N

N

Mathematical modeling in neuroscience: collective
behavior of neuronal networks & the role of local
homeoproteins diffusion in morphogenesis

Cristobal Quininao

» To cite this version:

Cristobal Quininao. Mathematical modeling in neuroscience : collective behavior of neuronal networks
& the role of local homeoproteins diffusion in morphogenesis. General Mathematics [math.GM].
Université Pierre et Marie Curie - Paris VI, 2015. English. NNT: 2015PA066152 . tel-01326582

HAL Id: tel-01326582
https://theses.hal.science/tel-01326582
Submitted on 28 Jul 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01326582
https://hal.archives-ouvertes.fr

uPmcC JiL

1AA1 SORBONNE

Université Pierre et Marie Curie Laboratoire Jacques-Louis Lions

These de Doctorat de

I'Université Pierre et Marie Curie

Spécialité Mathématiques

Ecole Doctorale de Sciences Mathématiques de Paris Centre

par
Cristébal QUININAO
pour obtenir le grade de

DOCTEUR de 'UNIVERSITE PIERRE ET MARIE CURIE

Mathematical modeling in Neuroscience: collective behavior of
neuronal networks & the role of local homeoproteins diffusion in

morphogenesis

Modélisation mathématique en neuroscience: comportement collectif des réseaux

neuronauz & role de la diffusion locale des homéoprotéines dans la morphogenese.

dirigée par Benoit PERTHAME, Stéphane MISCHLER et Jonathan TOUBOUL

Présentée et soutenue publiquement le 2 Juin devant un jury composé de

. Benoit PERTHAME co-Directeur  (LJLL, UPMC)
. Stéphane MISCHLER co-Directeur (CEREMADE, Univ. Paris Dauphine)
. Jonathan TOUBOUL co-Directeur  (CIRB, College de France & INRIA)
. Nicolas CHAMPAGNAT Rapporteur  (IECL, Université de Lorraine)
. Hatem ZAAG Rapporteur  (LAGA, Univ. Paris 13 & INSMI)
. Luis ALMEIDA Examinateur (LJLL, UPMC)
. Carl GRAHAM Examinateur (CMAP, Ecole Polytechnique)
(

. Thomas LECUIT Examinateur (IBDM UMR 7288)

= = E 2 £ E E






Acknowledgments

These first pages of my thesis are probably the only part that will be read and understood by most
of the people, therefore I will try to said the most within only a few lines. It is extremely hard for me to
express my gratitude to all those professors, colleagues, friends, mentors and imaginary characters that
have been part of this unexpected journey. First of all, I would like to thank all the members of the
committee. I admire each and everyone of you. I am very honoured you have accepted to take part of

my PhD Jury. I hope not to disappoint you throughout this text and my results.

This work would not be possible without the help, commentaries, remarks, guidance, ideas and support
of many people whom I want to express my acknowledgments. Dr. Jonathan Touboul is probably one of
the most important of those people. I have to thank you for everything you taught me the past few years,
and because you never complained about my awful french accent. Prof. Stéphane Mischler and Prof.
Benoit Perthame complete the podium, and I owe you both a huge debt of gratitude. Prof. Perthame
agreed to be my official advisor, knowing in advance that I would work more closely with J.T. Thank you
for all the time you dedicated to the morphogenesis problem we treated, and the interest demonstrated
towards my present research topics and future career. To Prof. Mischler, I want to express my sincere
admiration, you are an outstanding mathematician and a more remarkable person. Always ready to bring
light to the problems we studied, and to discuss about any doubt I had (even if it could be the dumbest

question ever).

A special mention has to be dedicated to Prof. Alain Prochiantz, or as I used to say Professor. It is
amazing to find people like you in the competitive world we live. I am impress not only with your high
level as a scientist, but also with your sense of humor and honesty to say the things with the precise
words. Finally, I have to thank also to all the people at the Center for Interdisciplinary Research in
Biology of the College de France (CIRB). To be part of the CIRB was essential to my formation not only

as a mathematician but also as a interdisciplinary scientist.

il



iv



Contents

cknowledement iii

1

|J..J_Bms.emmjml ............................................ 1
h_Ll_BaLt_L_Nﬂ]IQD.a.LD.&m&)LkEJ ................................ 1
112 Part 11 The role of howeoprotein diffusion v worphogenesid . . . . ... . . . .. )

1.3 Part ITI. On a subcritical Keller-Segel equation . . . . . . . . . . .. .. ... ... 2

1.1.4  Plan of the Thesid . . . . . . . . . . . . . 3
h_Z_Mamh&mamj&al_tm.bmsl ...................................... 3
|1 2.1 Mean-field macroscopic equations: propagation of chaos nroner’rxj .......... 4

|1 2.2 __Uniqueness of stationary solutions and nonlinear (’onvergencel ............ 6

|
|

14 Mainresultd . . . . . L 19
Mbmmm&mmﬂﬁm_dﬂa&l ................. 19
Wzﬂ;@hﬂa@umo emmﬁorj ....................... 23
|1 4.3 Competition and boundary formation in heterogeneous dei?J ............ 29

W&Uﬁh&gﬂ.ﬂﬂhﬂj ......................... 32

|] 5 Perspectives and open problems . . . . . . .. ... 35
w&mwm ------- 35

1.5.2 On the statistical description of neuron networkd . . . . . . . . . . . . . ... ... 38

Neuronal network 41




W' istri i i na.l;mml ................. 52
Small-world tyvpe model and correlated delayd . . . . . . . . . .. .. ... ... .. 54

E 5 _Proofd . . . . . e 57

............................................. 64

6 Relationship with pathological rhythmic brain activity . . . . . . . . . . . ... .. 65
6 ¢ e_and synchronization prima alarea . . ... ... ... ... 65
6 Macroscopic vs Mesoscopicmodeld . . . . . . . . . . L o 65
2.6.4 Perspectived . . . . . .. e e e e e 67

|3 0 Ki ic FitzHueh-N . | 71

|3 1 Introductionl . . . . . e e e e e 73
3 Historical overview of macroscopic and kinetic models in ne]]msgjencf] ....... 74
|3 2 Organization of the r)ar)eJ ................................ 75

|3 2 Summary of the main resultsl .................................. 76
|3,2, Functional spaces and norms . . . . . . .. ... 76
........................................ 76

3.2.3 Other notations and definitions] . . . . . ... .. ... o000 78
MMM .......................... 80
3.3.1 A prioribounds] . . ... 80

3.3.2 __Entropy estinmmmmﬁssw ................... 86
ELM;&M@J; .................................. 90

3.4.1 Propertiesof Aand B . . .. . ... 92
mewﬂd ---------- 9

Igsmbﬂitv of the stationary solution in the small connectivity regimd . . . . . . . . . . ... 98
|3 5.1 _Uniqueness of the stationary solution in the weak connectivity regimel ....... 98
|3 5.2 Study of the Spectrum and Semigroup for the Linear Problewl ........... 99
|3 5.3 _Exponential stability of the NL emmﬁorj ........................ 102
|3 6__Open problems beyvond the weak (‘our)lin%j_m_fj ....................... 103
3.7 _Appendix A: Mean-Field limit for Fitzhugh-Nagumo neurons . . . . . . . ... ... ... 103

Mum@wmm@&hﬁhﬂmmwﬂml ............. 107

I __The role of homeoprotein diffusion in morphogenesis 111

vi



MWM ..................... 147

IT  On a sub-critical model of chemotaxi 157

|6 3 Well-posedness for the system of narﬁ(’lPJ ........................... 166
6.4 Convergence of the particle system . . . . .. .. ... .. .. .. 0L 173
M%@mﬁ ............................ 176
6.6 Renormalization and entropic chaod . . . . . . . . . . . ... o 180

vii



189

viii



CHAPTER ]_

General Introduction

Presentation

1.1

The text you are holding in your hands is a summary of the labor I have been doing the past few years,
which is related to mathematical models motivated by neuroscience. Working in a multidisciplinary envi-
ronment encompasses a great amount of unexpected difficulties: even the language can be misunderstood!
Nevertheless, I have learned that such diversity is translated into infinite possibilities. My research activ-
ity has been principally related to mathematical questions arising from the modeling of biological systems
combining analytic and probabilistic tools. The main issue consists in understanding the long time be-
haviour of those systems, and the structure of the set of stationary solutions under different parameters
regime. The results provided here are related to three major elements: (1) the mathematical modeling
and analysis of neuronal networks, (2) the role of homeoproteins local diffusion in pattern formation, and
(3) an individual base model for a subcritical Keller-Segel equation. To simplify the presentation, the

manuscript is divided in three parts:

1.1.1 Part I: Neuronal networks

The first part of the text is related to theoretical neuroscience, specifically with some networks of
interconnected neurons. One of the most remarkable and celebrated models for isolated neurons is due
to Alan Hodgkin and Andrew Huxley [75]. In their outstanding paper, authors planted the seed of any
latter attempt to model the brain. However, it is estimated that the human brain is composed by 100
billion interacting cells. Therefore, even having such a precise model for a single neuron, the collective

behaviour is not completely understood.

The approach followed here undertakes the analysis of mean-field equations arising in the modeling
of the macroscopic activity of the brain. The equations describe the large-scale dynamics of the central
nervous system, taking into account the fact that it is composed of a very large number of interconnected
cells that manifest highly nonlinear dynamics and are subject to noise. Non-linearities in the intrinsic

dynamics of individual cells are an essential element of the neural code: nerve cells constantly regulate



their electrical potential depending on the input they receive. Our models describe a particle network at

a macroscopic level and take into account two mechanisms:
> the intrinsic dynamic of individuals, which eventually lead to cyclic solutions;

> a nonlinear mean-field interaction (or coupling) between individuals which can take into account

some delay term;

The general mathematical properties observed are: on one hand the existence of steady states (what-
ever are the coefficients) and discrete principal spectrum of the linearized operator associated to the
mean-field equations, and on the other hand, the uniqueness of the steady state and nonlinear exponen-

tial stability of this one in the weak connectivity regime.

1.1.2 Part II: The role of homeoprotein diffusion in morphogenesis

The second part of the text is related to a developmental biology problem called morphogenesis. The
question here is to explain how a system starting with almost identical cells results in a well-defined spatial
pattern and defining a set of specific cellular states. This problem can be addressed in two complementary
perspectives: on one hand, there is the variety of cells as the result of the growth of a single one (process
driven by local interaction); and on the other hand, the regulation on an ensemble of cells to produce
different functional areas (process driven by global interaction). Moreover, boundaries in the developing
organism decides on the position and size of compartments in the adult. Therefore, the stability and
regularity of those boundaries is key element on the development of a healthy individual. The emergence
of compartments in the cerebral cortex or in the spinal cord is a paradigmatic example of this process.
From a theoretical perspective, the specification of territories in the nervous system represents a particular
case of the general phenomenon of patterning. In contemporary terms, the differentiation process is driven
by the presence of a morphogen, and a response to the morphogen concentration characterized by the

expression of cell autonomous transcription factors, very often of the homeoprotein family.

Starting from two very different theories of neurogenesis, we claim that they are not necessarily
opposing. Moreover we show both numerically and analytically that the presence of homeoproteins
arbitrarily small diffusion, leads to a dramatic stabilization of the positioning of the boundary, even
when other parameters are significantly modified. This novel combined model we propose has thus
an important theoretical consequence for our understanding of the role of homeoproteins intercellular

diffusion in developmental robustness and of the changes that took place in the course of evolution.

1.1.3 Part III: On a subcritical Keller-Segel equation

Finally, the third part of this manuscript constitutes a complementary work. It deals with a modified
version of the Keller-Segel (KS) equation. A main property of the standard KS equation is that the force
kernel is singular at the origin. It describes a model of chemotaxis: the movement of cells, usually bacteria

or amoebae, which are attracted by some chemical substance. The microscopic model of chemotaxis and



the convergence of those systems, has become a very interesting subject in the past years [142] [71]. One
of the reasons is that the classical formulation of the KS equation in two dimensions can be naturally
related to a mean field limit. Nevertheless, the evaluation of the force kernel on the distance between the

particles has to be treated carefully to avoid blow-up in finite time.

The approach followed here undertakes the analysis of a microscopic system for the subcritical KS
equation. Thanks to the subcritical exponent, we prove that the particles never collide. As a consequence,
we get the chaos propagation property and the consistence of the microscopic particle system with the

mean-field limit equation.

1.1.4 Plan of the Thesis

The present text is organised as follows: in the rest of this introduction we describe the most recurrent
mathematical tools we use throughout the following chapters. We also provide some biological background
to the problems motivating the mathematical work. In the final section of this introduction, we describe

the main results and present the main ideas of the proofs.

Chapter [2] deals with the limits of a general model of neuronal networks with delays and random
architectures. We prove the classical propagation of chaos property and study a completely solvable toy
model. Next, in Chapter Bl we show the non exponential convergence to a non trivial steady state for
a kinetic FitzHugh-Nagumo equation. This equation is obtained as the mean-field limit of a FitzHugh-

Nagumo neuronal network.

The second part of the thesis is composed by two chapters. In Chapter ] we present the general model
of neuronal morphogenesis we propose. We study the set of stationary solutions and the effects of the
diffusion operator on them. In Chapter B we analyse the previous model in the one dimensional case,
and prove that, when the diffusivity coefficient goes to zero, the stationary solutions converge to a unique

solution of an autonomous dynamical system with a unique discontinuity point.

Finally, Chapter [0l deals again with the propagation of chaos property for a subcritical Keller-Segel
equation. Using a combination of PDE and SDE tools, we also prove the more strong notion of entropic

chaos propagation.

Mathematical toolbox

In this section we describe the two most recurrent mathematical tools used throughout the memoir.
We pay special attention to the chaos propagation property (c.p.p.) and the semigroup decomposition
technique (s.d.t). The c.p.p. will allow us to justify the passage from Individual Based models (IBM) to
their description in terms of a mean-field equation. The s.d.t. will be useful to describe the spectrum
the linearised operators and eventually, using a perturbation argument, the convergence of the nonlinear

operator on a small parameter regime.



1.2.1 Mean-field macroscopic equations: propagation of chaos property

The first question we treat is the justification of the mean-field limits. To that aim it is necessary
to pass from Individual Based Models (IBM) to the network activity in terms of a nonlinear McKean-
Vlasov equation describing the law of independent particles. This property, called usually chaoticity
or propagation of chaos, is a very well known and popular topic since the seminal works of Kac [82],
McKean [104] [T03], and Sznitzman [145]. To fix ideas, let us consider a generic toy neuronal network,
composed by N individuals. The state of the neuron i is given by a R%-random process (e.g. the membrane

voltage, ionic concentrations, etc) solving:
_ . t _ 1t . _ _
XN = xpN +/ s, XEN)ds + Z/ g(s, X0N XINY ds + 20 B!, (1.2.1)
0 — Jo
Jj=1

where f is the intrinsic dynamic of any neuron, g is the interaction function, and B} is a family of

independent Brownian motions modeling the natural random component of the dynamics.

We can summarise the chaos propagation property by: when the number of particles is going to
infinity, each one of them behaves as independent copies of the solution of a mean field equation. The
nonlinearity is characterised by the presence of the law itself in the dynamics on the process, i.e., an
integro-differential nonlinear equation. To justify the limit we mainly use the coupling method which is
a very intuitive idea and apply to a wide range of applications. In the case of equation (L21]) the limit

equation is given by

Xt = XO + / f(sa Xs) ds + /]R / g(S, Xsay)fé(dy) ds + \/%Bta (122)
0 aJo

where f; = £(X}) is the law of X;. Therefore, the propagation of chaos property means that any finite

set of neurons (X%, ..., X%) converges in law to [ independent copies of the solution of (LZ2]).

Let us consider F a Banach space, for N > 2, we denote by Py, (EY) the set of symmetric probability
measures on BV, i.e. the set of probability measures which are laws of exchangeable E~-valued random

variables.

We consider for any F € Py, ((R)N) with a density and a finite moment of positive order, the

Boltzmann entropy and the Fisher information which are defined by

1 1 \VF(z)[?

H(F): F(x)log F(x)dx and I(F) = wox F(@) dx.

- N (]Rd)N

If 2; € R?, stands for the i-th coordinate of x € (R%)Y, we define for k > 0,

N
My(F) := % /(Rd)N Z |z |F F(dx).

i=1

Observe that we proceed to the normalization by 1/N in order to have, for any f € P(R?),

H(f*Y)=H(f), I(f*Y)=1(f) and My(f*") = My(f).



We introduce the space Py (R%) := {f € P(R?), M;(f) < oo} and we recall the definition of the Wasserstein
distance: if f,g € Py (R?),

Wl(f,g):inf{/

[ =yl Rida, dy) },
R4 x R4
where the infimum is taken over all probability measures R on R? x R? with f for first marginal and ¢
for second marginal. It is known that the infimum is reached. See e.g. Villani [I58] for many details on

the subject.

The notion of propagation of chaos is rigurously defined by
Definition 1.2.1. Let X be some R%-valued random variable. A sequence (XN, ..., X™VN) of exchange-
able R?-valued random variables is said to be X -chaotic is one of the three following equivalent conditions

1s satisfied:
(i) (XN, X2N) goes in law to 2 independent copies of X as N goes towards +oc;
(ii) for all j >0, (XN, ..., X3N) goes in law to j independent copies of X as N goes towards +oo;

(iti) the empirical measure p v = % Zfil Sxin € P(R?) goes in law to the constant L(X) as N goes

towards +o0o.

Let us remark that the key points on the propagation of chaos property are: the existence of a unique
solution to the particle system (LZT), the existence and uniqueness of the solutions to the mean-field
nonlinear equation (CZ2)), and the consistence between the particle system and the limit equation. To
prove the third point, we can use the coupling method (or in general any other compactness method),
which consist in use the well-posedness of both equations to control the distance of the paths of a finite
set of particles as N is going to +oc.

Example 1.2.2. In our toy model (LZI), let us assume that d = 1, and fiz a family of Brownian motions
B} driving the solutions of the particle system. Consider (Y5N ... YNN) a family of solutions to the

nonlinear mean-field equations
t t
viN = Xé’N—i—/ f(s,Y:*N)ds—i—/ Ez[g(s, YSN, Zy)| ds + V20 B},
0 0

where Z is a independent copy of the unique solution to [(L22). We see that, since we use the same
initial condition and Brownian motions, the random processes Y are “coupled” to the X»" processes.

For any i € N fized, the difference between XN and YN is such that

E[IX;N -y < /0 tEUf(s,X;*N) — f(s5,Y2N)[] ds

1. [t . _ .
=+ N ;/0 EDQ(S)X;N)X?N) - IEZ [g(sa}/sJVst)] }:| ds.

If the dynamic f and the interaction g are L-Lipchitz continuous functions, it follows that

.....



Let us further assume that the interaction function g is upper bounded by C, then we get
N et
Z/ EHg(S, Y;;Z’Na szj’N) - IEZ [g(S, Yrsz’Na Zé)] H dS S QtC\/N = Ct\/ﬁa
=170

and by consequence

t
: : ‘ : C;
Vi€ 1,...,N E XZ’N —YZ’N < 3L/ E max X],N YJ,N ds .
{ } [| t t H — 0 [j T N| s s H /—N

Since N is fived, we can apply Gronwall’s lemma to deduce that for all s € [0,1]

Cﬁeth

E[|XeN —vaN|] <E XN _yiN] < .
[1X3 SN < B[ max X P < N

Jj=1,...,
From the last inequality we have easily the propagation of chaos property. Firing a finite set of neurons

(1,...,1), then
leeSLt

BJ(XEY, ., XEN) (1), YY) <

)

2

hence

(XIN XYY By YR,

this implies that the vector (XN, ..., XN converges in law towards | independent copies of Y as N

goes to +00

We finally recall a stronger (see [72]) sense of chaos introduced by Kac in [82] and formalized recently
in [35]: the entropic chaos.
Definition 1.2.3. Let f be some probability measure on E. A sequence (FN) of symmetric probability

measures on EVN is said to be entropically f-chaotic if
FN = f weakly in P(E) and H(FY)— H(f) as N — oo,

where F{N stands for the first marginal of F™.

We can observe that since the entropy is lower semi continuous (so that H(f) < liminfy H(F")) and
is convex, the entropic chaos (which requires limy H(F) = H(f)) is a stronger notion of convergence
which implies that for all j > 1, the density of the law of (X{¥,..., X V) goes to f®/ strongly in L' as
N — oo (see [23)]).

1.2.2 Uniqueness of stationary solutions and nonlinear convergence: semi-

group decomposition method

Once the derivation of the limit equation is well justified, several questions arise: what is the role of
parameters? are there stationary (stable) solutions? does the system exhibit bifurcations? The second
problem addressed in the manuscript is the nonlinear convergence to the equilibrium of a macroscopic
mean-field equation. In particular, we study the limit equation of a neural network such that the in-
dividual dynamic is given by the FitzHugh-Nagumo model. We uncover the structure of the related

linearised operator and apply the semigroup factorisation method to prove the exponential decay to a
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unique stationary solution when the interaction between particles is small. Moreover, as the interaction

gets stronger, we show numerically that an oscillatory regime emerges.

Of course, the previous paragraph remains very cryptic. We prepare to the study by introducing a
few useful notations. For two given Banach spaces (E, || - ||g) and (&, ]| - ||¢), we denote by #(FE,E) the
space of bounded linear operators from F to £ and we denote by |- || %(p,e) the associated operator norm.
The set of closed unbounded linear operators from E to & with dense domain is denoted by € (E,£). In
the special case when E = &, we simply write Z(E) = B(E,E) and ¢(E) = ¢(E, E).

For a given Banach space X and A € % (X) which generates a semigroup, we denote this associated
semigroup by (Sa(t), t > 0), by D(A) its domain, by N(A) its null space, by R(A) its range, and by X (A)
its spectrum. On the resolvent set p(A) = C\ 3(A) we may define the resolvent operator R(A) by

VzeC, Ra(z) := (A —2)7 %

Moreover, R (z) € Z(X) and has range equal to D(A). We recall that £ € X(A) is called an eigenvalue
of Aif N(A —¢) # {0}, and it called an isolated eigenvalue if there exists » > 0 such that

S(A)N{z e C, |z —¢ <r} = {&}.

The notion of convolution of semigroups will be also required. Let us consider some Banach spaces

X1, X5 and X3 and two given functions
Sy € LY([0,00); B(X1,X2)) and S, € LY([0,00); B(X2, X3)),
one can define Sy * S1 € L'([0,00); (X1, X3)) by
(S92 % S1)(t) := /Ot Sa(t — $)S1(t) ds, Vi >0.

In the special case S; = S and X1 = X, = X3, SO is defined recursively by S*V = § and S¢») =
S SC(=1) for n > 1.

To illustrate the ideas we use in the following, let us assume that an operator A on a Banach space
X can be written as

A=A+B,

where B has some dissipative property and A is much more regular than 5. Under some additional
positivity assumption on the generator A, the principal part of spectrum is a simple real eigenvalue. This
is known as the Krein-Rutman theorem. We state below a recent version picked up from [113],

Theorem 1.2.4. We consider a semigroup generator A on a Banach lattice of functions X, and we

assume that
1. there exists some a* € R and two operators A,B € €(X), such that A = A+ B and

(a) for any o > o*, £ > 0, there exists a constant Cq e > 0 such that

Vit >0, ||Slg * (.ASB)(*E)(ﬁ)Hgg(X) < Cmg et



(b) A is bounded, and there exists an integer n > 1 such that for any o > o*, there exists a

constant Cy n, > 0 such that
vt >0, 1(ASB) "™ ()| s(x,y) < Came™,

with Y C D(A) and Y C X with compact embedding;

2. for A* the dual operator of A defined in X', there exists § > o* and ¢ € D(A*) N X!\ {0} such
that A* > Bip;

3. Sa(t) is a positive semigroup and A satisfies Kato's inequality, i.e, ¥V f € D(A) it holds A|f| >
sign(f)Af.

4. —A satisfies a strong mazximum principle: for any given f and vy € R, there holds,
F € DN}, £ >0 and (~A+7)f >0 imply [ >0,
and there exists an integer m such that

feDA™) and |f| >0 dmply f>0orf<O.

Defining
A= s(0) =sup {(6) : £eB(A)),
there exists 0 < foo € D(A) and 0 < ¢ € D(A*) such that

Afoo:/\fooa A*(b:/\d)

Moreover, there is some o € (a*,\) and C > 0 such that for any fo € X

[1Sa(t) fo — € (fo, &) foollx < Ce® || fo — (fo, ) foollx - (1.2.3)

Let us explain some implications of inequality (3.430). Assume that the operator A has the good
decomposition A and B, and that A = 0. Then for any initial condition, we have that the difference

between the solution to the equation

Ocf(t) = Af(t), f(0)= fo, (1.2.4)

which is exactly S(t)fo, and the projection of the initial condition on the space related to the first

eigenvalue )\, is such that

1£(t) = (fo, &) oo llx < Ce* |l fo = (fo, d) ool x-

Moreover, we know that necessarily o’ < 0, then we conclude that f(t) is converging to (fo, @) foo. In the
special case that fj is a probability measure and ¢ = 1, we readily obtain that the convergence is always

to the unique eigenvector fuo.

The previous result is remarkable, and allows us to pass to the limit (in time) with very few (and

somehow natural) hypotheses on the operator driving the evolutionary problem. We use it to describe
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the convergence to a steady state of a linearised equation. Moreover, in small connectivity regime (i.e.
the nonlinear case with a small parameter multiplying the nonlinearity) we use a perturbation argument

to show that the convergence still hold.

We are interested in the extrapolation of the convergence results of the heat equation to some mean-
field problems that are almost dissipative. In particular, we recall the abstract notion of hypodissipative
operators:

Definition 1.2.5. Considering a Banach space (X,| - ||x), a real number o € R and an operator A €
€(X), (A—a) is said to be hypodissipative on X if there exists some norm ||-|| y on X equivalent to the

usual norm || - || x such that
Vfe D), T F(f) suchthat (¢, (A—a)f) <0,

where (-,-) is the duality bracket in X and X* and F(f) C X* is the dual set of f defined by

F(f) = Fyy (f) :={o € X" (6. 0) = I/lx = llollx-}-

One classically sees (we refer to for example [0, Subsection 2.3]) that when A is the generator of a

semigroup Sy, for given o € R and C' > 0 constants, the following assertions are equivalent:
(a) (A — @) is hypodissipative;
(b) the semigroup satisfies the growth estimate [|S(t)||z(x) < Ce, t > 0.

Finally, we present an example that highlights the relationship between an hypoddisipative operator
and the decomposition method:

Example 1.2.6. Let us consider A the differential operator related to the equation
0
Ef:Af =Af+V-(zf), zeR (1.2.5)

and the associated semigroup Sa(t). We see clearly that equation (L2l is given in divergence form,
therefore, it preserves the mass and the positivity of the solutions. Fiz some fo € L*(R)NP2(R), then we
have that

d 2 = ZC2 Xr = xr xr
& [1sa®nla+ade = [ a1+ at)is = [ s (1.2.6)

with p(x) = 2(1 — 22). A nice decomposition of the operator A is given by
A - MXR, B=A- .A,

with M > 0, xr(z) = x(x/R) regular, and 1{; <1y < x(x) < 1fjz/<2y. Indeed, the idea is to “remove”
the positive contribution of p(x) on the righthand side of (LZG) to get

d

& | ssona+aha = [

Rd

(A — A)S5(t) fo(1 + z*)dz < / (p(x) — MxRr) SA(t) fodx.

Rd
For M and R large enough we conclude that the operator B is hypodissipative. Since Af is positive and
lies in a compact, the split A and B has the required properties.

In Chapter [B] we analyse the decomposition provided in the previous example and we find that hy-

potheses of Theorem [[.2.4] hold.



Biomathematical background

1.3

For completeness of the text, before passing to the presentation of the main mathematical results, we
review some basic facts about the biological background. The aim of the discussion presented here is not
to give a comprehensive description of such complex structures such as the brain, or of the problem of
morphogenesis. Nevertheless, we want to provide some basic concepts that will explain the motivations
behind our models and their biological interest. Notwithstanding, this information is not necessary to

the understanding of the mathematical developments and contributions of the thesis.

Part I: Theoretical neuroscience

The ability to exploit and transform the environment is remarkable characteristic of humans and it
has been well stablished that this ability is due to a very evolved nervous system [83]. One of the principal
organs of the nervous system is the brain which, roughly speaking, can be considered as a complex and

very sophisticated machine with an array of sensorial receptors connected to it.

When modeling the activity of the brain one can consider different scales. If the emphasis is made
on the microscopic dynamics, then the basic element is the neuron. The morphology of neural cells is
relatively simple and the basic architecture is shared for all neurons. The main characteristic is the
presence of dendrites and axons, both related to the “transmission of information” which is coded in
electrical signals known as action potentials. Dendrites take information towards the cells, while axons
take the information away from the cell. Moreover, nerve cells constantly regulate their electrical potential
depending on the input they receive. This regulation results from intense ionic exchanges through the

cellular membranes giving rise to a complex electrochemical process.

From the macroscopic viewpoint, the brain is composed of a very large number of interconnected
cells (approximately 100 billion neurons in the human brain) and each one of them manifests highly
nonlinear dynamics and are subject to noise. The complexity of human behaviour (i.e. our responses
to environmental stimulus) depends more on the precise anatomical circuits conforming the brain, and
less on the particularities of individual neural cells. Indeed, a main observation, is that nerve cells with
similar properties can act very different depending on the way they are connected with its neighbours and
with long range sensory receptors. Therefore, even if is important to understand the models for isolated
entities, it is also important to uncover the complexity of the network's architecture they belong to. The
most important features of the nervous system can be summarised by: (1) the mechanism by which
neural cells produce signals, (2) the pattern of connections, (3) the relationship between the patterns of
interconnections and the mechanical/sensorial response, and (4) how experience can modify neurons and

their interconnectivity.

Because of the complexity of the human nervous system, in the text we only focused on the first two

points. In particular we will study models for isolated neurons and networks, and also, the importance
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of the level of connectivity on the solutions to those systems.

The FitzHugh-Nagumo model

One of the most complete and celebrated descriptions of the generation of action potentials is given
by the Hodgkin-Huxley (HH) model [75]. It establishes a very precise description of the ion exchanges
through the membrane and their effects on the cell voltage. However, the nonlinearities driven the HH
dynamics make difficult the analysis of complex HH neuronal networks. A simplification of this model
conserving the most prominent aspects of the HH model, the Fitzhugh-Nagumo (FhN) model [59, 116],

and has gained the status of canonical model of excitable cells in neuroscience.

Let us consider a generic 2 set of equations of the type

Var(t) = F(Var(t)) — wit) +1 (13.7)

w(t) =7(Va(t) + a — bw(t)),
where 7,a and b are nonnegative constants. The first equation describe the dynamics of the membrane
potential, and the second one is usually called the recovery variable. Moreover, 7 is a slow-fast parameter,
making the dynamics of both equations have different time scales. The role of the second variable is to

model the adaptation of the cell to an external current.

The name of the model is due to the contribution of two independent publications. In 1981, Richard
FizHugh proposed, as a modification of the van der Pol equation, that the action potential was given by

a system of the type (L37), for a cubic nonlinear function F such as
F(Vy(t) = V) (Vi (t) —a)(1 = Vi (t)), 0<a<l.

One year later, J. Nagumo and colleagues proposed a very similar electrical circuit to describe prototype
of an excitable system. The applications of FhN equations are very varied, specially for excitability
systems such as the heart muscle. One main feature of the model is the presence of a Hopf's bifurcation
(and therefore cycle limits) for a well tuned set of parameters. In figure [[.J] we show the time evolution
of the voltage variable in the FhIN model and some trajectories for different initial points on the phase
plane. The transition from a unique stable solution to a cycle limit is a consequence of increasing the
input current (Hopf's bifurcation). Therefore, a strong step input current injected to the system, will
sustain a train of spikes that disappears as soon as the current is reduced. The image at the right of
figure [[T] is a clear example: the system goes from a resting state to a train of spikes and back to the

resting state.

Brain functional areas

As we said before, the brain is the central object of study for neural science. Indeed, neuroscience
approach is based on the view that all behaviour is the result of brain function [83]. The claim is actually

controversial because it is assumed that not only simple motor actions (e.g. to walk and to eat chewing
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Figure 1.1: Time evolution of the voltage variable on the FitzHugh-Nagumo equations and some trajec-
tories of different solutions on the phase plane, in the case of one stable steady state (left), a stable limit
cycle (center) and a strong step current (right). For F(v) = v — %, a=0.7,b=08and 7=0.8. In all
cases the nullclines intersect in only one point. Arrows indicate the sense of the time evolution. Figures
on the left row correspond to I = 0.5, and figures on the center row correspond to I = 0.8. Figure on

the right corresponds to an step function (black solid line) equal to I = 0.8 for 50 ms < t < 100 ms and
I = 0.5 otherwise.

gum at the same time), but complex cognitive actions (e.g. have feelings), underlie on the activity of the
brain. Therefore, the task is to explain behaviour (and finally human behaviour) in terms of the activity
of the brain. If the hypothesis (brain activities < behavior) is accepted, a second fundamental problem
is whether the mental processes depend on specific functional areas, or on a collective property of the

whole brain.

In last years of the eighteenth century, the german physician and neuroanatomist Franz J. Gall
proposed that the brain was divided in several “organs” coding the different mental faculties, and that
they grew with use. This doctrine became very popular in the nineteenth century and gave birth to
the study of the bumps of the skulls known as phrenology. However, by removing parts of the brains of
animals, scientists tried to isolate the contributions of Gall's cerebral organs, concluding that any part of
a determined hemisphere was able to participate in all respective functions of the hemisphere. However,
in the second part of the nineteenth century, several studies, agreed with the view that the brain had
a cellular-collectionism structure and not a aggregate-field one. In particular, studies of local epilepsy
showed that specific motor and sensory functions can be traced down to different parts of the cerebral
cortex [83]. Nevertheless, it was only by the beginning of the twentieth century that there was enough
biological evidence to support the existence of different discrete areas in the cortex, related to specialised
roles in behaviour. For example, the precise map to the body of a cat in specific parts of the cerebral

cortex somatotopy established by Wade Marshall and Philip Bard in the 1930s. This observation is more
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Figure 1.2: Schematic specific regions of the cortex while reacting to a single word (based on [83]). Blue
coloured circles represent hight activity. (A) Reading a word is related to the V1, (B) hearing is located in
the temporal cortex (C), repeating a word is related to a motor area, and (D) thinking of words triggers

activity in the regions related to (B) and (C) and with the frontal cortex.

accurate if we look the example of language. Using PET scanning, one can observe which parts of the
cerebral cortex are reacting (showing high electrical activity) in the recognition of a spoken or written
word. This is depicted in figure[[.2l The reading of a single word triggers action potentials in the primary
visual (V1) cortex. Hearing words activates activates a different part called temporal lobe. Speaking is
related to a supplementary motor area on the medial frontal cortex. But, responses to a particular word
activates (B), (C) and the frontal cortex at the same time. Moreover, it has been reported that damages
on the (B) part result on effortful speech but relatively good oral comprehension. On the contrary,

damages on the (C) part result on difficulties understanding sentences, but fluent speech [83].

The questions we study in the first part of the text are motivated for the connectivity level in neuronal
networks. In particular, we are concerned with the emergence of synchronised activity for highly connected

networks, and the convergence to an equilibrium when the connectivity level and external inputs are small.

Summary

To construct reasonable neuronal networks we have to keep in mind at least the following restrictions:
(1) the brain is composed by a large number of interconnected neurons; (2) the behaviour depends more
on the neuronal networks and discrete areas, and less on the particular dynamics of each cell; (3) the
system is intrinsically stochastic; and (4) cortical networks tend to display complex network topologies,

and typical cortical networks tend favour local connectivity.

Part II: Morphogenesis
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In the first part of this manuscript we work under the hypothesis that the neural networks of the
adult hemispheres are the responsible of most (if not all) human behaviour. But despite the complexity
on the structure of the brain, it start off as a simple sheet of neuroepithelial cells during the first stages

of neurogenesis. How is that possible?

To answer that question we need to take a quick view to developmental biology (DB). The three major
axes of DB are morphogenesis, the control of cell growth and cellular differentiation. Among these axes,
it is morphogenesis the one who deals with the processes causing an organism have a particular shape,
as well as, the formation and development of identifiable and robust functional areas. It is important to
remark that morphogenesis is not only concerned with a purely descriptive study of the shape of living
things, but also with the laws driving the morphological differentiation. Of course, in living organisms,
the mechanical constraints and forces are not enough to explain the diversity of cell types. Moreover,
those mechanisms are unable to fully explain the robustness of the boundary positions of functional
areas. To bring light to the subject, it becomes necessary to consider the complex relationships between
the DNA structure, proteins transcription and gene expression. Nevertheless, to understand properly
contemporary discoveries, we have to go back in time and start with the very abstract definition of

morphogen which was primary introduced in 1950s by Alan Turing in [I55], and then restated by Lewis
Wolpert [164].

Two different definitions or morphogen

Turing's definition of morphogen

In the outstanding paper The chemical basis of morphogenesis, the author stated a first rigorous
definition of morphogen. Starting from the principle that it was more important to consider the substances
that are reacting chemically, than the non-growing masses of tissues through they diffuse [155], it was
proposed a theory where patterning was due to local interactions. Alan Turing defined a morphogen as
a substance (gens, skin pigments or/and hormones) that is diffusing and reacting chemically as catalyst

or inhibitor.

Wolpert's definition of morphogen

Thirty years later, and based on several studies showing that spatial patterns of differentiation were
capable of considerable regulation when disturbed [164], Lewis Wolpert came up with a different theory
of morphogenesis. The main concept of his theory is the positional information (PI). Since patterning in
Turing's model is driven by instabilities the regulation mechanism of development was not incorporated.
Moreover, considerable attention was given to the molecular characterisation of differentiation, but very

few of to the global regulation of spatial patterning.
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The solution proposed by Lewis Wolpert was based on the assumption that there are mechanisms
whereby cells have their position specified. The fate of the cell, i.e., its molecular differentiation, is
therefore determined by its position on the field as a result of the interpretation of the PI. Moreover,
since several points can determinate the position of a particular cell, it is necessary to specify the polarity
or the direction in which measurement must occur. It is important to remark that, Wolpert was not the
first one in proposing a mechanism as PI in the core of development. In fact, some similar ideas were
already introduced in the 50's by Dalcq (double gradient [40, [41]), and by Stern [140] and Kroeger [93]
with the concept of pre-patterning. The novelty of PI was first its universality, and second that it was

applicable in both development and regeneration context.

The french flag problem

We own to Wolpert not only the concept of PI but also the well-posedness and a first satisfactory
solution to the French Flag Problem (FFP) that we state now
Problem 1.3.7. Let us consider a field of N cells in a line, where each one of them is capable of
molecular differentiation. Assumed that this differentiation is related with the secretion of blue, white and
red pigments changing the appearance of the cell. Describe a mechanism by which the first third of cells

differentiate as blue cells, the second third as white cells, and the last one as red cells.

A typical solution to the FFP is depicted in figure A gradient of morphogen determines the
position of the cells inside the field (a straight line of cells) and thresholds determine the fate of a particular
individual. We remark that this theoretical solution to the FFP is characterized by the combination of
a continuous gradient and thresholds. Some studies suggest that this sole mechanism results in the
formation of boundaries of imprecise shapes and positions (for a detailed discussion see Chapter [). This
model has since evolved considerably to take into account the complexity of the cellular environment,
and new versions include for example, later cell migration and/or death to get sharp and well-defined

boundaries.

The solution proposed by Wolpert (also known as the French Flag Model FFM), can be applied to
different scenarios, in particular, it serves to explain an invariant size system (changing the number N of
cells does not varies the organisation of blue-white-red) or the fixed size case. In the first case a simple
unipolar solution can be provided by assuming that cells differentiate according to their distances to
the polarity point (see figure [[4l up). However, since embryos regulate themselves in a size invariant
context (two organisms can have different size but a similar proportionality between body parts), a more

reasonable solution is a bipolar system (see figure [[4] bottom).

Morphogens in contemporary terms

It has become evident that the only presence of a morphogen is not enough to generate the whole
mosaic of cell types. In contrast, it has been observed that morphogens act upon pre-patterns of tis-

sues [133]. However, as the FFM predicted, the main property of a morphogen is that cell fates depend
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Figure 1.3: The French flag model (FFM) and pattern formation driven by global interaction. At the

beginning cells are aligned and have the potential to develop as blue, white and red. The presence of
a gradient of morphogen defines the position of each cell within the field. The positional information
is then interpreted and cells differentiate forming a pattern deciding their fates according to predefined

thresholds.
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Figure 1.4: The FFM in a size invariant and a non size invariant context. The coloured dots correspond
to the polarity points and the arrows to the direction of PI. The morphogens are secreted from the
polarity points and free diffusion forms the gradients of concentration (up) Unipolar system. The fate
of the cell is only determined by the concentration of a generic black morphogen, by expressing different
pigments according to three thresholds. If a cell is close to the polarity point, then the concentration of
the morphogen is high and it expresses the blue pigment. Medium and low concentrations result on white
or red pigments respectively. If the number of cells is increased, any cell with a position larger than N
will secret the red pigment due to the low concentration of morphogen. (bottom) Bipolar version. The
fate of the cell is decided by the combination of the concentration of black and red morphogen according
to its rate. If the rate blue/red is high, then the PI indicates proximity to the blue polarity point and blue
pigment is secreted. Same for low rate blue/red and red pigment. In any other case the cell differentiate
as a white cell. Changes on the large of the cell field do not modify the sequence nor the proportion of

colours
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on the concentration of them. Prior to the formation of well defined boundaries and functional areas,
some specific sets of proteins are expressed in a sort of pre-patterning. These proteins are mostly of the
family of the transcript or factors (TFs) and correspond to the transcription of PI mechanism predicted
by Wolpert. The TF's are involved in the process of converting, or transcribing, DNA into RNA. Some
distinct features of them are that they have a DNA-binding domains providing them the ability to bind
to specific sequences of DNA called enhancer. Some of TF's bind to regulatory sequences and can either

stimulate or repress the transcription of the related gene.

We can summarise the general principles of morphogens gradient patterning by: (1) they are released
from spatially localised sources. Wether they diffuse free or are other transport mechanisms forming
the gradient is an active source of discussion [77, [95]. (2) Morphogen concentration is transmitted to
intracellular molecules resulting in the expression of particular sets of TFs. (3) TFs regulate complex
cascade effects in the cells by self stimulating its own expression and inhibiting the expression of others
TFs. (4) Feedback mechanisms stabilise fluctuations in morphogen production, regulate signalling and
confer stability to morphogen-mediated patterning. In this text is mainly concerned with a particular
family of TFs called homeoproteins (HP):

Definition 1.3.8. HPs are specific proteins encoded by homeobox genes that exhibit structural similarity
to certain prokaryotic and eukaryotic DNA-binding proteins. They are involved in the control of gene

expression during morphogenesis and development.

The particularity of HPs is that recent data support the view that they can be transferred from cell
to cell and have direct non-cell-autonomous activities [96] 138, [85] [80]. This is a very important remark
because HPs are very ancient molecules present in almost all phyla, therefore can have played a role in

the course of evolution of multicellular organisms.

Part III: Microscopic viewpoint of chemotaxis

In the math-bio community, chemotaxis is probably one of the most well known and studied subjects,
and still encompasses a large quantity of unsolved problems. Since the seminal publication of the Keller-
Segel model [88], mathematicians have been interested by different aspects of this remarkable equation,

but the work has not been finished.

The microscopic description of the Keller-Segel system has been a very popular field of research in
the past few years. In [142], Stevens studies a particle system with two kinds of particles corresponding
to bacteria and chemical substance. The author shows convergence of the system for smooth initial
data (lying in C3(R?)) and for regular kernels (continuously differentiable and bounded together with

their derivatives). In [71], a kernel with a cutoff parameter K.(x) is considered. Some well-

— xT
[z[(Jz]+e)

posedness result for the particle system are given and the weak convergence of subsequences due to a

tightness result is showed. In a recent work [34], authors investigate a one-dimensional Keller-Segel model

and a dynamical particle system for which there is a global existence result under some assumptions on

17



the initial distribution of the particles that prevents collisions. It is also given two blow-up criteria for

the particle system but the convergence result is not stated.

But what do we mean by chemotaxis? and why are we interested in microscopic descriptions of that
biological system? To answer that questions we recall that live organisms are in constantly movement, we
refer to chemotaxis when this movement is the response to a chemical stimulus. In the case of a positive
chemotaxis, i.e. when an organism or a cell is induced to migrate toward the chemical signal, this factor is
called chemoattractant. Chemoattractants can be secreted by the same population of organisms, and/or

by a different one.

Self-induced chemotaxis

The slime mold or Dictyostelium discoideum is a very nice example of self induced chemotaxis. This
amoeba belongs to a diverse group of motile unicellular eukariotic organisms. This protozoa is commonly
found in soil and water. The main particularity of this specie is its transition from a unicellular amoeba
into a multicellular organism. Let us describe the lifecycle of Dictyostelium discoideum and the role
of chemotaxis in it: as long as the food is present, individual cells of Dictyostelium discoideum live
as independent individuals. As soon as the food becomes scarce, cells start a process of aggregation
(and cellular differentiation) resulting in a multicellular organism. Roughly speaking, the starving cells
secret waves of a chemical signalling called cyclic adenosine monophosphate (cAMP) that indicate to
surrounding cells the center of territories. The amoebas migrate and gather resulting is a multicellular

organism with a body and spores that are dispersed to reset the life cycle.

Chemotaxis induced by external populations

An example of chemotaxis induced by external populations is the formation of new blood vessels in
cancer, process known as angiogenesis [36]. In early stages of cancer, the growth of cells is limited (up to
1-2 mm) by the availability of nutrients on the hosting tissue. Indeed, while the growth is volumetric, the
amount of nutrients is proportional to the area. Naturally, the nutrients become scarce, and the tumour
requires new blood vessels to sustain the demand of oxygen and glucose, and to avoid hypoxia. Therefore,
quiescent cells secret a chemoattractant called wvascular endothelial growth factor (VEGF) which is the
key mediator of angiogenesis in cancer. Surrounding blood vessels react to the gradient of VEGF and

new vasculature is formed. The final result is a vascularised tumour and metastasis.

The Keller-Segel equation

The most celebrated model for chemotaxis was proposed in the 1970s by Evelyn Keller and Lee Segel
when they were studying the slime mold [88]. The model classically writes
On(t,x) — An(t,z) + div(n(t,z)xVe(t, z)) = 0,
(1.3.8)
—Ac(t,z) = n(t,x),
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where the parameter y is the sensitivity of cells to the chemoattractant, (¢, x) is the concentration of
chemoattractant, and n(t, z) is the density of cells at time ¢ and position x. We see that this is a case of

self-induced positive chemotaxis.

In the two dimensional, system of equations ([3.8]) can be simplify, by solving explicitly the second
equation, to get
onlt.z) X g (ntt )/ (ty) s dy) + An(t,) (1.3.9)
— ===V (nt=x n —_— n(t,x). .3.
ot 27 " g2 Y |z — y|? 4 ’
Equation (L39) is a nonlocal equation. Moreover, if we consider the case when ng(¢, z) has unitary
mass, then equation (L3.9) is describing the time evolution of a probability density. The parallel with
the chaos propagation property we study in the first part of the text is remarkable. However, since the

force kernel is singular at 0, several technical difficulties arise.

Main results

1.4

Part I: Main results

Chapter 21 and 3] are related to theoretical neuroscience. In Chapter [2] we study the limits of a general
model of neuronal networks at two different scales: macroscopic and mesoscopic. We also study the
solutions in a particular solvable case, and the importance of the connectivity level in the emergence
of synchronisation states. Next, in Chapter Bl we study a kinetic mean field equation related to the
FitzHugh-Nagumo model. In particular, we are concerned with the exponential nonlinear stability of the

stationary solutions.

1.4.1 Randomly connected neuronal networks with delays

We analyse a general model of neuronal networks at different scales: (1) the macroscopic scale where
neurons gather into a few populations P(N) = P fixed, corresponding to coarse-grained descriptions of
neural activity [79]; and (2) the mesoscopic scale, or neural-field limit, where the number of populations

tends to infinity and the area described covers a continuous piece of cortex I' C R? with p € N* [T50} [151].

The state of a neuron i is described by a d—dimensional variable X*V € E. The networks are
composed of N neurons falling into P(N) populations labeled « € {1,..., P(N)} and composed of N,
neurons, and the convention o = p(i) defines the population neuron ¢ belongs to. The evolution state
Xti’N of neuron ¢ in the population o € {1,---, P} is governed by a stochastic differential equation.
The intrinsic dynamics of the neuron is governed by a function f, : Ry x E — FE. This evolution is
stochastic, driven by independent m-dimensional Brownian motions (W}) through a diffusion coefficient

Ja : Ry x E +— R™™_ The neuron i receives inputs from other neurons in the network, which affect its

19



state through an interaction function bo~ : R X E x E — E depending on the synaptic weight w;; € R,

and the state of both neurons ¢ and j. Moreover, these interactions take place after a delay 7;; > 0.

The dynamic of neuron ¢ in population « is given by:

P()
dxN (fatX”V DY N by w”,XZ’N,Xg’_]XM))dt+ga(t,X§’N)~dWZ, (1.4.10)
7=1 p(G)=~

under the assumption that (0, z,y) = 0 and the fact that the synaptic weight w;; is assumed zero when

no link from j to .

We are concerned on the convergence of the solutions when the number of neurons goes to infinity

(under some assumption to be precise latter on). In particular, when N — oo, then

> for almost any realization of the transmission delays 7;; and synaptic weights w;; in the translation-

invariant case or
> averaged across all realizations of the disorder in the general case,

the propagation of chaos property holds: if the initial conditions are chaotic, then the states of a finite

number of neurons are independent for all times when N — co.

In both cases, the proof of the convergence and propagation of chaos will use the coupling method
already described. The proof is in two steps: (i) we prove that the limit equation (see equation (Z3.2)
below) has an unique solution, and (ii) that the law of X" converges towards the law of (Z32). In this
mesoscopic scale, when the number of populations is also going to infinity, the notion of solution is more
complex, as one obtains a process depending on space but which is not measurable with respect to the
spatial variable. To help the lecture, we focused on the first case P fixed and, will be briefly discussed

how to adapt the results of [I51] to our context in section 27

We start by showing the well-posedness of the network system:
Proposition 1.4.9. Let X, a square integrable stochastic process from [—1,0] to EV, be the initial

condition of the network system. For any (o,v) € {1,..., P(N)}?, assume that:

(H1). fo and go are uniformly (in time) Lipschitz-continuous functions with respect to their second vari-

able.
(H2). For almost all w € R, ba~(w, -, ) s La~-Lipschitz-continuous with respect of both variables.

H3). There exists functions Kq- : R — RT such that for any (a,v) € {1,---, P(N)}2,
¥

b (w0,2,9)> < Koo (w)  and  E[Kay (w)] <k < oc.

(H4). The drift and diffusion functions satisfy the monotone growth condition: there exists a positive

constant K depending on f and g such that:
1
" fa(t,7) + 5 l9a(t, 2)[ < K (1 + [2]?)
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Then for almost all realization of the synaptic weights w;; € R and the delays 1;; € [—7,0], we have

existence and uniqueness of solutions to the network equations (LZI0).

The proof is based on the a priori bounds on the solutions and the Lipchitz continuity of the functions.
Even if the ideas used to the proof are simple, they allow us to conclude almost directly that the limit
mean-field equation is also well posed when the number of populations is fixed. More precisely, let
P(N) = P be fixed and independent of N. In this case, we will show that the network equation converges
(in a sense to be precised in each case) towards the solution of a well-posed McKean-Vlasov equation

given by:
P 0
X7 = folt X2V e+ gt X)W+ (X [ [ By by (10,5 70) Jdhs (5,0 )t, - (14.11)
y=17-T R

where Y is a process independent of X that has the same law, Ey the expectation under the law of Y,
and W are independent adapted standard Brownian motions of dimension d x m. In equation (L4.1T]),
Aip(jy is the distribution of the variables (w;j;, 7;;) and it is assumed to depend only on the population
the particle ¢ belongs to (translation invariant property). In that case we have the

Theorem 1.4.10. Under the hypotheses of Proposition[I.].27] and for any (o a square integrable process,
the mean-field equations ([LATII) with initial condition {y have a unique strong solution on [—7,T] for

any time horizon T > 0.

The proof of Theorem [[.4.20] is based on the a priori bounds “inherited” from the particle system,

and a Picard's iteration argument.

Let i € N such that p(i) = . We define the process X’ solution of (LZII), driven by the Brownian

motions (W}) that governs X, and having the same initial condition as neuron i in the network, ¢i:
dX} = fo(t, X})dt + ga(t, X]) - AW}
P 0
+(Z/ /EZ [bav(w,f(g,Z]Jrs)}d/\a,,(s,w))dt, t>0 (1.4.12)
y=1Y"T R
X =), tel-r0.

By definition, the processes (Z},...,ZF) are a collection of processes independent of (X});—1,. .
have the distribution m; ® --- @ m!”, where m¢ is the probability distribution of X¢* (unique solution of
the equation (CZTT))). One of the main results of the chapter is the

Theorem 1.4.11 (Quenched convergence). Under assumptions (H1)-(H4) and chaotic square in-
tegrable initial conditions. The process (XZ’N,—T <t <T) fori €N fized, solution of the network
equations (CZI0), converges almost surely towards the process (X}, —7 <t < T) solution of the mean-
field equations (LZLID). This implies in particular convergence in law of the process (XZ’N, —7<t<T)

towards (X¢, —7 <t < T) solution of the mean-field equations (LZII).

The proof of Theorem [L4TT] is quite interesting and clarifies the coupling method. Indeed, we only
need to control the square difference of the solutions to (LAI0) and (LZIZ). Most of the terms are

easily upper bounded by using the Lipschitz continuity of the functions except for the contribution of the
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delays. In that case, the key remark is that the Cauchy-Schwartz and the triangular inequalities imply
that

EE[ sup |E,(N <TPZ/ (bw(wij,x X1,

0<s<t
s Y p()=v

7/77/R1Ez[bcw w, X Z;Lru)]dAM(u,w))’Q” ds, (1.4.13)

where & stands for the expectation over the random architecture of the network. The important remark
is that we assume that for fixed i, sequences (Tij)j:17,,,7]v and (wij)j:L,,,,N are considered independent
and identically distributed population-wise. Therefore, the previous expression is of order 1/ min(N,),

and by consequence, going to 0 as N goes to infinity.

Finally, in the case that A;,;) depend on the precise position of the neuron i and not only on the
population (non translation invariant case), a different chaos propagation property is proved. Denoting
&; the expectation over all possible distributions A;y, and modifying accordingly the respective proof, we
have the
Theorem 1.4.12 (Annealed convergence). We assume that (H1)-(H}) are valid, that network initial

conditions are chaotic and square integrable, and that the interaction does not depend on the postsynaptic
N

)

neuron state (i.e., b(w,x,y) = L(w,y)). Let us fir i € N, then the law of process (XZ -7 <t<T)
solution to the network equations (LAIQ) averaged over all the possibles realizations of the disorder,
converge almost surely towards the process (X}, — <t < T) solution to the mean field equations (LAIT).
This implies in particular the convergence in law of (E[XPN], —7 <t < T) towards (X, —7 <t <T)

solution of the mean field equations (LAIT]).

The previous setting can be fully understood in the special case of a one population firing-rate neuron

network.

Application: dynamics of the firing-rate model with random connectivity

A particularly suitable framework to solve the question of the role of the random architecture is
provided by the classical firing-rate model (see e.g. [I5I]). For that dynamics, we can show that the
solution to the mean-field equations (L4II) is exponentially attracted to a Gaussian, whose mean and
standard deviation are solution of simpler dynamical system. Moreover, we prove that the connectivity

level of the network plays a role on the emergence of synchronisation of the solutions.

For the firing-rate model, the solution of (LZTT]) satisfies the implicit equation:

. _
B B i Xa
Xp = Xge /0 / ~(t=5)/00 (7_95 +1a(s)

t
+ Z / / O"Y (Ys’zl-r)} dAa’Y (Tv ’LU)) ds + /0 ei(tis)/ea )\adWsa

which is composed of Gaussian terms and the initial condition X§'e~t/% vanishing at an exponential

rate. Therefore, taking expectation and covariance we get that the mean and the variance of the solution
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satisfy the following well-posed system of delayed differential equations:

aoz = _Uoz/ea + Z/ /]RJOW(’LU) EY [S(th]rs)] dAOW(S’w)
Vo = —200/00 + 2.

Here we see that there is a unique stable steady state for the variance. Moreover, in we take S as the erf
function, we can interchange E with S, and find an implicit equation for the mean of the system. Further

simplifications on the number of populations, allow us to write that if P = 1, then the mean solves

= 0 [ I N
u(t) = 0 +/_T/RJ(w)\/m“(t+5) dA(s,w), (1.4.14)

and by consequence, the stability of the fixed point only depends on the dispersion relationship:

1 1 0 ,
=0T aao /4 /]R J(w) €% dAany (s, w), (1.4.15)

V27 (1 + v*)

which is nothing more that looking for solutions of the form u = e¢* in (LZ14).

Equipped with (L4I3) we show that in the small-world type of architectures, and one dimensional
model, variations on the extension of the neural field induce a transition from a stationary solution, to
an oscillatory regime and back to the stationary solution, when all other parameters remain unchanged.
On the other hand, increasing the value of the connectivity of the network favors the apparition of
these oscillatory solutions. We conclude that: the topology of the network strongly impacts the collective
behavior of the solutions. For a fized value of the connectivity parameter, there exists an optimal neural
field size for synchronization. At this size, the constant delays necessary to induce oscillations is minimal.
In contrast, at fived values of the extension of the field: fully connected networks synchronize more easily.
In the cortex, for energetic reasons, full connectivity is not favored, and therefore this indicates optimal

cluster sizes for synchronization.

All the technical details of this work are presented in the Chapter [2 of this memoir, which is included
in [128] written in collaboration with J. Touboul and published in Acta Applicandae Mathematicae.

1.4.2 On a kinetic FitzHugh-Nagumo equation

Chapter [3] is probably the most technical and the main interesting mathematical contribution of
this dissertation. It deals with an FitzHugh-Nagumo model, which constitutes a very good compromise
between versatility and accuracy of its dynamics compared to biological neurons on the one hand, and
relative mathematical simplicity on the other hand. It describes the evolution of the membrane potential
v of a cell coupled to an auxiliary variable z, modeling the adaptation to external inputs. Tthe evolution

of the the state (z,v) of each cell i belonging to a set of n FitzHugh-Nagumo neurons satisfies:
(1.4.16)
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where the I; is the input level, a and b are positive constants, and the processes {(W})i>0, 1 <i < n} are
independent Brownian motions. For sake of simplicity, we assume that 02 = 2 and I, = Iy € R constant.
The positive coefficients J;; represent the effect of the interconnection of cell j onto cell 7. Under relatively
weak assumptions on the distribution of these coefficients, we show that the system enjoys propagation
of chaos property towards a process whose density solves, on (0,00) x R?, the McKean-Vlasov evolution

PDE
Oif = Qe F5) [ = 0u(Af) + 0u(B(I5)f) + 02 f

A= A(z,v) = az — bv,

B.( fs) = B(z,vie, Fy), (1.4.17)
B(z,vie,j)=v(w—AN(w—1)+z—e(v—3) + I,

Jr=F(f) = Jgov flz,v) dvdz.

This is a nonlinear nonlocal PDE, with non bounded coefficients and such that the related differential

operator is hypodissipative and non Lipschitz. Therefore, even if the particle system seems to be math-
ematically simple, the limit equation is not easy to analyze. Nevertheless, we observe that the equation
is given in a divergence form, then the mass and the positivity of the initial condition are conserved as
long as a solution exists. The first main result we get is related to the existence of solutions to (LZAIT)
and the respective a priori bounds:

Theorem 1.4.13. For any fo € L*(M?) N Ltlog L' NP(R?), there exists a unique global weak solution
f+ to the FhN equation [BI2), that moreover satisfies

I fell 21 (ary < max(Co, || follLr(ar)), (1.4.18)

and depends continuously in L*(M) to the initial datum.

Furthermore, there exist two norms ||- |l and |||z equivalent respectively to ||-|| g1 (m) and ||| z2(m),

such that the following estimates hold true:

I fellr(m) < max(Ch, [ foll L1 (m))s (1.4.19)
as well as
[fellwr < max(Ca, || foll31), (1.4.20)
and
[ fellaz < max(Cs, || follaz), (1.4.21)

where C,Cq, Cs are positive constants.

We recall, from classical literature, that L'log L! is the space of function with finite entropy, M
(respectively m) is a polynomial (respectively exponential of a polynomial) weight function, L!(M),
H'(m) are Sobolev weighted spaces, and that HZ2(m) is the set of functions of H'(m) such that the
second v derivative exists and belong to L?(m). The proof of the Theorem [LZI3]is based on the bounds

on the solutions. We start by noticing that the nonlocal term is upper bounded uniformly on time. This
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allow us to replace #(f;) by a constant # € R when proving (LZI9), (LZ420) and (CZ2I). More

precisely, to find inequality (LZI8]), we use the definition of A and B, to get

d
= | fiMdrdo <Ky~ Ky [ f; M dadv, (1.4.22)
R2 R2

where K7 and K5 are generic constants depending only on the parameters of the system. To prove (L4.19)
we simply use that sign(f)02, f < 82,|f|, to get an inequality of the type (LZ22).

The other two inequalities are much more delicate. Indeed, since the operator is hypodissipative we
cannot use the standard arguments of parabolic equations to upper bound the H' norm. Instead we use
the ideas of Villani [I58] and study a “shifted” norm equivalent to the usual norm on H'. More, precisely
we get the
Lemma 1.4.14. Let us consider two exponential weight functions my < mo. For any # € R fized, there

exist K1,Ko >0 and 6 € (0,1) constants such that

QA1 N < Kl flF2mey — Kol I3, V€ H (ma), (1.4.23)

where (-, )31 is the scalar product related to the Hilbert norm
1130 = 1F N Z2ma) + 0% 2100 F T2y + 0Y2400F, 00 f) 2 ma) + 6 100 F 12,

The proof of Lemma [[.4.23] is based on control the extra contribution of the x-derivative thanks to

the presence of the cross derivative term. In particular we prove an inequality of the type

<81(Q8f); azf>L2(m2) S KHaxf”%g(Rz) + (Other ‘ECI‘IHS)7

with K a constant, and

(0:Qcf, 00 f) L2 (my) + (00Qe f, 02 f) 12(my) < =002 fl2(my) + (other terms),

where all the other terms can be easily upper bounded. The choice of the exponent of § in the definition

of the || - |[4: norm is such that for § > 0 small enough

<0.

ml) —

32 K||0, [l 22y — 8*°0 1100 fll7 2
Finally, we use that _# (f;) is uniformly upper bounded to find K, K2 and § in Lemma [LZT4 such that

d
Zfillie < Kallfillaee) — Kollfill3a,

with f; any solution to (LZIT). To finally obtain (LZ20), we recall Nash's inequality

£ 2@y < Clf @) DawflL2ze), (1.4.24)

and use that f; has unitary mass. Inequality (CZZ2I]) follows the same schema of proof. Equipped with
these inequalities the existence of a solution (at least in a weak sense) can be obtained by using a fixed
point argument. Nevertheless, the uniqueness result requires to work in a smaller space. To that aim we

simply use the definition of A and B, to prove that for any fo € L'(M) N L' log L' N P(R?), it holds

10w f5?

t
sup felog(ft) dedv —|—/ / dxdvds < C(T), (1.4.25)
te[0,7] JR? o Jrz [t
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where C'(T) depend on fy and the coefficients of the problem.

It is important to remark that the inequality (LZ2H) includes the entropy of the solution and a quan-
tity that it is not the classical Fisher's information but only a partial v-derivative Fisher's information.
This is related to the hypodissipativy of the operator. At this point the uniqueness (and by consequence
the well-posedness of ([LZIT)) are obtained by putting together all the a priori bounds.

The second main result of the chapter is the
Theorem 1.4.15. For any € > 0, there exists at least one stationary solution G to the FhN statistical
equation (LAIT). Moreover, there exists an increasing function n : Ry — R such that n(e) - 0 and
E—r

such that any stationary solution G. satisfies
G — GollL2(m) < n(e),

where Gy is the unique stationary solution corresponding to the case € = 0.

The existence part of Theorem [[.4.15]is obtained using a classic Brouwer fixed point argument. The
stability part is much more complicated and requires to analyse first the linearized equation. To that
aim we use the decomposition technique. Around any stationary solution G., we consider the linearized

operator

Zeh = Q:(F(G:))h +e 7 (h)d,Ge.

Next, we fix a constant N > 0, and in the same sense that we did in the Example [[2.0] we define

B. = % — A, where A= Nxg(z,v). (1.4.26)

The split (LZ26]) is such that the hypotheses (1.a) and (1.b) of the Krein-Rutmann abstract The-
orem [[L2ZA4 hold. In particular, we have that for N and R large enough, (B. + 1) is hypodissipative in
H?2(m) and the
Lemma 1.4.16. There are positive constants N, R large enough and some Cp. > 0, such that the

semigroup Sp, satisfies
1S5, ()]l 2 (my) < Co.t™ 2 ||hl L2(my), Yt € (0,1].

As a consequence, for any o > —1, and any exponential weight m, there exists n > 1 and C,, . such that
of any t > 0 it holds
1(ASB) ™ ()Al 12(m) < Cnie € [Ih] L2m)- (1.4.27)

The proof of the hypodissipative of B. + 1 uses the idea of “removing” the positive parts of the H?2

inequality obtained for Q.. The key point is to define a new norm
HhH%rg(m) = HhH%Z(m) +0 ||Dl7vh||%2(m) + 07 ||agvh”%2(m)’
and choose § > 0 small enough, to conclude that for any « € (0, 1] there is d, such that

(Beh, 1) 2 (my < —a Hhﬂfqg(m)-
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Since the norm related to H2(m) is equivalent to the usual norm in H2(m), we can conclude the hypodis-

sipative of B..
The proof of Lemma is more technical. We first state some sharper estimates on the H2(m)
norm of B.h, and next define a real function F (¢, h) by the formula
F(ht) = [Pl (my) + 11102l T2 () + 2t OuPl T2,
+ 3t (Duh, Ouh) L2 (my) + Cat |05, Bl T2 (- (1.4.28)

This is usually called the Hormander-Hérau technique. When F is evaluated on hy = Sp_;)h, the sharper
estimates on hy allow us to conclude that for a well chosen family of ¢;, F(t, ht) is a decreasing function

and then
CH2 (00 0kt 32y + 102l ) ) < NN 20
for some constant C'. Finally, thanks to the fact that A lies within a compact, we get that
I ASB. ()] 2 my < C't 27 Rl p2my, Yt € (0,1],
for any exponential weight m.

Finally, thanks to the general Krein-Rutman's theorem, an induction argument, and the properties
of the split (LZ26) we deduce that in the linear case e = 0 the spectrum of the operator Qo = %, is
such that

Proposition 1.4.17.

(i) There exists & < 0 such that the spectrum S(%) of £ in L*(m) writes

E(ZL)NnAs = {0},
and 0 is simple.
(i) For any o > &, there exists a constant Cgri > 0 depending on (o — &), such that
IRz () (L2 (m). 2 (my) < Crr (1412171, Vz e C\ {0}, Re(z) > o
Proposition [LZIT implies two things: first, the operator .%j is invertible in L?(m) for functions with

zero mean; and second, the stability part of Theorem holds.

The third main result of the chapter is the
Theorem 1.4.18. There exists € > 0 such that, in the small connectivity regime ¢ € (0,e*), the
stationary solution is unique and exponentially stable. More precisely, there exist o < 0 and n*(e) :

Ry — R, with n*(e) 5 such that if
foe H' (m)NPR?) and || fo—Gllgom) <n'(e),
then there exists C* = C*(fo,e*,¢) > 0, such that
Ife = Gllrzimy < C*e™ !, Vit >0,
where f; is the solution to (LAIT) with initial condition fy.
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The uniqueness is once again a result of the invertibility of %, on L?(m) for functions with zero mean

and an inequality of the type

£l = [ z2arm) + VoS llL2arirzm) < Cv lgllL2m)- (1.4.29)

for a constant Cy and any g with zero mean such that % f = ¢. Inequality [[.4.29] implies that there is
a constant C' such that for any two stationary solutions of (LZTIT) F. and G, it holds

[Fz = Gellv < e C||Fz = Ge|lv, (1.4.30)

then for & small enough we get the uniqueness of the stationary state.

The nonlinear exponential convergence uses a perturbation argument on the spectrum of %} to find
the
Theorem 1.4.19. Let us fix « negative and close to 0. Then there exists e € (0,e1) such that for any
e € [0,¢eq], there hold

(i) The spectrum %(Z:) of £ in L*(m) writes
Y(Z)UA, = {0},

and 0 is a simple eigenvalue.

(ii) The linear semigroup S, (t) associated to £ in L*(m) writes
S, (t) =11, + R.(t),

where Tl is the projection on the eigenspace associated to 0 and where R.(t) is a semigroup which
satisfies

at

| Re(t)ll (L2 (m)) < Cz., €™,
Jor some positive constant Cg, independent of e.
The proof of Theorem [[LZ19 consists in finding n2(¢) — 0, such that 2(Z.)NA, C B(0,n2(¢)), which
e—
is done by computing exactly the inverse of Z. — z for z # 0, Re(z) > a. A direct consequence of this

result is that the conclusion of Theorem [[L4.I8 is an application of the Duhamel's formula for the linear

semigroup S, and to control correctly the nonlinear extra term.

All the technical details of this work are presented in the Chapter [B] of this text, which is included
in a very recent pre-publication [I12] (submitted), work done in collaboration with S. Mischler and J.

Touboul.

Part II: Main mathematical results

The second biological problem we study is presented in Chapter 4 and Chapter B and it no more deals

with neuronal activity but with the structuring of neuronal areas. In Chapter @ we present the model and
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provide a biological relevant discussion of the results obtained. This model of neuronal differentiation
was proposed with the help of the experimental biologist Professor Alan Prochiantz. In Chapter [ we
consider a general version of the model of neuronal differentiation in a one dimensional case. There,
we prove rigorously the idea of the convergence of the family of stationary solutions when the diffusive

operator is going to zero.

1.4.3 Competition and boundary formation in heterogeneous media: appli-

cation to neuronal differentiation

Our model falls in the frame of the competition of two diffusing species A and B that are reciprocal
inhibitor and self-activating, with saturation and spatially heterogeneous production rates Ha(z, A, B)
and Hp(x, A, B). In neurodevelopmental terms, transcription factors expressed by two genes G4 and
G p constitute our two competing species, and the space heterogeneity corresponds to the graded con-
centration of morphogens. For simplicity, we present the framework a one-dimensional case in which the

differentiating tissue is along the interval [0, 1].

Abstracting the problems that we will see in Chapter [ it is natural to consider the following system

of reaction-diffusion equations:

atAfedAAA:AHA(:C,A,B), O<z<l,
(1.4.31)
GtB — EdBAB = BHB(,CC,A,B),

with some boundary conditions to be preciser later.

Here H4 and Hp are maps from [0,1] x Ry x Ry on R, assumed to be of class C2. We assume that

HA(:C,0,0) > 05 HB(:C,0,0) > 05
OpHa(z,A,B) <0,  9,Hp(x,A B) >0, (1.4.32)
aBHA(‘TaAvB) <07 aAHB(:C,A,B) <05

which can be interpreted as follows: on the one hand, the morphogen gradients do not vanish and vary

monotically, on the other hand the system expresses competition between species A and B.

Because, we are interested in the limit ¢ = 0, the stationary solutions of (L4.3I) in the absence of
diffusion are useful. We assume that there exists two solutions (F4(x) > 0,0) and (0, Fp(z) > 0) such

that
Ha(z,Fa(z),0) =0,  Hp(z,0,Fp(z)) =0, (1.4.33)

and that they are respectively stable for z € (0,x,) and for @ € (z, 1), with x, > xp. Therefore, for any

fixed « € (zp, x4 ), the system is a bistable ODE. We further assume

Hp(x,Fa(x),0) >0 for © > x4 > xp, Ha(x,0,Fp(z)) >0 for x < xp < x4. (1.4.34)
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Finally, we assume that there exists a unique additional solution (A*(x) > 0,B*(x) > 0) in the
interval (xp, x,) which is a saddle. In order to complete the definition of our system (CZ3T]), we consider

the Robin (also called third type) boundary conditions:

A(0) = VEZLA(0) = Fa(0), A1) + Ve FZA(L) =0,
(1.4.35)

B(0) - VELB(0)=0,  B()+vELZB()=Fy(l).

At this level of generality, assumptions ([L432)—(C4.34) may appear formal. These are actually very

natural, as we will see in the Chapter @l

The main result that we will demonstrate is the fact that in the presence of small diffusion, a clear
boundary between two differentiated domains exists and is unique, and may be characterized univocally.
In detail, we prove the
Theorem 1.4.20. Under assumptions[I.4.32H{1.4.3]) there exists a classical stationary solution (A., B:)
of [LA3T)) which satisfies

B.(z) > 0, (1.4.36)

ly| il
dx dx

and is obtained as t — oo in the corresponding parabolic equation. Moreover

(i) Ase — 0, (A., B:) converges a.e. towards a pair (Ao, By). These maps are discontinuous at some

point x* € [xp, x,) and have disjoint supports

supp(Ap) = [0, 2] and supp(By) = [z*, 1].

(i) The point x* is characterized by the relation c(x*) = 0 where c(-) represents the speed of propagation

of a traveling wave problem parametrized by x.

The proof of Theorem [[L4.20] uses arguments of viscosity solutions and travelling waves. The first step
is to characterise the stationary functions Fyu, Fp and (A*, B*). Using the hypotheses on the spatially
heterogeneous production rates, we can readily prove that the functions defined in (LZ33]) and (C434)

satisfy
d d
EFA(,T) <0 for z€0,z,), aFB(,T) >0 for € (wp,1], (1.4.37)
L g @) >0 and LB (@) <0 <z < (1.4.38)
LA a B , Tp < T < Tq. 4.

The next step is to prove that solutions to the parabolic problem are monotone for well chosen
initial conditions. To that aim we start by fixing two nonnegative decreasing sub-solution (respectively
increasing super-solution) for A (respectively B). In that case, we prove the
Lemma 1.4.21. For allt > 0 and z € [0,1], we have that (Ac, B:) solution to (LA31), are such that
OpAc(t,z) >0 and Oy B:(t,z) < 0.

and the
Lemma 1.4.22. For any ¢ > 0 fized, let us consider any solution (A, B:) of (LA3I) with initial

conditions A(0, ) decreasing and B(0, x) increasing. If the solutions are uniformly bounded on space and
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time, we have for all t > 0

0 0
—A < —B > <zx<l1.
p (t,x) <0 and p (t,x) >0, 0<a<

Both previous lemmas are interesting because the proof is based on the a priori bounds of the parabolic
system. In particular, we use the temporal and spatial derivatives of equations ([Z3T]), to get the

monotonicity results stated.

At this point a bootstrap argument allows us to conclude that there exists A.(z), B-(z) regular
stationary solutions of ([Z3T]), and then the first part of Theorem is valid. To continue we
provide sharper estimates of the stationary solutions to control A.(0) and B.(1) away from zero. More
precisely, we prove the
Proposition 1.4.23. There exists eg > 0 such that for any € < gg, the stationary solution A. is strictly

positive and A (0) is, uniformly in e, larger than some 64 > 0. The same holds for B. and B(1).

The proof of Proposition [L4.23 consists in finding a strictly positive sub-solution for
2

d
*EdAﬁ(ﬁA:HA($,¢A($),B5($))¢A, (1.4.39)
which can be done explicitly. Equipped with this result, and since the total variation of the stationary
solutions A; and B. is uniformly bounded in &, we can pass to the limit and find a pair (Ao, Bp) that

satisfies, almost everywhere,

AoHA (ac, Ao(m), Bo(l')) = O,
(1.4.40)

B()HB (ZL', Ao(l'), Bo(x)) =0.

Since we know from the hypotheses the possible solutions to the autonomous system ([LZ40) for each
x fixed, it only remains to prove that they define a pair (Ag(z), Bo(x)) as the Theorem states.
The previous condition is reduced to find x* such that (Ag(z), Bo(z)) = (Fa(x),0), for z < z* and
(Ao(x), Bo(z)) = (0, Fp(x)), for x > x*. To that aim, we use a WKB change of unknown (¢% :=
—+/elog(A.)), and thanks to the sharper estimates given by Proposition [L4.23 we get the
Lemma 1.4.24. There exists two non empty intervals, namely I, and I, = [0,1]\ I, such that By =0

in I, and Ag =0 in I,. Moreover,

0,2p) C I, and (x4,1] CI,.

Finally, we would like to characterise the limit (Ag, By). Under the change of variables y = (z—ax%)/+/E,
and define a.(y) = Ac(zf + /ey) and b, in the same way. We pass to the limit ¢ — 0 in the stationary
version of (43T to find that (ag, bo), is solution of

—dagbzao(y) = ao(w)Ha (2", a0(y), bo(y),  Byaoly) <0,
—dpsbo(y) = bo(y) H (¢, a0(y).bo()),  Dyboly) >0, (1.4.41)
ao(0) = bo(0).

This solution is characterized as follows:
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Theorem 1.4.25. The limits satisfy ag # 0, by # 0 and there exists a unique value x* such that the

system (LZAT) has a non-trivial solution. This solution is the unique traveling wave defined as
2
—c(2) Faly;x) — daZzaly; ) = aly; ) Ha(x,ay; 2),b(y; 2)),  y €R,

—c(w) 2 b(y; x) — dp 2b(y; 2) = b(y; 2) Hp (z, aly; 2), b(y; ),

(1.4.42)
li 1) =F li .2) =0
Jm_a(y;z) = Fa(z),  lim a(y;2) =0,
S b(ysz) = Fp(x),  lim by;z) =0,

with speed zero, that is c(x*) = 0, and connecting (Fa(x*),0) to (0, Fp(z*)).

The proof of Theorem [[.4.42] is split into three steps. First we show that functions a. and b. cannot
converge both at the same time to the zero function. Then, using that ay and by converge at —oo
to solutions of (LCZ40), we show that limit conditions of (CZZ42) are satisfied. Finally, thanks to a
monotonicity argument on the speed c¢(x), we show that (ag,bo) are in fact the unique traveling wave

solutions of (LZ.Z2)) such that c(-) = 0.

Part II1I: Main results

Finally, we discuss the convergence results obtained for the subcritical Keller-Segel particle system.
In particular, we prove chaos and entropic chaos propagation without the use of a truncation and/or
regularisation version of the related kernel. Eventually, by the use of a combined PDE/Probabilistic

approach we prove the entropic chaos propagation property.

1.4.4 On a subcritical Keller-Segel equation

We consider the following system of particles
Vi=1,.,N, x/N=xiN_2X > / K(XN — X3N)ds + V2 B, (1.4.43)
N =)o
Jj=1,j#1
where (B");—1,. n is an independent family of 2D standard Brownian motions and the force field kernel

K :R? — R? comes from an attractive potential ® : R? — R and is defined by

__r _ 1 —a
K(x):= —|z|a+1 =-V (—a 7 x| ), a € (0,1). (1.4.44)

P(x)

Our goal is to prove that there is propagation of chaos to the solution of the following nonlinear SDE
t
X = Xo — x/ K (X, — z)fs(dz)ds + V2 B, (1.4.45)
0 Jr2

where f; = £(X,) is the law of X;. Moreover, it is classical to show that if (X;);>¢ is a solution to (L4.4H]),

then (f;)i>o0 is a weak solution of

—aféix) =X Ve - (K * fi) (@) fi(2)) + Do fir(). (1.4.46)
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The main result that we obtained on this Chapter is the following;:
Theorem 1.4.26. Let o € (0,1). Assume that initial condition is such that
FY € Pym((R?)N) is  fo — chaotic;
(1.4.47)

sup My (FJ) < oo, sup H(FY) < oo.
N>2 N>2

For each N > 2, consider the unique solution (XZ’N)i:L...,N,tZO to (IZ.43). Let (Xi)e>0 be the unique
solution to (LAAH).

(i) The sequence (XZ’N%:l,...,N,tzO is (Xi¢)i>0-chaotic. In particular, the empirical measure QV :=
+ Efil O(xiN),., goes in law to L((X1)e>0) in P(C((0,00), R?)).

(ii) Assume fur;hermore that limy H(FY) = H(fo). For all t > 0, the sequence (XN )iz1.. n is then
Xi-entropically chaotic. In particular, for any j7 > 1 and any t > 0, denoting by th the density of the
law of (XN, ..., XIN), it holds that

: N ®j _
M [[Fy = £ ey =0

The proof of Theorem [LZ.20] is based on the tightness of the empirical measure Q. However, since
the force kernel is singular and the limit equation is nonlinear and nonlocal, the well posedness of the

particle system (LZ43) and the mean-field equation (LZ4H]) are not direct.

To avoid the singularity at 0, we first analyse a regularized version of the equations and then pass to

the limit. For € € (0,1), we set

T

max(|z|, e)*+1’

K (z) = (1.4.48)

which obviously satisfies |K¢(z) — K(y)| < Cq.c|z — y|. Therefore, the following system of S.D.E.s

Vi=1,..,N, XpVe=xN_ Z / K (X0 — X3V ds + V2Bi, (1.4.49)

J 1,570
is such that strong existence and uniqueness of the solution hold. Moreover, we notice that the entropy,
the first moment, and the Fisher's information of the solutions to the system ([LZ448]) are upper bounded
uniformly in e. In particular we show the:
Proposition 1.4.27. Let o € (0,1).
(i) Let N > 2 be fired. Assume that Mi(F}) < oo and H(F{') < co. For all t > 0, we denote by
FNe e Py (RN the law of (X;™)iz1. n. Then

H(F}) =H(F) + N2Z/ /]RZ divK,(z; — ;) FN(z)dsdx (1.4.50)

i#]

/0 I(FN<)ds.

(ii) There exists a constant C which depends on x, H(FY) and My(FY) (but not on €) such that for all
t>0and N > 2,

HEFENY < C(1+1t), M(FN) <O +1), /tI(FSN*‘)ds <C(1+1). (1.4.51)
0
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Furthermore,

E|sup | X}V <CQ+T). (1.4.52)
[0.7]

The proof of Proposition [[L427 is based on the ideas of [62, Proposition 5.1], that we adapt using the
fact that the kernel is no more divergence free. Therefore, there is an additional term in the dissipation
of entropy formula (LZ50) that necessitate to be specifically controlled. This is a technical problem, but

using classical properties of the Brownian motions it is possible to get the stated result.

To prove the well posedness of (L443]) the key point is to show that particles almost surely never
collide. To this purpose we first notice that this result holds for (LZ49). Since K. and K coincide as long
as the distance between any two particles of (LZ43)) is larger than e, we deduce first that the particles
of true system ([L443) also never collide, and second the global existence and uniqueness for (L4.43).

Finally, we establish the estimates about the entropy, Fisher information and the first moment by passing
to the limit in (CZHET]).

In a second part of the chapter, we deal with the tightness and the consistency of the particle system
with respect to the SDE ([LZ4%). In particular we show the
Lemma 1.4.28. Let « € (0,1). Assume (LZAL). For each N > 2, let (Xf’N)i:L___,N be the unique
. N
solution to @L3) and QN = % >0, 5(X:,N)t20, then
> the family {L((X}™)is0), N > 2} is tight in P(C(]0, 00), R?));
> the family {L(QN), N > 2} is tight in P(P(C([0, 00), R?))).

and, defining S as the set of all probability measures f € P(C([0,0),R?)) such that f is the law of
(Xt)t>0 solution to (LL4H) with locally (in time) integrable Fisher information and locally (in time)
bounded first moment, we have the

Proposition 1.4.29. Let o € (0,1) and assume (LEZD). For each N > 2, let (X5 )iz
distributed and consider the solution (XZ’N)izl _____ N0 to (LAA3). Assume that there is a subsequence
of QN = % Zivzl (S(X;L,N)t>0 going in law to some P(C([0,00), R?))-valued random variable Q. Then Q

.....

a.s. belongs to S.

The proof of these results is classical and it is mainly based on the a priori bounds of the solutions
and Ito's formula. As a direct consequence we find a weak solution to the limit mean-field SDE (LZ.4H).
To find a strong solution and the uniqueness required to the propagation of chaos result, it is necessary
to analyse the set of weak solutions to the equation (CZ40) when initial conditions have bounded en-
tropy. In particular, we show that if p > 2/(1 — a) and any weak solution (f;);>0 to (L446) lying in
L5 ([0, 00),P1(R?)) N L}, ([0, 00); LP(R?)) is unique.

loc loc

The proof uses the related martingale problem, and the fact that for deterministic initial conditions,
there exists a unique solution to it. All the previous analysis imply the validity of (i) in the Theorem [[L4.26
To prove the entropic chaos propagation (ii), we use the notion of renormalised solutions. To that aim,
we first show that the strong solution to the mean-field system coincide with the unique solution given

by the
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Theorem 1.4.30. Let o € (0,1). Assume that fo € P1(R?) is such that H(fy) < oo.
(i) There exists a unique weak solution f to (LAZG) such that

2
f e L.([0,00),P1(R?)) N Li,.([0, 00); LF(R?))  for some p > o (1.4.53)
(i1) This solution furthermore satisfies that for all T > 0,
T
/ I(fs)ds < oo, (1.4.54)
0
for any q € [1,2) and for all T > 0,
V.f € L2120, T; LI(R?)), (1.4.55)
for anyp>1,
€ C(10, 00); LM (R2)) N C((0, 00); L7 (R2)), (1.4.56)

and that for any B € CY(R) N W2(R) such that B is piecewise continuous and vanishes outside a

loc

compact set,

OWB(f) =x (K * [) - Va(B(f)) + LaB(f) (1.4.57)
= B IV + X B (f) fs(Va - K * f),

on [0,00) x R? in the distributional sense.

Notice that here the notion of weak solution makes reference to the deterministic notion of weak
solutions, i.e., in a PDE context. The proof of Theorem uses first the Hardy-Littlewood-Sobolev
inequality to prove that the convolution term K * f is bounded in some specific L?(0,T; LY(R?)) spaces.
Thanks to this remark, one can use a sequence of mollifiers to prove that inequality (LZ57) holds,
and using a bootstrap argument we get the maximal regularity of the solution (LZ350) and its deriva-
tives (LZE5H). Choosing a well sequence of test functions 3, functions converging to H, one can finally

pass to the limit and deduce the entropic propagation of chaos property.

All the technical details and calculations are presented in the Chapter [0l of this manuscript. This
is the object of [66] written in collaboration with D. Godinho to appear in Annales de !'Institut Henri

Poincaré.

Perspectives and open problems

1.5

We finish this introductory chapter by discussing a complementary problem related to the chaos
propagation for a Poisson coupling model and a couple of open problems that constitute the direct

perspectives of this work.

1.5.1 A microscopic spiking neuronal network for the age-structured model

Regarding the chaos propagation method, in a series of outstanding papers, Pakdaman, Perthame and

Salort (PPS) [121], 122, 123] introduced a very versatile model for the large-scale dynamics of neuronal
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networks. These equations describe the probability distribution of the time elapsed since the last spike
fired as an age-structured nonlinear PDE. Inspired by the dynamics of these macroscopic equations, we
work on a microscopic model describing the dynamics of a finite number of neurons, and that provides a
realistic neural network model consistent with the PPS model, in the sense that in the thermodynamic

limit, propagation of chaos and convergence to the PPS equation is proved.

In this model, the state of each neuron ¢ is described by a R -valued variable XZ N corresponding to
the time elapsed since last discharge. Of course, this approach is quite different from classical literature,
where the key variable is the voltage: this is an important originality of the PPS model. The spiking
interaction between neurons is considered as a the global activity M at the network level. Specifically,
a neuron with age = (duration since it fired its last spike) fires a spike with an instantaneous intensity
a(x, M) where M is the global activity of the network. Subsequently to the spike emission, two things
happen: the age of the spiking neuron is reset to 0, and the global variable M increases its value by an

extra value of J/N. The coefficient J represents the mean connectivity of the network.

For each N € N, let us consider a family (NV},...,NN);>o of i.i.d. standard Poisson processes.
Let us also consider a family (71,...,7n5) of i.i.d. real valued random variables with probability law b.
These coefficients represent delays in the transmission of information from the cell to whole network.
Furthermore, we assume that the family of delays is independent of the Poisson processes and the initial

conditions.

As always in the propagation of chaos framework, we assume chaotic initial conditions, in the sense that
the initial state of the neurons are independent and identically distributed random variables. Therefore,
for go and mg two independent probability measures on Ry, (go, mo)-chaotic initial states consists in
setting i.i.d. initial conditions for all neurons with common law equal to gg, and setting independently,

for the global activity, another random variable distributed as my.

The main idea is to understand the convergence of the R -valued Markov processes
(Xm0 = (XPN, L Xm0,
solving, for each i = 1,..., N and any ¢t > O:

. . t . oo )
XE’NXZ,’NnLt/O Xgﬁv/o Lpyca(xio® apy yy N (du, ds), (1.5.58)

with the coupling given by the global variable

T s —7;

t N t oo
J .
MN :Mgv—a[/o MY ds—NE /0 /0 Luca(xi™ ¥ )y N (du, ds) |, (1.5.59)
j=1

where /\~/'tj is the shifted (in time) process /\/tjij extended by 0 for negative values of the time. These
processes are a consistency restriction on the spiking times: when a neuron j sends a signal at a time

t >0, the global variable receives it only at instant t + 7;.

Finally, we make the following physically reasonable assumption on the intensity spike function of the
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system:
a(+,-) is a continuous non decreasing function in both variables,
a(0,:) =0, a(-,0)>0 (1.5.60)

T—00

a(x,m) 0o, VmeR,,

and impose a second consistency restriction
(V6 > 0)(3z; > 0) such that a(z,m) <, Vme R, (1.5.61)

representing that, independently of the level of the network activity, a neuron cannot spike two times in
an arbitrary small period of time. The well-posedness of the particle system under these set of hypotheses

is direct.

Under suitable conditions, it is likely that the solution (X}V):;>o behave, for large values of N, as
N independent copies of the solution to a nonlinear SDE. Let Yy (respectively My) be a go-distributed
random variable (resp. mg) and N; a standard Poisson process independent of Yy and My. Then we look

for Ry-valued cadlag adapted process (Yz, M;)i>o solving for any ¢t > 0

t 0
Y=Yy +1t— / Ys_ / l{uga(Ys,,Ms,)} N(du, dS), (1562)
0 0
and
t t s
M, = My — a[/ M, ds — J/ / Ela(Yy—w, Ms_u)] b(dw)ds} (1.5.63)
0 0 0

Indeed, it is not difficult to prove, using a tightness and a consistency method, the

Theorem 1.5.31. Let us assume that hypotheses (LA.60) (561 hold, then there exists a weak solution
(Y, My)i>0 to (L562)-(L563) such that

/t /SIE[a(Y;_w,MS_w)] b(dw) ds < o, Vit > 0. (1.5.64)
0 JO

On the other hand, let us consider the growing restriction

1+p

(3¢>2)(30<p<1)(3Ce e, >0) : cpri—r <a(r,m) < Ce(l+ 2572+ mt2), (1.5.65)

°

and suppose that initial condition has bounded exponential moments
E[e’0 M) <00, w>0. (1.5.66)

then it is likely to have the
Theorem 1.5.32. There exists a unique strong solution (Y, My)i>o to (L5.62)-(L563) in the class of
functions of locally bounded exponential moments (L5.66).

and the
Theorem 1.5.33. Let us assume that hypotheses (LA.60)—(LE6I) hold, and that the law of (Yo, My) is

compactly supported, then the sequence of empirical processes pun(t) converges in distribution to the law

of the unique process (Yy, My)i>0 with (go, mo)-chaotic initial states solution to (L562)-(C563).
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If the initial datum has a fast decay (in the sense described in Theorem [[Z5.32), and if moreover there

is a positive constant Cy such that
la(z,m) — a(z’,m’)| < Cola(z,m) Aa(a’',m) |z — 2| + |m —m/|], (1.5.67)
for all x,2’',;m,m’ € Ry. Then the convergence of un(t) remains true.

In the weak connectivity case, i.e. € € [0,eq) for g9 small enough, hypothesis (LEGT) can be replaced
by
la(x,m) —a(x + h,m + h)| < Cya(x,m)h, (1.5.68)

for all z,m € Ry and any h € [0,1].

At this moment, Theorems and are mere conjectures, but there is strong evidence to
think that the are indeed true. For start, by using some arguments of Chapter 2] and Chapter 6 the
existence of weak solutions can be completely justified along with the path-wise uniqueness in the cases
of compactly supported initial datum and fast decay at infinite also. The chaos propagation argument,
using the coupling method indeed works. The only remaining Open Problem is to prove that any two
weak solutions to the limit problem are necessarily the same when the initial data decays vastly at infinite

which seems to be the case.

1.5.2 On the statistical description of neuron networks: the weak connectiv-

ity conjecture

Most large-scale neuronal networks can described by a density function f = f(¢,&) > 0 describing the
probability density of finding neurons in some state £ € = (typically £ stands for a intern neuron time,
the membrane voltage or the couple voltage-conductance of the neuron in the FhN model) at time ¢ > 0.

The density f evolves according to an integral and/or partial differential equation

atf = ZM(t)fa f(oa ) = an (1569)

where the operator f +— %, f is linear for any given network state m € R, and the evolution of M(t) is

also given by some constraints, differential or delay equation

M(t) = A [f] = A((f(5))sei0.4]- (1.5.70)

The fundamental property of the dynamics is that the total number of neurons is conserved so that the

(mass) conservation equation

[ 1= [ fedc=1 vizo
holds (or a slightly modified version of that mass conservation equation holds).

As a first step we consider the stationary problem: we search a time independent couple (F, M) such
that
L F =0, /Fd§ =1 and M = MI[F]. (1.5.71)
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That system of equations seem to be solvable by using a Brouwer fixed point type theorem or by solving
(explicitly or using a Perron-Frobenius type theorem) the linear problem 0 = %, f,, for any given m
and then fixing the appropriate parameter m by using a intermediate value theorem for the real values

function m — A [f.,] — m.

As a second step we linearize the equation around a stationary state (F, M). The linearized equation

on a variation (g, m) reads
Org = Lag + (Ly F)m = Ag, m(t) =.#[g].,

and the above operator should split as

A=A+B

for some a-dissipative operator B, a < 0, and some “B-power reqular” operator A. In this case we
may deduce that the principal (those which are the most at the right hand side) spectral values of A are
discrete eigenvalues. We claim that the following first result holds:
Meta Theorem 1.5.34. For any fo € X C P(E) there exists a solution f to the equation (L5.69).
There exists at least one steady state (F, M) solution to (LLTI) and the associated linearized operator A
is such that

BA)N AL = {6, 6F CEa(A),

for some real number o < 0 and some integer j € N, where A, :={z € C, Rez > a}.

Next, we consider the weakly connectivity regime. Introducing a (small conectivity) parameter € > 0,

the evolution equation can be written as
atf = ZEM(t)fv f(07 ) = f07 (1572)

We claim that, in the same sense that we did for the FitzHugh-Nagumo equation (LZI7), the following
second result should hold:
Meta Theorem 1.5.35. There exists £g > 0 such that for any e € (0,e9) the steady state (F,M) is
unique and there exist some constants o < 0 < C such that for any fo € X C P(Z) the solution f to the

evolution equation (LH6Y) satisfies
1£(t) = Fllx < Cp, e

The main conclusion of this systematic description of these neuron population models is that conver-
gence to a steady state is not a consequence of the modeling of the intrinsic properties of neurons taken
individually but clearly a consequence of the nonlinear coupling in the network. The same remark can be
done for desynchronization/oscillation phenomena observed in nature and numerical simulations of finite
networks. A second interesting problem is the
Open Problem 1.5.36. Is possible to build some oscillating particular solutions for large enough con-

nectivity parameter?
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Part 1

Neuronal networks
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CHAPTER 2

Limits on randomly connected

neuronal networks

Networks of the brain are composed of a very large number of neurons connected through a random
graph and interacting after random delays that both depend on the anatomical distance between cells. In
order to comprehend the role of these random architectures on the dynamics of such networks, we analyze
the mesoscopic and macroscopic limits of networks with random correlated connectivity weights and
delays. We address both averaged and quenched limits, and show propagation of chaos and convergence
to a complex integral McKean-Vlasov equations with distributed delays. We then instantiate a completely
solvable model illustrating the role of such random architectures in the emerging macroscopic activity.

We particularly focus on the role of connectivity levels in the emergence of periodic solutions.

This chapter is included in [I28] written in collaboration with J. Touboul published in Acta
Applicandae Mathematicae. (2015) 136:1, 167-192.
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Introduction

¢ Neuronal networks in the cortex are composed of large structures, called cortical columns, that

are in charge of collective information processing. Neurons are characterized by a nonlinear activity
subject to an intense noise. They interact by sending action potentials (spikes) to those neurons they
are connected to. The transmission of the information takes a specific time, related to the characteristic
time of the synaptic chemical machinery and to the transport of signals at finite speed through the axons

(and therefore function of the anatomical distance between the cells).

The macroscopic behaviors emerging from such large-scale systems provide relevant signals that are
recorded by usual imaging techniques and from which physicians can infer hallmarks of function and
dysfunction. Large-scale networks are therefore adequate scales to uncover the function of the cells,
and as such have attracted much work in the past few years. Indeed, while properties of single cells
have been well known since the seminal works of Hodgkin and Huxley [74] [75], models of macroscopic
behaviors are less understood and computational studies have mainly relied on heuristic descriptions of
macroscopic behaviors through firing-rate models, following the important work of Wilson and Cowan
(WC) 161} [162]. In this class of models, we will make a distinction between macroscopic models in
which the activity considered describes a whole brain area (which correspond to finite-dimensional WC
systems) and mesoscopic models that describe macroscopic variables at a finer scale at which averaging
effects occur but where we can resolve finer structure of the brain (e.g., WC integro-differential neural
field equations). WC models have been very successful in reproducing a number of relevant phenomena in
the cortex such as visual hallucinations, which was related to symmetry breaking and pattern formation
in the neural field equation [53] and binocular rivalry in macroscopic models [I36], see [22] for a recent
review. WC model describes the evolution of a macroscopic variable, the population-averaged firing-rate,
as a deterministic variable, which satisfies a delayed differential (macroscopic scale) or integro-differential
(mesoscopic scale) equation. The success of these models prompted much work in order to provide a link
between such macroscopic regimes and the noisy activity of individual cells. Mean-field methods based
on the statistical physics theory of gases was also used for biologically relevant neuronal models [I50} [149]
including noisy input or noisy synaptic transmission and delays. Similarly to the molecular description
of gases, it is shown that the propagation of chaos property takes place and that the system converges

to a particular class of McKean-Vlasov equations.

In the vast majority of these studies, networks are assumed to be fully connected (i.e. all cells
interact together), and no specific topology is taken into account. If this assumption is relevant in
the molecular theory of gases, such architectures are not germane to neuronal networks. Indeed, cortical
networks tend to rather display complex network topologies [20]. Typical cortical networks tend favor local
connectivity: they present a short path length (associated with global efficacy of information transfer),
high clustering (associated to resilience to noise) which are rather compatible with small-world topologies
and that ensure important function (see [I4], and [30] for a review). Moreover, some experimental
studies tend to relate typical connectivity patterns with collective qualitative properties of the networks

in physiological situations [67], and in particular in relationship with the emergence of synchronized
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activity. The question we may ask here is whether such random architectures, in which neurons connect
to their nearest neighbors with higher probability than to more remote cells, have qualitative properties

different from fully connected networks.

The topic of this paper is precisely to investigate the role of network topology in the macroscopic
or mesoscopic activity of cortical networks. From a mathematical viewpoint, heterogeneous connections
break down the interchangeability assumption usually instrumental in order to prove mean-field limits
(see e.g. [145]). However, the classical coupling method readily extends, as we show here, to networks
with specific random topologies. In detail, a weak notion of exchangeability under a certain probabil-
ity law (that of the connectivity weights and delays) is enough. We will address here both annealed
(i.e. averaged over all possible connectivity patterns) and quenched convergence along subsequences, of
networks with random architectures and random delays in a general setting encompassing the classical
models of Hodgkin-Huxley and Fitzhugh-Nagumo neurons [54]. In order to uncover the role of random
connectivities in the qualitative behavior of the network, we will instantiate a simple model, the WC
firing-rate model with noise as a benchmark of single neurons behaviors. This model has the interest
(see [I52]) to have Gaussian solutions whose mean and standard deviation satisfy a dynamical system
which will be analyzed using the bifurcation theory. The rigorous analysis of this model will lead us to
conclude that in our models, random connectivities affect the network only when these are correlated
with the delays (which is the case in neuronal network models since the connectivity probability, as well
as the interaction delays are functions of the distance between two cells), and that these topologies govern

the response of the network.

The paper is organized as follows. We start by introducing in section the formalism and the
network under consideration. In section 2.3 we present the main theoretical results for finite-populations
networks on which our developments are based. Appendix 2.7 extends these results to neural fields where
the number of different neuronal populations tends to infinity. The proof of these results are extension
of previous works [150, [149], and are therefore postponed in section Section [Z4] is devoted to the
qualitative analysis of the nature of the solutions in the case of the firing-rate model, and exhibits the

relationship between network topology and macroscopic dynamics.

Setting of the problem

We now introduce the mathematical formalism used throughout the paper. We work in a complete
probability space (2, %, P) satisfying the usual conditions. We will analyze the dynamics of a neuronal
network model composed of N neurons, in an abstract setting valid for most usual models used in
computational neuroscience such as the Hodgkin-Huxley [75] or Fitzhugh-Nagumo [59] models. In this
model, the state of each neuron i is described by a d—dimensional variable X*~ € E (typically in E C R%)

corresponding to the membrane potential, ionic concentration and gated channels (see e.g. [54]).

The networks are composed of N neurons falling into P(NN) populations labeled o € {1,..., P(N)}
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and composed of N, neurons, and the convention o = p(i) defines the population neuron i belongs to.
The level of description chosen governs the choice of the asymptotic regime analyzed. Here, we will

consider two main different cases:

e The macroscopic scale where neurons gather into a few populations P(N) = P fixed, corresponding
to coarse-grained descriptions of neural activity, generally called in the neuroscience domain neural

mass models [79]

e The mesoscopic scale, or neural-field limit, where the number of populations tends to infinity and
the area described covers a continuous piece of cortex I' C RP with p € N*. This description
correspond to finer scale descriptions at which averaging effects occur, but fine enough to resolve

the spatial structure of the cortex [149].

In each population, neurons have different intrinsic properties, receive different inputs and present a
specific connectivity map with neurons in the other populations. Macroscopic or mesoscopic behavior
correspond to the network’s properties when the number of neurons in each population tends to infinity.
This limit will be denoted with a slight abuse of notation N — co. To fix ideas, we make the following

assumption in the macroscopic scale case:

(HO). There exists a sequence of positive real numbers r1,...,rp € (0,1)F with 2521 ro = 1 such that

for alla € {1,..., P},

No/N — 714,
when N — 00.

In other words, we are assuming that the fraction of neurons belonging to a given population remains

non trivial in the limit N — oo.

The evolution state XZ’N of neuron 4 in the population « € {1,---, P} is governed by a stochastic
differential equation. The intrinsic dynamics of the neuron is governed by a function f, : Ry x E+— E.
This evolution is stochastic, driven by independent m-dimensional Brownian motions (W}) through a
diffusion coefficient g, : Ry x E +— R¥™. The neuron i receives inputs from other neurons in the

network, which affect its state through an interaction function b, : R x £ x E'+— E depending on

e The synaptic weight w;; € R between neurons ¢ in population « and j in population « controlling
the topology of the network: these are zero when there is no connection between ¢ and j, positive

when the connection is excitatory and negative when inhibitory.
e the state of both neurons ¢ and j.
These interactions take place after a delay 7;; > 0.

The dynamics of neuron ¢ in population « is given by:

P(N)
axi® = (fult. i)+ 30 3 N by (i3, X0V, XEN ) )t 4 g, XYY AWy, (22.1)
v=1 p(j)=~
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under the assumption that b(0,x,y) = 0 and the fact that the synaptic weight w;; is assumed zero when
no link from j to 7. In these notations, the architecture of the network is completely integrated in the
choice of the synaptic coefficients w;;. In our purpose to analyze networks on random graphs, we will
consider that the synaptic weights w;; and delays 7;; are non-negative random variables, drawn in a
distinct probability space (Q',.%’, P) at the beginning of the evolution and frozen. We generically denote
by E the expectation with respect to the processes (i.e., under the probability P) and by E the expectation
of random variables or processes with respect to the environment (i.e. under P). One realization of these
weights corresponds to one network with prescribed architecture. In realistic settings, both connectivity
weight and delay are related to the distance between the cells, and therefore are generally correlated. A
specific choice relevant to biology is discussed in section 2.4 in which connectivity probability as well
as delays are deterministic functions of the random respective locations of the cells (yielding a specific

strong correlation between the two variables).

While the random variables w;; and 7;; are correlated, an important hypothesis is that for fixed i,
sequences (7;;,j7 = 1---N) and (w;j,j = 1--- N) are considered independent and identically distributed
population-wise, i.e. they have the same distribution for all j belonging to a given populatiorﬂ. For fixed

i€ {l,---,N}, we can therefore denote A;,(;) the distribution of the variables (w;;, 7;).

The piece of cortex considered will be said invariant by translations if the joint distribution of weights
and delays (w;j, ;) for p(j) = v does not depend on the specific neuron ¢ considered but only on the
population « the neuron ¢ belongs t(ﬂ. In that case, we will denote A~ the joint law of weights and
delays. In the general case, we assume that the laws A;, are independently drawn from a distribution
of measures centered at a specific one A,~. For instance, when delays and connectivity depend on the
distance between cells, the distribution A;, depends on the position 7; of neuron i. If cells of population
« are distributed on a space D with density p, and the weights and delays have a density Ay, (s,t), Aay
is the law with density [, Ar(s,t)dp(r).

Let us denote by 7 the maximal possible delay 7;; which we assume ﬁniteH. Equations ([22)) are
stochastic differential equations on the infinite-dimensional space of functions C([—7,0], E) (i.e. on the

variable X; = (X, s € [t — 7,1]), see e.g. [39, 100]).

Finally, we consider that the network has chaotic initial states, in the sense that they have independent
and population-wise identically distributed initial conditions. In detail, we denote C, = C([—,0], ET)
and set ((§(t)) € C; a stochastic process with independent components. Chaotic initial condition on the

network consists in setting independent initial condition for all neurons, with distribution for neurons of

INote that the whole sequence of weights (wij;1 <4,5 < N) as well as the delays (73;;1 < 4,7 < N) might be correlated.
When these are related to the distance 7;; between i and j, correlations may arise from symmetry (r;; = 7;;) or triangular
inequality r;; < 7 + 71;. The independence assumption is nevertheless valid in that setting provided that the locations of

the different cells are independent and identically distributed random variables
2The term invariant by translation is chosen in reference to random variables 7i; and w;; function of the distance r;;

between neuron ¢ and j: this distance is independent of the particular choice of neuron ¢ (and of its location) if the neural

field is invariant by translation in the usual sense
3This is always the case when considering bounded neural fields.
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population « equal to that of (§.

In what follows, we note /\/12(0([77, 0], EN)) the space of square integrable stochastic processes on
[—7,0] with values in EV, M(C) the set of probability distributions on C the set continuous functions

[~7,T] — ET, and M?(C) the space of square-integrable processes.

Main results

2.3

In this section, we state and discuss the main mathematical results on the convergence of the above

described process as the network size goes to infinity. Interestingly, even if the network considered has a
complex random topology in which connectivity map as well as delays are correlated, methods developed
in the case of fully connected architectures [I50} [149] extend to this more complex case. Proofs are

provided for completeness in section

Let us first state the following proposition ensuring well-posedness of the network system:
Proposition 2.3.37. Let Xq € M?(C([—7,0], EN)) an initial condition of the network system. For any
(a,7) € {1,...,P(N)}?, assume that:

. fa and g, are uniformly in time Lipschitz-continuous functions with respect to their second variable.
Hi dg ] ly in time Lipschit ti ti ith respect to thei d variabl
(H2). For almost all w € R, bo~(w,,-) is Lo~y-Lipschitz-continuous with respect of both variables.

H3). There exists functions Kq- : R — RT such that for any (a,v) € {1,---, P(N)}2,
¥

b (w,2,9)[> < Ko (w)  and  E[Kay (w)] <k < oc.

(H4). The drift and diffusion functions satisfy the monotone growth condition: there exists a positive

constant K depending on f and g such that:

1
2 fa(t,2) + S lga(t 2)[ < K (1 + [2f),

Then for almost all realization of the synaptic weights w;; € R and the delays 7;; € [—T,0], we have

existence and uniqueness of solutions to the network equations [2.2.1]).

This property results from the application of standard theory of stochastic delayed differential equa-
tions. We provide a sense of the proof in section 25t the details of the proof of this elementary proposition

will largely simplify the analysis of the limit equations.

When the number of neurons goes to infinity (under assumption |(HO)) then

e for almost any realization of the transmission delays 7;; and synaptic weights w;; in the translation-

invariant case or
e averaged across all realizations of the disorder in the general case,
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the propagation of chaos property holds: if the initial conditions are chaotic, then the states of a finite
number of neurons are independent for all times when N — oo. Their law is given by a nonlinear
McKean-Vlasov equation that depends on the neural population they belong to. Similar results hold
for mesoscopic limits of neural field models, i.e. in situations in which the number of populations P(N)
diverges as N — oco. In this case, the notion of solution is much more complex, as one obtains a process
depending on space but which is not measurable with respect to the spatial variable. These questions,

addressed in [149], will be briefly discussed in our context in appendix 27

In both cases, the proof of the convergence and propagation of chaos will use the powerful coupling

method (see [145]). The proof is in two steps: (i) we prove that the limit equation (see equation (Z.3.2))

below) has an unique solution, and (ii) that the law of th' N converges towards the law of

2.3.1 Randomly connected neural mass models

Let P(N) = P be fixed and independent of N. In this case, we will show that the network equation
converges (in a sense to be defined in each sub case) towards the solution of a well-posed McKean-Vlasov

equation given by:
dX{ = fa(taXta) dt +ga(taXta) AWy
P 0
+ (Z/ / Eg [bary (w, X2, ¥7,) }dAM(s,w)) dt, (2.3.2)
y=17"T R

where Y is a process independent of X that has the same law, Ey the expectation under the law of Y,
and W are independent adapted standard Brownian motions of dimension d x m. Denoting by m] (dz)

the law of X, the equation (Z:3.2) is nothing but

AXE = fo(t, X db + gu(t, XO) - dW?

@;/

OT [ T X2 0) )i (5.0 ), (233)

The hypotheses made in Proposition 2.3.37 also ensure existence and uniqueness of solutions as we
now state in the following;:
Theorem 2.3.38. Under the hypotheses of Proposition [2.3.37 and for any (o € M(C([-7,0], EY)) a
square integrable process, the mean-field equations (Z33)) with initial condition (o have a unique strong

solution on [—1,T| for any time horizon T > 0.

In order to demonstrate the convergence of the network equation and the propagation of chaos when
the number of neurons goes to infinity, we use Dobrushin’s coupling approach [48| 144, 145] 147 in the
same fashion as done in [I50] 1T49] in the context of neurosciences, the only difference being the random

environment nature of the network equation related to the random structure of the synaptic coefficients.

4More precisely, taking a finite set of neurons {i1, ..., i} the law of the process (Xti1 ’N, el Xti1 ’N,t € [—7,T]) converge

in probability towards a vector (Xtil RN X'Zl ,t € [=7,T]), where the processes X! are independent and have the law of

X?(i) given by 232).
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2.3.2 Quenched convergence and propagation of chaos in the translation in-

variant case

The translation invariant case correspond to the situation where the laws A;- for 7 such that p(i) = «

are identical and only depend on a.

Let i € N such that p(i) = a. We define the process X’ solution of ([Z3.2)), driven by the Brownian
motions (W}) that governs X?, and having the same initial condition as neuron i in the network, ¢} €
M2(C):

dX{ = folt,X])dt + ga(t, X]) - AW}

P 0
Jr(Z/ /]REZ [bav(w,Xti,Z;ﬁrs)}d/\av(s,w))dt, t>0 (2.3.4)
y=1""T7

Xi =), tel-,0.

By definition, the processes (Z},..., ZF) are a collection of processes independent of (X});—1,  n and
have the distribution m; ® --- ® m!’, where m$ is the probability distribution of X{* (unique solution of

the equation (23.2)).

Theorem 338 ensures well posedness of these equations, and therefore (X});en constitute a sequence
of independent processes with law X7,
Theorem 2.3.39 (Quenched Convergence). Under assumptions (H1)-(Hj) and chaotic initial conditions
in M2(C). The process (X, —7 <t < T) fori € N fized, solution of the network equations 21,
converges almost surely towards the process (X}, —1 <t < T solution of the mean-field equations [Z3.4).
This implies in particular convergence in law of the process (XZ’N, —7 <t <T) towards (X, —7 <t <T)
solution of the mean-field equations (Z3.2]).

2.3.3 Annealed convergence and propagation of chaos in the general case

We now turn our attention to the case of non-translation invariant networks where the law of delays

and synaptic weights depend on the index of neuron ¢ in population . In this case we will see that the
propagation of chaos property remains valid as well as convergence to the mean-field equations (Z3.2)), no
more for almost all realization of the disorder, but in average across all possible configurations. Denoting
&; the expectation over all possible distributions A;, we have:
Theorem 2.3.40 (Annealed convergence in the general case). We assume that (H1)-(Hj) are valid
and that network initial conditions are chaotic in M?(C), and that the interaction does not depend on
the postsynaptic neuron state (i.e., b(w,z,y) = L(w,y)). Let us fir i € N, then the law of process
(Xti’N, —7 <t <T) solution to the network equations [Z21) averaged over all the possibles realizations
of the disorder, converge almost surely towards the process (X}, —7 <t < T) solution to the mean field
equations [Z32). This implies in particular the convergence in law of (E[X}™N], —7 <t < T) towards
(Xg, —1 <t < T) solution of the mean field equations [23.2).

Extensions to the spatially extended neural field case are discussed in Appendix 2.7

51



Application: dynamics of the firing-rate model with random
2 4 connectivity

In the previous section, we derived limit equations for networks with random connectivities and
synaptic weights. The motivation of these mathematical developments is to understand the role of
specific connectivity and delays patterns arising in plausible neuronal networks. More precisely, it is
known that anatomical properties of neuronal networks affect both connectivities and delays, and we will

specifically consider the two following facts:
e Neurons connect preferentially to those anatomically close.
e Delays are proportional to the distance between cells.

At the level of generality of the previous sections, we obtained very complex equations, from which
it is very hard to uncover the role of random architectures. However, as we already showed in previous
works [152], a particularly suitable framework to solve these questions is provided by the classical firing-
rate model. In that case, we showed in different contexts that the solution to the mean-field equations is

Gaussian, whose mean and standard deviation are solution of simpler dynamical system.

2.4.1 Reduction to distributed delays differential equations

In the firing-rate model, the intrinsic dynamics of each neuron is given by
falt,x) = —x/0, + 1,(1),

where I,(t) is the external input of the system, and the diffusion function g.(t,z) = A, is constant.
The interaction only depends in a nonlinear transform of the membrane potential of the pre-synaptic
neuron multiplied by the synaptic weight: ba(w,z,y) = Joy(w)S(y). We also assume, in order to
satisfy the assumptions of the Theorems and 2340 that the functions J,, € L>®(R) and S €
Whoo(E?). Therefore, when considering the delays and the synaptic weights only depending on p(i), we

have propagation of chaos and almost sure convergence (quenched) towards the mean-field equations:
Vel Xa i
dXe = (f ST () + Z oy (w) By [S(V7} )] dA s (5, w)) dt
R
FAdWE, (2.4.5)

and in the general case, the same result holds in an averaged sense.
Remark 2.4.41. Let us note that if the synaptic weights and the delays are independent, it is very
easy to see that the network converges towards an effective mean-field equation where the disorder in the

connectivity weights disappears and the mean-field equation obtained reduces to
X P
X7 = (= G+ )+ [ B SO ) a4 A
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where p,- is the marginal density of delays of A, and J,, is the averaged synaptic weight. This is
exactly the same equation as would arise from a non-disordered network equation where all connectivity
weights are deterministic: J;; = Ju/N,. Therefore, the architecture plays a role in the dynamics only

when the synaptic weights and the delays are correlated, as is the case of the cortex.

We will therefore focus on more realistic models where delays and connectivity weights are correlated.

It is very easy to see, integrating equation (Z.4.1]), that the solution satisfies the implicit equation:

) i}
, X
Xp = Xge /% / ~(t=5)/00 (7_95 +1a(s)

P t
3 [ [ e By [0 Nt s+ [ et e
y=1

0

which is composed of Gaussian terms and the initial condition X§e~*/? vanishing at an exponential
rate. Therefore, when the initial conditions are Gaussian processesE, the solution is also Gaussian with
mean u, and variance v,. Taking expectation and covariance we get that the mean and the variance of

the solution satisfy the following well-posed system of delayed differential equations:

’da = _Uoz/ea + Z/ /RJa'y(w) EY [S(Y;Jrs)] dAOW(S ’LU)

Vo = — 200 /00 + )\i.

(2.4.6)

In the firing-rate case, we hence have an important reduction of complexity. This simpler form
allows us to use bifurcation theory in order to understand the role of the parameters on the qualitative
properties of the solutions. This theory has been widely used in neuroscience in order to uncover, in single
cells models, the emergence of periodic spiking or bursting [54], and for heuristic macroscopic models,
formation of patterns of activity [22] or visual hallucinations [53]. Here, the theory of delayed differential
equations (see e.g. [53]) allows us to uncover the role of the randomness of the architecture and delays
in shaping the collective behavior of the network. In order to analyze this dependence, we consider the

system in the absence of external input I = 0 and

S(x) = \/ﬁ/ e /24

which has the property that a simple change of variables yields (see [152, Appendix A]):

=507 = 1507 =5 )

In that simplified case, a stationary solution of the system is given by (u’,v%) = (0,A20,/2). The

(1’ «

solution to the variance equation is
_ 1o —2t/0uy _ L _ot/6,
Uﬂt(t)*Q(/\a90¢+e )*’Ua+2€ 9

then the stability of the fixed point only depends on the delayed linear equation to the mean, which is:

oy (0) ettt + ) dA ey (5, ).
2r(1+w )

a(t) = —

5If the initial condition is not Gaussian, the solution to the mean-field equation will nevertheless be attracted exponen-

tially fast towards the Gaussian solution described.
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If only one population is considered, then dropping the index for the population lead us to:

t+ s)dA(s,w). (2.4.7)

N1 (O N 1 y
ity =2 [ [t s

The stability of the fixed point only depends on the dispersion relationship:

——l 71 ’ w) s S, w
&= 9—1— \/m/_T/RJ( ) e~ dAoqy (s, w), (2.4.8)

which is nothing more that looking for solutions of the form u = exp(&t) in (2.4.7]).

The solutions of this equations are the characteristic exponents of the system, and relate directly
the stability of the fixed point considered. If all characteristic exponents have negative real part, the
equilibrium is asymptotically exponentially stable, but if there exists a characteristic exponent with
strictly positive real part, the equilibrium is unstable. Turing-Hopf bifurcations occur when the system
has a pair of complex conjugate characteristic exponents with non-zero imaginary part crossing the

imaginary axis.

2.4.2 Small-world type model and correlated delays

As we stated before one interesting situation arising in neuroscience is the case where synaptic weights
and the delays are function of the distance between neurons. Without loss of generality, we assume the
signal transmission speed is unitary, then the delay 7;; between the neuron ¢ at location r; and a neuron
j at location r; is simply modeled by

Tij = |ri — 15| + Ts,
where 7, is the minimum value corresponding to the transmission of the information at the synapse. We

further assume that the synaptic links are drawn according to a Bernoulli random variable:

1 with probability b(|r; — r;|) := eIl
wij =

0 with probability 1 — b(|r; — 7;|),

with 8 > 0. The synaptic weights are given by J(w;;) with
J ifz=1
J(z) = .

0 ifxz=0
In this model, the total connectivity level of the system decreases when [ is increased. When neurons

are uniformly distributed in the interval [0, a], the averaged law density can be easily computed and is

given by:
2 2r
= (2-%) ar
and thanks to conditional expectation we find that (ZZ8]) is nothing but
1 1
& = ——+ 7E[E[J(w)egu‘r]]

0 2m(1 + v*)
RO

0 27(1 + v*)

1

0

L, Jetm /a o (BHE)r (2 _ 2_;’> dr.
2 (1 +v*) Jo a a

o4

E[E[J(w)}r} efg(TSJrT)]



Turing bifurcations arise for parameters such that there exists a purely imaginary characteristic root

(solution of the above equation) £ = iw. These occur when one can find w > 0 such that:

. 1 n 2J « 1 (1 1 + ea(ﬁJriw)) —iwT (2.4.9)
W = —= - e s, 4.
0 on(1+v*)  a(B+iw) a(B+iw)  a(B+iw)

Since ([2.49) depend on many parameters, in order to understand the solutions we study the system

decoupling the size of the neural field with respect to the connectivity parameter § and the size a.

The effect of the extension of the neural field.

We first fix 8 > 0 and make the change of variables 2 = aw, B = af. Defining

2J 1 1 e~ (B+iQ)
V2r(1+v*) B+iQ B+ i) B +1iQ

then (2:49) is reduced to solve the system

a=0%(1Z2(B,Q)”2 - %),

7o = (Arg(Z(Q,B)) — Arg (1 + %) + 2km) &, (2.4.10)

B = Ba
which can be seen as a intersection of two surfaces in the space (a, B, 75):

RxR, — R? Ry xR — R
Sl : S2 : )
(Q,B) — (a(Q,B),B,15(2,B)) (a,75) +— (a,Ba,Ts)
where a(Q, B) and 75(2, B) are the solutions of (Z410) for B given. We obtain a sequence of Turing-Hopf

bifurcations indexed by k, and the first bifurcation is responsible for oscillations appearing in the system.

In figure 2] we represent the curve of Hopf bifurcation given by (24I0) for a fixed value of the
parameter 5. This bifurcation diagram separates the parameter space (a,7s) into a region of oscillatory
regime and a region of stationary behavior. The typical shape of the Hopf bifurcation curve is a parabola,
displaying a unique minimum for a value that we denote by (a™,7™). We denote 7° the value of the
Hopf bifurcation curve for a = 0 (i.e. fully connected network with deterministic delays 75). For a = 0,

the system depends on the delays in the following fashion: for any 7, < 70, the system converges towards

stationary behaviours, and for 75 > 79, the system displays periodic behaviors.

For 7, > 7¥ fixed, long-range connectivities (corresponding to small values of 3) produce synchronized
periodic behaviors that disappear when the network becomes less connected, until a specific value of
corresponding to the unique intersection of the Hopf curve with the line of constant 7. For 70 < 7, < 7,
the long-range (small 5 or small a) and short-range (large § or large a) connectivity models correspond
to stationary behaviors, and for values of the network length a (or range /) in a specific interval, the
system will display synchronized behaviors. Eventually, for 7, < 71", the system only displays stationary

solutions whatever the length of the network a or the range 5.
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Figure 2.1: Neurons uniformly distributed in [0,a]. Fixed parameters § = 3, J = =5, A = 1. (a)

Bifurcation diagram for § = 0.1 in the space (a,7): gray zone correspond to oscillatory solutions. For
Ts = 1.3: (b-d) Increasing the parameter a (the size of the neural field) induces transition from stationary

to periodic and back to stationary. All simulation were made for an Euler explicit method with N = 3000.



The effect of the connectivity factor

Let us now fix the size of the interval a > 0. We investigate the effects of 8 and 74 on the solution.

Equation (ZZ3) can be written in the form:

w2:7L+ Zw,ﬂ 27
g + 12w, B (2.4.11)

7o = (Arg(Z(w, B)) — Arg (gs + iw) + 2km)

with

2J 1 1 e—a(B+iw))
Z(w, 8) = ( )

. 1- — + .
2m(1 4 v*) a(f + iw) a(B+iw)  a(B+iw)
We solve this equation by numerically computing the manifold:

1

Sp = {(w,ﬂ) € R xRy, such that w? + = —

1Z(w, ) = 0}
from which one can readily compute the delay corresponding to the Hopf bifurcation.

Figure [2.2(a)| show the solution to the system (Z4.I1]) for a fixed value of the spatial extension of
the neural field. The curve is relatively different: it now appears to be a monotone non-decreasing map
separating oscillatory and stationary behaviors. Qualitatively, the global picture remains unchanged:

oscillations vanish as 3 is increased, i.e. as the network is less connected.

Discussion

We therefore observe that the topology of the network strongly impacts the collective behavior of the
network. For a fixed value of the connectivity parameter, we have seen that there exists an optimal neural
field size for synchronization. At this size, the constant delays necessary to induce oscillations is minimal.
In contrast, at fixed values of a, we observe that the optimal connectivity level ensuring minimal constant
delay to induce oscillations is zero: fully connected networks synchronize more easily. In the cortex, for
energetic reasons, full connectivity is not favored, and therefore this indicates optimal cluster sizes for

synchronization.

Proofs

2.9

We start by showing the well-posedness of the network system stated in proposition 2.3.37

Proposition [2.3.37. The proof splits into two main steps: we show a priori estimates and define a con-

traction map that implies existence and unicity for a stopped version of the problem.

A priori estimates Let us start by showing that all possible solutions of the system have bounded

second moment. It is important to remark that the number of particles of the system is fixed. Let XV
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(a) Hopf bifurcation diagram in the plane (8, 75) for a = 3.
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stationary state. All simulation were made for an Euler explicit method with N = 2000.
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be a solution of [Z2ZI)) and 7, the first time the process | X;}¥| exceeds the quantity n. We look for an
upper-bound of the form:

E[IXN,, 2] <E[[Xo(0)P] + ¢ / E[1+ X2, 2] ds. (25.12)

where the positive constant C' does not depend on X; = (X,,s € [t — 7,1]) nor on n.

It is clear that Ito’s formula is valid for |XMT |2 and that we can study each i € {1,..., N} separately.
For all t > 0O:

tATH ) ) )
XGNP = X242 / (XN go (s, XN W
0
tATh ) ) 1 )
w2 [ {(XQ’N)Tfa(s,Xi’N) + gl (s, X5
0

(XN Z Z ey (w1, XN, ng\i”)ﬂds,

Y=1p(j)= v

The stochastic integral has null expectation and a direct application of (H4) allow us to find upper-bounds

for the two first lines of the previous equality. The last term is controlled using (H3):

/t/\ (XENYT Z Z bay (wi, XN, XgL]\;ij)]dS
0

Y=1p(j)= 7
tATH I 1 N
7 i,N 2
S/O z_: Z E(ch(wij)ﬂXs |)d5
v=1p()=1

tATh B )
< P/ (K + |X§’N|2) ds,
0
where we have introduced K := max(q, ) max(; j) Ka~(w;;). Summing over i yields directly to (Z5.12).

Applying Gronwall§ lemma we find a uniform upper bound for the second moment of X;,,, for any
t € [-7,T A 1,]. Finally letting n — oo provides that for any realization of the synaptic weights and
delays the solutions of (Z221)) have bounded second moment.

Ezistence. Let X° € M?(C;) such that X°|_, g £ Xpa given stochastic process. We introduce the
map P given by

M(C) — M(C)
X — (Y, ={Y,"N,i=1,...,N}), with
t
YN = N0+ [ (fals )
O
+Z Z bary (wij, X2V, XN ™ ))ds

ol tlp(J) v Ny

+/ Ga(s, XENY aWwi; t>0
0

Y, = Xit), tel-r,0]

and the sequence of processes (X*);>0 on M(C) given by the induction X**! = ®(X*). Existence and

uniqueness are classically shown through a fixed point argument on the map ®.
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For compactness of notations, we denote XZ * ¢ E the i component of the vector XF. We decompose

the difference into elementary terms:

t
S /(m@X“v ol X)) s

g3
g3

tP N) 1
i ik

{bQW(wij’Xsyk’Xg—nj)

y=1 p(J) v Ny

b (w35, XE1 XTE )] ds

S—Tij

tP N) 1
_|:b04’7(wi_];Xlk 1 Xja )

S—Tij

=1 p(j)=~

—bav(wi],Xlk 1 X]k 1)} ds

t
+ / (90 (5, X) — ga(s, XI+=1)) - aw’
0
= A4+ B!+ Cl+ D,

where we simply identify each of the four terms A; = (A%, i = 1,...,N), By, C;, and D; with their

corresponding expression. Using Holder’s inequality
X7 = XE[P < A(AP + | Bil? + |G + | Do),

and treat each term separately. The first term A; and the last term D, are easily controlled using standard
techniques (Cauchy-Schwarz inequality and Burkholder-Davis-Gundy theorem) and (H1). In B; follows

2

N P t 1
E E E _ i, , ik ik

/ N. [bav(wi”X * Xg Tu) _bav(wijaXsk 1’Xg—‘l'ij)i| ds
‘ ~ Jo Ny

2
Doy (Wi, X2F, XTE Y by (wij, XPFTE XTE )1 ds

S$—Tij S—Tij

t
< TP2L2N/ | XE — XF12ds,
0

where L := max(, ) La~. and similarly for C.

o,y

The conclusion is easy, at this point we have:

t
E[ sup |XE—XF?] < c/ E[ sup |XF—X[F7'[]ds, (2.5.13)
0

—T<s<t —7<u<s

where C' > 0 depends on T, K, L and P. Calling

MEEE] s [xE - XEP,
—7<s<t

a priori bounds ensures that MY < oo and the recursive inequality holds

t S1 Sk—1
M} < ck// / MY ds; .. dsk<0k MT,
0 0

From the last inequality we get that

o0
Z [ sup ’X"Jrl Xg’2}<oo,
n=1

—7<s<t
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which implies in particularly the almost sure convergence of

X)) (X - XF) = X
k=0

on [—7,T]. The limit defined X; is trivially a fixed point of ® and by consequence solution to networks

equations (Z2.1]).

Uniqueness. Starting with two solutions of the network equations (ZZ1]) with exactly the same initial
condition one can remake the argument used to find 25TI3) and then the uniqueness follows directly

from Gronwall’s lemma. O

O
The proof well-posedness of mean field equation (Z3.3) (Theorem 2.3.3]) is very similar:

Theorem [5.1.78 It might seem that averaging over the delays and weights could add some new technical

difficulties to the upper-bounds for the second moment but thanks to (H3) similar estimates hold.

To illustrate how to deal with our random network framework, let X be a solution of the mean-field
equations and once again 7, the first time that the process |X;| exceeds the quantity n. Applying 1td’s

formula to | X;ar, |2 we now find
2 2 T T 1 2
Xeo P = I [ [T (s, X2+ Flan (s, X2)
P 0
TS [ [ By T (0, X220y 1) ds
y=17"T R
tATh
+2/ (X go(s, X&) dW?,
0
the only interesting term is the one in the second line, using triangular inequality and (H3) we get
P 0
(Xt Z/ / {Ey [bary(w, X, Y] dAM(u,w)} ds
y=17"T R

L]
<P+ Y [ [ Ranlw)ihanu,w) < OO+ 1XEP),
y=17"T R

Equipped with this estimate, the proof is identical to that of the related property in proposition 2337

i.e., define a contraction mapping which gives the existence and uniqueness of solutions.

The two following proofs deal with the propagation of chaos property, we first demonstrate Theo-
rem [2.3.39 which states the convergence properties in a quenched sense in the translation invariant case,
and we finally explain how to adapt this proof to the general case Theorem 2340 i.e., how to deal with

the additional difficulty of averaging over all possibles positions of neurons in each population.

61



Theorem [2.3.39 The idea extends standard arguments for propagation of chaos and mean-field limits
by considering random correlated coupling and delays. The argument remains to control the difference

between the two processes as N goes to infinity. Decomposing the difference in 5 simpler terms we find:
t
XN X = / (Fals, X0N) = fu(s, X)) ds
0

t
+/ (ga(S, X;7N> — als, X;)) ’ dW;
0

ds
E E a l;XlNXJ’ _ba iaXZ XL
+ / Y w] s 'r”) ’Y(wj s— 7'1])} N'y
p()=>
) ) ds
ban (Wi, X2 XN ) — oy (wig, X1, X —
+Z/ (; ol ’LU], ER sf'r”> 'y(w]a s— q—”>] N’y
ply)="7

+Z/ Z bar( leaX Xg T”)

/_ /EZ oy (W, X! ZY ) dAay (u, w))ds
= A(N)+ Bi(N)+ Ci(N) + Dy(N) + E(N).

We are interested in the behavior of E[E(sup_, < ,«p | XIN — XI|*)] as N — oo. Under the same ideas
used in Proposition [£.3.84] and in Theorem 2:3.38 we find:

t
B swp [A(VF) < K°T [ (B[ swp [X0Y - X, ds
0

0<s<t —7<u<s

t
E[ sup |BS(N)|2] < 4K’2/ E[ sup |XfL’N—X7i|2]ds,
0

0<s<t —7<u<s

t
E[ sup |Cs(N)] < TL2P2/ E[ sup |X:2N —X!ds
0<s<t 0 —7<u<s
t
E[ sup |D,(N)?] < TL*P? max E[ sup |XPN — XF[2ds,
0<s<t 0 k=1,..., N —717<u<s
where L is the maximum value of constants L, (finite number of populations) and we precise that the

4 in the B;(N) upper-bound is found using the Burkholder-David-Gundy Inequality.

For the last term E;(N) we start by applying the Cauchy-Schwartz and the triangular inequality:

Sl sup [E.(V)F] <WZ/ > (ol XL )

0<s<t
== 7 p()=~

7/77'/]REZ[ba’Y w, XZ Z;Y.;_u)]d/\a,y(u,w))rﬂ ds,

moreover,

efef e 3 (ot 52

7 p()=y

[ [ Bt 52, 21 N ) ]

T
- N2 Z > 5[EK oy (Wi, X5 X1 ) = B () 0n [Py (@ay, X2 2] TM)])
Ny p(i)=~ p()=>

(bw(wil,X X)) =Bz .0).. [bary (Bay, X, Z] TM)])H
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In the above expression, (7, W)qa~ denotes a random variable with law A~ independent of the sequence of
delays, weights and Brownian motions. We remark that fET Ja Ez[bary (w, XI, Z] | )]dA oy (u, w) is exactly

the expectation of by (w;j, X, )_(5771_],) under the law of X7 and of the pair delays-weights.

Therefore in the case j # [, the term in the summation vanishes, and in the opposite case j = [ we

use the triangular inequality to see that

i v ~ i 2
S[E“ba'v(wiijstgfnj) - EZ,(?,TII)CW [ba’v(wa’Yva’ Z;Y—i—(w)” H
i v 2 ~ i 2
< 26|:E|:}ba’7(wij’Xs’Xg—Tij)| + }EZ,(%,TII)QW [ba’Y(wa’Yastz’Y 7 )]| :|:|

S—Tary

< 2€[E[R (wi;) + k]] < 4F.

This implies that number of non-null terms in the sum is proportional to N, and all of them are

bounded by the same quantity. Thus

- _
~ 1 CkP

SE E(N)P]] <Ck Y — < ——rt.

[ [OSS‘L;I;J (V)] ” = ’;N»Y ~ min, (N,)

Assembling all the estimates, using that on [—7,0] both th' N and X} are equal and denoting by C

any generic constant that does not depend on N we find
E[E XoN - X1
e L s GT =X

t
- C
SC/O k:n?%)fNE[IE[ sup |X§’N—X1’j|2ﬂds+ -

—<uss min, (N,)’

by Gronwall’s inequality:

i, N oil2 CeT
e EEL sw 167 =X < oy

which tends to zeros as N goes to infinity by (HO).

As a side result, the almost sure convergence towards the coupled process implies the convergence in

law of (X", —7 <t < T) towards (X, —7 <t < T). O

From the last inequality we have easily the propagation of chaos property. Fixing a finite set of

neurons (i1,...,4) € N, then if f, and g, are globally Lipschitz continuous, we have:

i1,N i, N i i Ny |2 10T
max EE[ sup [(X2N,.. XN — (X2, XPYP]] € ——,
i, i €{1, N —r<s<t min., (N,)

hence

(X;l’N,...,Xél’N,—Tgng) £ (X;'l,...,X;'lvN,—Tgng),

and truncation argument allows to conclude on the convergence in the locally Lipschitz case. This implies
that the vector (XN ... XN 7+ < s <T) converges in law towards m™ @...@m", readily implying

propagation of chaos.
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Theorem [2.5.40 The proof uses essentially the same arguments as that of theorem Here, we
control the difference between &[X;"] and X/ in the quadratic norm || Z||? := E[sup_, ;<1 |Z,|?]. The
assumption on b allow us to separate the distance into only 4 terms similarly to the quenched case. Most
terms are handled in a similar fashion, the only difference being the presence of a additional expectation
&;. The main difference is to deal with the term corresponding to Fy(N), which now reads:

E[E[ sup |E5(N)'|2H =

0<s<t

gTPé/OtS{EHN% 7 Eillan (wig, X1, )

p(3)="

]

0
- / / E 2 [lar (w, 22, )| dAr (t, ) dr
—7 JR

Again,
e (B [etar iy K2 )] = [ [ Baltan i 22,0

we develop in the same way that Theorem[2.3.39] The key point is that it suffices to find an upper-bound

uniformly in the disorder of the system which is trivially found using (H3), i.e.,
. 9 _
E[E[|Ellar (wis, X2_r,)) = B9, llar (War, 221, 1] ] < 2K,

and we conclude using (HO). O O

Discussion

2.6

In this paper, motivated by the structure of interconnection matrix and interactions of neuronal

networks of the brain, we analyzed the mean-field limits and dynamics of networks on some random
graphs with delays correlated to the synaptic weights. Extending coupling methods to these models,
we showed quenched and averaged propagation of chaos, and convergence towards a complex mean-field
equation involving distributed delays and averaging with respect to the law of the connectivity. This
limit equation is relatively complex in general models, however, they massively simplify for the classical
firing-rate model, in which case solutions are exactly reduced to a system of distributed delays integro-
differential equations, from which one can infer, using bifurcation theory, the role of random connectivities
and delays. This technique led us to demonstrate that typical size of the neuronal area, as well as typical
length scale of connectivity, induced or broke synchronization of the neurons. In detail, we showed that
depending on the connectivity of the network and the averaged delays the network can either present
stationary or a synchronized periodic behavior. In this sense, using a small-world type of model for
the value of the weights, we were able to prove that the architecture of the system also plays a role
in the dynamics. We also showed that the macroscopic behavior depends on the size of the neural field
considered and, more important, on the connectivity of the system measured as the amount of connections

over the total possible ones.
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2.6.1 Relationship with pathological rhythmic brain activity

Synchronized states are ubiquitous and serve essential function in brain such as memory or atten-
tion [3T]. Impairments of synchronization levels often relate to severe pathological effects such as epilepsy
(too much synchronization) or Parkinson’s disease (too little synchronization) [I34]. Troubles in oscilla-
tory patterns have also been related to connectivity levels in epilepsy. In detail, the emergence of seizures
and abnormal synchronization was hypothesized to be related to an increased functional connectivity, or
more recently to the appearance of an increased number of synaptic buttons between cells. The former
phenomenon has been reported in various epileptic situations (see e.g. [16]), and the latter was mainly
evidenced in hippocampal epilepsy, and is generally referred to as neosynaptogenesis, or sprouting, see e.g.
[8, 115, 117]. Our models provides an elementary account for the fact that indeed, increased connectivity
levels (corresponding to small values of 3) tend to favor synchronization for most values of 75. The model
even makes a prediction about some possible parameter regions in which this synchronization may only
arise in a particular intermediate interval of connectivity levels 8. Disorder also seems to intervene in the
emergence of abnormally synchronized oscillations, as evidenced for instance by Aradi and Soltesz [6] who
showed that even if average levels of connectivity in rats subjects to febrile epileptic seizures were similar
to those of a control population, variance in the connectivities were increased. Our models incorporate
the law of the synaptic weights, and therefore all for testing this hypothesis, as well as a number of

variations around these models, in a rigorous manner.

2.6.2 Cluster size and synchronization in primary visual area

The structure of the primary visual areas are very diverse across species. These areas are composed
of cells sensitive to the orientation of visual stimuli. In primates, neurons gather into columns as a
function of the orientation they are selective to, and these columns organize spatially creating continuous
patterns of a specific anatomical size (see e.g. [20]). In contrast, rodents present no specific organization
of neurons selective to the same orientation (salt-and-pepper organization, see [I18]). The reason why
these architectures are very different across mammals is still poorly understood, and one of the possibles
explanations proposed is related to the size of V1: the model tends to show that it is harder to ensure
collective synchronization at the level of large cortical areas than locally, phenomenon probably due to
the fact that naturally, connectivities are local. This is precisely one of the results of our analysis. In
our model, the parameter a characterizes the size of one cortical column, and the results of the analysis
of the model show that increasing the size of a column a induces transitions from synchronized regimes

to stationary regimes, reducing the collective response of neurons.

2.6.3 Macroscopic vs Mesoscopic models

The question of which is the proper scale adapted to describe a phenomenon is central in computational

neuroscience. Of course, it is tempting to propose large-scale macroscopic models made of homogeneous
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neuronal populations, as neuronal networks tend to present a columnar organization made of a large
number of strongly connected neurons. Most models use implicitly this kind of structure through neural
mass models [I61] [79]. Another common approximation is the neural field model (see [22] for a recent
review) that describes the cortical activity through integro-differential delayed equations, which could be

related to a particular limit of neuronal networks with local homogeneity properties as shown in [T49].

The model analyzed sits at an intermediate scale at which homogeneity of connectivity is only true
(i) locally an (ii) in a statistical sense. Though these local variations, the model studied in first part
of section 23] termed macroscopic, describes the neural network at a macroscopic scale with a single
equation describing the averaged or quenched behavior of one cell in the network. Appendix 2.7 shows
that the result persists when considering asymptotically a continuum of neural populations, yielding the
mesoscopic model. Let us now compare our models to usual neural mass (NM) or neural fields (NF).

These latter models are given by the equations (in which ® is a sigmoid transform):
u P
ia(t) = = 520 + D Tas®(ua(t — 7))
@ B—1

for finite-populations networks (model NM), and in spatial continuous settings (NF) with a single layer:

Opu(r,t) = _u(;, t + /F J(r, )@ (u(r' t —7(r,7"))) dr’.

These two equations are very close from the mean equations we obtained in our mean-field limit. Disre-
garding stochastic inputs, the macroscopic (mesoscopic) model is an homogenized version of an heteroge-
neous neural mass (resp, neural field) model. Disregarding the effect of stochastic noise, our macroscopic
model therefore tends to correspond to spatially homogeneous solutions of the neural field equations for
translation invariant neural fields. Indeed, assuming r € S, the 1-dimensional torus of length a, i.e. the
periodic interval [0,a], J(r,7") = J(r — ') and 7(r,7’) = 75 + |r — 7’|, spatially homogeneous solutions
are functions of time only, satisfying the equations:

. a(t) . _

i) = -5+ [ Ot~ - )¢

0

(which does not depend on 7). Our model yields an equation on the mean of the process that corresponds

to:

ji(0) = =20 [ T8t =7~ ol =7~ O .
0

Therefore, with an appropriate choice of parameters and function, the mean-field macroscopic model
represents spatially homogeneous solutions of the Wilson-Cowan neural field equations. The present
approach provides a microscopic interpretation of these equations, and the model provides therefore a
suitable framework to investigate random individual phenomena arising in large neuronal areas, observed
at scales that do not resolve fine structure of the brain, such as the electro-encephalogram method used

in epilepsy monitoring.
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2.6.4 Perspectives

The course of our developments lead us to cast aside the assumption of full connectivity or exchange-
ability between neurons. Incidentally, this work therefore shows that the notion of exchangeability, widely
use in large stochastic particle systems, can be significantly weakened, in favor of statistical equivalent,
and more structured global exchangeability properties such as the translation invariance. This opens
the way to develop a these ideas towards invariant architectures under the action of specific groups of
transformation. This constitute an active research that we are currently developing. This method also
has a number of possible implications in neuroscience and in complex systems more generally, and may
help understanding the dynamics of large neural networks. Enriching this model considering different
populations in the applications section is a straightforward extension of the manuscript, and analyzing
those results would allow going even deeper in the analysis of neuronal networks and macroscopic syn-
chronization of them as an effect of random pairs delays and synaptic weights. Considering different kind
of architectures is also a possible path to follow and could bring new relationships with the specific corti-
cal functions. A deep question is whether one can obtain information on the microscopic configurations
related to the macroscopic regimes observed. This motivates to develop the analysis of the presence of
structured activity (localized bumps, traveling waves, traveling pulses) and their probability of appear-
ance as a function of disorder, noise and the parameters of the system. This is an exciting question
well worth investigating. One limitation of the qualitative analysis provided here is that the moment
reduction is rigorously exact only in very specific models where solutions are Gaussian. Such models do
not reproduce the excitability properties of the cells. Extending this analysis to excitable systems, i.e.
analyzing equation ([232]) with nonlinear dynamics and nonlinear interactions, is a deep and challenging

mathematical question in the domain of stochastic processes and functional analysis.

Appendix A: Randomly connected neural fields

2.7

random correlated connectivity weights and delays. In this case, following [149], we consider that the

We now extend the above results to the mesoscopic case of spatially-extended neural fields with

number of populations in a network of size N is P(N), and this quantity diverges when N tends to
infinity covering, in the limit N — oo, a piece of cortical tissue I' which compact set of R (generally
0 = 1,2). In this interpretation, a population index represents the location r, € I' of a microcolumn on
the neural field, which are assumed to be independent random variables with distribution A on I'. For
the sake of simplicity and consistency with other works about neural fields, we include the dependence

on the neural populations in the drift and diffusion functions. We therefore introduce three maps:

e the measurable functions f:I'XR x E+— Fand g: ' xR x E— E™

e themap b:I' X I' x R x F x E — FE which is assumed measurable,
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and rewrite the network equations as:
dXzN f(ra; ,XZN)

P(N)
Z Z b(F e, 7y w3, XpN th;]\;j)dt + g(ra, t, XY AW, (2.7.14)

=1 p(j)=~ Ny

These equations are clearly well-defined as proved in proposition Z.3.37 As described in the macroscopic
framework 2] the two sequences of random variables (w;;) and (7;;) for fixed ¢ € N are independent,
and for fixed (i,7), 7; and w;; are correlated. Their law depend on the locations r, and 7, of the
microcolumns neurons 4 and j belong to. We denote A, . this law. We assume that this law is
measurable with respect to the Borel algebra of T', i.e. for any A € B(R x Ry) the Borel algebra of
R x Ry, the map (r,7") — A, (A4) is measurable with respect to B(I' x I'). We assume that assumptions
(H1)-(H4) are valid uniformly in the space variables, and consider the neural field limit given by the

condition:

(2.7.15)

Elaborating on the proofs provided (i) in the finite-population case treated in the present manuscript and
(ii) in the neural field limit for non random synaptic weights or delays, we will show that the network

equations converge towards a spatially-extended McKean-Vlasov equation:

dXi(r) = f(r,t, Xe(r)) dt + g(r, ¢, ) - dWy(r)

///_ Ez[b(r,r', 4, Xe(r), Zigws(r")]dAy o (4, 8)dN(r)dE.  (2.7.16)

In these equations, the process (W;(r)) is a chaotic Brownian motion (as defined in [I49]), i.e. a stochastic
process indexed by space r € ', such that for any r € T', the process W;(r) is a standard m-dimensional
Brownian motion and for any r # r’ € I'?, Wy(r) and W;(r’) are independent. These processes are
singular functions of space, and in particular not measurable with respect to the Borel algebra of T,
B(T'). Therefore, the solutions are themselves not measurable, which raise questions on the definition of
the mean-field equation (ZZ.I0) in particular for the definition of the integral on space of the mean-field
term. However, it was shown in [149], making sense of this equation amounts showing that the law of
the solution is B(T')-measurable. Once this is proved, the integral is well defined. In the spatial case,
we make the following assumptions, that are directly corresponding to the assumptions (H1)-(H4) of the

finite-population case:
(H1’) f and g are uniformly Lipschitz-continuous functions with respect to their last variable.

(H2") For almost all w € R and any (r,7’) € I'2, b(r,r’,w, -, ) is L-Lipschitz-continuous, i.e. for any (z,y)

and (z/,y') in E x E, we have:

|b(7", 7"/, w, T, y) - b(?", 7"/, w, $/7y/)| < L(|$ - $/| + |y - yll)

(H3’) There exists a function K : R+ RT such that for any (r,7") € I'2,

|b(r, v’ w, z,9)|> < K(w) and En, ., [K(w)] <k < o0.

68



(H4") The drift and diffusion functions satisfy the uniform (in r) monotone growth condition:

1
o t,2) + gt )P < K1+ faf?)

The initial conditions we consider for the mean-field equations are processes ((;(r),t € [—7,0]) €
Xy the space of spatially chaotic square integrable process with measurable law, processes such

that the regularity conditions are satisfied:
e for any r € ', (;(r) is square integrable in C,
e for any r # 1/, the processes ((r) and ((r’) are independent

e for fixed t € [—7,0], the law of {;(r) is measurable with respect to B(T'), i.e. for any A € B(E),
pe, (1) = P(¢(r) € A) is a measurable function of (T, B(T")) in [0, 1].

We will denote X the set of processes (¢;(r),t € [—7,T]) satisfying the above regularity condi-
tions on [—7, 7.
Proposition 2.7.42. Under assumptions (H1’)-(H4’), for any initial condition { € X, there exists a
unique, well-defined strong solution to the mean-field equations (Z2LI0]).

The proof classically starts by showing square integrability of possible solutions, then considers equa-
tion (27.I0) as a fixed point equation X; = ®(X;), and shows a convergence property of iterates of the
map ® starting from an arbitrary chaotic process X (r) € Xr. It is easy to see that the function ® maps
Xr in itself. The sequence of processes X* = ®*(X0) is therefore well-defined. Estimates similar to
those proved in proposition [£.3.84] and theorem E.I.78 allow concluding on the existence and uniqueness
of solutions. The proof being classical, it is left to the interested reader extending the argument of [149]

Theorem 2] to our random environment setting.

The convergence result of the network equations towards the mean-field equations can be stated as
follows:
Theorem 2.7.43. Let ( € Xy a chaotic process. Consider the process (Xf’N,t € [-7,T)) solution of the
network equations (ZZZI4) with independent initial conditions identically distributed for meurons in the
same population located at r € T with law equal to (§(r),t € [—7,0]). Under assumptions (H1’)-(H4’)
and the neural field limit assumption ZZIH), the process (XNt € [—7,T]) converges in law towards

(Xt(r),t € [=7,T)) solution of the mean-field equations with initial conditions C.

The proof of this result proceeds as that of [T49, Theorem 3] including the refinements brought in the

proof of theorem [2.3.38 to take into account random connectivities and delays.
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CHAPTER 3

On a kinetic FitzHugh-Nagumo
equation: exponential nonlinear

convergerce

In this chapter we investigate existence and uniqueness of solutions of a McKean-Vlasov evolution
PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is
hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution
equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary
solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show
exponential nonlinear stability in the small connectivity regime. As coupling increases, highly non-
trivial phenomena may emerge as nonlinear effects of the McKean-Vlasov equation. In a final section,
we numerically explore the dynamics of the Fitzhugh-Nagumo kinetic equation using a Monte-Carlo
algorithm. We observe that complex phenomena occur as the coupling is varied: the stability of stationary
solutions may change as a function of connectivity levels, and attractive periodic solution in time may

emerge.

This paper is included in [I12] written in collaboration with S. Mischler and J. Touboul (submitted).
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Introduction

This paper undertakes the analysis of the existence and uniqueness of solutions for a mean-field
equation arising in the modeling of the macroscopic activity of the brain. This equation describes the
large-scale dynamics of a model of the central nervous system, taking into account the fact that it is
composed of a very large number of interconnected cells that manifest highly nonlinear dynamics and
are subject to noise. Non-linearities in the intrinsic dynamics of individual cells are an essential element
of the neural code. Indeed, nerve cells constantly regulate their electrical potential depending on the
input they receive. This regulation results from intense ionic exchanges through the cellular membranes.
The modeling of these dynamics led to the development of the celebrated Hodgkin-Huxley model [75],
a very precise description of ion exchanges through the membrane and their effects on the cell voltage.
A simplification of this model conserving the most prominent aspects of the Hodgkin-Huxley model, the
Fitzhugh-Nagumo (FhN) model [59] [116], has gained the status of canonical model of excitable cells in
neuroscience. This model constitutes a very good compromise between versatility and accuracy on the one
hand, and relative mathematical simplicity on the other hand. It describes the evolution of the membrane
potential v of the cell coupled to an auxiliary variable x, called the adaptation variable. Different neurons
interact through synapses that are either chemical or electrical. In the case of electrical synapses for
instance, the evolution of the pair voltage-adaptation for a set of n neurons {(v},zi), 1 < i < n} satisfy
the equations:

dv} = (vé (vf = A) (1 —f) —xp 4+ 30 Jij(vf — vl) + It) dt + o dW} (3.11)

dx}; = (—axi + bv,f) dt,
where the cubic nonlinearity accounts for the cell excitability, I; is the input level, a and b are positive
constants representing timescale and coupling between the two variables, and the processes {(W}):>0, 1 <
i < n} are independent Brownian motions accounting for the intrinsic noise at the level of each cell. In
the sequel, for sake of simplicity, we assume that ¢2 = 2 and I; = Iy € R constant, but it is likely
that some of our analysis can be extend to I; € L*°(R,) converging rapidly when ¢ goes to infinity.
The coefficients J;; represent the effect of the interconnection of cell j onto cell ¢. These coefficients are
positive, and incorporate the information of the connectivity map. Under relatively weak assumptions on
the distribution of these coefficients (see Appendix B.7)), it is relatively classical to show that the system
enjoys propagation of chaos property and finite sets of neurons converge in law towards a process whose

density solves the McKean-Vlasov evolution PDE:

Of = QI f = 0u(Af) + 0y (B=(Z5)f) + 02,f on (0,00) x R?, (3.1.2)
A=A(z,v) =ax —bv, B:(Fy)=DB(z,v;e, Fy), (3.1.3)
B(z,v;e,j)=v(w—-AN)(v—1)4+x —e(v—7j)+ I, (3.1.4)

/f:/(f):/R2vf($,v)dvd:c, (3.1.5)

where ¢ denotes the averaged value of the connectivity coefficients J;; and f = f(¢,x,v) > 0 is the
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density function of finding neurons with adaptation and voltage (z,v) € R? at time ¢t > 0. The evolution

equation ([FL2) is complemented by an initial condition
f@0,) = fo(-,-) >0 in R2.

Since the PDE can be written in divergence form, the initial normalization of the density is conserved.

In particular, consistent with the derivation of the system, we have:
f(t, z,v) dedv = folx,v)dadv =1,
R2 R2

when fj is normalized. Moreover, the nonnegativity is also a classical result of this kind of equations (for

a brief discussion see Appendix B.8)), therefore we assume in the sequel that f is a probability density.

From the mathematical viewpoint, this equation presents several interests. First, the system is not
Hamiltonian and the dynamics may present several equilibria, therefore, methods involving a potential
and its possible convexity may not be used. Second, intrinsic noise acts as a stochastic input only into
the voltage variable (since it modifies the voltage through random fluctuations of the current), leaving
the adaptation equation unchanged and yielding to a hypoelliptic equation. From the phenomenological
viewpoint, this system is particularly rich. It shows a number of different regimes as parameters are
varied, and in particular, as a function of the connectivity level: the system goes from a non-trivial
stationary regime in which several stationary solutions may exist for strong coupling, to periodic solutions,
and eventually to a unique stationary solution for weak coupling. This is illustrated in section B in

particular, we present some numerical results of [B.IT) for a large number of interacting neurons.

In order to rigorously analyse equation (BI2), we restrict ourself to the latter regime, and we shall
demonstrate the existence, uniqueness and stability of solutions to the McKean-Vlasov equation in the
limit of weak coupling. More precisely, we shall prove existence of solution and non trivial stationary
solution to the evolution equation ([BI2]) without restriction on the connectivity coefficient € > 0, and

next uniqueness of the stationary solution and its exponential NL stability in the small excitability regime.

3.1.1 Historical overview of macroscopic and kinetic models in neuroscience

As mentioned above, the problem we study lies within a long tradition of works in the domain
of the characterization of macroscopic behaviors in large neuronal networks. First efforts to describe
the macroscopic activity of large neuron ensemble can be traced back to the work of Amari, Wilson and
Cowan in the 1970s [3| 4 [I6T], [162], where were introduced heuristically derived equations on the averaged
membrane potential of a population of neurons. These models made the assumption that populations
interact through a macroscopic variable, the averaged firing rate of the population, assumed to be a
sigmoidal transform of the mean voltage. This model has been extremely successful in reproducing
a number of macroscopic behaviors in the cortex, one of the most striking being related to pattern
formation in the cortex associated to visual hallucinations [53] (see also [22] for a recent review on
the subject). The relatively simplicity and good agreement with neurological phenomena motivated to

understand the relationship between the dynamics of individual cells activity and macroscopic models.
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This has been an important piece of work in the 1990s in the bio-physics community, using simplified (non-
excitable) models and specific assumptions on the architecture of the network, including the assumption
of sparse and balanced connectivity (the sum of all incoming input vanishes). The sparse connectivity
assumption was used by the authors to stated that the activity was uncorrelated [11 [5l 28], and resulted in
characterizing different neuronal states. Alternative approaches were also developed based on population
density [33] methods. These yield complex partial differential equations, that were reduced to a set of
moment equations from which authors may deduce the behavior of the system. The validity of these
moment reduction and their well-posedness is a complex issue debated in the literature, see e.g. [99].
A transition Markov two-states model governing the firing dynamics of the neurons in the network was
recently introduced. In these models, the transition probability of the system, written through a master
equation, is then handled using different physics techniques including van Kampen expansions or path

integral methods. This modeling recently gathered the interest of the community (see for example [29]

21}, 52, I53]).

The mathematical community also undertook the analysis of the problem since the beginning of this
decade. In that domain, one can distinguish also two distinct approaches: on one side, the development
of mathematical models for simplified or phenomenological neuronal models, and on the other side works
on the precise neuronal models. The dynamics of solutions of macroscopic limits of phenomenological
neuron models is much more developed. The characterization of the stationary (or periodic) solutions
was done in a simplified model, the Wilson-Cowan system, which has the important advantage to yield a
Gaussian solution whose mean and standard deviation satisfy a deterministic dynamical system that may
be studied analytically [T49, [152] using the analysis of ordinary differential equations. Artificial spiking
neuronal models representing the discontinuous dynamics of the time to the next spike were analyzed in
a number of situations, including construction of periodic solutions to the limit equation in the presence
of delays [121], 123] [122]. In the same vein, an important result was demonstrated on integrate-and-fire
models in the presence of noise and excitation: it was shown that too much excitation could prevent the
existence of solutions for all times, as the firing rate blows up in finite time [32]. These approaches make

use of functional analysis of PDEs and nonlocal age-structured type of equations.

3.1.2 Organization of the paper

The paper is organized as follows. Section [3.2] summarizes our main results that are demonstrated in
the rest of the paper. Section[3.3lis interested with the existence, uniqueness and a priori estimates on the
solutions to the evolution equation, as well as, the existence of stationary solutions. The next sections
prove the stability of the unique stationary solution. Our proof uses factorization of the linearized
semigroup allowing to prove linear stability, which we complete in section by an analysis of the
nonlinear stability of the stationary solution. Along the way, a number of open problems were identified
beyond the small connectivity regime treated here that we present in section [3.0] together with numerical
simulations: we will observe that the stationary solution splits into two stable stationary solutions as

connectivity is increased, and in an intermediate regime, periodic solutions emerge. Two appendices
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complete the paper. Appendix [B1] investigates the microscopic system and its convergence towards the

mean-field equation (BI2]) and Appendix deals with the strict positivity of stationary solutions.

Summary of the main results

3.2

3.2.1 Functional spaces and norms

We start by introducing the functional framework in which we work throughout the paper. For any
exponent p € [1,00] and any nonnegative weight function w, we denote by LP(w) the Lebesgue space
LP(R?;wdx dv) and for k € N the corresponding Sobolev spaces W*?(R?;w dz dv). They are associated

to the norms

k
1oy = Ifwllzes 1 Byeniy = 110w + 2 1P5w T
j=1
For k > 1, we define the partial v-derivative space W} (w) by
WiP(w) = {f € W P(w); DEf € LP(w)},
and it is natural to associate them to the norm

I£115

WhP () Hngvk—l,p(w) + ||D5f|‘€p(w)-

A particularly important space in our analysis, denoted by H?2(w), is
H2(w) = W>%(w) = {f € H'(w) such that 92, f € L*(w)},
together with the set of functions with finite entropy
L' log L' = {f € L'(R?) such that f >0 and JZ(f) < oo},

where we use the classical notation J(f) := [g. f log f. Finally, for x > 0, let us introduce the

exponential weight function:
m ="M with M :=1422/240%/2. (3.2.6)

In the sequel, we will be brought to vary the constant x involved in the definition of m, therefore
we introduce the shorthand m; = (M~ ¢ N. Unless otherwise specified, these sequences are

constructed under the assumption that the sequence r; is strictly increasing.

3.2.2 Main results

We start by stating a result related to the well possedness of (BI2) and to the a priori bounds on
the solution. Using classical theory of renormalized solutions, it is not hard to see that equation (BI2)

has indeed weak solutions, which we naturally define as:
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Definition 3.2.44. Let fo be a normalized nonnegative function defined on R* such that 7 (fo) is
well defined. We say that fi(xz,v) = (t,x,v) — f(t, z,v) is a weak solution to BILD) if the following

conditions are fulfilled:
- [ €C([0,00); L' (M?));

- for almost anyt >0, f > 0 and

flt,z,v)dedv = folx,v)dadv = 1;
R? R?

- for any ¢ € C*([0,00); O (R?)) and any t > 0 it holds
Loeti= [ en+ [ [ osote-aoe-nirgods. G2

Equipped with this definition we can state the
Theorem 3.2.45. For any fo € L*(M?) N Ltlog L' NP(R?), there exists a unique global weak solution
f+ to the FhN equation [BI2), that moreover satisfies

I fell 21 (ary < max(Co, || follLr(ar)), (3.2.8)

and depends continuously in L*(M) to the initial datum. More precisely, if fno — fo in L*(M) and
H(fno) < C then fnr — fr in LY (M) for any later time t > 0.

Furthermore, there exist two norms |- |l and |||z equivalent respectively to ||| g1 (my and ||| z2(m),

such that the following estimates hold true:

[ fell L1 (my < max(C1, [ follLr(m)), (3.2.9)
as well as
[ fellr < max(Ca, || folla1), (3.2.10)
and
[ fell2z < max(Cs, || follz2), (3.2.11)

where Cy,Co, C3 are positive constants.

The other two main results of the present work can be summarized in the following
Theorem 3.2.46. For any ¢ > 0, there exists at least one stationary solution G to the FhN statistical

equation [BL2), that is
G. € H2(m)NP(R?), 0= 0,(AG.) + 0y(B:( Zc.)Ge) + 02,G.  in R (3.2.12)

Moreover, there exists an increasing function n : Ry — R such that n(e) —0> 0 and such that any
E—r

solution to B2I2) satisfies
1G = Goll2(m) < n(e),

where G is the unique stationary solution corresponding to the case € = 0.
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Theorem 3.2.47. There exists €* > 0 such that, in the small connectivity regime ¢ € (0,e%), the
stationary solution is unique and exponentially stable. More precisely, there exist o < 0 and n*(e) :

Ry — R, with n*(g) 7 %% such that if
foe H' (m)NP(R?) and || fo— Gllgom) <n'(e),
then there exists C* = C*(fo,e*,¢) > 0, such that
I fe = Gllrzmy < C* e, V>0,

where fi is the solution to BI2) with initial condition f.

3.2.3 Other notations and definitions.

We prepare to the demonstration of these results by introducing a few notations that will be used
throughout the paper. For two given Banach spaces (E, || - ||g) and (&, || - ||¢), we denote by B(E,E) the
space of bounded linear operators from F to £ and we denote by |- || %(p,e) the associated operator norm.
The set of closed unbounded linear operators from E to & with dense domain is denoted by %(E, ). In
the special case when E = &, we simply write Z(E) = B(E,E) and ¢(E) = ¢(E, E).

For a given a € R, we define the complex half plane
Ay :={2€C, Re(z)>a}l.

For a given Banach space X and A € € (X) which generates a semigroup, we denote by (S (¢), t > 0)
this one, by D(A) its domain, by N(A) its null space, by R(A) its range, and by 3(A) its spectrum. On

the resolvent set p(A) = C\ X(A) we may define the resolvent operator p(A) by
VzeC, Ra(z) = (A —2)" %

Moreover, Ry (z) € #(X) and has range equal to D(A). We recall that £ € (A) is called an eigenvalue
of Aif N(A —¢) # {0}, and it called an isolated eigenvalue if there exists r > 0 such that

SA)N{zeC, |z—-¢& <r} ={£}.

Since the notion of convolution of semigroups will be required, we recall it here. Let us consider some
Banach spaces X1, Xo and X3 and two given functions
Sy € LY([0,00); B(X1, X)) and Sy € LY([0,00); B(Xa2, X3)),
one can define Sy * S1 € L'([0,00); (X1, X3)) by
(S92 % S1)(t) := /Ot Sa(t — 5)S1(t) ds, Vit >0.

In the special case S1 = Sy and X7 = Xy = X3, SG1) s defined recursively by S = § and G =
S« SC(=1) for n > 1. Equipped with this definition, we state the
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Proposition 3.2.48. Let X,Y be two Banach spaces such thatY C X. Let us consider S(t) a continuous

semigroup such that for all t >0
1S oy < e, X € {X,Y},

for some a* € R and positive constants Cx and Cy . If there exists © > 0 and Cxy > 0 such that

ISOflly < Cxyt e | fllx, VfeY,te(01],
then, there exists n € N, and a polynomial p,(t) such that

ISCDW v < e flx. VY.L, (3.2.13)
In particular, for any o > o*, it holds

ISED D flly < Camellflx, ¥YFEY,E>0,

for some positive constant Co, ,.

This general result has been already established and used in [70] and [T10], but we give an alternative,

and somehow simpler, proof of it.

Proof. Let us start by noticing that for X € {X,Y}, if
IS @) flla < Py () e | fllas ViE>0, (3.2.14)
for n € N and p;¥ (¢) a polynomial, then
IS D@ flla < /Ot 1St —5) S U™ (s) fllads < pia(8) e | fll,

for p¥ 1= Cx fo p¥(s)ds. So, by an immediate induction argument we get (3214 for any n > 1 and

cnen 1
pr/’f(t) = (nil)! .

Let us now fix t € (0, 1] and, without lost of generality, assume that © ¢ N. In that case, if

IS (@) flly < Cut= (O H e

vt e (0,1], (3.2.15)

for some n € N and C,, a positive constant, then

t/2 ¢
IS @) flly - < / IIS(t*S)S(*")(S)fllyds+/ 15(t — )8 (s) v ds
0

t/2
< [ exstm e s i [ ove s ol s
< / Cxlt=o) 2 it || O Ca @l
C on t/2 . t
< (XY X o t”f“X/ (tis)f@an ds + Cy C,e® t”f”X/ Sf(@fnJrl) ds
n—1)! t/2

< Cpprt™O7e ™ £l x,

for some Cj,41 depending only on Cx,Cy,Cx y and C),,. Once again, by an induction argument, we

get (B2ZI0). Moreover, as soon as © —n + 1 > 0, inequality ([B213) holds.
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Finally, to get the conclusion in the case t > 1, it suffices to notice that
ISOfly < CyCxy(t = [t)%e* | fllx,

where |t] is the largest integer smaller than ¢. A similar argument that the one used for ¢ € (0, 1], allows

us to find a polynomial p,, such that BZI3) still holds when ¢ > 1. O

Finally, we recall the abstract notion of hypodissipative operators:
Definition 3.2.49. Considering a Banach space (X, - ||x), a real number o« € R and an operator
A€ € (X), (A—a) is said to be hypodissipative on X if there exists some norm ||-||x on X equivalent to

the usual norm || - || x such that
VfeD(A), T F(f) suchthat Re(p,(A—a)f) <0,
where (-,-) is the duality bracket in X and X* and F(f) C X* is the dual set of f defined by

F(f) = F, () ={o€ X", (&, f) = IFlx = llgll%-}-

One classically sees (we refer to for example [0, Subsection 2.3]) that when A is the generator of a

semigroup Sy, for given a € R and C' > 0 constants, the following assertions are equivalent:
(a) (A — @) is hypodissipative;

b) the semigroup satisfies the growth estimate || Sa(¢)]|zx) < Ce®t, t > 0;
( group g (X)

Analysis of the nonlinear evolution equation

3.3

This section is concerned with the analysis of the nonlinear evolution equation. We shall prove

existence and uniqueness of solutions, and provide some a priori estimates on their behavior.

Before going into further details, let us remark that for ¢ fixed, the operator Q.[_#] is linear and

writes

In particular, for g € H2(m) we have

[ @A gdude = - [ §(Ad,g+ B 5)0ug - Biug) dud,

R2

therefore, it is natural to define

Qi Fg == —Adyg — Bo(F)Dvg + 92,9

3.3.1 A priori bounds.

We now fix €9 > 0. The a priori estimates that follow are uniform in € in the bounded connectivity

regime ¢ € [0,¢p), i.e., they involve constants that do not depend on e.
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Lemma 3.3.50. For f; solution to B12) with fo € L*(M)NP(R?), estimate B.28) holds. Moreover,
there exists Cy > 0 depending on a,b, A, Io,e0 and || follL1(ary such that

sup|_# (/)| < Cj. (3.3.16)
t>0

Proof. We first apply Cauchy-Schwartz’s inequality to find

s [owes ([0 (L= ()" (3.3.17)

for any f € P(R?) N L' (v?). Now, for f; a solution to ([BIZ), we have

d *
L AR AR WACEVALY

dt Joo
= [ 0= Ae- Bl

Using the definition of A and B, and then B317), we get

d
pn fiM dxdv < —/ (—1+a$2—bxv+v2(v—)\)(v—1)—51}2+xv+10v)ft+5/(ft)2
RZ RZ
< Kl—Kz/(U4+$2)ft+6/ v? fy
R2 R2
<

K1 _K2 fth(Ed’U,
R2

where K7 and K5 are generic constans depending only on a, b, A\, Iy and 9. Using Gronwall’s lemma we

get BZ8) for some Cy > 0. Finally, coming back to B3I7), we get

|7 (f)PP < / v* fr < 2| fillpran < 2 max(Co, || follLran),
R‘Z
which is nothing but (B316]). O

Lemma 3.3.51. For any ¢ € R fized, there exist some constants K1, Ko > 0 depending ona,b, A\, Iy, 7,k

and g such that
. Q[ 7)1 -sign(fym < Killfllereey — Kallfllimy, ¥ f € L (m). (3.3.18)

Proof. Since _# € R is now fixed, for simplicity of notation, we drop the dependence on this parameter.

By Kato’s inequality

L@ fesientnm < [ ifi@zm

—m/ |f| (Az + Bev — (14 k0*))m,
R2
thus
[ Q-tesig(tym < = [ pa)lsim.
R‘Z RZ

where p(z, v) is a polynomial on x and v with leading term v*+22. Inequality (B3.18) follows directly. [

Corollary 3.3.52. Estimate [8.29) holds.
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Proof. For f; solution to (BI.2), inequality (Z3.10]) tells us that |_# (f;)| < Cj. Moreover, since the mass

is unitary for almost any ¢ > 0, it holds

%/R2|ft|m = /]Rz Q:[ 7+, fr - sign(fy)m < K, _K2/1R2|ft|m’

where K; and K5 depend only on a,b, A\, I,eo and C§. Finally, integrating this last inequality, we get

I fellremy < max (C1, || follnrm)), Vit >0,

for some positive constant Cy depending only on the parameters of the system, £y and C{. (|

Now we analyse the H!(m) and H2(m) norms of the solutions to (BL2), in particular, we prove a
priori bounds BZI0) and B21I1). Since the equation is hypodissipative, we used the ideas of “twisted
spaces” and the Nash-Villani’s technique (see e.g. [I59]) to control the L?(IR?) contributions in function
of the L'(R?) norm.

Lemma 3.3.53. For 0 < k1 < kg, let us consider two exponential weight functions my and ms as defined

in B26). For any # € R fized, there exist K1, Ko >0 and ¢ € (0,1) constants such that

QA1 N < Kl flF2me) — Kol I3, V€ H (ma), (3.3.19)

where (-, )31 is the scalar product related to the Hilbert norm

1150 = 1Ny + 0% 2100 12 i) + 8200 f, O L2(ma) + 61100 |-

Remark 3.3.54. [t is worth emphasising that for 6 € (0,1) the norm H! is equivalent to the usual norm

of H*(mz). Indeed, the choice of the exponents allows us to write

§°/3 1)
s\ i mg) < NFIZ2(ma) + (53/2 - T) 102 f 1172 (1mg) + 5”6’Uf||%2(m2) < £ 1131,

for some ¢5 > 0.

Proof. The proof is presented as follows: the first three steps deal with inequalities in L? for f and its
derivatives, while the last one combines these inequalities to control the %! norm. Some long and tedious
calculations are only outlined for the sake of clarity. In the following we denote by ko, k1 and ke some

unspecified constants and drop the dependance on _Z.

Step 1. L*(mz) norm. We start by noticing that

Gt oy = = [ @fPmdtwa [ (200 P
R‘Z R‘Z
1 Op,m2 1
Ou(AL), irmyy = i/w 00— A% 2 = §/H£2[a—2n2z(axfbv)]f2m§,

and similarly

1
(0u(Bf), f)r2(ms) = 5/]1%{2 [3v” = 2(1+ Nv + A — & — 2k00 Bc| f>m3.

Therefore, we get

Qe D12ty = = [ @) = 10, (3:3:20)
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where p(z,v) is a polynomial in z and v with leading term v* + 2. In particular, there exist some positive

constants k1 and ko such that
Q. ) p20ms) < ol gy — Rl 12 apsromy — 100 2 (3.3.21)
Step 2. x-derivative bound. We have
0.0 AN 0Dy = 3 [ 3004 - A% a7

= %/Rz [Ba—2m2x(aszv)}(3 f)?ms3,

and
(02(0u(Bf)), 02 f) 12(ms) = / [0y B0y f + 02 B0y f + Beaivf]azf mg.
]RZ

Since 0, B: = 1, and observing that

1 2
[ oBous+ 02,50 s w5 = 5 [ [0, - 5.2 @)
R2 2 R2 m

we get
1 Oym
O OB 0. )12y < [0S0 11m3+ 5 [ | [0,5 B = O8] (0, )2,

Using that
0020 f. 00 1)1y = = [ RSP+ 5 [ (@
RZ
we finally obtain
(0:(Qcf), 0uf)r2(may < kullOnfll7re) — k2ll0a flI T2 ar/2my) (3.3.22)

02 s + [ 10571001,

A similar calculation leads to

<(anef)a avf>L2(m2)

IN

k0o f 1222y — k2l 00 F 122 ar1/20m,) (3.3.23)

02y b [ 102710103
+2ro(1 + )\)/ v f2m3.
RZ
Step 3. Cross product bound. The contribution of the cross product term is a little bit more delicate. We

decompose it into five quantities and we study them separately:

<81Q8f’ avf)Lz(ml + <6’UQEf) aacf>L2 (m1)
- / [0n F)O2,0 1) + (01D )] mi?

+ [ [0:A0uf + 0, A0, f + AD2, [ (0uf) m3

)
)

J.
J

92,Bf +20,B9, f + B2, f](0.f)m

=

20, A0, f + AD3, [1(8y f) m

2

=

[
Al
[
[

M-
=

N
Il
-

0y BOyf + 0, B, f + B2, f](0uf)m? =

2

=
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We start by handling the first term on the right hand side. Using integration by parts adequately, we
get
Ti= [ @000 -2 [ (@@ m
R

R2
Similarly, for the contributions involving A, we have

1 O,m?
T = i/R2 {&JA—A m%1:|(azf)2m§+G/R2(alf)(avf)m%’

and

2
Oym7

7= [ [oca- a0 n@upmi+ g [ otamdio.r?

Adding these last two expressions, it only remains

2
Orm7

0,0, P+ [ (20— A% ] (0,1)@ufimd < b0 g + o [ 10111007 M i,
R2 R? my R?

for some constant kg > 0.

For the contributions related to B., involved in 73 and 75, we have

T = - / 2ra(30 — 1 — ) f2m3 + 2 / 0, B-(0,.1)(8, fym3 + / B2, )0, ).
R2 R2 R2

and

1 Do
T = | 0B (0:0)@f)ymi + 3 / (0., — B. 224 (9, f)Pm3,
R2 R2 my

Finally, for the last contribution in 73, we have
[ Ba@n@.nmi < ko [ (@5)0.0) M
R2 R2
getting that there exists kg > 0 such that
(02Qef, 00 L) 120 + (0 Qe 2 O f) 12y (3.3.24)
<ko [ 10ufl10u01 M+ ko [ 102511021
R2 R2
10y + o [ 1051101 2072
tho [ J0usP M ko [P M
R2 R2

Step 4. Conclusion. To get (B319), we just put together B321), B322), B323) and B324) and

we use Young’s inequality several times. Indeed, the scalar product (-,-)y1 applied to any f € H'(ms)

writes

(Qcf, flar = (Qefs flrz(ma)
8320, Qe f, 00 ) 12(ma) + 6 (O Qe fy Do f) 12 ()

54/3 64/3

+T<azQefa avf>L2(m1) + T(anEfa aacJP>L2(ml)-

To give an idea of the method, we only explain how to get rid of a few terms. For example, for the

positive contribution of (B:3.22), it holds
32k | 0 f 1 2 ey + 677 / 100 £1100 fIm5 < 8*2k1 |02 f 1722y + 074100 f 1T 2(ma) + 0% 1100f T 2(ma)s
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and for § > 0 small enough these terms are annihilated by the quantities

2 3/2 2 3*/%b 2
~N10ufllz2(my) = 87 k2ll Oz fll72(ar1/2my) = =5 102 fllZ2my)
present in the right hand side of B321)), (3322)) and (3.3.24]).
In B323), the only delicate contribution is
§°/3 b 5'/3b
50 [10:710,11m3 < ©52 100 sy + 5 10 [

but the right hand sides of [B32I) and [B322) include

100 12 my — 2K 00 12 013 2
and once again for § > 0 small the sum is nonpositive.

The positive part of ([B.3.24) is controlled using that k1 < k2. Indeed, in that situation
642k / 105, £110w F1 M%/2 m3 < 851 ko103, F I T2 oy + 0% k0|02 F11Z 2

replacing, if necessary, ko by a larger constant. If § > 0 is small we get rid of these terms thanks to the

presence of
—(53/2k2||81f||%2(M1/2m2) -0 ||63vf||%2(m2)’
n m and m

All remaining positive contributions can be handled in the same fashion leading to the conclusion

that one can find K7, K5 > 0 such that

(Qcf, N < Kl fllZ2@e) — Kall Fll3-

Corollary 3.3.55. Estimate B.2I0) holds.

Proof. Nash’s inequality in the 2-dimensional case reads: there exists a constant C' > 0, such that for
any f € L'(R?)n HY(R?),
6/

110 g2y + EHDz,fo%Z(R?)' (3.3.25)

ko)

9By < Il IDead loes) < o

Coming back to the previous lemma, using the equivalence of the norms H! and H'(my), together with

the fact that a solution f; to (BI2) is a probability measure, we get that,
d 2 2
il = (QelZrl fe. f)rr < ki = kel fellzgr,
for some k1, ko > 0 constants. Finally, integrating in time, we get

[fellaer < max(Ca, [ foll21),
for some C > 0 depending only on the parameters of the system and the initial condition. [l
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Let us notice that we can go a little further in the analysis of the regularity of the solutions of (B12]).
Actually, we can expect that the norm H?2(m) is also bounded. Indeed, there exists kg > 0 such that

< Q€f7 f L2(m3) (3326)

/WWJM£+§/WJF%WR

w2 [0 @ D@0 s+ 5 [ 107,57 [0~ A% s

my

tﬂﬁm)ﬂ%JV@+§ﬂﬁﬁmmﬁ@ﬁﬂm§
1 O, m?
+§/|8§vf| [so.8. — B.272) 3

2
<ko[ [108. 0P+ [102 0P w3+ [ 152 md+ [l0usPmd].

We can therefore state that
Corollary 3.3.56. Estimate (B2I1)) holds.

Proof. The proof follows the same idea already introduced in the proof of Corollary [3.3.551 We consider

the norm
£ 13 = If 130 + 2105, F 122 ()
and notice that (3321)), B322), B323) together with (3326 imply that
d 2 d 2
- < =
el <l fellze

v20h | [12, 0P+ [102,0Pw + [\Pod + [ 10usocd]
k1

— kall fll3e.

IN

for some k1, ko > 0 depending on some § > 0 small and the parameters of the system. Inequality ([B.2.17])
follows. O

3.3.2 Entropy estimates and uniqueness of the solution

Now we focus our attention on the problem of uniqueness of the solutions to (BI.2). First, we prove

that solutions remain in the space of functions with finite entropy. To that aim, for any positive function

f, we define
_ [ oS0
I,(f) = /]R2 o) dzdv,

which is understood as a partial Fisher information. When the previous quantity is not well defined we
use the convention I, (f) = +oo. Notice that in any case I,,(-) > 0. Equipped with this definition we can
state:
Lemma 3.3.57. For any fo € L*(M) N L'log L* N P(R?) we denote by f; the associated solution to the
FhN statistical equation BI12) with initial condition fo. It holds
sup J(f:) + /t I,(fs)ds < C(T), (3.3.27)
t€[0,T) 0

where C(T') depend on fo and the coefficients of the problem.
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Proof. Tt is well known that for functions with finite moments, the entropy can be bounded from below.
Indeed, since

rilogry > —ro +1r1logre, Vry > 0,79 > 0,

taking r = f(x,v) and 72 = e~ it holds
0> flogf > —e™—fM,

implying that

%(ft) > —/ €_M — ftM > —27‘(‘6_1 — maX(Co, HfOHLl(M))
R2 R2

On the other hand, for any solution of (FI2) with initial datum fy there exists a positive constant

C, depending on the parameters of the system, g and C{), such that

% 25 / (1+log(f) Q-[77.] fi

_ LU+ / (9:A+8,B-( 7))
=L, (fe) + Cll fellLr oy

IN

Let us fix T > 0 and take any ¢t < T, thanks to estimate ([B.2.8]), we get that

t
%(ft) S /0 I’u(fs) ds +%(f0) + cT max(C’O, ||fOHL1(M))

Since 7 is bounded by below, we get that I,(f;) € L*([0,T]). Moreover, taking the supremum on the

last relationship, we get

sup H(fr) < H(fo)+ CTmax(Co, || follLr(ar))-

te[0,T)

O

Corollary 3.3.58. For any two initial data fo,g0 € L*(M?)N L'log L' N P(R?) the associated solutions
f and g to the FhN statistical equation BI12), satisfy

[SOU%)] ILfe = geller oy < C(T) || fo — gollzrany,

for some positive C(T). In particular, equation BI2) with initial datum in L*(M?)N L' log L' N P(R?)

has, at most, one solution.

Proof of Corollary[3.3.58 We write

O (fr = 91) = Qe[ LZ (I (e = g¢) +€ F (fr = 1) Do g

from which we deduce

d
—/ fi—glM < Kl/ |ft—gt|M+s|/(ft—gt)|/ 100g:|M
dt RZ RZ RZ

IN

Ko [ V=gl @012, [ 16 = b
R2 R2
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where K is the constant introduced in the proof of Lemma [3.3.500 Also, it is not hard to see that

S[UP] lgell 2 (arzy < llgollzrarzy + 2(K71 + 1)T max(Co, [|gol| 1 (ar))-
te[0,T

The rest of the proof is a direct application of the time integrability of I,,(¢g;) and Gronwall’s lemma. O

Let us finish this section by giving some insights of the proofs of the existence of solutions and

stationary solutions to equation ([B.I.2]) which are, however, classical.

Proof of Theorem [3.2.75 Let us consider an exponential weight m and ¢ € L*°(R) such that
sup| 7| < Cy,
>0

where C{) is given by (B.3.10). First, to avoid the non boundedness of the coefficients of the equation, let

us fix R > 0, and define a regular truncation function

XR(ZL', ’U) X(SC/R,’U/R), X € D(R2), 13(071) < X < 13(072). (3328)

Secondly, to avoid the intrinsic degenerate character of (B1.2), we fix some 1 > o > 0, and define the

bilinear form

aa(t;fa g) = <8’Ufa avg>L2(m) + <avfagXR m_Qavm2>L2(m)
+o <axf7 8Ig>L2('m) +o <axf7 dXR m_2amm2>L2(m)

1
-3 (f,9XR [0:A — Am™20,m>)) L2(m)

L1 0xR 0B 1) — B A m20,m ) sy,
This bilinear form is obviously well defined, a.e. t > 0, for any f,g € H'(m). Moreover, a, is continuous,
lao(t; £, 9)| < Crllfllarmllgllzr(m),
for some positive constant Cr, and coercive. Indeed, we have from [B3.21)), that
@t £,0) 2 310uf sy + S0 imy — bl oy

for some k1 > 0 not depending on ¢, nor on R and nor on o. The J. L. Lions theorem [23] Theorem X.9]

implies that for any fo € L?(m) there exists a unique
d
f € L2((0,00); H' (m)) N C((0,00); L*(m)); - —f € L*((0,00); H' (m))
such that f(0) = fo and

d
<Ef7 g>L2(m) =+ aa’(f(t)ag> - 05 a.e. t > 05 Vg € Hl(m)

We recall that f_ := min(f,0) belongs to H*(m), therefore we can use it as a test function to find
that

fo>0 = f(t) >0, a.e. t > 0.



Let us now fix some T' > 0. Using f itself as a test function, we get easily that

T
1 llZam + / 100 fulZomy d5 < €T folZm:

therefore, one can take the limits o — 0 and R — oo, to find that for any ¢ € C1([0,T]; C2(R?))

t
[oti= [ wotor [ [ [0+ 02~ Adup. - B Supi]fuds, 0<t<T.
R2 R2 0 R2

holds. Taking a well chosen sequence ¢ — M?, we deduce that

sup || fellprarzy < max (C7 || foll 1 ar2y)
t€[0,T]
for some positive constant C’ that depends only on the parameters of the system. We also notice that,
thanks to renormalisation concepts, we recover the inequality

t
o () + / L(f)ds < A(fo) + KoT max(Co, |l foll 1: an))-
te(0,T 0

Let us take now fo € LY (M?)N L' log L' NP(R?), and a sequence {f, 0} C L*(m) such that f,, 0 — fo
in L'(M). Moreover, let us assume that there is a positive constant C' > 0 such that J#(f, o) < C, for
any n € N. From the previous analysis we get a family {f,} € C((0,T); L*(M)) of functions related
to the initial conditions {f, o}. Using the Dunford-Pettis criterium we can pass to the limit in L'(M)

finding a solution to the linear problem

Of = 0u(Af) +0u(B:( 70 f) + 05, f. (3.3.29)

that depends continuously to the initial datum (in the sense defined in Theorem B.2:45)). Moreover, from
Corollary B.3.58 we get that this solution is necessarily unique.

Finally, we use again the ideas of Corollary[B.3.58 to find a solution to the NL equation (3.1.2). Indeed,

it suffices to notice that the mapping

L=([0,7]) — C([0, T L'(M?))
S o= ]

with f solution of (3329) for # given, is Lipschitz and contracting when T' > 0 is small enough. O

Existence of stationary solutions will be shown as a result of an abstract version of the Brouwer fixed
point theorem (a variant of [55, Theorem 1.2] and [63]):
Theorem 3.3.59. Consider Z a convex and compact subset of a Banach space X and S(t) a continuous
semigroup on Z. Let us assume that Z is invariant under the action of S(t) (that is S(t)z € Z for any
z € Z andt > 0). Then, there exists zo € Z which is stationary under the action of S(t), i.e, S(t)zo = 7o
for any t > 0.

We present the argument briefly in this section. Our aim is to find a fixed point for the nonlinear
semigroup Sq. (t) related to equation B.I2). At this point we do not have any hint on the number of

functions solving

QE[]F]FZO,

89



and the nonlinearity could lead to the presence of more than one. However, in the disconnected regime

¢ = 0 the nonlinearity disappears, and the multiplicity problem is no longer present.

Proof of existence of stationary solutions to BZI2). Let us fix m an exponential weight and define for
any t > 0

St): X - X with X = HZ(m)n L'log L' N P(R?),

such that S(t)fo is the solution to (BI2) given by Theorem B:2:47 associated to the initial condition
fo. Estimates (B211) and [B327) imply that S(¢) is well defined. Moreover, the continuity of S in the

Banach space L'(R?) is direct from the definition of weak solutions, in particular,
S(t)fo € C([0,00); L' (R?)),

with the topology of compact subsets in time.

Finally, defining

Z:= Z(e) = {f € X such that (3ZJ) and BZII) hold} c L'(R?),

which is invariant under S; for any ¢ > 0 and convex. Moreover, the compactness of the inclusion
Z C HY(m) < L'(R?) allows us to apply Theorem [B.3.59 and find the existence of a fixed point for S(t)

and by consequence a stationary solution to (B.1.2).

It is worth emphasising that the above proof show yet that the map ¢ — G, is locally bounded in
[0,00), i.e., if g9 > 0 is fixed, then

G. € Z(gg) forany e € (0,¢ep).

The linearized equation

The aim of the present section is to undercover the properties of the linearized operator associated to
Q- in the small connectivity case using what we call a splitting method. To illustrate the ideas we use in

the following, let us assume that an operator A on a Banach space X can be written as
A=A+ 5,

where B has some dissipative property and A is much more regular than . Under some additional
positivity assumption on the generator A, the principal part of spectrum is a simple real eigenvalue. This
is known as the Krein-Rutman theorem. We state below a recent version picked up from [I13],

Theorem 3.4.60. We consider a semigroup generator A on a Banach lattice of functions X, and we

assume that
1. there exists some a* € R and two operators A,B € €(X), such that A = A+ B and
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(a) for any o > o*, £ > 0, there exists a constant Cy e > 0 such that
V>0,  |Sp* (ASE) (1)l zx) < Cae™.
(b) A is bounded, and there exists an integer n > 1 such that for any a > o, there exists a
constant Cy ., > 0 such that
VE>0,  [[(ASE) " ()llmcx,y) < Came™,
withY C D(A) and Y C X with compact embedding;

2. for A* the dual operator of A defined in X', there exists § > o* and ¢ € D(A*) N X!\ {0} such
that A* > Bip;

3. Sa(t) is a positive semigroup and A satisfies Kato's inequality, i.e, ¥V f € D(A) it holds A|f| >
sign(f) Af.

4. —A satisfies a strong mazximum principle: for any given f and vy € R, there holds,
FeDMN\{0}, f>0and (A +~)f>0 imply f>0,
and there exists an integer m such that
feDA™) and |f| >0 dmply f>0orf<O.
Defining
A= s(h) =sup {(€) : €€ (M)},
there exists 0 < foo € D(A) and 0 < ¢ € D(A*) such that
Afoo = A foo, A= N\o.

Moreover, there is some o € (a*,\) and C > 0 such that for any fo € X

I1Sa () fo — € (fo, ) Foollx < Ce® | fo = (fo, D) ool x - (3.4.30)

From Theorem [B.2.46 we know that for any value of € there exists at least one G, non zero stationary
solution of the FhN kinetic equation (B2). The linearized equation, on the variation h := f — G,

induces the linearized operator
Leh=Q:( 7 (Ge))h+¢e 7 (h)0,Ge.
Moreover, let us recall that in Section we proved that
Q[ Z (G [, Fhrzm) < EKallfllee@e) — Kallfllz2(m),

if we could make K7 = 0, then the operator Q. together with . would be dissipative. Since it is not

the case, let us fix a constant N > 0 and define
B. := 2. — A, where A= N xg(z,v); (3.4.31)

with x g given by 3.3.28). We remark that A € Z(H2(m)), and that Af vanishes outside a ball of radius
2R for any f € HZ(m).
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3.4.1 Properties of A and B,

We now precise the dissipative properties of .Z.. In particular, we present two lemmas dealing with the

hypodissipativity and regularisation properties of the sppliting A and B.. We use some ideas developed

in [I111 [70] and [IT0].
Lemma 3.4.61. For any exponential weight m, there exist some constants N, R > 0 such that (B. + 1)

is hypodissipative in H2(m).

Proof. From the characterisation of hypodissipativity given in Section [3.2] it suffices to show that there

exists a constant C' > 0 such that
198, ()|l (rz(my) < Ce™, t>0,
or simply, to show that for any h € H2(m), it holds
(Beh, B 12y < 1811z - (3.4.32)

for some norm | - [| g2(,,) equivalent to the usual norm || - || 2 ()

m)

Let us recall that the operator B, writes

B: = 4. — A= (Qc] Fc.] — Nxr)h+e _7(h)0,G,

and since _fg. € R is a real constant, we can use all a priori estimates on (). directly. As usual, when

no confusion is possible, we drop the dependence on _¢#.. Three steps complete the proof:

Step 1. Dissipativity in L?(m). Let us notice that for any h € L?(m) we have

|7 (W) < CllhllL2(m),
for some constant C' > 0. It follows that
7 (h) / (@,G) hm? < | F W10Gell2on 2y < € 100Gl 220 / e
Thus, coming back to (B3:20), we find that for N and R large enough one can assume k1 = —1,
getting
(Beh, h>L2(m) < _Hh”%Q(m) - k2||h||%2(M1/2m) - ||aUhH%2(m)’ (3.4.33)

as a consequence, (B + 1) is dissipative in L?(m).

Step 2. Bounds on the derivatives of B.. For the xz-derivative we see that there exists some constant C’

depending on xr and its derivatives, such that

=N {(0z(xrh), 0sh) r2(m) < C' |7l 22y = NN (Bah) VX RN () -
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On the other hand, thanks to Young’s inequality, we get

40 / (02,G.)(@h)ym? = — g (h) / 0, G [02,h + 2w0 0,h] m?
R2 R2
< h)? (|0,G< |13 Loz, n)2 V2kv 0517
< I N0GellL2m) + 51050 ~l T2 (my + 1V 2RV Ozl () -
These two inequalities, together with (8:3.22), imply that for N and R large enough

1
(02 (Bh), 0uh) 12(my < —[10uhl[T2(n) — gllaith%Z(m) + O |1l L2 my + /R2 |0z |0uh|m?.

Proceeding similarly with the v-derivative we get

|7 (WI1105,Gell L2 () 100 Bl L21m)

s [ (@Gomm?

IN

1
3 105 Gell 2 () (CE (1l 2y + 100h I T2 )
then, coming back to (33.23), we find N, R > 0 such that

(00(Beh), 0uh) 12 (my < =106l 72(m) = 102,211 72y + C" [ RllT2(my + /R2 |0h] |8,h| m?.

Finally, for the second v-derivative we find C’ such that
N () oy < N [ xn@ Pt w0 [ @t [ ok nm?
RQ RZ RZ
and for any € > 0

h2
F0) [ @ca@mm? < LI (108Gl 105y +

+105, GellLa my 1260 (O W) 1 L2y ) -

If € > 0 is small and N, R large enough, we obtain as an application of ([B3.20]), that there is a constant
C’ > 0 such that

(02, (Beh), 02,h) L2(m) < —105,hl[T2(my + C' [P 726y + 100hlF 2y + 102,811 72y + 102,211 72 ] -

Step 3. Equivalent norm and conclusion. Let § > 0 and hi,hy € H2(m), we can define the bilinear

product
(ha, h2>gg(m) i= (h1, h2) £2(m) + 6(0xh1,0xh2) 12(m) + 6(Ouh1, Ovha) L2 (m) + 6202, ha, aﬁyhzﬁz(m)-
and the relative norm
Hthqg(m) = Hh’H%Q(m) +6 ||DI7’Uh||%2(m) + 67 ||83vh”%2(m)'
Choosing 0 > 0 small enough we conclude that for any « € (0, 1] one find 4, such that
(Beh, 1) 2 (my < —a Hhﬂfqg(m)-

Since the norm related to H2(m) is equivalent to the usual norm in H2(m), we can conclude that (B. +1)

is hypodissipative in H2(m). O
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Lemma 3.4.62. There are positive constants N, R large enough and some Cp. > 0, such that the

semigroup Sp. satisfies
1S5, (O)hll 2 (m,) < Cs.t™"2[|Bll12(my), Yt € (0,1].

As a consequence, for any o > —1, and any exponential weight m, there exists n > 1 and C,, . such that
of any t > 0 it holds
1(ASB) ™ ()Al 12(m) < Cnie € (|7 L2m)- (3.4.34)

Proof. We split the proof in three steps, in the first one we refine the previous estimates on the norm of
the semigroup associated to the operator B, in the second one we use Hormander-Hérau technique (see

e.g. [73]) to get the first inequality, and finally we prove ([B.434).

Step 1. Sharper estimates on B.. We denote for K > 0 a generic constant. From the proof of the previous

Lemma, we know that there are N, R large enough such that for any h € D(B.), it holds

(Beh,h)r2(m,) < —K||h||%2(m2)—H6vh||%2(m2)
(OB, 0 iy < 5 10eh sy — 5102 ooy + KRy + 5 10032
1 R 1) R 1 R X
(O, B2, 02y < Ky + K10y + 51 102,00,

We also notice for any §,¢ € (0,1) it holds

b
<61(Q6 - A)h, aUh>L?(7n1) + <au(Q6 - A)ha azh>L2(7n1) S _§Hazh|‘%2(ml)

a’?)vh”%2(m1) + Kt51/10||8zvh”%2(m1)5

K K
2 2 ___
+ KHh’HLz(mz) + EHaﬂh”LQ(mz) + tol/10 H

10:G- 12y
—— 2 g (v

105, Gell 22.(ma)
2

<f(h)a§vG€vavh>L2(m1) + <j(h>812mG€aazh>L2(m1) <

()
1022y + [90hF )] + LU 510,11 )

yielding to
b K K
(02Bch, 0ph) L2(m) + (OuBeh, Oxh) p2(m) < _ZHthHQLQ(ml) + 5Hh|\%2(m2) + 5H5vh||2L2(m2)

K
ool |72 () + Kt51/10||8§7jh|\%2(m1)

+W||3m

Step 2. Hormander-Hérau technique. For a given h € H2(m1) N L?(m2) we denote h; := Sp_(t)h, and
define F by

Fht) =l Al L2 (my) + c1t®ll Oohllfom,) + cotll QuhllZan,) + cst*(Ouh, Ouh) 2,y + cat* 05, Al T2 (s

which, for well chosen parameters, is decreasing. Indeed, thanks to the inequalities found in the first

step, we have

5
—]-‘tht < Z .,

i=1
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with

Cgt

To= K [—2m3 + 2(c1t” + eat + eat)mi + —=m3 0,
T = /Rz [(3c1 + 2¢26 — ZCB + 2c30)t* — Clt3] (0he)*m,
7= [ T-omdcmt o 22md 2o O 4 2t + S ) 0,00,
T - /R [ =+ T4 k81002, he)m?,
Too= [T 2est+ S + deat’] @R
Choosing

1 =02, ¢y = §4/3 c3 = §%/2 and ¢4 = 64,
we get that for 6 € (0, 1] small enough, it holds
d
—F(t,hy) < O.
dt ( ) t) =
for any ¢ € (0,1]. Since 0 < ¢4 < ¢1 < 3 < ¢z and c1c2 > ¢, we finally get that

et (1100,he 3y + 192 he | F ) ) < F(E ) < F(0, o) = [0 F )

Step 3. Proof of inequality ([34.34]). From the definition of A we notice that
IASs. (6Pl 2y < C't=2e™ (Rl L2y, Vit € (0,1,

for some constant C’. It is important to remark that since A lies in a compact, we do not need anymore
two different weights m; and mg. Therefore, we apply Proposition B.Z48 with X = L?(m), Y = H2(m),
© =9/2 and o* = —1 to get (B434). O

3.4.2 Spectral analysis on the linear operator in the disconnected case

We consider in this section the disordered case ¢ = 0. The corresponding FhN kinetic equation is

linear and writes

atg = am(Ag) + 0y (BO g) + agvg

By=v(w—=\(v—1)+z,

Theorem B.2.46] states that there exists at least one function G € PN H2(m) which is a solution to the

associated (linear) stationary problem
LGo = 0:(AGo) + 0,(BoGo) + 02,Go = 0.

Since the operator now enjoys a positive structure (it generates a positive semigroup S, ), we can perform
a more accurate analysis. Indeed, we can apply the the abstract Krein-Rutman theorem [3.4.60 previously
stated.
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Proof of the stability around € = 0 in Theorem [3-2.46] Let us assume for a first moment that hypotheses
of the abstract Theorem [BZ460 hold for % with a* = —1. We easily remark that

A=0, fo=Go ¢=1,
therefore, there exists & € (—1,0) such that
X(L) N Ag = {0},
and
V fo € L*(m), Vt >0 | Sz () fo — (fo)GollL2(m) < Ce™ || fo — (fo)Goll L2(m)-

Now, for € > 0, we consider G, such that

Qs[/GE] Gs = 0;

then, it holds

S (G Go) + Zo(Ge ~Go)=h,  h=cd((v~ F(G2)Ge),

and, thanks to Duhamel’s formula, we get that
t
1Ge = GollL2m) < 152, (t)(Ge = Go)llL2(m) +/ 152, (t = $)hl[L2(m) ds.
0
But G. — Gy and h have zero mean, then
at c at
[Ge — GollL2(m) < Cl|Ge — Goll2(mye™ +¢ EHGeHHg(Ml/%)(l —e™).
Letting ¢t — oo we conclude that there exists C5 > 0 such that

Ge = GollL2(m) < € CallGell i (ar/2m)-

Finally, thanks to Corollary B.3.55, we have
0 = (Q[Fc.lGe, Ge)pn < Ki = Ko|Gell3 < Ky — e5 Kol Gel| 7

(m2)?

for any exponential weight msy. If ko > K, we have then
1G2s ar1r2my < Crovea |Gty < Crna fes Ko,

and in the small connectivity regime £ € (0,ep), constants K; and Ko do not depend on e. Defining

n(e) = € CaCl 10y K1/c5 K2 we get the stability part of Theorem [3.2.46

It only remains to verify that the requirement of Theorem are fulfilled for %, in the Banach
lattice X = L?(m).

1. (a) the splitting (B.431]) has the nice structure. Indeed, the Lemma BZ61] implies that By + 1 is
hypodissipative in L?(m), therefore

158, ()| (L2(my) < Ce™", V>0,
i.e., it suffices to take o™ = —1.
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(b) if Y = H2(m) and X = L?(m), the desired inequality is consequence of Lemma B.2.62

2. The requirement is obtained for 5 = 0 and ¥ = 1. Indeed, in that case
L5 = Q31 = 0 > By,

3. A side consequence of [B32])) is the positivity of the semigroup:
foZO = Sgofo(t)zo, Vit >0.
Moreover, using that L?(m) is also a Hilbert space, we deduce the Kato’s inequalities.

4. The strict positivity (or strong maximum principle) is a straightforward consequence of Theo-

rem B.8.73 in Appendix
O
Let us finish this section by summarizing the properties of the spectrum of %} in the Banach space

L?(m) and by a useful result on the regularisation properties of R &, (2).

Proposition 3.4.63.
(i) There exists & < 0 such that the spectrum (%) of L in L*(m) writes
E(Z)nAs = {0},
and 0 is simple.
(ii) For any o > @, there exists a constant Cyz > 0 depending on (a — &), such that
IR 2 ()| (L2(m) i (my) < Cuz(1+12171), Yz e C\ {0}, Re(z) > a.
Proof. Tt only remains to prove (ii). Let us consider z € A, \ {0}, and take f,g € L?(m) such that
(L —2)f =g
Thanks to Lemma [B.4.61] and the definition of A, we get
(Re(z) — @)HJCH%Z(m) + Ha’ufHQL?(m) < llgllz2gmy 1 f lL2em) + N HfH%Z(m)‘

Moreover, (i) tells us that 0 is an isolated simple eigenvalue for % in L?(m), then R, (z) writes as the

Laurent series (see for example [86, Section 3.5])

(oo}

Ray(2) = Y 2"C,  Cr € B(L*(m)),

k=—1
which on a small disc around 0 converges. Thus, there is some C° > 0 such that |Rg,(2)||#L2(m)) <

C|z|7! for any z € A,, z # 0. Finally, we notice that
min(1L, @ — @) flarem) < 1+ NC2[7Y) llgllL2m2),

therefore, it suffices to take Cp1 = 14 /NC”min(1, — &), with N large enough. O
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Stability of the stationary solution in the small connectivity
. regime

Now, we establish the exponential convergence of the nonlinear equation. To that aim, we first notice
that, in the small connectivity regime, the linear operator .. inherits (in a sense that we precise later

on) the stability properties of %.

3.5.1 Uniqueness of the stationary solution in the weak connectivity regime

As a first step in the proof of Theorem B.2.47, we need a uniqueness condition that, for instance, can
be settled as a consequence of the following estimate:
Lemma 3.5.64. There exists a constant C\, such that for any g € L*(m), (g) = 0 and for the solution
f € L?(m) to the linear equation Zpf = g there holds

11y = 1fl2aam) + VoSl L2arrrzmy < Cv lIgllL2m)- (3.5.35)
Proof. We easily compute

| @nsam = = [ st = [ @0 v

for some p(z,v) polynomial in z and v with leading term v® 4 2*. Therefore, there exists some constants

K; > 0and 0 < K5 < 1, such that
/ (Lof)fMm? < Kl/ f?m? — Ky | f2M*m? — KQ/ (Do f)>Mm?.
R2 R2 R2 R2
The invertibility of %y in L?(m) for zero mean functions, writes

Lof=geL*(m), (9 =0 = |fle2em) < CallgllL2m),

with Cg given in the proof of the stability part of Theorem B.2.4681 As a consequence, for any f and g as

in the statement of the lemma, we have

1 K
et + [ @uppai® < - [ gt 22 [
R2 R2 Ko Jpo2

R2 K2 2
1 1 K, C
< = 2 M2 2 - 2 2 1 2 2
- 2 R2 f m + 2K22 R2 g m + KQ R2 g m ’
from which (Z5.30) immediately follows. O

Corollary 3.5.65. There exists €1 € (0,£9) such that in the small connectivity regime € € (0,e1) the

stationary solution is unique.
Proof. We write

GomFo = e |0,( (v F(EDF (v~ £(G2))Ge )|
= 2" (0~ FENE -G+ (F(R) = F(GG:)| (3530)
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As a consequence, using the invertibility property of %, for zero mean functions, and the uniform

bound B2ZI0) on G., F., we get

eCa ||0y((v = 7 (F2))(Fz = Ge) + (7 (F2) = £ (G)Ge) || 1oy
eC||F. — Gclly,

[Fe — Gellv

IN

A

for some C' depending on the parameters of the system and 3. The previous relationship implies, in

particular, that ||[F. — G|y =0 fore <e; =1/C. O

3.5.2 Study of the Spectrum and Semigroup for the Linear Problem

We now turn into a generalisation of Proposition B 463 in the case € > 0 small. Since the positivity of
the operator is lost, Krein-Rutman theory does not apply anymore, however we can prove the following
result based on a perturbation argument
Theorem 3.5.66. Let us fix o € (,0). Then there exists e5 € (0,21) such that for any e € [0, e2], there
hold

(i) The spectrum %(Z:) of £ in L*(m) writes
N(ZL) U A = {peh,
where e is a eigenvalue simple. Moreover, since £ remains in divergence form, we still have
ZX1=0
and then pe = 0.
(ii) The linear semigroup S, (t) associated to £ in L*(m) writes
Sg.(t) = "L + R(t),

where Il. is the projection on the eigenspace associated to pe and where R.(t) is a semigroup which
satisfies
at

| Re(t)|| z(L2(m)) < Cez., €,

Jor some positive constant C, —independent of €.

To enlighten the key points of the proof we present it in three steps: accurate preliminaries, geometry
of the spectrum of the linear operator in the small connectivity regime and sharp study of the spectrum

close to 0:
Step 1. Accurate preliminaries: Let us introduce the operator
P.=% —-%=—-c0,((v— _Z(G:)):) +e Z(-)0uGke.

Our aim is to estimate the convergence to 0 of this operator in a suitable norm. We notice that, for two

exponential weights mi, mq as in [B2Z.0) with k1 < k2, it holds

IN

1Poh|3 s C &2 /R (h2 +v2|0,h|2) m2 + C 2 7 (h)?

Ce® (1Rl () + 100PN T2 (ns))

ml)

IN
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where C' depends only on the parameters of the system and, in the small connectivity regime, on ;.

Therefore, there exists Cp., > 0 such that
| PhllL2(my) < Cp., €l 1 m.)-
Step 2. Geometry of the spectrum of ...
Lemma 3.5.67. For any z € A,, z # 0 let us define K.(z) by
Ke(z) = — P-Rg,(2) AR5 (2).
Then, there exists n2(g) j 0, such that
Vz e Qe i= Aa \ B(0,1m2(2)),  [|1Kc(2) || r2(myy < m2(e)(1 +m2(e)).
Moreover, there exists eo € (0,e1] such that for any € € [0,e2] we have
1. I+ K.(z) is invertible for any z € Q.
2. . — z is also invertible for any z € Q. and
Vze., Ra(z)=U(2)(I+K.(2)"

where

U:(2) = Rp.(2) = Rz, (2) ARB.(2).

We thus deduce that
(&) NA, C B(0,m2(e)).
Proof. We define m; and mso two exponential weights with m; = m. From Lemma [B. 461l Proposi-

tion BA63 and the Step 1 we get that for any z € Q., any h € L?(m)

1K< (2)hl 2(m)

IN

e Cp.,[[R2(2)ARs.(2)] 1y (m,)

A

< eCp, Crn(1+ 12| DIARE. (2)hl| L2(m,)
< eCp, Cn(1+ 2|71 Cey |1l L2(my,

where C¢, is an upper bound of | ARz, || %(L2(m),22(m.)) @and do not depend on e. Defining
m2(e) = (e Cp,, Crn Ce))'/2,

it holds

1K (2)l(z2(my) < M2(€)*(L+m2(e) 1) = m2(e) (1 +m2(€)), V2 € Qe

therefore, fixing €9 > 0 such that
n2(e) <1/2, Ve e (0,ea],

we obtain the invertibility of I + K.(z).

Finally, for any z € .:

(L —2)U(2) =T+ K (2),

then there exists a right inverse of .. — z. The rest of the proof is similar to the proof of [I54, Lemma

2.16). O
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Step 3. Sharp study of spectrum close to 0.

Let us fix r € (0, —a] and choose any €, € [0, €3] such that 12(e,) < 7 in such a way that (Z.)NA, C
B(0,r) for any € € [0,&,]. We may define the spectral projection operator

1
Moo= —— R

211

(z")dz'.

|2'|=r
We have then the

Lemma 3.5.68. The operator 11, is well defined and bounded in L*(m). Moreover, for any € € [0,¢,],
it holds

ITLe — ol (L2 (m)) < m3(€),

for some n3(e) —— 0.
e—0

Proof. Let us notice that

1 1
My = —5— (R (2') = Ry ARpso () dz' = o— R, AR, (2) d2’
3 |2 |=r T |2 |=r
and
1 _
L= g5 ) (Re) =R AR () + Ku() ™ a2
1
= — R, (2) Ke(2') (I + K ()" d2
211 \z’|:r
1
— Ry ARp.(2)I + K.(2') " d7.
211 ‘zl‘:,,‘
Then, we deduce that
1
Mo —Tlp = — Rp. (7)) Ko (2')(I + K. (2') ' d2’
|z"|=r
1
+— Rz, A(Rp. () — Rp, (2)) d2’
211 ‘Z":’I‘
1
+2_7Ti e Ry ARp. (2')(I — (I + KE(Z/))il)dZ/’

here, the first and third terms are going to 0 because of the upper bounds of K. (z). For the second term,

it suffices to notice that

and use that (B. — By) = P-. O

To conclude the proof we recall the following lemma from [86] paragraph 1.4.6]
Lemma 3.5.69. Let X be a Banach space and P, Q two projectors in (X ) such that |P— Q| zx) < 1.
Then the ranges of P and Q are isomorphic. In particular, dim(R(P)) = dim(R(Q)).

Provided with this lemma and fixing &’ such that n3(¢’) < 1, we get the
Corollary 3.5.70. There exists £’ > 0 such that for any € € [0,&’] there holds

(LN A, ={u} and the eigenspace associated to p is 1-dimensional.
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3.5.3 Exponential stability of the NL equation

In the small connectivity regime € € (0,¢’), let us consider the variation h := f. — G, with f. the
solution to (BI2) and G. the unique solution to B2ZI2) given by Theorem B.2Z46l By definition, h
satisfies the evolution PDE:

Oth = ZLoh — 0y (vh) + € _Z (f)0ufe — € F(Ge)0yG: = Lh+¢ g (h)0,h,
moreover, the nonlinear part is such that
le Z(R)OuhlL2(m)y < CellhllL2m)llOuhllL2(m)

for some positive constant C.

Proof of Theorem [3.2.77 Let us first notice that, thanks to inequality (3:2.10) and the definition of _# (),
we have that

e Z (B)uhllL2(my < CnrellbllLogmy, — Yho € H'(m),

where

Cni = c5 ' max(Ca, ||holl 1 (m))-

On the other hand, Duhamel’s formula reads

h =Sy (t)ho +/0 Se. (t — s)(c 7 (h)dyh) ds,

then, we have that

A

t
ut) = [[hll2m) < IISxE(t)hol\m(mﬁ/O 1S (t = 5) (€7 ()uh) || L2(m) ds

IN

t
ngl eatllhOHLZ(m) + ngl CNL g / €a(t75) ||h||L2(m) ds
0

t
Cg., e®u(0)+ Ce Cnre / ey (s) ds.
0

In particular,

“(t) < Cg U(O) e(o‘JrCa%’sl CNLE)t,

Summarising, it suffices to define n*(g) := Ca/+/€ to get that for any fy such that

[fo = Gellarm) < 07 (e),

it holds
I£-(t) = GellLe@my < Ce., l1fo — GellL2pme™ ",
with
af = a+ Cgslcglch/e_* <0,
if £* is small enough. O
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Open problems beyond the weak coupling regime

3.6

In the weak coupling regime, we have demonstrated that existence and uniqueness of solutions persist.
In that regime, noise overcomes nonlinear effects and the system is mixing: one finds a unique distribution
with an everywhere strictly positive density. As coupling increases, highly non-trivial phenomena may
emerge as nonlinear effects of the McKean-Vlasov equation. For instance, it is likely that in another
asymptotic regime in which coupling is non-trivial and noise goes to zero, Dirac-delta distributed solutions
shall emerge (in which all neurons are synchronized and their voltage and adaptation variable are equal

to one of the stable fixed point of the deterministic Fitzhugh-Nagumo ODE).

Here, we numerically explore the dynamics of the Fitzhugh-Nagumo McKean-Vlasov equation using
a Monte-Carlo algorithm. We observe that complex phenomena occur as the coupling is varied. That
numerical evidence tends to show that several additional equilibria may emerge, the stability of stationary
solutions may change as a function of connectivity levels, and attractive periodic solution in time may
emerge. These regimes are particularly interesting from the application viewpoint: indeed, among im-
portant collective effects in biology, from large networks often emerge bistable high-state of down-states
(characterized by high or low firing rates), and even oscillations. These two phenomena are particularly
important in developing and storing memories, and this occurs by slowly reinforcing connections [83].
Interestingly, these two types of behaviors emerge naturally in the FhN McKean Vlasov equation beyond
weak coupling. For instance, for fixed ¢ = 0.5, we present the solutions of the particle system varying the
connectivity weight beyond small values, both in the bistable case (in which the FhN model presents two
stable attractors) and the excitable regime, the most relevant for biological applications, characterized
by a single stable equilibrium and a manifold separating those trajectories doing large excursions (spikes)
from those returning to the resting state directly. In both cases, we observe (i) that the unique stationary
solution is not centered close from a fixed point of the dynamical system: neurons intermittently fire in an
asynchronous manner for small coupling. As coupling increases, a periodic attractive solution emerges,
before the appearance of distinct stationary solutions (two in the bistable case, one in the excitable case).
These phenomena are depicted in Fig. Bl Proving, for larger coupling, the existence and stability of
a periodic solution or distinct and multiple stationary solutions constitute exciting perspectives of this

work.

These phenomena are actually conjectured to be generic in coupled excitable systems subject to noise.

Appendix A: Mean-Field limit for Fitzhugh-Nagumo neu-

3 ° 7 rons

Let us start by a well known result with is a simple application of global existence and path wise

uniqueness for system of SDE, see [56, Chapter 5, Theorems 3.7 and 3.11] for example. Consider the
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° FUVIO

Figure 3.1: Permanent (non-transient) regimes of the FhN particle system for N = 2000. Top row:
J =0.1 (A) and J = 3 (B), bottom row: J = 1. The unique stationary solution in the small coupling
limit analyzed in the manuscript visits both attractors transiently (A), while in the high coupling regime
(B), the system remains around one of the attractors (the system has at least two such solutions). In an

intermediate regime, the system shows periodic oscillations (bottom row).
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particle system for 1 <i < N:

N
dv = (v} (vf = \) (1= vf) —af + L) dt + = > (vf —vf) dt + dW}
N <
= (3.7.37)

dal = (—axi + bol)dt,

with initial data (X¢, Vy) for 1 <i < N distributed according to fy € P2(IR?), i.e., a probability measure
in R? with finite second moment. Here the (W});>¢ are n independent standard Brownian motions in R.
This result was stated in [10]. In that paper, the authors use a stopping in the n-voltage variables which
requires finely controlling all trajectories. We prove here a simpler version of the result based on a-priori
estimates.

Lemma 3.7.71. Let fo € P(R?) be a probability with finite second moment, and a set of random variables
(XE, V) with law fo. Then BI3T) admits a path wise unique global solution with initial datum (X, V{)
for1 <i<N.

Proof. The system (B.7.37) can be written in R*V as the SDE

dZY = oV dBY +b(Z}) dt,

1,1 N

N _ Ny N
where Z;' = (x;,vf,...,21,0;"), O

is a constant 2N x 2N sparse matrix, (BY);>o is a standard

Brownian motion on R?V, and b : R?Y — R?V is a function defined in the obvious way. It is easy to see

that b is a locally Lipschitz function, moreover, letting (-, -) and || - || the scalar product and the Euclidean
norm on R2¥ respectively, then for all ZY = (2!, 0%, ... 2V, oV),
N N N oo _ _ N _ . g X _
(ZV,b(Z"Y)) = izzlxz(—axz + ') + Z-:Zlvz(vz (' =N (1 —v)) —2"+1o) + N Z.;l v (v' =)
< i(b — D'’ + i (J'* = alz"]?) — J i viv? + ON
N i=1 N ij=1
< C+1ZV)P).
This is a sufficient condition for global existence and pathwise uniqueness (see e.g. [100]). O

Mean-Field limit

Now we turn to the propagation of chaos property. We already know the existence and uniqueness of

the particle system ([BZ3T), moreover the nonlinear SDE:

dvy = (ﬁt(ﬁt N1 —-0)— T+ I) dt + J/ (v — v) dfe(z,v) dt + dWr,
RQ
dzy = (—aT + buy)dt (3.7.38)

fr =law(Zs,7;), law(Zo, o) = fo.

is also well-posed for fo € L'(M?) N L'log L' N P(R?), as a consequence of Theorem Then, for

instance, we can sate the
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Theorem 3.7.72. Let fy be a Borel probability measure and (X§,Vy) for 1 <i < N be N independent
variables with law fy. Let us assume that the solutions to BL31) and BL38) with initial data (X, Vy)
and fo are well defined on [0,T] and such that

sup {/ (12 + [of?) dfe(2v) } < oo, (3.7.39)

0,7 * Jr2
with f; = law(zt,vY) (which actually does not depend on i by exchangeability). Then there exists a
constant C' > 0 such that

E[lei — 2 + Jof — ai?] < e, (3.7.40)

=

Proof. We start by writing X} = 2 — i and V}’ = v{ — #}. For notational convenience we drop the time
dependence subindex and take J = 1. Because x! and Z! are driven by the same Brownian motion, we

have that

N

Vi = (vi(" — N)(1 — ') — B (0" — N)(1 - &) — X7) dt+%Z(vifvg)dt—/w(@i,v)dft(z,v)dt

dX" = (—aX" +bV)dt,

We define a(t) = E[|X?|>+|V?|?] which is independent of the label i by symmetry and exchangeability
of the system. It is not hard to see that

1d 02 il (vri i b
5 (X P =EpIX| V] =l X"P] < Sa(),
and
1d i (i N i i
oy [|V|} = E[V(U(U—A)(l—v)—v(v—)\)(l—v)—X)]
[%2_; P —vl)dt - W/(vi—v)dft(x,v)} — 85+ 8.

Estimate for Sy: Let us first notice that

v (vt =N =) = 7T = XA -7 —(W' P = [7"1%) + (L + M) (o' = [7?) — AV

Vi 2+ 0" 00+ |0 + (1 4+ V(o] + |0°]) — AV,

therefore
S1 = E[V' (=o' ? =o' 0" — [0 + (1 + N (|[o'] + [0']) = N)] — E[V'X7],

and by consequence there is some constant C' > 0 such that

S < Ca(t). (3.7.41)

Estimate for Sy: By definition, it holds

S, = E{Vl(v — %) %i / vdfy(z, U))}

Jj=

_%;( [ i )]

—

= E[V'?]

lﬁ
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Moreover, by symmetry we know that Ss does not depend on a particular i, therefore we take i = 1 to

get
1 1/2 N o 27\ 1/2
se<m VP 1V (#]3 (d - [ ranen)i]) "
Now, defining Y7 = v — Jge vdfi(x,v), for j # k, we find that
E[y’Y*] = E[E[Y | (&, e)]E[Y* | 2" 5)]].

but
E[Y7 | (z',0")] :E[Uf —/R2Udft(x,v)} =0.

Hence, fixing j. € {2,...,N}

{551~ [ )

(N — 1)EUU{* — /szdft(x,v))ﬂ

V=1 [ (0= [ vdien) il < v -,

since the second moment of f; is uniformly bounded in [0,7]. Finally we conclude that

Sy < a(t)—i—a(t)l/Q\/—%. (3.7.42)

Finally, going back to the bounds on «(t), we put together B741]) and BL42) to find

%“(ﬂ < Ca(t) + 2a(t)“2\% < Ca(t) + %

and using Gronwal’s Lemma,

which finishes the proof. O

Appendix B: Strong maximum principle for the linearized
3.8 operator

In this final appendix we shall extend the result provided in [I59, Corollary A.20] to our framework.
These local positivity estimates are classical in hypoelliptic equations and they are a necessary condition
for Theorem [3.2.46l Here, our result is time dependant and by consequence more general than it is needed

in the applications.
In the sequel, we shall use the notation
BT(SC(),’U()) = {(1‘,’0) E]RQ; |’U*’U0| < |1‘7$0| Srg}a

and come back to the classical notation V, , = D, , and 012”} = A,. Also, we simplify the problem by

choosing a = b = 1, but the proof can be easily extended to the general case.
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Theorem 3.8.73. Let f(t,x,v) be a classical nonnegative solution of
0
Ef —A,f =A(t,x,v)Vyf + Blx,v) V. f + C(t,x,v) f (3.8.43)

in [0,T) x Q, where  is an open subset of R?, and A,C : [0,T) x R? and bounded continuous functions

and B(z,v) = 2 —v. Let (x9,v9) € Q and A and C upper bounds of respectively ||A||p~ and ||C||p.

Then, for any r,T > 0 there are constants A\, K > 0, only depending on A, C' and r?/7 such that
the following holds: If Bx,(zo,v0) C Q, 7 < min(1/2, —log(r®/2|xo — vo|)) and f > § > 0 in [1/2,7) x
B, (xg,v0), then f > K§ in [1/2,7) X Ba,(xo,v0).

Theorem [B.8.73] implies, via covering arguments in variables ¢, x, v the
Corollary 3.8.74. If f > 0 solves B843)) in [0,T) x Q and f > § >0 in [0,T) X B.(xo,v0), then for
any compact set K C Q containing (xo,vo) and for any ty € (0,T), we have f > 6" > 0 in [to,T) x K

where &' only depends on A,C, K,Q, xo,v0,7,t0,0.

Proof of Theorem [3.8.73 We only explain how to adapt the proof of Theorem A.19 given in [I59]. Let
g= eétf(t,x,v); then ¢ > fand Lg > 0in (0,7) x Q, where

L=0+w—x)V,—A, —A(t,z,0)V,.

Next, we construct a particular subsolution for £. In the sequel, B, stands for B, (xo,vo) and we

define X (zo,v0) = vo + (zo — vo)e".
Step 1. Construction of the subsolution.
For ¢t € (0,7] and (z,v) € Q\ B, let

RY
P(t,z,v) = a% — g(v —vo)(x — X))+

(.’L' — Xt)2
2t3 7

with «, 8,7 > 0 to be chosen later on. Let further define
ot z,v) = e nPETY) _ o

where ji,e > 0 will also be chosen later on. If we assume that 32 < ay, then P is a positive quadratic

form in the variables v — vy and x — X;. Clearly
Lo=—pbe "TEP),
where
E(P) =0, P+ (v—2) VP — AP+ |V, P> — A(t,2,v) V, P.

By straightforward computation we find that & = & + &, with

(v -

£(P) = (MaQ—%—ﬁ)ti;}O)Q—i-Q(ﬁ—i-%—uaﬁ)

(e =)

(v —vg)(x — X3)
t3
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and

(-w)e-X) 1
12 t

(r — Xy)? A(t,z,v)(v — ) Atz v)(x — Xy)
e -« " 9 4 153 2 .

SQ(P) = f

-

Now we notice that & is defined by the quadratic form

(0%
pa’=S -8 B+g—pap
3y

M, = g 2
Bt+5—nap kB -

q

which is nothing but a quadratic polynomial on (v —vg)/t and (x — X;)/t?. As p — 0o

tr My = p(e® +5%) +0(1)
3ap?
2

3 2
+apy— - =2+ 0,

det My, = p
both positive quantities if 3 > o and ay > 82. In particular, for 8 =2« and v = 8 a,
tr M, =5a%u+0(1)
det M, =20a° u+ O(1),

and letting 1 — oo the eigenvalues of M, are of order y 3% and j. So, for any fixed C' > 0 we may choose

«, B, and p such that

owp , e XiPy

61(P) Z Cﬁ( t2 t4

Second, if ¢t € (0,1) then

with C' arbitrarily large.
Let us briefly describe the rest of the proof. Recall that (z,v) ¢ B, so
1. either [v — vo| > 7, then £(P) > const.(8/t)[Cr? /T — 1], which is positive for C > 7/r?;
2. or |z — x| >, and then, if 7 < £ min(1, — IOg(mT——svo\)) then for any ¢ € [0,7)

|z — X¢|? < |z — 20/ B | X — 20]? - i

X, — x| <1r3/2 d
[Xi — ol <77/2 an 2 = o 2 = a2

so £(P) > const.(8/t)[Cr% /473 — 1], which is positive as soon as C' > 473 /5.

Summarizing: under the assumptions, we can always choose constants v > 8 > « > 1 and ay > 32,

depending only on A and r2/7, so that

Lp>0, in[0,7)X (Bx\ By),
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as soon as 7 < min(1/2, —log(r3/2|zo — vo)).

Step 2. Boundary conditions. We now wish to prove that ¢ < g for ¢t = 0 and for any (z,v) € 9(Bx,\ Br);

then classical maximum principle will do the rest.

Let us first notice that the boundary condition at ¢ = 0 is obvious (¢ can be extended by continuity

by 0 at the initial time). The condition at 9B, is also true since V (z,v) € 0B,: ¢ < < g.

It remains to fix the remaining parameters in order to conclude that ¢ < g in 0B),. From the choice

of a, B and #, it is easy to see that for any (z,v) € OBy, :

a/(v—v)? (z—X;)? a . N2 \6y6 aXe o2y
P(t’x’”)ZZ( P )Zme(T ’473)2 16 mm(_ _)’

notice that we are imposing A > 1. Choosing

_ LIS (ﬁ ﬁ))
sféexp( 16 Minl—5))

we get p = §e HPtzv) _ o < () on OB),. By consequence ¢ < g on the whole set By,

Let us finally notice that at this point we have uniform bounds for g on Bs, \ B, for any ¢ € [7/2, 7).
Indeed,

_ 2 — X,)? 2 1026 16 2 .6
P(t,x,v) <279 (v=o) Jr(z t) §27(8L+ 0267 )§20687max(r—,r—)
t t3 T 73 773
Then, for A big enough we find Ky > 0 such that
2,6 22 2,6
o(t,x,v) > 6 {exp ( — 2068 iy max (T—, r_)) — exp ( _BAA hin (T—, r_))} > Ky,
T’ 73 16 T 73
because v = 8 «, to find such A it suffices that
2 .6 2,6
2068 x 16 x 8 max (r—, T—) < A% min (r—, T—),
T 73 T 73

by consequence A depends only on r2/7.

Finally, we find K, A > 0 depending on A, C' and r?/7 such that
F>Kode™C on [r/2,7) x (Ba \ By).

O

Remark 3.8.75. Let us notice that we can extend Theorem [3.8.73 to some cases when A or C' are not
necessarily bounded and 2 = R2. It suffices to take any r,7 > 0 and fix X\ (which as we saw only depends
on a numerical constant and the ratio r2/7). We can then fit R > 0 big enough, in order to have that
Ar < R and study the equation into Br, where by continuity A and C' attain their mazximum in the

compact set [0,7] x Bg.
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CHAPTER 4

Local homeoprotein
reaction-diffusion can stabilize
boundaries generated by graded

positional cues

Boundary formation in the developing neuroepithelium decides on the position and size of compart-
ments in the adult nervous system. In this study we start from the French flag model proposed by
Lewis Wolpert in which boundaries are formed through the combination of morphogen diffusion and of
thresholds in cell responses. In contemporary terms, a response is characterized by the expression of cell
autonomous transcription factors, very often of the homeoprotein family. Theoretical studies suggest that
this sole mechanism results in the formation of boundaries of imprecise shapes and positions. Turing,
on the other hand, proposed a model whereby two morphogens exhibiting self-activation and reciprocal
inhibition, uniformly distributed and diffusing at different rates lead to the formation of territories of un-
predictable shapes and positions but with sharp boundaries (the leopard spots). Here we have combined
the two models and compared the stability of boundaries when the hypothesis of local homeoprotein
intercellular diffusion is, or is not, introduced in the equations. We find that the addition of the home-
oprotein local diffusion leads to a dramatic stabilization of the positioning of the boundary, even when
other parameters are significantly modified. This novel combined model has thus important theoretical
consequences for our understanding of the role of homeoproteins intercellular diffusion in developmental

robustness and of the changes that take place in the course of evolution.

This paper is included in [127] written in collaboration with A. Prochiantz and J. Touboul to appear

in Development.
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Introduction

The specification of territories in the nervous system relies on the precise positioning of boundaries
between different functional areas [60, 00, [91]. Each territory is characterized by the expression of a
specific combination of molecular marks, including transcription factors (TFs), before developing into
areas endowed with specific functions [I19] [I70]. The emergence of compartments in the cerebral cortex
or in the spinal cord is a paradigmatic example of this process. From a theoretical perspective, the
specification of territories in the nervous system represents a particular case of the general phenomenon
of patterning. We owe to Alan Turing the first theoretical model of how patterns form. In his 1952 seminal
article “The chemical basis of morphogenesis” Turing explains how reaction-diffusion properties of two
morphogens, in the presence of a catalyst, can lead to the emergence of heterogeneities even if the tissue
is initially homogeneous [I55]. This universal pattern formation mechanism through Turing instabilities
has become increasingly popular in the developmental biology community [84] 10T [T35] 130, 167]. In
Turing's model and its enriched versions, in particular those proposed by Meinhardt and colleagues [108],
the interaction of a limited number of molecular species can create regular spatial patterns, provided that
they exhibit different diffusion constants and have auto-activating and reciprocal inhibitory properties.

In all cases, Turing-like mechanisms alone do not lead to the emergence of predictable shapes.

Another popular patterning mechanism has been proposed in 1969 by Lewis Wolpert [164] with
the concept of Positional Information (PI). This model, also known as the French Flag Model (FFM),
requires a continuous morphogen gradient and the existence of thresholds. A typical abstract example
is the differentiation of cells into blue, white and red populations when exposed to high, intermediate or
low morphogen levels (thus the FFM), each territory corresponding to the expression of specific genes, in
many cases transcription factors (TFs) defining specific areas within the neuroepithelium. This model has

since evolved considerably to take into account the complexity of the cellular environment [77] 89} [94] [166].

If one compares the two models, Turing’s model allows the formation of precise and neat boundaries
but suffers from the absence of a historical pre-patterning leading to a lack of reproducibility in their
positioning. In contrast the PI model provides a pre-pattern that constrains the positioning, but suffers
from fuzziness due to an uncertainty in the morphogen concentration at which a threshold appears
(especially when the morphogen slope is shallow). This represents a serious difficulty as discussed by
Gregor and colleagues [68]. In addition to the positioning of boundaries, one has to consider the fate
of misplaced cells not expressing a TF combination corresponding to their territory. Since in PI models
each cell “works for itself”, cells close to thresholds may differentiate into different types, leading to a
salt and pepper pattern in the region of the boundary. In the most parsimonious version of the model (no
other mechanism added), the only solutions are migration or death of misplaced cells [91] [166], requiring

additional mechanisms and information to regulate cell migration/guidance and/or death.

It might thus be useful to verify if recent findings in developmental biology may permit to reconcile the

advantages of the two models. In vertebrates the most popular illustration of the PI theory is provided
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by the compartmentalization of the neural tube in response to the diffusion of the ventral and dorsal
morphogens Sonic Hedgehog (Shh) and Bone Morphogenetic Protein (BMP), respectively [I31], [44]. A
continuous gradient activates ventral and dorsal genes and territories are formed that express distinct
TF subsets [7, 44}, (45, O1]. In this model, differentiation is based on the almost general rule that within
a developing neuroepithelium, each side of a boundary expresses a TF, in most cases a Homeoprotein
(HP) transcription factor, which amplifies its own expression and represses that of its counterpart (on
the other side). This is illustrated, among many other examples, by the Pax6/Nkx2.2 dorso-ventral
boundary and the Otx2/Gbx2 antero-posterior boundary in the neural tube, or the Emx2/Pax6 boundary
in the cortex [24] 25, BT, I19]. An important novelty of this study is to introduce in the calculations

the intercellular transfer of HPs allowed by two short peptidic sequences present in their DNA-binding
domain [I38, 80, 143, (163} (139, 02, 114} 168].

Direct communication between nearby nuclei in the context of cell assemblies is reminiscent of the
studies where direct morphogenetic functions were attributed to transcription factors diffusing in the
fly embryo at the syncitial stage [49] 50]. The parallel is made even more striking by recent studies
suggesting that such local diffusion between nearby nuclei represses developmental noise allowing the
precise positioning of transcriptional domains [68] [69]. It is not usual to think of a transcription factor as
a morphogen, and if Bicoid was easily labeled “morphogen” in spite of being a HP transcription factor
it is rather because of its graded expression and of the fact that the Drosophila embryo is a syncitium
allowing Bicoid direct transfer from nucleus to nucleus. Therefore, the similarity between the Bicoid
model and our own hypothesis is limited to the fact that HP diffusion is involved. Indeed Bicoid in the
fly is a morphogen as defined by Wolpert whereas, in our model, HPs are morphogens in the Turing

acceptation of the term.

Indeed, their intercellular transfer added to self-amplification and reciprocal inhibition properties
may convey to HPs the quality of local Turing’s morphogens. In that sense, nature may have combined
Turing's morphogen diffusion (HPs) with PI provided by classical morphogen gradients (e.g. Shh). This
reasoning is at the basis of the parsimonious model presented in this study that takes into account the
presence of morphogen gradients, as in the PI theory, but also incorporates a Turing-like mechanism based
on the local diffusion of HP transcription factors. A major and counter-intuitive finding of our study is
that, even in the limit of infinitesimal diffusion, HP transfer across cells is sufficient to ensure precise
boundaries with reliable location. Beyond the case explored here in the context of neural development,
this study has led to us to discover an important mathematical property, universal in systems with
competing species subject to diffusion, as shown in another study [124]. This paper does not present
these formal mathematical details, but illustrates this theory with one minimalistic example that can be

precisely analyzed mathematically and simulated.

In conclusion it is demonstrated that the addition of the simple property of HP transfer integrates a
local Turing’s mechanism within the PI model first proposed by Wolpert and provides a very parsimonious

model for the formation of precise and stable boundaries.
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Figure 4.1: Different Models of cell differentiation: Pure gene competition with small diffusion in the ab-
sence of spatial cues classically yields to Turing patterns composed of unpredictable abutting territories,
while the PI model shows a fixed global patterning driven by the morphogen gradients but with impre-
cise salt-and-pepper boundaries. The combination of the two phenomena yields precise and predictable

patterning.

Model

4.2

We propose a model that takes into account the basic mechanisms at play during neuroepithelium
development when different combinations of genes are expressed in abutting differentiating domains,

including HPs, that dictate the morphological and functional fate of territories [91].

The simple and parsimonious model that we propose considers that the differentiation between two ar-
eas A and B is driven by the dynamical competition between the expression of two homeogenes associated

to distinct HPs: T4 and Tg. Three important processes propel this mechanism:
1. The presence of one or several morphogens forming gradients along the developmental axis.

2. The competition between the different HPs through autocatalytic activation and reciprocal inhibi-

tion

3. The activity of non cell-autonomous HPs captured from the closest neighboring cells (up to three

cell ranks) through extracellular diffusion.

As the neuroepithelium develops, epigenetic phenomena take place and modify the homeogene expression
repertoire by favoring those that are the most expressed. Eventually, a classical self-limiting process such

as saturation within the cell imposes a plateau to gene expression.

All these phenomena provide a well-defined equation for the evolution in time of the HPs in each cell.

We provide the detailed mathematical model in the following section. Overall, the model qualitatively
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depends on only three effective parameters that are the ratio of (i) the autocatalytic activation rates (ii)

the saturation/inhibition rates and (iii) the extracellular diffusion rates.

4.2.1 Theoretical Description

The model describes the time evolution of the quantities T4 and T in a spatially extended neural
tissue composed of N differentiating cells. Their dynamics is the result of cell-autonomous mechanisms

and non cell-autonomous diffusion. Specifically, they satisfy the equations:

Time Evolution Cell-autonomous mechanism Diffusion
d
ETA Da(Fa(x) 4+ gaTa) — saTa(Ta+Tg) VA I
= +
d
%TB Dp(Fp(x) +98TB) — sgTe(Ta + Th) opATp

where Fy and Fp represent the effect of the external cues (morphogen gradients) on the expression of

TA and TB .

Cell-autonomous HP competition

The expression of the genes is the result of the competition between the expression of the two combina-
tion of genes modulated in our system by gene expression capacities D4 and Dp that evolve according to
epigenetic mechanisms that we discuss below. We take into account the following phenomena (described

for one combination of gene, A, the same phenomena being considered for B):

> Morphogens stimulates TF expression:

d
— T4 = DuF .
pral AF4(x)

The quantity F4(z) denotes the rate of production of T4 induced by the morphogen on cells at
location x. It is a monotonic function along developmental axis (gradient direction of the mor-

phogen).

> The auto-inducer properties of TFs are taken into account by considering that T4 stimulates its
own expression with a positive rate g4. This intensity is modulated also by the gene expression
capacity D4

d
Ty —>Tp+Tsy = %TA = gaDaTy.

> The cross-inhibition properties imply that the presence of Ts inhibits the expression of Ty causing,
in the cell, a decrease of the production rate of T4 at a certain rate s 4. The simplest way to express

this competition is to write:

d d
Ty+Tp — n = ETA = —s52T4Tp and ETB = —spTATR.
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> Finally, saturation of the number of proteins inside the cell is taken into account by considering
that the rate of production of the species decreases when T4 exceeds a certain level. We choose
here the logistic saturation law classical to ecologists:

d !

ETA = =W Ta(l —Ty).

These equations characterize the expression dynamics within a cell. All phenomena requiring gene
expression occur at a rate that is scaled by a coefficient D A taking into account the epigenetic phenomena.
This coefficient accounts for the fact that the more one combination of gene is expressed, the more likely
it is to be expressed. This facilitation-inhibition of the transcriptional activity results in the fact that

D4 is an increasing function of Ty and decreasing function of Tg:
Dy =G(Ta,Tg)
where the map G is such that, by convention:
G(0,y) =0, G(4o0,y)=1.

In this scaling, D4 = 1 corresponds to a maximal expression activity and D4 = 0 to no gene expression

at all.

Non cell-autonomous transfers

In addition to the cell-autonomous mechanisms, and given that homeoproteins are endowed with direct
non-cell-autonomous properties, we include in the set of equations what we called a diffusion operator A.
From a modeling viewpoint, we incorporate in the dynamics of T4 and Tz the ability of being transferred
to neighboring cells. To emphasize this very local mechanism, we limit this diffusion to one cell in all
directions. In detail, the time evolution of the transcription factor level T4 (z) within the cell at location
x is added a nonlocal term corresponding to the exchange of transcription factors from and towards the

set of neighboring cells v(z) (the number of neighbors is denoted |v(z)|):
iTAz:UTA:c,V:c = — v(x)|Ta(x) + Taly)).
dt il

yev(x

In other words, TFs have the ability to be transferred to all neighboring cells at a rate o (the intensity

in time of the transfer), creating outward inward fluxes.

Results

4.3

The problem of boundary formation and stability consists in determining (i) whether the piece of
neural tissue clearly splits into separate regions in which cells either express T4 or T and (ii) the site
where this partition takes place as a function of initial conditions and the stability of the boundary

position upon random parameter variations.
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Figure 4.2: Schematic description of the model of neural differentiation: TF synthesis is driven by external
morphogens organized along gradients (that form through diffusion from different morphogen sources)
and by the dynamical competition of gene expression. Diffusion of HPs to the nearest neighboring cells

take into account the non cell-autonomous transfer properties.

4.3.1 Ambiguous boundary in the absence of non cell-autonomous processes

In the absence HP diffusion, the behavior of each cell is governed by an autonomous equation (inde-
pendent of the behavior of the other cells) that depends on the local concentration of morphogen. Within
each cell, homeogenes compete for expression, and the outcome of this process is that the “winner-takes-
all”: one TF will be expressed at the expense of the other that eventually disappears. The differentiation
of a cell into A or B depends on their position within the morphogen gradient. We demonstrate in the
Supplementary Material that in the regions where the expression of one HP (say, T'4) is highly promoted
by the morphogen gradients, the cells can only differentiate into type A : morphogens “select”, in these
regions, the winner. However, in the regions of intermediate concentrations of morphogen, the cells can
differentiate into A or B, and the fate of one cell is governed by initial concentrations of HPs and the
transcriptional noise. In other words, there exists a non-trivial set of morphogen concentration levels
in which the system has a stochastic patterning. In a differentiating tissue, the region corresponding to
these morphogen concentrations is ambiguous: the system displays an exponential number of possible

stable differentiated stated.

The sensitivity of the differentiation process within the ambiguous region leads, in physiological noisy
conditions, to an unpredictable patterning, and a vast majority of the solutions displays an alternation
between the two cell types, precluding the definition of smooth boundaries between cells but rather leading
to a salt-and-pepper pattern. In the absence of additional processes leading to cell reprogrammation,
migration or death [91], this salt-and-pepper regime is ubiquitous (see Supplementary Material). This is
a property of a wide class of abstract models of cell differentiation where systems of competing species
yield two winner-takes-all states which, except in extremely fine tuned situations, do not change stability
exactly at the same points in space, and hence are generally both stable in a region of space defined as

ambiguous.

LIf there are k cells in the ambiguous region, each cell can be of type A or B independently, therefore the total number

of possible solutions is equal to 2%
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Figure 4.3: Ambiguous boundary in the absence of non cell-autonomous processes. Simulations of the
system with distinct initial conditions (top row) in the absence of HP diffusion 04 = op = 0. For each
point, the combination of levels of morphogen gradients either corresponds to univocal or ambiguous
region (see Appendix and the bifurcation diagram in Supplementary figure [£7)). We chose a simple
two-dimensional square topology to illustrate the phenomenon with ga/gp = 1 and sa/sp = 1 unitary
parameters and linear morphogen gradients. (top) From left to right: random initial values; structured
initial values with a small predominance of T4 in a centred square; and a large predominance of T4
(close to the steady state) in a rectangle that exceeds the ambiguous region. (bottom) End-state of the
differentiation process: two differentiated regions emerge with a fuzzy interface; when the initial condition
shows a small predominance of Ty, a clear bias in this region to A type is found and salt-and-pepper
interface persists. Important predominance of Ty leads to a differentiation of all cells in the region into
A-cells within the ambiguous region. Salt-and-pepper boundary persists away from the region of high

initial T4.

This is clearly visible in the numerical simulations of a two-dimensional tissue in figure in the two
cases, the initial randomness persists in the final state, and the overall shape of the domain dramatically
depends on the choice of the initial condition. In all cases we indeed observe the salt-and-pepper type of
boundary due to the randomness in the initial condition. In order to illustrate this sensitivity to noise
and initial concentrations, we present three examples either presenting no specific initial pattern, or an
initial partially or fully differentiated pattern. The end state of the differentiation process always show
an imprecise boundary, and we can see the dramatic dependence on the initial condition with, in the

three cases, a patterning that is globally very distinct.

All in all, it can be concluded that in the absence of HP diffusion, different steady state solutions

appear and remain stable, the differentiated domains are highly irregular and subject to fluctuations
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upon variation of the initial conditions and parameters.

4.3.2 Unpredictable patterns in the absence of morphogen gradients

We now discuss the behavior of a differentiating tissue within which molecular species diffuse but in the
absence of positional information given by morphogen gradients. Turing was the first to suggest that the
diffusion of self-activating and reciprocal inhibitor elements is at the basis of boundary formation [I55]. In
order to support pattern formation, the original Turing model makes the assumption that an additional
molecular species plays a catalytic role on the expression of both of A and B. This molecular species
contrasts with the graded expression of the different morphogens of the PI model on at least two aspects:
it has a no spatial source and therefore does not define any preferred place in space for one specie to be

expressed, and it promotes the expression of both A and B.

A major mathematical finding in this model is the now-called Turing's instability: when the rates of
diffusion of the two species are very different, several homogenous “winner-takes-all” abutting territories
emerge at random places (the leopard spots, see figure [d1]). The patterns so generated are unpredictable:

they are highly sensitive to noise and initial conditions.

In our model, one can consider HPs as Turing’s self-activating and reciprocal inhibitor species, and the
morphogen showing a graded expression along the differentiating pluricellular tissue (central in Wolpert's
French Flag model) plays the role of Turing's catalytic species. But it no more has a spatially homogeneous
concentration. Its graded monotonic expression will stabilize the Turing patterns, leading to regular,
predictable and highly reproducible boundaries between distinct “winner-takes-all” abutting territories,

as we now show.

4.3.3 Precise patterning for competitive systems with spatial cues and HP

diffusion

From the two above sections, we conclude that HP diffusion in the absence of morphogen gradients
(Turing) leads to unpredictable patterning with clearly defined boundaries, while the presence of spatial
cues (positional information) in the absence of HP diffusion (Wolpert) yields to a patterning predictable
“at large” but with imprecise boundaries. Our model combines both spatial cues (external morphogen
gradient) and HP diffusion across cell membranes. The classical morphogen in the Wolpert’s definition
(e.g. Shh) creates zones of expression of distinct HPs (the French Flag) with blurred and unstable bound-
aries and HPs are now locally diffusing secondary morphogens in the Turing’s definition (self-activation
and reciprocal inhibition). These two processes, when combined, lead to smooth and predictable pattern
formation and the location of the boundary is very robust to random fluctuations of the initial conditions
and parameters, even at very low diffusion levels. This is a surprising property of the equations. Indeed,
this stabilization takes place for arbitrarily small values of the diffusion constants, meaning that most

solutions present in the case 04 = op = 0 disappear in favor of a unique solution with precise front
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location. This stabilization property is mathematically demonstrated in our study on general models of

competitive-type systems driven by monotonic gradients [124].

In order to illustrate this phenomenon, simulations of the system are provided in figure L4l For the
sake of consistency with the biological problem, we performed the simulations adopting the topology of
a neural tube. Two sources (representing Shh and BMP for instance) are fixed at the floor plate and
roof plate respectively, and free diffusion was simulated to form the gradients. The BMP source was
arbitrarily chosen stronger than the Shh source (ratio 3:2), and initial HP concentrations were chosen
close to zero, with small fluctuations across different cells. In the absence of diffusion emerges a noisy
boundary consistent with the previous analysis. But even a very small diffusion leads to a dramatic
stabilization and regularization of the boundary, at a location that depends only on the parameters of
the system (strength of the gradients and intensities of the reactions) but not on the choice of the initial

conditions (see Supplementary material).

This dramatic regularization and stabilization of the boundary position is a direct consequence of
HP local diffusion (see figure 4] right). First, in contrast with the cell autonomous situation, diffusion
prevents the persistence of small isolates of one cell type, say B, within a large domain of the other
cell type, say A. Would such an isolate appear, diffusions of Tp and T4 (out and into the isolate,
respectively) would rapidly translate into a “T'4-takes-all” situation. In addition to forcing isolated cells
to adopt the identity of their dominant neighbors, HP diffusion also contributes to the determination
of a highly conserved boundary position between territories A and B, even for a large range of initial
conditions. Indeed, as in the cell autonomous situation, the regions of high morphogen concentration
rapidly differentiate into A or B type, thus anchoring the differentiation of the field at both of its
extremities. Closer to the future boundary, HP diffusion extends the competing domains until the two
fronts meet, resulting into continuous and monotonous 7y and T gradients. Then local competition
based on HP local diffusion and the ability of the two HPs to self amplify and to repress each other, will

settle a smooth boundary along the level sets of the morphogen gradients.

4.3.4 Stability of the front

In physiological conditions, several phenomena may occur and perturb the position of the front. An
important source of variability comes from the heterogeneity of the cell population, and in particular
from the fact that the characteristics of gene expression vary from cell to cell. Moreover, noise can
arise from cell division, cell death and random movements of the cells that modify the sensed value of the
morphogens, which may join their effects to perturb the position of the boundary. Actually, the boundary
location predicted in the idealized model proves surprisingly resilient in all these situations, as we now

illustrate.

In order to quantify the sensitivity of the boundary location to the heterogeneity of the cell population,
we investigated the effect of having heterogeneous rates of self-activation and inhibition between TFs (i.e.

varying from cell to cell). These two parameters completely characterize gene expression in a given cell in
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Figure 4.4: Precise patterning for competitive systems with spatial cues and HP diffusion. (left) Simula-
tion of a model of neural tube with Shh (floor plate) and BMP (roof plate) morphogen sources. Gradients
formed through diffusion of morphogens, and ga/gp = 1 and sa/sp = 1, and symmetry is broken by
considering a BMP gradient larger than Shh (ratio between BMP and Shh 3:2). In the absence of HP
diffusion salt-and-pepper boundary is found while the presence of HP diffusion (04 = o5 = 1072) makes
the boundary sharp, precise and smooth. Phenomena ensuring this stabilization and regularization only
rely on HP diffusion, even limited, and are heuristically depicted on the right: misplaced cells or irregular

boundaries will evolve according to the influence of their neighboring cells to yield the unique possible

outcome of the differentiation process.

our cell. We considered for instance these rates randomly chosen according to a normal distribution with
mean g = 1 and different standard deviations A (see figure [£H]). The end-state for A = 0.05 is displayed
in figure (left) superimposed with the end-state in the homogeneus case A = 0 (dashed line). We can
observe that even if the precise concentration levels in the different cells are modified compared to the
homogeneous predicted solution, the position of the front barely changes. This is due to the very sharp
drop of concentration across the boundary. We quantified this stability by looking at the distribution of
the front location for 500 independent realizations. The histograms of the front location are displayed in
figure (right) for different values of the heterogeneity level. Even for large values of the heterogeneity,
the position of the front is conserved relatively precisely. For instance, for a noise on the coefficients
of A = 0.05, the front position is barely modified (maximal displacements of 2 cells), and for A = 0.2,
though the solution appears relatively different from realization to realization, the front location remains

relatively stable, with maximal errors of 10 cell ranks (on a total of 100 cells).

Cell division occurring during development may also result in variations in the position of the bound-
ary. In order to investigate this effect, we simulate the system with a variable N that randomly depends
on time. N is set to 100 at initial time, and we consider that one new cell appears as a Poisson process
(i.e. cell division occurs at independent exponentially distributed times). When a cell divides, it shares
its contents (number of TFs T4 and T) between the two new cells which conserve the same epigenetic

marks as the mother cell, here transcription intensities D4 and Dg. A typical trajectory of the front is
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Figure 4.5: Stability of the boundary: one-dimensional field made of 100 cells, diffusion constants 04 =
op = 107* and linear gradients: (left) Stationary solution of the neural differentiation process with
constant unit values of g4 and gp, or heterogeneous values centered at 1 with a variance of 0.2 (20%)
(right) Histograms of boundary positions for 500 realizations of the process, for heterogeneity level of

100% (variance 1, center) or 20% (right).

depicted in supplementary figure .11l Numerical results show that the position of the boundary is barely
modified by this process: transient displacements of the boundary that may arise when divisions occur
close from the boundary are rapidly overcome, as visible in Supplementary movie[.@l The stability of the
boundary location upon variations of morphogen activity (parameters F4 and Fp) was analyzed in order
to account for possible random movements of the cells and fluctuations of the environment (e.g. random
arrival of morphogen molecules at their target and readout noise, see [68]). Again, the front remains

stable with time, varying at most of a few cell ranks even for large values of the noise (see figure FLTT]).

Discussion

4.4

In this paper we describe a parsimonious model for the formation of boundaries within an epithelium.
It is in the spirit of the seminal paper where Lewis Wolpert proposed, almost 50 years ago, the French Flag
Model (FFM) to explain boundary formation and, in many ways, it extends this model [I64]. We started
with the idea that the compartments created by a diffusing morphogen as in the FFM are marked by the
expression of secondary morphogens (not morphogens in the presently most accepted term, but in the
sense coined by Turing) of the HP transcription factor family and introduced two hypotheses: first, that
HPs diffuse locally between cells; second, that HPs on either side of a boundary activate themselves and
are reciprocal inhibitors (at the transcription level). HP diffusion was indeed demonstrated in a number
of biological systems and situations [27, 28 [46] 138, [139] [14T], [143], 163] [02] 114, 168]. In addition, the
sequences responsible for HP secretion and internalization are highly conserved between HPs, supporting
the idea that most HPs are local “Turing” morphogens. The second hypothesis is also supported by

a large number of experiments and illustrated by the fact that genetic gain or loss of function of one
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Figure 4.6: Supplementary Movie 1: Random cell division and stability of the front. Cells divide with
a frequency of one per unit time, and the two child cells share the content of the mother cell. While

concentration locally changes where cells divide, the front remains stable.

of the two “abutting” HPs results in a shift in boundary position [109], 119, 120, [126] 148, 169, [43].
From the mathematical standpoint, the phenomenon of disambiguation and stability of the boundary is
relatively surprising, since for arbitrarily small values of the diffusion constants, most solutions present
in the case 04 = op = 0 (no HP diffusion) disappear in favor of a unique solution with precise boundary
location. The characterization of similar phenomena in partial differential equations (PDE) in the small
diffusion limit is a very interesting mathematical problem and constitutes an active field of research [9].
It is actually possible to prove that in the continuous limit, the viscosity solutions of this equation (i.e.
asymptotic solutions in the limit where the diffusion tends to zero) present a unique and perfectly defined

boundary.

Our model requires only 3 molecules to form a boundary (one graded morphogen and two HPs). It
is thus as parsimoniously as the FFM, while avoiding the introduction of explicit thresholds. Its main
advantage is that the robustness of the positioning of boundaries is highly increased by the diffusion
and reciprocal inhibition HP properties. Our model can also be compared to that proposed by Turing in
1952 [155]. Indeed, HPs can be considered as morphogens in the sense of Turing because they amplify their
own expression, are reciprocal inhibitors, and have non-local properties. However, in the reaction-diffusion
Turing’s model, boundaries appear in a morphogenetic field due to dynamical instabilities arising when
the rate of diffusion of the two species in competition are sufficiently different. The mechanisms by which
a biological system could be composed of species with very different diffusion constants are still largely

unknown. Moreover, when Turing instability forms a pattern, the boundary location is unpredictable.
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In sharp contrast, our model forms regular and predictable patterns regardless of the respective value of
the diffusion of the two species. In other words, the diffusivity of the species in competition do not need
to be different to form a boundary, and moreover, the boundary forms at a precise position and remains

stable under variations of the initial conditions and fluctuations of parameters.

By putting aside the ability of HPs themselves to form a gradient through their iterative induction
across a large territory that was considered recently [76] [85], we have been able to base our developments
only on solidly established data and to neglect several parameters, thus giving direct access to the
comparison with the models proposed by Turing and Wolpert. If we think of other models, such as those
proposed by Hans Meinhardt, by concentrating on HP local diffusion we could also make the economy
of the long range inhibition hypothesis [105] 106, 107, [108]. Indeed, our model does not preclude that
such long range inhibitions take place, but does not need it in a first place. Other studies have proposed
that bistable dynamics could be the source of reliable patternings [98]. Their model is somewhat simpler
in that it only considers auto-activation (and ignores cross inhibition) and the presence of a long-range
gradient. But the cells no more respond monotonically to gradients: they have a more complex nonlinear
dynamics, which, in a certain range of values of the morphogen gradient, can differentiate into different
populations. This bistability is naturally built in our model and emerges from the competition between
the two species. Yet, in the absence of diffusion, any bistable system bears ambiguity on the patterning:
the boundary will in particular depend on the initial condition (as in our system in the absence of
diffusion). However, similarly to what we showed here, adding a diffusion term in bistable models such

as [98] would allow stabilizing the boundary.

This is actually a deep mathematical property. From the mathematical viewpoint, the problem of
neurodevelopment in the presence of diffusing HPs is one of the seldom examples in which biology led
to discover a universal mathematical property. Motivated initially by the mechanism of gene expression
described here, we demonstrated that all competitive systems in the presence of monotonic cues yield the
formation of a stable and regular boundary between two abutting domains, and that this property is valid
even at arbitrarily low levels of diffusion [124]. This mathematical result, beyond applications to other
domains, has major implications from the biological viewpoint. Indeed, it ensures that the phenomenon
of reliable pattern formation does not depend on the details of the model under consideration, but only

on a few qualitative properties that are very natural in the context of neurodevelopment.

Because HPs are very ancient molecules present in all phyla [42] and since transduction takes place
in plants and animals, it is speculated that this mode of signaling was operating in the first multicellular
organisms. In that sense it may have preceded other signaling mechanisms based on classical signal-
ing entities (e.g. growth factors and their receptors) and pathways. Indeed, reminding of the Bicoid
case [51] 102, [132] it was shown that internalized HPs could regulate local translation [2, [I4T], T68]. The
recruitment, later in the evolution of multicellular organisms, of classical signaling pathway is likely to
have added robustness to the formation of territories and to other functions involving HP transduction.
For example, it was shown that the patterning of terminals from the retinal ganglion cells within the

tectum/superior colliculus depends on an interaction between Engrailed HP and Ephrin/Eph signal-
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ing [I41], [163]. How HP and classical signaling pathways have evolved in parallel and in interaction is of
the highest importance to understand the morphogenesis of multicellular organisms and its evolution. In
that context, proposing a parsimonious mechanism is a first step in the further analysis of these complex

phenomena.

Appendix A: Supplementary material

4.5

In this supplementary material we provide the details of our mathematical model and the mathemat-
ical development supporting our results. We also provide further investigations of the stability of the
boundary location between two differentiated domains in noisy situations and details on the hypothesis

that led us to the proposed equations.

4.5.1 Mathematical Model
The general model of neurodevelopment

The model that we study is a particular example taking into account the three cell-autonomous
processes of competition and saturation. The properties demonstrated on this particular model actually
extend to a wide class of models that can be written as:

0/Ta =TaHa(x,Ta,Th), (45.1)

0T =TpHp(x,Ta,Th),

under the following assumptions on the production rates H4 and Hpg:

> External gradients are incorporated by assuming that the map x — Ha(x,T4,Tg) is monotonic
along a gradient direction, and the map = — Hpg(x,Ta,Tp) has the inverse monotonicity. We

assume Hy p(z,T4,Tg) > 0.
> Competition: O, Ha(x,Ta,Tr) <0 and dr, Hg(x,Ta,Tr) <0

> Saturation: for any (z,7p), there exists a maximal concentration z such that for any T4 >

z, Hp(x,Ta,Tp) < 0 (and similarly for Hp).

These abstract equations are studied in [124].

Stationary solutions

The problem of boundary formation and stability consists in the determination of (i) whether the
piece of neural tissue clearly splits into separate regions in which neurons either express T4 or Tp and
(ii) the spatial position where this partition takes place and the stability of that boundary as a function
of initial conditions or upon random variation of the parameters. To this end, the first step consists in

characterizing stationary states of the equations (1)-(2). These are the solutions that do not depend on
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time (they are sometimes called equilibrium solutions). A stationary solution is said to be attractive if the
system converges towards it for some initial conditions, and stops evolving. This is why these solutions
have a major interest: they represent the possible stable outcomes of the differentiation process. In
particular, if there exists a unique stationary solution, which is attractive, then differentiation leads to a
unique differentiated state, whereas if there exist multiple stable equilibria, the differentiation process is
ambiguous. The equilibria do not evolve in time. They are therefore solutions to the equations:

0=0aNA+ G(TA,TB)(FA(:L') + gATA) — SATA(TA + TB), (4 . 2)

0=0pAB+ G(Tp,Ta)(Fp(z) + gsTs) — s5Te(Ta + Tp),
where we used the fact that necessarily the stationary solutions satisfy D4 = G(T4,Tg) and Dp =
G(Tg,T4). Equations ([L5.2) constitute a set of 2N algebraic equations. Solving this system is not
possible analytically, even in the continuous limit N — oo where the problem becomes a nonlinear
PDE with non-homogeneous coefficients. However, in the cell autonomous case (04 = op = 0), the

characterization of steady states appears much simpler.

4.5.2 Stationary solutions in the cell autonomous case

In this section we describe the stationary solutions of system (£5.2) in the zero diffusion limit (o4 =
op = 0). This corresponds to the case where transcription factors do not diffuse across cell membranes.
From a mathematical viewpoint, this assumption uncouples the equations corresponding to the different
cells, and the system is reduced to a set of NV independent ordinary differential equations in dimension
2. Stationary solutions are subject to the following:

Proposition 4.5.76. The stationary solutions of equations [{EL2) in the zero diffusion limit (04 =

op =0) are:
> The trivial solution Ta =0, Tp = 0, which is always unstable whatever the parameters are,

> Ty =0and T =TF > 0, given by

V(98 —5B)? + 4spFp(x) + (95 — sB)
283 '

TE = (4.5.3)

This fized point is stable if and only if Fa(x)—saTp(1+Tg) < 0, i.e.when the gradient concentration

is small enough compared to the saturation term.

Heuristic interpretation of Proposition [4.5.76!

In our model, as well as in the general model, if no TF is present, the system does not evolve because
the genetic efficacy prevents from synthesizing TFs. This is an unstable equilibrium: since the morphogen
concentrations are always strictly positive Fis(2) > 0 (or in the general model, because of the assumption
made on H(z,0,0)), the system will always leave the trivial equilibrium meaning that this is not a stable

solution.
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Two differentiated states appear: they correspond to a case where one of the species does not exist at
the advantage of the other. Assuming for instance T = 0, one can find at least one equilibrium solution
for Ty since the map Ha(xz,T4,0) is positive for T4 = 0 and negative for T4 large enough (saturation
hypothesis). A stable equilibrium therefore necessarily exists on the line T = 0. This can be stable or
unstable depending on the competition between maintaining 7'y at a high level and keeping Ts at a low
level, which is possible when the morphogen gradient is strong enough.

Remark 4.5.77. Rigorously, the system has an additional fixed point, but it is irrelevant for our biological
purposes since it corresponds to negative concentrations. This fized point will never be reached when
starting from acceptable initial conditions, i.e. for positive initial values of T'a and T, because trajectories
never cross the axes T4 = 0 or T = 0. Moreover, there exists only one additional stationary solution
(T%,T%) > 0 in the parameter regions where both (0,T%) and (T%,0) are stable, but it is unstable. Since
this is a mon-reachable solution, we do mot prove its existence: this state will never be reached in the

stmulations.

Proof of Proposition [{.5.76] In order to demonstrate the proposition, we need to find all solutions to the
pair of equations

2 (Fa(x) + gaTa) — saTa(Ta + Tg) = 0,

HTZiBJrTB (Fp(z) + g8TB) — sgTs(Ta +T5) =0,
and for each solution, find the eigenvalues of the Jacobian matrix at this point. The fixed point is then

stable if and only if all eigenvalues have a negative real part.

It is clear that T4 = 0 always solves the first equation and T = 0 the second equation. The trivial
fixed point T4 = 0 and T = 0 is therefore a solution of the system, and the Jacobian matrix at this
point is diagonal, with eigenvalues F4 (z) and Fg(z) which are both non-negative, hence this fixed point
is always unstable. Assuming 74 = 0 only, there exists an additional solution to the system satisfying
the quadratic equation:

(Fp(x) + gBTB) — s8Ta(l+Tp) =0, (4.5.4)

which always has a unique non-negative solution given by [@53]). The Jacobian matrix at this point is
triangular, and the diagonal elements hence correspond to the eigenvalues of the matrix. One of these

eigenvalues is given by:
98T + Fp(2) T%
(14 T7%)? 1+T%

which can be simplified, using equation (£54]), into

A=

9B — 2spTg,

1
A= F 2

and it is therefore always negative since F(z) and s% are positive. The second eigenvalue is given by:

Fu(x) 1 SA
- — sATE = Fa(z) - AF
Tz AT 1JrTg( alz) - B(z)

A2

which can be either positive or negative depending on the parameters. If F4(x) is large enough, we can

see that the fixed point is unstable. [l
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Supplementary figure 7] illustrates this proposition by showing, for a specific type of combination of
Fy(x) and Fp(x), the location of the different equilibria and their stability. It shows the presence of a

bistable region, formally corresponding to the conditions:
FA(ac) — SATB(l + TB) < 0 and FB(.T) — SBTA(l + TA) < 0.

This bistable regime is at the origin of the indeterminacy of the boundary. This is a general property of

models of differentiation, as noted above.

We complement this analysis by providing, for a fixed location inside the cell field (this is nothing
but to fix a value of x and evaluate the morphogen gradients F4(z) and F(z)), a picture of three phase
planes of system ([L5.2]) in Supplementary figure 7] (bottom). The phase plane (T4, Tp) represents how

variables evolve according to the dynamics, and we show a few typical trajectories.

The stationary solutions of the system ({L5.2)) are represented by blue and red squares. A given tra-
jectory converges towards one of the equilibria depending on the initial condition. We have computed
the basin of attraction of each equilibrium: any trajectory with initial condition in the blue region will
converge to (0,7'%) and will therefore differentiate into a B-type cell and any trajectory with initial condi-
tion in the pink region will converge to (1'5,0) and differentiate into 