navier-Stokes
equations with C' a constant bigger than 1 (set to 1 by default). The choice of penalizing
the divergence is done so we can work with reasonable velocity’s divergence while avoiding
computing (2.2.7). We note that computing equation (2.2.7) would drive us to inverse an
extra matrix to obtain the value of V¢"*! defined on Gauss points of the finite element
mesh, on the nodes of the finite element mesh where the velocity is defined. As a con-
sequence this penalty method allows us to deal with reasonable divergence velocity field
without increasing the computational cost of numerical simulations.

2.3 SFEMaNS possibilities

As this code has been developed throughout the years, the range of problems approximated
has been extended and the computational cost was reduced. Enumerating all SFEMaNS
possibilities, like taking into account periodic boundary conditions for infinite geometry
along the symmetry axis, is not relevant here. However, we still decide to enhance the last
three most important developments implemented before this PhD period.
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2.3.1 Parallelization

The code presents two layers of parallelization: one involving the Fourier decomposition
and one involving a decomposition of the meridian domain where the finite element approx-
imation is done. The Fourier decomposition allows to solve the problem independently,
modulo nonlinear terms, for each Fourier mode so we can apply a parallelization in Fourier
space using MPI (Message Passing Interface). The nonlinear terms, made explicit in time,
are computed using a pseudo-spectral method and the fast Fourier transform subroutines
from the FFTW3 package [25]. We note that the zero-padding technique (2/3-rule) is ap-
plied to prevent aliasing. On the other hand, the code is also parallelized in the meridian
sections by using METIS [55] for the domain decomposition and PETSC (Portable, Exten-
sible Toolkit for Scientific Computation) [6, 7, 8] for the parallel linear algebra. Eventually
each computation is done by splitting the meridian domain in Ng subdomains and regroup-
ing the M Fourier modes in N groups of same size. So the total number of processors N
used by the simulation satisfies the relation:

N = NpNg (2.3.1)

where each processor solves the problem for one of the Ng sub domains over one of the Np
groups of Fourier modes. More details on the Fourier parallelization can be found in [33]
while the parallelization in meridian sections has been implemented during F. Luddens
thesis [74].

Parallel Scaling Performance

To emphasize the satisfying parallelization of SFEMaNS we propose to study the weak
and the strong scalability of the code. The weak scalability consists in studying the evolu-
tion of the computational time with the number of processors when fixing the problem size
allocated to each processor. The strong scalability considers a problem of fixed complexity
and studies the evolution of the computational time with the number of processors. While
the weak scalability allows to foresee the computational time of an increasing complexity
problem, we note it is not of practical use. Indeed such scaling does not allow to compare
the communication time with the time spent to solve the problem, so the choice of the fixed
problem size can induce undesired high communication times. It makes the strong scala-
bility more informative as it allows to determine the maximum number of processors that
can be allocated to approximate a fixed problem without wasting computational resources.

The study of SFEMaNS weak scalability has been done by Hiroaki Matsui from UC
Davis in the frame of the CIG benchmark [51] with Stampede supercomputer from Texas
Advanced Computing Center (TACC) of University of Austin Texas. The scaling is done
on a MHD problem with pseudo vacuum boundary conditions over a hundred time steps
and consists in studying the evolution of the quantity:

Sws(N) = I (2.3.2)
In

where NN is the number of processors, Ty is the average computational time of an iteration
time per processor and Ny the minimum number of processors used to start the scaling.
Table 2.1 shows the results of the weak scaling where we define Ny,q the number of degrees
of freedom in the meridian plane and Ny the number of degrees of freedom in the azimuthal
direction. We note that Ny is equal to 2M with M the number of Fourier modes used
for the computations. The results are very conclusive as going from 32 to 8192 processors
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induces a 15% difference of a processor time computation. We note that the parallelization
in Fourier modes is more efficient than the one in meridian space as the computational

time mainly rises when increasing the number Ng of meridian sub domains.

N | Ng | Np | +VNumea| No | Ty | Sws(N)

32 2 16 87.29 64 | 0.893 1
64 2 32 87.29 128 | 0.768 1.16
128 2 64 87.29 256 | 0.726 1.23
256 8 32 | 175.12 | 128 | 0.943 0.95
512 8 64 | 175.12 | 256 | 0.865 1.03
1024 | 8 | 128 | 175.12 | 512 | 0.904 0.99

2048 | 32 | 64 | 345.82 | 256 | 1.066 0.84
4096 | 32 | 128 | 345.82 | 512 | 1.072 0.83
8192 | 32 | 256 | 345.82 | 1024 | 1.047 0.85

Table 2.1: Weak scaling of SFEMaNS code with the reference number of processors Nyt =
32 and a fixed space number of degrees of freedom per processor equal to 15240.

On the other hand we performed the strong scalability analysis of SFEMaNS on the
same physical problem with cluster Ada from Institut du Développement et des Ressources
en Informatique Scientifique (IDRIS) in Orsay. Now the number of degrees of freedom in
the meridian domain and in the azimuthal direction are fixed so the problem complexity
C' is constant. Then we study the variation of Sgs(IN) defined by:

Sgs(N) = jw. (2.3.3)
with the same notations of the weak scaling case. When Sgg(/N) = 1 it means the time
of communication is negligible compared to the time of computation so the code can be
used with IV processors for a problem of complexity C without wasting computational
resources. The results of the strong scaling are displayed in table 2.2. As previously

N | Ns | Np | Ty | Sss(N)
16 1 16 | 3.65 1

32 1 32 | 1.91 0.96
64 2 32 | 1.07 0.85
128 | 4 32 | 0.59 0.77
256 | 8 32 | 0.36 0.63

Table 2.2: Strong scaling of SFEMaNS code with N, = 16 done with /Npyeq = 230.82
and Ny = 64.

noted when studying the weak scalability of SFEMaNS code, the parallelization in Fourier
mode is more efficient than the one in meridian space as allocating 1 or 2 Fourier modes
to one processor, see the first two lines of table 2.2, is nearly as efficient. On the other

24



CHAPTER 2. SFEMANS MHD-CODE

hand the parallelization efficiency seems to decrease when the domain is subdivided into 8
subdomains. As the meridian section contains 53280 P, grid points, we can conclude that
the parallelization remains efficient as each processor treated around 10000 grid points of
the meridian section.

2.3.2 Heat Equation

The range of problems approximated by SFEMaNS is extended to thermodynamic prob-
lems under the Boussinesq approximation. In this situation the temperature is written in
a dimensionless form by setting T' = % with T the mean value of the temperature and
AT the maximum difference of temperature. The equations to solve can be written in the
following dimensionless form:

8tT + V(Tu) — KAT = fT,
omu+ (Vxu) x u— R%Au =-Vp+~Te, +f, (2.3.4)
Vau =0,

where k is the thermal diffusivity and « the thermal gravity. This development allows to
compute some stellar or geodynamo problems and is validated with an analytical test de-
scribed below. We also note that this development was used to participate in a benchmark
of a convection driven magnetohydrodynamic dynamo [51, 77|. This benchmark purpose is
to get qualitatively asymptotic results on a MHD problem with thermal convection while
studying the parallelization of each participant’s code. SFEMaNS, as a local code, proves
as efficient as spectral code and may participate to future benchmarks which, as proposed
in [51], could focus on efficiency of each participants codes in comparison of their results
and time computational cost.

Analytical test with manufactured solutions

To check the well behavior of the code for the Boussinesq set-up, we propose to describe
an analytical test implemented in SFEMaNS. This test consists in approximating in a
cylindrical domain Q = {(r,0,2) |0 <r <1;0 <0 <27m;0 < z < 1} the functions:

(

T(r,0,z,t) = (r?z+r?z%(cos() + 2sin(26))) cos(t),

up(r,0,2,t) = 7r3cos(2mz)sin(t),

ug(r,0,2,t) = rzsin(t), (2.3.5)
uy(r,0,z,t) = —% sin(27z) sin(t),

p(r,0,z,t) = 0,

solutions of the equations (2.3.4) satisfying Dirichlet boundary conditions. Figure 2.1
displays the profile of the temperature and the velocity magnitude at final time tepq = 1.
We also set kK = 0.1, v = 10 and R, = 1. The source terms fr and f are respectively equal
to 0T + V-(Tu) — kAT and dyu+ (Vxu) x u — R%Au + Vp — 7Te,, meaning we set:

fr = —r?zsin(t)+(2u,rz4u.r? —4rz) cos(t)—r? 2% sin(t) cos(0)+2(u,rz>+u.r22) cos(t) cos(6)
— k(322 + 2r?) cos(8) — ugrz? cos(t) sin(f) + ugdrz? cos(t) cos(260) — 2r? 2% sin(t) sin(26)
+ (updrz? + udr®z) cos(t) sin(20) — 4kr? cos(t) sin(26), (2.3.6)

25



2.3. SFEMANS POSSIBILITIES

fr i= 13 cos(2mz) cos(t) + (2mr3 — 4r/m)2r? /7 sin(2m2)? sin(t)? — 31322 sin(t)?

1 .
- ﬁ(&“ — (27)2r3) cos(2mz) sin(t), (2.3.7)

fo := r?zcos(t) + 3rtz cos(2mz) sin(t)? — 2r* /7 sin(2n2) sin(t)? — é(&z) sin(t), (2.3.8)

fz:= —(2r? /) sin(2mz) cos(t) — rizsin(t)? 4 (213 — dr /70)r3 cos(272) sin(272) sin(t)?
— é(—@/w) + 2m4r?) sin(2nz) sin(t) — 1. (2.3.9)
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Figure 2.1: Final profile of temperature and velocity magnitude in the meridian plane
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Figure 2.2: Finite element mesh of the meridian plane (h = 1/20 in Py).

The problem is approximated on four different meshes of typical mesh-size : h = 0.1,
h = 0.05, h = 0.025, and h = 0.0125, we refer to figure 2.2 for a representation of the
discrete domain €. The time steps tested are 7 = 0.01, 7 = 0.005, 7 = 0.0025 and
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7 = 0.00125. The errors on the velocity and the temperature fields in L?-norm at the final
time teng = 1 are reported in tables 2.3 and 2.4. One can notice that fixing a mesh size
and diminishing the time step does not change the error on the velocity field, it means the
error is dominated by a space-error. This phenomenon is enhanced when we look at the
space convergence with the biggest time-step 7 = 0.01. Indeed, the velocity error decreases
with the mesh-size with an order of convergence a little above the theoretical’s one: three.

time step 7
0.01 0.005 0.0025 0.00125
mesh size h
0.1 3.1096E-005 | 3.1227E-005 | 3.1278E-005 | 3.1298E-005
0.05 2.3612E-006 | 2.3710E-006 | 2.3749E-006 | 2.3766E-006
0.025 1.8240E-007 | 1.8194E-007 | 1.8217E-007 | 1.8229E-007
0.0125 2.6963E-008 | 1.5682E-008 | 1.4732E-008 | 1.4683E-008
Table 2.3: L2-norm of the error on the velocity at time t = 1.
time step T
0.01 0.005 0.0025 0.00125
mesh size h
0.1 2.2499E-006 | 2.2631E-006 | 2.2708E-006 | 2.2730E-006
0.05 3.5666E-007 | 1.8746E-007 | 1.7643E-007 | 1.7697E-007
0.025 3.2809E-007 | 8.2602E-008 | 2.4672E-008 | 1.56568E-008
0.0125 3.2877E-007 | 8.2241E-008 | 2.0558E-008 | 5.2333E-009

Table 2.4: L2-norm of the error on the temperature at time ¢t = 1.

2.3.3 Magnetic permeability jumps in r and z

We end our description of SFEMaNS possibilities with the last development implemented
before this PhD period: the implementation of magnetic permeability jumps in r and z
directions. This new method, implemented during the thesis period of F. Luddens [74],
allows jumps in the electrical conductivity and magnetic permeability between the fluid

domain 2.y and the different conducting solid domains Qgs introduced in section 2.1.
The main difficulties of such problems are to satisfy continuity conditions across interfaces
between €. ¢, ins, Q, and to impose a zero divergence on the induction field B = pyH.
Indeed by denoting X, the interface between conducting domains and ¥ the interface

between insulating domain €2, with conducting domains, approximations need to satisfy:

[Hxn]=0 on X,
‘H - n¢] =0 on Y,

Hxn4+ Ve xn’=0 on X,

uHE - n+ p?Vo-n* =0 on X,
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where H = H® in Q. = Q. ¢ U{Qés}i, H =V¢in Q, and n°, n’ are the outward normal on
the interfaces. While conditions on tangential components of H® and V¢ are enforced via a
standard penalty technique, conditions on their normal components are naturally enforced
by the weak formulation implemented in SFEMaNS [35]. On the other hand the zero
divergence condition on the induction field becomes a constraint for steady state problem
and cannot be enforced by standard penalization technique for non-smooth or non-convex
domains when using H' conforming Lagrange finite element as SFEMaN$ code does [20].
As a consequence a new technique was developed and consists in replacing the induction
equation in the conducting domain €2, by:

O (uH) = —VxE® — p°Vpt, (2.3.11)

with p¢, solution in . of:

V- (RUgpe Y = W (peVHS),
( loc pm) (lu’ ) (2312)
Ploa. =0,

where hjoc is the local mesh size and « a constant parameter in [0.6,0.8]. The induction
in the insulating domain 2, is also replaced by:

O (u’Veo) = —=VxE” — u’Vpy, (2.3.13)

where py, is solution of:
App, = A,

(2.3.14)
Vpd, - nlsq, = 0.

The quantity p,, is called magnetic pressure as an analogy to the dynamical pressure that
allows to enforce the zero divergence condition on the velocity field for the Navier-Stokes
equations. As we remark that p}, can be eliminated from the formulation (2.3.13) after
applying the divergence operator, we refer to [12| for details on the theoretical convergence
of this method and note that various numerical tests are performed in [35, 74].

This technique is the first step to study the dynamo of the von Karman Sodium (VKS)
experiments [81]. The set-up consists of driving liquid sodium in a cylindrical container
with counter-rotating impellers and was shown to generate dynamo effect depending of the
magnetic permeability of the impellers. Although the SFEMaNS code could only take into
account axisymmetric geometries, a first set of study [28, 29, 35] has been done by modelling
the impellers with a rotating disk and by using an axisymmetric velocity field resulting from
time averaged measurements or analytical analysis [76]. Due to Cowling’s theorem [23], the
resulting magnetic field cannot be axisymmeric as observed in experiments and is indeed
dominated by the Fourier mode m = 1. In order to be able to study the hydrodynamic
and magnetohydrodynamic regimes of this problem with the proper geometry, or more
generally to allow SFEMaNS to approximate problems with non axisymmetric geometry,
we implement a pseudo-penalization method of Pasquetti et al. [89] that is presented in
the following section.

2.4 Extension to non axisymmetric geometry

In this section we present a method, called pseudo-penalization and introduced by Pas-
quetti et al. [89], which we implemented in SFEMaNS to consider non axisymmetric geom-
etry. Firstly we describe the method and give details on its use with prediction-correction
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scheme for the Navier-Stokes equations. Then we present various numerical tests involving
manufactured solutions or physical problems so we can attest of the correct behavior of
the method and enhance some of its properties.

2.4.1 Pseudo-penalization method and prediction-correction scheme for
the Navier-Stokes equations

The goal of the following is to describe a technique which allows us to take into account
a non axisymmetric domain §2 that we split into a fluid domain, denoted by Qguq , and
a solid domain, denoted by Qgns. While we would like to approximate the solutions of
the Navier-Stokes equations (1.3.5) in Qgyiq, we also want to enforce the velocity field to
be zero in the solid domain 2, that represents an obstacle. To do so we plan to use
a pseudo-penalization method that is described in the following for prediction-correction
scheme. Eventually we give details on its implementation in the SFEMaNS code, while
extending the method to solid obstacles with non zero velocity uops. In the following the
time step is denoted by 7, a function at time " = nr is denoted f™.

Pseudo-penalization method
The pseudo-penalization method, introduced by Pasquetti et al [89] and used in [47]
and [90] to model particle or obstacle, relies on the idea of modifying the Navier-Stokes
equations so the velocity is cancelled inside the solid obstacle Q,,s. To do so a penalty
function x equal to 1 in the fluid domain Qguq and 0 in the obstacle domain Qgpg is
introduced so the time discretization of the Navier-Stokes equations becomes:
n

u"t! — yu
- AT R—lA n+1 v n+l _ fn-i—l7
T e AUTHVP X (2.4.1)

Vautt =0,

where the term f takes into account the forcing term and the nonlinear terms. One can
note that inside the fluid domain, where y = 1, the equations approximated are exactly
the Navier-Stokes equations. On the other hand inside the solid domain, where y = 0, the
approximations are solutions of the following equations:

un+1

_ RflA n+1 n+l _ 0
T e AW VD ’ (2.4.2)

Vauntl = 0.

As a consequence the velocity is a O(7) inside the solid obstacle, so this method is
at most of order 1 in time. The order of consistency of this method also depends of
the Reynolds number, as a factor R;! is present, so this method is more efficient as the
Reynolds number is large. Furthermore one can note that this penalization of the velocity
inside the obstacle in 7R ! involves a time dependency of the approximated solutions even
for stationary problem so such a behavior should not surprise any user of this pseudo-
penalization method. Before describing this method in the frame of SFEMaNS code, we
point out that the pressure is not relevant in the obstacle which represents a solid. Indeed
inside the fluid the pressure allows to get a velocity with zero divergence while in the solid
the pressure has no physical meaning and one can check that it is only the solution of a
Poisson equation by taking the divergence of equation (2.4.2).
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Description of the method for prediction-correction scheme

Since SFEMaNS code uses a prediction-correction scheme to approximate solutions
of the Navier-Stokes equations, we describe how to implement the pseudo-penalization
method for this kind of numerical scheme. In that purpose, we keep the notation of
section 2.2.2 so the first step of the algorithm consists in solving a predicted velocity u
solution of the equation:

~n+1 _ n 1

U7X 2 A 4 vt = (2.4.3)
T R,

where f takes into account the forcing term and nonlinear term as in (2.4.1) and x is the

penalty function defined by:

1 in Qgauid,
x = ' fluid (2.4.4)
0 in Qops.

This first step does not take into account the incompressibility hypothesis, so a correction
of the predicted velocity field u is applied as follows:

un+1 o ﬁn—i—l

T + V() =0, (2.4.5)

Vautl = 0.

The pressure is then updated by solving the following equations:

-1
— Ayt = —vart! (2.4.6)
T
1
¢t = —R—v-ﬁ”“, (2.4.7)
€
SO we can set:
pn+1 — pn + wn-ﬁ-l + qn-i-l_ (2.4.8)

We induce from equation (2.4.5) that VxVxu = VxVxu. One can notice by summing
equations (2.4.3) and (2.4.5) and using relation —Av = VxVxv — VV.v applied to u and
u, that the couple (u,p) solution of equations (2.4.3) and (2.4.5) is also the solution of
equations (2.4.1). On the other hand it is interesting to note that the predicted velocity u
is solution of the equation:

Lt i L agrt + Vp" + V" = L (2.4.9)

T R,

We draw the attention of the reader on the increment of pressure 1 that, unlike the
gradient of pressure, needs to be penalized. As mentioned earlier we note that inside the
solid obstacle the pressure is not relevant and is obtained by solving a Poisson equation.

On the stability of the method
The approximated velocity field is O(7) in Qs so the present algorithm is consistent
of order 1 in time. To the author’s knowledge, no stability analysis of this scheme has been
provided in the literature so we propose to establish a stability inequality of this scheme
without taking account of forcing and nonlinear terms. To do so we define the operator ¢
as follows:
su"t = u" ! —u", (2.4.10)
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and introduce the following scheme:

ﬁn+1T_ xu" RiAﬁnH T (2.4.11)
utl gl .

v-unﬁzo, V(09 =0, (2.4.12)

— Asp"tt = —%V-ﬁ"“, (2.4.13)

ok = —iv.(ﬁ"“), (2.4.14)

p =gt 4 gL (2.4.15)

As pointed out in [41], it is interesting to note that the first scheme (2.4.3)—(2.4.8) is
equivalent to the second scheme (2.4.11)—(2.4.15). Indeed by defining "1 = §¢" ™! and
q"T! = §k™!, we can notice by applying the delta operator, defined in (2.4.10), to equation
(2.4.15) that the two schemes are identical. Thanks to this remark, we do not establish a
stability estimate for the first scheme, as done in [104] by applying ¢ operator on scheme
(2.4.3)—(2.4.8), and propose a stability inequality for the second scheme (2.4.11)—(2.4.15)
inspired by [41].

Theorem 1. Let x be a penalty function such that 0 < x < 1. Let consider the sequence
(u™, p"™) solutions of the scheme (2.4.11)—(2.4.15) where we assume that @ has homogeneous
Dirichlet boundary conditions and neglect the forcing and nonlinear terms f. Then the
following inequality holds for alln > 0:

n T ~N T T n
Sl IE2 0 + EHVU iz + 201V IR0 + ﬁf”k iz <0.

Proof. Firstly we remind the equality (da”t! a") = 5||a"+1Hi(Q)2 + H(Sa”“Hi(Q)Q where
(-,+) is the scalar product in L(€2)? and (a"),, a sequence in L(Q2)?. This relation will be
used in the following without being referred to. We start to test equation (2.4.11) with
270"t and integrate over Q so we get:
[ 2 )+ 0" = xu™ (T2 ) — VXU T2 + %HVﬁMlHiz(Q) +2r(u™t vpt) = 0.
‘ (2.4.16)
Then we multiply equation (2.4.15) at time ¢" by 270"*! and integrate over Q, so we
obtain:

2r(@" T, Vp) = 21(V (o™ + k™), a" ). (2.4.17)

In one hand the term involving V¢ is controlled by multiplying equation (2.4.12) with
272V ¢". So after integrating over ) it gives:

27(0"H, V") = 72|V 2 q) — TAIVES T IR - (2.4.18)

On the other hand the term in V™ is handled by multiplying equation (2.4.14) with 27",
it gives:
- T
2, V) = - (GIE oy — 158 ). (24.19)

€
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Eventually we sum the four previous equations (2.4.16)—(2.4.19) to get:

~n ~n n n 27 ~n
[ E2 () + 10 = xu"|[f2(q) — VXU [[F20) + z Iva i)
3 (3 T n n
+ 720V " 2 (q) — TAIVES T [F2 () + E(éHk Rz — 16K 1E2(0)) = 0.
(2.4.20)

To obtain the result of theorem 1 we note that equation (2.4.12) expresses an orthogonal
decomposition, this is indeed the Helmholtz decomposition, so we can write:

[ e ) = 0™ ey + 7 1V36™ e o, (2.4.21)

Moreover equation (2.4.19) induces that Hdk”“H%Q(Q) = HV-ﬁ"HHiQ(Q). As 1 is assumed
to be in H} we also have \|Vﬁ”+1]\i2(g) < ||Vﬁ”+1||i2(m. As a consequence equations
(2.4.20) can be rewritten as follows:

n n T ~nNn n
" 2y — 0" (IF20) + z Iva R + 7261V 20y

T n n n
+ ollk e < VX lfe) — 0" f2q) (24.22)

n+1

where we dropped the positive term ||a — Xu”||%2(m. The proof is completed thanks

to the hypothesis 0 < x < 1 so we have \\ﬂu”||%2(ﬂ) — ||u"Hi2(Q) <0. O

Remark 2.4.1. As described in section 2.2, the SFEMaNS code approximates the velocity
field @ and not u. However, thanks to equation (2.4.12) and the stability relation for u,
one can show that 1 is also stable in time.

Remark 2.4.2. The above stability inequality remains valid for any x taking values in [0, 1]
so that a smooth penalty function y can be used. By smooth we mean that the penalty
function does not need to be a discontinuous function equal to 1 in the fluid and 0 in the
obstacle, it can also go from 1 to 0 in a smooth way to avoid dealing with discontinuous
functions. However, we will see in section 2.4.3 that it is more desirable to work with
discontinuous penalty function, that we denote sharp penalty function.

Remark 2.4.3. In the frame of the previous remark, one can note that y can also depend
on time with the restrictions that it takes values in [0,1]. Such a strategy is adopted
in SFEMaNS code and requires to add a term taking into account the movement of the
obstacle which is described in the following.

Implementation of the method in SFEMaNS

Before attesting of the correct behavior of the pseudo-penalization method with nu-
merical test, we describe how this method is implemented in SFEMaNS. As the step of
correction and update of the pressure remains the same as the one described in section 2.2,
we refer to equations (2.2.9), (2.2.10) and (2.2.11) for the pressure correction step and fo-
cus on the equation solved by the predicted velocity t. As mentioned earlier, we consider
moving obstacles so we denote by ugpst the velocity of the obstacle and x™ = x(¢,) the
penalty function equal to 1 in the fluid and 0 in the solid at time t". We also abusively
denote by u the predicted velocity u that is now solution of the equation:

3un+l 1 4qu™ — un—l 4wn _ 77bn—l
— AU = —ypn L R v { (it S
2r R prEX or )

3 n+1
+ Xn—i—l (—(qu*’"+1) s utnt 4 fn+1) 4 (1 — X”"'l)%’ (2423)
T
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*ntl n=1  Apart from the use of backward differentiation formula of

where u =2u" —u
order 2 (BDF2) to approximate the time derivative, the main difference with the method
ntly Bugity CAs

of pseudo-penalization of Pasquetti et al. is the addition of the term (1 — x “obat
+1

2T

this term does not influence the approximation in the fluid domain, where u™™+ is solution
of the Navier-Stokes equations, we note that the approximation is now solution in the solid

domain of equation: )
n
Bun — Bugh + Vp" — N (2.4.24)
2T e

As a consequence the approximated velocity u is equal in the solid domain to the velocity
of the obstacle ugpst up to O(7) so the scheme is still consistent of order 1 in time.

Eventually this pseudo-penalization method allows SFEMaNS code to take into account
non axisymmetric geometries for the fluid domain which was one of the biggest restrictions
of this code. After being tested with analytical solutions, details are given below, com-
parisons of VKS set-up numerical approximation with SFEMaNS and other codes have
been done in D. Castanon-Quiroz thesis [18]. Other numerical computation results are
presented in chapter 4 of this thesis in the goal to compare them with future experimental
results that are currently being performed in CEA Saclay by B. Dubrulle et al.

2.4.2 Numerical test with manufactured solutions

The convergence in space and time of this pseudo-penalization technique is firstly inves-
tigated with manufactured solutions. This test consists in approximating on the domain
Q={(r0,2)]01<r<1;0<0<2m—1<2z<1} the functions:

x(r.0,z,t) = Li>0s,

up(r,0,2,t) = (2r —1)?sin(z + t)1,>05,

ug(r,0,z,t) = 0, (2.4.25)
u.(r,0,z,t) = (2—1)(6r —1)cos(z +t)1,>05 + (r — 0.5)sin(260)1,>0.5,
p(r,0,2,t) = r2z3cos(t) + rcos(h),

solutions of equations (2.4.23), (2.2.9) and (2.2.11) with Dirichlet boundary conditions for
the velocity field. Figure 2.3 displays the profile of the pressure and velocity magnitude at
time ¢t = 0.5. We also set R, = 100 and ugpst = 0. In the same way of the test presented
in 2.3.2, the source term f is equal to dyu + (Vxu) x u — R%Au + Vp , meaning we set:

fr = (2r—1)% cos(z+1t)+2r2% cos(z+1t) cos(f) — R, ™' sin(z+1)(—dr? +4r® + 1172 - 1) /12

r—0.5

+ (2r — 1)/r3(6r — 1)cos(z + t)?(4rt — 43 — 1172 +1) — (cos(f) — 1)
+ (472 —4r — 11+ 1/r%)(r — 0.5) cos(z + ) sin(260) — (2 — 1/7)(6r — 1) cos(z + t) sin(26),
(2.4.26)
fo = —(2—1/r)(6r — 1)sin(z + t) — sin(46), (2.4.27)

fri= —(2=1/r)(6r—1)sin(z+t)+3r22% cos(t) + R ' cos(z41) (12r — 8% — 1172 - 1) /13
—(2r—1)%sin(z+t) cos(z+t) (47 —4r3 =111 4-1) /2 4-(R. 1 (3/r—2/r%)+(2r—1)? sin(z+t)) sin(26).
(2.4.28)
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The convergence of the method is studied with four different meshes of typical mesh-

ion

4 for a representat

h=0.1,h =0.05, h =0.025 and h = 0.0125, we refer to figure 2

S1ze

step 7 = 0.002,

ime

we test the t

)

of the discrete domain €2. In order to the code to be stable

7 = 0.001, 7 = 0.0005, 7 = 0.00025 and 7 = 0.000125. The error of the velocity and the

error of the pressure outside the obstacle in L2-norm at the final time 7' = 0.5 are reported

.5 and 2.6. One can notice that errors do not always diminish with the time

tables 2
step, this behavior was already enhanced in [89] (see figure 1).

m

1z¢e

Indeed setting a mesh s

and varying the time step enhance an optimal time step where the error is minimal, for

example with h = 0.05 the optimal time step is 5.107%. As enhanced in figure 1 of [89] for

time steps smaller than this optimal value, the error will increase till an asymptotic value.

Despite this dependency of the error on the time step, we note that the error still

converges, or at least remains stable, when working with constant CFL. Indeed when

0.1 and

studying the convergence of the errors with CFL=0.25, first obtained with h
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time step 7
0.002 0.001 0.0005 | 0.00025 | 0.000125
mesh size h

0.1 2.12E-2 | 3.43E-2 | 5.22E-2 | 7.22E-2 | 9.15E-2
0.05 CFL | 7.04E-3 | 6.95E-3 | 9.87E-3 | 1.38E-2
0.025 CFL | 4.25E-3 | 2.37E-3 | 3.88E-3 | 7.44E-3

0.0125 CFL CFL | 4.31E-3 | 2.57E-3 | 1.75E-3

Table 2.5: L2-norm of the error on the velocity at time ¢ = 0.5. The notation CFL means
that the computations are not stable due to too large time step.

time step 7
0.002 0.001 0.0005 | 0.00025 | 0.000125
mesh size h

0.1 2.72E-2 | 4.60E-2 | 7.12E-2 | 9.92E-2 0.126
0.05 CFL | 7.75E-3 | 5.73E-3 | 8.12E-3 | 1.22E-2
0.025 CFL | 4.54E-3 | 1.91E-3 | 4.07E-3 | 8.58E-3
0.0125 CFL CFL | 4.17E-3 | 2.27E-3 | 1.65E-3

Table 2.6: L2-norm of the error on the pressure outside the obstacle at time ¢t = 0.5. The
notation CFL means that the computations are not stable due to too large time step.

7 = 1.1073, the error will decrease with an order of convergence (in h and ¢ all together)
between 1 and 2. As a consequence when using this pseudo-penalization method to study
physical problems, we will always work with a constant CFL between 0.25 and 0.5 since
using smaller time step does not give better results.

2.4.3 Flow past a sphere and drag coefficient

After checking the behavior of the pseudo-penalization method with manufactured solu-
tions, we now use it to study the well known physical problem of a flow past a sphere.
We consider a solid sphere of diameter ds, = 2 and of center (7, z) = (0,0) and define the

Reynolds number as follows:

re dS
R, = Yretdsn (2.4.29)

14

where Uyt is the reference velocity and v the reference viscosity. Then we split our study
into the approximation of the flow for a low Reynolds number and the study of the evolution
of the drag coefficient with larger Reynolds numbers.

Analytical Stokes flow with low Reynolds

At low Reynolds numbers, the flow is known to be stationary and is referred to as
Stokes flow. Moreover the analytical expression of the velocity and the pressure are known
and can be found for example in a lecture note of Chiang C. Mei about Stokes flow past a
sphere based on [1] and [65]. To approximate the solutions of this problem we consider a
solid sphere of radius 1 so we define the penalty function as follows:

X(r,0,2,t) = 12 259, (2.4.30)
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Then we introduce the domain of approximation Q@ = {(r,0,2) | 0 < r < 10;0 < 0 <
2m; —8 < z < 12}, so the test consists in approximating on 2 the velocity field:

3 3
- 1
N mm) s

up(r,0,z,t) = sin(arctan(r/z))cos(arctan(r/z))(

ug(r,0,z,t) = 0,

1 3
u(r,0,2,t) = cos(arctan(r/z))? (1 + e BN z2> 12,25
. 1 3
+sin(arctan(r/z))? [ 1 — W= BN 124,25,

\

(2.4.31)
and the pressure:

3

p(r,0,z,t) = —cos(arctan(r/z))m1rz+z221

3 2
) 1r2+z221

1
+0.5 cos(arctan(r/z 1+ —
retanlr /) ( NN

2
. 1 3
+0.5sin(arctan(r/z)) | 1 — Wt — 4m> 12,25
312 2
- Cos(arctan(r/z));T—:zl,ﬂzﬂzd,

(2.4.32)
solutions of equations (2.4.23), (2.2.9) and (2.2.11) with Dirichlet boundary conditions for
the velocity field. Although the pressure is not relevant inside the sphere, one can notice
that it is a harmonic extension of the pressure inside the fluid which leads us to add the last
term proportional to 1,2, .21 in the above definition of the pressure. Figure 2.5 displays
the profile of the pressure and velocity magnitude at time ¢ = 1. We also set R, = 0.01,
Uohst = 0 and f= 0.

. [UI pre
0.92475 300
0.8 EQOO

- 0.6 w F

04 4 °

- 02 . -200

0 -300
(a) Final velocity field (b) Final pressure

Figure 2.5: Profile of the velocity field magnitude and pressure in the meridian plane § = 0
and @ =matt=1.

The convergence of the method is studied with four different non uniform meshes of
typical mesh size at the boundary of the domain Apoundary €qual to 0.5,0.25, and 0.125 and
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of typical mesh size in and near the obstacle hgpstacie €qual to 0.05,0.025, and 0.0125. We
refer to figure 2.6 for a representation of the discrete domain €2 for the case hpoundary = 0.5
and hopstacte = 0.05. As the error on the velocity inside the fluid is of order 7R, ! and
that R, = 0.01, we decide to test the time step 7 = 0.001, 7 = 0.0005, 7 = 0.00025 and
7 = 0.000125. The relative error on the velocity and the relative error of the pressure in
L2-norm at the final time ¢t = 1 are reported in tables 2.7 and 2.8. By relative error, we
mean that the L2-norm of the velocity error is divided by the L?-norm of the velocity while
the L2-norm of the pressure error is divided by the L?-norm of the pressure. Unlike the
previous test with manufactured solutions, here the error is mainly dominated by a error
in time. Indeed increasing the space resolution does not improve the relative error on the
velocity and the pressure. This behavior may be explained by the use of a small Reynolds
number in order to be in the Stokes flow regime where an analytical expression of the flow
is known. Since the pseudo-penalization method scales like 7R ! in the solid domain, the
use of R, = 0.01 induces a strong dependency of the numerical approximations with the
time step used. However, the method remains convergent when fixing either the mesh
or the CFL and the order of convergence is close to 0.5 which is suitable as the order of

consistency of the method is equal to 1.

v

AVAvY
g
S
A

%
"
7

VAVAVAVAVAN VAVAVAVAVAVAVAVAN
VAVAVAVAVAVAVAVAV/ >
RS
SUAVAVAvL Y LS VAN
AVAVAVAVAY, S AVAVAVA Y
AAvAY, VAVAYS VA
RSN
RSO0
Sy
KO

ay
N

AV

éég
%)
i

V#VAVAVA

AVAVAVAVAN

Yavy

vy

o
VAN

YATAViNAVAN

OO0

o

s
o
ey

AVAVAVAY
5 VA

CVAVAVAVAVAVAV

AVAVAVAVAN

ma
v,
o

A
%y

D

vV svAVAVANAYA

VAVAVAN
AV

i
-

A
%

AVAVAVA

AVAVAVAVAVAVAVAVAV

K
oSN
pVi

ATy
0
9
N
N
N

AVAVAVAVAVAS

AVAVAVAVAVAVAVAN

R5E
EVaiTATA S O
R,

AL

VAVAVAVAN
AVAVAVAX

&
arg
X

aviTaey
<X

P AVAVAVAVAAVAAVANA

VAVAVA

£ex]

A
Vi
v

YAVTLYa

My
s
YAVAY

R
SR
V'
SO
o5
R0
AVAVAVA

R
an
T TAATaY
v

4

5
o,

(3

Eava
VAVA

Z-Axis

2
22
o

AT
AL
PREERP

ey
S
s
ihgsd)
=

s
!
5
g

vV,
LvAvii 2
v
AVAVAVAW
AVAVAVAVA
VAV

2%
Vavar

i
PRE

Ty
TASLYYINAIYg
TALTY

AVAYAV%VA

ey
KX
FaVieLATA
XK
O
\VAVAVAVAV

e

k) I
s
5
VAVAVL A
VAVAYLIS,

5
e

i

=

5

R
i AAVAAYAYAY
RO
Sy

ma
KR

<o
NN
gvg‘v‘“‘

s

WAVANAY
5
o

VAV VAVATAY)

DO

o)
AVAVAVAY
AVAVAVAYA

o
o
17

VAN
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY N
T e PV VAV VATV AVATAYAVA

RVAY
0

X-Axis

Figure 2.6: Finite element mesh of the meridian plane (h = 0.5 on boundary and h = 0.05
near the sphere in Pp).

time step T
0.001 0.0005 0.00025 | 0.000125

hboundary - hobstacle

0.5-0.05 3.129E-2 | 2.263E-2 | 1.586E-2 | 1.098E-02
0.25-0.025 3.128E-2 | 2.262E-2 | 1.585E-2 | 1.097E-2
0.125-0.0125 3.127E-2 | 2.261E-2 | 1.585E-2 | 1.096E-2

Table 2.7: Relative L2-norm of the error on the velocity at time t = 1
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time step T
0.001 | 0.0005 0.00025 | 0.000125

hboundary - hobstacle

0.5-0.05 1.331 | 8.614E-1 | 5.330E-1 | 3.347E-1
0.25-0.025 1.330 | 8.608E-1 | 5.324E-1 | 3.342E-1
0.125-0.0125 1.330 | 8.606E-1 | 5.323E-1 | 3.341E-1

Table 2.8: Relative L?-norm of the error on the pressure at time t = 1

Computation of Drag coefficient for various R, € [1,200]

We now study the behavior of the method for a various range of Reynolds numbers by
computing the drag coefficient Cy. While we use the same domain of computation €2 than
previously, we use inflow boundary condition at z = —8, outflow boundary condition at
z = 12 and homogeneous Neumann boundary condition at » = 10. As we refer to a lecture
note of R. Shankar Subramanian, about drag on spherical particles and steady settling
velocities based on correlation of experimental data from [19], to get an expression of the
drag coefficient of the sphere in terms of kinetic Reynolds number, we remind that Cy is
defined by:

8D
ﬂ-pdSP Uref
The previous definition involves the drag D which is defined as follows:
D = / (pn— R;'V(u)n) - e,
Fobs (2.4.34)

= V-(pT — R;'Vu) e,
Qobs
with Qgps the solid domain, I'ohs the boundary of the solid domain, n the outward normal
vector of the surface I'gps and e, the unit vertical vector which is parallel to the direction
of the flow. Thanks to equation (2.4.24) and the hypothesis uopst = 0, we induce that the
drag can be written:

_un
D = /(1 - X) -e,. (2.4.35)
Q T
As we imposed p = 1, dsp = 2, Uyer = 1, the drag coefficient is equal to:
-2 u”

The comparison between experimental and SFEMaNS numerical values of Cy is done
for Reynolds numbers varying in [1,200] and results are summarized in table 2.9. The
computations were done with meshes of typical mesh size at the boundary of the domain
varying from 0.5 to 0.125 while the typical mesh size around the sphere is equal to 0.0125.
Computations are axisymmetric for R, < 50 while 4 to 8 Fourier modes are used for
computations with R, > 100. On the other hand the time steps used are such that the
CFL is around 0.5 as we noticed that results are the best for this CFL value. Moreover the
computations are done till the drag coefficient converges which is usually obtained after
a code time of 20. The numerical results, displayed in the third column of table 2.9, are
matching very well the experimental data as the relative error remains around 1%.

Eventually we can conclude that we adapt SFEMaNS code to non axisymmetric ge-
ometry for hydrodynamic problems. However, we note that all previous tests use a sharp
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penalty function, meaning a discontinuous function that is equal to 1 in the fluid domain
and 0 in the solid domain. So before describing another important development of this
PhD thesis, that consists of adapting SFEMaNS code to variable fluid and solid properties,
we propose to study the influence of the use of smooth penalty function.

R, | Ctpeoretical || CSFEMaNS | Re] Eryor (%)
1 27.1560 27.1168 0.1

2 14.7569 14.7085 0.3

10 4.2584 4.2985 0.9

20 2.7147 2.7278 0.5

50 1.5743 1.5886 0.9

100 1.0870 1.1022 14

200 0.7756 0.7848 1.2

Table 2.9: Comparisons of theoretical and numerical value of Cd for various R,

On the use of sharp (discontinuous) or smooth penalty function

In this section we propose to compare the influence of the use of sharp or smooth penalty
function x on the computation of the drag coefficient for R, = 100. In that purpose, we
consider a sharp and smooth penalty functions defined by:

Xsharp(ry 97 2, t) = 1r2+2221 (2.4.37)
and
1 r24 221
Xsmooth(T7 97 Z, t) = 5 <1 + tanh(0.0QE))> . (2.4.38)

The comparisons are done by varying the time step from 0.01 to 0.00125 with a fixed mesh
of typical mesh size 0.5 on boundary of the domain and 0.0125 around the sphere. We
display in figure 2.7 the profile of both penalty functions around the sphere, one can note
that the smooth function goes from 0 to 1 in a few mesh cells so it looks similar to the sharp
function. The final values of the drag coefficient are represented in table 2.10 while the
evolution of the drag coefficient along time for the different time steps used is displayed in
figure 2.8. It is striking that even if the sharp and smooth penalty functions are relatively
close, see figure 2.7, the resulting drag coefficients are on the contrary very different.
First we can note that the sharp function allows to get a closer value of the expected
C4. Moreover reducing the time step does not influence very much the Cy; obtained with
the sharp penalty function as the relative errors stand around 2.5%. On the other hand
reducing the time step while using the smooth penalty function increases the error with
respect to the expected Cy. As a conclusion we can state that it is highly preferable to use
a sharp penalty function equal to 1 in the fluid domain and 0 in the solid domain when
using this pseudo-penalization method.
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PROPERTIES

(a) Sharp penalty function (b) Smooth penalty function

Figure 2.7: Profiles of the penalty function for sharp and smooth cases near the obstacle
(h = 0.5 on boundary and h = 0.0125 near the sphere in Py).

Sharp penal function Smooth penal function
T CSFEMaNS | Rel. Error (%) | CSFEMaNS | Rel. Error (%)
1072 1.1154 2.6 1.1308 4.0
5.1073 1.1143 2.5 1.1336 4.3
2,5.1073 1.1151 2.6 1.1388 4.8

Table 2.10: Comparisons of Cyg with R, = 100 between sharp and smooth penalty functions
for various time steps. Ciheoretical — 1 0870

2.5 Extension to MHD problems with variable fluid and solid
properties

During this PhD period we focused our investigations on three subjects: precession, VKS
experiment and multiphase flow problems. While the precession only presents compu-
tational cost difficulties due to the Reynolds numbers involved, the other two problems
involve the implementation of new approximation methods in the code. While the pseudo-
penalization method described in section 2.4 extends the range of SFEMaNS code to hy-
drodynamic problems with non axisymmetric geometry, it remains to take into account
magnetic problems with a given time and (7,0, z) dependent magnetic permeability and
hydrodynamic problems with variable density and viscosity.

In order to approximate such problems we have the choice to approximate the Maxwell
equations either with the magnetic field H or the induction field B = yH with p the
magnetic permeability. In the same way, the Navier-Stokes equations can either be ap-
proximated with the velocity field u or the momentum m = pu with p the density. A first
study, done with D. Castanon-Quiroz during the first part of a one year stay at Texas A&M
University (College Station, Texas) thanks to an invitation of J.-L. Guermond, draws us
to focus on the following simplified equations:

O(pu) — VVu=0 (2.5.1)
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Figure 2.8: Evolution of Cy with R, = 100 for sharp and smooth penalty functions.

and
v

O(v) — V'V('u

) =0, (2.5.2)
where pu = v. We note that the two previous equations are a simplification of the Maxwell
and the Navier-Stokes equations where we drop the nonlinear term, source term and zero
divergence condition (and so the pressure gradient). Since we want to work with time
independent algebra for computational efficiency, the term 0;(pu) or V—V(%) cannot be
treated implicitly. To overcome this difficulty, we decide to introduce two constants ji and
7 such that @ < p < i so we can rewrite the two previous terms as follows:

Oy () = By (o) + (1 — fi)u) (2.5.3)
and
v v 1 1
V-V(;) = V—V(ﬁ) + V-V <(M — M)v) . (2.5.4)

The first term of these equations is then treated implicitly while the second one is made
explicit with first or second order extrapolation. While these two models remain stable
when using first order time extrapolation, only the second model with the variable v = pu
remains stable when using second order time extrapolation. We refer to D. Castanon-
Quiroz thesis [18] for the numerical and theoretical analysis of these simplified models, the
conclusions of this study motivate us to use the induction field B = pH to approximate
the Maxwell equations with variable magnetic permeability . By analogy we also decide
to approximate the Navier-Stokes equations with the variable m = pu when the density is
variable. For a better understanding of the methods we develop to approximate problems
with variable fluid and solid properties, the next two subsections give a short description
of the methods we implement in SFEMaNS code to approximate such problems. We note
that a full description of the method used to approximate the Navier-Stokes equations with
variable density, but also viscosity, is provided in chapter 5.
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2.5.1 Magnetic field based approximation for azimuthal dependent mag-
netic permeability

As the code allows variable permeability in 7 and z directions, the next obstacle to approxi-
mate solutions of VKS set-up is to take into account for variation of magnetic permeability
in 0 direction due to the counter-rotating impellers. This work was done in the frame of
D. Castanon-Quiroz thesis [18]| to which we refer for complete details on the method and
its validation. As introduced previously, the main idea of this method is to use the induc-
tion field B as variable to approximate the Maxwell equations. Assuming the electrical
conductivity is constant, we can rewrite equation (1.3.22) as follows:

0B + LV><V>< <B> = Vx(u x B). (2.5.5)
R, 2

The main difficulty now relies on the approximation of the dissipative term Vx Vx%. As
the magnetic permeability u is not constant along time, the implicit treatment of this term
induces a time dependent algebra. For computational efficiency purposes, we want to use
a numerical scheme with time independent algebra so the stiffness matrix of the problem
only needs to be assembled and preconditioned at initialization. To fulfill this objective,
we rewrite the dissipative term Vx VX% as follows:

VXVX(];)) + VxVx <(i _ 1)B> (2.5.6)

I

with 7 a constant smaller than p everywhere in the domain for all time. The first term is
then treated implicitly while the second one is made explicit with second order extrapola-
tion. As the time derivative is approximated with a second order backward differentiation
formula (BDF2) and the nonlinear term is made explicit with second order extrapolation,
we end up with a time independent algebra.

Combined to the pseudo-penalization technique described in section 2.4, this develop-
ment allows SFEMaNS to fully approximate problem with a VKS set-up where the fluid is
driven by non axisymmetric counter-rotating impellers with magnetic permeability differ-
ent from that of the fluid. As this PhD thesis mainly focuses on hydrodynamic studies, we
refer to D. Castanon-Quiroz’s thesis [18| for a full MHD study of the VKS set-up. On the
other hand we perform a study of the hydrodynamic regime of a VKS set-up for a large
range of kinetic Reynolds numbers in order to compare our numerical results with future
results of experiments that are currently carried out in CEA Saclay.

2.5.2 Momentum based approximation for multiphase flow problems

One of the main achievements of this PhD thesis has been to implement a new algorithm
aiming at approximating multiphase flow problems with SFEMaNS code. This study is
motivated by our group’s interest in Liquid Metal Batteries (LMB) and their possible role
in future energy storage. The main difficulties we face are to follow the evolution of the
interface between two fluids and to approximate the Navier-Stokes equations with a time
independent algebra algorithm. As this algorithm is exhaustively described in chapter 5,
we give a short description of the methods we use to approximate multiphase flows and
refer to chapter 5 for completeness.

We overcome the first difficulty by assuming the fluid is composed of two separate and
immiscible phases and we use a level set technique to represent the evolution of the density
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distribution. This method consists in introducing a level set ¢ taking value in [0, 1] and
solution of:

Bd+u-Ve =0 (2.5.7)

where the interface of the two fluids is localized in ¢~1(1/2) and ¢ equal to 0 in the first
phase and 1 in the other. This level set is then used to reconstruct the density and the
viscosity that unlike the magnetic permeability of the previous section are not given and
need to be approximated.

After reconstructing the density and the viscosity, the Navier-Stokes equations are
formulated as in (1.3.8) and approximated with the variable m = pu. Unlike the technique
developed for the Maxwell equations with variable magnetic permeability p that was of
order 2 in time, the scheme developed for the Navier-Stokes equations is of order 1 in
time. As a consequence the time derivative is approximated with a BDF1 formula and
the nonlinear terms are made explicit with first time order extrapolation. To get a time
independent algebra, the diffusive term is treated in a similar way as in the previous section
by introducing the constant 7 > 7/p and rewriting the diffusive term:

— V-(Ze(m)) + V-(Ve(m) — ne(u)). (2.5.8)

We note that a stabilization method involving the entropy viscosity, introduced in the
following chapter, is used to stabilize both the momentum and the level set equations. This
method is validated with many tests described in chapter 5 and allows to get preliminary
results of LMB instabilities published in [46].

2.6 Outlook

After extending the range of SFEMaNS code to problems with non axisymmetric geometry
or with variable fluid and solid properties, we end up with a code that can approximate
most of hydrodynamic, magnetic or magnetohydrodynamic problems with the possibility
of taking into account thermal effects. One of the biggest remaining constraints to approx-
imate many physical or experimental problems is the computational cost of simulations.
Although the SFEMaNS code presents a parallelization in three space directions and that
the MHD equations are approximated with numerical schemes involving time independent
algebra, the present computational power is not enough to compute the whole flow of many
physical problems due to the kinetic and magnetic Reynolds numbers involved. As this
difficulty is faced by all hydrodynamic and MHD codes, the scientific community devel-
oped models for the Navier-Stokes equations that allow to represent the influence of the
smallest length scales of flows so only the large scales of flows are approximated. These
models are referred to as Large Eddy Simulation (LES) models and allow to greatly reduce
the computational cost of a numerical simulation as the small scales of the flow are not
approximated, their influence is modeled.

In this frame a nonlinear stabilization method, called entropy viscosity and developed
by J.-L. Guermond et al. [36, 37|, is implemented in SFEMaNS code to allow us to approx-
imate physical problems with realistic parameters. This method is introduced as a LES
model in the following chapter where details on its numerical implementation and prop-
erties, such as its consistency with respect to the numerical scheme used, are also given.
We plan to use in chapter 4 the entropy viscosity method on experimental set ups such as
VKS and precession, studied by J.-L. Guermond and C. Nore for the past decade, to point
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out the good results of this nonlinear stabilization method for the Navier-Stokes equations.
Furthermore we note that the entropy viscosity is one of the keystones of our model to
approximate multiphase flow problems. Indeed as we decide to adopt a continuous frame-
work, solutions may present large gradients at the interface between two fluids so the use
of the entropy viscosity method allows to stabilize our model. We refer to chapter 5 for
more details.
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Nonlinear stabilization method: entropy
VISCOSIty

Hydrodynamic problems with large R, induce extremely complex flows, so present compu-
tational resources do not allow us to approximate all of the scales of the dynamics. Since
many studies in aerodynamics and astrophysics involve large R., numerical models are de-
veloped to reduce the complexity of such problems. Some of these models are designed to
approach average quantities, like the Reynolds Averaged Navier-Stokes method (RANS).
However, we prefer to focus on models that approximate the solutions from their largest
space scale to a given scale. Such methods, called Large Eddy Simulations (LES), consist
of modeling the influence of the unresolved scales. After giving general descriptions of
LES models, we introduce a nonlinear stabilization method called entropy viscosity as a
LES model. A second section gives details on the numerical implementation of entropy
viscosity in the SFEMaNS code. Numerical tests are also presented to check its consistency

property.

Contents
3.1 Contextand method . ........................ 45
3.1.1 Ontheneedofmodels . . . . ... ... ... .. ... ...... 46
3.1.2 Large Eddy Simulation models . . . . .. ... ... .... ... 47
3.1.3 Entropy viscosity as LES method . . . . . .. ... ... ... .. 49
3.2 Entropy viscosity and SFEMaNS code . . . . ... ........ 52
3.2.1 Numerical Implementation . . . .. ... .. ... ... ..... 53
3.2.2 Numerical tests . . . . . . ... L o o 54
323 Outlook . . . . ... 57

3.1 Context and method

We start this section with comments on the necessity of using models for large R, problems
when Direct Numerical Simulations (DNS), that solve the whole dynamics of the flow, are
not feasible. After giving details on present LES models, we describe the entropy viscosity
technique of Guermond et al. [36, 37]. While we introduce this method as a LES model,
we draw attention on its consistency and diffusive properties.
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3.1.1 On the need of models

The first computational difficulty encountered when approximating the solutions of prob-
lems with large R, is to take into account the full dynamics of the flow. By denoting
Liax the largest and Ly, the smallest space scales of the flow, the heuristic Kolmogorov
criterion states that: I

o R/, (3.1.1)

min

Since the mesh size needs to report from all the scales, the number of degrees of freedom per
dimension is proportional to R.3/*. So a three dimensional DNS requires a mesh with R/
degrees of freedom to represent all of the dynamic spatial scales. The second difficulty lies
in approximating the solutions on a sufficiently long time interval. For spin up problems
like the Von Karman Sodium (VKS) and precessing problems studied in chapter 4, the
characteristic time scale, denoted by Tc,;, satisfies the relation:

Tear < RY/2. (3.1.2)

As the time step 7 is controlled by a Courant-Friedrichs-Lewy condition, we get 7 =
O (Re_?’/ 4) . Thus, the total number of time iterations required to approximate the problem

over a characteristic time is proportional to R.5/*. Such restrictions combined to present
computational resources make DNS not feasible when approximating problems with large
R.. Indeed the number of floating operations N required by a computation is proportional
to the number of time iterations times the number of degrees of freedom of the mesh, so
we get:

N x R, (3.1.3)

Applications in aeronautics or astrophysics can involve R, of the order 10® so N is propor-
tional to 10?®. Present supercomputers have a peek speed of order 10'6 floating operations
per second (FLOPS) so these types of simulations are out of reach.

Since some problems are characterized by symmetries or some spatial frequencies, we
note that these previous estimates can be reduced for DNS via a suitable decomposition,
along Fourier modes for example. However, DNS remains infeasible for a general problem
involving large R.. In order to approximate the solutions of such problems, two main
approaches can be distinguished:

e Reynolds Averaged Navier-Stokes (RANS) models that approximate mean quantities
of the pressure and the velocity fields. These models are based on the idea that
the characteristic time of the smallest space scale is much smaller than the one of
the largest scale. As the mean flow is dominated by large scales, mean quantities
can be approximated with lower computations cost. Such models use a Reynolds
decomposition that consists in rewritting the variables in the form u = u+u’, where
U is a mean over time, and sometimes also over space, and u’ is the fluctuating
part that satisfies u/ = 0. The mean quantities @ and p are then solutions of the
dimensionless equations:

em+vm®m—%A@:—wpvm@w% (3.1.4)

V(@) = 0. (3.1.5)

We note that RANS models were first designed for steady flows such that d;u = 0.
New methods for unsteady mean flows, called URANS, have been developed since

46



CHAPTER 3. NONLINEAR STABILIZATION METHOD: ENTROPY VISCOSITY

then. As u’ is not approximated, many models were developed to consider the action
of the term —V-(u’ @ u’). One of the most common methods is to use the Boussinesq
approximation, thus this term is rewritten as a dissipative term (divergence of a
strain rate tensor) associated to a turbulent, also called eddy, viscosity that needs
to be modeled. We refer to [5, 91| for more descriptions of RANS models. We note
that these models require accurate information on the flow to approximate, such
as initial and boundary conditions or some hypothesis on the stationary or space
invariance properties of the flow. These models present a low cost of computations,
for example many 3D turbulent flows can be reduced to a 2D mean flow motion.
RANS models are applied to several industrial studies, such as aeronautics, where

numerous information can be obtained or compared with experiment results.

e Large Eddy Simulation (LES) models that approximate the solutions from their
largest space scale to a given one. This restriction on the computed space scales,
also called eddy, is based on Kolmogorov theory |57, 56]. It states that large scales
are dependent to geometry and boundary conditions while the small scales of the
flow have more universal structure. Moreover the main action of small scales is to
dissipate energy so most of the energy is contained in the large scales of the flow. To
avoid overly time consuming computations, due to the approximations of smallest
scales, LES methods do not compute the small scales of the flow but they represent
their action by the use of sub-grid-scale (SGS) models.

The main difference between these two methods is that LES methods only model the action
of unresolved scales while RANS methods, by the use of time or space averages, model all
the fluctuation of the flow. LES methods require less information on the flow and allow
to grasp local behavior, such as instabilities, however they require more computational
resources. The SFEMaNS code is developed to approximate the largest range of MHD-
problems with the minimum information. Thus, we are more interested in LES methods,
which we describe in the following.

3.1.2 Large Eddy Simulation models

Large Eddy Simulation models can be splitted into two main steps. Firstly, one needs
to choose a level of space and time resolution so the Navier-Stokes equations are only
solved for large scales of the flow. Secondly, we need to report from the action of the
unresolved scales that are not taken into account when computing the nonlinear term of
the Navier-Stokes equations. Furthermore, we give a general description of the "filters"
used to separate the space scales and some information on the two main sub-grid-scale
models. We refer to |71, 99| for more details on LES.

Use of "filters" to separate resolved and sub-grid scales

Since the goal of LES methods is to decrease the computational cost by approximating
only the largest space scales of the dynamics, the scales of the flow need to be split into
resolved and unresolved scales. This procedure is usually done by introducing a computa-
tional grid and a suitable time increment. A second step, involving convolution products,
can also be implemented to induce a cut-off length bigger than the one of the grid. This
second step induces extra implementation and is not the most used, however it allows to
consider a larger range of sub-grid-scale models detailed later. The LES community usually
differentiates this scale separation process into two kinds of "filtering":
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e Implicit filters that are associated with the choice of a domain discretization and a
time step 7. Thus, the resolved scales are bigger than the mesh size Az, or bigger
than a minimum wavelength ﬁ for spectral methods. Since a part of the scales
is unresolved, the computation of the nonlinear term V:(u ® u) does not take into
account their contribution. Their influence can be represented by the addition of the
term V7" where 7" represents the interactions between resolved-unresolved scales
and the interactions among unresolved scales.

e Explicit filters that introduce a function G, which is associated with a space cut off
length A > Az, and that focus on the approximation of the variables = G * u
and p = G * p. We note that unlike the RANS model, or more generally Reynolds
operator, U # U. Explicit filters can also involve a time cut off length and are split
into two groups: homogeneous and inhomogeneous filters. Homogeneous filters are
designed for infinite or periodic domains and use fixed cut off length to commute with
space or time derivative operators. Inhomogeneous filters are developed for bounded
domains where small eddies arise near the walls and usually involve space and time
dependent cut off lengths. The continuous problem is then rewritten as follows:

8&+Vﬁ@@—%A@:—WFV@% (3.1.6)

Vi = 0, (3.1.7)

with 77 = u® u—u ® u which is often rewritten with a Leonard decomposition [69].
The influence of V-7 then needs to be modeled by the use of a sub grid scale model or
reconstruction of the solution u. We note that inhomogeneous filters do not commute
with space and time derivative operators and so induce commutation errors. These
errors then need to be taken into account which increase again, compared to implicit
filters alone, the complexity of the method.

Eventually the filtering processes leave us with resolved fields u and p, which are used to
approximate the action of the sub-grid scales.

Modeling the action of sub-grid scales

As the solutions are only approximated on large scales, whose approximation is denoted
u independently of the use of explicit filters, the action of the sub-grid scales can only be
represented with u. These models are usually referred to as SGS models. They can adopt
various strategies that can be ordered into two kinds of models:

e functional models that focus on introducing an energy diffusion mechanism that
represents the interactions between resolved and unresolved scales that are assumed

to dissipate energy as in the Kolmogorov cascade energy scenario.

e structural models that aim to reconstruct the tensor 7" from evaluation of @. These
models are mainly based on a reconstruction of the unresolved scales ' = u —1u

which are used to evaluate an approximation of 7".

Functional models are, to the author’s knowledge, mainly based on statistical turbu-
lence theory and usually introduce a turbulent viscosity, similar to the RANS model. For
example, the widely used Smagorinsky model consists in approximating the term —V-(7")
of (3.1.6) by a diffusive term of the form V:(ve(@)) where € is the strain rate tensor
operator defined in section 1.3.1. The turbulent viscosity v4 is then set proportional to
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Zzﬂe(ﬁ)H with A the cut off length of the filter or the mesh size for implicit filter. Since
the cut off length A is equal or bigger to the mesh size, we note that such a model may
sacrifice the consistency of the numerical scheme to represent a dissipation mechanism.
These functional models remain widely used due to their easy numerical implementation
compared to structural models. Regarding the structural models, we can cite two main
strategies: approximate deconvolution method (ADM) [66] and the more recent Residual
Based Variational Multiscale (RBVM) method [10, 50]. ADMs are based on the fact that
the Fourier transform of a convolution product fx*g¢ is the product of the Fourier transform
of f and g so the unresolved scales u’ can be approximated by deconvolution method such
as the Van-Cittert method. On the other hand RBVM methods separate resolved and un-
resolved scales with a projection method. Then the unresolved scales equation is modeled
so the unresolved scales can be determined analytically and then used to approximate the
resolved scales. We note that RBVM methods do not change the numerical scheme order
of the resolved scales so they are consistent.

As we believe that consistency (with respect to the numerical scheme) and diffusive
properties of sub grid scale models are essential to preserve the accuracy and to increase the
stability of the numerical approximation, we propose to introduce a new LES functional
models that satisfies these restrictions. This model, called entropy viscosity, consists in
constructing an artificial viscosity based on an entropy residual and is described in the
following section.

3.1.3 Entropy viscosity as LES method

The entropy viscosity method has been introduced in [36, 37, 38| by Guermond et al.
This method is based on the notion of suitable solutions of Scheffer [101] and intends to
introduce in the Navier-Stokes equations a consistent artificial viscosity proportional to
the default of equilibrium of an energy equation. Before describing the entropy viscosity
method, we propose to describe the mathematical frame and its connection to LES models
under which this method has been developed.

Notion and interpretation of suitable solutions

While the existence of weak solutions to the Navier-Stokes equations has been enhanced
by Leray |70], their uniqueness remains an open question. In order to study their unique-
ness, Scheffer [101] worked on the regularity of Navier-Stokes solutions and introduced the
notion of suitable weak solutions. We note that his work allowed to find an upper bound
on the Hausdorff measure of the set of singularities of a suitable solution which was later
improved by Caffarelli-Kohn-Nirenberg [17]. Although the study of uniqueness or regular-
ity of Navier-Stokes solutions is out of the scope of this PhD thesis, we are still interested
in the notion of suitable solution which can be defined as follows.

Definition Let (u,p) be a weak solution of the Navier-Stokes equations (1.3.5) with u €
L2((0,T); HY(Q)) N L>°((0,T); L2(Q)) and p € D'((0,T); L*(Q)). (u,p) is called suitable
if the following inequality holds in D'(Qr, RT):

Lo

au(5u?) + v((%u? +p)u) R;lA(%uQ) RN (VU —fu<0 (3.1.8)

where Q; = Q x [0,T7.

The reader can notice the similarity of this notion with the entropy conditions for conser-
vation laws where the kinetic energy plays the role of the entropy. Such conditions have
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been introduced by Kruzkov [61] to reduce the number of solutions of a conservation law
problem to a unique solution that satisfies an entropy inequality. For example, we can
consider the inviscid Burgers equations:

u2
Oru+ 0y =0, (3.1.9)

in one dimensional space with initial data ug(z) = 1 — H(z) where H is the Heaviside
function. One can check that for every a > 1, the following function is a weak solution of
the problem:

1 if x < 159¢

—a if 1770‘15 <x <0

u(x,t) = (3.1.10)
a f0<z<gt

0 if%t<x.

However, u(x,t) = 1 — %) is the only entropy solution and satisfies the relation
%&uz + %@Cu = - 1 130 (3: — %) < 0 where the kinetic energy plays the role of the entropy
and ¢ is the Dirac measure.

Since the definition of suitable solutions may not be meaningful as it is defined, we

introduce the residual R of the Navier-Stokes equations defined by:
R(x,t) := yu+ (u-V)u+ Vp — R, Au —f. (3.1.11)

By denoting u? = u - u, we note that an incompressible flow with sufficient regularity
hypothesis on the solutions satisfies the relations (9yu)-u = $9,u?, ((u-V)u)-u = V:(3u’u),
(Vp)-u= V:(pu) and (Au)-u = 1A(u?)— (Vu)?. So under sufficient regularity hypothesis,
a suitable weak solution of the Navier-Stokes equations is a solution that satisfies the
following inequality:

R-u<0, (3.1.12)

in the distribution sense. As a consequence, suitable solutions are such that the power of
the residual is negative so they are dissipative. Eventually if singularities or shocks occur,
they will dissipate energy.

Connection to LES methods and under-resolved simulations

We now consider the case of under-resolved computations where the numerical reso-
lution used to approximate the solutions is not fine enough to capture all the scales of
the flow. We denote by h the mesh size and (uy, pp) the numerical approximation of the
solutions of the Navier-Stokes equations (1.3.5) so we can introduce the residual of the
energy equation Dj, defined by:

Dy(x,t) = 81;( 2+ V(( uh +puy) — Re_lA(%u%) + RN (Vup)? — f-up. (3.1.13)

Being under-resolved in a region (x, t) means that large gradients cannot be represented by
the grid and are going to perturb the approximation. Due to nonlinearity, these gradients
may become larger and larger with time so energy is accumulating at the grid scale and
energy balance is violated. As a consequence an under-resolved region can be defined as a
region where the power of the residual Dy (x,t) is larger than the consistency error of the
method. It is then possible to distinguish two configurations: Dj(x,t) negative or positive.
If Dy (x,t) <0, meaning the power of the singularity is negative, the energy is dissipated.
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Eventually the energy is lost in subgrid scales as in the Kolmorogov cascade scenario so
this situation does not pollute the approximations. On the other hand, if Dy(x,t) > 0,
energy is produced and accumulated at the mesh scale so the approximations are polluted.
This situation, by analogy with a shock that produces energy, is not physical. Eventually
imposing the condition:

Dp(x,t) <0, (3.1.14)

would imply a diffusive mechanism that is in agreement with Kolmogorov cascade energy
scenario, which is the base of many LES turbulent viscosity models. As such conditions
cannot be imposed on the flow itself, the entropy viscosity method proposes to add an
artificial viscosity to the Navier-Stokes equations that is proportional to Dy,.

The main originality of this method is not the use of the entropy production, which was
for example used in [4, 92] as an a posteriori error indicator that could be useful for adaptive
methods, but the construction of an artificial viscosity based on the residual of the entropy
production. We note that previous methods, described in [49, 52, 107], already constructed
artificial viscosity based on the residual of the Navier-Stokes equations. However, the
use of the residual of the entropy equation gives more information in the under-resolved
regions since the residual of the Navier-Stokes equations is always of the same order as
the consistency of the method. Eventually the entropy viscosity method can be classified
as a LES functional model as it enforces a diffusive mechanism while disregarding the
unresolved scales. We also note that this theory does not involve explicit filters so its
numerical implementation is facilitated.

Definition of the entropy viscosity model
The first step of the entropy viscosity method consists in introducing a local artificial

viscosity vgp defined by:

2 |Dh(xvt)|

vRh(X,t) = h(x) (3.1.15)

i e o)
where h(x) is the local mesh size. While this artificial viscosity is expected to be smaller
than the consistency error in smooth regions, it can be very large in regions where the
equations are not well resolved. So the quantity vgj; may induce too much diffusion to
be of practical use. As a result, the viscosity entropy method consists in adding the term
—V-(vg s Vuy) to the left hand side of the Navier-Stokes equations (1.3.5) where vg p,
called entropy viscosity, is defined by:

2 ’Dh(xu t)|

ven(x,t) == min (Ceh(X) ,Cmaxh(x)]uh(x,t)]> (3.1.16)

HU%HLOO(Q)

where co, Cpax are tunable constants. The term cpaxh(x)|up(x,t)|, which we refer to as
first order viscosity, is present to limit the diffusion of the entropy viscosity method. It
finds its origin in an analogy with finite difference method for the advection equation in
one space dimension:

Oyu + BOyu = 0, (3.1.17)

where we assume 5 > 0. As we denote by u]', the approximation of u(iAxz,nr) with a
uniform grid of size Ax and time step 7, we remind that the first order up-wind scheme
defined by:

T p -

Ar P

u

=0, (3.1.18)
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is known to be stable under the CFL condition ﬂT(Am)fl < 1. It is then interesting to
note that the first order up-wind scheme can be rewritten as follows:

n+1 n n n n n n
Uy — U s Az ui ) — 2ui +ui’

i 3 i—1 i
At +h 2Ax 18] 2 Az?

= 0. (3.1.19)

As a consequence the first order up-wind scheme of the advection equation (3.1.17) is
equivalent to use a centered second order finite difference to the equation:

By + By — 5%89&16 —0. (3.1.20)

% so the entropy viscosity does not induce more diffusion than
the one induced by the first order up-wind scheme. As a consequence the entropy viscosity
method should run with CFL of order O(1) and not be too diffusive in under-resolved
regions.

By analogy, we set cpax <

Before describing the tuning of constants ce, ¢max and the implementation of the entropy
viscosity method in SFEMaNS code, we note that this method is consistent and only
induces diffusion in under-resolved regions. Indeed, when using a mesh fine enough to
resolve all of the scales of the flow, |Dp(x,t)| becomes of the same order as the consistency
error. As a consequence h(x)2|Dy(x,t)| is smaller than the consistency error and than
the first order viscosity cmaxh(x)|up(x,t)| which is of the order O(h), so we can say that
the entropy viscosity is a consistent method. On the other hand, if the mesh is not fine
enough to resolve all the scales of the flow, the entropy viscosity is only active in under-
resolved regions where Dy # 0. Eventually the entropy viscosity does not perturb the
approximations in smooth regions. Moreover it adds the necessary diffusion in under-
resolved regions, where energy is coming up from unresolved subgrid scales, so the energy
is dissipated as in the Kolmogorov scenario.

Tuning of constants c. and cpax

As the couple (Ce, Cmax) = (1, 3) should induce enough diffusion for any kind of prob-
lems, a tuning is still required so the diffusion is not unnecessarily large. The idea of
the tuning is to enhance a couple (ce, Cmax) such that our approximation remains smooth
and stable over time. For a fixed problem, meaning initial/boundary conditions and body
forces are fixed, the tuning is done on a coarse mesh over a hundred of time iterations
by setting the kinetic Reynolds number to infinity, numerically we set R, = 10'°. This
strategy is adopted so the obtained couple is suitable for any under-resolved computations
with smaller R.. Firstly we set c. = 00, so Vg becomes a first order viscosity. Then we
initialize cpax = % and diminish it till the approximation looses its regularity or stability.
Once cmax 18 tuned, we set ¢, = 1 and repeat the same process that we use to tune cpax.
We note a typical range of cmax is [0.15,0.5], while ce generally lies in [0.1, 1]. See [37] for
more details.

3.2 Entropy viscosity and SFEMaNS code

As the previous section describes the theoretical frame in which the entropy viscosity
method has been developed by J.-L. Guermond et al., we now focus on the use of this non-
linear stabilization method with SFEMaNS code. Firstly we give details on its numerical
implementation in SFEMaNS code such as the computation of the residual of the Navier-
Stokes equations. In a second time, we present numerical tests to verify the consistency
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of the method with manufactured solutions while its correct behavior for under-resolved
simulations is checked in the next chapter on Von Karman Sodium (VKS) and precessing
cylinders problems.

3.2.1 Numerical Implementation

The implementation of the entropy viscosity method in SFEMaNS code can be splitted in
two steps that we describe in the following. In a first step, the entropy viscosity is computed
with the time and space discretized approximations (u”, p"™),. Then the stabilization term
—V:(vgVu) is added in the Navier-Stokes equations weak formulation (2.2.8). In order to
describe this implementation in SFEMaNS code we keep the same notation of section 2.2.2
where we defined the space of approximation Vj, and a mesh 7 of disjoint cells K with
respective diameters hjqc.

Residual and entropy viscosity computation

To compute the entropy viscosity defined in equation (3.1.16) we first need to compute
the power of the residual R - u whose definition (3.1.13) involves time derivative and
numerous nonlinear terms. Since SFEMaNS code is a hybrid spectral-finite element code,
the computation of a nonlinear term requires the use of pseudo-spectral method and fast
Fourier transform. To reduce the computation cost of this method we decide to compute
the residual of the Navier-Stokes equations so we can later do a scalar product with u with
fast Fourier transforms. To do so we define the residual Ryg at time t™ = 7n as follows:

u” —u" 2

1
Ny = ————— — —Au""! £ Ux(u™"1) x uonlpvpnt - ot (3.2.1)
2T R,

We note that second order space derivatives are not accessible in SFEMaNS code, so in
practical we compute R{g as the solution for all v in V}, defined in section 2.2.2, of the
formulation:

u” — u" 2 1 1
RY -V:/~v+/Vu”1:Vv—/ VY. n) v
/QNS o 27 Re Jo B Joo! V)

+ / [(Vxus" 1) x w4 vp™t — 71y, (3.2.2)
Q

with n the outward normal vector of the surface 02 and where we integrate by parts the
term (Au""1) - v to remove the second order space derivatives. Eventually we define the
entropy viscosity on a mesh cell K as follows:

VE\K = min (Cmaxh10c||un_1”L°°(K)7 Cehloc Hun,lHQ
L2(Q)

where we normalize the power of the residual by [[u"!||%, @)

Remark 3.2.1. To use the pseudo-penalization technique described in section 2.4, so the
presence of solid obstacle can be taken into account, one needs to change the definition of
the residual Ryg. Indeed the entropy viscosity method is designed to add the necessary
diffusion such that the power of the residual is negative. Since the equations solved in
the solid are no more the Navier-Stokes equations, when using the pseudo-penalization
technique we modify definition (3.2.1) as follows:

u” — u"? 1

s = ——F EAM* + VP T (W () x a1 | (3.2.4)
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where x is the penalty function equal to 1 in the fluid and 0 in the solid.

Explicit treatment and resulting weak formulation

The entropy viscosity method consists of adding the term —V-(vgVu) in the left hand
side of the Navier- Stokes so the implicit treatment of this stabilization term would induce a
time dependent algebra. In order to keep a time independent algebra, so the stiffness matrix
only needs to be assembled and preconditioned at initialization which reduces greatly
the time of computation, we decide to explicit the stabilization term —V-(rgVu) with a
first order time extrapolation. Eventually we approximate u™*! solution of the following
formulation for all v in Vj, q:

SunJrl 1 il qu” — unfl . 4wn _ wnfl

+/ (—=(Oxu*" ) x gt 4 ) Ly —/ vpV(u"): Vv, (3.2.5)
Q Q

with u”*! matching the Dirichlet boundary conditions of the problem. The next steps
of the prediction-correction algorithm for the Navier-Stokes equations described in sec-
tion 2.2.2, see equations (2.2.9)—(2.2.11), remain the same.

Remark 3.2.2. Originally the explicit treatment of entropy viscosity was facilitated by
adding a stabilization term of the form —V- (01 hioe V(U™ —2u™ + u”fl)) in the left hand
side of equation (3.2.5) where ¢; was a tunable constant sastisfying ¢1 > cmax|[ul| Lo (q)-
However, many numerical tests and applications led us to note that the algorithm always
remained stable, under a CFL condition, even when setting ¢; = 0. To avoid computing
extra terms and adding error to the approximation, we decide to disable this term by
approximating equation (3.2.5). We note that no theoretical demonstration of the stability
of the above scheme has been given. Till now this method has only been proved stable for
the case of the Euler equation in [13], theoretical proof of its stability when applied to the
Navier-Stokes equations is still under investigation.

3.2.2 Numerical tests

To attest the correct behavior of the entropy viscosity as it is implemented in SFEMaNS
code, we first propose to describe a test that enhances its consistency property. This test
compares the error between computations with and without entropy viscosity so we can
check that we get the same order of convergence. Next we propose to describe the action
of the entropy viscosity with under resolved simulations by quoting recent pressed articles
and studies led in this following chapter of this manuscript.

Consistency property

The consistency of the entropy viscosity with respect to the numerical scheme order
of convergence in space and time is investigated with manufactured solutions to check its
correct behavior. This test consists in approximating on the domain Q = {(r,0,2) | 0 <
r<1;0 <0 <2m0<z<1} (see figure 2.2) the functions:

ur(r,0,2,t) = ((r?2® — 3r®2%) cos(6) — (1?2 + 3r®z%) sin(6)) cos(t),
ug(r, 0,2, t) = 3(r32% — r223)(cos(#) + sin(0)) cos(t),

uz(r,0,2,t) = (3r?23 cos(0) + 57223 sin(0)) cos(t),

p(r, 0, z,t) = rz(cos(f) + sin(0)) sin(t),

(3.2.6)
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solutions of the equations (3.2.5), (2.2.9) and (2.2.11) with Dirichlet boundary conditions
for the velocity field. An illustration of the meridian finite element mesh can be found in
figure 2.2 while the velocity and pressure fields at final time are represented in figures 3.1a
and 3.1b. We also set R, = 1, ¢1 = 0, ¢ = 0.2 and ¢pax = 0.125. The source term f is
computed accordingly and so does not take into account the viscosity entropy, so we can

write:

fri= = ((r%2° = 3r*2%) cos(0) — (r?2° + 3r®2?) sin(0)) sin(t) + z(cos(6) + sin(f)) sin(t)
1
— — ((—42° = 27r2%6r°2 — 61°) cos(0) + (42° — 27r2? — 612z — 6r°) sin(0)) cos(t)
+ (3r12% — 611328 — 3r°2° 4 60r12° — 60r52%) cos(t)? + (131320 + 9r°2° 4 12r12° — 97624

+ 6792%) cos(20) cos(t)? + (3r12% — 571325 — 31225 + 661125 — 60r°2%) sin(26) cos(t)?,
(3.2.7)

fo := —3(r32% — r223)(cos(0) + sin(0)) sin(t) + z(— sin(f) + cos(f)) sin(t)

1
~ 7 ((—82:3 + 15722 — 18722 + 613) cos(0) + (=823 + 27r2* — 18122 + 61°) sin(6)) cos(t)

e

—(9r12° +12r52%) cos(t)? + (1128 — 247325 + 21725 — 91621 — 61°2%) cos(26) cos(t)?
— (8325 + 6r°2° + 9125 + 121°2) sin(26) cos(t)?,  (3.2.8)

fr = —(3r?2% cos(0) + 51223 sin(0)) sin(t) + r(cos(0) + sin(6)) sin(t)

1
& ((92° 4 18r?2) cos(8) + (152° + 30r°2) sin()) cos(t)+(5r°20 —51r12°+45r° 21 +-361%27) cos(t)?

e

+(— 4132041871 2° 41515 2%) cos(26) cos(t)2+(—132° —45r1 2% 44515 21 — 3610 23) sin(26) cos(t)2.

(3.2.9)
U pre
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(a) Final velocity field (b) Final pressure

Figure 3.1: Profile of the velocity field and pressure magnitude in the meridian plane 8 = 0

and 0 = 7 at tepqg = 1.

The convergence of the method is studied with four different meshes of typical mesh-
size h = 0.1, h = 0.05, h = 0.025, and 0.0125 in P;. The time steps tested are 7 = 0.01,
7 =0.005, 7 = 0.0025, 7 = 0.00125 and 7 = 0.000625. The error on the velocity and the
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error of the pressure in L2-norm at the final time ¢t = 1 are reported in tables 3.1 and 3.2.
Since all the scales of the flow are resolved we expect the entropy viscosity simulations,
denoted as LES, to behave like the simulations without entropy viscosity, denoted as DNS.
As a consequence the errors on velocity and pressure should be similar, as shown by the
two tables 3.1 and 3.2. This confirms the consistency of the entropy viscosity method.
we notice that the velocity and pressure converge in time with second order by looking
at the last two lines of these tables. We just note that the first time step 7 = 0.01 may
be too large in respect of the mesh size h = 0.0125 and that the error on the pressure is
dominated by a space error for 7 = 6.25 x 104, In addition the convergence with space for
T = 6.25 x 10~* is displayed in figure 3.2 where the theoretical orders of space convergence,
3 for the velocity and 2 for the pressure, are also represented. We deduce from this figure
that we recover the theoretical order of convergence for both velocity and pressure. We
note the rising of the error on the velocity is due to a time error which is in agreement
with previous results on the time convergence of the velocity.

It results from this numerical test that LES computations give nearly the same result
as DNS computations and that the theoretical orders of convergence in space for u and
p are recovered. We can conclude that the entropy viscosity method is consistent with
respect to the numerical scheme implemented in SFEMaNS code.

L i 0.01 0.005 0.0025 0.00125 0.000625
DNS LES DNS LES DNS LES DNS LES DNS LES
0.1 1.85E-5 | 2.02E-5 | 1.70E-5 | 1.83E-5 | 1.70E-5 | 1.82E-5 | 1.71E-5 | 1.82E-5 | 1.71E-5 | 1.82E-5
0.05 9.67E-6 | 1.00E-5 | 3.16E-6 | 3.68E-6 | 1.59E-6 | 2.22E-6 | 1.43E-6 | 2.03E-6 | 1.44E-6 | 2.01E-6
0.025 9.72E-6 | 9.74E-6 | 3.00E-6 | 3.02E-6 | 8.71E-7 | 9.02E-7 | 2.65E-7 | 3.10E-7 | 1.41E-7 | 1.92E-7
0.0125 || 9.73E-6 | 9.73E-6 | 3.00E-6 | 3.00E-6 | 8.73E-7 | 8.75E-7 | 2.43E-7 | 2.45E-7 | 6.59E-8 | 6.83E-8
Table 3.1: L2-norm of the error on the velocity at time 1.
L g 0.01 0.005 0.0025 0.00125 0.000625
DNS LES DNS LES DNS LES DNS LES DNS LES
0.1 6.31E-4 | 1.16E-3 | 6.63E-4 | 1.10E-3 | 6.79E-4 | 1.09E-3 | 6.84E-4 | 1.07TE-3 | 6.85E-4 | 1.07E-3
0.05 1.60E-4 | 3.27E-4 | 9.90E-5 | 2.50E-4 | 1.08E-4 | 2.31E-4 | 1.14E-4 | 2.26E-4 | 1.16E-4 | 2.25E-4
0.025 1.77E-4 | 1.88E-4 | 5.29E-5 | 6.74E-5 | 2.09E-5 | 3.56E-5 | 2.21E-5 | 3.16E-5 | 2.41E-5 | 3.14E-5
0.0125 1.89E-4 | 1.89E-4 | 6.14E-5 | 6.23E-5 | 1.77E-5 | 1.88E-5 | 5.39E-6 | 6.53E-6 | 4.95E-6 | 5.45E-6

Table 3.2: L2-norm of the error on the pressure at time 1.

Action in the context of under resolved computations

Originally the entropy viscosity method was tested in [36, 37, 38| with Burgers and
Euler equations for problems involving shocks. It allowed to enhance the correct behavior
of this method to approximate solutions that present singularities. A study of its action
for approximating the Navier-Stokes equations has been recently proposed by Guermond
et al [34]. A DNS, entropy viscosity and Smagorinsky model approaches are used to
approximate in a periodic box the solution of the Navier-Stokes equations with initial data
uy = cos(8mx)sin(8my), uy = —sin(8mx) cos(8wy) and u, = 0. The entropy viscosity is

o6




CHAPTER 3. NONLINEAR STABILIZATION METHOD: ENTROPY VISCOSITY

DNS —— DNS ——
LES LES
theoretical order 3 - theoretical order 2 -

Error velocity L2 in log
Error pressure L2 in log
IS

10 100 10 100
log(1/h) log(1/h)

(a) Space convergence on velocity (b) Space convergence on pressure

Figure 3.2: Evolution in log scale of L? error of velocity and pressure with mesh size h for
DNS and LES computations with fixed time step 7 = 6,25.1074

shown to be consistent. Moreover when fixing a space resolution, it scales better than the
Smagorinsky model with respect to a well resolved DNS.

In that frame the following chapter, see section 4.1.4, provides comparisons between
DNS and LES computations of a Von Kérmén problem. The set-up consists of driving
an incompressible fluid in a cylindrical container with counter-rotating lids. These tests
are done with R. € {500, 1000,2500} and enhance the correct behavior of the entropy
viscosity method. For example we give comparisons between under resolved DNS and
entropy viscosity computations with a full resolved DNS. It shows that the entropy viscosity
results match the ones of the full resolved DNS and even allows to grasp the bifurcation in
the energy spectrum that under resolved DNS cannot catch. Moreover, we also compare
DNS results and under resolved computations with entropy viscosity ones for a cylinder
precessing problem with R, = 4000. We refer to chapter 4 for more details on these studies.

3.2.3 Outlook

The implementation of the entropy viscosity method in SFEMaNS code now allows us to
consider studying problems that DNS could not approximate due to the computations of
the smallest scales of the flow and the resulting high computational cost. Thanks to this,
we firstly intend to use the entropy viscosity method as a LES method to approximate
the experimental set-ups of the Von Karman Sodium (VKS) experiment and of precessing
cylinders. This study is done in the following chapter and falls within the scope of pre-
vious studies performed by J.-L. Guermond and C. Nore. On one hand they investigated
magnetodynamics of the VKS experiment with prescibed velocity fields in simplified ge-
ometries [28, 29, 35]. On the other hand they studied the generation of magnetic field in a
precessing cylinder for kinetic Reynolds numbers up to 1200 [83|. In this frame, chapter 4
first presents hydrodynamic numerical studies of a VKS set-up that is currently experi-
mented in CEA Saclay by the team of B. Dubrulle. Thanks to the pseudo-penalization
technique of Pasquetti et al., described in section 2.4, we can now represent correctly the
rotating impellers that drive the fluid. Moreover the use of the entropy viscosity method
enables us to study a larger range of kinetic Reynolds numbers so more comparisons with
ongoing experiments in CEA Saclay can be done in the future. The entropy viscosity is
also used to study hydrodynamic set-up of a precessing cylinder that will be experimented
in the Dresden Sodium facility (DRESDYN) by the team of F. Stefani in the coming years.
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The study is performed up to a kinetic Reynolds number of 15000. Implications in view of
the generation of the magnetic field are discussed. We also study another way of forcing the
precession than the one used in Dresden coming experiment and we compare the benefit
of two precessing driven forces.

To conclude we note that this chapter focuses on introducing the entropy viscosity
method as a LES method to approximate problems with large R., however we remind that
the main idea of the method is to add the appropriate diffusion such that the approxi-
mations do not produce energy in regions where they present large gradients and may be
under-resolved. This remark finds echo in chapter 5 where we approximate multiphase
flow problems with continuous density and viscosity that may present large gradients at
the interface between two fluids. While we combine a level set method and a momentum
based approximation of the Navier-Stokes equations introduced in [41], the entropy viscos-
ity is used to stabilize both mass and momentum equations. This stabilization technique is
inspired by the one presented in [41] that states that stabilizing the mass and momentum
equations with the same viscosity helps the stability of the global algorithm. Since the
entropy viscosity is based on a residual of the momentum equation, that also contains infor-
mation of the mass equation, we believe it is a good candidate to stabilize both equations.
The corect behavior of the method is confirmed with numerous numerical tests involving
gravity, rotational, surface tension and magnetic forces. We refer to chapter 5 for more
details on the use of entropy viscosity in the frame of multiphase flow computations.
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Large Eddy Simulation with entropy
VISCOSIty

In answer to the previous chapter, we propose to validate the entropy viscosity method as
a LES method on two experimental configurations. First we intensively use the entropy
viscosity method, often denoted as LES, to study the hydrodynamic regime of a Von
Karman Sodium (VKS) set up with under resolved meshes. While on going experiments in
CEA Saclay may provide future comparisons with numerics for a large range of R., we give
comparisons between DNS and LES results at moderate Reynolds numbers (smaller than
2500) to enhance the correct behavior of the entropy viscosity. Next we present, in the
form of an article in preparation, a study on two different set ups of precessing cylinders.
This method is validated with DNS comparisons at R, = 4000 before being used to extend
the range of kinetic Reynolds numbers studied of a set up that will be soon experimented
in Dresden [105]. As precession may take part in the Earth dynamo action (conversion of
kinetic energy into magnetic energy), a MHD study with DNS of the two set ups is also
given to enhance the most favourable one to the generation of a magnetic field.

Contents
4.1 Hydrodynamic study of a Von Karman Sodium set-up . . . . . 60
4.1.1 Experimental set-up . . . ... .. ... L oL 61
4.1.2 Numerical approximation . . . . . .. .. ... .. ... ..... 63
4.1.3 Hydrodynamic regimes for R, <2500 . . ... ... ... .... 66
4.1.4 Numerical results with entropy viscosity method . . . . .. . .. 72
4.1.5 Conclusion . . . . .. ..o 77
4.2 Two spinning ways for precession dynamo . ... ..... ... 78
4.2.1 Introduction . . . . . .. . ... 80
4.2.2 Numerical settings . . . . . . . .. ... L. 81
4.2.3 Hydrodynamicstudy . . . . . . . ... ... . 83
4.24 Dynamo action . . . . . . . ... Lo 88
4.25 Conclusion . . . .. ... ... 94
4.2.6 Appendix: Stabilization method . . . . .. .. .. .. ... ... 95

99
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4.1 Hydrodynamic study of a Von Karman Sodium set-up

The flow produced in a cylindrical cavity driven by the rotation of the upper and lower lids
has long been the focus of experimental, numerical and theoretical investigations during the
past decades. The original problem, consisting of the analysis of the flow of a viscous fluid
over an infinite rotating disk, was studied by von Karman [54] in 1921. While Batchelor [9]
in 1951 was the first one to consider an upper rotating disk, these types of flow were called
'von Karméan swirling flows’ in 1987 by Zandbergen and Dijkstra [112] in reference of Von
Karmén studies. These flows occur frequently in geophysical and in industrial applications
involving impellers. As we plan to study a specific set-up, that is currently the subject of
experiments in CEA Saclay by the team of B. Dubrulle, we do not present exhaustively
the vast literature on von Karméan flows but rather focus on relevant articles that led to
the configuration we study.

The flow depends strongly on the height-to-radius aspect ratio (H/Rcy with H the
distance between the lids and Rcy the radius of the cylinder), on the ratio of the angular
velocities of the upper and lower lids as well as on the geometry of the lids (disks or
impellers). Here we will focus on order one aspect ratios and on exactly counter-rotating
lids. Using flat smooth disks, Nore et al. [87, 86, 84] carried out both experimentally and
numerically a study of the symmetry breakings and transitions. They introduced the R
symmetry which is the symmetry by rotation of m about any equatorial axis and found
for a cylinder of height-to-radius ratio of 2 a dynamical system involving the competition
of two modes. However, flat disks can only drive the flow through viscous boundary
layers. To reach high kinetic Reynolds numbers, the lids are made of disks fitted with
blades (called impellers) and drive the flow inertially: turbulence in such configurations
has been the subject of numerous experimental investigations. Many teams in France have
used different working fluids such as water (Cadot et al [16]) or helium (Saint-Michel et
al [100]). Liquid Sodium was used by the Von Karman Sodium team in view of studying the
generation of magnetic field by dynamo effect (for example see Monchaux et al [80]). Most
impellers dealt with straight blades until the VKS team (Bourgoin et al. [14], Ravelet [94])
intensively studied the influence of the geometry of the impeller (called TM for Turbine
Métallique, meaning Metal Impeller in French) on the flow properties: they varied the
curvature of the blades, the number of blades, their height, the disk radius and the sense
of rotation. They called the unscooping sense of rotation (the fluid is pushed by the convex
side of the blade) the (+) sense while the scooping sense (the fluid is pushed by the concave
side of the blade) was designated as the (-) sense.

As a VKS set-up with specific TM has demonstrated the generation of magnetic
field [80], the study of the hydrodynamic regime with such impellers may help to de-
termine a favourable set up to the generation of a magnetic field. In that frame Ravelet
et al. [95] performed a thorough investigation of the transition from laminar flow to fully
developed turbulence in the two senses of rotation for curved impellers called TM60 (16
blades with a 72° degree of curvature, a disk radius 0.925 of the cylinder radius and a
blade height 0.2 of the cylinder radius). They used visualization, temporal velocity signals
and torque measurements to characterize the dynamics. They showed that the flows are
similar for small Reynolds numbers but are very different for high Reynolds numbers: the
(-) forcing leads to multiple states (with one or two recirculation cells) while the (+) forcing
shows only one state demanding less torque. Kreuzahler et al [60] numerically studied this
set up with TM28 impellers (8 blades with a 64° degree of curvature, a disk radius 0.9 of
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the cylinder radius and a blade height 0.2 of the cylinder radius) rotating with both senses
(+) and (-) and also considered straight blades with R, = 2430 (2700 with SFEMaNS
nondimensionalization). Moreover they extended their study of the rotating sense (+) up
to Re = 4860 (5400 with SFEMaNS nondimensionalization). While comparisons with wa-
ter experiment data give good agreement and allow to validate their numerical approach,
they also show that the mean flow structures are very similar for 2430 < R, < 4860 with
rotating sense (+). Unlike experiment data, e.g. Ravelet et al [95], they can also get
information on the velocity in the blade area. It allows them to emphasize different vortex
topology around the blade area between the sense of rotation (+), (-) and rotating straight
blades at a moderate Reynolds number R, = 2400.

In the following we propose to simulate the flow driven by other impellers (TM87, see
figure 4.3) for moderate Reynolds numbers as it is currently performed in CEA Saclay
(B. Dubrulle et al.). As the experiments can involve very large Reynolds numbers we
plan to use the entropy viscosity as a LES method, described in chapter 3, to extend
the range of Reynolds numbers we can study with SFEMaNS code. To describe this
hydrodynamic study, the followings sections give information on the experimental set up
and the numerical methods used to approximate the problem with SFEMaNS code. Then
we study the problem for Reynolds numbers smaller than 2500 with DNS simulations. After
providing comparisons between DNS and LES simulations for R. € {500, 1000, 2500}, we
present numerical results obtained at Reynolds numbers 5000 with the entropy viscosity
method.

4.1.1 Experimental set-up

In this section we give information of the experimental set-up (TM87) currently used in
CEA Saclay by B. Dubrulle et al. that we plan to study in the following. Before giving
qualitative information on this set-up, we give general information on a VKS set up. Such
a configuration consists of two counter rotating impellers (disk and blades) embedded in a
cylindrical container filled with fluid. A 3D representation of this configuration is displayed
in figure 4.1a. We note the disks are not directly into contact with the top and bottom walls
and are indeed embedded in the fluid. Moreover the impellers have a hole in their center
of radius Rjnt, meaning that fluid is present in the area 0 < r < Rjy. For simplification we
do not consider, and so we do not represent, the shafts that connect the brushless motors
driving the impellers in rotation. To get a better idea of the shape and the definition of the
blades, we display in figure 4.1b a 2D representation of the bottom blades with an angle
of curvature a supported by a disk of radius Ry viewed from top. We note the blades can
be generated as a section of a circle of radius R, called gauss radius which is represented
in figure 4.1b.

The set-up studied in this section and by the team of B. Dubrulle in CEA Saclay,
referred to as TM87, uses a cylindrical container of radius R.y, = 100mm and of heigh
H = 248mm. The impellers are composed of two disks each supporting 8 blades. The
disks have a radius Ry = 92.5mm, an interior radius R;j,y = 10mm and thickness of 12mm.
The blades have an angle of curvature equal to 729, a height of 20mm and a thickness of
2.5mm. Eventually the distance between the disks is set to 180mm as in the TM28 that
are numerically studied in [60]. As a consequence the respective disks and the top-bottom
walls of the cylinder are spaced by a layer of fluid of 22mm height. While we display
a vertical slice of this set up in figure 4.2, which summarizes the previous characteristics
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Ry

(a) 3D representation of a VKS set-up (b) 2D representation of the bottom blades.

Figure 4.1: 3D and 2D representations of a VKS set up for an arbitrary angle of curvature
a. The sense of rotation studied (+) is displayed in (b). (both figures courtesy of H. Zaidi)

lengths of the problem, we refer to the following section and figure 4.3 for a 3D visualisation
of the impellers and a discussion on the required space geometry to represent correctly the
blades. In order to compute relevant quantities that allow comparisons with experiments,
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Figure 4.2: 2D representation (vertical slice) of the VKS set up with TM87. Length unit
is the millimeter.

we note experimentalists can characterize the dynamics by performing measurements of
the velocity field with Laser Doppler Velocimetry (LDV). This technique allows to get
local information on components of the velocity field while the mean velocity field can
also be visualized in meridian section. Thanks to this technique, experimentalists get
information on the mean poloidal and toroidal fields but also on the root mean square
velocity, denoted Urys. Moreover the torque can be measured by recording the current
injected to the bruthless motors. We refer to |94, 95| for more details on the technique
used to characterize the dynamics in the frame of VKS laboratory experiments.
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4.1.2 Numerical approximation

We want to investigate the hydrodynamic regime of the above experimental set-up. The
reference length Lyef is set to Rgy so the domain of computation is Q@ = {(r,0,2) €
[0,1] x [0,27) x [—1.22,1.22]}. The cylinder 2 can be split into a solid domain Qy}q,
composed of the rotating impellers, and a fluid domain §2g,;q that are both time dependent
due to the impellers rotation. The resulting main difficulty is to approximate the Navier-
Stokes equations in a time and 6 dependent domain while forcing the velocity in the solid
domain (g4 to be a solid body rotation. On the other hand the study of the problem
for large Reynolds numbers cannot be performed with Direct Numerical Simulation, due
to limited computational resources, and requires the use of a stabilization technique so the
action of the unresolved small scales of the flow can be represented.

In the following we describe the numerical methods implemented in SFEMaNS code to
overcome these difficulties and present the time discretized algorithm used to approximate
the problem. In a second time we give general information on the space discretization in
SFEMaNS code and discuss the minimum space resolution required to correctly represent
the problem. Eventually we introduce the quantities of interest, such as the kinetic energy
or torque, that we compute to study the hydrodynamic regime of this experimental set-up.

Time discretized algorithm
The experimental set-up is approximated by combining a prediction-correction method
of J.-L. Guermond et al [43] and a pseudo-penalization technique of R. Pasquetti et al [89].
These methods allow respectively to approximate the solutions of the Navier-Stokes equa-
tions in the fluid domain Qgu;q and to penalize the velocity in the solid domain (g9 SO
it matches the velocity of the impeller. These methods led to the introduction of pres-
sure increment 1 to split the time marching of the velocity-pressure couple and a penalty
function x defined by:
bty =4 1 AT (0:2) € Qnuia (4.1.1)
0 if (T, 0, Z) € Qsolid-
While we refer to sections 2.2.2 and 2.4.1 for a thorough description of these methods, we
write the resulting time discretized algorithm for completeness. We introduce a time step
7 and denote by f" the approximation of f(n7), the velocity is then updated by solving
the following scheme:

3un+1 1 qu” — un—l 4¢n _ wn—l
— A n+1:_vn n+1 I v/
or R Prrx or ()
3un+1
+ Xn+1 (—(qu*’”“) x u*th o fn+1) +(1— Xn+1) 2obst’ (4.1.2)
T
where R, = % with v the viscosity of the fluid, U,ef = Rcyiw the angular velocity of
the impellers and L. = Rcy1. Moreover we set u*"th = 2u™ — u" ! and ugs represents

the velocity inside the disk and blades defined for all n > 0 by:

—reg if z >0,

reg if z <O0.

un(r,0,2) = (4.1.3)

On the other hand the increment of pressure v is solution of the following Poisson problem:
3

— Ayt = EVu”“, (4.1.4)
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so the pressure can be updated as follows:
1

3 Vot (4.1.5)

prh =t 4 -
We note that the velocity and the pressure are solutions of the Navier-Stokes equations
when x = 1, meaning in the fluid domain. On the other hand in €4 the pressure is not
relevant and is determined by solving a Poisson problem while the velocity field satisfies
u = Upps + O (R%) Consequently the resulting algorithm is of order 1 in time.
Eventually we use a nonlinear stabilization method called entropy viscosity, introduced
by J.-L. Guermond et al [36, 37] and described in chapter 3, to approximate solutions of
the problem with large R.. The entropy viscosity method consists in adding the term
—V-(vgVu") in the left hand side of equation (4.1.2) where we define the entropy viscosity
ve on a mesh cell K as follows:

. _ IRRs - 0™ Lo (i
V]EL|K ‘= min <Cmaxhloc”un 1||L<>°(K)a Ceh120¢ ||un_1||L2(Q) &) , (4.1.6)
with cmax, ce tunable constants and Ryg the residual of Navier-Stokes defined by:
n . u” — un—2 B LA n—1 +Vv n—1 + n—1 (VX( *,n—l) % *n—1 fn—l) (4 1 7)
NS = 727_ Re u P X u u . .

Thanks to its definition the entropy viscosity is smaller than the order of consistency of the
method in regions where the solution is smooth and well resolved and does not perturb the
approximation. On the other hand in regions where the solution is not well approximated
due to the presence of large gradients that cannot be represented by the coarse mesh, the
entropy viscosity adds a diffusion proportional to the unbalance in the energy equation so
the resulting approximation dissipates energy. We refer to previous chapter 3 for details
on theory and numerical implementation in SFEMaNS code of this nonlinear stabilization
method.

Space discretization and solid representation

SFEMaNS code uses a hybrid spatial discretization which involves spectral and finite
elements. A full description of its spatial discretization and the resulting weak formulation
of the Navier-Stokes equations is given in section 2.2.2 and in [33]. In a nutshell we use
a Fourier decomposition in the azimuthal direction so the problem can be approximated
independently, modulo the computations of nonlinear terms, for each Fourier mode in a
meridian plane with Taylor-Hood Lagrange elements P;-Ps.

A proper representation of the impellers, and so their actions, requires to use a refined
grid around them. Indeed the thickness of the blades is equal to 2.5% of the radius of
the cylinder set to 1. As a consequence all numerical computations reported in this study
use a mesh size smaller than 0.01 in P; (so 5.1073 for the velocity). Moreover the strong
azimuthal dependency of the problem, due to the presence of 8 blades rotating in the
azimuthal direction, leads us to approximate the problem with at least 64 Fourier modes.
To justify this choice figure 4.3 displays the shape of the bottom impellers, for mesh sizes
himp = 0.04, himp = 0.01 in P; around the blades and with 32 to 64 Fourier modes. It shows
off the necessity to use more than 32 Fourier modes as the resulting blades in figures 4.3a
and 4.3c are not even in one piece. The use of a mesh size h = 0.01 around the impellers
is motivated so their shape is regular enough from the interior to lateral boundaries of the
disk.
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) 32 Fourier modes and hip,, = 0.025 in Py ) 64 Fourier modes and hiy,p = 0.025 in P,

(c) 32 Fourier modes and himp, = 0.01 in Py (d) 64 Fourier modes and himp = 0.01 in P4

Figure 4.3: Representation of the bottom impeller for different spatial resolutions

Eventually we end up using 64 Fourier modes and two different meridional meshes of
mesh size equal to 0.01 in P; near the blades and of respective sizes 0.04 and 0.02 in
P; near the boundaries of the cylinder and the plane z = 0. The refined mesh is used
to approximate the solutions for Reynolds number in [500,2500] with DNS computations
while the coarser mesh is used for DNS computations with R, < 208 and LES computations
with R, > 500.

Quantities of interest

In addition to representations of the mean or instantaneous components of the velocity
field, we also propose to characterize the structure of the flow by computing various time
averaged physical quantities. For that purpose we define the notion of the time average f
of a quantity f as follows:

> (4.1.8)

1<m<n

where f™ is the approximation of f at time t™ = m7 with 7 the time step. It allows us
to compute the time average of the kinetic energy E and of an indicator of the fluctuation
level § that are respectively defined as follows:

1
B =g, 6w = (4.1.9)

[l
As these quantities may not be accessible to experimentalists, we also propose to compute

five other quantities that will allow future comparisons between experimental and numerical
results. First we introduce the poloidal and toroidal components, respectively denoted by
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P(u) and T'(u), of the velocity fields that we define as Ravelet in [94]. So we end up
computing the time average of the following quantities:

1 1
P = g [ oo rudga T = e [ polae (4110

where u, o, ugo and u. o are the radial, azimuthal and vertical component associated to
the Fourier mode 0 of the velocity u. We also consider the ratio of the poloidal and toroidal
components denoted as I'(u) and defined by:

I'(u) = ——. (4.1.11)

Eventually we consider two other quantities which are the root mean square velocity

defined by:

[2F
Urms = [ (4.1.12)

and the time average of the torque K, defined by:

1
Kp - ﬁ /Qsolid ‘(I‘ X F) ’ ez‘dQ7 (4113)

where F' is the force that induces a rotating motion in the impellers and w is the angular
velocity speed. Due to the dimensionalization of the problem we have w = 1. In the same
way of section 2.4.3 where we compute the drag coefficient for the flow past a sphere, we
end up computing K, as follows:

1
K, = / r(1— X)sign(Z);(u — Uops) - €9dS2 (4.1.14)
Q T

2
with sign(z) equal to 1 if z > 0 and —1 if z < 0. The function x and ugps are respectively
defined in equations (4.1.1)and (4.1.3).

4.1.3 Hydrodynamic regimes for R, < 2500

In this section we describe the numerical results we obtain without the use of the entropy
viscosity method for R. € [10,2500]. We split this study in two sets of R, first we
present results for R, < 208 where the flow is stationary in the sense that the kinetic
energy tends asymptotically to a constant value. Next we study the flow structure for
R, € {500, 1000, 2500}. The flow is not any more stationary and bifurcations in the energy
spectrum appear with a growing Fourier mode m = 2 or m = 3 depending on the Reynolds
number.

Stationary flow with R, < 208

In this range of low Reynolds numbers the global structure of the flow is not influenced
by the Reynolds number. As a consequence we first propose to describe the flow we
numerically approximate for R, = 208. Next we present the value of the torque K, we
get for R, < 100 and discuss on the time resolution required by the pseudo-penalization
technique to find a scaling law in R ! as enhanced in [95].

In this regime of Reynolds numbers the flow is stationary and axisymmetric, see fig-
ure 4.4 which displays the evolution of the total kinetic energy with time and the final
energy spectrum of the flow for R, = 208. Apart from the Fourier mode 0, that contains
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(a) Total kinetic energy. (b) Modal kinetic energy.

Figure 4.4: Kinetic energy at R, = 208 (a) Evolution in time of the total kinetic energy.
(b) Modal kinetic energy of each Fourier mode (0 < m < 63) at final time.

98.9% of the total kinetic energy, we note that the presence of 8 blades on both disks
induces peaks in the energy spectrum every mode multiple of 8. A 2D representation of
the mean axisymmetric velocity field is displayed in figure 4.5. We infer that the flow is
also R; symmetric. Its main structure consists of two toric recirculation cells separated
by the shear layer z = 0. The fluid is driven on the lateral boundary of the cylinder to
the plane z = 0 and is then driven back to the impellers around the vertical axis r = 0.
We confirm the presence of the shear layer by representing the vertical component of the
final velocity in z = 0, see figure 4.6, which is zero modulo weak echoes of the 8 blades.
We can also note the presence of two recirculations in the areas between the disks and
the bottom-upper boundaries of the cylinder (|z| > 1). However, these recirculations are
not interacting with the main structure of the flow. Eventually we refer to table 4.1 for
a summary of the numerical outputs of the computations. They allow, for example, to
confirm the stationary state of the flow as ¢ is around 1.01.

24
0.20
0.10

E0.0
-0.10

E-o.zo

-0.24

Figure 4.5: Mean profile of the mode 0 of the velocity field with R, = 208 in the meridian
plane 6 = 0.

Before studying the evolution of K, for R. € [10,100], we note the pseudo-penalization

technique we implemented in SFEMaNS induces an error in the solid domain of the order

O(Ri). As a consequence this study cannot be done with constant 7 or would require a
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Figure 4.6: Vertical velocity at final time in the plane z = 0 viewed from the top with
R. = 208.

really small time step which is not of practical use. To illustrate our tells we display in
figure 4.7 the evolution of K, for two configurations. In one hand we fix the ratio #- to
5.107° so the error in the solid domain does not depend of the Reynolds numbers. The
expected scaling law in R_! is recovered with a multiplying factor 30 for R, < 60, see
figure 4.7a. On the other hand we display in figure 4.7b the evolution of K, when working
with constant CFL. In that purpose we set the time step 7 to 2.5 x 1073. We note the

torque is no more scaling as R, ! due to the error depending on the Reynolds numbers.

1000 K, SFEMaNS -x.e 10.00 ;
30/Re - -o-- Kp SFEMaNS, dt constant .-
30/Re --e--
-
P
€ 100} T, 3 i
Z s g 100
Tl 2 .
T e
= T )
o
0.10
10 100 0.10 -
log(Re) 10 100
log(Re)
T
— =5.10"°. -
(2) - =510 (b) 7 = 2.5 x 103,

Figure 4.7: Evolution of the torque K, with the kinetic Reynolds number R, (a) constant
error for the pseudo-penalization method, (b) constant time step 7.

Eventually our numerical method manages to recover the main structure of the flow and
a scaling law of K, in R_! for small values of Reynolds which were both known thanks to
previous experimental and numerical studies. Before studying the flow for larger Reynolds
numbers we note that unlike in the study of the K,, we will always work with a constant
CFL set to 0.4 for stability purposes. This choice allows us to deal with reasonable time
step. Moreover it is consistent with the fact that we deal with Reynolds number of order
103 so the time error in O(Rle) remains small in all configurations.

Non stationary flow for R, = 500 < R, < 2500

We now present DNS results for three Reynolds numbers from 500 up to 2500 where the
flow becomes unsteady. First we increase the space resolution by setting the mesh size h to
0.02 in P; near the cylinder boundaries and the area z = 0 while we keep using 64 Fourier
modes and himp = 0.01 in the region where the impellers rotate. We note this resolution
may not be sufficient to approximate the flow with a DNS for R, = 2500, but it is the
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best resolution we can afford with our computational resources. The study starts with a
discussion on our numerical outputs and a description of the mean average velocity that
lead us to conclude the flow loses its axisymmetry and becomes non stationary. Moreover
the R, symmetry is broken and exchanges of fluid between the upper and bottom parts
of the cylinder appear. Eventually we study the energy spectrum of each computed flow
to enhance bifurcation in the energy repartition such like a dominant mode 2 (modulo the
mode 0) for R, = 500.

In this range of Reynolds numbers the flow becomes non stationary thus the total kinetic
energy presents fluctuations as shown in figure 4.8. This behavior is also emphasized in
table 4.2, which displays the numerical outputs of our computations. Indeed the value of §
keeps increasing with the Reynolds number to reach the value 1.239 for R, = 2500 which
confirms the presence of a non stationary flow. Moreover the level of kinetic energy and
Urms also increase with the Reynolds number while the torque keeps decreasing. Even
though the value of the torque is decreasing with R., we note the difference in level of K,
seems to be less pronounced as the Reynolds number grows. Such behavior was already
emphasized in Ravelet et al [95] and will be discussed in the next section where a study of
the problem for R, = 5.10% is performed with the entropy viscosity method. Eventually
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(a) Evolution of total kinetic energy. (b) Evolution of Kp.

Figure 4.8: Evolution in time of total kinetic energy and torque for R, € {500, 1000, 2500}.

R, E d(u) | P(u) | T(u) | I(u) | Urms | K,
208 || 0.543 | 1.011 | 0.081 | 0.288 | 0.281 | 0.373 | 0.190
500 | 0.598 | 1.043 | 0.093 | 0.274 | 0.339 | 0.392 | 0.123
1000 || 0.662 | 1.131 | 0.109 | 0.288 | 0.378 | 0.412 | 0.093
2500 || 0.719 | 1.239 | 0.121 | 0.282 | 0.429 | 0.430 | 0.079

Table 4.1: Numerical results of DNS computations for R, = 208, 500, 1000, 2500.

table 4.1 also shows that the ratio of the poloidal over the toroidal component of the mean
axisymmetric velocity field is growing with the Reynolds number. Indeed the poloidal
component is increasing while the toroidal one remains mainly constant which induces a
more intense flow in the radial and vertical directions inside the cylinder. However, these
quantities alone cannot provide a correct idea of the flow inside the cylinder. For example
the toroidal component mainly reports from the action of the rotating disks while the
poloidal component, see figure 4.9 for its representation in the meridian plane 6 = 0, lets
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guess a recirculation where the fluid is driven to the plane z = 0 near the boundaries of
the cylinder and driven back to the impellers near the vertical axis r = 0. Nevertheless the
poloidal component of the mean axisymmetric flow is close to zero in the area z = 0. This
implies that these recirculations also involve Fourier modes different from 0. Consequently
the mean flow is not only supported by the Fourier mode 0 and cannot be considered as
axisymmetric anymore.

00 0z 04 05 08 10
X-Axis X-Avis X-Axis

(a) R. = 500. (b) R. = 1000. (¢) Re = 2500.

Figure 4.9: Mean profile of the mode 0 of the poloidal component /u2 + u2 for various
Reynolds numbers in the meridian plane 6 = 0.

Z-Axis
Z-Axis

(a) W (b) . (0) .

Figure 4.10: Representation of the mean Cartesian components of the velocity field in a
plane (z,z) at R, = 1000.

To enhance this behavior, we display the time average Cartesian components of the
velocity field for R, = 1000 in figure 4.10. It allows to confirm that the mean flow is
not axisymmetric. It also reports the presence of a recirculation in the radial direction in
the area z = 0 that was not possible to grasp with the poloidal component of the mean
axisymmetric flow. As shown in past experimental studies with other metal impeller and
figure 4.10, the flow also breaks the R, symmetry. Moreover the flow crosses the section
z = 0 so exchanges of fluid between the upper and bottom parts of the cylinder take place.

These exchanges are highlighted in figure 4.11 which displays the final vertical velocity in
the plane z = 0. Unlike for R, = 208, the norm of the vertical velocity is non negligible.
For R, = 500 it even enhances the presence of a dominant Fourier mode equal to 2. This
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(a) R. = 500. (b) R = 1000. (¢) Re = 2500.

Figure 4.11: Vertical velocity at final time in the plane z = 0 viewed from the top for
R, € {500, 1000, 2500}.

(d) R. = 500. (e) R. = 1000. (f) Re = 2500.

Figure 4.12: Instantaneous snapshot of the velocity at final time near the bottom blades
in the plane z = —0.8 viewed from the top for R, € {500, 1000, 2500}. (a)-(b)-(c) Velocity
magnitude. (d)-(e)-(f) Vertical velocity.

symmetry-breaking by the mode m = 2 is in agreement with a previous experimental
study [95] that uses TM60. Before studying the repartition of energy between the different
Fourier modes, we display in figure 4.12 an instantaneous visualization of the velocity
magnitude and vertical component in the blades area z = —0.8. In one hand for R, = 500
the flow seems to be dominated by the rotation of the impellers that expel the fluid toward
the lateral boundaries of the cylinder. On the other hand for R, = 2500 we note peaks
in the velocity magnitude and vertical component between the impellers meaning some
vortical structures appear between the blades. The existence of in-blades vortices in the
von Kérméan swirling flow has been evidenced experimentally and numerically by Ravelet
et al [96] and numerically by Kreuzahler et al [60]. As we do not plan to study these
vortices, we just note they seem to appear for a Reynolds number of the order 10% and
refer to [96, 60] for more details.

To conclude this study we propose to display the evolution of the Fourier modes m = 1,
m = 2 and m = 3 in figure 4.13 and the final energy spectrum in figure 4.14 for the three
Reynolds numbers studied (500, 1000 and 2500). A first bifurcation appears for R, = 500
where the Fourier mode m = 2 is growing and becomes dominant together with the m =0
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and m = 8 modes due to the rotating impellers. This result is in agreement with previous
experimental data with TM60 rotating in the sense (-) where a mode 2 was found in [95]
for Reynolds numbers in the range [200,300]. As a consequence the energy spectrum, see
figure 4.14a, presents peak for all even modes. A second bifurcation appears for a Reynolds
number of 1000 and 2500 as the Fourier modes 1, 2 and 3 enter in competition with a little
dominance of the mode 3. This behavior was also observed in the numerical study using
TM73 performed by D. Castanon [18]. As a consequence the energy spectrum mainly
presents peaks for the first three modes and every multiple of 8 due to the presence of
the blades. We note on the figure 4.14 that the computation with R, = 2500 is a little
under-resolved and suffers from aliasing effect for the largest modes so it may require the
use of more than 64 Fourier modes. Despite this under resolution our numerical results
give coherent results with respect to experimental [94, 95| and numerical [18] studies and
so will be used to validate the entropy viscosity model in the following section.
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(a) R, = 500. (b) R. = 1000. (¢) Re = 2500.

Figure 4.13: Time evolution of the kinetic energy of the Fourier modes m = 1,2, and 3 for
R, € {500, 1000, 2500}. Note the different ordinate scales of the plots.
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Figure 4.14: Modal kinetic energy of each Fourier mode (0 < m < 63) at final time for
R. € {500,1000, 2500}.

4.1.4 Numerical results with entropy viscosity method

In this section we propose to approximate the previous VKS set up with the entropy
viscosity method so we can study a larger range of Reynolds numbers with under resolved
computations. First we validate our LES model by comparing results obtained with LES
and DNS for Reynolds numbers in [500, 2500]. Next we present a preliminary study of the
flow for a moderate Reynolds number equal to 5.103. This second study is done over 10
turns of the impellers and is a first step of a future study that aims to compare experimental
data of B. Dubrulle’s team in CEA Saclay with entropy viscosity computations involving
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larger time integration and also larger Reynolds numbers. We note in the following all
LES computations have been done with 64 to 96 (for R, = 5000) Fourier modes and a
meridional with a mesh size h = 0.01 in P; near the impellers to represent correctly the
impeller geometry, see figure 4.3. The mesh size near the cylinders boundaries and the area
z=01is set to h = 0.04 in P; and so it is twice less refined than the one used with previous
DNS computations. Moreover the viscosity entropy is computed by setting ¢, = 0.2 and
Cmax € {0.04,0.0625}, see definition 4.1.6.
DNS and LES comparisons with R, = 500, 1000 and 2500

We validate the entropy viscosity model to approximate this VKS set up by doing
comparisons with DNS computations presented in the previous section for R, = 500, 1000
and 2500. The outputs of the LES computations for this set of Reynolds numbers is
summarized in table 4.2 and can be compared to the DNS results in table 4.1. All these
mean values are in agreement with an error of 1% or less which confirms that the entropy
viscosity method manages to approximate the mean flow correctly even with a coarser
mesh. As these values are not sufficient to report on all the flow dynamics, we propose to
compare the final energy spectrum and the evolution of quantities such as the total kinetic
energy of DNS and LES computations for each kinetic Reynolds number.

R, E d(u) | P(u) | T(u) | I'(u) | Urms | K,

500 || 0.599 | 1.043 | 0.093 | 0.274 | 0.339 | 0.392 | 0.123
1000 || 0.671 | 1.145 | 0.110 | 0.293 | 0.375 | 0.414 | 0.094
2500 || 0.718 | 1.229 | 0.119 | 0.281 | 0.423 | 0.429 | 0.078

Table 4.2: Numerical results of LES computations for R, = 500, 1000, 2500.

First we focus on comparisons between LES and DNS computations with R. = 500.
To do so we display in figure 4.15 the evolution of the modes 1, 2 and 3 of the LES
computations and a comparison of the energy spectrum of LES and DNS computations.
The entropy viscosity method allows to grasp the bifurcation in the energy repartition
as the mode 2 grows and becomes dominant modulo the mode 0 due to the rotation of
the impellers. Figure 4.15a can be compared to figure 4.13a. We note that the evolution
of these modes for the LES computations matches perfectly the one of the DNS that
resolves all the scales of the dynamics (the DNS was performed with a mesh satisfying
the Kolmogorov criterion). Moreover the correct behavior of the method is checked by
comparing the energy azimuthal spectrum at final time ¢ = 216 that matches for every
Fourier modes computed. As a consequence the entropy viscosity allows to approximate
the correct flow for R, = 500 even with a coarser mesh.

To enhance the benefit of the entropy viscosity with a coarser mesh we now performe
comparisons between previous DNS computations with LES and under resolved DNS com-
putations for R, = 1000. We denote by under resolved DNS, a DNS computation performed
with the same mesh used in the LES computations. For this purpose figure 4.16 displays
the evolution of the total kinetic energy and the final energy spectrum for the DNS and
LES computations. In one hand the kinetic energy presents differences but similar level
of flucturations as they both takes values in [0.64,0.70]. This is in agreement with the
previous remark on their mean kinetic energies which present a 1% difference. On the
other hand the energy spectra of DNS and LES computations present peaks every mode
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Figure 4.15: Evolution of the kinetic energy of various Fourier modes with R, = 500 with
LES. Figure (a) can be compared to figure 4.13a.

multiple of 8 of same intensity. However, we note the rest of the LES spectrum is a little
above the one of the DNS. This could be explained by the fact that the final kinetic energy
of the LES computation is at a higher level than the one of the DNS. We conclude the
analysis of this spectrum by noting that as with the DNS computations, the Fourier modes
1, 2 and 3 enter in competition with a little dominance of the mode 3, see figure 4.18a.
To confirm the correct behavior of the entropy viscosity we display the mean average of
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(a) Time evolution of total kinetic energy. (b) Kinetic energy azimuthal spectrum.

Figure 4.16: Kinetic energy with R, = 1000 for LES and previous DNS computations.

the Cartesian components of the velocity field in figure 4.17. This figure can be compared
to figure 4.10 which shows that the mean flows are very close. Indeed all three Cartesian
components of the velocity field present similar structure apart from a little difference in
the z component in the area r = 0 near the impellers. We draw the attention of the reader
that the level zero of these components may be represented by different colors (light orange
for the x component and light green for the others).

As the entropy viscosity method with a coarser mesh gives satisfying results compared
to the previous DNS computations with R, = 1000, we now show that a DNS performed
with the same coarser mesh would not be as satisfying. To support this claim we display
in figure 4.18 the time evolution of the kinetic energy of the Fourier modes m = 1,2 and 3
of the LES and under resolved DNS computations. While both computations emphasize a
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Figure 4.17: Representation of the mean Cartesian components of the velocity field in a
plane (z, z) at R, = 1000 with LES.

competition between the Fourier modes m = 1,2 and 3, we note the under resolved DNS
fails to capture a bifurcation in the spectrum energy. Indeed the energy level of the mode
3 saturates around 10~2 which is nearly 10 times smaller than the value obtained with the
LES and previous DNS with a refined mesh. As a consequence the Fourier mode 2 remains
dominant and the under resolved DNS, unlike the LES, does not manage to capture the
bifurcation in the energy spectrum.
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Figure 4.18: Evolution of the kinetic energy of Fourier modes 1, 2 and 3 with R, = 1000
for LES and DNS computations with the same space resolution. See figure 4.13b for
comparisons.

We end the validation of our LES method by doing comparisons with previous DNS
computation at R, = 2500. In that purpose figure 4.19 displays the time evolution of the
kinetic energy and the energy spectrum at final time of each computation. We note the
LES computation has only been performed over 10 turns of the disk to save computational
time for a computation with R, = 5000 presented in the following. The kinetic energy
of the LES computation varies in the same range as the one with DNS and as mentioned
earlier their time averaged values match up to 1-2% of relative error, see tables 4.1 and 4.2.
Although the DNS and LES computations are not performed on the same time integration
range (20 turns against 10), we note their respective kinetic energies at final time are close
to 0.71. It leads us to compare their energy spectrum at final time in figure 4.19b. The LES
computation manages to recover correctly the spectrum of the DNS for the large scales of
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Figure 4.19: Kinetic energy with R, = 2500 for LES and previous DNS computations.

the flow while the small scales, ie large modes, are a little dissipated due to the entropy

viscosity action.

LES results with R, = 5.103

As the entropy viscosity method has proved to be efficient to approximate this VKS
set-up in the frame of under resolved computations, we now describe a preliminary study
of the problem with larger Reynolds numbers which we restrain to R, = 5000 for the time
being. Since both DNS and LES computations at R. = 2500 suffer of aliasing effect at the
largest Fourier modes multiple of 8, meaning m = 48 and m = 56, this study is performed
with 96 Fourier modes. Furthermore it is done over 11 turns of impellers. We note this
time of integration is rather small so future investigations will pursue this study with longer
time integration. However, in the same way as previous computations, the transient time
is reduced by initializing the computations with the final velocity field obtained with the
LES computation at R, = 2500. To show off the benefit of using 96 Fourier modes we
display the energy spectrum at the final time in figure 4.20. As expected the spectrum is
reduced for the largest mode multiple of 8 and presents less aliasing effect for the largest

modes whose levels of energy remain under 107
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Figure 4.20: Modal kinetic energy of each Fourier mode (0 < m < 95) at final time for
R, = 5000 with LES.

As a published experimental study [95] shows that the torque value saturates as the
Reynolds number grows beyond a few thousand and a previous numerical study [60] en-
hances that many other quantities of interest such as the root mean square velocity Urms
or the mean kinetic energy remain nearly constant when the Reynolds number goes from
2430 to 4860, we display in figure 4.21 the evolution of the kinetic energy and the torque
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with time for LES computations at R, = 2500 and 5000. In one hand one can note that
the torque varies in the same range of values for both computations. On the other hand
the kinetic energy increases slightly but the average value of these quantities are close. To
support this tell table 4.3 gives a summary of the outputs of the computation at R, = 5000
and can be compared with the last line of table 4.2. It confirms that the torque and the
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Figure 4.21: Evolution in time of total kinetic energy and torque for R. € {2500,5000}
with LES.

R, E d(u) | P(u) | T(u) | T'(u) | Urms | Kp

5.10% || 0.726 | 1.268 | 0.123 | 0.268 | 0.459 | 0.431 | 0.074

Table 4.3: Numerical results of LES computations at R, = 5.103.

mean kinetic energy start to saturate with the Reynolds numbers. As in [60] the mean
fluctuation of kinetic energy § and the ratio of poloidal and toroidal velocity components
T increase slightly little which can be explained by a more efficient local pumping of the
impellers.

While we keep the study of the flow structure for future investigations with larger time
integration and extended range of Reynolds numbers, we end this study with a representa-
tion of the mean Cartesian components of the velocity field displayed in 4.22. As enhanced
previously, the flow is pushed towards the sides of the cylinder in the blades area and is
then driven to the area z = 0 along the sides of the cylinder. The exchange of fluid between
the upper and bottom parts of the cylinder is enhanced when the mean vertical velocity

differs from zero in the area z = 0, see figure 4.22c.

4.1.5 Conclusion

The hydrodynamic study of this VKS set up with TM87 for low Reynolds numbers R, <
208 manages to recover the expected laminar flow, axisymmetric and mainly composed of
two toric recirculation cells, and a scaling law of the torque in R, ! for Reynolds numbers
smaller than 60. This first study validates the implementation in SFEMaNS code of the
pseudo-penalization technique of Pasquetti et al [89] in the frame of solid obstacle in
motion, represented by the counter rotating impellers.

In order to consider large Reynolds numbers, so comparisons between experiments and
numerical results can be led, a second study of the problem with R, € [500,2500] enhances
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(a) W (b) ;. (o) .

Figure 4.22: Representation of the mean Cartesian components of the velocity field in a
plane (z, z) at R, = 5000 with LES.

the good results of the entropy viscosity method (LES) with under resolved simulations.
First DNS computations on a refined grid and LES computations on a coarser grid are
proved to give similar results. Moreover these computations show off bifurcations in the
energy spectrum already pointed out with other TM experimentally in [95] for R, = 500
and numerically in [18] for R, = 500 and 1000. Finally the correct behavior of the entropy
viscosity is confirmed with a computation at R. = 5000 that enhances an asymptotic value
in kinetic energy and torque K, as the Reynolds number grows which is consistent with
previous studies done in [95, 60].

As the entropy viscosity proves efficient to approximate this problem for moderate
Reynolds numbers in the frame of under resolved computations, the next step of this
hydrodynamic investigation would be to validate it for larger Reynolds numbers. Since
comparisons with DNS computations may be limited to a Reynolds number of the order
10* due to present computational power limits, we plan to do comparisons with coming
results of experiments using TM8&7 led in CEA Saclay by B. Dubrulle et al.

The extension of SFEMaNS code to problem with variable magnetic permeability in
all space directions, see section 2.5 and D. Castanon thesis [18] for more details, opens
a second perspective: the magnetohydrodynamic study of a VKS set up. Since the VKS
experiment of Cadarache [80], where a strong axisymmetric magnetic field was generated,
a study of Miralles et al [78] showed the importance of using impellers with high magnetic
permeability to generate an axisymmetric magnetic field. However, the mechanism behind
this dynamo effect is not fully understood and numerical studies may bring light on some
aspect of this dynamo. In that frame SFEMaNS code is used in [85] to show preliminary
results of the magnetic problem with a given velocity field. A full MHD study of this
problem with TM73 is currently performed by D. Castanon [18] with SFEMaNS§ code and
could be feasible with TMS87.

4.2 Two spinning ways for precession dynamo

In the frame of previous studies of Nore et al [83] we propose to analyze, in the form of
an article in preparation, two configurations of precessing cylinder. The problem consists
of driving a cylindrical container with a main rotation and a second rotation, called pre-
cession, about a different axis and with a smaller intensity. First we study an axial spin
case of precession that will be experimented in Dresden [105]. The problem involves a
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main rotation around the symmetry axis of the cylinder and a precession around a radial
axis. We extend the hydrodynamic study of [83] by using the entropy viscosity method
so larger kinetic Reynolds numbers are considered. After checking its correct behavior
with DNS comparisons at R. = 4000, the entropy viscosity is used to perform a study of
the hydrodynamic regime for 4000 < R, < 15000. It allows to suggest a scaling law of
the kinetic energy in the precession frame as R 4%, Moreover the flow is shown to tend
to a solid rotation in the wall frame which is in agreement with experimental results for
larger Reynolds numbers [82| and the fact that in the limit of zero viscosity the rotation
does not force the flow. In addition comparisons with an equatorial spin case, where the
main rotation is radial and the precession is around the vertical axis, are provided. This
second set-up proves to be more efficient at breaking the symmetry of the flow. However,
a MHD study of both configurations enhances that the axial spin case remains more fa-
vorable to the generation of magnetic field, referred as dynamo action. Eventually the
presence of a container with conducting or ferromagnetic walls is also investigated to check
their influence on the dynamo threshold. While the use of ferromagnetic walls raises the
dynamo threshold, we show that conducting lateral walls allow to reduce the threshold.
As a consequence the addition of a copper layer in lateral wall would help the dynamo,
this result may find echoes in the preparation of an axial spin case precession experiment
in Dresden [105].
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Two spinning ways for precession dynamo
L. Cappaneral, J.-L. Guermond!?, J. Léorat? and C. Nore!

Abstract It is numerically demonstrated by means of a magnetohydrodynamic (MHD)
code that precession can trigger dynamo action in a cylindrical container. Fixing the angle
between the spin and the precession axis to be 7/2, two limit configurations of the spinning
axis are explored: either the symmetry axis of the cylinder is parallel to the spin axis (this
configuration is henceforth referred to as the axial spin case), or it is perpendicular to the
spin axis (this configuration is referred to as the equatorial spin case). In both cases, when
the kinetic Reynolds number, based on the radius of the cylinder, its spin angular velocity
and the kinematic viscosity of the fluid, increases, the flow breaks its centro-symmetry. The
equatorial spin case is more efficient in breaking the symmetry of the flow. In the axial
spin case, we propose a scaling law for the kinetic average energy as a function of Reynolds.
We also study the influence of conducting or ferromagnetic walls on the dynamo threshold.
In the equatorial spin case, the unsteady and asymmetric flow is shown to be capable of
sustaining dynamo action in the linear and nonlinear regimes. The magnetic field thus
generated is mainly dipolar in the equatorial spin case while it is is mainly quadrupolar in
the axial spin case. These numerical evidences of dynamo action in a precessing cylindrical
container may be useful for the design of new dynamo experiments, such as the one planned
at the DRESDYN facility in Germany.

4.2.1 Introduction

The idea that precession can be a potent mechanism to drive dynamo action for the Earth
has long been debated (see for example [75]). Modern astrophysical observations of some
planetary dynamos can contribute to resolve this issue but definite evidence is still lack-
ing [67].

The quest for experimental dynamo action is currently pursued in Europe. Precession
driving provides a potential promising way to generate experimental fluid dynamos since
it involves large scale forcing and does not require any pump or impellers. For example,
an ambitious project at the DREsden Sodium facility for DYNamo and thermohydraulic
studies (DRESDYN) [105] is to build a precession-driven dynamo experiment composed
of a large cylinder: the diameter and the height of the cylinder are equal to 2 metres.
The cylinder will be filled with liquid sodium and will undergo rotation about its axis
and precession about another axis (which can be the equator). The planned maximum
rotation and precession frequencies are 10 Hz and 1 Hz, respectively, leading to a magnetic
Reynolds number of a few hundreds.

Even though numerical simulations of the Dresden experiment with very large kinetic
Reynolds numbers (at least 10%) are out of reach with present day computers, we think that
numerical simulations are useful complements and can shed some light on specific aspects
of this experiment. Because of the large computing resources required, it is only recently
that numerical computations have demonstrated that dynamo action occurs in different

!Laboratoire d’Informatique pour la Mécanique et les Sciences de I'Ingénieur, CNRS UPR 3251, Rue
John von Neumann, 91403 Orsay cedex, France and Université Paris-Sud

2Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843-3368,
USA

3Luth, Observatoire de Paris-Meudon, place Janssen, 92195-Meudon, France.
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precessing containers: spherical [109] and spheroidal [111] ones. Since neither spheres
nor spheroids are convenient for large-scale experiments, it is instructive to investigate
whether similar results can be obtained in cylindrical containers. Many experiments have
been conducted in cylinders (full or with an inner cylinder, see e.g. [26, 82, 62, 72|) with
varying aspect ratios, various angles between the precession and the spin axis (always
assumed to be the symmetry axis) and varying ratios of precession to spin frequencies. In
contrast, very few numerical studies have been performed [83, 59, 58].

The main motivation of the present paper is to present new hydrodynamic and mag-
netohydrodynamic results in a precessing cylinder. We have developed for this purpose a
nonlinear magnetohydrodynamic (MHD) code called SFEMaNS (for Spectral/Finite Ele-
ments for the Maxwell and Navier-Stokes equations). This code solves the nonlinear incom-
pressible MHD equations in heterogenous cylindrical domains. The spatial approximation
is done with Fourier expansions in the azimuthal direction and Lagrange finite elements
in the meridional section (see [31, 33, 35| for more details). The spatial distribution of
the electrical conductivity and the magnetic permeability is allowed to be discontinuous
in the meridional section and highly heterogeneous (but continuous) in the azimuthal di-
rection; the magnetic domains can be composed of conducting and non-conducting parts.
The code has been thoroughly validated on numerous manufactured solutions and against
other MHD codes on linear [27, 29, 28] and nonlinear magnetohydrodynamic problems [33].

The paper is organized as follows. The numerical settings are defined in section §4.2.2
together with the two spinning ways for precession forcing, namely the axial and the
equatorial spin forcings. Section §4.2.3 presents hydrodynamic studies in relation with
the precession-driven experiment at the DRESDYN facility. Extended range of kinetic
Reynolds numbers up to 15000 is reached for the axial spin case thanks to the entropy
viscosity stabilization method summarized in appendix §4.2.6. The two spinning ways
for precession forcing are investigated and compared. Section §4.2.4 contains new results
of dynamo action in the axial spin case with varying properties of the vessel walls. It is
shown that using lateral walls made of copper helps the dynamo effect. It is also numerically
demonstrated in this section that, if strong enough, precession can generate dynamo action
in a rotating cylinder filled with a conducting fluid in the equatorial spin forcing. Section
§4.2.5 contains our discussion.

4.2.2 Numerical settings

Let us consider a cylindrical vessel C of radius R and height L. The vessel contains a
conducting fluid and is embedded in vacuum. The container rotates about its spin axis
with constant angular velocity {2;es and is assumed to precess about a second axis spanned
by the unit vector e, forming an angle o with e; (0 < a < 7). The constant precession
angular velocity is Qpe,.

We use the cylindrical coordinate system centered at the center of mass of the cylinder,
say O; the Oz axis is the line passing through O and parallel to e, the cylinder axis of
symmetry; the origin of the angular coordinate 6 (0 < # < 2) is the half plane passing
through O, spanned by e, and e,. The third coordinate, denoted r, is the distance to the
Oz axis.

Let R and U = RS, be the reference length and velocity scales, respectively. The fluid
density, p, is assumed to be constant and the reference pressure scale is P := pU?. The
magnetic permeability and the electric conductivity of the conducting fluid are constant,
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o (the vacuum permeability) and o( respectively. These quantities are used as reference
magnetic permeability and electric conductivity, respectively. The reference scale for the
magnetic induction is chosen so that the reference Alfvén speed is 1, i.e., B := U./uop-

Six parameters govern the flow: the aspect ratio of the container L/R, the precession
angle a (angle between the spin axis e, and the precession axis e,), the spin angle (angle
between the symmetry axis e, and the spin axis e;), the precession rate ¢ = €,/ (ratio
of the precession and spin angular velocity, also called the Poincaré number), the kinetic
Reynolds number R, = R?Q/v (where v is the kinematic viscosity) and the magnetic
Reynolds number R,,, = ,U,()O'()RQQS (where pg is the magnetic permeability of the vacuum
and og the electrical conductivity of the fluid). Note that R, is in fact the inverse of the
Ekman number and differs from the actual effective Reynolds number of the flow.

Choosing the container height equal to its diameter (i.e., L/R = 2), the precession
axis orthogonal to the spin axis (i.e., « = m/2) and the precession rate ¢ = 0.15, we are
left with two limit configurations: one called azial spin for which the spin angle is 0 and
the symmetry axis of the cylinder remains fixed in the precession frame and another one
called equatorial spin for which the spin angle is 7/2 and the symmetry axis rotates in
the precession frame (see figure 4.23). We focus our attention on these two configurations
because, in the axial spin case, the wall speed is tangent to the wall and only the viscous
stress on the wall drives the flow while, in the equatorial spin case, the flow is put into
motion by the pressure on the wall and is therefore inertially driven.

Spin

(a)

Figure 4.23: Schematic representation of the azial spin (a) and the equatorial spin (b)
configurations.

The non-dimensional set of equations can be written in two frames of reference. For
the axial spin case, since the geometry of the container is fixed in the precession frame of
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reference, computations can be performed in this frame where equations are:

1 B
du+ (u-V)u+ 2ee,xu+ Vp = ﬁAu + {Vx <H>} xB, (4.2.1)
Vau =0, (4.2.2)
1 1 B
0B = Vx(uxB) — —Vx (Vx <>> , (4.2.3)
R, Or Hr
VB =0, (4.2.4)

where u, p, and B are the velocity field, the reduced pressure including the centrifugal
term, and the induction field, respectively, and o, and u, are the relative conductivity
and permeability of the various materials. The spin axis coincides with the symmetry
axis i.e., e; = e, and the precession axis e, = e, is fixed in the precession frame. In the
lhs of equation (4.2.1), the term depending on ¢ is the Coriolis acceleration. The no-slip
boundary condition on the velocity field is written as follows in the precession frame of
reference: u =ep at r =1 and u = rey at z = +1.

For the equatorial spin case, to avoid dealing with moving boundaries, computations
must be performed in the wall frame of reference attached to the container (also called the
mantle frame) where the momentum equation is changed to:

1 B dQ2
Ju+ (u-V)u+2Q(t)xu+ Vp = ﬁAu + [Vx <M>] xB — =5 < (4.2.5)
where e; = e, is fixed in this frame while e, rotates around es. Hence, the Corio-

lis acceleration in the lhs depends on the total angular velocity Q(t) = e, + cep(t) =
e, + e(sinte, + coste,) while the Poincaré force —% xr appears in the rhs. The no-slip

boundary condition on the velocity fieldisu=0at r=1and u=0 at z = £1.

4.2.3 Hydrodynamic study

In this section we examine the two configurations in the hydrodynamic regime, where R, is
the control parameter. At low Reynolds number, the flow is steady and centro-symmetric
for the axial spin case, meaning that u(r) = —u(—r), while it is unsteady and centro-
symmetric for the equatorial spin case. At larger Reynolds numbers, the loss of centro-
symmetry can be monitored by inspecting the symmetric and antisymmetric components
of the velocity field: us(r,t) = (u(r,t) — u(-r,t))/2 and uy(r,t) = (u(r,t) + u(-r,t))/2.
All computations have been done on centrosymmetric grids, but centrosymmetry has not
been otherwise enforced.

4.2.3.1 Energy scaling with Reynolds number in the axial spin case

For the axial spin case, equations (4.2.1)-(4.2.2) are integrated with B = 0 in the precessing
reference frame. We start our investigations with a Navier-Stokes run at R, = 1200 as
in [83]. The initial velocity field in the precessing frame is the solid rotation: uy = e, xr.
The onset of the axial circulation induced by precession is monitored by recording the
time evolution of the normalized total kinetic energy K(t) = % [, u*(r,t)dr/Ky where
Ky = % fc uZ dr is the kinetic energy of the initial solid body rotation. This computation
is the same as in [83] where it was shown that the time evolution of the total kinetic energy
exhibits doubly periodic oscillations. To enrich the dynamics we increase the Reynolds
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number as reported in figure 4.24. Usually, for saving computing time, we use computed
velocity fields obtained at smaller R, to restart computations at higher R.. Note that a
rotation period is 27 in our units. For R, < 4000, we perform Direct Numerical Simulations
(DNS) while, for R, > 4000, we use a stabilization method to reach higher Reynolds
numbers with similar spatial and time resolutions (see Appendix for an explanation of
this method). The parameters for the stabilization method (LES in short) are tuned at
R, = 4000: figure 4.24b shows for 0 < ¢ < 300 the kinetic energy computed in DNS from
figure 4.24a and shifted in time and, for 300 < ¢ < 430, the kinetic energy computed in
LES at R. = 4000. Dynamical behaviours are similar and validate the LES coefficients
which are kept for increased R, number computations. Note that the time-averaged kinetic

energy K decreases with R, at ¢ fixed.

4 S 2 —
0.45 Re=1200 0.28 DNS Re=4000
Re=2000 —— 026 LES Re=4000
! Re=3000 - | | ——  LES Re=7500 |
0.40 Re=4000 — 0.24 . — LESRe=10000
0.22 | T LES Re=15000 1
0.35 | 1 0.20 |-
g g o8t
0.30 | ‘,‘ 1 0.16 |-
‘1“ . a 0.14 [ H
0.25 | \/\W 012 |
0.10 |
0.20 e 0.08 e
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900
Time Time
(a) (b)

Figure 4.24: (Color online) Time evolution of the total kinetic energy K(t) in the
precession frame for different Reynolds numbers as indicated: (a) DNS at R, =
1200, 2000, 3000, 4000; (b) DNS computation at R. = 4000 and LES computations at
R, = 4000, 7500, 10000, 15000.

Using our LES method, the range of Reynolds numbers that we have explored is wide
enough to suggest a scaling law for the time-averaged kinetic energy, K, as a function of
the Reynolds number R, for the precession rate € = 0.15. To substantiate this claim we
show in figure 4.25a the time-averaged kinetic energy K as a function of R.. Values for
R, < 1200 are extracted from our previous article [83]. The log-log representation of the
data suggests that in range R. € [400 : 15000] the energy scales like K ~ R;04® (see
figure 4.25b), which in turn suggests the following scaling law for the temporally averaged
velocity @ ~ Re V4 _ i/ (where Ek is the Ekman number). This scaling predicts
that the average flow vanishes at large R.. This property is not paradoxical since, in an
axisymmetric container with a rotation axis parallel to its symmetry axis, the azimuthal
flow is driven only by viscous forces at the wall. Since in the limit of zero viscosity the
rotation does not force the flow, one expects to get at the inviscid limit a static fluid in
the precession frame and a solid body motion around the rotation axis in the mantle frame
at @ = —e, (note that it is a counter-rotation with respect to the spin rotation). In the
precession frame (i.e., the turntable frame), the inhibition of the mean rotation has been
observed in the ATER experiment [82]. In the mantle frame, the corresponding nearly
rigid-body rotation has been discussed in [58] where it was called geostrophic flow: it was
shown that its size and amplitude gradually grow as e increases from 0.075 to 0.25 at
R. = 10000.
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Figure 4.25: (Color online) Total (time-averaged) kinetic energy K in the precession frame
as a function of the Reynolds number R.: (a) in linear scale and (b) in log-log scale with
the fit R 048,

We observe the same behavior in the precession frame when we increase R, at fixed
Poincaré number ¢ = 0.15: figure 4.26 shows that the highest values of the axial velocity
are more and more localized near the lateral wall. As R, increases, the central part of the
flow is nearly static and all the small scales, highly intermittent, are pushed towards the
wall. For all Reynolds numbers, we observe a central S-shaped vortex deformed by the
precession and connected to the walls through viscous boundary layers (see figure 4.27).
With increasing R., the vorticity lines are more entangled and the central part of the
vortex is more aligned with the z-axis (the precession axis).

052
-040
020

0.0
-0.20
-0.40

-0.59

(a) (b) (c)

Figure 4.26: (Color online) Snapshots of contours of the axial velocity in the equatorial
plane in the precession frame: (a) at t = 302 and R, = 1200, (b) at ¢t = 235 and R, = 4000
and (c) at t = 850 and R. = 15000.

This tendency to alignment with the precession axis is also apparent on the time-
averaged velocity and vorticity fields as displayed on figure 4.28. A similar three-dimensional
structure is observed at € = 0.1 and R, = 10 in a precessing sphere in the axial spin case,
where it is attributed to a pair of large-scale energetic vortex tubes (see figure 16 in [30]).
For a precessing cylinder, this structure can be attributed to the trace of the S-shape vortex
observed at all Reynolds numbers.

Another way to interpret our scaling based on this wall-localization is to consider that
velocity of order 1 is concentrated in a small layer ¢ on the lateral wall (within the volume
2nRSH). The scaling gives §/R ~ 1/+/R. reminiscent of the usual width of a boundary
layer.
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Figure 4.27: (Color online) Streamlines of the instantaneous vorticity field (in red/dark
grey) from a perspective point of view and contours of the axial velocity in the equatorial
plane: (a) R. = 1200 and (b) R, = 15000.

(¢) R, = 4000, top view (d) R, = 4000 from the side

Figure 4.28: (Color online) Streamlines of the mean velocity field (in yellow/light grey) and
of the mean vorticity field (in red/dark grey). Illustrated are 100 streamlines for u with
endpoints distributed uniformly on the Oz axis and 20 streamlines for Vxu with endpoints
distributed uniformly on a sphere of radius 0.2: (a-b) R, = 1200 and (c-d) R, = 4000.

4.2.3.2 Comparison between equatorial and axial spin forcing

For the equatorial spin case, equation (4.2.5) is integrated with B = 0. We use a different
normalization for the total kinetic energy for the equatorial spin case, namely the kinetic
energy of the solid rotation around the equatorial axis e;, ug = e, xr denoted as Ej =
0.5 [(ug)2dV. We define the normalized total kinetic energy in the wall frame as E+(t) =
0.5 [u%dV/Ejy, the asymmetric kinetic energy Ex(t) = 0.5 [ u2dV/E; and the asymmetry
ratio r-(t) = E-(t)/E-(t).

a
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Figure 4.29a shows the time evolution of the total kinetic energy in the mantle frame
which rapidly increases with R, for moderate Reynolds numbers and then seems to saturate
at large Reynolds numbers. The asymmetric ratio of figure 4.29b fluctuates in time and
the flow is clearly asymmetric for R, > 1000. This ratio seems also to saturate around 6%.
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Figure 4.29: (Color online) Time evolution of (a) the total kinetic energy E+(t) and (b) the
asymmetry ratio r-(t) = Ex(t)/E*(t) in the mantle frame at different Reynolds numbers

R, in the equatorial spin case.

To compare the efficiency of energy injection according to the two ways of spin forcing,
we need to use a shared reference frame. We perform a change of reference frame for the
axial spin data: velocities are simply transformed from the precession frame to the wall
frame with u(r,t) = ull(r,#) + e, xr. Note that K and E! have the same normalization
factor which is different from that of E+. For example, we display the time evolution
of the kinetic energy of the axial spin case at R. = 1200 in the two reference frames in
figure 4.30a.
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(a) Axial spin case at R, = 1200 recorded in (b) Axial and equatorial spin cases in the wall
the two frames frame

Figure 4.30: (Color online) (a) Time evolution at R, = 1200 of the kinetic energy K (t) in
the precession frame as in figure 4.24a and of the transformed kinetic energy Ell(¢) in the
wall frame for the axial spin case. (b) Comparison of the kinetic energy in the wall frame
for the axial and the equatorial spin cases at R, = 1200.

We plot in figure 4.30b the normalized kinetic energy of the two configurations in the
wall frame at R, = 1200. Note that both the time-averaged value of the kinetic energy
and the fluctutations are larger in the equatorial spin case than in the axial spin case.
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Figure 4.31: (Color on line) Comparison between the axial and equatorial spin cases:
kinetic energy azimuthal spectra as a function of the azimuthal mode m (a) and snapshot
at R. = 1200 of the vorticity field lines (red/dark grey) and contours of the axial velocity
component in the equatorial plane: (b) axial spin case (same as figure 4.27a), (c¢) equatorial
spin case.

We compare in figure 4.31 kinetic energy azimuthal spectra as a function of the az-
imuthal mode m (defined around the symmetry axis of the cylinder) at the same Reynolds
number R, = 1200 for the two forcings as well as snapshots of instantaneous vorticity and
velocity fields. Note that the equatorial spin case needs twice Fourier modes as much as
the axial spin case, therefore the computations are more demanding. We see also different
features in the two flows: the spin axis case displays a deformed S-shape vortex approxi-
mately contained in a meridian plane and a velocity field localized near the side wall; the
equatorial spin case shows no coherent vortical structure with small-scales localized near
the wall.

It is then interesting to compare the time-averaged value of the total kinetic energy
Ell and E* as in figure 4.32a as a function of R.: for the axial spin case, the efficiency of
the viscous forcing decreases when R, increases; for the equatorial spin case, the kinetic
energy is slightly larger and saturation is nearly achieved at R. = 4000. We know that
(see previous section), at large R., in the axial spin case, the system tends to a nearly rigid
body rotation around the rotation axis e, in the mantle frame corresponding to the value
1 for the normalized time-averaged kinetic energy Ell. By analogy, we expect that, in the
equatorial spin case, the system should also nearly rigidly rotate around the rotation axis
e, since the kinetic energy E' seems to converge also to 1.

The difference between the two spin forcings is made apparent with the asymmetry
ratio: it becomes positive for similar Reynolds numbers R, 2 800 but its value is much
larger in the equatorial spin case than in the axial spin case by a factor of three at large
Reynolds numbers (see figure 4.32b). The equatorial spin case is therefore more efficient
in breaking the centro-symmetry than the axial spin case.

Based on the phenomenological argument that dynamo action is favored by symmetry
breaking, it could be anticipated that the equatorial spin case would generate dynamo
action at a lower threshold than the axial spin case. However, it is shown in section 4.2.4.2
that this intuitive argument is incorrect.

4.2.4 Dynamo action

We now investigate the MHD regime, where R, and R,, are the two control parameters.
The nonlinear MHD simulations use a small magnetic seed field as initial data or restart
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Figure 4.32: (Color on line) Comparisons between the axial and equatorial spin cases in
the wall frame (also called the mantle frame): (a) time-averaged total kinetic energy E!
and E* as a function of R.; (b) time-averaged asymmetry ratio E) JEl and ELX/E+ as a
function of R,.

from a state computed at neighboring parameters. As already observed for spherical and
spheroidal dynamos, dynamo action occurs after symmetry breaking of the flow when the
magnetic dissipation is small enough, i.e. for magnetic Reynolds numbers R,, above a
critical value RS (R.).

4.2.4.1 Axial spin case

4.2.4.1.1 Reminder from [83] In [83], we have explored the range of the kinetic and
magnetic Reynolds numbers and found dynamo action for R, = 1200 and R,, > RS, ~ 775
when the solid walls of the vessel were assumed to be insulating. The growing magnetic
field that is observed rotates in the precession frame of reference and is dominated by the
m = 2 mode: as shown in figure 4.33b, the magnetic field lines show a mainly quadrupolar
structure in the vacuum when seen from the top of the cylinder.

4.2.4.1.2 Numerical results with thick walls We now present new results about
thresholds and growing magnetic fields when using conducting or ferromagnetic walls of
relative thickness w = 0.1 at different places. The relative conductivity of these walls is
chosen to be that of copper i.e., g, = 4.5 or the relative magnetic permeability is taken to
be that of soft iron i.e., u, = 65 [110].

Conducting walls. We study the influence of the conducting walls with ¢, = 4.5 and
tr = 1. We keep R, = 1200 and vary R,, to find the threshold when the growth rate of
the magnetic energy is zero. We define four cases as follows. We call ’insulating’ case the
configuration studied in [83], the ’side’ case corresponds to adding conducting walls on the
cylindrical side of the vessel, the 'lid’ case corresponds to adding conducting walls at the
top and bottom of the vessel, and the 'wall’ case corresponds to adding conducting walls
everywhere.

We first show in figure 4.34a a series of dynamo simulations done with R,, = 300,400
and 900 for the ’side’ case. The figure shows the time evolution of the magnetic energy
M(t) = ch 3B2/uoprdV where € is the fluid domain and the walls. We start the R, =
900 run with a magnetic seed and integrate long enough to get a decrease or an increase of
M. Dynamo action occurs when M (t) is an increasing function of time as is the case for

89



4.2. TWO SPINNING WAYS FOR PRECESSION DYNAMO

\
(a) ’insulating’ case in perspective (b) ’insulating’ case from the top

Figure 4.33: Snapshot at R, = 1200, R,, = 2400 for the ’insulating’ case showing vorticity
field lines (red lines inside the cylinder) and magnetic field lines colored by the axial
component |yellow (green) for positive (negative) h, component|: (a) perspective view, (b)
from the top of the cylinder. From [83].

R,, =900 and R,, = 400 but not for R,, = 300. The initial velocity and magnetic field
for the runs at R,, = 400 are the velocity and the magnetic fields obtained from the run
at R, = 900 at time t = 47. For R,, = 300, we restart from R,, = 400 at time ¢t = 107.
Linear interpolation of the growth rates gives an estimate of the critical magnetic Reynolds
number RS ~ 365 for the ’side’ case.

We perform two other series of simulations and collect the growth rates in figure 4.34b.
The thresholds are RS (‘side’) ~ 365 < RS (‘'wall’) ~ 650 < RS (‘insulating’) ~ 775 <
RS ('lid") ~ 965. We observe that the ’lid’ walls are highly detrimental to the dynamo
action while adding the ’side’ walls helps it. That is reminiscent to the results found
in [106, 64| for the von Karman Sodium experiment.

Conducting walls enable currents to loop on longer scales but also lead to different
growing magnetic field structures (see figure 4.35). The 'lid’ configuration as the 'insulating’
configuration lead to a mainly quadrupolar magnetic field while the ’side’ case gives rise
to a mainly equatorial dipolar growing magnetic field. The ’wall’ configuration shows an
oblique dipolar growing magnetic field (data not shown).

Ferromagnetic walls. We now study the influence of the ferromagnetic walls with
ur = 65 and o, = 1. We keep R, = 1200 and vary R,, to find the threshold when
the growth rate of the magnetic energy is zero. We define four cases as before. We
call ’insulating’ case the configuration studied in [83], the ’side’ case corresponds to adding
ferromagnetic walls on the cylindrical side of the vessel, the ’lid’ case corresponds to adding
ferromagnetic walls at the top and bottom of the vessel, and the 'wall’ case corresponds to
adding ferromagnetic walls everywhere. We perform linear dynamo simulations and collect
the growth rates in figure 4.36a. The thresholds are RS (‘insulating’) ~ 775 < RS, (‘side’) ~
800 < RS ('wall’) ~ 840 < RS ('lid") =~ 880. We can note that adding ferromagnetic walls
increases the threshold in any case. In the 'wall’ case the magnetic energy is dominated by
the m = 1, 2 modes and the growing magnetic field is an equatorial dipole (see figure 4.36b).
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Figure 4.34: Conducting walls: (a) Time evolution of the magnetic energy M (t) in the
conducting fluid at R. = 1200 and various R,, as indicated (in lin-log scale) for the
'side’ case; (b) Growth rates of the magnetic field energy as a function of R, for various
configurations. The values are for R, = 1200 and the thickness of either conducting
wall type is taken as 0.1R, with a relative conductivity o, = 4.5 and relative magnetic

permeability p, = 1.

(a) From the top for the ’lid’ case (b) From the top for the ’side’ case

Figure 4.35: Conducting walls: Snapshots at (a) R. = 1200, R,, = 1000 for the ’lid’ case
and (b) R. = 1200, R,, = 900 for the ’side’ case showing vorticity field lines (red lines
inside the cylinder) and magnetic field lines colored by the axial component [yellow (blue)

for positive (negative) h, component].

Although a predictive explanation of the variation of the dynamo threshold is still
lacking at the present time, the impact of the nature of the walls seems crucial for the design
of experimental fluid dynamos. For conducting walls, the increase of RS, from the ’side’ case
to the ’lid’ case suggests to diminish the influence of the lid by lowering its conductivity:
for example, it would be interesting to consider an inner copper layer attached to the outer
stainless steel shell of the dynamo vessel in the DRESDYN precession experiment. In any
configuration ferromagnetic walls seem to be detrimental to the dynamo action.
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(a) Growth rates vs. Ry, (b) Snapshot for the 'wall’ case with u, = 65

Figure 4.36: Ferromagnetic walls: (a) Growth rates of the magnetic field energy as a
function of R, for various configurations. The values are for R, = 1200 and the thickness
of either ferromagnetic wall type is taken as 0.1 R, with a relative conductivity o, = 1 and
relative magnetic permeability . = 65. (b) Snapshot at R. = 1200, R, = 1000 for the
'wall’ case showing vorticity field lines (red lines inside the cylinder) and magnetic field
lines colored by the axial component [yellow (blue) for positive (negative) h, component].

View from the top.

4.2.4.2 Equatorial spin case

We now want to test if the equatorial spin case with a higher level of asymmetric energy is
more efficient for dynamo action than the axial case. For that purpose, various MHD runs
are performed at R. = 1200 for different values of the magnetic Reynolds numbers R,, as
in [83]. The onset of dynamo action is monitored by recording the time evolution of the
magnetic energy in the conducting fluid M (¢). Two types of simulations are done: linear
dynamo runs are first performed by imposing B = 0 in equation (4.2.5), i.e., the retroaction
of the Lorentz force on the velocity field is disabled; then the Lorentz force is restored to
observe the nonlinear saturation and the full system of equations (4.2.5,4.2.2,4.2.3,4.2.2)

is integrated.

4.2.4.2.1 Linear regime A first series of linear dynamo simulations is done with R,,, =
1200,2000 and 2400. The time evolution of M (t) is shown in figure 4.37a. The initial
velocity and magnetic field for the runs at R,,, = 2000 and 2400 are the velocity and the
magnetic fields obtained from the run at R, = 1200 at time ¢t = 282. Dynamo action occurs
when M (t) is an increasing function of time for large times with a positive growthrate (as
is the case for R,, = 2400). Linear interpolation of the growthrates gives the critical
magnetic Reynolds number RS ~ 2130 at R, = 1200, i.e., the critical magnetic Reynolds
number is almost three times larger than that in the axial spin case (see section 4.2.4.1.1).
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Figure 4.37: Equatorial spin case: Time evolution of the magnetic energy M(t) in the
conducting fluid (a) in the linear regime from ¢ = 275 at R, = 1200 and various R,, as
indicated (in lin-log scale) and (b) in the nonlinear regime.

4.2.4.2.2 Nonlinear regime To observe the nonlinear saturation, we use as initial
data the velocity and magnetic fields from the linear MHD run at ¢t = 323 for R,,, = 2400
(see figure 4.37a). The amplitude of the initial magnetic field is multiplied arbitrarily by
200 to reach saturation faster; the initial velocity field is kept unchanged. Figure 4.37b
shows that M (t) decreases rapidly over a time period corresponding to one turnover time,
i.e., until ¢ = 329, and begins to oscillate thereafter. After restarting the MHD run at
t = 357 with R,, = 2000 and running it until ¢ = 405, we observe that M (t) decreases
with time. After restarting the MHD run at ¢t = 355 with R,,, = 1200 and running it until
t = 387, we observe that the dynamo dies in a short time lapse. A snapshot of the vorticity
and the magnetic field lines at R, = 1200 and R,, = 2400 is shown on figure 4.38. We
observe a central S-shaped vortex deformed by the precession and connected to the walls
through viscous boundary layers. The magnetic energy is dominated by the azimuthal
modes m = 1, 2,3 and the magnetic field lines exhibit a complex shape.

(a) from the side (b) from the top

Figure 4.38: (Color on line) Equatorial spin case: snapshot at ¢t = 395 at R, = 1200 and
R,, = 2400 of the vorticity field lines (grey/red) and the magnetic field lines colored by
the axial component (light grey/yellow for positive axial magnetic field component and
black/blue for negative axial magnetic field component). (a) The view is seen from the
side (O is the spin axis, Oz the precession axis), (b) from the top.
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4.2.4.3 Discussion about mean flows induced by the two spinning ways at
R, = 1200

Since the two spinning ways for precession forcing lead to different dynamo properties, it
seems discerning to compare the mean flows at play in these two cases. Figure 4.31a shows
that the kinetic energy azimuthal spectra at R, = 1200 are different for the two forcings,
with much more energy in the high azimuthal modes for the equatorial spin case. Although
comparing unidirectional spectra is straightforward with our hybrid code, this comparison
is limited since the symmetry axis for the equatorial spin case may not be relevant (as
is clearly seen in a stratified medium when the reference axis is chosen perpendicular to
the effective gradient). Moreover comparing the flows in the physical space is not an
easy task since it needs to take into account their full 3D geometry and time dependence.
Figure 4.30b shows indeed that the two forcings lead to highly different time regimes of
the total kinetic energy. Another possibility is to resort to the time-averaged flows over
several turns from figure 4.30b. Figure 4.39 reveals a rather structured large-scale flow for
the axial spin case while no coherent feature is apparent in the equatorial spin case. This
lack of large coherent scale flow may contribute to enhance the dynamo threshold in the
equatorial spin case.

(a) axial spin (b) equatorial spin

Figure 4.39: (Color on line) Time-averaged velocity field at R. = 1200 for the axial and
equatorial spin cases: vorticity field lines (red/dark grey), contours of the axial velocity
component in the equatorial plane and isosurface of |u|?: (a) axial spin case (with |u/? at
0.3% of maximum in the precession frame), (b) equatorial spin case (with |u|? at 70% of
maximum in the wall frame).

4.2.5 Conclusion

Using numerical simulations, we have extended the scope of precession forcing in hydro-
dynamic and magnetohydrodynamic regimes by assuming that the symmetry axis of a
cylindrical container does not coincide necessarily with the spin axis. To reduce the pa-
rameter space, we have fixed the Poincaré number, the ratio of precession to spin rotation,
to € = 0.15 and chosen a container length equal to its diameter. We have considered
only equatorial spin forcing besides the more conventional axial spin case, with a spin
axis orthogonal to the precession axis. In the axial spin case, the kinetic energy in the
precession frame decreases when the Reynolds number increases. It verifies a scaling law,
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R;%48 which suggests that the dominant kinetic energy lies in a viscous boundary layer.
Thus the numerical approach is in agreement with the experimental inhibition of the spin
motion [82] observed at Reynolds numbers hundred times larger the ones computed in the
present paper. In the resulting flow, the azimuthal speed decreases rapidly in the viscous
boundary layer attached to the wall, while a 3D bulk flow involving axial velocities is
formed. In the wall frame, kinetic energy appears to increase with the Reynolds number,
since the bulk flow is nearly in counter-rotation with respect to the container frame.

Using equatorial spin forcing, kinetic energy is also increasing with the Reynolds num-
ber in the wall frame, indicating that the flow also tends to the rotation opposite to the
spin motion. This fact suggests that the precession acts efficiently against the inertial
forcing by the moving walls. At R, = 4000, for example, kinetic energy is close to 90% of
the one of solid body spin motion.

In the perspective of studying dynamo action, comparison of asymmetry ratio shows
a saturation at rather low values, although different in the axial spin case (around 1.8%)
and in the equatorial spin case (around 6%). Contrary to what could be expected from
these results, the critical magnetic Reynolds number is found to be lower for the axial spin
configuration than for the equatorial spin case. This result contradicts the intuition that
wall-normal stress would enhance symmetry breaking and would favor dynamo action.
Inspection of flows at R, = 1200 reveals different features like more small-scales in the
equatorial spin case with a less coherent large-scale flow.

Our results of varying wall properties of a cylinder precessing in the axial spin config-
uration are encouraging for the optimization of the critical magnetic Reynolds number for
the planned experiment at DRESDYN, where magnetic Reynolds number as large as 700
are expected to be reached: it could be interesting to add an inner copper layer inside the
stainless steel container. The question of self-excitation in a real precession experiment is
far from being settled though.

4.2.6 Appendix: Stabilization method

As the Reynolds number is chosen beyond a few thousands, due to a lack of computational
resources, dynamical scales smaller than the mesh scale appear in the flow. So large
gradients, which produce even smaller scales by the action of nonlinearity, are not correctly
represented by the mesh. As a consequence, numerical approximations accumulate energy
that should have been dissipated. In order to expand the range of Reynolds numbers
the code SFEMaNS can approximate, a stabilization method called entropy viscosity is
implemented. This method was developed by J.-L. Guermond [37], [38], and consists of
adding a local artificial viscosity made proportional to the residual of the Navier-Stokes
equation 4.2.1 or 4.2.5. This artificial viscosity induces a diffusion proportional to the
energy imbalance such that the action of unresolved scales is better represented.

To give technical details on the entropy viscosity definition, we consider a mesh Ky of
the domain made of cells K with local mesh-size hx. We introduce a time-step 7 > 0 and
set ¢" = ¢(n7) for any time-dependent function ¢. Then we define the residual of the
Navier-Stokes equation as follows:

u” — un—2

L I Y (4.2.6)
.

Reska =
NS Re

where f takes into account the Coriolis, Poincaré and Lorentz forces depending of the
problem setting (axial or equatorial spin cases). This residual is computed at each time
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step and over every mesh cell. It allows us to introduce a local artificial viscosity, defined

on each cell K by:

hiIResks - u™ Lo k)

—1)2
[lun—1]] o0 ()

n .
VRIK =

(4.2.7)

The quantity V%‘ i 18 expected to be as small as the consistency error in smooth regions
and to be large in the regions where the PDE is not well resolved. To avoid excessive
dissipation and to be able to run with CFL numbers of order O(1), we define the entropy
viscosity as follows:

V%\K = min (CmaxhKHunHLOO(K)v CeV]%‘K> 5 (428)

with cpax € (0, l] and ce € (0,1] tunable constants. Technical details about cpax and ce
tuning are given in section 2.7 of [37]. Thus defined, the entropy viscosity does not perturb
the approximations in smooth regions and is first order in regions with large gradients.

| R | DNS/LES | 7 [ Ne | hway | b |

4000 DNS 1073 | 32 | 0.008 | 0.024
4000 LES 1073 | 24 | 0.0125 | 0.05
7500 LES 1073 | 32 | 0.008 | 0.04
10000 LES 1073 | 48 | 0.008 | 0.04
15000 LES 5.107* | 64 | 0.005 | 0.02

Table 4.4: Space and time resolutions used for DNS and LES computations in the axial
spin case. Np represents the number of Fourier modes, 7 the time step, hpqy the mesh
size near the walls of the cylinder and hj,; the mesh size along the axis r = 0 used to
approximate the pressure (the velocity field is approximated with cells twice smaller).
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0215 10°
750 800 850 900 950 1000 1050 1100 1150 o 5 10 15 20 25 30 35
Time Fourier mode
(a) Kinetic energy K (b) Energy spectra at final time

Figure 4.40: Comparisons of DNS and LES results at R. = 4000. (a) Evolution of total
kinetic energy K (t) (zoom of figure 4.24b), (b) kinetic erngy azimuthal spectra at final
time as a function of the Fourier modes (0 < m < 31 with DNS and 0 < m < 23 with
LES).

For completeness we report in table 4.4 information on the spatial and time resolu-
tions used for the hydrodynamic study of the axial spin case with R. > 4000. We also
provide a comparison of the kinetic energy and energy spectrum at final time of DNS and
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LES computations with R, = 4000 in figure 4.40 to enhance the correct behavior of the
entropy viscosity method. As pointed out previously the kinetic energies of DNS and LES
computations match up to a 2% relative error. Moreover the entropy viscosity manages
to approximate correctly the energy spectrum of the DNS computation. It confirms that
LES recovers a similar dynamics to the one approximated with DNS.
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(grant 2015-0254) in France and BRAZOS at TAMU. J.-L. Guermond acknowledges sup-
port from University Paris Sud and the National Science Foundation grant NSF DMS-
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Momentum-based approximation of
incompressible multiphase fluid flows

This chapter aims at extending the range of SFEMaNS code to multiphase flow problems.
With that objective we present, in the form of an article in preparation, a new approxi-
mation method of such problems that we implement and numerically test with SFEMaNS
code. This method combines a level set method, used to follow the evolution of the interface
between two fluids that are assumed immiscible, and an approximation of the Navier-Stokes
equations inspired of [41]. The method relies on the use of the momentum m, equal to
the density p times the velocity field u, as a variable for the Navier-Stokes equations. As
a consequence the mass matrix becomes time independent and can be treated implicitly.
We note this would not be possible when using the velocity field as variable due to the
evaluation of the product p with dyu. However the diffusive term, which involves the ve-
locity, needs to be treated explicitly such that we can work with time independent algebra
for computational efficiency purposes. While the treatment of the dissipation operator is
described in section 2.5.1 and the following, we note that the main novelty of this method
is to use the entropy viscosity to stabilize both the momentum and the mass (i.e level set)
equations. As the energy equation associated to the momentum equation also contains in-
formation on the mass equation, we believe the entropy viscosity to be a perfect candidate
to stabilize our equations and to reduce spurious oscillations generated when large ratios of
density or viscosity are involved. After describing the method and presenting theoretical
arguments to legitimate it under reasonable simplifying assumptions, the method is tested
with numerous tests involving either gravity, rotational container, surface tension or MHD
effects. Eventually we note that this method allowed us to perform a preliminary study of
Liquid Metal Battery instability in Herreman et al [46].
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5.1. INTRODUCTION

Momentum-based approximation of incompressible
multiphase fluid flows

L. Cappanera!, J.-L. Guermond"?, W. Herreman' and C. Nore!

Abstract We introduce a time stepping technique using the momentum as dependent
variable to solve incompressible multiphase problems. The main advantage of this ap-
proach is that the mass matrix is time-independent making this technique suitable for
spectral methods. The method is validated by solving a wide range of problems going
from manufactured solutions to a MHD problem with a liquid metal.

5.1 Introduction

Variable density flows and multi-fluid models are important in many applications rang-
ing from geophysical flows to magnetohydrodynamics. Almost every solution method for
incompressible flows currently available in the literature uses the velocity as dependent
variable. As a consequence, when using finite elements, the mass matrix associated with
the term pdsu must be assembled at each time step, since the density, p, depends on time
and space. Evaluating the product of p by d,u can be expensive when using high-order
elements, or cannot be made implicit when using spectral methods. We propose in the
present paper to investigate an alternative formulation which consists of using the momen-
tum as dependent variable, as routinely done in compressible fluid mechanics. This change
of dependent variable is not simple, since the viscous dissipation depends on the velocity
and thereby must be treated implicitly to avoid unreasonable time step restrictions. This
obstacle is overcome by re-writing the dissipation appropriately and by accounting for the
fact that the range of variation of the kinematic viscosity of many fluids and gases is smaller
than that of the dynamic viscosity. In particular, denoting the momentum m := pu, we will
rely on the fact that the dominating part of the viscous dissipation operator —V-(n(p)Vs%)
can be re-written —V-(Vmax Vom) + V- (Umax Vm—n(p) V¥u). Under reasonable simplifying
assumptions, it can be shown that provided —V:(vpaxV*m) is made implicit, the correc-
tion V-(VmaxV®m — n(p)V*u) can be made explicit without compromising unconditional
stability too much. This approach has also been used in [24]. The objectives of the present
paper are to present this new method and to validate it against referenced cases mainly on
hydrodynamic cases. We present also a magnetohydrodynamic case for a generalization to
conducting fluids of our method.

The paper is organized as follows. We formulate the multiphase problem and introduce
the level set technique in §5.2. The semi-discretization using the momentum as dependent
variable is introduced in §5.3. A stability result in a simplified setting is given. The
full discretization is described in §5.4. We show in particular in this section how the
level set equation is stabilized by using an entropy-viscosity technique. The proposed
technique is validated against analytical and manufactured solutions in §5.5. We solve
Newton’s bucket problem and a variation thereof in §5.6 and §5.7. The modeling of the

!Laboratoire d’Informatique pour la Mécanique et les Sciences de I'Ingénieur, CNRS UPR 3251, Rue
John von Neumann, 91403 Orsay cedex, France and Université Paris-Sud

2Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843-3368,
USA

100



CHAPTER 5. MOMENTUM-BASED APPROXIMATION OF INCOMPRESSIBLE
MULTIPHASE FLUID FLOWS

surface tension effects is validated in §5.8 by solving various classical benchmark problems
involving bubbles. Finally we solve a multiphase MHD problem in §5.9.

5.2 The model problem

We introduce in this section the model problem and describe the level-set representation
of the two phases composing the fluid.

5.2.1 The Navier-Stokes system

Consider a domain Q C R, where d = 2 or 3, occupied by a variable density incompressible
fluid. Denoting by p, m and p the density, momentum and pressure, the conservations of
mass and momentum are expressed as follows:

Op+Vm=0 (5.2.1a)
2 1 1

oym + V- (m®u) — R—ev-(n(p)e(u)) + Vp = W@VS - Epez +f, (5.2.1b)

Vou =0, (5.2.1¢)

where u = %m is the velocity, e(u) = V¥u = 1(Vu+ (Vu)T) is the strain rate tensor and

S is the volume distribution of surface tension. The scalar field n(p) is the distribution of
dynamic viscosity, which we assume to depend on p. The term —F%pez is the buoyancy
force; the unit vector e, conventionally gives the upward direction. The quantity f is a yet
undefined source term. The above equations are written in non-dimensional form. The
reference length scale is denoted Lyet, the reference velocity is denoted U,et; the reference
time scale is then Lyer/User. The reference density, dynamic viscosity, and surface tension
coefficients are denoted pref, Mref, and opef, respectively. The Reynolds, Froude and Weber
numbers are defined by

2 2
Re _ prerrefLref’ Fr _ Uref : We _ prerrefLref‘ (522)
Tref 9Lyet Oref
The above system is supplemented with initial and boundary conditions
up =v, uj;—o = uo, (5.2.3)

where I' is the boundary of 2. The initial velocity field ug is assumed to be divergence
free.

5.2.2 Level-set representation

We henceforth assume that the fluid is composed of two separate phases of (non-dimensional)
density pg, p1 and dynamic viscosity 79, 171, and we propose to represent the density dis-
tribution by using a level set technique. Compared to front tracking techniques, level-set
methods have the advantage of handling topology changes of interfaces easily, see e.g.
[3, 73, 44, 103|. We then introduce the level-set function ¢ :  x [0, T] — [0, 1] satisfying
the following transport equation:

O +uVo =0, Pi=0 = 0. (5.2.4)
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The domain is assumed to be closed and I' is assumed to be a characteristics boundary,
i.e., wn|p = 0, which implies that there is no boundary condition on the level set function
¢. The initial data ¢¢ conventionally takes values in [0, 1]. The density and the dynamical
viscosity are reconstructed by means of the level set function as follows:

p=po+(p1—po)E(®),  n=mno+(m—mn)F (o) (5.2.5)

Depending on the physical situation to be modeled, the user-defined reconstruction func-
tion F' is either the identity, F'(¢) = ¢, or the piecewise polynomial function defined by
if ¢ —0.5 < —creg,
— _ 2_9.2
(1 I (¢—0.5)((¢—0.5) 3Creg)) if ’¢ _ 05’ < Cregs (526)

—263
if Crog < ¢ — 0.5.

(o) =

= o= O

The user-defined coefficient c;eq is selected in the interval (0, %], Creg = 0.4 is a typical value
regularly used. Note that these definitions imply that p(x,t) € [po, p1] and n(p) € [no, m]
for all x € Q and all ¢ € [0, T}, since (5.2.4) satisfies the maximum principle ¢(x,t) € [0, 1]
forallx € Q2,¢ > 0.

The surface tension tensor S appearing in the momentum equation (5.2.1b) is expressed
in terms of the level set function as follows:

VoV
S=—-"T Ve, 5.2.7
o~ Ivel (5:2.7

where 7 is the dxd identity matrix and || - || is the Euclidean norm.

Remark 5.2.1. The above setting can be generalized for stratification or inclusion of n
fluids, n > 3, by considering n — 1 level set functions ¢g, ... ¢,_o. In this case the density
and viscosity are reconstructed by setting

n—2 n—2
p=po+ Y (pis1 = p)F(¢),  n=mo+ Y (i1 —m)F(¢s). (5.2.8)
=0 =0

In case of surface tension effects, the volumic force S is rewritten S = Z?:_DQ S; with §;
defined as in 5.2.7 with level set ¢;. This extension has been used to study the Tayler
instability of Liquid Metal Batteries in [46].

5.3 Semi-discretization in time

We present in this section two time stepping algorithms, both inspired from [41]. The
first one addresses the question of replacing the velocity by the momentum as dependent
variable. The second shows a pressure splitting technique that requires solving a con-
stant coefficient Poisson equation for the pressure correction instead of solving a variable
coefficient Poisson equation as usually done in the literature.

5.3.1 Constant matrix diffusion on a model problem

We motivate the approach that we are going to adopt latter by considering the following
model problem where the pressure is absent:

om+imVu+uVm—V(pe(w) =g, mpr=0, mu_g=my,  (53.1)
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where p is a given scalar field that may depend on time and space. This equation is the
prototype for the momentum equation where g collects the pressure gradient and other
source terms from (5.2.1b). Note that the term %mV-u is consistent since V-u = 0 a priori.
The question that we want to address now is that of approximating (5.3.1) in time. Let
7 > 0 be a time step, and let us set ¢, = n7 for n > 0. For any time-dependent function
o(t) we set ¢" = ¢(t,), and discrete time sequences are denoted by ¢ = {¢"},>0. Also
to simplify notation, we define the following time-increment operators:

60¢n — qbn; 51¢n — 5¢n — ¢n _ ¢n—1; 6k¢n — 5k—1¢n _ 5k—1¢n—1’ kE>1. (532)

We then propose the following discretization of (5.3.1): Set m" = myg, and for n > 0 set

m#n . nt+l..n d n+1 . 1 5pn+1 n n+1
= p" ", an RV = s . +u"-Vp , (5.3.3)

and let m™*! be the solution of

6mn+1

T

+im" (V- R +u" Vm" T -V (e (m" T —m#")) = V(" Te(u™)) +g™ T,

(5.3.4)
where 7 is a time-independent constant yet to be defined. We assume that the density is
computed in such a way that the residual R"*1 is small, i.e., the term $m"1(V.u" — R"H1)
is consistent. We also assume that the algorithm that produces the approximate density
satisfies the maximum principle. More precisely, upon defining pmin, = ess infxeq po(x) and
Pmax = €SS SUPycq po(X), we assume that

Pmin < Pn < Pmaxs V> 0. (535)

As the dynamical viscosity is seen as a function of the density, we also assume that an
analogous inequality can by written for n™, n > 0.

In the rest of the paper we denote o = ,/p. Note that the key adavantage of using
the momentum as dependent variable is that the mass matrix becomes time-independent.
Note also that the stiffness matrix associated with the fully discrete version of the algorithm
(5.3.4) is time-independent.

Theorem 2. Let v := |n(po)/pollLe(q)- Let v € (0,1) be a constant. Assume that the time
1
step is such that 72 || ———=Vp" || Loy < 7 < 1 for alln > 0 and that the sequence p”
P T2 P VP Loy v <1f > q p

s such that 17]]5”:+11 o) < 1 for all n > 0. Under the above assumptions, the sequence
nt )
defined by the scheme (5.3.4) satisfies the following energy inequality for all n > 0:

lo™ " 2y + T(1 — VIV He(um ) iz + 7l e )i
< HanunHL?(Q) + 7)o" (") |20 + 27118 L2 @ 0" Iy, (5.3.6)

and there is a constant ¢ > 0, that only depends on the shape of Q, Nmin and 7y, such that
lo™ " [F2 ) < lloouo|[F2 gy + 77ll0%(u) |72 (q) + CTZ g™ Ee)  (5.3.7)
k=0

Proof. Let us test the equation with 2ru”*!. Upon noticing that e(pu):e(v) < pe(u):e(v)+
llull2]|Volle<|le(v)|lz where [Jul|g2 is the Euclidean norm of u, ||e(v)|/,2 is the induced
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matrix norm of €(v), and ||w/||s is the max-norm of w, we infer that

2/9176(11’1“-%1 — m#" ) ( n-i-l)dQ _ 2/;2 (pn-l-l(un-i-l B un)>:6(un+1> a0

— n+1 n+1y. n+1 n e n+1 n—l— n+lg n—l—l
> 2 [ o e () d0-27o" 5 i) | s U o |V g

2 D”UnHE(unH)Hm(Q) — vflo" e (u" HL2(Q) + DHUHHEQUHH)HU ()

- 2’7H<Tn5un+1HL2(Q)||7\/pnl777n+lvpn+1”m° oV e |2 q)-
Moreover, using the following identities
2/Q(Smn+1'un+1 do = || n+1 n+1HL2(Q) Ho'nun”%ﬁ(g) + ”O,n(sun+1H%2(Q) + /Q Hun+1”?25pn+1 dQ,

/ (pn+1un+1(v_un _ Rn+1) + 2u"-Vm"+1) .un—i-l do = / Hun-ﬁ-lug2 (un'Vpn+1 _ pn-i-an-l-l) do,
Q

Q/QWRHE(U )e(u™ ) dQ = —[|v/n"Hle(du ) HL?(Q + [Vt le(uth) HL2(Q)+ [AVAUKaae HLQ(Q)a
we obtain
1
lo™ Y [F2 ) + llo" 0w o) + IV 0 e (@) T2 o) + TV (W) [[F2 (0
+ 7)o" e (u |32 )+TV\|0n+1€(5un+1)HL2(9) < 27|gllLo (@ lu™ ™ HL2(Q)

+ o™ gy + TV e (U [Ty )+Tﬂ\|0”+1€(un)\|i2(m
+2V||0"5un+1|\L2 Q)II\/”—”+1 V" e @ IV e (@) [z

where we used that [, [[u"™||%(6p" ! + ru™-Vp ! — Tp"HR”H) dQ = 0, owing to the
definition of R"*!. The assumed restriction on the time step, 7 617 Vot | Leeray <
l-—— oo o)

n n+1

v < 1, implies that

+1 +1 1g +1
277||o"du” HL?(Q HW p" ||L°o H ntle(u” ”L?Q)

< o™ du" H[Ea () + 7 VQH\/ﬁ+1 pn+1||L°°(Q W+ e(™ ™) {z o
< [lo"0u" 2y + 2 IV e (@ IR q).

Note finally that the definition of ¥ = |[1n(po)/pollr=(q) together with the assumption
Pmin < P < pmax implies that

IV +e(@u™ ez () < 7llo™ e(6u™ |z q)
Using the assumption DH%HLW(Q) <1, we infer that

_ 6 n—+1
eI ) < Pllo"e(u)l[Laq) + 7l S HL°° @V Hle(™)|iz o)
< vllome(u) L2 ) + IV e Ea o)

The inequality (5.3.6) follows readily by combining the above estimates. The estimate

vllo

(5.3.7) is a consequence of a standard telescopic argument, the first Korn inequality
ct[[Vu L2 ) < [le(u™h)]|L2 (), the Poincaré inequaliﬁy collu L2 (o) < VUL gy
and Young’s inequality 2|gl|r2(o)l[u" |2 o) < 2 HgHL2 + 63||u”+1HL2 () Which holds
for all ¢3 > 0. The constant ¢ in (5.3.7) can be chosen to be equal to (2 c3nmin(1 — 72))71.

0l
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1
Remark 5.3.1. While the hypothesis T§D\|+Vp”+1||1‘oo(g) < v < 1 may be seen as
npn+1 —
Ve o .
DT ||LOO(Q) < 1 is far less

restrictive. In principle both conditions can be checked a posteriori and the step t, — t541

a CFL-like condition on the time step 7, the hypothesis 7||
can be redone with a smaller time step if they are not satisfied.

5.3.2 Pressure splitting

In order to avoid the saddle point structure induced by the velocity-pressure coupling,
we adopt a splitting technique ¢ la Chorin-Temam. However, traditional extension of
projection methods, i.e., those based on the Helmholtz decomposition L?(Q) = {v €
L2(Q) | Vv € L*(Q), vayr = 0} & VH(Q), have the disadvantage that the pressure
must be computed by solving at each time step an equation of the form

—v(live)-uw 5.3.8
(p’“ ) (538)

which is more time consuming than solving a Poisson problem, see e.g. [11, 2, 39, 93]. The
algebraic complexity of solving the discrete version of problem (5.3.8) is higher than that
of a Poisson problem for two reasons: (i) the matrix associated with the discrete problem
is time-dependent and thus must be re-assembled at each time step; (2) the linear system
becomes ill-conditioned when the density contrast is high. It is possible to overcome this
difficulty without sacrificing stability and accuracy by abandoning the standard projection
paradigm as proposed in [40, 42|, and this is the strategy that we now adopt.

The scheme, inspired from [41] consists of working with the level set sequence ¢” plus
four dependent variables: (m”,v7,p"), where the sequence p” approximates the density,
m” the momentum, 7 the pressure increment, and p” the pressure. The density p” and
the dynamic viscosity 1™ are computed from the level set function, and the velocity is
defined to be the ratio m”/p”. We introduce the parameters

v = [n(po)/pollL=(e), X €[0,1] (5.3.9)

The scheme begins with a standard initialization step: u’ = ug, p° = po, ¥° = po, 6¢° = 0,
and proceeds as follows:
Level set: Set ¢ = ¢ and for n > 0 compute ¢! by solving

n+1
o9 +u Vet =0, (5.3.10)

n+1 n+1

and reconstruct p by setting
P = po+ (o1 — po)F(¢™), ™ =m0+ (m —no) F(6™ ). (5.3.11)

Momentum: Set m® = mg and for n > 0 set

and 7

1
m#n — pn—i-lun7 pti,n+1 _ pn + wn and Rn+1 — 1 (5pn+ n u”-Vp"“) 7
T

pn+1
(5.3.12)
and let m™*! be the solution of

dm™ 1 1 1 1 v 1 1
+ imn—l— (vun . Rn+ ) + un.vmn—s— . 2R7V(€(mn+ . m#n)) + vpﬁﬂH-
T e

1 1 n+1 n+1
v <V¢ Ve

_ en+l (] n _
=P 2 Ve ) + eV e

1

= n+l
FoRe

€.,

- ||v¢"+1||pz)
(5.3.13)
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with appropriate boundary conditions on m"+1,

Penalty: Compute ¥"*! by solving
Ayt = @vunﬂ, Doyt = 0. (5.3.14)
Pressure update: Update the pressure
P ="+ " X i (5.3.15)

The above algorithm (minus the surface tension and buoyancy terms) has been investigated
in [41] and shown therein to be stable under the time step restriction stated in Theorem 2
provided xy < % The restriction xy < % seems to be purely technical, and in practice we
use x = 1.

5.4 Full discretization and stabilization

We describe the space discretization and the corresponding stabilization techniques in this
section.

5.4.1 Space discretization

Let (Kp)nso be a mesh sequence for the domain Q C R? that we assume to be affine and
shape-regular in the sense of Ciarlet. The reference elements are denoted K , and the affine
diffeomorphism mapping K to an arbitrary element K € K, is denoted ®x : K — K.
In the simulation reported at the end of the paper are done with triangular elements, i.e.,
K= {(z1,22) € R? | 0 < xq; 0 < m9; 21 + 5 < 1}. For each mesh cell K € K, we define
the local mesh size hg to be the smallest height of K. Let k > 1 be an integer. We define
the following spaces:

X ={p € C° (Y R) | ¢goPk € Pr, VK € Ky}, (5.4.1)
Xp, = {v e CO (U RY) | vigoPx € Py, VK € Ky}, (5.4.2)
My = {q € C°/(%4R) | qxo®x € Ppy, VK € Kp}, (5.4.3)

where P is the vector space of polynomials of total degree at most k. The spaces X,
and M;, are composed of scalar-valued functions whereas X, is composed of vector fields.
The pair (X}, M},) is the so-called Taylor-Hood approximation space, which is known to be
stable to approximate the incompressible Navier-Stokes equations. The system of equations
(5.3.10) to (5.3.15) are discretized by approximating ¢7, p",n" in X3, m”,u” in X;, and
Y7,p7,q" in Mp.

5.4.2 Stabilization by entropy viscosity

In order to make the matrices in the level set equation (5.3.10) and the momentum equation
(5.3.13) fully time-independent, the nonlinear terms are made explicit and the resulting
equations are stabilized by adding some artificial viscosity that we call entropy viscosity,
[37]. More precisely we compute at each time step and over each mesh cell the residual of
the Navier-Stokes equations 5.3.13 by setting

m” — mn—2 2
Resiis = o + V(m" @ u”) = - V("e(w")) + Vp" — g",
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where g takes into account gravity, surface tension and all other possible source terms. We
introduce a local artificial viscosity defined on each cell K by setting

o hic|IResis | oo (k)
RIK [m"{| e ()

(5.4.4)

The quantity 771’}2‘  1s expected to be as small as the consistency error in the smooth regions
and to be large in the regions where the PDEs are not well resolved. To avoid excessive
dissipation and to be able to run with CFL numbers of order O(1), we define the entropy
viscosity as follows:

IJE‘K = min (CmaxhKHu”HLoo(K), CeV}%\K) . (5.4.5)

with cpax € (0, %] and ¢, € (0,1] tunable constants. In practice we take cpax = % for
P; finite elements and cpax = % for Py finite elements. The entropy viscosity is small in
smooth regions and is first-order in regions with large gradients.

The level set equation and the momentum equation are stabilized by adding the same
artificial viscosity. We explain in §5.4.3 how it is done for the level set equation. The fully
discrete momentum equation is reformulated as follows. Find m™*! € X}, such that:

/Q <l(mn+1 —m")-v+ QRZ&?(m"Jrl _ m"):g(v)> 40

T e
= / (—V-V(pn +¢") =V (m"@u")v - 2;7%:6(u"):5(v) - uﬁVm":VV) dQ
Q

e

1 1 v¢n+1®v¢n+1 1
+/ <<f"+1 — p”+1ez> V= — < — V" 2T ) :e(v) ) dQ,
g 3 AN 77 PR e R
(5.4.6)

for all v € X;,. The fields ¢y"!, p"*! are computed by solving the discrete weak form
(5.3.14) as follows. Find ¢"*! € M, such that:

| vertvran = [ rvwtag, e b, (5.4.7)
Q Q

T

and find p"*! € M, such that:

/ pHlrdQ = /(p” + ot — %Vunﬂ)r dQ, Vr € M. (5.4.8)
Q Q e

5.4.3 Compression technique for the level-set

In order to illustrate the efficiency of the entropy viscosity stabilization, we show in Fig-
ure 5.1 solutions of the transport equation 0y¢ + d,¢ = 0 over the periodic domain (0, 1)
using Py finite elements and the following approximation

1 5d)n+l 1
/ ( - + 0" ) da + / VEO,@" Oz dz = 0, Vr e Xy, (5.4.9)
0 0

where v g = min(3hxk, %I/]glK), and vp . = H‘SE(fn) + 0:E(¢"))l Lo (k) With the entropy
E(¢) = log(|¢p(1 — ¢)]). The initial data is ¢o(z) = 1 if 0.4 < = < 0.7 and ¢g(z) = 0
otherwise. The mesh is composed of 100 cells, i.e., 100 grid points. Three solutions are

computed at times T = 1, T = 10, and T = 100 in each panel. We show in the left
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panel the solutions obtained by using the first-order viscosity only, i.e., vg g = %hK,
which corresponds to the upwind approximation in the finite difference and finite volume
literature. The method is monotone but very diffusive; actually it is (’)(h%) accurate in
the L'-norm with this particular initial data. The solution computed with the entropy
viscosity, L.e., Vg = min(%hK, %I/E‘K), is shown in the central panel. The superiority
of the entropy viscosity method over the first-order viscosity solution is clear. Note that,
although the entropy viscosity is mainly localized in the two regions where the graph of
the solution goes from 0 to 1, the dissipation accumulates in time and the graph of the

.
| -

-0.2 -0.2 -0.2

approximate solution is eventually flattened.

(a) First-order Visc. (b) Entropy visc. (c¢) Entropy visc. + comp.

Figure 5.1: Linear transport: exact and approximate solutions at 7' =1, 10, 100.

To limit the flattening effect we introduce a nonlinear compression effect in the spirit
of the artificial compression methods proposed by [45]. The original idea was to add an
artificial compression step using a false-time iteration after every time step. This anti-
diffusion step is called re-initialization in the level set literature and is often done by
enforcing the level set function to be a signed distance function measuring the distance
to the interface of interest. The compression mechanism then consists of making sure
that |[V¢|l2 = 1 after each time step. Solution methods for Hamilton-Jacobi equations
are usually employed to achieve this goal, see e.g. [102]. Since it is not really necessary
that ¢ be a distance function, we prefer to adopt an approach coming from the shock-
capturing literature, such as the artificial compression method of [88], and to combine
the advection and the so-called re-initialization step into one single time step as done in
[21, 22]. Assuming that the level set of interest is ¢ = %, we propose to augment the level
set equation with a term proportional to V-(¢(1 — ¢)n), where n is the unit normal on the
interface aligned with the gradient of ¢. Since the gradient of ¢ is sensitive to O(h) errors,

we compute a smooth version of the gradient by solving ¢y, € X} so that

/(wc;ﬁ?eg + BhregV ey Vw) d2 = / we"dQ, Yw e Xp, (5.4.10)
Q Q

where hyeg € X}, is a regularized version of the mesh size. Denoting by {a; }1<i<r the collec-
tion of the Lagrange nodes associated with the space Xj, and A; = {K € K}, | a; € K} the
collection of cells containing a;, we define hyeg € X}, s0 that hreg(a;) = m >k hx. We
then approximate the normal n by Vay., /||V @il The level set ¢ € X, is computed
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by solving
Spn+l / ( ( Ceomp Vor,
rdQ = [ (—run Vet - o (Ve - SR (1 - gty ) U ) dQ,
L ‘ s heg O g

(5.4.11)

where ccomp is a tunable constant that we choose in the interval [0, 0.5].

Let us interpret the effect of the compression on the PDE corresponding to (5.4.11).
Let x0(t) be a point on the moving interface and assume that ¢ = ¢ree, the velocity is
locally constant in a neighborhood of xg, and ¢(x—ut) is time-independent. Then denoting
©(x) = ¢(x —ut) and letting s be the signed distance along the normal direction, ¢ solves
the following ODE, 9s¢ + ap(1l —¢) =0, ¢(0) = %, where & = Ceomplhpes- The solution is

reg”

o(s) = % (1 + tanh <ccomph8>> . (5.4.12)

reg

Hence at equilibrium, the compression balances exactly the artificial viscosity, and the level
set adopts the classical hyperbolic tangent profile of width hreg/Ccomp-
Once ¢"*! is computed, the fluid’s physical properties are updated by setting:

PP =po+ (o1 — po) F(6"), 0" =g+ (m —mo) F ("), (5.4.13)

where I is defined in 5.2.6.

5.4.4 Extension of the algorithm to the MHD setting

The MHD system is as follows:

Op+Vm=0 (5.4.14a)
Vou =0, (5.4.14b)
Om + V-(m®u) — }iv'(ns(u)) +Vp= WI/SVS - ;rpez + 5 (Vxb) x b, (5.4.14c)
Vb =0, (5.4.14d)
Ob + le Vx(%be) = Vx(u x b), (5.4.14e)

e

where b is the magnetic induction and S (Vxb) x b the Lorentz force. Two new non-
dimensional parameters appear: the magnetic Reynolds number R]" = po0retLretUsef,
which characterizes the ratio of the magnetic advection to the magnetic diffusion, and

the coupling parameter S = uoff:[‘}fef, which measures the ratio of the magnetic energy
to the kinetic energy. Note that we only consider problems with constant magnetic per-
meability g = pg. The electrical conductivity ¢ in the fluids is allowed to vary. The
conductivity is reconstructed like the density and the dynamic viscosity with the level
set and the function F' defined in 5.2.6. As in the Navier-Stokes equations 5.2.1b, the
diffusive term of Maxwell equations is rewritten: Vx(1Vxb) — Vx((2 — 1)Vxb) with
0 < Opin. The term Vx(%be) is made explicit, whereas the term with variable con-
ductivity —Vx((1 — 1)¥Uxb) is made explicit in order to make the stiffness matrix of the

problem time-independent.
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5.4.5 Finite elements/Fourier expansion

The algorithms described above are implemented in a code called SFEMaNS, which the
authors have been developing since 2003 in the context of a collaborative research program
in MHD. The space discretization is hybrid and specialized to axisymmetric domains. It
uses a Fourier decomposition in the azimuthal direction and the standard Taylor-Hood
Lagrange elements P1-P in the meridian section (with Py for the pressure, Py for the
velocity field and level-set, and either Py or Py for the magnetic field). The meridian mesh
is composed of quadratic triangles.

The level set is approximated by using (5.4.11). The physical properties are recon-
structed by using (5.4.13). The momentum and the pressure are computed by solving
(5.4.6)—(5.4.8). The nonlinear terms are made explicit and approximated using second-
order extrapolation in time. The code is parallelized in the Fourier space by using MPI
and it is parallelized in the meridian sections by using the code METIS from [55] for
the domain decomposition, and PETSC (Portable, Extensible Toolkit for Scientific Com-
putation) [6] for the parallel linear algebra. The nonlinear terms are computed using
a pseudo-spectral method and the fast Fourier transform subroutines from the FFTW3
package from [25]. The zero-padding technique (2/3-rule) is applied to prevent aliasing.
We refer to 32, 33, 35| for more details on SFEMaNS.

5.5 Analytical tests

We test the accuracy of above algorithm (5.4.6)—(5.4.8), (5.4.11), (5.4.13), using either
manufactured solutions or problems with analytical solutions.

5.5.1 Manufactured solution

In the first test we use a manufactured solution to evaluate the convergence properties of
the above algorithm with respect to the time step and the mesh size. Using the cylindrical
coordinates, (r,0,z), the computational domain is the cylinder Q = {(r,6,2) € [0,1] x
[0,27) x [0,1]} and the analytical solution is defined by

B(r, 0, 2,t) =12 + 22, u(r,6,z,t) = (0,r*sin(t — 2), O)T, p=0.

The source term f is computed accordingly. The surface tension and the buoyancy effects
are not accounted for, i.e., W, = F,. = oco.

The tests are performed on three different grids composed of triangular meshes of
typical mesh size h = 0.1, h = 0.05 and h = 0.025, respectively, (130, 478, 1850 triangles
and 291, 1017, 3821 Py grid points in the meridian section, respectively). Three time steps
are tested: 7 = 0.01, 7 = 0.005, 7 = 0.0025. We use R, = 250, p1 = 1, po = 2 and
n = 12 = 1. The reconstruction is linear, i.e., F(¢) =0if ¢ <0, F(¢) = if 0 < ¢ <1,
and F(¢) = 1if 1 < ¢. The error on the velocity in the L?-norm and H'-norm and on
the level set and the pressure in the L?-norm are reported in Table 5.1 at time t = 1. We
note that the error on the velocity and the pressure is mainly dominated by a time error as
fixing the time step and refining the grid does not allow to improve errors. On the other
hand the error in time is of order 1 which is consistent with our algorithm that uses BDF'1
and first-order time extrapolation.

The above algorithm can be made second-order in time by using BDF2. We omit the
details for brevity. We report the corresponding convergence tests in Table 5.2.
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Tl oot 0.005 0.0025 Tl oot 0.005 0.0025

h h
0.1 | 1.806E-04 | 9.085E-05 | 4.557E-05 0.1 | 2.220E-03 | 1.119E-03 | 5.647E-04
0.05 | 1.814E-04 | 9.115E-05 | 4.570E-05 0.05 | 2.253E-03 | 1.134E-03 | 5.691E-04

0.025 | 1.817E-04 | 9.129E-05 | 4.575E-05 | | 0.025 | 2.264E-03 | 1.139E-03 | 5.712E-04

(a) L2-error on velocity. (b) H'-error on velocity.
Tl oot 0.005 0.0025 Tl oot 0.005 0.0025

h h
0.1 | 1.309E-04 | 6.552E-05 | 3.281E-05 0.1 | 3.813E-05 | 1.920E-05 | 9.708E-06
0.05 | 5.228E-05 | 2.581E-05 | 1.285E-05 0.05 | 3.813E-05 | 1L.911E-05 | 9.575E-06

0.025 | 2.566E-05 | 1.265E-05 | 6.289E-06 | | 0.025 | 3.817E-05 | 1.913E-05 | 9.575E-06

(c) L2-error on level set (d) L2-error on pressure.
Table 5.1: Convergence tests using BDF1.

, Tl oot 0.005 0.0025 , Tl oot 0.005 0.0025
0.1 | 2.925E-06 | 1.503E-006 | 1.362E-06 | | 0.1 | 9.690E-05 | 8.949E-05 | 8.881E-05
0.05 | 2.582E-06 | 6.573E-007 | 2.004E-07 | | 0.05 | 3.880E-05 | 1.678E-05 | 1.426E-05

0.025 | 2.579E-06 | 6.463E-007 | 1.612E-07 | | 0.025 | 3.609E-05 | 9.297E-06 | 3.185E-06

(a) L2-error on velocity. (b) H'-error on velocity.
Tl oot 0.005 0.0025 Tl oot 0.005 0.0025

h h
0.1 | 3.483E-07 | 3.013E-07 | 2.9781E-07 | | 0.1 | 2.341E-07 | 2.547E-07 | 2.760E-07
0.05 | 1.657E-07 | 4.0411-08 | 1.5378E-08 | | 0.05 | 2.062E-07 | 4.308E-08 | 1.703E-08

0.025 | 1.691E-07 | 4.191E-08 | 1.0037E-08 | | 0.025 | 2.206E-07 | 5.478E-08 | 1.299E-08

(c) L2-error on level set (d) L2-error on pressure.

Table 5.2: Convergence tests using BDF2.

5.5.2 Gravity waves

We test the BDF1 version of the above algorithm on a gravity wave problem with an exact
solution. We consider a cylinder filled with two immiscible fluids of density ps > p;. The
light fluid of density p; is on top of the heavier fluid of density p2. The two fluids are
initially at rest with interface z = 0. The height of the top and bottom layers of fluid are
Hq and H, respectively. In the regime of infinitesimal displacements and zero viscosity
(Re — 400), the motion of the fluid is described by the system

popu+ VP = —pge,, Vu=0, un|p=0

The pressure can be decomposed into its hydrostatic —pgz and its fluctuating part p, i.e.,
P = —pgz + p.
infinitesimal perturbations of the interface. For instance we define the following setting:

It is possible to find an exact solution of the problem in the limit of

u; = V®;, in fluids j = 1,2, (5.5.1)
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(I)l _ Cl (e—kHl ekz+6kH1e—kz)Jm(kr)eimeeiwt’ (1)2 _ Cg(6kH2ekz—l—e_kHQ€_kz)Jm(k’l“)6im9€iwt.
where J,, is the Bessel function of the first kind. So we can write:
@y = Oy sinh(k(—Hy + 2))Jp (kr)e™e™t @y = Cy sinh(k(Hy + 2))Jp (kr)e™ et
(5.5.2)

Radial boundary condition implies that k is a root of J/, whose first values are reported
in Table 5.3.

m 0 1 2 3 4

ki || 3.8317 | 1.8412 | 3.0542 | 4.2012 | 5.3176
ko || 7.0156 | 5.3314 | 6.7061 | 8.0152 | 9.2824

Table 5.3: First two roots of J/, for various azimuthal Fourier modes.
The continuity of the normal component of the stress tensor across the fluids’ interface
gives the following dispersion relation:

2 (p2 — p1)gk
= . 5.5.3
v p1 coth(kHy) + po coth(kHs) ( )

We perform computations with perturbations on modes m = 0,1,2 with parameter k =
k1, ko for two sets of density ratio %. All the tests are done with the parameters

Hi=Hy=1, R=1, ¢g=981, pi=1, R.=2x10% n=mn=1.

We use the time step 7 = 5.1072 and the mesh is locally refined in the vicinity of the
interface: the mesh size is 1/320 at z = 0 and 0.1 at z = £1 (19105 [P, grid points in the
meridian section). Note that we use g rather that F,. because there is no reference velocity.
The time evolution of the kinetic energy, which we use to estimate the frequency of the
fluid motion, is plotted in Figure 5.2. Theoretical and numerical frequencies are reported
in Table 5.4. We recover the theoretical values up to a relative error of order 1% to 3%.

0.012 ;
mode=0 -
mode=1
0.009‘-\' 2 ﬂ .. mode=2 ——
=
& 0.006 -
IS
0.003 -
0 1 4 Kk ¥ ¥ ¥ ki ¢
0 5 10 15 20

Time

Figure 5.2: Time evolution of the kinetic energy for density ratio % = 1.1, using wave
number k; and R, = 2x10%.

5.6 Newton’s bucket

We study the flow driven by a rotating cylindrical cavity with a free surface. Without
surface tension, the free surface is governed by the equilibrium between gravity and the
centrifugal force leading to the famous upward paraboloid profile. In the inertial frame,
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m | 0 1 2
Exact | Num. | Rel. Err | Exact | Num. | Rel. Err | Exact | Num. | Rel. Err
0211 w(ky) || 1.3373 | 1.309 2.1E-2 | 0.9044 | 0.896 1.E-2 1.1918 | 1.173 1.6E-2
- w(kz) || 1.8103 | 1.749 3.4E-2 | 1.5781 | 1.538 2.5E-2 1.7699 | 1.713 3.2E-2
02 _ o w(k1) || 3.5381 | 3.472 1.9E-2 | 2.3927 | 2.36 1.3E-2 | 3.1533 | 3.096 1.8E-2
~ w(ks) || 4.7897 | 4.638 3.2E-2 | 4.1753 | 4.065 2.6E-2 | 4.6828 | 4.530 3.3E-2

Table 5.4: Frequencies for density ratio % € {1.1,2} for azimuthal Fourier modes m =

0,1,2. Computations done with R, = 2x10%.

the velocity is purely toroidal. In this section, we examine the influence of the modelling
of the viscous term, i.e., by making the stress tensor proportional either to the gradient of
the velocity Vu alone and or to the symmetric strain rate tensor V¥u. We also study the
influence of the surface tension.

5.6.1 Physical setting

The equilibrium solution is axisymmetric, therefore we restrict our spectral computations
to the m = 0 mode. We model this configuration by using two immiscible fluids of density
Phbot > pProp contained in a cylinder of radius R rotating at angular velocity {} constant
with respect to an inertial frame. The light fluid of density piop is on top of the heavier
fluid of density ppot- Using the cylinder radius R as the characteristic length, QR as the
characteristic velocity and the physical properties of the bottom fluid, the Froude, Reynolds
and Weber numbers are defined by:

_ pbotQQR Q2R _ pbotQ?)}z2

R, - Fro=—— W

(5.6. 1)
Tvot g Obot

In the following, all the quantities and equations are non-dimensional. We define p; =
ptOp/IObOt and m= ntop/nbot~

5.6.2 Influence of Strain rate tensor

The two fluids are at rest at time ¢ = 0 and their respective heights are H; and Hos.
Therefore the initial interface is flat and located at z = Ho.

With no surface tension and p; — 0, the velocity field is purely toroidal with u = rey.
The minimum water height is positive for small angular velocities (F, < Ff), but a dry
zone appears for higher angular velocities (F, > Ff). The free surface elevation in non-
dimensional units is given by:

Hy+ 5 (r? =5 for F, < Ff,
C(r)—{ 2+ % (" ) 7 § (5.6.2)

max (O, VHyF, + %(TQ — 1)) for F, > Ff.

In our setting the critical Froude number for no dry zone to appear is F¥ = 4H;. Note
that this elevation does not depend on R, since the viscosity only impacts the relaxation
time needed to reach the equilibrium.

We use the following parameters: Hs = 0.5, p; = 1/1000, n; = 1/1000, R, = 10? and
we perform two series of computations: one series with F,. =1 < F° (wet case, i.e., no dry
zone appear) and one series with F,, = 2.5 > F° (dry case, i.e., a dry zone is created). For
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F, < Ff we set H; = 0.5 and we set H; = 0.7 otherwise. We have chosen p; = n; to have
the same R, in the two fluids. The wet case computations are performed with the time
step 7 = 1073 and the P; mesh size equal to 1/50 (11745 Py grid points in the meridian
section). The dry case computations are done with the time step 7 = 1072 and the P;
mesh size equal to 1/100 (58183 Py grid points in the meridian section).

0.8 T T T T 12

07} — e 10} o

Viu —— / Viu ——
0.6 Analytic solution —— ’ 1 0.8F  Analytic solution
0.6
0.4

021

0.0 . Il . .
1 0 0.2 04 0.6 0.8 1

(b) F, = 2.5

Figure 5.3: Free surface elevation ((r) for the Newton’s bucket configuration: analytical
solution (solid line), numerical solution with Vu (dotted line), numerical solution with
V#u (symbol x): (a) wet case, (b) dry case.

We compare in Figure 5.3 the analytical solution with the two numerical solutions ob-
tained with Vu or V*u in equation (5.2.1b). The solution using Vu is below the analytical
solution for r < 0.6 and above for » > 0.6 (the total mass is preserved). The solution using
V?u is in excellent agreement with the analytical solution even near the rim of the cylinder.
These results and the ones of section 5.7.2 show that it is necessary to use the symmetric

strain rate tensor when 7 is variable.

5.6.3 Influence of the surface tension

In this section, we explore the effects of the surface tension on the surface elevation in
the wet cases. The surface tension enters into the non-dimensional system via the Weber
number only. We set R, = 103, F, = 1.815, n; = 0.5284, p; = 0.5284, H; = Hy = 0.75
(corresponding to the two-fluid system considered in [15] except for the viscosity ratio
which is 71 = 6.9124 in their case). We consider four different values of the Weber number
We = 50,114,550 and W, = oo (zero surface tension). The analytical free surface profile
for W, = oo is given in (5.6.2). The computations are done with 7 = 1073 and the P; mesh
size is 1/50 at 7 = 0 and 1/100 at r =1 (36110 Py grid points in the meridian section).

The Results are shown in Figure 5.4. The agreement with the results reported in Figure
9 of [15] is excellent. The action of the surface tension significantly modifies the profile of
the free surface. The free surface flattens as the surface tension increases and a meniscus
appears at the rim of the cylinder.
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Figure 5.4: Free surface elevation ((r) for the Newton’s bucket configuration using V*u:
analytical solution (solid line), no surface tension (symbol x), with surface tension as
indicated W, = 50,114, 550. Parameters are R, = 103, F, = 1.815, n; = 0.5284, p; =
0.5284, H; = Hy = 0.75.

5.7 Free surface flow in an open cylinder

5.7.1 Physical setting

We study the flow driven by a rotating disk at the bottom of an open stationary cylindrical
vessel. The steady axisymmetric solution is different from Newton’s bucket paraboloid
studied in the previous section since the lateral wall is motionless. We numerically compute
the axisymmetric solution (i.e., using on the Fourier mode m = 0) and compare it with
published numerical and experimental results.

5.7.2 Numerics vs. experiment

The free surface flow problem in an open cylinder with large free surface deformation
has been investigated numerically and experimentally in [53]. We compare our numerical
results to the numerical and experimental results obtained by [53]. The numerical method
used therein consists of solving the steady axisymmetric Navier-Stokes equation projected
onto a curvilinear coordinate system using a Newton-Raphson algorithm. In the experiment
reported in [53| the vessel is filled with car engine oil and the surface elevation is measured
by using a vertical needle reflected by the free surface acting as a mirror (see details in [53|
and Figure 5.5a).

We model this flow using two immiscible fluids filling a cylinder of radius R with a large
density ratio. We use the following parameters: H; = 0.432, Hy = 0.568, p; = 1.4x1073,
m = 4x1072, F, = 1.435 and R, = 1026. The computations are performed with the time
step 7 = 1072 and a P; meshsize equal to 1/50 (11745 Py grid points in the meridian
section). The central panel in Figure 5.5 shows the free interface obtained by SFEMaNS
using either Vu or V®u in the expression of the stress tensor; the symbol * represent
measurements. We compare in the right panel of Figure 5.5 the results from SFEMaNS
with those from [53] . The agreement between SFEMaNS’s numerical profile computed
with V*u in the stress tensor and both the experimental data and the numerical profile
obtained in [53] is excellent.

Figure 5.6 compares the axial profiles of the velocity at r = 0.5 obtained numerically in
[53] with those obtained with SFEMaNS§ (using V*u). As expected the azimuthal velocity
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Figure 5.5: (a) Experimental set up with the needle measuring the free surface eleva-
tion (courtesy of L. Martin Witkowski); (b) Free surface elevation by SFEMaNS with Vu
(dotted line) and V*u (solid line) and experimental results (symbol *); (¢) Numerical solu-
tion by SFEMaNS with V*u (solid line), numerical (KMW, dotted line) and experimental
(symbol %) results by [53].
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Figure 5.6: Velocity profiles at r = % as a function of z: (a) u,(2), (b) ug(2), (c) u.(2).

Comparisons between results from SFEMaNS, using the symmetric strain rate tensor V*u,
and numerical results by [53].

component dominates the other two components and the spatial distribution of the velocity
field is non trivial. The maximum difference on the azimuthal profiles between the two
computations is 1.5 x 1072; the relative difference is about 6% is the maximum norm

5.8 Bubbles

We investigate in this section the influence of the surface tension. We begin by studying
the evolution of an axisymmetric bubble under the influence of the gravity with various
ratios of density and dynamical viscosity. Then we study the behaviour of an oscillating
bubble perturbed with a Fourier mode m = 0 or m = 1 without gravity.

5.8.1 Rising bubbles

To validate the surface tension effects implemented in SFEMaNS, we start with an axisym-
metric rising bubble test case. We consider a spherical droplet of density ps, initially at
rest and of radius R, in an immiscible heavier surrounding fluid of density p;. We follow
the evolution of the bubble under the effect of gravity. This test is important because it is
well documented (see [68, 48]).

We start with some test cases from [48] where various density and viscosity ratios are
investigated. The reference parameters used in the following computations are Ly = R
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and Uper = v/gR giving

1/2 p3/2 3
R, = Py R 7 W, = p1gR F.=1. (5.8.1)
m o

Table 5.5 shows how to convert our definitions of R, W, and F,. into those from [48] . The
computational domain is a cylinder of height 24 and radius 8; the P; meshsize is 1/20 for
0 <7 <2 and 0.5in for r = 8 (121247 Py grid points in the meridian section); the time
step used for the computations is 7 = 1073. We use only the Fourier mode m = 0 since

the solution is axisymmetric.

Reference parameters Lot Uret Computation parameters R, W, | F.
SFEMaNS R vV gR SFEMaNS 4.93 | 3.09 | 29 1
Hua-Lou D=2R | v/gD Hua-Lou 13.95 | 875 | 116 | 1

Table 5.5: Reference parameters used for non-dimensionalization in SFEMaNS and [48]

and comparison of computation parameters.

The first test is done by setting R. = 4.93, W, = 29 and using the large ratios p;/ps =
10 and 7;/m2 = 102. The time evolution of the velocity of the bubble and its final
shape, shown in Figure 5.7, are qualitatively very similar to those reported in Figure 4
of [48]. The relative difference on the terminal velocity of the bubble is 1.4% (0.7 versus
0.502 x v/2 = 0.71) and the shape of the bubble matches in height and width the results
from [48].

0.8

0.7 r

0.6 -

0.5 r

7Z-Axis

0.4 -

0.3

0.2

0.1 . . . . . . . 1.5 it . . . . . . . T
0 2 4 6 8 10 12 14 16 -125 -1 -0.75 -05 -025 0 025 05 075 1 125

t X-axis

(a) Time evolution of the bubble velocity (b) final profile of the bubble

Figure 5.7: Computation with % =103, Z—; =102, R, = 4.93 and W, = 29 corresponding
to Re = 13.95 and W, = 116 in [48].

In the second test we set R = 3.09 and W, = 29, and we investigate the influence
of the density and viscosity ratios. The density and viscosity ratios studied are {2,103}
and {2,102}, respectively. The final shape of the bubble is shown in Figure 5.8 and the
final velocity of the bubble is reported in Table 5.6. These results can be compared to
Figures 17 and 19, and Figure 18 and 20 of [48]. The overall shape (height and width)
is well recovered. The differences on the final velocity are between 1.4% and 5%. We
conclude that our method correctly approximates axisymmetric problems with surface
tension effects.
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Figure 5.8: (Top) 3D isocontour of level set (¢ = 0.5). (Bottom) Bubble profiles along
r and z axis. Computations done with R, = 3.09 and W, = 29 and various density and

viscosity ratio

Fluid parameters % =2, % =102 Z—; =102, Z—; =102 Z—; =102, Z—; =2
final bubble velocity (SFEMaNS) 0.339 0.576 0.487
final bubble velocity (Hua-Lou) 0.346 0.585 0.513
Relative difference 2% 1.5% 5.1%

Table 5.6: Final velocity # with R, = 3.09 and W, = 29.
g

5.8.2 Oscillating bubbles

We now study how a bubble immersed in a quiescent fluid with no gravity oscillates. It
is again a classical test case (number 5 in [68]). The inner and outer fluids are immiscible
and of density p; and p,, respectively. The initial perturbations of the spherical shape of
radius R are supposed to be small and, in the case of inviscid fluids, the analytical formula
for the oscillation frequency and shape of the interface are given by [65]:

1 —1 2
w2 = et D= Din+ )% (5.8.2)
(n+1)pi +npo R
rs(0,x,t) = R[1 + € Ypnsin(wnt)], (5.8.3)
€ is the amplitude of the perturbation and Y, are the spherical harmonics:
Yy, = sin(mb)P(cosx) (5.8.4)
Y, = cos(mb)P(cosx), (5.8.5)

where n € N, m is the azimuthal Fourier mode, 6 the azimuth, x the colatitude and P}
the Legendre functions.

We neglect gravity and use the radius of the undeformed bubble R as the characteristic
length and the physical properties of the inner fluid as reference properties. We define a
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Reynolds number that compares the surface tension and the viscosity effects:

Rest = \/piRUi/m. (5.8.6)

Not that viscosity effects decrease when Regy increases.

We set p1 = po/pi = 1, m1 = 1o/m; = 1 and focus on perturbations with the mode n = 2.
We perform axisymmetric computations with various values of Reg € {20, 50,100, 500, 1000}
and a perturbation on the Fourier m = 0 with € = {0.1,0.5}. The computations are done
with the time step 7 = 10~% and the P; meshsize is 1/25 in the bubble (r? + 22 < 1) and
10 at the boundary of the computational domain 72 + 22 = 402 (51877 Py grid points in
the meridian section).

The theoretical period from (5.8.2) is T = 2.9. We show in the left panel of Figure 5.9
the time evolution of the L?-norm of the velocity Fourier mode m = 0 computed in
SFEMaNS with Reg € {20, 50,100, 500,1000}. We observe that the signal varies in time
with the half-period as expected. Note that we recover the theoretical value of the frequency
only for 500 < Reg; for smaller Reynolds numbers the oscillations are slower due to viscous
effects, e.g. for Regy = 20 the period is around 3.3 which is 13% higher than the theoretical
one.

lhugl

T, I

Time Time

(a) Axisym. computations with Ypa perturbation. (b) 3D computations with Y75 perturbation.

Figure 5.9: Time evolution of the L?-norm of (a) velocity mode m = 0 and (b) velocity
mode m =1 for € = 0.1 at different Reynolds numbers.

We also do fully 3D computations using 32 Fourier modes with the perturbation € = 0.1
on the Fourier mode m = 1 on the spherical harmonics Yj2. Since the theoretical frequency
(5.8.2) does not depend on the azimuthal mode number we should recover the period
T = 2.9 obtained in the axisymmetric computations. We show in the right panel of
Figure 5.9 the time evolution of the L?-norm of the Fourier m = 1 of the velocity for
Reg € {50,100,500}. As expected we observe that the period is close to 2.9 for Reg = 500.
This tests validates or 3D computations.

We now investigate the effect of a large initial deformation ¢ = 0.5 in the axisymmetric
configuration, i.e., the perturbation is done on the spherical harmonics Ygo. We show in
Figure 5.10 the time evolution of the radial velocity obtained with ¢ = 0.5 and € = 0.1.
The nonlinear effects are large when € = 05; as a result, the period and the amplitude
of the oscillations are increased. Snapshots of the bubble are shown in the top right and
bottom panels of Figure 5.10.
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Figure 5.10: Left: Time evolution of the radial velocity of the m = 0 mode for ¢ = 0.1 and
e = 0.5 at Res; = 500. Right: Snapshots of the bubble for € = 0.1 ((a) to (c)) and € = 0.5

((d) to (1))

5.9 Liquid metal droplet falling in a vertical magnetic field

We now consider a two-phase flow in the presence of a magnetic field. We first reproduce
published results of [108] based on the Navier-Stokes equations with a simplified Lorentz
force, then we consider the full magnetohydrodynamic (MHD) problem. We assume that
the problem is axisymmetric and compute only the Fourier mode m = 0.

5.9.1 Physical configuration

We study the influence of an imposed vertical magnetic field on a liquid metal droplet
submitted to gravity. We use the same configuration as [108]: a spherical liquid metal
droplet of radius R is released in the air from the height 4R above a pool of liquid metal
contained in a cylindrical container of radius R, = 6 R and height H = 6 R. The thickness
of the liquid layer at the bottom of the vessel is 3R/8. The droplet has no initial velocity
and is accelerated downwards by gravity (see Figure 5.11). It is also submitted to a vertical
magnetic field which slows its fall.
We perform three series of computations to compare the dynamics of the falling droplet.
In the first two cases, we only solve the Navier-Stokes equations (5.2.1) and in the third
case we solve the full MHD equations (5.4.14). The reference length scale is the initial
radius of the droplet L.t = R and the reference velocity is the falling speed U,ef = \/gR.
The reference density and dynamic viscosity are chosen to be those of the liquid phase.
Therefore F,. = 1 for us and the relations with the nondimensional parameters used in
[108] are
L prng 12 oL G
Rezﬁp—Gn—LG 2, We:%? (5.9.1)
where pg, pr, are the gas and liquid densities, ng,nr are their dynamic viscosities, G is
the Galilei number characterizing the ratio of the gravitational and viscous forces, and I"
is the ratio of the surface tension and viscous forces. Using the parameters of [108] , G =
3x105, T =2x10°, pr/pg = 102 and 11, /ng = 55.6, we get R, = 1101.4 and W, = 375. We
have used two meshes: one with uniform P; meshsize h = 1/40 (66941 P; grid points in the
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Figure 5.11: Schematic model for a liquid metal droplet falling under the action of gravity
in a pool of liquid metal.

meridian section) and another one with a non-uniform P; mesh-size ranging from h = 1,/200
near the vertical axis to h = 1/40 on the lateral side (253983P2 grid points in the meridian
section). The time-step is 7 = 1073. We have not observed any noticeable differences
on the results between the two meshes. Supplementary nondimensional parameters are
introduced in each case as needed.

5.9.2 Falling droplet under gravity

For the first case, the additional force f in (5.2.1b) is zero and no magnetic field is imposed.
We let the liquid droplet fall in the pool under the sole action of gravity. The spherical
droplet accelerates downward and then collides the flat liquid surface at the bottom of the
vessel. The impact of the droplet on the flat liquid surface occurs at ¢t = 3. Surface waves
are created and these waves bounce back and forth on the lateral side of the pool as seen
on the left panel of Figure 5.12, (only a quarter of the total domain is shown). The profile
of the free surface at t = 4 and ¢t = 8 is shown in the center and right panels of Figure 5.12.
Dewetting occurs approximately at ¢t = 8.

The time evolution of the square of the L?-norm of the velocity field is reported in
Figure 5.13a, see label *Grav’.

5.9.3 Lorentz force as an external force

We now add a vertical magnetic field which induces a Lorentz force in the right-hand side
of (5.2.1b):

f = (Vxb)xb = o(E + uxb)xb, (5.9.2)

where b is the applied magnetic induction, ¢ is the electrical conductivity of the fluid and
E is the electric field. As in [108], we first neglect the induced magnetic field and the force
is simplified into

fLo = —ou,ble,. (5.9.3)

This force is only radial and depends on the amplitude of the applied magnetic field by.
With our nondimensional units, we need to define a new nondimensional parameter denoted
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Figure 5.12: Droplet falling under the sole action of gravity with R, = 1101.4 and W, = 375
at time t = 4 and t = 8. Density varies between 10~2 (in white) to 1 (in black). (a) shows
a 3D representation of the isocontour ¢ = 0.5, while (b) and (c) display only a meridional
plane with the vertical axis on the left and the lateral side of the box on the right.
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Ha is the Hartmann number which characterizes the ratio of the electromagnetic and
viscous forces.

We choose the liquid electrical conductivity and the liquid dynamic viscosity as ref-
erences. In [108] two values of Hartmann number are investigated, Ha = 100 and 1000,
which correspond to Lo = 2.27 and Lo = 227 respectively. We model the gas as a weakly
conducting fluid such that /o = 1072, The time evolution of £ [ |lu||? dz is reported in
Figure 5.13a. The snapshots of the free surface shown in Figure 5.14 are similar to Figures
3 and 4 of [108]. the braking effect of the Lorentz force for Ha = 100 is less pronounced
than for Ha = 1000. The action of the Lorentz force is so strong when Ha = 1000 that no
surface wave is generated and the droplet forms a bulge which slowly disappears in time.
Note that a gas pocket is captured under the droplet for Ha = 1000.
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Figure 5.14: Falling droplet under gravity and magnetic field with R, = 1101.4, W, = 375
and Ha = 100 (a,b) or Ha = 1000 (c,d) at time ¢t = 4 and ¢ = 8. Density varies between
1072 (in white) to 1 (in black).

5.9.4 Full MHD setting

We now investigate a full MHD configuration using 5.4.14. In this setting, we take into
account the retroaction of the velocity field on the magnetic induction and the induced
current. We change the reference scale for b in order to take into account the imposed

magnetic field bg. The coupling parameter becomes S = ;5;. We choose R]* = 1 and
Lo = 2.27 (corresponding to the imposed magnetic field with Ha = 100).

The time evolution of 1 [ ||u||®dz is reported in Figure 5.13b. The downwards motion
of the droplet is damped by the induced current which was neglected in the previous section.
The two snapshots of Figure 5.15(a,b) are similar to the previous ones. The time evolution
of [||b||?dz is shown in Figure 5.15c. A peak is observed at ¢ = 3.5 when the azimuthal
current is enhanced (see vectors on Figure 5.15d). Note that, with the simplified Lorentz

force, no time variation of the current is possible since the magnetic field is prescribed.

5.10 Conclusion

A new time stepping technique using the momentum as dependent variable to solve incom-
pressible multiphase problems has been introduced and validated. The method is inspired
from [41], where its full stability analysis is performed. The key advantage of this approach
is that the mass matrix is time-independent, which makes this technique suitable for spec-
tral methods. The method has been validated by solving a wide range of problems going
from manufactured solutions to a MHD problem with a liquid metal.
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Figure 5.15: Full MHD setting plus gravity for the falling droplet with R, = 1101.4,
W, = 375, Ha = 100 and R = 1 at t = 4 (a) and t = 8 (b). Density varies between
1072 (in white) to 1 (in black) and is represented in a meridional plane with the vertical
axis on the left and the lateral side of the box on the right. (c) Time evolution of the
magnetic energy M = 3 [ ||b||?dz. (d) Level-set isocontour ¢ = 0.5 in blue (dark) and
electric current vector fields at ¢ = 4.

124



Conclusion and prospects

6.1 Outcome

All of the studies carried out in this PhD period have been motivated by upgrading the
SFEMaNS MHD code. This project is in the continuity of the previous PhD thesis of
R. Laguerre [63], A. Ribeiro [97], F. Luddens [74] that allowed the birth of SFEMaN§S
MHD code and its development into a massivelly parallel code that can approximate MHD
problems involving thermodynamic effects or discontinuous magnetic permeability in the
radial and vertical directions. In this content one of the objectives of this PhD was to
add a stabilization method such that computations with parameters closer to the ones
encountered in experiments can be considered. The other main goal consisted of extending
the range of action of the SFEMaNS code to multiphase flow problems.

Our first objective was reached by implementing in SFEMaNS code a nonlinear sta-
bilization method called entropy viscosity that induces a diffusion proportional to the
unbalance of an energy equation. In order to attest the correct behavior of this method
we performed studies of a Von Karméan Sodium (VKS) set up and precession cylinder
problems that are both the subject of current or future experiments respectively in CEA
Saclay (France) and Dresden (Germany). In one hand we showed the benefit of the entropy
viscosity to approximate flows with under resolved meshes on a VKS set up by comparing
LES and DNS results for moderate R, < 2500. The entropy viscosity managed to match
correctly the results of the DNS (performed on a finer mesh) while a computation with
the same coarse grid without stabilization missed bifurcation in the energy spectrum. The
numerical study of the problem for R, < 2500 allowed to recover a scaling law of the
torque in R_! for low Reynolds numbers and known bifurcations in the energy spectrum
for R, € {500,1000}. Furthermore a preliminary study of the flow at R. = 5000 recovers
similar behavior of experimental and numerical studies [95, 96, 60]. As a consequence the
entropy viscosity ended up to be a good candidate for LES computations and could be
used to pursue this study at larger kinetic Reynolds numbers with under resolved meshes.
On the other hand a previous hydrodynamical study of Nore et al [83] on an axial spin case
precession problem has been expanded to a larger range of Reynolds numbers by using the
entropy viscosity. After a validation of the model with DNS comparisons at R. = 4000,
LES computations for R, < 15000 combined to previous results at smaller R, enhanced a
scaling law of the kinetic energy in the precession frame in R %48, The flow was shown to
tend to a solid body rotation in the wall frame which matches experimental results obtained
for larger R, in [82]. As a complement a second set up of precession, the equatorial spin
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case, was also analyzed and a MHD study of both configurations with DNS was proposed
to determine the most favorable one to the generation of magnetic field (dynamo effect).
Although the equatorial spin case was proved to break the symmetry of the flow more
easily, it was less favorable to dynamo effect. We also showed that the dynamo threshold
may be reduced by using container with lateral walls in copper which may find echo in the
preparation of future precession experiments in Dresden [105].

The extension of SFEMaNS code to multiphase flow problems involved the development
of a new method of approximation for the Navier-Stokes equations with variable density.
While we implemented a level set method to describe the evolution of the interface between
two fluids, a few obstacles remained to approximate the Navier-Stokes equations. Since
the density and viscosity are time and space dependent, using the velocity as variable
would have induced a mass matrix and a diffusive operator depending on time and space.
To work with time independent algebra, so the stiffness matrix of the problem is only
assembled at initialization, we developed a method inspired of [41] that uses the momentum
as variable. Thanks to this the mass matrix becomes time independent and the diffusive
term is rewritten adequately so it can be treated explicitly. The main innovation of the
method consisted in stabilizing both the momentum and the mass (level set) equations
with the same viscosity entropy. As a consequence large ratios of density and viscosity can
be taken into account. We note the addition of diffusion in the level set equation led us to
add a compressive tool so it does not get flatten with time. Unlike many approaches which
induce an extra step in the algorithm, this anti diffusion step is done when approximating
the advection equation as in [21|. This method was then implemented in SFEMaNS code
and validated with numerous tests cases involving comparisons with analytical solutions
or experimental results. On the side it was also used to perform a preliminary analysis
of Liquid Metal Battery instability. This study, not reported in this manuscript, was
published in Journal of Fluid Mechanics (W. Herreman, C. Nore, L. Cappanera and J.-L.
Guermond, vol. 771, p79-114, 2015 [46]).

Eventually we note the study of VKS set ups in chapter 4 required to model the ac-
tion of non axisymmetric impellers that are driving the fluid by counter rotation. As the
code SFEMaNS uses a Fourier expansion in the azimuthal direction and approximates the
Navier-Stokes equations in a meridian plane with finite elements, a pseudo-penalization
technique [89] has been adapted to prediction-correction schemes for the Navier-Stokes
equations. Its implementation in SFEMaNS code, validated with manufactured solutions
and a study of the flow past a sphere, now allows us to consider non axisymmetric geome-
tries. Combined to previous extension to multiphase flow problems and the addition of
the entropy viscosity stabilization method, we conclude that SFEMaNS code is now able
to consider most of problems involving magnetohydrodynamics with physical parameters
closer to the ones used in experiments.

6.2 Outlook

After a satisfying study of the hydrodynamical regime of a VKS set up with TMS87 for
moderate kinetic Reynolds numbers, the next logical step would be to use the entropy
viscosity to study the flow with even larger R.. Since DNS would not be feasible, such a
study could be validated by comparisons with experiments that are currently carried out in
CEA Saclay by the team of B. Dubrulle. Moreover in parallel of the studies led in this PhD
period, SFEMaNS code was extended to problems with variable magnetic permeability in
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time and all space directions (including the azimuthal direction) by D. Castanon in the
frame of his PhD [18]. This extension now allows SFEMaNS to study MHD configurations
of VKS set ups that have already been shown to generate magnetic field when the impellers
present a high magnetic permeability.

Regarding the extension of SFEMaNS to multiphase flow problems, we note our algo-
rithm is of order 1 in time which could be improved. As the introduction of BDF2 formula
or second order in time extrapolation perturbs the stability of the algorithm when using
large ratios of densities, we are investigating on the combination of our method with a
technique of Guermond and Minev (STAM J. Sci. Comput., 2015 in print). This technique
may allow us to raise the convergence order in time to 2 for any ratio of densities by the
successive use of order 1 algorithms. Furthermore the study of LMB, that may play a role
in the storage of energy and that will be the subject of future experiments in Dresden [105],
will be pursued. In order to get closer to a realistic set-up, thermodynamics effects should
be considered and will require some modifications of SFEMaNS code.

Eventually all these previous investigations make SFEMaNS one of the most complete
MHD codes. The next step is to make it available to teams working on MHD. A full
documentation has been started and should be completed in 2016.
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Résumé en francais

7.1 Introduction

7.1.1 Contexte et motivations

Les équations de la magnétohydrodynamique (MHD) décrivent les interactions entre un
fluide conducteur de I’électricité et un champ magnétique ambiant. L’évolution du champ
magnétique est gouvernée par les équations de Maxwell dans la limite quasi-statique et
celle du champ de vitesse par les équations de Navier-Stokes. Le couplage s’effectue par
la force de Lorentz et la loi d’Ohm. L’adimensionnement de ces équations fait apparaitre
deux nombres sans dimension : le nombre de Reynolds cinétique R, et le nombre de
Reynolds magnétique R,, qui comparent respectivement le temps convectif avec les temps
de diffusion cinétique et Ohmique. La magnétohydrodynamique intervient dans une large
gamme de problémes tels que des procédés industriels (production d’aluminium dans des
cellules de Hall-Héroult ou développement des batteries & métaux liquides pour le stockage
d’énergie), des phénomeénes naturels (génération de champ magnétique en astrophysique)
ou des exprériences de laboratoire. L’approximation numérique de ces problémes peut
apporter des informations utiles pour améliorer 'efficacité de montages industriels ou de
laboratoire, de plus elle présente un avantage majeur : les calculs numériques sont a
priori plus faciles & réaliser. Cependant, la plupart de ces applications font intervenir
soit des grands nombres de Reynolds cinétique, qui induisent une dynamique trop riche
pour étre entiérement simulée avec les capacités de calcul actuelles, soit des écoulements
multiphasiques qui nécessitent de rendre compte de I’évolution de la densité, solution d’une
loi de conservation qui présente des singularités dues & des discontinuités de la densité a
I'interface entre deux fluides. Pour surmonter ces difficultés, la communauté scientifique
développe des méthodes de stabilisation qui se concentrent sur ’approximation des grandes
échelles d'un écoulement turbulent, appelées Simulation des Grandes Echelles (ou LES
pour Large Eddy Simulation), ou bien sur la réduction des fortes oscillations (phénoméne
de Gibbs) générées par 'approximation de solutions discontinues.

Dans ce cadre, ce manuscrit de thése propose de faire face & ces difficultés en utilisant
une méthode de stabilisation non linéaire appelée viscosité entropique. Cette méthode a
été développée par Guermond et al. [36, 37, 38| et consiste & ajouter une viscosité artifi-
cielle proportionnelle au résidu d’une équation d’énergie. Cette méthode permet de dissiper
I’énergie accumulée par les approximations numériques due a la présence de gradients im-
portants qui ne peuvent étre représentés correctement par le maillage. Elle peut aussi
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étre vue comme un moyen de sélectionner l'unique solution entropique de Kruzkov [61]
d’une loi de conservation ou d’approcher une solution "pertinente" (suitable) des équa-
tions de Navier-Stokes au sens de Scheffer [101]. Dans tous les cas, cette méthode permet
d’approcher des solutions physiques, dans le sens oul elles ne produisent pas d’énergie.
Dans un premier temps, nous proposons d’attester du bon comportement de la viscosité
entropique comme méthode LES pour approcher des problémes caractérisés par des grands
nombres de Reynolds cinétique. A la suite de précédents travaux réalisés par I’équipe qui
a encadré cette thése, cette étude a porté sur deux problémes physiques ot le fluide est
entrainé par des turbines contra-rotatives au sein d’une cavité cylindrique ou bien par un
récipient cylindrique en précession. Ces problémes sont actuellement le sujet d’expériences
au CEA Saclay et a Dresden (Allemagne) ce qui permettra dans le futur des comparaisons
avec nos résultats numériques. La simulation numérique de ces problémes se fait avec
le code SFEMaNS (Spectral /Finite Element for Maxwell and Navier-Stokes), développé
depuis plus de dix ans par Guermond et Nore dans le systéme des coordonnées cylin-
driques. Comme ce code utilise une décomposition de Fourier dans la direction azimutale
et des éléments finis de Lagrange dans un plan méridien, la représentation de turbines
contra-rotatives (composées de disques munis de pales courbées ou droites) n’a été possi-
ble que par 'adaptation d’une technique de Pasquetti et al. [89] dite de pseudo-pénalisation.
Dans un second temps, nous avons étendu la portée du code SFEMaNS a des problémes
d’écoulements multiphasiques. De tels problémes présentent deux difficultés majeures : il
faut suivre I’évolution de 'interface entre deux fluides immiscibles et utiliser un algorithme
avec une algébre indépendante du temps pour réduire le temps de calcul. Nous proposons
de suivre I’évolution des interfaces avec une méthode de level set et nous présentons une
nouvelle méthode d’approximation d’écoulements multiphasiques inspirée de Guermond et
al. [41]. Cette méthode utilise la quantité de mouvement, égale a la densité fois le champ
de vitesse, comme variable d’approximation des équations de Navier-Stokes. Cette méth-
ode trouve aussi son originalité en stabilisant les équations de la masse et de la quantité
de mouvement avec la méme viscosité entropique ce qui réduit les oscillations qui émer-
gent lorsque des rapports importants de densité et de viscosité sont considérés. Le bon
comportement de cette méthode est vérifié sur de nombreux tests numériques. Finalement
les travaux effectués durant cette thése étendent ’action du code SFEMaNS & de nom-
breuses applications géophysiques ou MHD. L’utilisation de la viscosité entropique permet
d’augmenter les paramétres de nos simulations numériques dans le but de se rapprocher
des paramétres expérimentaux.

Avant de fournir un résumé de chaque chapitre de ce manuscrit de thése, nous proposons
de décrire briévement son organisation. Tout d’abord, un premier chapitre est dédié au
code SFEMaNS et aux différentes possibilités et récentes extensions qu’il propose. Ensuite,
nous décrivons la méthode de viscosité entropique et son implémentation dans le code SFE-
MaNS. Cette méthode de stabilisation est alors dans un premier temps validée comme une
méthode LES pour approcher des problémes a grands nombres de Reynolds cinétique.
Cette validation se fait sur des configurations expérimentales de problémes de Von Kar-
méan Sodium (VKS) et de cylindre en précession. Enfin, le dernier chapitre présente une
nouvelle méthode d’approximation d’écoulements multiphasiques qui utilise la quantité de
mouvement comme variable d’approximation et la viscosité entropique comme méthode de
stabilisation.
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7.1.2 Rappel des équations adimensionnées de la MHD

Pour décrire les équations de la MHD adimensionnée, on introduit une échelle de longeur
de référence Lyef, une vitesse caractéristique Uyer, un temps caractéristique Tyef := Lyef/Uref
et une pression de référence Pef := pUrQef. En définissant le nombre de Reynolds cinétique

R. = % avec v la viscosité du fluide, les équations de Navier-Stokes peuvent alors
s’écrire : )
du+ (Vxu) x u — ﬁAu: —Vp+f, (7.1.1)
(&
Vau =0, (7.1.2)

ou u est le champ de vitesse, p la pression et f le terme source. Dans un domaine conduc-
teur de I’électricité et sous 'approximation quasi-statique, les équations de Maxwell, qui
régissent ’évolution du champ magnétique, peuvent s’écrire sous la forme adimensionnée

suivante :

O (uH) = —%Vx(%VXH) + Vx (u x (uH)), (7.1.3)

m

V-(uH) = 0. (7.1.4)

ol H est le champ magnétique et Ry, := 0o LretUret le nombre de Reynolds magnétique
avec [ la perméabilité magnétique de référence et o la conductivité électrique de référence

et p et o les perméabilité et conductivité relatives.

7.2 Le code SFEMaNS

Cette section propose un résumé du chapitre 2 de ce manuscrit qui donne une description
du code SFEMaNS, code MHD développé en Fortran 90 depuis 2002 par Guermond et
al. [31, 33, 35]. Dans un premier temps, nous décrivons le fonctionnement du code et
certaines de ses possibilités. Enfin, nous donnons des informations sur les développements
plus récents réalisés durant cette thése.

7.2.1 Description du code

Cadre de travail

Le code SFEMaNS est un code MHD qui permet d’approcher les solutions de prob-
lémes hydrodynamique, magnétique (avec un champ de vitesse donné) et magnétohydrody-
namique. SFEMaNS utilise au départ le champ de vitesse u comme variable d’approximation
des équations de Navier-Stokes et le champ magnétique H comme variable pour les équa-
tions de Maxwell.

Ce code est écrit en coordonnées cylindriques (r,0, z), par conséquent les géométries
des problémes considérés se doivent d’étre axisymétriques (c’est-a-dire 27 périodiques dans
la direction azimutale). Cette hypothése d’axisymétrie réduit le champ d’action du code
qui ne peut par exemple pas considérer des turbines contra-rotatives comme dans les con-
figurations expérimentales de l’expérience von Karman Sodium (VKS) décrite plus loin.
Cependant, cette restriction a pu étre surmontée par 'implémentation d’une méthode de
pseudo-pénalisation de Pasquetti et al. [89] décrite par la suite.

Finalement, on peut noter que le domaine de calcul €2 est décomposé en 3 sous do-
maines : un domaine fluide conducteur €2y, un domaine solide conducteur €., et un
domaine isolant (vide) €2, qui sont tous supposés axisymétriques. De plus, le domaine
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isolant est supposé simplement connexe pour que le champ magnétique H puisse s’écrire
sous la forme du gradient d’un scalaire ¢ dans 2, solution de I’équation pgd:A¢p = 0 avec
o la perméabilité magnétique du vide.

Approximation numérique
Le code SFEMaNS présente une méthode hybride de Fourier et d’éléments finis. L’utilisation

des coordonnées cylindriques permet de faire une décomposition de Fourier dans la direc-
tion azimutale avec M le nombre de modes de Fourier complexes. Le probléme 3D peut
alors étre découpé en M problémes 2D indépendants (modulo les termes non linéaires)
pour chaque mode m € [|0, M|]. Chaque probléme 2D est approché par des éléments finis
de Lagrange sur un plan méridien. Les termes non linéaires sont toujours traités de fagon
explicite avec des extrapolations d’ordre 2 ce qui permet de travailler avec une algébre
indépendante du temps et donc de réduire le temps de calcul. On peut noter que la for-
mulation éléments finis du probléme fait intervenir des éléments de Taylor-Hood (P2/Py
pour le couple vitesse-pression, des polyndémes d’ordre Iy pour le champ magnétique et
ly pour le potentiel ¢ avec 2 > Iy > lir > 1.). De plus, les équations de Maxwell et de
Navier-Stokes ne sont pas approchées simultanément, c¢’est-a-dire que 'avancée en temps
se déroule selon le schéma suivant :

0

e initialisation des champs de vitesse u’, u! et des champs magnétiques H® et H!,

e calcul de u™*! et p"*! (force de Lorentz calculée avec des extrapolations d’ordre 2

du champ magnétique),

e calcul de H" ™! et ¢! aprés avoir calculé les termes non linéaires avec des extrap-
olations en u™t!, H" et H* 1.

Etant donné que cette thése se concentre sur approximation des équations de Navier-
Stokes, l'approximation des équations de Maxwell n’est pas décrite et peut étre trouvée
dans [31, 33]. L’approximation des équations de Navier-Stokes se fait avec une méthode
de projection dite de prédiction-correction détaillée dans [43]. L’avancée en temps consiste
a résoudre pour tout v € Vy o et ¢ € My, espaces d’approximation définis dans 2.2.2, les
formulations faibles suivantes :

3 a1 1 nil / —4u" +u ! dop™ — 1
“utl v+ —vurt v = — 4Vt T ).y
5 u + - u 5 + V(" + 3 )

Jr/(f”+1 — (Vxu®" ) scutth Ly (7.2.1)
Q

vyt vg = T/Qu"“ - Vg, (7.2.2)

/q5”+1 —/qV-u”+1, (7.2.3)
Q Q

La pression est alors actualisée en posant :

1
n+l _ . n n+1 n+1

=p + — =" 7.2.4
p P+ R (7.2.4)

Quelques possibilités du code SFEMaNS
Au cours des années, le code SFEMaNS a été développé pour pouvoir prendre en compte
un plus large éventail de problémes tout en réduisant le cotit de calcul. Ces travaux ont

principalement permis au code de :
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e présenter une parallélisation massive qui se fait sur la distribution des modes de
Fourier (chaque processeur va résoudre le probléme pour un groupe de modes de
Fourier fixé) et aussi en décomposant le plan méridien en Ng sous domaines. Ainsi
un processeur résout le probléme sur un sous domaine du plan méridien pour un
nombre de modes de Fourier donné. Une étude des scalabilités faible et forte est
présentée dans la section 2.3.

e prendre en compte des problémes de thermique en ajoutant ’équation de la chaleur
(advection-diffusion). Cette extension a été validée avec de nombreux tests numériques
et a permis de participer & un benchmark [51] comparant des codes spectraux et
pseudo-spectraux.

e ¢étudier des problémes ot la perméabilité magnétique et /ou la conductivité électrique
présentent des discontinuités dans les directions radiale et verticale.

7.2.2 Développements récents

Au cours de cette thése, nous avons décidé d’améliorer le code SFEMaNS en nous con-
centrant sur trois développements : l'utilisation de nombres de Reynolds cinétique plus
élevés, 'extension & des géométries non axisymétriques et la prise en compte de problémes
avec des fluides a propriétés physiques (densité, viscosité) variables. Tandis que le premier
développement consiste & implémenter une méthode de stabilisation, dite de viscosité en-
tropique, décrite et validée dans les deux prochaines sections, nous nous limitons & quelques
informations sur les deux autres développements.

Extension a des géométries non axisymétriques

Pour étendre le champ d’action du code SFEMaNS & des géométries non axisymétriques,
nous avons adapté une technique dite de pseudo-pénalisation de Pasquetti et al. [89] & des
schémas numériques des équations de Navier-Stokes de type prédiction-correction. Le do-
maine de calcul 2 est supposé étre I'union disjointe d’un domaine fluide Qgyiq, ot I’évolution
du champ de vitesse est régie par les équations de Navier-Stokes, et d’'un domaine solide
Qobs (obstacle) o la vitesse est nulle. Cette technique consiste & modifier les équations
de Navier-Stokes pour que le champ de vitesse soit de I’ordre de 7R; ! dans Qqps avec 7 le
pas de temps. Aprés avoir modifié la méthode, pour que celle-ci soit consistante avec des
schémas de type prédiction-correction, nous avons démontré sa stabilité (voir théoréme 1).
Enfin, nous avons modifié le modéle pour que le solide puisse étre animé d’une vitesse
non nulle. Finalement, 'avancée en temps du champ de vitesse et de la pression requiert
uniquement de modifier I’équation 7.2.1 par :

3un+1 1

~ A n+1:_vn n+1
2T R, " PitX

qu” — un—l 4¢n _ ¢n_1
)

3l
+ Xn+1 (_(vxu*,n—f—l) w "l + fn—i—l) + (1 _ X""‘l)#bht’ (725)

n+1

avec x une fonction de pénalisation égale a 1 dans le fluide et 0 dans le solide et ot u)

représente la vitesse du solide au temps ¢t = (n + 1)7.

L’implémentation de cette méthode dans SFEMaNS a été validée avec des solutions
manufacturées (le terme source est pris égal au reste des termes de I’équation) et sur un
probléme plus connu d’écoulement autour d’une sphére. Aprés avoir vérifié que nous retrou-
vions le bon écoulement autour de la sphére a faibles nombres de Reynolds, nous avons
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étudié 1'évolution du coefficient de trainée Cy pour R, € [1,200]. Le tableau 2.9 compare
les valeurs de Cy théorique et obtenues avec SFEMaNS qui correspondent & moins de 1.5%
d’erreur relative. Aprés avoir validé cette méthode, nous avons aussi étudié l'influence de
I'utilisation d’une fonction de pénalisation continue (qui croit de 0 & 1 trés rapidement
au niveau de l'interface solide/fluide). Pour ce faire nous avons comparé les valeurs de
Cy obtenues avec une fonction de pénalisation sharp (discontinue) et smooth (continue) a
R. = 100 et maillage fixé pour différents pas de temps. La figure 7.1 et le tableau 2.10 nous

1.20
1.15 1
1.10 1
< 1.05 B
Sharp, dt=0.01 ——
1.00 { Sharp, dt =0.005 —— |
Sharp, dt = 0.0025 -
Smooth, dt =0.01 ——
0.95 Smooth, dt =0.005 —=—
Smooth, dt = 0.0025 ——
Theoretical value ~--~---
090 1 1 1 1 1

80 82 84 86 88 90 92 94 96 98 100 102

Time

Figure 7.1: Evolution temporelle du Cy pour R, = 100 avec des fonctions de pénalisation
"sharp" et "smooth" pour différents pas de temps dt.

montrent le bon comportement de la méthode avec une fonction de pénalisation sharp. En
revanche, 'utilisation d’une fonction smooth entraine des erreurs plus grandes (2% contre
4%) qui augmentent lorsque le pas de temps diminue. On en conclut qu’il est préférable
de travailler avec des fonctions y discontinues (égale a 0 dans le solide et 1 dans le fluide).

Extension a des problémes avec des fluides et solides a propriétés variables

Le dernier développement majeur du code réalisé au cours de cette thése a consisté a
prendre en compte des problémes avec des fluides et solides & propriétés variables, c¢’est-a-
dire des problémes ou la densité, la viscosité, la conductivité électrique et la perméabilité
magnétique peuvent varier dans le temps et selon toutes les directions de I'espace. Cette
étude a été motivée par notre intérét pour les batteries & métaux liquides (ou Liquid
Metal Batteries, LMB) et les problémes de configuration VKS o le fluide est entrainé par
des turbines contra-rotatives a forte perméabilité magnétique. Pour approcher la partie
magnétique de tels problémes, nous pouvions utiliser comme variable d’approximation le
champ magnétique H ou bien le champ d’induction B := pH avec p la perméabilité
magnétique. De méme, les équations de Navier-Stokes font intervenir soit le champ de
vitesse u soit la quantité de mouvement m := pu avec p la densité. Une étude préliminaire
sur des équations simplifiées, effectuée avec D. Castanon a Texas A&M University (College
Station, Texas), nous a mené a utiliser le champ d’induction B et la quantité de mouvement
m comme variables d’approximation des équations de la MHD. Tandis que le probléme lié
a I’évolution de la perméabilité magnétique a été traité par D. Castanon dans le cadre de sa
thése [18], ce manuscrit se concentre sur des problémes a variation de densité ou viscosité
et propose une nouvelle méthode d’approximation des équations de Navier-Stokes pour
des écoulements multiphasiques. Cette méthode est décrite et validée dans le chapitre 5
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résumé en francais dans la section 7.5. On note que notre algorithme fait intervenir une
méme viscosité entropique pour stabiliser les équations de la masse et de la quantité de

mouvement.

7.3 Viscosité entropique

Le chapitre 3 introduit la méthode de viscosité entropique comme un nouveau modéle LES.
Afin de synthétiser les informations qu’on y donne, nous proposons de rappeler pourquoi il
est nécessaire de développer des modéles pour approcher des écoulements a grands nombres
de Reynolds cinétique. Aprés quelques généralités sur les modéles LES, nous introduisons
la viscosité entropique comme modéle LES et décrivons son implémentation dans le code

SFEMaNS.

7.3.1 Nécessité de modélisation

La simulation numérique de toutes les échelles d’un écoulement, appelée Direct Numerical
Simulation (DNS), est soumise & des restrictions qui ne permettent pas sa mise en oeuvre
pour des problémes a grands R, du fait de capacités de calcul insuffisantes. En effet, le
critére de Kolmogorov dit que le rapport de la plus grande échelle d’espace sur la plus
petite est proportionnel & Rg/ 4 Le maillage doit donc posséder Rz/ 4 degrés de liberté par

4 . . TR g
/* en 3 dimensions. Combinée a une condition sur le pas de

dimension d’espace, soit Rg
temps de type CFL, la simulation d’un probléme 3D sur un temps code de 1 présente donc
une complexité en R3. Etant donné que de nombreux problémes font intervenir des R, de
I'ordre de 108, la puissance de calcul des ordinateurs actuels ne permet pas de réaliser des
simulations DNS. La communauté scientifique a donc développé des modéles pour réduire

le cotit d’approximation de tels problémes. Deux approches principales se distinguent :

e les modeéles RANS (Reynolds Averaged Navier-Stokes) qui se concentrent sur ’approximation
de quantités moyennées en temps et/ou en espace. Ces modéles requiérent sou-
vent une bonne connaissance du probléme pour mettre en place des hypothéses
d’invariance temporelle ou spatiale.

e les modéles LES (Large Eddy Simulation ou Simulations des Grandes Echelles) qui
approchent ’écoulement de la plus grande échelle d’espace jusqu’a une échelle don-
née. Ces modéles se basent sur la théorie de Kolmogorov [57, 56| qui affirme que
les petites échelles, qui servent principalement & dissiper 1’énergie, ont des struc-
tures plus universelles que celles des grandes échelles, qui dépendent de la géométrie
et des conditions de bord du probléme. Ainsi les modéles LES se concentrent sur
I’approximation des grandes échelles de ’écoulement et modélisent I'action des petites
échelles (aussi appelées échelles de sous maille car non représentées par le maillage)
par des modéles de sous maille. Ces modéles ont pour but d’introduire un mécanisme
de diffusion qui représente 'interaction entre les grandes et les petites échelles comme

le scénario de cascade d’énergie de Kolmogorov.

Afin de modéliser le plus grand éventail de problémes possibles (avec le minimum d’information)
avec le code SFEMaNS, nous proposons de décrire un nouveau modéle LES développé par
Guermond et al. [36, 37] dénommé viscosité entropique.
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7.3.2 La viscosité entropique comme modéle LES

Le modele de la viscosité entropique se base sur la notion de solution "pertinente" (suitable)
de Scheffer [101] et se propose d’introduire une viscosité artificelle prise proportionnelle au
défaut d’équilibre de I’équation d’énergie cinétique. On peut noter qu’une solution suitable
est une solution dont le résidu de ’équation de I’énergie cinétique est négatif au sens des
distributions. Sous certaines hypothéses de régularité, cette condition peut se ré-écrire:

R-u<0, (7.3.1)

au sens des distributions avec R le résidu des équations de Navier-Stokes défini par
R(x,t) := dpu + (w.V)u + Vp — R;'Au — f. Ainsi les solutions "pertinentes" dissipent
les chocs ou singularités si ceux-ci apparaissent.

Afin de définir la viscosité entropique, nous proposons d’interpréter la notion de solution
pertinente dans le cadre de simulations sous résolues. Pour ce faire on considére un couple
d’approximation (uy, pp) des équations de Navier-Stokes et on définit le résidu de I’équation
d’énergie cinétique Dj, comme suit :

1 1 1
Di(x,1) = 0u(5ud) + V(508 + pun) — BIAGE) + RH(Tw)? — f o (73.2)

Etre sous résolu dans une région (x,t) signifie que des gradients élevés ne sont pas représen-
tés par le maillage. Dus & des non linéarités, ces gradients vont devenir de plus en plus
grands et 1’énergie va s’accumuler & 1’échelle du maillage. Par conséquent, 1’équilibre én-
ergétique est brisé et Dy (x,t) est non nul. On peut alors dire qu’une région sous résolue
est une région ot Dy (x,t) est plus grand que l'erreur de consistance du schéma numeérique.
Si Dy, est négatif, I’énergie sera dissipée mais, si Dy, est positif, ’énergie va s’accumuler et
perturber notre approximation. Ainsi imposer au sens des distributions la condition :

Di(x,t) <0 (7.3.3)

permet d’induire un mécanisme de diffusion en accord avec celui de Kolmogorov a la base
de nombreux modéles LES. Dans cet esprit, Guermond et al. [36, 37| ont introduit la
méthode de viscosité entropique qui consiste a ajouter —V:(vg ,Vuy) dans le terme de
gauche des équations de Navier-Stokes avec :

vEh(X,t) == min (cmaxh(x)]uh(x,tﬂ, Ceh(x)QDQh(X’t)’> (7.3.4)
HuhHLoo(Q)

ol hjoc représente la taille locale du maillage et cpax €t co des constantes a régler. Ainsi
définie, la viscosité entropique induit de la diffusion uniquement dans les régions sous
résolues ou Dy, est trés grand (le premier terme de la viscosité entropique est présent pour
limiter la diffusion lorsque Dy, devient trop grand). De plus, cette méthode est consistante.
En effet, lorsque le maillage est assez fin pour résoudre toutes les échelles, Dy, est de 'ordre
de consistance du maillage (car D;, = R-u avec R le résidu des équations de Navier-Stokes).
Ainsi la viscosité entropique vg est plus petite que 'ordre de consistance du schéma et 1’'on
peut parler de méthode consistante.

7.3.3 La viscosité entropique dans SFEMalNS

Pour implémenter cette méthode de stabilisation non linéaire dans le code SFEMaNS, nous
introduisons le résidu des équations de Navier-Stokes défini par:

u” — un—2 1
Ng = — R—Aunfl + Ux (u*" ) x utn Tt wpnt Tt -l (7.3.5)
T e

136



CHAPTER 7. RESUME EN FRANCAIS

Ensuite nous définissons la viscosité entropique sur une maille K de taille hj,. comme suit:

IR - un_1||L°°(K)>
12
[un 1HL2(Q)

UE‘K := min (Cmaxhlocﬂu”_lHLoo(K),cehlzoc (7.3.6)
Finalement on ajoute le terme V-(vgVu") dans le terme de droite de I’équation 7.2.1. Le
lecteur pourra remarquer que la viscosité entropique est traitée de fagon explicite pour
garder une algébre indépendante du temps et ainsi un temps de calcul raisonnable. Aprés
avoir implémenté cette méthode dans le code SFEMaNS, nous avons vérifié sa propriété
de consistance avec un test analytique qui est détaillé dans la section 3.2.2. D’un autre
coté, le bon comportement de la viscosité entropique dans le cadre de simulations sous
résolues est étudié sur deux configurations expérimentales (VKS et cylindre en précession)
dans le chapitre 4 résumé dans la prochaine section. On peut noter que de précédentes
études [36, 37, 38| ont déja permis de mettre en valeur le bon comportement de cette
méthode pour approcher des solutions singuliéres des équations de Burgers et d’Euler.
Plus récemment, dans [34], il a été montré que la viscosité entropique est plus efficace
que le modeéle classique LES de Smagorinsky pour approcher des solutions analytiques
des équations de Navier-Stokes. Bien que cette section introduise la viscosité entropique
comme modéle LES, nous utilisons aussi cette méthode dans le chapitre 7?7 pour stabiliser
un nouvel algorithme d’approximation des équations de Navier-Stokes a densité variable.

7.4 Application aux Simulations des Grandes Echelles (LES)

Dans cette section, nous proposons de résumer le chapitre 4 qui a pour but de valider la
viscosité entropique comme modéles LES. Avec cet objectif, nous étudions deux configura-
tions expérimentales qui ont fait I’objet de précédentes études par Guermond et Nore. Tout
d’abord, nous étudions le régime hydrodynamique d’un probléme de VKS. Nous validons
notre modéle LES pour R, < 2500 par des comparaisons avec des simulations DNS. De
futurs calculs & plus grands R, pourraient voir le jour et étre comparés a des résultats ex-
périmentaux en cours d’acquisition au CEA Saclay. Dans un second temps nous étudions,
sous la forme d’un article en préparation, deux configurations différentes de cylindre en
précession. Etant donné que la précession est connue pour étre une source possible d’effet
dynamo, nous proposons aussi une étude MHD du probléme avec des DNS pour déterminer
laquelle des configurations est la plus "dynamogéne".

7.4.1 Application a des écoulements de Von Karman

Les écoulements de Von Karmén ont fait 'objet de nombreuses études expérimentales
et numériques qui ont permis de mettre en avant certaines propriétés de 1’écoulement
pour des nombres de Reynolds modérés que nous proposons de retrouver avec la viscosité
entropique dans le cadre de simulations sous résolues. Nous décrivons tout d’abord le
procédé expérimental que nous reproduisons numériquement. Cette étude est d’abord
réalisée avec des DNS sur des maillages fins. Ces résultats sont ensuite utilisés pour valider
notre modéle de viscosité entropique (LES) en les comparant a des résultats LES obtenus
sur des maillages plus grossiers.

Positionnement du probléme
Nous proposons d’étudier une configuration expérimentale de type VKS avec des tur-
bines TMS&7. Le probléme consiste & entrainer un fluide dans un récipient cylindrique
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avec deux turbines contra-rotatives. Ces turbines sont composées d’un disque muni de 8
pales de rayon de courbure égal a 72° degrés. Le rayon du cylindre est égal & 100mm
tandis que celui du disque est de 92.5mm. La distance entre les deux disques est fixée a
180mm. Une représentation 3D du dispositif et une coupe 2D qui récapitule les longueurs
caractéristiques du dispositif sont représentées dans la figure 7.2.
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a) Représentation 3D d’une configuration VKS (b) Coupe verticale 2D du dispositif.
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Figure 7.2: Représentations 3D et 2D du dispositif expérimental (figure (a) de H. Zaidi et
unité de la figure (b) en millimeétres).

Les simulations numériques sont réalisées avec la technique de pseudo-pénalisation
décrite précédemment et utilisent une fonction de pénalisation égale & 1 dans le fluide
et 0 dans les turbines. De plus, on utilise des conditions de bord de Dirichlet homogénes
car les parois sont immobiles dans le référentiel du laboratoire. Afin de pouvoir analyser
nos simulations, nous calculons ’énergie cinétique, le couple, la vitesse Urpyss et les én-
ergies poloidale (associée aux composantes radiale et verticale) et toroidale (associée a la
composante azimutale) du champ de vitesse. Ces quantités sont aussi moyennées en temps,
nous renvoyons a la section 4.1.2 pour plus de détails.

Régime hydrodynamique pour R, < 2500 (DNS)

Nous validons notre méthode d’approximation en étudiant le régime hydrodynamique
du probléme pour R, < 208. Cette étude nous permet de retrouver une loi du couple en
R_! pour de faibles nombres de Reynolds, voir figure 4.7. Nous en profitons pour rappeler
que notre méthode présente une erreur en 7R;!. Pour obtenir cette loi de puissance, nous
avons donc di fixer la valeur de 7R;! et non celle du pas de temps. Nous retrouvons
I’écoulement attendu a R, = 208 qui est axisymétrique, stationnaire et composé de deux
recirculations toriques poloidales (u,,u,) et d’une couche de mélange toroidale en uy (voir
figure 4.9), ce qui valide notre méthode d’approximation.

Afin de valider notre modéle LES, nous proposons d’étudier I’écoulement pour R, =
500, 1000 et 2500 avec des DNS pour, par la suite, comparer ces calculs a des résultats LES
sur un maillage plus grossier. Nous notons que les calculs DNS et LES utilisent tous deux
64 modes de Fourier mais le maillage des DNS est deux fois plus fin prés des turbines (pas
de maillage 1/200) que celui des LES. Pour R, > 500 I’écoulement devient instationnaire
et brise son axisymétrie, de plus la valeur du couple décroit lorsque R, augmente ce qui
laisse intuiter une valeur asympotique déja mise en évidence dans Ravelet et al. [95]. A
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R. = 500 le mode de Fourier m = 2 devient dominant (modulo les modes 0 et 8 dus
a la présence des turbines contra-rotatives) comme dans [95]. Une seconde bifurcation
dans la répartition de I’énergie cinétique sur les différents modes de Fourier intervient
pour R, = 1000 ou le mode 3 devient dominant, voir la figure 7.3. Ce comportement
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(a) R. = 500. (b) R. = 1000. (¢) Re = 2500.

Figure 7.3: Evolution temporelle de ’énergie cinétique des modes de Fourier m = 1,2, and
3 pour R, € {500,1000,2500}.

avait déja été observé avec des turbines TM73 par D. Castanon [18]. On peut noter que,
pour R, = 2500, le mode 3 reste dominant tandis que les modes 1 et 2 sont aussi non
négligeables ce qui va entrainer une répartition plus homogéne de I’énergie entre tous les
modes de Fourier (voir la figure 4.14 pour une représentation des spectres de I’énergie).
Des échanges de fluide entre les parties inférieure et supérieure du cylindre se mettent
en place pour R, > 500 et permettent de retrouver la présence d’'un mode m = 2 pour
R. = 500 (voir figure 4.11). Finalement, nous retrouvons aussi la présence de structures
tourbillonnaires entre les pales des turbines, déja mises en évidence expérimentalement et
numériquementr par Ravelet et al. [96] et numériquement par Kreuzahler et al. [60]. Notre
méthode nous a donc permis de retrouver des résultats en accord avec de précédentes
études expérimentales [94, 95] et numériques [18, 60] qui seront donc utilisés pour valider
notre modéle de viscosité entropique.

Reésultats LES avec la viscosité entropique pour R, < 5000

La validation de notre modéle LES se fait par des comparaisons d’énergies, de spectres
d’énergie, de visualisations des écoulements entres des simulations DNS-LES pour R, =
500, 1000 et 2500. Tout d’abord, on peut noter que les quantités numériques calculées au
cours des simulations LES et DNS différent de 1 — 2% comme le montrent les tableaux 4.1
et 4.3. La simulation LES & R, = 500 retrouve aussi la bifurcation dans le spectre d’énergie
(mode 2 dominant) et la méme répartition de I’énergie sur les modes de Fourier que celui de
la DNS, réalisée sur un maillage deux fois plus fin prés des turbines. Aprés avoir vérifié que
les simulations LES & R, = 1000 et 2500 donnent des résultats similaires aux simulations
DNS, ce qui valide notre modeéle LES, nous avons décidé de mettre en valeur les bénéfices
de la viscosité entropique par rapport & une simulation sans stabilisation réalisée sur le
méme maillage grossier. Pour ce faire, nous avons réalisé une simulation & R, = 1000 avec
le maillage LES mais sans stabilisation. Comme le montre la figure 7.4, le mode 2 reste
dominant avec la simulations DNS sous résolue alors que la simulation LES montre bien
un mode 3 qui devient dominant comme les simulations DNS & maillage fin.

Apreés avoir validé notre modéle LES, nous proposons une étude préliminaire du régime
hydrodynamique pour R, = 5000. Cette étude, qui sera prochainement poursuivie avec de
plus grands nombres de Reynolds dans le but d’étre comparée a des résultats expérimentaux
de Dubrulle et al., a permis de confirmer que le couple semble tendre vers une valeur
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(a) LES. (b) DNS sous résolue.

Figure 7.4: Evolution temporelle de I’énergie cinétique des modes de Fourier 1, 2 et 3 avec
R, = 1000 pour des simulations LES et DNS réalisées sur le méme maillage grossier.

asymptotique. Ce comportement est aussi notable avec d’autes quantités étudiées, telles
que D’énergie cinétique ou la vitesse Uryg, dont les valeurs moyennes varient de moins
en moins lorsque R, croit. Ce comportement est en accord avec une précédente étude
numérique [60].

Conclusion

Une premiére étude a faibles nombres de Reynolds (inférieurs a 200) nous a permis
de retrouver I'écoulement laminaire attendu et une loi du couple en R;! ce qui valide
I’adaptation de la technique de pseudo-pénalisation de Pasquetti et al. & des solides en
mouvement et & des schémas de prédiction-correction. L’étude du régime hydrodynamique
pour R, > 500 nous permet de conclure que la viscosité entropique approche correctement
les solutions d’un probléme de VKS avec des maillages sous résolus pour des nombres de
Reynolds cinétique modérés R, < 5000. Ainsi, la viscosité entropique se trouve étre un bon
candidat pour réaliser des simulations & grands R.. La suite logique de cette étude est la
mise en place de calculs LES a plus grands R, pour faire des comparaisons avec des résultats
expérimentaux de I’équipe de B. Dubrulle du CEA Saclay. Une autre perspective est I’étude
MHD de ce probléme avec des turbines & forte perméabilité magnétique (configuration
connue pour générer un champ magnétique principalement axisymétrique).

7.4.2 Application a des récipients cylindriques en précession

La section 4.2 présente, sous la forme d’un article en préparation, une étude hydrody-
namique et magnétohydrodynamique de deux configurations de cylindre en précession dont
nous proposons de relater les résultats majeurs. Dans un premier temps, nous décrivons
les problémes étudiés afin de proposer une étude du régime hydrodynamique des deux con-
figurations. Ensuite, nous étudions le régime MHD des deux configurations et analysons
I'influence de la présence de parois conductrices de ’électricité ou ferromagnétiques sur le
seuil de la dynamo.

Positionnement du probléme

Le probléme consiste & suivre ’évolution d’un fluide conducteur de électricité dans
un conteneur cylindrique entrainé par une rotation principale et une seconde rotation, dite
de précession, d’axe différent et d’intensité inférieure (par exemple le mouvement d’une
toupie). On peut noter que I’axe de la précession est fixe dans le référentiel du laboratoire
et correspond & ’axe de la table tournante. Deux configurations sont étudiées, la premiére
fait 'objet d’expériences en laboratoire & Dresden notamment [105] et utilise une rotation
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principale autour de l’axe de symétrie du cylindre et une rotation de précession autour
d’un axe qui lui est perpendiculaire. Cette configuration, que I'on dénommera "axial
spin case", a déja été le sujet d’études hydrodynamiques par Nore et al. [83] que nous
proposons d’étendre & un plus grand intervalle de nombres de Reynolds cinétique grace a
la méthode de viscosité entropique. En complément, nous proposons aussi d’étudier une
configuration de précession, dite "equatorial spin case", qui fait intervenir une rotation
principale autour d'un axe radial du cylindre et une rotation de précession de la table
tournante, voir figure 4.23. Cette étude complémentaire va nous permettre dans un premier
de comparer les régimes hydrodynamiques de chaque configuration pour déterminer quelle
est la plus & méme de briser les symétries (comportement favorable a I'effet dynamo). Dans
un second temps, une étude MHD des deux configurations nous permet de discerner laquelle
est vraiment la plus favorable & l'effet dynamo. Finalement une analyse de I'influence des
propriétés des couvercles et des parois latérales du cylindre (faites avec des matériaux
conducteurs ou ferromagnétiques) sur le seuil de la dynamo pour le cas du "axial spin
case" est proposée et pourrait trouver des applications dans les futures expériences de
précession conduites & Dresden (Allemagne).

Régime hydrodynamique

L’étude hydrodynamique du "axial spin case" commence & R, = 4000 par une com-
paraison entre des calculs DNS et des calculs LES réalisés sur un maillage plus grossier
avec la viscosité entropique. Des comparaisons de I’évolution des énergies cinétiques et des
spectres d’énergie au temps final sont proposées dans la figure 4.40. Le bon comportement
de la viscosité entropique, qui retrouve des résultats trés proches de ceux de la DNS (1—2%
d’erreur relative), valide notre modeéle LES ce qui nous a permis de réaliser des simulations
hydrodynamiques jusqu’a R. = 15000. Ces nouveaux résultats LES combinés & des précé-
dents résultats de DNS pour R, € [1200,4000] suggérent une loi de puissance de I’énergie
cinétique dans le référentiel en précession en R, %4® voir figure 4.25. Cette loi suggére que

/

le champ de vitesse moyenné en temps varie comme R, 14 ot done que le champ moyen
devient nul a grands nombres de Reynolds. Une autre interprétation est que le champ de
vitesse est d’amplitude 1 prés des parois latérales du cylindre (qui sont en rotation) et que
le fluide est entrainé par les parois dans une couche limite d’épaisseur R %3, Des visuali-
sations de ’écoulement pour différents nombres de Reynolds nous permettent de confirmer
que l'écoulement dans le référence des murs tend vers une rotation solide opposée a la
rotation principale (autour de 'axe de symétrie du cylindre). Ce comportement avait déja
été observé et discuté dans [82, 58|.

La configuration "equatorial spin case" est étudiée avec des simulations DNS pour des
nombres de Reynolds de 200 & 4000. Tout comme le "axial spin case", ’écoulement semble
tendre vers une rotation solide dans le référentiel des murs opposée & la rotation principale
(donc autour d’un axe radial). D’un autre coté, cette configuration brise plus facilement
les symétries, en effet I’énergie antisymétrique sature pour R, > 2000 autour de 6% contre
1% pour le "axial spin case", voir figure 4.32. Etant donné que les brisures de symétrie
facilitent l'effet dynamo, ce résultat nous a conduit & étudier la partie MHD de ce probléme
pour les deux configurations pour déterminer laquelle est en effet la plus favorable & 1'effet
dynamo.

Effet dynamo (étude MHD)
Dans un premier temps, nous étudions le régime MHD du "equatorial spin case" pour
R. = 1200 comme Nore et al. 'avaient fait pour le "axial spin case" pour ce méme nombre
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de Reynolds cinétique. Nous montrons que le seuil d’apparition de I'effet dynamo pour le
"equatorial spin case" est proche de R{, = 2400 ce qui est bien supérieur a celui du "axial
spin case" égal & R, = 775. Ainsi le "equatorial spin case" a beau briser plus facilement
les symétries de ’écoulement, il reste moins favorable a 'effet dynamo. On peut noter que
les champs magnétiques générés par ces deux configurations sont différents : dans le cas
du "axial spin case", il est majoritairement dipolaire tandis que, pour le cas du "equatorial
spin case", il est quadripolaire.

En complément, nous étudions aussi 'influence de la présence de parois conductrices de
I’électricité ou ferromagnétiques sur le seuil de la dynamo pour le "axial spin case" qui est
le sujet d’expériences a Dresden [105]. Tandis que la présence de parois ferromagnétiques
réhausse le seuil de la dynamo, la présence de parois conductrices permet de baisser le
nombre de Reynolds magnétique critique au delda duquel on constate de l'effet dynamo.
Plus précisemment, c’est la présence de parois conductrices latérales qui favorise 1'effet

dynamo tandis que la présence de couvercles conducteurs augmente la valeur de RY,.

Conclusion

Nous avons donc validé la méthode de viscosité entropique comme modéle LES ce qui
nous a permis de réaliser une étude hydrodynamique du probléme jusqu’a R, = 15000
et de mettre en évidence une loi en puissance de I'énergie cinétique dans le référentiel en
précession en R_ %48 pour le "axial spin case". L’¢tude du probléme "equatorial spin case"
nous a permis de montrer que briser les symétries n’est pas toujours synonyme d’étre plus
favorable a l'effet dynamo. Finalement nous avons montré qu’utiliser un conteneur avec
des parois latérales conductrices de 1’électricité permet d’abaisser le seuil d’apparition de
Ieffet dynamo ce qui pourrait trouver écho dans la réalisation d’expériences de précession
a Dresden [105].

7.5 Approximation d’écoulements multiphasique avec la quan-
tité de mouvement

Nous proposons un résumé du chapitre 5 qui présente, sous la forme d’un article en pré-
paration, une nouvelle méthode d’approximation des équations de Navier-Stokes & densité
variable. Dans un premier temps nous donnons quelques informations sur le nouveau
modéle que nous avons développé, ensuite nous présentons quelques tests sur lesquels nous
avons validé notre méthode.

7.5.1 Approximation numérique

Modélisation du probléme hydrodynamique et stabilisation

L’approximation d’un écoulement multiphasique requiert d’approcher les solutions de
I'équation de la masse (équation d’advection) et de la quantité de mouvement (équation de
Navier-Stokes). Afin de reconstruire les propriétés physiques des fluides (densité et viscosité
dynamique), nous avons décidé d’approcher 1’équation de la masse en implémentant une
méthode de level set. Notre méthode consiste & suivre I’évolution de l'interface entre les
deux fluides en considérant une fonction ¢ & valeurs dans [0, 1] telle que l'interface entre
les deux fluides est représentée par ¢~ 1(1/2) et ¢ est solution de:

O +u- Ve =0. (7.5.1)
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La densité p et la viscosité dynamique 1 peuvent alors étre reconstruites en utilisant ¢,
voir les équation 5.2.5- 5.2.6. Aprés avoir reconstruit p et n, nous approchons les équations
de Navier-Stokes avec la quantité de mouvement m := pu, qui peuvent s’écrire:
2 1 1
- —=V:(ne(u)) + Vp= —V.§ — —
V() + Vp = VS - o
Vau =0, (7.5.2b)

Oim + V-(m®u) pe, +f, (7.5.2a)

avec €(u) = V®u le gradient symétrisé de u, S le tenseur lié a la tension superficielle
défini dans ’équation 5.2.7 et R, F, et W, des nombres adimensionnés définis dans 5.2.2.
L’utilisation de m comme variable d’approximation permet de travailler avec une matrice
de masse indépendante du temps. Afin que la matrice de rigidité soit aussi indépendante
du temps, nous réécrivons 'opérateur de diffusion sous la forme V:(ve(m)) + V-(—ve(m) +
ne(u)) avec v > %. Le premier terme est alors traité de facon implicite tandis que le second
est traité de fagon explicite. Nous avons établi une preuve de stabilité, voir théoréme 2,
de notre méthode pour un cas simplifié. Nous renvoyons a [41] qui propose une analyse de
stabilité compléte de la méthode dont nous nous inspirons.

Afin de réduire les oscillations qui peuvent étre générées en présence de grands rapports
de densité ou viscosité, nous stabilisons les équations de la level set et de la quantité de
mouvement avec la méme viscosité entropique. Ainsi nous ajoutons le terme V-(vgV¢)
dans le terme de droite de I’équation de la level set et le terme V-(rgVm) dans le terme de
droite des équations de Navier-Stokes. On note que la viscosité entropique v est traitée de
fagon explicite et est construite avec le résidu des équations de Navier-Stokes. La définition
rigoureuse de cette viscosité entropique est donnée dans la section 5.4.2.

Enfin 'ajout de la viscosité entropique dans ’équation d’advection qui régit 1’évolution
de la level set nous conduit & ajouter un terme de compression pour que la level set ne soit
pas trop diffusée. Tandis que nous renvoyons & la section 5.4.3 pour plus d’informations
techniques de cette méthode de compression, nous proposons dans la figure 7.5 de mon-
trer son importance sur un probléme de transport d’une fonction en escalier. Le lecteur

1.2 T 1.2 T 12

|
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(a) Visc. ler ordre (b) Entropy visc. (¢) Entropy visc. + comp.

1 E— 1 1

Figure 7.5: Transport linéaire de la fonction ¢o(x) = 1g4<z<0.7, solutions exacte en bleue
et approchées en rouge au temps T =1, 10, 100.

peut constaster que la stabilisation du probléme avec une viscosité de premier ordre ou
entropique entraine trop de diffusion au cours du temps. La combinaison de la viscosité
entropique et de notre méthode de compression (figure 7.5.c) permet de limiter Peffet dif-
fusif de la viscosité entropique : la solution approchée reste constante au cours du temps
et n’est pas aplatie.
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Extension de I’algorithme a des problémes MHD

Afin de pouvoir étudier des probléemes MHD, nous avons aussi modifié les équations
de Maxwell pour que le code SFEMaNS puisse prendre en compte des fluides a conduc-
tivité électrique variable. Ce nouvel algorithme des équations Maxwell utilise le champ
d’induction B comme variable d’approximation. Afin de travailler avec une algébre con-
stante, nous avons réécrit le terme diffusif comme dans les équations de Navier-Stokes, c¢’est-
a-dire Vx (%Vx b) — Vx ((% — 1)Vxb) avec & < omin. Le premier terme est alors traité de
fagon implicite tandis que le terme Vx ((2 —1)Vxb) est traité de fagon explicite ce qui nous
permet de travailler avec une matrice de rigidité indépendante du temps et de réduire le
temps de calcul associé a ’algorithme. Cette extension nous a permis de publier une étude
des instabilités de Tayler dans les Batteries & Métaux Liquides dans [46]. L’algorithme a
aussi été validé sur un probléme de chute d’une bulle conductrice de I'électricité freinée

par un champ magnétique vertical ambiant qui avait déja été étudié par Tagawa [108].

7.5.2 Reécapitulatif de quelques test numériques

Dans un premier temps, nous avons validé notre méthode avec des solutions manufacturées
(le terme de forgage est pris égal au reste des termes de ’équation) et des problémes d’ondes
de gravité. Dans un second temps, nous avons poursuivi notre validation de la méthode
avec des tests ou le fluide est soit entrainé par des parois en rotation soit par des effets de
tensions superficielles combinés a la gravité que nous proposons de décrire dans la suite.

Tests avec des parois en rotation

Nous avons testé notre algorithme avec un test de Newton Bucket qui consiste a remplir
un récipient cylindrique d’un fluide lourd surmonté d’un fluide plus léger (rapport de densité
1000, de méme pour la viscosité dynamique). Le cylindre est alors mis en rotation autour
de son axe de symétrie. L’interface finale (a I’équilibre) est connue théoriquement et nous
a permis de valider notre méthode. On note que la variation de la viscosité dynamique
nécessite d’utiliser le gradient symétrique dans 'opérateur de diffusion car I'utilisation de
lopérateur V-(nVu) entraine une erreur non négligeable sur la position finale de U'interface
entre les deux fluides.

Afin de mettre en avant la nécessité d’écrire 'opérateur de diffusion sous la forme
V-(nV*u), nous proposons d’étudier une configuration proche de celle du Newton-Bucket.
La seule différence est que seule la paroi inférieure du cylindre est en rotation (et non
plus le cylindre entier). L’interface a 1'équilibre n’est plus connue théoriquement, et pour
valider nos calculs nous proposons de comparer nos résultats & des résultats expérimentaux
et numériques de Kahouadji et Martin Witowski [53]. Comme le montre la figure 7.6,
SFEMaNS permet bien de retrouver un profil d’élévation de la surface trés proche de celui
expérimental lorsque 1'on utilise Vu. L’utilisation du gradient non symétrique (trait noir

pointillé) induit clairement un écart.

Tests avec tension surperficielle

Nous avons aussi réalisé plusieurs tests qui font intervenir des effets de tension super-
ficielle. Dans un premier temps, nous avons utilisé une configuration de Newton-Bucket
avec un nombre de Weber variant dans l'intervalle [50, co[ et comparé avec succés nos ré-
sultats numériques a ceux de Brady et Lopez [15]. Ensuite nous avons étudié la dynamique
d’une bulle dans un milieu plus dense. Sous I’action conjointe de la gravité et de la tension
superficielle, la bulle va alors monter mais aussi se déformer. Ce probléme avait déja été
étudié par Hua et Lou dans [48], ce qui nous a permis de valider notre étude en comparant

144



CHAPTER 7. RESUME EN FRANCAIS

0.60 - 5 0.60 -

0.55F 1 055+

0.50( 1 050l

Vu -
Vu
Experiment X

KMW ----

SFEMaNS, V'u
Experiment X

045 ‘ ‘ ‘ 3 a5 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

Figure 7.6: (a) Configuration expérimental avec une sonde qui mesure 1’élévation de la
surface (image de L. Martin Witkowski); (b) Profil de Iinterface obtenu par SFEMaN§S
avec Vu (trait pointillé) et V*u (ligne solide) et par expériences (symbole x); (¢) Solu-
tion numérique de SFEMaNS avec V*u (ligne solide), résultats de Kahouadji et Martin
Witowski [53] numériques (ligne pointillée) et expérimentaux (symbole )

la vitesse finale de la bulle et sa forme géométrique (voir tableau 5.6 et la figure 5.8) pour
différents rapports de densité, viscosité dynamique et nombres de Weber.

On note que tous les problémes étudiés jusqu’a présent étaient axisymétriques et donc
ne dépendaient pas de la direction azimutale 6. Afin de vérifier le bon comportement de
notre méthode pour des écoulements qui dépendent de 6, nous avons étudié un probléme
de bulle oscillante décrit dans [68]. Le probléme consiste a suivre la dynamique d’une bulle
dans un fluide de méme densité et viscosité sous l'action unique de la tension superficielle.
A Dinstant initial la bulle est déformée avec une perturbation selon le mode de Fourier
m =0 ou m = 1. Grace & Lamb [65], la période d’oscillation de la bulle est connue dans
le cas d’un fluide parfait (R, infini). Comme le montre la figure 5.9, nous retrouvons la
période d’oscillation théorique lorsque R, est supérieur a 100 — 500.

En conclusion, nous avons présenté et validé une nouvelle méthode d’approximation
d’écoulements multiphasiques. Cette méthode est inspirée de [41], out une analyse compléte
de la stabilité de ’algorithme est présentée. L’avantage principal de cette méthode est que
la matrice de rigidité est indépendante du temps ce qui permet son implémentation dans
des codes spectraux. Aprés avoir démontré la stabilité d’une version simplifiée de notre
méthode, nous 'avons validée avec un large spectre de tests.

7.6 Conclusion

7.6.1 Résultats

Toutes les études menées durant cette thése ont été motivées par ’amélioration du code
SFEMaNS. Ce projet s’inscrit dans la continuité des théses précédentes de R. Laguerre [63],
A. Ribeiro [97] et F. Luddens [74] qui ont permis la naissance du code SFEMaNS et
son développement en un code massivement paralléle qui peut approcher des problémes
MHD avec des effets thermiques ou des discontinuités de la perméabilité magnétique dans
les directions radiale et verticale. Dans ce cadre, un des objectifs de cette thése a été
d’implémenter une méthode de stabilisation pour que des paramétres plus proches de ceux
utilisés lors d’expériences puissent étre envisagés. L’autre principal objectif a consisté &
étendre l'action du code SFEMaNS a des problémes d’écoulements multiphasiques.

Le premier objectif a été atteint en implémentant une méthode de stabilisation non
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linéaire, dite de viscosité entropique, qui induit une diffusion proportionnelle au déséquili-
bre d’une équation d’énergie. Les bonnes performances de cette méthode LES ont été mises
en valeur en étudiant des problémes d’écoulements de von Karméan (VKS) ou de récipient
cylindrique en précession qui sont tous deux le sujet d’expériences respectivement au CEA
Saclay et a Dresden (Allemagne). Dans un premier temps, nous avons comparé des résul-
tats DNS et LES pour des nombres de Reynolds modérés R, < 2500 sur un probléme de
type VKS. Cela a permis de montrer le bon comportement de la viscosité entropique pour
approcher des problémes avec des maillages sous résolus. Cette méthode LES a retrouvé
les résultats des DNS (réalisées avec un maillage plus fin) tandis que des simulations sur
ce méme maillage sous résolu sans stabilisation rataient des bifurcations dans le spectre
d’énergie. L’étude numérique du probléme pour R, < 2500 nous a permis de retrouver une
loi de puissance du couple K, en R-! pour des faibles nombres de Reynolds et des bifurca-
tions dans le spectre d’énergie connues pour R, € {500,1000}. Une étude préliminaire de
I’écoulement pour R, = 5000 a permis de retrouver des comportements similaires a ceux
d’autres études expérimentales et numériques [95, 96, 60]. En conclusion, la méthode de
viscosité entropique se trouve étre un bon candidat pour approcher le régime hydrody-
namique d’une configuration VKS avec des maillages sous résolus et pourrait étre utilisée
pour poursuivre cette étude avec des nombres de R, cinétique plus élevés. Dans un second
temps, nous avons utilisé la viscosité entropique pour étendre & un plus large intervalle de
nombres de Reynolds cinétique une étude antérieure de Nore et al. [83] sur des cylindres
en précesion de type "axial spin case". Aprés avoir validé le modéle LES avec des com-
paraisons DNS a R, = 4000, des simulations LES jusqu’a R, < 15000 combinées & des
résultats DNS pour R, < 4000 ont mis en évidence une loi de puissance de I’énergie ciné-
tique dans le référentiel en précession en Rg0'48. Nous avons aussi montré que ’écoulement
tend vers une rotation solide dans le référentiel des murs ce qui concorde avec des résultats
expérimentaux obtenus a plus grands Reynolds dans [82]. En complément, un second type
de précession, dit "equatorial spin case", a aussi été étudié et une étude MHD des deux
configurations a été proposée pour déterminer la plus favorable a la génération d’un champ
magnétique (effet dynamo). Bien que la configuration "equatorial spin case" permette de
briser plus facilement les symétries de 1’écoulement, elle s’est révelée étre moins favorable
a leffet dynamo. Pour finir, nous avons constaté que le seuil de dynamo peut étre abaissé
en utilisant des parois latérales en cuivre ce qui pourrait trouver écho dans la préparation
d’expériences de précession a Dresden [105].

L’extension du code SFEMaNS & des problémes d’écoulements multiphasiques a néces-
sité le développement d’une nouvelle méthode d’approximation des équations de Navier-
Stokes & densité variable. Aprés avoir implémenté une méthode de level set pour rendre
compte de I’évolution de l'interface entre deux fluides, il nous restait a surmonter quelques
difficultés pour approcher les solutions des équations de Navier-Stokes. Etant donné que la
densité et la viscosité dépendent du temps et de ’espace, utiliser le champ de vitesse comme
variable induirait une matrice de masse et un opérateur de diffusion qui dépendraient tous
deux du temps et de ’espace. Pour travailler avec une algébre indépendante du temps, ot
la matrice de rigidité est assemblée uniquement & l’initialisation, nous avons développé une
méthode inspirée de [41] qui utilise la quantité de mouvement comme variable. La matrice
de masse devient alors indépendante du temps et ’opérateur diffusif est réécrit de telle facon
qu’il puisse étre traité explicitement. La principale originalité de cette méthode est de sta-
biliser les équations de la masse (level set) et de la quantité de mouvement (Navier-Stokes)
avec la méme viscosité entropique, ce qui nous permet de simuler des rapports de densité
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et viscosité élevés. On remarque que 'addition d’un terme de diffusion dans I’équation de
la level set nous a conduit & ajouter un élément de compression pour que la level set ne se
fasse pas aplatir au cours du temps. Au contraire de beaucoup de méthodes qui préférent
ajouter une étape de compression a l’algorithme, comme dans [21], nous préférons ajouter
un ingrédient de compression lors de la résolution de I’équation d’advection (level set).
Cette méthode a été implémentée dans le code SFEMaNS et validée avec de nombreux
tests analytiques et comparaisons expérimentales. Cette méthode a aussi été utilisée pour
réaliser une étude préliminaire des instabilités des Batteries & Métaux Liquides (LMB).
Cette étude, qui n’est pas rapportée dans ce manuscrit, a été publiée dans la revue Journal
of Fluid Mechanics (W. Herreman, C. Nore, L. Cappanera and J.-L. Guermond, vol. 771,
p79-114, 2015 [46]).

Pour conclure, on peut noter que I’étude de configurations VKS dans le chapitre 4
nécessitait la modélisation de turbines non axisymétriques en contra-rotation qui mettent
le fluide en mouvement. Etant donné que le code SFEMaNS utilise une décomposition de
Fourier dans la direction azimutale et approche les équations de Navier-Stokes avec des
éléments finis 2D dans un plan meéridien, une technique de pseudo-pénalisation [89] a été
adaptée pour des schémas de type prédiction-correction des équations de Navier-Stokes.
Son implémentation dans le code SFEMaNS, validée par des tests analytiques et I’étude de
I’écoulement autour d’une sphére, nous permet maintenant de considérer des géométries
non axisymétriques. Combinée & la précédente extension aux problémes multiphasiques et
a I'implémentation de la méthode de stabilisation de viscosité entropique, nous pouvons
conclure que le code SFEMaNS est maintenant capable d’étudier la plupart des problémes
MHD avec des paramétres physiques plus proches de ceux utilisés en laboratoire.

7.6.2 Perspectives

Aprés une étude satisfaisante du régime hydrodynamique d’un probléme de VKS avec
des turbines TM87 pour des nombres de Reynolds modérés, la prochaine étape serait de
prolonger notre étude avec la viscosité entropique pour de plus grands R.. Etant donné
que les DNS ne seront pas faisables pour de tels nombres de Reynolds, cette étude pourrait
étre comparée a des résultats expérimentaux en cours d’acquisition au CEA Saclay par
I’équipe de B. Dubrulle. En paralléle des études menées dans ce manuscrit, le code a
été adapté pour des problémes avec des perméabilités magnétiques variables en temps
et dans toutes les directions de I’espace par D. Castanon dans le cadre de sa thése [18].
Cette extension permet maintenant I’étude MHD de problémes de VKS qui sont connus
pour générer un champ magnétique lorsque les turbines ont une perméabilité magnétique
suffisamment grande.

En ce qui concerne 'extension de SFEMaNS a des problémes multiphasiques, on peut
noter que notre algorithme est d’ordre 1 en temps. Etant donné que l'utilisation de for-
mule BDF2 pour la discrétisation temporelle de la dérivée en temps n’est pas stable pour
de grands rapports de densité ou de viscosité, nous pensons combiner notre algorithme &
une technique de Guermond et Minev (STAM J. Sci. Comput., 2015 en impression). Cette
technique nous permettrait d’obtenir un algorithme d’ordre 2 en temps par 1'utilisation suc-
cessive d’algorithmes d’ordre 1. De plus, I’étude des LMB, qui pourrait jouer un réle futur
dans le stockage d’énergie produite de fagon intermittente et qui sera le sujet de futures
expériences a Dresden [105], sera poursuivie. Pour étre plus proche d’une configuration
réaliste, les effets thermiques devront étre considérés et nécessiteront des modifications du
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code SFEMaNS.
Finalement, toutes les études précédentes ont permis & SFEMaNS de devenir un des

codes MHD les plus complets. La prochaine étape est de rendre accessible ce code & d’autres
équipes étudiant des problemes MHD. Pour ce faire, la rédaction d’'une documentation

compléte du code est en cours et devrait étre finalisée en 2016.
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