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l'Université Pierre et Marie Curie
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Modélisation mathématique en neuroscience: comportement collectif des réseaux
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Chapter 1

General Introduction

1.1
Presentation

The text you are holding in your hands is a summary of the labor I have been doing the past few years,

which is related to mathematical models motivated by neuroscience. Working in a multidisciplinary envi-

ronment encompasses a great amount of unexpected difficulties: even the language can be misunderstood!

Nevertheless, I have learned that such diversity is translated into infinite possibilities. My research activ-

ity has been principally related to mathematical questions arising from the modeling of biological systems

combining analytic and probabilistic tools. The main issue consists in understanding the long time be-

haviour of those systems, and the structure of the set of stationary solutions under different parameters

regime. The results provided here are related to three major elements: (1) the mathematical modeling

and analysis of neuronal networks, (2) the role of homeoproteins local diffusion in pattern formation, and

(3) an individual base model for a subcritical Keller-Segel equation. To simplify the presentation, the

manuscript is divided in three parts:

1.1.1 Part I: Neuronal networks

The first part of the text is related to theoretical neuroscience, specifically with some networks of

interconnected neurons. One of the most remarkable and celebrated models for isolated neurons is due

to Alan Hodgkin and Andrew Huxley [75]. In their outstanding paper, authors planted the seed of any

latter attempt to model the brain. However, it is estimated that the human brain is composed by 100

billion interacting cells. Therefore, even having such a precise model for a single neuron, the collective

behaviour is not completely understood.

The approach followed here undertakes the analysis of mean-field equations arising in the modeling

of the macroscopic activity of the brain. The equations describe the large-scale dynamics of the central

nervous system, taking into account the fact that it is composed of a very large number of interconnected

cells that manifest highly nonlinear dynamics and are subject to noise. Non-linearities in the intrinsic

dynamics of individual cells are an essential element of the neural code: nerve cells constantly regulate
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their electrical potential depending on the input they receive. Our models describe a particle network at

a macroscopic level and take into account two mechanisms:

⊲ the intrinsic dynamic of individuals, which eventually lead to cyclic solutions;

⊲ a nonlinear mean-field interaction (or coupling) between individuals which can take into account

some delay term;

The general mathematical properties observed are: on one hand the existence of steady states (what-

ever are the coefficients) and discrete principal spectrum of the linearized operator associated to the

mean-field equations, and on the other hand, the uniqueness of the steady state and nonlinear exponen-

tial stability of this one in the weak connectivity regime.

1.1.2 Part II: The role of homeoprotein diffusion in morphogenesis

The second part of the text is related to a developmental biology problem called morphogenesis. The

question here is to explain how a system starting with almost identical cells results in a well-defined spatial

pattern and defining a set of specific cellular states. This problem can be addressed in two complementary

perspectives: on one hand, there is the variety of cells as the result of the growth of a single one (process

driven by local interaction); and on the other hand, the regulation on an ensemble of cells to produce

different functional areas (process driven by global interaction). Moreover, boundaries in the developing

organism decides on the position and size of compartments in the adult. Therefore, the stability and

regularity of those boundaries is key element on the development of a healthy individual. The emergence

of compartments in the cerebral cortex or in the spinal cord is a paradigmatic example of this process.

From a theoretical perspective, the specification of territories in the nervous system represents a particular

case of the general phenomenon of patterning. In contemporary terms, the differentiation process is driven

by the presence of a morphogen, and a response to the morphogen concentration characterized by the

expression of cell autonomous transcription factors, very often of the homeoprotein family.

Starting from two very different theories of neurogenesis, we claim that they are not necessarily

opposing. Moreover we show both numerically and analytically that the presence of homeoproteins

arbitrarily small diffusion, leads to a dramatic stabilization of the positioning of the boundary, even

when other parameters are significantly modified. This novel combined model we propose has thus

an important theoretical consequence for our understanding of the role of homeoproteins intercellular

diffusion in developmental robustness and of the changes that took place in the course of evolution.

1.1.3 Part III: On a subcritical Keller-Segel equation

Finally, the third part of this manuscript constitutes a complementary work. It deals with a modified

version of the Keller-Segel (KS) equation. A main property of the standard KS equation is that the force

kernel is singular at the origin. It describes a model of chemotaxis: the movement of cells, usually bacteria

or amoebae, which are attracted by some chemical substance. The microscopic model of chemotaxis and
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the convergence of those systems, has become a very interesting subject in the past years [142, 71]. One

of the reasons is that the classical formulation of the KS equation in two dimensions can be naturally

related to a mean field limit. Nevertheless, the evaluation of the force kernel on the distance between the

particles has to be treated carefully to avoid blow-up in finite time.

The approach followed here undertakes the analysis of a microscopic system for the subcritical KS

equation. Thanks to the subcritical exponent, we prove that the particles never collide. As a consequence,

we get the chaos propagation property and the consistence of the microscopic particle system with the

mean-field limit equation.

1.1.4 Plan of the Thesis

The present text is organised as follows: in the rest of this introduction we describe the most recurrent

mathematical tools we use throughout the following chapters. We also provide some biological background

to the problems motivating the mathematical work. In the final section of this introduction, we describe

the main results and present the main ideas of the proofs.

Chapter 2 deals with the limits of a general model of neuronal networks with delays and random

architectures. We prove the classical propagation of chaos property and study a completely solvable toy

model. Next, in Chapter 3, we show the non exponential convergence to a non trivial steady state for

a kinetic FitzHugh-Nagumo equation. This equation is obtained as the mean-field limit of a FitzHugh-

Nagumo neuronal network.

The second part of the thesis is composed by two chapters. In Chapter 4 we present the general model

of neuronal morphogenesis we propose. We study the set of stationary solutions and the effects of the

diffusion operator on them. In Chapter 5, we analyse the previous model in the one dimensional case,

and prove that, when the diffusivity coefficient goes to zero, the stationary solutions converge to a unique

solution of an autonomous dynamical system with a unique discontinuity point.

Finally, Chapter 6 deals again with the propagation of chaos property for a subcritical Keller-Segel

equation. Using a combination of PDE and SDE tools, we also prove the more strong notion of entropic

chaos propagation.

1.2
Mathematical toolbox

In this section we describe the two most recurrent mathematical tools used throughout the memoir.

We pay special attention to the chaos propagation property (c.p.p.) and the semigroup decomposition

technique (s.d.t). The c.p.p. will allow us to justify the passage from Individual Based models (IBM) to

their description in terms of a mean-field equation. The s.d.t. will be useful to describe the spectrum

the linearised operators and eventually, using a perturbation argument, the convergence of the nonlinear

operator on a small parameter regime.
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1.2.1 Mean-field macroscopic equations: propagation of chaos property

The first question we treat is the justification of the mean-field limits. To that aim it is necessary

to pass from Individual Based Models (IBM) to the network activity in terms of a nonlinear McKean-

Vlasov equation describing the law of independent particles. This property, called usually chaoticity

or propagation of chaos, is a very well known and popular topic since the seminal works of Kac [82],

McKean [104, 103], and Sznitzman [145]. To fix ideas, let us consider a generic toy neuronal network,

composed byN individuals. The state of the neuron i is given by a Rd-random process (e.g. the membrane

voltage, ionic concentrations, etc) solving:

X i,N
t = X i,N

0 +

∫ t

0

f(s,X i,N
s ) ds+

1

N

N∑

j=1

∫ t

0

g(s,X i,N
s , Xj,N

s ) ds+
√
2σBi

t, (1.2.1)

where f is the intrinsic dynamic of any neuron, g is the interaction function, and Bi
t is a family of

independent Brownian motions modeling the natural random component of the dynamics.

We can summarise the chaos propagation property by: when the number of particles is going to

infinity, each one of them behaves as independent copies of the solution of a mean field equation. The

nonlinearity is characterised by the presence of the law itself in the dynamics on the process, i.e., an

integro-differential nonlinear equation. To justify the limit we mainly use the coupling method which is

a very intuitive idea and apply to a wide range of applications. In the case of equation (1.2.1) the limit

equation is given by

Xt = X0 +

∫ t

0

f(s,Xs) ds+

∫

Rd

∫ t

0

g(s,Xs, y)fs(dy) ds+
√
2σBt, (1.2.2)

where ft = L(Xt) is the law of Xt. Therefore, the propagation of chaos property means that any finite

set of neurons (X i1 , . . . , X il) converges in law to l independent copies of the solution of (1.2.2).

Let us consider E a Banach space, for N ≥ 2, we denote by Psym(EN ) the set of symmetric probability

measures on EN , i.e. the set of probability measures which are laws of exchangeable EN -valued random

variables.

We consider for any F ∈ Psym((Rd)N ) with a density and a finite moment of positive order, the

Boltzmann entropy and the Fisher information which are defined by

H(F ) :=
1

N

∫

(Rd)N
F (x) logF (x)dx and I(F ) :=

1

N

∫

(Rd)N

|∇F (x)|2
F (x)

dx.

If xi ∈ Rd, stands for the i-th coordinate of x ∈ (Rd)N , we define for k ≥ 0,

Mk(F ) :=
1

N

∫

(Rd)N

N∑

i=1

|xi|kF (dx).

Observe that we proceed to the normalization by 1/N in order to have, for any f ∈ P(Rd),

H(f⊗N) = H(f), I(f⊗N ) = I(f) and Mk(f
⊗N ) =Mk(f).
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We introduce the space P1(R
d) := {f ∈ P(Rd),M1(f) <∞} and we recall the definition of the Wasserstein

distance: if f, g ∈ P1(R
d),

W1(f, g) = inf
{∫

Rd×Rd

|x− y|R(dx, dy)
}

,

where the infimum is taken over all probability measures R on Rd × Rd with f for first marginal and g

for second marginal. It is known that the infimum is reached. See e.g. Villani [158] for many details on

the subject.

The notion of propagation of chaos is rigurously defined by

Definition 1.2.1. Let X be some Rd-valued random variable. A sequence (X i,N , . . . , XN,N) of exchange-

able Rd-valued random variables is said to be X-chaotic is one of the three following equivalent conditions

is satisfied:

(i) (X1,N , X2,N) goes in law to 2 independent copies of X as N goes towards +∞;

(ii) for all j ≥ 0, (X1,N , . . . , Xj,N) goes in law to j independent copies of X as N goes towards +∞;

(iii) the empirical measure µN
XN := 1

N

∑N
i=1 δXi,N ∈ P(Rd) goes in law to the constant L(X) as N goes

towards +∞.

Let us remark that the key points on the propagation of chaos property are: the existence of a unique

solution to the particle system (1.2.1), the existence and uniqueness of the solutions to the mean-field

nonlinear equation (1.2.2), and the consistence between the particle system and the limit equation. To

prove the third point, we can use the coupling method (or in general any other compactness method),

which consist in use the well-posedness of both equations to control the distance of the paths of a finite

set of particles as N is going to +∞.

Example 1.2.2. In our toy model (1.2.1), let us assume that d = 1, and fix a family of Brownian motions

Bi
t driving the solutions of the particle system. Consider (Y i,N , . . . , Y N,N) a family of solutions to the

nonlinear mean-field equations

Y i,N
t = X i,N

0 +

∫ t

0

f(s, Y i,N
s ) ds+

∫ t

0

EZ

[
g(s, Y i,N

s , Zs)
]
ds+

√
2σBi

t,

where Z is a independent copy of the unique solution to (1.2.2). We see that, since we use the same

initial condition and Brownian motions, the random processes Y i,N are “coupled” to the X i,N processes.

For any i ∈ N fixed, the difference between X i,N and Y i,N is such that

E
[
|X i,N

t − Y i,N
t |

]
≤
∫ t

0

E
[
|f(s,X i,N

s )− f(s, Y i,N
s )|

]
ds

+
1

N

N∑

j=1

∫ t

0

E

[∣
∣g(s,X i,N

s , Xj,N
s )− EZ

[
g(s, Y i,N

s , Zs)
]∣
∣

]

ds.

If the dynamic f and the interaction g are L-Lipchitz continuous functions, it follows that

E
[
|X i,N

t − Y i,N
t |

]
≤ 2L

∫ t

0

E
[
|X i,N

s − Y i,N
s |

]
ds+ L

∫ t

0

E
[

max
j=1,...,N

|Xj,N
s − Y j,N

s |
]
ds

+
1

N

N∑

j=1

∫ t

0

E

[∣
∣g(s, Y i,N

s , Y j,N
s )− EZ

[
g(s, Y i,N

s , Zs)
]∣
∣

]

ds.
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Let us further assume that the interaction function g is upper bounded by C, then we get

N∑

j=1

∫ t

0

E
[∣
∣g(s, Y i,N

s , Y j,N
s )− EZ

[
g(s, Y i,N

s , Zs)
]∣
∣
]
ds ≤ 2 t C

√
N := Ct

√
N,

and by consequence

∀ i ∈ {1, . . . , N} E
[
|X i,N

t − Y i,N
t |

]
≤ 3L

∫ t

0

E
[

max
j=1,...,N

|Xj,N
s − Y j,N

s |
]
ds+

Ct√
N
.

Since N is fixed, we can apply Gronwall’s lemma to deduce that for all s ∈ [0, t]

E
[
|X i,N

s − Y i,N
s |

]
≤ E

[
max

j=1,...,N
|Xj,N

s − Y j,N
s |

]
≤ Cte

3Lt

√
N

.

From the last inequality we have easily the propagation of chaos property. Fixing a finite set of neurons

(1, . . . , l), then

E
[∣
∣(X1,N

s , . . . , X l,N
s )− (Y 1

s , . . . , Y
l,N
s )

∣
∣
]
≤ lCte

3Lt

√
N

,

hence

(X1,N
s , . . . , X l,N

s )
L−→ (Y 1

s , . . . , Y
l,N
s ),

this implies that the vector (X1,N
s , . . . , X l,N

s ) converges in law towards l independent copies of Y as N

goes to +∞

We finally recall a stronger (see [72]) sense of chaos introduced by Kac in [82] and formalized recently

in [35]: the entropic chaos.

Definition 1.2.3. Let f be some probability measure on E. A sequence (FN ) of symmetric probability

measures on EN is said to be entropically f -chaotic if

FN
1 → f weakly in P(E) and H(FN ) → H(f) as N → ∞,

where FN
1 stands for the first marginal of FN .

We can observe that since the entropy is lower semi continuous (so that H(f) ≤ lim infN H(FN )) and

is convex, the entropic chaos (which requires limN H(FN ) = H(f)) is a stronger notion of convergence

which implies that for all j ≥ 1, the density of the law of (XN
1 , ..., X

N
j ) goes to f⊗j strongly in L1 as

N → ∞ (see [23]).

1.2.2 Uniqueness of stationary solutions and nonlinear convergence: semi-

group decomposition method

Once the derivation of the limit equation is well justified, several questions arise: what is the role of

parameters? are there stationary (stable) solutions? does the system exhibit bifurcations? The second

problem addressed in the manuscript is the nonlinear convergence to the equilibrium of a macroscopic

mean-field equation. In particular, we study the limit equation of a neural network such that the in-

dividual dynamic is given by the FitzHugh-Nagumo model. We uncover the structure of the related

linearised operator and apply the semigroup factorisation method to prove the exponential decay to a

6



unique stationary solution when the interaction between particles is small. Moreover, as the interaction

gets stronger, we show numerically that an oscillatory regime emerges.

Of course, the previous paragraph remains very cryptic. We prepare to the study by introducing a

few useful notations. For two given Banach spaces (E, ‖ · ‖E) and (E , ‖ · ‖E), we denote by B(E, E) the

space of bounded linear operators from E to E and we denote by ‖·‖B(E,E) the associated operator norm.

The set of closed unbounded linear operators from E to E with dense domain is denoted by C (E, E). In
the special case when E = E , we simply write B(E) = B(E,E) and C (E) = C (E,E).

For a given Banach space X and Λ ∈ C (X) which generates a semigroup, we denote this associated

semigroup by (SΛ(t), t ≥ 0), by D(Λ) its domain, by N(Λ) its null space, by R(Λ) its range, and by Σ(Λ)

its spectrum. On the resolvent set ρ(Λ) = C \Σ(Λ) we may define the resolvent operator R(Λ) by

∀ z ∈ C, RΛ(z) := (Λ− z)−1.

Moreover, RΛ(z) ∈ B(X) and has range equal to D(Λ). We recall that ξ ∈ Σ(Λ) is called an eigenvalue

of Λ if N(Λ− ξ) 6= {0}, and it called an isolated eigenvalue if there exists r > 0 such that

Σ(Λ) ∩ {z ∈ C, |z − ξ| < r} = {ξ}.

The notion of convolution of semigroups will be also required. Let us consider some Banach spaces

X1, X2 and X3 and two given functions

S1 ∈ L1([0,∞);B(X1, X2)) and S2 ∈ L1([0,∞);B(X2, X3)),

one can define S2 ∗ S1 ∈ L1([0,∞);B(X1, X3)) by

(S2 ∗ S1)(t) :=

∫ t

0

S2(t− s)S1(t) ds, ∀ t ≥ 0.

In the special case S1 = S2 and X1 = X2 = X3, S
(∗n) is defined recursively by S(∗1) = S and S(∗n) =

S ∗ S(∗(n−1)) for n > 1.

To illustrate the ideas we use in the following, let us assume that an operator Λ on a Banach space

X can be written as

Λ = A+ B,

where B has some dissipative property and A is much more regular than B. Under some additional

positivity assumption on the generator Λ, the principal part of spectrum is a simple real eigenvalue. This

is known as the Krein-Rutman theorem. We state below a recent version picked up from [113],

Theorem 1.2.4. We consider a semigroup generator Λ on a Banach lattice of functions X, and we

assume that

1. there exists some α∗ ∈ R and two operators A,B ∈ C (X), such that Λ = A+ B and

(a) for any α > α∗, ℓ ≥ 0, there exists a constant Cα,ℓ > 0 such that

∀ t ≥ 0, ‖SB ∗ (ASB)
(∗ℓ)(t)‖B(X) ≤ Cα,ℓ e

αt.
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(b) A is bounded, and there exists an integer n ≥ 1 such that for any α > α∗, there exists a

constant Cα,n > 0 such that

∀ t ≥ 0, ‖(ASB)
(∗n)(t)‖B(X,Y ) ≤ Cα,ne

αt,

with Y ⊂ D(Λ) and Y ⊂ X with compact embedding;

2. for Λ∗ the dual operator of Λ defined in X ′, there exists β > α∗ and ψ ∈ D(Λ∗) ∩ X ′
+ \ {0} such

that Λ∗ψ ≥ βψ;

3. SΛ(t) is a positive semigroup and Λ satisfies Kato's inequality, i.e, ∀ f ∈ D(Λ) it holds Λ|f | ≥
sign(f) Λf.

4. −Λ satisfies a strong maximum principle: for any given f and γ ∈ R, there holds,

f ∈ D(Λ) \ {0}, f ≥ 0 and (−Λ + γ)f ≥ 0 imply f > 0,

and there exists an integer m such that

f ∈ D(Λm) and |f | > 0 imply f > 0 or f < 0.

Defining

λ := s(Λ) = sup
{
(ξ) : ξ ∈ Σ(Λ)

}
,

there exists 0 < f∞ ∈ D(Λ) and 0 < φ ∈ D(Λ∗) such that

Λf∞ = λ f∞, Λ∗φ = λφ.

Moreover, there is some α′ ∈ (α∗, λ) and C > 0 such that for any f0 ∈ X

‖SΛ(t)f0 − eλt〈f0, φ〉f∞‖X ≤ Ceα
′t‖f0 − 〈f0, φ〉f∞‖X . (1.2.3)

Let us explain some implications of inequality (3.4.30). Assume that the operator Λ has the good

decomposition A and B, and that λ = 0. Then for any initial condition, we have that the difference

between the solution to the equation

∂tf(t) = Λf(t), f(0) = f0, (1.2.4)

which is exactly S(t)f0, and the projection of the initial condition on the space related to the first

eigenvalue λ, is such that

‖f(t)− 〈f0, φ〉f∞‖X ≤ Ceα
′t‖f0 − 〈f0, φ〉f∞‖X .

Moreover, we know that necessarily α′ < 0, then we conclude that f(t) is converging to 〈f0, φ〉f∞. In the

special case that f0 is a probability measure and φ = 1, we readily obtain that the convergence is always

to the unique eigenvector f∞.

The previous result is remarkable, and allows us to pass to the limit (in time) with very few (and

somehow natural) hypotheses on the operator driving the evolutionary problem. We use it to describe
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the convergence to a steady state of a linearised equation. Moreover, in small connectivity regime (i.e.

the nonlinear case with a small parameter multiplying the nonlinearity) we use a perturbation argument

to show that the convergence still hold.

We are interested in the extrapolation of the convergence results of the heat equation to some mean-

field problems that are almost dissipative. In particular, we recall the abstract notion of hypodissipative

operators :

Definition 1.2.5. Considering a Banach space (X, ‖ · ‖X), a real number α ∈ R and an operator Λ ∈
C (X), (Λ− α) is said to be hypodissipative on X if there exists some norm |||·|||X on X equivalent to the

usual norm ‖ · ‖X such that

∀ f ∈ D(Λ), ∃φ ∈ F (f) such that 〈φ, (Λ − α)f〉 ≤ 0,

where 〈·, ·〉 is the duality bracket in X and X∗ and F (f) ⊂ X∗ is the dual set of f defined by

F (f) = F|||·|||X
(f) := {φ ∈ X∗, 〈φ, f〉 = |||f |||2X = |||φ|||2X∗}.

One classically sees (we refer to for example [70, Subsection 2.3]) that when Λ is the generator of a

semigroup SΛ, for given α ∈ R and C > 0 constants, the following assertions are equivalent:

(a) (Λ− α) is hypodissipative;

(b) the semigroup satisfies the growth estimate ‖SΛ(t)‖B(X) ≤ Ceαt, t ≥ 0.

Finally, we present an example that highlights the relationship between an hypoddisipative operator

and the decomposition method:

Example 1.2.6. Let us consider Λ the differential operator related to the equation

∂

∂t
f = Λf := ∆f +∇ · (xf), x ∈ R. (1.2.5)

and the associated semigroup SΛ(t). We see clearly that equation (1.2.5) is given in divergence form,

therefore, it preserves the mass and the positivity of the solutions. Fix some f0 ∈ L1(R)∩P2(R), then we

have that
d

dt

∫

R

|SΛ(t)f0|(1 + x2)dx =

∫

R

Λf(t)(1 + x2)dx =

∫

R

p(x)f dx (1.2.6)

with p(x) = 2(1− x2). A nice decomposition of the operator Λ is given by

A = MχR, B = Λ −A,

with M ≥ 0, χR(x) = χ(x/R) regular, and 1{|x|<1} ≤ χ(x) ≤ 1{|x|≤2}. Indeed, the idea is to “remove”

the positive contribution of p(x) on the righthand side of (1.2.6) to get

d

dt

∫

Rd

SB(t)f0(1 + x2)dx =

∫

Rd

(Λ−A)SB(t)f0(1 + x2)dx ≤
∫

Rd

(p(x) −MχR)SΛ(t)f0dx.

For M and R large enough we conclude that the operator B is hypodissipative. Since Af is positive and

lies in a compact, the split A and B has the required properties.

In Chapter 3 we analyse the decomposition provided in the previous example and we find that hy-

potheses of Theorem 1.2.4 hold.

9



1.3
Biomathematical background

For completeness of the text, before passing to the presentation of the main mathematical results, we

review some basic facts about the biological background. The aim of the discussion presented here is not

to give a comprehensive description of such complex structures such as the brain, or of the problem of

morphogenesis. Nevertheless, we want to provide some basic concepts that will explain the motivations

behind our models and their biological interest. Notwithstanding, this information is not necessary to

the understanding of the mathematical developments and contributions of the thesis.

Part I: Theoretical neuroscience

The ability to exploit and transform the environment is remarkable characteristic of humans and it

has been well stablished that this ability is due to a very evolved nervous system [83]. One of the principal

organs of the nervous system is the brain which, roughly speaking, can be considered as a complex and

very sophisticated machine with an array of sensorial receptors connected to it.

When modeling the activity of the brain one can consider different scales. If the emphasis is made

on the microscopic dynamics, then the basic element is the neuron. The morphology of neural cells is

relatively simple and the basic architecture is shared for all neurons. The main characteristic is the

presence of dendrites and axons, both related to the “transmission of information” which is coded in

electrical signals known as action potentials. Dendrites take information towards the cells, while axons

take the information away from the cell. Moreover, nerve cells constantly regulate their electrical potential

depending on the input they receive. This regulation results from intense ionic exchanges through the

cellular membranes giving rise to a complex electrochemical process.

From the macroscopic viewpoint, the brain is composed of a very large number of interconnected

cells (approximately 100 billion neurons in the human brain) and each one of them manifests highly

nonlinear dynamics and are subject to noise. The complexity of human behaviour (i.e. our responses

to environmental stimulus) depends more on the precise anatomical circuits conforming the brain, and

less on the particularities of individual neural cells. Indeed, a main observation, is that nerve cells with

similar properties can act very different depending on the way they are connected with its neighbours and

with long range sensory receptors. Therefore, even if is important to understand the models for isolated

entities, it is also important to uncover the complexity of the network's architecture they belong to. The

most important features of the nervous system can be summarised by: (1) the mechanism by which

neural cells produce signals, (2) the pattern of connections, (3) the relationship between the patterns of

interconnections and the mechanical/sensorial response, and (4) how experience can modify neurons and

their interconnectivity.

Because of the complexity of the human nervous system, in the text we only focused on the first two

points. In particular we will study models for isolated neurons and networks, and also, the importance
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of the level of connectivity on the solutions to those systems.

The FitzHugh-Nagumo model

One of the most complete and celebrated descriptions of the generation of action potentials is given

by the Hodgkin-Huxley (HH) model [75]. It establishes a very precise description of the ion exchanges

through the membrane and their effects on the cell voltage. However, the nonlinearities driven the HH

dynamics make difficult the analysis of complex HH neuronal networks. A simplification of this model

conserving the most prominent aspects of the HH model, the Fitzhugh-Nagumo (FhN) model [59, 116],

and has gained the status of canonical model of excitable cells in neuroscience.

Let us consider a generic 2 set of equations of the type







V̇M (t) = F (VM (t))− w(t) + I

ẇ(t) = τ(VM (t) + a− bw(t)),

(1.3.7)

where τ, a and b are nonnegative constants. The first equation describe the dynamics of the membrane

potential, and the second one is usually called the recovery variable. Moreover, τ is a slow-fast parameter,

making the dynamics of both equations have different time scales. The role of the second variable is to

model the adaptation of the cell to an external current.

The name of the model is due to the contribution of two independent publications. In 1981, Richard

FizHugh proposed, as a modification of the van der Pol equation, that the action potential was given by

a system of the type (1.3.7), for a cubic nonlinear function F such as

F (VM (t)) = VM (t)(VM (t)− a)(1 − VM (t)), 0 ≤ a ≤ 1.

One year later, J. Nagumo and colleagues proposed a very similar electrical circuit to describe prototype

of an excitable system. The applications of FhN equations are very varied, specially for excitability

systems such as the heart muscle. One main feature of the model is the presence of a Hopf's bifurcation

(and therefore cycle limits) for a well tuned set of parameters. In figure 1.1 we show the time evolution

of the voltage variable in the FhN model and some trajectories for different initial points on the phase

plane. The transition from a unique stable solution to a cycle limit is a consequence of increasing the

input current (Hopf's bifurcation). Therefore, a strong step input current injected to the system, will

sustain a train of spikes that disappears as soon as the current is reduced. The image at the right of

figure 1.1 is a clear example: the system goes from a resting state to a train of spikes and back to the

resting state.

Brain functional areas

As we said before, the brain is the central object of study for neural science. Indeed, neuroscience

approach is based on the view that all behaviour is the result of brain function [83]. The claim is actually

controversial because it is assumed that not only simple motor actions (e.g. to walk and to eat chewing
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Figure 1.1: Time evolution of the voltage variable on the FitzHugh-Nagumo equations and some trajec-

tories of different solutions on the phase plane, in the case of one stable steady state (left), a stable limit

cycle (center) and a strong step current (right). For F (v) = v − v3

3 , a = 0.7, b = 0.8 and τ = 0.8. In all

cases the nullclines intersect in only one point. Arrows indicate the sense of the time evolution. Figures

on the left row correspond to I = 0.5, and figures on the center row correspond to I = 0.8. Figure on

the right corresponds to an step function (black solid line) equal to I = 0.8 for 50ms < t < 100ms and

I = 0.5 otherwise.

gum at the same time), but complex cognitive actions (e.g. have feelings), underlie on the activity of the

brain. Therefore, the task is to explain behaviour (and finally human behaviour) in terms of the activity

of the brain. If the hypothesis (brain activities ⇔ behavior) is accepted, a second fundamental problem

is whether the mental processes depend on specific functional areas, or on a collective property of the

whole brain.

In last years of the eighteenth century, the german physician and neuroanatomist Franz J. Gall

proposed that the brain was divided in several “organs” coding the different mental faculties, and that

they grew with use. This doctrine became very popular in the nineteenth century and gave birth to

the study of the bumps of the skulls known as phrenology. However, by removing parts of the brains of

animals, scientists tried to isolate the contributions of Gall's cerebral organs, concluding that any part of

a determined hemisphere was able to participate in all respective functions of the hemisphere. However,

in the second part of the nineteenth century, several studies, agreed with the view that the brain had

a cellular-collectionism structure and not a aggregate-field one. In particular, studies of local epilepsy

showed that specific motor and sensory functions can be traced down to different parts of the cerebral

cortex [83]. Nevertheless, it was only by the beginning of the twentieth century that there was enough

biological evidence to support the existence of different discrete areas in the cortex, related to specialised

roles in behaviour. For example, the precise map to the body of a cat in specific parts of the cerebral

cortex somatotopy established by Wade Marshall and Philip Bard in the 1930s. This observation is more
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Figure 1.2: Schematic specific regions of the cortex while reacting to a single word (based on [83]). Blue

coloured circles represent hight activity. (A) Reading a word is related to the V1, (B) hearing is located in

the temporal cortex (C), repeating a word is related to a motor area, and (D) thinking of words triggers

activity in the regions related to (B) and (C) and with the frontal cortex.

accurate if we look the example of language. Using PET scanning, one can observe which parts of the

cerebral cortex are reacting (showing high electrical activity) in the recognition of a spoken or written

word. This is depicted in figure 1.2. The reading of a single word triggers action potentials in the primary

visual (V1) cortex. Hearing words activates activates a different part called temporal lobe. Speaking is

related to a supplementary motor area on the medial frontal cortex. But, responses to a particular word

activates (B), (C) and the frontal cortex at the same time. Moreover, it has been reported that damages

on the (B) part result on effortful speech but relatively good oral comprehension. On the contrary,

damages on the (C) part result on difficulties understanding sentences, but fluent speech [83].

The questions we study in the first part of the text are motivated for the connectivity level in neuronal

networks. In particular, we are concerned with the emergence of synchronised activity for highly connected

networks, and the convergence to an equilibrium when the connectivity level and external inputs are small.

Summary

To construct reasonable neuronal networks we have to keep in mind at least the following restrictions:

(1) the brain is composed by a large number of interconnected neurons; (2) the behaviour depends more

on the neuronal networks and discrete areas, and less on the particular dynamics of each cell; (3) the

system is intrinsically stochastic; and (4) cortical networks tend to display complex network topologies,

and typical cortical networks tend favour local connectivity.

Part II: Morphogenesis
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In the first part of this manuscript we work under the hypothesis that the neural networks of the

adult hemispheres are the responsible of most (if not all) human behaviour. But despite the complexity

on the structure of the brain, it start off as a simple sheet of neuroepithelial cells during the first stages

of neurogenesis. How is that possible?

To answer that question we need to take a quick view to developmental biology (DB). The three major

axes of DB are morphogenesis, the control of cell growth and cellular differentiation. Among these axes,

it is morphogenesis the one who deals with the processes causing an organism have a particular shape,

as well as, the formation and development of identifiable and robust functional areas. It is important to

remark that morphogenesis is not only concerned with a purely descriptive study of the shape of living

things, but also with the laws driving the morphological differentiation. Of course, in living organisms,

the mechanical constraints and forces are not enough to explain the diversity of cell types. Moreover,

those mechanisms are unable to fully explain the robustness of the boundary positions of functional

areas. To bring light to the subject, it becomes necessary to consider the complex relationships between

the DNA structure, proteins transcription and gene expression. Nevertheless, to understand properly

contemporary discoveries, we have to go back in time and start with the very abstract definition of

morphogen which was primary introduced in 1950s by Alan Turing in [155], and then restated by Lewis

Wolpert [164].

Two different definitions or morphogen

Turing's definition of morphogen

In the outstanding paper The chemical basis of morphogenesis, the author stated a first rigorous

definition of morphogen. Starting from the principle that it was more important to consider the substances

that are reacting chemically, than the non-growing masses of tissues through they diffuse [155], it was

proposed a theory where patterning was due to local interactions. Alan Turing defined a morphogen as

a substance (gens, skin pigments or/and hormones) that is diffusing and reacting chemically as catalyst

or inhibitor.

Wolpert's definition of morphogen

Thirty years later, and based on several studies showing that spatial patterns of differentiation were

capable of considerable regulation when disturbed [164], Lewis Wolpert came up with a different theory

of morphogenesis. The main concept of his theory is the positional information (PI). Since patterning in

Turing's model is driven by instabilities the regulation mechanism of development was not incorporated.

Moreover, considerable attention was given to the molecular characterisation of differentiation, but very

few of to the global regulation of spatial patterning.
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The solution proposed by Lewis Wolpert was based on the assumption that there are mechanisms

whereby cells have their position specified. The fate of the cell, i.e., its molecular differentiation, is

therefore determined by its position on the field as a result of the interpretation of the PI. Moreover,

since several points can determinate the position of a particular cell, it is necessary to specify the polarity

or the direction in which measurement must occur. It is important to remark that, Wolpert was not the

first one in proposing a mechanism as PI in the core of development. In fact, some similar ideas were

already introduced in the 50's by Dalcq (double gradient [40, 41]), and by Stern [140] and Kroeger [93]

with the concept of pre-patterning. The novelty of PI was first its universality, and second that it was

applicable in both development and regeneration context.

The french flag problem

We own to Wolpert not only the concept of PI but also the well-posedness and a first satisfactory

solution to the French Flag Problem (FFP) that we state now

Problem 1.3.7. Let us consider a field of N cells in a line, where each one of them is capable of

molecular differentiation. Assumed that this differentiation is related with the secretion of blue, white and

red pigments changing the appearance of the cell. Describe a mechanism by which the first third of cells

differentiate as blue cells, the second third as white cells, and the last one as red cells.

A typical solution to the FFP is depicted in figure 1.3. A gradient of morphogen determines the

position of the cells inside the field (a straight line of cells) and thresholds determine the fate of a particular

individual. We remark that this theoretical solution to the FFP is characterized by the combination of

a continuous gradient and thresholds. Some studies suggest that this sole mechanism results in the

formation of boundaries of imprecise shapes and positions (for a detailed discussion see Chapter 4). This

model has since evolved considerably to take into account the complexity of the cellular environment,

and new versions include for example, later cell migration and/or death to get sharp and well-defined

boundaries.

The solution proposed by Wolpert (also known as the French Flag Model FFM), can be applied to

different scenarios, in particular, it serves to explain an invariant size system (changing the number N of

cells does not varies the organisation of blue-white-red) or the fixed size case. In the first case a simple

unipolar solution can be provided by assuming that cells differentiate according to their distances to

the polarity point (see figure 1.4 up). However, since embryos regulate themselves in a size invariant

context (two organisms can have different size but a similar proportionality between body parts), a more

reasonable solution is a bipolar system (see figure 1.4 bottom).

Morphogens in contemporary terms

It has become evident that the only presence of a morphogen is not enough to generate the whole

mosaic of cell types. In contrast, it has been observed that morphogens act upon pre-patterns of tis-

sues [133]. However, as the FFM predicted, the main property of a morphogen is that cell fates depend
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Figure 1.3: The French flag model (FFM) and pattern formation driven by global interaction. At the

beginning cells are aligned and have the potential to develop as blue, white and red. The presence of

a gradient of morphogen defines the position of each cell within the field. The positional information

is then interpreted and cells differentiate forming a pattern deciding their fates according to predefined

thresholds.
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Figure 1.4: The FFM in a size invariant and a non size invariant context. The coloured dots correspond

to the polarity points and the arrows to the direction of PI. The morphogens are secreted from the

polarity points and free diffusion forms the gradients of concentration (up) Unipolar system. The fate

of the cell is only determined by the concentration of a generic black morphogen, by expressing different

pigments according to three thresholds. If a cell is close to the polarity point, then the concentration of

the morphogen is high and it expresses the blue pigment. Medium and low concentrations result on white

or red pigments respectively. If the number of cells is increased, any cell with a position larger than N

will secret the red pigment due to the low concentration of morphogen. (bottom) Bipolar version. The

fate of the cell is decided by the combination of the concentration of black and red morphogen according

to its rate. If the rate blue/red is high, then the PI indicates proximity to the blue polarity point and blue

pigment is secreted. Same for low rate blue/red and red pigment. In any other case the cell differentiate

as a white cell. Changes on the large of the cell field do not modify the sequence nor the proportion of

colours
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on the concentration of them. Prior to the formation of well defined boundaries and functional areas,

some specific sets of proteins are expressed in a sort of pre-patterning. These proteins are mostly of the

family of the transcript or factors (TFs) and correspond to the transcription of PI mechanism predicted

by Wolpert. The TFs are involved in the process of converting, or transcribing, DNA into RNA. Some

distinct features of them are that they have a DNA-binding domains providing them the ability to bind

to specific sequences of DNA called enhancer. Some of TFs bind to regulatory sequences and can either

stimulate or repress the transcription of the related gene.

We can summarise the general principles of morphogens gradient patterning by: (1) they are released

from spatially localised sources. Wether they diffuse free or are other transport mechanisms forming

the gradient is an active source of discussion [77, 95]. (2) Morphogen concentration is transmitted to

intracellular molecules resulting in the expression of particular sets of TFs. (3) TFs regulate complex

cascade effects in the cells by self stimulating its own expression and inhibiting the expression of others

TFs. (4) Feedback mechanisms stabilise fluctuations in morphogen production, regulate signalling and

confer stability to morphogen-mediated patterning. In this text is mainly concerned with a particular

family of TFs called homeoproteins (HP):

Definition 1.3.8. HPs are specific proteins encoded by homeobox genes that exhibit structural similarity

to certain prokaryotic and eukaryotic DNA-binding proteins. They are involved in the control of gene

expression during morphogenesis and development.

The particularity of HPs is that recent data support the view that they can be transferred from cell

to cell and have direct non-cell-autonomous activities [96, 138, 85, 80]. This is a very important remark

because HPs are very ancient molecules present in almost all phyla, therefore can have played a role in

the course of evolution of multicellular organisms.

Part III: Microscopic viewpoint of chemotaxis

In the math-bio community, chemotaxis is probably one of the most well known and studied subjects,

and still encompasses a large quantity of unsolved problems. Since the seminal publication of the Keller-

Segel model [88], mathematicians have been interested by different aspects of this remarkable equation,

but the work has not been finished.

The microscopic description of the Keller-Segel system has been a very popular field of research in

the past few years. In [142], Stevens studies a particle system with two kinds of particles corresponding

to bacteria and chemical substance. The author shows convergence of the system for smooth initial

data (lying in C3
b (R

d)) and for regular kernels (continuously differentiable and bounded together with

their derivatives). In [71], a kernel with a cutoff parameter Kǫ(x) =
x

|x|(|x|+ǫ) is considered. Some well-

posedness result for the particle system are given and the weak convergence of subsequences due to a

tightness result is showed. In a recent work [34], authors investigate a one-dimensional Keller-Segel model

and a dynamical particle system for which there is a global existence result under some assumptions on
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the initial distribution of the particles that prevents collisions. It is also given two blow-up criteria for

the particle system but the convergence result is not stated.

But what do we mean by chemotaxis? and why are we interested in microscopic descriptions of that

biological system? To answer that questions we recall that live organisms are in constantly movement, we

refer to chemotaxis when this movement is the response to a chemical stimulus. In the case of a positive

chemotaxis, i.e. when an organism or a cell is induced to migrate toward the chemical signal, this factor is

called chemoattractant. Chemoattractants can be secreted by the same population of organisms, and/or

by a different one.

Self-induced chemotaxis

The slime mold or Dictyostelium discoideum is a very nice example of self induced chemotaxis. This

amoeba belongs to a diverse group of motile unicellular eukariotic organisms. This protozoa is commonly

found in soil and water. The main particularity of this specie is its transition from a unicellular amoeba

into a multicellular organism. Let us describe the lifecycle of Dictyostelium discoideum and the role

of chemotaxis in it: as long as the food is present, individual cells of Dictyostelium discoideum live

as independent individuals. As soon as the food becomes scarce, cells start a process of aggregation

(and cellular differentiation) resulting in a multicellular organism. Roughly speaking, the starving cells

secret waves of a chemical signalling called cyclic adenosine monophosphate (cAMP) that indicate to

surrounding cells the center of territories. The amoebas migrate and gather resulting is a multicellular

organism with a body and spores that are dispersed to reset the life cycle.

Chemotaxis induced by external populations

An example of chemotaxis induced by external populations is the formation of new blood vessels in

cancer, process known as angiogenesis [36]. In early stages of cancer, the growth of cells is limited (up to

1-2 mm) by the availability of nutrients on the hosting tissue. Indeed, while the growth is volumetric, the

amount of nutrients is proportional to the area. Naturally, the nutrients become scarce, and the tumour

requires new blood vessels to sustain the demand of oxygen and glucose, and to avoid hypoxia. Therefore,

quiescent cells secret a chemoattractant called vascular endothelial growth factor (VEGF) which is the

key mediator of angiogenesis in cancer. Surrounding blood vessels react to the gradient of VEGF and

new vasculature is formed. The final result is a vascularised tumour and metastasis.

The Keller-Segel equation

The most celebrated model for chemotaxis was proposed in the 1970s by Evelyn Keller and Lee Segel

when they were studying the slime mold [88]. The model classically writes






∂tn(t, x)−∆n(t, x) + div
(
n(t, x)χ∇c(t, x)

)
= 0,

−∆c(t, x) = n(t, x),

(1.3.8)
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where the parameter χ is the sensitivity of cells to the chemoattractant, c(t, x) is the concentration of

chemoattractant, and n(t, x) is the density of cells at time t and position x. We see that this is a case of

self-induced positive chemotaxis.

In the two dimensional, system of equations (1.3.8) can be simplify, by solving explicitly the second

equation, to get

∂n(t, x)

∂t
=

χ

2π
∇ ·
(

n(t, x)

∫

R2

n(t, y)
x− y

|x− y|2 dy
)

+∆n(t, x). (1.3.9)

Equation (1.3.9) is a nonlocal equation. Moreover, if we consider the case when n0(t, x) has unitary

mass, then equation (1.3.9) is describing the time evolution of a probability density. The parallel with

the chaos propagation property we study in the first part of the text is remarkable. However, since the

force kernel is singular at 0, several technical difficulties arise.

1.4
Main results

Part I: Main results

Chapter 2 and 3 are related to theoretical neuroscience. In Chapter 2 we study the limits of a general

model of neuronal networks at two different scales: macroscopic and mesoscopic. We also study the

solutions in a particular solvable case, and the importance of the connectivity level in the emergence

of synchronisation states. Next, in Chapter 3, we study a kinetic mean field equation related to the

FitzHugh-Nagumo model. In particular, we are concerned with the exponential nonlinear stability of the

stationary solutions.

1.4.1 Randomly connected neuronal networks with delays

We analyse a general model of neuronal networks at different scales: (1) the macroscopic scale where

neurons gather into a few populations P (N) = P fixed, corresponding to coarse-grained descriptions of

neural activity [79]; and (2) the mesoscopic scale, or neural-field limit, where the number of populations

tends to infinity and the area described covers a continuous piece of cortex Γ ⊂ Rp with p ∈ N∗ [150, 151].

The state of a neuron i is described by a d−dimensional variable X i,N ∈ E. The networks are

composed of N neurons falling into P (N) populations labeled α ∈ {1, . . . , P (N)} and composed of Nα

neurons, and the convention α = p(i) defines the population neuron i belongs to. The evolution state

X i,N
t of neuron i in the population α ∈ {1, · · · , P} is governed by a stochastic differential equation.

The intrinsic dynamics of the neuron is governed by a function fα : R+ × E 7→ E. This evolution is

stochastic, driven by independent m-dimensional Brownian motions (W i
t ) through a diffusion coefficient

gα : R+ × E 7→ Rd×m. The neuron i receives inputs from other neurons in the network, which affect its
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state through an interaction function bαγ : R× E × E 7→ E depending on the synaptic weight wij ∈ R,

and the state of both neurons i and j. Moreover, these interactions take place after a delay τij > 0.

The dynamic of neuron i in population α is given by:

dX i,N
t =

(

fα(t,X
i,N
t ) +

P (N)
∑

γ=1

∑

p(j)=γ

1

Nγ
bαγ(wij , X

i,N
t , Xj,N

t−τij)
)

dt+ gα(t,X
i,N
t ) · dW i

t , (1.4.10)

under the assumption that b(0, x, y) = 0 and the fact that the synaptic weight wij is assumed zero when

no link from j to i.

We are concerned on the convergence of the solutions when the number of neurons goes to infinity

(under some assumption to be precise latter on). In particular, when N → ∞, then

⊲ for almost any realization of the transmission delays τij and synaptic weights wij in the translation-

invariant case or

⊲ averaged across all realizations of the disorder in the general case,

the propagation of chaos property holds: if the initial conditions are chaotic, then the states of a finite

number of neurons are independent for all times when N → ∞.

In both cases, the proof of the convergence and propagation of chaos will use the coupling method

already described. The proof is in two steps: (i) we prove that the limit equation (see equation (2.3.2)

below) has an unique solution, and (ii) that the law of X i,N
t converges towards the law of (2.3.2). In this

mesoscopic scale, when the number of populations is also going to infinity, the notion of solution is more

complex, as one obtains a process depending on space but which is not measurable with respect to the

spatial variable. To help the lecture, we focused on the first case P fixed and, will be briefly discussed

how to adapt the results of [151] to our context in section 2.7.

We start by showing the well-posedness of the network system:

Proposition 1.4.9. Let X0, a square integrable stochastic process from [−τ, 0] to EN , be the initial

condition of the network system. For any (α, γ) ∈ {1, . . . , P (N)}2, assume that:

(H1). fα and gα are uniformly (in time) Lipschitz-continuous functions with respect to their second vari-

able.

(H2). For almost all w ∈ R, bαγ(w, ·, ·) is Lαγ-Lipschitz-continuous with respect of both variables.

(H3). There exists functions K̄αγ : R 7→ R+ such that for any (α, γ) ∈ {1, · · · , P (N)}2,

|bαγ(w, x, y)|2 ≤ K̄αγ(w) and E[K̄αγ(w)] ≤ k̄ <∞.

(H4). The drift and diffusion functions satisfy the monotone growth condition: there exists a positive

constant K depending on f and g such that:

xT fα(t, x) +
1

2
|gα(t, x)|2 ≤ K(1 + |x|2).
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Then for almost all realization of the synaptic weights wij ∈ R and the delays τij ∈ [−τ, 0], we have

existence and uniqueness of solutions to the network equations (1.4.10).

The proof is based on the a priori bounds on the solutions and the Lipchitz continuity of the functions.

Even if the ideas used to the proof are simple, they allow us to conclude almost directly that the limit

mean-field equation is also well posed when the number of populations is fixed. More precisely, let

P (N) = P be fixed and independent of N . In this case, we will show that the network equation converges

(in a sense to be precised in each case) towards the solution of a well-posed McKean-Vlasov equation

given by:

dX̄α
t = fα(t, X̄

α
t ) dt+ gα(t, X̄

α
t ) · dWα

t +
( P∑

γ=1

∫ 0

−τ

∫

R

EȲ

[
bαγ

(
w, X̄α

t , Ȳ
γ
t+s

) ]
dΛαγ(s, w)

)

dt, (1.4.11)

where Ȳ is a process independent of X̄ that has the same law, EȲ the expectation under the law of Ȳ ,

and Wα
t are independent adapted standard Brownian motions of dimension d×m. In equation (1.4.11),

Λip(j) is the distribution of the variables (wij , τij) and it is assumed to depend only on the population

the particle i belongs to (translation invariant property). In that case we have the

Theorem 1.4.10. Under the hypotheses of Proposition 1.4.24 and for any ζ0 a square integrable process,

the mean-field equations (1.4.11) with initial condition ζ0 have a unique strong solution on [−τ, T ] for
any time horizon T > 0.

The proof of Theorem 1.4.20 is based on the a priori bounds “inherited” from the particle system,

and a Picard's iteration argument.

Let i ∈ N such that p(i) = α. We define the process X̄ i solution of (1.4.11), driven by the Brownian

motions (W i
t ) that governs X

i, and having the same initial condition as neuron i in the network, ζi0:







dX̄ i
t = fα(t, X̄

i
t)dt+ gα(t, X̄

i
t) · dW i

t

+
( P∑

γ=1

∫ 0

−τ

∫

R

EZ

[
bαγ
(
w, X̄ i

t , Z
γ
t+s

)]
dΛαγ(s, w)

)

dt, t ≥ 0

X̄ i
t = ζi0(t), t ∈ [−τ, 0].

(1.4.12)

By definition, the processes (Z1
t , . . . , Z

P
t ) are a collection of processes independent of (X̄ i

t)i=1,...,N and

have the distribution m1
t ⊗ · · · ⊗mP

t , where m
α
t is the probability distribution of X̄α

t (unique solution of

the equation (1.4.11)). One of the main results of the chapter is the

Theorem 1.4.11 (Quenched convergence). Under assumptions (H1)-(H4) and chaotic square in-

tegrable initial conditions. The process (X i,N
t ,−τ ≤ t ≤ T ) for i ∈ N fixed, solution of the network

equations (1.4.10), converges almost surely towards the process (X̄ i
t ,−τ ≤ t ≤ T ) solution of the mean-

field equations (1.4.12). This implies in particular convergence in law of the process (X i,N
t ,−τ ≤ t ≤ T )

towards (X̄α
t ,−τ ≤ t ≤ T ) solution of the mean-field equations (1.4.11).

The proof of Theorem 1.4.11 is quite interesting and clarifies the coupling method. Indeed, we only

need to control the square difference of the solutions to (1.4.10) and (1.4.12). Most of the terms are

easily upper bounded by using the Lipschitz continuity of the functions except for the contribution of the
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delays. In that case, the key remark is that the Cauchy-Schwartz and the triangular inequalities imply

that

E [E[ sup
0≤s≤t

|Es(N)|2]] ≤ TP

P∑

γ=1

∫ t

0

E
[

E

[∣
∣
∣
1

Nγ

∑

p(j)=γ

(

bαγ(wij , X̄
i
s, X̄

j
s−τij )

−
∫ 0

−τ

∫

R

EZ [bαγ(w, X̄
i
s, Z

γ
s+u)]dΛαγ(u,w)

)∣
∣
∣

2]]

ds, (1.4.13)

where E stands for the expectation over the random architecture of the network. The important remark

is that we assume that for fixed i, sequences (τij)j=1,...,N and (wij)j=1,...,N are considered independent

and identically distributed population-wise. Therefore, the previous expression is of order 1/min(Nγ),

and by consequence, going to 0 as N goes to infinity.

Finally, in the case that Λip(j) depend on the precise position of the neuron i and not only on the

population (non translation invariant case), a different chaos propagation property is proved. Denoting

Ei the expectation over all possible distributions Λiγ , and modifying accordingly the respective proof, we

have the

Theorem 1.4.12 (Annealed convergence). We assume that (H1)-(H4) are valid, that network initial

conditions are chaotic and square integrable, and that the interaction does not depend on the postsynaptic

neuron state (i.e., b(w, x, y) = ℓ(w, y)). Let us fix i ∈ N, then the law of process (X i,N
t , −τ ≤ t ≤ T )

solution to the network equations (1.4.10) averaged over all the possibles realizations of the disorder,

converge almost surely towards the process (X̄ i
t , −τ ≤ t ≤ T ) solution to the mean field equations (1.4.11).

This implies in particular the convergence in law of (Ei[X i,N
t ], −τ ≤ t ≤ T ) towards (X̄α

t , −τ ≤ t ≤ T )

solution of the mean field equations (1.4.11).

The previous setting can be fully understood in the special case of a one population firing-rate neuron

network.

Application: dynamics of the firing-rate model with random connectivity

A particularly suitable framework to solve the question of the role of the random architecture is

provided by the classical firing-rate model (see e.g. [151]). For that dynamics, we can show that the

solution to the mean-field equations (1.4.11) is exponentially attracted to a Gaussian, whose mean and

standard deviation are solution of simpler dynamical system. Moreover, we prove that the connectivity

level of the network plays a role on the emergence of synchronisation of the solutions.

For the firing-rate model, the solution of (1.4.11) satisfies the implicit equation:

X̄α
t = X̄α

0 e
−t/θα +

∫ t

0

e−(t−s)/θα
(

− X̄α
s

θα
+ Iα(s)

+
P∑

γ=1

∫ 0

−τ

∫

R

Jαγ(w)EȲ

[
S(Y γ

s+r)
]
dΛαγ(r, w)

)

ds+

∫ t

0

e−(t−s)/θαλαdW
α
s

which is composed of Gaussian terms and the initial condition X̄α
0 e

−t/θα vanishing at an exponential

rate. Therefore, taking expectation and covariance we get that the mean and the variance of the solution
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satisfy the following well-posed system of delayed differential equations:







u̇α = −uα/θα +

P∑

γ=1

∫ 0

−τ

∫

R

Jαγ(w)EY

[
S(Y γ

t+s)
]
dΛαγ(s, w)

v̇α = −2vα/θα + λ2α.

Here we see that there is a unique stable steady state for the variance. Moreover, in we take S as the erf

function, we can interchange E with S, and find an implicit equation for the mean of the system. Further

simplifications on the number of populations, allow us to write that if P = 1, then the mean solves

u̇(t) = −u(t)
θ

+

∫ 0

−τ

∫

R

J(w)
1

√

2π(1 + v∗)
u(t+ s) dΛ(s, w), (1.4.14)

and by consequence, the stability of the fixed point only depends on the dispersion relationship:

ξ = −1

θ
+

1
√

2π(1 + v∗)

∫ 0

−τ

∫

R

J(w) eξs dΛαγ(s, w), (1.4.15)

which is nothing more that looking for solutions of the form u = eξt in (1.4.14).

Equipped with (1.4.15) we show that in the small-world type of architectures, and one dimensional

model, variations on the extension of the neural field induce a transition from a stationary solution, to

an oscillatory regime and back to the stationary solution, when all other parameters remain unchanged.

On the other hand, increasing the value of the connectivity of the network favors the apparition of

these oscillatory solutions. We conclude that: the topology of the network strongly impacts the collective

behavior of the solutions. For a fixed value of the connectivity parameter, there exists an optimal neural

field size for synchronization. At this size, the constant delays necessary to induce oscillations is minimal.

In contrast, at fixed values of the extension of the field: fully connected networks synchronize more easily.

In the cortex, for energetic reasons, full connectivity is not favored, and therefore this indicates optimal

cluster sizes for synchronization.

All the technical details of this work are presented in the Chapter 2 of this memoir, which is included

in [128] written in collaboration with J. Touboul and published in Acta Applicandae Mathematicae.

1.4.2 On a kinetic FitzHugh-Nagumo equation

Chapter 3 is probably the most technical and the main interesting mathematical contribution of

this dissertation. It deals with an FitzHugh-Nagumo model, which constitutes a very good compromise

between versatility and accuracy of its dynamics compared to biological neurons on the one hand, and

relative mathematical simplicity on the other hand. It describes the evolution of the membrane potential

v of a cell coupled to an auxiliary variable x, modeling the adaptation to external inputs. Tthe evolution

of the the state (x, v) of each cell i belonging to a set of n FitzHugh-Nagumo neurons satisfies:







dvit =
(

vit (v
i
t − λ) (1− vit)− xit +

∑n
j=1 Jij(v

i
t − vjt ) + It

)

dt+ σ dW i
t

dxit =
(
−axit + bvit

)
dt,

(1.4.16)
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where the It is the input level, a and b are positive constants, and the processes {(W i
t )t≥0, 1 ≤ i ≤ n} are

independent Brownian motions. For sake of simplicity, we assume that σ2 = 2 and It = I0 ∈ R constant.

The positive coefficients Jij represent the effect of the interconnection of cell j onto cell i. Under relatively

weak assumptions on the distribution of these coefficients, we show that the system enjoys propagation

of chaos property towards a process whose density solves, on (0,∞)× R2, the McKean-Vlasov evolution

PDE 





∂tf = Qε[Jf ] f := ∂x(Af) + ∂v
(
Bε(Jf )f

)
+ ∂2vvf

A = A(x, v) = ax− bv,

Bε(Jf ) = B(x, v ; ε,Jf),

B(x, v ; ε, j) = v (v − λ) (v − 1) + x− ε (v − j) + I0,

Jf = J (f) =
∫

R2 v f(x, v) dvdx.

(1.4.17)

This is a nonlinear nonlocal PDE, with non bounded coefficients and such that the related differential

operator is hypodissipative and non Lipschitz. Therefore, even if the particle system seems to be math-

ematically simple, the limit equation is not easy to analyze. Nevertheless, we observe that the equation

is given in a divergence form, then the mass and the positivity of the initial condition are conserved as

long as a solution exists. The first main result we get is related to the existence of solutions to (1.4.17)

and the respective a priori bounds:

Theorem 1.4.13. For any f0 ∈ L1(M2) ∩ L1 logL1 ∩ P(R2), there exists a unique global weak solution

ft to the FhN equation (3.1.2), that moreover satisfies

‖ft‖L1(M) ≤ max(C0, ‖f0‖L1(M)), (1.4.18)

and depends continuously in L1(M) to the initial datum.

Furthermore, there exist two norms ‖·‖H1 and ‖·‖H2
v
equivalent respectively to ‖·‖H1(m) and ‖·‖H2

v(m),

such that the following estimates hold true:

‖ft‖L1(m) ≤ max(C1, ‖f0‖L1(m)), (1.4.19)

as well as

‖ft‖H1 ≤ max(C2, ‖f0‖H1), (1.4.20)

and

‖ft‖H2
v
≤ max(C3, ‖f0‖H2

v
), (1.4.21)

where C1, C2, C3 are positive constants.

We recall, from classical literature, that L1 logL1 is the space of function with finite entropy, M

(respectively m) is a polynomial (respectively exponential of a polynomial) weight function, L1(M),

H1(m) are Sobolev weighted spaces, and that H2
v (m) is the set of functions of H1(m) such that the

second v derivative exists and belong to L2(m). The proof of the Theorem 1.4.13 is based on the bounds

on the solutions. We start by noticing that the nonlocal term is upper bounded uniformly on time. This
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allow us to replace J (ft) by a constant J ∈ R when proving (1.4.19), (1.4.20) and (1.4.21). More

precisely, to find inequality (1.4.18), we use the definition of A and Bε, to get

d

dt

∫

R2

ftM dxdv ≤ K1 −K2

∫

R2

ftM dxdv, (1.4.22)

whereK1 andK2 are generic constants depending only on the parameters of the system. To prove (1.4.19)

we simply use that sign(f)∂2vvf ≤ ∂2vv|f |, to get an inequality of the type (1.4.22).

The other two inequalities are much more delicate. Indeed, since the operator is hypodissipative we

cannot use the standard arguments of parabolic equations to upper bound the H1 norm. Instead we use

the ideas of Villani [158] and study a “shifted” norm equivalent to the usual norm on H1. More, precisely

we get the

Lemma 1.4.14. Let us consider two exponential weight functions m1 < m2. For any J ∈ R fixed, there

exist K1,K2 > 0 and δ ∈ (0, 1) constants such that

〈Qε[J ] f, f〉H1 ≤ K1‖f‖2L2(R2) −K2‖f‖2H1, ∀ f ∈ H1(m2), (1.4.23)

where 〈·, ·〉H1 is the scalar product related to the Hilbert norm

‖f‖2H1 := ‖f‖2L2(m2)
+ δ3/2‖∂xf‖2L2(m2)

+ δ4/3〈∂xf, ∂vf〉L2(m1) + δ ‖∂vf‖2L2(m2)
.

The proof of Lemma 1.4.23 is based on control the extra contribution of the x-derivative thanks to

the presence of the cross derivative term. In particular we prove an inequality of the type

〈∂x(Qεf), ∂xf〉L2(m2) ≤ K‖∂xf‖2L2(R2) + (other terms),

with K a constant, and

〈∂xQεf, ∂vf〉L2(m1) + 〈∂vQεf, ∂xf〉L2(m1) ≤ −b ‖∂xf‖2L2(m1)
+ (other terms),

where all the other terms can be easily upper bounded. The choice of the exponent of δ in the definition

of the ‖ · ‖H1 norm is such that for δ > 0 small enough

δ3/2K‖∂xf‖2L2(R2) − δ4/3b ‖∂xf‖2L2(m1)
≤ 0.

Finally, we use that J (ft) is uniformly upper bounded to find K1,K2 and δ in Lemma 1.4.14 such that

d

dt
‖ft‖2H1 ≤ K1‖ft‖L2(R2) −K2‖ft‖2H1 ,

with ft any solution to (1.4.17). To finally obtain (1.4.20), we recall Nash's inequality

‖f‖2L2(R2) ≤ C‖f‖L1(R2)‖Dx,vf‖L2(R2), (1.4.24)

and use that ft has unitary mass. Inequality (1.4.21) follows the same schema of proof. Equipped with

these inequalities the existence of a solution (at least in a weak sense) can be obtained by using a fixed

point argument. Nevertheless, the uniqueness result requires to work in a smaller space. To that aim we

simply use the definition of A and Bε, to prove that for any f0 ∈ L1(M) ∩ L1 logL1 ∩ P(R2), it holds

sup
t∈[0,T ]

∫

R2

ft log(ft) dxdv +

∫ t

0

∫

R2

|∂vfs|2
ft

dxdv ds ≤ C(T ), (1.4.25)
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where C(T ) depend on f0 and the coefficients of the problem.

It is important to remark that the inequality (1.4.25) includes the entropy of the solution and a quan-

tity that it is not the classical Fisher's information but only a partial v-derivative Fisher's information.

This is related to the hypodissipativy of the operator. At this point the uniqueness (and by consequence

the well-posedness of (1.4.17)) are obtained by putting together all the a priori bounds.

The second main result of the chapter is the

Theorem 1.4.15. For any ε ≥ 0, there exists at least one stationary solution Gε to the FhN statistical

equation (1.4.17). Moreover, there exists an increasing function η : R+ → R such that η(ε) −−−→
ε→0

0 and

such that any stationary solution Gε satisfies

‖Gε −G0‖L2(m) ≤ η(ε),

where G0 is the unique stationary solution corresponding to the case ε = 0.

The existence part of Theorem 1.4.15 is obtained using a classic Brouwer fixed point argument. The

stability part is much more complicated and requires to analyse first the linearized equation. To that

aim we use the decomposition technique. Around any stationary solution Gε, we consider the linearized

operator

Lεh = Qε(J (Gε))h+ εJ (h)∂vGε.

Next, we fix a constant N > 0, and in the same sense that we did in the Example 1.2.6, we define

Bε := Lε −A, where A = N χR(x, v). (1.4.26)

The split (1.4.26) is such that the hypotheses (1.a) and (1.b) of the Krein-Rutmann abstract The-

orem 1.2.4 hold. In particular, we have that for N and R large enough, (Bε + 1) is hypodissipative in

H2
v (m) and the

Lemma 1.4.16. There are positive constants N,R large enough and some CBε > 0, such that the

semigroup SBε satisfies

‖SBε(t)h‖H2
v(m1) ≤ CBε t

−9/2‖h‖L2(m2), ∀ t ∈ (0, 1].

As a consequence, for any α > −1, and any exponential weight m, there exists n ≥ 1 and Cn,ε such that

of any t > 0 it holds

‖(ASBε)
(∗n)(t)h‖H2

v(m) ≤ Cn,ε e
αt‖h‖L2(m). (1.4.27)

The proof of the hypodissipative of Bε + 1 uses the idea of “removing” the positive parts of the H2
v

inequality obtained for Qε. The key point is to define a new norm

‖h‖2H̄2
v(m) := ‖h‖2L2(m) + δ ‖Dx,vh‖2L2(m) + δ2 ‖∂2vvh‖2L2(m),

and choose δ > 0 small enough, to conclude that for any α ∈ (0, 1] there is δα such that

〈Bεh, h〉H̄2
v(m) ≤ −α ‖h‖2H̄2

v(m).
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Since the norm related to H̄2
v (m) is equivalent to the usual norm in H2

v (m), we can conclude the hypodis-

sipative of Bε.

The proof of Lemma 1.4.16 is more technical. We first state some sharper estimates on the H2
v (m)

norm of Bεh, and next define a real function F(t, h) by the formula

F(h, t) := ‖h‖2L2(m2)
+ c1t

3‖∂xh‖2L2(m1)
+ c2t‖∂vh‖2L2(m1)

+ c3t
2〈∂xh, ∂vh〉L2(m1) + c4t

4‖∂2vvh‖2L2(m1)
. (1.4.28)

This is usually called the Hörmander-Hérau technique. When F is evaluated on ht = SBε(t)h, the sharper

estimates on ht allow us to conclude that for a well chosen family of ci, F(t, ht) is a decreasing function

and then

C−1 t9/2
(

‖∂x,vht‖2L2(m1)
+ ‖∂2vvht‖2L2(m1)

)

≤ ‖h0‖2L2(m2)
.

for some constant C. Finally, thanks to the fact that A lies within a compact, we get that

‖ASBε(t)h‖H2
v(m) ≤ C′t−9/2e−t‖h‖L2(m), ∀ t ∈ (0, 1],

for any exponential weight m.

Finally, thanks to the general Krein-Rutman's theorem, an induction argument, and the properties

of the split (1.4.26) we deduce that in the linear case ε = 0 the spectrum of the operator Q0 = L0, is

such that

Proposition 1.4.17.

(i) There exists ᾱ < 0 such that the spectrum Σ(L0) of L0 in L2(m) writes

Σ(L0) ∩∆ᾱ = {0},

and 0 is simple.

(ii) For any α > ᾱ, there exists a constant CH1
v
> 0 depending on (α− ᾱ), such that

‖RL0
(z)‖B(L2(m),H1

v(m)) ≤ CH1
v
(1 + |z|−1), ∀ z ∈ C \ {0},Re(z) > α.

Proposition 1.4.17 implies two things: first, the operator L0 is invertible in L2(m) for functions with

zero mean; and second, the stability part of Theorem 1.4.15 holds.

The third main result of the chapter is the

Theorem 1.4.18. There exists ε∗ > 0 such that, in the small connectivity regime ε ∈ (0, ε∗), the

stationary solution is unique and exponentially stable. More precisely, there exist α∗ < 0 and η∗(ε) :

R+ → R, with η∗(ε) −−−→
ε→0

∞, such that if

f0 ∈ H1(m) ∩ P(R2) and ‖f0 −G‖H1(m) ≤ η∗(ε),

then there exists C∗ = C∗(f0, ε
∗, ε) > 0, such that

‖ft −G‖L2(m) ≤ C∗ eα
∗ t, ∀ t ≥ 0,

where ft is the solution to (1.4.17) with initial condition f0.
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The uniqueness is once again a result of the invertibility of L0 on L2(m) for functions with zero mean

and an inequality of the type

‖f‖V := ‖f‖L2(Mm) + ‖∇vf‖L2(M1/2m) ≤ CV ‖g‖L2(m). (1.4.29)

for a constant CV and any g with zero mean such that L0f = g. Inequality 1.4.29 implies that there is

a constant C such that for any two stationary solutions of (1.4.17) Fε and Gε it holds

‖Fε −Gε‖V ≤ εC ‖Fε −Gε‖V , (1.4.30)

then for ε small enough we get the uniqueness of the stationary state.

The nonlinear exponential convergence uses a perturbation argument on the spectrum of L0 to find

the

Theorem 1.4.19. Let us fix α negative and close to 0. Then there exists ε2 ∈ (0, ε1) such that for any

ε ∈ [0, ε2], there hold

(i) The spectrum Σ(Lε) of Lε in L2(m) writes

Σ(Lε) ∪∆α = {0},

and 0 is a simple eigenvalue.

(ii) The linear semigroup SLε(t) associated to Lε in L2(m) writes

SLε(t) = Πε + Rε(t),

where Πε is the projection on the eigenspace associated to 0 and where Rε(t) is a semigroup which

satisfies

‖Rε(t)‖B(L2(m)) ≤ CLε1
eαt,

for some positive constant CLε1
independent of ε.

The proof of Theorem 1.4.19 consists in finding η2(ε) −−−→
ε→0

0, such that Σ(Lε)∩∆α ⊂ B(0, η2(ε)), which

is done by computing exactly the inverse of Lε − z for z 6= 0, Re(z) > α. A direct consequence of this

result is that the conclusion of Theorem 1.4.18 is an application of the Duhamel's formula for the linear

semigroup SLε , and to control correctly the nonlinear extra term.

All the technical details of this work are presented in the Chapter 3 of this text, which is included

in a very recent pre-publication [112] (submitted), work done in collaboration with S. Mischler and J.

Touboul.

Part II: Main mathematical results

The second biological problem we study is presented in Chapter 4 and Chapter 5, and it no more deals

with neuronal activity but with the structuring of neuronal areas. In Chapter 4 we present the model and
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provide a biological relevant discussion of the results obtained. This model of neuronal differentiation

was proposed with the help of the experimental biologist Professor Alan Prochiantz. In Chapter 5 we

consider a general version of the model of neuronal differentiation in a one dimensional case. There,

we prove rigorously the idea of the convergence of the family of stationary solutions when the diffusive

operator is going to zero.

1.4.3 Competition and boundary formation in heterogeneous media: appli-

cation to neuronal differentiation

Our model falls in the frame of the competition of two diffusing species A and B that are reciprocal

inhibitor and self-activating, with saturation and spatially heterogeneous production rates HA(x,A,B)

and HB(x,A,B). In neurodevelopmental terms, transcription factors expressed by two genes GA and

GB constitute our two competing species, and the space heterogeneity corresponds to the graded con-

centration of morphogens. For simplicity, we present the framework a one-dimensional case in which the

differentiating tissue is along the interval [0, 1].

Abstracting the problems that we will see in Chapter 4, it is natural to consider the following system

of reaction-diffusion equations:







∂tA− εdA∆A = AHA(x,A,B), 0 < x < 1,

∂tB − εdB∆B = BHB(x,A,B),

(1.4.31)

with some boundary conditions to be preciser later.

Here HA and HB are maps from [0, 1]× R+ × R+ on R, assumed to be of class C2. We assume that







HA(x, 0, 0) > 0, HB(x, 0, 0) > 0,

∂xHA(x,A,B) < 0, ∂xHB(x,A,B) > 0,

∂BHA(x,A,B) < 0, ∂AHB(x,A,B) < 0,

(1.4.32)

which can be interpreted as follows: on the one hand, the morphogen gradients do not vanish and vary

monotically, on the other hand the system expresses competition between species A and B.

Because, we are interested in the limit ε = 0, the stationary solutions of (1.4.31) in the absence of

diffusion are useful. We assume that there exists two solutions (FA(x) > 0, 0) and (0, FB(x) > 0) such

that

HA

(
x, FA(x), 0

)
= 0, HB

(
x, 0, FB(x)

)
= 0, (1.4.33)

and that they are respectively stable for x ∈ (0, xa) and for x ∈ (xb, 1), with xa > xb. Therefore, for any

fixed x ∈ (xb, xa), the system is a bistable ODE. We further assume

HB(x, FA(x), 0) > 0 for x > xa > xb, HA(x, 0, FB(x)) > 0 for x < xb < xa. (1.4.34)
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Finally, we assume that there exists a unique additional solution (A∗(x) > 0, B∗(x) > 0) in the

interval (xb, xa) which is a saddle. In order to complete the definition of our system (1.4.31), we consider

the Robin (also called third type) boundary conditions:







A(0)−√
ε ∂

∂xA(0) = FA(0), A(1) +
√
ε ∂

∂xA(1) = 0,

B(0)−√
ε ∂

∂xB(0) = 0, B(1) +
√
ε ∂

∂xB(1) = FB(1).

(1.4.35)

At this level of generality, assumptions (1.4.32)–(1.4.34) may appear formal. These are actually very

natural, as we will see in the Chapter 4.

The main result that we will demonstrate is the fact that in the presence of small diffusion, a clear

boundary between two differentiated domains exists and is unique, and may be characterized univocally.

In detail, we prove the

Theorem 1.4.20. Under assumptions 1.4.32–1.4.34, there exists a classical stationary solution (Aε, Bε)

of (1.4.31) which satisfies
d

dx
Aε(x) < 0,

d

dx
Bε(x) > 0, (1.4.36)

and is obtained as t→ ∞ in the corresponding parabolic equation. Moreover

(i) As ε→ 0, (Aε, Bε) converges a.e. towards a pair (A0, B0). These maps are discontinuous at some

point x∗ ∈ [xb, xa] and have disjoint supports

supp(A0) = [0, x∗] and supp(B0) = [x∗, 1].

(ii) The point x∗ is characterized by the relation c(x∗) = 0 where c(·) represents the speed of propagation

of a traveling wave problem parametrized by x.

The proof of Theorem 1.4.20 uses arguments of viscosity solutions and travelling waves. The first step

is to characterise the stationary functions FA, FB and (A∗, B∗). Using the hypotheses on the spatially

heterogeneous production rates, we can readily prove that the functions defined in (1.4.33) and (1.4.34)

satisfy
d

dx
FA(x) < 0 for x ∈ [0, xa),

d

dx
FB(x) > 0 for ∈ (xb, 1], (1.4.37)

d

dx
A∗(x) > 0 and

d

dx
B∗(x) < 0, xb < x < xa. (1.4.38)

The next step is to prove that solutions to the parabolic problem are monotone for well chosen

initial conditions. To that aim we start by fixing two nonnegative decreasing sub-solution (respectively

increasing super-solution) for A (respectively B). In that case, we prove the

Lemma 1.4.21. For all t ≥ 0 and x ∈ [0, 1], we have that (Aε, Bε) solution to (1.4.31), are such that

∂tAε(t, x) ≥ 0 and ∂tBε(t, x) ≤ 0.

and the

Lemma 1.4.22. For any ε > 0 fixed, let us consider any solution (Aε, Bε) of (1.4.31) with initial

conditions A(0, x) decreasing and B(0, x) increasing. If the solutions are uniformly bounded on space and
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time, we have for all t ≥ 0

∂

∂x
Aε(t, x) ≤ 0 and

∂

∂x
Bε(t, x) ≥ 0, 0 ≤ x ≤ 1.

Both previous lemmas are interesting because the proof is based on the a priori bounds of the parabolic

system. In particular, we use the temporal and spatial derivatives of equations (1.4.31), to get the

monotonicity results stated.

At this point a bootstrap argument allows us to conclude that there exists Aε(x), Bε(x) regular

stationary solutions of (1.4.31), and then the first part of Theorem 1.4.20 is valid. To continue we

provide sharper estimates of the stationary solutions to control Aε(0) and Bε(1) away from zero. More

precisely, we prove the

Proposition 1.4.23. There exists ε0 > 0 such that for any ε < ε0, the stationary solution Aε is strictly

positive and Aε(0) is, uniformly in ε, larger than some δA > 0. The same holds for Bε and Bε(1).

The proof of Proposition 1.4.23 consists in finding a strictly positive sub-solution for

− εdA
d2

dx2
φA = HA

(
x, φA(x), Bε(x)

)
φA, (1.4.39)

which can be done explicitly. Equipped with this result, and since the total variation of the stationary

solutions Aε and Bε is uniformly bounded in ε, we can pass to the limit and find a pair (A0, B0) that

satisfies, almost everywhere, 





A0HA

(
x,A0(x), B0(x)

)
= 0,

B0HB

(
x,A0(x), B0(x)

)
= 0.

(1.4.40)

Since we know from the hypotheses the possible solutions to the autonomous system (1.4.40) for each

x fixed, it only remains to prove that they define a pair (A0(x), B0(x)) as the Theorem 1.4.20 states.

The previous condition is reduced to find x∗ such that (A0(x), B0(x)) = (FA(x), 0), for x < x∗ and

(A0(x), B0(x)) = (0, FB(x)), for x > x∗. To that aim, we use a WKB change of unknown (ϕε
A :=

−√
ε log(Aε)), and thanks to the sharper estimates given by Proposition 1.4.23 we get the

Lemma 1.4.24. There exists two non empty intervals, namely Ib and Ia = [0, 1] \ Ib, such that B0 ≡ 0

in Ib and A0 ≡ 0 in Ia. Moreover,

[0, xb) ⊂ Ib and (xa, 1] ⊂ Ia.

Finally, we would like to characterise the limit (A0, B0). Under the change of variables y = (x−x∗ε)/
√
ε,

and define aε(y) = Aε(x
∗
ε +

√
εy) and bε in the same way. We pass to the limit ε → 0 in the stationary

version of (1.4.31) to find that (a0, b0), is solution of






−dA d2

dy2 a0(y) = a0(y)HA

(
x∗, a0(y), b0(y)

)
, ∂ya0(y) ≤ 0,

−dB d2

dy2 b0(y) = b0(y)HB

(
x∗, a0(y), b0(y)

)
, ∂yb0(y) ≥ 0,

a0(0) = b0(0).

(1.4.41)

This solution is characterized as follows:
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Theorem 1.4.25. The limits satisfy a0 6= 0, b0 6= 0 and there exists a unique value x∗ such that the

system (1.4.41) has a non-trivial solution. This solution is the unique traveling wave defined as






−c(x) ∂
∂ya(y;x)− dA

∂2

∂y2 a(y;x) = a(y;x)HA

(
x, a(y;x), b(y;x)

)
, y ∈ R,

−c(x) ∂
∂y b(y;x)− dB

∂2

∂y2 b(y;x) = b(y;x)HB

(
x, a(y;x), b(y;x)

)
,

lim
y→−∞

a(y;x) = FA(x), lim
y→+∞

a(y;x) = 0,

lim
y→+∞

b(y;x) = FB(x), lim
y→−∞

b(y;x) = 0,

(1.4.42)

with speed zero, that is c(x∗) = 0, and connecting (FA(x
∗), 0) to (0, FB(x

∗)).

The proof of Theorem 1.4.42 is split into three steps. First we show that functions aε and bε cannot

converge both at the same time to the zero function. Then, using that a0 and b0 converge at −∞
to solutions of (1.4.40), we show that limit conditions of (1.4.42) are satisfied. Finally, thanks to a

monotonicity argument on the speed c(x), we show that (a0, b0) are in fact the unique traveling wave

solutions of (1.4.42) such that c(·) = 0.

Part III: Main results

Finally, we discuss the convergence results obtained for the subcritical Keller-Segel particle system.

In particular, we prove chaos and entropic chaos propagation without the use of a truncation and/or

regularisation version of the related kernel. Eventually, by the use of a combined PDE/Probabilistic

approach we prove the entropic chaos propagation property.

1.4.4 On a subcritical Keller-Segel equation

We consider the following system of particles

∀i = 1, ..., N, X i,N
t = X i,N

0 − χ

N

N∑

j=1,j 6=i

∫ t

0

K(X i,N
s −Xj,N

s )ds+
√
2Bi

t , (1.4.43)

where (Bi)i=1,...,N is an independent family of 2D standard Brownian motions and the force field kernel

K : R2 → R
2 comes from an attractive potential Φ : R2 → R and is defined by

K(x) :=
x

|x|α+1
= −∇

(
1

α− 1
|x|1−α

)

︸ ︷︷ ︸

Φ(x)

, α ∈ (0, 1). (1.4.44)

Our goal is to prove that there is propagation of chaos to the solution of the following nonlinear SDE

Xt = X0 − χ

∫ t

0

∫

R2

K(Xs − x)fs(dx)ds +
√
2Bt, (1.4.45)

where ft = L(Xt) is the law of Xt. Moreover, it is classical to show that if (Xt)t≥0 is a solution to (1.4.45),

then (ft)t≥0 is a weak solution of

∂ft(x)

∂t
= χ∇x · ((K ∗ ft)(x))ft(x)) +△xft(x). (1.4.46)
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The main result that we obtained on this Chapter is the following:

Theorem 1.4.26. Let α ∈ (0, 1). Assume that initial condition is such that






FN
0 ∈ Psym((R2)N ) is f0 − chaotic;

sup
N≥2

M1(F
N
0 ) <∞, sup

N≥2
H(FN

0 ) <∞.
(1.4.47)

For each N ≥ 2, consider the unique solution (X i,N
t )i=1,...,N,t≥0 to (1.4.43). Let (Xt)t≥0 be the unique

solution to (1.4.45).

(i) The sequence (X i,N
t )i=1,...,N,t≥0 is (Xt)t≥0-chaotic. In particular, the empirical measure QN :=

1
N

∑N
i=1 δ(Xi,N

t )t≥0
goes in law to L((Xt)t≥0) in P(C((0,∞),R2)).

(ii) Assume furthermore that limN H(FN
0 ) = H(f0). For all t ≥ 0, the sequence (X i,N

t )i=1,...,N is then

Xt-entropically chaotic. In particular, for any j ≥ 1 and any t ≥ 0, denoting by FN
tj the density of the

law of (X1,N
t , ..., Xj,N

t ), it holds that

lim
N→∞

||FN
tj − f⊗j

t ||L1((R2)j) = 0.

The proof of Theorem 1.4.26 is based on the tightness of the empirical measure QN . However, since

the force kernel is singular and the limit equation is nonlinear and nonlocal, the well posedness of the

particle system (1.4.43) and the mean-field equation (1.4.45) are not direct.

To avoid the singularity at 0, we first analyse a regularized version of the equations and then pass to

the limit. For ǫ ∈ (0, 1), we set

Kǫ(x) =
x

max(|x|, ǫ)α+1
, (1.4.48)

which obviously satisfies |Kǫ(x) −Kǫ(y)| ≤ Cα,ǫ|x− y|. Therefore, the following system of S.D.E.s

∀i = 1, ..., N, X i,N,ǫ
t = X i,N

0 − χ

N

N∑

j=1,j 6=i

∫ t

0

Kǫ(X
i,N,ǫ
s −Xj,N,ǫ

s )ds+
√
2Bi

t , (1.4.49)

is such that strong existence and uniqueness of the solution hold. Moreover, we notice that the entropy,

the first moment, and the Fisher's information of the solutions to the system (1.4.48) are upper bounded

uniformly in ǫ. In particular we show the:

Proposition 1.4.27. Let α ∈ (0, 1).

(i) Let N ≥ 2 be fixed. Assume that M1(F
N
0 ) < ∞ and H(FN

0 ) < ∞. For all t ≥ 0, we denote by

FN,ǫ
t ∈ Psym((R2)N ) the law of (X i,N,ǫ

t )i=1,...,N . Then

H(FN,ǫ
t ) =H(FN

0 ) +
χ

N2

∑

i6=j

∫ t

0

∫

(R2)N
divKǫ(xi − xj)F

N,ǫ
s (x)dsdx (1.4.50)

−
∫ t

0

I(FN,ǫ
s )ds.

(ii) There exists a constant C which depends on χ, H(FN
0 ) and M1(F

N
0 ) (but not on ǫ) such that for all

t ≥ 0 and N ≥ 2,

H(FN,ǫ
t ) ≤ C(1 + t), M1(F

N,ǫ
t ) ≤ C(1 + t),

∫ t

0

I(FN,ǫ
s )ds ≤ C(1 + t). (1.4.51)
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Furthermore,

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C(1 + T ). (1.4.52)

The proof of Proposition 1.4.27 is based on the ideas of [62, Proposition 5.1], that we adapt using the

fact that the kernel is no more divergence free. Therefore, there is an additional term in the dissipation

of entropy formula (1.4.50) that necessitate to be specifically controlled. This is a technical problem, but

using classical properties of the Brownian motions it is possible to get the stated result.

To prove the well posedness of (1.4.43) the key point is to show that particles almost surely never

collide. To this purpose we first notice that this result holds for (1.4.49). Since Kǫ and K coincide as long

as the distance between any two particles of (1.4.43) is larger than ǫ, we deduce first that the particles

of true system (1.4.43) also never collide, and second the global existence and uniqueness for (1.4.43).

Finally, we establish the estimates about the entropy, Fisher information and the first moment by passing

to the limit in (1.4.51).

In a second part of the chapter, we deal with the tightness and the consistency of the particle system

with respect to the SDE (1.4.45). In particular we show the

Lemma 1.4.28. Let α ∈ (0, 1). Assume (1.4.47). For each N ≥ 2, let (X i,N
t )i=1,...,N be the unique

solution to (6.1.3) and QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
, then

⊲ the family {L((X1,N
t )t≥0), N ≥ 2} is tight in P(C([0,∞),R2));

⊲ the family {L(QN ), N ≥ 2} is tight in P(P(C([0,∞),R2))).

and, defining S as the set of all probability measures f ∈ P(C([0,∞),R2)) such that f is the law of

(Xt)t≥0 solution to (1.4.45) with locally (in time) integrable Fisher information and locally (in time)

bounded first moment, we have the

Proposition 1.4.29. Let α ∈ (0, 1) and assume (1.4.47). For each N ≥ 2, let (X i,N
0 )i=1,...,N be FN

0 -

distributed and consider the solution (X i,N
t )i=1,...,N,t≥0 to (1.4.43). Assume that there is a subsequence

of QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
going in law to some P(C([0,∞),R2))-valued random variable Q. Then Q

a.s. belongs to S.

The proof of these results is classical and it is mainly based on the a priori bounds of the solutions

and Itô's formula. As a direct consequence we find a weak solution to the limit mean-field SDE (1.4.45).

To find a strong solution and the uniqueness required to the propagation of chaos result, it is necessary

to analyse the set of weak solutions to the equation (1.4.46) when initial conditions have bounded en-

tropy. In particular, we show that if p > 2/(1 − α) and any weak solution (ft)t≥0 to (1.4.46) lying in

L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)) is unique.

The proof uses the related martingale problem, and the fact that for deterministic initial conditions,

there exists a unique solution to it. All the previous analysis imply the validity of (i) in the Theorem 1.4.26.

To prove the entropic chaos propagation (ii), we use the notion of renormalised solutions. To that aim,

we first show that the strong solution to the mean-field system coincide with the unique solution given

by the
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Theorem 1.4.30. Let α ∈ (0, 1). Assume that f0 ∈ P1(R
2) is such that H(f0) <∞.

(i) There exists a unique weak solution f to (1.4.46) such that

f ∈ L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)) for some p >

2

1− α
. (1.4.53)

(ii) This solution furthermore satisfies that for all T > 0,
∫ T

0

I(fs)ds <∞, (1.4.54)

for any q ∈ [1, 2) and for all T > 0,

∇xf ∈ L2q/(3q−2)(0, T ;Lq(R2)), (1.4.55)

for any p ≥ 1,

f ∈ C([0,∞);L1(R2)) ∩ C((0,∞);Lp(R2)), (1.4.56)

and that for any β ∈ C1(R) ∩ W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside a

compact set,

∂tβ(f) =χ (K ∗ f) · ∇x(β(f)) +△xβ(f) (1.4.57)

− β′′(f)|∇xf |2 + χβ′(fs)fs(∇x ·K ∗ fs),

on [0,∞)× R2 in the distributional sense.

Notice that here the notion of weak solution makes reference to the deterministic notion of weak

solutions, i.e., in a PDE context. The proof of Theorem 1.4.30 uses first the Hardy-Littlewood-Sobolev

inequality to prove that the convolution term K ∗ f is bounded in some specific Lp(0, T ;Lq(R2)) spaces.

Thanks to this remark, one can use a sequence of mollifiers to prove that inequality (1.4.57) holds,

and using a bootstrap argument we get the maximal regularity of the solution (1.4.56) and its deriva-

tives (1.4.55). Choosing a well sequence of test functions βm functions converging to H , one can finally

pass to the limit and deduce the entropic propagation of chaos property.

All the technical details and calculations are presented in the Chapter 6 of this manuscript. This

is the object of [66] written in collaboration with D. Godinho to appear in Annales de l'Institut Henri

Poincaré.

1.5
Perspectives and open problems

We finish this introductory chapter by discussing a complementary problem related to the chaos

propagation for a Poisson coupling model and a couple of open problems that constitute the direct

perspectives of this work.

1.5.1 A microscopic spiking neuronal network for the age-structured model

Regarding the chaos propagation method, in a series of outstanding papers, Pakdaman, Perthame and

Salort (PPS) [121, 122, 123] introduced a very versatile model for the large-scale dynamics of neuronal
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networks. These equations describe the probability distribution of the time elapsed since the last spike

fired as an age-structured nonlinear PDE. Inspired by the dynamics of these macroscopic equations, we

work on a microscopic model describing the dynamics of a finite number of neurons, and that provides a

realistic neural network model consistent with the PPS model, in the sense that in the thermodynamic

limit, propagation of chaos and convergence to the PPS equation is proved.

In this model, the state of each neuron i is described by a R+-valued variable X i,N
t corresponding to

the time elapsed since last discharge. Of course, this approach is quite different from classical literature,

where the key variable is the voltage: this is an important originality of the PPS model. The spiking

interaction between neurons is considered as a the global activity M at the network level. Specifically,

a neuron with age x (duration since it fired its last spike) fires a spike with an instantaneous intensity

a(x,M) where M is the global activity of the network. Subsequently to the spike emission, two things

happen: the age of the spiking neuron is reset to 0, and the global variable M increases its value by an

extra value of J/N . The coefficient J represents the mean connectivity of the network.

For each N ∈ N, let us consider a family (N 1
t , . . . ,NN

t )t≥0 of i.i.d. standard Poisson processes.

Let us also consider a family (τ1, . . . , τN ) of i.i.d. real valued random variables with probability law b.

These coefficients represent delays in the transmission of information from the cell to whole network.

Furthermore, we assume that the family of delays is independent of the Poisson processes and the initial

conditions.

As always in the propagation of chaos framework, we assume chaotic initial conditions, in the sense that

the initial state of the neurons are independent and identically distributed random variables. Therefore,

for g0 and m0 two independent probability measures on R+, (g0,m0)-chaotic initial states consists in

setting i.i.d. initial conditions for all neurons with common law equal to g0, and setting independently,

for the global activity, another random variable distributed as m0.

The main idea is to understand the convergence of the R+-valued Markov processes

(XN
t )t≥0 = (X1,N , . . . , XN,N

t )t≥0,

solving, for each i = 1, . . . , N and any t ≥ 0:

X i,N
t = X i,N

0 + t−
∫ t

0

X i,N
s−

∫ ∞

0

1{u≤a(Xi,N
s− ,MN

s−)} N i(du, ds), (1.5.58)

with the coupling given by the global variable

MN
t =MN

0 − α
[ ∫ t

0

MN
s ds− J

N

N∑

j=1

∫ t

0

∫ ∞

0

1{u≤a(Xj,N
s−−τj

,MN
s−−τj

)} Ñ j(du, ds)
]

, (1.5.59)

where Ñ j
t is the shifted (in time) process N j

t−τj extended by 0 for negative values of the time. These

processes are a consistency restriction on the spiking times: when a neuron j sends a signal at a time

t ≥ 0, the global variable receives it only at instant t+ τj .

Finally, we make the following physically reasonable assumption on the intensity spike function of the
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system:






a(·, ·) is a continuous non decreasing function in both variables,

a(0, ·) = 0, a(·, 0) > 0

a(x,m)
x→∞−−−−→ ∞, ∀m ∈ R+,

(1.5.60)

and impose a second consistency restriction

(∀ δ > 0)(∃x∗δ > 0) such that a(x,m) ≤ δ, ∀m ∈ R+ (1.5.61)

representing that, independently of the level of the network activity, a neuron cannot spike two times in

an arbitrary small period of time. The well-posedness of the particle system under these set of hypotheses

is direct.

Under suitable conditions, it is likely that the solution (XN
t )t≥0 behave, for large values of N , as

N independent copies of the solution to a nonlinear SDE. Let Y0 (respectively M0) be a g0-distributed

random variable (resp. m0) and Nt a standard Poisson process independent of Y0 and M0. Then we look

for R+-valued càdlàg adapted process (Yt,Mt)t≥0 solving for any t ≥ 0

Yt = Y0 + t−
∫ t

0

Ys−

∫ ∞

0

1{u≤a(Ys−,Ms−)} N (du, ds), (1.5.62)

and

Mt =M0 − α
[ ∫ t

0

Ms ds− J

∫ t

0

∫ s

0

E[a(Ys−w ,Ms−w)] b(dw)ds
]

. (1.5.63)

Indeed, it is not difficult to prove, using a tightness and a consistency method, the

Theorem 1.5.31. Let us assume that hypotheses (1.5.60)–(1.5.61) hold, then there exists a weak solution

(Yt,Mt)t≥0 to (1.5.62)-(1.5.63) such that

∫ t

0

∫ s

0

E
[
a(Ys−w,Ms−w)

]
b(dw) ds <∞, ∀ t ≥ 0. (1.5.64)

On the other hand, let us consider the growing restriction

(∃ ξ > 2) (∃ 0 < ρ < 1) (∃Cξ, cρ > 0) : cρ x
1+ρ
1−ρ ≤ a(x,m) ≤ Cξ(1 + xξ−2 +mξ−2), (1.5.65)

and suppose that initial condition has bounded exponential moments

E
[
eω(Y ξ+Mξ)

]
<∞, ω > 0. (1.5.66)

then it is likely to have the

Theorem 1.5.32. There exists a unique strong solution (Yt,Mt)t≥0 to (1.5.62)-(1.5.63) in the class of

functions of locally bounded exponential moments (1.5.66).

and the

Theorem 1.5.33. Let us assume that hypotheses (1.5.60)–(1.5.61) hold, and that the law of (Y0,M0) is

compactly supported, then the sequence of empirical processes µN (t) converges in distribution to the law

of the unique process (Yt,Mt)t≥0 with (g0,m0)-chaotic initial states solution to (1.5.62)-(1.5.63).
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If the initial datum has a fast decay (in the sense described in Theorem 1.5.32), and if moreover there

is a positive constant C0 such that

|a(x,m)− a(x′,m′)| ≤ C0

[
a(x,m) ∧ a(x′,m′) |x− x′|+ |m−m′|

]
, (1.5.67)

for all x, x′,m,m′ ∈ R+. Then the convergence of µN (t) remains true.

In the weak connectivity case, i.e. ε ∈ [0, ε0) for ε0 small enough, hypothesis (1.5.67) can be replaced

by

|a(x,m)− a(x+ h,m+ h)| ≤ C0 a(x,m)h, (1.5.68)

for all x,m ∈ R+ and any h ∈ [0, 1].

At this moment, Theorems 1.5.32 and 1.5.33 are mere conjectures, but there is strong evidence to

think that the are indeed true. For start, by using some arguments of Chapter 2 and Chapter 6, the

existence of weak solutions can be completely justified along with the path-wise uniqueness in the cases

of compactly supported initial datum and fast decay at infinite also. The chaos propagation argument,

using the coupling method indeed works. The only remaining Open Problem is to prove that any two

weak solutions to the limit problem are necessarily the same when the initial data decays vastly at infinite

which seems to be the case.

1.5.2 On the statistical description of neuron networks: the weak connectiv-

ity conjecture

Most large-scale neuronal networks can described by a density function f = f(t, ξ) ≥ 0 describing the

probability density of finding neurons in some state ξ ∈ Ξ (typically ξ stands for a intern neuron time,

the membrane voltage or the couple voltage-conductance of the neuron in the FhN model) at time t ≥ 0.

The density f evolves according to an integral and/or partial differential equation

∂tf = LM(t)f, f(0, ·) = f0, (1.5.69)

where the operator f 7→ Lmf is linear for any given network state m ∈ R, and the evolution of M(t) is

also given by some constraints, differential or delay equation

M(t) = M [f ] = M [(f(s))|s∈[0,t]]. (1.5.70)

The fundamental property of the dynamics is that the total number of neurons is conserved so that the

(mass) conservation equation

∫

Ξ

f(t, ξ) dξ =

∫

Ξ

f0(ξ) dξ = 1 ∀ t ≥ 0

holds (or a slightly modified version of that mass conservation equation holds).

As a first step we consider the stationary problem: we search a time independent couple (F,M) such

that

LMF = 0,

∫

Ξ

Fdξ = 1 and M = M[F ]. (1.5.71)
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That system of equations seem to be solvable by using a Brouwer fixed point type theorem or by solving

(explicitly or using a Perron-Frobenius type theorem) the linear problem 0 = Lmfm for any given m

and then fixing the appropriate parameter m by using a intermediate value theorem for the real values

function m 7→ M [fm]−m.

As a second step we linearize the equation around a stationary state (F,M). The linearized equation

on a variation (g,m) reads

∂tg = LMg + (L′
MF )m = Λ g, m(t) = M [g].,

and the above operator should split as

Λ = A+ B

for some α-dissipative operator B, α < 0, and some “B-power regular” operator A. In this case we

may deduce that the principal (those which are the most at the right hand side) spectral values of Λ are

discrete eigenvalues. We claim that the following first result holds:

Meta Theorem 1.5.34. For any f0 ∈ X ⊂ P(Ξ) there exists a solution f to the equation (1.5.69).

There exists at least one steady state (F,M) solution to (1.5.71) and the associated linearized operator Λ

is such that

Σ(Λ) ∩∆α = {ξ1, ..., ξj} ⊂ Σd(Λ),

for some real number α < 0 and some integer j ∈ N, where ∆α := {z ∈ C, ℜe z > α}.

Next, we consider the weakly connectivity regime. Introducing a (small conectivity) parameter ε > 0,

the evolution equation can be written as

∂tf = LεM(t)f, f(0, ·) = f0, (1.5.72)

We claim that, in the same sense that we did for the FitzHugh-Nagumo equation (1.4.17), the following

second result should hold:

Meta Theorem 1.5.35. There exists ε0 > 0 such that for any ε ∈ (0, ε0) the steady state (F,M) is

unique and there exist some constants α < 0 < C such that for any f0 ∈ X ⊂ P(Ξ) the solution f to the

evolution equation (1.5.69) satisfies

‖f(t)− F‖X ≤ Cf0 e
αt.

The main conclusion of this systematic description of these neuron population models is that conver-

gence to a steady state is not a consequence of the modeling of the intrinsic properties of neurons taken

individually but clearly a consequence of the nonlinear coupling in the network. The same remark can be

done for desynchronization/oscillation phenomena observed in nature and numerical simulations of finite

networks. A second interesting problem is the

Open Problem 1.5.36. Is possible to build some oscillating particular solutions for large enough con-

nectivity parameter?
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Part I

Neuronal networks
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Chapter 2

Limits on randomly connected

neuronal networks

Networks of the brain are composed of a very large number of neurons connected through a random

graph and interacting after random delays that both depend on the anatomical distance between cells. In

order to comprehend the role of these random architectures on the dynamics of such networks, we analyze

the mesoscopic and macroscopic limits of networks with random correlated connectivity weights and

delays. We address both averaged and quenched limits, and show propagation of chaos and convergence

to a complex integral McKean-Vlasov equations with distributed delays. We then instantiate a completely

solvable model illustrating the role of such random architectures in the emerging macroscopic activity.

We particularly focus on the role of connectivity levels in the emergence of periodic solutions.

This chapter is included in [128] written in collaboration with J. Touboul published in Acta

Applicandae Mathematicae. (2015) 136:1, 167-192.
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2.1
Introduction

Neuronal networks in the cortex are composed of large structures, called cortical columns, that

are in charge of collective information processing. Neurons are characterized by a nonlinear activity

subject to an intense noise. They interact by sending action potentials (spikes) to those neurons they

are connected to. The transmission of the information takes a specific time, related to the characteristic

time of the synaptic chemical machinery and to the transport of signals at finite speed through the axons

(and therefore function of the anatomical distance between the cells).

The macroscopic behaviors emerging from such large-scale systems provide relevant signals that are

recorded by usual imaging techniques and from which physicians can infer hallmarks of function and

dysfunction. Large-scale networks are therefore adequate scales to uncover the function of the cells,

and as such have attracted much work in the past few years. Indeed, while properties of single cells

have been well known since the seminal works of Hodgkin and Huxley [74, 75], models of macroscopic

behaviors are less understood and computational studies have mainly relied on heuristic descriptions of

macroscopic behaviors through firing-rate models, following the important work of Wilson and Cowan

(WC) [161, 162]. In this class of models, we will make a distinction between macroscopic models in

which the activity considered describes a whole brain area (which correspond to finite-dimensional WC

systems) and mesoscopic models that describe macroscopic variables at a finer scale at which averaging

effects occur but where we can resolve finer structure of the brain (e.g., WC integro-differential neural

field equations). WC models have been very successful in reproducing a number of relevant phenomena in

the cortex such as visual hallucinations, which was related to symmetry breaking and pattern formation

in the neural field equation [53] and binocular rivalry in macroscopic models [136], see [22] for a recent

review. WC model describes the evolution of a macroscopic variable, the population-averaged firing-rate,

as a deterministic variable, which satisfies a delayed differential (macroscopic scale) or integro-differential

(mesoscopic scale) equation. The success of these models prompted much work in order to provide a link

between such macroscopic regimes and the noisy activity of individual cells. Mean-field methods based

on the statistical physics theory of gases was also used for biologically relevant neuronal models [150, 149]

including noisy input or noisy synaptic transmission and delays. Similarly to the molecular description

of gases, it is shown that the propagation of chaos property takes place and that the system converges

to a particular class of McKean-Vlasov equations.

In the vast majority of these studies, networks are assumed to be fully connected (i.e. all cells

interact together), and no specific topology is taken into account. If this assumption is relevant in

the molecular theory of gases, such architectures are not germane to neuronal networks. Indeed, cortical

networks tend to rather display complex network topologies [20]. Typical cortical networks tend favor local

connectivity: they present a short path length (associated with global efficacy of information transfer),

high clustering (associated to resilience to noise) which are rather compatible with small-world topologies

and that ensure important function (see [14], and [30] for a review). Moreover, some experimental

studies tend to relate typical connectivity patterns with collective qualitative properties of the networks

in physiological situations [67], and in particular in relationship with the emergence of synchronized
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activity. The question we may ask here is whether such random architectures, in which neurons connect

to their nearest neighbors with higher probability than to more remote cells, have qualitative properties

different from fully connected networks.

The topic of this paper is precisely to investigate the role of network topology in the macroscopic

or mesoscopic activity of cortical networks. From a mathematical viewpoint, heterogeneous connections

break down the interchangeability assumption usually instrumental in order to prove mean-field limits

(see e.g. [145]). However, the classical coupling method readily extends, as we show here, to networks

with specific random topologies. In detail, a weak notion of exchangeability under a certain probabil-

ity law (that of the connectivity weights and delays) is enough. We will address here both annealed

(i.e. averaged over all possible connectivity patterns) and quenched convergence along subsequences, of

networks with random architectures and random delays in a general setting encompassing the classical

models of Hodgkin-Huxley and Fitzhugh-Nagumo neurons [54]. In order to uncover the role of random

connectivities in the qualitative behavior of the network, we will instantiate a simple model, the WC

firing-rate model with noise as a benchmark of single neurons behaviors. This model has the interest

(see [152]) to have Gaussian solutions whose mean and standard deviation satisfy a dynamical system

which will be analyzed using the bifurcation theory. The rigorous analysis of this model will lead us to

conclude that in our models, random connectivities affect the network only when these are correlated

with the delays (which is the case in neuronal network models since the connectivity probability, as well

as the interaction delays are functions of the distance between two cells), and that these topologies govern

the response of the network.

The paper is organized as follows. We start by introducing in section 2.2 the formalism and the

network under consideration. In section 2.3 we present the main theoretical results for finite-populations

networks on which our developments are based. Appendix 2.7 extends these results to neural fields where

the number of different neuronal populations tends to infinity. The proof of these results are extension

of previous works [150, 149], and are therefore postponed in section 2.5. Section 2.4 is devoted to the

qualitative analysis of the nature of the solutions in the case of the firing-rate model, and exhibits the

relationship between network topology and macroscopic dynamics.

2.2
Setting of the problem

We now introduce the mathematical formalism used throughout the paper. We work in a complete

probability space (Ω,F ,P) satisfying the usual conditions. We will analyze the dynamics of a neuronal

network model composed of N neurons, in an abstract setting valid for most usual models used in

computational neuroscience such as the Hodgkin-Huxley [75] or Fitzhugh-Nagumo [59] models. In this

model, the state of each neuron i is described by a d−dimensional variableX i,N ∈ E (typically in E ⊂ Rd)

corresponding to the membrane potential, ionic concentration and gated channels (see e.g. [54]).

The networks are composed of N neurons falling into P (N) populations labeled α ∈ {1, . . . , P (N)}
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and composed of Nα neurons, and the convention α = p(i) defines the population neuron i belongs to.

The level of description chosen governs the choice of the asymptotic regime analyzed. Here, we will

consider two main different cases:

• The macroscopic scale where neurons gather into a few populations P (N) = P fixed, corresponding

to coarse-grained descriptions of neural activity, generally called in the neuroscience domain neural

mass models [79]

• The mesoscopic scale, or neural-field limit, where the number of populations tends to infinity and

the area described covers a continuous piece of cortex Γ ⊂ Rp with p ∈ N∗. This description

correspond to finer scale descriptions at which averaging effects occur, but fine enough to resolve

the spatial structure of the cortex [149].

In each population, neurons have different intrinsic properties, receive different inputs and present a

specific connectivity map with neurons in the other populations. Macroscopic or mesoscopic behavior

correspond to the network’s properties when the number of neurons in each population tends to infinity.

This limit will be denoted with a slight abuse of notation N → ∞. To fix ideas, we make the following

assumption in the macroscopic scale case:

(H0). There exists a sequence of positive real numbers r1, . . . , rP ∈ (0, 1)P with
∑P

α=1 rα = 1 such that

for all α ∈ {1, . . . , P},

Nα/N −→ rα,

when N → ∞.

In other words, we are assuming that the fraction of neurons belonging to a given population remains

non trivial in the limit N → ∞.

The evolution state X i,N
t of neuron i in the population α ∈ {1, · · · , P} is governed by a stochastic

differential equation. The intrinsic dynamics of the neuron is governed by a function fα : R+ × E 7→ E.

This evolution is stochastic, driven by independent m-dimensional Brownian motions (W i
t ) through a

diffusion coefficient gα : R+ × E 7→ Rd×m. The neuron i receives inputs from other neurons in the

network, which affect its state through an interaction function bαγ : R× E × E 7→ E depending on

• The synaptic weight wij ∈ R between neurons i in population α and j in population γ controlling

the topology of the network: these are zero when there is no connection between i and j, positive

when the connection is excitatory and negative when inhibitory.

• the state of both neurons i and j.

These interactions take place after a delay τij > 0.

The dynamics of neuron i in population α is given by:

dX i,N
t =

(

fα(t,X
i,N
t ) +

P (N)
∑

γ=1

∑

p(j)=γ

1

Nγ
bαγ(wij , X

i,N
t , Xj,N

t−τij)
)

dt+ gα(t,X
i,N
t ) · dW i

t , (2.2.1)
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under the assumption that b(0, x, y) = 0 and the fact that the synaptic weight wij is assumed zero when

no link from j to i. In these notations, the architecture of the network is completely integrated in the

choice of the synaptic coefficients wij . In our purpose to analyze networks on random graphs, we will

consider that the synaptic weights wij and delays τij are non-negative random variables, drawn in a

distinct probability space (Ω′,F ′,P) at the beginning of the evolution and frozen. We generically denote

by E the expectation with respect to the processes (i.e., under the probability P) and by E the expectation

of random variables or processes with respect to the environment (i.e. under P). One realization of these

weights corresponds to one network with prescribed architecture. In realistic settings, both connectivity

weight and delay are related to the distance between the cells, and therefore are generally correlated. A

specific choice relevant to biology is discussed in section 2.4, in which connectivity probability as well

as delays are deterministic functions of the random respective locations of the cells (yielding a specific

strong correlation between the two variables).

While the random variables wij and τij are correlated, an important hypothesis is that for fixed i,

sequences (τij , j = 1 · · ·N) and (wij , j = 1 · · ·N) are considered independent and identically distributed

population-wise, i.e. they have the same distribution for all j belonging to a given population1. For fixed

i ∈ {1, · · · , N}, we can therefore denote Λip(j) the distribution of the variables (wij , τij).

The piece of cortex considered will be said invariant by translations if the joint distribution of weights

and delays (wij , τij) for p(j) = γ does not depend on the specific neuron i considered but only on the

population α the neuron i belongs to2. In that case, we will denote Λαγ the joint law of weights and

delays. In the general case, we assume that the laws Λiγ are independently drawn from a distribution

of measures centered at a specific one Λαγ . For instance, when delays and connectivity depend on the

distance between cells, the distribution Λiγ depends on the position ri of neuron i. If cells of population

α are distributed on a space D with density p, and the weights and delays have a density λri(s, t), Λαγ

is the law with density
∫

D
λr(s, t)dp(r).

Let us denote by τ the maximal possible delay τij which we assume finite3. Equations (2.2.1) are

stochastic differential equations on the infinite-dimensional space of functions C([−τ, 0], E) (i.e. on the

variable X̃t = (Xs, s ∈ [t− τ, t]), see e.g. [39, 100]).

Finally, we consider that the network has chaotic initial states, in the sense that they have independent

and population-wise identically distributed initial conditions. In detail, we denote Cτ = C([−τ, 0], EP )

and set (ζα0 (t)) ∈ Cτ a stochastic process with independent components. Chaotic initial condition on the

network consists in setting independent initial condition for all neurons, with distribution for neurons of

1Note that the whole sequence of weights (wij ; 1 ≤ i, j ≤ N) as well as the delays (τij ; 1 ≤ i, j ≤ N) might be correlated.

When these are related to the distance rij between i and j, correlations may arise from symmetry (rij = rji) or triangular

inequality rij ≤ rik + rkj . The independence assumption is nevertheless valid in that setting provided that the locations of

the different cells are independent and identically distributed random variables
2The term invariant by translation is chosen in reference to random variables τij and wij function of the distance rij

between neuron i and j: this distance is independent of the particular choice of neuron i (and of its location) if the neural

field is invariant by translation in the usual sense
3This is always the case when considering bounded neural fields.
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population α equal to that of ζα0 .

In what follows, we note M2
(
C([−τ, 0], EN )

)
the space of square integrable stochastic processes on

[−τ, 0] with values in EN , M(C) the set of probability distributions on C the set continuous functions

[−τ, T ] 7→ EP , and M2(C) the space of square-integrable processes.

2.3
Main results

In this section, we state and discuss the main mathematical results on the convergence of the above

described process as the network size goes to infinity. Interestingly, even if the network considered has a

complex random topology in which connectivity map as well as delays are correlated, methods developed

in the case of fully connected architectures [150, 149] extend to this more complex case. Proofs are

provided for completeness in section 2.5.

Let us first state the following proposition ensuring well-posedness of the network system:

Proposition 2.3.37. Let X0 ∈ M2(C([−τ, 0], EN )) an initial condition of the network system. For any

(α, γ) ∈ {1, . . . , P (N)}2, assume that:

(H1). fα and gα are uniformly in time Lipschitz-continuous functions with respect to their second variable.

(H2). For almost all w ∈ R, bαγ(w, ·, ·) is Lαγ-Lipschitz-continuous with respect of both variables.

(H3). There exists functions K̄αγ : R 7→ R+ such that for any (α, γ) ∈ {1, · · · , P (N)}2,

|bαγ(w, x, y)|2 ≤ K̄αγ(w) and E[K̄αγ(w)] ≤ k̄ <∞.

(H4). The drift and diffusion functions satisfy the monotone growth condition: there exists a positive

constant K depending on f and g such that:

xT fα(t, x) +
1

2
|gα(t, x)|2 ≤ K(1 + |x|2).

Then for almost all realization of the synaptic weights wij ∈ R and the delays τij ∈ [−τ, 0], we have

existence and uniqueness of solutions to the network equations (2.2.1).

This property results from the application of standard theory of stochastic delayed differential equa-

tions. We provide a sense of the proof in section 2.5: the details of the proof of this elementary proposition

will largely simplify the analysis of the limit equations.

When the number of neurons goes to infinity (under assumption (H0)) then

• for almost any realization of the transmission delays τij and synaptic weights wij in the translation-

invariant case or

• averaged across all realizations of the disorder in the general case,
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the propagation of chaos property holds: if the initial conditions are chaotic, then the states of a finite

number of neurons are independent for all times when N → ∞. Their law is given by a nonlinear

McKean-Vlasov equation that depends on the neural population they belong to. Similar results hold

for mesoscopic limits of neural field models, i.e. in situations in which the number of populations P (N)

diverges as N → ∞. In this case, the notion of solution is much more complex, as one obtains a process

depending on space but which is not measurable with respect to the spatial variable. These questions,

addressed in [149], will be briefly discussed in our context in appendix 2.7.

In both cases, the proof of the convergence and propagation of chaos will use the powerful coupling

method (see [145]). The proof is in two steps: (i) we prove that the limit equation (see equation (2.3.2)

below) has an unique solution, and (ii) that the law of X i,N
t converges towards the law of (2.3.2)4.

2.3.1 Randomly connected neural mass models

Let P (N) = P be fixed and independent of N . In this case, we will show that the network equation

converges (in a sense to be defined in each sub case) towards the solution of a well-posed McKean-Vlasov

equation given by:

dX̄α
t = fα(t, X̄

α
t ) dt+ gα(t, X̄

α
t ) · dWα

t

+
( P∑

γ=1

∫ 0

−τ

∫

R

EȲ

[
bαγ

(
w, X̄α

t , Ȳ
γ
t+s

) ]
dΛαγ(s, w)

)

dt, (2.3.2)

where Ȳ is a process independent of X̄ that has the same law, EȲ the expectation under the law of Ȳ ,

and Wα
t are independent adapted standard Brownian motions of dimension d×m. Denoting by mγ

t (dx)

the law of X̄γ
t the equation (2.3.2) is nothing but

dX̄α
t = fα(t, X̄

α
t ) dt+ gα(t, X̄

α
t ) · dWα

t

+
( P∑

γ=1

∫ 0

−τ

∫

R

∫

E

[
bαγ

(
w, X̄α

t , y
) ]
mγ

t+s(dy)dΛαγ(s, w)
)

dt, (2.3.3)

The hypotheses made in Proposition 2.3.37 also ensure existence and uniqueness of solutions as we

now state in the following:

Theorem 2.3.38. Under the hypotheses of Proposition 2.3.37 and for any ζ0 ∈ M(C([−τ, 0], EP )) a

square integrable process, the mean-field equations (2.3.3) with initial condition ζ0 have a unique strong

solution on [−τ, T ] for any time horizon T > 0.

In order to demonstrate the convergence of the network equation and the propagation of chaos when

the number of neurons goes to infinity, we use Dobrushin’s coupling approach [48, 144, 145, 147] in the

same fashion as done in [150, 149] in the context of neurosciences, the only difference being the random

environment nature of the network equation related to the random structure of the synaptic coefficients.

4More precisely, taking a finite set of neurons {i1, . . . , ik} the law of the process (Xi1 ,N
t , . . . ,X

i1,N
t , t ∈ [−τ, T ]) converge

in probability towards a vector (X̄i1
t , . . . , X̄

i1
t , t ∈ [−τ, T ]), where the processes X̄l are independent and have the law of

Xp(il) given by (2.3.2).
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2.3.2 Quenched convergence and propagation of chaos in the translation in-

variant case

The translation invariant case correspond to the situation where the laws Λiγ for i such that p(i) = α

are identical and only depend on α.

Let i ∈ N such that p(i) = α. We define the process X̄ i solution of (2.3.2), driven by the Brownian

motions (W i
t ) that governs X i, and having the same initial condition as neuron i in the network, ζi0 ∈

M2(C):






dX̄ i
t = fα(t, X̄

i
t)dt+ gα(t, X̄

i
t) · dW i

t

+
( P∑

γ=1

∫ 0

−τ

∫

R

EZ

[
bαγ
(
w, X̄ i

t , Z
γ
t+s

)]
dΛαγ(s, w)

)

dt, t ≥ 0

X̄ i
t = ζi0(t), t ∈ [−τ, 0].

(2.3.4)

By definition, the processes (Z1
t , . . . , Z

P
t ) are a collection of processes independent of (X̄ i

t)i=1,...,N and

have the distribution m1
t ⊗ · · · ⊗mP

t , where m
α
t is the probability distribution of X̄α

t (unique solution of

the equation (2.3.2)).

Theorem 2.3.38 ensures well posedness of these equations, and therefore (X̄ i
t)i∈N constitute a sequence

of independent processes with law X̄p(i).

Theorem 2.3.39 (Quenched Convergence). Under assumptions (H1)-(H4) and chaotic initial conditions

in M2(C). The process (X i,N
t ,−τ ≤ t ≤ T ) for i ∈ N fixed, solution of the network equations (2.2.1),

converges almost surely towards the process (X̄ i
t ,−τ ≤ t ≤ T ) solution of the mean-field equations (2.3.4).

This implies in particular convergence in law of the process (X i,N
t ,−τ ≤ t ≤ T ) towards (X̄α

t ,−τ ≤ t ≤ T )

solution of the mean-field equations (2.3.2).

2.3.3 Annealed convergence and propagation of chaos in the general case

We now turn our attention to the case of non-translation invariant networks where the law of delays

and synaptic weights depend on the index of neuron i in population α. In this case we will see that the

propagation of chaos property remains valid as well as convergence to the mean-field equations (2.3.2), no

more for almost all realization of the disorder, but in average across all possible configurations. Denoting

Ei the expectation over all possible distributions Λiγ , we have:

Theorem 2.3.40 (Annealed convergence in the general case). We assume that (H1)-(H4) are valid

and that network initial conditions are chaotic in M2(C), and that the interaction does not depend on

the postsynaptic neuron state (i.e., b(w, x, y) = ℓ(w, y)). Let us fix i ∈ N, then the law of process

(X i,N
t , −τ ≤ t ≤ T ) solution to the network equations (2.2.1) averaged over all the possibles realizations

of the disorder, converge almost surely towards the process (X̄ i
t , −τ ≤ t ≤ T ) solution to the mean field

equations (2.3.2). This implies in particular the convergence in law of (Ei[X i,N
t ], −τ ≤ t ≤ T ) towards

(X̄α
t , −τ ≤ t ≤ T ) solution of the mean field equations (2.3.2).

Extensions to the spatially extended neural field case are discussed in Appendix 2.7.
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2.4
Application: dynamics of the firing-rate model with random

connectivity

In the previous section, we derived limit equations for networks with random connectivities and

synaptic weights. The motivation of these mathematical developments is to understand the role of

specific connectivity and delays patterns arising in plausible neuronal networks. More precisely, it is

known that anatomical properties of neuronal networks affect both connectivities and delays, and we will

specifically consider the two following facts:

• Neurons connect preferentially to those anatomically close.

• Delays are proportional to the distance between cells.

At the level of generality of the previous sections, we obtained very complex equations, from which

it is very hard to uncover the role of random architectures. However, as we already showed in previous

works [152], a particularly suitable framework to solve these questions is provided by the classical firing-

rate model. In that case, we showed in different contexts that the solution to the mean-field equations is

Gaussian, whose mean and standard deviation are solution of simpler dynamical system.

2.4.1 Reduction to distributed delays differential equations

In the firing-rate model, the intrinsic dynamics of each neuron is given by

fα(t, x) = −x/θα + Iα(t),

where Iα(t) is the external input of the system, and the diffusion function gα(t, x) = λα is constant.

The interaction only depends in a nonlinear transform of the membrane potential of the pre-synaptic

neuron multiplied by the synaptic weight: bαγ(w, x, y) = Jαγ(w)S(y). We also assume, in order to

satisfy the assumptions of the Theorems 2.3.39 and 2.3.40, that the functions Jαγ ∈ L∞(R) and S ∈
W 1,∞(Ed). Therefore, when considering the delays and the synaptic weights only depending on p(i), we

have propagation of chaos and almost sure convergence (quenched) towards the mean-field equations:

dX̄α
t =

(

− X̄α
t

θα
+ Iα(t) +

P∑

γ=1

∫ 0

−τ

∫

R

Jαγ(w)EY

[
S(Y γ

t+s)
]
dΛαγ(s, w)

)

dt

+λαdW
α
t , (2.4.5)

and in the general case, the same result holds in an averaged sense.

Remark 2.4.41. Let us note that if the synaptic weights and the delays are independent, it is very

easy to see that the network converges towards an effective mean-field equation where the disorder in the

connectivity weights disappears and the mean-field equation obtained reduces to

dX̄α
t =

(

− X̄α
t

θα
+ Iα(t) +

P∑

γ=1

J̄αγ

∫ 0

−τ

EY

[
S(Y γ

t+s)
]
dραγ(s)

)

dt+ λαdW
α
t ,
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where ραγ is the marginal density of delays of Λαγ and J̄αγ is the averaged synaptic weight. This is

exactly the same equation as would arise from a non-disordered network equation where all connectivity

weights are deterministic: Jij = J̄αγ/Nγ . Therefore, the architecture plays a role in the dynamics only

when the synaptic weights and the delays are correlated, as is the case of the cortex.

We will therefore focus on more realistic models where delays and connectivity weights are correlated.

It is very easy to see, integrating equation (2.4.5), that the solution satisfies the implicit equation:

X̄α
t = X̄α

0 e
−t/θα +

∫ t

0

e−(t−s)/θα
(

− X̄α
s

θα
+ Iα(s)

+
P∑

γ=1

∫ 0

−τ

∫

R

Jαγ(w)EȲ

[
S(Y γ

s+r)
]
dΛαγ(r, w)

)

ds+

∫ t

0

e−(t−s)/θαλαdW
α
s

which is composed of Gaussian terms and the initial condition X̄α
0 e

−t/θα vanishing at an exponential

rate. Therefore, when the initial conditions are Gaussian processes5, the solution is also Gaussian with

mean uα and variance vα. Taking expectation and covariance we get that the mean and the variance of

the solution satisfy the following well-posed system of delayed differential equations:






u̇α = −uα/θα +

P∑

γ=1

∫ 0

−τ

∫

R

Jαγ(w)EY

[
S(Y γ

t+s)
]
dΛαγ(s, w)

v̇α = −2vα/θα + λ2α.

(2.4.6)

In the firing-rate case, we hence have an important reduction of complexity. This simpler form

allows us to use bifurcation theory in order to understand the role of the parameters on the qualitative

properties of the solutions. This theory has been widely used in neuroscience in order to uncover, in single

cells models, the emergence of periodic spiking or bursting [54], and for heuristic macroscopic models,

formation of patterns of activity [22] or visual hallucinations [53]. Here, the theory of delayed differential

equations (see e.g. [53]) allows us to uncover the role of the randomness of the architecture and delays

in shaping the collective behavior of the network. In order to analyze this dependence, we consider the

system in the absence of external input I = 0 and

S(x) :=
1√
2π

∫ x

0

e−s2/2 ds,

which has the property that a simple change of variables yields (see [152, Appendix A]):

EY [S(Y
γ
t )] = EY [S(Y

γ
t )] = S

( uγ(t)
√

1 + vγ(t)

)

In that simplified case, a stationary solution of the system is given by (u∗α, v
∗
α) = (0, λ2αθα/2). The

solution to the variance equation is

vα(t) =
1

2
(λ2αθα + e−2t/θα) = v∗α +

1

2
e−2t/θα ,

then the stability of the fixed point only depends on the delayed linear equation to the mean, which is:

u̇α(t) = −uα(t)
θα

+

P∑

γ=1

∫ 0

−τ

∫

R

Jαγ(w)
1

√

2π(1 + v∗γ)
uγ(t+ s) dΛαγ(s, w).

5If the initial condition is not Gaussian, the solution to the mean-field equation will nevertheless be attracted exponen-

tially fast towards the Gaussian solution described.
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If only one population is considered, then dropping the index for the population lead us to:

u̇(t) = −u(t)
θ

+

∫ 0

−τ

∫

R

J(w)
1

√

2π(1 + v∗)
u(t+ s) dΛ(s, w). (2.4.7)

The stability of the fixed point only depends on the dispersion relationship:

ξ = −1

θ
+

1
√

2π(1 + v∗)

∫ 0

−τ

∫

R

J(w) eξs dΛαγ(s, w), (2.4.8)

which is nothing more that looking for solutions of the form u = exp(ξt) in (2.4.7).

The solutions of this equations are the characteristic exponents of the system, and relate directly

the stability of the fixed point considered. If all characteristic exponents have negative real part, the

equilibrium is asymptotically exponentially stable, but if there exists a characteristic exponent with

strictly positive real part, the equilibrium is unstable. Turing-Hopf bifurcations occur when the system

has a pair of complex conjugate characteristic exponents with non-zero imaginary part crossing the

imaginary axis.

2.4.2 Small-world type model and correlated delays

As we stated before one interesting situation arising in neuroscience is the case where synaptic weights

and the delays are function of the distance between neurons. Without loss of generality, we assume the

signal transmission speed is unitary, then the delay τij between the neuron i at location ri and a neuron

j at location rj is simply modeled by

τij = |ri − rj |+ τs,

where τs is the minimum value corresponding to the transmission of the information at the synapse. We

further assume that the synaptic links are drawn according to a Bernoulli random variable:

wij =







1 with probability b(|ri − rj |) := e−β|ri−rj |

0 with probability 1− b(|ri − rj |),

with β > 0. The synaptic weights are given by J(wij) with

J(x) =







J̄ if x = 1

0 if x = 0

.

In this model, the total connectivity level of the system decreases when β is increased. When neurons

are uniformly distributed in the interval [0, a], the averaged law density can be easily computed and is

given by:

dp(r) =

(
2

a
− 2r

a2

)

dr,

and thanks to conditional expectation we find that (2.4.8) is nothing but

ξ = −1

θ
+

1
√

2π(1 + v∗)
E
[
E
[
J(w)eξu

∣
∣r
]
]

= −1

θ
+

1
√

2π(1 + v∗)
E
[
E
[
J(w)

∣
∣r
]
e−ξ(τs+r)]

= −1

θ
+

J̄e−ξτs

√

2π(1 + v∗)

∫ a

0

e−(β+ξ)r

(
2

a
− 2r

a2

)

dr.
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Turing bifurcations arise for parameters such that there exists a purely imaginary characteristic root

(solution of the above equation) ξ = iω. These occur when one can find ω > 0 such that:

iω = −1

θ
+

2J̄
√

2π(1 + v∗)
× 1

a(β + iω)

(

1− 1

a(β + iω)
+
e−a(β+iω)

a(β + iω)

)

e−iωτs . (2.4.9)

Since (2.4.9) depend on many parameters, in order to understand the solutions we study the system

decoupling the size of the neural field with respect to the connectivity parameter β and the size a.

The effect of the extension of the neural field.

We first fix β > 0 and make the change of variables Ω = aω, B = aβ. Defining

Z(Ω, B) =
2J̄

√

2π(1 + v∗)

1

B + iΩ

(

1− 1

B + iΩ
+
e−(B+iΩ)

B + iΩ

)

,

then (2.4.9) is reduced to solve the system







a2 = Ω2
(
|Z(B,Ω)|2 − 1

θ2

)−1
,

τs =
(
Arg(Z(Ω, B)) −Arg

(
1 + iΩ

a

)
+ 2kπ

)
a
Ω ,

B = βa

(2.4.10)

which can be seen as a intersection of two surfaces in the space (a,B, τs):

S1 :







R× R+ → R3

(Ω, B) 7→ (a(Ω, B), B, τs(Ω, B))
S2 :







R+ × R → R3

(a, τs) 7→ (a, βa, τs)
,

where a(Ω, B) and τs(Ω, B) are the solutions of (2.4.10) for B given. We obtain a sequence of Turing-Hopf

bifurcations indexed by k, and the first bifurcation is responsible for oscillations appearing in the system.

In figure 2.1, we represent the curve of Hopf bifurcation given by (2.4.10) for a fixed value of the

parameter β. This bifurcation diagram separates the parameter space (a, τs) into a region of oscillatory

regime and a region of stationary behavior. The typical shape of the Hopf bifurcation curve is a parabola,

displaying a unique minimum for a value that we denote by (am, τms ). We denote τ0s the value of the

Hopf bifurcation curve for a = 0 (i.e. fully connected network with deterministic delays τs). For a = 0,

the system depends on the delays in the following fashion: for any τs < τ0s , the system converges towards

stationary behaviours, and for τs > τ0s , the system displays periodic behaviors.

For τs > τ0s fixed, long-range connectivities (corresponding to small values of β) produce synchronized

periodic behaviors that disappear when the network becomes less connected, until a specific value of β

corresponding to the unique intersection of the Hopf curve with the line of constant τs. For τ
0
s < τs < τms ,

the long-range (small β or small a) and short-range (large β or large a) connectivity models correspond

to stationary behaviors, and for values of the network length a (or range β) in a specific interval, the

system will display synchronized behaviors. Eventually, for τs < τms , the system only displays stationary

solutions whatever the length of the network a or the range β.
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Figure 2.1: Neurons uniformly distributed in [0, a]. Fixed parameters θ = 3, J̄ = −5, λ = 1. (a)

Bifurcation diagram for β = 0.1 in the space (a, τ): gray zone correspond to oscillatory solutions. For

τs = 1.3: (b-d) Increasing the parameter a (the size of the neural field) induces transition from stationary

to periodic and back to stationary. All simulation were made for an Euler explicit method with N = 3000.
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The effect of the connectivity factor

Let us now fix the size of the interval a > 0. We investigate the effects of β and τs on the solution.

Equation (2.4.9) can be written in the form:







ω2 = − 1
θ2 + |Z(ω, β)|2,

τs =
(
Arg(Z(ω, β))−Arg

(
1
θ2 + iω

)
+ 2kπ

)
1
ω

(2.4.11)

with

Z(ω, β) =
2J̄

√

2π(1 + v∗)

1

a(β + iω)

(

1− 1

a(β + iω)
+
e−a(β+iω))

a(β + iω)

)

We solve this equation by numerically computing the manifold:

S0 :=
{

(ω, β) ∈ R× R+, such that ω2 +
1

θ2
− |Z(ω, β)|2 = 0

}

from which one can readily compute the delay corresponding to the Hopf bifurcation.

Figure 2.2(a) show the solution to the system (2.4.11) for a fixed value of the spatial extension of

the neural field. The curve is relatively different: it now appears to be a monotone non-decreasing map

separating oscillatory and stationary behaviors. Qualitatively, the global picture remains unchanged:

oscillations vanish as β is increased, i.e. as the network is less connected.

Discussion

We therefore observe that the topology of the network strongly impacts the collective behavior of the

network. For a fixed value of the connectivity parameter, we have seen that there exists an optimal neural

field size for synchronization. At this size, the constant delays necessary to induce oscillations is minimal.

In contrast, at fixed values of a, we observe that the optimal connectivity level ensuring minimal constant

delay to induce oscillations is zero: fully connected networks synchronize more easily. In the cortex, for

energetic reasons, full connectivity is not favored, and therefore this indicates optimal cluster sizes for

synchronization.

2.5
Proofs

We start by showing the well-posedness of the network system stated in proposition 2.3.37:

Proposition 2.3.37. The proof splits into two main steps: we show a priori estimates and define a con-

traction map that implies existence and unicity for a stopped version of the problem.

A priori estimates Let us start by showing that all possible solutions of the system have bounded

second moment. It is important to remark that the number of particles of the system is fixed. Let XN
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Figure 2.2: Neurons uniformly distributed in [0, a] for different values of β. Fixed parameters θ = 1,

J̄ = −3.5, λ = 0.5: (a) Hopf bifurcation diagram in the plane (β, τs) for a = 3. (c-e) Starting from

a point inside the oscillation zone increasing one of the parameters β or τs induces transition to the

stationary state. All simulation were made for an Euler explicit method with N = 2000.
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be a solution of (2.2.1) and τn the first time the process |XN
t | exceeds the quantity n. We look for an

upper-bound of the form:

E

[

|XN
t∧τn |2

]

≤ E

[

|X0(0)|2
]

+ C

∫ t∧τn

0

E

[

1 + |XN
s∧τn |2

]

ds, (2.5.12)

where the positive constant C does not depend on X̃t = (Xs, s ∈ [t− τ, t]) nor on n.

It is clear that Itô’s formula is valid for |XN
t∧τn |2 and that we can study each i ∈ {1, . . . , N} separately.

For all t > 0:

|X i,N
t∧τn |2 = |X i

0|2 + 2

∫ t∧τn

0

(X i,N
s )T gα(s,X

i,N
s ) dW i

s

+2

∫ t∧τn

0

[

(X i,N
s )T fα(s,X

i,N
s ) +

1

2
|gα(s,X i,N

s )|2

+(X i,N
s )T

P∑

γ=1

∑

p(j)=γ

1

Nγ

[
bαγ(wij , X

i,N
s , Xj,N

s−τij )
]]

ds,

The stochastic integral has null expectation and a direct application of (H4) allow us to find upper-bounds

for the two first lines of the previous equality. The last term is controlled using (H3):

∫ t∧τn

0

(X i,N
s )T

P∑

γ=1

∑

p(j)=γ

1

Nγ

[
bαγ(wij , X

i,N
s , Xj,N

s−τij )
]
ds

≤
∫ t∧τn

0

P∑

γ=1

∑

p(j)=1

1

Nγ

(

K̄αγ(wij) + |X i,N
s |2

)

ds

≤ P

∫ t∧τn

0

(

K̄ + |X i,N
s |2

)

ds,

where we have introduced K̄ := max(α,γ) max(i,j) K̄αγ(wij). Summing over i yields directly to (2.5.12).

Applying Gronwalĺs lemma we find a uniform upper bound for the second moment of Xt∧τn for any

t ∈ [−τ, T ∧ τn]. Finally letting n → ∞ provides that for any realization of the synaptic weights and

delays the solutions of (2.2.1) have bounded second moment.

Existence. Let X0 ∈ M2(Cτ ) such that X0|[−τ,0]
L
= X0 a given stochastic process. We introduce the

map Φ given by

Φ :







M(C) 7→ M(C)
X 7→ (Yt = {Y i,N

t , i = 1, . . . , N}), with

Y i,N
t = X i,N

0 (0) +

∫ t

0

(

fα(s,X
i,N
s )

+
P∑

γ=1

∑

p(j)=γ

1

Nγ
bαγ(wij , X

i,N
s , Xj,N

s−τij )
)

ds

+

∫ t

0

gα(s,X
i,N
s ) · dW i

s ; t > 0

Yt = X i
0(t), t ∈ [−τ, 0]

and the sequence of processes (Xk)k≥0 on M(C) given by the induction Xk+1 = Φ(Xk). Existence and

uniqueness are classically shown through a fixed point argument on the map Φ.
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For compactness of notations, we denote X i,k
t ∈ E the i component of the vector Xk

t . We decompose

the difference into elementary terms:

X i,k+1
t −X i,k

t =

∫ t

0

(
fα(s,X

i,k
s )− fα(s,X

i,k−1
s )

)
ds

+

∫ t

0

P (N)
∑

γ=1

∑

p(j)=γ

1

Nγ

[

bαγ
(
wij , X

i,k
s , Xj,k

s−τij

)

−bαγ
(
wij , X

i,k−1
s , Xj,k

s−τij

)]

ds

+

∫ t

0

P (N)
∑

γ=1

∑

p(j)=γ

1

Nγ

[

bαγ
(
wij , X

i,k−1
s , Xj,k

s−τij

)

−bαγ
(
wij , X

i,k−1
s , Xj,k−1

s−τij

)]

ds

+

∫ t

0

(
gα(s,X

i,k
s )− gα(s,X

i,k−1
s )

)
· dW i

s

def

= Ai
t +Bi

t + Ci
t +Di

t,

where we simply identify each of the four terms At = (Ai
t, i = 1, . . . , N), Bt, Ct, and Dt with their

corresponding expression. Using Holder’s inequality

|Xk+1
t −Xk

t |2 ≤ 4(|At|2 + |Bt|2 + |Ct|2 + |Dt|2),

and treat each term separately. The first term At and the last term Dt are easily controlled using standard

techniques (Cauchy-Schwarz inequality and Burkholder-Davis-Gundy theorem) and (H1). In Bt follows

N∑

i=1

∣
∣
∣
∣
∣
∣

P∑

γ=1

∑

p(j)=γ

∫ t

0

1

Nγ

[

bαγ(wij , X
i,k
s , Xj,k

s−τij )− bαγ(wij , X
i,k−1
s , Xj,k

s−τij)
]

ds

∣
∣
∣
∣
∣
∣

2

≤
N∑

i=1

Pt
P∑

γ=1

∑

p(j)=γ

∫ t

0

∣
∣
∣bαγ(wij , X

i,k
s , Xj,k

s−τij )− bαγ(wij , X
i,k−1
s , Xj,k

s−τij)
∣
∣
∣

2

ds

≤ TP 2L2N

∫ t

0

∣
∣Xk

s −Xk−1
s

∣
∣
2
ds,

where L := max(α,γ) Lαγ . and similarly for Ct.

The conclusion is easy, at this point we have:

E
[

sup
−τ<s<t

∣
∣Xk+1

s −Xk
s

∣
∣
2] ≤ C

∫ t

0

E
[

sup
−τ≤u≤s

|Xk
u −Xk−1

u |2
]
ds, (2.5.13)

where C > 0 depends on T,K,L and P . Calling

Mk
t

def

= E
[

sup
−τ≤s≤t

|Xk
s −Xk−1

s |2
]
,

a priori bounds ensures that M0
T <∞ and the recursive inequality holds

Mk
t ≤ Ck

∫ t

0

∫ s1

0

. . .

∫ sk−1

0

M0
skds1 . . . dsk ≤ Ck t

k

k!
M0

T ,

From the last inequality we get that

∞∑

n=1

E

[

sup
−τ≤s≤t

∣
∣Xn+1

s −Xn
s

∣
∣
2
]

<∞,
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which implies in particularly the almost sure convergence of

X0
t +

n∑

k=0

(Xk+1
t −Xk

t ) = Xn
t ,

on [−τ, T ]. The limit defined X̄t is trivially a fixed point of Φ and by consequence solution to networks

equations (2.2.1).

Uniqueness. Starting with two solutions of the network equations (2.2.1) with exactly the same initial

condition one can remake the argument used to find (2.5.13) and then the uniqueness follows directly

from Gronwall’s lemma. �

The proof well-posedness of mean field equation (2.3.3) (Theorem 2.3.38) is very similar:

Theorem 5.1.78. It might seem that averaging over the delays and weights could add some new technical

difficulties to the upper-bounds for the second moment but thanks to (H3) similar estimates hold.

To illustrate how to deal with our random network framework, let X be a solution of the mean-field

equations and once again τn the first time that the process |Xt| exceeds the quantity n. Applying Itô’s

formula to |Xt∧τn |2 we now find

|Xα
t∧τn |2 = |ζα0 |2 + 2

∫ t∧τn

0

[

(Xα
t )

T fα(s,X
α
s ) +

1

2
|gα(s,Xα

s )|2

+(Xα
s )

T
P∑

γ=1

∫ 0

−τ

∫

R

[

EȲ

[
bαγ(w,X

α
s , Ȳ

γ
s+u)

]
dΛαγ(u,w)

]

ds

+2

∫ t∧τn

0

(Xα
s )

T gα(s,X
α
s ) dW

α
t ,

the only interesting term is the one in the second line, using triangular inequality and (H3) we get

(Xα
s )

T
P∑

γ=1

∫ 0

−τ

∫

R

[

EȲ

[
bαγ(w,X

α
s , Ȳ

γ
s+u)

]
dΛαγ(u,w)

]

ds

≤ P |Xα
s |2 +

P∑

γ=1

∫ 0

−τ

∫

R

K̄αγ(w)dΛαγ(u,w) ≤ C(k̄ + |Xα
s |2).

Equipped with this estimate, the proof is identical to that of the related property in proposition 2.3.37,

i.e., define a contraction mapping which gives the existence and uniqueness of solutions.

The two following proofs deal with the propagation of chaos property, we first demonstrate Theo-

rem 2.3.39 which states the convergence properties in a quenched sense in the translation invariant case,

and we finally explain how to adapt this proof to the general case Theorem 2.3.40, i.e., how to deal with

the additional difficulty of averaging over all possibles positions of neurons in each population.
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Theorem 2.3.39. The idea extends standard arguments for propagation of chaos and mean-field limits

by considering random correlated coupling and delays. The argument remains to control the difference

between the two processes as N goes to infinity. Decomposing the difference in 5 simpler terms we find:

X i,N
t − X̄ i

t =

∫ t

0

(
fα(s,X

i,N
s )− fα(s, X̄

i
s)
)
ds

+

∫ t

0

(
gα(s,X

i,N
s )− gα(s, X̄

i
s)
)
· dW i

s

+

P∑

γ=1

∫ t

0

∑

p(j)=γ

[
bαγ(wij , X

i,N
s , Xj,N

s−τij )− bαγ(wij , X̄
i
s, X

j,N
s−τij )

] ds

Nγ

+

P∑

γ=1

∫ t

0

∑

p(j)=γ

[
bαγ(wij , X̄

i
s, X

j,N
s−τij)− bαγ(wij , X̄

i
s, X̄

j
s−τij )

] ds

Nγ

+

P∑

γ=1

∫ t

0

( 1

Nγ

∑

p(j)=γ

bαγ(wij , X̄
i
s, X̄

j
s−τij)

−
∫ 0

−τ

∫

R

EZ

[
bαγ(w, X̄

i
s, Z

γ
s+u)

]
dΛαγ(u,w)

)

ds

:= At(N) +Bt(N) + Ct(N) +Dt(N) + Et(N).

We are interested in the behavior of E [E(sup−τ≤s≤T |X i,N
s − X̄ i

s|2)] as N → ∞. Under the same ideas

used in Proposition 5.3.84 and in Theorem 2.3.38, we find:

E[ sup
0≤s≤t

|As(N)|2] ≤ K ′2T

∫ t

0

E[ sup
−τ≤u≤s

|X i,N
u − X̄ i

u|2] ds

E[ sup
0≤s≤t

|Bs(N)|2] ≤ 4K ′2

∫ t

0

E[ sup
−τ≤u≤s

|X i,N
u − X̄ i

u|2] ds,

E[ sup
0≤s≤t

|Cs(N)|2] ≤ TL2P 2

∫ t

0

E[ sup
−τ≤u≤s

|X i,N
u − X̄ i

u|2] ds

E[ sup
0≤s≤t

|Ds(N)2] ≤ TL2P 2

∫ t

0

max
k=1,...,N

E[ sup
−τ≤u≤s

|Xk,N
u − X̄k

u |2] ds,

where L is the maximum value of constants Lαγ (finite number of populations) and we precise that the

4 in the Bt(N) upper-bound is found using the Burkholder-David-Gundy Inequality.

For the last term Et(N) we start by applying the Cauchy-Schwartz and the triangular inequality:

E [E[ sup
0≤s≤t

|Es(N)|2]] ≤ TP

P∑

γ=1

∫ t

0

E
[

E

[∣
∣
∣
1

Nγ

∑

p(j)=γ

(

bαγ(wij , X̄
i
s, X̄

j
s−τij)

−
∫ 0

−τ

∫

R

EZ [bαγ(w, X̄
i
s, Z

γ
s+u)]dΛαγ(u,w)

)∣
∣
∣

2]]

ds,

moreover,

E
[

E

[∣
∣
∣
1

Nγ

∑

p(j)=γ

(

bαγ(wij , X̄
i
s, X̄

j
s−τij )

−
∫ 0

−τ

∫

R

EZ [bαγ(w, X̄
i
s, Z

γ
s+u)]dΛαγ(u,w)

)∣
∣
∣

2]]

=
1

N2
γ

∑

p(j)=γ

∑

p(l)=γ

E
[

E

[(

bαγ(wij , X̄
i
s, X̄

j
s−τij )− EZ,(τ̃ ,w̃)αγ

[bαγ(w̃αγ , X̄
i
s, Z

γ
s−τ̃αγ

)]
)T

·

(

bαγ(wil, X̄
i
s, X̄

l
s−τil)− EZ,(τ̃ ,w̃)αγ

[bαγ(w̃αγ , X̄
i
s, Z

γ
s−τ̃αγ

)]
)]]
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In the above expression, (τ̃ , w̃)αγ denotes a random variable with law Λαγ independent of the sequence of

delays, weights and Brownian motions. We remark that
∫ 0

−τ

∫

R
EZ [bαγ(w, X̄

i
s, Z

γ
s+u)]dΛαγ(u,w) is exactly

the expectation of bαγ(wij , X̄
i
s, X̄

j
s−τij ) under the law of X̄j and of the pair delays-weights.

Therefore in the case j 6= l, the term in the summation vanishes, and in the opposite case j = l we

use the triangular inequality to see that

E
[

E

[∣
∣bαγ(wij , X̄

i
s, X̄

j
s−τij)− EZ,(τ̃ ,w̃)αγ

[bαγ(w̃αγ , X̄
i
s, Z

γ
s−τ̃αγ

)]
∣
∣
2
]]

≤ 2 E
[

E

[∣
∣bαγ(wij , X̄

i
s, X̄

j
s−τij)

∣
∣
2
+
∣
∣EZ,(τ̃ ,w̃)αγ

[bαγ(w̃αγ , X̄
i
s, Z

γ
s−τ̃αγ

)]
∣
∣
2
]]

≤ 2 E
[
E
[
K̄(wij) + k̄

]]
≤ 4k̄.

This implies that number of non-null terms in the sum is proportional to Nγ and all of them are

bounded by the same quantity. Thus

E
[
E
[
sup

0≤s≤t
|Es(N)|2

]]
≤ C̄k

P∑

γ=1

1

Nγ
≤ Ck̄P

minγ(Nγ)
.

Assembling all the estimates, using that on [−τ, 0] both X i,N
t and X̄ i

t are equal and denoting by C

any generic constant that does not depend on N we find

max
i=1,...,N

E
[
E
[

sup
−τ≤s≤t

|X i,N
s − X̄ i

s|2
]]

≤ C

∫ t

0

max
k=1,...,N

E
[
E
[

sup
−τ≤u≤s

|Xk,N
u − X̄k

u |2
]]
ds+

C

minγ(Nγ)
,

by Gronwall’s inequality:

max
i=1,...,N

E
[
E
[

sup
−τ≤s≤t

|X i,N
s − X̄ i

s|2
]]

≤ CeCT

minγ(Nγ)
,

which tends to zeros as N goes to infinity by (H0).

As a side result, the almost sure convergence towards the coupled process implies the convergence in

law of (X i,N
t ,−τ ≤ t ≤ T ) towards (X̄α

t ,−τ ≤ t ≤ T ).

From the last inequality we have easily the propagation of chaos property. Fixing a finite set of

neurons (i1, . . . , il) ∈ N, then if fα and gα are globally Lipschitz continuous, we have:

max
i1,··· ,il∈{1,...,N}l

E
[
E
[

sup
−τ≤s≤t

|(X i1,N
s , . . . , X il,N

s )− (X̄ i1
s , . . . , X̄

il,N
s )|2

]]
≤ lCeCT

minγ(Nγ)
,

hence

(X i1,N
s , . . . , X il,N

s ,−τ ≤ s ≤ T )
L−→ (X̄ i1

s , . . . , X̄
il,N
s ,−τ ≤ s ≤ T ),

and truncation argument allows to conclude on the convergence in the locally Lipschitz case. This implies

that the vector (X i1,N
s , . . . , X il,N

s ,−τ ≤ s ≤ T ) converges in law towardsmi1 ⊗ . . .⊗mil , readily implying

propagation of chaos.
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Theorem 2.3.40. The proof uses essentially the same arguments as that of theorem 2.3.39. Here, we

control the difference between Ei[X i,N
t ] and X̄ i

t in the quadratic norm ‖Z‖2 := E[sup−τ≤t≤T |Zs|2]. The
assumption on b allow us to separate the distance into only 4 terms similarly to the quenched case. Most

terms are handled in a similar fashion, the only difference being the presence of a additional expectation

Ei. The main difference is to deal with the term corresponding to Et(N), which now reads:

E
[
E
[
sup

0≤s≤t
|Es(N)′|2

]]
=

≤ TP

P∑

γ=1

∫ t

0

E
[

E

[∣
∣
∣
1

Nγ

∑

p(j)=γ

Ei[ℓαγ(wij , X̄
j
s−τij )]

−
∫ 0

−τ

∫

R

EZ [ℓαγ(w,Z
γ
s+u)]dΛαγ(u,w) dri

∣
∣
∣

2

ds
]]

,

Again,

E
[

E

[

Ei[ℓαγ(wij , X̄
j
s−τij )]

]]

=

∫ 0

−τ

∫

R

EZ [ℓαγ(w,Z
γ
s+u)]dΛαγ(u,w)

we develop in the same way that Theorem 2.3.39. The key point is that it suffices to find an upper-bound

uniformly in the disorder of the system which is trivially found using (H3), i.e.,

E
[

E

[∣
∣Ei[ℓαγ(wij , X̄

j
s−τij)]− EZ,(τ̃ ,w̃)αγ

[ℓαγ(wαγ , Z
γ
s−τ̃αγ

)]
∣
∣
2
]]

≤ 2k̄,

and we conclude using (H0). �

2.6
Discussion

In this paper, motivated by the structure of interconnection matrix and interactions of neuronal

networks of the brain, we analyzed the mean-field limits and dynamics of networks on some random

graphs with delays correlated to the synaptic weights. Extending coupling methods to these models,

we showed quenched and averaged propagation of chaos, and convergence towards a complex mean-field

equation involving distributed delays and averaging with respect to the law of the connectivity. This

limit equation is relatively complex in general models, however, they massively simplify for the classical

firing-rate model, in which case solutions are exactly reduced to a system of distributed delays integro-

differential equations, from which one can infer, using bifurcation theory, the role of random connectivities

and delays. This technique led us to demonstrate that typical size of the neuronal area, as well as typical

length scale of connectivity, induced or broke synchronization of the neurons. In detail, we showed that

depending on the connectivity of the network and the averaged delays the network can either present

stationary or a synchronized periodic behavior. In this sense, using a small-world type of model for

the value of the weights, we were able to prove that the architecture of the system also plays a role

in the dynamics. We also showed that the macroscopic behavior depends on the size of the neural field

considered and, more important, on the connectivity of the system measured as the amount of connections

over the total possible ones.
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2.6.1 Relationship with pathological rhythmic brain activity

Synchronized states are ubiquitous and serve essential function in brain such as memory or atten-

tion [31]. Impairments of synchronization levels often relate to severe pathological effects such as epilepsy

(too much synchronization) or Parkinson’s disease (too little synchronization) [134]. Troubles in oscilla-

tory patterns have also been related to connectivity levels in epilepsy. In detail, the emergence of seizures

and abnormal synchronization was hypothesized to be related to an increased functional connectivity, or

more recently to the appearance of an increased number of synaptic buttons between cells. The former

phenomenon has been reported in various epileptic situations (see e.g. [16]), and the latter was mainly

evidenced in hippocampal epilepsy, and is generally referred to as neosynaptogenesis, or sprouting, see e.g.

[8, 115, 117]. Our models provides an elementary account for the fact that indeed, increased connectivity

levels (corresponding to small values of β) tend to favor synchronization for most values of τs. The model

even makes a prediction about some possible parameter regions in which this synchronization may only

arise in a particular intermediate interval of connectivity levels β. Disorder also seems to intervene in the

emergence of abnormally synchronized oscillations, as evidenced for instance by Aradi and Soltesz [6] who

showed that even if average levels of connectivity in rats subjects to febrile epileptic seizures were similar

to those of a control population, variance in the connectivities were increased. Our models incorporate

the law of the synaptic weights, and therefore all for testing this hypothesis, as well as a number of

variations around these models, in a rigorous manner.

2.6.2 Cluster size and synchronization in primary visual area

The structure of the primary visual areas are very diverse across species. These areas are composed

of cells sensitive to the orientation of visual stimuli. In primates, neurons gather into columns as a

function of the orientation they are selective to, and these columns organize spatially creating continuous

patterns of a specific anatomical size (see e.g. [20]). In contrast, rodents present no specific organization

of neurons selective to the same orientation (salt-and-pepper organization, see [118]). The reason why

these architectures are very different across mammals is still poorly understood, and one of the possibles

explanations proposed is related to the size of V1: the model tends to show that it is harder to ensure

collective synchronization at the level of large cortical areas than locally, phenomenon probably due to

the fact that naturally, connectivities are local. This is precisely one of the results of our analysis. In

our model, the parameter a characterizes the size of one cortical column, and the results of the analysis

of the model show that increasing the size of a column a induces transitions from synchronized regimes

to stationary regimes, reducing the collective response of neurons.

2.6.3 Macroscopic vs Mesoscopic models

The question of which is the proper scale adapted to describe a phenomenon is central in computational

neuroscience. Of course, it is tempting to propose large-scale macroscopic models made of homogeneous
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neuronal populations, as neuronal networks tend to present a columnar organization made of a large

number of strongly connected neurons. Most models use implicitly this kind of structure through neural

mass models [161, 79]. Another common approximation is the neural field model (see [22] for a recent

review) that describes the cortical activity through integro-differential delayed equations, which could be

related to a particular limit of neuronal networks with local homogeneity properties as shown in [149].

The model analyzed sits at an intermediate scale at which homogeneity of connectivity is only true

(i) locally an (ii) in a statistical sense. Though these local variations, the model studied in first part

of section 2.3, termed macroscopic, describes the neural network at a macroscopic scale with a single

equation describing the averaged or quenched behavior of one cell in the network. Appendix 2.7 shows

that the result persists when considering asymptotically a continuum of neural populations, yielding the

mesoscopic model. Let us now compare our models to usual neural mass (NM) or neural fields (NF).

These latter models are given by the equations (in which Φ is a sigmoid transform):

u̇α(t) = −uα
θα

(t) +

P∑

β=1

J̄αβΦ(uβ(t− ταβ))

for finite-populations networks (model NM), and in spatial continuous settings (NF) with a single layer:

∂tu(r, t) = −u(r, t)
θ

+

∫

Γ

J̄(r, r′)Φ(u(r′, t− τ(r, r′))) dr′.

These two equations are very close from the mean equations we obtained in our mean-field limit. Disre-

garding stochastic inputs, the macroscopic (mesoscopic) model is an homogenized version of an heteroge-

neous neural mass (resp, neural field) model. Disregarding the effect of stochastic noise, our macroscopic

model therefore tends to correspond to spatially homogeneous solutions of the neural field equations for

translation invariant neural fields. Indeed, assuming r ∈ Sa the 1-dimensional torus of length a, i.e. the

periodic interval [0, a], J(r, r′) = J(r − r′) and τ(r, r′) = τs + |r − r′|, spatially homogeneous solutions

are functions of time only, satisfying the equations:

˙̄u(t) = − ū(t)
θ

+

∫ a

0

J̄(ζ)Φ(ū(t− τs − ζ))) dζ

(which does not depend on r). Our model yields an equation on the mean of the process that corresponds

to:

µ̇(t) = −µ(t)
θ

+

∫ a

0

J̄β(ζ)f(µ(t − τs − ζ), v(t− τs − ζ))) dζ.

Therefore, with an appropriate choice of parameters and function, the mean-field macroscopic model

represents spatially homogeneous solutions of the Wilson-Cowan neural field equations. The present

approach provides a microscopic interpretation of these equations, and the model provides therefore a

suitable framework to investigate random individual phenomena arising in large neuronal areas, observed

at scales that do not resolve fine structure of the brain, such as the electro-encephalogram method used

in epilepsy monitoring.

66



2.6.4 Perspectives

The course of our developments lead us to cast aside the assumption of full connectivity or exchange-

ability between neurons. Incidentally, this work therefore shows that the notion of exchangeability, widely

use in large stochastic particle systems, can be significantly weakened, in favor of statistical equivalent,

and more structured global exchangeability properties such as the translation invariance. This opens

the way to develop a these ideas towards invariant architectures under the action of specific groups of

transformation. This constitute an active research that we are currently developing. This method also

has a number of possible implications in neuroscience and in complex systems more generally, and may

help understanding the dynamics of large neural networks. Enriching this model considering different

populations in the applications section is a straightforward extension of the manuscript, and analyzing

those results would allow going even deeper in the analysis of neuronal networks and macroscopic syn-

chronization of them as an effect of random pairs delays and synaptic weights. Considering different kind

of architectures is also a possible path to follow and could bring new relationships with the specific corti-

cal functions. A deep question is whether one can obtain information on the microscopic configurations

related to the macroscopic regimes observed. This motivates to develop the analysis of the presence of

structured activity (localized bumps, traveling waves, traveling pulses) and their probability of appear-

ance as a function of disorder, noise and the parameters of the system. This is an exciting question

well worth investigating. One limitation of the qualitative analysis provided here is that the moment

reduction is rigorously exact only in very specific models where solutions are Gaussian. Such models do

not reproduce the excitability properties of the cells. Extending this analysis to excitable systems, i.e.

analyzing equation (2.3.2) with nonlinear dynamics and nonlinear interactions, is a deep and challenging

mathematical question in the domain of stochastic processes and functional analysis.

2.7
Appendix A: Randomly connected neural fields

We now extend the above results to the mesoscopic case of spatially-extended neural fields with

random correlated connectivity weights and delays. In this case, following [149], we consider that the

number of populations in a network of size N is P (N), and this quantity diverges when N tends to

infinity covering, in the limit N → ∞, a piece of cortical tissue Γ which compact set of Rδ (generally

δ = 1, 2). In this interpretation, a population index represents the location rα ∈ Γ of a microcolumn on

the neural field, which are assumed to be independent random variables with distribution λ on Γ. For

the sake of simplicity and consistency with other works about neural fields, we include the dependence

on the neural populations in the drift and diffusion functions. We therefore introduce three maps:

• the measurable functions f : Γ× R× E 7→ E and g : Γ× R× E 7→ Em

• the map b : Γ× Γ× R× E × E 7→ E which is assumed measurable,
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and rewrite the network equations as:

dX i,N
t = f(rα, t,X

i,N
t )

+
1

P (N)

P (N)
∑

γ=1

∑

p(j)=γ

1

Nγ
b(rα, rγ , wij , X

i,N
t , Xj,N

t−τij)dt+ g(rα, t,X
i,N
t ) · dW i

t , (2.7.14)

These equations are clearly well-defined as proved in proposition 2.3.37. As described in the macroscopic

framework 2.2, the two sequences of random variables (wij) and (τij) for fixed i ∈ N are independent,

and for fixed (i, j), τij and wij are correlated. Their law depend on the locations rα and rγ of the

microcolumns neurons i and j belong to. We denote Λrα,rγ this law. We assume that this law is

measurable with respect to the Borel algebra of Γ, i.e. for any A ∈ B(R × R+) the Borel algebra of

R×R+, the map (r, r′) 7→ Λr,r′(A) is measurable with respect to B(Γ×Γ). We assume that assumptions

(H1)-(H4) are valid uniformly in the space variables, and consider the neural field limit given by the

condition:

ε(N) =
1

P (N)

P (N)
∑

γ=1

1

Nγ
−→
N→∞

0. (2.7.15)

Elaborating on the proofs provided (i) in the finite-population case treated in the present manuscript and

(ii) in the neural field limit for non random synaptic weights or delays, we will show that the network

equations converge towards a spatially-extended McKean-Vlasov equation:

dXt(r) = f(r, t,Xt(r)) dt + g(r, t,Xt(r)) · dWt(r)

+

∫

Γ

∫

R

∫ 0

−τ

EZ [b(r, r
′, j,Xt(r), Zt+s(r

′))]dΛr,r′(j, s)dλ(r
′)dt. (2.7.16)

In these equations, the process (Wt(r)) is a chaotic Brownian motion (as defined in [149]), i.e. a stochastic

process indexed by space r ∈ Γ, such that for any r ∈ Γ, the process Wt(r) is a standard m-dimensional

Brownian motion and for any r 6= r′ ∈ Γ2, Wt(r) and Wt(r
′) are independent. These processes are

singular functions of space, and in particular not measurable with respect to the Borel algebra of Γ,

B(Γ). Therefore, the solutions are themselves not measurable, which raise questions on the definition of

the mean-field equation (2.7.16) in particular for the definition of the integral on space of the mean-field

term. However, it was shown in [149], making sense of this equation amounts showing that the law of

the solution is B(Γ)-measurable. Once this is proved, the integral is well defined. In the spatial case,

we make the following assumptions, that are directly corresponding to the assumptions (H1)-(H4) of the

finite-population case:

(H1’) f and g are uniformly Lipschitz-continuous functions with respect to their last variable.

(H2’) For almost all w ∈ R and any (r, r′) ∈ Γ2, b(r, r′, w, ·, ·) is L-Lipschitz-continuous, i.e. for any (x, y)

and (x′, y′) in E × E, we have:

|b(r, r′, w, x, y)− b(r, r′, w, x′, y′)| ≤ L(|x− x′|+ |y − y′|).

(H3’) There exists a function K̄ : R 7→ R+ such that for any (r, r′) ∈ Γ2,

|b(r, r′, w, x, y)|2 ≤ K̄(w) and EΛr,r′
[K̄(w)] ≤ k̄ <∞.
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(H4’) The drift and diffusion functions satisfy the uniform (in r) monotone growth condition:

xT f(r, t, x) +
1

2
|g(r, t, x)|2 ≤ K(1 + |x|2).

The initial conditions we consider for the mean-field equations are processes (ζt(r), t ∈ [−τ, 0]) ∈
X0 the space of spatially chaotic square integrable process with measurable law, processes such

that the regularity conditions are satisfied:

• for any r ∈ Γ, ζt(r) is square integrable in Cτ

• for any r 6= r′, the processes ζ(r) and ζ(r′) are independent

• for fixed t ∈ [−τ, 0], the law of ζt(r) is measurable with respect to B(Γ), i.e. for any A ∈ B(E),

pζt(r) = P(ζt(r) ∈ A) is a measurable function of (Γ,B(Γ)) in [0, 1].

We will denote XT the set of processes (ζt(r), t ∈ [−τ, T ]) satisfying the above regularity condi-

tions on [−τ, T ].
Proposition 2.7.42. Under assumptions (H1’)-(H4’), for any initial condition ζ ∈ X , there exists a

unique, well-defined strong solution to the mean-field equations (2.7.16).

The proof classically starts by showing square integrability of possible solutions, then considers equa-

tion (2.7.16) as a fixed point equation Xt = Φ(Xt), and shows a convergence property of iterates of the

map Φ starting from an arbitrary chaotic process X0
t (r) ∈ XT . It is easy to see that the function Φ maps

XT in itself. The sequence of processes Xk = Φk(X0) is therefore well-defined. Estimates similar to

those proved in proposition 5.3.84 and theorem 5.1.78 allow concluding on the existence and uniqueness

of solutions. The proof being classical, it is left to the interested reader extending the argument of [149,

Theorem 2] to our random environment setting.

The convergence result of the network equations towards the mean-field equations can be stated as

follows:

Theorem 2.7.43. Let ζ ∈ X0 a chaotic process. Consider the process (X i,N
t , t ∈ [−τ, T ]) solution of the

network equations (2.7.14) with independent initial conditions identically distributed for neurons in the

same population located at r ∈ Γ with law equal to (ξt(r), t ∈ [−τ, 0]). Under assumptions (H1’)-(H4’)

and the neural field limit assumption (2.7.15), the process (X i,N
t , t ∈ [−τ, T ]) converges in law towards

(Xt(r), t ∈ [−τ, T ]) solution of the mean-field equations with initial conditions ζ.

The proof of this result proceeds as that of [149, Theorem 3] including the refinements brought in the

proof of theorem 2.3.38 to take into account random connectivities and delays.
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Chapter 3

On a kinetic FitzHugh-Nagumo

equation: exponential nonlinear

convergence

In this chapter we investigate existence and uniqueness of solutions of a McKean-Vlasov evolution

PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is

hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution

equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary

solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show

exponential nonlinear stability in the small connectivity regime. As coupling increases, highly non-

trivial phenomena may emerge as nonlinear effects of the McKean-Vlasov equation. In a final section,

we numerically explore the dynamics of the Fitzhugh-Nagumo kinetic equation using a Monte-Carlo

algorithm. We observe that complex phenomena occur as the coupling is varied: the stability of stationary

solutions may change as a function of connectivity levels, and attractive periodic solution in time may

emerge.

This paper is included in [112] written in collaboration with S. Mischler and J. Touboul (submitted).
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3.1
Introduction

This paper undertakes the analysis of the existence and uniqueness of solutions for a mean-field

equation arising in the modeling of the macroscopic activity of the brain. This equation describes the

large-scale dynamics of a model of the central nervous system, taking into account the fact that it is

composed of a very large number of interconnected cells that manifest highly nonlinear dynamics and

are subject to noise. Non-linearities in the intrinsic dynamics of individual cells are an essential element

of the neural code. Indeed, nerve cells constantly regulate their electrical potential depending on the

input they receive. This regulation results from intense ionic exchanges through the cellular membranes.

The modeling of these dynamics led to the development of the celebrated Hodgkin-Huxley model [75],

a very precise description of ion exchanges through the membrane and their effects on the cell voltage.

A simplification of this model conserving the most prominent aspects of the Hodgkin-Huxley model, the

Fitzhugh-Nagumo (FhN) model [59, 116], has gained the status of canonical model of excitable cells in

neuroscience. This model constitutes a very good compromise between versatility and accuracy on the one

hand, and relative mathematical simplicity on the other hand. It describes the evolution of the membrane

potential v of the cell coupled to an auxiliary variable x, called the adaptation variable. Different neurons

interact through synapses that are either chemical or electrical. In the case of electrical synapses for

instance, the evolution of the pair voltage-adaptation for a set of n neurons {(vit, xit), 1 ≤ i ≤ n} satisfy

the equations:







dvit =
(

vit (v
i
t − λ) (1 − vit)− xit +

∑n
j=1 Jij(v

i
t − vjt ) + It

)

dt+ σ dW i
t

dxit =
(
−axit + bvit

)
dt,

(3.1.1)

where the cubic nonlinearity accounts for the cell excitability, It is the input level, a and b are positive

constants representing timescale and coupling between the two variables, and the processes {(W i
t )t≥0, 1 ≤

i ≤ n} are independent Brownian motions accounting for the intrinsic noise at the level of each cell. In

the sequel, for sake of simplicity, we assume that σ2 = 2 and It = I0 ∈ R constant, but it is likely

that some of our analysis can be extend to It ∈ L∞(R+) converging rapidly when t goes to infinity.

The coefficients Jij represent the effect of the interconnection of cell j onto cell i. These coefficients are

positive, and incorporate the information of the connectivity map. Under relatively weak assumptions on

the distribution of these coefficients (see Appendix 3.7), it is relatively classical to show that the system

enjoys propagation of chaos property and finite sets of neurons converge in law towards a process whose

density solves the McKean-Vlasov evolution PDE:

∂tf = Qε[Jf ] f := ∂x(Af) + ∂v
(
Bε(Jf )f

)
+ ∂2vvf on (0,∞)× R

2, (3.1.2)

A = A(x, v) = ax− bv, Bε(Jf ) = B(x, v ; ε,Jf), (3.1.3)

B(x, v ; ε, j) = v (v − λ) (v − 1) + x− ε (v − j) + I0, (3.1.4)

Jf = J (f) =

∫

R2

v f(x, v) dvdx, (3.1.5)

where ε denotes the averaged value of the connectivity coefficients Jij and f = f(t, x, v) ≥ 0 is the

73



density function of finding neurons with adaptation and voltage (x, v) ∈ R
2 at time t ≥ 0. The evolution

equation (3.1.2) is complemented by an initial condition

f(0, ·, ·) = f0(·, ·) ≥ 0 in R
2.

Since the PDE can be written in divergence form, the initial normalization of the density is conserved.

In particular, consistent with the derivation of the system, we have:

∫

R2

f(t, x, v) dxdv =

∫

R2

f0(x, v) dxdv = 1,

when f0 is normalized. Moreover, the nonnegativity is also a classical result of this kind of equations (for

a brief discussion see Appendix 3.8), therefore we assume in the sequel that f is a probability density.

From the mathematical viewpoint, this equation presents several interests. First, the system is not

Hamiltonian and the dynamics may present several equilibria, therefore, methods involving a potential

and its possible convexity may not be used. Second, intrinsic noise acts as a stochastic input only into

the voltage variable (since it modifies the voltage through random fluctuations of the current), leaving

the adaptation equation unchanged and yielding to a hypoelliptic equation. From the phenomenological

viewpoint, this system is particularly rich. It shows a number of different regimes as parameters are

varied, and in particular, as a function of the connectivity level: the system goes from a non-trivial

stationary regime in which several stationary solutions may exist for strong coupling, to periodic solutions,

and eventually to a unique stationary solution for weak coupling. This is illustrated in section 3.6, in

particular, we present some numerical results of (3.1.1) for a large number of interacting neurons.

In order to rigorously analyse equation (3.1.2), we restrict ourself to the latter regime, and we shall

demonstrate the existence, uniqueness and stability of solutions to the McKean-Vlasov equation in the

limit of weak coupling. More precisely, we shall prove existence of solution and non trivial stationary

solution to the evolution equation (3.1.2) without restriction on the connectivity coefficient ε > 0, and

next uniqueness of the stationary solution and its exponential NL stability in the small excitability regime.

3.1.1 Historical overview of macroscopic and kinetic models in neuroscience

As mentioned above, the problem we study lies within a long tradition of works in the domain

of the characterization of macroscopic behaviors in large neuronal networks. First efforts to describe

the macroscopic activity of large neuron ensemble can be traced back to the work of Amari, Wilson and

Cowan in the 1970s [3, 4, 161, 162], where were introduced heuristically derived equations on the averaged

membrane potential of a population of neurons. These models made the assumption that populations

interact through a macroscopic variable, the averaged firing rate of the population, assumed to be a

sigmoidal transform of the mean voltage. This model has been extremely successful in reproducing

a number of macroscopic behaviors in the cortex, one of the most striking being related to pattern

formation in the cortex associated to visual hallucinations [53] (see also [22] for a recent review on

the subject). The relatively simplicity and good agreement with neurological phenomena motivated to

understand the relationship between the dynamics of individual cells activity and macroscopic models.
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This has been an important piece of work in the 1990s in the bio-physics community, using simplified (non-

excitable) models and specific assumptions on the architecture of the network, including the assumption

of sparse and balanced connectivity (the sum of all incoming input vanishes). The sparse connectivity

assumption was used by the authors to stated that the activity was uncorrelated [1, 5, 26], and resulted in

characterizing different neuronal states. Alternative approaches were also developed based on population

density [33] methods. These yield complex partial differential equations, that were reduced to a set of

moment equations from which authors may deduce the behavior of the system. The validity of these

moment reduction and their well-posedness is a complex issue debated in the literature, see e.g. [99].

A transition Markov two-states model governing the firing dynamics of the neurons in the network was

recently introduced. In these models, the transition probability of the system, written through a master

equation, is then handled using different physics techniques including van Kampen expansions or path

integral methods. This modeling recently gathered the interest of the community (see for example [29,

21, 52, 153]).

The mathematical community also undertook the analysis of the problem since the beginning of this

decade. In that domain, one can distinguish also two distinct approaches: on one side, the development

of mathematical models for simplified or phenomenological neuronal models, and on the other side works

on the precise neuronal models. The dynamics of solutions of macroscopic limits of phenomenological

neuron models is much more developed. The characterization of the stationary (or periodic) solutions

was done in a simplified model, the Wilson-Cowan system, which has the important advantage to yield a

Gaussian solution whose mean and standard deviation satisfy a deterministic dynamical system that may

be studied analytically [149, 152] using the analysis of ordinary differential equations. Artificial spiking

neuronal models representing the discontinuous dynamics of the time to the next spike were analyzed in

a number of situations, including construction of periodic solutions to the limit equation in the presence

of delays [121, 123, 122]. In the same vein, an important result was demonstrated on integrate-and-fire

models in the presence of noise and excitation: it was shown that too much excitation could prevent the

existence of solutions for all times, as the firing rate blows up in finite time [32]. These approaches make

use of functional analysis of PDEs and nonlocal age-structured type of equations.

3.1.2 Organization of the paper

The paper is organized as follows. Section 3.2 summarizes our main results that are demonstrated in

the rest of the paper. Section 3.3 is interested with the existence, uniqueness and a priori estimates on the

solutions to the evolution equation, as well as, the existence of stationary solutions. The next sections

prove the stability of the unique stationary solution. Our proof uses factorization of the linearized

semigroup allowing to prove linear stability, which we complete in section 3.5 by an analysis of the

nonlinear stability of the stationary solution. Along the way, a number of open problems were identified

beyond the small connectivity regime treated here that we present in section 3.6 together with numerical

simulations: we will observe that the stationary solution splits into two stable stationary solutions as

connectivity is increased, and in an intermediate regime, periodic solutions emerge. Two appendices

75



complete the paper. Appendix 3.7 investigates the microscopic system and its convergence towards the

mean-field equation (3.1.2) and Appendix 3.8 deals with the strict positivity of stationary solutions.

3.2
Summary of the main results

3.2.1 Functional spaces and norms

We start by introducing the functional framework in which we work throughout the paper. For any

exponent p ∈ [1,∞] and any nonnegative weight function ω, we denote by Lp(ω) the Lebesgue space

Lp(R2;ω dx dv) and for k ∈ N the corresponding Sobolev spaces W k,p(R2;ω dx dv). They are associated

to the norms

‖f‖Lp(ω) = ‖fω‖Lp, ‖f‖p
Wk,p(ω)

= ‖f‖pLp(ω) +

k∑

j=1

‖Dk
x,v f‖pLp(ω).

For k ≥ 1, we define the partial v-derivative space W k
v (ω) by

W k,p
v (ω) := { f ∈ W k−1,p(ω) ; Dk

vf ∈ Lp(ω) },

and it is natural to associate them to the norm

‖f‖p
Wk,p

v (ω)
= ‖f‖p

Wk−1,p(ω)
+ ‖Dk

vf‖pLp(ω).

A particularly important space in our analysis, denoted by H2
v (ω), is

H2
v (ω) =W 2,2

v (ω) = {f ∈ H1(ω) such that ∂2vvf ∈ L2(ω)},

together with the set of functions with finite entropy

L1 logL1 :=
{

f ∈ L1(R2) such that f ≥ 0 and H (f) <∞
}

,

where we use the classical notation H (f) :=
∫

R2 f log f . Finally, for κ > 0, let us introduce the

exponential weight function:

m = eκ(M−1) with M := 1 + x2/2 + v2/2. (3.2.6)

In the sequel, we will be brought to vary the constant κ involved in the definition of m, therefore

we introduce the shorthand mi = eκi(M−1), i ∈ N. Unless otherwise specified, these sequences are

constructed under the assumption that the sequence κi is strictly increasing.

3.2.2 Main results

We start by stating a result related to the well possedness of (3.1.2) and to the a priori bounds on

the solution. Using classical theory of renormalized solutions, it is not hard to see that equation (3.1.2)

has indeed weak solutions, which we naturally define as:
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Definition 3.2.44. Let f0 be a normalized nonnegative function defined on R
2 such that J (f0) is

well defined. We say that ft(x, v) := (t, x, v) 7→ f(t, x, v) is a weak solution to (3.1.2) if the following

conditions are fulfilled:

- f ∈ C([0,∞);L1(M2));

- for almost any t ≥ 0, f ≥ 0 and

∫

R2

f(t, x, v) dx dv =

∫

R2

f0(x, v) dxdv = 1;

- for any ϕ ∈ C1([0,∞);C∞
c (R2)) and any t ≥ 0 it holds

∫

R2

ϕft =

∫

R2

ϕf0 +

∫ t

0

∫

R2

[
∂tϕ+ ∂2vvϕ−A∂xϕ−Bε(J (fs))∂vϕ

]
fs. (3.2.7)

Equipped with this definition we can state the

Theorem 3.2.45. For any f0 ∈ L1(M2) ∩ L1 logL1 ∩ P(R2), there exists a unique global weak solution

ft to the FhN equation (3.1.2), that moreover satisfies

‖ft‖L1(M) ≤ max(C0, ‖f0‖L1(M)), (3.2.8)

and depends continuously in L1(M) to the initial datum. More precisely, if fn,0 → f0 in L1(M) and

H (fn,0) ≤ C then fn,t → ft in L
1(M) for any later time t ≥ 0.

Furthermore, there exist two norms ‖·‖H1 and ‖·‖H2
v
equivalent respectively to ‖·‖H1(m) and ‖·‖H2

v(m),

such that the following estimates hold true:

‖ft‖L1(m) ≤ max(C1, ‖f0‖L1(m)), (3.2.9)

as well as

‖ft‖H1 ≤ max(C2, ‖ f0‖H1), (3.2.10)

and

‖ft‖H2
v
≤ max(C3, ‖f0‖H2

v
), (3.2.11)

where C1, C2, C3 are positive constants.

The other two main results of the present work can be summarized in the following

Theorem 3.2.46. For any ε ≥ 0, there exists at least one stationary solution Gε to the FhN statistical

equation (3.1.2), that is

Gε ∈ H2
v (m) ∩ P(R2), 0 = ∂x(AGε) + ∂v(Bε(JGε)Gε) + ∂2vvGε in R

2. (3.2.12)

Moreover, there exists an increasing function η : R+ → R such that η(ε) −−−→
ε→0

0 and such that any

solution to (3.2.12) satisfies

‖G−G0‖L2(m) ≤ η(ε),

where G0 is the unique stationary solution corresponding to the case ε = 0.
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Theorem 3.2.47. There exists ε∗ > 0 such that, in the small connectivity regime ε ∈ (0, ε∗), the

stationary solution is unique and exponentially stable. More precisely, there exist α∗ < 0 and η∗(ε) :

R+ → R, with η∗(ε) −−−→
ε→0

∞, such that if

f0 ∈ H1(m) ∩ P(R2) and ‖f0 −G‖H1(m) ≤ η∗(ε),

then there exists C∗ = C∗(f0, ε
∗, ε) > 0, such that

‖ft −G‖L2(m) ≤ C∗ eα
∗ t, ∀ t ≥ 0,

where ft is the solution to (3.1.2) with initial condition f0.

3.2.3 Other notations and definitions.

We prepare to the demonstration of these results by introducing a few notations that will be used

throughout the paper. For two given Banach spaces (E, ‖ · ‖E) and (E , ‖ · ‖E), we denote by B(E, E) the
space of bounded linear operators from E to E and we denote by ‖·‖B(E,E) the associated operator norm.

The set of closed unbounded linear operators from E to E with dense domain is denoted by C (E, E). In
the special case when E = E , we simply write B(E) = B(E,E) and C (E) = C (E,E).

For a given α ∈ R, we define the complex half plane

∆α := {z ∈ C, Re(z) > α}.

For a given Banach space X and Λ ∈ C (X) which generates a semigroup, we denote by (SΛ(t), t ≥ 0)

this one, by D(Λ) its domain, by N(Λ) its null space, by R(Λ) its range, and by Σ(Λ) its spectrum. On

the resolvent set ρ(Λ) = C \ Σ(Λ) we may define the resolvent operator ρ(Λ) by

∀ z ∈ C, RΛ(z) := (Λ− z)−1.

Moreover, RΛ(z) ∈ B(X) and has range equal to D(Λ). We recall that ξ ∈ Σ(Λ) is called an eigenvalue

of Λ if N(Λ− ξ) 6= {0}, and it called an isolated eigenvalue if there exists r > 0 such that

Σ(Λ) ∩ {z ∈ C, |z − ξ| < r} = {ξ}.

Since the notion of convolution of semigroups will be required, we recall it here. Let us consider some

Banach spaces X1, X2 and X3 and two given functions

S1 ∈ L1([0,∞);B(X1, X2)) and S2 ∈ L1([0,∞);B(X2, X3)),

one can define S2 ∗ S1 ∈ L1([0,∞);B(X1, X3)) by

(S2 ∗ S1)(t) :=

∫ t

0

S2(t− s)S1(t) ds, ∀ t ≥ 0.

In the special case S1 = S2 and X1 = X2 = X3, S
(∗n) is defined recursively by S(∗1) = S and S(∗n) =

S ∗ S(∗(n−1)) for n > 1. Equipped with this definition, we state the
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Proposition 3.2.48. Let X,Y be two Banach spaces such that Y ⊂ X. Let us consider S(t) a continuous

semigroup such that for all t ≥ 0

‖S(t)f‖B(X ) ≤ CX eα
∗t, X ∈ {X,Y },

for some α∗ ∈ R and positive constants CX and CY . If there exists Θ > 0 and CX,Y > 0 such that

‖S(t)f‖Y ≤ CX,Y t
−Θ eα

∗t ‖f‖X , ∀ f ∈ Y, t ∈ (0, 1],

then, there exists n ∈ N, and a polynomial pn(t) such that

‖S (∗n)(t)f‖Y ≤ pn(t) e
α∗t‖f‖X, ∀ f ∈ Y, t > 0. (3.2.13)

In particular, for any α > α∗, it holds

‖S (∗n)(t)f‖Y ≤ Cα,ne
αt‖f‖X, ∀ f ∈ Y, t > 0,

for some positive constant Cα,n.

This general result has been already established and used in [70] and [110], but we give an alternative,

and somehow simpler, proof of it.

Proof. Let us start by noticing that for X ∈ {X,Y }, if

‖S (∗n)(t)f‖X ≤ pXn (t) eα
∗t‖f‖X , ∀ t ≥ 0, (3.2.14)

for n ∈ N and pXn (t) a polynomial, then

‖S (∗(n+1))(t)f‖X ≤
∫ t

0

‖S(t− s)S (∗n) (s)f‖X ds ≤ pXn+1(t) e
α∗t‖f‖X ,

for pXn+1 = CX

∫ t

0
pXn (s) ds. So, by an immediate induction argument we get (3.2.14) for any n ≥ 1 and

pXn (t) :=
Cn

X tn−1

(n−1)! .

Let us now fix t ∈ (0, 1] and, without lost of generality, assume that Θ /∈ N. In that case, if

‖S (∗n)(t)f‖Y ≤ Cnt
−(Θ−n+1)eα

∗t‖f‖X, ∀ t ∈ (0, 1], (3.2.15)

for some n ∈ N and Cn a positive constant, then

‖S(∗(n+1))(t)f‖Y ≤
∫ t/2

0

‖S(t− s)S(∗n)(s)f‖Y ds+
∫ t

t/2

‖S(t− s)S(∗n)(s)f‖Y ds

≤
∫ t/2

0

CX,Y (t− s)−Θeα
∗(t−s)‖S(∗n)(s)f‖X ds+

∫ t

t/2

CY e
α∗(t−s)‖S(∗n)(s)f‖Y ds

≤
∫ t/2

0

CX,Y (t− s)−Θeα
∗tpXn (s)‖f‖X ds+

∫ t

t/2

CY e
α∗tCns

−(Θ−n+1)‖f‖X ds

≤ CX,Y C
n
X

(n− 1)!
eα

∗t‖f‖X
∫ t/2

0

(t− s)−Θsn−1 ds+ CY Cne
α∗t‖f‖X

∫ t

t/2

s−(Θ−n+1) ds

≤ Cn+1t
−(Θ−n)eα

∗t‖f‖X,

for some Cn+1 depending only on CX , CY , CX,Y and Cn. Once again, by an induction argument, we

get (3.2.15). Moreover, as soon as Θ− n+ 1 > 0, inequality (3.2.13) holds.

79



Finally, to get the conclusion in the case t > 1, it suffices to notice that

‖S(t)f‖Y ≤ CY CX,Y (t− ⌊t⌋)−Θeα
∗t‖f‖X,

where ⌊t⌋ is the largest integer smaller than t. A similar argument that the one used for t ∈ (0, 1], allows

us to find a polynomial pn such that (3.2.13) still holds when t > 1.

Finally, we recall the abstract notion of hypodissipative operators :

Definition 3.2.49. Considering a Banach space (X, ‖ · ‖X), a real number α ∈ R and an operator

Λ ∈ C (X), (Λ−α) is said to be hypodissipative on X if there exists some norm |||·|||X on X equivalent to

the usual norm ‖ · ‖X such that

∀ f ∈ D(Λ), ∃φ ∈ F (f) such that Re〈φ, (Λ − α)f〉 ≤ 0,

where 〈·, ·〉 is the duality bracket in X and X∗ and F (f) ⊂ X∗ is the dual set of f defined by

F (f) = F|||·|||X
(f) := {φ ∈ X∗, 〈φ, f〉 = |||f |||2X = |||φ|||2X∗}.

One classically sees (we refer to for example [70, Subsection 2.3]) that when Λ is the generator of a

semigroup SΛ, for given α ∈ R and C > 0 constants, the following assertions are equivalent:

(a) (Λ− α) is hypodissipative;

(b) the semigroup satisfies the growth estimate ‖SΛ(t)‖B(X) ≤ Ceαt, t ≥ 0;

3.3
Analysis of the nonlinear evolution equation

This section is concerned with the analysis of the nonlinear evolution equation. We shall prove

existence and uniqueness of solutions, and provide some a priori estimates on their behavior.

Before going into further details, let us remark that for J fixed, the operator Qε[J ] is linear and

writes

Qε[J ] f = ∂x(Af) + ∂v(Bε(J ) f) + ∂2vvf.

In particular, for g ∈ H2
v (m) we have

∫

R2

(Qε[J ] f) g dvdx = −
∫

R2

f
(
A∂xg +Bε(J ) ∂vg − ∂2vvg

)
dvdx,

therefore, it is natural to define

Q∗
ε[J ] g := −A∂xg −Bε(J ) ∂vg + ∂2vvg.

3.3.1 A priori bounds.

We now fix ε0 > 0. The a priori estimates that follow are uniform in ε in the bounded connectivity

regime ε ∈ [0, ε0), i.e., they involve constants that do not depend on ε.

80



Lemma 3.3.50. For ft solution to (3.1.2) with f0 ∈ L1(M) ∩ P(R2), estimate (3.2.8) holds. Moreover,

there exists C′
0 > 0 depending on a, b, λ, I0, ε0 and ‖f0‖L1(M) such that

sup
t≥0

|J (ft)| < C′
0. (3.3.16)

Proof. We first apply Cauchy-Schwartz’s inequality to find

|J (f)| ≤
∫

R2

|v| f ≤
(∫

R2

f
)1/2(

∫

R2

v2 f
)1/2

=
(∫

R2

v2 f
)1/2

, (3.3.17)

for any f ∈ P(R2) ∩ L1(v2). Now, for ft a solution to (3.1.2), we have

d

dt

∫

R2

ftM =

∫

R2

(Qε[Jft ] ft)M =

∫

R2

ft (Q
∗
ε[Jft ]M)

=

∫

R2

(1−Ax−Bε(Jft)v)ft.

Using the definition of A and Bε, and then (3.3.17), we get

d

dt

∫

R2

ftM dxdv ≤ −
∫

R2

(

− 1 + ax2 − bxv + v2(v − λ)(v − 1)− εv2 + xv + I0v
)

ft + εJ (ft)
2

≤ K1 −K2

∫

R2

(v4 + x2)ft + ε

∫

R2

v2 ft

≤ K1 −K2

∫

R2

ftM dxdv,

where K1 and K2 are generic constans depending only on a, b, λ, I0 and ε0. Using Gronwall’s lemma we

get (3.2.8) for some C0 > 0. Finally, coming back to (3.3.17), we get

|J (ft)|2 ≤
∫

R2

v2 ft ≤ 2 ‖ft‖L1(M) ≤ 2 max(C0, ‖f0‖L1(M)),

which is nothing but (3.3.16).

Lemma 3.3.51. For any J ∈ R fixed, there exist some constantsK1,K2 > 0 depending on a, b, λ, I0,J , κ

and ε0 such that

∫

R2

Qε[J ] f · sign(f)m ≤ K1‖f‖L1(R2) −K2‖f‖L1(m), ∀ f ∈ L1(m). (3.3.18)

Proof. Since J ∈ R is now fixed, for simplicity of notation, we drop the dependence on this parameter.

By Kato’s inequality

∫

R2

Qε f · sign(f)m ≤
∫

R2

|f |Q∗
εm

= −κ
∫

R2

|f |
(
Ax +Bεv − (1 + κv2)

)
m,

thus

∫

R2

Qε f · sign(f)m ≤ −
∫

R2

p(x, v) |f |m,

where p(x, v) is a polynomial on x and v with leading term v4+x2. Inequality (3.3.18) follows directly.

Corollary 3.3.52. Estimate (3.2.9) holds.
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Proof. For ft solution to (3.1.2), inequality (3.3.16) tells us that |J (ft)| ≤ C′
0. Moreover, since the mass

is unitary for almost any t ≥ 0, it holds

d

dt

∫

R2

|ft|m =

∫

R2

Qε[Jft ] ft · sign(ft)m ≤ K1 −K2

∫

R2

|ft|m,

where K1 and K2 depend only on a, b, λ, I, ε0 and C′
0. Finally, integrating this last inequality, we get

‖ft‖L1(m) ≤ max
(
C1, ‖f0‖L1(m)

)
, ∀ t ≥ 0,

for some positive constant C1 depending only on the parameters of the system, ε0 and C′
0.

Now we analyse the H1(m) and H2
v (m) norms of the solutions to (3.1.2), in particular, we prove a

priori bounds (3.2.10) and (3.2.11). Since the equation is hypodissipative, we used the ideas of “twisted

spaces” and the Nash-Villani’s technique (see e.g. [159]) to control the L2(R2) contributions in function

of the L1(R2) norm.

Lemma 3.3.53. For 0 < κ1 < κ2, let us consider two exponential weight functions m1 and m2 as defined

in (3.2.6). For any J ∈ R fixed, there exist K1,K2 > 0 and δ ∈ (0, 1) constants such that

〈Qε[J ] f, f〉H1 ≤ K1‖f‖2L2(R2) −K2‖f‖2H1, ∀ f ∈ H1(m2), (3.3.19)

where 〈·, ·〉H1 is the scalar product related to the Hilbert norm

‖f‖2H1 := ‖f‖2L2(m2)
+ δ3/2‖∂xf‖2L2(m2)

+ δ4/3〈∂xf, ∂vf〉L2(m1) + δ ‖∂vf‖2L2(m2)
.

Remark 3.3.54. It is worth emphasising that for δ ∈ (0, 1) the norm H1 is equivalent to the usual norm

of H1(m2). Indeed, the choice of the exponents allows us to write

cδ‖f‖2H1(m2)
≤ ‖f‖2L2(m2)

+
(

δ3/2 − δ5/3

2

)

‖∂xf‖2L2(m2)
+
δ

2
‖∂vf‖2L2(m2)

≤ ‖f‖2H1,

for some cδ > 0.

Proof. The proof is presented as follows: the first three steps deal with inequalities in L2 for f and its

derivatives, while the last one combines these inequalities to control the H1 norm. Some long and tedious

calculations are only outlined for the sake of clarity. In the following we denote by k0, k1 and k2 some

unspecified constants and drop the dependance on J .

Step 1. L2(m2) norm. We start by noticing that

〈∂2vvf, f〉L2(m2) = −
∫

R2

(∂vf)
2m2

2 + κ2

∫

R2

(1 + 2κ2v
2)f2m2

2.

〈∂x(Af), f〉L2(m2) =
1

2

∫

R2

[

∂xA−A
∂xm

2
2

m2
2

]

f2m2
2 =

1

2

∫

R2

[a− 2κ2x(ax− bv)]f2m2
2,

and similarly

〈∂v(Bεf), f〉L2(m2) =
1

2

∫

R2

[
3v2 − 2(1 + λ)v + λ− ε− 2κ2v Bε

]
f2m2

2.

Therefore, we get

〈Qεf, f〉L2(m2) = −
∫

R2

p(x, v)f2m2
2 − ‖∂vf‖2L2(m2)

, (3.3.20)
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where p(x, v) is a polynomial in x and v with leading term v4+x2. In particular, there exist some positive

constants k1 and k2 such that

〈Qεf, f〉L2(m2) ≤ k1‖f‖2L2(R2) − k2‖f‖2L2(M1/2m2)
− ‖∂vf‖2L2(m2)

. (3.3.21)

Step 2. x-derivative bound. We have

〈∂x(∂x(Af)), ∂xf〉L2(m2) =
1

2

∫

R2

[

3 ∂xA−A
∂xm

2
2

m2
2

]

(∂xf)
2m2

2

=
1

2

∫

R2

[
3 a− 2κ2x(ax− bv)

]
(∂xf)

2m2
2,

and

〈∂x(∂v(Bεf)), ∂xf〉L2(m2) =

∫

R2

[∂vBε∂xf + ∂xBε∂vf +Bε∂
2
xvf ]∂xf m

2
2.

Since ∂xBε = 1, and observing that
∫

R2

[∂vBε∂xf +Bε∂
2
xvf ]∂xf m

2
2 =

1

2

∫

R2

[

∂vBε −Bε
∂vm

2
2

m2
2

]

(∂xf)
2m2

2,

we get

〈∂x(∂v(Bεf)), ∂xf〉L2(m2) ≤
∫

R2

|∂xf | |∂vf |m2
2 +

1

2

∫

R2

[

∂vBε −Bε
∂vm

2
2

m2
2

]

(∂xf)
2m2

2.

Using that

〈∂x∂2vvf, ∂xf〉L2(m2) = −
∫

R2

|∂2xvf |2m2
2 +

1

2

∫

R2

(∂xf)
2∂2vvm

2
2.

we finally obtain

〈∂x(Qεf), ∂xf〉L2(m2) ≤ k1‖∂xf‖2L2(R2) − k2‖∂xf‖2L2(M1/2m2)
(3.3.22)

−‖∂2xvf‖2L2(m2)
+

∫

R2

|∂xf ||∂vf |m2
2.

A similar calculation leads to

〈(∂vQεf), ∂vf〉L2(m2) ≤ k1‖∂vf‖2L2(R2) − k2‖∂vf‖2L2(M1/2m2)
(3.3.23)

−‖∂2vvf‖2L2(m2)
+ b

∫

R2

|∂xf ||∂vf |m2
2

+2κ2(1 + λ)

∫

R2

v f2m2
2.

Step 3. Cross product bound. The contribution of the cross product term is a little bit more delicate. We

decompose it into five quantities and we study them separately:

〈∂xQεf, ∂vf〉L2(m1) + 〈∂vQεf, ∂xf〉L2(m1)

=

∫

R2

[
(∂xf)(∂

3
vvvf) + (∂vf)(∂

3
xvvf)

]
m2

1

+

∫

R2

[
∂xA∂vf + ∂vA∂xf +A∂2vxf

]
(∂xf)m

2
1

+

∫

R2

[
∂2vvBf + 2∂vB∂vf + B∂2vvf

]
(∂xf)m

2
1

+

∫

R2

[
2∂xA∂xf +A∂2xxf

]
(∂vf)m

2
1

+

∫

R2

[
∂vB∂xf + ∂xB∂vf +B∂2xvf

]
(∂vf)m

2
1 =:

5∑

i=1

Ti.
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We start by handling the first term on the right hand side. Using integration by parts adequately, we

get

T1 =

∫

R2

(∂xf)(∂vf)∂
2
vvm

2
1 − 2

∫

R2

(∂2xvf)(∂
2
vvf)m

2
1.

Similarly, for the contributions involving A, we have

T2 =
1

2

∫

R2

[

∂vA−A
∂vm

2
1

m2
1

]

(∂xf)
2m2

1 + a

∫

R2

(∂xf)(∂vf)m
2
1,

and

T4 =

∫

R2

[

∂xA−A
∂xm

2
1

m2
1

]

(∂xf)(∂vf)m
2
1 +

1

2

∫

R2

∂v[Am
2
1](∂xf)

2.

Adding these last two expressions, it only remains

∫

R2

∂vA(∂xf)
2m2

1 +

∫

R2

[

2a− A
∂xm

2
1

m2
1

]

(∂xf)(∂vf)m
2
1 ≤ −b ‖∂xf‖2L2(m1)

+ k0

∫

R2

|∂xf | |∂vf |Mm2
1,

for some constant k0 > 0.

For the contributions related to Bε, involved in T3 and T5, we have

T3 = −
∫

R2

2κ1x(3v − 1− λ)f2m2
1 + 2

∫

R2

∂vBε(∂xf)(∂vf)m
2
1 +

∫

R2

Bε(∂
2
vvf)(∂xf)m

2
1,

and

T5 =

∫

R2

∂vBε (∂xf)(∂vf)m
2
1 +

1

2

∫

R2

[

∂xBε −Bε
∂xm

2
1

m2
1

]

(∂vf)
2m2

1,

Finally, for the last contribution in T3, we have

∫

R2

Bε(∂
2
vvf)(∂xf)m

2
1 ≤ k0

∫

R2

(∂2vvf)(∂xf)M
3/2m2

1,

getting that there exists k0 > 0 such that

〈∂xQεf, ∂vf〉L2(m1) + 〈∂vQεf, ∂xf〉L2(m1) (3.3.24)

≤ k0

∫

R2

|∂xf | |∂vf |Mm2
1 + k0

∫

R2

|∂2xvf | |∂2vvf |m2
1

−b ‖∂xf‖2L2(m1)
+ k0

∫

R2

|∂2vvf | |∂xf |M3/2m2
1

+k0

∫

R2

|∂vf |2M2m2
1 + k0

∫

R2

f2Mm2
1.

Step 4. Conclusion. To get (3.3.19), we just put together (3.3.21), (3.3.22), (3.3.23) and (3.3.24) and

we use Young’s inequality several times. Indeed, the scalar product 〈·, ·〉H1 applied to any f ∈ H1(m2)

writes

〈Qεf, f〉H1 = 〈Qεf, f〉L2(m2)

+δ3/2〈∂xQεf, ∂xf〉L2(m2) + δ 〈∂vQεf, ∂vf〉L2(m2)

+
δ4/3

2
〈∂xQεf, ∂vf〉L2(m1) +

δ4/3

2
〈∂vQεf, ∂xf〉L2(m1).

To give an idea of the method, we only explain how to get rid of a few terms. For example, for the

positive contribution of (3.3.22), it holds

δ3/2k1‖∂xf‖2L2(R2) + δ3/2
∫

|∂xf ||∂vf |m2
2 ≤ δ3/2k1‖∂xf‖2L2(R2) + δ7/4‖∂xf‖2L2(m2)

+ δ5/4 ‖∂vf‖2L2(m2)
,
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and for δ > 0 small enough these terms are annihilated by the quantities

−‖∂vf‖2L2(m2)
− δ3/2k2‖∂xf‖2L2(M1/2m2)

− δ4/3b

2
‖∂xf‖2L2(m1)

present in the right hand side of (3.3.21), (3.3.22) and (3.3.24).

In (3.3.23), the only delicate contribution is

δ b

∫

|∂xf ||∂vf |m2
2 ≤ δ5/3 b

2
‖∂xf‖2L2(m2)

+
δ1/3b

2
‖∂vf‖2L2(m2)

,

but the right hand sides of (3.3.21) and (3.3.22) include

−‖∂vf‖2L2(m2)
− δ3/2k2‖∂xf‖2L2(M1/2m2)

,

and once again for δ > 0 small the sum is nonpositive.

The positive part of (3.3.24) is controlled using that κ1 < κ2. Indeed, in that situation

δ4/3k0

∫

|∂2vvf ||∂xf |M3/2m2
1 ≤ δ4/3−1/4k0‖∂2vvf‖2L2(m2)

+ δ4/3+1/4k0‖∂xf‖2L2(m2)
,

replacing, if necessary, k0 by a larger constant. If δ > 0 is small we get rid of these terms thanks to the

presence of

−δ3/2k2‖∂xf‖2L2(M1/2m2)
− δ ‖∂2vvf‖2L2(m2)

,

in (3.3.22) and (3.3.23).

All remaining positive contributions can be handled in the same fashion leading to the conclusion

that one can find K1,K2 > 0 such that

〈Qεf, f〉H1 ≤ K1‖f‖2L2(R2) −K2‖f‖2H1.

Corollary 3.3.55. Estimate (3.2.10) holds.

Proof. Nash’s inequality in the 2-dimensional case reads: there exists a constant C > 0, such that for

any f ∈ L1(R2) ∩H1(R2),

‖f‖2L2(R2) ≤ C‖f‖L1(R2)‖Dx,vf‖L2(R2) ≤ C

2δ′
‖f‖2L1(R2) +

δ′

2
‖Dx,vf‖2L2(R2). (3.3.25)

Coming back to the previous lemma, using the equivalence of the norms H1 and H1(m2), together with

the fact that a solution ft to (3.1.2) is a probability measure, we get that,

d

dt
‖ft‖2H1 = 〈Qε[Jft ] ft, ft〉H1 ≤ k1 − k2‖ft‖2H1 ,

for some k1, k2 > 0 constants. Finally, integrating in time, we get

‖ft‖H1 ≤ max(C2, ‖f0‖H1),

for some C2 > 0 depending only on the parameters of the system and the initial condition.
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Let us notice that we can go a little further in the analysis of the regularity of the solutions of (3.1.2).

Actually, we can expect that the norm H2
v (m) is also bounded. Indeed, there exists k0 > 0 such that

〈∂2vvQεf, ∂
2
vvf〉L2(m2) (3.3.26)

= −
∫

|∂3vvvf |m2
2 +

1

2

∫

|∂2vvf |2 ∂2vvm2
2

+2

∫

(∂vA)(∂
2
vvf)(∂

2
xvf)m

2
2 +

1

2

∫

|∂2vvf |2
[

∂xA−A
∂xm

2
2

m2
2

]

m2
2

+

∫

(∂3vvvB)f(∂2vvf)m
2
2 + 3

∫

(∂2vvB)(∂vf)(∂
2
vvf)m

2
2

+
1

2

∫

|∂2vvf |2
[

5 ∂vBε −Bε
∂vm

2
2

m2
2

]

m2
2

≤ k0

[ ∫

|∂2vvf |2 +
∫

|∂2xvf |2m2
2 +

∫

|f |2m2
2 +

∫

|∂vf |2m2
2

]

.

We can therefore state that

Corollary 3.3.56. Estimate (3.2.11) holds.

Proof. The proof follows the same idea already introduced in the proof of Corollary 3.3.55. We consider

the norm

‖f‖2H2
v
:= ‖f‖2H1 + δ2‖∂2vvf‖2L2(m2)

,

and notice that (3.3.21), (3.3.22), (3.3.23) together with (3.3.26) imply that

d

dt
‖ft‖2H2

v
≤ d

dt
‖ft‖2H1

+2 δ2 k0

[ ∫

|∂2vvft|2m2
2 +

∫

|∂2xvft|2m2
2 +

∫

|ft|2m2
2 +

∫

|∂vft|2m2
2

]

≤ k1 − k2‖ft‖2H2
v
,

for some k1, k2 > 0 depending on some δ > 0 small and the parameters of the system. Inequality (3.2.11)

follows.

3.3.2 Entropy estimates and uniqueness of the solution

Now we focus our attention on the problem of uniqueness of the solutions to (3.1.2). First, we prove

that solutions remain in the space of functions with finite entropy. To that aim, for any positive function

f , we define

Iv(f) :=

∫

R2

|∂vf(x, v)|2
f(x, v)

dxdv,

which is understood as a partial Fisher information. When the previous quantity is not well defined we

use the convention Iv(f) = +∞. Notice that in any case Iv(·) ≥ 0. Equipped with this definition we can

state:

Lemma 3.3.57. For any f0 ∈ L1(M) ∩ L1 logL1 ∩ P(R2) we denote by ft the associated solution to the

FhN statistical equation (3.1.2) with initial condition f0. It holds

sup
t∈[0,T ]

H (ft) +

∫ t

0

Iv(fs) ds ≤ C(T ), (3.3.27)

where C(T ) depend on f0 and the coefficients of the problem.
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Proof. It is well known that for functions with finite moments, the entropy can be bounded from below.

Indeed, since

r1 log r1 ≥ −r2 + r1 log r2, ∀r1 ≥ 0, r2 > 0,

taking r1 = f(x, v) and r2 = e−M , it holds

0 ≥ f log f ≥ −e−M − f M,

implying that

H (ft) ≥ −
∫

R2

e−M −
∫

R2

ftM ≥ −2πe−1 −max(C0, ‖f0‖L1(M)).

On the other hand, for any solution of (3.1.2) with initial datum f0 there exists a positive constant

C, depending on the parameters of the system, ε0 and C′
0, such that

d

dt
H (ft) =

∫

(1 + log(ft))Qε[Jft ] ft

= −Iv(ft) +
∫
(
∂xA+ ∂vBε(Jft)

)
ft

≤ −Iv(ft) + C‖ft‖L1(M).

Let us fix T > 0 and take any t < T , thanks to estimate (3.2.8), we get that

H (ft) ≤ −
∫ t

0

Iv(fs) ds+ H (f0) + C T max(C0, ‖f0‖L1(M)).

Since H is bounded by below, we get that Iv(ft) ∈ L1([0, T ]). Moreover, taking the supremum on the

last relationship, we get

sup
t∈[0,T ]

H (ft) ≤ H (f0) + C T max(C0, ‖f0‖L1(M)).

Corollary 3.3.58. For any two initial data f0, g0 ∈ L1(M2)∩ L1 logL1∩ P(R2) the associated solutions

f and g to the FhN statistical equation (3.1.2), satisfy

sup
[0,T ]

‖ft − gt‖L1(M) ≤ C(T ) ‖f0 − g0‖L1(M),

for some positive C(T ). In particular, equation (3.1.2) with initial datum in L1(M2)∩L1 logL1 ∩ P(R2)

has, at most, one solution.

Proof of Corollary 3.3.58. We write

∂t(ft − gt) = Qε[J (ft)] (ft − gt) + εJ (ft − gt) ∂vgt

from which we deduce

d

dt

∫

R2

|ft − gt|M ≤ K1

∫

R2

|ft − gt|M + ε |J (ft − gt)|
∫

R2

|∂vgt|M

≤ K1

∫

R2

|ft − gt|M + ε |I(gt)|1/2‖gt‖1/2L1(M2)

∫

R2

|ft − gt|M,
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where K1 is the constant introduced in the proof of Lemma 3.3.50. Also, it is not hard to see that

sup
t∈[0,T ]

‖gt‖L1(M2) ≤ ‖g0‖L1(M2) + 2(K1 + 1)T max(C0, ‖g0‖L1(M)).

The rest of the proof is a direct application of the time integrability of Iv(gt) and Gronwall’s lemma.

Let us finish this section by giving some insights of the proofs of the existence of solutions and

stationary solutions to equation (3.1.2) which are, however, classical.

Proof of Theorem 3.2.45. Let us consider an exponential weight m and J ∈ L∞(R+) such that

sup
t≥0

|J | ≤ C′
0,

where C′
0 is given by (3.3.16). First, to avoid the non boundedness of the coefficients of the equation, let

us fix R > 0, and define a regular truncation function

χR(x, v) = χ(x/R, v/R), χ ∈ D(R2), 1B(0,1) ≤ χ ≤ 1B(0,2). (3.3.28)

Secondly, to avoid the intrinsic degenerate character of (3.1.2), we fix some 1 > σ > 0, and define the

bilinear form

aσ(t; f, g) := 〈∂vf, ∂vg〉L2(m) + 〈∂vf, g χRm
−2∂vm

2〉L2(m)

+σ 〈∂xf, ∂xg〉L2(m) + σ 〈∂xf, g χRm
−2∂xm

2〉L2(m)

−1

2
〈f, g χR [∂xA−Am−2∂xm

2]〉L2(m)

−1

2
〈f, g χR [∂vBε(Jt)−Bε(Jt)m

−2∂vm
2]〉L2(m).

This bilinear form is obviously well defined, a.e. t ≥ 0, for any f, g ∈ H1(m). Moreover, aσ is continuous,

| aσ(t; f, g)| ≤ CR‖f‖H1(m)‖g‖H1(m),

for some positive constant CR, and coercive. Indeed, we have from (3.3.21), that

aσ(t; f, f) ≥ 1

2
‖∂vf‖2L2(m) +

σ

2
‖∂xf‖2L2(m) − k1‖f‖2L2(m),

for some k1 > 0 not depending on t, nor on R and nor on σ. The J. L. Lions theorem [23, Theorem X.9]

implies that for any f0 ∈ L2(m) there exists a unique

f ∈ L2((0,∞);H1(m)) ∩C([0,∞);L2(m));
d

dt
f ∈ L2((0,∞);H1(m)′)

such that f(0) = f0 and

〈 d
dt
f, g〉L2(m) + aσ(f(t), g) = 0, a.e. t ≥ 0, ∀ g ∈ H1(m).

We recall that f− := min(f, 0) belongs to H1(m), therefore we can use it as a test function to find

that

f0 ≥ 0 ⇒ f(t) ≥ 0, a.e. t ≥ 0.
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Let us now fix some T > 0. Using f itself as a test function, we get easily that

‖ft‖2L2(m) +

∫ T

0

‖∂vfs‖2L2(m) ds ≤ ek1T ‖f0‖2L2(m),

therefore, one can take the limits σ → 0 and R → ∞, to find that for any ϕ ∈ C1([0, T ];C2
c (R

2))

∫

R2

ϕtft =

∫

R2

ϕ0f0 +

∫ t

0

∫

R2

[
∂tϕs + ∂2vvϕs −A∂xϕs −Bε(Js)∂vϕs

]
fs ds, 0 < t < T,

holds. Taking a well chosen sequence ϕn →M2, we deduce that

sup
t∈[0,T ]

‖ft‖L1(M2) ≤ max
(
C′, ‖f0‖L1(M2)

)
,

for some positive constant C′ that depends only on the parameters of the system. We also notice that,

thanks to renormalisation concepts, we recover the inequality

sup
t∈[0,T ]

H (ft) +

∫ t

0

Iv(fs) ds ≤ H (f0) +K0T max(C0, ‖f0‖L1(M)).

Let us take now f0 ∈ L1(M2)∩L1 logL1∩P(R2), and a sequence {fn,0} ⊂ L2(m) such that fn,0 → f0

in L1(M). Moreover, let us assume that there is a positive constant C > 0 such that H (fn,0) ≤ C, for

any n ∈ N. From the previous analysis we get a family {fn} ∈ C((0, T );L1(M)) of functions related

to the initial conditions {fn,0}. Using the Dunford-Pettis criterium we can pass to the limit in L1(M)

finding a solution to the linear problem

∂tf = ∂x(Af) + ∂v(Bε(Jt)f) + ∂2vvf. (3.3.29)

that depends continuously to the initial datum (in the sense defined in Theorem 3.2.45). Moreover, from

Corollary 3.3.58 we get that this solution is necessarily unique.

Finally, we use again the ideas of Corollary 3.3.58 to find a solution to the NL equation (3.1.2). Indeed,

it suffices to notice that the mapping






L∞([0, T ]) −→ C([0, T ];L1(M2))

J 7−→ f,

with f solution of (3.3.29) for J given, is Lipschitz and contracting when T > 0 is small enough.

Existence of stationary solutions will be shown as a result of an abstract version of the Brouwer fixed

point theorem (a variant of [55, Theorem 1.2] and [63]):

Theorem 3.3.59. Consider Z a convex and compact subset of a Banach space X and S(t) a continuous

semigroup on Z. Let us assume that Z is invariant under the action of S(t) (that is S(t)z ∈ Z for any

z ∈ Z and t ≥ 0). Then, there exists z0 ∈ Z which is stationary under the action of S(t), i.e, S(t)z0 = z0

for any t ≥ 0.

We present the argument briefly in this section. Our aim is to find a fixed point for the nonlinear

semigroup SQε(t) related to equation (3.1.2). At this point we do not have any hint on the number of

functions solving

Qε[JF ]F = 0,
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and the nonlinearity could lead to the presence of more than one. However, in the disconnected regime

ε = 0 the nonlinearity disappears, and the multiplicity problem is no longer present.

Proof of existence of stationary solutions to (3.2.12). Let us fix m an exponential weight and define for

any t ≥ 0

S(t) : X → X with X = H2
v (m) ∩ L1 logL1 ∩ P(R2),

such that S(t)f0 is the solution to (3.1.2) given by Theorem 3.2.45 associated to the initial condition

f0. Estimates (3.2.11) and (3.3.27) imply that S(t) is well defined. Moreover, the continuity of S in the

Banach space L1(R2) is direct from the definition of weak solutions, in particular,

S(t)f0 ∈ C([0,∞);L1(R2)),

with the topology of compact subsets in time.

Finally, defining

Z := Z(ε) = {f ∈ X such that (3.2.8) and (3.2.11) hold} ⊂ L1(R2),

which is invariant under St for any t ≥ 0 and convex. Moreover, the compactness of the inclusion

Z ⊂ H1(m) →֒ L1(R2) allows us to apply Theorem 3.3.59 and find the existence of a fixed point for S(t)

and by consequence a stationary solution to (3.1.2).

It is worth emphasising that the above proof show yet that the map ε 7→ Gε is locally bounded in

[0,∞), i.e., if ε0 > 0 is fixed, then

Gε ∈ Z(ε0) for any ε ∈ (0, ε0).

3.4
The linearized equation

The aim of the present section is to undercover the properties of the linearized operator associated to

Qε in the small connectivity case using what we call a splitting method. To illustrate the ideas we use in

the following, let us assume that an operator Λ on a Banach space X can be written as

Λ = A+ B,

where B has some dissipative property and A is much more regular than B. Under some additional

positivity assumption on the generator Λ, the principal part of spectrum is a simple real eigenvalue. This

is known as the Krein-Rutman theorem. We state below a recent version picked up from [113],

Theorem 3.4.60. We consider a semigroup generator Λ on a Banach lattice of functions X, and we

assume that

1. there exists some α∗ ∈ R and two operators A,B ∈ C (X), such that Λ = A+ B and
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(a) for any α > α∗, ℓ ≥ 0, there exists a constant Cα,ℓ > 0 such that

∀ t ≥ 0, ‖SB ∗ (ASB)
(∗ℓ)(t)‖B(X) ≤ Cα,ℓ e

αt.

(b) A is bounded, and there exists an integer n ≥ 1 such that for any α > α∗, there exists a

constant Cα,n > 0 such that

∀ t ≥ 0, ‖(ASB)
(∗n)(t)‖B(X,Y ) ≤ Cα,ne

αt,

with Y ⊂ D(Λ) and Y ⊂ X with compact embedding;

2. for Λ∗ the dual operator of Λ defined in X ′, there exists β > α∗ and ψ ∈ D(Λ∗) ∩ X ′
+ \ {0} such

that Λ∗ψ ≥ βψ;

3. SΛ(t) is a positive semigroup and Λ satisfies Kato's inequality, i.e, ∀ f ∈ D(Λ) it holds Λ|f | ≥
sign(f) Λf.

4. −Λ satisfies a strong maximum principle: for any given f and γ ∈ R, there holds,

f ∈ D(Λ) \ {0}, f ≥ 0 and (−Λ + γ)f ≥ 0 imply f > 0,

and there exists an integer m such that

f ∈ D(Λm) and |f | > 0 imply f > 0 or f < 0.

Defining

λ := s(Λ) = sup
{
(ξ) : ξ ∈ Σ(Λ)

}
,

there exists 0 < f∞ ∈ D(Λ) and 0 < φ ∈ D(Λ∗) such that

Λf∞ = λ f∞, Λ∗φ = λφ.

Moreover, there is some α′ ∈ (α∗, λ) and C > 0 such that for any f0 ∈ X

‖SΛ(t)f0 − eλt〈f0, φ〉f∞‖X ≤ Ceα
′t‖f0 − 〈f0, φ〉f∞‖X . (3.4.30)

From Theorem 3.2.46 we know that for any value of ε there exists at least one Gε non zero stationary

solution of the FhN kinetic equation (3.1.2). The linearized equation, on the variation h := f − Gε,

induces the linearized operator

Lεh = Qε(J (Gε))h+ εJ (h)∂vGε.

Moreover, let us recall that in Section 3.3 we proved that

〈Qε[J (Gε)] f, f〉L2(m) ≤ K1‖f‖L2(R2) −K2‖f‖L2(m),

if we could make K1 = 0, then the operator Qε together with Lε would be dissipative. Since it is not

the case, let us fix a constant N > 0 and define

Bε := Lε −A, where A = N χR(x, v); (3.4.31)

with χR given by (3.3.28). We remark that A ∈ B(H2
v (m)), and that Af vanishes outside a ball of radius

2R for any f ∈ H2
v (m).
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3.4.1 Properties of A and Bε

We now precise the dissipative properties of Lε. In particular, we present two lemmas dealing with the

hypodissipativity and regularisation properties of the sppliting A and Bε. We use some ideas developed

in [111, 70] and [110].

Lemma 3.4.61. For any exponential weight m, there exist some constants N,R > 0 such that (Bε + 1)

is hypodissipative in H2
v (m).

Proof. From the characterisation of hypodissipativity given in Section 3.2, it suffices to show that there

exists a constant C > 0 such that

‖SBε(t)‖B(H2
v(m)) ≤ C e−t, t ≥ 0,

or simply, to show that for any h ∈ H2
v (m), it holds

〈Bεh, h〉H̄2
v(m) ≤ −‖h‖2H̄2

v(m), (3.4.32)

for some norm ‖ · ‖H̄2
v(m) equivalent to the usual norm ‖ · ‖H2

v(m).

Let us recall that the operator Bε writes

Bε = Lε −A = (Qε[JGε ]−NχR)h+ εJ (h) ∂vGε,

and since JGε ∈ R is a real constant, we can use all a priori estimates on Qε directly. As usual, when

no confusion is possible, we drop the dependence on Jε. Three steps complete the proof:

Step 1. Dissipativity in L2(m). Let us notice that for any h ∈ L2(m) we have

|J (h)| ≤ C‖h‖L2(m),

for some constant C > 0. It follows that

J (h)

∫

R2

(∂vGε)hm
2 ≤ |J (h)|‖∂vGε‖L2(m)‖h‖L2(m) ≤ C ‖∂vGε‖L2(m)

∫

R2

h2m2.

Thus, coming back to (3.3.20), we find that for N and R large enough one can assume k1 = −1,

getting

〈Bεh, h〉L2(m) ≤ −‖h‖2L2(m) − k2‖h‖2L2(M1/2m) − ‖∂vh‖2L2(m), (3.4.33)

as a consequence, (Bε + 1) is dissipative in L2(m).

Step 2. Bounds on the derivatives of Bε. For the x-derivative we see that there exists some constant C′

depending on χR and its derivatives, such that

−N〈∂x(χRh), ∂xh〉L2(m) ≤ C′‖h‖2L2(m) −N‖(∂xh)
√
χR‖2L2(m).
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On the other hand, thanks to Young’s inequality, we get

J (h)

∫

R2

(∂2xvGε)(∂xh)m
2 = −J (h)

∫

R2

∂xGε

[
∂2vxh+ 2κv ∂xh

]
m2

≤ J (h)2 ‖∂vGε‖2L2(m) +
1

2
‖∂2xvh‖2L2(m) + ‖

√
2κv ∂xh‖2L2(m).

These two inequalities, together with (3.3.22), imply that for N and R large enough

〈∂x(Bεh), ∂xh〉L2(m) ≤ −‖∂xh‖2L2(m) −
1

2
‖∂2xvh‖2L2(m) + C′‖h‖2L2(m) +

∫

R2

|∂xh| |∂vh|m2.

Proceeding similarly with the v-derivative we get

J (h)

∫

R2

(∂2vvGε)(∂vh)m
2 = |J (h)|‖∂2vvGε‖L2(m)‖∂vh‖L2(m)

≤ 1

2
‖∂2vvGε‖L2(m)(C

2‖h‖2L2(m) + ‖∂vh‖2L2(m)),

then, coming back to (3.3.23), we find N,R > 0 such that

〈∂v(Bεh), ∂vh〉L2(m) ≤ −‖∂vh‖2L2(m) − ‖∂2vvh‖2L2(m) + C′ ‖h‖2L2(m) +

∫

R2

|∂xh| |∂vh|m2.

Finally, for the second v-derivative we find C′ such that

−N〈∂2vv(χRh), ∂
2
vvh〉L2(m) ≤ −N

∫

R2

χR(∂
2
vvh)

2m2 + C′

∫

R2

(∂vh)
2m2 + C′

∫

R2

h |∂2vvh|m2,

and for any ǫ > 0

J (h)

∫

R2

(∂3vvvGε)(∂
2
vvh)m

2 ≤ J (h)2

2ǫ
+ ǫ
(
‖∂2vvGε‖2L2(m)‖∂3vvvh‖2L2(m) +

+‖∂2vvGε‖2L2(m)‖2κv (∂2vvh)‖2L2(m)

)
.

If ǫ > 0 is small and N,R large enough, we obtain as an application of (3.3.26), that there is a constant

C′ > 0 such that

〈∂2vv(Bεh), ∂
2
vvh〉L2(m) ≤ −‖∂2vvh‖2L2(m) + C′

[
‖h‖2L2(m) + ‖∂vh‖2L2(m) + ‖∂2xvh‖2L2(m) + ‖∂2vvh‖2L2(m)

]
.

Step 3. Equivalent norm and conclusion. Let δ > 0 and h1, h2 ∈ H2
v (m), we can define the bilinear

product

〈h1, h2〉H̄2
v (m) := 〈h1, h2〉L2(m) + δ〈∂xh1, ∂xh2〉L2(m) + δ〈∂vh1, ∂vh2〉L2(m) + δ2〈∂2vvh1, ∂2vvh2〉L2(m).

and the relative norm

‖h‖2H̄2
v(m) := ‖h‖2L2(m) + δ ‖Dx,vh‖2L2(m) + δ2 ‖∂2vvh‖2L2(m).

Choosing δ > 0 small enough we conclude that for any α ∈ (0, 1] one find δα such that

〈Bεh, h〉H̄2
v(m) ≤ −α ‖h‖2H̄2

v(m).

Since the norm related to H̄2
v (m) is equivalent to the usual norm in H2

v (m), we can conclude that (Bε+1)

is hypodissipative in H2
v (m).
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Lemma 3.4.62. There are positive constants N,R large enough and some CBε > 0, such that the

semigroup SBε satisfies

‖SBε(t)h‖H2
v(m1) ≤ CBε t

−9/2‖h‖L2(m2), ∀ t ∈ (0, 1].

As a consequence, for any α > −1, and any exponential weight m, there exists n ≥ 1 and Cn,ε such that

of any t > 0 it holds

‖(ASBε)
(∗n)(t)h‖H2

v(m) ≤ Cn,ε e
αt‖h‖L2(m). (3.4.34)

Proof. We split the proof in three steps, in the first one we refine the previous estimates on the norm of

the semigroup associated to the operator Bε, in the second one we use Hormander-Hérau technique (see

e.g. [73]) to get the first inequality, and finally we prove (3.4.34).

Step 1. Sharper estimates on Bε. We denote for K > 0 a generic constant. From the proof of the previous

Lemma, we know that there are N,R large enough such that for any h ∈ D(Bε), it holds

〈Bεh, h〉L2(m2) ≤ −K‖h‖2L2(m2)
− ‖∂vh‖2L2(m2)

〈∂xBεh, ∂xh〉L2(m1) ≤ −1

2
‖∂xh‖2L2(m1)

− 1

2
‖∂2xvh‖2L2(m1)

+K‖h‖2L2(m1)
+

1

2δt
‖∂vh‖2L2(m1)

〈∂vBεh, ∂vh〉L2(m1) ≤ −‖∂2vvh‖2L2(m1)
+K‖h‖2L2(m1)

+
1

δt
‖∂vh‖2L2(m1)

+ δt‖∂xh‖2L2(m1)

〈∂2vvBεh, ∂
2
vvh〉L2(m1) ≤ K‖h‖2L2(m1)

+K‖∂vh‖2L2(m1)
+

1

2tδ
‖∂2xvh‖2L2(m1)

.

We also notice for any δ, t ∈ (0, 1) it holds

〈∂x(Qε −A)h, ∂vh〉L2(m1) + 〈∂v(Qε −A)h, ∂xh〉L2(m1) ≤ − b

2
‖∂xh‖2L2(m1)

+K‖h‖2L2(m2)
+
K

tδ
‖∂vh‖2L2(m2)

+
K

tδ1/10
‖∂2vvh‖2L2(m1)

+Ktδ1/10‖∂2xvh‖2L2(m1)
,

〈J (h)∂2xvGε, ∂vh〉L2(m1) + 〈J (h)∂2vvGε, ∂xh〉L2(m1) ≤
‖∂xGε‖2L2(m1)

2

[
2J (h)2

+ ‖∂2vvh‖2L2(m1)
+ ‖∂vh‖2L2(m2)

]
+

‖∂2vvGε‖L2(m1)

2

[J (h)2

tδ
+ tδ‖∂xh‖2L2(m1)

]

,

yielding to

〈∂xBεh, ∂vh〉L2(m) + 〈∂vBεh, ∂xh〉L2(m) ≤ − b

4
‖∂xh‖2L2(m1)

+
K

tδ
‖h‖2L2(m2)

+
K

tδ
‖∂vh‖2L2(m2)

+
K

tδ1/10
‖∂2vvh‖2L2(m1)

+Ktδ1/10‖∂2xvh‖2L2(m1)
.

Step 2. Hormander-Hérau technique. For a given h ∈ H2
v (m1) ∩ L2(m2) we denote ht := SBε(t)h, and

define F by

F(h, t) := ‖ h‖2L2(m2)
+ c1t

3‖ ∂xh‖2L2(m1)
+ c2t‖ ∂vh‖2L2(m1)

+ c3t
2〈∂xh, ∂vh〉L2(m1) + c4t

4‖∂2vvh‖2L2(m1)
,

which, for well chosen parameters, is decreasing. Indeed, thanks to the inequalities found in the first

step, we have

d

dt
F(t, ht) ≤

5∑

i=1

Ti,
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with

T1 = K

∫

R2

[
− 2m2

2 + 2(c1t
3 + c2t+ c4t

4)m2
1 +

c3t

δ
m2

2

]
h2t ,

T2 =

∫

R2

[
(3c1 + 2c2δ −

b

4
c3 + 2c3δ)t

2 − c1t
3
]
(∂xht)

2m2
1,

T3 =

∫

R2

[
− 2m2

2 + c2m
2
1 +

2c2
δ
m2

1 +
2c3
δ
m2

1 +
c1t

2

δ
m2

1 + 2c4t
4Km2

1 +
c3tK

δ
m2

2

]
(∂vht)

2,

T4 =

∫

R2

t3
[
− c1 +

c4
δ

+ c3Kδ
1/10

]
(∂2xvht)

2m2
1,

T5 =

∫

R2

[
− 2c2t+

c3tK

δ1/10
+ 4c4t

3
]
(∂2vvht)

2m2
1.

Choosing

c1 = δ2, c2 = δ4/3 c3 = δ3/2 and c4 = δ4,

we get that for δ ∈ (0, 1] small enough, it holds

d

dt
F(t, ht) ≤ 0.

for any t ∈ (0, 1]. Since 0 < c4 ≤ c1 ≤ c3 ≤ c2 and c1c2 ≥ c23, we finally get that

c4 t
9/2
(

‖∂x,vht‖2L2(m1)
+ ‖∂2vvht‖2L2(m1)

)

≤ F(t, ht) ≤ F (0, h0) = ‖h0‖2L2(m2)
.

Step 3. Proof of inequality (3.4.34). From the definition of A we notice that

‖ASBε(t)h‖H2
v(m) ≤ C′t−9/2e−t‖h‖L2(m), ∀ t ∈ (0, 1],

for some constant C′. It is important to remark that since A lies in a compact, we do not need anymore

two different weights m1 and m2. Therefore, we apply Proposition 3.2.48 with X = L2(m), Y = H2
v (m),

Θ = 9/2 and α∗ = −1 to get (3.4.34).

3.4.2 Spectral analysis on the linear operator in the disconnected case

We consider in this section the disordered case ε = 0. The corresponding FhN kinetic equation is

linear and writes

∂tg = ∂x(Ag) + ∂v(B0 g) + ∂2vvg

B0 = v (v − λ) (v − 1) + x,

Theorem 3.2.46 states that there exists at least one function G0 ∈ P ∩H2
v (m) which is a solution to the

associated (linear) stationary problem

L0G0 = ∂x(AG0) + ∂v(B0G0) + ∂2vvG0 = 0.

Since the operator now enjoys a positive structure (it generates a positive semigroup SL0
), we can perform

a more accurate analysis. Indeed, we can apply the the abstract Krein-Rutman theorem 3.4.60 previously

stated.
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Proof of the stability around ε = 0 in Theorem 3.2.46. Let us assume for a first moment that hypotheses

of the abstract Theorem 3.4.60 hold for L0 with α∗ = −1. We easily remark that

λ = 0, f∞ = G0 φ = 1,

therefore, there exists ᾱ ∈ (−1, 0) such that

Σ(L0) ∩∆ᾱ = {0},

and

∀ f0 ∈ L2(m), ∀ t ≥ 0 ‖ SL0
(t)f0 − 〈f0〉G0‖L2(m) ≤ C eᾱt ‖f0 − 〈f0〉G0‖L2(m).

Now, for ε > 0, we consider Gε such that

Qε[JGε ]Gε = 0,

then, it holds
∂

∂t
(Gε −G0) + L0(Gε −G0) = h, h = ε ∂v((v − J (Gε))Gε),

and, thanks to Duhamel’s formula, we get that

‖Gε −G0‖L2(m) ≤ ‖SL0
(t)(Gε −G0)‖L2(m) +

∫ t

0

‖SL0
(t− s)h‖L2(m) ds.

But Gε −G0 and h have zero mean, then

‖Gε −G0‖L2(m) ≤ C‖Gε −G0‖L2(m)e
ᾱt + ε

C

|ᾱ| ‖Gε‖H1
v(M

1/2m)(1− eᾱt).

Letting t→ ∞ we conclude that there exists Cᾱ > 0 such that

‖Gε −G0‖L2(m) ≤ εCᾱ‖Gε‖H1
v(M

1/2m).

Finally, thanks to Corollary 3.3.55, we have

0 = 〈Qε[JGε ]Gε, Gε〉H1 ≤ K1 −K2‖Gε‖2H1 ≤ K1 − cδK2‖Gε‖2H1(m2)
,

for any exponential weight m2. If κ2 > κ, we have then

‖Gε‖2H1
v(M

1/2m) ≤ Cκ,κ2
‖Gε‖2H1(m2)

≤ Cκ,κ2
K1/cδK2,

and in the small connectivity regime ε ∈ (0, ε0), constants K1 and K2 do not depend on ε. Defining

η(ε) = εCᾱCκ,κ2
K1/cδK2 we get the stability part of Theorem 3.2.46.

It only remains to verify that the requirement of Theorem 3.4.60 are fulfilled for L0 in the Banach

lattice X = L2(m).

1. (a) the splitting (3.4.31) has the nice structure. Indeed, the Lemma 3.4.61 implies that B0 + 1 is

hypodissipative in L2(m), therefore

‖SB0
(t)‖B(L2(m)) ≤ Ce−t, ∀ t ≥ 0,

i.e., it suffices to take α∗ = −1.
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(b) if Y = H2
v (m) and X = L2(m), the desired inequality is consequence of Lemma 3.4.62.

2. The requirement is obtained for β = 0 and ψ = 1. Indeed, in that case

L ∗
0 ψ = Q∗

01 = 0 ≥ βψ.

3. A side consequence of (3.3.21) is the positivity of the semigroup:

f0 ≥ 0 ⇒ SL0
f0(t) ≥ 0, ∀ t ≥ 0.

Moreover, using that L2(m) is also a Hilbert space, we deduce the Kato’s inequalities.

4. The strict positivity (or strong maximum principle) is a straightforward consequence of Theo-

rem 3.8.73 in Appendix 3.8.

Let us finish this section by summarizing the properties of the spectrum of L0 in the Banach space

L2(m) and by a useful result on the regularisation properties of RL0
(z).

Proposition 3.4.63.

(i) There exists ᾱ < 0 such that the spectrum Σ(L0) of L0 in L2(m) writes

Σ(L0) ∩∆ᾱ = {0},

and 0 is simple.

(ii) For any α > ᾱ, there exists a constant CH1
v
> 0 depending on (α− ᾱ), such that

‖RL0
(z)‖B(L2(m),H1

v(m)) ≤ CH1
v
(1 + |z|−1), ∀ z ∈ C \ {0},Re(z) > α.

Proof. It only remains to prove (ii). Let us consider z ∈ ∆α \ {0}, and take f, g ∈ L2(m) such that

(L0 − z)f = g.

Thanks to Lemma 3.4.61 and the definition of A, we get

(Re(z)− ᾱ)‖f‖2L2(m) + ‖∂vf‖2L2(m) ≤ ‖g‖L2(m) ‖f‖L2(m) +N ‖f‖2L2(m).

Moreover, (i) tells us that 0 is an isolated simple eigenvalue for L0 in L2(m), then RL0
(z) writes as the

Laurent series (see for example [86, Section 3.5])

RL0
(z) =

∞∑

k=−1

zkCk, Ck ∈ B(L2(m)),

which on a small disc around 0 converges. Thus, there is some C0 > 0 such that ‖RL0
(z)‖B(L2(m)) ≤

C0 |z|−1 for any z ∈ ∆α, z 6= 0. Finally, we notice that

min(1, α− ᾱ)‖f‖H1
v(m) ≤ (1 +NC0|z|−1) ‖g‖L2(m2),

therefore, it suffices to take CH1
v
= 1 + /NC0 min(1, α− ᾱ), with N large enough.
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3.5
Stability of the stationary solution in the small connectivity

regime

Now, we establish the exponential convergence of the nonlinear equation. To that aim, we first notice

that, in the small connectivity regime, the linear operator Lε inherits (in a sense that we precise later

on) the stability properties of L0.

3.5.1 Uniqueness of the stationary solution in the weak connectivity regime

As a first step in the proof of Theorem 3.2.47, we need a uniqueness condition that, for instance, can

be settled as a consequence of the following estimate:

Lemma 3.5.64. There exists a constant CV such that for any g ∈ L2(m), 〈g〉 = 0 and for the solution

f ∈ L2(m) to the linear equation L0f = g there holds

‖f‖V := ‖f‖L2(Mm) + ‖∇vf‖L2(M1/2m) ≤ CV ‖g‖L2(m). (3.5.35)

Proof. We easily compute

∫

R2

(L0f)f Mm2 = −
∫

R2

p(x, v)f2m2 −
∫

R2

(∂vf)
2Mm2,

for some p(x, v) polynomial in x and v with leading term v6 + x4. Therefore, there exists some constants

K1 > 0 and 0 < K2 < 1, such that

∫

R2

(L0f)fMm2 ≤ K1

∫

R2

f2m2 −K2

∫

R2

f2M2m2 −K2

∫

R2

(∂vf)
2Mm2.

The invertibility of L0 in L2(m) for zero mean functions, writes

L0f = g ∈ L2(m), 〈g〉 = 0 ⇒ ‖f‖L2(m) ≤ Cᾱ ‖g‖L2(m),

with Cᾱ given in the proof of the stability part of Theorem 3.2.46. As a consequence, for any f and g as

in the statement of the lemma, we have

∫

R2

f2M2m2 +

∫

R2

(∂vf)
2Mm2 ≤ − 1

K2

∫

R2

g fMm2 +
K1

K2

∫

R2

f2m2

≤ 1

2

∫

R2

f2M2m2 +
1

2K2
2

∫

R2

g2m2 +
K1C

K2

∫

R2

g2m2,

from which (3.5.35) immediately follows.

Corollary 3.5.65. There exists ε1 ∈ (0, ε0) such that in the small connectivity regime ε ∈ (0, ε1) the

stationary solution is unique.

Proof. We write

Gε − Fε = εL −1
0

[

∂v

(

(v − J (Fε))Fε − (v − J (Gε))Gε

)]

= εL −1
0

[

∂v

(

(v − J (Fε))(Fε −Gε) + (J (Fε)− J (Gε))Gε

)]

. (3.5.36)
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As a consequence, using the invertibility property of L0 for zero mean functions, and the uniform

bound (3.2.10) on Gε, Fε, we get

‖Fε −Gε‖V ≤ εCᾱ

∥
∥∂v
(
(v − J (Fε))(Fε −Gε) + (J (Fε)− J (Gε))Gε

)∥
∥
L2(m)

≤ εC ‖Fε −Gε‖V ,

for some C depending on the parameters of the system and ε0. The previous relationship implies, in

particular, that ‖Fε −Gε‖V = 0 for ε < ε1 = 1/C.

3.5.2 Study of the Spectrum and Semigroup for the Linear Problem

We now turn into a generalisation of Proposition 3.4.63 in the case ε > 0 small. Since the positivity of

the operator is lost, Krein-Rutman theory does not apply anymore, however we can prove the following

result based on a perturbation argument

Theorem 3.5.66. Let us fix α ∈ (ᾱ, 0). Then there exists ε2 ∈ (0, ε1) such that for any ε ∈ [0, ε2], there

hold

(i) The spectrum Σ(Lε) of Lε in L2(m) writes

Σ(Lε) ∪∆α = {µε},

where µε is a eigenvalue simple. Moreover, since Lε remains in divergence form, we still have

L ∗
ε 1 = 0

and then µε = 0.

(ii) The linear semigroup SLε(t) associated to Lε in L2(m) writes

SLε(t) = eµεtΠε +Rε(t),

where Πε is the projection on the eigenspace associated to µε and where Rε(t) is a semigroup which

satisfies

‖Rε(t)‖B(L2(m)) ≤ CLε1
eαt,

for some positive constant CLε1
independent of ε.

To enlighten the key points of the proof we present it in three steps: accurate preliminaries, geometry

of the spectrum of the linear operator in the small connectivity regime and sharp study of the spectrum

close to 0:

Step 1. Accurate preliminaries: Let us introduce the operator

Pε = Lε − L0 = − ε ∂v((v − J (Gε)) ·) + εJ (·) ∂vGε.

Our aim is to estimate the convergence to 0 of this operator in a suitable norm. We notice that, for two

exponential weights m1,m2 as in (3.2.6) with κ1 < κ2, it holds

‖Pεh‖2L2(m1)
≤ C ε2

∫

R2

(
h2 + v2|∂vh|2

)
m2

1 + C ε2J (h)2

≤ C ε2
(
‖h‖2L2(m1)

+ ‖∂vh‖2L2(m2)

)
,
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where C depends only on the parameters of the system and, in the small connectivity regime, on ε1.

Therefore, there exists CPε1
> 0 such that

‖Pεh‖L2(m1) ≤ CPε1
ε‖h‖H1

v(m2).

Step 2. Geometry of the spectrum of Lε.

Lemma 3.5.67. For any z ∈ ∆α, z 6= 0 let us define Kε(z) by

Kε(z) = −Pε RL0
(z)ARBε(z).

Then, there exists η2(ε) −−−→
ε→0

0, such that

∀ z ∈ Ωε := ∆α \ B̄(0, η2(ε)), ‖Kε(z)‖B(L2(m)) ≤ η2(ε)(1 + η2(ε)).

Moreover, there exists ε2 ∈ (0, ε1] such that for any ε ∈ [0, ε2] we have

1. I +Kε(z) is invertible for any z ∈ Ωε

2. Lε − z is also invertible for any z ∈ Ωε and

∀ z ∈ Ωε, RLε(z) = Uε(z)
(
I +Kε(z)

)−1

where

Uε(z) = RBε(z)−RL0
(z)ARBε(z).

We thus deduce that

Σ(Lε) ∩∆α ⊂ B(0, η2(ε)).

Proof. We define m1 and m2 two exponential weights with m1 = m. From Lemma 3.4.61, Proposi-

tion 3.4.63 and the Step 1 we get that for any z ∈ Ωε, any h ∈ L2(m)

‖Kε(z)h‖L2(m) ≤ εCPε1
‖RL0

(z)ARBε(z)h‖H1
v(m2)

≤ εCPε1
CH1

v
(1 + |z|−1)‖ARBε(z)h‖L2(m2)

≤ εCPε1
CH1

v
(1 + |z|−1)Cε1‖h‖L2(m),

where Cε1 is an upper bound of ‖ARBε‖B(L2(m),L2(m2)) and do not depend on ε. Defining

η2(ε) := (εCPε1
CH1

v
Cε1 )

1/2,

it holds

‖Kε(z)‖B(L2(m)) ≤ η2(ε)
2(1 + η2(ε)

−1) = η2(ε)(1 + η2(ε)), ∀ z ∈ Ωε,

therefore, fixing ε2 > 0 such that

η2(ε) < 1/2, ∀ ε ∈ (0, ε2],

we obtain the invertibility of I +Kε(z).

Finally, for any z ∈ Ωε:

(Lε − z)Uε(z) = I +Kε(z),

then there exists a right inverse of Lε − z. The rest of the proof is similar to the proof of [154, Lemma

2.16].
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Step 3. Sharp study of spectrum close to 0.

Let us fix r ∈ (0,−α] and choose any εr ∈ [0, ε2] such that η2(εr) < r in such a way that Σ(Lε)∩∆α ⊂
B(0, r) for any ε ∈ [0, εr]. We may define the spectral projection operator

Πε := − 1

2πi

∫

|z′|=r

RLε(z
′) dz′.

We have then the

Lemma 3.5.68. The operator Πε is well defined and bounded in L2(m). Moreover, for any ε ∈ [0, εr],

it holds

‖Πε −Π0‖B(L2(m)) ≤ η3(ε),

for some η3(ε) −−−→
ε→0

0.

Proof. Let us notice that

Π0 = − 1

2πi

∫

|z′|=r

(RB0
(z′)−RL0

ARB0
(z′)) dz′ =

1

2πi

∫

|z′|=r

RL0
ARB0

(z′) dz′

and

Πε = − 1

2πi

∫

|z′|=r

(RBε(z
′)−RL0

ARBε(z
′))(I +Kε(z

′))−1 dz′

=
1

2πi

∫

|z′|=r

RBε(z
′)Kε(z

′)(I +Kε(z
′))−1 dz′

+
1

2πi

∫

|z′|=r

RL0
ARBε(z

′)(I +Kε(z
′))−1 dz′.

Then, we deduce that

Πε −Π0 =
1

2πi

∫

|z′|=r

RBε(z
′)Kε(z

′)(I +Kε(z
′))−1 dz′

+
1

2πi

∫

|z′|=r

RL0
A (RBε(z

′)−RB0
(z′)) dz′

+
1

2πi

∫

|z′|=r

RL0
ARBε(z

′)(I − (I +Kε(z
′))−1) dz′,

here, the first and third terms are going to 0 because of the upper bounds of Kε(z). For the second term,

it suffices to notice that

RBε(z
′)−RB0

(z′) = RB0
(z′) (Bε − B0)RBε(z

′),

and use that (Bε − B0) = Pε.

To conclude the proof we recall the following lemma from [86, paragraph I.4.6]

Lemma 3.5.69. Let X be a Banach space and P,Q two projectors in B(X) such that ‖P −Q‖B(X) < 1.

Then the ranges of P and Q are isomorphic. In particular, dim(R(P )) = dim(R(Q)).

Provided with this lemma and fixing ε′ such that η3(ε
′) < 1, we get the

Corollary 3.5.70. There exists ε′ > 0 such that for any ε ∈ [0, ε′] there holds

Σ(Lε) ∩∆α = {µε} and the eigenspace associated to µε is 1-dimensional.
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3.5.3 Exponential stability of the NL equation

In the small connectivity regime ε ∈ (0, ε′), let us consider the variation h := fε − Gε, with fε the

solution to (3.1.2) and Gε the unique solution to (3.2.12) given by Theorem 3.2.46. By definition, h

satisfies the evolution PDE:

∂th = L0h− ε∂v(vh) + εJ (fε)∂vfε − εJ (Gε)∂vGε = Lεh+ εJ (h)∂vh,

moreover, the nonlinear part is such that

‖εJ (h)∂vh‖L2(m) ≤ C ε ‖h‖L2(m)‖∂vh‖L2(m)

for some positive constant C.

Proof of Theorem 3.2.47. Let us first notice that, thanks to inequality (3.2.10) and the definition of J (·),
we have that

‖εJ (h)∂vh‖L2(m) ≤ CNL ε ‖h‖L2(m), ∀h0 ∈ H1(m),

where

CNL = c−1
δ max(C2, ‖h0‖H1(m)).

On the other hand, Duhamel’s formula reads

h = SLε(t)h0 +

∫ t

0

SLε(t− s)
(
εJ (h)∂vh

)
ds,

then, we have that

u(t) := ‖h‖L2(m) ≤ ‖SLε(t)h0‖L2(m) +

∫ t

0

‖SLε(t− s)
(
εJ (h)∂vh

)
‖L2(m) ds

≤ CLε1
eαt‖h0‖L2(m) + CLε1

CNL ε

∫ t

0

eα(t−s)‖h‖L2(m) ds

= CLε1
eαtu(0) + CLε1

CNL ε

∫ t

0

eα(t−s)u(s) ds.

In particular,

u(t) ≤ CL1
u(0) e(α+CLε1

CNLε)t,

Summarising, it suffices to define η∗(ε) := C2/
√
ε to get that for any f0 such that

‖f0 −Gε‖H1(m) ≤ η∗(ε),

it holds

‖fε(t)−Gε‖L2(m) ≤ CLε1
‖f0 −Gε‖L2(m)e

α∗t,

with

α∗ = α+ CLε1
c−1
δ C2

√
ε∗ < 0,

if ε∗ is small enough.
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3.6
Open problems beyond the weak coupling regime

In the weak coupling regime, we have demonstrated that existence and uniqueness of solutions persist.

In that regime, noise overcomes nonlinear effects and the system is mixing: one finds a unique distribution

with an everywhere strictly positive density. As coupling increases, highly non-trivial phenomena may

emerge as nonlinear effects of the McKean-Vlasov equation. For instance, it is likely that in another

asymptotic regime in which coupling is non-trivial and noise goes to zero, Dirac-delta distributed solutions

shall emerge (in which all neurons are synchronized and their voltage and adaptation variable are equal

to one of the stable fixed point of the deterministic Fitzhugh-Nagumo ODE).

Here, we numerically explore the dynamics of the Fitzhugh-Nagumo McKean-Vlasov equation using

a Monte-Carlo algorithm. We observe that complex phenomena occur as the coupling is varied. That

numerical evidence tends to show that several additional equilibria may emerge, the stability of stationary

solutions may change as a function of connectivity levels, and attractive periodic solution in time may

emerge. These regimes are particularly interesting from the application viewpoint: indeed, among im-

portant collective effects in biology, from large networks often emerge bistable high-state of down-states

(characterized by high or low firing rates), and even oscillations. These two phenomena are particularly

important in developing and storing memories, and this occurs by slowly reinforcing connections [83].

Interestingly, these two types of behaviors emerge naturally in the FhN McKean Vlasov equation beyond

weak coupling. For instance, for fixed σ = 0.5, we present the solutions of the particle system varying the

connectivity weight beyond small values, both in the bistable case (in which the FhN model presents two

stable attractors) and the excitable regime, the most relevant for biological applications, characterized

by a single stable equilibrium and a manifold separating those trajectories doing large excursions (spikes)

from those returning to the resting state directly. In both cases, we observe (i) that the unique stationary

solution is not centered close from a fixed point of the dynamical system: neurons intermittently fire in an

asynchronous manner for small coupling. As coupling increases, a periodic attractive solution emerges,

before the appearance of distinct stationary solutions (two in the bistable case, one in the excitable case).

These phenomena are depicted in Fig. 3.1. Proving, for larger coupling, the existence and stability of

a periodic solution or distinct and multiple stationary solutions constitute exciting perspectives of this

work.

These phenomena are actually conjectured to be generic in coupled excitable systems subject to noise.

3.7
Appendix A: Mean-Field limit for Fitzhugh-Nagumo neu-

rons

Let us start by a well known result with is a simple application of global existence and path wise

uniqueness for system of SDE, see [56, Chapter 5, Theorems 3.7 and 3.11] for example. Consider the
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Figure 3.1: Permanent (non-transient) regimes of the FhN particle system for N = 2 000. Top row:

J = 0.1 (A) and J = 3 (B), bottom row: J = 1. The unique stationary solution in the small coupling

limit analyzed in the manuscript visits both attractors transiently (A), while in the high coupling regime

(B), the system remains around one of the attractors (the system has at least two such solutions). In an

intermediate regime, the system shows periodic oscillations (bottom row).
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particle system for 1 ≤ i ≤ N :







dvit =
(
vit (v

i
t − λ) (1− vit)− xit + I0

)
dt+

J

N

N∑

j=1

(
vit − vjt

)
dt+ dW i

t

dxit = (−axit + bvit)dt,

(3.7.37)

with initial data (X i
0, V

i
0 ) for 1 ≤ i ≤ N distributed according to f0 ∈ P2(R

2), i.e., a probability measure

in R2 with finite second moment. Here the (W i
t )t≥0 are n independent standard Brownian motions in R.

This result was stated in [10]. In that paper, the authors use a stopping in the n-voltage variables which

requires finely controlling all trajectories. We prove here a simpler version of the result based on a-priori

estimates.

Lemma 3.7.71. Let f0 ∈ P(R2) be a probability with finite second moment, and a set of random variables

(X i
0, V

i
0 ) with law f0. Then (3.7.37) admits a path wise unique global solution with initial datum (X i

0, V
i
0 )

for 1 ≤ i ≤ N .

Proof. The system (3.7.37) can be written in R2N as the SDE

dZN
t = σN dBN

t + b(ZN
t ) dt,

where ZN
t = (x1t , v

1
t , . . . , x

N
t , v

N
t ), σN is a constant 2N × 2N sparse matrix, (BN

t )t≥0 is a standard

Brownian motion on R2N , and b : R2N → R2N is a function defined in the obvious way. It is easy to see

that b is a locally Lipschitz function, moreover, letting 〈·, ·〉 and ‖·‖ the scalar product and the Euclidean

norm on R2N respectively, then for all ZN = (x1, v1, . . . , xN , vN ),

〈ZN ,b(ZN )〉 =

N∑

i=1

xi(−axi + bvi) +

N∑

i=1

vi
(
vi (vi − λ) (1 − vit)− xi + I0

)
+
J

N

N∑

i.j=1

vi
(
vi − vj

)

≤
N∑

i=1

(b− 1)xivi +

N∑

i=1

(
J |vi|2 − a|xi|2

)
− J

N

N∑

i.j=1

vivj + CN

≤ C(1 + ‖ZN‖2).

This is a sufficient condition for global existence and pathwise uniqueness (see e.g. [100]).

Mean-Field limit

Now we turn to the propagation of chaos property. We already know the existence and uniqueness of

the particle system (3.7.37), moreover the nonlinear SDE:







dv̄t =
(
v̄t(v̄t − λ)(1 − v̄t)− x̄t + I

)
dt+ J

∫

R2

(v̄t − v) dft(x, v) dt+ dWt,

dx̄t = (−ax̄+ bv̄t)dt

ft = law(x̄t, v̄t), law(x̄0, v̄0) = f0.

(3.7.38)

is also well-posed for f0 ∈ L1(M2) ∩ L1 logL1 ∩ P(R2), as a consequence of Theorem 3.2.45. Then, for

instance, we can sate the
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Theorem 3.7.72. Let f0 be a Borel probability measure and (X i
0, V

i
0 ) for 1 ≤ i ≤ N be N independent

variables with law f0. Let us assume that the solutions to (3.7.37) and (3.7.38) with initial data (X i
0, V

i
0 )

and f0 are well defined on [0, T ] and such that

sup
[0,T ]

{∫

R2

(|x|2 + |v|2) dft(x, v)
}

< +∞, (3.7.39)

with ft = law(x̄it, v̄
i
t) (which actually does not depend on i by exchangeability). Then there exists a

constant C > 0 such that

E
[
|xit − x̄it|2 + |vit − v̄it|2

]
≤ C

N
eCt. (3.7.40)

Proof. We start by writing X i
t = xit − x̄it and V

i
t = vit − v̄it. For notational convenience we drop the time

dependence subindex and take J = 1. Because xit and x̄it are driven by the same Brownian motion, we

have that






dV i =
(
vi(vi − λ)(1 − vi)− v̄i(v̄i − λ)(1 − v̄i)−X i

)
dt+

1

N

N∑

j=1

(
vit − vjt

)
dt−

∫

R2

(v̄i − v) dft(x, v) dt

dX i = (−aX i + bV i)dt,

We define α(t) = E
[
|X i|2+|V i|2

]
which is independent of the label i by symmetry and exchangeability

of the system. It is not hard to see that

1

2

d

dt
E
[
|X i|2

]
= E

[
b|X i| |V i| − a|X i|2

]
≤ b

2
α(t),

and

1

2

d

dt
E
[
|V i|2

]
= E

[
V i
(
vi(vi − λ)(1 − vi)− v̄i(v̄i − λ)(1 − v̄i)−X i

)]

+E

[V i

N

N∑

j=1

(
vit − vjt

)
dt− V i

∫

R2

(v̄i − v) dft(x, v)
]

=: S1 + S2.

Estimate for S1: Let us first notice that

vi(vi − λ)(1 − vi)− v̄i(v̄i − λ)(1 − v̄i) = −(|vi|3 − |v̄i|3) + (1 + λ)(|vi|2 − |v̄i|2)− λV i

= −V i(|vi|2 + vi v̄i + |v̄i|2) + (1 + λ)V i(|vi|+ |v̄i|)− λV i,

therefore

S1 = E[|V i|2(−|vi|2 − vi v̄i − |v̄i|2 + (1 + λ)(|vi|+ |v̄i|)− λ)]− E[V iX i],

and by consequence there is some constant C > 0 such that

S1 ≤ Cα(t). (3.7.41)

Estimate for S2: By definition, it holds

S2 = E

[

V i(vit − v̄i)− V i

N

N∑

j=1

(
vjt −

∫

R2

v dft(x, v)
)]

= E
[
|V i|2

]
− 1

N
E

[

V i
N∑

j=1

(

vjt −
∫

R2

v dft(x, v)
)]

.
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Moreover, by symmetry we know that S2 does not depend on a particular i, therefore we take i = 1 to

get

S2 ≤ E
[
|V 1|2

]
+

1

N

(

E
[
|V 1|2

])1/2(

E

[∣
∣

N∑

j=2

(

vjt −
∫

R2

v dft(x, v)
)∣
∣
2
])1/2

.

Now, defining Y j = vjt −
∫

R2 v dft(x, v), for j 6= k, we find that

E
[
Y jY k

]
= E

[

E
[
Y j | (x̄1, v̄1)

]
E
[
Y k | (x̄1, v̄1)

]]

,

but

E
[
Y j | (x̄1, v̄1)

]
= E

[

vjt −
∫

R2

v dft(x, v)
]

= 0.

Hence, fixing j∗ ∈ {2, . . . , N}

E

[∣
∣

N∑

j=2

(

vjt −
∫

R2

v dft(x, v)
)∣
∣
2
]

= (N − 1)E
[∣
∣vj∗t −

∫

R2

v dft(x, v)
)∣
∣
2
]

= (N − 1)

∫

R2

(

w −
∫

R2

v dft(x, v)
)2

dft(y, w) ≤ C(N − 1),

since the second moment of ft is uniformly bounded in [0, T ]. Finally we conclude that

S2 ≤ α(t) + α(t)1/2
C√
N
. (3.7.42)

Finally, going back to the bounds on α(t), we put together (3.7.41) and (3.7.42) to find

d

dt
α(t) ≤ Cα(t) + 2α(t)1/2

C√
N

≤ Cα(t) +
C

N
,

and using Grönwal’s Lemma,

α(t) ≤
(

α(0) +
C

N

)

eCt =
C

N
eCt

which finishes the proof.

3.8
Appendix B: Strong maximum principle for the linearized

operator

In this final appendix we shall extend the result provided in [159, Corollary A.20] to our framework.

These local positivity estimates are classical in hypoelliptic equations and they are a necessary condition

for Theorem 3.2.46. Here, our result is time dependant and by consequence more general than it is needed

in the applications.

In the sequel, we shall use the notation

Br(x0, v0) := {(x, v) ∈ R
2 ; |v − v0| ≤ r, |x− x0| ≤ r3},

and come back to the classical notation ∇x,v = Dx,v and ∂2vv = ∆v. Also, we simplify the problem by

choosing a = b = 1, but the proof can be easily extended to the general case.
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Theorem 3.8.73. Let f(t, x, v) be a classical nonnegative solution of

∂

∂t
f −∆vf = A(t, x, v)∇vf +B(x, v)∇xf + C(t, x, v) f (3.8.43)

in [0, T )× Ω, where Ω is an open subset of R2, and A,C : [0, T )× R2 and bounded continuous functions

and B(x, v) = x− v. Let (x0, v0) ∈ Ω and Ā and C̄ upper bounds of respectively ‖A‖L∞ and ‖C‖L∞.

Then, for any r, τ > 0 there are constants λ, K > 0, only depending on Ā, C̄ and r2/τ such that

the following holds: If Bλr(x0, v0) ⊂ Ω, τ < min(1/2,− log(r3/2|x0 − v0|)) and f ≥ δ > 0 in [τ/2, τ) ×
Br(x0, v0), then f ≥ Kδ in [τ/2, τ)×B2r(x0, v0).

Theorem 3.8.73 implies, via covering arguments in variables t, x, v the

Corollary 3.8.74. If f ≥ 0 solves (3.8.43) in [0, T )× Ω and f ≥ δ > 0 in [0, T )× Br(x0, v0), then for

any compact set K ⊂ Ω containing (x0, v0) and for any t0 ∈ (0, T ), we have f ≥ δ′ > 0 in [t0, T ) × K

where δ′ only depends on Ā, C̄,K,Ω, x0, v0, r, t0, δ.

Proof of Theorem 3.8.73. We only explain how to adapt the proof of Theorem A.19 given in [159]. Let

g = eC̄tf(t, x, v); then g ≥ f and L g ≥ 0 in (0, T )× Ω, where

L = ∂t + (v − x)∇x −∆v −A(t, x, v)∇v .

Next, we construct a particular subsolution for L. In the sequel, Br stands for Br(x0, v0) and we

define Xt(x0, v0) = v0 + (x0 − v0)e
−t.

Step 1. Construction of the subsolution.

For t ∈ (0, τ ] and (x, v) ∈ Ω \Br let

P (t, x, v) = α
(v − v0)

2

2t
− β

t2
(v − v0)(x−Xt) + γ

(x −Xt)
2

2t3
,

with α, β, γ > 0 to be chosen later on. Let further define

ϕ(t, x, v) = δ e−µP (t,x,v) − ε,

where µ, ε > 0 will also be chosen later on. If we assume that β2 < αγ, then P is a positive quadratic

form in the variables v − v0 and x−Xt. Clearly

Lϕ = −µ δ e−µPE(P ),

where

E(P ) = ∂tP + (v − x)∇xP −△vP + µ |∇vP |2 −A(t, x, v)∇vP.

By straightforward computation we find that E = E1 + E2, with

E1(P ) =
(

µα2 − α

2
− β

) (v − v0)
2

t2
+ 2
(

β +
γ

2
− µαβ

) (v − v0)(x−Xt)

t3

+
(

µβ2 − 3 γ

2

) (x−Xt)
2

t4
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and

E2(P ) = β
(v − v0)(x −Xt)

t2
− α

1

t

−γ (x −Xt)
2

t3
− α

A(t, x, v)(v − v0)

t
+ β

A(t, x, v)(x −Xt)

t2
.

Now we notice that E1 is defined by the quadratic form

Mq =




µα2 − α

2
− β β +

γ

2
− µαβ

β +
γ

2
− µαβ µβ2 − 3 γ

2





which is nothing but a quadratic polynomial on (v − v0)/t and (x−Xt)/t
2. As µ→ ∞







trMq = µ(α2 + β2) +O(1)

detMq = µ
[ 3αβ2

2
+ αβ γ − β3 − 3α2γ

2

]

+O(1),

both positive quantities if β > α and αγ > β2. In particular, for β = 2α and γ = 8α,







trMq = 5α2 µ+O(1)

detMq = 2α3 µ+O(1),

and letting µ→ ∞ the eigenvalues ofMq are of order µβ2 and β. So, for any fixed C > 0 we may choose

α, β, γ and µ such that

E1(P ) ≥ Cβ
( (v − v0)

2

t2
+

(x−Xt)
2

t4

)

.

Second, if t ∈ (0, 1) then

E2(P ) ≥ −4β
(x −Xt)

2

t4
− 3β(v − v0)

2

2
− 3β(x−Xt)

2

2t4
− 2βĀ2 − β

2t
,

and making τ ≤ 1, we get,

E(P ) ≥ const
β

t

[

C
( (v − v0)

2

t
+

(x −Xt)
2

t3

)

− 1
]

,

with C arbitrarily large.

Let us briefly describe the rest of the proof. Recall that (x, v) /∈ Br so

1. either |v − v0| ≥ r, then E(P ) ≥ const.(β/t)[Cr2/τ − 1], which is positive for C > τ/r2;

2. or |x− x0| ≥ r3, and then, if τ ≤ 1
2 min(1,− log( r3

|x0−v0|
)) then for any t ∈ [0, τ)

|Xt − x0| ≤ r3/2 and
|x−Xt|2

t2
≥ |x− x0|2

2t2
− |Xt − x0|2

t2
≥ r6

4τ2
,

so E(P ) ≥ const.(β/t)[Cr6/4τ3 − 1], which is positive as soon as C > 4τ3/r6.

Summarizing: under the assumptions, we can always choose constants γ > β > α > 1 and αγ > β2,

depending only on Ā and r2/τ , so that

Lϕ ≥ 0, in [0, τ)× (Bλr \Br),
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as soon as τ < min(1/2,− log(r3/2|x0 − v0|)).

Step 2. Boundary conditions. We now wish to prove that ϕ ≤ g for t = 0 and for any (x, v) ∈ ∂(Bλr \Br);

then classical maximum principle will do the rest.

Let us first notice that the boundary condition at t = 0 is obvious (ϕ can be extended by continuity

by 0 at the initial time). The condition at ∂Br is also true since ∀ (x, v) ∈ ∂Br: ϕ ≤ δ ≤ g.

It remains to fix the remaining parameters in order to conclude that ϕ ≤ g in ∂Bλr. From the choice

of α, β and γ, it is easy to see that for any (x, v) ∈ ∂Bλr :

P (t, x, v) ≥ α

4

((v − v0)
2

t
+

(x−Xt)
2

t3

)

≥ α

4
min

(λ2r2

τ
,
λ6r6

4τ3

)

≥ αλ2

16
min

(r2

τ
,
r6

τ3

)

,

notice that we are imposing λ > 1. Choosing

ε = δ exp
(

− µαλ2

16
min

(r2

τ
,
r6

τ3

))

,

we get ϕ = δ e−µP (t,x,v) − ε ≤ 0 on ∂Bλr. By consequence ϕ ≤ g on the whole set Bλr.

Let us finally notice that at this point we have uniform bounds for g on B2r \Br for any t ∈ [τ/2, τ).

Indeed,

P (t, x, v) ≤ 2 γ

(

(v − v0)
2

t
+

(x−Xt)
2

t3

)

≤ 2 γ
(8 r2

τ
+

1026 r6

τ3

)

≤ 2068 γ max
(r2

τ
,
r6

τ3

)

Then, for λ big enough we find K0 > 0 such that

ϕ(t, x, v) ≥ δ
[

exp
(

− 2068µ γ max
(r2

τ
,
r6

τ3

))

− exp
(

− µαλ2

16
min

(r2

τ
,
r6

τ3

))]

≥ K0 δ,

because γ = 8α, to find such λ it suffices that

2068× 16× 8 max
(r2

τ
,
r6

τ3

)

≤ λ2 min
(r2

τ
,
r6

τ3

)

,

by consequence λ depends only on r2/τ .

Finally, we find K,λ > 0 depending on Ā, C̄ and r2/τ such that

f ≥ K0 δ e
−τ C̄ on [τ/2, τ)× (B2r \Br).

Remark 3.8.75. Let us notice that we can extend Theorem 3.8.73 to some cases when A or C are not

necessarily bounded and Ω = R2. It suffices to take any r, τ > 0 and fix λ (which as we saw only depends

on a numerical constant and the ratio r2/τ). We can then fix R > 0 big enough, in order to have that

λr < R and study the equation into BR, where by continuity A and C attain their maximum in the

compact set [0, τ ]× B̄R.
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Chapter 4

Local homeoprotein

reaction-diffusion can stabilize

boundaries generated by graded

positional cues

Boundary formation in the developing neuroepithelium decides on the position and size of compart-

ments in the adult nervous system. In this study we start from the French flag model proposed by

Lewis Wolpert in which boundaries are formed through the combination of morphogen diffusion and of

thresholds in cell responses. In contemporary terms, a response is characterized by the expression of cell

autonomous transcription factors, very often of the homeoprotein family. Theoretical studies suggest that

this sole mechanism results in the formation of boundaries of imprecise shapes and positions. Turing,

on the other hand, proposed a model whereby two morphogens exhibiting self-activation and reciprocal

inhibition, uniformly distributed and diffusing at different rates lead to the formation of territories of un-

predictable shapes and positions but with sharp boundaries (the leopard spots). Here we have combined

the two models and compared the stability of boundaries when the hypothesis of local homeoprotein

intercellular diffusion is, or is not, introduced in the equations. We find that the addition of the home-

oprotein local diffusion leads to a dramatic stabilization of the positioning of the boundary, even when

other parameters are significantly modified. This novel combined model has thus important theoretical

consequences for our understanding of the role of homeoproteins intercellular diffusion in developmental

robustness and of the changes that take place in the course of evolution.

This paper is included in [127] written in collaboration with A. Prochiantz and J. Touboul to appear

in Development.
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4.1
Introduction

The specification of territories in the nervous system relies on the precise positioning of boundaries

between different functional areas [60, 90, 91]. Each territory is characterized by the expression of a

specific combination of molecular marks, including transcription factors (TFs), before developing into

areas endowed with specific functions [119, 170]. The emergence of compartments in the cerebral cortex

or in the spinal cord is a paradigmatic example of this process. From a theoretical perspective, the

specification of territories in the nervous system represents a particular case of the general phenomenon

of patterning. We owe to Alan Turing the first theoretical model of how patterns form. In his 1952 seminal

article “The chemical basis of morphogenesis” Turing explains how reaction-diffusion properties of two

morphogens, in the presence of a catalyst, can lead to the emergence of heterogeneities even if the tissue

is initially homogeneous [155]. This universal pattern formation mechanism through Turing instabilities

has become increasingly popular in the developmental biology community [84, 101, 135, 130, 167]. In

Turing's model and its enriched versions, in particular those proposed by Meinhardt and colleagues [108],

the interaction of a limited number of molecular species can create regular spatial patterns, provided that

they exhibit different diffusion constants and have auto-activating and reciprocal inhibitory properties.

In all cases, Turing-like mechanisms alone do not lead to the emergence of predictable shapes.

Another popular patterning mechanism has been proposed in 1969 by Lewis Wolpert [164] with

the concept of Positional Information (PI). This model, also known as the French Flag Model (FFM),

requires a continuous morphogen gradient and the existence of thresholds. A typical abstract example

is the differentiation of cells into blue, white and red populations when exposed to high, intermediate or

low morphogen levels (thus the FFM), each territory corresponding to the expression of specific genes, in

many cases transcription factors (TFs) defining specific areas within the neuroepithelium. This model has

since evolved considerably to take into account the complexity of the cellular environment [77, 89, 94, 166].

If one compares the two models, Turing’s model allows the formation of precise and neat boundaries

but suffers from the absence of a historical pre-patterning leading to a lack of reproducibility in their

positioning. In contrast the PI model provides a pre-pattern that constrains the positioning, but suffers

from fuzziness due to an uncertainty in the morphogen concentration at which a threshold appears

(especially when the morphogen slope is shallow). This represents a serious difficulty as discussed by

Gregor and colleagues [68]. In addition to the positioning of boundaries, one has to consider the fate

of misplaced cells not expressing a TF combination corresponding to their territory. Since in PI models

each cell “works for itself”, cells close to thresholds may differentiate into different types, leading to a

salt and pepper pattern in the region of the boundary. In the most parsimonious version of the model (no

other mechanism added), the only solutions are migration or death of misplaced cells [91, 166], requiring

additional mechanisms and information to regulate cell migration/guidance and/or death.

It might thus be useful to verify if recent findings in developmental biology may permit to reconcile the

advantages of the two models. In vertebrates the most popular illustration of the PI theory is provided
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by the compartmentalization of the neural tube in response to the diffusion of the ventral and dorsal

morphogens Sonic Hedgehog (Shh) and Bone Morphogenetic Protein (BMP), respectively [131, 44]. A

continuous gradient activates ventral and dorsal genes and territories are formed that express distinct

TF subsets [7, 44, 45, 91]. In this model, differentiation is based on the almost general rule that within

a developing neuroepithelium, each side of a boundary expresses a TF, in most cases a Homeoprotein

(HP) transcription factor, which amplifies its own expression and represses that of its counterpart (on

the other side). This is illustrated, among many other examples, by the Pax6/Nkx2.2 dorso-ventral

boundary and the Otx2/Gbx2 antero-posterior boundary in the neural tube, or the Emx2/Pax6 boundary

in the cortex [24, 25, 81, 119]. An important novelty of this study is to introduce in the calculations

the intercellular transfer of HPs allowed by two short peptidic sequences present in their DNA-binding

domain [138, 80, 143, 163, 139, 92, 114, 168].

Direct communication between nearby nuclei in the context of cell assemblies is reminiscent of the

studies where direct morphogenetic functions were attributed to transcription factors diffusing in the

fly embryo at the syncitial stage [49, 50]. The parallel is made even more striking by recent studies

suggesting that such local diffusion between nearby nuclei represses developmental noise allowing the

precise positioning of transcriptional domains [68, 69]. It is not usual to think of a transcription factor as

a morphogen, and if Bicoid was easily labeled “morphogen” in spite of being a HP transcription factor

it is rather because of its graded expression and of the fact that the Drosophila embryo is a syncitium

allowing Bicoid direct transfer from nucleus to nucleus. Therefore, the similarity between the Bicoid

model and our own hypothesis is limited to the fact that HP diffusion is involved. Indeed Bicoid in the

fly is a morphogen as defined by Wolpert whereas, in our model, HPs are morphogens in the Turing

acceptation of the term.

Indeed, their intercellular transfer added to self-amplification and reciprocal inhibition properties

may convey to HPs the quality of local Turing’s morphogens. In that sense, nature may have combined

Turing's morphogen diffusion (HPs) with PI provided by classical morphogen gradients (e.g. Shh). This

reasoning is at the basis of the parsimonious model presented in this study that takes into account the

presence of morphogen gradients, as in the PI theory, but also incorporates a Turing-like mechanism based

on the local diffusion of HP transcription factors. A major and counter-intuitive finding of our study is

that, even in the limit of infinitesimal diffusion, HP transfer across cells is sufficient to ensure precise

boundaries with reliable location. Beyond the case explored here in the context of neural development,

this study has led to us to discover an important mathematical property, universal in systems with

competing species subject to diffusion, as shown in another study [124]. This paper does not present

these formal mathematical details, but illustrates this theory with one minimalistic example that can be

precisely analyzed mathematically and simulated.

In conclusion it is demonstrated that the addition of the simple property of HP transfer integrates a

local Turing’s mechanism within the PI model first proposed by Wolpert and provides a very parsimonious

model for the formation of precise and stable boundaries.
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Figure 4.1: Different Models of cell differentiation: Pure gene competition with small diffusion in the ab-

sence of spatial cues classically yields to Turing patterns composed of unpredictable abutting territories,

while the PI model shows a fixed global patterning driven by the morphogen gradients but with impre-

cise salt-and-pepper boundaries. The combination of the two phenomena yields precise and predictable

patterning.

4.2
Model

We propose a model that takes into account the basic mechanisms at play during neuroepithelium

development when different combinations of genes are expressed in abutting differentiating domains,

including HPs, that dictate the morphological and functional fate of territories [91].

The simple and parsimonious model that we propose considers that the differentiation between two ar-

eas A and B is driven by the dynamical competition between the expression of two homeogenes associated

to distinct HPs: TA and TB. Three important processes propel this mechanism:

1. The presence of one or several morphogens forming gradients along the developmental axis.

2. The competition between the different HPs through autocatalytic activation and reciprocal inhibi-

tion

3. The activity of non cell-autonomous HPs captured from the closest neighboring cells (up to three

cell ranks) through extracellular diffusion.

As the neuroepithelium develops, epigenetic phenomena take place and modify the homeogene expression

repertoire by favoring those that are the most expressed. Eventually, a classical self-limiting process such

as saturation within the cell imposes a plateau to gene expression.

All these phenomena provide a well-defined equation for the evolution in time of the HPs in each cell.

We provide the detailed mathematical model in the following section. Overall, the model qualitatively
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depends on only three effective parameters that are the ratio of (i) the autocatalytic activation rates (ii)

the saturation/inhibition rates and (iii) the extracellular diffusion rates.

4.2.1 Theoretical Description

The model describes the time evolution of the quantities TA and TB in a spatially extended neural

tissue composed of N differentiating cells. Their dynamics is the result of cell-autonomous mechanisms

and non cell-autonomous diffusion. Specifically, they satisfy the equations:

Time Evolution Cell-autonomous mechanism Diffusion

d

dt
TA DA(FA(x) + gATA)− sATA(TA + TB) σA△TA

= +
d

dt
TB DB(FB(x) + gBTB)− sBTB(TA + TB) σB△TB

where FA and FB represent the effect of the external cues (morphogen gradients) on the expression of

TA and TB.

Cell-autonomous HP competition

The expression of the genes is the result of the competition between the expression of the two combina-

tion of genes modulated in our system by gene expression capacities DA and DB that evolve according to

epigenetic mechanisms that we discuss below. We take into account the following phenomena (described

for one combination of gene, A, the same phenomena being considered for B):

⊲ Morphogens stimulates TF expression:

d

dt
TA = DAFA(x).

The quantity FA(x) denotes the rate of production of TA induced by the morphogen on cells at

location x. It is a monotonic function along developmental axis (gradient direction of the mor-

phogen).

⊲ The auto-inducer properties of TFs are taken into account by considering that TA stimulates its

own expression with a positive rate gA. This intensity is modulated also by the gene expression

capacity DA

TA → TA + TA ⇒ d

dt
TA = gADATA.

⊲ The cross-inhibition properties imply that the presence of TB inhibits the expression of TA causing,

in the cell, a decrease of the production rate of TA at a certain rate sA. The simplest way to express

this competition is to write:

TA + TB → ∅ ⇒ d

dt
TA = −sATATB and

d

dt
TB = −sBTATB.
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⊲ Finally, saturation of the number of proteins inside the cell is taken into account by considering

that the rate of production of the species decreases when TA exceeds a certain level. We choose

here the logistic saturation law classical to ecologists:

d

dt
TA = −s′ATA(1− TA).

These equations characterize the expression dynamics within a cell. All phenomena requiring gene

expression occur at a rate that is scaled by a coefficient D A taking into account the epigenetic phenomena.

This coefficient accounts for the fact that the more one combination of gene is expressed, the more likely

it is to be expressed. This facilitation-inhibition of the transcriptional activity results in the fact that

DA is an increasing function of TA and decreasing function of TB:

DA = G(TA, TB)

where the map G is such that, by convention:

G(0, y) = 0, G(+∞, y) = 1.

In this scaling, DA = 1 corresponds to a maximal expression activity and DA = 0 to no gene expression

at all.

Non cell-autonomous transfers

In addition to the cell-autonomous mechanisms, and given that homeoproteins are endowed with direct

non-cell-autonomous properties, we include in the set of equations what we called a diffusion operator △.

From a modeling viewpoint, we incorporate in the dynamics of TA and TB the ability of being transferred

to neighboring cells. To emphasize this very local mechanism, we limit this diffusion to one cell in all

directions. In detail, the time evolution of the transcription factor level TA(x) within the cell at location

x is added a nonlocal term corresponding to the exchange of transcription factors from and towards the

set of neighboring cells ν(x) (the number of neighbors is denoted |ν(x)|):

d

dt
TA(x) = σ TA(x, ν(x)) :=

(

− |ν(x)|TA(x) +
∑

y∈ν(x)

TA(y)
)

.

In other words, TFs have the ability to be transferred to all neighboring cells at a rate σ (the intensity

in time of the transfer), creating outward inward fluxes.

4.3
Results

The problem of boundary formation and stability consists in determining (i) whether the piece of

neural tissue clearly splits into separate regions in which cells either express TA or TB and (ii) the site

where this partition takes place as a function of initial conditions and the stability of the boundary

position upon random parameter variations.
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Figure 4.2: Schematic description of the model of neural differentiation: TF synthesis is driven by external

morphogens organized along gradients (that form through diffusion from different morphogen sources)

and by the dynamical competition of gene expression. Diffusion of HPs to the nearest neighboring cells

take into account the non cell-autonomous transfer properties.

4.3.1 Ambiguous boundary in the absence of non cell-autonomous processes

In the absence HP diffusion, the behavior of each cell is governed by an autonomous equation (inde-

pendent of the behavior of the other cells) that depends on the local concentration of morphogen. Within

each cell, homeogenes compete for expression, and the outcome of this process is that the “winner-takes-

all”: one TF will be expressed at the expense of the other that eventually disappears. The differentiation

of a cell into A or B depends on their position within the morphogen gradient. We demonstrate in the

Supplementary Material that in the regions where the expression of one HP (say, TA) is highly promoted

by the morphogen gradients, the cells can only differentiate into type A : morphogens “select”, in these

regions, the winner. However, in the regions of intermediate concentrations of morphogen, the cells can

differentiate into A or B, and the fate of one cell is governed by initial concentrations of HPs and the

transcriptional noise. In other words, there exists a non-trivial set of morphogen concentration levels

in which the system has a stochastic patterning. In a differentiating tissue, the region corresponding to

these morphogen concentrations is ambiguous: the system displays an exponential number of possible

stable differentiated states1.

The sensitivity of the differentiation process within the ambiguous region leads, in physiological noisy

conditions, to an unpredictable patterning, and a vast majority of the solutions displays an alternation

between the two cell types, precluding the definition of smooth boundaries between cells but rather leading

to a salt-and-pepper pattern. In the absence of additional processes leading to cell reprogrammation,

migration or death [91], this salt-and-pepper regime is ubiquitous (see Supplementary Material). This is

a property of a wide class of abstract models of cell differentiation where systems of competing species

yield two winner-takes-all states which, except in extremely fine tuned situations, do not change stability

exactly at the same points in space, and hence are generally both stable in a region of space defined as

ambiguous.

1If there are k cells in the ambiguous region, each cell can be of type A or B independently, therefore the total number

of possible solutions is equal to 2k
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Figure 4.3: Ambiguous boundary in the absence of non cell-autonomous processes. Simulations of the

system with distinct initial conditions (top row) in the absence of HP diffusion σA = σB = 0. For each

point, the combination of levels of morphogen gradients either corresponds to univocal or ambiguous

region (see Appendix and the bifurcation diagram in Supplementary figure 4.7). We chose a simple

two-dimensional square topology to illustrate the phenomenon with gA/gB = 1 and sA/sB = 1 unitary

parameters and linear morphogen gradients. (top) From left to right: random initial values; structured

initial values with a small predominance of TA in a centred square; and a large predominance of TA

(close to the steady state) in a rectangle that exceeds the ambiguous region. (bottom) End-state of the

differentiation process: two differentiated regions emerge with a fuzzy interface; when the initial condition

shows a small predominance of TA, a clear bias in this region to A type is found and salt-and-pepper

interface persists. Important predominance of TA leads to a differentiation of all cells in the region into

A-cells within the ambiguous region. Salt-and-pepper boundary persists away from the region of high

initial TA.

This is clearly visible in the numerical simulations of a two-dimensional tissue in figure 4.3 in the two

cases, the initial randomness persists in the final state, and the overall shape of the domain dramatically

depends on the choice of the initial condition. In all cases we indeed observe the salt-and-pepper type of

boundary due to the randomness in the initial condition. In order to illustrate this sensitivity to noise

and initial concentrations, we present three examples either presenting no specific initial pattern, or an

initial partially or fully differentiated pattern. The end state of the differentiation process always show

an imprecise boundary, and we can see the dramatic dependence on the initial condition with, in the

three cases, a patterning that is globally very distinct.

All in all, it can be concluded that in the absence of HP diffusion, different steady state solutions

appear and remain stable, the differentiated domains are highly irregular and subject to fluctuations
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upon variation of the initial conditions and parameters.

4.3.2 Unpredictable patterns in the absence of morphogen gradients

We now discuss the behavior of a differentiating tissue within which molecular species diffuse but in the

absence of positional information given by morphogen gradients. Turing was the first to suggest that the

diffusion of self-activating and reciprocal inhibitor elements is at the basis of boundary formation [155]. In

order to support pattern formation, the original Turing model makes the assumption that an additional

molecular species plays a catalytic role on the expression of both of A and B. This molecular species

contrasts with the graded expression of the different morphogens of the PI model on at least two aspects:

it has a no spatial source and therefore does not define any preferred place in space for one specie to be

expressed, and it promotes the expression of both A and B.

A major mathematical finding in this model is the now-called Turing's instability: when the rates of

diffusion of the two species are very different, several homogenous “winner-takes-all” abutting territories

emerge at random places (the leopard spots, see figure 4.1). The patterns so generated are unpredictable:

they are highly sensitive to noise and initial conditions.

In our model, one can consider HPs as Turing’s self-activating and reciprocal inhibitor species, and the

morphogen showing a graded expression along the differentiating pluricellular tissue (central in Wolpert's

French Flag model) plays the role of Turing's catalytic species. But it no more has a spatially homogeneous

concentration. Its graded monotonic expression will stabilize the Turing patterns, leading to regular,

predictable and highly reproducible boundaries between distinct “winner-takes-all” abutting territories,

as we now show.

4.3.3 Precise patterning for competitive systems with spatial cues and HP

diffusion

From the two above sections, we conclude that HP diffusion in the absence of morphogen gradients

(Turing) leads to unpredictable patterning with clearly defined boundaries, while the presence of spatial

cues (positional information) in the absence of HP diffusion (Wolpert) yields to a patterning predictable

“at large” but with imprecise boundaries. Our model combines both spatial cues (external morphogen

gradient) and HP diffusion across cell membranes. The classical morphogen in the Wolpert’s definition

(e.g. Shh) creates zones of expression of distinct HPs (the French Flag) with blurred and unstable bound-

aries and HPs are now locally diffusing secondary morphogens in the Turing’s definition (self-activation

and reciprocal inhibition). These two processes, when combined, lead to smooth and predictable pattern

formation and the location of the boundary is very robust to random fluctuations of the initial conditions

and parameters, even at very low diffusion levels. This is a surprising property of the equations. Indeed,

this stabilization takes place for arbitrarily small values of the diffusion constants, meaning that most

solutions present in the case σA = σB = 0 disappear in favor of a unique solution with precise front
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location. This stabilization property is mathematically demonstrated in our study on general models of

competitive-type systems driven by monotonic gradients [124].

In order to illustrate this phenomenon, simulations of the system are provided in figure 4.4. For the

sake of consistency with the biological problem, we performed the simulations adopting the topology of

a neural tube. Two sources (representing Shh and BMP for instance) are fixed at the floor plate and

roof plate respectively, and free diffusion was simulated to form the gradients. The BMP source was

arbitrarily chosen stronger than the Shh source (ratio 3:2), and initial HP concentrations were chosen

close to zero, with small fluctuations across different cells. In the absence of diffusion emerges a noisy

boundary consistent with the previous analysis. But even a very small diffusion leads to a dramatic

stabilization and regularization of the boundary, at a location that depends only on the parameters of

the system (strength of the gradients and intensities of the reactions) but not on the choice of the initial

conditions (see Supplementary material).

This dramatic regularization and stabilization of the boundary position is a direct consequence of

HP local diffusion (see figure 4.4, right). First, in contrast with the cell autonomous situation, diffusion

prevents the persistence of small isolates of one cell type, say B, within a large domain of the other

cell type, say A. Would such an isolate appear, diffusions of TB and TA (out and into the isolate,

respectively) would rapidly translate into a “TA-takes-all” situation. In addition to forcing isolated cells

to adopt the identity of their dominant neighbors, HP diffusion also contributes to the determination

of a highly conserved boundary position between territories A and B, even for a large range of initial

conditions. Indeed, as in the cell autonomous situation, the regions of high morphogen concentration

rapidly differentiate into A or B type, thus anchoring the differentiation of the field at both of its

extremities. Closer to the future boundary, HP diffusion extends the competing domains until the two

fronts meet, resulting into continuous and monotonous TA and TB gradients. Then local competition

based on HP local diffusion and the ability of the two HPs to self amplify and to repress each other, will

settle a smooth boundary along the level sets of the morphogen gradients.

4.3.4 Stability of the front

In physiological conditions, several phenomena may occur and perturb the position of the front. An

important source of variability comes from the heterogeneity of the cell population, and in particular

from the fact that the characteristics of gene expression vary from cell to cell. Moreover, noise can

arise from cell division, cell death and random movements of the cells that modify the sensed value of the

morphogens, which may join their effects to perturb the position of the boundary. Actually, the boundary

location predicted in the idealized model proves surprisingly resilient in all these situations, as we now

illustrate.

In order to quantify the sensitivity of the boundary location to the heterogeneity of the cell population,

we investigated the effect of having heterogeneous rates of self-activation and inhibition between TFs (i.e.

varying from cell to cell). These two parameters completely characterize gene expression in a given cell in
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Figure 4.4: Precise patterning for competitive systems with spatial cues and HP diffusion. (left) Simula-

tion of a model of neural tube with Shh (floor plate) and BMP (roof plate) morphogen sources. Gradients

formed through diffusion of morphogens, and gA/gB = 1 and sA/sB = 1, and symmetry is broken by

considering a BMP gradient larger than Shh (ratio between BMP and Shh 3:2). In the absence of HP

diffusion salt-and-pepper boundary is found while the presence of HP diffusion (σA = σB = 10−2) makes

the boundary sharp, precise and smooth. Phenomena ensuring this stabilization and regularization only

rely on HP diffusion, even limited, and are heuristically depicted on the right: misplaced cells or irregular

boundaries will evolve according to the influence of their neighboring cells to yield the unique possible

outcome of the differentiation process.

our cell. We considered for instance these rates randomly chosen according to a normal distribution with

mean g = 1 and different standard deviations λ (see figure 4.5). The end-state for λ = 0.05 is displayed

in figure 4.5 (left) superimposed with the end-state in the homogeneus case λ = 0 (dashed line). We can

observe that even if the precise concentration levels in the different cells are modified compared to the

homogeneous predicted solution, the position of the front barely changes. This is due to the very sharp

drop of concentration across the boundary. We quantified this stability by looking at the distribution of

the front location for 500 independent realizations. The histograms of the front location are displayed in

figure 4.5 (right) for different values of the heterogeneity level. Even for large values of the heterogeneity,

the position of the front is conserved relatively precisely. For instance, for a noise on the coefficients

of λ = 0.05, the front position is barely modified (maximal displacements of 2 cells), and for λ = 0.2,

though the solution appears relatively different from realization to realization, the front location remains

relatively stable, with maximal errors of 10 cell ranks (on a total of 100 cells).

Cell division occurring during development may also result in variations in the position of the bound-

ary. In order to investigate this effect, we simulate the system with a variable N that randomly depends

on time. N is set to 100 at initial time, and we consider that one new cell appears as a Poisson process

(i.e. cell division occurs at independent exponentially distributed times). When a cell divides, it shares

its contents (number of TFs TA and TB) between the two new cells which conserve the same epigenetic

marks as the mother cell, here transcription intensities DA and DB. A typical trajectory of the front is
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Figure 4.5: Stability of the boundary: one-dimensional field made of 100 cells, diffusion constants σA =

σB = 10−4 and linear gradients: (left) Stationary solution of the neural differentiation process with

constant unit values of gA and gB, or heterogeneous values centered at 1 with a variance of 0.2 (20%)

(right) Histograms of boundary positions for 500 realizations of the process, for heterogeneity level of

100% (variance 1, center) or 20% (right).

depicted in supplementary figure 4.11. Numerical results show that the position of the boundary is barely

modified by this process: transient displacements of the boundary that may arise when divisions occur

close from the boundary are rapidly overcome, as visible in Supplementary movie 4.6. The stability of the

boundary location upon variations of morphogen activity (parameters FA and FB) was analyzed in order

to account for possible random movements of the cells and fluctuations of the environment (e.g. random

arrival of morphogen molecules at their target and readout noise, see [68]). Again, the front remains

stable with time, varying at most of a few cell ranks even for large values of the noise (see figure 4.11).

4.4
Discussion

In this paper we describe a parsimonious model for the formation of boundaries within an epithelium.

It is in the spirit of the seminal paper where Lewis Wolpert proposed, almost 50 years ago, the French Flag

Model (FFM) to explain boundary formation and, in many ways, it extends this model [164]. We started

with the idea that the compartments created by a diffusing morphogen as in the FFM are marked by the

expression of secondary morphogens (not morphogens in the presently most accepted term, but in the

sense coined by Turing) of the HP transcription factor family and introduced two hypotheses: first, that

HPs diffuse locally between cells; second, that HPs on either side of a boundary activate themselves and

are reciprocal inhibitors (at the transcription level). HP diffusion was indeed demonstrated in a number

of biological systems and situations [27, 28, 46, 138, 139, 141, 143, 163, 92, 114, 168]. In addition, the

sequences responsible for HP secretion and internalization are highly conserved between HPs, supporting

the idea that most HPs are local “Turing” morphogens. The second hypothesis is also supported by

a large number of experiments and illustrated by the fact that genetic gain or loss of function of one
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Figure 4.6: Supplementary Movie 1: Random cell division and stability of the front. Cells divide with

a frequency of one per unit time, and the two child cells share the content of the mother cell. While

concentration locally changes where cells divide, the front remains stable.

of the two “abutting” HPs results in a shift in boundary position [109, 119, 120, 126, 148, 169, 43].

From the mathematical standpoint, the phenomenon of disambiguation and stability of the boundary is

relatively surprising, since for arbitrarily small values of the diffusion constants, most solutions present

in the case σA = σB = 0 (no HP diffusion) disappear in favor of a unique solution with precise boundary

location. The characterization of similar phenomena in partial differential equations (PDE) in the small

diffusion limit is a very interesting mathematical problem and constitutes an active field of research [9].

It is actually possible to prove that in the continuous limit, the viscosity solutions of this equation (i.e.

asymptotic solutions in the limit where the diffusion tends to zero) present a unique and perfectly defined

boundary.

Our model requires only 3 molecules to form a boundary (one graded morphogen and two HPs). It

is thus as parsimoniously as the FFM, while avoiding the introduction of explicit thresholds. Its main

advantage is that the robustness of the positioning of boundaries is highly increased by the diffusion

and reciprocal inhibition HP properties. Our model can also be compared to that proposed by Turing in

1952 [155]. Indeed, HPs can be considered as morphogens in the sense of Turing because they amplify their

own expression, are reciprocal inhibitors, and have non-local properties. However, in the reaction-diffusion

Turing’s model, boundaries appear in a morphogenetic field due to dynamical instabilities arising when

the rate of diffusion of the two species in competition are sufficiently different. The mechanisms by which

a biological system could be composed of species with very different diffusion constants are still largely

unknown. Moreover, when Turing instability forms a pattern, the boundary location is unpredictable.
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In sharp contrast, our model forms regular and predictable patterns regardless of the respective value of

the diffusion of the two species. In other words, the diffusivity of the species in competition do not need

to be different to form a boundary, and moreover, the boundary forms at a precise position and remains

stable under variations of the initial conditions and fluctuations of parameters.

By putting aside the ability of HPs themselves to form a gradient through their iterative induction

across a large territory that was considered recently [76, 85], we have been able to base our developments

only on solidly established data and to neglect several parameters, thus giving direct access to the

comparison with the models proposed by Turing and Wolpert. If we think of other models, such as those

proposed by Hans Meinhardt, by concentrating on HP local diffusion we could also make the economy

of the long range inhibition hypothesis [105, 106, 107, 108]. Indeed, our model does not preclude that

such long range inhibitions take place, but does not need it in a first place. Other studies have proposed

that bistable dynamics could be the source of reliable patternings [98]. Their model is somewhat simpler

in that it only considers auto-activation (and ignores cross inhibition) and the presence of a long-range

gradient. But the cells no more respond monotonically to gradients: they have a more complex nonlinear

dynamics, which, in a certain range of values of the morphogen gradient, can differentiate into different

populations. This bistability is naturally built in our model and emerges from the competition between

the two species. Yet, in the absence of diffusion, any bistable system bears ambiguity on the patterning:

the boundary will in particular depend on the initial condition (as in our system in the absence of

diffusion). However, similarly to what we showed here, adding a diffusion term in bistable models such

as [98] would allow stabilizing the boundary.

This is actually a deep mathematical property. From the mathematical viewpoint, the problem of

neurodevelopment in the presence of diffusing HPs is one of the seldom examples in which biology led

to discover a universal mathematical property. Motivated initially by the mechanism of gene expression

described here, we demonstrated that all competitive systems in the presence of monotonic cues yield the

formation of a stable and regular boundary between two abutting domains, and that this property is valid

even at arbitrarily low levels of diffusion [124]. This mathematical result, beyond applications to other

domains, has major implications from the biological viewpoint. Indeed, it ensures that the phenomenon

of reliable pattern formation does not depend on the details of the model under consideration, but only

on a few qualitative properties that are very natural in the context of neurodevelopment.

Because HPs are very ancient molecules present in all phyla [42] and since transduction takes place

in plants and animals, it is speculated that this mode of signaling was operating in the first multicellular

organisms. In that sense it may have preceded other signaling mechanisms based on classical signal-

ing entities (e.g. growth factors and their receptors) and pathways. Indeed, reminding of the Bicoid

case [51, 102, 132] it was shown that internalized HPs could regulate local translation [2, 141, 168]. The

recruitment, later in the evolution of multicellular organisms, of classical signaling pathway is likely to

have added robustness to the formation of territories and to other functions involving HP transduction.

For example, it was shown that the patterning of terminals from the retinal ganglion cells within the

tectum/superior colliculus depends on an interaction between Engrailed HP and Ephrin/Eph signal-
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ing [141, 163]. How HP and classical signaling pathways have evolved in parallel and in interaction is of

the highest importance to understand the morphogenesis of multicellular organisms and its evolution. In

that context, proposing a parsimonious mechanism is a first step in the further analysis of these complex

phenomena.

4.5
Appendix A: Supplementary material

In this supplementary material we provide the details of our mathematical model and the mathemat-

ical development supporting our results. We also provide further investigations of the stability of the

boundary location between two differentiated domains in noisy situations and details on the hypothesis

that led us to the proposed equations.

4.5.1 Mathematical Model

The general model of neurodevelopment

The model that we study is a particular example taking into account the three cell-autonomous

processes of competition and saturation. The properties demonstrated on this particular model actually

extend to a wide class of models that can be written as:






∂tTA = TAHA(x, TA, TB),

∂tTB = TBHB(x, TA, TB),

(4.5.1)

under the following assumptions on the production rates HA and HB:

⊲ External gradients are incorporated by assuming that the map x 7→ HA(x, TA, TB) is monotonic

along a gradient direction, and the map x 7→ HB(x, TA, TB) has the inverse monotonicity. We

assume HA,B(x, TA, TB) ≥ 0.

⊲ Competition: ∂TBHA(x, TA, TB) < 0 and ∂TAHB(x, TA, TB) < 0

⊲ Saturation: for any (x, TB), there exists a maximal concentration z such that for any TA >

z,HA(x, TA, TB) < 0 (and similarly for HB).

These abstract equations are studied in [124].

Stationary solutions

The problem of boundary formation and stability consists in the determination of (i) whether the

piece of neural tissue clearly splits into separate regions in which neurons either express TA or TB and

(ii) the spatial position where this partition takes place and the stability of that boundary as a function

of initial conditions or upon random variation of the parameters. To this end, the first step consists in

characterizing stationary states of the equations (1)-(2). These are the solutions that do not depend on
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time (they are sometimes called equilibrium solutions). A stationary solution is said to be attractive if the

system converges towards it for some initial conditions, and stops evolving. This is why these solutions

have a major interest: they represent the possible stable outcomes of the differentiation process. In

particular, if there exists a unique stationary solution, which is attractive, then differentiation leads to a

unique differentiated state, whereas if there exist multiple stable equilibria, the differentiation process is

ambiguous. The equilibria do not evolve in time. They are therefore solutions to the equations:






0 = σA△A+G(TA, TB)
(
FA(x) + gATA

)
− sATA(TA + TB),

0 = σB△B +G(TB, TA)
(
FB(x) + gBTB

)
− sBTB(TA + TB),

(4.5.2)

where we used the fact that necessarily the stationary solutions satisfy DA = G(TA, TB) and DB =

G(TB, TA). Equations (4.5.2) constitute a set of 2N algebraic equations. Solving this system is not

possible analytically, even in the continuous limit N → ∞ where the problem becomes a nonlinear

PDE with non-homogeneous coefficients. However, in the cell autonomous case (σA = σB = 0), the

characterization of steady states appears much simpler.

4.5.2 Stationary solutions in the cell autonomous case

In this section we describe the stationary solutions of system (4.5.2) in the zero diffusion limit (σA =

σB = 0). This corresponds to the case where transcription factors do not diffuse across cell membranes.

From a mathematical viewpoint, this assumption uncouples the equations corresponding to the different

cells, and the system is reduced to a set of N independent ordinary differential equations in dimension

2. Stationary solutions are subject to the following:

Proposition 4.5.76. The stationary solutions of equations (4.5.2) in the zero diffusion limit (σA =

σB = 0) are:

⊲ The trivial solution TA = 0, TB = 0, which is always unstable whatever the parameters are,

⊲ TA = 0 and TB = T x
B ≥ 0, given by

T x
B =

√

(gB − sB)2 + 4sBFB(x) + (gB − sB)

2sB
. (4.5.3)

This fixed point is stable if and only if FA(x)−sATB(1+TB) < 0, i.e.when the gradient concentration

is small enough compared to the saturation term.

Heuristic interpretation of Proposition 4.5.76

In our model, as well as in the general model, if no TF is present, the system does not evolve because

the genetic efficacy prevents from synthesizing TFs. This is an unstable equilibrium: since the morphogen

concentrations are always strictly positive FA(x) > 0 (or in the general model, because of the assumption

made on HA(x, 0, 0)), the system will always leave the trivial equilibrium meaning that this is not a stable

solution.
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Two differentiated states appear: they correspond to a case where one of the species does not exist at

the advantage of the other. Assuming for instance TB = 0, one can find at least one equilibrium solution

for TA since the map HA(x, TA, 0) is positive for TA = 0 and negative for TA large enough (saturation

hypothesis). A stable equilibrium therefore necessarily exists on the line TB = 0. This can be stable or

unstable depending on the competition between maintaining TA at a high level and keeping TB at a low

level, which is possible when the morphogen gradient is strong enough.

Remark 4.5.77. Rigorously, the system has an additional fixed point, but it is irrelevant for our biological

purposes since it corresponds to negative concentrations. This fixed point will never be reached when

starting from acceptable initial conditions, i.e. for positive initial values of TA and TB, because trajectories

never cross the axes TA = 0 or TB = 0. Moreover, there exists only one additional stationary solution

(T ∗
A, T

∗
B) > 0 in the parameter regions where both (0, T x

B) and (T x
A, 0) are stable, but it is unstable. Since

this is a non-reachable solution, we do not prove its existence: this state will never be reached in the

simulations.

Proof of Proposition 4.5.76. In order to demonstrate the proposition, we need to find all solutions to the

pair of equations






TA

1+TA+TB

(
FA(x) + gATA

)
− sATA(TA + TB) = 0,

TB

1+TA+TB

(
FB(x) + gBTB

)
− sBTB(TA + TB) = 0,

and for each solution, find the eigenvalues of the Jacobian matrix at this point. The fixed point is then

stable if and only if all eigenvalues have a negative real part.

It is clear that TA = 0 always solves the first equation and TB = 0 the second equation. The trivial

fixed point TA = 0 and TB = 0 is therefore a solution of the system, and the Jacobian matrix at this

point is diagonal, with eigenvalues FA(x) and FB(x) which are both non-negative, hence this fixed point

is always unstable. Assuming TA = 0 only, there exists an additional solution to the system satisfying

the quadratic equation:

(FB(x) + gBTB
)
− sBTA(1 + TB) = 0, (4.5.4)

which always has a unique non-negative solution given by (4.5.3). The Jacobian matrix at this point is

triangular, and the diagonal elements hence correspond to the eigenvalues of the matrix. One of these

eigenvalues is given by:

λ1 = −gBT
x
B + FB(x)

(1 + T x
B)

2
+

T x
B

1 + T x
B

gB − 2sBT
x
B,

which can be simplified, using equation (4.5.4), into

λ1 = − 1

1 + T x
B

(FB(x) + s2B),

and it is therefore always negative since FB(x) and s
2
B are positive. The second eigenvalue is given by:

λ2 =
FA(x)

1 + T x
B

− sAT
x
B =

1

1 + T x
B

(FA(x) −
sA
sB
FB(x)

which can be either positive or negative depending on the parameters. If FA(x) is large enough, we can

see that the fixed point is unstable.
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Supplementary figure 4.7 illustrates this proposition by showing, for a specific type of combination of

FA(x) and FB(x), the location of the different equilibria and their stability. It shows the presence of a

bistable region, formally corresponding to the conditions:

FA(x)− sATB(1 + TB) < 0 and FB(x)− sBTA(1 + TA) < 0.

This bistable regime is at the origin of the indeterminacy of the boundary. This is a general property of

models of differentiation, as noted above.

We complement this analysis by providing, for a fixed location inside the cell field (this is nothing

but to fix a value of x and evaluate the morphogen gradients FA(x) and FB(x)), a picture of three phase

planes of system (4.5.2) in Supplementary figure 4.7 (bottom). The phase plane (TA, TB) represents how

variables evolve according to the dynamics, and we show a few typical trajectories.

The stationary solutions of the system (4.5.2) are represented by blue and red squares. A given tra-

jectory converges towards one of the equilibria depending on the initial condition. We have computed

the basin of attraction of each equilibrium: any trajectory with initial condition in the blue region will

converge to (0, T x
B) and will therefore differentiate into a B-type cell and any trajectory with initial condi-

tion in the pink region will converge to (T x
A, 0) and differentiate into a A-type cell. The attraction basins

depend on the concentrations of morphogens. If there is an imbalance between the two concentrations,

the promoted specie has a larger attraction basin.

4.5.3 Uniqueness of the front in the presence of HP diffusion

We now discuss uniqueness and stability of the front in the presence of HP diffusion. We start with

mathematical considerations before turning to the numerical confirmation of this result and the testing

of its robustness.

Existence and Uniqueness of a front at arbitrary low diffusion levels

The rigorous mathematical proof that there exists a unique well defined front for the general model

(4.5.1) or for the particular model analyzed here is much more complicated. This is the topic of a

companion paper [124], which deals with the general problem. In that paper, we demonstrate that under

a few hypotheses, all very natural to the neuronal differentiation process, there exists a unique solution

to the differentiation process. This solution persists (and sharpens) even in the limit of infinitesimal

diffusion. A case very close from the model under consideration here is treated also in that contribution.

Uniqueness of the front

We simulated the system with small diffusions by varying initial conditions (over 100 of experiences

varying all parameters and initial conditions) and found no dependence of the stationary solution on the
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Figure 4.7: Stationary stable solutions in Proposition 4.5.76 and examples of the attraction basins of the

stable equilibria for three different concentration of morphogens. In this example we consider all constant

equal to 1 and linear gradients FA(x) = x, FB(x) = 1 − x. (top) Representation of the solutions T x
A

(in red) and T x
B (in blue). Solutions are depicted in solid line when they are stable and in dashed line

otherwise. The grey zone corresponds to the ambiguous region mentioned in the main text. Notice that

in that region both solutions are stable with different attraction basins. (bottom) Attraction basins for

the solutions for: (left) FA = 0.1, FB = 0.9. In this case the respective solutions given in Proposition

1 are represented by a red square T x
A, and a white square T x

B; since the solution in B is unstable, any

initial condition goes to (T x
A, 0). (center) FA = 0.4, FB = 0.6, both solutions are stable and represented

by a red and a blue square for T x
A and T x

B respectively; the space is split in two attraction basin colored

in soft red and blue. (right) FA = 0.9, FB = 0.1, the same interpretation of the (left) figure holds but

interchanging the roles of T x
A and T x

B.
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Figure 4.8: Shape of the end-state solution for a one-dimensional tissue for distinct initial conditions

show no fluctuation of the profile (and therefore of the boundary) upon variation of the initial condition,

but it does depend on the parameters of the system.

initial condition as soon as local HP diffusion is considered (σA, σB > 0 arbitrarily small, on the simula-

tions they are of order 10−4. In order to confirm the apparent identity between stationary states reached

from different initial conditions (as plotted in figure 4.3 of the main text), we computed the interface

position for 100 different initial conditions for two set of parameters: (gA, gB, sA, sB) = (1, 1, 1, 1.5) and

(gA, gB, sA, sB) = (1, 1.2, 1, 1). For any set of parameters, the steady state was always the same (see

Supplementary figure 4.8). We also performed simulations for the square model considered in figure 4.3

of the main text, and as predicted by the theory we find no difference between the end-states for the

different initial conditions chosen that did lead to distinct end-states in the absence of diffusion. As the

theory predicts, the position of the boundary does not depend on the initial conditions of the system, but

only on the parameters of the system: rate of the diffusion coefficients and the shape of the morphogen

gradients.

Reliability of the boundary location

In order to test the robustness of the front location to noise in the parameters, we intensively simulated

the system under two conditions: (i) fluctuation of the positional information, (ii) heterogeneity of the

cells rates of TF expression, (iii) cell division and cell death.

Results of (i) and (ii) appear in the main text as well as a description of (iii). Here, we complement

these results by showing, in contrast, the high sensitivity of the differentiation process in the absence of

HP diffusion. In this case, there is an ambiguity in defining a front, since the values of TA and TB may not

be monotonic and may present several intersections. In order to quantify the error on the front location,

we consider two quantities: the leftmost and rightmost intersection of TA and TB. In the absence of

diffusion, the leftmost intersection has a wide distribution (see Supplementary figure 4.10) centered at

x = 0.428 with a variance 1.5 × 10−3, and the rightmost intersection is centered at x = 0.58 with the

same variance. This is not the case when considering a small diffusion, in which case the mean value of

the leftmost front and the rightmost front differ with a relative error 10× 10−4. We observe distributions
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Figure 4.9: Shape of the end-state solution tissue for distinct initial conditions show no fluctuation of

the profile (and therefore of the boundary) upon variation of the initial condition. In two dimensions,

figure 4.3 showed that the three initial conditions chosen lead to significantly different outcomes of the

differentiation. Adding small diffusion (σA, σB = 10−4) disambiguates the process and we find the same

differentiated tissue in all three cases.

peaked at the predicted location of the front.

4.5.4 Movies

Movies of the front location in a one-dimensional neuronal tissue with gA = gB = sA = sB = 1 in

the presence of random cell division and death or in the presence of stochastic variations of the sensed

concentration of morphogen FA and FB .

The process of cell division is explained in the main text. Stochastic variations of the sensed con-

centration of morphogen were modeled by considering that the effective values of the parameters FA(x)

and FB(x) are stochastic processes (i.e. randomly evolving in time), modeled as an Ornstein-Uhlenbeck

process. In detail, we consider:

FA(x) = F ∗
A(x) + ξA(s, t) and FB(x) = F ∗

B(x) + ξB(s, t)

with F ∗
A(x) and F

∗
B(x) being the mean profile of morphogen gradient and ξi(x, t) the noise at location x,

modeled as a set of independent processes solutions of the equation:

dξi(t) = −ξi(t) dt+ λdW I
t (x),

where (WA
t (x)) and (WB

t (x)) are a collection of independent standard Brownian motions.
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Figure 4.10: Leftmost and Rightmost intersection between TA and TB in the absence of diffusion (a-b)

or in the presence of small diffusion (c-d) σi = 10−3: histograms over 200 simulations with random

gA(x) and gB(x) drawn independently for each cell with a uniform distribution with variance 0.5. Red

curve indicates approximately the shape of the distribution of the rightmost intersection in the absence

of diffusion and is reported, in dashed line, on the histogram of leftmost intersections.
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Figure 4.11: Stability of the boundary with random cell division or stochastic morphogen concentration

fluctuations. Position of the front as a function of time. Cell division occurred at rate 1 (left) and

variance of the morphogen gradient fluctuations are 20% of the maximal value (right). The front globally

shows a smooth convergence towards a fixed value with small displacements due to the random phenomena

considered. The pink boxes represent cell boundaries. In both simulations, the interpolated front remains

within a single cell.
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Chapter 5

Competition and boundary

formation in heterogeneous media:

Application to neuronal

differentiation

In this chapter we analyze an inhomogeneous system of coupled reaction-diffusion equations rep-

resenting the dynamics of gene expression during differentiation of nerve cells. The outcome of this

developmental phase is the formation of distinct functional areas separated by sharp and smooth bound-

aries. It proceeds through the competition between the expression of two genes whose expression is

driven by monotonic gradients of chemicals, and the products of gene expression undergo local diffusion

and drive gene expression in neighbouring cells. The problem therefore falls in a more general setting

of species in competition within a non-homogeneous medium. We show that in the limit of arbitrarily

small diffusion, there exists a unique monotonic stationary solution, which splits the neural tissue into

two winner-take-all parts at a precise boundary point: on both sides of the boundary, different neuronal

types are present. In order to further characterize the location of this boundary, we use a blow-up of the

system and define a traveling wave problem parametrized by the position within the monotonic gradi-

ent: the precise boundary location is given by the unique point in space at which the speed of the wave

vanishes.

This paper is included in [124] written in collaboration with B. Perthame and J. Touboul to appear

in M3AS.
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5.1
Introduction

In this paper we undertake a rigorous mathematical analysis of the boundary formation in a

model of developing tissue. Our motivation can be traced back to the work of Alan Turing in the middle

of last century, that lead to his celebrated theory of instabilities [155]. In his paper, Turing proposed,

before substantial knowledge about the development and maturation of living systems was acquired, that

the determination of territories was the result of the competition between different chemical substances,

he called morphogens, that were reacting together and diffusing, in the presence of a third specie which

acts as a catalyst on the expression of both species. In a certain regime of diffusion, these equations yield

what we now call Turing patterns, that define a partition of the tissue into differentiated areas (expressing

one or the other chemical specie), whose exact shape and location are unpredictable and depend on the

initial condition.

In contrast to this indeterminacy of the boundary location in Turing’s model, morphogenesis in liv-

ing systems is an extremely reliable process. Actually, precision of the boundary location is crucial

from an evolutionary perspective, in that it ensures proper transmission of essential hereditary patterns.

Notwithstanding this qualitative distinction, several years after introduction of Turing’s model, biological

experiments validated Turing’s intuition: transcription factors (called homeoproteins) expressed in cells

during development have been shown to have self-activating and reciprocal inhibitor properties as in Tur-

ing’s theory, but moreover, where shown to have the property to exit the cellular nucleus and membrane

and enter the neighboring cells nucleus where it exerts its transcriptional properties [125, 96]. However,

in contrast to the initial Turing model, the catalyst chemical specie show a specific spatial organization:

it forms one-dimensional monotonic gradients of concentration [27]. This arrangement of catalysts along

gradients lead to the development of the french flag model (FFM) [164]. This model assumes no diffusion

of genetic material, but only all-or-none response to specific thresholds of the catalyst gradient, therefore

yielding boundary at a specific location in space. However, this model is relatively sensitive to noise and

necessitates to introduce finer mechanisms in order to ensure robustness and accuracy of the boundary

location [105, 65].

Combining both phenomena of non cell-autonomous activity (small diffusion of transcription factors,

acting as Turing morphogens) and graded expression of a catalyst (FFM-like model) lead to a recently

developed minimalistic model of boundary formation [127] reproducing in a parsimonious way both

reliability and accuracy of boundary location. This model is given by nonlinear parabolic equations with

spatially-dependent coefficients. Simulations indeed showed that in the absence of diffusion, there is no

clear separation in two regions, but even very small diffusions disambiguate the differentiation process

and lead to a clear definition of the boundary. The object of the paper is to rigorously understand

this stabilization in the regime of small diffusions. The mathematical problem we shall be analyzing is

actually much more general than the problem of neurodevelopment that motivates the study. Indeed,

systems characterized by the competition of two species that are self-activating and reciprocal inhibitor

are ubiquitous in life science, and extend to spatially extended population models, large-scale systems of

bacterias and social interactions. The particularity of the model we shall analyze, and which may occur
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in different situations in the cited domains, is precisely the presence of the non-spatially homogeneous

catalyst, producing predictable and reproducible patterns.

Due to the ubiquity of such competing systems in life science, we shall propose here a general model

supporting reliable pattern formation, and relevant to biology. To this purpose, we complete this intro-

duction by briefly exposing details on neuronal differentiation, before introducing the model we shall be

investigating and summarizing our main mathematical results.

5.1.1 Biological motivation

Let us make more precise the model we have in mind in our developments. The central question we

shall address the emergence of reliable boundaries in the developing nervous system. The neural tube in-

deed develops into a complex functional and anatomical architecture endowed with complex connectivity

patterns [129]. The size and shape of functional areas in the cortex is of primary importance: it conditions

acquisition of functions, and disruptions are associated to severe conditions, including neuropsychiatric

and cognitive disorders [156, 64]. In the beginning of this century, biologists analyzed developmental

genes transcription factors, and showed that these are endowed with non cell-autonomous activity (they

belong the homeoprotein family), thanks to two short peptidic sequences present in their DNA-binding

domain [80]. These transcription factors have the capability to exit the nucleus of the cells, leave the

intracellular medium and penetrate the nucleus of neighboring cells where they exert they transcriptional

activity. This direct signaling was experimentally demonstrated in vivo during development in the ze-

brafish [97, 163], or involved in plasticity of adult networks [17, 143, 138, 27]. The spatial extension and

rate of this process are very low: transcription factors can diffuse and reach at most three cell ranks [96],

and since the diffusion is passive, important loss reduce the effective number of transcription factors in-

volved. Notwithstanding, it was shown recently [127] in an elementary model of neurodevelopment that

even very low diffusion had major effects on the outcome of the differentiation process. Indeed, in the

absence of diffusion, there is an ambiguity in the differentiation in a specific region of the neural tissue,

which yield imprecise boundaries that are not reproducible, and sensitively depend on initial condition

and possible heterogeneity or noise, but in the presence of small diffusion, the location of the boundary

is highly reliable, and the differentiation yields a smooth boundary.

Understanding this dramatic regularization is precisely the object of the present paper. This problem

falls in the frame of the competition of two diffusing species A and B that are reciprocal inhibitor and self-

activating, with saturation and spatially heterogeneous production rates HA(x,A,B) and HB(x,A,B)

(depending on the cell location x). In the neurodevelopment problem, transcription factors expressed by

two genes GA and GB constitute our two competing species, and the space heterogeneity corresponds

to the graded concentration of morphogens. For simplicity, we shall restrict here our analysis to a one-

dimensional case1 in which the differentiating tissue is along the interval [0, 1]. A schematic version of

the model is plotted is Figure 5.1.

1Generalization to higher dimensions in situations where geometry of the space and the spatial variations along gradients

are sufficiently simple can be handled in the same manner. In [127], we propose a two-dimensional extension of this property.
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Figure 5.1: Our model describes the dynamics of two species in competition (A, pink and B, violet)

responding to monotonic resource distributions (bottom line), with reciprocally inhibitory activity and

subject to local diffusion.

5.1.2 General model and main result

The above description naturally leads to the definition of the following system of reaction-diffusion

equations: 





−εdA∆A = AHA(x,A,B), 0 < x < 1,

−εdB∆B = BHB(x,A,B),

(5.1.1)

with Robin type boundary conditions stated below.

Here HA and HB are maps from [0, 1] × R+ × R+ on R, assumed to be of class C2. Based on our

description of the phenomena, we assume that, for 0 < x < 1, A > 0, B > 0,







HA(x, 0, 0) > 0, HB(x, 0, 0) > 0,

∂xHA(x,A,B) < 0, ∂xHB(x,A,B) > 0,

∂BHA(x,A,B) < 0, ∂AHB(x,A,B) < 0,

(5.1.2)

which can be interpreted as follows: on the one hand, the morphogen gradients do not vanish and vary

monotically, on the other hand the system expresses competition between species A and B.

Because, we are interested in the limit ε = 0, the solutions of (5.1.1) in the absence of diffusion are

useful. We assume that there exists two solutions (FA(x) > 0, 0) and (0, FB(x) > 0)

HA

(
x, FA(x), 0

)
= 0, HB

(
x, 0, FB(x)

)
= 0, (5.1.3)

and that they are respectively stable for x ∈ (0, xa) and for x ∈ (xb, 1), with xa > xb, i.e., there exists a

bistable zone. It means that the linearized matrix at (FA(x), 0) have negative eigenvalues for x ∈ (0, xa).

The same holds at (0, FB(x)) for x ∈ (xb, 1). Moreover, we assume

HB(x, FA(x), 0) > 0 for x > xa > xb, HA(x, 0, FB(x)) > 0 for x < xb < xa. (5.1.4)
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The first inequality, for instance, can be interpreted as follows: for x > xa, A loses stability because

resource concentration of B overcomes inhibition from A.

Finally, we assume that there exists a unique additional solution (A∗(x) > 0, B∗(x) > 0) in the

interval (xb, xa) which is a saddle, i.e.






HA(x,A
∗(x), B∗(x)) = 0, for xb < x < xa,

∂AHA(x,A
∗, B∗)∂BHB(x,A

∗, B∗)− ∂BHA(x,A
∗, B∗)∂AHB(x,A

∗, B∗) < 0,

∂AHA(x,A
∗, B∗) < 0, ∂BHB(x,A

∗, B∗) < 0

(5.1.5)

that simply express the negativity of the determinant of the Jacobian matrix at this point:
∣
∣
∣
∣
∣
∣

A∗ ∂AHA(x,A
∗, B∗) A∗ ∂BHA(x,A

∗, B∗)

B∗ ∂AHB(x,A
∗, B∗) B∗ ∂BHB(x,A

∗, B∗)

∣
∣
∣
∣
∣
∣

< 0.

In order to complete the definition of our system (5.1.1), we need to specify the boundary conditions

considered. We are interested in solutions in which the system decomposes the domain into two separate

areas in which A or B dominate. In the limit where ε going to zero, it is therefore natural to consider

that the system is subject to Dirichlet boundary conditions, but as the diffusion coefficient increases,

loss of transcription factor through the boundary becomes increasingly prominent. These mechanisms

correspond to Robin (also called third type) boundary conditions:






A(0)−√
ε ∂

∂xA(0) = FA(0), A(1) +
√
ε ∂

∂xA(1) = 0,

B(0)−√
ε ∂

∂xB(0) = 0, B(1) +
√
ε ∂

∂xB(1) = FB(1).

(5.1.6)

At this level of generality, assumptions (5.1.2)–(5.1.5) may appear formal. These are actually very

natural, and we refer to Section 5.5.1 for a basic example where they are satisfied. They formulate

in a general fashion the elements of our problem: the first assumption expresses the existence of two

stable differentiated states at both ends of the differentiating tissue in the absence of diffusion, whose

domain of stability may overlap. In other words, in the absence of diffusion, levels of concentration of

morphogen are sufficient to support differentiated states at the boundaries of the interval, and there exists

generically an overlap between these two regions. Within this overlap (in the bistable regime), a saddle

fixed point naturally emerges between the two solutions due to the properties of planar vector fields,

and in our system, at this fixed point, concentrations of A and B perfectly balance the concentrations of

morphogen.

The main result that we will be demonstrating in the present manuscript is the fact that in the

presence of small diffusion, a clear boundary between two differentiated domains exists and is unique,

and may be characterized univocally. In detail, we shall demonstrate the following:

Theorem 5.1.78. Under assumptions 5.1.2–5.1.5, there exists a classical stationary solution (Aε, Bε)

of (5.1.1) which satisfies
d

dx
Aε(x) < 0,

d

dx
Bε(x) > 0, (5.1.7)
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and is obtained as t→ ∞ in the corresponding parabolic equation. Moreover

(i) As ε→ 0, (Aε, Bε) converges a.e. towards a pair (A0, B0). These maps are discontinuous at some

point x∗ ∈ [xb, xa] and have disjoint supports

supp(A0) = [0, x∗] and supp(B0) = [x∗, 1].

(ii) The point x∗ is characterized by the relation c(x∗) = 0 where c(·) represents the speed of propagation

of a traveling wave problem parametrized by x (see equation (5.4.23)).

This qualitative result falls in the class of free boundary problems, a well developed asymptotic theory

in the frame of homogeneous elliptic or parabolic semilinear equations and systems [37, 61, 57, 11, 12, 137].

As reviewed in [38], these results generally rely on the definition and analysis of viscosity solutions of

the resulting Hamilton-Jacobi equation. The second point of the theorem involves a traveling wave

with inhomogeneous speed. A vast literature, in particular in the domain of mathematical ecology of

competing populations, have been interested in related questions (see e.g. [160, 165]). Most applications

of this theory are related to front propagations and rules to compute their speeds and invasion properties

in homogeneous or heterogeneous environments [15]. Here, we ask a distinct question concerned with the

determination of the precise point where a transition between two stable states occurs.

Theorem 5.1.78 will therefore show the existence of monotonic solutions. The monotonicity is a

consequence of analogous properties of the equilibria in the absence of diffusion, which can be readily

proved under the current assumptions. Similarly, the monotonicity of equilibria A∗(x) and B∗(x) can be

characterized. This is the object of the following:

Lemma 5.1.79. Under assumption (5.1.2), the functions defined in (5.1.3) and (5.1.5) satisfy

d

dx
FA(x) < 0 for x ∈ [0, xa),

d

dx
FB(x) > 0 for ∈ (xb, 1], (5.1.8)

d

dx
A∗(x) > 0 and

d

dx
B∗(x) < 0, xb < x < xa. (5.1.9)

Proof. Since FA(x) is a fixed point of the system in the absence of diffusion, we have:

d

dx
HA(x, FA(x), 0) = ∂xHA(x, FA(x), 0) + ∂AHA(x, FA(x), 0)

d

dx
FA(x) = 0,

and therefore
d

dx
FA(x) = − ∂xHA(x, FA(x), 0)

∂AHA(x, FA(x), 0)
.

Assumption (5.1.4) ensures that ∂AHA(x, FA(x), 0) < 0 readily implies that d
dxFA(x) < 0 for x in [0, xa).

By a similar argument, d
dxFB(x) > 0 for any x in (xb, 1].

Hypotheses (5.1.2) and (5.1.5) also constrain the monotonicity of A∗ and B∗. Indeed, since the vector

function (HA, HB) is constant along the curve (x,A∗(x), B∗(x)), we have

d

dx
A∗(x) =

∂BHA ∂xHB − ∂xHA ∂BHB

∂AHA ∂BHB − ∂BHA ∂AHB
,

d

dx
B∗(x) =

∂xHA ∂AHB − ∂AHA ∂xHB

∂AHA ∂BHB − ∂BHA ∂AHB
.

Using the assumptions (5.1.2) and (5.1.5), we conclude the inequalities (5.1.9).
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The manuscript is devoted to the demonstration of Theorem 5.1.78, and to the development of an

application to a specific model of neuronal differentiation. We shall start by proving the existence of

a monotonic solution of the elliptic system (5.1.1), (5.1.6) by analyzing the long-time properties of the

associated parabolic system. The proof of the existence of monotonic solutions and the characterization of

the boundary combines stability and monotonicity arguments, WKB asymptotics and a suitable dilation

of the spatial variable. The proof proceeds as follows: the limit where ε→ 0 is investigated in section 5.3

and we will show existence and uniqueness of the boundary point x∗ for small diffusions, and in section 5.4,

we characterize the boundary point x∗ as the value when a certain traveling wave problem has zero speed,

completing the proof of Theorem 5.1.78. Section 5.5 puts in good use this theory on a simple model of

neuronal differentiation.

5.2
Analysis of the parabolic problem

We start with the parabolic problem associated with (5.1.1)







∂tA− εdA∆A = AHA(x,A,B), 0 < x < 1, t ≥ 0,

∂tB − εdB∆B = BHB(x,A,B),

(5.2.10)

completed again with the Robin boundary conditions (5.1.6).

We show that for a well chosen pair of initial conditions, solutions to the parabolic problem (5.2.10)-

(5.1.6) are monotonic in time. Since all coefficients are regular, solutions are classical and therefore

bounded. From here, the existence of steady states is granted.

Because FB is an increasing function in (xb, 1] we can expect that any non-negative solution for the

second equation of (5.2.10) is upper bounded by FB(1). Under the change of variables B = FB(1) − B,

system (5.2.10) becomes







∂tA− εdA∆A = AHA

(
x,A, FB(1)− B

)
, 0 < x < 1, t ≥ 0,

∂tB − εdB∆B = −(FB(1)− B)HB

(
x,A, FB(1)− B

)
,

(5.2.11)

with the respective boundary conditions






A(0)−√
ε ∂

∂xA(0) = FA(0), A(1) +
√
ε ∂

∂xA(1) = 0,

B(0)−√
ε ∂

∂xB(0) = FB(1), B(1) +√
ε ∂

∂xB(1) = 0.

(5.2.12)

hypothesis 5.1.2, 5.1.3 and 5.1.4 imply that the pair (0, 0) (respectively (FA(0), FB(1))) is a sub-solution

(resp. super-solution) of the steady state problem related to (5.2.11)-(5.2.12). Therefore, taking (0, FB(1))

as initial condition in (5.2.10) we have the existence of a regular solution (Aε(t, x), Bε(t, x)) such that:

0 ≤ Aε(t, x) ≤ FA(0) and 0 ≤ Bε(t, x) ≤ FB(1), t ≥ 0, 1 ≤ x ≤ 1. (5.2.13)

Lemma 5.2.80. Then for all t ≥ 0 and x ∈ [0, 1], we have ∂tAε(t, x) ≥ 0 and ∂tBε(t, x) ≤ 0.
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Proof. Defining u := ∂tAε and v := ∂tBε, we have

∂tu− dAε∆u = uHA +A ∂AHAu+A ∂BHAv,

∂tv − dBε∆v = vHB +B ∂AHBu+B ∂BHBv,

multiplying the first equation by u− := min{0, u}, the second one by v+ := max{0, v} and integrating

over [0, 1] we get

1

2

d

dt

∫

u2− + dAε

∫

|∂xu−|2 − dAεu− ∂xu−
∣
∣
1

0
=

∫

u2−
(
HA +A ∂AHA

)
+

∫

A ∂BHAu−v,

1

2

d

dt

∫

v2+ + dBε

∫

|∂xv+|2 − dBεv+ ∂xv+
∣
∣
1

0
=

∫

v2+
(
HB +B ∂BHB

)
+

∫

B ∂AHBv+u.

Time continuity of (Aε(t, x), Bε(t, x)) together with initial conditions imply that for any x:

u−(0, x) = 0 and v+(0, x) = 0.

Thus, there exists C > 0 such that

d

dt

∫

(u2− + v2+) ≤ C

∫

(u2− + v2+),

with zero initial condition. We conclude using Grönwall’s lemma.

5.2.1 Monotonicity in space

We have shown that the monotonicity property of the maps HA and HB in space implies monotonicity

of FA(x) and FB(x), solutions of the zero diffusion problem at location x. This is also true of the maps

(Aε, Bε) solutions of the parabolic equation (5.2.10). In detail, we show that monotonic initial conditions

ensure monotonic solutions (Aε, Bε) in space for all times. This property has two remarkable implications:

time dependent solutions belong to the bounded variation class and also their respective steady states.

Lemma 5.2.81. For any ε > 0 fixed, let us consider any solution (Aε, Bε) of (5.2.10)-(5.1.6) with initial

conditions A(0, x) decreasing and B(0, x) increasing. Under assumption (5.2.13), we have for all t ≥ 0

∂

∂x
Aε(t, x) ≤ 0 and

∂

∂x
Bε(t, x) ≥ 0, 0 ≤ x ≤ 1.

Proof. The proof proceeds as that of Lemma 5.2.80: we define u := ∂xAε and v := ∂xBε, we have

∂tu− dAε∆u = uHA +A ∂xHA +A ∂AHAu+A ∂BHAv,

∂tv − dBε∆v = vHB +B ∂xHB +B ∂AHBu+B ∂BHBv,

multiplying the first equation by u+ and the second one by v−, integrating over [0, 1] and using that

boundary conditions (5.1.6) and (5.2.13), we get

1

2

d

dt

∫

u2+ + dAε

∫

|∂xu+|2 − dAεu+ ∂xu+
∣
∣
1

0
=

∫

u2+
(
HA +A ∂AHA

)
+

∫

A ∂BHAu+v +

∫

A ∂xHAu+ ≤ C

∫

u2+ − C

∫

u+v−,

1

2

d

dt

∫

v2− + dBε

∫

|∂xv−|2 − dBεv− ∂xv−
∣
∣
1

0
=

∫

v2−
(
HB +B ∂BHB

)
+

∫

B ∂AHBv−u+

∫

B ∂xHBv− ≤ C

∫

v2− − C

∫

u+v−,
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where we have also used that ∂xHA ≤ 0 and ∂xHB ≥ 0. It is then easy to see that there exists C > 0

such that:
d

dt

∫

(u2+ + v2−) ≤ C

∫

(u2+ + v2−),

with zero initial condition, and to conclude the proof using Grönwall’s lemma.

We have therefore constructed a pair (Aε(t, x), Bε(t, x)) such that (5.2.13) is satisfied. We can ap-

ply Lemma 5.2.81 and find that for any time Aε(t, x) is decreasing and Bε(t, x) increasing. Moreover,

Lemma 5.2.80 together with (5.2.13) imply that pointwise in space Aε(t, x) (resp. Bε(t, x)) converges to

Aε(x) (reps. Bε(x)) solution to (5.1.1), together with the boundary condition (5.1.6), in the weak sense.

Bootstrap method allows us to conclude that Aε(x), Bε(x) ∈ C2(0, 1) ∩ C0([0, 1]) which proves the first

part of Theorem 5.1.78 and (5.1.7).

5.2.2 Positivity of the solutions

We now consider the pair (Aε, Bε) solution of the stationary problem (5.2.10)-(5.1.6) for ε > 0 fixed.

We now provide finer estimates of sub-solutions in order to control Aε(0) and Bε(1) away from zero.

Proposition 5.2.82. There exists ε0 > 0 such that for any ε < ε0, Aε is strictly positive and Aε(0) is,

uniformly in ε, larger than some δA > 0. The same holds for Bε and Bε(1).

Proof. The proof consists in finding a strictly positive sub-solution for

− εdA
d2

dx2
φA = HA

(
x, φA(x), Bε(x)

)
φA, (5.2.14)

i.e., the equation for Aε when Bε is fixed. To this purpose, we analyze a completely solvable linear

problem related to (5.2.14), whose solution constitutes a sub-solution of (5.2.14) and is defined and

strictly positive up to the boundary. This solution can thus be used to find a lower bound for Aε(0).

Consider the following linear equation

− εdA
d2

dx2
φA =

[

min
0≤s≤FA(0)

HA

(
1, s, FB(1)

)
]

φA (5.2.15)

with boundary conditions inherited from (5.1.6):

φA(0)−
√
ε
d

dx
φA(0) = FA(0), φA(1) +

√
ε
d

dx
φA(1) = 0. (5.2.16)

Clearly, the solution takes the form

φA(x) = αε e
x
√

µ/ε + βε e
−x

√
µ/ε, with dAµ = −

[
min

0≤s≤FA(0)
HA

(
1, s, FB(1)

)]
> 0.

Using (5.2.16), one can find the exact values of αε and βε as a function of the system parameters

αε

βε
=

(
√
µ− 1)

(
√
µ+ 1)

e−2
√

µ/ε and βε =
FA(0)√
µ+ 1

[

1− (
√
µ− 1)2

(
√
µ+ 1)2

e−2
√

µ/ε
]−1

.

Taking ε→ 0, we immediately compute

αε e
√

µ/ε → 0 and βε → β :=
FA(0)√
µ+ 1

,
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thus, for any ε > 0 small enough, φA becomes positive and

0 < min
0≤x≤1

φA(x) ≤ max
0≤x≤1

φA(x) ≤ |αε|e
√

µ/ε + βε ≤ FA(0).

Then, using that HA is decreasing in both x and B, we obtain

− εdA
d2

dx2
φA =

[
min

0≤s≤FA(0)
HA

(
1, s, FB(1)

)]
φA ≤ HA

(
x, φA(x), Bε(x)

)
φA.

Therefore, φA is a sub-solution to (5.2.14) comprised between 0 and FA(0). Since Aε is a solution to the

same problem with the same bounds and φA(0) is converging to β, the existence of δA > 0 follows.

5.3
Asymptotic analysis as ε vanishes and front position

We now consider the monotonic stationary solutions (Aε, Bε) for ε > 0 defined in Theorem 5.1.78.

Thanks to Proposition 5.2.82, we know that for any x ∈ [0, 1]

0 < Aε(x) ≤ FA(0) and 0 < Bε(x) ≤ FB(1). (5.3.17)

We are now in a position to demonstrate the convergence of the pair (Aε, Bε) as ε→ 0 towards a pair

(A0, B0) that are discontinuous at the same point x∗ and are characterized by point (i) of Theorem 5.1.78.

The proof proceeds as follows. First, using the monotonicity of (Aε, Bε) we find the existence of A0

and B0, and we characterize those limits as a family of critical points of (5.1.1) indexed by x. That

characterization gives us three possibilities for the support of A0. Using a WKB change of variables

and the monotonicity properties of critical points (characterized by lemma 5.1.79), we discard two of

them. This allows to conclude on the existence of a unique x∗ ∈ [xb, xa] with the properties stated in

Theorem 5.1.78.

5.3.1 The limit as ε vanishes

We recall that by monotonicity and L∞ bounds, the total variations of Aε and Bε are uniformly

bounded in ε. Classical theory of Bounded Variation functions (see for instance [58, Theorem 4, p.176])

ensures that there exists a subsequence εk and BV-functions A0, B0 such that, almost everywhere and

in all Lp(0, 1), 1 ≤ p <∞,







Aεk −→ A0, 0 ≤ A0(x) ≤ FA(0),
d
dxA0 ≤ 0,

Bεk −→ B0, 0 ≤ B0(x) ≤ FB(1),
d
dxB0 ≥ 0, .

(5.3.18)

Those limits satisfy, almost everywhere,







A0HA

(
x,A0(x), B0(x)

)
= 0,

B0HB

(
x,A0(x), B0(x)

)
= 0.

(5.3.19)
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This means that at each point x, (A0, B0) is one of the four nonnegative equilibrium points; (0, 0)

and those three given by hypothesese (5.1.3), (5.1.5). Because A0 is decreasing, three possible scenarios

arise:

(a) There exits x∗ such that (A0(x), B0(x)) = (FA(x), 0), for x < x∗ and (A0(x), B0(x)) = (0, FB(x)),

for x > x∗.

(b) There exists x∗− < x∗+ such that (A0(x), B0(x)) = (FA(x), 0), for x < x∗−, (A0(x), B0(x)) = (0, 0),

for x∗− < x < x∗+.

(c) There exists x∗ ≥ xb such that (A0(x), B0(x)) = (FA(x), 0), for x < x∗ and (A0(x), B0(x)) =

(A∗, B∗) for x > x∗ close enough to x∗.

Notice that neither (a) nor (b) exclude the possibility that A0 is identically zero. Indeed, at this stage,

x∗ (or x∗−) could be the origin. Our aim now is to show that only the first scenario is possible for some

x∗ ∈ [xb, xa] proving part (i) of Theorem 5.1.78.

Scenario (c) can be readily discarded. Indeed, if (c) holds, then the relationship (5.1.9) would be in

contradiction with the monotonicity of A0(x) in a neighborhood of x∗.

5.3.2 WKB change of unknown

We define ϕε
A := −√

ε log(Aε), which is well defined thanks to Proposition 5.2.82. Furthermore,

d

dx
ϕε
A = −√

ε
d
dxAε

Aε
and

d2

dx2
ϕε
A = −√

ε
( d2

dx2Aε

Aε
− | d

dxAε|2
A2

ε

)

,

and we find that ϕε
A is solution of the eikonal equation

∣
∣
∣
d

dx
ϕε
A

∣
∣
∣

2

−√
ε
d2

dx2
ϕε
A = −HA(x,Aε, Bε),

with

d

dx
ϕε
A(0) =

FA(0)

Aε(0)
− 1,

d

dx
ϕε
A(1) = 1.

The same constructions can be made for ϕε
B. If we prove that the family (ϕε

A) has some regularity, then

we can take let ε go to 0 in ϕε
A and ϕε

B. That is the object of the following:

Lemma 5.3.83. The sequence (ϕε
A) is uniformly Lipschitz-continuous with respect to ε. Therefore, after

extracting a subsequence, ϕεk
A −→

εk→0
ϕ0
A, a Lipschitz continuous, non-decreasing viscosity solution of

∣
∣
∣
d

dx
ϕ0
A

∣
∣
∣

2

= −HA(x,A0, B0). (5.3.20)

The same construction for Bε provides us with a function ϕB, Lipschitz continuous, non-increasing

viscosity solution of
∣
∣
∣
d

dx
ϕ0
B

∣
∣
∣

2

= −HB(x,A0, B0). (5.3.21)
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Proof. Since Aε ≥ 0 and d
dxAε ≤ 0 we get directly that d

dxϕ
ε
A ≥ 0. We are going to prove that there

exists Cε0 , independent of ε, such that

0 ≤ sup
x∈[0,1]

d

dx
ϕε
A(x) ≤ Cε0 .

Consider y, one argmax of d
dxϕ

ε
A(y). If 0 < y < 1, then d2

dx2ϕ
ε
A(x) = 0 and

∣
∣
∣
d

dx
ϕε
A

∣
∣
∣

2

= −HA(x,Aε, Bε),

which is uniformly upper-bounded because HA is continuous and evaluated on (0, 1) × (0, FA(0)) ×
(0, FB(1)). The upper bound follows.

If y = 0, Proposition 5.2.82 tells us that Aε(0) is bounded from below by some positive constant δA

independent from ε. Then, we may conclude again because

d

dx
ϕε
A(0) =

FA(0)

Aε(0)
− 1 ≤ FA(0)

δA
− 1 <∞.

If y = 1, we immediately conclude thanks to the boundary condition and thus, we have proved the uni-

form Lipschitz estimate.

The Ascoli-Arzela theorem allows us to take a subsequence of ϕε
A which converges uniformly and we

conclude thanks to the usual theory of viscosity solutions [38, 13]. Note that the viscosity procedure only

allows to control the limsup or liminf of the right hand sides of (5.3.20), (5.3.21), and this information

sufficient for the conclusion we want to draw.

A direct consequence of Lemma 5.3.83 is that scenario (b) cannot hold. Indeed, in that case,

∣
∣
∣
d

dx
ϕ0
A

∣
∣
∣

2

= −HA(x, 0, 0) < 0, ∀x ∈ (x∗−, x
∗
+)

which is contradictory.

The only possible scenario is therefore (a). In order to conclude the proof, we are left showing that

x∗ ∈ [xb, xa]. It suffices to show that A0(x) becomes positive when x→ 0 and the same with B0(x) when

x→ 1.

Lemma 5.3.84. There exists two non empty intervals, namely Ib and Ia = [0, 1] \ Ib, such that B0 ≡ 0

in Ib and A0 ≡ 0 in Ia. Moreover,

[0, xb) ⊂ Ib and (xa, 1] ⊂ Ia.

Proof. Let us assume that there exists y ∈ (xa, 1) such that A0(y) > 0. We have shown that we are

necessarily in scenario (a), which implies that B0(y) = 0 and by monotonicity

B0(x) = 0, A0(x) = FA(x) for 0 ≤ x ≤ y.

Using the fact that (FA(x), 0) is linearly unstable for x ∈ (xa, 1] and that ϕ0
B is a viscosity solution

of (5.3.21), we have
∣
∣
∣
d

dx
ϕ0
B

∣
∣
∣

2

= −HB(y, FA(y), 0) < 0,
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which is impossible, hence A0 ≡ 0 on (xa, 1). The same argument ensures us that B0 ≡ 0 in (0, xb). One

can therefore define the intervals Ia and Ib by maximality as the supports of A0 and B0.

5.4
Characterization of the Front

Now that we have proved the existence of a boundary x∗, we can turn to the characterization of this

point. To this purpose, we start defining the point, x∗ε such that

Aε(x
∗
ε) = Bε(x

∗
ε),

which, by monotonicity, is unique. We also know, by compactness and unique limit, that x∗ε → x∗ when

ε→ 0.

We perform the change of variables y = (x− x∗ε)/
√
ε, and define aε(y) = Aε(x

∗
ε +

√
εy) and bε in the

same way. System (5.1.1) becomes







−dA d2

dy2 aε(y) = aε(y)HA

(
x∗ε +

√
εy, aε(y), bε(y)

)
,

−dB d2

dy2 bε(y) = bε(y)HB

(
x∗ε +

√
εy, aε(y), bε(y)

)
,

aε(0) = bε(0).

Because aε and bε are uniformly bounded, by elliptic regularity they are uniformly bounded in C2 and,

after extraction of a subsequence (by uniqueness, as we will show, in fact the full sequence converges),

we may take the limit as ε→ 0 (which we know is well defined, bounded, Lipschitz-continuous). We find

that this limit, denoted (a0, b0), is solution of







−dA d2

dy2 a0(y) = a0(y)HA

(
x∗, a0(y), b0(y)

)
, ∂ya0(y) ≤ 0,

−dB d2

dy2 b0(y) = b0(y)HB

(
x∗, a0(y), b0(y)

)
, ∂yb0(y) ≥ 0,

a0(0) = b0(0).

(5.4.22)

This solution is characterized as follows:

Theorem 5.4.85. The limits satisfy a0 6= 0, b0 6= 0 and there exists a unique value x∗ such that the

system (5.4.22) has a non-trivial solution. This solution is the unique traveling wave defined as







−c(x) ∂
∂ya(y;x)− dA

∂2

∂y2 a(y;x) = a(y;x)HA

(
x, a(y;x), b(y;x)

)
, y ∈ R,

−c(x) ∂
∂y b(y;x)− dB

∂2

∂y2 b(y;x) = b(y;x)HB

(
x, a(y;x), b(y;x)

)
,

lim
y→−∞

a(y;x) = FA(x), lim
y→+∞

a(y;x) = 0,

lim
y→+∞

b(y;x) = FB(x), lim
y→−∞

b(y;x) = 0,

(5.4.23)

with speed zero, that is c(x∗) = 0, and connecting (FA(x
∗), 0) to (0, FB(x

∗)).
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Proof. The proof is split into three steps. First we show that functions aε and bε cannot converge both at

the same time to the zero function. Then, using that a0 and b0 converge at −∞ to solutions of (5.3.19),

we show that limit conditions of (5.4.23) are satisfied. Finally, thanks to a monotonicity argument on

the speed c(x), we show that (a0, b0) are in fact the unique traveling wave solutions of (5.4.23) such that

c(·) = 0.

1st step. The pair (aε, bε) does not converge to the zero function.

Indeed, for any interval (y−, 0) with y− < 0, integrating by parts the equation on aε after dividing it

by aε, we compute

1

dA

∫ 0

y−

HA

(
x∗ε +

√
εy, aε(y), bε(y)

)
dy = −

∫ 0

y−

| d
dyaε|2
a2ε

dy −
[

d
dyaε

aε

]0

y−

≤ −
d
dyaε(0)

aε(0)
.

Moreover, Lemma 5.3.83 tells us that, for ε < ε0,

d

dx
ϕε
A = −√

ε
1

Aε

d

dx
Aε < Cε0 .

This implies directly that for any y ∈ R

−
d
dyaε(y)

aε(y)
= − 1

Aε(x∗ε +
√
εy)

d

dy
Aε(x

∗
ε +

√
εy) = −

√
εdAε

dx (x∗ε +
√
εy)

Aε(x∗ε +
√
εy)

≤ Cε0 .

Taking the limit ε→ 0, using the continuity of HA and that (aε, bε) → (a0, b0) uniformly, we find

1

dA

∫ 0

y−

HA

(
x∗, a0(y), b0(y)

)
dy ≤ Cε0 . (5.4.24)

If (a0, b0) ≡ (0, 0), then the left hand side becomes |y−|HA(x
∗, 0, 0)/dA which goes to ∞ when y− → −∞.

Therefore, one of them, say a0 is positive in some interval and by the strong maximum principle, a0(y) > 0

for any y ∈ R. By the condition a0(0) = b0(0), then b0 is also positive.

2nd step. The pair (a0, b0) satisfies the conditions at infinity in (5.4.23).

We treat for instance the limit at −∞. Again by elliptic regularity and thanks to (5.4.24), d2

dy2 a0(y)

and d2

dy2 b0(y) vanish at −∞. Therefore the limits of a0 and b0 are steady state solutions with a0(−∞) >

b0(−∞).

The case when this steady state is (A∗(x∗), B∗(x∗)) is discarded by stability hypothesis (5.1.5) and

saturation hypothesis (5.1.2). Indeed, we can rewrite the system defining ǫA = A(x∗) − a0 and ǫB =

b0 −B(x∗). These functions are always positive and have non negative derivatives. Moreover, both they

and their first derivatives, go to zero when y → −∞. We can write

d2

dy2




ǫA(y)

ǫB(y)



 ≈




−∂AHA/dA ∂BHA/dA

∂AHB/dB −∂BHB/dB








ǫA(y)

ǫB(y)



 ,

where the matrix is evaluated at (x∗, A∗(x∗), B∗(x∗)) and we have neglected the terms of the type ǫ2A, ǫ
2
B

and ǫAǫB (which do not play a role in the analysis of the signs when y → −∞). Integrating between −∞
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and any value y ≪ −1 we get

0 ≤ d

dy




ǫA(y)

ǫB(y)



 ≈




−∂AHA/dA ∂BHA/dA

∂AHB/dB −∂BHB/dB









∫ y

−∞
ǫA

∫ y

−∞ ǫB



 ,

which is only possible when ∂AHA ∂BHB − ∂BHA ∂AHB ≥ 0 contradicting the saddle characterization

of (A∗(x), B∗(x)).

3rd step. Finally because the system is competitive, the positive solutions are unique and, in the case

at hand, traveling waves with speed 0. We recall why the speed c(·) is monotonic. Considering the

derivatives wa(y) =
∂
∂ya(y) < 0, wb(y) =

∂
∂y b(y) > 0 they satisfy







−c(x) ∂
∂ywa(y;x)− dA

∂2

∂y2wa(y;x) =M11wa +M12wb,

−c(x) ∂
∂ywb(y;x)− dB

∂2

∂y2wb(y;x) =M21wa +M22wb.

The signs M12 := ∂BHA < 0 and M21 := ∂AHB < 0 are compatible with the Krein-Rutman theory, and

by consequence the dual problem has a signed solution







c(x) ∂
∂yΦa(y;x)− dA

∂2

∂y2Φa(y;x) =M11Φa +M21Φb, Φa > 0

c(x) ∂
∂yΦb(y;x) − dB

∂2

∂y2Φb(y;x) =M12Φa +M22Φb, Φb < 0.

We now consider the x−derivative: za(y) =
∂
∂xwa(y;x) and zb(y) =

∂
∂xwb(y;x) satisfying







−c(x) ∂
∂y za(y;x)− dA

∂2

∂y2 za(y;x) =M11za +M12zb + c′(x)wa + a ∂xHA,

−c(x) ∂
∂y zb(y;x)− dB

∂2

∂y2 zb(y;x) =M21za +M22zb + c′(x)wb + b ∂xHB .

Integrate in y against the test function Φ and add the two lines, it remains

0 = c′(x)

∫

[waΦa + wbΦb]
︸ ︷︷ ︸

<0

dy +

∫ <0
︷ ︸︸ ︷

[aΦa ∂xHA + bΦb ∂xHB] dy, 0 < x < 1,

thus c′ < 0. The uniqueness of x∗ follows directly.

This result concludes the proof of theorem 5.1.78. We now use this result on a simple model of

differentiating neuronal tissue.

5.5
Application

5.5.1 Model

As discussed in [127], a classical illustration of neurodevelopment is provided by the compartmentaliza-

tion of the neural tube in response to the diffusion of the ventral and dorsal morphogens Sonic Hedgehog
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(SHH) and Bone Morphogenetic Protein (BMP), respectively [131, 157]. In this system, a continuous

gradient activates ventral and dorsal genes, transcription factors are reciprocal inhibitor and self-activitor

and diffuse through boundaries. This is well-known to result in the clear definition of territories that

express distinct transcription factors subsets [91, 19, 45, 44].

We analyze a simplified version of the model proposed in [127], which includes:

• Epigenetic phenomena: the more a specie has been expressed, the more it is likely to be expressed.

This phenomenon scales the production rate with a coefficient αi(A,B).

• The presence of morphogens with a graded concentration along the neural tissue, Fi(x), i ∈ {A,B},

• The self-activation of transcription factors

• and the saturation effects, limiting the production rate of each species proportionally to the total

concentration within a cell.

• Eventually, diffusion of homeoproteins will be considered, through a small diffusion parameter

ε≪ 1.

We will show that these four mechanisms regulating the gene expression (response to gradients, self-

activation, reciprocal inhibition and saturation) precisely correspond to our theoretical assumptions.

Assuming that the number of cells is large, we consider a space-continuous description of the system,

and we denote by A(x) and B(x) the concentrations of transcription factors at location x on the neural

tissue. The system described above readily translates into the system of parabolic equations:

∂tA− εdA∆A = αAA
(
FA(x) +A)− βAA(A+B), 0 < x < 1,

and a similar equation for B. In this equation, we considered epigenetic phenomena to have linear

effects: αA(A,B) = αAA. Therefore, the term αAA is the transcriptional intensity, βA is the saturation

parameter, and we assume 0 < αA < βA because saturation will overcome necessarily the self-activation.

The parameter dA incorporates the relative level of diffusion of the parameter A compared to that of B

(at least one of these constants can be incorporated in the ε). We shall assume that the system is subject

to Robin type boundary conditions (5.1.6).

It is not hard to rescale the system so as to write the stationary solutions in the form:






−εdA∆A = A
(
FA(x) −A− sAB

)
, 0 < x < 1,

−εdB∆B = B
(
FB(x) −B − sBA

)
,

(5.5.25)

where, for simplicity of notation, we use the same terms FA(x) and FB(x) to represent the rescaled

action of external morphogen gradients. We introduce the parameters si as positive constants taking into

account the relation between αi and βi:

sA =
βA

βA − αA
> 1 and sB =

βB
βB − αB

> 1.

In the limit ε goes to 0, we look for a decreasing solution A connecting the value FA(0) with 0.

The morphogen gradients are monotonic and smooth, assumed to be twice differentiable, defined on the
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closure of the domain, strictly positive and monotonic. Summarizing, there exists δ > 0 such that for

any 0 ≤ x ≤ 1

FA(x) > δ,
d

dx
FA(x) < 0, FB(x) > δ,

d

dx
FB(x) > 0. (5.5.26)

We have mentioned that diffusion is extremely small. Non-trivial differentiation at these levels of

diffusion would require that steady states for ε = 0 are non-trivial as well. This is why we shall assume

that:

∃ (xa, xb) ∈ I, xb < xa such that FA(xb) = sAFB(xb), FB(xa) = sBFA(xa). (5.5.27)

A first remark is that combining assumptions (5.5.26) and (5.5.27) we get that







FB(x) < FB(xa) = sBFA(xa) < sBFA(x), for x ∈ [0, xa),

FA(x) < FA(xb) = sAFB(xb) < sAFB(x), for x ∈ (xb, 1].

(5.5.28)

We have already noticed that both saturation coefficients sA and sB are greater than 1. For the sake

of generality, we make the weaker assumption:

sAsB > 1. (5.5.29)

Of course, in these notations, the parabolic system reads:







∂tA− εdA∆A = A
(
FA −A− sAB

)
, 0 < x < 1, t ≥ 0,

∂tB − εdB∆B = B
(
FB −B − sBA

)
,

(5.5.30)

with the Robin boundary conditions (5.1.6). If (5.1.2)–(5.1.5) are met for these HA and HB , then

Theorem 5.1.78 allow us to say that starting with monotonic initial conditions, then solution to (5.5.30)

defines a unique point x∗ as a boundary between the two functional areas considered, disambiguating the

boundary location.

To start with, note that assumption (5.1.2) is valid thanks to (5.5.26) and that they fit the inter-

pretation for neurodevelopment. They are trivially checked in our case since the maps HA(x,A,B) and

HB(x,A,B) are linear. We are therefore left to characterizing the equilibria of the system and their

stability.

Lemma 5.5.86. The properties (5.1.3)–(5.1.5) are valid for our model (see Fig. 5.2). In details, under

assumptions (5.5.26), (5.5.27) and (5.5.29) and in the absence of diffusion, we have

i. (FA(x), 0) is a stable fixed point for x ∈ [0, xa),

ii. (0, FB(x)) is a stable fixed point for x ∈ (xb, 1],

iii. and there exists an additional solution, which is saddle, in (xa, xb).

Proof. First two fixed points are trivial solutions, and their stability is obtained by investigating the

eigenvalues of the Jacobian matrix at these points
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i. At
(
FA(x), 0

)
, the Jacobian matrix reads




−FA(x) −sAFA(x)

0 FB(x)− sBFA(x)



 ,

and (5.5.28) ensures us that this point is stable only on the region [0, xa).

ii. The pair
(
0, FB(x)

)
which is analogous to the previous point and stable on (xb, 1].

iii. Because of hypothesis (5.5.29), there is an extra fixed point (A∗, B∗) given by

A∗ =
sAFB − FA

sAsB − 1
, B∗ =

sBFA − FB

sAsB − 1
.

From (5.5.28) and (5.5.29), we get that (A∗, B∗) is admissible (i.e. both coordinates are non-

negative) only in the region [xb, xa]. Monotonicity properties are trivial from the explicit expression,

and the stability is governed by the eigenvalues of the Jacobian matrix

Jac(A∗, B∗) = −




A∗ sAA

∗

sBB
∗ B∗



 ,

which has negative determinant (as a consequence of assumption (5.5.29)). Therefore, its eigenvalues

are real with opposite signs, i.e. the point (A∗, B∗) is a saddle fixed point, completing the proof.

Remark 5.5.87. Let us eventually notice the following fact explaining the topology of the phase plane

for x ∈ (xb, xa). The space R+ × R+ is partitioned into the attraction basin of (FA(x), 0) and that of

(0, FB(x)), in addition to lower-dimensional invariant manifolds. The attraction basins of the fixed point

are separated by the one-dimensional stable manifold of the saddle fixed point (A∗(x), B∗(x)), which is an

invariance manifold serving as a separatrix between those trajectories converging to
(
FA, 0

)
and

(
0, FB

)
.

By a direct application of Theorem 5.1.78, the system has a unique differentiated solution in the

limit of small diffusion. But when considering only cell-autonomous mechanisms, the bistable region

x ∈ (xb, xa) induces an indeterminacy in the differentiation between two domains: cells may choose

independently to differentiate into type A or type B, yielding irregular and non-reproducible boundaries

depending on the initial condition. This phenomenon is illustrated in Figure 5.2, right panel: in the

absence of diffusion, the region within the interval (xb, xa) has an unpredictable behavior that depends

on space, while in the presence of even a very small diffusion, ambiguity disappears and a unique steady

state emerges (see Figure 5.2). In that sense, a small diffusion suffices to stabilize the transition. From

an evolutionary viewpoint, endowing developmental transcription factors with non diffusion properties is

a simple mechanism ensuring dramatic stabilization and robustness of the differentiation process. These

numerical simulations further open some new perspectives. Indeed, we observe that the convergence

towards the monotonic differentiated solutions seem to occur even when we relax the initial condition

monotonicity hypothesis of Theorem 5.1.78. Moreover, with random initial conditions, we numerically

observe that for small times, A converges rapidly to FA in [0, xb) and B to FB in (xa, 1], before the

appearance of two abutting traveling fronts that develop toward the center of the coexistence zone,
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(a) The morphogen gradients and steady states
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Figure 5.2: Morphogenesis model with exponential morphogen gradients FA(x) and FB(x) (not shown)

and sA = sB = 2. (Left) Equilibria of the system in the absence of diffusion together with their stability

(thick solid line: stable, thin solid line: repulsive, dashed: saddle). (Right) Numerical simulations of

stationary states of the system (5.5.30)-(5.1.6) shows (top) the ambiguity of boundary location for ε = 0

and (bottom) the disambiguation for small diffusion ε = 10−6.

whose speed decreases as the solution converge. Proving that the theorem persists for general initial

conditions remains an open problem.
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Part III

On a sub-critical model of

chemotaxis
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Chapter 6

On a subcritical Keller-Segel

equation: chaos and entropic chaos

propagation

In this last chapter we deal with a subcritical Keller-Segel equation. Starting from the stochastic

particle system associated with it, we show well-posedness results and the propagation of chaos property.

More precisely, we show that the empirical measure of the system tends towards the unique solution of

the limit equation as the number of particles goes to infinity. The main novelty is that we only ask for

locally Lipschitz coefficients and the proof of path-wise uniqueness allow us to consider a more general

initial conditions than we could use in a more classical framework.

This chapter is included in [66] written in collaboration with D. Godinho to appear on Annales de

l'Institut Henri Poincaré.
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6.1
Introduction and main results

The subject of this paper is the convergence of a stochastic particle system to a nonlinear and nonlocal

equation which can be seen as a subcritical version of the classical Keller-Segel equation.

6.1.1 The subcritical Keller-Segel Equation

Consider the equation:

∂ft(x)

∂t
= χ∇x · ((K ∗ ft)(x))ft(x)) +△xft(x), (6.1.1)

where f : R+×R2 → R and χ > 0. The force field kernel K : R2 → R2 comes from an attractive potential

Φ : R2 → R and is defined by

K(x) :=
x

|x|α+1
= −∇

(
1

α− 1
|x|1−α

)

︸ ︷︷ ︸

Φ(x)

, α ∈ (0, 1). (6.1.2)

The standard Keller-Segel equation correspond to the critical case K(x) = x/|x|2 (i.e., more singu-

lar at x = 0) and it describes a model of chemotaxis, i.e., the movement of cells (usually bacteria or

amoebae) which are attracted by some chemical substance that they produce. This equation has been

first introduced by Keller and Segel in [87, 88]. Blanchet-Dolbeault-Perthame showed in [19] some nice

results on existence of global weak solutions if the nonnegative parameter χ (which is the sensitivity of

the bacteria to the chemo-attractant) is smaller than 8π/M where M is the initial mass (here M will

always be 1 since we will deal with probability measures). For more details on the subject, see [78].

6.1.2 The particle system

We consider the following system of particles

∀i = 1, ..., N, X i,N
t = X i,N

0 − χ

N

N∑

j=1,j 6=i

∫ t

0

K(X i,N
s −Xj,N

s )ds+
√
2Bi

t , (6.1.3)

where (Bi)i=1,...,N is an independent family of 2D standard Brownian motions and K is defined in (6.1.2).

We will show in the sequel that there is propagation of chaos to the solution of the following nonlinear

S.D.E linked with (6.1.1) (see the next paragraph)

Xt = X0 − χ

∫ t

0

∫

R2

K(Xs − x)fs(dx)ds +
√
2Bt, (6.1.4)

where ft = L(Xt) (L(Xt) denotes the law of Xt).

6.1.3 Weak solution for the P.D.E

For any Polish space E, we denote by P(E) the set of all probability measures on E which we endow

with the topology of weak convergence defined by duality against functions of Cb(E). We give the notion

of weak solution that we use in this paper.
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Definition 6.1.88. We say that f = (ft)t≥0 ∈ C([0,∞),P(R2)) is a weak solution to (6.1.1) if

∀T > 0,

∫ T

0

∫

R2

∫

R2

|K(x− y)| fs(dx) fs(dy) ds <∞, (6.1.5)

and if for all ϕ ∈ C2
b (R

2), all t ≥ 0,

∫

R2

ϕ(x)ft(dx) =

∫

R2

ϕ(x)f0(dx) +

∫ t

0

∫

R2

△xϕ(x)fs(dx) ds

− χ

∫ t

0

∫

R2

∫

R2

K(x− y) · ∇xϕ(x)fs(dy)fs(dx) ds. (6.1.6)

Remark 6.1.89. We can see easily that if (Xt)t≥0 is a solution to (6.1.4), then setting ft = L(Xt) for

any t ≥ 0, (ft)t≥0 is a weak solution of (6.1.1) in the sense of Definition 6.1.88 provided it satisfies

(6.1.5). Indeed, by Itô’s formula, we find that for ϕ ∈ C2
b (R

2),

ϕ(Xt) =ϕ(X0)− χ

∫ t

0

∇xϕ(Xs) ·
∫

R2

K(Xs − y)fs(dy) ds

+

∫ t

0

√
2∇xϕ(Xs) · dBs +

∫ t

0

△xϕ(Xs)ds.

Taking expectations, we get (6.1.6).

6.1.4 Notation and propagation of chaos

For N ≥ 2, we denote by Psym(EN ) the set of symmetric probability measures on EN , i.e. the set of

probability measures which are laws of exchangeable EN -valued random variables.

We consider for any F ∈ Psym((R2)N ) with a density (a finite moment of positive order is also required

in order to define the entropy) the Boltzmann entropy and the Fisher information which are defined by

H(F ) :=
1

N

∫

(R2)N
F (x) logF (x)dx and I(F ) :=

1

N

∫

(R2)N

|∇F (x)|2
F (x)

dx.

We also define (xi ∈ R2 stands for the i-th coordinate of x ∈ (R2)N ), for k ≥ 0,

Mk(F ) :=
1

N

∫

(R2)N

N∑

i=1

|xi|kF (dx).

Observe that we proceed to the normalization by 1/N in order to have, for any f ∈ P(R2),

H(f⊗N) = H(f), I(f⊗N ) = I(f) and Mk(f
⊗N ) =Mk(f).

We introduce the space P1(R
2) := {f ∈ P(R2),M1(f) <∞} and we recall the definition of the Wasserstein

distance: if f, g ∈ P1(R
2),

W1(f, g) = inf
{∫

R2×R2

|x− y|R(dx, dy)
}

,

where the infimum is taken over all probability measures R on R2 × R2 with f for first marginal and g

for second marginal. It is known that the infimum is reached. See e.g. Villani [158] for many details on

the subject.

We now define the notion of propagation of chaos.
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Definition 6.1.90. Let X be some E-valued random variable. A sequence (XN
1 , ..., X

N
N ) of exchangeable

E-valued random variables is said to be X-chaotic if one of the three following equivalent conditions is

satisfied:

(i) (XN
1 , X

N
2 ) goes in law to 2 independent copies of X as N → +∞;

(ii) for all j ≥ 1, (XN
1 , ..., X

N
j ) goes in law to j independent copies of X as N → +∞;

(iii) the empirical measure µN
XN := 1

N

∑N
i=1 δXN

i
∈ P(E) goes in law to the constant L(X) as N → +∞.

We refer to [145] for the equivalence of the three conditions or [72, Theorem 1.2] where the equivalence

is established in a quantitative way.

Propagation of chaos in the sense of Sznitman holds for a system of N exchangeable particles

evolving in time if when the initial conditions (X1,N
0 , X2,N

0 . . . , XN,N
0 ) are X0-chaotic, the trajectories

((X1,N
t )t≥0, . . . , (X

N,N
t )t≥0) are (Xt)t≥0-chaotic, where (Xt)t≥0 is the (unique) solution of the expected

(one-particle) limit model.

We finally recall a stronger (see [72]) sense of chaos introduced by Kac in [82] and formalized recently

in [35]: the entropic chaos.

Definition 6.1.91. Let f be some probability measure on E. A sequence (FN ) of symmetric probability

measures on EN is said to be entropically f -chaotic if

FN
1 → f weakly in P(E) and H(FN ) → H(f) as N → ∞,

where FN
1 stands for the first marginal of FN .

We can observe that since the entropy is lower semi continuous (so that H(f) ≤ lim infN H(FN )) and

is convex, the entropic chaos (which requires limN H(FN ) = H(f)) is a stronger notion of convergence

which implies that for all j ≥ 1, the density of the law of (XN
1 , ..., X

N
j ) goes to f⊗j strongly in L1 as

N → ∞ (see [23]).

6.1.5 Main results

We first give a result of existence and uniqueness for (6.1.1).

Theorem 6.1.92. Let α ∈ (0, 1). Assume that f0 ∈ P1(R
2) is such that H(f0) <∞.

(i) There exists a unique weak solution f to (6.1.1) such that

f ∈ L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)) for some p >

2

1− α
. (6.1.7)

(ii) This solution furthermore satisfies that for all T > 0,

∫ T

0

I(fs)ds <∞, (6.1.8)

for any q ∈ [1, 2) and for all T > 0,

∇xf ∈ L2q/(3q−2)(0, T ;Lq(R2)), (6.1.9)

for any p ≥ 1,

f ∈ C([0,∞);L1(R2)) ∩ C((0,∞);Lp(R2)), (6.1.10)
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and that for any β ∈ C1(R) ∩ W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside a

compact set,

∂tβ(f) =χ (K ∗ f) · ∇x(β(f)) +△xβ(f) (6.1.11)

− β′′(f)|∇xf |2 + χβ′(fs)fs(∇x ·K ∗ fs),

on [0,∞)× R2 in the distributional sense.

We denote by FN
0 the law of (X i,N

0 )i=1,...,N . We assume that for some f0 ∈ P(R2),







FN
0 ∈ Psym((R2)N ) is f0 − chaotic;

sup
N≥2

M1(F
N
0 ) <∞, sup

N≥2
H(FN

0 ) <∞.
(6.1.12)

Observe that this condition is satisfied if the random variables (X i,N
0 )i=1,...,N are i.i.d. with law f0 ∈

P1(R
2) such that H(f0) <∞. The next result states the well-posedness for the particle system (6.1.3).

Theorem 6.1.93. Let α ∈ (0, 1).

(i) Let N ≥ 2 be fixed and assume that M1(F
N
0 ) < ∞ and H(FN

0 ) < ∞. There exists a unique strong

solution (X i,N
t )t≥0,i=1,...,N to (6.1.3). Furthermore, the particles a.s. never collapse i.e. it holds that

a.s., for any t ≥ 0 and i 6= j, X i,N
t 6= Xj,N

t .

(ii) Assume (6.1.12). If for all t ≥ 0, we denote by FN
t ∈ Psym((R2)N ) the law of (X i,N

t )i=1,...,N , then

there exists a constant C depending on χ, supN≥2H(FN
0 ) and supN≥2M1(F

N
0 ) such that for all t ≥ 0

and N ≥ 2

H(FN
t ) ≤ C(1 + t), M1(F

N
t ) ≤ C(1 + t),

∫ t

0

I(FN
s )ds ≤ C(1 + t).

Furthermore for any T > 0,

E

[

sup
t∈[0,T ]

|X1,N
t |

]

≤ C(1 + T ). (6.1.13)

We also have

H(FN
t ) +

∫ t

0

I(FN
s )ds ≤ H(FN

0 ) +
χ

N2

∑

i6=j

∫ t

0

E
[
divK(X i,N

s −Xj,N
s )

]
ds. (6.1.14)

We next state a well-posedness result for the nonlinear S.D.E. (6.1.4).

Theorem 6.1.94. Let α ∈ (0, 1) and f0 ∈ P1(R
2) such that H(f0) < ∞. There exists a unique strong

solution (Xt)t≥0 to (6.1.4) such that for some p > 2/(1− α),

(ft)t≥0 ∈ L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)), (6.1.15)

where ft is the law of Xt. Furthermore, (ft)t≥0 is the unique solution to (6.1.1) given in Theorem 6.1.92.

We finally give the result about propagation of chaos.

Theorem 6.1.95. Let α ∈ (0, 1). Assume (6.1.12). For each N ≥ 2, consider the unique solution

(X i,N
t )i=1,...,N,t≥0 to (6.1.3). Let (Xt)t≥0 be the unique solution to (6.1.4).

(i) The sequence (X i,N
t )i=1,...,N,t≥0 is (Xt)t≥0-chaotic. In particular, the empirical measure QN :=
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1
N

∑N
i=1 δ(Xi,N

t )t≥0
goes in law to L((Xt)t≥0) in P(C((0,∞),R2)).

(ii) Assume furthermore that limN H(FN
0 ) = H(f0). For all t ≥ 0, the sequence (X i,N

t )i=1,...,N is then

Xt-entropically chaotic. In particular, for any j ≥ 1 and any t ≥ 0, denoting by FN
tj the density of the

law of (X1,N
t , ..., Xj,N

t ), it holds that

lim
N→∞

||FN
tj − f⊗j

t ||L1((R2)j) = 0.

We can observe that the condition limN H(FN
0 ) = H(f0) is satisfied if the random variables (X i,N

0 )i=1,...,N

are i.i.d. with law f0 such that H(f0) <∞.

6.1.6 Comments

This paper is some kind of adaptation of the work of Fournier-Hauray-Mischler in [62] where they

show the propagation of chaos of some particle system for the 2D viscous vortex model. We use the

same methods for a subcritical Keller-Segel equation. The proofs are thus sometimes very similar to

those in [62] but there are some differences due to the facts that i) there are no circulation parameter

(MN
i in [62]): this simplify the situation since we thus deal with solutions which are probabilities and

ii) the kernel is not the same: it is not divergence-free and we thus have to deal with some additional

terms in our computations (see the comments before Proposition 6.3.101 and in the proof of the point

ii) of Theorem 6.1.92 in Section 6). We can also notice that due to this fact, we have no already known

result for the existence and uniqueness of the particle system that we consider. The methods used to

prove uniqueness for the Keller-Segel equation (6.1.1) and its associated S.D.E. (6.1.4), and to prove the

entropic chaos are also different.

The proof of Theorem 6.1.92 follows the ideas of renormalisation solutions to a PDE introduced

by Di Perna and Lions in [47] and developed since then. The key point is to be able to find good a

priori estimates which allow us to approximate the weak solutions by regular functions, i.e., to use Ck

functions instead of L1. Then, using these estimates, one can pass to the limit and go back to the initial

problem. One can further see that the uniqueness result is proven based on coupling methods and the

Wasserstein distance. This will allow us to use more general initial conditions than we could use in a

strictly deterministic framework.

The proof of existence and uniqueness for the particle system (6.1.3) (Theorem 6.1.93) use some nice

arguments. Like for S.D.Es with locally Lipschitz coefficients, we show existence and uniqueness up to

an explosion time and the interesting part of the proof is to show that this explosion time is infinite a.s.

To our knowledge, there is no other work that give a convergence result of some particle system for

a chemotaxis model with a singular kernel K and without cutoff parameter. In [142], Stevens studies a

particle system with two kinds of particles corresponding to bacteria and chemical substance. She shows

convergence of the system for smooth initial data (lying in C3
b (R

d)) and for regular kernels (continuously

differentiable and bounded together with their derivatives). In [71], Haskovec and Schmeiser consider a

kernel with a cutoff parameter Kǫ(x) =
x

|x|(|x|+ǫ) . They get some well-posedness result for the particle
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system and they show the weak convergence of subsequences due to a tightness result (observe that here

we have propagation of chaos and also entropic chaos). In a recent work [34], Calvez and Corrias work on

some one-dimensional Keller-Segel model. They study a dynamical particle system for which they give a

global existence result under some assumptions on the initial distribution of the particles that prevents

collisions. They also give two blow-up criteria for the particle system they do not state a convergence

result for this system.

Finally, it is important to notice that the present method can not be directly adapted for the standard

case α = 1 because in this last situation the entropy and the Fisher information are not controlled.

6.1.7 Plan of the paper

In the next section, we give some preliminary results. In Section 3, we establish the well-posedness of

the particle system (6.1.3). In Section 4, we prove the tightness of the particle system and we show that

any limit point belongs to the set of solutions to the nonlinear S.D.E. (6.1.4). In Section 5, we show that

the P.D.E. (6.1.1) and the nonlinear S.D.E. (6.1.4) are well-posed and we show the propagation of chaos.

Finally, in the last section, we improve the regularity of the solution, give some renormalization results

for the solution to (6.1.1) and we conclude with the entropic chaos.

6.2
Preliminaries

In this section, we recall some lemmas stated in [62] and [72] and we state a result on the regularity

of the kernel K defined in (6.1.2). The first result tells us that pairs of particles which law have finite

Fisher information cannot be too close.

Lemma 6.2.96. ([62, Lemma 3.3]) Consider F ∈ P(R2×R2) with finite Fisher information and (X1, X2)

a random variable with law F . Then for any γ ∈ (0, 2) and any β > γ/2 there exists Cγ,β so that

E[|X1 −X2|−γ ] =

∫

R2×R2

F (x1, x2)

|x1 − x2|γ
dx1dx2 ≤ Cγ,β(I(F )

β + 1).

In the next lemma, we see that the Fisher information of the marginals of some F ∈ Psym((R2)N ) is

smaller than the Fisher information of F .

Lemma 6.2.97. ([72, Lemma 3.7]) For any F ∈ Psym((R2)N ) and 1 ≤ l ≤ N , I(Fl) ≤ I(F ), where

Fl ∈ Psym((R2)l) denotes the marginal probability of F on the l-th block of variables.

The following lemma allows us to control from below the entropy of some F ∈ Pk((R
2)N ) by its

moment of order k for any k > 0.

Lemma 6.2.98. ([62, Lemma 3.1]) For any k, λ ∈ (0,∞), there is a constant Ck,λ ∈ R such that for

any N ≥ 1, any F ∈ Pk((R
2)N ),

H(F ) ≥ −Ck,λ − λMk(F ).
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The next result tells us that a probability measure on R
2 with finite Fisher information belongs to

Lp for any p ≥ 1 and its derivatives, to Lq for any q ∈ [1.2).

Lemma 6.2.99. ([62, Lemma 3.2]) For any f ∈ P(R2) with finite Fisher information, there holds

∀p ∈ [1,∞), ‖f‖Lp(R2) ≤ CpI(f)
1−1/p,

∀q ∈ [1, 2), ‖∇xf‖Lq(R2) ≤ CqI(f)
3/2−1/q.

We end this section with the following result on K.

Lemma 6.2.100. Let α ∈ (0, 1). There exists a constant Cα such that for all x, y ∈ R2

|K(x)−K(y)| ≤ Cα|x− y|
( 1

|x|α+1
+

1

|y|α+1

)

.

Proof. We have

|K(x)−K(y)| =
∣
∣
∣x
( 1

|x|α+1
− 1

|y|α+1

)

+
x− y

|y|α+1

∣
∣
∣

≤ |x||x− y|(α+ 1)max
( 1

|x|α+2
,

1

|y|α+2

)

+
|x− y|
|y|α+1

.

By symmetry, we also have

|K(x)−K(y)| ≤ |y||x− y|(α+ 1)max
( 1

|x|α+2
,

1

|y|α+2

)

+
|x− y|
|x|α+1

.

So we deduce that

|K(x)−K(y)| ≤ |x− y|
[

(α+ 1)min(|x|, |y|)max
( 1

|x|α+2
,

1

|y|α+2

)

+
1

|x|α+1
+

1

|y|α+1

]

≤ |x− y|
[

(α+ 1)
1

min(|x|, |y|)α+1
+

1

|x|α+1
+

1

|y|α+1

]

≤ (α+ 2)|x− y|
( 1

|x|α+1
+

1

|y|α+1

)

.

which concludes the proof. �

6.3
Well-posedness for the system of particles

Let’s now introduce another particle system with a regularized kernel. We set, for ǫ ∈ (0, 1),

Kǫ(x) =
x

max(|x|, ǫ)α+1
, (6.3.16)

which obviously satisfies |Kǫ(x) −Kǫ(y)| ≤ Cα,ǫ|x− y| and we consider the following system of S.D.E.s

∀i = 1, ..., N, X i,N,ǫ
t = X i,N

0 − χ

N

N∑

j=1,j 6=i

∫ t

0

Kǫ(X
i,N,ǫ
s −Xj,N,ǫ

s )ds+
√
2Bi

t , (6.3.17)

for which strong existence and uniqueness thus holds.

166



The following result will be useful for the proof of Theorem 6.1.93. Its proof is very similar to the proof

of [62, Proposition 5.1]. Nevertheless, due to the fact that the kernel is not divergence-free, there is an

additional term in the dissipation of entropy’s formula (6.3.18) which will lead to additional computations

to control it.

Proposition 6.3.101. Let α ∈ (0, 1).

(i) Let N ≥ 2 be fixed. Assume that M1(F
N
0 ) < ∞ and H(FN

0 ) < ∞. For all t ≥ 0, we denote by

FN,ǫ
t ∈ Psym((R2)N ) the law of (X i,N,ǫ

t )i=1,...,N . Then

H(FN,ǫ
t ) =H(FN

0 ) +
χ

N2

∑

i6=j

∫ t

0

∫

(R2)N
divKǫ(xi − xj)F

N,ǫ
s (x)dsdx (6.3.18)

−
∫ t

0

I(FN,ǫ
s )ds.

(ii) There exists a constant C which depends on χ, H(FN
0 ) and M1(F

N
0 ) (but not on ǫ) such that for all

t ≥ 0 and N ≥ 2,

H(FN,ǫ
t ) ≤ C(1 + t), M1(F

N,ǫ
t ) ≤ C(1 + t),

∫ t

0

I(FN,ǫ
s )ds ≤ C(1 + t). (6.3.19)

Furthermore,

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C(1 + T ). (6.3.20)

Proof. Let ϕ ∈ C2
b ((R

2)N ), and t ≥ 0 be fixed. Using Itô’s formula, we compute the expectation of

ϕ(X1,N,ǫ
t , ..., XN,N,ǫ

t ) and get (recall that xi ∈ R2 stands for the i-th coordinate of x ∈ (R2)N )

d

dt

∫

(R2)N
ϕ(x)FN,ǫ

t (dx) =− χ

N

∫

(R2)N

∑

i6=j

Kǫ(xi − xj) · ∇xiϕ(x)F
N,ǫ
t (dx) (6.3.21)

+

∫

(R2)N
△xϕ(x)F

N,ǫ
t (dx).

We deduce that FN,ǫ is a weak solution to

∂tF
N,ǫ
t (x) =

χ

N

∑

i6=j

divxi(F
N,ǫ
t (x)Kǫ(xi − xj)) +△xF

N,ǫ
t (x). (6.3.22)

We are now able to compute the evolution of the entropy.

d

dt
H(FN,ǫ

t ) =
1

N

∫

(R2)N
∂tF

N,ǫ
t (x)(1 + logFN,ǫ

t (x))dx

=
χ

N2

∑

i6=j

∫

(R2)N
divxi(F

N,ǫ
t (x)Kǫ(xi − xj))(1 + logFN,ǫ

t (x))dx

+
1

N

∫

(R2)N
△xF

N,ǫ
t (x)(1 + logFN,ǫ

t (x))dx.

Performing some integrations by parts, we get

d

dt
H(FN,ǫ

t ) = − χ

N2

∑

i6=j

∫

(R2)N
Kǫ(xi − xj) · ∇xiF

N,ǫ
t (x)dx − I(FN,ǫ

t )

=
χ

N2

∑

i6=j

∫

(R2)N
divKǫ(xi − xj)F

N,ǫ
t (x)dx − I(FN,ǫ

t ),
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and (6.3.18) follows. Using that divKǫ(x) =
1−α

|x|α+11{|x|≥ǫ}+
2

ǫα+11{|x|<ǫ} ≤ 2
|x|α+1 and the exchangeability

of the particles, we get

d

dt
H(FN,ǫ

t ) ≤ 2χ

N2

∑

i6=j

∫

(R2)N

FN,ǫ
t (x)

|xi − xj |α+1
dx− I(FN,ǫ

t )

≤ 2χ

∫

(R2)N

FN,ǫ
t (x)

|x1 − x2|α+1
dx − I(FN,ǫ

t ).

Since α ∈ (0, 1), we can use Lemma 6.2.96 with γ = α+ 1 and β such that α+1
2 < β < 1, which gives

∫

(R2)N

FN,ǫ
t (x)dx

|x1 − x2|α+1
≤ C(I(FN,ǫ

t2 )β + 1),

where FN,ǫ
t2 is the two-marginal of FN,ǫ

t . By Lemma 6.2.97, we have I(FN,ǫ
t2 ) ≤ I(FN,ǫ

t ). Using that

Cxβ ≤ C′ + x
6χ for a constant C′ sufficiently large, we thus get

d

dt
H(FN,ǫ

t ) ≤ C − 2

3
I(FN,ǫ

t ),

and thus

H(FN,ǫ
t ) +

2

3

∫ t

0

I(FN,ǫ
s )ds ≤ H(FN

0 ) + Ct. (6.3.23)

We now compute M1(F
N,ǫ
t ). We first observe that

M1(F
N,ǫ
t ) =

1

N

∫

(R2)N

N∑

i=1

|xi|FN,ǫ
t (dx) = E[|X1,N,ǫ

t |],

since the particles are exchangeable. We will need to control E[sup[0,T ] |X1,N,ǫ
t |] in the sequel. We have

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C
(

E[|X1
0 |] + E

[

sup
[0,T ]

|B1
t |
]

(6.3.24)

+ E

[

sup
t∈[0,T ]

∣
∣
∣
1

N

∑

j 6=1

∫ t

0

Kǫ(X
1,N,ǫ
s −Xj,N,ǫ

s )ds
∣
∣
∣

])

≤ C
(

E[|X1
0 |] + T +

1

N

∑

j 6=1

∫ T

0

E[|Kǫ(X
1,N,ǫ
s −Xj,N,ǫ

s )|]ds
)

≤ C
(

E[|X1
0 |] + T +

∫ T

0

E

[ 1

|X1,N,ǫ
s −X2,N,ǫ

s |α
]

ds
)

.

Using Lemma 6.2.96 with γ = α and β such that α
2 < β < 1 and recalling that I(FN,ǫ

t2 ) ≤ I(FN,ǫ
t ), we

get

M1(F
N,ǫ
t ) ≤ C

(

M1(F
N
0 ) + T +

∫ t

0

I(FN,ǫ
t )βds

)

(6.3.25)

≤ C
(

M1(F
N
0 ) + T

)

+
1

3

∫ t

0

I(FN,ǫ
t )ds,

where we used that Cxβ ≤ C′ + x
3 for a constant C′ sufficiently large. Summing (6.3.23) and (6.3.25),

we thus find

H(FN,ǫ
t ) +M1(F

N,ǫ
t ) +

1

3

∫ t

0

I(FN,ǫ
s )ds ≤ H(FN

0 ) + Ct+ C(1 +M1(F
N
0 )).
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Since the quantitiesM1 and I are positive, we immediately get H(FN,ǫ
t ) ≤ C(1+t). Using Lemma 6.2.98,

we have H(FN,ǫ
t ) ≥ −C −M1(F

N,ǫ
t )/2, so that

M1(F
N,ǫ
t ) +

1

3

∫ t

0

I(FN,ǫ
s )ds ≤ C(1 + t) +M1(F

N,ǫ
t )/2.

Using again the positivity ofM1 and I, we easily get (6.3.19). Coming back to (6.3.24), we finally observe

that

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C
(

E[|X1
0 |] + T +

∫ T

0

I(FN,ǫ
s )ds

)

≤ C(1 + E[|X1
0 |] + T ),

which gives (6.3.20) and concludes the proof. �

We can now give the proof of existence and uniqueness for the particle system (6.1.3).

Proof of Theorem 6.1.93. Like in [146], the key point of the proof is to show that particles of the

system (6.1.3) a.s. never collide. We divide the proof in three steps. The first step consists in showing

that a.s. there are no collisions between particles for the system (6.3.17). In the second step, we deduce

that the particles of the system (6.1.3) also never collide, which ensures global existence and uniqueness

for (6.1.3). In the last step, we establish the estimates about the entropy, Fisher information and the

first moment. We fix N ≥ 2 and for all ǫ ∈ (0, 1), we consider (X i,N,ǫ
t )i=1,...,N,t≥0 the unique solution to

(6.3.17).

Step 1. Let τǫ := inf{t ≥ 0, ∃i 6= j, |X i,N,ǫ
t − Xj,N,ǫ

t | ≤ ǫ}. The aim of this step is to prove that

limǫ→0 P[τǫ < T ] = 0 for all T > 0. We fix T > 0 and introduce

Sǫ
t :=

1

N2

∑

i6=j

log |X i,N,ǫ
t −Xj,N,ǫ

t |. (6.3.26)

For any A > 1, we have

P[τǫ < T ] ≤ P

[

inf
[0,T ]

Sǫ
t∧τǫ ≤ Sǫ

τǫ

]

(6.3.27)

≤ P[∃i, ∃t ∈ [0, T ], |X i,N,ǫ
t | > A]

+ P

[

∀i, ∀t ∈ [0, T ], |X i,N,ǫ
t | ≤ A, inf

[0,T ]
Sǫ
t∧τǫ ≤ Sǫ

τǫ

]

≤
NE

[

sup[0,T ] |X1,N,ǫ
t |

]

A
+ P

[

inf
[0,T ]

Sǫ
t∧τǫ ≤

log ǫ

N2
+ log 2A

]

≤ C(1 + T )N

A
+ P

[

inf
[0,T ]

Sǫ
t∧τǫ ≤

log ǫ

N2
+ log 2A

]

,

where we used (6.3.20). We thus want to compute P

[

inf [0,T ] S
ǫ
t∧τǫ ≤ −M

]

for all (large) M > 0.

Using Itô’s formula, that Kǫ(x) = K(x) for any |x| ≥ ǫ (see (6.3.16)) and that △(log |x|) = 0 on
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{x ∈ R
2, |x| > ǫ}, we have

log |X i,N,ǫ
t∧τǫ −Xj,N,ǫ

t∧τǫ | = log |X i,N
0 −Xj,N

0 |+M i,j,ǫ
t∧τǫ

− χ

N

∫ t∧τǫ

0

[ ∑

k 6=i,j

(

K(X i,N,ǫ
s −Xk,N,ǫ

s )−K(Xj,N,ǫ
s −Xk,N,ǫ

s )
)

+ 2K(X i,N,ǫ
s −Xj,N,ǫ

s )
]

.
X i,N,ǫ

s −Xj,N,ǫ
s

|X i,N,ǫ
s −Xj,N,ǫ

s |2
ds

=: log |X i,N
0 −Xj,N

0 |+M i,j,ǫ
t∧τǫ +Ri,j,ǫ

t∧τǫ ,

where M i,j,ǫ
t is a martingale. Setting S0 := 1

N2

∑

i6=j log |X i,N
0 − Xj,N

0 |, M ǫ
t := 1

N2

∑

i6=j M
i,j,ǫ
t∧τǫ and

Rǫ
t :=

1
N2

∑

i6=j R
i,j,ǫ
t∧τǫ , we thus have

Sǫ
t∧τǫ = S0 +M ǫ

t +Rǫ
t ,

so that

P( inf
[0,T ]

Sǫ
t∧τǫ ≤ −M) ≤ P(S0 ≤ −M/3) + P( inf

[0,T ]
M ǫ

t ≤ −M/3) (6.3.28)

+ P( inf
[0,T ]

Rǫ
t ≤ −M/3).

Using first Lemma 6.2.100 and that |K(x)| = |x|−α, and then exchangeability, we clearly have for some

constant C independent of N and ǫ,

E[sup
[0,T ]

|Rǫ
t |] ≤

C

χN3

∑

i6=j

∑

k 6=i,j

(

E

[ 1

|X i,N,ǫ
s −Xk,N,ǫ

s |α+1

]

+ E

[ 1

|Xj,N,ǫ
s −Xk,N,ǫ

s |α+1

]

+ E

[ 1

|X i,N,ǫ
s −Xj,N,ǫ

s |α+1

])

ds

≤ Cχ

∫ T

0

E

[ 1

|X1,N,ǫ
s −X2,N,ǫ

s |α+1

]

ds

≤ Cχ

∫ T

0

(1 + I(FN,ǫ
s2 ))ds

≤ C(1 + T ), (6.3.29)

where we used Lemma 6.2.96, the fact that I(FN,ǫ
t2 ) ≤ I(FN,ǫ

t ) by Lemma 6.2.97, and finally Proposition

6.3.101. We thus get

P( inf
[0,T ]

Rǫ
t ≤ −M/3) ≤ P(sup

[0,T ]

|Rǫ
t | ≥M/3) ≤ C(1 + T )

M
. (6.3.30)

We now want to compute P(inf [0,T ]M
ǫ
t ≤ −M/3). Using that log |x| ≤ |x|, we have

Sǫ
t ≤ 1

N2

∑

i6=j

(|X i,N,ǫ
t |+ |Xj,N,ǫ

t |) ≤ 2

N

∑

i

|X i,N,ǫ
t |.

Consequently,

M ǫ
t ≤ Sǫ

t∧τǫ + sup
s∈[0,T ]

|Rǫ
s| − S0

≤ 2

N

∑

i

sup
s∈[0,T ]

|X i,N,ǫ
s |+ sup

s∈[0,T ]

|Rǫ
s| − S0 =: Kǫ − S0 =: Zǫ.
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We have

P( inf
[0,T ]

M ǫ
t ≤ −M/3) ≤ P(Zǫ ≥

√

M/3) + P( inf
[0,T ]

M ǫ
t ≤ −M/3, Zǫ <

√

M/3). (6.3.31)

Since (M ǫ
t )t≥0 is a continuous local martingale, there exists a Brownian Motion β such thatM ǫ

t = β<Mǫ>t .

For x ∈ R, we set σx := inf{t ≥ 0, βt = x}. Using that sup[0,T ]M
ǫ
t ≤ Zǫ a.s.,

P( inf
[0,T ]

M ǫ
t ≤ −M/3, Zǫ <

√

M/3) ≤ P( inf
[0,T ]

M ǫ
t ≤ −M/3, sup

[0,T ]

M ǫ
t <

√

M/3)

≤ P(σ−M/3 ≤ σ√
M/3

)

=

√

M/3

M/3 +
√

M/3
≤
√

3

M
, (6.3.32)

by classical results on the Brownian Motion. Using (6.3.20) and (6.3.29), we get that E[Kǫ] ≤ C(1 + T )

where C does not depend on ǫ. So using the Markov inequality,

P(Zǫ ≥
√

M/3) = P(Kǫ − S0 ≥
√

M/3)

≤ P(Kǫ ≥
√

M/12) + P(−S0 ≥
√

M/12)

≤ C(1 + T )√
M

+ P(−S0 ≥
√

M/12). (6.3.33)

Gathering (6.3.31), (6.3.32) and (6.3.33), we find that

P( inf
[0,T ]

M ǫ
t ≤ −M/3) ≤ C(1 + T )√

M
+ P(−S0 ≥

√

M/12). (6.3.34)

Coming back to (6.3.27) and (6.3.28), using (6.3.30) and (6.3.34) with M = − log ǫ
N2 − log 2A, we finally

get that for any ǫ ∈ (0, 1), any A > 1 such that log ǫ
N2 + log 2A < 0,

P(τǫ < T ) ≤ C(1 + T )N

A
+ P

(

S0 ≤
( log ǫ

N2
+ log 2A

)
/3
)

+
C(1 + T )

− log ǫ
N2 − log 2A

+
C(1 + T )

√
− log ǫ
N2 − log 2A

+ P

(

S0 ≤ −
√
(
− log ǫ

N2
− log 2A

)
/12
)

.

Observe finally that S0 > −∞ a.s. (because FN
0 has a density sinceH(FN

0 ) <∞) so that limM→+∞ P(S0 <

−M) = 0. Letting ǫ→ 0 in the above formula, we get that for all A > 1,

lim sup
ǫ

P(τǫ < T ) ≤ C(1 + T )N

A
.

It only remains to make A go to ∞ to conclude this step.

Step 2. Since K is Lipschitz-continuous outside 0, classical arguments give existence and uniqueness

of a solution to (6.1.3) until the explosion time τ = inf{t ≥ 0, ∃i 6= j,X i,N
t = Xj,N

t }. We can observe

that since Kǫ(x) = K(x) for any |x| ≥ ǫ, (X i,N,ǫ)i=1,...,N is solution to (6.1.3) on [0, τǫ] so that for any

i = 1, ..., N , X i,N
t = X i,N,ǫ

t on [0, τǫ]. We thus have τǫ < τ for any ǫ ∈ (0, 1) a.s. so that, using Step 1,

we have for any T > 0

P(τ < T ) ≤ P(τǫ < T ) −→
ǫ→0

0.
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Thus τ = ∞ a.s. which proves global existence and uniqueness for (6.1.3).

Step 3. Using that the functionals H , I and M1 are lower semi-continuous and Proposition 6.3.101,

we have

H(FN
t ) ≤ lim inf

ǫ
H(FN,ǫ

t ) ≤ C(1 + t),

∫ t

0

I(FN
s )ds ≤ lim inf

ǫ

∫ t

0

I(FN,ǫ
s )ds ≤ C(1 + t), (6.3.35)

and

M1(F
N
t ) ≤ lim inf

ǫ
M1(F

N,ǫ
t ) ≤ C(1 + t).

Using Fatou’s lemma and (6.3.20), we get

E

[

sup
[0,T ]

|X1,N
t |

]

≤ lim inf
ǫ

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C(1 + T ),

and (6.1.13) is proven. It remains to prove (6.1.14). Using again that the functionals H and I are lower

semi-continuous and using (6.3.18), we get

H(FN
t ) +

∫ t

0

I(FN
s )ds ≤ lim inf

ǫ

[

H(FN,ǫ
t ) +

∫ t

0

I(FN,ǫ
s )ds

]

≤ H(FN
0 ) + lim inf

ǫ

χ

N2

∫ t

0

∑

i6=j

E[divKǫ(X
i,N,ǫ
s −Xj,N,ǫ

s )]ds.

By exchangeability, it suffices to prove that, as ǫ→ 0,

Dǫ :=

∫ t

0

E[divKǫ(X
1,N,ǫ
s −X2,N,ǫ

s )]ds →
∫ t

0

E[divK(X1,N
s −X2,N

s )]ds =: D.

By Step 2, we have X i,N
s = X i,N,ǫ

s for any i and s ≤ τǫ and thus recalling that Kǫ(x) = K(x) for any

|x| ≥ ǫ, we get that a.s. for any s < τǫ

divKǫ(X
1,N,ǫ
s −X2,N,ǫ

s ) = divK(X1,N,ǫ
s −X2,N,ǫ

s ) = divK(X1,N
s −X2,N

s ).

So using that divK(x) ≤ 2|x|−α−1 and divKǫ(x) ≤ 2|x|−α−1, we get

|D −Dǫ| ≤ C

∫ t

0

E

[

1{τǫ<s}

( 1

|X1,N,ǫ
s −X2,N,ǫ

s |α+1
+

1

|X1,N
s −X2,N

s |α+1

)]

ds.

Let a ∈
(

0, 1−α
1+α

)

(in order to have (1 + a)(α + 1) < 2). Using first the Hölder inequality with p = 1 + a

and q such that 1/p+ 1/q = 1, and then Lemma 6.2.96 with β = 1, we get

|D −Dǫ| ≤ C

∫ t

0

P(τǫ < s)1/qE
[( 1

|X1,N,ǫ
s −X2,N,ǫ

s |(α+1)(1+a)

+
1

|X1,N
s −X2,N

s |(α+1)(1+a)

)]1/p

ds

≤ CP(τǫ < t)1/q
∫ t

0

[1 + I(FN,ǫ
s ) + I(FN

s )]ds

≤ C(1 + t)P(τǫ < t)1/q,

by (6.3.19) and (6.3.35). This tends to 0 as ǫ→ 0 by Step 1 and concludes the proof. �
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6.4
Convergence of the particle system

We start this section with a tightness result for the particle system (6.1.3).

Lemma 6.4.102. Let α ∈ (0, 1). Assume (6.1.12). For each N ≥ 2, let (X i,N
t )i=1,...,N be the unique

solution to (6.1.3) and QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
.

(i) The family {L((X1,N
t )t≥0), N ≥ 2} is tight in P(C([0,∞),R2)).

(ii) The family {L(QN ), N ≥ 2} is tight in P(P(C([0,∞),R2))).

Proof. Since the system is exchangeable, we deduce (ii) from (i) by [145, Proposition 2.2]. Let’s

prove (i). Let thus η > 0 and T > 0 be fixed. To prove the tightness of {L((X1,N
t )t≥0), N ≥ 2} in

P(C([0,∞),R2)), we have to find a compact subset Kη,T of C([0, T ],R2) such that supN P[(X1,N
t )t∈[0,T ]) /∈

Kη,T ] ≤ η. We first set ZT := sup0<s<t<T

√
2|B1

t − B1
s |/|t − s|1/3. This random variable is a.s. finite

since the paths of a Brownian motion are a.s. Hölder continuous with index 1/3. We can also notice that

the law of ZT does not depend on N . Using the Hölder inequality with p = 3 and q = 3/2, we get that

for all 0 < s < t < T ,

∣
∣
∣
χ

N

N∑

j=2

∫ t

s

K(X1,N
u −Xj,N

u )du
∣
∣
∣ ≤ χ

N

N∑

j=2

∫ t

s

du

|X1,N
u −Xj,N

u |α

≤ χ

N
(t− s)1/3

N∑

j=2

(∫ T

0

du

|X1,N
u −Xj,N

u |3α/2
)2/3

≤ (t− s)1/3
(

χ+
χ

N

N∑

j=2

∫ T

0

du

|X1,N
u −Xj,N

u |3α/2
)

=: (t− s)1/3UN
T .

Using Lemma 6.2.96 with γ = 3α/2 and β = 1, the exchangeability of the system of particles, and

denoting by FN
u2 the two-marginal of FN

u , we have

E(UN
T ) = χ+ χ

N − 1

N

∫ T

0

E

( 1

|X1,N
u −X2,N

u |3α/2
)

du ≤ χ+ C

∫ T

0

(1 + I(FN
u2))du

≤ χ+ C

∫ T

0

(1 + I(FN
u ))du

≤ C(1 + T ),

where we used that I(FN
t2 ) ≤ I(FN

t ) by Lemma 6.2.97 and Theorem 6.1.93. We thus have supN≥2 E(U
N
T ) <

∞. Furthermore, ZT is also a.s. finite so that we can find R > 0 such that P(ZT + UN
T > R) ≤ η/2 for

all N ≥ 2. Recalling (6.1.12), we can also find a > 0 such that supN≥2 P(X
1,N
0 > a) ≤ η/2. We now

consider

Kη,T := {f ∈ C([0, T ],R2), |f(0)| ≤ a, |f(t)− f(s)| ≤ R(t− s)1/3 ∀0 < s < t < T },

which is a compact subset of C([0, T ],R2) by Ascoli’s theorem. Observing that for all 0 < s < t < T ,

|X1,N
t −X1,N

s | ≤ (ZT + UN
t )(t− s)1/3, we get

P[(X1,N
t )t∈[0,T ] /∈ Kη,T ] ≤ P(|X1,N

0 | > a) + P(ZT + UN
T > R) ≤ η,
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which concludes the proof. �

We define S as the set of all probability measures f ∈ P(C([0,∞),R2)) such that f is the law of

(Xt)t≥0 solution to (6.1.4) satisfying (setting ft = L(Xt))

∀T > 0,

∫ T

0

I(fs)ds <∞ and sup
[0,T ]

M1(fs) <∞. (6.4.36)

Observe that by Lemma 6.2.99, (6.4.36) implies (6.1.7). The condition p > 2
1−α in (6.1.7) is asked in

order to use (6.5.37) with γ = −(α+ 1) (see the beginning of Section 5).

Proposition 6.4.103. Let α ∈ (0, 1) and assume (6.1.12). For each N ≥ 2, let (X i,N
0 )i=1,...,N be FN

0 -

distributed and consider the solution (X i,N
t )i=1,...,N,t≥0 to (6.1.3). Assume that there is a subsequence of

QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
going in law to some P(C([0,∞),R2))-valued random variable Q. Then Q a.s.

belongs to S.

Proof. We consider a (not relabelled) subsequence of QN going in law to some Q and we introduce

the identity map ψ : C([0,∞);R2) → C([0,∞);R2). Using the arguments of [62, Proposition 6.1], we

have to prove that Q a.s. satisfies

(a) Q ◦ (ψ(0))−1 = f0;

(b) setting Qt = Q ◦ (ψ(t))−1, (Qt)t≥0 satisfies (6.4.36);

(c) for all 0 < t0 < . . . < tk < s < t, ϕ1, . . . , ϕk ∈ Cb(R
2), ϕ ∈ C2

b (R
2), F(Q) = 0 where, for

f ∈ P(C([0,∞),R2)),

F(f) :=

∫∫

f(dγ)f(dγ̃)ϕ1(γt1) . . . ϕk(γtk)

[

ϕ(γt)− ϕ(γs) + χ

∫ t

s

∇xϕ(γu) ·K(γu − γ̃u) du−
∫ t

s

△xϕ(γu)du

]

.

For simplicity, we split the proof in many steps.

Step 1. By assumption (6.1.12), we have that FN
0 is f0-chaotic which implies that QN

0 = QN ◦ψ(0)−1

goes weakly to f0 in law, and, since f0 is deterministic, also in probability. Hence Q0 = f0 a.s. and thus

f ◦ ψ(0)−1 = f0. Thus Q a.s. satisfies (a).

Step 2. Since 1
N

∑N
i=1 δXi,N

t
goes weakly to Qt, for all j ≥ 1, FN

tj goes weakly to πtj , where πt := L(Qt)

and πtj :=
∫

P(R2)
f⊗jπt(df). We can thus apply [72, Theorem 5.7] (and then Fatou’s Lemma) to get

E

[ ∫ T

0

I(Qs)ds
]

=

∫ T

0

E[I(Qs)]ds ≤
∫ T

0

lim inf
N

I(FN
s ) ds

≤ lim inf
N

∫ T

0

I(FN
s ) ds,

which is finite by Theorem 6.1.93. We conclude that
∫ T

0
I(Qs)ds < ∞ a.s. We also have, using Fatou’s
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lemma and the exchangeability of the particles,

E

[

sup
[0,T ]

M1(Qt)
]

≤ E

[

lim inf
N

sup
[0,T ]

M1(QN
t )
]

≤ lim inf
N

E

[

sup
[0,T ]

1

N

N∑

i=1

|X i,N
t |

]

≤ lim inf
N

E

[

sup
[0,T ]

|X1,N
t |

]

≤ C(1 + T ),

by (6.1.13), so that sup[0,T ]M1(Qt) <∞ a.s. Consequently, Q a.s. satisfies (b).

Step 3.1. Using Itô’s formula

Oi
t :=ϕ(X

i,N
s ) +

χ

N

∑

j 6=i

∫ t

0

∇xϕ(X
i,N
s )) ·K(X i,N

s −Xj,N
s ))ds−

∫ t

0

△xϕ(X
i,N
s )ds

=ϕ(X i,N
0 ) +

√
2

∫ t

0

∇xϕ(X
i,N
s ) · dBi

s.

But, using the last equality, we see that

F(QN ) =
1

N

N∑

i=1

ϕ1(X
i,N
t1 ) . . . ϕk(X

i,N
tk

)[Oi
t −Oi

s]

=

√
2

N

N∑

i=1

ϕ1(X
i,N
t1 ) . . . ϕk(X

i,N
tk

)

∫ t

s

∇xϕ(X
i,N
u ) · dBi

u.

From there, and thanks to the independence of the Brownian motions we conclude that (recall that the

functions ϕ1, ..., ϕk,∇xϕ are bounded)

E
[
(F(QN ))2

]
≤ C

N
.

Step 3.2. We also introduce the regularized version of F . For ε ∈ (0, 1), we define Fε replacing K

by Kε defined by (6.3.16). Since f 7→ Fε(f) is continuous and bounded from P(C([0,∞);R2)) to R and

since QN goes in law to Q, we deduce that for any ε ∈ (0, 1),

E[|Fε(Q)|] = lim
N

E[|Fε(QN )|].

Step 3.3. Using that all the functions and their derivatives involved in F are bounded and that

|Kε(x)−K(x)| ≤ |x|−α10≤|x|≤ε, we get

|F(f)−Fε(f)| ≤χC

∫∫∫ t

0

|γ(u)− γ̃(u)|−α10<|γ(u)−γ̃(u)|<ε du f(dγ)f(dγ̃)

≤Cε3/2−α

∫∫∫ t

0

|γ(u)− γ̃(u)|−3/21γ(u) 6=γ̃(u)du f(dγ)f(dγ̃).

Thus,

|F(QN )−Fε(QN )| ≤ Cε3/2−α

N2

∑

i6=j

∫ t

0

|X i,N
u −Xj,N

u |−3/2 du,

and by exchangeability

E
[
|F(QN )−Fε(QN )|

]
≤ Cε3/2−α

∫ t

0

E

[

|X1,N
u −X2,N

u |−3/2
]

du.
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Using Lemma 6.2.96 with γ = 3/2 and β = 1 and denoting by FN
u2 the two-marginal of FN

u , we have

E
[
|F(QN )−Fε(QN )|

]
≤ Cε3/2−α

∫ t

0

I(FN
u2) du.

Using that I(FN
t2 ) ≤ I(FN

t ) by Lemma 6.2.97 and Theorem 6.1.93 we conclude that

E
[
|F(QN )−Fε(QN )|

]
≤ Cε3/2−α.

Step 3.4. Now we see that

|F(Q)−Fε(Q)| ≤Cε3/2−α

∫ t

0

∫

R2

∫

R2

|x− y|−3/2Qs(dx)Qs(dy) ds.

Step 2 says that (6.4.36) holds true for Qs, then thanks to Lemma 6.2.99 we get that a.s., ∇xQs ∈
L2q/(3q−2)(0, T ;Lq(R2)) for all q ∈ [1, 2). Then using [62, Lemma 3.5] for γ = 3/2 we deduce that a.s.

lim
ε→0

|F(Q)−Fε(Q)| = 0.

Step 3.5. Using Steps 3.1, 3.2 and 3.3, we finally observe, using the same arguments as in [62,

Proposition 6.1, Step 4.5 ], that

E[|F(Q)| ∧ 1] ≤ Cε3/2−α + E[|F(Q)−Fε(Q)| ∧ 1],

so that F(Q) = 0 a.s. by Step 3.4 thanks to dominated convergence and Q a.s. satisfies (c) which

concludes the proof. �

6.5
Well-posedness and propagation of chaos

We start this section with the proof of existence and uniqueness for the nonlinear S.D.E. (6.1.4). We

will use that for γ ∈ (−2, 0), for p ∈ (2/(2 + γ),∞] and for any h ∈ P(R2) ∩ Lp(R2),

sup
v∈R2

∫

R2

h(v∗)|v − v∗|γdv∗ ≤ sup
v∈R2

∫

|v∗−v|<1

h(v∗)|v − v∗|γdv∗

+ sup
v∈R2

∫

|v∗−v|≥1

h(v∗)dv∗

≤ Cγ,p||h||Lp(R2) + 1, (6.5.37)

where

Cγ,p =
[ ∫

|v∗|≤1

|v∗|γp/(p−1)dv∗

](p−1)/p

<∞,

since by assumption γp/(p− 1) > −2.

Proof of Theorem 6.1.94. The existence in law follows from Proposition 6.4.103 and Lemma

6.4.102 (see the comment after (6.4.36)). We now prove pathwise uniqueness which will also imply the

strong existence. To this aim, we consider (Xt)t≥0 and (Yt)t≥0 two solutions of (6.1.4) driven by the

same Brownian motion and with same initial condition such that, setting fs := L(Xs) and gs := L(Ys),
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(ft)t≥0 and (gt)t≥0 are in L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)) for some p > 2

1−α . For any s > 0,

we consider the probability measure Rs on R2 ×R2 with first (respectively second) marginal equal to fs

(resp. gs) such that

W1(fs, gs) =

∫

R2×R2

|x− y|Rs(dx, dy).

We have

Xt − Yt = −χ
(∫ t

0

∫

R2

K(Xs − x)fs(dx)ds −
∫ t

0

∫

R2

K(Ys − y)gs(dy)ds
)

= −χ
∫ t

0

∫

R2×R2

[K(Xs − x)−K(Ys − y)]Rs(dx, dy).

Using Lemma 6.2.100 and recalling that L(Xt) = ft, L(Yt) = gt, and that Rt has marginals ft and gt,

this gives

E[sup
[0,T ]

|Xt − Yt|] ≤ Cαχ

∫ T

0

∫

R2×R2

E

[

(|Xs − Ys|+ |x− y|)
( 1

|Xs − x|α+1

+
1

|Ys − y|α+1

)]

Rs(dx, dy)ds

≤ Cαχ

∫ T

0

E

[

|Xs − Ys|
( ∫

R2

1

|Xs − x|α+1
fs(dx)

+

∫

R2

1

|Ys − y|α+1
gs(dy)

)]

ds

+ Cαχ

∫ T

0

∫

R2×R2

|x− y|E
[ 1

|Xs − x|α+1

+
1

|Ys − y|α+1

]

Rs(dx, dy)ds.

Using (6.5.37), we thus have, since
∫

R2×R2 |x− y|Rs(dx, dy) = W1(fs, gs) ≤ E[|Xs − Ys|] by definition of

W1,

E[sup
[0,T ]

|Xt − Yt|] ≤ C

∫ T

0

E[|Xs − Ys|](1 + ||fs||Lp + ||gs||Lp)ds

+ C

∫ T

0

∫

R2×R2

|x− y|(1 + ||fs||Lp + ||gs||Lp)Rs(dx, dy)ds

≤ C

∫ T

0

E[|Xs − Ys|](1 + ||fs||Lp + ||gs||Lp)ds.

By Grönwall’s Lemma, we thus get E(sup[0,T ] |Xt − Yt|) = 0 and pathwise uniqueness is proven. �

The following lemma is useful for the uniqueness of (6.1.1).

Lemma 6.5.104. Let p > 2/(1−α) and consider a weak solution (ft)t≥0 to (6.1.1) lying in L∞
loc([0,∞),P1(R

2))∩
L1
loc([0,∞);Lp(R2)). Assume that for some h = (ht)t≥0 lying in L

∞
loc([0,∞),P1(R

2))∩L1
loc([0,∞);Lp(R2)),

for all ϕ ∈ C2
c (R

2), all t ≥ 0,

∫

R2

ϕ(x)ht(dx) =

∫

R2

ϕ(x)f0(dx) +

∫ t

0

∫

R2

△xϕ(x)hs(dx) ds (6.5.38)

− χ

∫ t

0

∫

R2

∫

R2

K(x− y) · ∇xϕ(x)fs(dy)hs(dx) ds.

Then h = f .
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Proof. For any ϕ ∈ C2
c (R

2) and any t ≥ 0, we set

Atϕ(x) = △xϕ(x)− χ

∫

R2

K(x− y) · ∇xϕ(x)ft(dy).

We will prove that for any µ ∈ P1(R
2), there exists at most one h lying in L∞

loc([0,∞),P1(R
2)) ∩

L1
loc([0,∞);Lp(R2)) such that for all t ≥ 0, ϕ ∈ C2

c (R
2),

∫

R2

ϕ(x)ht(dx) =

∫

R2

ϕ(x)µ(dx) +

∫ t

0

∫

R2

Asϕ(x)hs(dx)ds. (6.5.39)

This will conclude the proof since f and h solve this equation with µ = f0 by assumption.

Step 1. Let µ ∈ P1(R
2). A continuous adapted R2-valued process (Xt)t≥0 on some filtered probability

space (Ω,F , (Ft)t≥0, P ) is said to solve the martingale problem MP ((At)≥0, µ) if P ◦X−1
0 = µ and if for

all ϕ ∈ C2
c (R

2), (Mϕ
t )t≥0 is a (Ω,F , (Ft)t≥0, P )-martingale, where

Mϕ
t = ϕ(Xt)−

∫ t

0

Asϕ(Xs)ds.

Using Bhatt-Karandikar [18, Theorem 5.2] (see also Remark 3.1 in [18]), uniqueness for (6.5.39) holds if

(i) there exists a countable subset (ϕk)k≥1 ⊂ C2
c such that for all t ≥ 0, the closure (for the bounded

pointwise convergence) of {(ϕk,Atϕk), k ≥ 1} contains {(ϕ,Atϕ), ϕ ∈ C2
c },

(ii) for each x0 ∈ R2, there exists a solution to MP ((At)≥0, δx0
),

(iii) for each x0 ∈ R2, uniqueness (in law) holds for MP ((At)≥0, δx0
).

Step 2. We first prove (i). Consider thus some countable (ϕk)k≥1 ⊂ C2
c dense in C2

c , in the sense that

for ψ ∈ C2
c , there exists a subsequence ϕkn such that limn→∞(||ψ−ϕkn ||∞+||ψ′−ϕ′

kn
||∞+||ψ′′−ϕ′′

kn
||∞) =

0. We then have to prove that, for t ≥ 0,

(a) Atϕkn(x) tends to Atψ(x) for all x ∈ R2,

(b)supn ||Atϕkn ||∞ <∞.

Let x ∈ R2. Using that |K(x)| = 1
|x|α , we have

|Atϕkn(x) −Atψ(x)| ≤ ||ψ′′ − ϕ′′
kn
||∞ + χ||ψ′ − ϕ′

kn
||∞
∫

R2

1

|x− y|α ft(dy) → 0,

since
∫

R2

1
|x−y|α ft(dy) ≤ C(1+||ft||Lp) by (6.5.37). For (b), we can observe that settingA := supn(||ϕkn ||∞+

||ϕk′
n
||∞ + ||ϕ′′

kn
||∞)

|Atϕkn | ≤ A+ χA

∫

R2

1

|x− y|α ft(dy) ≤ A+ CA(1 + ||ft||Lp),

which concludes this step.

Step 3. Using classical arguments, we observe that a process (Xt)t≥0 is a solution toMP ((At)≥0, δx0
)

if and only if there exists, on a possibly enlarged probability space, a (Ft)t≥0-Brownian motion (Bt)t≥0

such that

Xt = x0 − χ

∫ t

0

∫

R2

K(Xs − x)fs(dx)ds +
√
2Bt. (6.5.40)

It thus suffices to prove existence and uniqueness in law for solutions to (6.5.40) to get (ii) and (iii).
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Step 4. The proof of (pathwise) uniqueness for (6.5.40) is very similar with the proof of uniqueness

for (6.1.4) which has already been done and we leave it to the reader.

Step 5. It remains to check (ii) to conclude. We thus have to prove the existence of a solution to

(6.5.40). To this aim, we use a Picard iteration. We thus consider the constant process X0
t = x0 and

define recursively

Xn+1
t = x0 − χ

∫ t

0

∫

R2

K(Xn
s − x)fs(dx)ds +

√
2Bt.

Using the same kind of arguments as in the proof of Theorem 6.1.94, we get

E(sup
[0,T ]

|Xn+1
t −Xn

t |) ≤ C

∫ T

0

E[|Xn
s −Xn−1

s |](1 + ||fs||Lp)ds.

Since
∫ T

0
(1 + ||fs||Lp)ds <∞, we classically deduce that

∑

n E(sup[0,T ] |Xn+1
t −Xn

t |) <∞, so that there

is a continuous adapted process (Xt)t≥0 such that for all T > 0, limn E
[
sup[0,T ] |Xt −Xn

t |
]
= 0. This L1

convergence implies that (Xt)t≥0 is solution to (6.5.40), which concludes the proof. �

The following result ensures that uniqueness holds for (6.1.1).

Theorem 6.5.105. Let f0 and g0 be two probability measures with finite first moment. Let (ft)t≥0

and (gt)t≥0 be two solutions to (6.1.1) lying in L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)) for some p >

2/(1− α) starting from f0 and g0 respectively. Then

W1(ft, gt) ≤ W1(f0, g0) exp
(

C

∫ t

0

(1 + ||fs||Lp + ||gs||Lp)ds
)

.

Proof. Let thus p > 2/(1−α), (ft)t≥0 and (gt)t≥0 be two solutions to (6.1.1) lying in L
∞
loc([0,∞),P1(R

2))∩
L1
loc([0,∞);Lp(R2)). For any s ≥ 0, we consider the probability measure Rs on R

2 × R
2 with first (re-

spectively second) marginal equal to fs (resp. gs) such that

W1(fs, gs) =

∫

R2×R2

|x− y|Rs(dx, dy),

and we consider (X0, Y0) with law R0. We finally set

Xt = X0 − χ

∫ t

0

∫

R2

K(Xs − x)fs(dx)ds +
√
2Bt,

Yt = Y0 − χ

∫ t

0

∫

R2

K(Ys − x)gs(dx)ds +
√
2Bt.

Using Itô’s formula, we see that h defined by ht := L(Xt) satisfies (6.5.38) and Lemma 6.5.104 ensures

us that L(Xt) = ft. Similarly, we also have L(Yt) = gt. Using the same arguments as in the proof of

Theorem 6.1.94, we easily get

E(|Xt − Yt|) ≤ E[|X0 − Y0|] + C

∫ t

0

E[|Xs − Ys|](1 + ||fs||Lp + ||gs||Lp)ds.

Using the Grönwall’s Lemma and recalling that E[|X0 − Y0|] = W1(f0, g0), we get

E(|Xt − Yt|) ≤ W1(f0, g0) exp
(

C

∫ t

0

(1 + ||fs||Lp + ||gs||Lp)ds
)

,
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which concludes the proof since W1(ft, gt) ≤ E(|Xt − Yt|). �

We can now give the proof of our well-posedness result for (6.1.1).

Proof of Theorem 6.1.92 (i). The existence follows by Theorem 6.1.94. Indeed consider (Xt)t≥0

the unique solution of (6.1.4) with initial law f0 and set for t ≥ 0 ft := L(Xt). Thanks to the Remark

6.1.89, ft is a weak solution to (6.1.1) in the sense given by Definition 6.1.88 and (6.1.15) is exactly

(6.1.7).

For uniqueness, consider two weak solutions (ft)t≥0 and (gt)t≥0 of (6.1.1) satisfying (6.1.7) with the

same initial condition f0 ∈ P1(R
2). Then Theorem 6.5.105 ensures that W1(ft, gt) = 0 for any t ≥ 0

which concludes the proof. �

We end this section with the proof of our propagation of chaos result.

Proof of Theorem 6.1.95 (i). We consider QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
. By Lemma 6.4.102, the

family {L(QN), N ≥ 2} is tight in P(P(C([0,∞),R2))). Furthermore, by proposition 6.4.103, any limit

point of QN belongs a.s. to the set of all probability measures f ∈ P(C([0,∞),R2) such that f is the law

of a solution to (6.1.4) satisfying (6.1.9). But by Theorem 6.1.94, this set is reduced to L((Xt)t≥0) =: f .

We thus deduce that QN goes in law to f as N → ∞ which concludes the proof of (i).

6.6
Renormalization and entropic chaos

In this section, we first deal with the renormalization which will give us the dissipation of entropy

for the solution to (6.1.1). From this, we will be able to show the entropic chaos for the system (6.1.3),

which will conclude this paper.

Proof of Theorem 6.1.92 (ii). We adapt the ideas used in [62] for the 2D vortex model to our case,

which in particular has a non divergence free kernel. We split the proof in four steps plus a Step 0 which is

nothing but direct results of what we have already done. We consider the unique weak solution f = (ft)t≥0

of (6.1.1). In step 1 we deal with the necessary estimates on K ∗f and ∇· (K ∗f) to regularize f . In step

2 we show the convergence of a regular version of f towards f . In step 3, we improve the regularity of the

solution using a well-known bootstrap argument. Finally, in step 4 we prove the renormalization property.

We first observe that by construction, f satisfies (6.1.8). Indeed, for any t ≥ 0, we considered ft as the

law of Xt, where (Xt)t≥0 is the unique solution to (6.1.4), obtained by Proposition 6.4.103 and Lemma

6.4.102, so that (6.4.36) (which englobes (6.1.8)) is satisfied.

Step 0. Direct Estimates. We start by noticing that Lemma 6.2.99 and (6.1.8) implies directly (6.1.9)
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and also that for any p ∈ [1,∞) and all T > 0,

f ∈ Lp/(p−1)(0, T ;Lp(R2)). (6.6.41)

Step 1. First Estimates. The aim of this step is to prove that for any q > 2/α and all T > 0:

(K ∗ f) ∈ L2q/(αq−2)(0, T ;Lq(R2)), (6.6.42)

and

∇x · (K ∗ f) = K ∗ (∇x · f) ∈ L2q/(q(1+α)−2)(0, T ;Lq(R2)). (6.6.43)

Let us remember the Hardy-Littlewood-Sobolev inequality in 2D: for 1 ≤ p < 2/(2− α),

∥
∥
∥
∥

∫

R2

f(y)

| · −y|2−(2−α)
dy

∥
∥
∥
∥
2p/(2−(2−α)p)

≤ Cα,p‖f‖p.

Using (6.6.41) we get that for any p ∈ (1, 2/(2− α)) and all T > 0,

(K ∗ f) ∈ Lp/(p−1)(0, T ;L2p/(2−(2−α)p)(R2)),

and under the change of variables q = 2p/(2− (2− α)p) we easily deduce (6.6.42).

Similarly, but using (6.1.9) instead of (6.6.41), we get that for any p ∈ (1, 2/(2− α)) and all T > 0,

∇x · (K ∗ f) ∈ L2p/(3p−2)(0, T ;L2p/(2−(2−α)p)(R2)),

applying the same change of variables q = 2p/(2− (2− α)p) we get (6.6.43).

Step 2. Continuity. Consider T > 0 fixed. For q > 2/α we have that 2q/(q(1+α)−2) > q/(q−1), then

using (6.6.41) with p∗ = q/(q−1) > 1, and (6.6.43), we get that f ∇x ·(K ∗f) belongs to L1(0, T ;L1(R2)).

The following lemma follows directly:

Lemma 6.6.106. Consider a mollifier sequence (ρn) on R
2 and introduce the mollified function fn

t :=

ft ∗ ρn. Clearly, fn
t ∈ C([0,∞), L1(R2)). For all T > 0, there exists rn ∈ L1(0, T ;L1

loc(R
2)) that goes to

0 when n→ ∞, and such that

∂tf
n − χ∇x · ((K ∗ f)fn)−△xf

n = rn. (6.6.44)

Remark 6.6.107. The proof of the previous lemma is a modification of [47, Lemma II.1.(ii) and Remark

4]. In fact, for all T > 0, f ∈ L∞(0, T ;L1(R2)) and for any q > 2/α, (K ∗ f) ∈ L1(0, T ;Lq(R2)). That

suffices for the existence of rn given by

rn := χ
[(
∇ · ((K ∗ f)f)

)
∗ ρn −∇ ·

(
(K ∗ f)fn

)]
,

which goes to 0 if n→ ∞ in L1(0, T ;L1
loc(R

2)).
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As a consequence of Lemma 6.6.106, the chain rule applied to the smooth fn reads

∂tβ(f
n) =χ [(K ∗ f) · ∇xβ(f

n) + β′(fn)fn∇x · (K ∗ f)] (6.6.45)

+△xβ(f
n)− β′′(fn)|∇xf

n|2 + β′(fn)rn,

for any β ∈ C1(R) ∩W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside of a compact

set. Since the equation (6.6.44) with (K ∗ f) fixed is linear in fn, the difference fn,k := fn − fk satisfies

(6.6.44) with rn replaced by rn,k := rn − rk → 0 in L1(0, T ;L1
loc(R

2)) and then also (6.6.45) (with again

fn and rn changed in fn,k and rn,k). Observe that the term β′(fn)fn∇x · (K ∗ f) comes from the fact

that the kernel is not divergence-free (it is equal to 0 in [62]).

Now, choosing β(s) = β1(s) where β1(s) = s2/2 for |s| ≤ 1 and β1(s) = |s| − 1/2 for |s| ≥ 1. It is

clear that β ∈ C1(R), that β′, β′′ ∈ L∞(R) and that the second derivative has compact support. For any

nonnegative ψ ∈ C2
c (R

2), we obtain

d

dt

∫

R2

β1(f
n,k(t, x))ψ(x) dx

=

∫

R2

χ
[
(K ∗ f) · ∇xβ1(f

n,k) + β′
1(f

n,k)fn,k∇x · (K ∗ f)
]
ψ(x) dx

+

∫

R2

[
△xβ1(f

n,k)− β′′
1 (f

n,k)|∇xf
n,k|2 + β′

1(f
n,k)rn,k

]
ψ(x) dx

≤
∫

R2

∣
∣rn,k(t, x)

∣
∣ψ(x) dx +

∫

R2

β1(f
n,k)△xψ dx

+ χ

∫

R2

|fn,k ∇x · (K ∗ f)|ψ(x) dx − χ

∫

R2

β1(f
n,k)∇x ·

(
(K ∗ f)ψ(x)

)
dx,

where we have used that |β′
1| ≤ 1 and that β′′

1 ≥ 0. We know that f0 ∈ L1(R2) then fn,k(0) → 0 in

L1(R2), also that rn,k → 0 in L1(0, T ;L1
loc(R

2)). It is not difficult to see that β1(f
n,k)(K ∗ f) → 0 in

L1(0, T ;L1
loc(R

2)), (because β1 is sub-linear, and for all 0 < α < 1 there is q := p/(p − 1) > 2/α, then

using (6.6.41) and (6.6.42): fn,k → 0 in Lp/(p−1)(0, T ;Lp(R2)), and (K ∗ f) ∈ Lq/(q−1)(0, T ;Lq(R2))).

The same arguments apply to β1(f
n,k)∇x · (K ∗ f) and |fn,k ∇x · (K ∗ f)|, and then both goes to 0

as n, k → ∞ in L1(0, T ;L1
loc(R

2)). Finally, we get

sup
t∈[0,T ]

∫

R2

β1(f
n,k(t, x))ψ(x) dx −−−−−→

n,k→∞
0.

Since ψ is arbitrary, we deduce that there exists f̄ ∈ C([0,∞);L1
loc(R

2)) so that fn → f̄ in C([0,∞);L1
loc(R

2))

with the topology of the uniform convergence on any compact subset in time. Together with the conver-

gence fn → f in C([0,∞);P(R2)) we get that f = f̄ . We end this Step by concluding that, with the

same convention for the notion of convergence on [0,∞): fn → f in C([0,∞);L1(R2)).
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Step 3. Additional estimates. From (6.6.45), we know that for all 0 < t0 < t1, all ψ ∈ C2
c (R

2),

∫

R2

β(fn
t1)ψ(x) dx +

∫ t1

t0

∫

R2

β′′(fn
s )|∇xf

n
s |2ψ(x) dx ds (6.6.46)

=

∫

R2

β(fn
t0)ψ(x) dx +

∫ t1

t0

∫

R2

β′(fn
s )r

nψ(x) dx ds

+

∫ t1

t0

∫

R2

β(fn
s )
[
△xψ(x) − χ (K ∗ f)∇xψ(x)

]
dx ds

+ χ

∫ t1

t0

∫

R2

[
β′(fn

s )f
n
s − β(fn

s )
]
ψ(x)∇x · (K ∗ f) dx ds.

The last term appears because the kernel is not divergence-free. Due to it, we have to be careful with

the choice of the functions β admissible (in order to have the last term bounded). Let us choose 0 ≤ ψ ∈
C2

c (R
2) and β ∈ C1(R)∩W 2,∞

loc (R) convex such that β′′ is nonnegative and vanishes outside of a compact

set (notice that, there is a constant C > 0 such that sβ′(s) ≤ Cβ(s)). We can pass to the limit as n→ ∞
(for details see step 2) to get

∫

R2

β(ft1)ψ(x) dx ≤
∫

R2

β(ft0)ψ(x) dx

+

∫ t1

t0

∫

R2

β(fs) [△xψ(x) − χ(K ∗ f)∇xψ(x)] dx ds

+ χ

∫ t1

t0

∫

R2

[−β(fs) + β′(fs)fs]ψ(x)∇x · (K ∗ f) dx ds.

It is not hard to deduce, by approximating ψ ≡ 1 by a well-chosen sequence ψR that

∫

R2

β(ft1) dx ≤
∫

R2

β(ft0) dx + χ

∫ t1

t0

∫

R2

[−β(fs) + β′(fs)fs] ∇x · (K ∗ f) dx ds.

whenever β is admissible.

Now we deal with the regularity in space of (6.1.10). Let us start by noticing that

∇x(K ∗ f)(x) =
∫

R2

(1− α)f(y)

|x− y|1+α
dy, (6.6.47)

so that taking p > 2/(1− α) and using (6.5.37),

∫ T

0

‖∇x(K ∗ fs)‖L∞(R2) ≤ C(α, p)

∫ T

0

(
‖fs‖Lp(R2) + 1

)
<∞,

and due to the fact that sβ′(s) ≤ Cβ(s), we get

∫

R2

β(ft1) dx ≤
∫

R2

β(ft0) dx

+(C + 1)χ

∫ t1

t0

‖∇x(K ∗ f)(x)‖L∞(R2)

∫

R2

β(fs) dx ds.

Then Grönwall’s lemma implies that for all 0 < t0 < t1 < T ,

∫

R2

β(ft1) dx ≤ C(α, T )

∫

R2

β(ft0) dx.

Finally letting β(s) → |s|q/q, we get that for all q ≥ 1 and all 0 < t0 < t1 < T ,

‖f(t1, ·)‖Lq(R2) ≤ C(q, α, T )‖f(t0, ·)‖Lq(R2). (6.6.48)
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Coming back to (6.6.46) and using βM (s) = s2/2 for |s| ≤M and βM (s) =M |s| −M2/2 for |s| ≥M ,

we have
∫

R2

βM (fn
t1)ψ dx+

∫ t1

t0

∫

R2

1|fs|≤M |∇xf
n
s |2ψ dxds

=

∫

R2

βM (fn
t0)ψ dx+

∫ t1

t0

∫

R2

β′
M (fn

s )r
nψ(x) dx ds

+

∫ t1

t0

∫

R2

βM (fn
s )
[
△ψ(x) − χ(K ∗ w)∇xψ(x)

]
dx ds

+χ

∫ t1

t0

∫

R2

[
β′
M (fn

s )f
n
s − βM (fn

s )
]
ψ(x)∇x · (K ∗ f) dx ds,

similarly as above we first make n → ∞, then we approximate ψ ≡ 1 by a well-chosen sequence ψR and

make R → ∞, and finally make the limit M → ∞ to find that for every T ≥ t1 ≥ t0 ≥ 0:
∫

R2

|ft1 |2 dx+

∫ t1

t0

∫

R2

|∇xfs|2 dx ds

≤
∫

R2

|ft0 |2 dx + χ

∫ t1

t0

‖∇x(K ∗ f)(x)‖L∞(R2)

∫

R2

|fs|2 dx ds.

We conclude, using (6.6.48), that for all 0 < t0 < T and any q ∈ [1,∞):

f ∈ L∞(t0, T ;L
q(R2)) and ∇xf ∈ L2((t0, T )× R

2). (6.6.49)

To get the continuity in time of (6.1.10), we need to improve even more the estimates on f which will

be achieved using a bootstrap argument. First, fixing p > 2/(2− α) we notice that for all t0 > 0

‖K ∗ ft‖L∞ ≤ C(p)(1 + ‖ft‖Lp) ⇒ K ∗ ft ∈ L∞(t0, T ;L
∞(R2)),

and thanks to (6.6.47) and (6.6.49):

‖∇x(K ∗ ft)‖L∞ ≤ C(p)(1 + ‖ft‖Lp) ⇒ ∇x(K ∗ ft) ∈ L∞(t0, T ;L
∞(R2)),

we thus have

∂tf −△xf =
[
χf ∇x · (K ∗ f) + (K ∗ f) · ∇xf

]
∈ L2((t0, T )× R

2),

and [23, Theorem X.11] provides the maximal regularity in L2 spaces for the heat equation, in other

words: for all t0 > 0

f ∈ L∞(t0, T ;H
1(R2)) ∩ L2(t0, T ;H

2(R2)).

Remark 6.6.108. We emphasize that the previous bound is true for all t0. In fact, when ft0 ∈ H1(R2),

the maximal regularity implies the above bound in the time interval [t0,∞). But thanks to (6.6.49), we

can find t0 arbitrary close to 0 such that ft0/2 ∈ H1(R2), then we get the conclusion.

Using now the interpolation inequality, there exists a constant C > 0 such that

‖∇xf‖L3(R2) ≤ C‖D2f‖2/3L2(R2)‖f‖
1/3
L2(R2),

which implies
∫ T

t0

‖∇xf‖3L3(R2) ds ≤ C

∫ T

t0

‖D2f‖2L2(R2)‖f‖L2(R2) <∞.
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Thanks to the previous calculus and again [23, TheoremX.12] we conclude that ∂tf,∇xf ∈ L3((t0, T )×
R2) and then Morrey’s inequality implies that for all t0 > 0

f ∈ C0((t0, T )× R
2),

all together allow us to deduce that

f ∈ C([0, T );L1(R2)) ∩ C((0, T );L2(R2)).

We can go even further iterating this argument, using the interpolation inequality and the Sobolev

inequality, to deduce that ∇xf ∈ Lp((t0, T )×R2) for any 1 < p <∞, [χf ∇x · (K ∗ f) + (K ∗ f) · ∇xf ] ∈
Lp((t0, T )× R2) for all t0 > 0. Then the maximal regularity of the heat equation in Lp spaces (see [23,

Theorem X.12]) implies that for all t0 > 0

∂tf,∇xf ∈ Lp((t0, T )× R
2),

and then using again Morrey’s inequality: f ∈ C0,α((t0, T )×R2) for any 0 < α < 1, and any t0 > 0. All

together allow us to prove (6.1.10).

Step 4. Renormalization. To end the proof we show (6.1.11). Let thus β ∈ C1(R) ∩W 2,∞
loc (R) sub-

linear, such that β′′ is piecewise continuous and vanishes outside of a compact set. Thanks to (6.6.49),

we can pass to the limit in the similar identity as (6.6.46) obtained for time dependent test functions

ψ ∈ C2
c ([0,∞)× R

2) to get

∫ ∞

t0

∫

R2

β′′(fs)|∇xfs|2ψs dx ds =

∫

R2

β(ft0)ψt0 dx (6.6.50)

− χ

∫ ∞

t0

∫

R2

ψs(x)∇x · (K ∗ f)
(
fsβ

′(fs)− β(fs)
)
dx ds

+

∫ ∞

t0

∫

R2

β(fs)
(
△xψs(x) − (K ∗ f)∇xψs(x) + ∂tψs(x)

)
dx ds.

In the case ψ ≥ 0 and β′′ ≥ 0 we can pass to the limit t0 → 0 thanks to monotonous convergence

in the first term, the continuity property obtained in Step 2 in the second term, and the monotonous

convergence in the other terms (recall that sβ′(s) ≤ β(s), β is sub-linear and |f |(1+ |K ∗f |+ |∇· (K ∗f)|)
belongs to L1(0, T ;L1(R2) thanks to (6.6.42) and (6.6.43)). We get

∫ ∞

0

∫

R2

β′′(fs)|∇xfs|2ψs dx ds =

∫

R2

β(f0)ψ0 dx (6.6.51)

+

∫ ∞

0

∫

R2

β(fs) [△xψs − χ∇x((K ∗ f) · ψs) + ∂tψs] dx ds

+ χ

∫ ∞

0

∫

R2

β′(fs)fsψs(x)∇x · (K ∗ f) dx ds,

and the bound given by (6.6.51) implies directly that we can pass to the limit t0 → 0 in the general case

for ψ in (6.6.50) which is nothing but (6.1.11) in the distributional sense. �

We now give a useful lemma for the entropic chaos.
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Lemma 6.6.109. Let α ∈ (0, 1) and f0 ∈ P1(R
2) such that H(f0) < ∞. Let (ft)t≥0 be the unique

solution of (6.1.1) satisfying (6.1.7). Then

H(ft) +

∫ t

0

I(fs)ds = H(f0) + χ(1 − α)

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
ds. (6.6.52)

Proof. For m > 1, let us take βm ∈ C1(R) ∩W 2,∞
loc (R) given by

βm(s) =







s log(s) + (1 − s)/m for m−1 ≤ s ≤ m,

βm(m−) + β′
m(m−)(s−m) for s > m,

βm(m−1
+ ) + β′

m(m−1
+ )
(
s−m−1)

)
for s < m−1,

so that βm(s) ≤ Cs and βm → s log(s) for any s > 0.

Since βm is admissible (in the sense of Theorem 6.1.92), then using (6.1.11) we get that for any

ψ ∈ C∞
c (R2),

∫

βm(ft)ψ dx−
∫

βm(f0)ψ dx =χ

∫ t

0

∫

∇x · (K ∗ f)
(
fβ′

m(f)− βm(f)
)
ψ dxds

+

∫ t

0

∫

βm(f)
(
△xψ − χ(K ∗ f) · ∇xψ

)
dx ds

−
∫ t

0

∫

β′′
m(f)|∇xf |2ψ dxds,

using that β′′
m(s) is nonnegative, that βm growths linearly at +∞ and that (fs)s≥0 is nonnegative we can

make ψ → 1 to get

∫

βm(ft) dx−
∫

βm(f0) dx =χ

∫ t

0

∫

∇x · (K ∗ f)
(
fβ′

m(f)− βm(f)
)
dx ds

−
∫ t

0

∫

β′′
m(f)|∇xf |2 dx ds.

In fact, the first and the second terms converge thanks to monotonous convergence and that |βm(s)| ≤
C|s|. The third term is a consequence of the monotonous convergence, that β′

m(s) is bounded, and that

f ∇ · (K ∗ f) (resp. |f(K ∗ f)| for the fourth term) is integrable by (6.6.43) (resp. (6.6.42)). The last

term is a consequence of (6.4.36).

Finally, we notice that in the interval (0, 1] the function −βm increases to −s log(s) while in the

interval [1,∞), βm(s) increases to s log(s). Thanks to the monotonous convergence we can make m→ ∞
and using the integrability of all the limits we get (6.6.52). �

It remains to conclude with the proof of the entropic chaos.

Proof of Theorem 6.1.95 (ii). We only have to prove that for each t ≥ 0, H(FN
t ) tends to H(ft).

To this aim, we first show that for any t ≥ 0

L := lim sup
N

[

H(FN
t ) +

∫ t

0

I(FN
s )ds

]

≤ H(ft) +

∫ t

0

I(fs)ds. (6.6.53)
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Let t ≥ 0 be fixed. Using (6.1.14) and recalling that H(FN
0 ) → H(f0) by assumption, we have

L ≤ H(f0) + lim sup
N

χ(1− α)

N2

∑

i6=j

∫ t

0

E

[ 1

|X i,N
s −Xj,N

s |α+1

]

ds,

so that using that H(ft) +
∫ t

0 I(fs)ds = H(f0) + χ(1− α)
∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)
|x−y|α+1 ds by Lemma 6.6.109, we

only have to prove that

lim
N→∞

1

N2

∫ t

0

E

[∑

i6=j

1

|X i,N
s −Xj,N

s |α+1

]

ds =

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
ds.

By exchangeability, it suffices to prove that, as N → ∞,

DN :=

∫ t

0

E

[ 1

|X1,N
s −X2,N

s |α+1

]

ds→
∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
ds =: D.

For any ǫ > 0, we have

|D −DN | ≤ |D −Dǫ|+ |Dǫ −DN,ǫ|+ |DN,ǫ −DN |,

where DN,ǫ =
∫ t

0 E

[
1

(|X1,N
s −X2,N

s |∨ǫ)α+1

]

ds and Dǫ =
∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)
(|x−y|∨ǫ)α+1ds. Using that for any ǫ > 0

fixed, the function (x, y) 7→ (|x− y| ∨ ǫ)−α−1 is bounded continuous and that L(X1,N
s , X2,N

s ) goes weakly

to fs ⊗ fs for any s ≥ 0, we have limN E

[
1

(|X1,N
s −X2,N

s |∨ǫ)α+1

]

=
∫

R2

∫

R2

fs(dx)fs(dy)
(|x−y|∨ǫ)α+1 . By dominated

convergence, we thus get that limN |Dǫ −DN,ǫ| = 0. We thus have

lim sup
N

|D −DN | ≤ |D −Dǫ|+ lim sup
N

|DN,ǫ −DN | ∀ǫ > 0.

Let α̃ be such that α+ 1 < α̃ < 2. We have

|D −Dǫ| ≤ 2

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
1{|x−y|<ǫ}ds

≤ 2ǫα̃−α−1

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α̃ ds

≤ Cǫα̃−α−1

∫ t

0

(1 + I(fs))ds ≤ C(1 + t)ǫα̃−α−1,

by Lemma 6.2.96 (applied with F = fs ⊗ fs, for which I(Fs) = I(fs)) and (6.1.8). Using the same

arguments, we also have for any N ≥ 2,

|DN,ǫ −DN | ≤ Cǫα̃−α−1

∫ t

0

(1 + I(FN
s ))ds ≤ C(1 + t)ǫα̃−α−1.

We thus get that lim supN |D −DN | = 0 and (6.6.53) is proven.

Using [72, Theorem 3.4 and Theorem 5.7], we have

lim inf
N

H(FN
t ) ≥ H(ft) and lim inf

N

∫ t

0

I(FN
s )ds ≥

∫ t

0

I(fs)ds. (6.6.54)

Using (6.6.53) and (6.6.54), we easily conclude that

lim
N
H(FN

t ) = H(ft) and lim
N

∫ t

0

I(FN
s )ds =

∫ t

0

I(fs)ds,

which concludes the proof. �
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[23] Häım Brezis. Analyse fonctionnelle, volume 33. Masson Paris, 1983.

[24] James Briscoe, Alessandra Pierani, Thomas M Jessell, and Johan Ericson. A homeodomain protein

code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell, 101(4):435–

445, 2000.

[25] Claude Brodski, Daniela M Vogt Weisenhorn, Massimo Signore, Inge Sillaber, Matthias Oesterheld,

Vania Broccoli, Dario Acampora, Antonio Simeone, and Wolfgang Wurst. Location and size of

190



dopaminergic and serotonergic cell populations are controlled by the position of the midbrain–

hindbrain organizer. The Journal of neuroscience, 23(10):4199–4207, 2003.

[26] Nicolas Brunel and Vincent Hakim. Fast global oscillations in networks of integrate-and-fire neurons

with low firing rates. Neural computation, 11(7):1621–1671, 1999.

[27] Isabelle Brunet, Ariel A Di Nardo, Laure Sonnier, Marine Beurdeley, and Alain Prochiantz. The

topological role of homeoproteins in the developing central nervous system. Trends in neurosciences,

30(6):260–267, 2007.

[28] Isabelle Brunet, Christine Weinl, Michael Piper, Alain Trembleau, Michel Volovitch, William Harris,

Alain Prochiantz, and Christine Holt. The transcription factor engrailed-2 guides retinal axons.

Nature, 438(7064):94–98, 2005.

[29] Michael A Buice and Jack D Cowan. Field-theoretic approach to fluctuation effects in neural

networks. Physical Review E, 75(5):051919, 2007.

[30] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural

and functional systems. Nature Reviews Neuroscience, 10(3):186–198, 2009.

[31] Gyorgy Buzsaki. Rhythms of the Brain. Oxford University Press, 2006.
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[62] Nicolas Fournier, Maxime Hauray, and Stéphane Mischler. Propagation of chaos for the 2d viscous

vortex model. J. Eur. Math. Soc., 16:1423–1466, 2014.

[63] IM Gamba, V Panferov, and C Villani. Upper maxwellian bounds for the spatially homogeneous

boltzmann equation. Archive for rational mechanics and analysis, 194(1):253–282, 2009.

[64] Laurence Garey. When cortical development goes wrong: schizophrenia as a neurodevelopmental

disease of microcircuits. Journal of anatomy, 217(4):324–333, 2010.

[65] Alfred Gierer and Hans Meinhardt. A theory of biological pattern formation. Kybernetik, 12(1):30–

39, 1972.

[66] David Godinho and Cristobal Quininao. Propagation of chaos for a sub-critical keller-segel model.

arXiv preprint arXiv:1306.3831, 2013.

[67] Charles M Gray, Peter König, Andreas K Engel, Wolf Singer, et al. Oscillatory responses in

cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.

Nature, 338(6213):334–337, 1989.

[68] Thomas Gregor, David W Tank, Eric F Wieschaus, and William Bialek. Probing the limits to

positional information. Cell, 130(1):153–164, 2007.

193



[69] Thomas Gregor, Eric F Wieschaus, Alistair P McGregor, William Bialek, and David W Tank.

Stability and nuclear dynamics of the bicoid morphogen gradient. Cell, 130(1):141–152, 2007.
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[73] Frédéric Hérau. Short and long time behavior of the fokker–planck equation in a confining potential

and applications. Journal of Functional Analysis, 244(1):95–118, 2007.

[74] Alan L Hodgkin and Andrew F Huxley. Action potentials recorded from inside a nerve fibre. Nature,

144(3651):710–711, 1939.

[75] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its

application to conduction and excitation in nerve. The Journal of physiology, 117(4):500–544, 1952.

[76] D Holcman, V Kasatkin, and A Prochiantz. Modeling homeoprotein intercellular transfer unveils a

parsimonious mechanism for gradient and boundary formation in early brain development. Journal

of theoretical biology, 249(3):503–517, 2007.

[77] Gil Hornung, Brian Berkowitz, and Naama Barkai. Morphogen gradient formation in a complex

environment: an anomalous diffusion model. Physical Review E, 72(4):041916, 2005.

[78] Dirk Horstmann. From 1970 until present: The keller-segel model in chemotaxis and its conse-

quences ii. Jahresbericht der Deutschen Mathematiker Vereinigung, 106(2):51–70, 2004.

[79] Ben H Jansen and Vincent G Rit. Electroencephalogram and visual evoked potential generation in

a mathematical model of coupled cortical columns. Biological cybernetics, 73(4):357–366, 1995.

[80] Alain Joliot and Alain Prochiantz. Transduction peptides: from technology to physiology. Nature

cell biology, 6(3):189–196, 2004.

[81] Alexandra L Joyner, Aimin Liu, and Sandrine Millet. Otx2, gbx2 and fgf8 interact to position and

maintain a mid–hindbrain organizer. Current opinion in cell biology, 12(6):736–741, 2000.

[82] Mark Kac. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on

Mathematical Statistics and Probability, Volume 3: Contributions to Astronomy and Physics, pages

171–197, Berkeley, Calif., 1956. University of California Press, Berkeley and Los Angeles.

[83] Eric R Kandel, James H Schwartz, Thomas M Jessell, et al. Principles of neural science, volume 4.

McGraw-Hill New York, 2000.

[84] Hye-Won Kang, Likun Zheng, and Hans G Othmer. The effect of the signalling scheme on the

robustness of pattern formation in development. Interface focus, 2(4):465–486, 2012.

194



[85] Victor Kasatkin, Alain Prochiantz, and David Holcman. Morphogenetic gradients and the stabil-

ity of boundaries between neighboring morphogenetic regions. Bulletin of mathematical biology,

70(1):156–178, 2008.

[86] Tosio Kato. Perturbation theory for linear operators, volume 132. Springer Science &amp; Business

Media, 1976.

[87] Evelyn F Keller and Lee A Segel. Initiation of slime mold aggregation viewed as an instability.

Journal of Theoretical Biology, 26(3):399–415, 1970.

[88] Evelyn F Keller and Lee A Segel. Model for chemotaxis. Journal of Theoretical Biology, 30(2):225–

234, 1971.

[89] Michel Kerszberg and Lewis Wolpert. Specifying positional information in the embryo: looking

beyond morphogens. Cell, 130(2):205–209, 2007.

[90] Anna Kicheva, Tobias Bollenbach, Ortrud Wartlick, Frank Jülicher, and Marcos Gonzalez-Gaitan.

Investigating the principles of morphogen gradient formation: from tissues to cells. Current opinion

in genetics &amp; development, 22(6):527–532, 2012.

[91] Clemens Kiecker and Andrew Lumsden. Compartments and their boundaries in vertebrate brain

development. Nature Reviews Neuroscience, 6(7):553–564, 2005.

[92] Namsuk Kim, Kwang Wook Min, Kyung Hwa Kang, Eun Jung Lee, Hyoung-Tai Kim, Kyunghwan

Moon, Jiheon Choi, Dai Le, Sang-Hee Lee, and Jin Woo Kim. Regulation of retinal axon growth

by secreted vax1 homeodomain protein. ELife, 3:e02671, 2014.

[93] Heinrich Kroeger. The genetic control of genital morphology indrosophila. Wilhelm Roux’ Archiv

für Entwicklungsmechanik der Organismen, 151(3):301–322, 1959.

[94] Arthur D Lander. Morpheus unbound: reimagining the morphogen gradient. Cell, 128(2):245–256,

2007.

[95] Arthur D Lander, Qing Nie, and Frederic YM Wan. Do morphogen gradients arise by diffusion?

Developmental cell, 2(6):785–796, 2002.

[96] Sophie Layalle, Michel Volovitch, Bruno Mugat, Nathalie Bonneaud, Marie-Laure Parmentier,

Alain Prochiantz, Alain Joliot, and Florence Maschat. Engrailed homeoprotein acts as a signaling

molecule in the developing fly. Development, 138(11):2315–2323, 2011.

[97] Brigitte Lesaffre, Alain Joliot, Alain Prochiantz, and Michel Volovitch. Direct non-cell autonomous

pax6 activity regulates eye development in the zebrafish. Neural development, 2(1):2, 2007.

[98] J Lewis, JMW Slack, and L Wolpert. Thresholds in development. Journal of Theoretical Biology,

65(3):579–590, 1977.

195



[99] Cheng Ly and Daniel Tranchina. Critical analysis of dimension reduction by a moment clo-

sure method in a population density approach to neural network modeling. Neural computation,

19(8):2032–2092, 2007.

[100] Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007.

[101] Luciano Marcon and James Sharpe. Turing patterns in development: what about the horse part?

Current opinion in genetics & development, 22(6):578–584, 2012.

[102] Stephen Mayfield. Double agent: translational regulation by a transcription factor. Chemistry &

biology, 3(6):415–418, 1996.

[103] Henry P McKean. Propagation of chaos for a class of non-linear parabolic equations. Stochastic

Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967),

pages 41–57, 1967.

[104] HP McKean. Speed of approach to equilibrium for kac’s caricature of a maxwellian gas. Archive

for rational mechanics and analysis, 21(5):343–367, 1966.

[105] Hans Meinhardt. Space-dependent cell determination under the control of a morphogen gradient.

Journal of theoretical biology, 74(2):307–321, 1978.

[106] Hans Meinhardt. Cell determination boundaries as organizing regions for secondary embryonic

fields. Developmental biology, 96(2):375–385, 1983.

[107] Hans Meinhardt. Biological pattern formation: new observations provide support for theoretical

predictions. Bioessays, 16(9):627–632, 1994.

[108] Hans Meinhardt and Alfred Gierer. Pattern formation by local self-activation and lateral inhibition.

Bioessays, 22(8):753–760, 2000.

[109] Sandrine Millet, Kenneth Campbell, Douglas J Epstein, Kasia Losos, Esther Harris, and Alexan-

dra L Joyner. A role for gbx2 in repression of otx2 and positioning the mid/hindbrain organizer.

Nature, 401(6749):161–164, 1999.

[110] S. Mischler and C. Mouhot. Exponential stability of slowly decaying solutions to the kinetic fokker-

planck equation. work in progress, 2015.
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Résumé

Ce travail est consacré à l’étude de quelques questions mathématiques issues de la modélisation des

systèmes biologiques en combinant des outils analytiques et probabilistes. Il est principalement lié à:

(1) la modélisation mathématique et l’analyse des réseaux neuronaux, (2) le rôle de la diffusion des

homéoprotéines dans la morphogenèse et (3) la propriété de propagation du chaos pour un système de

particules pour une équation de Keller-Segel sous-critique.

Dans la première partie, nous nous intéressons à la propagation du chaos et au comportement en temps

long des solutions des équations de champ moyen. Plus précisément, nous nous interessons à la dérivation

des équations de champ moyen associées aux réseaux de neurones, ainsi qu’à l’étude de la convergence

vers l’équilibre des solutions des équations limites. Tout d’abord, dans le Chapitre 2, nous utilisons la

méthode de couplage pour démontrer la propagation du chaos pour un réseaux neuronal avec délais et

avec une architecture aléatoire. La principale nouveauté est de considérer délais et poids synaptiques

corrélés, comme ceci est le cas dans les réseaux biologiques où les neurones proches anatomiquement sont

plus fortement connectés. Ceci nous permet de montrer, dans le cas d’une dynamique de type taux de

décharge, que le niveau de connectivité joue un rôle remarquable dans l’émergence de solutions oscillantes

synchonisées. Dans le Chapitre 3, nous considérons une équation cinétique du type FitzHugh-Nagumo.

Nous analysons l’existence de solutions à cette équation et, en utilisant un argument de perturbation,

prouvons la convergence exponentielle de l’équation non linéaire dans les régimes de faible connectivité.

Enfin, en utilisant l’unicité de la solution faible, nous justifions la propagation du chaos. Il est à noter

que les coefficients de l’équation de champ moyen ne sont pas globalement Lipschitziens, ce qui améliore

en particulier les résultats classiques. En outre, l’opérateur différentiel est hypodissipatif: nous utilisons

un argument de décomposition du semigroupe pour prouver la convergence de l’équation linéaire.

Dans la deuxième partie, nous étudions le rôle des homeoproteines (HPs) sur la robustesse des bords

des aires fonctionnelles. Les HPs sont des facteurs de transcription des gènes du développement connus

pour avoir une activité non-autonome et la possibilité de se faire exprimer dans les cellules voisines par

diffusion. Dans le Chapitre 4, nous proposons, sur la base de deux théories classiques de la morphogenèse,

un modèle général du développement neuronal. Le modèle décrit la compétition entre deux HPs avec faible

diffusion. Par l’analyse des solutions stationnaires dans le cas autonome, nous prouvons qu’en l’absence

de diffusion, les HPs sont exprimées différentiellement dans des regions irregulières. Mais en préssence de

diffusion, même arbitrairement faible, des frontières bien définies entre les différentes zones fonctionnelles

émergent. Dans le Chapitre 5, nous considérons le modèle général dans le cas unidimensionnel et prouvons

l’existence de solutions stationnaires monotones définissant un point d’intersection unique aussi faible que

soit le coefficient de diffusion. De plus, quand le coefficient de diffusion tend vers zero, nous prouvons

que les solutions stationnaires convergent vers une solution d’un système dynamique autonome qui a

un unique point de discontinuité caractérisé comme l’unique point de l’espace où la vitesse d’une onde

progressive particulière s’annule.

201



Enfin, dans la troisième partie, nous étudions un système de particules pour une équation de Keller-

Segel sous-critique. Nous démontrons la propagation du chaos sans aucune restriction sur le noyau de

force. En outre, en utilisant la notion de solutions de renormalisation pour les EDP, nous démontrons

que la propagation du chaos a lieu dans le sens plus fort de chaos entropique.

Mots-clés : équation de champ moyen, équation cinétique, modèle de FitzHugh-Nagumo, propaga-

tion du chaos, propagation du chaos entropique, solutions de renormalisation, équation de Keller-Segel

sous-critique, modélisation de la morphogenèse, diffusion des homéoprotéines, décomposition de semi-

groupe.
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Summary

This work is devoted to the study of mathematical questions arising from the modeling of biological

systems combining analytic and probabilistic tools. It is principally related to: (1) the mathematical

modeling and analysis of neuronal networks, (2) the role of homeoproteins diffusion in morphogenesis,

and (3) the chaos propagation property for a particle system for a subcritical Keller-Segel equation.

In the first part, we are concerned with the chaos propagation and long time behaviour of the solu-

tions of some mean-field equations. More precisely, we are interested in the derivation of the mean-field

equations related to neuronal networks, and in the study of the convergence to the equilibria of the

solutions to those limit equations. First, in Chapter 2, we use the coupling method to prove the chaos

propagation for a neuronal network with delays and random architecture. The main novelty is to con-

sider the delays and the synaptic weights correlated, which is the case of biological networks where the

anatomically close neurons are strongly connected. We find, in the case of a firing rate dynamic, that

the level of connectivity plays a remarkable role in the emergence of synchronized oscillatory solutions.

In Chapter 3, we consider a kinetic FitzHugh-Nagumo equation. We analyze the existence of solutions

to this equation and, by using a perturbation argument, we prove the nonlinear exponential convergence

of the solutions in the weak connectivity regime. Finally, by using the uniqueness of weak solutions,

we justify the chaos propagation property. We remark that the coefficients of the mean-field equation

are not globally Lipschitz, which, in particular, improve the classical results. Moreover, the differential

operator is hypodissipative: we use an argument of semigroup decomposition to prove the convergence

of the linear equation.

In the second part, we study the role of homeoproteins (HPs) on the robustness of boundaries of

functional areas. The HPs are transcriptional factors of developmental gens, known for having a non-

autonomous activity and the possibility of expressing themselves in neighbouring allowing them to diffuse

to neighboring cells by diffusion. In Chapter 4, we propose, based on two classical theories of morpho-

genesis, a general model for neuronal development. The model describes the competition between two

HPs with weak diffusivity. By the analysis of the stationary solutions in the autonomous case, we prove

that in the absence of diffusion, the HPs are expressed on irregular areas. But in presence of diffusion,

even arbitrarily small, boundaries well defined emerge. In Chapter 5, we consider the general model in

the one dimensional case and prove the existence of monotonic stationary solutions defining a unique

intersection point. Moreover, when the diffusivity coefficient goes to zero, we prove that the stationary

solutions converge to a unique solution of an autonomous dynamical system with a unique discontinuity

point. We characterise this discontinuity point as the only spatial point where the speed of a particular

traveling wave is zero.

Finally, in the third part, we study a particle system for a subcritical Keller-Segel equation. We show

the chaos propagation without any restriction on the force kernel. Moreover, by using the notion of

renormalised solutions of PDEs, we demonstrate that the propagation of chaos is in the stronger sense of
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entropic chaos propagation.

Keywords: Mean-field equation, kinetic equation, FitzHugh-Nagumo model, chaos propagation,

entropic chaos propagation, renormalisation solutions, subcritical Keller-Segel equation, morphogenesis

modeling, homeoproteins diffusion, semigroup decomposition.
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