
HAL Id: tel-01326971
https://theses.hal.science/tel-01326971v1

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling sequential or parallel hard real-time
pre-emptive tasks upon identical multiprocessor

platforms
Pierre Courbin

To cite this version:
Pierre Courbin. Scheduling sequential or parallel hard real-time pre-emptive tasks upon identical
multiprocessor platforms. Computation and Language [cs.CL]. Université Paris-Est, 2013. English.
�NNT : 2013PEST1081�. �tel-01326971�

https://theses.hal.science/tel-01326971v1
https://hal.archives-ouvertes.fr

T H È S E
en vue de l’obtention du titre de

Docteur
de l’Université Paris-Est

Spécialité : Informatique

Pierre Courbin

Scheduling Sequential or Parallel Hard
Real-Time Pre-emptive Tasks upon
Identical Multiprocessor platforms

soutenue le vendredi 13 Décembre 2013

Jury

Directeur : Laurent George – Université Paris-Est (LIGM), France
Rapporteurs : Alan Burns – University of York (ARTIST), United Kingdom

Pascal Richard – Université de Poitiers, France
Examinateurs : Joël Goossens – Université Libre de Bruxelles (PARTS), Belgium

Yves Sorel – INRIA Rocquencourt (AOSTE), France

PhD prepared at
ECE Paris – LACSC
Laboratoire d’Analyse et Contrôle des Systèmes Complexe
37, Quai de Grenelle
CS 71520
75725 PARIS CEDEX 15

PhD in collaboration with
UPEC – LiSSi (EA 3956)
Laboratoire Images, Signaux et Systèmes Intelligents
Domaine Chérioux
122 rue Paul Armangot
94400 Vitry sur Seine

À mes parents,
À mes grands parents, encore là ou déjà partis,

À mes nombreux frères et sœurs,
À toute ma famille,
À tous mes amis,

À toutes les personnes que j’ai eu le privilège de croiser.

Parce que chaque personne rencontrée, même brièvement,
est une occasion exceptionnelle de se re-découvrir

et de s’émerveiller.

To my parents,
To my grandparents, still there or already gone,

To my many brothers and sisters,
To all my family,
To all my friends,

To all the people who have graced my life.

Because each encounter, even a brief one,
is an occasion to re-imagine oneself

and to marvel.

Fortunately,
I do not suffer from

friggatriskaidekaphobia

Acknowledgments

Et je n’ai point d’espoir de sortir par moi de ma solitude.
La pierre n’a point d’espoir d’être autre chose que pierre.

Mais, de collaborer, elle s’assemble
et devient Temple.

I have no hope of getting out of my solitude by myself.
Stones have no hope of being anything but stones.

However, through collaboration they get themselves together
and become a Temple.

Antoine de Saint-Exupéry [SE48]

On m’avait dit que c’était la dernière chose à faire. Je l’écris donc en dernier,
moins d’un mois avant la soutenance publique.
Et je concède que le conseil était exact : il faut remercier au dernier moment.

Ne serait-ce que pour n’oublier personne.

Il n’y a pas de hiérarchie dans mes remerciements. Les personnes qui m’ont
entouré régulièrement, celles qui m’ont formé humainement et techniquement (si
différence il y a) et que je n’ai pas toujours revu, même celles que j’ai croisé chaque
jour et qui n’ont fait que me sourire, chacune a contribué à mon avancement et
mérite certainement des remerciements.

Mais ce serait bien trop simple de généraliser ainsi et de remercier tout le
monde. Faudra-t-il que je montre du doigt ? Que je lance des noms1 ? Que je liste
les méfaits de chacun ?

Je le fais donc sans rechigner. Saurais-je dire, avec plaisir.

Commençons.

Mais, non, attendez. Il me faut être organisé2. Je peux au moins, délibérément,
commencer par les personnes qui ont œuvré dans ma vie professionnelle. Je
pourrai ensuite évoquer ceux qui m’ont supporté3 dans ma vie personnelle. Même
si, finalement, la frontière n’est pas toujours si évidente quand on a le loisir et la
chance de croiser les gens dont je vais vous parler.

1Si vous vous attendiez à voir votre nom et qu’il est introuvable, c’est peut être simplement
que vous êtes si précieux que je n’ai pas voulu étaler ici votre importance. Ou alors c’est ma
mémoire de poisson rouge. Dans tous les cas, j’espère que vous ne m’en tiendrez pas rigueur. Et
peut être que le verre que je m’engage ici à vous offrir contribuera à mon absolution.

2Qui a dit psychorigide ? Passons.
3Dans tous les sens du terme.

viii Acknowledgments

Le travail, c’est la santé ?
Même si le terme de “travail” me semble être de plus en plus désuet tant j’espère
que nous saurons un jour nous en affranchir, je fais ici référence tout autant aux
activités de recherche et d’enseignement que j’ai pu mener, qu’à tout l’environne-
ment, à l’ECE Paris, qui a contribué à modeler ce travail de thèse.
Jury Je me dois, par respect, convention mais aussi une profonde gratitude, de
remercier en tout premier lieu les membres de mon jury.

Alan Burns qui, malgré un emploi du temps chargé et une réputation qui
n’est plus à présenter, a accepté de relire et de rapporter mon travail. Ses retours
clairs, précis et constructifs ont amené des reconsidération intéressantes et des
corrections essentielles.

Pascal Richard a réalisé une relecture attentive et m’a apporté des perspec-
tives et des ouvertures qui m’apparaissent aujourd’hui très prometteuses. Il me
semble avoir relevé des points importants où mon travail aurait pu être approfondi,
tout en pointant ses aspects positifs.

Yves Sorel m’a fait le plaisir d’accepter d’être examinateur de ma thèse. Sa
présence prochaine à ma soutenances et ses conseils avisés sur la gestion du stress
ainsi que ses mots d’encouragements et de confiance me touchent et contribuent
à faire de cette fin de thèse un moment agréable.

Joël Goossens a aussi accepté de participer à mon jury de soutenance. Pour
être honnête, j’aurai eu beaucoup de difficulté à envisager une soutenance sans
sa présence. J’ai eu la chance et le plaisir de travailler en étroite collaboration
avec lui, notamment durant un mois complet où il a accepté de me recevoir
dans sa belle ville de Bruxelles. Si je n’oublierai jamais l’exemple de rigueur,
tant scientifique que personnelle, et de professionnalisme qu’il m’a montré, je
garderai aussi un souvenir clair des échanges plus culturels que nous avons pu
avoir. C’est ici les remerciements, je ne vais donc pas m’étendre plus sur son fort
apport scientifique à ma formation ; Vous le verrez dans le reste de ce manuscrit.
Cependant, je veux partager avec vous un point important et, connaissant son
intérêt pour les définitions claires, je vais le formuler ainsi :

Définition 1 (Chocolat).
Produit obtenu par le mélange de pâte de cacao et de sucre. Son goût est
caractéristique et existe sous sa forme la plus pure en Belgique (attention aux
contrefaçons). Essentiel à la bonne réalisation des recherches scientifiques. �

Propriété 1 (Être du chocolat).
Notons C l’ensemble des éléments suivant la Définition 1. On a donc :

Galler ∈ C
Léonidas /∈ C

�

Acknowledgments ix

Laurent George a été durant ces quatre années mon directeur de thèse. Je
peux le dire ici, j’ai eu la chance d’être encadré par une personne qui connaît très
bien son domaine et les différents acteurs et qui m’a fait confiance en m’intégrant
à de nombreux travaux, me permettant ainsi de m’approprier rapidement des
notions et un domaine complexe. Même si, comme dans toutes relations de quatre
ans, il y a parfois des divergences, je garde un excellent souvenir de nos échanges au
tableau blanc et j’espère sincèrement qu’ils seront encore nombreux. La confiance
qu’il m’a témoigné tout au long de ce parcours et la rigueur qu’il m’a montré,
notamment durant ma rédaction, forment des bases solides qui m’ont permis
d’arriver où j’en suis aujourd’hui.
ECE Paris J’ajoute ici quelques mots pour les employés de l’ECE Paris. Même
si les choses ont évolué, sont parfois floues et incertaines, l’environnement de
l’ECE Paris a gardé un parfum de famille et d’entraide. Quelque soit le service,
de celui des admissions où Laurence Léonard et toute l’équipe fait un travail
impressionnant, au service informatique où notamment Franck Tesseyre et
Olivier Roux sont toujours là pour répondre à nos attentes souvent spécifiques,
en passant par le service des moyens généraux où Philippe Allard et Sri
cherchent sans cesse à nous faciliter les choses, avec Anne-Paul Dauphin qui
met chaque fois à l’accueil une bonne humeur et permet de débuter les journées
avec le sourire, et sans oublier Philippe Pinto qui a été d’une très grande
aide pour de nombreuses choses mais notamment pour l’impression spécifique
de ce travail. Je devrais citer l’ensemble de mes collègues enseignants et de
l’équipe pédagogique, mais j’aurai peur d’en oublier en étant trop spécifique.
Pourtant, qu’ils sachent que, que ce soit en participant à ma formation ou
en étant là régulièrement pour me faire découvrir de nouvelles choses, je leur
en suis sincèrement reconnaissant. J’utilise tout de même quelques mots pour
remercier deux personnes. Stefan Ataman qui a été mon premier collègue,
m’a accompagné à mes premiers cours et est pour moi un exemple silencieux
de rigueur, de perfectionnisme et de dévouement pour ses enseignements et ses
élèves. Max Agueh, avec qui j’apprécie particulièrement de chahuter et quoi
qu’il puisse en penser, est et reste pour moi un modèle d’écoute, d’attention et de
respect. La sérénité avec laquelle il aborde les choses est une source d’inspiration
considérable.

Je vais tout de même m’étendre un peu sur le cas de cinq personnes en
particulier. Pascal Brouaye et Nelly Rouyres ont été des modèles en
dirigeant l’école durant mes études et une grande partie de ma thèse. Florence
Wastin, rencontrée en intégrant le corps enseignant de l’école, a ensuite complété
ce tableau de trio qui m’a montré une chose essentielle : même si personne n’est
parfait et que tout est discutable, j’ai eu grâce à eux le sentiment que l’image
utopiste que je me faisais d’une entreprise n’est pas totalement impossible. En
étant proche, à l’écoute, ils m’ont montré qu’il était possible de faire attention au
bien être de chacun tout en créant un espace de travail dynamique et performant.

x Acknowledgments

Y-aurait-il un lien étroit entre les deux ?
J’ajoute aujourd’hui les noms de Lamia Rouai et Christophe Baujault

qui leur ont succédé et à qui je souhaite beaucoup de réussite. Un merci à Lamia
pour avoir aussi été mon enseignante passionnée par son domaine et à Christophe
pour m’avoir encadré durant mes dernières années en tant qu’étudiant, m’avoir
permis de faire un parcours atypique la dernière année, m’avoir rappelé ensuite
pour que je réalise ce travail de thèse et, finalement, pour m’avoir accompagné en
me donnant des conditions de travail exceptionnelles.

Choisit-on vraiment ses amis ?
Il y a des personnes qui ne se retrouvent pas dans la partie précédente. Et ils s’en
sont certainement étonné. C’est parce que plusieurs, plus que des collègues, ont
pris au fil des années une place importante dans ma vie. Je veux tout d’abord
évoquer Ikbal Benakila. Même si je ne l’ai pas revu depuis plusieurs années, il
restera une personne importante qui m’a accueilli, m’a accompagné et m’a conseillé
durant mes premiers temps en thèse. Il a aussi été un modèle et m’a ravi par des
échanges culturels précieux. Ensuite, Rafik Zitouni, esprit avisé et discret, a
repris ce flambeau de modèle et d’ouverture culturelle. Nos discussions et nos
débats de société resteront des souvenirs impérissables que je chéris. Philippe
Thierry et Ermis Papastefanakis ont contribué et contribuent toujours
au plaisir d’échanger sur des sujets tant techniques que personnels. Frédéric
Fauberteau et Olivier Cros, rencontrés plus récemment, m’ont déjà amené à
me poser de nombreuses nouvelles questions et, en si peu de temps, nos échanges
variés présagent déjà de très belles perspectives. Clément Duhart et Thomas
Guillemot sont aussi pour moi des découvertes incomparables. Chacun avec son
esprit si particulier et vif, chacun avec ses désirs si présents et refoulés, chacun
avec sa passion pour toutes les formes de sciences et d’arts, chacun est ainsi, à sa
façon, un puits de sagesse. Vincent Sciandra a été une rencontre aussi très
singulière et génératrice d’épanouissement. Nos compétences complémentaires et
nos intérêts convergents pour les sciences, la technique et les réflexions sur les
sociétés humaines font de la rencontre de ce “bobo4” un des évènements les plus
important de ces dernières années.

Je prends un peu de place ici pour parler de ceux qui m’ont incité, parfois
contre leur gré, à poursuivre en doctorat. Je veux parler de ceux que j’ai rencontré
lors de mon Master et que j’ai toujours plaisir à revoir : Adrien Bak, Antoine
Pédron, Joël Falcou et bien évidemment Tarik Saidani. Malgré les déboires
de thèse que chacun a connu, ils m’ont montré, peut être inconsciemment, tout
l’intérêt en matières de rencontres techniques et humaines que peut amener la
recherche scientifique.

De ces rencontres, je retiens les personnes qui ont réalisé leur stage avec moi,
ont contribué à ce travail et m’ont fait découvrir des mondes et des personnalités

4Private joke...

Acknowledgments xi

singulières, citons notamment Meryem Sahlali, Bruno Cats, Hervé Launay,
Benjamin Bado, Sara Morillon et Adrien Leroy.

Mais je n’oublie pas mes amis plus anciens qui, par leurs blagues sur les
enseignants et leur compréhension fine de mon travail sur les “truc avec plein
de petites pattes”, ont été un havre de paix pour se ressourcer et s’évader. Ils
se reconnaitrons et savent à quel point je tiens à eux. Je me permets ici de citer
quelques noms de ceux qui ont été particulièrement présents dans des moments
de doutes importants et qui ont été d’un soutien inestimable. Dans un désordre
total, je veux parler de Marie Muret, Nicolas Morin, Laura Bernais,
Laëtitia Bernais, Irina Lupu et Aude Gueudry ainsi que sa famille Diane
Gueudry, Corentin Roussel et particulièrement ses parents, Isabelle et
Claude Gueudry, sans oublier la famille Dutay, Maud et Isabelle (et ma
chère Gwenaëlle !). Vous avez fait tant pour moi dans des moments si difficiles
que je ne saurai comment vous remercier vraiment. Et même si je vais maintenant
parler de ma famille au sens strict, vous savez quelle est votre place pour moi.
“On choisit pas sa famille. On choisit pas non plus les trot-
toirs de Manille, de Paris ou d’Alger pour apprendre à
marcher.” [For87]
Ainsi donc, ma famille. Je ne l’ai certainement pas choisi mais elle est à l’image
des personnes que j’ai rencontré par la suite : grande, diverse et donc enrichissante.
Que ce soit mes nombreux frères et sœurs, Elodie, Paul, Jean-Baptiste,
Nathalie, Julien, Cécile et Valérie, ou même leurs conjoints et enfants,
tout comme mes seconds parents, Liliane et Daniel et mes grands parents
Renée, Guy, Michelle, Yves et Éliane, ils ont été des exemples si divers
qu’ils m’ont permis de me construire en gravant en moi cette chose essentielle :
chacun est unique, chacun est nécessaire et chacun contribue à enrichir les autres
par le simple fait d’exister.

Pour finir, mes parents. Je ne vais dire que quelques mots, une seconde
thèse serait nécessaire pour parler vraiment d’eux. Ma mère Véronique, solide,
attentionnée et délicate, ainsi que mon père René, aimant, entier et brillant, sont
à eux deux des exemples indescriptibles qui ont forgé ma personnalité. Si je ne
dois citer qu’une chose liée à mon travail de recherche, c’est leur caractéristique
commune et primordiale qu’est l’ouverture d’esprit. Ils m’ont montré des voies
différentes et complémentaires pour cheminer vers un fondamental : ne pas juger.
Le jugement réduit les choses et les personnes à un état dans lequel ils ne sont
déjà plus et limite ainsi les possibilités de découvertes et d’évolutions.

Voir les exemples débordant d’amour et de bienveillance juste que vous avez
toujours été est pour moi un rappel de la chance que j’ai d’être, par fortune, votre
enfant.

xii Acknowledgments

Bref, merci.
On dit parfois que les gens se définissent par la somme de leurs expériences. Je
pense que c’est incomplet, sinon incorrect. Les gens se définissent par la somme
de leurs rencontres et par leur capacité à extraire des apprentissages de ces
coïncidences. Nous nous découvrons et nous révélons au contact des autres. C’est
pourquoi ce travail et cette exploration personnelle de quatre années peuvent tout
à fait être dédiés à toutes les personnes que j’ai déjà cité, et à toutes celles qui
restent dans l’ombre.

Être homme, c’est précisément être responsable.
C’est connaître la honte face à une misère qui ne semblait pas dépendre de soi.

C’est être fier d’une victoire que les camarades ont remportée.
C’est sentir, en posant sa pierre,

que l’on contribue à bâtir le monde.

To be a man is, precisely, to be responsible.
It is to feel shame at the sight of what seems to be unmerited misery.

It is to take pride in a victory won by our comrades.
It is to feel, when setting our stone,

that we are contributing to the building of the world.

Antoine de Saint-Exupéry [SE39]

Abstract

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to”, said the Cat.

“I don’t much care where”, said Alice.
“Then it doesn’t matter which way you go”, said the Cat.

Lewis Caroll, Alice’s Adventures in Wonderland

In this work, we are interested in the problem of scheduling independent
tasks on a hard Real-Time (RT) system composed of multiple processors. A
RT system is a system that has time constraints (or timeliness constraints) such
that the correctness of these systems depends on the correctness of results it
provides, but also on the time instant the results are available. In order to
constrain the availability of results, we generally use the concept of “deadline”. In
a “hard” RT system, the respect of temporal constraints is essential since a missed
deadline may cause catastrophic consequences. For example, in the management
of train traffic, if a train must use a railroad switch it is important to properly
position it before the train arrives or a collision may occur. Thus, the problem
of scheduling tasks on a hard RT system consists in finding a way to choose, at
each time instant, which tasks should be executed on the processors so that each
task succeeds to complete its work before its deadline. We are interested in the
scheduling of Sequential Tasks (S-Tasks) (tasks use one processor at a time) and
Parallel Tasks (P-Tasks) (tasks may use multiple processors at a time) in hard
RT systems composed of identical multiprocessor platforms (the processors in
the platform are strictly identical). In the literature of the state-of-the-art, there
are various approaches to schedule these systems.

Regarding S-Tasks scheduling, results have been proposed using the so-called
Partitioned Scheduling (P-Scheduling) approach which has the advantage of
reducing the problem containing multiple processors to multiple problems con-
taining a single processor. This approach has received much attention, but it
poses a problem: it can give poor results for task sets with a high utilization
of the processors. For example, it can be shown that in some pathological task
configurations, we can only ensure the schedulability of a system which uses less
than 50% of the processors capacities. Notice that we compute the task utilization
of processor capacity according to the execution time required by the task and its
recurrence: if a task needs 2 milliseconds on a processor to complete its execution
and it has to be executed again each 4 milliseconds, then this task requires
2/4× 100 = 50% of the processor capacity. As a consequence of this poor results,
the Global Scheduling (G-Scheduling) approach has been proposed and allows,

xiv Abstract

in theory, to fully use the processors capacities. However, this approach poses
another problem: it induces many migrations of tasks between processors which
can lead to additional costs that are still poorly mastered in the state-of-the-art of
RT scheduling. Thus, a hybrid solution has been proposed, the Semi-Partitioned
Scheduling (SP-Scheduling) approach, which aims at minimizing the number of
tasks that can migrate between processors.

Regarding P-Tasks scheduling, recent research are very diverse because, in
addition to several approaches, there are also several models to represent P-Tasks.
The Gang model considers that there are many communications between concur-
rent threads of a P-Task and therefore requires scheduling them simultaneously.
In contrast, the Multi-Thread model assumes that threads are independent. The
synchronization between threads is generally defined by successive phases. Each
phase is activated when all threads of the previous phase have been completed.
This is particularly the case of the Fork-Join model.

In this thesis, we first study S-Tasks scheduling problem. For the P-Scheduling
approach, we study different partitioning algorithms proposed in the literature
of the state-of-the-art in order to elaborate a generic partitioning algorithm.
Especially, we investigate four main placement heuristics (First-Fit, Best-Fit, Next-
Fit and Worst-Fit), eight criteria for sorting tasks and seven schedulability tests for
Earliest Deadline First (EDF), Deadline Monotonic (DM) and Rate Monotonic
(RM) schedulers. It is equivalent to 224 potential P-Scheduling algorithms.
Then, we analyse each of the parameters of this algorithm to extract the best
choices according to various objectives. Afterwards, we study the SP-Scheduling
approach for which we propose a solution for each of the two sub-categories: with
Restricted Migrations (Rest-Migrations) where migrations are only allowed
between two successive activations of the task (in other words, between two
jobs of the task, thus only task migration is allowed), and with UnRestricted
Migrations (UnRest-Migrations) where migrations are not restricted to job
boundaries (job migration is allowed). We provide schedulability tests and an
evaluation for EDF scheduler in order to find advantages and disadvantages of
each sub-category. In particular, we observe that the approach with UnRest-
Migration gives the best results in terms of number of task sets successfully
scheduled. However, we observe a limit on the ability of this approach to split
tasks between many processors: if the execution time of the task is too small
compared to the time granularity of processor execution, it will be impossible to
split the execution time. Thus, the Rest-Migration approach is still interesting,
especially as its implementation seems to be easier to achieve on real systems.

Regarding P-Tasks scheduling problem, we propose the Multi-Phase Multi-
Thread (MPMT) task model which is a new model for Multi-Thread tasks
to facilitate scheduling and analysis. We also provide schedulability tests and

Abstract xv

a method for transcribing Fork-Join tasks to our new task model. An exact
computation of the Worst Case Response Time (WCRT) of a periodic MPMT
task is given as well as a WCRT bound for the sporadic case. Finally, we propose
an evaluation to compare Gang and Multi-Thread approaches in order to analyse
the advantages and disadvantages. In particular, even if we show that both
approaches are incomparable (there are task sets which are schedulable using
Gang approach and not by using Multi-Thread approach, and conversely), the
Multi-Thread model allows us to schedule a larger number of task sets and it
reduces the WCRT of tasks. Thus, if the tasks are not too complex and do not
require too much communication between concurrent threads, it seems interesting
to model them with a Multi-Thread approach.

Finally, we have developed a framework called Framework fOr Real-Time
Analysis and Simulation (FORTAS) to facilitate evaluations and tests of multipro-
cessor scheduling algorithms. Its particularity is to provide a programming library
to accelerate the development and testing of RT scheduling algorithms. This
framework will be proposed as an open source library for the research community.

Résumé

“Voulez-vous me dire, s’il vous plaît, quel chemin je dois prendre à partir d’ici ?”
“Cela dépend grandement de où vous voulez aller”, dit le Chat.

“Peu m’importe où”, dit Alice.
“Alors le chemin que vous prenez n’a pas d’importance.”, dit le Chat.

Lewis Caroll, Alice au Pays des Merveilles

Dans ce travail, nous nous intéressons au problème d’ordonnancement de tâches
indépendantes sur des systèmes Temps-Réel (TR) durs composés de plusieurs
processeurs. Les systèmes TR sont des systèmes qui ont des contraintes temporelles
(ou contraintes de ponctualité associées aux tâches exécutées) qui font que la
conformité de ces systèmes repose sur l’exactitude des résultats qu’ils fournissent
mais aussi sur le moment où ces résultats sont disponibles. Pour contraindre la
date de disponibilité des résultats, on utilise généralement le concept “d’échéance”.
Dans un système TR “dur”, le respect des contraintes de ponctualité est essentiel
car une échéance manquée peut entraîner des conséquences catastrophiques. Par
exemple, dans le domaine de la gestion de trafic ferroviaire, si un train doit passer
par un aiguillage, il est primordial de bien le positionner avant que le train n’arrive
ou une collision pourrait se produire. Ainsi, le problème d’ordonnancer des tâches
sur un système TR dur consiste à trouver une façon de choisir, à chaque instant,
quelles tâches doivent s’exécuter sur les processeurs de façon à ce qu’elles puissent
toutes s’exécuter complètement avant leur échéance. Nous nous intéressons ici
à l’ordonnancement de Tâches Séquentielles (S-Tasks) (les tâches utilisent un
seul processeur à la fois) et de Tâches Parallèles (P-Tasks) (les tâches peuvent
utiliser plusieurs processeurs à la fois) sur des systèmes TR durs composés de
plate-formes multiprocesseurs identiques (tous les processeurs de la plate-forme
sont strictement identiques). Dans la littérature, plusieurs approches permettant
d’ordonnancer ces systèmes ont été proposées.

Concernant les S-Tasks, des résultats ont été proposés en utilisant l’approche
dite par Ordonnancement Partitionné (P-Scheduling) qui a l’avantage de ré-
duire le problème composé de plusieurs processeurs à plusieurs problèmes composés
chacun d’un seul processeur. Cette approche a été largement étudiée mais elle
pose un problème : elle donne des résultats médiocres pour des jeux de tâches
nécessitant une forte utilisation des processeurs. Par exemple, on peut montrer
que dans des configurations pathologiques de jeux de tâches, il n’est pas possible
de garantir l’ordonnançabilité de jeux qui utilisent plus de 50% de la capacité
des processeurs. Notez que la capacité d’un processeur utilisée par une tâche est
calculée en fonction du temps d’exécution de la tâche et de sa récurrence : si une
tâche a besoin de 2 millisecondes sur un processeur pour s’exécuter complètement

xviii Résumé

et qu’elle doit être exécutée à nouveau toutes les 4 millisecondes, alors cette tâche
a besoin de 2/4× 100 = 50% de la capacité d’un processeur. En conséquence de
ces mauvais résultats, une autre approche nommée Ordonnancement Global
(G-Scheduling) a vu le jour et permet, théoriquement, d’utiliser totalement la
capacité de la plate-forme. Cependant, celle-ci pose un autre problème : elle induit
de nombreuses migrations des tâches entre les processeurs, ce qui peut produire
des coûts supplémentaires qui sont encore mal maîtrisés dans l’état de l’art de
l’ordonnancement TR. Finalement, une solution hybride a été proposée, l’ap-
proche par Ordonnancement Semi-Partitionné (SP-Scheduling), qui cherche à
minimiser le nombre de tâches pouvant migrer entre les processeurs.

Concernant les P-Tasks, les recherches récentes sont très variées car, en
plus de plusieurs approches d’ordonnancement, il y a aussi divers modèles pour
représenter ces P-Tasks. Le modèle Gang considère par exemple que les fils
d’exécution concurrents (threads) d’une P-Task doivent souvent communiquer
entre eux et qu’il est donc préférable de les ordonnancer ensemble. A l’inverse, le
modèle Multi-Thread considère que les threads sont totalement indépendants. Les
synchronisations entre les threads sont généralement représentées par des phases
successives dans les P-Tasks. Chaque phase est activée uniquement quand tous les
threads de la phase précédente ont terminé, ce qui correspond à une barrière en
programmation parallèle. Fork-Join est un exemple d’un modèle Multi-Thread.

Dans cette thèse nous étudions tout d’abord le problème d’ordonnancement
des S-Tasks. Pour l’approche P-Scheduling, nous étudions différents algorithmes
proposés dans la littérature afin de pouvoir proposer un algorithme générique.
Nous examinons notamment les quatre principales heuristiques de placement
(First-Fit, Best-Fit, Next-Fit et Worst-Fit), huit critères de tri de tâches et sept
tests d’ordonnançabilité pour les ordonnanceurs Earliest Deadline First (EDF),
Deadline Monotonic (DM) et Rate Monotonic (RM). Ceci nous permet de tester
l’équivalent de 224 algorithmes potentiels de P-Scheduling. Nous analysons ensuite
chaque paramètre de cet algorithme pour en extraire les meilleurs choix à faire
en fonction de divers objectifs. Puis nous étudions l’approche SP-Scheduling pour
laquelle nous proposons une solution pour chacune de deux sous-catégories : avec
des Migrations Restreintes (Rest-Migrations) où les migrations sont autorisées
mais uniquement entre deux activations de la tâche (en d’autres termes, entre deux
jobs de la tâche, donc seulement la migration de tâche est autorisées) et avec des
Migrations Non-Restreintes (UnRest-Migrations) où les migrations ne sont pas
limitées aux frontières des jobs (la migration de job est autorisée). Nous donnons
un test d’ordonnançabilité et une évaluation pour l’ordonnanceur EDF afin de
trouver les avantages et les inconvénients de chaque sous-catégorie. En particulier,
nous observons que l’approche UnRest-Migrations donne de meilleurs résultats
en matière de nombre de jeux de tâches ordonnancés avec succès. Néanmoins,
nous observons que cette approche peut parfois être limitée quand elle cherche à

Résumé xix

découper des tâches : si le temps d’exécution de la tâche est trop faible comparé
à la granularité d’exécution du processeur, ce temps ne pourra pas être découpé.
Ainsi, l’approche Rest-Migrations peut s’avérer intéressante, notamment parce que
son implémentation sur des systèmes réels semble plus facilement envisageable.

Concernant l’ordonnancement des P-Tasks, nous proposons un nouveau modèle
de tâches nommé Multi-Phase Multi-Thread (MPMT). Il permet notamment de
faciliter l’ordonnancement et l’analyse des tâches Multi-Thread. Nous proposons
aussi un test d’ordonnançabilité et une méthode pour traduire une tâche Fork-Join
vers notre nouveau modèle de tâche. Un calcul exact du Pire Temps de Réponse
(WCRT) d’une tâche MPMT périodique est aussi donné ainsi qu’une borne pour
le calcul du WCRT d’une tâche MPMT sporadique. Enfin, nous menons une
évaluation pour comparer les modèles Gang et Multi-Thread afin d’en extraire les
avantages et les inconvénients respectifs. En particulier, même si nous montrons
que les deux modèles sont incomparables (dans le sens où des jeux de tâches
sont ordonnançable avec un modèle Gang mais pas avec un modèle Multi-Thread
et inversement), le modèle Multi-Thread permet d’ordonnancer un plus grand
nombre de jeux de tâches et il réduit aussi le WCRT des tâches. Ainsi, si les tâches
ne sont pas excessivement complexes et qu’elles ne nécessitent pas beaucoup de
communication entre leurs threads, il peut être intéressant de les modéliser avec
une approche Multi-Thread.

Finalement, nous avons développé un framework nommé Framework fOr
Real-Time Analysis and Simulation (FORTAS) pour faciliter l’évaluation et le
test des algorithmes d’ordonnancement multiprocesseur. Sa particularité est de
proposer une bibliothèque de programmation pour accélérer le développement et
le test des théories sur les systèmes TR. Cet outil sera proposé à la communauté
des chercheurs sous forme d’une bibliothèque au code source ouvert.

Author’s publication list

Refereed Book Chapter Paper
IGI’2010 Laurent George and Pierre Courbin. “IGI Global”. In: edited by

Mohamed Khalgui and Hans-Michael Hanisch. IGI Global, 2011.
Chapter Reconfiguration of Uniprocessor Sporadic Real-Time Systems:
The Sensitivity Approach, pages 167–189. isbn: 978-1-5990-4988-5. doi:
10.4018/978-1-60960-086-0.ch007

Refereed Journal Papers
JSA’2011 Laurent George, Pierre Courbin, and Yves Sorel. “Job vs. por-

tioned partitioning for the earliest deadline first semi-partitioned scheduling”.
In: Journal of Systems Architecture 57.5 (May 2011), pages 518–535. issn:
1383-7621. doi: 10.1016/j.sysarc.2011.02.008

RTS’2013 Pierre Courbin, Irina Lupu, and Joël Goossens. “Scheduling
of hard real-time multi-phase multi-thread (MPMT) periodic tasks”. In:
Real-Time Systems 49.2 (2013), pages 239–266. issn: 0922-6443. doi:
10.1007/s11241-012-9173-x

Refereed Conference Papers
ETFA’2010 Irina Lupu, Pierre Courbin, Laurent George, and Joël Go-

ossens. “Multi-criteria evaluation of partitioning schemes for real-time
systems”. In: Proceedings of the 15th IEEE International Conference on
Emerging Techonologies and Factory Automation. Emerging Technologies
and Factory Automation (ETFA). Bilbao, Spain: IEEE Computer Society,
Sept. 2010, pages 1–8. isbn: 978-1-4244-6848-5. doi: 10.1109/ETFA.2010.
564121

RTNS’2010 Robert I. Davis, Laurent George, and Pierre Courbin. “Quanti-
fying the Sub-optimality of Uniprocessor Fixed Priority Non-Pre-emptive
Scheduling”. In: Proceedings of the 18th International Conference on Real-
Time and Network Systems. Real-Time and Network Systems (RTNS).
Toulouse, France, Nov. 2010, pages 1–10

RTNS’2012 Benjamin Bado, Laurent George, Pierre Courbin, and Joël
Goossens. “A semi-partitioned approach for parallel real-time scheduling”.

http://dx.doi.org/10.4018/978-1-60960-086-0.ch007
http://dx.doi.org/10.1016/j.sysarc.2011.02.008
http://dx.doi.org/10.1007/s11241-012-9173-x
http://dx.doi.org/10.1109/ETFA.2010.564121
http://dx.doi.org/10.1109/ETFA.2010.564121

Author’s publication list xxi

In: Proceedings of the 20th International Conference on Real-Time and Net-
work Systems. Real-Time and Network Systems (RTNS). Pont à Mousson,
France: ACM, Nov. 2012, pages 151–160. isbn: 978-1-4503-1409-1. doi:
10.1145/2392987.2393006

Refereed Workshop and WIP5 Papers
WATERS’2011 Pierre Courbin and Laurent George. “FORTAS : Framework fOr

Real-Time Analysis and Simulation”. In: Proceedings of 2nd International
Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems. International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS). Porto, Portugal, July 2011

JRWRTC’2011 Vandy Berten, Pierre Courbin, and Joël Goossens. “Gang fixed
priority scheduling of periodic moldable real-time tasks”. In: Proceedings
of the Junior Researcher Workshop Session of the 19th International Con-
ference on Real-Time and Network Systems. Edited by Alan Burns and
Laurent George. Real-Time and Network Systems (RTNS). Nantes,
France, Sept. 2011, pages 9–12

RTSS-WiP’2012 Vincent Sciandra, Pierre Courbin, and Laurent George. “Ap-
plication of mixed-criticality scheduling model to intelligent transportation
systems architectures”. In: Proceedings of the WIP Session of the 33th
IEEE Real-Time Systems Symposium. IEEE Real-Time Systems Sympo-
sium (RTSS). San Juan, Puerto Rico: ACM, Dec. 2012, pages 22–22. doi:
10.1145/2518148.2518160

5Work In Progress

http://dx.doi.org/10.1145/2392987.2393006
http://dx.doi.org/10.1145/2518148.2518160

Contents

I General concepts and notations 1

1 General introduction 3
1.1 Real-Time Systems . 3
1.2 Motivations of the thesis . 4
1.3 Content of this thesis . 6

2 Introduction to RT Scheduling 7
2.1 Introduction . 8
2.2 System models . 8

2.2.1 Processor model . 8
2.2.2 Task models . 9

2.2.2.1 Task parameters and definitions 9
2.2.2.2 Sequential Task (S-Task) model 12

2.2.2.2.1 Metrics for S-Task sets 14
2.2.2.3 Parallel Task (P-Task) model 15

2.2.2.3.1 Gang task model 16
2.2.2.3.2 Fork-Join task model 17

2.3 Schedulers . 19
2.3.1 Fixed Task Priority (FTP) schedulers 20
2.3.2 Dynamic Task Priority (DTP) schedulers 21

2.4 Feasibility and schedulability analysis 21
2.4.1 Feasibility or schedulability? 22

2.4.1.1 Necessary, sufficient or necessary and sufficient? . 22
2.4.2 Schedulability analysis for FTP schedulers on uniprocessor

platform . 23
2.4.3 Schedulability analysis for DTP schedulers on uniprocessor

platform . 24
2.4.3.1 EDF uniprocessor schedulability condition: recon-

sideration . 25
2.4.3.1.1 The Load function 25
2.4.3.1.2 Performance of LPP 2.1 with the simplex 27
2.4.3.1.3 Example using LPP 2.1 to compute the

Load function 28
2.4.3.1.4 Useful properties of the Load function . 29

2.4.4 Allowance margin of task parameters 31
2.4.4.1 Allowance of WCET for pre-emptive EDF scheduler 31
2.4.4.2 Allowance of deadline for pre-emptive EDF sched-

uler . 32

xxiv Contents

2.5 Scheduling on multiprocessor platforms 35
2.5.1 Scheduling Sequential Tasks (S-Tasks) 35

2.5.1.1 Partitioned Scheduling (P-Scheduling) 35
2.5.1.2 Global Scheduling (G-Scheduling) 37
2.5.1.3 Semi-Partitioned Scheduling (SP-Scheduling) . 40

2.5.2 Scheduling Parallel Tasks (P-Tasks) 44
2.6 Summary . 45

II Scheduling on multiprocessors platforms 47

3 Scheduling Sequential Tasks (S-Tasks) 49
3.1 Introduction . 50
3.2 Partitioned Scheduling (P-Scheduling) 50

3.2.1 Introduction . 50
3.2.2 Generalized P-Scheduling algorithm 50

3.2.2.1 Criteria for sorting tasks 51
3.2.2.2 Placement . 53

3.2.2.2.1 Optimal placement 53
3.2.2.2.2 Placement heuristics 54

3.2.2.3 Schedulability tests 57
3.2.3 Multi-Criteria evaluation of Generalized P-Scheduling algo-

rithm . 59
3.2.3.1 Conditions of the evaluation 59

3.2.3.1.1 Evaluation criteria 59
3.2.3.1.2 Task set generation methodology 60

3.2.3.2 Results . 60
3.2.3.2.1 Sub-optimality of FTP over EDF 61
3.2.3.2.2 Sub-optimality of placement heuristics . 62
3.2.3.2.3 Choosing a schedulability test 63
3.2.3.2.4 Choosing criterion for sorting tasks . . . 64
3.2.3.2.5 Choosing a placement heuristic 64
3.2.3.2.6 Choosing a task criteria for the best

placement heuristic 67
3.2.4 Summary . 68

3.3 Semi-Partitioned Scheduling (SP-Scheduling) 70
3.3.1 Introduction . 70
3.3.2 Rest-Migration approaches – RRJM 73

3.3.2.1 Application to EDF scheduler 74
3.3.3 UnRest-Migration approaches – MLD 76

3.3.3.1 Computing local deadlines 79
3.3.3.2 Computing local allowance of WCET 82

Contents xxv

3.3.3.3 Application to EDF scheduler 82
3.3.4 EDF Rest-Migration versus UnRest-Migration evaluation . 83

3.3.4.1 Conditions of the evaluation 83
3.3.4.1.1 Evaluated algorithms 83
3.3.4.1.2 Evaluation criteria 86
3.3.4.1.3 Task set generation methodology 86

3.3.4.2 Results . 87
3.3.4.2.1 Success Ratio 87
3.3.4.2.2 Density of migrations 90

3.3.5 Summary . 91

4 Scheduling Parallel Task (P-Task) 93
4.1 Introduction . 94
4.2 Gang task model . 95

4.2.1 Metrics for Gang task sets 97
4.3 Multi-Thread task model . 98

4.3.1 Multi-Phase Multi-Thread (MPMT) task model 98
4.3.1.1 Metrics, definitions and properties for MPMT

task sets . 100
4.3.1.2 Sub-program notation of the MPMT task model . 101

4.3.2 Fork-Join to MPMT task model 102
4.3.2.1 Compute relative arrival offsets and relative dead-

lines . 103
4.4 Schedulers for Multi-Thread P-Task 104

4.4.1 Taxonomy of schedulers 104
4.4.1.1 Hierarchical schedulers 107
4.4.1.2 Global thread schedulers 107

4.5 Schedulability analysis . 108
4.5.1 MPMT tasks – schedulability NS-Test 108

4.5.1.1 FSP schedulability NS-Test 108
4.5.1.2 (FTP,FSP) schedulability NS-Test 112

4.5.2 MPMT tasks – WCRT computation 113
4.5.2.1 The sporadic case - A new upper bound 114

4.5.2.1.1 Previous work 114
4.5.2.1.2 Adaptation to MPMT tasks 118

4.5.2.2 The periodic case - An exact value 121
4.6 Scheduling Gang tasks versus Multi-Thread tasks 122

4.6.1 Gang DM and (DM,IM) scheduling are incomparable . . . 123
4.7 Gang versus Multi-Thread task models evaluation 126

4.7.1 Conditions of the evaluation 126
4.7.1.1 Evaluation criteria 126
4.7.1.2 Task set generation methodology 127

xxvi Contents

4.7.2 Results . 128
4.7.2.1 Success Ratio . 128
4.7.2.2 WCRT of the lowest priority task 129

4.8 Summary . 132

III Tools for real-time scheduling analysis 133

5 Framework fOr Real-Time Analysis and Simulation 135
5.1 Introduction . 136
5.2 Existing tools . 136
5.3 Motivation for FORTAS . 137
5.4 Test a Uni/Multiprocessor scheduling 138

5.4.1 Placement Heuristics . 139
5.4.2 Algorithm/Schedulability test 139

5.5 View a scheduling . 141
5.5.1 Available schedulers . 141

5.6 Generate tasks and task sets . 142
5.6.1 Generating a Task . 142
5.6.2 Generating Sets Of Tasks 143

5.7 Edit/Run an evaluation . 144
5.7.1 Defining the sets . 145
5.7.2 Defining the scheduling algorithms 146
5.7.3 Defining a graph result . 146
5.7.4 Generating the evaluations 148

5.8 Summary . 148

IV Conclusion and perspectives 153

6 Conclusion 155
6.1 Scheduling Sequential Task (S-Task) 156

6.1.1 P-Scheduling approach . 156
6.1.2 SP-Scheduling approach 156

6.2 Scheduling Parallel Task (P-Task) 157
6.3 Our tool: FORTAS . 157
6.4 Perspectives . 158

List of symbols 161

Glossaries 163
Acronyms . 163
Glossary . 168

List of Figures

2.1 States and transitions of a task during the system life 12
2.2 Representation of a periodic sequential task, from Definition 2.4 . 12
2.3 Representation of a periodic parallel Gang task, from Definition 2.6 16
2.4 Representation of a periodic parallel Fork-Join task, from Defini-

tion 2.7 . 17
2.5 Reduction of elements in the set S with LPP 2.1 27

3.1 Principle of a non-optimal P-Scheduling algorithm 51
3.2 Importance of criteria for sorting tasks 53

3.2.1 Sorted by increasing ids 53
3.2.2 Sorted by increasing utilization 53

3.3 All possible placements considered by an optimal placement for
P-Scheduling approach with three tasks on two processors 55

3.4 Principle of four basic placement heuristics 56
3.4.1 First-Fit . 56
3.4.2 Next-Fit . 56
3.4.3 Best-Fit . 56
3.4.4 Worst-Fit . 56

3.5 FTP/EDF sub-optimality . 61
3.6 Heuristics sub-optimality . 62
3.7 Schedulability tests analysis . 63

3.7.1 EDF – Constrained Deadline (C-Deadline) 63
3.7.2 FTP – Implicit Deadline (I-Deadline) 63

3.8 EDF – Criteria for sorting tasks analysis 65
3.8.1 EDF-LL . 65
3.8.2 EDF-BHR . 65
3.8.3 EDF-BF . 65

3.9 FTP – Criteria for sorting tasks analysis 66
3.9.1 DM-ABRTW . 66
3.9.2 RM-LL . 66
3.9.3 RM-BBB . 66
3.9.4 RM-LMM . 66

3.10 Placement heuristics analysis . 67
3.10.1 Number of processors used 67
3.10.2 Success ratio . 67
3.10.3 Processor spare capacity – 1− Λτ 67
3.10.4 Processor spare capacity – 1− Load(τ) 67

3.11 First-Fit – Criteria for sorting task analysis 68

xxviii List of Figures

3.12 Example of a SP-Scheduling approach 70
3.12.1 Unschedulable with P-Scheduling 70
3.12.2 May be schedulable with SP-Scheduling 70

3.13 SP-Scheduling – Two degrees of migration allowed 71
3.13.1 Rest-Migration – Migration between the jobs 71
3.13.2 UnRest-Migration – Migration during the job 71

3.14 Example of migration at local deadline 78
3.15 Example of a task split using the three algorithms of the UnRest-

Migration approach . 85
3.15.1 EDF-MLD-Dfair-Cfair . 85
3.15.2 EDF-MLD-Dfair-Cexact 85
3.15.3 EDF-MLD-Dmin-Cexact 85

3.16 Success Ratio analysis – 4 processors 88
3.16.1 First-Fit placement heuristic 88
3.16.2 Worst-Fit placement heuristic 88

3.17 Success Ratio analysis – 8 processors 88
3.17.1 First-Fit placement heuristic 88
3.17.2 Worst-Fit placement heuristic 88

3.18 Density of migrations analysis . 90
3.18.1 4 processors . 90
3.18.2 8 processors . 90

4.1 Representation of a periodic parallel Gang task, from Definition 4.5 96
4.2 Representation of a periodic parallel MPMT task, from Definition 4.8 99
4.3 Example of scheduler (RM,LSF) 107
4.4 Example of scheduler LSF . 108
4.5 Example of Theorem 4.2 with a LSF scheduler 111
4.6 Computing WNC(τi, x) . 115
4.7 Computing WCI(τi, x) . 116
4.8 Example of computation for W 2,NC(τp, x), phase φ2

p is a non carry-
in task, so it is activated at the beginning of the interval of length
x . 119

4.9 Example of computation for W 2,CI(τp, x), phase φ2
p is a carry-in

task, so its last activation is q2,V
p = min

v=1,...,v2,v
p

q2,v
p before the end of

interval x . 120
4.10 Gang scheduling versus Multi-Thread scheduling 122
4.11 Gang DM unschedulable, (DM,IM) schedulable 124

4.11.1 Gang DM . 124
4.11.2 (DM,IM) . 124

4.12 Gang DM schedulable, (DM,IM) unschedulable 125
4.12.1 Gang DM . 125
4.12.2 (DM,IM) . 125

List of Figures xxix

4.13 Success Ratio analysis . 130
4.13.1 4 processors . 130
4.13.2 8 processors . 130
4.13.3 16 processors . 130

4.14 WCRT analysis . 131
4.14.1 4 processors . 131
4.14.2 8 processors . 131
4.14.3 16 processors . 131

5.1 Test a Scheduling . 138
5.2 GUI to display a scheduling . 141
5.3 Edit/Run an Evaluation . 144
5.4 Example to define a type of task sets in the XML Evaluation file 145
5.5 Example to define a type of processor set in the XML Evaluation

file . 145
5.6 Example to define an algorithm in the XML Evaluation file . . . 146
5.7 Example to define a graph in the XML Evaluation file 147
5.8 Example of graph produced according to the example 148

List of Tables

2.1 Example using LPP 2.1 to verify Property 2.3 31

3.1 Comparison of the number of possible placements for an heteroge-
neous and an identical multiprocessor platform 55

3.2 Generalized Partitioned Scheduling (P-Scheduling) algorithm
parameters . 69

3.3 Best improvement, in %, of success ratio for each SP-Scheduling
algorithms with respect to the P-Scheduling algorithm for 4 processors 89

3.4 Best improvement, in %, of success ratio for each SP-Scheduling
algorithms with respect to the P-Scheduling algorithm for 8 processors 90

4.1 Off-line versus Runtime vocabulary 95
4.2 Weighted criterion for schedulability study from Figures 4.13.1–4.13.3129
4.3 Weighted criterion for WCRT study from Figures 4.14.1–4.14.3 . . 131

5.1 Available functionalities for the “test” part of FORTAS 150
5.2 Available functionalities for the “view” part of FORTAS 150
5.3 Available functionalities for the “generate” part of FORTAS . . . 151
5.4 Available functionalities for the “evaluation” part of FORTAS . . 151

List of Algorithms

1 Minimum deadline computation for pre-emptive EDF scheduler . . 33

2 Generalized P-Scheduling algorithm 52
3 Generic SP-Scheduling algorithm 72
4 Generic SP-Scheduling algorithm for RRJM placement heuristic . . 75
5 Generic SP-Scheduling algorithm for MLD approaches 80
6 SP-Scheduling algorithm for MLD approach with minimum deadline

computation . 81

7 Assign phases parameters and test schedulability 105

Part I

General concepts and notations

Chapter 1

General introduction

Finalement, le raisonnement a priori est si satisfaisant pour moi que si
les faits ne correspondent pas, mon sentiment est : tant pis pour les faits.

In fact the a priori reasoning is so entirely satisfactory to me that if
the facts won’t fit in, why so much the worse for the facts is my feeling.

Charles Darwin’s brother Erasmus [Dar58]

Contents
1.1 Real-Time Systems . 3

1.2 Motivations of the thesis 4

1.3 Content of this thesis . 6

1.1 Real-Time Systems
The term “Real-Time (RT)” is used in very different ways, particularly in France.
It is often used in an unclear meaning and away from the one considered in this
work. For example, the SNCF (France’s national state-owned railway company)
offers a mobile application that provides “real-time” travel time. However, when
we are accustomed to use this application and when we know the relevance of
information, we are entitled to ask what “real-time” means!

In fact, a mistake that is often made is to make a connection between “real-
time” and “speed”. If the speed can be useful for a RT system, it is not a defining
characteristic. A RT system is only a system that has time constraints. The
correctness of these systems depends on the correctness of results it provides, but
also at which time instant the results are available. Generally, we referred to a
“deadline” to constrain the availability of results. For example, in an augmented
reality application, if a virtual information should be superimposed on a real
environment it is important that it appears before the environment changes,
otherwise it is no longer relevant. Similarly, in the management of train traffic, if
a train must use a railroad switch it is important to properly position it before

4 Chapter 1. General introduction

the train arrives. Notice that here, there is no concept of speed, the railroad
switch can have an hour between two train to make the change, the important
thing is that the change must be made before the train arrives.

With these two examples, we can define two types of RT systems:

Soft RT refers to systems where the respect of temporal constraints is desired but
not necessary. In such systems, it is acceptable to miss some deadlines
without causing catastrophic consequences. This is particularly the case for
our example of augmented reality: if the information does not appear at
the right time and the right place, it will simply be wrong but the user will
not be in danger.

Hard RT refers to systems where the respect of temporal constraints is essential. In
such systems, a missed deadline may cause catastrophic consequences. This
is particularly the case for our example with railroad switch: if the change
is not made before the train arrives, a collision may occur.

Thus, we find RT systems in many areas, for example:

• Banking systems (stock exchange etc.),

• Aerospace,

• Processing and routing the information (video, data, etc.),

• Industry production (control engines etc.),

• Traffic Management (road, air, railway etc.),

• Military Systems.

Finally, in RT systems research, we are interested in how we schedule the
tasks to be made in order to ensure that all end before their deadline, but we
are also interested in how theoretically predict that we will be able to meet all
deadlines.

1.2 Motivations of the thesis
RT systems have been studied extensively in the context where a single processing
unit was available (a single processor or a single network channel etc.). But today,
in the field of computer science, we have wide access to several processing unit
in a single platform. Indeed, let’s talk a little history. In 1975, Gordon E.
Moore prophesies that the number of transistors in microprocessors will double
every two years. So far, this law has been respected and has become a target
for the world of microprocessors, even if Gordon Moore announced its end

1.2. Motivations of the thesis 5

in “10 to 15 years” (Intel Developer Forum, 2007). However, what is commonly
called “Moore’s Law” is that “the performance of microprocessors doubles every
18 months”. This declaration, actually from David House [Moo03], has been
respected from the Intel 4004 (1971) until today. Semiconductor manufacturers
used mainly the increase in processor frequency to meet this law. Consequently, a
program could benefit from increased performance without any effort on the part
of software developers. In 2004, semiconductor manufacturers were blocked by
physical limitations (miniaturization, thermal dissipation problem, etc.) which
prevent a continuous increase in processor frequency. To follow the “House’s
Law”, they then have begun to double the number of “cores” in processors. Today
we are witnessing the development of processors with 2, 4, 8 up to 1000 cores.

It therefore becomes important to see how RT systems can benefit from these
new multiprocessor platforms. We begin by taking the same tasks that we used
with a single processor, which we call Sequential Tasks (S-Tasks). We study
various existing approaches to bring new solutions or new ways of solving the
scheduling of S-Tasks on a multiprocessor platform.

We continue this work by exploring new types of tasks, called Parallel Tasks
(P-Tasks). Indeed, these multi-core (or many-core) processors raise a major
issue: programs cannot anymore benefit from increased performance for nothing
as written by Herb Sutter in “The Free Lunch is Over” [Sut05]. Actually,
programmers should launch concurrent treatments (parallel treatments) to take
advantage of these new architectures. Therefore a process is divided in “threads”
that could run concurrently in order to reduce the total processing time. To
facilitate programming on multi-core, many tools are available such as Open
Multi-Processing (OpenMP) [Cha+00] that can turn a sequential code to a
parallel one. This tool has spread rapidly because it is easy to use. It enables
parallel code generation by means of library of functions as well as preprocessor
directives. These directives allow changes in the sequential operation of a program
without being destructive to the original code. Intel also maintains a library,
Threading Building Blocks (TBB) [Rei07] which is a C++ runtime library.
Among the many other possibilities, Message Passing Interface (MPI) [GB98;
GLS00] has a slight different use since it allows us to distribute the computation
not only on multi-core who share a memory, but also on processors with a separate
memory. For example, MPI can distribute the computations on machines on a
network by sending messages with the data required for calculations.

We study the scheduling of such tasks by providing a new model for repre-
senting and different solutions and ways to schedule them.

6 Chapter 1. General introduction

1.3 Content of this thesis
Chapter 2 presents the essential concepts for the understanding of this work. We

describe the processor model, the S-Task model and various P-Task model
used in this work in Section 2.2. We then clarify the concept of scheduler
and propose some example of priority assignment in Section 2.3. Since
models and schedulers are known, Section 2.4 expounds the concepts of
schedulability and feasibility with some examples of results for the unipro-
cessor case. Finally, we summarize some results for the multiprocessor case
in Section 2.5.

Chapter 3 presents our results for the scheduling of S-Tasks. We provide results for two
different approaches: Partitioned Scheduling (P-Scheduling) in Section 3.2
and Semi-Partitioned Scheduling (SP-Scheduling) in Section 3.3. For the
P-Scheduling approach, we expound our generalized P-Scheduling algorithm
and give an evaluation of its parameters. For the SP-Scheduling approach,
we propose a solution for the Restricted Migration (Rest-Migration) case
(migration are allowed but only between the activations of the tasks) in
Subsection 3.3.2 and a solution for the UnRestricted Migration (UnRest-
Migration) case (migration are allowed anytime) in Section 3.3.3.

Chapter 4 presents our results for the scheduling of P-Tasks. We present two task
models used including our new model in Section 4.3. Section 4.4 defines and
summarize the schedulers used with P-Tasks. We put forward our results
on the schedulability of our new task model in Section 4.5. Sections 4.6
and 4.7 end this chapter with an evaluation to compare the advantages and
disadvantages of different types of P-Tasks.

Chapter 5 presents the tool Framework fOr Real-Time Analysis and Simulation
(FORTAS), developed as part of this thesis. The existing tools presented in
Section 5.2 provide a valuable aid for the analysis of RT systems. However,
it seemed that almost all of them focus on the analysis or design of a
given scheduling: given my platform, or even my task set, what will be
the performance or how do I have to change my system to ensure its
schedulability? FORTAS implements some of these elements but often
remains less advanced than existing tools. However, it focuses on the
possibility to automate the comparison and the evaluation of scheduling
algorithms, whether based on a theoretical analysis of feasibility or on the
simulation of scheduling, without necessarily focusing on a given platform
or a specific task set.

Chapter 6 provides a conclusion of this work and suggests some perspectives.

Chapter 2

Introduction to RT Scheduling

N’a de convictions que celui qui n’a rien approfondi.

We have convictions only if we have studied nothing thoroughly.

Cioran [Cio86]

Contents
2.1 Introduction . 8

2.2 System models . 8

2.2.1 Processor model . 8

2.2.2 Task models . 9

2.3 Schedulers . 19

2.3.1 Fixed Task Priority (FTP) schedulers 20

2.3.2 Dynamic Task Priority (DTP) schedulers 21

2.4 Feasibility and schedulability analysis 21

2.4.1 Feasibility or schedulability? 22

2.4.2 Schedulability analysis for FTP schedulers on uniprocessor
platform . 23

2.4.3 Schedulability analysis for DTP schedulers on uniprocessor
platform . 24

2.4.4 Allowance margin of task parameters 31

2.5 Scheduling on multiprocessor platforms 35

2.5.1 Scheduling Sequential Tasks (S-Tasks) 35

2.5.2 Scheduling Parallel Tasks (P-Tasks) 44

2.6 Summary . 45

8 Chapter 2. Introduction to RT Scheduling

2.1 Introduction
We dedicated this chapter to the presentation of the main concepts and definitions
used in RT systems. First, in Section 2.2, we propose to formally define the
two main elements of a RT system: processors and tasks. Then, in Section 2.3,
we explain how to execute the tasks on the processors by using schedulers.
Section 2.4 shows some results which allow us to verify that the scheduler
previously introduced is able to execute all the tasks on the processors while
meeting all time constraints. Finally, we introduce some existing results for the
multiprocessor case in Section 2.5.

2.2 System models
The main part of a RT system consists of tasks, i.e. of computer processes, and of
processors, i.e. of computer central processing unit. We present in Subsection 2.2.1
and Subsection 2.2.2 various models and constraints related to these two main
components of RT systems.

2.2.1 Processor model
In this work, we use the simple processor model given by Definition 2.1. We do
not consider specific processor architectures, caches, pipelines etc.

Definition 2.1 (Processor set).
Let π = {π1, . . . , πm} be a processor set composed of m processors. A processor
πk is characterized by the 2-tuple (νk,∆k) where:

• νk is the relative speed of πk. The speed is said to be relative since νk
represents the factor by which the time unit has to be multiplied to be
consistent on processor πk. For example, if a process has an execution time
equal to C on a reference processor of speed 1, its execution time will be
equal to C × νk on processor πk. Hence, ∀k, l ∈ J1;mK, νk < νl indicates
that processor πk is faster than processor πl.

• ∆k is the granularity of time on πk. The granularity of time of a processor
represents the minimum time unit which can be executed on this processor.
E.g. if ∆k = 0.1 for processor πk, a process which needs exactly 2.32 unit of
time will take d2.32/∆ke ×∆k = 2.4 unit of time on processor πk since 2.3
is not sufficient and the minimum time unit that can be executed on this
processor is 0.1.

�

We now define the three main types of processor set:

2.2. System models 9

Heterogeneous refers to a processor set composed of processors with different speeds
and different architectures (for example, a processor i7 from Intel with
Nehalem architecture and a processor Snapdragon S2 from Qualcomm with
a ARMv7 architecture).

Homogeneous refers to a processor set composed of processors with possibly different
speeds but identical architectures.

Identical refers to a processor set composed of processors with identical speeds
and identical architectures.

In this work, we consider an identical processor set π = {π1, . . . , πm} with
∀k ∈ J1;mK, νk = 1 and ∆k = 1. Then, each time value presented in this
document has to be read as a multiple of ∆k = 1. If you consider that ∆k is
expressed in millisecond, then you can read this document considering each time
value as milliseconds. We do not define any specific time unit so that our results
can be adapted to any time unit.

2.2.2 Task models
In this work, we consider various task models depending on the use of parallelism.
In Subsection 2.2.2.2 we present the task model for S-Tasks, that is tasks which use
at most one processor at each time instant. In Subsection 2.2.2.3 we present some
task models for P-Tasks, that is tasks which may use more than one processor at
a given time instant. In this work, we assume that all tasks are independent, that
is, there is no shared resource, no precedence constraint and no communication
between tasks. We now define the main time constraints used by each task model.

2.2.2.1 Task parameters and definitions

Some time constraints are often applied to tasks, whatever the task model. We
present in this section the two main parameters of a task: the periodicity and
the deadline. Then, we define what is a pre-emption, a migration of a task and
the various states of a task during the system life.

Periodicity We consider that a task can be activated more than once during
the system life. Each activation creates an instance of the task called job. We
then have Definition 2.2 and Definition 2.3.

Definition 2.2 (Task).
A task is defined as the set of common off-line properties of a set of works that
need to be done. By analogy with object-oriented programming, a task can be
seen as a class. �

10 Chapter 2. Introduction to RT Scheduling

Definition 2.3 (Job).
A job, or instance of task, is the runtime occurrence of a task. By analogy
with object-oriented programming, a job can be seen as the object created after
instantiation of the corresponding task class. In computer science, a job can be
seen as a computer process. �

To represent the recurrence of tasks, we use the principle of periodicity. We
distinguish two types of periodicity:

Periodic task refers to a task which is always reactivated after a fixed duration called inter-
arrival time. Thus, after the first activation of a task, it will be indefinitely
reactivated and two successive activations will be always separated by the
same duration.

Sporadic task refers to a task which can be reactivated at any instant after a specific
duration called minimum inter-arrival time. Thus, if a task is activated,
the next activation cannot occur during a fixed duration, but after this
minimum inter-arrival time, it can occur at any instant.

Moreover, we distinguish two types of task sets accordingly to the first arrival
instant of their tasks:

Synchronous refers to a task set composed of tasks which are all activated for the first
time at the same instant.

Asynchronous refers to a task set composed of tasks which are activated for the first time
at different instants.

Deadline As expressed in the introduction Section 1.1, a RT system is a specific
system where we need to respect some time constraints. The typical one is the
deadline. When a task is activated, it has to be executed before a specific time
instant. We distinguish the relative deadline which is the duration available to
execute the task starting from its activation, and the absolute deadline which is
the latest time instant at which the task has to be fully executed. For example,
if the relative deadline of a task is equal to 4 and this task is activated at time
instant 23, the absolute deadline will be equal to 24 + 5 = 27. We identify three
types of relative deadlines:

I-Deadline refers to a task with an Implicit Deadline (I-Deadline) i.e. a task with a
relative deadline equal to its inter-arrival time. In other word, the task
must, implicitly, be completed at its reactivation.

C-Deadline refers to a task with a Constrained Deadline (C-Deadline) i.e. a task with
a relative deadline equal to or less than its inter-arrival time. In other
words, the task must be completed before its reactivation.

2.2. System models 11

A-Deadline refers to a task with a Arbitraty Deadline (A-Deadline) i.e. a task with
a relative deadline equal to, less than or greater than its inter-arrival
time. In other word, the completion of the task does not depend on its
reactivation.

Pre-emption A pre-emption occurs when a job executed on one processor is
interrupted to execute a job of an other task on the same processor. In a real
system, pre-emption is usually composed of four phases:

1. interrupt the executed job on the processor,

2. save the execution context of the previously executed job (program counter,
registers values etc.),

3. load the execution context of the new job,

4. execute the new job on the processor.

These phases can take some time and a pre-emption is not “free”. However, we
relax this constraint in this work and we neglect the additional time produced by
a pre-emption: we suppose it is included in the execution time of the task or it is
equal to zero.

Migration A migration occurs when a job executed on one processor is inter-
rupted (or interrupts itself) to execute the same job on another processor. In a
real system, a migration is usually composed of four phases:

1. interrupt the executed job on the first processor,

2. save the execution context of the job (program counter, registers values
etc.),

3. load the execution context of the job on the new processor,

4. the job is ready to be executed on the new processor.

Just as pre-emption, these phases can take some time but we relax this constraint
in this work and we neglect the additional time produced by a migration. However,
we will study the number of migrations of some algorithms to compare their
relative deviation from an actual implementation.

Tasks and jobs states A task, during the system life, can be in four different
states. Figure 2.1 gives these states and the transitions.

Ready refers to the state in which the task has been activated but the corresponding
job is not currently executing on a processor.

12 Chapter 2. Introduction to RT Scheduling

Running refers to the state in which a job of the task is executing on a processor.
We also say that the task is scheduled on the processor.

Blocked refers to the state in which a job of the task was executed but it has been
stopped by the system. For example, when a job needs to take a mutex, it
goes to the Blocked state while the mutex is unavailable.

Inactive refers to the state in which a task is not active in the system. For example,
if the previous job of the task has completed its execution, before its
reactivation the task is inactive.

Ready

Inactive Blocked

Running

Activated Unblocked

SelectedPre-empted

Finished Blocked

Figure 2.1 – States and transitions of a task during the system life

2.2.2.2 Sequential Task (S-Task) model

A task is said to be sequential if it can use one and only one processor at each time
instant of its execution. We now give the definitions of a periodic (Definition 2.4
and Figure 2.2) and a sporadic (Definition 2.5) sequential task set which are
based on the work of Liu and Layland [LL73]. For notations we were inspired
by those used in the work of Cucu-Grosjean and Goossens [CGG11].

Oi Ti

Di

Ti

Di Di

Ci Ci Ci

τi

Figure 2.2 – Representation of a periodic sequential task, from Definition 2.4

2.2. System models 13

Definition 2.4 (Periodic sequential task set).
Let τ(O,C,T,D) = {τ1(O1, C1, T1, D1), . . . , τn(On, Cn, Tn, Dn)} be a periodic sequen-
tial task set composed of n periodic sequential tasks. The task set τ(O,C,T,D) can
be abbreviated as τ . A periodic sequential task τi(Oi, Ci, Ti, Di), abbreviated as
τi (Figure 2.2), is characterized by the 4-tuple (Oi, Ci, Ti, Di) where:

• Oi is the first arrival instant of τi, i.e., the instant of the first activation of
the task since the system initialization.

• Ci is the Worst Case Execution Time (WCET) of τi, i.e., the maximum
execution time required by the task to complete.

• Ti is the period of τi, i.e., the exact inter-arrival time between two successive
activations of τi.

• Di is the relative deadline of τi, i.e., the time by which the current instance
of the task has to complete its execution relatively to its arrival instant.

�

Definition 2.5 (Sporadic sequential task set).
Let τ(C,T,D) = {τ1(C1, T1, D1), . . . , τn(Cn, Tn, Dn)} be a sporadic sequential task
set composed of n sporadic sequential tasks. The task set τ(C,T,D) can be ab-
breviated as τ . A sporadic sequential task τi(Ci, Ti, Di), abbreviated as τi, is
characterized by the 3-tuple (Ci, Ti, Di) where:

• Ci is the WCET of τi, i.e., the maximum execution time required by the
task to complete.

• Ti is the minimum inter-arrival time of τi, i.e., the minimum time between
two successive activations of τi.

• Di is the relative deadline of τi, i.e., the time by which the current instance
of the task has to complete its execution relatively to its arrival instant.

�

Each task τi generates an infinite sequence of jobs.
Notice that for any sequential task set τ(O,C,T,D) (periodic) or τ(C,T,D) (sporadic),

(O,C, T,D) are respectively the vectors of first arrival instants (O), WCETs (C),
inter-arrival times (T) and deadlines (D) of tasks in τ . For instance, C2, the
second value in vector C is the WCET of task τ2 in τ . In this way, we give the
following examples:

• τ(C,T,D) is a task set of n sporadic sequential tasks where C = (C1, . . . , Cn),
T = (T1, . . . , Tn), D = (D1, . . . , Dn) are respectively the sets of WCETs,
periods (or minimum inter-arrival times) and deadlines of the tasks in τ . A
task τi ∈ τ is defined by the ith element of the three sets C, T and D.

14 Chapter 2. Introduction to RT Scheduling

• τ(O,C,T,D) is a task set of n periodic sequential tasks where O = (O1, . . . , On),
C = (C1, . . . , Cn), T = (T1, . . . , Tn), D = (D1, . . . , Dn) are respectively the
sets of first arrival instant, WCETs, periods (or exact inter-arrival times)
and deadlines of the tasks in τ . A task τi ∈ τ is defined by the ith element
of the four sets O, C, T and D.

• τ is an abbreviation of τ(O,C,T,D) in a periodic context or τ(C,T,D) in a sporadic
context.

• τ(X,T,D) is a sporadic sequential task set where X = (x1, . . . , xn) is a set of
WCETs variables, T and D are sets of fixed periods and deadlines.

• τ(C,T,D/p) denotes a set of sporadic sequential tasks with a set of fixed WCETs
C, a set of fixed periods T and a set of fixed deadlines where all deadlines
in D are divided by p > 1 according to an original task set τ(C,T,D).

• τ(C,pT,D) denotes a set of sporadic sequential tasks with a set of fixed WCETs
C, a set of fixed deadlines D and a set of fixed periods where all periods in
T are multiplied by p > 1 according to an original task set τ(C,T,D).

2.2.2.2.1 Metrics for S-Task sets A task set composed of S-Tasks is also
characterized by some metrics. We define in this section the most commonly used
and especially the metrics used in this work.

A S-Task is characterized by the following metrics:

Utilization The utilization of a S-Task τi is given by Equation 2.1.

Uτi
def= Ci

Ti
(2.1)

Density The density of a S-Task τi is given by Equation 2.2.

Λτi
def= Ci

min(Di, Ti)
(2.2)

A S-Task set is characterized by the following metrics:

Utilization The utilization of a task set τ composed of n S-Tasks is given by Equa-
tion 2.3.

Uτ
def=

n∑

i=1
Uτi (2.3)

Density The density of a task set τ composed of n S-Tasks is given by Equation 2.4.

Λτ
def=

n∑

i=1
Λτi (2.4)

2.2. System models 15

RBF The Request Bound Function (RBF) of a task set τ composed of n pre-
emptive synchronous S-Tasks represents the upper bound of the work load
generated by all tasks with activation instants included within the interval
[0; t). Lehoczky, Sha, and Ding [LSD89] gave Equation 2.5 which allows
us to compute the RBF.

RBF (τ, t) def=
n∑

i=1

⌈
t

Ti

⌉
× Ci (2.5)

DBF The Demand Bound Function (DBF) of a task set τ composed of n pre-
emptive synchronous S-Tasks represents the upper bound of the work
load generated by all tasks with activation instants and absolute deadlines
within the interval [0; t]. Baruah, Rosier, and Howell [BRH90] gave
Equation 2.6 which allows us to compute the DBF.

DBF (τ, t) def=
n∑

i=1
max

(
0, 1 +

⌊
t−Di

Ti

⌋)
× Ci (2.6)

WCRT The Worst Case Response Time (WCRT) of a task τi ∈ τ is the maximum
duration between the activation of the task and the instant it completes its
execution.

2.2.2.3 Parallel Task (P-Task) model

A task is said to be parallel if it is allowed to use more than one processor
during its execution. As presented in the introduction Section 1.2, multiple
approaches have been proposed to distribute the computation. Whatever the
approach, considering distributed processors or multi-core processors, a crucial
point remains the communication between parallel threads. If two parallel threads
need to exchange information, they may have to wait for each other.

In the field of RT scheduling, researchers tackled the issue of parallel treatments
few years ago. As a result, they offered a variety of models to describe the so-called
P-Tasks. These task models are based on a different view of synchronization
points (or communication points) between parallel threads. We define two classes
of parallel task models:

• Gang class where parallel threads are considered and scheduled in unison.

• Multi-Thread class where parallel threads can be considered and scheduled
independently.

We present in the following the main model of each class:

• Gang is a task model of the eponymous class. It is derived from the
scheduler used on supercomputer — especially in the “Connection Machine”

16 Chapter 2. Introduction to RT Scheduling

CM-5 created in 1991 [Cor92; Fei96]. This scheduler considers that threads
of a process must communicate very often with each other. The easiest
way to reduce their waiting time is then to schedule all threads of each
process together. A Gang task is defined by an execution requirement which
corresponds to a “Ci × Vi” rectangle, with the interpretation that a process
requires exactly Vi processors simultaneously for a duration of Ci time units.
This model is detailed in Subsection 2.2.2.3.1. Schedulers using this class of
task model are called Gang schedulers.

• Fork-Join is a task model of the Multi-Thread class. It is derived from paral-
lel programming paradigm such as POSIX thread (Pthread) and OpenMP.
This model considers each task as a sequence of segments (or phases),
alternating between sequential and parallel phases. During a parallel phase,
threads are completely independent and only wait for each other for starting
the next sequential phase. There are alternating “fork” (separation into
independent threads) and “join” (waiting for thread completion). This
model is detailed in Subsection 2.2.2.3.2. Schedulers using this class of task
model are called Multi-Thread schedulers.

2.2.2.3.1 Gang task model The following model is based on the work of
Kato and Ishikawa [KI09]. We define the periodic parallel Gang task model in
Definition 2.6 and give an example in Figure 2.3.

Vi Vi Vi

Oi Ti

Di

Ti

Di Di

Ci Ci Ci

τi

Figure 2.3 – Representation of a periodic parallel Gang task, from Definition 2.6

Definition 2.6 (Periodic parallel Gang task set).
Let τ(O,C,T,D,V) = {τ1(O1, C1, T1, D1, V1), . . . , τn(On, Cn, Tn, Dn, Vn)} be a peri-
odic parallel Gang task set composed of n periodic parallel Gang tasks. The
task set τ(O,C,T,D,V) can be abbreviated as τ . A periodic parallel Gang task
τi(Oi, Ci, Ti, Di, Vi), abbreviated as τi (Figure 2.3), is characterized by the 5-tuple
(Oi, Ci, Ti, Di, Vi) where:

• Oi is the first arrival instant of τi, i.e., the instant of the first activation of
the task since the system initialization.

2.2. System models 17

• Ci is the WCET of τi when executed in parallel on Vi processors, i.e., the
maximum execution time required simultaneously on Vi processors by the
task to complete.

• Ti is the period of τi, i.e., the exact inter-arrival time between two successive
activations of τi.

• Di is the relative deadline of τi, i.e., the time by which the current instance
of the task has to complete its execution relatively to its arrival instant.

• Vi is the number of processors used simultaneously to schedule τi.

�

Each task τi generates an infinite sequence of jobs. Each job of τi is executed
in parallel on Vi processors (by Vi threads) during Ci time units. Kato and
Ishikawa [KI09] assumed that all threads within the job consume Ci time units
including idle and waiting times to synchronize with each other, even if in fact
perfect parallelism may not be possible. In conclusion, the execution of a job of
τi is represented as a “Ci × Vi” rectangle in “time × processor” space.

Remark 2.1. All threads of a Gang task have to execute simultaneously, so Vi
processors need to be available at the same time instant to schedule a Gang
task. �

2.2.2.3.2 Fork-Join task model The following model is based on the work
of Lakshmanan, Kato, and Rajkumar [LKR10]. They propose this model
referring from an existing paradigm used in various parallel programming models
such as OpenMP [Cha+00] or Pthread. We define the periodic parallel Fork-Join
task model in Definition 2.7 and give an example in Figure 2.4.

Vi Vi

Oi Ti Ti

Φi

C1
i P 2

i C3
i

Φi

C1
i P 2

i C3
i

τi

Figure 2.4 – Representation of a periodic parallel Fork-Join task, from
Definition 2.7

18 Chapter 2. Introduction to RT Scheduling

Definition 2.7 (Periodic parallel Fork-Join task set).
Let τ(O,Φ,T,V) = {τ1(O1,Φ1, T1, V1), . . . , τn(On,Φn, Tn, Vn)} be a periodic paral-
lel Fork-Join task set composed of n periodic parallel Fork-Join tasks. The
task set τ(O,Φ,T,V) can be abbreviated as τ . A periodic parallel Fork-Join task
τi(Oi,Φ, Ti, Vi) (Figure 2.4), abbreviated as τi (Figure 2.4), is characterized by
the 4-tuple (Oi,Φi, Ti, Vi) where:

• Oi is the first arrival instant of τi, i.e., the instant of the first activation of
the task since the system initialization.

• Φi =
{
C1
i , P

2
i , C

3
i , P

4
i , . . . , P

si−1
i , Csi

i

}
is the set of si computation segments

of τi. Thus, the total computation of the task is divided in si successive
parts called computation segments.

• Ti is the period of τi, i.e., the exact inter-arrival time between two successive
activations of τi. The relative deadline is equal to the period, Di = Ti.

• Vi is the number of parallel threads used in each parallel segment of τi.
If Vi = 1, the task is sequential. Lakshmanan, Kato, and Rajkumar
[LKR10] assume that Vi 6 m withm the total number of identical processors
(or cores).

�

If we focus on Φi, the set of computation segments, we can identify sequential
and parallel segments:

• Cj
i with j is an odd number is the WCET of the jth segment which refers

to a sequential segment. This sequential segment is also referred to as τ j,1i .

• P j
i with j is an even number is the WCET of the Vi threads of the jth

segment which refers to a parallel segment. Each thread in this segment is
also referred to as τ j,ki with k ∈ J1;ViK. All threads are assumed independent
from each other but all threads of segment i need to complete before the
execution of the next segment (i+ 1).

Remark 2.2. The set of computation segments is composed of alternating between
sequential and parallel segments. A task always start with a sequential segment
and finishes with a sequential segment. Then, si is an odd number. �

Remark 2.3. Since the number of parallel threads Vi is defined at the task level,
all parallel segments of one task have the same number of threads. �

2.3. Schedulers 19

2.3 Schedulers
After Subsections 2.2.1 and 2.2.2, tasks and processors have no more secrets
for you. Now, we have to execute and so, schedule the tasks on the processors!
“Schedule” literally means “set a timetable” and in most cases of everyday life,
when you set a timetable, you know roughly the things you will need to do and
when you will have to begin. Notwithstanding, in the RT research field, we
distinguish between two cases:

Clairvoyant refers to the case that we know the future of the system and especially
when tasks will be activated.

Non-clairvoyant refers to the case that we do not know the future of the system.

In the vast majority of research results on RT systems, we consider to be in
the non-clairvoyant case. This corresponds fairly well to the reality of industrial
systems. Thus, without any clear specification, a scheduler refers to a non-
clairvoyant scheduler. But, first of all, what is a scheduler?

Definition 2.8 (Scheduler).
A (non-clairvoyant) scheduler is an algorithm which has to select, at each time
instant, in the list of Ready and Running tasks, which jobs should be executed
on the processors. To this end, it assigns priorities and selects the jobs of the
tasks with the highest priorities. Hence, if the list of ready tasks is composed of
tasks τi and τj with τi � τj (τi has a higher priority than τj) and we have one
processor, then the scheduler will choose τi to be executed on this processor. �

Definition 2.9 (Optimal scheduler).
A (non-clairvoyant) scheduler is optimal if this scheduler meets all deadlines
when a task set can be scheduled by at least one (non-clairvoyant) scheduler
without missing any deadline. In other words, if it exists a scheduler which
succeeds in meeting all deadlines of a task set, then the optimal scheduler will
also meet all deadlines. The contrapositive is also true: if, for a given task set,
an optimal scheduler misses at least one deadline then there is not any existing
(non-clairvoyant) scheduler which can successfully meet all deadlines. �

In this section we present the main uniprocessor schedulers used in the state-
of-the-art. We consider two types of schedulers:

FTP refers to Fixed Task Priority (FTP), a scheduler which defines fixed priority
to each task. The task priorities are defined before starting the system then
they never change. Subsection 2.3.1 presents some of these schedulers.

DTP refers to Dynamic Task Priority (DTP), a scheduler which defines dynamic
priority to each task. The task priorities are not known when the sys-
tem starts and a task can have different priorities during the system life.
Subsection 2.3.2 presents some of these schedulers.

20 Chapter 2. Introduction to RT Scheduling

Remark 2.4. A scheduler can be pre-emptive (it allows pre-empting tasks) or
non-pre-emptive (it forbids pre-empting tasks). In this work, we only consider
pre-emptive schedulers. Thus, without clear specification, a scheduler refers to a
non-clairvoyant pre-emptive scheduler. �

2.3.1 Fixed Task Priority (FTP) schedulers

A FTP scheduler is the classical way to handle RT systems. In this case, all
decisions on priorities are taken before starting the system, thus the scheduler
considers only this fixed value to select the new running task at each time instant.
These schedulers are the main used uniprocessor schedulers in the state-of-the-art
and they are mainly used in the industry.

FTP schedulers differ in how they assign fixed priorities to tasks. Here are
the most studied FTP schedulers:

RM refers to Rate Monotonic (RM) scheduler studied by Liu and Layland
[LL73]. It assigns priorities to tasks according to their period: more often
a task is reactivated, the higher its priority. For example, if Ti < Tj then
τi � τj. For pre-emptive synchronous sporadic S-Tasks with I-Deadlines
on uniprocessor platforms, RM is an optimal FTP scheduler [LL73]. It is
optimal in the sense that if a task set can be scheduled by a FTP scheduler
without missing any deadline, then RM will also meet all deadlines.

DM refers to Deadline Monotonic (DM) scheduler studied by Audsley et
al. [Aud+91]. It assigns priorities to tasks according to their relative
deadline: the shorter the relative deadline, the higher its priority. For
example, if Di < Dj then τi � τj. For pre-emptive synchronous sporadic
S-Tasks with C-Deadlines on uniprocessor platforms, DM is an optimal
FTP scheduler [LM80].

OPA refers to Optimal Priority Assignment (OPA) scheduler proposed by Aud-
sley [Aud01; Aud91]. It is an optimal algorithm to assign fixed priority to
synchronous pre-emptive sporadic S-Tasks with A-Deadline [Aud91] and to
synchronous non-pre-emptive sporadic S-Tasks with A-Deadlines [GRS96].
It is optimal in the sense that if it does not find a priority assignment which
can meet all deadlines, then it does not exist any fixed priority assignment
which can meet all deadlines. OPA has been proposed in order to improve
the solution which consists in listing all possible priority orderings. Indeed,
for a set of n tasks, n! combinations have to be considered for the exhaustive
enumeration whereas there are n2 tests with the OPA algorithm.

2.4. Feasibility and schedulability analysis 21

2.3.2 Dynamic Task Priority (DTP) schedulers
A DTP does not assign fixed priority to tasks but recomputes the priorities during
the system life. These schedulers typically allow scheduling more task sets but
they often require additional time while the system is running to compute the
new priorities.

DTP schedulers differ in how they assign the dynamic priorities to tasks.
Again, we distinguish two sub-types of DTP schedulers:

FJP refers to Fixed Job Priority (FJP), a scheduler which defines fixed priority
to each job. The job priorities are defined when they are activated then they
never change, but two jobs of the same task can have different priorities.

DJP refers to Dynamic Job Priority (DJP), a scheduler which defines dynamic
priority to each job. A job can have different priorities during its execution.

Here are the most studied DTP schedulers:

EDF refers to Earliest Deadline First (EDF) scheduler which is a FJP scheduler.
It has been studied by Liu and Layland [LL73] and proven as optimal
uniprocessor scheduler for pre-emptive sporadic S-Tasks with A-Deadlines
by Dertouzos [Der74] and for synchronous non-pre-emptive sporadic S-
Tasks with A-Deadlines by Jeffay, Stanat, and Martel [JSM91]. It
assigns priorities to jobs according to their absolute deadline: the shorter
the absolute deadline, the higher its priority. It is optimal in the sense that
if a task set can be scheduled without missing any deadline, then EDF will
also meet all deadlines.

LLF refers to Least Laxity First (LLF) scheduler which is a DJP scheduler. It
was proposed by Mok [Mok83; Leu89] and proven as optimal uniprocessor
scheduler for pre-emptive sporadic S-Tasks with A-Deadlines. It assigns
priorities to jobs according to the remaining slack of time before their
absolute deadline. The slack, or laxity, of a task at any time instant is
defined as remaining time to deadline minus the amount of remaining
execution.

2.4 Feasibility and schedulability analysis
We have presented various schedulers which assign priorities and select tasks in
different ways in order to execute them on the processors. But the main objective
of the study of RT systems is not only to execute tasks, it has to verify and even
guarantee that all these executed tasks will meet their deadline. In this section
we present some theories, applied to various schedulers, which allow us to verify

22 Chapter 2. Introduction to RT Scheduling

before starting the system if a task set is schedulable with a given scheduler, or
even if a task set is feasible.

Wait. A task set could be “feasible” but not “schedulable”? What is the
difference?

2.4.1 Feasibility or schedulability?

These two notions have been defined differently according to researchers. Some of
us use “schedulable” to describe the property of a task set that other researchers
call “feasible”. Here, we give the two definitions considered in this work. Notice
that the definitions given in this section are based on the proposals presented in
the work of Davis and Burns [DB11].

Definition 2.10 (Feasible).
A task set is feasible if it exists, at least, one solution to schedule this task set
which meet all deadlines. This solution may require a non-clairvoyant scheduler
or a clairvoyant scheduler. �

Definition 2.11 (Schedulable).
A task set is schedulable according to one scheduler if this scheduler can meet all
deadlines. �

Notice that, if a task set is schedulable, it is necessarily feasible. The other
way round is not always true: a task set can be feasible but not necessarily
schedulable with a given scheduler, even if this scheduler is optimal. Indeed,
an optimal (non-clairvoyant) scheduler can fail to schedule a task set which is
feasible. This can happen especially when only a clairvoyant scheduler would be
able to successfully schedule the task set.

2.4.1.1 Necessary, sufficient or necessary and sufficient?

To verify the schedulability or the feasibility of task sets, we generally propose
schedulability or feasibility tests. These tests can be classified in different ways
as given in the Definitions 2.12, 2.13 and 2.14.

Definition 2.12 (Necessary Test (N-Test)).
A test is said to be a Necessary Test (N-Test) if a negative result allows us
to reject the proposition but a positive result does not allow us to accept the
proposition. In other words, if this test is positive, we can continue to hope
that the proposition is true, but if this test is negative, it is certain that the
proposition is false. �

2.4. Feasibility and schedulability analysis 23

Example for Definition 2.12 For a periodic sequential task set τ composed of
n tasks with I-Deadlines scheduled with pre-emptive RM scheduler on uniprocessor
platform, Uτ 6 1 is a schedulability N-Test. Thus, if Uτ 6 1, τ may or may not
be schedulable with RM scheduler. However, if Uτ 6 1, τ is undoubtedly not
schedulable with RM scheduler.

Definition 2.13 (Sufficient Test (S-Test)).
A test is said to be a Sufficient Test (S-Test) if a positive result allows us to accept
the proposition but a negative result does not allow us to reject the proposition.
In other words, if this test is negative, we have to continue to expect that the
proposition is false, but if this test is positive, it is certain that the proposition is
true. �

Example for Definition 2.13 For a periodic sequential task set τ composed of
n tasks with I-Deadlines scheduled with pre-emptive RM scheduler on uniprocessor
platform, Uτ 6 n

(
n
√

2− 1
)
is a schedulability S-Test proposed by Liu and

Layland [LL73]. Thus, if Uτ > n
(
n
√

2− 1
)
, τ may be schedulable with RM

scheduler, but it also may not be schedulable with RM scheduler. However, if
Uτ 6 n

(
n
√

2− 1
)
, τ is undoubtedly schedulable with RM scheduler.

Definition 2.14 (Necessary and Sufficient Test (NS-Test)).
A test is said to be a Necessary and Sufficient Test (NS-Test) if a positive result
allows us to accept the proposition and a negative result allows us to reject
the proposition. In other words, if this test is positive, it is certain that the
proposition is true and if this test is negative, it is certain that the proposition is
false. Ultimately, a NS-Test always gives an undoubted response. �

Example for Definition 2.14 For a periodic sequential task set τ composed of
n tasks with I-Deadlines scheduled with pre-emptive EDF scheduler on uniproces-
sor platform, Uτ 6 1 is a schedulability NS-Test proposed by Liu and Layland
[LL73]. Thus, if Uτ < 1, τ is undoubtedly schedulable with EDF scheduler.
Moreover, if Uτ > 1, τ is undoubtedly not schedulable with EDF scheduler.

2.4.2 Schedulability analysis for FTP schedulers on unipro-
cessor platform

We present in this section some existing schedulability tests for FTP schedulers
and uniprocessor platforms.

• For any FTP scheduler and any type of deadline, Equation 2.7 gives a
schedulability N-Test for a task set τ .

Uτ 6 1 (2.7)

24 Chapter 2. Introduction to RT Scheduling

• For pre-emptive RM scheduler and tasks with I-Deadlines, Liu and Lay-
land [LL73] proposed the schedulability S-Test given by Equation 2.8.

Uτ 6 n
(
n
√

2− 1
)

(2.8)

• For pre-emptive RM scheduler and tasks with I-Deadlines, Bini, But-
tazzo, and Buttazzo [BBB03] proposed the schedulability S-Test given
by Equation 2.9.

n∏

i=1
(Uτi + 1) 6 2 (2.9)

• For any scheduler, Joseph and Pandya [JP86] showed that a schedulability
NS-Test is to verify that the WCRT of each task is lower than its relative
deadline, as expressed by Equation 2.10.

∀τi ∈ τ,WCRT i 6 Di (2.10)

For pre-emptive DM scheduler and tasks with C-Deadlines, Audsley et al.
[Aud+93] proposed the schedulability NS-Test given by Equation 2.10 with
the computation of WCRT given by Equation 2.11.

∀τi ∈ τ, WCRT i is the solution of

WCRT 0
i = Ci

WCRT k+1
i = Ci +RBF

(
τhp(τ,τi),WCRT ki

)

until WCRT k+1
i = WCRT ki or WCRT ki > Di

with τj ∈ τhp(τ,τi) if τj ∈ τ and τj � τi (2.11)

2.4.3 Schedulability analysis for DTP schedulers on unipro-
cessor platform

We present in this section some existing schedulability tests for DTP schedulers
and uniprocessor platforms.

• For any DTP scheduler and any type of deadline, Equation 2.12 gives a
schedulability N-Test for a task set τ .

Uτ 6 1 (2.12)

• For pre-emptive EDF scheduler and tasks with C-Deadlines, Liu [Liu00]
confirms the schedulability S-Test given by Equation 2.13.

Λτ 6 1 (2.13)

2.4. Feasibility and schedulability analysis 25

• For pre-emptive EDF scheduler and tasks with A-Deadlines, Baruah,
Rosier, and Howell [BRH90] proposed the schedulability NS-Test given
by Equation 2.14. Equation 2.15 is another form of the same schedulability
test.

∀t > 0, DBF (τ, t) 6 t (2.14)

Load(τ) def= supt>0
DBF (τ, t)

t
6 1 (2.15)

2.4.3.1 EDF uniprocessor schedulability condition: reconsideration

In our work, we mainly apply our results to the EDF scheduler case, so we propose
to go deeper into the schedulability analysis of this scheduler. The schedulability
NS-Test considered is originally proposed by Baruah, Rosier, and Howell
[BRH90]: the Load function given in Equation 2.16. We also use the result given
by George and Hermant [GH09a] which allows us to reduce the number of
time instants to consider during the Load computation.

2.4.3.1.1 The Load function Let τ be a sporadic sequential task set as
presented in Subsection 2.2.2.2. Load is the cumulative execution requirement
generated by jobs of the tasks in τ on any time interval divided by the length of
the interval. The Load function is given by Equation 2.16:

Load(τ) def= supt>0
DBF (τ, t)

t
(2.16)

The Load function provides a schedulability NS-Test for pre-emptive EDF
scheduler on uniprocessor platform: Load(τ) 6 1 and it has been widely studied
by various researchers. Theorem 2.1 is the result of Fisher, Baker, and Baruah
[FBB06a] showing how to reduce the number of time instants to consider during
the computation of this function.

Theorem 2.1 (Load function [FBB06a]).
Let τ be a sporadic sequential task set, the Load function can be computed as
follow:

Load(τ) = max
(
Uτ , supt∈S

DBF (τ, t)
t

)
(2.17)

where S def=
n⋃

i=1

{
Di + ki × Ti, 0 6 ki 6

⌈
P −Di

Ti

⌉
− 1

}
(2.18)

and P the least common multiple of all task period

�

26 Chapter 2. Introduction to RT Scheduling

In 2009, George and Hermant [GH09b] show that the previous expres-
sion can be used to characterize the space of feasible WCETs as presented in
Theorem 2.2.

Theorem 2.2 (C-Space characterization [GH09b]).
Let τ(X,T,D) be a sporadic sequential task set, with X = (x1, . . . , xn) are variables
and vectors D and T are constants. The Load

(
τ(X,T,D)

)
6 1 condition gives s+ 1

constraints which characterize the space of feasible WCETs, with s is the number
of elements in the set S defined by Theorem 2.1.

The first s constraints are given by Equation 2.19 and the (s+ 1)th constraint
is given by Equation 2.20.

∀k ∈ J1; sK , tk ∈ S,

DBF
(
τ(X,T,D), tk

) def=
n∑

i=1
max

(
0, 1 +

⌊
tk −Di

Ti

⌋)
× xi 6 tk (2.19)

Uτ(X,T,D) 6 1 (2.20)

�

They also show how to prune the set S to extract the subset of elements
representing the most constrained time instants where supt>0

DBF (τ(X,T,D),t)
t

can
be obtained. To this end, for any time instant tj ∈ S, they formalize as a linear
programming problem the question of determining whether a time instant tj is
relevant or if it could be ignored. For each time instant tj the goal is to maximize
the objective function DBF (τ(X,T,D), tj) taking into account the constraints given
in Equation 2.19 excluding the one produced by time instant tj . Therefore, these
s− 1 constraints are imposed on the WCETs of the tasks without considering the
constraint associated to time instant tj. The problem to be solved can then be
characterized with a linear programming approach formally defined in LPP 2.1.

Linear Programming Problem (LPP) 2.1 (C-Space – Relevance of time
instant tj).
The objective is to:

Maximize DBF
(
τ(X,T,D), tj

)

Under the constraints
s⋃

k=1,k 6=j

{
DBF

(
τ(X,T,D), tk

)
6 tk

}

With ∀i ∈ J1;nK, xi > 0

�

George and Hermant [GH09b] propose using the simplex algorithm to
solve the linear programming problem given in LPP 2.1. If for time instant tj,

2.4. Feasibility and schedulability analysis 27

DBF
(
τ(X,T,D), tj

)
6 tj when the s− 1 constraints of LPP 2.1 are imposed, then

it is not necessary to add the constraint DBF
(
τ(X,T,D), tj

)
6 tj to the problem

since it is already respected with the other constraints. Hence, tj is not significant
for characterizing the space of feasible WCETs and it can then be removed from
the set S. Otherwise, time instant tj should be kept in the set S.

2.4.3.1.2 Performance of LPP 2.1 with the simplex We now study the
performance of the simplex for pruning the elements in the set of time instants
S in the case of C-Deadline task sets. In order to evaluate the impact of the
simplex on the reduction of the elements in the set S, we produce 105 task sets
of three tasks with s > 3500. Notice that the number s of constraints in the set
S depends more on the value of the periods than on the number of tasks.

To generate each task set, we proceed as follows:

• the period of each task is uniformly chosen within the interval [1; 100],

• the deadline of any task τi is computed as Di = αTi. α is discretized within
the intervals [0; 0.8] and [0.8; 1] with a granularity of respectively 0.1 and
0.025.

We focus on the influence of α on the pruning of the set S after executing the
simplex in LPP 2.1. Figure 2.5 shows the results of our analysis. The original
number of elements in the set S is associated with the left axis while the right
axis is used in association with the number of elements obtained after the simplex
is applied to LPP 2.1.

 3610

 3615

 3620

 3625

 3630

 3635

 3640

 3645

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 2

 4

 6

 8

 10

 12

 14

T
im

e
s
 i
n

 S
 b

e
fo

re
 L

P
P

 1

T
im

e
s
 i
n

 S
 a

ft
e

r
L

P
P

 1

α

Before LPP 1

After LPP 1

Figure 2.5 – Reduction of elements in the set S with LPP 2.1

We notice that the number of elements which curb the C-Space inch-up within
the interval [0.1; 0.6] then plunge downwards when α tends toward 1. If α = 1,

28 Chapter 2. Introduction to RT Scheduling

we have the special case of I-Deadlines task sets where the only constraint is the
utilization limit: Uτ(X,T,D) 6 1.

In all cases, we found that the number of constraints before and after pruning
the set S is respectively higher than 3570 and lower than 12. For a value of α
lower than 0.6, the average number of constraints after pruning the elements in
S is at most equal to 4. This confirms that the simplex can be very effective to
reduce the number of elements characterizing the space of feasible WCETs. We
use this property in Section 3.3.

2.4.3.1.3 Example using LPP 2.1 to compute the Load function Let
us consider the example τ(X,T,D) = {τ1(x1, T1, D1), τ2(x2, T2, D2), τ3(x3, T3, D3)}
of three sporadic sequential tasks where for any task τi(xi, Ti, Di), Ti and Di are
fixed and the WCET xi ∈ R+ is a variable. We use the values given by George
and Hermant [GH09b]:

• τ1(x1, T1, D1) = τ1(x1, 7, 5),

• τ2(x2, T2, D2) = τ2(x2, 11, 7),

• τ3(x3, T3, D3) = τ3(x3, 13, 10).

In this example, we have the least common multiple of periods P = 1001.
From Theorem 2.1, we have to consider the s = 281 elements in the set S given
by:

S = {5 + 7k1, k1 ∈ {0, . . . , 142}} ∪
{7 + 11k2, k2 ∈ {0, . . . , 90}} ∪
{10 + 13k3, k3 ∈ {0, . . . , 76}}

The simplex algorithm is applied on the LPP 2.1. We obtain the following set
S after removing all the unnecessary constraints:

S = {5, 7, 10, 12, 40}

From Theorem 2.1, we therefore have:

Load
(
τ(X,T,D)

)
= max

Uτ(X,T,D) , supt∈S

DBF
(
τ(X,T,D), t

)

t

= max
(
x1

7 + x2

11 + x3

13 ,
x1

5 ,
x1 + x2

7 ,
x1 + x2 + x3

10 ,

2x1 + x2 + x3

12 ,
6x1 + 4x2 + 3x3

40

)

2.4. Feasibility and schedulability analysis 29

2.4.3.1.4 Useful properties of the Load function Finally, we list some
useful properties of the Load function that we use in our work, especially in
Section 3.3. Property 2.1 and Property 2.3 are originally expressed by George
and Hermant [GH09a].

Property 2.1 shows that once we have computed the Load for a task set
τ(C,T,D), it is straightforward to compute the Load for the same task set where
all the WCETs are multiplied by a real number α > 0.

Property 2.1 ([GH09a]).
Let τ(C,T,D) be a sequential sporadic task set.

Load
(
τ(αC,T,D)

)
= αLoad

(
τ(C,T,D)

)
�

Property 2.2 shows that the Load of the union of two task sets is at most
equal to the sum of the Load of each task set.

Property 2.2 ([GH09a]).
Let τ(C,T,D) and τ ′(C′,T ′,D′) be two sporadic sequential task sets.

Load
(
τ(C,T,D) ∪ τ ′(C′,T ′,D′)

)
6 Load

(
τ(C,T,D)

)
+ Load

(
τ ′(C′,T ′,D′)

)
�

Property 2.3 shows that the Load corresponding to a transformed task set
where all the tasks have their period multiplied by a real number α > 0 is equal
to the Load corresponding to a transformed task set where all the tasks have
their WCET and their deadline divided by the same value α.

Property 2.3.
Let τ(C,T,D) be a sporadic sequential task set.

Load
(
τ(C,αT,D)

)
= Load

(
τ(C/α,T,D/α)

)
�

Proof. From the definition of the Load function we have:

Load
(
τ(C,αT,D)

)
= supt>0

DBF
(
τ(C,αT,D), t

)

t

= supt>0

n∑
i=1

max
(
0, 1 +

⌊
t−Di
αTi

⌋)
× Ci

t

Hence, we can write:

Load
(
τ(C,αT,D)

)
= supt>0

n∑
i=1

max
(

0, 1 +
⌊
t
α
−Di
α

Ti

⌋)
× Ci

t

Finally, let t′ = t/α, changing t to t′ leads to:

Load
(
τ(C,αT,D)

)
= supt′>0

n∑
i=1

max
(

0, 1 +
⌊
t′−Di

α
Ti

⌋)
× Ci

α

t′

= Load
(
τ(C/α,T,D/α)

)

30 Chapter 2. Introduction to RT Scheduling

Let us take an example to verify Property 2.3. We choose a platform composed
of m = 2 processors and generate the task set τ(C,T,D) = {τ1, τ2, τ3} as following:

• τ1(C1, T1, D1) = τ1(x1, 70, 60),

• τ2(C2, T2, D2) = τ2(x2, 110, 72),

• τ3(C3, T3, D3) = τ3(x3, 130, 84).

We then can generate task set τ(C,2T,D) equivalent to τ(C,T,D) with period of
each task multiplied by 2. Thus, τ(C,2T,D) =

{
τ 2T

1 , τ 2T
2 , τ 2T

3

}
is composed of:

• τ 2T
1 (x1, 2T1, D1) = τ 2T

1 (x1, 2× 70, 60) = τ 2T
1 (x1, 140, 60),

• τ 2T
2 (x2, 2T2, D2) = τ 2T

2 (x2, 2× 110, 72) = τ 2T
2 (x2, 220, 72),

• τ 2T
3 (x3, 2T3, D3) = τ 2T

3 (x3, 2× 130, 84) = τ 2T
3 (x3, 260, 84).

Finally, we can generate task set τ(C/2,T,D/2) equivalent to τ(C,T,D) with deadline
and WCET of each task divided by 2. Thus, τ(C/2,T,D/2) =

{
τ
D/2
1 , τ

D/2
2 , τ

D/2
3

}
is

composed of:

• τ
D/2
1 (x1

2 , T1,
D1
2) = τ

D/2
1 (x1

2 , 70, 60
2) = τ

D/2
1 (x1

2 , 70, 30),

• τ
D/2
2 (x2

2 , T2,
D2
2) = τ

D/2
2 (x2

2 , 110, 72
2) = τ

D/2
2 (x2

2 , 110, 36),

• τ
D/2
3 (x3

2 , T3,
D3
2) = τ

D/2
3 (x3

2 , 130, 84
2) = τ

D/2
3 (x3

2 , 130, 42).

Table 2.1 shows the results of the simplex algorithm applied to LPP 2.1 for
the three previously defined task sets. To verify Property 2.3, we have to do
a numeric application, we choose x1 = 20, x2 = 48 and x3 = 36. As expected,
according to Table 2.1, we have Load(τ(C,2T,D)) = Load(τ(C/2,T,D/2)) as:

Load
(
τ(C,2T,D)

)
= max

(
x1

140 + x2

220 + x3

260 ,
x1

60 ,
x1 + x2

72 ,
x1 + x2 + x3

84

)

= 104
84 = 26

21

Load
(
τ(C/2,T,D/2)

)
= max

(
x1
2

70 +
x2
2

110 +
x3
2

130 ,
x1
2

30 ,
x1
2 + x2

2
36 ,

x1
2 + x2

2 + x3
2

42

)

= 52
42 = 26

21

2.4. Feasibility and schedulability analysis 31

Task Set
Number of time instants With LPP 2.1

within [0;P] Number of elements List of elements

τ(C,T,D) 311 7 60, 72, 84, 130, 200, 410, 622
τ(C,2T,D) 311 3 60, 72, 84
τ(C/2,T,D/2) 311 3 30, 36, 42

Table 2.1 – Example using LPP 2.1 to verify Property 2.3

2.4.4 Allowance margin of task parameters
When a task set is scheduled on a processor set, it could be interesting to know
the available margin for task parameters such that the task set is schedulable.
For example, if a processor suffers from a failure that slows it, the running
task may execute longer than expected. The margin of execution would give
the additional time during which it can execute without compromising the
schedulability of the system. We propose to give the results for the allowance of
WCET in Subsection 2.4.4.1 and the allowance of deadline in Subsection 2.4.4.2
for pre-emptive EDF scheduler. These results will be used in Section 3.3.

2.4.4.1 Allowance of WCET for pre-emptive EDF scheduler

Bougueroua, George, and Midonnet [BGM07] proposed Theorem 2.3 which
gives the allowance of WCET for a task with A-Deadline scheduled with pre-
emptive EDF scheduler. It is the maximum value Ai such that the task set
τi(Ci + Ai, Ti, Di) ∪

{
∪nj=1,j 6=iτj

}
is schedulable with pre-emptive EDF scheduler,

assuming that ∪nj=1,j 6=iτj is schedulable with pre-emptive EDF scheduler.

Theorem 2.3 (Allowance of WCET for pre-emptive EDF scheduler).
Let τ = {τ1, . . . , τn} be a sporadic sequential task set composed of n tasks. Let
τ \ τi be the task set composed of the tasks in τ excluding task τi. If τ \ τi is
schedulable with EDF scheduler, the maximum allowance of WCET Ai of the task
τi is given by Equation 2.21.

Ai
def= min

min
t>Di

 t

1 +
⌊
t−Di
Ti

⌋ ×
(

1− DBF (τ, t)
t

)
 , (1− Uτ)× Ti

 (2.21)

�

Proof. The allowance of task τi must satisfy two conditions:

(i) ∀t > 0, DBF (τ, t) +
(
1 +

⌊
t−Di
Ti

⌋)
× Ai 6 t

This leads to: ∀t > 0, Ai 6 t

1+
⌊
t−Di
Ti

⌋ ×
(
1− DBF (τ,t)

t

)

It follows that Ai 6 min
t>0

 t

1+
⌊
t−Di
Ti

⌋ ×
(
1− DBF (τ,t)

t

)

.

32 Chapter 2. Introduction to RT Scheduling

(ii) U + Ai
Ti
6 1

This leads to: Ai 6 (1− Uτ)× Ti.

Ai is thus the minimum value satisfying both conditions.

Theorem 2.3 is an adaptation of a result presented by Balbastre, Ripoll,

and Crespo [BRC02] which stated that Ai = mint>0

 t

1+
⌊
t−Di
Ti

⌋
(
1− DBF (τ,t)

t

)

.

But if we consider, for example, a task set composed of only one task defined
by τ1(C1, T1, D1) = τ1(20, 100, 120), we have A1 = 100 whose maximum value is
obtained for t = 120. Nevertheless, in that case, Uτ1(C1+A1,T1,D1) = (C1 +A1)/T1 =
120/100 > 1. Hence, the computation of Ai given by Balbastre, Ripoll, and
Crespo [BRC02] is not valid for tasks with A-Deadlines.

2.4.4.2 Allowance of deadline for pre-emptive EDF scheduler

Balbastre, Ripoll, and Crespo [BRC06] already studied the computation of
minimum acceptable deadline of a task scheduled with pre-emptive EDF scheduler.
We present a modified version that addresses some problems identified in their
algorithm that we detail in the following.

We present some explanations and counter examples showing our corrections
on the algorithm given by Balbastre, Ripoll, and Crespo [BRC06]. In
Algorithm 1, lines 7 to 11 have been added and line 6 has been modified with
respect to the original algorithm.

Error with t = l × Ti +Di The algorithm proposed by Balbastre, Ripoll,
and Crespo [BRC06] does not appear to include the special case where we have
DBF (τ, t) = t at time instant t = l×Ti +Di, the absolute deadline of considered
task τi, with l being a positive integer. Here, the absolute deadline of τi should
not be reduced and should be kept equal to Di. For this specific case, the original
algorithm does not seem to be perfectly clear since we do not successfully know
if these time instants have to be considered or not. However, in both cases,
we show with some examples that the condition is not correct. If we consider
those time instants, the original algorithm will give task τi a deadline equal to
DBF (τ, t) +Ci− l×Ti = Di +Ci > Di leading to a higher deadline than Di, not
the minimum. If we do not consider those time instants, the original algorithm
can provide deadlines that are too small. We have corrected the algorithm by
adding lines 7 to 11.

Let us consider the example composed of three tasks τ = {τ1, τ2, τ3} with:

• τ1(C1, T1, D1) = τ1(10, 54, 16),

• τ2(C2, T2, D2) = τ2(12, 97, 91),

2.4. Feasibility and schedulability analysis 33

Algorithm 1: Minimum deadline computation for pre-emptive EDF sched-
uler
input : A task set τ , a task τi in τ
output : The minimum acceptable deadline Di,min of τi when τ is

scheduled with EDF scheduler
Data: k, l are integers, t and deadline are variables and P is the least

common multiple of periods of tasks in τ
1 deadline← 0;
2 k ←

⌈
P
Ti

⌉
;

3 Di,min ← 0;
4 for l = 0 to k − 1 do
5 t← l × Ti +Di;
6 deadline← max (Ci, DBF (τ , l × Ti + Ci) + Ci − l × Ti);
7 if t = DBF (τ , t) then
8 Di,min ← Di;
9 exit the for-loop;

10 else
11 t← t− 1;
12 while t > l × Ti + Ci do
13 if t ∈ [0;P] is an absolute deadline of a task τj ∈ τ and
14 t− DBF (τ , t) < Ci then
15 deadline← DBF (τ , t) + Ci − l × Ti;
16 exit the while-loop;
17 end if
18 t← t− 1;
19 end while
20 end if
21 Di,min ← max(Di,min, deadline);
22 end for
23 return Di,min ;

• τ3(C3, T3, D3) = τ3(44, 88, 54).

If we compute the minimum acceptable deadline of task τ3 with the original
algorithm we have:

1. For the first iteration, we initialize D3,min = C3 = 44.

2. We search for absolute deadlines within the interval [C3;D3] = [44; 4]. The
only time instant to consider is t = 54 which is the deadline of task τ3.

3. At time instant t = 54:

34 Chapter 2. Introduction to RT Scheduling

• if we consider this time instant, the new minimum deadline will be
equal to D3,min = DBF (τ, 44) +C3− 0× T3 = 54 + 44 + 0 = 98 which
is higher than the actual deadline D3 = 54.

• if we do not consider this time instant, the final minimum deadline
will remain equal to the initial value D3,min = C3 = 44 which leads to
an unschedulable task set with a Load equal to 1.2272.

With our modifications of lines 7 to 11, we find that DBF (τ, 54) = 54, thus
DBF (τ,D3) = D3 and we fix the minimum possible deadline to D3,min = D3 = 54.
Any reduction of this deadline will lead to a Load larger than 1.

Error with the initialization deadline = Ci In the original algorithm, the
variable deadline is initialized as deadline = Ci. At line 6 of Algorithm 1, we
have replaced this initialization with deadline = max(Ci, DBF (τ, l × Ti + Ci) +
Ci − l × Ti).

Let us consider the example composed of three tasks τ = {τ1, τ2, τ3} with:
• τ1(C1, T1, D1) = τ1(10, 55, 16),

• τ2(C2, T2, D2) = τ2(12, 88, 80),

• τ3(C3, T3, D3) = τ3(44, 88, 80).

Computing the minimum acceptable deadline for task τ3 with the original
algorithm leads to the following:

1. For the first iteration, we initialize D3,min = 44.

2. We search for absolute deadlines within the interval [C3;D3] = [44; 80]. We
have to consider time instants t = 80, deadline of tasks τ2 and τ3 and t = 71,
the second deadline of task τ1.

3. At time instant t = 80:

• if we consider this time instant, the new minimum deadline of τ3 will
be equal to D3,min = DBF (τ, 80) + C3 − 0× T3 = 76 + 44 + 0 = 120
which is higher than the actual deadline D3 = 80.

• if we do not consider this time instant, the minimum deadline re-
mains equal to the initial value D3,min = C3 = 44 which leads to an
unschedulable task set with a Load equal to 1.2272.

4. At time instant t = 71:

• we have DBF (τ, 71) = 20 and t −DBF (τ, t) = 71 −DBF (τ, 71) >
C3 = 44 thus this time instant is ignored and the minimum acceptable
deadline for task τ3 remains equal to 44 or 120 according to the previous
point.

2.5. Scheduling on multiprocessor platforms 35

With our modification of line 6, we will initializeD3,min = max(C3, DBF (τ, 0×
T3 + C3) + C3 − 0× T3) = max(44, DBF (τ, 44) + 44) = max(44, 10 + 44) = 54.
Any reduction of this deadline will lead to a Load larger than 1.

2.5 Scheduling on multiprocessor platforms
This section is dedicated to the presentation of the basics and state-of-the-art for
RT scheduling on multiprocessor platforms. In Subsection 2.5.1, we propose an
overview of the results for scheduling S-Tasks. Subsection 2.5.2 gives important
results for scheduling P-Tasks.

2.5.1 Scheduling Sequential Tasks (S-Tasks)
Multiprocessor scheduling of S-Tasks is an active area of research that has
mostly been studied with Partitioned Scheduling (P-Scheduling) approach.
In the P-Scheduling case, tasks are assigned to the processors according to a
placement heuristic and cannot migrate. A classical uniprocessor scheduling
schedulability condition is then used to decide on the schedulability of the tasks.
Subsection 2.5.1.1 presents this approach.

Another approach called Global Scheduling (G-Scheduling) is considered
to have theoretically better performances in terms of successfully scheduled
task sets compared to P-Scheduling approach. With G-Scheduling, jobs are
allowed to migrate and processor utilization can reach 100% [BGP95; Bar+96;
CRJ06]. Recent advances in multiprocessor technology have reduced migration
cost, increasing the interest in such scheduling and making G-Scheduling an
attractive solution. However, migration cost is not taken into account in current
schedulability conditions. Subsection 2.5.1.2 presents this approach.

More recently, Semi-Partitioned Scheduling (SP-Scheduling) approach has
been proposed. This approach can be seen as an intermediate solution between
P-Scheduling and G-Scheduling approaches. In classical SP-Scheduling, the
goal is to hold back the number of job migrations in order to reduce runtime
overheads. The basic idea with SP-Scheduling is to execute tasks according to
a static job migration pattern. Most results propose heuristics that first try to
assign, as much as possible, tasks to a single processor according to a particular
P-Scheduling approach. The jobs of the tasks that cannot be assigned to a single
processor are then allowed to migrate between a set of fixed particular processors.
Subsection 2.5.1.3 presents this approach.

2.5.1.1 Partitioned Scheduling (P-Scheduling)

Partitioned Scheduling (P-Scheduling) is attractive as it does not lead to job
migration costs that can influence the schedulability of the system. However, it

36 Chapter 2. Introduction to RT Scheduling

can be shown that in some pathological task configuration, schedulability tests
can only ensure the schedulability of a system with a system utilization less than
50% [LDG04; KYI09]. This is an indication of the pessimism of P-Scheduling.

Definition 2.15 (Partitioned Scheduling (P-Scheduling)).
P-Scheduling refers to a multiprocessor scheduling approach which consists in
assigning each task to only one processor. After this assignment, tasks never
migrate and each couple (task subset; processor) can be seen as an independent
uniprocessor scheduling problem. Hence, given a task set τ and a processor set
π composed of m processors, with P-Scheduling approach, τ is divided into a
number of disjoint subsets less than or equal to m. Each of these subsets is
assigned to one processor. Uniprocessor scheduling policies are then used locally
on each processor. �

The main advantage of this approach is to break up the problem with multiple
processors to multiple well-known problems, each containing only one processor.

The main disadvantage of this approach is that assigning tasks to processors
is equivalent to a Bin-Packing problem: how to place n objects of different sizes
in m boxes such that the physical constraints of the objects and the boxes are
met. This problem is known to be NP-hard in the strong sense [Joh74]. One
way to find an optimal solution for this kind of problem is to enumerate all
possible configurations and verify their correctness one by one which can be a
time consuming process. We can reduce the complexity by seeking sub-optimal
solution with placement heuristics. Therefore, with the P-Scheduling approach,
we need to find a placement heuristic to assign tasks to processors and then to use
a uniprocessor schedulability test on each processor to decide on the schedulability
of the tasks assigned to it. We have extract different placement heuristics from
the state-of-the-art. These include First-Fit, Next-Fit, Best-Fit and Worst-Fit
[LDG04; GH09a]. First-Fit placement heuristic has received more attention.

• First-Fit: tasks are allocated sequentially, one by one to the first processor
it fits into (according to a schedulability test). The process always starts
from processor π1 up to processor πm.

• Next-Fit: tasks are allocated sequentially, one by one to the first processor
it fits into (according to a schedulability test). The process always starts
from the last processor where a task has been assigned (the first processor
for the first task).

• Best-Fit: tasks are allocated sequentially but a task is assigned to the
processor it fits best so that it will minimize the remaining processor
capacity (for example the remaining utilization).

2.5. Scheduling on multiprocessor platforms 37

• Worst-Fit: the same as Best-Fit except that the goal is to maximize the
remaining processor capacity.

A variant of these placement heuristics is first to sort the task set to be
assigned, for example in decreasing order of task density, leading to First-Fit
Decreasing or Best-Fit Decreasing variant. Baruah and Fisher [BF05] proposed
a feasibility S-Test and demonstrate that the First-Fit Decreasing placement
heuristic successfully partitions any sporadic sequential task set τ on m > 2
identical processors if τ and m satisfy Equation 2.22.

Λτ 6

m− (m− 1) max
τi∈τ

(Λτi) if max
τi∈τ

(Λτi) 6 1
2

m
2 + max

τi∈τ
(Λτi) if max

τi∈τ
(Λτi) > 1

2

(2.22)

We evaluate various P-Scheduling algorithm in Section 3.2, here are some
examples:

• For each task, a density computed from the task parameters is considered
for the partitioning (see the results of Baker [Bak06] for an exhaustive
list of density-based partitioning heuristics). For example, in conjunction
with First-Fit placement heuristic and pre-emptive EDF scheduler, the
schedulability S-Test Λτ 6 1, proposed by Liu [Liu00], is used to verify if a
task can be added to a processor.

• Baruah and Fisher [BF06; BF07] proposed results for P-Scheduling based
on a Demand Bound Function (DBF) approximation given by Albers
and Slomka [AS04] and a condition to verify if a task can be added to a
processor according to EDF scheduler. This is given in Equation 2.23.

∀τi ∈ τ,

Di −DBF ∗ (τ\{τi}, Di) > Ci

1− ∑
τj∈τ,τj 6=τi

Uτj > Uτi

with DBF ∗(τ, t) =

n∑
i=1

(Ci + (t−Di)× Uτi) if t > Di

0 otherwise
(2.23)

• George and Hermant [GH09b] propose a Worst-Fit Decreasing heuristic
based on the Load function for EDF scheduler. The goal of this P-Scheduling
algorithm is to maximize the remaining processor utilization characterized
by the function 1− Load(τπk) on each processor πk.

2.5.1.2 Global Scheduling (G-Scheduling)

Optimal strategies have been proposed for periodic S-Tasks: Baruah, Gehrke,
and Plaxton [BGP95; Bar+96] introduced Pfair (Proportional fairness, for

38 Chapter 2. Introduction to RT Scheduling

discrete time), where each task is divided into quantum-size pieces denoted
subtasks having pseudo deadlines, and Cho, Ravindran, and Jensen [CRJ06]
introduced LLREF (for continuous time), with T -Lplane abstraction where
the scheduling is done to bound the number of pre-emptions. These strategies,
although optimal, can lead to a large number of migrations, thus leaving their
applicability to RT systems uncertain. An active area of research aims to tackle
the problem of reducing the number of job migrations, to reduce the impact
of migration cost on the schedulability conditions. Bertogna [Ber09] showed
that the schedulability tests proposed for Global Scheduling (G-Scheduling)
are, in the current state-of-the-art, more pessimistic than the schedulability tests
obtained for P-Scheduling. However, Baruah [Bar07] proved that G-Scheduling
and P-Scheduling are incomparable: there are task sets which are schedulable by
P-Scheduling approach but not by G-Scheduling approach and conversely.

Definition 2.16 (Global Scheduling (G-Scheduling)).
G-Scheduling refers to a multiprocessor scheduling approach which consists in
scheduling each task on any available processor. Hence, given a task set τ and a
processor set π composed of m processors, with G-Scheduling approach, at each
time instant t, the m highest priority tasks are executed on the platform allowing
the migration of tasks from one processor to another with the restriction that a
task cannot be executed on different processors at the same instant. �

The main advantage of this approach is to fully use the platform: if a
processor is idle, you can execute a task on it without any assignment restriction.

The main disadvantage of this approach is that a migration of a task between
processors has a cost which can make a feasible task set unschedulable.

However, with the evolution of processor architectures, the migration-related
penalties of G-Scheduling have been reduced. Bastoni, Brandenburg, and
Anderson [BBA10] have shown through some experiments that cache migration
delays can be equivalent to pre-emption delays for a system under load. The
evolution of 3D architectures presented by Coskun, Kahng, and Rosing
[CKR09] also tends to reduce migration-related penalties. Here are some results
for G-Scheduling approach with pre-emptive EDF scheduler:

• Goossens, Funk, and Baruah [GFB03] prove a utilization-based schedu-
lability test called GBF .

• Baker [Bak03; Bak05a] offers a different approach based on an analysis of
the workload. This test is similar to GBF for tasks with I-Deadlines but
incomparable for tasks with C-Deadlines.

2.5. Scheduling on multiprocessor platforms 39

• Baruah [Bar07] proposes a parallel condition derived from the computation
of the DBF.

• Baker and Baruah [BB09] base their schedulability test on the computa-
tion of the Load function. Previous schedulability S-Tests related to the
Load function have been presented but this test is shown to dominate them.

• Bertogna, Cirinei, and Lipari [BCL05] present an iterative approach
based on the slack of each task. This information is used to estimate the
interfering workload in a scheduling window. Bertogna has named this test
BCL.

• Bertogna and Cirinei [BC07] introduce RTA which is a schedulability
test based on an iterative estimation of the WCRT of each task.

• Baruah et al. [Bar+09] focus on the DBF to derive a schedulability S-Test.
This test has the smallest possible processor speed-up factor of (2− 1

m
) for

pre-emptive EDF scheduler.

• Bertogna [Ber09] compares the main existing results in this area. All
these conditions are evaluated according to the number of task sets that are
detected to be schedulable. Since these schedulability tests are incomparable
in terms of task sets detected schedulable, Bertogna proposes the algorithm
COMP based on the sequence of the best previous techniques. According
to this study, COMP and RTA appear to detect the largest number of
schedulable task sets.

• Megel, Sirdey, and David [MSD10] propose to express real-time con-
straints through linear equalities and inequalities with the objective to
reduce the number of pre-emptions and migrations for periodic S-Tasks
with I-Deadlines. Their linear program creates sub-jobs which are then
scheduled using an algorithm named IZL. This solution is composed of an
off-line part (linear program) and a runtime part (IZL algorithm) to find
optimal global real-time schedules. Megel, Sirdey, and David empha-
sise that their approach significantly decrease the number of pre-emptions
and migrations with a significant but acceptable investment in off-line
computation time.

• Nelissen et al. [Nel+11; Nel+12] propose U -EDF , another algorithm to
give optimal results but with an unfair approach. Indeed, the authors
observe from the study of others global algorithms that the number of
pre-emptions and migrations decreases as the fairness constraint is relaxed.
Its optimality has been proven for pre-emptive sporadic and periodic tasks
with I-Deadlines. As mention by the authors: “Contrarily to all other
existing optimal multiprocessor scheduling algorithms for sporadic tasks,

40 Chapter 2. Introduction to RT Scheduling

U -EDF is not based on the fairness property. Instead, it extends the main
principles of EDF so that it achieves optimality while benefiting from a
substantial reduction in the number of pre-emptions and migrations.”

• Regnier et al. [Reg+11] introduce RUN which is another optimal solution
with the particularity to reduce the multiprocessor problem to a series
of uniprocessor problems scheduled with EDF scheduler. Compared to
U -EDF , it uses a weak version of proportional fairness and a task model
composed of I-Deadlines sequential tasks with fixed-rate. Actually, they
does not consider periodic tasks but tasks have a fixed rate and a job of
a task with rate Uτi 6 1 requires Uτi × (d− r) execution time, with d the
absolute deadline of the job and r its activation instant. According to the
authors, “RUN significantly outperforms existing optimal algorithms with
an upper bound of O(logm) average pre-emptions per job on m processors
and reduces to Partitioned EDF whenever a proper partitioning is found.”

2.5.1.3 Semi-Partitioned Scheduling (SP-Scheduling)

The concept of Semi-Partitioned Scheduling (SP-Scheduling) was introduced
by Anderson, Bud, and Devi [ABD05] where the authors define two classes of
tasks: those assigned to only one processor and those assigned to more than one
processor. Tasks assigned to more than one processor are called migrating tasks
while those assigned to only one processor are called fixed tasks.

Definition 2.17 (Semi-Partitioned Scheduling (SP-Scheduling)).
SP-Scheduling refers to a multiprocessor scheduling approach which consists in
assigning some tasks to only one processor (fixed tasks) and others to multiple
processors (migrating tasks). After this assignment, the jobs of fixed tasks never
migrate while the jobs of migrating tasks can use different processors. �

The main advantage of this approach is to reduce the number of migrations
compared to a G-Scheduling approach while relaxing the assignment constraint
introduced by a P-Scheduling approach.

The main disadvantage of this approach is that we also have the disadvan-
tages of the others approaches: assigning tasks to processors is equivalent to the
Bin-Packing problem which is known to be NP-hard, and we have introduced
migrations which can lead to additional execution costs. Moreover, the scheduling
on each processor is no longer independent.

Anderson, Bud, and Devi [ABD05] also define the degree of migration
allowed by an algorithm:

1. No migration (i.e., task partitioning).

2.5. Scheduling on multiprocessor platforms 41

2. Migration allowed, but only at job boundaries (i.e., migration at the job
level). A job is executed on one processor but successive jobs of a task
can be executed on different processors. This degree of migration is called
Restricted Migration (Rest-Migration): only tasks are allowed to migrate,
job migration is forbidden.

3. Migration allowed and not restricted to be at job boundaries, for example
a job can be portioned between multiple processors (i.e., jobs are also
allowed to migrate during their execution). This degree of migration is
called UnRestricted Migration (UnRest-Migration): jobs are also allowed
to migrate. Notice that “unrestricted” does not means that the migration
points cannot be fixed, but, if they are fixed, they are not restricted to be
at job boundaries.

They also proposed EDF -fm which belongs to the second category. It splits
jobs between two processors allocating r jobs over s to a processor with the index
p, and the others jobs (s − r over s) to a processor with the index p + 1. The
number of migrations is reduced and the total utilization of this task can be
adapted on each processor. However, EDF -fm is best suited to soft RT systems
since it cannot guarantee the deadlines of fixed tasks. Dorin et al. [Dor+10] also
proposed an algorithm with Rest-Migrations but they designed their algorithm to
handle hard RT task sets composed of sporadic S-Tasks with C-Deadlines. Their
algorithm first assigns as much tasks as possible with a P-Scheduling algorithm,
then jobs of remaining tasks are assigned to processors by using a cyclic job
assignment algorithm. Dorin et al. developed a schedulability analysis based on
an extension of the DBF function to assure the schedulability of the tasks and
jobs assigned to each processor.

In terms of migrations, the following algorithms are classified in the third
category (UnRest-Migration). They split tasks according to their WCET between
two or more processors. Parts of the migratory job are executed on separate
processors but the simultaneity of the execution is not allowed.

Anderson, Bud, and Devi [ABD05] lay the foundations for the assignment
of tasks on processors. The principle is to fill each processor sequentially. If the
remaining capacity of a processor with index p is not large enough to receive
the entire task, this task is split into two parts. The first part is assigned to fill
processor p and the second part is assigned to processor p+ 1. Thus, there are
at most two migratory tasks on each processor and m − 1 migratory tasks in
the whole system. This technique is similar to a Next-Fit placement heuristic
with task splitting. All the following algorithms up to EDHS [KY08c] use this
assignment.

• Andersson and Tovar [AT06] propose EKG which offers a complex but
optimal solution to this problem. According to a parameter K which defines

42 Chapter 2. Introduction to RT Scheduling

the size of each group of processors accepting migratory tasks, EKG is able
to adapt the utilization bound and the number of migrations. Although
when K = m, EKG is optimal with an utilization bound of 100%, it incurs
more migrations.

• Kato and Yamasaki [KY07] introduce EDDHP (originally named Ehd2-
SIP) which reduces the number of migrations and increases the success
ratio with regard to a P-Scheduling algorithm. EDDHP is outperformed
by EKG in terms of its success ratio but is more convenient to implement
and to use in practical cases.

• Kato and Yamasaki [KY07] introduce the notion of portion and named
their algorithms portioned scheduling: “In portioning, the task is not really
divided into two blocks, but its utilization is shared on the two processors”.
Furthermore, the authors propose an optimization that will be important
subsequently. They may find a task set non schedulable according to their
algorithm but schedulable with a simple P-Scheduling algorithm. It proves
that their splitting method may degrade schedulability compared to some
non-splitting methods. Thus, they optimize their algorithm to deal with
this case.

• Kato and Yamasaki [KY08a] also propose EDDP to improve the sche-
dulability of EDDHP by introducing some mechanisms of EKG. Indeed,
these algorithms distinguish two types of tasks based on their utilization:
light tasks and heavy tasks. EDDP is still easier to implement than EKG
and guarantees a new utilization bound of 65% with fewer migrations.

• RMDP is a FTP version of EDDHP presented by Kato and Yamasaki
[KY08b]. The authors claim that a FTP scheduling is still widely used and
it does not suffer from the domino-effect problem or the disadvantage of
varying jitter in periodic execution.

• Kato and Yamasaki [KY08c] suggest fundamentally changing the assign-
ment of tasks on processors with EDHS. For all previous algorithms, except
for the optimization of EDDHP , if a task causes the total utilization of a
processor to exceed its utilization bound, the WCET of this task is always
split into two portions. For EDHS, a simple partitioning is performed
before splitting the WCET of a task. If the P-Scheduling approach fails,
the remaining WCET portions are shared on two or more processors. Each
part of the task is defined in order to fill a processor. Kato and Yamasaki
[KY08c] chose to attribute at most one migrating task to each processor. A
task always migrates in the same way, between the same processors and at
the same time instant of their execution. Here, the notion of SP-Scheduling
takes its full meaning.

2.5. Scheduling on multiprocessor platforms 43

• DM -PM is a FTP version of EDHS given by Kato and Yamasaki
[KY09]. If tasks are sorted by decreasing deadlines before assignment,
migratory tasks naturally have a higher priority than fixed tasks. The
scheduling of migratory tasks is thus easier.

• With EDF -WM , Kato, Yamasaki, and Ishikawa [KYI09] try to adapt
the simplification introduce in DM -PM to DTP scheduling. Thus, a task
is split according to its WCET but its deadline is also portioned into local
deadlines used on each processor executing the task. This defines a window
during which a subtask should be executed. The local deadline of a task
τi(Ci, Ti, Di) is equal to Di/s (fair local deadline) where s is the number of
processors executing the task. WCETs are chosen to fill the processor with
respect to the fair local deadline. Schedulability analysis and complexity
of the scheduler are improved with this technique. The implementation
is also easier if we consider subtasks as independent tasks with a delayed
activation instant.

• Andersson, Bletsas, and Baruah [ABB08] introduce the algorithm
EDF -SS(DMIN/δ). The basic idea of this algorithm is to split tasks that
cannot be scheduled on only one processor, between two processors. The
WCETs of those tasks are divided into slots of length equal to DTMIN/δ

where DTMIN is the minimum of all deadlines and periods and δ is an
integer parameter that is configurable. The smaller the value, and the
smaller the slot size, the more migrations. The slots reserved for a task
on any two different processors are synchronized in time. Tasks that are
split have a higher priority than tasks executed on a single processor. This
approach was first considered in the case of tasks with I-Deadlines by
Andersson and Bletsas [AB08].

• Lakshmanan, Rajkumar, and Lehoczky [LRL09] introduce the al-
gorithm PDMS_HPTS_DS based on Partitioned Deadline-Monotonic
Scheduling (PDMS) with the Highest Priority Task Split (HPTS) heuris-
tic. With this approach the task having the highest priority on a processor
that cannot be executed on a single processor is split on two processors.
Tasks are allocated in the Decreasing order of size. The authors assign local
deadlines for a task τi (highest priority) equal to Di on the first processor
executing τi and Di − C(first)

i on the second processor, where C(first)
i is the

WCET of τi on the first processor, also equal to its WCRT. They show that
PDMS_HPTS_DS achieves an utilization bound of 60%.

• Burns et al. [Bur+10] propose a new task-splitting C=D scheme tested
with EDF scheduler. They try to limit the number of subtasks and reduce
the number of migrations by splitting at most m − 1 tasks. In this end,
the first part of a split task is constrained to have a deadline equal to

44 Chapter 2. Introduction to RT Scheduling

its computation time. It therefore occupies its processor for a minimum
interval. The second part of the task then has the maximum time available
to complete its execution on a different processor.

We can conclude from this state-of-the-art of SP-Scheduling approach that the
tendency is to find an algorithm able to schedule more task sets than P-Scheduling
approach with fewer migrations than G-Scheduling approach. The complexity of
the implementation is also a point to consider. EDF -fm is based on migrations at
job boundaries which leads to a simple implementation but the version proposed
is only designed to soft RT scheduling. Other algorithms presented in this study
focus on UnRest-Migration and split tasks into subtasks of execution time based
on the WCETs of the tasks. This leads to optimal algorithm (EKG) but this
solution is quite difficult to implement. With suboptimal algorithms, Kato et al.
were able to achieve easier algorithms with reasonable utilization bounds and
fewer migrations.

However those approaches require using an operating system that keeps track
of job execution consumption in order to migrate a job when it has been executed.
Many operating systems offer execution overrun timers to specify that a job has
been executed for a given duration (e.g. AUTOSAR OS [Hla+07] or Real-Time
Specification for Java (RTSJ) [BGM07]). Nevertheless, the migration time instant
is not necessarily identical to the time instant at which an execution overrun
occurs. This might introduce time overhead in the management of those timers
to adapt them to migrate tasks. Notice that the approaches using local deadlines
(EDF -WM , C=D, etc.) can overcome the problem since migrations occur at
an offset time from the release of the task. Moreover, a migration during the
execution of a job requires transferring the execution context between processors.
Again, there is a solution thanks to the spread of multi-core processors that tends
to eliminate this additional cost, but it remains complex and costly to use this
method on a multiprocessor.

2.5.2 Scheduling Parallel Tasks (P-Tasks)
The state-of-the-art concerning the scheduling of hard RT and parallel recurring
tasks is scarce. Here, we report some models of parallel tasks and some results
(schedulers and schedulability/feasibility tests).

• Manimaran, Murthy, and Ramamritham [MMR98] consider the non-
pre-emptive EDF scheduling of periodic parallel tasks for a task model from
Gang class.

• Han and Park [HP06] consider the scheduling of a (finite) set of RT jobs
allowing job parallelism.

2.6. Summary 45

• Collette, Cucu-Grosjean, and Goossens [CCGG08] provide a task
model from Gang class which integrates job parallelism and uses malleable
tasks. Malleable task model allows, at runtime, a variable number of threads
for each task. They proved that the time-complexity of the feasibility
problem of these systems is linear relative to the number of sporadic tasks.

• Lakshmanan, Kato, and Rajkumar [LKR10] consider the Fork-Join task
model from Multi-Thread class. They provide a P-Scheduling algorithm
and a competitive analysis for EDF and the Fork-Join task model.

• Saifullah et al. [Sai+11] proposed a “Generalized Parallel” task model
from Multi-Thread class. In this task model, a periodic task is defined by a
sequence of segments, each one composed of several threads. They defined
a decomposition of their parallel tasks into a set of sequential tasks.

• Regarding the schedulability of recurrent RT tasks, to the best of our
knowledge, we can only report results about the Gang scheduling. Kato
and Ishikawa [KI09] consider the Gang EDF scheduling and provide a
schedulability S-Test. Goossens and Berten [GB10] study Gang FTP
scheduling and provide a schedulability NS-Test for periodic tasks.

2.6 Summary
In this chapter we introduced important models (processors and sequential or
parallel tasks) and definitions. We also summarized the basics results for feasibility
and schedulability analysis on uniprocessor platforms. Finally, we presented some
results for the multiprocessor platform case which have motivated our work. In
Chapter 3, we propose to study SequentialTasks (S-Tasks) and give results for the
Partitioned Scheduling (P-Scheduling) and the Semi-Partitioned Scheduling
(SP-Scheduling) approaches. In Chapter 4 we study Parallel Tasks (P-Tasks)
and we propose a new generic parallel task model which can be adapted from
a Fork-Join task model. We also propose some results for the Gang task model
with a semi-clairvoyant scheduler.

Part II

Scheduling on multiprocessors
platforms

Chapter 3

Scheduling Sequential Tasks
(S-Tasks)

Troisième principe pour rester zen, le principe de Yunmen : “Quand tu marches,
marche, quand tu es assis, sois assis. Surtout, n’hésites pas.” L’autre jour, aux
toilettes, je me suis surpris en train de me brosser les dents tout en répondant au
téléphone. Selon le principe de Yunmen, il y avait au moins deux choses en trop.

Third principle to remain zen, the principle of Yunmen: “When you
walk, walk, when you sit, be seated. Above all, do not hesitate.” The other day, in
the bathroom, I surprise myself by brushing my teeth while answering the phone.
According to the principle of Yunmen, there were at least two things too many.

Alexandre Jollien [Jol12]

Contents
3.1 Introduction . 50

3.2 Partitioned Scheduling (P-Scheduling) 50

3.2.1 Introduction . 50

3.2.2 Generalized P-Scheduling algorithm 50

3.2.3 Multi-Criteria evaluation of Generalized P-Scheduling al-
gorithm . 59

3.2.4 Summary . 68

3.3 Semi-Partitioned Scheduling (SP-Scheduling) 70

3.3.1 Introduction . 70

3.3.2 Rest-Migration approaches – RRJM 73

3.3.3 UnRest-Migration approaches – MLD 76

3.3.4 EDF Rest-Migration versus UnRest-Migration evaluation 83

3.3.5 Summary . 91

50 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

3.1 Introduction
In this chapter, we present our contributions to the Real-Time (RT) scheduling
of Sequential Tasks (S-Tasks) upon identical multiprocessor platform. Thus,
we focus on the task model given in Subsection 2.2.2.2 by Definition 2.4 and
Definition 2.5 on page 13. Based on the state-of-the-art presented in Subsec-
tion 2.5.1, we divided this chapter in two sections. In Section 3.2 we introduce a
generalized algorithm for the Partitioned Scheduling (P-Scheduling) approach.
Finally, Section 3.3 gathers our results on the Semi-Partitioned Scheduling
(SP-Scheduling) approach.

3.2 Partitioned Scheduling (P-Scheduling)

3.2.1 Introduction
As previously stated in Subsection 2.5.1.1, the P-Scheduling approach is one of the
first approaches used to schedule tasks on a multiprocessor platform. Its principle
is simple to understand, it consists in breaking up the problem on multiple
processors to multiple problems of only one processor. To this end, we split the
task set to be scheduled into at most as many task subsets as there are processors
available. Then each of these task subsets is assigned to a single processor and it
can be seen as an independent scheduling problem. The challenge is therefore to
find a way to partition the task set such that each task subset is schedulable. As
this problem has been proven NP-hard in the strong sense [Joh74], placement
heuristics have been proposed in an attempt to provide tractable solutions. Notice
that the optimal partitioning in our context of identical multiprocessor platform
is discussed in Subsection 3.2.2.2.

In this section, we propose a generalized P-Scheduling algorithm that adapts
to the problem constraints (fixed or scalable number of processors, constrained
time to find a partition of the task set etc.) and objectives (minimizing the number
of processors, increased robustness to Worst Case Execution Time (WCET)
overruns, higher probability to find a solution etc.). We first detail our generic
algorithm and we analyse each of its parameters and their influence on the final
partitioning.

3.2.2 Generalized P-Scheduling algorithm
The state-of-the-art reveals that previously proposed P-Scheduling algorithms
are composed of a placement heuristic, a uniprocessor schedulability test and,
very often, a task sorting criterion. Indeed, as shown in Figure 3.1, a non-optimal
P-Scheduling algorithm must answer three specific questions:

Q1 Which task should be considered first?

3.2. Partitioned Scheduling (P-Scheduling) 51

Q2 Which processor should be considered?

Q3 Is the considered task schedulable on the considered processor?

τ1 τ2
. . . τn

π1 π2

. . .

πm

τi

πp

1© Which task should
be considered first?

2© Which processor should
be considered?

3© Does the considered task is schedulable
on the considered processor?

Figure 3.1 – Principle of a non-optimal P-Scheduling algorithm

Each of these questions lead to a parameter in our algorithm. A task sorting
criterion allows us to select tasks in a particular order. A placement heuristic
helps select candidate processors to assign the task. Finally, a uniprocessor
schedulability test allows us to check on which candidate processor the task
can actually be assigned. Our Generalized P-Scheduling algorithm is defined by
Algorithm 2.

In the following sections we specify the interest of each parameter and we give
some examples of such parameters.

3.2.2.1 Criteria for sorting tasks

This parameter responds to question Q1 for a non-optimal P-Scheduling algo-
rithm: Which task should be considered first? Since we do not test each possible
assignment of tasks to processors, when a task has been selected to be assigned
to a processor, the decision will never be questioned again. Consequently, the
order in which tasks are considered can lead to a successful partitioning or spoil
everything.

Let us look at an example. A task set τ is composed of four tasks τ =
{τ1, τ2, τ3, τ4} with respective utilizations Uτ1 = 1/2, Uτ2 = 1/2, Uτ3 = 1/3, Uτ4 = 2/3.
Notice that the total utilization of τ is Uτ = 2 so, at least, two processors are
necessary to schedule this task set and we take the processor set π = {π1, π2}.
Consider that tasks have Implicit Deadlines (I-Deadlines) and we use an Earliest
Deadline First (EDF) scheduler on each processor, so we have to find two

52 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

Algorithm 2: Generalized P-Scheduling algorithm
input : A task set τ , a processor set π, a sorting task criterion

sortTaskCriterion, a placement heuristic placHeuristic and a
uniprocessor schedulability test schedTest

output : A boolean value which notify if a schedulable solution has been
found and an assignment of some or all tasks of τ to a processor of
π

1 Sort tasks of τ according to sortTaskCriterion ;
2 foreach task in τ do
3 while the task is not assigned and placHeuristic gives a candidate

processor do
4 if according to the schedTest, the task is schedulable on the

candidate processor given by placHeuristic then
5 Assign the task to the candidate processor;
6 end if
7 end while
8 end foreach
9 if All tasks are assigned then

10 return Schedulable;
11 else
12 return unSchedulable;
13 end if

task subsets with a total utilization lower than or equal to 1 to ensure their
schedulability. A simple partitioning solution is τ = {τ 1, τ 2} with τ 1 = {τ1, τ2}
and τ 2 = {τ3, τ4}. However, a P-Scheduling algorithm has not the global picture
of the problem so it has to consider tasks in a particular order and assign them
one by one to the processors. For this example, we examine two task orders to
show the importance of sorting task criterion:

• tasks sorted by increasing ids (Figure 3.2.1): τ = {τ1, τ2, τ3, τ4} will lead
to assign τπ1 = {τ1, τ2} to π1 and τπ2 = {τ3, τ4} to π2 which is a working
assignment.

• tasks sorted by increasing utilization (Figure 3.2.2): τ = {τ3, τ2, τ1, τ4}
will lead to assign τπ1 = {τ3, τ2} to π1, τπ2 = {τ1} to π2 and leaving τ4
unassigned. Indeed, after the assignment, the utilization of each processor
is too high to accept τ4 since Uτπ1 = 5/6, Uτπ2 = 1/2 and Uτ4 = 2/3.

Examples of criteria for sorting tasks In the state-of-the-art, we gener-
ally find P-Scheduling algorithms with a decreasing utilization/density sorting

3.2. Partitioned Scheduling (P-Scheduling) 53

π1

τ1

τ2

π2

τ3

τ4

τ1

τ2

τ3

τ4

1O

2O

3O

4O

3.2.1: Sorted by increasing ids
π1

τ3

τ2

π2

τ1

τ4

τ3

τ2

τ1

τ4

τ3

τ2

τ1

τ4

1O

2O

3O

4O

3.2.2: Sorted by increasing utilization

Figure 3.2 – Importance of criteria for sorting tasks

criterion [Bak06; Bak05b], or possibly increasing relative deadline sorting crite-
rion [FBB06b].
In our study, we decided to explore a wider range of criteria:

• Increasing/Decreasing order of relative deadline,

• Increasing/Decreasing order of period,

• Increasing/Decreasing order of density,

• Increasing/Decreasing order of utilization.

3.2.2.2 Placement

The second parameter corresponds to question Q2 for a non-optimal P-Scheduling
algorithm: Which processor should be considered? In the optimal placement case,
we should consider all the processors for each task, and keep the different solutions
to choose at the end a schedulable assignment. This approach is investigated in
Subsection 3.2.2.2.1. The heuristic approach corresponds to establish an order
in which we consider the processors with the aim of selecting only one solution.
This approach is investigated in Subsection 3.2.2.2.2.

3.2.2.2.1 Optimal placement To choose on which processor a task should
be assigned, one way to find an optimal solution is to list all the possibilities. We
refer to this as the optimal placement. Therefore, if we want to find a partition
of a task set with n tasks on a platform with m processors, we will have to

54 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

test]heterogeneous def= mn different placements. For example, if we consider two
processors {π1, π2} and three tasks with I-Deadlines and respective utilizations
Uτ1 = 1/2, Uτ2 = 1/3 and Uτ3 = 2/3, we have to test the eight different placements
shown in Figure 3.3. This figure shows that placements 1O, 4O, 7O and 8O can not
be schedulable since the total utilization on one processor exceeds 1. If we focus
on the other placements, we notice a symmetry between placements 2O and 3O on
the one hand, and placements 5O and 6O on the other hand. If processors π1 and
π2 are not identical, we will have to consider each of these placements. However,
we study a platform with identical processors and we can reduce the number
of solutions by considering each symmetric placements as equivalent. The total
number of useful solution can be computed using the Stirling numbers of the
second kind which count the number of ways to partition a set of n elements
into m non-empty subsets [GKP88]. The Stirling numbers of the second kind are
given by Equation 3.1. From this equation, we get Theorem 3.1.

{
n

m

}
def=

m∑

j=1
(−1)m−j jn−1

(j − 1)!(m− j)! (3.1)

Theorem 3.1.
The total number of possible placements of n tasks upon an identical multiprocessor
platform of m processors is given by Equation 3.2.

]identical def=
min(n,m)∑

i=1

{
n

i

}
=

min(n,m)∑

i=1

i∑

j=1
(−1)i−j jn−1

(j − 1)!(i− j)! (3.2)

�

Proof. The Stirling number given by Equation 3.1 allows us to compute the
number of partitions of a set of n elements into m non-empty subsets. However,
in order to compute the total number of possible placements of n tasks upon an
identical multiprocessor platform with m processors, we also need to consider
empty subsets (or empty processors) so we add to the previous value the number
of ways to partition a set of n elements into m−1 non-empty subsets (considering
1 empty processor), then into m − 2 (considering 2 empty processors) and so
forth. Notice that the maximum number of partitions is given by min(n,m) since
a task cannot be split into subtasks.

In order to illustrate the reduction of studied placements according to Theo-
rem 3.1, Table 3.1 gives the total number of possible placements for an hetero-
geneous multiprocessor platform (]heterogenous) and an identical multiprocessor
platform (]identical) for a given number of processors and tasks.

3.2.2.2.2 Placement heuristics In the previous paragraph, we reminded
that finding an optimal placement is a NP-hard problem. To reduce the process

3.2. Partitioned Scheduling (P-Scheduling) 55

π1

τ1

τ2

τ3

π2
1© π1

τ2

τ3

π2

τ1

2© π1

τ3

π2

τ1

τ2

3©

π1 π2

τ1

τ2

τ3

4© π1

τ1

π2

τ2

τ3

5© π1

τ1

τ2

π2

τ3

6©

π1

τ1

τ3

π2

τ2

7© π1

τ2

π2

τ1

τ3

8©

Figure 3.3 – All possible placements considered by an optimal placement for
P-Scheduling approach with three tasks on two processors

Number of tasks 5 6 7 8 9 10

4 processors

]heterogenous 1024 4096 16384 65536 262144 1048576
]identical 51 186 714 2794 11051 43947
]heterogenous/]identical 20.1 22.0 23.0 23.5 23.7 23.9

8 processors

]heterogenous 32768 262144 2097152 16777216 134217728 1073741824
]identical 52 201 876 4139 21145 115928
]heterogenous/]identical 630.2 1304.2 2394.0 4053.4 6347.5 9262.1

Table 3.1 – Comparison of the number of possible placements for an
heterogeneous and an identical multiprocessor platform

time, placement heuristics have been proposed in the state-of-the-art. The goal
of such heuristics is to define a specific way to consider the processors: we do
not consider all possibilities but only a specific one. The four main placement
heuristics are shown in Figure 3.4. We consider the same placement problem:
task τ1 has been assigned to processor π1, then task τ2 has been assigned to
processor π2. We present the principle of the following heuristics:

56 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

π1

τ1

τ3

π2

τ2

τ3

π3

τ3

τ3

τ4

1©

2©

3©

3.4.1: First-Fit
π1

τ1

π2

τ2

τ3

π3

τ3

τ3

τ4

1©

2©

3.4.2: Next-Fit

π1

τ1

τ3

π2

τ2

τ3

π3

τ3

τ3

τ4

1 − Uτπ1 = 0

1O

1 − Uτπ2
= 1/6

2O

1 − Uτπ3
= 2/3

3O

3.4.3: Best-Fit
π1

τ1

τ3

π2

τ2

τ3

π3

τ3

τ3

τ4

1 − Uτπ1 = 0

3O

1 − Uτπ2
= 1/6

2O

1 − Uτπ3
= 2/3

1O

3.4.4: Worst-Fit

Figure 3.4 – Principle of four basic placement heuristics

First-Fit considers the processors in a fixed order, for example by increasing ids.
Then the task will be assigned to the first processor on which it can be
scheduled. In Figure 3.4.1, we first consider processor π1, then π2 and π3.
Since the task fits into processor π1, this processor will be selected. We will
then process task τ4 and so on.

Next-Fit considers also the processors in a fixed order, but it will start with the
last processor on which tasks have been assigned and never go back to
previous processors. This will reduce the number of considered processors
in comparison with First-Fit. In Figure 3.4.2, we first consider processor
π2 as the last task has been assigned to this processor, then processor π3.
Since the task fits into processor π2, this processor will be selected. We will
then process task τ4 by starting from processor π2 and so on.

3.2. Partitioned Scheduling (P-Scheduling) 57

Best-Fit considers the processors in increasing order of a particular value, for example
the remaining utilization on the processor. Then, this placement heuristic
will select the processor on which the task “fit the best”, that is minimizing
the utilization value. In Figure 3.4.3, we compute the remaining utilization
on each processor to determine the order: π1, π2 and finally π3. Since the
task fits into processor π1, this processor will be selected. We will then
process task τ4 by calculating again the utilization on each processor and
so on. Best-Fit will then try to minimize the number of processors used.

Worst-Fit considers the processors in decreasing order of a particular value, for example
the remaining utilization on the processor. This placement heuristic is the
dual of Best-Fit, it will select the processor on which the task “fit the worst”,
that is maximizing the utilization value. In Figure 3.4.4, we compute the
remaining utilization on each processor to determine the order: π3, π2
and finally π1. Since the task fits into processor π3, this processor will be
selected. We will then process task τ4 by calculating again the utilization on
each processor and so on. Worst-Fit will then try to fully use the platform
by spreading tasks across all available processors.

Notice that we can put the previous placement heuristics into order of in-
creasing complexity: the principle of First-Fit and Next-Fit are similar except
that Next-Fit does not reconsider the past processors and so tests potentially less
processors. We can then consider that Next-Fit is less complex than First-Fit.
Finally, Best-Fit and Worst-Fit have larger and equal complexity since they test
all processors for each choice.

3.2.2.3 Schedulability tests

The third parameter corresponds to question Q3 for a non-optimal P-Scheduling
algorithm: Is the considered task schedulable on the considered processor? As a
processor and a task have been selected, we now have to confirm that the task
will be schedulable on the processor. Following the presentation of schedulability
analysis in Section 2.4, we can use various schedulability tests: Sufficient Tests
(S-Tests) or Necessary and Sufficient Tests (NS-Tests). In our study, we decided
to explore a wide variety of schedulability tests for EDF, Rate Monotonic (RM)
and Deadline Monotonic (DM) schedulers.

EDF-LL is a polynomial NS-Test proposed by Liu and Layland [LL73] and designed
for tasks with I-Deadlines. The test is defined by Equation 3.3.

Uτ 6 1 (3.3)

58 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

EDF-BHR is a pseudo-polynomial NS-Test proposed by Baruah, Rosier, and How-
ell [BRH90] which is designed for tasks with Arbitrary Deadlines (A-
Deadlines). The test is defined by Equation 3.4.

Load(τ) def= supt>0
DBF (τ, t)

t
6 1 (3.4)

EDF-BF is a polynomial S-Test proposed by Baruah and Fisher [BF06] and
designed for tasks with A-Deadlines. The test is defined by Equation 3.5.

∀τi ∈ τ,

Di −DBF ∗(τ\{τi}, Di) > Ci

1− ∑
τj∈τ,τj 6=τi

Uτj > Uτi

with DBF ∗(τ, t) =

n∑
i=1

(Ci + (t−Di)× Uτi) if t > Di

0 otherwise
(3.5)

DM-ABRTW is a pseudo-polynomial NS-Test based on the work of Joseph and Pandya
[JP86] and extended by Audsley et al. [Aud+93] for DM scheduler. It is
designed for tasks with Constraint Deadlines (C-Deadlines). The test is
defined by Equation 3.6 with WCRT i given by Equation 2.11 in Subsec-
tion 2.4.2.

∀τi ∈ τ, WCRT i 6 Di (3.6)

RM-LL is a polynomial S-Test proven by Devillers and Goossens [DG00] (based
on a previous proposition of Liu and Layland [LL73]) and designed for
tasks with I-Deadlines. The test is defined by Equation 3.7.

Uτ 6 n
(
n
√

2− 1
)

(3.7)

RM-BBB is a pseudo-polynomial S-Test proposed by Bini, Buttazzo, and But-
tazzo [BBB03] and designed for tasks with I-Deadlines. The test is defined
by Equation 3.8.

n∏

i=1
(Uτi + 1) 6 2 (3.8)

RM-LMM is a polynomial S-Test proposed by Lauzac, Melhem, and Mossé [LMM98]
and designed for tasks with I-Deadlines. The test is defined by Equation 3.9.
In this equation, τ ′ is a task set obtained after a scaling procedure proposed
by the authors.

Uτ 6 n

(
n
√
rτ − 1

)
+ 2

rτ
− 1 if 1 6 rτ < 2

Uτ ′ 6 n
(
n
√
rτ ′ − 1

)
+ 2

rτ ′
− 1 otherwise

with rτ def= max(T1, . . . , Tn)
min(T1, . . . , Tn) (3.9)

3.2. Partitioned Scheduling (P-Scheduling) 59

3.2.3 Multi-Criteria evaluation of Generalized P-Scheduling
algorithm

This section is an extension of our work with Lupu et al. [Lup+10] in which we
evaluate each parameter defined in Subsection 3.2.2. We start with an overview
of the conditions of the evaluation, followed by the commented results.

3.2.3.1 Conditions of the evaluation

We present in this section the conditions of the evaluation. First of all, we have
to clarify how the optimal placement is used in this study. Since a criterion for
sorting task is meaningless with an optimal placement, we only needed to choose a
schedulability NS-Test. For EDF scheduler, we chose the NS-Test EDF-BHR and
we refer to this algorithm as OP [EDF]. For Fixed Task Priority (FTP) scheduler
we focused on tasks with C-Deadline, we chose the NS-Test DM-ABRTW and we
refer to this algorithm as OP [FTP].

For the evaluation, we considered a platform of 4 identical processors.
Finally, in the following paragraphs, we detail the criteria used to compare

the solutions and we explain the methodology applied to generate the task sets
so that anyone could check our results.

3.2.3.1.1 Evaluation criteria To compare several combinations of gener-
alized P-Scheduling algorithm parameters, we used four different performance
criteria:

• Success Ratio is defined with Equation 3.10. It allows us to determine which
combination of parameters successfully schedules the largest number of task
sets.

number of task sets successfully scheduled
total number of task sets (3.10)

• Number of processors used is defined as the number of processors where at
least one task is assigned for a successfully scheduled task set. For instance,
it allows us to determine which combination of parameters minimizes the
number of processors used.

• Processor spare capacity is defined as the average of the remaining capacity
on the used processors for a successfully scheduled task set. In Equation 3.11,
the free capacity of the used processor πj is computed with the expression
1− Load(τπj) for the schedulability test EDF-BHR and 1− Λτπj otherwise.
For instance, it allows us to determine which combination of parameters
fulfils the used processors.

∑
used processors

(spare capacity of the processor)

total number of processors used (3.11)

60 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

• Sub-optimality degree is defined as the degree by which the success ratio
of algorithm A is overpassed by the one of Aref . With Equation 3.12 we
understand that smaller the value of sd(A,Aref), the better the performance
of A according to the one of Aref .

sd(A,Aref) def= Success ratio of Aref - Success ratio of A
Success ratio of Aref

× 100 (3.12)

3.2.3.1.2 Task set generation methodology The task generation method-
ology used in this evaluation is based on the one presented by Baker [Bak06].
However, in our case, task generation is adapted to each type of deadline consid-
ered. In the following, ki ∈ {Di, Ti} and ρi ∈ {Uτi ,Λτi}. For I-Deadline task sets,
(ki, ρi) = (Ti, Uτi) and for C-Deadline task sets (ki, ρi) = (Di,Λτi). The procedure
is then:

1. ki is uniformly chosen within the interval [1; 100],

2. ρi (truncated between 0.001 and 0.999) is generated using the following
distributions:

• uniform distribution within the interval [1/ki; 1],

• bimodal distribution: light tasks have an uniform distribution within
the interval [1/ki; 0.5], heavy tasks have an uniform distribution within
the interval [0.5; 1]; the probability of a task being heavy is of 1/3,

• exponential distribution of mean 0.25,

• exponential distribution of mean 0.5.

Task sets are generated so that those obviously not feasible (Uτ > m = 4) or
trivially schedulable (n 6 m and ∀i ∈ J1;nK, Uτi 6 1) are not considered during
the evaluation, so the procedure is:

Step 1 initially we generate a task set which contains m+ 1 = 5 tasks.

Step 2 we create new task sets by adding task one by one until the density of the
task set exceeds m = 4.

For our evaluation, we generated 106 task sets uniformly chosen from the
distributions mentioned above with I-Deadlines and C-Deadlines.

3.2.3.2 Results

This section presents a comparative study of several combinations of generalized
P-Scheduling algorithm parameters. This evaluation is structured as follows:

3.2. Partitioned Scheduling (P-Scheduling) 61

1. we study the sub-optimality of FTP over EDF in terms of success ratio
upon identical multiprocessor platform,

2. we evaluate the sub-optimality of each placement heuristic with respect to
an optimal placement,

3. we determine the success ratio of each schedulability test when associated
with placement heuristics,

4. for each given schedulability test, we determine the sorting criterion that
maximizes its success ratio when associated with placement heuristics,

5. we compare the success ratios, number of processors used and processor
spare capacities of all placement heuristics (all schedulability tests and
criteria for sorting tasks included),

6. based on the best placement heuristic determined previously, we find the best
association placement heuristic versus criterion for sorting tasks maximizing
the success ratio.

3.2.3.2.1 Sub-optimality of FTP over EDF The degree of sub-optimality
of FTP schedulers according to EDF scheduler has been previously analysed in
the uniprocessor case by Davis et al. [Dav+09]. Our study determines this degree
for the multiprocessor scenario (through simulation) with respect to the total
density of the task set.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

b
-o

p
ti
m

a
lit

y
 d

e
g

re
e

Density of task set

sd(OP[FTP];OP[EDF])
sd(DM-ABRTW;EDF-BHR)

Figure 3.5 – FTP/EDF sub-optimality

Figure 3.5 shows the evaluation results as follows:

• sd(OP [FTP], OP [EDF]) is the sub-optimality degree in the case of an
optimal task placement.

62 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

• sd(DM-ABRTW,EDF-BHR) is the sub-optimality degree in the case where
the same schedulability NS-Test is combined with all four placement heuris-
tics (all heuristics are considered one by one in order to find a schedulable
placement).

For total density lower than 50% of the platform capacity, FTP and EDF are
relatively equivalent. The sub-optimality degree increases starting from a density
of 2 to reach a peak around a density of 3.75 for which EDF could schedule up to
93% more task sets than FTP.

When schedulability NS-Test are associated with the four heuristics the sub-
optimality degree of FTP over EDF slightly increases. Though, the two curves
have generally the same shape which means that the placement heuristics do
not influence significantly the sub-optimality degree of the schedulability tests,
especially for high density.

3.2.3.2.2 Sub-optimality of placement heuristics By definition, a place-
ment heuristic is potentially a sub-optimal solution. In this paragraph, we present
the sub-optimality degree of each placement heuristic according to the optimal
placement. The associated schedulability test is the NS-Test EDF-BHR and the
evaluation results include all sorting criteria (all sorting criteria are considered
one by one in order to find a schedulable placement).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

s
d

(H
e

u
ri
s
ti
c
;

O
P

[E
D

F
])

Density of task set

Best-Fit
First-Fit
Next-Fit

Worst-Fit

Figure 3.6 – Heuristics sub-optimality

Figure 3.6 shows the results computed as sd(Heuristic, OP [EDF]). First of
all, we remind that, in terms of complexity, the four placement heuristics can be
listed in decreasing order as follows: Best-Fit and Worst-Fit (equal complexities),
First-Fit and finally, Next-Fit. Figure 3.6 shows that for task sets with total
density bounded by half the capacity of the platform, the performance of Best-Fit,
First-Fit and Next-Fit is similar. As Next-Fit is the least complex, it is more

3.2. Partitioned Scheduling (P-Scheduling) 63

convenient to choose it in that case. For the scenario where the total density
exceeds half of the platform capacity, Best-Fit is the best choice. Taking into
account the very slight difference between the sub-optimality degree of First-Fit
and Best-Fit (the difference is always lower than 2.5) and the fact that First-Fit
has lower complexity, First-Fit should be also considered.

3.2.3.2.3 Choosing a schedulability test In this paragraph, we analyse
the success ratios of schedulability tests for all possible combinations with the
four placement heuristics and the eight criteria for sorting tasks. The analysis
is divided in two sub-paragraphs: firstly, EDF scheduler tests, secondly, FTP
scheduler tests.

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

EDF-BHR
EDF-BF

3.7.1: EDF – Constrained Deadline (C-Deadline)

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

DM-ABRTW
RM-LMM
RM-BBB

RM-LL

3.7.2: FTP – Implicit Deadline (I-Deadline)

Figure 3.7 – Schedulability tests analysis

EDF scheduler For tasks with I-Deadlines, all EDF schedulability tests
reduce to EDF-LL which is a NS-Test, so we do not have anything to compare.

For the case of tasks with C-Deadlines and total task set density less than half
of the platform capacity, the two schedulability tests have the same performance
as seen in Figure 3.7.1. So, EDF-BF is the best option in this case because of its
polynomial complexity. In the case where the total density exceeds half of the
platform capacity, EDF-BHR is then a better choice despite its pseudo-polynomial
time complexity, especially for high total density for which it can find a solution
for up to 50% more task sets.

FTP scheduler For tasks with I-Deadlines, all the FTP schedulability tests
were taken into account during the evaluation. As DM-ABRTW is a NS-Test,

64 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

it has the best performance even when associated with placement heuristics.
For S-Tests, Figure 3.7.2 allows us to identify the relative performance of each
schedulability test according to the success ratio: RM-LMM is the best S-Test
followed by RM-BBB which outperforms RM-LL as identified in the uniprocessor
case by Bini, Buttazzo, and Buttazzo [BBB03].

For the case of tasks with C-Deadlines, only DM-ABRTW is designed for
these task sets, so we do not have anything to compare.

3.2.3.2.4 Choosing criterion for sorting tasks This section deals with
the impact of a task sorting criterion on the success ratio of a schedulability test.
In the corresponding graphs (Figures 3.8 and 3.9), Dec stands for Decreasing and
Inc means Increasing.

Figure 3.8 and sub-figures show the success ratios of EDF schedulability tests
for each sorting task criteria. We obtain exactly the same behaviour for every
schedulability tests: the sorting task criterion which maximizes the success ratio is
Decreasing Density, similar to Decreasing Utilization. It is followed by Decreasing
Deadline, Decreasing Period and Increasing criteria in a symmetric way: Increasing
Period, Increasing Deadline, Increasing Utilization and Increasing Density. Notice
that this result has been recently confirmed by Baruah [Bar13] for EDF scheduler
and I-Deadlines tasks. The demonstration proposed by Baruah used another
metric referred to as speedup factor and defined as “the speedup factor of an
approximation algorithm A is the smallest number f such that any task set that
can be partitioned by an optimal algorithm upon a particular platform can be
partitioned by A upon a platform in which each processor is f times as fast.” The
conclusion of its work is that the best P-Scheduling algorithm for EDF scheduler
and tasks with I-Deadlines are those that first sort tasks according to decreasing
order of utilization.

The results are exactly the same for FTP schedulability tests in Figure 3.9
and sub-figures.

3.2.3.2.5 Choosing a placement heuristic In this paragraph we evaluate
the performance of the placement heuristics according to our evaluation criteria.
In this analysis each placement heuristic is combined with all the schedulability
tests and all the criteria for sorting tasks.

Number of used processors As seen in Figure 3.10.1, the placement
heuristic that uses the smallest number of processors is Best-Fit, slightly better
than First-Fit, and the one uses the largest is Worst-Fit. For low total density task
sets, Best-Fit and First-Fit could use up to 50% less processors than Worst-Fit.
For very high density, all heuristics give the same result. Notice that considering
the relative complexity of the two best heuristics, First-Fit should be preferred
to minimize the number of processors used.

3.2. Partitioned Scheduling (P-Scheduling) 65

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

3.8.1: EDF-LL

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

3.8.2: EDF-BHR

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

3.8.3: EDF-BF

Figure 3.8 – EDF – Criteria for sorting tasks analysis

Success ratio In Figure 3.10.2 we can observe that the success ratio of
placement heuristics (when combined with all schedulability tests and all the
criteria for sorting tasks) follows the same performance order as in Figure 3.6:
Best-Fit, First-Fit, Next-Fit and finally Worst-Fit. Taking into account the
complexity of the placement heuristics and the density of the task set, we can
choose: Next-Fit, if the task set requires no more than 50% of the platform
capacity for execution (due to its low complexity) or, if the task set requires more
than this 50% bound, First-Fit should be used for task placement on processors.

Processor spare capacity As Worst-Fit utilizes the maximum number of
processors, the available spare capacity is also maximized. Figure 3.10.3 shows

66 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

3.9.1: DM-ABRTW

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

3.9.2: RM-LL

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

3.9.3: RM-BBB

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

3.9.4: RM-LMM

Figure 3.9 – FTP – Criteria for sorting tasks analysis

that Worst-Fit behaves as the optimal placement according to the 1−Λτ criterion.
Also for the 1 − Load(τ) criterion, Worst-Fit has the closest behaviour to the
optimal task placement, as shown in Figure 3.10.4.

According to the evaluation results presented above, we can conclude:

• if we want to minimize the number of used processors and maximize the
chance to find a schedulable placement, the best placement heuristics are
Best-Fit or First-Fit.

• if we want to ensure an execution time slack (for the case where there is a
risk to encounter software or hardware errors), the most suitable heuristic

3.2. Partitioned Scheduling (P-Scheduling) 67

is Worst-Fit with a behaviour close to the one of an optimal placement.

 0

 1

 2

 3

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

M
e

a
n

 n
u

m
b

e
r

o
f

p
ro

c
e

s
s
o

rs
 u

s
e

d

Density of task set

OP[EDF/FTP]
Best-Fit
First-Fit
Next-Fit

Worst-Fit

3.10.1: Number of processors used

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

OP[EDF/FTP]
Best-Fit
First-Fit
Next-Fit

Worst-Fit

3.10.2: Success ratio

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

M
e

a
n

 o
f

(1
-D

e
n

s
it
y
)

o
n

 p
ro

c
e

s
s
o

rs
 u

s
e

d

Density of task set

OP[EDF/FTP]
Best-Fit
First-Fit
Next-Fit

Worst-Fit

3.10.3: Processor spare capacity – 1− Λτ

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

M
e

a
n

 o
f

(1
-L

o
a

d
)

o
n

 p
ro

c
e

s
s
o

rs
 u

s
e

d

Density of task set

OP[EDF/FTP]
Best-Fit
First-Fit
Next-Fit

Worst-Fit

3.10.4: Processor spare capacity – 1− Load(τ)

Figure 3.10 – Placement heuristics analysis

3.2.3.2.6 Choosing a task criteria for the best placement heuristic
According to Paragraph 3.2.3.2.5, the best placement heuristics to maximize the
success ratio are Best-Fit and First-Fit. Due to its lower complexity, First-Fit
is usually considered when designing P-Scheduling algorithms. It is generally
agreed that the best association placement heuristic–criterion for sorting tasks is
FFD (First-Fit Decreasing Utilization/Density).

Figure 3.11 shows that for task sets with the total density inferior to 75% of
the platform capacity, all criteria for sorting tasks give the same performance.

68 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

 0

 0.25

 0.5

 0.75

 1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Density of task set

Dec_Density
Dec_Utilization
Dec_Deadline

Dec_Period
Inc_Period

Inc_Deadline
Inc_Utilization

Inc_Density

Figure 3.11 – First-Fit – Criteria for sorting task analysis

However, for task sets with total density higher than 75% of the platform capacity,
Decreasing Density and Decreasing Utilization exhibit the best behaviour.

3.2.4 Summary
In this section on Partitioned Scheduling (P-Scheduling), we introduced a
generalized algorithm. We analysed, through an evaluation, each of its parameters
to know their importance and their influence according to various criteria. To
conclude, we put ourselves in a practical case where we have to choose the
parameters of the algorithm according to the constraints of our problem. We
have identified three main practical cases:

• we only want to find a functional partitioning. Then, we would like to have
a solution as fast as possible.

• we want to minimize the number of processors used. For instance, our
platform is not completely defined and we want to reduce the cost minimizing
the number of processors.

• we want to maximize the fault tolerance of our system. For instance, our
platform is completely defined and large enough so that we can provide
more robustness to execution overruns.

First of all, the solution depends on the time available to find the functional
partitioning. If we are not in a constrained by the time to solve the scheduling
problem, we would have to consider the optimal placement solution, especially
if the problem size is small enough. For instance, if the platform contains four
identical processors and the task set contains only five tasks, Table 3.1 shows
that we only have 51 possible placements to consider.

3.2. Partitioned Scheduling (P-Scheduling) 69

Therefore, we consider in the following that the problem size is large enough or
the time available to find the solution is limited. We sum up some of our results
in Table 3.2 for Implicit Deadline (I-Deadline) task sets (Table 3.2a) and for
Constrained Deadline (C-Deadline) task sets (Table 3.2b). Let us consider an
example, we want to partition an I-Deadline task set with a total density which
does not exceed 50% of the platform capacity, and our main objective is only
to find a functional partitioning. According to Table 3.2a, the best partitioning
algorithm is composed of:

• Next-Fit placement heuristic since it performs as First-Fit with a task set
with low density but it has a lower complexity,

• schedulability tests RM-LL for Fixed Task Priority (FTP) scheduler or
EDF-LL for Earliest Deadline First (EDF) scheduler. They have the lowest
complexity but give the same success ratio in this context,

• no specific sorting task as their performance is similar in this context.

Find a functional partitioning Minimize number of processors Maximize the fault tolerance

Λτ 6 50%×m
Placement heuristic Next-Fit Best-Fit Worst-Fit
Schedulability test RM-LL for FTP scheduler, EDF-LL for EDF scheduler
Sort tasks by any sorting task criterion

Λτ > 50%×m
Placement heuristic First-Fit Best-Fit Worst-Fit
Schedulability test DM-ABRTW for FTP scheduler, EDF-LL for EDF scheduler
Sort tasks by Decreasing Utilization

(a) Implicit Deadline (I-Deadline) task sets

Find a functional partitioning Minimize number of processors Maximize the fault tolerance

Λτ 6 50%×m
Placement heuristic Next-Fit Best-Fit Worst-Fit
Schedulability test DM-ABRTW for FTP scheduler, EDF-BF for EDF scheduler
Sort tasks by any sorting task criterion

Λτ > 50%×m
Placement heuristic First-Fit Best-Fit Worst-Fit
Schedulability test DM-ABRTW for FTP scheduler, EDF-BHR for EDF scheduler
Sort tasks by Decreasing Density

(b) Constrained Deadline (C-Deadline) task sets

Table 3.2 – Generalized Partitioned Scheduling (P-Scheduling) algorithm
parameters

70 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

3.3 Semi-Partitioned Scheduling (SP-Scheduling)

3.3.1 Introduction
In Subsection 2.5.1.3, we expounded the Semi-Partitioned Scheduling (SP-
Scheduling) approach which is a mix between the P-Scheduling and the Global
Scheduling (G-Scheduling) approaches. As previously presented, the main
goal of SP-Scheduling approach is to increase the number of schedulable task
sets compared to the P-Scheduling, while controlling the number of migrations
introduced by the G-Scheduling. The principle of a SP-Scheduling approach
is also simple to understand: we try to partition the tasks until we encounter
an impossibility. We then try to split the tasks into subtasks and assign those
subtasks on different processors. Figure 3.12 shows an example comparing P-
Scheduling and SP-Scheduling approaches. Remember that, in this chapter, we
do not allow job parallelism. Therefore, a task can be split into multiple subtasks
but two subtasks of a task can not execute at the same time instant.

π1

τ1

τ3

π2

τ2

τ3

τ1

τ2

τ3

1©

2©

3©3©

3.12.1: Unschedulable with
P-Scheduling

π1

τ1

τ1
3

π2

τ2

τ2
3

τ1

τ2

τ3

1©

2©

4©3©

3.12.2: May be schedulable with
SP-Scheduling

Figure 3.12 – Example of a SP-Scheduling approach

As presented in Subsection 2.5.1.3, the concept of SP-Scheduling was intro-
duced by Anderson, Bud, and Devi [ABD05] in 2005. Let us remind the three
possible degrees of migration allowed by a SP-Scheduling algorithm which will be
used to split our study:

• No migration is allowed. In this case, the algorithm is a P-Scheduling
algorithm.

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 71

• Migration is allowed, but only at job boundaries. A job is executed on
one processor but successive jobs of a task can be executed on different
processors. This solution is also referred to as the Restricted Migration
(Rest-Migration) case, as shown in Figure 3.13.1.

• Migration is allowed and not restricted to be at job boundaries, for example a
job can be portioned, each portion being executed on one processor. We will
refer to this solution as the UnRestricted Migration (UnRest-Migration)
case, as shown in Figure 3.13.2. As stated in Subsection 2.5.1.3, notice that
“unrestricted” does not means that the migration points cannot be fixed,
but, if they are fixed, they are not restricted to be at job boundaries.

0 1 2 3 4 5 6 7 8 9 10 11

π2 τ3

π1 τ3 τ3

3.13.1: Rest-Migration – Migration between the jobs

0 1 2 3 4 5 6 7 8 9 10 11

π2 τ3 τ3 τ3

π1 τ3 τ3 τ3

3.13.2: UnRest-Migration – Migration during the job

Figure 3.13 – SP-Scheduling – Two degrees of migration allowed

In most research work, the SP-Scheduling approach is used only if the P-
Scheduling approach fails. Since a migration is not cost-free for the system, the
idea is to reduce the number of migrating tasks. Algorithm 3 is then a generic
SP-Scheduling algorithm based on our generalized P-Scheduling Algorithm 2
where we try to split a task only if necessary.

In the following sections, we present our contribution for each of the two degrees
of migration exposed in Figure 3.13. For the Rest-Migration case, we propose a

72 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

Algorithm 3: Generic SP-Scheduling algorithm
input : A task set τ , a processor set π, a sorting task criterion

sortTaskCriterion, a placement heuristic placHeuristic and a
uniprocessor schedulability test schedTest

output : A boolean value which notify if a schedulable solution has been
found and an assignment of some or each task of τ to the
processors of π

1 Sort tasks of τ according to sortTaskCriterion ;
2 foreach task in τ do
3 while the task is not assigned and placHeuristic gives a candidate

processor do
4 if according to the schedTest, the task is schedulable on the

candidate processor given by placHeuristic then
5 Assign the task to the candidate processor;
6 end if
7 end while

/* If P-Scheduling approach fails, we try SP-Scheduling */
8 if the task is not assigned then
9 Try to use a SP-Scheduling algorithm to split the task on multiple

processors;
10 end if
11 end foreach
12 if All tasks are assigned then
13 return Schedulable;
14 else
15 return unSchedulable;
16 end if

heuristic for task splitting based on a static job migration pattern. We establish
a schedulability Necessary and Sufficient Test (NS-Test) for EDF scheduler
associated with our static job migration pattern. For the UnRest-Migration
case, we show how to generalize the approaches given in the state-of-the-art
of SP-Scheduling to the general case of schedulers applying jitter cancellation
before migrating a job. The basic idea is to postpone the migration of a job on
a processor as long as it has not reached its maximum response time. To this
end, we use intermediate deadlines. Finally, we compare the two cases using an
evaluation. The results presented in this section are based on our work with
George, Courbin, and Sorel [GCS11].

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 73

3.3.2 Rest-Migration approaches – RRJM
We present in this section our results for the Rest-Migration case where migrations
are allowed at job boundaries only. We explain our approach called Round-Robin
Job Migration (RRJM) and we propose an application to EDF scheduler with a
schedulability NS-Test.

The RRJM is a job placement heuristic which consists in assigning the jobs of
a task to a set of processors and define a recurrent pattern of successive migrations
using a Round-Robin pattern, as presented in Definition 3.1.

Definition 3.1 (RRJM).
Let τi be a sporadic sequential task assigned to a set of αi 6 m processors
according to a job placement heuristic. The job placement heuristic is a Round-
Robin Job Migration (RRJM) placement heuristic if the job migration of τi
follows a Round-Robin pattern, e.g.: first on π1, then on π2, . . . , then on παi
and then again on π1, π2 and so forth. Notice that, in this work, a processor can
appear only once in the Round-Robin pattern. �

We now propose to define a new task model in order to represent periodic
tasks following a RRJM placement heuristic.

Definition 3.2 (RRJM – Periodic task model).
Let π = {π1, . . . , πm} be a platform ofm identical processors. Let τi(Oi, Ci, Ti, Di)
be a periodic sequential task assigned to a set of αi 6 m processors according to
the RRJM placement heuristic. Consider that the placement is given by:

]τi =
{
π1, . . . , παi

}

with ∀α ∈ J1;αiK , πα ∈ π
and ∀α, α′ ∈ J1;αiK with α 6= α′ then πα 6= πα

′

The jobs of τi assigned to a processor πα could be seen as a subtask:

τπ
α,αi

i (Oπα,αi
i , Cπα,αi

i , T π
α,αi

i , Dπα,αi
i) = τπ

α,αi
i (Oi + (α− 1)× Ti, Ci, αi × Ti, Di)

Notice that the set of subtasks of any task τi follows the utilization conservation
constraint:

αi∑

α=1
U
τ
πα,αi
i

=
αi∑

α=1

Ci
αiTi

= 1
αiTi

αi∑

α=1
Ci = αiCi

αiTi
= Ci
Ti

= Uτi

�

Let us explain Definition 3.2 and the parameters of the subtasks. When
τi(Oi, Ci, Ti, Di) is strictly periodic and its first arrival instant is equal to Oi,
we obtain the following pattern of arrivals on the αi processors: the jth job of

74 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

τi is activated at time instant Oi + (j − 1) × Ti on processor π((j−1) mod αi)+1,
where (A mod B) stands for the modulo function. This leads to activate jobs
of τi on each processor executing it, with a period equal to αi × Ti. Therefore,
successive jobs on processor πα can be seen as an independent subtask τπ

α,αi
i

given by Definition 3.2.

Property 3.1.
The RRJM placement heuristic enables us to analyse the schedulability of Rest-
Migration approaches for sporadic task sets on each processor independently. �

Proof. Firstly, if we consider a strictly periodic task set as proposed in Defini-
tion 3.2, the RRJM placement heuristic can be seen as a new task set composed
of independent subtasks and assigned to processors following a P-Scheduling
approach. Secondly, since the worst case activation scenario on a uniprocessor
platform is the periodic case, we have to consider periodic activations in order to
propose a schedulability NS-Test for sporadic tasks using our RRJM placement
heuristic. Thus, a sporadic task set is schedulable on a platform of m proces-
sors with the RRJM placement heuristic if it is schedulable on each processor
independently considering a periodic activation scenario.

Finally, we give Algorithm 4 which, in conjunction with Algorithm 3, gives a
generic algorithm to use our RRJM placement heuristic.

3.3.2.1 Application to EDF scheduler

In this section, we apply our RRJM approach to the EDF scheduler. Theorem 3.2
gives a schedulability NS-Test for a task set scheduled with the EDF-RRJM
SP-Scheduling algorithm.

Theorem 3.2 (EDF-RRJM schedulability NS-Test).
Let τ(C,T,D) be a sporadic sequential task set of n tasks scheduled with the EDF-
RRJM SP-Scheduling algorithm on m processors. A schedulability NS-Test for
EDF-RRJM SP-Scheduling algorithm is:

∀k ∈ J1;mK,
Load

(
τ(Xπk

1 ,T,D) ∪ τ(Xπk
2 ,2T,D) ∪ · · · ∪ τ(Xπk

m ,mT,D)

)
6 1 (3.13)

with ∀j ∈ J1;mK, Xπk
j = (xπk,j1 , . . . , xπk,jn) denotes the Worst Case Execution

Times (WCETs) of all subtasks assigned to processor πk when they have a corre-
sponding period in vector jT . Notice that ∀i ∈ J1;nK, xπk,ji = 0 indicates that the
subtask τπk,ji (xπk,ji , jTi, Di) is not assigned on processor πk. Moreover, ∀i ∈ J1;nK,∑m

k=1
∑m
j=1 x

πk,j
i /jTi = Ci/Ti since the subtasks of each task τi are an exact split of

its jobs. �

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 75

Algorithm 4: Generic SP-Scheduling algorithm for RRJM placement heuris-
tic
input : A task set τ , a processor set π with m processors, a task τi in τ , a

placement heuristic placHeuristic and a uniprocessor schedulability
test schedTest

output : A boolean value which notify if a schedulable solution has been
found and the number αi of processors used to execute τi

Data: α, k are integers, π′ is a processor set used to select the processors
on which τi will be assigned

1 for α = 1 to m do
2 Clear processor set π′ ;
3 for k = 1 to α do
4 Create a subtask of τi with a period equal to α× Ti;
5 while the subtask is not assigned and placHeuristic gives a

candidate processor do
6 if according to the schedTest, the subtask is schedulable on the

candidate processor given by placHeuristic then
7 Add the processor πk to π′ ;
8 end if
9 end while

10 end for
11 if π′ contains α processor(s) then

/* Task τi can be assigned to α processor(s) */
12 αi ← α;
13 Assign subtasks of τi to processors in π′ ;
14 return Schedulable;
15 end if
16 end for
17 return unSchedulable;

Proof. The idea behind a SP-Scheduling approach is to split each task into
subtasks when it cannot be entirely assigned to one processor. Besides, Defi-
nition 3.2 and Property 3.1 show that the subtasks generated by EDF-RRJM
are independent from each other so they can be partitioned with a P-Scheduling
algorithm. Finally, for each processor, we only have to validate the schedulability
of the assigned tasks and subtasks with the schedulability NS-Test Load function.
Furthermore, τ(Xπk

1 ,T,D) ∪ τ(Xπk
2 ,2T,D) · · · ∪ τ(Xπk

m ,mT,D) represents exactly the tasks
(τ(Xπk

1 ,T,D)) and the subtasks (τ(Xπk
2 ,2T,D) · · · ∪ τ(Xπk

m ,mT,D)) assigned to processor
πk.

Considering Theorem 3.2, if we create a complete task set τ(X1,T,D)∪τ(X2,2T,D)∪

76 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

· · · ∪ τ(Xm,mT,D) composed of m× n tasks and subtasks, we then can apply the
simplex with LPP 2.1 (see Subsection 2.4.3.1) to reduce the number of time
instants to consider. The computation time of the Load function for each
processor will then be drastically reduced.

3.3.3 UnRest-Migration approaches – MLD
This section is dedicated to the UnRest-Migration case where migrations are
allowed during the execution of a job. We make explicit the two main problems
posed by this approach (size of the execution of each portion and local deadline)
and we propose an application to EDF scheduler with a schedulability NS-Test.

With the UnRest-Migration approaches, the jobs of a task τi(Ci, Ti, Di) that
cannot be executed on a single processor is portioned and executed by subtasks
on a set of processors. The two main problems of portioning jobs are given by
the following questions:

• Which portion of the WCET can I give to each processor?

• When will the migration occur for each portion?

Subsection 2.5.1.3 presents the state-of-the-art and gives some directions used
by researchers in this field. Our work is an extension of the solution proposed
by Kato, Yamasaki, and Ishikawa [KYI09] in which they decided to create
local deadlines for each portion of job and use them as migration points. They
fairly divide the total deadline of the task in order to create these local deadlines.
Then, the portion of WCET allocated to each portion of job is maximized with
an allowance study. The idea is to minimize the number of processors required to
execute a task by assigning the maximum possible portion of WCET to subtask
while preserving the schedulability of the task.

We refers to the solution of using local deadlines to specify migration points
as the Migration at Local Deadline (MLD) approach. We propose to define a
new task model in order to represent sporadic tasks following a MLD approach.

Definition 3.3 (MLD – Sporadic task model).
Let π = {π1, . . . , πm} be a platform of m identical processors. Let τi(Ci, Ti, Di)
be a sporadic sequential task assigned to a set of αi 6 m processors according to
a MLD approach. Consider that the placement is given by:

]τi =
{
π1, . . . , παi

}

with ∀α ∈ J1;αiK, πα ∈ π

The portion of jobs of τi assigned to a processor πα could be seen as a subtask:

τπ
α,αi

i (Cπα,αi
i , T π

α,αi
i , Dπα,αi

i) = τπ
α,αi

i (Cπα,αi
i , Ti, D

πα,αi
i)

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 77

Moreover, the subtasks of any task τi follow a precedence constraint:

if subtask τπ
k−1,αi

i is activated at time instant t on processor πk−1

then subtask τπ
k,αi

i will be activated at time instant t+Dπk−1,αi
i on processor πk

Finally, the set of subtasks of any task τi also follows the constraints:
αi∑

k=1
Cπk
i > Ci (3.14)

αi∑

k=1
Dπk
i 6 Di (3.15)

in such a way that the task can be entirely executed on αi processors and that
the end-to-end deadline does not exceed the total deadline of the task. �

We now show that the solution of using local deadlines corresponds to the case
where all the processors apply jitter cancellation before migrating the job. With
jitter cancellation, the job inter-arrival times are identical on all the processors
executing a portion of a job. Hence, the schedulability conditions done on each
processor are independent and no jitters should be taken into account in the
schedulability conditions. Indeed, if we do not control the migration time instants,
a task can experience release jitter that increases with the number of processors
executing the task. This problem is well known in distributed systems. The
holistic approach has been considered by Tindell and Clark [TC94] to compute
the worst case end-to-end response time of a sporadic task, taking into account
the release jitter resulting from all the visited nodes. With this approach, the
Worst Case Response Time (WCRT) on each node are not independent and the
jitter increases with the number of processors used.

We propose a solution based on jitter cancellation. With jitter cancellation,
we cancel the release jitter of jobs before migrating them. The job arrival pattern
is therefore the task arrival pattern on all processors. We are then able to apply
a uniprocessor schedulability test on any processor that only depends on the
subtasks assigned to the processors. For example, Balbastre, Ripoll, and
Crespo [BRC06] propose this technique in the context of distributed systems.
Definition 3.4 and Property 3.2 show the importance and advantage of jitter
cancellation. Figure 3.14 illustrates the principle of migration at local deadline of
subtask given in Definition 3.4.

Definition 3.4.
Considering task model given by Definition 3.3, with jitter cancellation, a job
of the subtask τπ

k,αi
i of a task τi activated at time instant t on a processor πk

will do a migration at time instant t+Dπk,αi
i , where Dπk,αi

i is the local deadline
of the subtask τπ

k,αi
i on processor πk. The duration of Dπk,αi

i is chosen to be at
least equal to the WCRT of the subtask τπ

k,αi
i . �

78 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

π3

π2

π1

Ti
Di

Dπ1
i

Migration

Dπ1
i

Migration

Ti

Dπ2
i

Migration

Dπ2
i

Migration

Ti

Dπ3
i Dπ3

i

Exact
response time

≤
Worst case

response time

≤
Local Deadline

Figure 3.14 – Example of migration at local deadline

Property 3.2.
Jitter cancellation enables us to analyse the schedulability of UnRest-Migration
approaches on each processor independently. �

Proof. With a migration following the proposition given in Definition 3.4, we
cancel the possible release jitter on each processor. The WCRT of a task or a
subtask on a processor thus only depends on the tasks and subtasks executed on
this processor with no release jitter.

With jitter cancellation, the recurrence of subtasks follows an identical pattern
on the different processors. The job arrival instants of a subtask on a processor
therefore follow the sporadic arrival instants of the task it comes from as the
migration does not constrain the worst case scenario on each processor.

Henceforth, we can give Theorem 3.3 which is a generic schedulability NS-Test
for this MLD approach.

Theorem 3.3 (MLD schedulability NS-Test).
Let τ(C,T,D) be a sporadic sequential task set of n tasks. τ(C,T,D) is decomposed
to a new task set following Definition 3.3 with a MLD approach. Each subtask
is assigned with a P-Scheduling algorithm to the m processors. A schedulability
NS-Test for this MLD UnRest-Migration SP-Scheduling algorithm is:

∀i ∈ J1;nK,∀α ∈ J1;αiK, the local deadline Dπα,αi
i is met (3.16)

�

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 79

Proof. According to Definition 3.3, if each subtask of a task τi met its deadline,
the total WCET of τi will be executed (Equation 3.14) and the last subtask will
complete at most before the deadline of τi (Equation 3.15), therefore we can
consider that task τi will also meet its deadline. Needless to say that checking that
all tasks meet their deadline can be done by a classical uniprocessor schedulability
NS-Test for FTP or Dynamic Task Priority (DTP) schedulers.

Using Algorithm 5, we now describe the solution used to decide how we will
portion a sporadic task τi(Ci, Ti, Di) with a MLD approach. As Kato, Yamasaki,
and Ishikawa [KYI09], we first try to assign as many tasks as possible with a
classical P-Scheduling algorithm (see our generic SP-Scheduling Algorithm 3) and
Algorithm 5 is called only when a task cannot be fully assigned to one processor.

The first step is to compute the local deadline Dπk,α
i and the local allowance

Aπk,αi of WCET on each processor πk for a given value α. Notice that we call
allowance of WCET the amount of execution time that we can add (if Aπk,αi > 0)
or that we have to subtract (if Aπk,αi 6 0) to the original value of WCET in
order to be schedulable on a given processor. If a task cannot be fully assigned
to one processor, Aπk,αi is then a negative value. We then sort processors, for
example by decreasing order of allowance in order to consider first the processors
which will accept a larger part of execution time for our subtasks. We finally
have to verify that the maximum execution time that can be assigned to the
first α processors is sufficient to execute the whole WCET of the task, thus∑α
j=1(Ci + Aπk,αi) = ∑α

j=1 C
πj ,α
i > Ci. If this is the case then τi can be assigned

to the αi = α processors, otherwise, we increment α and try with more subtasks
until reaching α = m subtasks.

Algorithm 5 is a generic algorithm which needs to be specialised with concrete
functions to compute the local deadlines and the local allowance of WCET. Subsec-
tions 3.3.3.1 and 3.3.3.2 are dedicated to give such functions and Subsection 3.3.3.3
is an application to EDF scheduler.

3.3.3.1 Computing local deadlines

The first unknown parameter of Algorithm 5 is the computation of local deadlines.
In this work we consider two different function to compute the local deadline of
subtasks:

1. The fair local deadline computation which corresponds to the solution given
by Kato, Yamasaki, and Ishikawa [KYI09]. If we consider a task τi and
α subtasks, each one will have a same and fair deadline equal to Di/α.

2. The minimum local deadline computation which corresponds to search, for
a given processor and a given subtask, the minimum acceptable deadline.

80 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

Algorithm 5: Generic SP-Scheduling algorithm for MLD approaches
input : A task set τ , a processor set π with m processors, a task τi in τ
output : A boolean value which notify if a schedulable solution has been

found and the number αi of processors used to execute τi
Data: α, k are integers, π′ is a processor set used to select the processors

on which τi will be assigned
1 for α = 1 to m do
2 Clear processor set π′ ;

/* Compute local deadline and local WCET for each processor
*/

3 for k = 1 to m do
4 Dπk,α

i ← computeLocalDeadline(τi, πk);
5 Aπk,αi ← computeLocalWCETAllowance(τi, Dπk,α

i , πk);
6 end for
7 Sort processors in π, e.g. by decreasing local allowance of WCET;
8 for k = 1 to α do
9 Cπk,α

i ← Ci + Aπk,αi ;
10 Add the processor πk to π′ ;
11 end for
12 if

α∑
j=1

C
πj ,α
i > Ci then

/* Task τi can be assigned to α processor(s) */
13 αi ← α;
14 Assign subtasks of τi to processors in π′ ;
15 return Schedulable;
16 end if
17 end for
18 return unSchedulable;

The fair local deadline approach seems not to need more details, while the
minimum local deadline computation depends on many parameters and especially
the WCET of the subtask considered. We must therefore deal with it in depth.

First of all, if the minimum local deadline computation depends on the WCET
of the subtask, our Algorithm 5 needs to be adapted. The principle we use is to
start with a fair local deadline computation, then compute the local allowance
of WCET and finally compute the minimum local deadline to get a deadline
margin which can be used by the following subtasks. Hence, for a given value
α, a subtask of task τi receives a fair local deadline equal to Di/α. If we can
find a processor πk to which this subtask can be assigned with a WCET equal
to Cπk,α

i , then we compute the minimum local deadline Dπk,α
i,min. The difference

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 81

Dreserve = Di/α−Dπk,α
i,min is given to the following subtasks in order to increase the

allowance of WCET that can be assigned on the other processors. A detailed
procedure is given in Algorithm 6.

Algorithm 6: SP-Scheduling algorithm for MLD approach with minimum
deadline computation
input : A task set τ , a processor set π with m processors, a task τi in τ
output : A boolean value which notify if a schedulable solution has been

found and the number αi of processors used to execute τi
Data: α, k, l are integers, π′ is a processor set used to select the processors

on which τi will be assigned, Dreserve is the reserve of deadline
1 Dreserve = 0;
2 for α = 1 to m do
3 Clear processor set π′ ;
4 for l = 1 to α do

/* Compute local deadline and local WCET for each
processor */

5 for k = 1 to m do
6 Dπk,α

i ← Di
α

+Dreserve;
7 Aπk,αi ← computeLocalWCETAllowance(τi, Dπk,α

i , πk);
8 end for
9 Sort processors in π by decreasing local allowance of WCET;

/* Since processors are sorted, π1 is the one with the
largest allowance of WCET */

10 Cπ1,α
i ← Ci + Aπ1,α

i ;
11 Dπ1,α

i ← computeDeadlineMin(τπ1,α
i , π1);

12 Dreserve ← Di
α
−Dπ1,α

i ;
13 Add the processor π1 to π′ ;
14 end for
15 Sort processors in π in order to place those also present in π′ first.;
16 if

α∑
j=1

C
πj ,α
i > Ci then

/* Task τi can be assigned to α processor(s) */
/* If Dreserve > 0 it is re-assigned uniformly */

17 αi ← α;
18 Assign subtasks of τi to processors in π′ ;
19 return Schedulable;
20 end if
21 end for
22 return unSchedulable;

82 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

Again, another parameter remains unclear in Algorithm 6: we have not specify
how to compute the minimum deadline of a task. For our application to EDF
scheduler, this response has already been given in Subsection 2.4.4.2 in which we
study the allowance of the deadline of a task.

3.3.3.2 Computing local allowance of WCET

The second unknown parameter of Algorithm 5 is the computation of allowance
of WCET in order to decide the part of execution which can be assigned to each
subtask. This response has already been given in Subsection 2.4.4.1 in which we
study the allowance of WCET for tasks with Arbitraty Deadline (A-Deadline)
with either a FTP scheduler or EDF scheduler.

3.3.3.3 Application to EDF scheduler

In this section, we applied the MLD approach to the EDF scheduler. Theorem 3.4
gives a schedulability NS-Test for a task set scheduled with EDF-MLD SP-
Scheduling. Notice that this theorem is only a specialization of Theorem 3.3 to
the EDF scheduler case.

Theorem 3.4 (EDF-MLD schedulability NS-Test).
Let τ(C,T,D) be a sporadic sequential task set of n tasks scheduled with the EDF-
MLD SP-Scheduling algorithm on m processors. A schedulability NS-Test for
EDF-MLD SP-Scheduling algorithm is:

∀k ∈ J1;mK,
Load

(
τ(Xπk

1 ,T,Y
πk

1) ∪ τ(Xπk
2 ,T,Y

πk
2) ∪ · · · ∪ τ(Xπk

m ,T,Y
πk
m)

)
6 1 (3.17)

with ∀j ∈ J1;mK, Xπk
j = (xπk,j1 , . . . , xπk,jn) denotes the WCETs of all subtasks

assigned to processor πk when they have a corresponding deadline in vector
Y πk
j = (yπk,j1 , . . . , yπk,jn). Notice that ∀i ∈ J1;nK, xπk,ji = yπk,ji = 0 indicates

that the subtask τπk,ji (xπk,ji , Ti, y
πk,j
i) is not assigned on processor πk. Moreover,

∀i ∈ J1;nK, ∑m
k=1

∑m
j=1 x

πk,j
i > Ci and

∑m
k=1

∑m
j=1 y

πk,j
i 6 Di since the subtasks of

each task τi are a split of its WCET and deadline. �

Proof. The idea behind a SP-Scheduling approach is to split each task into sub-
tasks when it cannot be entirely assigned to one processor. Besides, Definition 3.3
and Property 3.2 show that the subtasks generated by EDF-MLD are independent
from each other so they can be partitioned with a P-Scheduling algorithm. Finally,
for each processor, we only have to validate the schedulability of the assigned
task and subtasks with the schedulability NS-Test Load function. Furthermore,
τ(Xπk

1 ,T,Y
πk

1)∪τ(Xπk
2 ,T,Y

πk
2) · · ·∪τ(Xπk

m ,T,Y
πk
m) represents exactly the tasks (τ(Xπk

1 ,T,Y
πk

1))
and the subtasks (τ(Xπk

2 ,T,Y
πk

2) · · · ∪ τ(Xπk
m ,T,Y

πk
m)) assigned to processor πk.

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 83

As in the conclusion of Subsection 3.3.2.1, it would be interesting to use
a complete task set τ(Xπk

1 ,T,Y
πk

1) ∪ τ(Xπk
2 ,T,Y

πk
2) ∪ · · · ∪ τ(Xπk

m ,T,Y
πk
m) composed of

m × n tasks and subtasks in order to apply the simplex with LPP 2.1 (see
Subsection 2.4.3.1) to reduce the number of time instants to consider. However,
LPP 2.1 helps to determine the relevant time instants in a set composed of the
absolute deadlines of each task. In our case, the deadlines are variables and yπk,ji

represents the deadline of a subtask of task τi assigned to processor πk when
task τi is split into j subtasks. Furthermore, for a given value of j, all deadlines
in the set Y πk

j are computed independently from each other. The only way to
use the simplex with LPP 2.1 would be to create new task sets with all possible
combinations of values of deadline for each subtask. Especially, if we use real
values for deadline and not only integers, it is simply not feasible to create all
possible task sets.

However, if we consider the special case of fair local deadline computation,
then for a given value of j, Y πk

j is composed of fixed values of deadlines equal to
the original deadline of the task divided by j, Y πk

j = D/j. Then, if we create a
complete task set τ(Xπk

1 ,T,D) ∪ τ(Xπk
2 ,T,D/2) ∪ · · · ∪ τ(Xπk

m ,T,D/m) composed of m × n
tasks and subtasks, we can apply the simplex with LPP 2.1 to reduce the number
of time instants to consider. Then the computation time of the Load function for
each processor will be drastically reduced for the fair local deadline computation
case.

3.3.4 EDF Rest-Migration versus UnRest-Migration eval-
uation

This section is an extension of our work with George, Courbin, and Sorel
[GCS11] in which we evaluate the Rest-Migration versus UnRest-Migration SP-
Scheduling approaches. We continue to focus on an application to EDF scheduler.
We start with an overview of the conditions of the evaluation, followed by the
commented results.

3.3.4.1 Conditions of the evaluation

We present in this section the conditions of the evaluation. First of all, we have
to clarify which algorithms are compared, then we make explicit the criteria used
to compare the solutions and we explain the methodology applied to generate
the task sets so that anyone could check our results. Notice, about the platform,
we considered identical multiprocessor platform containing 4 processors and 8
processors.

3.3.4.1.1 Evaluated algorithms In this section we define the algorithms
used in this evaluation and especially the parameters of the MLD approach for

84 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

local deadline and local allowance of WCET computation. We compare the
only Rest-Migration algorithm presented previously, three UnRest-Migration
algorithms from the MLD approach and one P-Scheduling algorithm:

• For the Rest-Migration approach, we use our EDF-RRJM algorithm defined
in Subsection 3.3.2 by Algorithm 4 in conjunction with Algorithm 3 and
Theorem 3.2 for the schedulability NS-Test.

• For the UnRest-Migration approach, we use our generic EDF-MLD al-
gorithm defined in Subsection 3.3.3 by Algorithm 5 in conjunction with
Theorem 3.4 for the schedulability NS-Test. For Algorithm 5, we consider
various parameters for local deadline and local allowance of WCET:

– EDF-MLD-Dfair-Cfair refers to a fair local deadline computation and
a fair local execution time. In other words, a task τi is split into αi
subtasks such that each subtask as a local execution time equal to
Ci/αi and a local deadline equal to Di/αi. Let us take an example: we
have to split the task τi(4, 10, 10). Figure 3.15.1 gives the result for
two subtasks. We fairly split the parameters such that the deadline
of each subtask is equal to 10/2 = 5 and the WCET of each subtask is
equal to 4/2 = 2.

– EDF-MLD-Dfair-Cexact refers to a fair local deadline computation
and a local execution time computed with an allowance of WCET
study proposed in Subsection 3.3.3.2. This algorithm is equivalent to
the solution proposed by Kato, Yamasaki, and Ishikawa [KYI09]
and named EDF-WM. Let us take the same example: we have to
split the task τi(4, 10, 10). Figure 3.15.2 gives a possible result for two
subtasks. The deadline is fairly split such that the deadline of each
subtask is equal to 10/2 = 5. Then, the WCET of the first subtask
is maximized on its relative processor, let us consider that it can be
equal to 3. Finally, the last subtask receives the remaining WCET, so
4− 3 = 1.

– EDF-MLD-Dmin-Cexact refers to a minimum local deadline computa-
tion and a local execution time computed with an allowance of WCET
study. Algorithm 6 is used in this case. We take the same example:
we have to split the task τi(4, 10, 10). Figure 3.15.3 gives a possible
result for two subtasks. Firstly, the deadline of each subtask is fairly
split and equal to 10/2 = 5. Then, the WCET of the first subtask is
maximized on its relative processor, let us consider that it can be equal
to 3. Its deadline is then reduced to its minimum value, let us consider
that it can be reduced to 4 without affecting the schedulability. Finally,
the last subtask receives the remaining WCET, so 4− 3 = 1, and the
remaining deadline, so 10− 4 = 6.

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 85

• For the P-Scheduling algorithm, we named it EDF-P-Sched and it corre-
sponds to the P-Scheduling part presented in the following.

0 1 2 3 4 5 6 7 8 9 10 11

τi ⇒

0 1 2 3 4 5 6

τ2
i

τ1
i

3.15.1: EDF-MLD-Dfair-Cfair

0 1 2 3 4 5 6 7 8 9 10 11

τi ⇒

0 1 2 3 4 5 6

τ2
i

τ1
i

3.15.2: EDF-MLD-Dfair-Cexact

0 1 2 3 4 5 6 7 8 9 10 11

τi ⇒

0 1 2 3 4 5 6

τ2
i

τ1
i

3.15.3: EDF-MLD-Dmin-Cexact

Figure 3.15 – Example of a task split using the three algorithms of the
UnRest-Migration approach

Since all these algorithms have a P-Scheduling part, we also have to make
explicit its parameters:

• tasks are sorted in Decreasing Density order as it is an optimization for all
P-Scheduling algorithms (see our results in Subsection 3.2.3.2.4),

• we consider two different placement heuristics: First-Fit and Worst-Fit,

• the schedulability test for EDF scheduler is always the NS-Test based on
the Load function.

86 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

3.3.4.1.2 Evaluation criteria To compare the various algorithms previously
presented, we use two different performance criteria:

• Success Ratio is defined with Equation 3.18. For instance, it allows us to
determine which algorithm schedules the largest number of task sets.

number of task sets successfully scheduled
total number of task sets (3.18)

• Density of migrations is defined as the number of migration per time unit.
Thus, the density of migrations of one task is equal to the number of
migrations generated during a time interval equal to its period.

– For a Rest-Migration approach such as EDF-RRJM, each migratory
task generates only one migration between each job for any number of
subtasks. Then the density of migrations of a Rest-Migration approach
is given by Equation 3.19.

∑

migratory tasks

1
period of the task =

∑

τi∈ migratory tasks

1
Ti

(3.19)

– For a UnRest-Migration approach such as EDF-MLD, each migratory
task generates one migration between each subtask. Then the density of
migrations of a UnRest-Migration approach is given by Equation 3.20.

∑

migratory tasks

number of subtasks
period of the task =

∑

τi∈ migratory tasks

αi
Ti

(3.20)

3.3.4.1.3 Task set generation methodology The task generation method-
ology used in this evaluation is based on the one presented by Baker [Bak06].
However, in our case, task generation is adapted to each type of deadline consid-
ered. In the following, ki ∈ {Di, Ti} and ρi ∈ {Uτi ,Λτi}. For I-Deadline task sets,
(ki, ρi) = (Ti, Uτi) and for C-Deadline task sets (ki, ρi) = (Di,Λτi). The procedure
is then:

1. ki is uniformly chosen within the interval [1; 100],

2. ρi (truncated between 0.001 and 0.999) is generated using the following
distributions:

• uniform distribution within the interval [1/ki; 1],
• bimodal distribution: light tasks have an uniform distribution within

the interval [1/ki; 0.5], heavy tasks have an uniform distribution within
the interval [0.5; 1]; the probability of a task being heavy is of 1/3,

• exponential distribution of mean 0.25,

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 87

• exponential distribution of mean 0.5.

Task sets are generated so that those obviously not feasible (Uτ > m = {4, 8})
or trivially schedulable (n 6 m and ∀i ∈ J1;nK, Uτi 6 1) are not considered
during the evaluation, so the procedure is:

Step 1 initially we generate a task set which contains m+ 1 = 5 tasks.

Step 2 we create new task sets by adding task one by one until the density of the
task set exceeds m.

For our evaluation, we generated 106 task sets uniformly chosen from the
distributions mentioned above with I-Deadlines and C-Deadlines.

We decided to reduce the time granularity (the minimum possible value of
each parameter) to 1. Thus, for the evaluation, for each task τi its parameters Ci,
Ti and Di are considered as integers. Considering that the values are discretized
according to the clock tick, it is always possible to modify all the parameters to
integer values by multiplying them by an appropriate factor. To simplify testing,
we used this approach and all the parameters are limited to integer values. This
does not imply, however, that the algorithms used and presented in this evaluation
cannot be applied to non-integer values.

3.3.4.2 Results

Now, we show the evaluation results, obtained for 4 and 8 processors under
discrete time granularity, in terms of success ratio in Subsection 3.3.4.2.1 and
then in terms of density of migrations in Subsection 3.3.4.2.2.

3.3.4.2.1 Success Ratio Figure 3.16 shows the results of simulations based
on the success ratio with 4 processors. Our graphs focus on the range of uti-
lization [3; 4] since all algorithms of P-Scheduling and SP-Scheduling approaches
implemented in this study have the same performance with a lower utilization.
In the same way, Figure 3.17 shows the results obtained with 8 processors and
focus on the range [7; 8]. As expected, SP-Scheduling approaches become useful
for high utilization task sets.

We have carried out a study to compare the behaviour of these algorithms with
task sets exclusively composed of light tasks (based on task set generated with
an exponential distribution of mean 0.25) or heavy tasks (with an exponential
distribution of mean 0.75) but the difference between these results and the general
case did not appear significant. We therefore focus on the arbitrary case of
experiments.

SP-Scheduling approaches improve the success ratio of EDF P-Scheduling.
Since the split of tasks is done only when the P-Scheduling algorithm fails to

88 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

 0

 0.25

 0.5

 0.75

 1

 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

EDF-MLD-Dmin-Cexact

EDF-MLD-Dfair-Cexact

EDF-MLD-Dfair-Cfair

EDF-RRJM

EDF-P-Sched

3.16.1: First-Fit placement heuristic

 0

 0.25

 0.5

 0.75

 1

 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

EDF-MLD-Dmin-Cexact

EDF-MLD-Dfair-Cexact

EDF-MLD-Dfair-Cfair

EDF-RRJM

EDF-P-Sched

3.16.2: Worst-Fit placement heuristic

Figure 3.16 – Success Ratio analysis – 4 processors

 0

 0.25

 0.5

 0.75

 1

 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

EDF-MLD-Dmin-Cexact

EDF-MLD-Dfair-Cexact

EDF-MLD-Dfair-Cfair

EDF-RRJM

EDF-P-Sched

3.17.1: First-Fit placement heuristic

 0

 0.25

 0.5

 0.75

 1

 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

EDF-MLD-Dmin-Cexact

EDF-MLD-Dfair-Cexact

EDF-MLD-Dfair-Cfair

EDF-RRJM

EDF-P-Sched

3.17.2: Worst-Fit placement heuristic

Figure 3.17 – Success Ratio analysis – 8 processors

assign a task on a processor, SP-Scheduling algorithms schedule all task sets that
are schedulable with a EDF P-Scheduling algorithm.

We compare for 4 and 8 processors the percentage of the improvement in
the success ratio (the difference between the success ratio of EDF SP-Scheduling
algorithms and EDF P-Scheduling algorithm multiplied by 100) when First-Fit
and Worst-Fit are used.

With 4 processors, the trends obtained with First-Fit and Worst-Fit are
similar. In Table 3.3, we present a comparative table of the percentage of the

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 89

Utilization P-Scheduling success ratio SP-Scheduling success ratio Improvement (%)

First-Fit placement heuristic

EDF-RRJM 3.9 0.2267 0.3267 44.11
EDF-MLD-Dfair-Cfair 3.9 0.2267 0.3667 61.76
EDF-MLD-Dfair-Cexact 3.9 0.2267 0.4200 85.27
EDF-MLD-Dmin-Cexact 3.9 0.2267 0.4433 95.54

Worst-Fit placement heuristic

EDF-RRJM 3.9 0.2000 0.3100 55.00
EDF-MLD-Dfair-Cfair 3.9 0.2000 0.3533 76.65
EDF-MLD-Dfair-Cexact 3.9 0.2000 0.4067 103.35
EDF-MLD-Dmin-Cexact 3.9 0.2000 0.4200 110.00

Table 3.3 – Best improvement, in %, of success ratio for each SP-Scheduling
algorithms with respect to the P-Scheduling algorithm for 4 processors

success ratio improvement. We also provide the value of task set utilization for
which the percentage of difference is reached. EDF-MLD-Dmin-Cexact slightly
outperforms all the others. The performance of EDF-MLD-Dfair-Cexact remains
higher that EDF-MLD-Dfair-Cfair. Thus, the success ratio is clearly proportional
to the complexity of computation. In terms of the percentage of improvement,
EDF-RRJM outperforms EDF-P-Sched: between 1% and 10% for a processor
utilization of less than 3.6 and up to 55% for task sets with higher utilization. In
the same range, EDF-MLD-Dfair-Cexact improves the schedulability respectively
by 1% to 20% and up to 103.3% for high utilization. Finally, EDF-MLD-Dmin-
Cexact reaches an improvement of 110% which represents a gain of about 5.56%
compared to EDF-MLD-Dfair-Cexact with a Worst-Fit placement heuristic. As
we expected, this approach become interesting for task sets with a very high total
utilization.

With 8 processors, we present in Table 3.4 a comparative table of maximum
percentage of success ratio improvement. We also provide the value of task set
utilization for which this percentage is reached. If with First-Fit the performance
of the algorithms is similar with 4 or 8 processors, with Worst-Fit, at very high
utilization, the job placement EDF-RRJM reveals its potential. When a SP-
Scheduling MLD approach is limited by the time granularity, EDF-RRJM can
always create from a task up to m subtasks of period multiplied by m. For
example, suppose that a task τi(Ci, Ti, Di) = τi(1, 2, 2) cannot be fully assigned
to one processor and the time granularity is 1. All EDF-MLD-* algorithms fail
to split this task while EDF-RRJM can create up to m subtasks with period
equal to m× Ti and potentially succeed in scheduling the task set. Consequently,
it seems that an UnRest-Migration approach cannot always take advantage of an
increase in the number of processors while the Rest-Migration approach is able
to take advantage of it. For very high utilization and discrete time granularity,

90 Chapter 3. Scheduling Sequential Tasks (S-Tasks)

Utilization P-Scheduling success ratio SP-Scheduling success ratio Improvement (%)

First-Fit placement heuristic

EDF-RRJM 7.9 0.3593 0.4052 12.78
EDF-MLD-Dfair-Cfair 7.2 0.8204 0.9381 14.35
EDF-MLD-Dfair-Cexact 7.2 0.8204 0.9381 14.35
EDF-MLD-Dmin-Cexact 7.9 0.3593 0.4141 15.25

Worst-Fit placement heuristic

EDF-RRJM 7.9 0.2674 0.3511 31.30
EDF-MLD-Dfair-Cfair 7.6 0.6630 0.8152 22.96
EDF-MLD-Dfair-Cexact 7.6 0.6630 0.8152 22.96
EDF-MLD-Dmin-Cexact 7.6 0.6630 0.8152 22.96

Table 3.4 – Best improvement, in %, of success ratio for each SP-Scheduling
algorithms with respect to the P-Scheduling algorithm for 8 processors

EDF-RRJM reaches an improvement of 31.3% compared to EDF-P-Sched which
represents a gain of about 19.3% compared to EDF-MLD-Dfair-Cexact.

3.3.4.2.2 Density of migrations Figure 3.18 shows the results of the eval-
uation based on the density of migrations. Since a migration occurs only when
the SP-Scheduling technique is used, the results show no migration with low task
sets utilization. Our graphs focus on the same range of utilization [3; 4] and [7; 8],
respectively with 4 and 8 processors.

 0

 0.05

 0.1

 0.15

 0.2

 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

D
e

n
s
it
y
 o

f
M

ig
ra

ti
o

n
s

Utilization of task set

EDF-MLD
EDF-RRJM

3.18.1: 4 processors

 0

 0.05

 0.1

 0.15

 0.2

 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

D
e

n
s
it
y
 o

f
M

ig
ra

ti
o

n
s

Utilization of task set

EDF-MLD
EDF-RRJM

3.18.2: 8 processors

Figure 3.18 – Density of migrations analysis

In order to obtain representative graphs, we compute the density of migrations

3.3. Semi-Partitioned Scheduling (SP-Scheduling) 91

only for task sets schedulable with all the SP-Scheduling algorithms. EDF-
RRJM leads to one migration per task activation, whereas EDF-MLD approaches
produce a number of migrations per task activation at most equal to the number
of subtasks. The density of migrations for EDF-RRJM is on average 37%
(respectively 43%) of the density of migrations for EDF-MLD algorithms for 4
(respectively 8) processors. Hence, the average number of migrations obtained with
EDF-MLD algorithms is 2.69 (respectively 2.32) times the number of migrations
of EDF-RRJM for 4 (respectively 8) processors.

3.3.5 Summary
In this section we have considered the problem of Semi-Partitioned Scheduling
(SP-Scheduling) according to two approaches: Restricted Migration (Rest-
Migration) and UnRestricted Migration (UnRest-Migration). We evaluate
the two approaches through an application to Earliest Deadline First (EDF)
scheduler.

The first approach, for which we propose an algorithm denoted Round-Robin
Job Migration (RRJM), is based on migrations at job boundaries with a Round-
Robin job migration pattern. The solution is easy to implement and results in
few migrations. With a First-Fit heuristic, it is outperformed by the UnRest-
Migration approach but performs better than classical Partitioned Scheduling
(P-Scheduling) algorithm by a ratio that can reach 44.11%. For a Worst-Fit
heuristic with high task set utilization and 8 processors, our Rest-Migration
approach performs better than the UnRest-Migration approach. In this case, the
algorithm based on Round-Robin job migration heuristic outperforms the best
UnRest-Migration Migration at Local Deadline (MLD) algorithm by a ratio that
can reach 19.3% (under discrete time granularity).

For the second approach, referred to as the UnRest-Migration approach, we
propose a generalization denoted MLD in which we assign local deadlines to
subtasks. Based on this local deadline, the maximum acceptable portion of
Worst Case Execution Time (WCET) is computed. We have considered two
local deadline assignment schemes, according to a fair local deadline computation
or a minimum local deadline computation. The migration is done at local deadline
of the subtasks to cancel the release jitter before doing a migration. We show
that these algorithms outperform the classical P-Scheduling algorithm by a ratio
that can reach 110% for the best algorithm at very high utilization.

Considering the number of migrations, UnRest-Migration approaches produce
at least two times more migrations (on the average) than the Rest-Migration
approach.

Chapter 4

Scheduling Parallel Task
(P-Task)

La fourmi est un animal intelligent collectivement et stupide individuellement ;
l’homme c’est l’inverse.

The ant is a collectively intelligent and individually stupid animal;
man is the opposite.

Karl Von Frisch

Contents
4.1 Introduction . 94

4.2 Gang task model . 95

4.2.1 Metrics for Gang task sets 97
4.3 Multi-Thread task model 98

4.3.1 Multi-Phase Multi-Thread (MPMT) task model 98
4.3.2 Fork-Join to MPMT task model 102

4.4 Schedulers for Multi-Thread P-Task 104

4.4.1 Taxonomy of schedulers 104
4.5 Schedulability analysis . 108

4.5.1 MPMT tasks – schedulability NS-Test 108
4.5.2 MPMT tasks – WCRT computation 113

4.6 Scheduling Gang tasks versus Multi-Thread tasks 122

4.6.1 Gang DM and (DM,IM) scheduling are incomparable . . 123
4.7 Gang versus Multi-Thread task models evaluation . . . 126

4.7.1 Conditions of the evaluation 126
4.7.2 Results . 128

4.8 Summary . 132

94 Chapter 4. Scheduling Parallel Task (P-Task)

4.1 Introduction
In this chapter, we present our contributions to the Real-Time (RT) scheduling of
Parallel Tasks (P-Tasks) upon identical multiprocessor platform. Based on the
state-of-the-art analysis in Subsection 2.5.2, we studied the two main classes of
P-Task model: Gang and Multi-Thread. In Section 4.2 we give more details about
the Gang task model. Section 4.3 is dedicated to the presentation of our new
Multi-Thread task model called Multi-Phase Multi-Thread (MPMT) published
by Courbin, Lupu, and Goossens [CLG13]. In Section 4.4 we present the
schedulers for parallel Multi-Thread RT tasks. Section 4.5 contains our results on
the schedulability analysis for our MPMT task model: schedulability Necessary
and Sufficient Tests (NS-Tests) for two schedulers and an analysis of the Worst
Case Response Time (WCRT) of MPMT tasks. Finally, in Sections 4.6 and 4.7
we compare Gang and Multi-Thread task models.

First, let us introduce our specific vocabulary. Throughout this work, we
distinguished between off-line entities (task, see Definition 2.2 on page 9) and
runtime entities (job, or task instance, see Definition 2.3 on page 10). In this
chapter we use the same distinction with an extended version and vocabulary to
link the theory of RT scheduling (e.g., task) to the reality of parallel programming
(e.g., process or thread). Moreover, it will be used to distinguish schedulers which
attribute priority according to runtime or off-line parameters. Definition 4.1
and Definition 4.3 are the extended versions of definitions for tasks and jobs.
Definition 4.2 and Definition 4.4 are new specific definitions for the case of parallel
tasks.

Definition 4.1 (Task (extended)).
A task is defined as the set of common off-line properties of a set of works that
need to be done. In addition to properties, a task can be composed of sub-
programs. By analogy with object-oriented programming and Unified Modeling
Language (UML) standard, a task can be seen as a class with multiple attributes
and linked with another class “sub-programs” by a composition relationship: task
is composed of sub-programs. �

Definition 4.2 (Sub-program).
A sub-program is defined as the set of common off-line properties of a set of
works that need to be done and which are a part of a larger work. By analogy
with object-oriented programming and UML standard, a sub-program can be
seen as a class with multiple attributes and linked with another class “task” by a
composition relationship: sub-program is a component part of task. �

Definition 4.3 (Process (or Job)).
A process, or instance of task, is the runtime occurrence of a task. By analogy
with object-oriented programming, a process can be seen as the object created
after instantiation of the corresponding task class. �

4.2. Gang task model 95

Definition 4.4 (Thread).
A thread, or instance of sub-program, is the runtime occurrence of a sub-program.
By analogy with object-oriented programming, a thread can be seen as the object
created after instantiation of the corresponding sub-program class. �

In other words, we consider that a task is defined off-line while its instance
exists only at runtime under the denomination process (or job in the sequential
case). In the same vein we consider that a sub-program is defined off-line while its
instance exists only at runtime under the denomination thread. Consequently the
scheduler manages processes and/or threads (only jobs in the sequential case).
Meanwhile the process or thread priority can (or cannot) be based on the static
task and sub-program characteristics. A summary of this vocabulary is presented
in Table 4.1.

Off-line Runtime

Task Process/Job
Sub-program Thread

Table 4.1 – Off-line versus Runtime vocabulary

Remark 4.1. Notice that a task is generally considered as a computer program
in this thesis, even if research on RT and theories developed here apply to other
considerations. This is one reason why we chose the term “sub-program”. Notice
also that the term “subtask” is used in this thesis to represent tasks artificially
created from a splitting of a real task whereas the term “sub-program” refers to
a real and not artificial part of a task. �

4.2 Gang task model
We already presented the Gang task model in Subsection 2.2.2.3.1 which was
proposed by Kato and Ishikawa [KI09]. In this section, we present a modified
version which allows us to define a variable number of processors for each task.
Indeed, in the task model presented in Definition 2.6, the number of processors
used by a task τi is defined by the fixed value Vi. As we discussed in a paper with
Berten, Courbin, and Goossens [BCG11], Definition 4.5 and Figure 4.1 give
the details of this task model.

Definition 4.5 (Periodic parallel Gang task set).
Let τ(O,C,T,D) = {τ1(O1, C1, T1, D1), . . . , τn(On, Cn, Tn, Dn)} be a periodic paral-
lel Gang task set composed of n periodic parallel Gang tasks. The task set
τ(O,C,T,D) can be abbreviated as τ . A periodic parallel Gang task τi(Oi, Ci, Ti, Di),
abbreviated as τi (Figure 4.1), is characterized by the 4-tuple (Oi, Ci, Ti, Di)
where:

96 Chapter 4. Scheduling Parallel Task (P-Task)

3
2

4

Oi Ti

Di

Ti

Di Di

Ci(3) Ci(2) Ci(4)

τi

Figure 4.1 – Representation of a periodic parallel Gang task, from Definition 4.5

• Oi is the first arrival instant of τi, i.e., the instant of the first activation of
the task since the system initialization.

• Ci is the Worst Case Execution Time (WCET) of τi. Ci(v) is a function
which gives, for each value v, the WCET when executed in parallel on v
processors, i.e., the maximum execution time required when simultaneously
executed on v processors.

• Ti is the period of τi, i.e., the exact inter-arrival time between two successive
activations of τi.

• Di is the relative deadline of τi, i.e., the time by which the current instance
of the task has to complete its execution relatively to its arrival instant.
Notice that we consider Constrained Deadline (C-Deadline), so Di 6 Ti.

�

Since all threads of a Gang task have to execute simultaneously, the execution
of a job of τi is represented as a “Ci(v)×v” rectangle in “time × processor” space.
Moreover, we specify Property 4.1 and Property 4.2 which constrain the values
of Ci.

Property 4.1.
We consider that adding a processor to schedule a Gang task cannot increase the
execution time as expressed by Equation 4.1.

∀v < w,Ci(v) > Ci(w) (4.1)

�

Property 4.2.
We consider that adding a processor introduces a parallelism cost, i.e., the area of
a task increases with the parallelism as expressed by Equation 4.2.

∀v < w,Ci(v)× v 6 Ci(w)× w (4.2)

�

4.2. Gang task model 97

As presented by Goossens and Berten [GB10], the Gang task family can
be split in three sub-families given by Definitions 4.6 and 4.7.

Definition 4.6 (Rigid, Moldable and Malleable Job [GB10]).
A job of a Gang parallel task is said to be:

Rigid if the number of processors assigned to this job is specified externally to
the scheduler a priori, and does not change throughout its execution.

Moldable if the number of processors assigned to this job is determined by the
scheduler, and does not change throughout its execution.

Malleable if the number of processors assigned to this job can be changed by the
scheduler at runtime.

�

Definition 4.7 (Rigid, Moldable and Malleable Recurrent Task [GB10]).
A periodic/sporadic parallel Gang task is said to be:

Rigid if all its jobs are rigid, and the number of processors assigned to the
jobs is specified externally to the scheduler. Notice that a rigid task
does not necessarily have jobs with the same size. For instance, if the
user/application decides that odd instances require v processors, and even
instances v′ processors, the task is said to be rigid.

Moldable if all its jobs are moldable.

Malleable if all its jobs are malleable.

�

4.2.1 Metrics for Gang task sets
A task set composed of Gang tasks is also characterized by some metrics. We
define in this section various metrics and we give some evident constraints.

Utilization The utilization of a Gang task τi scheduled on v processors is given by
Equation 4.3.

Uτi(v) def= Ci(v)
Ti

(4.3)

Density The density of a Gang task τi scheduled on v processors is given by Equa-
tion 4.4.

Λτi(v) def= Ci(v)
min(Di, Ti)

(4.4)

98 Chapter 4. Scheduling Parallel Task (P-Task)

With Berten, Courbin, and Goossens [BCG11], we give some trivial
results on the feasibility of a Gang task set:

Unfeasible A Gang task set composed of n tasks is not feasible if the sum of the
utilization of each task scheduled on one processor is greater than the
number m of identical reference processors in the platform. This condition
is expressed in Equation 4.5.

n∑

i=1
Uτi(1) > m (4.5)

Feasible A Gang task set composed of n tasks is feasible if the sum of the utilization
of each task scheduled on them identical reference processors of the platform
is lower than 1. Indeed, in this case we always give the m processors to all
the jobs (i.e., only one job is running at any time instant), and the schedule
is then equivalent to a uniprocessor problem which can be scheduled by
Earliest Deadline First (EDF) scheduler if Equation 4.6 is valid.

n∑

i=1
Uτi(m) 6 1 (4.6)

4.3 Multi-Thread task model
In Subsection 2.2.2.3.2 we presented the Fork-Join task model which belongs to
the Multi-Thread class. With Courbin, Lupu, and Goossens [CLG13], we
proposed a new Multi-Thread task model named MPMT. This work was based
on a previous development proposed by Lupu and Goossens [LG11] where the
authors introduced a Multi-Thread task model composed of only one phase.

4.3.1 Multi-Phase Multi-Thread (MPMT) task model
In this section we define a new parallel task model of the Multi-Thread class
called MPMT.

Definition 4.8 (Periodic parallel MPMT task set).
Let τ(O,Φ,T,D) = {τ1(O1,Φ1, T1, D1), . . . , τn(On,Φn, Tn, Dn)} be a periodic par-
allel MPMT task set composed of n periodic parallel MPMT tasks. The
task set τ(O,Φ,T,D) can be abbreviated as τ . A periodic parallel MPMT task
τi(Oi,Φi, Ti, Di), abbreviated τi (Figure 4.2), is characterized by the 4-tuple
(Oi,Φi, Ti, Di) where:

• Oi is the first arrival instant of τi, i.e., the instant of the first activation of
the task since the system initialization.

• Φi is a vector of the `i phases of τi such as Φi =
(
φ1
i , . . . , φ

`i
i

)
.

4.3. Multi-Thread task model 99

q1,1
i

q1,2
i

q1,3
i

q2,1
i

q2,2
i

q3,1
i

q3,2
i

q3,3
i

Oi Ti

Di

φ1
i

s1
i s1

i + f1
i ≤ s2

i

φ2
i

s3
i ≤ s2

i + f2
i

φ3
i

s3
i + f3

i ≤ Di

τi

Figure 4.2 – Representation of a periodic parallel MPMT task, from
Definition 4.8

• Ti is the period of τi, i.e., the exact inter-arrival time between two successive
activations of τi.

• Di is the relative deadline of τi, i.e., the time by which the current instance
of the task has to complete its execution relatively to its arrival instant.
Notice that we consider C-Deadline, so Di 6 Ti.

A phase φji is characterized by a 3-tuple φji =
(
sji , Q

j
i , f

j
i

)
where

• sji is the relative arrival offset of the phase, i.e., for any arrival instant t of
the task τi, the phase will be activated at time instant t+ sji .

• Qj
i is the set of WCET of the vji sub-programs of the phase φji such that

Qj
i =

{
qj,1i , . . . , q

j,vji
i

}
. At runtime these sub-programs generate threads

which can be executed simultaneously, i.e., we allow task parallelism.

• f ji is the relative deadline of the phase.

�

In our work, the model is constrained as follows:

• s1
i = 0, i.e., the arrival instant of the first phase of the task corresponds to
the arrival instant of the task itself.

• ∀j > 1, sji > sj−1
i + f j−1

i , i.e., the relative arrival offset of a phase is
larger than the deadline of the previous phase. In other words, we solve the
precedence constraint between successive phases using relative arrival offsets
and local deadlines. In the following, we will use ∀j > 1, sji = sj−1

i + f j−1
i .

• s`ii + f `ii 6 Di, i.e., the deadline of the last phase must not be larger than
the deadline of τi. In the following, we will set the relative deadline f `ii such
that s`ii + f `ii = Di.

100 Chapter 4. Scheduling Parallel Task (P-Task)

Remark 4.2. If s`ii + f `ii < Di or ∃j > 2 such that sji > sj−1
i + f j−1

i then a portion
of the total available deadline Di is not used by phases of task τi. Even if we do
not use this possibility in this thesis, it is not necessary to restrict the model. As
shown in Subsection 4.3.2, relative arrival offsets and relative deadlines of phases
are not necessarily given at the beginning and could be fixed in order to guarantee
the schedulability. For example, if we consider Deadline Monotonic (DM) as a
Fixed Process Priority (FPP) scheduler (See Subsection 4.4.1 for definition), a
lower deadline assigned to a phase will give a higher priority to the corresponding
processes, so in some cases it would be useful to artificially reduce the value of
Di in order to increase the priorities of processes. �

4.3.1.1 Metrics, definitions and properties for MPMT task sets

A task set composed of MPMT tasks is also characterized by some metrics. We
define in this section various metrics and we introduce some definitions and
properties of our task model.

A MPMT task is characterized by the following metrics:

Utilization The utilization of a MPMT task τi is given by Equation 4.7.

Uτi
def=

`i∑
j=1

vji∑
k=1

qj,ki

Ti
(4.7)

Density The density of a MPMT task τi is given by Equation 4.8.

Λτi
def=

`i∑
j=1

vji∑
k=1

qj,ki

min(Di, Ti)
(4.8)

A MPMT task set is characterized by the following metrics:

Utilization The utilization of a task set τ composed of n MPMT tasks is given by
Equation 4.9.

Uτ
def=

n∑

i=1
Uτi (4.9)

Density The density of a task set τ composed of n MPMT tasks is given by Equa-
tion 4.10.

Λτ
def=

n∑

i=1
Λτi (4.10)

4.3. Multi-Thread task model 101

Property 4.3 (Periodicity of sub-programs).
Since tasks are periodic and phases have fixed relative arrival offsets, each sub-
program has a periodic behaviour as well. �

Property 4.4 (Independence of phases).
Since for each phase the relative arrival offset is greater than or equal to the
deadline of the previous phase, i.e., ∀j > 1, sji > sj−1

i + f j−1
i , and since tasks are

periodic, each phase can be considered as independent from each other. In other
words, if the scheduler respects all offsets, phases will be scheduled regardless the
scheduling of the other phases. �

Property 4.5 (Independence of sub-programs).
With Property 4.4 and since sub-programs of one phase are independent from each
other (they generate threads which can be executed simultaneously), we can extend
the property of independence to sub-programs. �

4.3.1.2 Sub-program notation of the MPMT task model

It is important to notice that, according to the constraints on relative arrival
offsets and relative deadlines of phases and since we deal with periodic tasks, each
sub-program can be considered by the scheduler as an independent task. In this
section we propose a new notation for sub-programs and define the sequential
task set composed of these sub-programs.
Remark 4.3. In the following, according to the sequential task model presented in
Subsection 2.2.2.2, we will use τ j,ki (Oj,k

i , Cj,k
i , T j,ki , Dj,k

i) to represent a sub-program
of τi. �

A sub-program is then characterized by τ j,ki (Oi + sji , q
j,k
i , Ti, f

j
i). So a periodic

task with only one phase and a first arrival instant equal to Oi + sji . Notice that i
represents the main task, j ∈ J1; `iK represents the phase φji of the task τi and
k ∈

q
1; vji

y
represents the WCET qj,ki of the kth sub-program of the phase φji of

the task τi.

Since each sub-program is periodic (Property 4.3) and independent (Prop-
erty 4.5) we can create a well known sequential task set given by Definition 4.9.

Definition 4.9.
Let τ(O,Φ,T,D) = {τ1(O1,Φ1, T1, D1), . . . , τn(On,Φn, Tn, Dn)} be a periodic paral-
lel MPMT task set composed of n periodic parallel MPMT tasks as given by
Definition 4.8.

Then, let τ ∗(O,C,T,D) = {τ ∗1 (O∗1, C∗1 , T ∗1 , D∗1), . . . , τ ∗r (O∗r , C∗r , T ∗r , D∗r)} be a peri-
odic sequential task set composed of r def= ∑n

i=1
∑`i
j=1 v

j
i periodic independent

sequential tasks as given by Definition 2.4. A periodic independent sequential
task τ ∗s ∈ τ ∗ is linked with a sub-program τ j,ki ∈ τ and it is characterized by the
4-tuple (O∗s , C∗s , T ∗s , D∗s) where:

102 Chapter 4. Scheduling Parallel Task (P-Task)

• i ∈ J1;nK, j ∈ J1; `iK and k ∈
q
1; vji

y
, so τ ∗s corresponds to the kth sub-

program of the jth phase of τi.

• O∗s is the first arrival instant of τ ∗s , i.e., the instant of the first activation of
the task since the system initialization. We have O∗s = Oi + sj,ki .

• C∗s is the WCET of τ ∗s , i.e., the maximum execution time required by the
task to complete. We have C∗i = qj,ki .

• T ∗s is the period of τ ∗s , i.e., the exact inter-arrival time between two successive
activations of τs. We have T ∗s = Ti.

• D∗s is the relative deadline of τ ∗s , i.e., the time by which the current instance
of the task has to complete its execution relatively to its arrival instant.
We have D∗s = f j,ki .

�

4.3.2 Fork-Join to MPMT task model
Our task model presented in Definition 4.8 is based on the use of relative arrival
offset and relative deadline for each phase of a task. Other task models of the
Multi-Thread class define parallel task with multi-phase and multi-thread without
these parameters. Fork-Join is an example of such task model and it is the most
currently used. The purpose of this section is to allow a Fork-Join task set to
use our results: Algorithm 7 shows how to translate a periodic Fork-Join task set
(Definition 2.7) to our periodic MPMT task model.

Most tasks are not necessarily defined with a relative arrival offset or relative
deadline to all its phases. This section explains how to attribute these parameters
in order to obtain a schedulable task set using our task model.

First of all, let us define the vocabulary. In the Fork-Join task model some
terms are used and could be translated to our model:

• “Thread” is equivalent to “Sub-program”. In our model, a sub-program
is the abstract (off-line) definition for which a thread could be seen as an
instance (runtime).

• “Segment” is equivalent to “Phase”. Notice that for this part, the Fork-Join
task model is a specialization of our model since we do not impose an
alternation between sequential and parallel phases.

Actually the Fork-Join task model is a particular case of MPMT one. Indeed
the number of parallel sub-programs is the same for all parallel phases in the
Fork-Join task model since this restriction is relaxed in our model. The WCET
is identical for all sub-programs of one phase in the Fork-Join task model, again

4.3. Multi-Thread task model 103

this restriction is relaxed in ours. Finally, we could handle tasks with deadline
not equal to their period (Di 6= Ti) and we do not need a strict alternation of
sequential and parallel phases.

A task τi(Oi, {C1
i , P

2
i , C

3
i , P

4
i , . . . , P

si−2
i , P si−1

i , Csi
i }, Ti, Vi) defined with the

Fork-Join task model is then translated to the MPMT task model as follows
τi(Oi,Φi, Ti, Ti) with:

• `i = si, the number of phases is equal to si.

• ∀j ∈ J1; `iK and j is an odd number, vji = 1 and qj,1i = Cj
i , all odd phases

are sequential with a WCET equal to Cj
i .

• ∀j ∈ J1; `iK and j is an even number, vji = Vi and ∀k ∈
q
1; vji

y
, qj,ki = P j

i ,
all even phases are parallel with Vi sub-programs and each sub-program
has a WCET equal to P j

i .

Finally, the notation of subtasks τ j,ki has exactly the same signification in both
models.

4.3.2.1 Compute relative arrival offsets and relative deadlines

A last thing is missing in the Fork-Join task model: phases parameters such as
relative arrival offsets and relative deadlines. We propose Algorithm 7 to assign
relative arrival offset and relative deadline to each phase of a task and test the
schedulability at the same time. The main idea of the algorithm is to assign
a relative deadline equal to the WCRT of the phase and set the same value
as relative arrival offset of the next phase. Notice that Algorithm 7 could be
used only with schedulers which do not need relative arrival offsets and relative
deadlines of the phases to assign priorities, all priorities need to be known before
the schedule.

As presented in Algorithm 7, we have to compute the WCRT for each sub-
program of each phase of each task. At the beginning of the algorithm, sub-
programs are not fully defined since relative arrival offsets and relative deadlines
are not known. However, since we focus on schedulers which assign fixed priorities
without taking into account relative arrival offsets and relative deadlines of phases
(e.g. Fixed Task Priority (FTP), Fixed Sub-program Priority (FSP) such as
Longest Sub-program First (LSF), (RM,LSF), etc. See Subsection 4.4.1 for
definitions), the WCRT of a sub-program is affected only by sub-programs with
higher priority. As a consequence, we can fulfil phases parameters in decreasing
order of priority.
Remark 4.4. As we will see in the next sections, Schedulability Test 4.1 and
Schedulability Test 4.2 give feasibility intervals for FSP and (FTP,FSP) schedulers
respectively (See Subsection 4.4.1 for definitions fo schedulers). It is then simple

104 Chapter 4. Scheduling Parallel Task (P-Task)

to compute the WCRT of a sub-programs by simulating the schedule on the
corresponding feasibility interval, taking into account only higher priority sub-
programs. For example, if tasks are sorted in decreasing order of priority, for
(FTP,FSP) scheduler, the WCRT of sub-program τ j,ki is equal to the maximum
response time of the corresponding threads during the schedule on the feasibility
interval equals to [0, Si + Pi) with Pi = lcm{T1, . . . , Ti} where Si is defined by
Equation 4.11. �

4.4 Schedulers for Multi-Thread P-Task
This section is dedicated to the presentation of the schedulers for Multi-Thread
parallel RT tasks. The work described in this section has been originally presented
by Lupu and Goossens [LG11]. It has been redeveloped in our joint publication
with Courbin, Lupu, and Goossens [CLG13]. In this work we consider that
the scheduling is priority-driven: the threads are assigned distinct priority levels.
According to these priority levels the scheduler decides at each time instant t
what is executed on the multiprocessor platform: the m highest (if any) priority
threads will be executed simultaneously on the given platform. We also consider
the following properties and notations for schedulers:

• The thread-processor assignment is uni-vocally determined by the following
rule: “higher the priority, lower the processor index”. If less than m threads
are active, the processors with the higher indexes are left idle.

• We consider the work-conserving multi-thread scheduling: no processor is
left idle while there are active tasks.

• We consider pre-emptive scheduling: a higher priority thread can interrupt
the executing lower priority thread.

Notice that according to our task model, at time instant t, at most one phase
of a process is active thanks to relative arrival offsets and relative deadlines of
phases. So we do not care about priority between phases of a given task.

4.4.1 Taxonomy of schedulers
In this work we consider two classes of RT schedulers for our parallel task model:
Hierarchical schedulers and Global Thread schedulers.

• At top-level Hierarchical schedulers manage processes with a process-level
scheduling rule and use a second (low-level) scheduling rule to manage
threads within each process.

4.4. Schedulers for Multi-Thread P-Task 105

Algorithm 7: Assign phases parameters and test schedulability
/* computeWCRT

(
τ, τ j,ki

)
return the WCRT of the kth sub-program

of the jth phase of task τi in the task set τ. For FSP and
(FTP,FSP) schedulers, Remark 4.4 gives a way to compute it.
*/

input : A task set τ with n tasks defined with a task model with
multi-phase but without relative arrival offsets and relative
deadlines such as Fork-Join task model

output : A boolean value which notify if a schedulable solution has been
found and task set τ redefined with the MPMT task model
presented in Definition 4.8

Data: s, f are integers
1 foreach τi ∈ τ , higher priority first do

/* Relative arrival offset of the first phase is equal to 0
*/

2 s← 0;
3 for j = 0 to `i do
4 f ← 0;
5 for k = 0 to vji do
6 f ← max

(
f, computeWCRT

(
τ, τ j,ki

))
;

7 end for
8 sj,ki ← s;

/* Relative deadline is equal to the WCRT */
9 f j,ki ← f ;

/* Relative arrival offset of the next phase will be
equal to this previous deadline */

10 s← sj,ki + f j,ki ;
11 end for
12 if f j,v

j
i

i 6 Di then
13 f

j,vji
i ← Di;

14 else
15 return unSchedulable;
16 end if
17 end foreach
18 return Schedulable;

• Global Thread schedulers assign priorities to threads regardless of the task
and sub-program that generated them.

106 Chapter 4. Scheduling Parallel Task (P-Task)

In order to define rigorously our Hierarchical and Global Thread schedulers
we have to introduce the following schedulers.
Definition 4.10 (Fixed Task Priority (FTP)).
A fixed task priority scheduler assigns a fixed and distinct priority to each task
before the execution of the system. At runtime each process priority corresponds
to its task priority. �

Among the FTP schedulers we can mention DM [LL73] and Rate Monotonic
(RM) [Aud+91].
Definition 4.11 (Fixed Process Priority (FPP)).
A fixed process priority scheduler assigns a fixed and distinct priority to processes
upon arrival. Each process preserves the priority level during its entire execution.

�

The EDF [LL73] scheduler is an example of FPP scheduler.
Definition 4.12 (Dynamic Process Priority (DPP)).
A dynamic process priority scheduler assigns, at each time instant t, priorities
to the active processes according to their runtime characteristics. Consequently,
during its execution, a process may have different priority levels. �

The Least Laxity First (LLF) scheduler is a DPP scheduler since the laxity
is a dynamic process metric (see [Leu89; DM89] for details).

In the same vein, the following schedulers can be defined at thread level:
Definition 4.13 (Fixed Sub-program Priority (FSP)).
A fixed sub-program priority scheduler assigns a fixed and distinct priority to
each sub-program before the execution of the system. At runtime each thread
priority corresponds to its sub-program priority. �

An example of FSP scheduler is the Longest Sub-program First (LSF) sched-
uler.
Definition 4.14 (Fixed Thread Priority (FThP)).
A fixed thread priority scheduler assigns a fixed and distinct priority to threads
upon arrival. Each thread preserves the priority level during its entire execution.

�

If we exclude FSP schedulers which can clearly be seen as FThP schedulers,
and to the best of our knowledge, no FThP scheduler can be defined based only
on the characteristics of the tasks in our model.
Definition 4.15 (Dynamic Thread Priority (DThP)).
A dynamic thread priority scheduler assigns, at time instant t, priorities to the
existing threads according to their characteristics. During its execution, a thread
may have different priority levels. �

An example of DThP is LLF applied at thread level.

4.4. Schedulers for Multi-Thread P-Task 107

4.4.1.1 Hierarchical schedulers

Hierarchical schedulers are built following the next two steps:

1. at process level, one of the following schedulers is chosen in order to assign
priorities to process: FTP, FPP and DPP.

2. for assigning priorities within process, one of the following schedulers will
be chosen: FSP, FThP, DThP.

In the following an Hierarchical scheduler will be denoted by the couple (α, β),
where α ∈ {FTP,FPP,DPP} and β ∈ {FSP,FThP,DThP}.

0 1 2 3 4 5 6 7 8 9 10 11

π2 τ1,1
2 τ1,1

2 τ1,1
2

π1 τ1,2
2 τ1,2

2 τ1,2
2

τ1,2
1

τ1,1
1 τ1,1

1

τ1,2
1 τ1,2

1

Figure 4.3 – Example of scheduler (RM,LSF)

An example of such a scheduler is presented in Figure 4.3. We consider the
task set τ = {τ1, τ2} with τ1(0, (φ1

1), 6, 6), φ1
1 = (0, {2, 3}, 6) and τ2(0, (φ1

2), 4, 4),
φ1

2 = (0, {1, 2}, 4) and the scheduler (RM,LSF) of the class (FTP,FSP). According
to RM, τ2 is the highest priority task. At sub-program level, LSF is applied and,
consequently, τ 1,2

1 � τ 1,1
1 and τ 1,2

2 � τ 1,1
2 .

4.4.1.2 Global thread schedulers

As Global Thread schedulers, the FSP, FThP and DThP schedulers can be
applied to a set of sub-programs or threads regardless of the task that they belong
to.

Notice that some Global Thread schedulers are identical to some hierarchical
ones. For example, a total order between threads (i.e., a FThP scheduler) can
“mimic” any hierarchical (FTP,FThP) scheduler.

An example of a Global Thread scheduler (LSF) is presented in Figure 4.4.
The considered task set is the same as the one in Figure 4.3. The priority order
at sub-program level according to LSF is the following: τ 1,2

1 � τ 1,2
2 � τ 1,1

1 � τ 1,1
2

(τ 1,1
1 and τ 1,2

2 have the same execution time, but we choose to assign the highest
priority to the sub-program belonging to the task with the smallest index).

108 Chapter 4. Scheduling Parallel Task (P-Task)

0 1 2 3 4 5 6 7 8 9 10 11

π2 τ1,1
1 τ1,1

1

π1 τ1,2
1 τ1,2

1

τ1,2
2

τ1,1
2

τ1,1
2

τ1,2
2

τ1,2
2

τ1,1
2

Figure 4.4 – Example of scheduler LSF

4.5 Schedulability analysis

4.5.1 MPMT tasks – schedulability NS-Test
In this section, we present two schedulability NS-Tests for our MPMT task model:
one for FSP and one for (FTP,FSP) schedulers. We do not believe that these
results are applicable to the other schedulers. This section is based on the work
of Lupu and Goossens [LG11] where they proposed equivalent results for the
mono-phase case. We extended their result to the multi-phase case in our joint
publication with Courbin, Lupu, and Goossens [CLG13].

In the proposal, the schedulability NS-Test are based on feasibility intervals
with the following definition.

Definition 4.16 (Feasibility interval).
For any task set τ = {τ1, . . . , τn} and any multiprocessor platform, the feasibility
interval is a finite interval such that if no deadline is missed while considering
only the processes in this interval no deadline will ever be missed. �

Our main contributions are schedulability NS-Tests for FSP scheduler (Sub-
section 4.5.1.1) and (FTP,FSP) scheduler (Subsection 4.5.1.2) used with parallel
MPMT task set with C-Deadline. The two proofs follow the same logic: first we
prove that the schedules are periodic, then we prove that the considered scheduler
is predictable (Or, in other words, the considered scheduler is sustainable with
respect to execution requirement. See Definition 4.17), finally we define the
feasibility interval which gives the schedulability test.

4.5.1.1 FSP schedulability NS-Test

Since the scheduling of MPMT task are predictable (see Theorem 4.4) we know
we have only to consider the worst-case scenario where the WCET is reached for
each task/sub-program execution requirement. Consequently, in the following,
we will assume that these execution requirements are constant.

The first step into defining the schedulability test for FSP schedulers is to
prove that their schedules are periodic. The proof is based on the periodicity of

4.5. Schedulability analysis 109

FTP schedules when the FTP is applied to task set τ ′ with the sequential task
model (see Definition 4.9). The periodicity of FTP schedules for the sequential
task model is stated in Theorem 4.1.

Theorem 4.1 (Periodicity of FTP schedules for sequential task set [CGG11]).
For any pre-emptive FTP scheduling algorithm A, if an asynchronous C-Deadline
periodic sequential task set τ ′ = {τ ′1, . . . , τ ′n} with τ ′1 � · · · � τ ′n (task are ordered
by decreasing priority) is A-feasible, then the A-schedule of τ ′ on a multiprocessor
platform composed of m identical processors is periodic with a period of P starting
from time instant Sn where Si is defined as:

S1
def= O′1,

Si
def= max

{
O′i, O

′
i +

⌈
Si−1−O′i

T ′i

⌉
× T ′i

}
,

∀i ∈ {2, 3, . . . , n}.
(4.11)

(Assuming that the execution times of each task are constant.) �

In the following, we consider the task set τ ∗ with r def= ∑n
i=1

∑`i
j=1 v

j
i sequential

tasks (which correspond to parallel sub-programs) defined by Definition 4.9. A
FSP scheduler is used to assign priorities to the r sub-programs. In the following
we assume without loss of generality that sub-programs are ordered by FSP
decreasing priority: τ ∗1 � · · · � τ ∗r .

Theorem 4.2.
For any pre-emptive FSP scheduling algorithm A, if an asynchronous C-Deadline
periodic MPMT task set τ = {τ1, . . . , τn} is A-feasible, then the A-schedule
of τ on multiprocessor platform composed of m identical processors is periodic
with a period of P starting from time instant S∗r , with r

def= ∑n
i=1

∑`i
j=1 v

j
i and

∀s ∈ J1; r − 1K, τ ∗s � τ ∗s+1 (sub-programs are ordered by decreasing priority) where
S∗i is defined as follows:

S∗1
def= O∗1,

S∗s
def= max

{
O∗s , O

∗
s +

⌈
S∗s−1−O∗s

T ∗s

⌉
× T ∗s

}
,

∀s ∈ {2, 3, . . . , r}.
(4.12)

(Assuming that the execution times of each sub-program are constant.) �

Proof. If we use FSP, a periodic parallel MPMT task set τ with n tasks and
r sub-programs can be seen as the sequential task set τ ∗ which contains r
periodic sequential tasks τ ∗ = {τ ∗1 , . . . , τ ∗r } given by Definition 4.9. From the
FSP priority assignment on τ , a FTP priority assignment for τ ∗ can be defined:
if τ ∗1 � · · · � τ ∗r according to FSP, the corresponding sequential tasks have the
same order according to FTP since a sub-program could be considered as a simple
periodic sequential task.

110 Chapter 4. Scheduling Parallel Task (P-Task)

By Theorem 4.1, we know that the schedule of FTP on τ ∗ is periodic with a
period of P starting with Sr. We can observe that Sr has the same value as S∗r .
This means that the FSP schedule on τ is periodic with a period of P starting
with S∗r .

Example We present an example for Theorem 4.2. We consider LSF as FSP
scheduler, a multiprocessor platform composed of 2 processors and the task set
τ = {τ1, τ2} with the following characteristics: τ1(1, (φ1

1), 5, 5), φ1
1 = (0, {2}, 5),

τ2(2, (φ1
2, φ

2
2), 5, 5), φ1

2 = (0, {2, 1}, 3) and φ2
2 = (3, {1}, 2).

We define task set τ ∗ with r = 4 sequential tasks defined by Definition 4.9.

• τ ∗1 = τ 1,1
1 (O∗1, C∗1 , T ∗1 , D∗1) = τ 1,1

1 (O1 + s1,1
1 , q1,1

1 , T1, f
1,1
1) = τ 1,1

1 (1, 2, 5, 5),

• τ ∗2 = τ 1,1
2 (O∗2, C∗2 , T ∗2 , D∗2) = τ 1,1

2 (O2 + s1,1
2 , q1,1

2 , T2, f
1,1
2) = τ 1,1

2 (2, 2, 5, 3),

• τ ∗3 = τ 1,2
2 (O∗3, C∗3 , T ∗3 , D∗3) = τ 1,2

2 (O2 + s1,2
2 , q1,2

2 , T2, f
1,2
2) = τ 1,2

2 (2, 1, 5, 3),

• τ ∗4 = τ 2,1
2 (O∗4, C∗4 , T ∗4 , D∗4) = τ 2,1

2 (O2 + s2,1
2 , q2,1

2 , T2, f
2,1
2) = τ 2,1

2 (5, 1, 5, 2).

According to LSF, τ ∗1 � τ ∗2 � τ ∗3 � τ ∗4 so τ 1,1
1 � τ 1,1

2 � τ 1,2
2 � τ 2,1

2 . We can
now compute S∗4 :

• S∗1 = O∗1 = 1,

• S∗2 = max
{
O∗2, O

∗
2 +

⌈
S∗1−O∗2
T ∗2

⌉
× T ∗2

}
= max

{
2, 2 +

⌈
1−2

5

⌉
× 5

}
= 2,

• S∗3 = max
{
O∗3, O

∗
3 +

⌈
S∗2−O∗3
T ∗3

⌉
× T ∗3

}
= max

{
2, 2 +

⌈
2−2

5

⌉
× 5

}
= 2,

• S∗4 = max
{
O∗4, O

∗
4 +

⌈
S∗3−O∗4
T ∗4

⌉
× T ∗4

}
= max

{
5, 5 +

⌈
2−5

5

⌉
× 5

}
= 5.

According to Theorem 4.2, we can conclude that the pre-emptive LSF schedule
of τ on a multiprocessor platform composed of 2 processors is periodic with a
period of P def= lcm{T1, T2} = 5 starting from time instant S∗4 = 5. This conclusion
is depicted in Figure 4.5.

Theorem 4.2 considers that execution times C∗s of a sub-program τ ∗s (1 6 s 6 r)
are constant. In order to define the schedulability test for the FSP schedulers, we
have to prove that they are predictable.

Definition 4.17 (Predictability [HL94], or Sustainability with respect to execu-
tion requirement [BB06]).
Let us consider the thread sets J and J ′ which differ only with regards to their
execution times: the threads in J have executions times less than or equal to the
execution times of the corresponding threads in J ′. A scheduling algorithm A is
predictable if, when applied independently on J and J ′, a thread in J completes
its execution before or at the same time instant as the corresponding thread in
J ′. �

4.5. Schedulability analysis 111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π2 τ1,1
2 τ1,1

2 τ1,1
2

π1 τ1,1
1 τ1,1

1 τ1,1
1τ1,2

2 τ2,1
2

P = 5
S∗

4 = 5

τ1,2
2 τ2,1

2

P = 5

τ1,2
2

Figure 4.5 – Example of Theorem 4.2 with a LSF scheduler

Moreover, Ha and Liu [HL94] proved Theorem 4.3.

Theorem 4.3 ([HL94]).
Work-conserving and priority-driven schedulers are predictable for the sequential
task model and identical multiprocessor platforms. �

Using Theorem 4.3, we will prove that FSP schedulers are predictable.

Theorem 4.4.
FSP schedulers are predictable. �

Proof. Wementioned in the proof of the Theorem 4.2 that the task set τ containing
r sub-programs can be seen as a task set τ ∗ of r sequential tasks such that a task
τ ∗s inherits the characteristics of the corresponding sub-program. A FTP priority
assignment for τ ∗ can be built following the priorities assigned by FSP to the
corresponding sub-programs in τ : τ ∗1 � · · · � τ ∗r .

By Theorem 4.3, FTP schedulers are predictable for sequential task sets like τ ∗
and on multiprocessor platforms composed of m processors. Since τ is equivalent
to τ ∗ and the FTP scheduler assigns the same priorities to sequential tasks as
FSP to the corresponding sub-programs, FSP schedulers are also predictable.

Based on Theorems 4.2 and 4.4, we can define a schedulability NS-Test for
FSP schedulers.

Schedulability Test 4.1.
For any pre-emptive FSP scheduler A and for any A-feasible asynchronous C-
Deadline periodic parallel MPMT task set τ = {τ1, . . . , τn} on a multiprocessor
platform composed of m identical processors, [0, S∗r + P) is a feasibility interval,
where S∗r is defined by Equation 4.12. �

Proof. This is a direct consequence of Theorems 4.2 and 4.4.

112 Chapter 4. Scheduling Parallel Task (P-Task)

4.5.1.2 (FTP,FSP) schedulability NS-Test

The first step in the definition of the schedulability NS-Test for the (FTP,FSP)
schedulers is to prove the periodicity of the feasible schedules.

Theorem 4.5.
For any pre-emptive (FTP,FSP) scheduling algorithm A, if an asynchronous C-
Deadline periodic parallel MPMT task set τ = {τ1, . . . , τn} is A-feasible, then the
A-schedule of τ on a multiprocessor platform composed of m identical processors
is periodic with a period of P starting from time instant Sn, where Sn is defined by
Equation 4.11 and tasks are ordered by decreasing priority: τ1 � τ2 � · · · � τn. �

Proof. Lets consider that the tasks in τ and their sub-programs are ordered by
decreasing priority:

τ1 � τ2 � · · · � τn with ∀i, 1 6 i 6 n,

τ 1,1
i � · · · � τ

1,v1
i

i � τ 2,1
i � · · · � τ

2,v2
i

i � · · · � τ
`i,v

`i
i

i

Following these priority orders, we can define a FSP scheduler A′ which assigns
the following priorities to the r def= ∑n

i=1
∑`i
j=1 v

j
i sub-programs of τ :

τ 1,1
1 � τ 1,2

1 � · · · � τ
1,v1

1
1 � τ 2,1

1 � τ 2,2
1 � · · · � τ

2,v2
i

1 � · · ·

· · · � τ `1,11 � τ `i,21 � · · · � τ
`1,v

`1
i

1 � τ 1,1
2 � τ 1,2

2 � · · · � τ
1,v1

2
2 � · · ·

· · · � τ
`n−1,1
n−1 � · · · � τ

`n−1,v
`n−1
n−1

n−1 � τ 1,1
n � · · · � τ `n,v

`n
n

n . (4.13)

The FSP schedulers assign priorities to sub-programs regardless of the tasks
they belong to. So we can rewrite Equation 4.13 regardless of the tasks τ1, . . . , τn:

τ ∗1 � · · · � τ ∗v1
1
� · · · � τ ∗1+

∑`1
j=1 v

j
1
� · · · � τ ∗1+

∑n−1
i=1

∑`i
j=1 v

j
i

� · · · � τ ∗r .

By Theorem 4.2, the schedule generated by A′ is periodic with a period of P
from S∗r . We can observe that the S∗s quantity defined by Equation 4.12 represents
the time instant of the first arrival of τ ∗s at or after time instant S∗s−1. Since all
the sub-programs belonging to the same phase of task τi (1 6 i 6 n) have the
same activation times and the same periods and A′ assigns consecutive priorities
to the sub-programs of the same task (as seen in Equation 4.13):

S∗s = S∗s−1, if ∃x ∈ J1;nK, y ∈ J1; `xK /
1 +

x∑

i=1

y−1∑

j=1
vji

 < s 6

x∑

i=1

y∑

j=1
vji (4.14)

4.5. Schedulability analysis 113

Furthermore, we can observe that S∗1 = S1 = O1. From this fact and
Equation 4.14, we can conclude:

S∗1 = S1 ⇒
S∗1+

∑`1
j=1 v

j
1

= S2 ⇒
...

S∗1+
∑n−1

i=1
∑`i

j=1 v
j
i

= Sn.

The A′-schedule is then periodic with a period of P starting from Sn. Since the
A′-schedule is the same as the one generated by A, the A-schedule is also periodic
with a period of P starting from Sn.

We will now prove that the (FTP,FSP) schedulers are also predictable.

Theorem 4.6.
(FTP,FSP) schedulers are predictable. �

Proof. Since based on any (FTP,FSP) scheduler we can define a FSP scheduler
as shown in the proof of Theorem 4.5 and since, by Theorem 4.4, FSP schedulers
are predictable, (FTP,FSP) schedulers are predictable as well.

We will now define the schedulability NS-Test for (FTP,FSP) schedulers.

Schedulability Test 4.2.
For any pre-emptive (FTP,FSP) scheduler A and for any A-feasible asynchronous
C-Deadline periodic parallel MPMT task set τ = {τ1, . . . , τn} on a multiprocessor
platform composed of m identical processors, [0, Sn + P) is a feasibility interval,
where Sn is defined by Equation 4.11. �

Proof. This is a direct consequence of Theorem 4.5 and Theorem 4.6.

4.5.2 MPMT tasks – WCRT computation

As presented in Algorithm 7, we have to compute the WCRT for each sub-program
of each phase of each task. We recall that this algorithm has to be used with
schedulers which assign fixed priorities without taking into account relative arrival
offsets and relative deadlines of phases (e.g. FTP, FSP such as LSF, (RM,LSF),
etc. See Subsection 4.4.1 for definitions). In the next section we present new
results for the computation of WCRT of such subtasks.

114 Chapter 4. Scheduling Parallel Task (P-Task)

Notation

We now define each specific notations used along this section.
As proposed by Guan et al. [Gua+09], we use the following notation to

express that A as lower (respectively upper) bound B (respectively C) such as
JAKB = max(A,B) (respectively JAKC = min(A,C)). By extension, we have
JAKCB = JJAKBKC . This expression keeps the value of A if it is within the interval
[B,C], otherwise it returns B if A < B or C if A > C.

In this section, we consider that tasks and subtasks are sorted in decreasing
order of priority so the relation ∀i < i′, τi � τi′ indicates that τi has a higher
priority than τi′ . Moreover we use hierarchical schedulers so we have to define the
priority relation between subtasks of the same task. If the relation τ j,ki � τ j

′,k′

i′

indicates that τ j,ki has a higher priority than τ j
′,k′

i′ , we defined priorities as follow:

τ j,ki � τ j
′,k′

i′ if and only if
i < i′

or i = i′ and j < j′

or i = i′ and j = j′ and k < k′

Some explanations Tasks τi with i < i′ have already been defined as higher
priority than τi′ . Subtasks τ j,ki with j < j′ correspond to a subtask of phase which
precede the phase of τ j

′,k
i and τ j

′,k
i can not execute while τ j,ki is not completed so

it has to be lower priority. Finally, we consider that sub-programs of each tasks
are sorted in decreasing order of priority so τ j,ki � τ j,k

′

i ∀k < k′.

4.5.2.1 The sporadic case - A new upper bound

In this section, we present our results to compute an upper bound of WCRT for
sporadic parallel MPMT tasks based on the task model presented in Definition 4.8.
Our results are based on the work of Guan et al. [Gua+09]. We summarize their
results in Subsection 4.5.2.1.1 and present our adaptation in Subsection 4.5.2.1.2.

4.5.2.1.1 Previous work Guan et al. [Gua+09] propose an improvement
of existing bound for WCRT of sequential mono-phase independent tasks on
multiprocessor platforms.

They define sporadic tasks as given by Definition 2.5. They consider C-
Deadline tasks.

Based on this model, they study the upper bound of the workload of a task in
order to know the maximum possible interference produced by an higher-priority
task within an interval.

Notice that, in order to compute the WCRT of a task τp, we have to study
the maximum continuous time interval during which each processor executes

4.5. Schedulability analysis 115

higher priority tasks until τp completes its job. This interval is also known as
the level-p busy period. For uniprocessor case, we know the worst case activation
scenario such as this interval is maximum. Indeed, the maximal interference is
produced when all higher priority tasks and τp are activated at the same time
instant. Conversely, in the multiprocessor case, the worst case activation scenario
is unknown and since we cannot test all possible activation scenarios, we have
to compute an upper bound of the interference, giving an upper bound for the
WCRT.

Workload The workload W (τi, [a; b]) of a task τi in an interval [a; b] is the
length of the accumulated execution time of that task within the interval [a; b].
As presented by Guan et al. [Gua+09], the workload of a task could be of two
types: with a Carry In (CI) job or without a carry-in job (Non Carry-in (NC)).
A carry-in task refers to a task with one job with arrival instant earlier than the
interval [a; b] and deadline in the interval [a; b]. For both cases, they prove that
the worst case scenarios are given by Figures 4.6 and 4.7 and computed using
Lemma 4.1 where:

• WNC(τi, x) denotes the workload bound if τi does not have a carry-in job
in the interval of length x.

• WCI(τi, x) denotes the workload bound if τi has a carry-in job in the interval
of length x.

τi
Ci Ci Ci

Ti

x

Ti

W NC(τi, x) def=
⌊

x
Ti

⌋
Ci + Jx mod TiKCi

Figure 4.6 – Computing WNC(τi, x)

Lemma 4.1 ([Gua+09]).
The workload bounds can be computed with

WNC(τi, x) def=
⌊
x

Ti

⌋
Ci + Jx mod TiKCi

WCI(τi, x) def=
⌊Jx− CiK0

Ti

⌋
Ci + JCiKx + α

where α = JJx− CiK0 mod Ti − (Ti −Ri)KCi−1
0

and Ri is the WCRT of τi. �

116 Chapter 4. Scheduling Parallel Task (P-Task)

τi
Ci Ci

Ti

Ci

Ti

Ri

x

W CI(τi, x) def=
⌊ Jx−CiK0

Ti

⌋
Ci + JCiKx + JJx − CiK0 mod Ti − (Ti − Ri)KCi−1

0

Figure 4.7 – Computing WCI(τi, x)

Knowing an upper bound of the workload of each task, then they study the
maximum possible interference suffered by a task in an interval of length x.

Interference The interference Ip(x) on a task τp over an interval of length
x is the total time during which τp is ready but blocked by the execution of at
least m higher priority tasks on the platform. Ip(τi, x) is the total time during
which task τp is ready but could not be scheduled on any processor while the
higher priority task τi is executing.

Since we consider pre-emptive fixed priority schedulers, we have to notice that
∀τj ≺ τp, Ip(τj, x) = 0, i.e., all lower priority tasks does not produce interference
on a higher priority task.

We now need to derive a computation of the interference of an higher priority
task on τp. First of all, according to Bertogna and Cirinei [BC07], a task can
interfere only when it is executing, which gives Theorem 4.7.
Theorem 4.7 ([BC07]).
The interference Ip(τi, x) of a task τi on a task τp in an interval of length x cannot
be higher than the workload W (τi, x). �

In the same paper, Bertogna and Cirinei [BC07] demonstrate an improve-
ment of this upper bound. Since Rp is the response time of τp, nothing can
interfere on τp for more than Rp − Cp. Using this assertion with Lemma 4.2 they
proved Theorem 4.8
Lemma 4.2 ([BCL05]).
For any global scheduling algorithm it is

Ip(x) > y ⇐⇒
∑

i 6=k
min (Ip(τi, x), y) > m× y

�

Theorem 4.8 ([BC07]).
A task τp has a response time upper bounded by Rub

p if
∑

i 6=k
min

(
Ip
(
Rub
p

)
, Rub

p − Cp + 1
)
< m×

(
Rub
p + 1

)

4.5. Schedulability analysis 117

�

Indeed, if Theorem 4.8 is verified for task τp then, according to Lemma 4.2, we
have:

Ip
(
Rub
p

)
<
(
Rub
p − Cp + 1

)

and task τp will be interfered for at most Rub
p − Cp time units so τp will complete

its execution at most at time instant Rub
p .

Finally, according to Bertogna and Cirinei [BC07], using Theorems 4.7
and 4.8 we could get the improved Equation 4.15 for the interference of τi on τp
in an interval of length x.

Ip(τi, x) def= JW (τi, x)Kx−Cp+1
0 (4.15)

If we consider the computation of the workload presented in the previous
part, we have to define two different interferences, one for a non carry-in task
(Equation 4.16) and one for a task with a carry-in job (Equation 4.17).

INC
p (τi, x) def=

q
WNC(τi, x)

yx−Cp+1
0 (4.16)

ICI
p (τi, x) def=

q
WCI(τi, x)

yx−Cp+1
0 (4.17)

We are now able to estimate the interference of one specific higher priority task
on τp. We need to merge these results to get the total interference produced by all
higher priority tasks on τp. A naive response would be to compute the sum of the
interference of all higher priority tasks τi and taking for each one the maximum
value between INC

p (τi, x) and ICI
p (τi, x). However Guan et al. [Gua+09], based on

a work from Baruah [Bar07], prove that there are at most m− 1 tasks having
a carry-in job, and for each task τi, the carry-in is at most Ci − 1. Therefore if
we consider all higher priority tasks of τp and select from them at most m − 1
carry-in tasks for which

(
ICI
p (τi, x)− INC

p (τi, x)
)
is positive and maximum, the

remaining tasks will be non carry-in (NC). We then obtain Lemma 4.3.

Lemma 4.3 ([Gua+09]).
If τCI is the subset of at most m − 1 higher priority tasks τi with respect to
τp such as

(
ICI
p (τi, x)− INC

p (τi, x)
)
is positive and maximum and if τNC is the

subset of the remaining higher priority tasks with respect to τp, we define the total
interference Ip(x) as

Ip(x) def=
∑

τi∈τNC

INC
p (τi, x) +

∑

τi∈τCI

ICI
p (τi, x) (4.18)

�

118 Chapter 4. Scheduling Parallel Task (P-Task)

Upper bound of WCRT Since they are able to compute an upper bound
of the total interference produced by all higher priority tasks on τp, Guan et al.
[Gua+09] prove Theorem 4.9

Theorem 4.9 (OUR-RTA [Gua+09]).
Let Rub

p be the minimal solution of the following Equation 4.19 by doing an
iterative fixed point search of the right hand side starting with x = Cp.

x =
⌊
Ip(x)
m

⌋
+ Cp (4.19)

Then Rub
p is an upper bound of τp’s WCRT. �

4.5.2.1.2 Adaptation to MPMT tasks A naive approach would be to get
all subtasks as independent tasks and use Theorem 4.9 without further reflections.
The result would be valid and we would obtain a real upper bound of the WCRT
of each subtask. However, we propose to refine this result taking into account
the precedence relation between subtasks. Indeed, if we analyse the workload of
a subtask using a specific activation (carry-in or non carry-in), the activation of
all other subtasks of the same task is accordingly defined.

In this section, we define the workload of an individual subtask and we deduce
from it the workload of the entire associated task.

Computation of the workload of a subtask The workload bound of a
subtask τ j,ki over an interval of length x can be computed according to Lemma
4.4, with qj,ki the WCET of the subtask and Rj,k

i its WCRT.

Lemma 4.4.
The workload bounds can be computed with

WNC
(
τ j,ki , x

) def=
⌊
x

Ti

⌋
qj,ki + Jx mod TiKq

j,k
i

WCI
(
τ j,ki , x

) def=
⌊Jx− qj,ki K0

Ti

⌋
qj,ki +Jqj,ki Kx+

r
Jx− qj,ki K0 mod Ti −

(
Ti −Rj,k

i

)zqj,ki −1

0

�

In the following, we will use the same equations for the computation of
workload of other subtasks. The precedence relation will be taken into account in
the length of the interval considered. Let us take an example: if the subtask τ j,ki
starts at the beginning of the interval x (non carry-in job), any subtask of the
same phase are activated at the same time instant and any subtask τ j+1,k′

i of the
next phase will start sj+1

i − sji later. Therefore, if we consider that the workload
of τ j,ki must be computed as WNC

(
τ j,ki , x

)
then the workload of τ j+1,k′

i is easily
WNC

(
τ j,ki , x− (sj+1

i − sji)
)
.

4.5. Schedulability analysis 119

In the next paragraphs we study the workload of a task considering one specific
phase as the reference of activation. Let us define:

• W J,NC(τp, x) the workload of the task τp if φJp the J th phase is activated as
a non carry-in task.

• W J,CI(τp, x) the workload of the task τp if φJp the J th phase is activated as
a carry-in task.

Tp

s1
p

φ1
p

s2
p = s1

p + f1
p

φ2
p

s3
p = s2

p + f2
p

φ3
p

s4
p = s3

p + f3
p

φ4
p

Tp

s1
p

φ1
p

s2
p = s1

p + f1
p

φ2
p

s3
p = s2

p + f2
p

φ3
p

s4
p = s3

p + f3
p

φ4
p

qj,1
p

qj,2
p

qj,3
p

x

s3
p − s2

p

s4
p − s2

p

Tp − (s2
p − s1

p)

Figure 4.8 – Example of computation for W 2,NC(τp, x), phase φ2
p is a non carry-in

task, so it is activated at the beginning of the interval of length x

Computation of W J,NC(τp, x) In this paragraph we determine the length
of the studied interval for each phase (so, each subtask) of a non carry-in task τp
considering that φJp the J th phase is activated at the beginning of the interval.
See Figure 4.8 for an example with J = 2.

If the J th phase is activated at the beginning of the interval of length x, then:

• the next phases (j > J) are activated
(
sjp − sJp

)
later, so the considered

interval is x−
(
sjp − sJp

)
.

• the previous phases (j < J) are activated Tp −
(
sJp − sjp

)
later, so the

considered interval is x−
(
Tp − (sJp − sjp)

)
.

We then deduce Lemma 4.5.

Lemma 4.5.
The workload bound of the non carry-in task τp considering φJp as the first activated
phase in the interval of length x can be computed with

W J,NC(τp, x) def=
J−1∑

j=1

vjp∑

k=1
WNC

(
τ j,kp ,

r
x−

(
Tp − (sJp − sjp)

)z
0

)
+

+
`p∑

j=J

vjp∑

k=1
WNC

(
τ j,kp ,

q
x− (sjp − sJp)

y
0

)

�

120 Chapter 4. Scheduling Parallel Task (P-Task)

Tp

s1
p

φ1
p

s2
p = s1

p + f1
p

φ2
p

s3
p = s2

p + f2
p

φ3
p

s4
p = s3

p + f3
p

φ4
p

Tp

s1
p

φ1
p

s2
p = s1

p + f1
p

φ2
p

s3
p = s2

p + f2
p

φ3
p

s4
p = s3

p + f3
p

φ4
p

qj,1
p

qj,2
p

qj,3
p

x

q2,V
p + (Tp − (s3

p − s2
p)) + q3,1

p

q2,V
p + (Tp − (s4

p − s2
p)) + q4,1

p

q2,V
p + (s2

p − s1
p) + q1,1

p

Figure 4.9 – Example of computation for W 2,CI(τp, x), phase φ2
p is a carry-in task,

so its last activation is q2,V
p = min

v=1,...,v2,v
p

q2,v
p before the end of interval x

Computation of W J,CI(τp, x) In this paragraph we determine the length
of the studied interval for each phase (so each subtask) of a carry-in task τp
considering that φJp , the J th phase, has a carry-in job.

In this case, the idea is slightly more complicated. Indeed, according to
Figure 4.7, φJp does not start at the beginning of the interval of length x but its
last activation completes exactly at the end of this interval. For example the last
activation of subtask τJ,kp must be exactly qJ,kp before the end of the interval. The
problem is that sub-programs of a phase could have different values of WCET. If
we arbitrary choose the sub-program in order to determine the last activation
of the phase, we may be pessimist or do an error. The best approach would be
to test all possibilities but it would be time consuming. Due to the complexity
of this approach, we coose to explore a sub-optimal approach: the sub-program
with the minimal value of WCET will be selected to determine the scenario of
activation fixing the last activation of its phase, so qJ,Vp = min

v=1,...,vJ,vp
qJ,vp . By doing

so we allow a maximum time to the other phases to run. See Figure 4.9 for an
example with J = 2.

If the J th phase has a carry-in job in the interval of length x, then:

• for the next phases (j > J), each subtask τ j,vp has to be considered on an
interval of length

r
x−

(
JqJ,Vp Kx +

(
Tp − (sjp − sJp)

)
+ qj,vp

)z
0
with qJ,Vp =

min
v=1,...,vJ,vp

qJ,vp .

• for the previous phases (j < J), each subtask τ j,vp has to be considered
on an interval of length

r
x−

(
JqJ,Vp Kx + (sJp − sjp) + qj,vp

)z
0
with qJ,Vp =

min
v=1,...,vJ,vp

qJ,vp .

We then deduce Lemma 4.6.

4.5. Schedulability analysis 121

Lemma 4.6.
The workload bound of the carry-in task τp considering that φJp has a carry-in job
in the interval of length x can be computed with

W J,CI(τp, x) def=
J−1∑

j=1

vjp∑

k=1
WCI

(
τ j,kp ,

r
x−

(
JqJ,Vp Kx + (sJp − sjp) + qj,vp

)z
0

)
+

+
`p∑

j=J

vjp∑

k=1
WCI

(
τ j,kp ,

r
x−

(
JqJ,Vp Kx +

(
Tp − (sjp − sJp)

)
+ qj,vp

)z
0

)

with qJ,Vp = min
v=1,...,vJ,vp

qJ,vp . �

Computation of WNC(τp, x) and WCI(τp, x) Finally, a bound of the work-
load generated by a task τp is given by Theorem 4.10.

Theorem 4.10.
The workload bounds of a sporadic parallel MPMT task given by Definition 4.8
can be computed with

WNC(τi, x) def= max
J=1,...,lp

W J,NC(τi, x)

WCI(τi, x) def= max
J=1,...,lp

W J,CI(τi, x)

�

Proof. This a direct consequence of Lemma 4.4 and Lemma 4.5 for WNC(τi, x)
and Lemma 4.6 for WCI(τi, x).

The WCRT is then computed using Theorem 4.9, Equations 4.16, 4.17 and
Lemma 4.3 from Guan et al. [Gua+09] to get the total interference.

4.5.2.2 The periodic case - An exact value

Since each phase has to receive its own deadline and offset (the period is the same
as the one of the original task), we can consider that the task set τ is composed
of a number of mono-phase tasks (τ ji is the corresponding mono-phase task of
the φji phase) for which we have to establish the values of the deadline and offset
parameters.

We know from Goossens and Berten [GB10] that for mono-phase parallel
RT tasks, [0, Sn + P) is a feasibility interval . We can determine the WCRT
of each phase by building the schedule of τ for the given time interval. The
maximum response time obtained for a given phase in [0, Sn + P] becomes its
local deadline and the offset of the next phase of the same task.
The schedule for [0, Sn + P) is build as follows:

122 Chapter 4. Scheduling Parallel Task (P-Task)

• the first phase of highest priority task (τ1) is assigned the needed processors
at arrival (O1 + αTi, α > 0) in [0, Sn + P); its maximum response time in
this time interval becomes the local deadline (f 1

1 = R1
1) of the phase and

the offset (s2
1 = f 1

1) of the second phase of the task.

• the second phase of τ1 is assigned the needed processors at the time instant
O1 + s2

1 + αTi (α > 0); the maximum response time of the phase in the
time interval becomes its local deadline f 2

1 and the offset s3
1 = f 2

1 + s2
1 of

the next phase, etc.

• when the assignation of the first task is completed, we start assigning the
phases of the second one, etc.

4.6 Scheduling Gang tasks versus Multi-Thread
tasks

0 1 2 3 4 5

π2 τ1,2
2

π1 τ1,1
1 τ1,1

2

Gang Scheduling

0 1 2 3 4 5

π2 τ1,2
2 τ1,1

2

π1 τ1,1
1

Multi-Thread Scheduling

Figure 4.10 – Gang scheduling versus Multi-Thread scheduling

Figure 4.10 illustrates a Gang and a Multi-Thread scheduling for the “same”
task set τ = {τ1, τ2}: τ1(0, (φ1

1), T1, D1), φ1
1 = (0, {3}, D1) (i.e., q1,1

1 = 3), τ2 =
(0, (φ1

2), T2, D2), φ1
2 = (0, {1, 1}, D2) (i.e., q1,1

2 = 1 and q1,2
2 = 1). In our case, τ1 �

τ2. Focusing on τ2, Gang scheduling has to manage the rectangle max
(
q1,1

2 , q1,2
2

)
×

v1
2 = 1×2 while Multi-Thread scheduling has to manage two 1-unit length threads.

From our point of view, we present the respective advantages of Multi-Thread
and Gang scheduling seen from the schedulability angle.
Advantages of Gang scheduling:

1. The scheduling seems to be easiest to understand since we need to schedule
rectangles in a two dimensions space (time and processors).

2. For tasks with a frequent need of communications between its threads, it
seems to be easiest to consider threads by groups instead of decomposing
the task in a large number of phases.

4.6. Scheduling Gang tasks versus Multi-Thread tasks 123

Advantages of Multi-Thread scheduling:

1. Multi-Thread scheduling does not suffer from priority inversion. As shown
by Goossens and Berten [GB10], Gang scheduling suffer from priority
inversion, i.e., a lower priority task can progress while an higher priority
active task cannot.

2. The number of processors required by a task can be larger than the platform
size.

3. An idle processor can always be used if a thread is ready. With Gang
scheduling, because of the requirement that the task must execute on
exactly v processors simultaneously very often many processors may be left
idle while there is active tasks.

4. Last but not least, Multi-Thread FTP schedulers are proven predictable in
Subsection 4.5.1. On the other hand, as shown by Goossens and Berten
[GB10], Gang FTP schedulers are not predictable.

4.6.1 Gang DM and (DM,IM) scheduling are incompara-
ble

In this section we show that Gang FTP and Multi-Thread hierarchical (FTP,FSP)
schedulers may be incomparable — in the sense that there are task sets which
are schedulable using Gang scheduling approaches and not by Multi-Thread
scheduling approaches, and conversely. The result described in this section has
been originally presented by Lupu and Goossens [LG11] and redeveloped in
our joint publication with Courbin, Lupu, and Goossens [CLG13].

The considered FTP scheduler is DM [Aud+91]: the priorities assigned to
tasks by DM are inversely proportional to the relative deadlines. The FSP
scheduler is called Index Monotonic (IM) and it assigns priorities as follows: the
lower the index of the sub-program within the task, the higher the priority.

In the following examples, the task offsets are equal to 0 and the feasible
schedules are periodic from 0 with a period of P (according to Theorem 4.5 and
the work of Goossens and Berten [GB10]).

First example This first example presents a task set that is unschedulable
by Gang DM, but schedulable by (DM,IM) on a multiprocessor platform com-
posed of 2 processors. The tasks is the set τ = {τ1, τ2, τ3} have the following
characteristics: τ1(0, (φ1

1), 3, 3), φ1
1 = (0, {2}, 3), τ2(0, (φ1

2), 4, 4), φ1
2 = (0, {3}, 4)

and τ3(0, (φ1
3), 12, 12), φ1

3 = (0, {2, 2}, 12). According to DM τ1 � τ2 � τ3.
We can observe (see Figure 4.11) that according to Gang DM, task τ3 has to

wait for 2 available processors simultaneously in order to execute. This is the

124 Chapter 4. Scheduling Parallel Task (P-Task)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

π2 τ1,1
2 τ1,1

2 τ1,1
2 τ1,2

3

π1 τ1,1
1 τ1,1

1 τ1,1
1 τ1,1

1 τ1,1
3

Deadline Miss

4.11.1: Gang DM

0 1 2 3 4 5 6 7 8 9 10 11 12 13

π2 τ1,1
2 τ1,1

2 τ1,1
2

π1 τ1,1
1 τ1,1

1 τ1,1
1 τ1,1

1τ1,1
3 τ1,2

3

τ1,1
3 τ1,2

3

4.11.2: (DM,IM)

Figure 4.11 – Gang DM unschedulable, (DM,IM) schedulable

case at time instant 11; though, at time instant 12 the task has uncompleted
execution demand and it misses its deadline.

In the case of (DM,IM), τ1 and τ2 execute at the same time instants and on the
same processors as in Gang DM. The difference is that τ3 can start executing its
first process at time instant 2 since one processor is available. Taking advantage
of the fact that the processors are left idle by τ1 and τ2 at some time instants, the
first process of τ3 (which is the only τ3 process in the interval [0, 12)) completes
execution at time instant 8. No deadline is missed, therefore, the system is
schedulable by (DM,IM).

Second example The second example presents a task set τ = {τ1, τ2, τ3}
which is schedulable with Gang DM, but unschedulable with (DM,IM) on a
multiprocessor platform composed of 3 processors. The tasks in τ have the
following characteristics: τ1(0, (φ1

1), 4, 4), φ1
1 = (0, {3, 3}, 4), τ2(0, (φ1

2), 5, 5), φ1
2 =

(0, {1, 1}, 5) and τ3(0, (φ1
3), 10, 10), φ1

3 = (0, {9}, 10). According to DM τ1 � τ2 �
τ3.

In Figure 4.12, we can observe that according to Gang DM, at time instant 0,
τ1 is assigned to 2 of the 3 processors in the platform. Since there is only one
processor left, τ2 cannot execute, therefore τ3 starts its execution on the third
processor. At time instant 3, 2 processors are available and, consequently, τ2 may
start executing, etc. No deadline is missed in the time interval [0, 12), therefore

4.6. Scheduling Gang tasks versus Multi-Thread tasks 125

the system is schedulable with Gang DM.

According to (DM,IM), even if τ1 occupies 2 processors of the 3 in the platform,
τ2 may start executing on the third a first thread from time instant 0 to 1. The
second thread of its first process will execute on the third processor from time
instant 1 to 2. We can conclude that τ3 misses its deadline at time instant 10
since it has 9 units of execution demand and only 6 time units available until its
deadline.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

π3 τ1,1
3

π2 τ1,1
1 τ1,1

1 τ1,1
1

π1 τ1,2
1 τ1,2

1 τ1,2
1

τ1,1
2

τ1,2
2

τ1,1
2

τ1,2
2

τ1,1
2

τ1,2
2

4.12.1: Gang DM

0 1 2 3 4 5 6 7 8 9 10 11 12 13

π3 τ1,1
2 τ1,1

2

π2 τ1,1
1 τ1,1

1 τ1,1
1

π1 τ1,2
1 τ1,2

1 τ1,2
1

τ1,2
2 τ1,1

3 τ1,2
2

τ1,1
3

τ1,1
3

Deadline Miss

4.12.2: (DM,IM)

Figure 4.12 – Gang DM schedulable, (DM,IM) unschedulable

Therefore, Gang DM and (DM,IM) allow scheduling of different task sets
but we see in our empirical study that this Multi-Thread scheduler appears to
successfully schedule more task sets than this Gang scheduler.

126 Chapter 4. Scheduling Parallel Task (P-Task)

4.7 Gang versus Multi-Thread task models eval-
uation

The purpose of this empirical study is to evaluate the performance of Multi-
Thread schedulers compared with the one of Gang schedulers. More specifically,
the chosen Multi-Thread scheduler is (DM,IM) from the (FTP,FSP) scheduler
type. Among the Gang schedulers, we consider Gang DM from the Gang FTP
scheduler type. The work described in this section has been originally presented
by Lupu and Goossens [LG11]. It has been redeveloped in our joint publication
with Courbin, Lupu, and Goossens [CLG13].

Since Gang FTP schedulers are not predictable (see Section 4.6), in this study
we consider constant execution times. From the work of Goossens and Berten
[GB10] and the Schedulability Test 4.2, we know that we have to simulate both
Gang FTP and (FTP,FSP) schedulers in the time interval [0, Sn + P) in order to
conclude if the task set is schedulable with one of them, with both of them or
unschedulable.

Since Gang schedulers consider that the execution requirement of processes
corresponds to a “Ci × Vi” rectangle, we will consider MPMT tasks composed
of only one phase. Moreover, the execution times of all the sub-programs of a
task are considered to be equal. Notice that in this context, a MPMT task is
equivalent to a Fork-Join task.

4.7.1 Conditions of the evaluation
We present in this section the conditions of our evaluation. First of all, we make
explicit the criteria used to compare the solutions and we explain the methodology
applied to generate the task sets so that anyone could reproduce our results.
About the platform, we considered identical multiprocessor platform containing
4, 8 and 16 processors.

4.7.1.1 Evaluation criteria

Gang DM and (DM,IM) are evaluated according to the following criteria:

• Success Ratio is defined with Equation 4.20. For instance, it allows us to
determine which algorithm schedules the largest number of task sets.

number of task sets successfully scheduled
total number of task sets (4.20)

• The WCRT of the lowest priority task in the system. The WCRT shows
how a lower priority task is impacted by higher priority tasks. This value is
used to measure how the scheduler influences the impact of higher priority

4.7. Gang versus Multi-Thread task models evaluation 127

tasks on the other. We therefore chose to look only at the lowest priority
task to measure the total impact of all other tasks.
In practical terms, if task set τ is schedulable, the WCRT of a task τi ∈ τ
for Gang DM and (DM,IM) are calculated according to its processes within
the time interval [0, Sn + P). For each schedulable task set with both
Gang DM and (DM,IM) we compare the WCRT of the lowest priority
task (WCRTGangDM and WCRT (DM,IM) respectively). For a given system
utilization, we count separately the task sets whereWCRTGangDM is strictly
inferior toWCRT (DM,IM) and conversely. Consequently, the uncounted task
sets are those where the computed WCRT are equal for the two schedulers.
For example, the value of this criterion for the case WCRTGangDM <

WCRT (DM,IM) is computed with Equation 4.21.

number of scheduled task sets with WCRTGangDM < WCRT (DM,IM)

total number of task sets scheduled by GangDM and (DM, IM)
(4.21)

Each criterion is presented in two ways. Firstly using a graph of the values
as a function of the utilization of task sets. Secondly using a table with an
aggregate performance metric known as Weighted criterion (Definition 4.18)
derived from the Weighted schedulability proposed by Bastoni, Brandenburg,
and Anderson [BBA10]. This metric reduces the obtained results to a single
number which sums up the comparison.

Definition 4.18 (Weighted criterion [BBA10]).
Let S(U) ∈ [0, 100] denote the considered criterion for a given U and let Q denote
a set of evenly-spaced utilization gaps (e.g., Q = {1.0, 1.2, 1.4, ...,m}). Then
weigthted criterion W is defined as

W
def=

∑
U∈Q

(
U × S(U)

100

)

∑
U∈Q U

�

4.7.1.2 Task set generation methodology

The procedure for task set generation is the following: individual tasks are
generated and added to the task set until the total system utilization exceeds the
platform capacity (m).

The characteristics of a task τi are integers and they are generated as follows:

1. the period Ti is uniformly chosen within the interval [1; 250],

2. the offset Oi is uniformly chosen within the interval [1;Ti],

128 Chapter 4. Scheduling Parallel Task (P-Task)

3. the utilization Uτi is inferior to m and it is generated using the following
distributions:

• uniform distribution within the interval [1/Ti;m],

• bimodal distribution: light tasks have an uniform distribution within
the interval [1/Ti;m/2], heavy tasks have an uniform distribution within
the interval [m/2;m]; the probability of a task being heavy is of 1/3,

• exponential distribution of mean m/4,

• exponential distribution of mean m/2,

• exponential distribution of mean 3×m/4.

4. the number of thread Vi = v1
i is uniformly chosen within the interval J1;mK.

We only care about v1
i since we consider mono-phase tasks,

5. since we consider that all the sub-programs of a task τi have equal execution
times, it is sufficient to compute a single execution time value: Ci = q1,k

i =
Uτi × Ti/v1

i , ∀k ∈ J1; v1
i K,

6. the deadline Di is uniformly chosen within the interval [Ci;Ti].

We decided to reduce the time granularity (the minimum possible value of
each parameter) to 1. Thus, for each task τi, its parameters Ci, Ti and Di are
considered as integers. Considering that the values are discretized according to
the clock tick, it is always possible to modify all the parameters to integer values
by multiplying them by an appropriate factor. To simplify testing, we used this
approach and all the parameters are limited to integer values. This does not
imply, however, that the algorithms used and presented in this evaluation cannot
be applied to non-integer values.

We use several distributions (with different means) in order to generate a wide
variety of task sets and, consequently, to have more accurate simulation results.

The generated task sets have a least common multiple of the task periods
bounded by 5× 106 (each task set with a larger value is deleted and replaced by
an other until this constraint is respected). A total of 450× 103 task sets were
generated.

4.7.2 Results
4.7.2.1 Success Ratio

Figures 4.13.1–4.13.3 contain 3 plots: one represents the percent of task sets
scheduled by (DM,IM) multi-thread scheduler, a second one the percent of task
sets scheduled by Gang DM and a third one expresses the percent of task sets

4.7. Gang versus Multi-Thread task models evaluation 129

scheduled by both of them. Table 4.2 gives the weighted criterion values for
schedulability study.

Figures 4.13.1–4.13.3 show that the performance gap between the two sched-
ulers is growing as the number of processors grows. We observe the same behaviour
in Table 4.2 where the difference between the weighted criteria of the two sched-
ulers constantly increases with the number of processors; this difference is equal
to 0.03 on a 4 processors platform, 0.04 on 8 processors and 0.05 on 16 processors.

We can also verify that (DM,IM) and Gang DM are incomparable since the
plot representing the task sets successfully scheduled by the two schedulers is
below the others. Moreover the amount of additional task sets that Multi-Thread
scheduling can manage is quite higher (the difference between plots “(DM,IM)”
and “both” is higher than the difference between plots “Gang DM” and “both”).
For example, in the case of 4 processors platform, 50% of the task sets are
unschedulable according to Gang DM at a utilization level of 2.4 (= 1.67m);
however, using (DM,IM), approximatively 50% of the task sets are schedulable at
a utilization level of 2.5 (= 1.60m). Hence, in this case, (DM,IM) enables 4.2%
better utilization of the processing resource than Gang DM. In the case of 16
processors platforms, Gang DM schedules 50% of the tasks set at a utilization
level of 8.2 (= 1.95m) while (DM,IM) schedules the same amount at a utilization
level of 9.1 (= 1.76m). This difference corresponds to an increase in usable
processing capacity of around 11%.

Notice that we generate our tasks with a number of threads which can be equal
to the number of processors on the platform since v1

i is uniformly chosen within
the interval J1;mK. Therefore, the results show the capacity of the scheduler to
take advantage of the whole platform. Our results confirm that (DM,IM) has an
advantage versus Gang DM in this context. As presented in the advantages of
Multi-Thread scheduling in Section 4.6, it can be explained by the fact that Gang
schedulers require v1

i processors to be simultaneously idle to start task τi while
Multi-Thread schedulers can always use an idle processor if a thread is ready.

(DM,IM) Gang DM

4 processors 0.34 0.31
8 processors 0.29 0.25
16 processors 0.28 0.23

Table 4.2 – Weighted criterion for schedulability study from Figures 4.13.1–4.13.3

4.7.2.2 WCRT of the lowest priority task

In the following we will reference the Figures 4.14.1–4.14.3. The utilization of the
considered systems in this part of the study is greater than 25% and less to 90%

130 Chapter 4. Scheduling Parallel Task (P-Task)

0

0.25

0.5

0.75

1

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

(DM.IM)
Gang DM

Both

4.13.1: 4 processors

0

0.25

0.5

0.75

1

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

(DM.IM)
Gang DM

Both

4.13.2: 8 processors

0

0.25

0.5

0.75

1

 4 5 6 7 8 9 10 11 12 13 14 15 16

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

(DM.IM)
Gang DM

Both

4.13.3: 16 processors

Figure 4.13 – Success Ratio analysis

of the platform capacity since we focus only on task sets schedulable by both
Gang DM and (DM,IM) schedulers. In each figure, there are two plots: one that
marks the portion of task sets where WCRT (DM,IM), the (DM,IM) WCRT of
the lowest priority task, is strictly inferior to WCRTGangDM , the one computed
under Gang DM; a second plot marks the contrary behaviour. Table 4.3 gives
the weighted criterion values for WCRT study.

It is clear from Figures 4.14.1–4.14.3 that (DM,IM) outperforms Gang DM on
4, 8 and 16 identical multiprocessor platforms in this context. Table 4.3 shows the
same results with values which are at least two times higher using the (DM,IM)
scheduler.

4.7. Gang versus Multi-Thread task models evaluation 131

As previously, we observe that Multi-Thread schedulers is at an advantage
compared with Gang schedulers since it can start a thread without waiting for v1

i

processors to be idle. This clearly allows reducing the WCRT of the tasks.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

P
e

rc
e

n
ta

g
e

 o
f

ta
s
k
 s

e
ts

Utilization of task set

WCRT(DM,IM) < WCRTGangDM
WCRTGangDM < WCRT(DM,IM)

4.14.1: 4 processors

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

P
e

rc
e

n
ta

g
e

 o
f

ta
s
k
 s

e
ts

Utilization of task set

WCRT(DM,IM) < WCRTGangDM
WCRTGangDM < WCRT(DM,IM)

4.14.2: 8 processors

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 4 5 6 7 8 9 10 11 12 13 14

P
e

rc
e

n
ta

g
e

 o
f

ta
s
k
 s

e
ts

Utilization of task set

WCRT(DM,IM) < WCRTGangDM
WCRTGangDM < WCRT(DM,IM)

4.14.3: 16 processors

Figure 4.14 – WCRT analysis

WCRT(DM,IM) < WCRTGangDM WCRTGangDM < WCRT(DM,IM)

4 processors 0.40 0.19
8 processors 0.46 0.23
16 processors 0.50 0.23

Table 4.3 – Weighted criterion for WCRT study from Figures 4.14.1–4.14.3

132 Chapter 4. Scheduling Parallel Task (P-Task)

4.8 Summary
In this chapter we considered the Multi-Thread scheduling for parallel Real-
Time (RT) systems. We introduce a new task model, Multi-Phase Multi-
Thread (MPMT) task model, which belongs to the Multi-Thread class. The main
advantage of this class is that it does not require all threads of a same task to
execute simultaneously as Gang scheduling does.

We defined in this chapter several types of priority-driven schedulers dedicated
to our parallel task model and scheduling method. We distinguished between
Hierarchical schedulers (that firstly assign distinct priorities at task set level and
secondly, within each task) and Global Thread schedulers (that do not take into
account the original tasks when priorities are assigned at thread level).

We proposed the MPMT task model in order to rectify the negative result
revealed by Lupu and Goossens [LG11] which stated that “multi-phase multi-
thread Hierarchical schedulers are not predictable”. With relative arrival offsets
and relative deadlines assigned to each phase, we were able to define predictable
Hierarchical scheduler and Global Thread scheduler for this task model. Indeed,
we showed that, contrary to Gang Fixed Task Priority (FTP), the Hierarchical
and Global Thread schedulers based on FTP and Fixed Sub-program Priority
(FSP) are predictable. Based on this property and the periodicity of their
schedules, we defined two exact schedulability tests. We also explained how adapt
a task set defined by the well known Fork-Join task model into MPMT task
model in order to take advantage of our results.

Finally, even though the Gang and Multi-Thread schedulers are, as we have
shown, incomparable, the empirical study confirmed the intuition that Multi-
Thread scheduling outperforms Gang scheduling. In terms of success ratio, the
performance gap increases as the number of processors grows.

Part III

Tools for real-time scheduling
analysis

Chapter 5

Framework fOr Real-Time
Analysis and Simulation

Codez toujours en pensant que celui qui maintiendra votre code est un
psychopathe qui connait votre adresse.

Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live.

John F. Woods [Woo91]

Contents
5.1 Introduction . 136

5.2 Existing tools . 136

5.3 Motivation for FORTAS 137

5.4 Test a Uni/Multiprocessor scheduling 138

5.4.1 Placement Heuristics . 139
5.4.2 Algorithm/Schedulability test 139

5.5 View a scheduling . 141

5.5.1 Available schedulers . 141
5.6 Generate tasks and task sets 142

5.6.1 Generating a Task . 142
5.6.2 Generating Sets Of Tasks 143

5.7 Edit/Run an evaluation . 144

5.7.1 Defining the sets . 145
5.7.2 Defining the scheduling algorithms 146
5.7.3 Defining a graph result . 146
5.7.4 Generating the evaluations 148

5.8 Summary . 148

136 Chapter 5. Framework fOr Real-Time Analysis and Simulation

5.1 Introduction
We observe a growing importance of multiprocessors architectures including
multi-core systems addressed by the field of Real-Time (RT) scheduling. These
architectures have brought a lot of questions to this area, and its own set of
answers: algorithms, techniques, optimizations etc.

Many solutions have been proposed by the community to meet this challenge:
either for pre-emptive or for non-pre-emptive scheduling, with fixed or dynamic
priority scheduling, based on a Global Scheduling (G-Scheduling), Partitioned
Scheduling (P-Scheduling) or Semi-Partitioned Scheduling (SP-Scheduling)
approaches.

Everyone develops his idea, discovers many advantages and would like to share
with the community so that it can use, understand the tricks and possibly be
inspired in order to improve the original idea. But when comes the time to test
the solution and present it, we are often faced to a problem: on what basis can we
compare? Too few common ways of generating sets of tasks used for simulations
or common way to implement other solutions are existing.

The tool presented in this chapter does not respond to each questions, but it
proposes a perfectible, extensible, open and scalable solution for these concerns.
A minimalist Graphical User Interface (GUI) is available for those who want
easy access and basic usage. The code is open and offered to those who want
complete control and specific results. This chapter presents some functionalities
of this tool.

Section 5.2 presents some other tools and our motivation are given in Sec-
tion 5.3. Then, we present the four main options identified as the most common:
test a scheduling algorithm (Section 5.4), observe a scheduling (Section 5.5),
generate tasks and sets of tasks (Section 5.6) and edit and run an evaluation
of performance comparison (Section 5.7). A final section is devoted to summary
and future work related to this tool (Section 5.8).

5.2 Existing tools
Several tools, commercial or free, are already available to study RT systems. On
the commercial side, the goal is usually an analysis and a complete design of a par-
ticular system. Examples are TimeWiz (TimeSys Corp.) or RapidRM (Tri-Pacific
Software Inc.) based on the Rate Monotonic Analysis (RMA) methodology. On
the other hand, free projects proposed by the academic community generally
respond to specific needs and are not always flexible or even maintained. For
projects still in development, we can cite MAST [Har+01] which proposes a set of
tools to analyse and represent the temporal and logical elements of RT systems.
Cheddar [Sin+04] mainly focuses on theoretical methods of RT scheduling and

5.3. Motivation for FORTAS 137

proposes a simulator and the majority of existing schedulability tests. STORM
[UDT10] defines the hardware platform and software as an XML file and then
conduct simulations on scheduling. Others tools like RESCH [KRI09], Grasp
[HBL10] or LitmusRT [Cal+06] can analyse the practical operation of a RT sche-
duling on a real system such as µC/OS-II and Linux. Finally, YARTISS [Cha+12]
provide an interesting modular tool in Java with the special feature of considering
the energy state as a scheduling constraint in the same manner as the Worst
Case Execution Time (WCET).

Each tool provides a valuable aid for the analysis of RT systems. However,
it seemed that almost all of them focus on the analysis or design of a given
scheduling: given my platform, or even my task set, what will be the performance
or how do I have to change my system to ensure its schedulability?

Framework fOr Real-Time Analysis and Simulation (FORTAS) implements
some of these elements but often remains far less advanced than existing tools.
However, it focuses on the possibility to compare and evaluate scheduling algo-
rithms, whether based on a theoretical analysis of feasibility/schedulability or on
the simulation of scheduling, without necessarily focusing on a given platform or
a specific task set.

5.3 Motivation for FORTAS

The tools proposed by the community do not exactly correspond to our needs.
Especially, we needed to evaluate and compare algorithms based on analytical
tests and not simulations. We also needed to have a simple GUI to use this tool
for teaching purposes. We certainly do not meet all the needs in this area but we
simply want to offer and make our work available.

Thus, this tool was first developed for analytical testing and evaluation. The
Java programming language was chosen for its development efficiency and proven
interoperability. Each part of the program is conceived as a module and an
effort of abstraction was given to each element. Thus, the GUI is completely
interchangeable and can be redeveloped by anyone without coming to interfere
with the core program. Similarly, a new algorithm, a new scheduling policy, a
new way to sort tasks or processors, a new placement heuristic, a new criterion
of comparison for graphs etc can be made by adding a simple Java file to the
project without further changes.

To introduce the current possibilities of the tool, we identified four main axis
which will be explained in the following sections. A basic GUI has been developed
to quickly test some features and understand the possibilities.

138 Chapter 5. Framework fOr Real-Time Analysis and Simulation

5.4 Test a Uni/Multiprocessor scheduling

Test
Scheduling

The first option is to test a scheduling algorithm. This part corre-
sponds to analytically test if a task set associated to a processor set
will be schedulable or not (see Figure 5.1). Whatever the number
of processors contained in the set, the tool should be able to act
upon an algorithm and give a solution.

Task set Processor set

Java Tool
Coose an algorithm:

Global/Paritioned/Semi-Partitioned

Is schedulable ?

Figure 5.1 – Test a Scheduling

Based on the current state of the solutions, we have coded the three different
approaches for multiprocessors:

• The G-Scheduling, which consists in scheduling tasks in a single queue and
allow jobs to migrate between processors, requires a global schedulability
test.

• With P-Scheduling, we need to find a placement heuristic to assign tasks to
processors and then to use a uniprocessor feasibility/schedulability condition
on each processor to decide on the schedulability of the task assigned to
it. A sorting criterion for tasks and processors can be added to improve
the performance of the approach. Notice that it corresponds exactly to our
generalized P-Scheduling algorithm given in Section 3.2.

• The SP-Scheduling consists in partitioning the majority of the tasks, and
allow a few to migrate between processors. In addition to P-Scheduling, this
approach needs a uniprocessor feasibility/schedulability condition which
takes into account the migrant tasks. In particular, we have coded our
generic SP-Scheduling algorithm for Migration at Local Deadline (MLD)
approaches defined in Section 3.3.

5.4. Test a Uni/Multiprocessor scheduling 139

In order to obtain a modular and scalable tool, a scheduling algorithm has been
split into several parts:

• A feasibility/schedulability test is an interface which has to answer if a task
added to a given processor is schedulable.

• A placement heuristic that defines how the processors should be checked in
order to assign tasks.

• A criterion for sorting tasks or processors that defines the order in which
they must be addressed.

5.4.1 Placement Heuristics

Used for P-Scheduling and SP-Scheduling approaches, placement heuristic was
defined as an abstract class. This abstract object needs one function: according
to a feasibility/schedulability test, a processor and a task sets, it must return the
processor able to schedule this task, if any.
Currently, the four placement heuristics given in Subsection 3.2.2.2.2 are coded:
First-Fit, Next-Fit, Best-Fit and Worst-Fit.

Modularity A new placement heuristic can be added by deriving the abstract
class. For information, the First-Fit heuristic is coded in about 10 lines.

5.4.2 Algorithm/Schedulability test

A scheduling algorithm is defined according to the multiprocessor approach used:
G-Scheduling, P-Scheduling or SP-Scheduling. An abstract class defines the
generic procedure for each approach:

• The G-Scheduling requires only a feasibility/schedulability test on all tasks
and processors.

• The P-Scheduling sorts the tasks / processors based on criteria, then assigns
them on processors according to the selected placement heuristic and to
the uniprocessor feasibility/schedulability test defined in the algorithm.

• The SP-Scheduling offers several methods presented in the state-of-the-art,
which includes different ways to determine when and how to split tasks
between processors.

140 Chapter 5. Framework fOr Real-Time Analysis and Simulation

Modularity For example, about 10 lines in a Java file are sufficient to define
the P-Scheduling algorithm which allows us to test any sort criterion of tasks
and processors, any placement heuristic and which uses the uniprocessor feasibili-
ty/schedulability test for pre-emptive Earliest Deadline First (EDF) scheduler
based on the computation of the Load function (See Subsection 2.4.3.1).

If we consider τ = {τ1, . . . , τn} a set of n sporadic sequential tasks, τi(Ci, Ti, Di)
the ist task where Ci is its WCET, Ti is its minimum inter-arrival time and Di

is its relative deadline, here are some feasibility/schedulability tests currently
available in the tool:

• EDF−LL [LL73]: the total utilization of the set Uτ def= ∑n
i=1

Ci
Ti
6 1.

• EDF−BHR [BRH90]: Load(τ) def= supt>0
DBF (τ,t)

t
6 1 with Demand

Bound Function (DBF) represents the upper bound of the work load
generated by all tasks with activation times and absolute deadlines within
the interval [0; t]. The tool implements some optimizations to accelerate the
calculation of the Load function such as the computation of the C-Space
using the simplex algorithm proposed by George and Hermant [GH09b]
or the QPA algorithm of Zhang and Burns [ZB09].

• DM−ABRTW [Aud+93]: Deadline Monotonic (DM) test based on the
response time analysis: ∀τi ∈ τ , ri 6 Di, where ri is τi’s Worst Case
Response Time (WCRT).

• RM−LL [LL73]: Rate Monotonic (RM) test based on the total utilization
of the set Uτ 6 n

(
n
√

2− 1
)
.

Here are some G-Scheduling and SP-Scheduling algorithms currently available in
the tool:

• RTA (G-Scheduling) proposed by Bertogna and Cirinei [BC07]. It is a
global feasibility/schedulability test based on an iterative estimation of the
WCRT of each task for Global EDF scheduler.

• EDF−WM (SP-Scheduling) proposed by Kato, Yamasaki, and Ishi-
kawa [KYI09]. It splits migrants tasks in subtasks and defines a window
during which a subtask should be executed on a processor.

• C=D (SP-Scheduling) proposed by Burns et al. [Bur+10]. It splits mi-
grants tasks in two parts: one with a C=D (τ 1

i (C, Ti, C)), WCET equal
to its deadline) and a second part with the remaining values (τ 2

i (Ci −
C, Ti, Di − C)).

5.5. View a scheduling 141

• EDF−RRJM (SP-Scheduling) proposed by George, Courbin, and So-
rel [GCS11]. It uses Round-Robin Job Migration (RRJM) to split mi-
grants tasks and reduces the number of migration by using job migrations at
job boundaries. Notice that it is the algorithm proposed in Subsection 3.3.2.

5.5 View a scheduling

View
Scheduling

The second option proposed is to allow the user to view the sequence
of scheduling with respect to time. This part is performed by an
abstract object Scheduler which will proceed according to the rules
defined by the scheduling, check deadline misses and record the
jobs scheduled. A GUI proposes a graphical representation of the
scheduling (see Figure 5.2).

Figure 5.2 – GUI to display a scheduling

5.5.1 Available schedulers
Schedulers currently implemented are:

• PFair family (PF , PD2) represents the global scheduling presented by
Baruah, Gehrke, and Plaxton [BGP95],

• Arbitrary Priority Assignment chooses the active job with the highest
predefined priority,

142 Chapter 5. Framework fOr Real-Time Analysis and Simulation

• Deadline Monotonic (DM) chooses the active job with the minimal relative
deadline,

• Rate Monotonic (RM) chooses the active job with the minimal period,

• Earliest Deadline First (EDF) chooses the active job with the minimal
absolute deadline,

• Least Laxity First (LLF) chooses the active job with the minimal laxity.

Each of these scheduler can then be used as mono or multiprocessors schedulers:
one Java object EDF can represent the uniprocessor EDF scheduler or the global
EDF scheduler according to the number of processors available.

Modularity Add a new scheduling policy to the tool consists of adding an
object that derives from the abstract class and only defines the function which
chooses the job to be scheduled in the list of active jobs. The EDF scheduling,
pre-emptive and non-pre-emptive, for uni and multiprocessor, is thus a Java file
of about 10 lines.

5.6 Generate tasks and task sets

Generate

Task Sets

One of the challenges of a test tool for RT scheduling is to offer
a method of generating sets of tasks which give representative
and reusable results for the most honest and consistent possible
comparison.

We based our methods of generation of tasks and sets accord-
ing to the work of Baker [Bak06] and the UUnifast algorithm

proposed by Bini and Buttazzo [BB04]. With a modular and abstract code, it
is possible to use various methods of generation and various parameters such as
type of task deadline or a specific probability distribution for the utilization of
tasks. Sets are saved in an XML file to be loaded for others options of the tool.

5.6.1 Generating a Task
Here we present the procedure derived from the work of Baker [Bak06]. To
generate a task, several parameters are needed:

• The type of deadline, Implicit Deadline (I-Deadline) (the deadline of each
task equal its period), Constrained Deadline (C-Deadline) (the deadline
of each task is less than or equal to its period) or Arbitraty Deadline
(A-Deadline) (the deadline of each task can be lower, equal or greater than
its period),

5.6. Generate tasks and task sets 143

• The probability distribution of the utilization of each task (such as uniform
within the interval [0; 1] or exponential of mean 0.5),

• The interval used to generate the values of periods and deadlines.

The generation procedure is as follows:

1. The period is generated following a uniform distribution in the defined
interval,

2. The utilization of the task is generated according to the distribution selected,

3. The value of WCET is calculated based on the period and utilization of
the task,

4. The value of the deadline is set to the period (I-Deadline), uniformly selected
between the WCET and period (C-Deadline) or uniformly selected between
the WCET and the maximum value of the defined interval (A-Deadline).

5.6.2 Generating Sets Of Tasks
To generate sets of tasks, several functions are available but the main procedure
is also extracted from the work of Baker [Bak06].

The following procedure needs a task generator (see Subsection 5.6.1), a
minimum number of tasks, a maximum utilization of task set and a number of
sets to produce:

1. The minimum number of tasks is created based on the task generator;
utilization of the set must not exceed the maximum utilization defined.
This is the first task set.

2. A new task is generated according to the same task generator. If it can
be added to the previous set without exceeding the maximum defined
utilization, it is added to create a new set. If not, return to the previous
step.

These steps are repeated until the number of sets expected is reached.

144 Chapter 5. Framework fOr Real-Time Analysis and Simulation

5.7 Edit/Run an evaluation

Edit
Evaluation

This option uses all the previous options defined in Sections 5.4, 5.5
and 5.6 to automate the generation of results in order to compare
various algorithms (see Figure 5.3).

It can save results for reuse and share them and extract values
for graphs.

Evaluation File (XML)
Define:
– Task sets
– Processor sets
– Algorithms
– Graphs

Java Tool
Generate sets
Launch tests

Generate graphs

Results of tests Values for graphs

Figure 5.3 – Edit/Run an Evaluation

The definition of an evaluation is done in an XML file containing:

1. A list of types of task sets. These task sets can be defined by generation
parameters according to Subsection 5.6.2 (see Subsection 5.7.1),

2. An equivalent list for processor sets (see Subsection 5.7.1),

3. A list of algorithms. For each one, we can define some settings: placement
heuristics, criteria for sorting tasks, type of task sets (previously defined in
the XML at point 1) and the processor sets to be considered (previously
defined in the XML at point 2) (see Subsection 5.7.2),

4. A list of graphs to be produced according to the results (see Subsec-
tion 5.7.3).

5.7. Edit/Run an evaluation 145

5.7.1 Defining the sets
You could choose to use pre-existing sets of tasks or define generation parameters
(see Section 5.6) and let the generator create the sets.

<EvaluationSetOfTasks>
<Name value="Deadline_IMPLICIT__Distrib_UNIFORM" />
<NbSetOfTasks value="10000" type="Integer" />
<AutoPath value="true" type="Boolean" />
<Path value="./SetOfTasks/" />
<FileName value="setOfTasks.xml" />
<CriterionDeadline value="IMPLICIT" type="CriterionDeadline" />
<CriterionDistribution value="UNIFORM" type="CriterionDistribution" />
<GeneratorSetOfTasks

parameterClassName="TaskModel.SetOfTasksGenerator.GeneratorSetOfTasksETFA">
<Name value="mySetOfTasksGenerator" />
<NbMinTask value="5" type="Integer" />
<MinUtilization value="2" type="BigDecimal" />
<MaxUtilization value="4" type="BigDecimal" />
<GeneratorTask parameterClassName="TaskModel.SetOfTasksGenerator.GeneratorTaskETFA">
<Name value="myTaskGenerator" />
<CriterionUtilizationDistribution value="UNIFORM" type="CriterionDistribution" />
<CriterionDeadline value="IMPLICIT" type="CriterionDeadline" />
<PeriodDeadlineMin value="1" type="BigDecimal" />
<PeriodDeadlineMax value="100" type="BigDecimal" />
<Precision value="15" type="Integer" />
<TaskActivationName value="TaskActivationPeriodic" />
<MaxU value="1" type="BigDecimal" />

</GeneratorTask>
</GeneratorSetOfTasks>

</EvaluationSetOfTasks>

Figure 5.4 – Example to define a type of task sets in the XML Evaluation file

Figure 5.4 defines that in the folder “./SetOfTasks/”, a file “setOfTasks.xml”
will be placed in a sub-folder “./SetOfTasks/IMPLICIT_UNIFORM/” auto
generated and will contain 10000 sets of tasks with a total utilization between 2
and 4, a minimum of 5 tasks for each set and each task will be generated with an
“IMPLICIT” deadline (I-Deadline) and an “UNIFORM” distribution of utilization
within the interval [0; 1].

<EvaluationSetOfProcessors name="4_Processors_HOMOGENEOUS" autoPath="false"
path=".\SetOfProcessors" fileName="setOfProcessors4.xml" nbProcessors="4"
type="HOMOGENEOUS" />

Figure 5.5 – Example to define a type of processor set in the XML Evaluation
file

Figure 5.5 defines that in a folder “./SetOfProcessors/”, a file “setOfPro-
cessors4.xml” contains the definition of a processor set with 4 homogeneous
processors.

146 Chapter 5. Framework fOr Real-Time Analysis and Simulation

5.7.2 Defining the scheduling algorithms
Then, you define algorithms to be tested. For each, indicate the name of the
scheduling algorithm (corresponding to its class name), a file path defining the
location where results will be stored and parameters such as the placement
heuristics to consider, task and processor sets to test and criteria for sorting tasks
and processors.

<EvaluationAlgorithm name="4_EDFPartitioned" algoName="EDF_Load_P" path=".\Results"
fileName="results.xml" >

<Heuristic>FIRST_FIT</Heuristic>
<Heuristic>WORST_FIT</Heuristic>
<CriterionSortSetOfProcessors>PROCESSOR_NONE_ORDER</CriterionSortSetOfProcessors>
<CriterionSortSetOfTasks>TASK_DENSITY_DECREASING_ORDER</CriterionSortSetOfTasks>
<EvaluationSetOfTasks>Deadline_IMPLICIT__Distrib_UNIFORM</EvaluationSetOfTasks>
<EvaluationSetOfProcessors>4_Processors_HOMOGENEOUS</EvaluationSetOfProcessors>

</EvaluationAlgorithm>

Figure 5.6 – Example to define an algorithm in the XML Evaluation file

Figure 5.6 defines that the algorithm “EDF_Load_P” (which correspond to
the P-Scheduling algorithm based on the schedulability test using the computa-
tion of the Load to EDF pre-emptive scheduler) will be tested on the previously
defined task set “Deadline_IMPLICIT__Distrib_UNIFORM”, without sorting
processors and sorting tasks according to decreasing density. Placement heuris-
tics “FIRST_FIT” and “WORST_FIT” will be tested following all possible
combinations between all previous parameters.

The results will be stored automatically in files named “results.xml”, in
separate sub-folders for each parameter in the main folder “./Results/”.

5.7.3 Defining a graph result
Finally, parameters for graphs can be defined. X-axis and Y-axis have to be
selected according to a class name. For example, “GetUtilizationValue” returns
the utilization of the task set, “GetSuccessValue” retrieves in the result files if
the set has been successfully scheduled by the algorithm.

Modularity A new class placed in the correct package will automatically add
a new possible value for axis in graphs.

By defining a curve name, it indicates what each curve must represent. For
example, “GetAlgorithmCurveName” will generate a curve for each algorithm,
while “GetHeuristicCurveName” will generate a curve for each placement heuristic
found in the result files.

5.7. Edit/Run an evaluation 147

Modularity To add a new type of curve, just add a Java file with a class
derived from the abstract object “GetCurveName”.

It is also possible to filter the results in order to focus only on some of the
data. For example, the graph can concentrate on a particular type of deadline or
on results for a 4-processor platform. It can consider only some algorithms, some
heuristics or only sets of tasks in a particular range of utilization.

Modularity Each of these parameters corresponds to “filter”, it is possible to
add a new filter to the tool by filing a Java file derived from the abstract class in
the correct package.

<Graphs path="./Graphs/">
<Graph name="MyGraph " Scale="1">
<GetValueX name="GetUtilizationValue" />
<GetValueY name="GetSuccessValue" />
<GetCurveName name="GetAlgorithmCurveName" />
<Deadlines>
<Deadline>IMPLICIT</Deadline>
<Deadline>CONSTRAINED</Deadline>

</Deadlines>
<Distributions>
<Distribution>UNIFORM</Distribution>

</Distributions>
<NumbersOfProcessors>
<NumberOfProcessors>4</NumberOfProcessors>

</NumbersOfProcessors>
<Filters>
<Filter name="StatisticsHeuristicFilter">
<ToKeep>FIRST_FIT</ToKeep>

</Filter>
<Filter name="StatisticsAlgorithmFilter">
<ToKeep>EDF_Load_P</ToKeep>
<ToKeep>DM_RT_P</ToKeep>

</Filter>
<Filter name="StatisticsUtilizationRangeFilter">
<ToKeep>2</ToKeep>
<ToKeep>4</ToKeep>

</Filter>
</Filters>

</Graph>
</Graphs>

Figure 5.7 – Example to define a graph in the XML Evaluation file

Figure 5.7 creates a text file “MyGraph.txt” in the folder “./Graphs/” con-
taining data which describe a graph with a X-axis representing the utilization of
sets of tasks, Y-axis the success ratio. Each curve will be a different algorithm.
We will focus on sets of tasks with “IMPLICIT” or “CONSTRAINED” deadlines,
with a utilization generated with a “UNIFORM” distribution of probability. Only
4-processor platform will be checked and results from the “FIRST_FIT” heuristic.
Both algorithms “EDF_Load_P” and “DM_RT_P” (P-Scheduling algorithm

148 Chapter 5. Framework fOr Real-Time Analysis and Simulation

based on the schedulability Necessary and Sufficient Test (NS-Test) on response
time for a DM pre-emptive scheduler) will be taken into account. Finally, we are
interesting only in sets of tasks with utilization in the range [2; 4].

The graph produced with the example given in this chapter is shown in
Figure 5.7. This figure is created using Gnuplot (http://www.gnuplot.info/)
to interpret “MyGraph.txt”.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

S
u

c
c
e

s
s
 R

a
ti
o

Utilization of task set

EDF_Load_P
DM_RT_P

Figure 5.8 – Example of graph produced according to the example

5.7.4 Generating the evaluations
The evaluation file allows us to automate the whole procedure: the generation of
sets of tasks and the generation of graphs. Filters allows us to reuse some of the
results and thus to resume the evaluations conducted previously.

However, this process can be time-consuming. Since the tool can also be
used with a command-line, it allows us to run the computation, stop them at
a predefined times and resume them later. It can then be used to spread the
workload over multiple computers: the tool will generate a list of parameters
corresponding to an XML Evaluation file; each parameter can be run on different
computers and then assembled without recoveries problems.

5.8 Summary
Research in Real-Time (RT) scheduling has produced a large number of algo-
rithms with their associated feasibility/schedulability conditions to respond to
the increasing complexity of multiprocessors architectures. However, it is difficult
to find tools able to evaluate and compare these algorithms based on simulations
or on analytical tests. Our tool named Framework fOr Real-Time Analysis

http://www.gnuplot.info/

5.8. Summary 149

and Simulation (FORTAS) offers to facilitate the comparison between different
algorithms for uniprocessor and multiprocessors RT scheduling. Developed in
Java with a programming paradigm oriented to modules and abstraction, it gives
the user the opportunity to develop their own extensions. Moreover, it proposes
to automate the process of comparing different algorithms: generation of task
sets, computation of results for each algorithm and generation of graphs for
comparison.

To sum up, FORTAS allows the user to test if a task set is schedulable on
a processor set according to a specific algorithm. You may view the sequence
of scheduling in time to check that no deadline is missed. A procedure is also
proposed to generate sets of tasks according to various parameters. Furthermore,
the tool offers to automate the creation of evaluations of algorithms from beginning
to end: generation of sets to test, computation of the results for all algorithms
desired with a distribution of work on different computers and finally creation of
graphs associated. We give an overview of currently available functionalities in
Tables 5.1-5.4. All these options can be improved by the user by defining itself
new parameters, new algorithms, new axes for graphs etc. This is facilitated by a
programming paradigm oriented to modules and abstract classes.

Notice that FORTAS has already been used effectively for various published
papers ([Lup+10; DGC10; GC11; GCS11]).

150 Chapter 5. Framework fOr Real-Time Analysis and Simulation

Test a Uni/Multiprocessor scheduling

P-Scheduling

Placement heuristics Schedulability/Feasibility tests Sorting criteria

First-Fit EDF-LL [LL73] Increasing/Decreasing order of relative deadline
Best-Fit EDF-BHR [BRH90] Increasing/Decreasing order of period
Worst-Fit EDF-BF [BF06] Increasing/Decreasing order of density
Next-Fit DM-ABRTW [Aud+93] Increasing/Decreasing order of utilization

RM-LL [DG00]
RM-BBB [BBB03]
RM-LMM [LMM98]

SP-Scheduling

Placement heuristics Split techniques Sorting criteria

First-Fit C=D [Bur+10] Increasing/Decreasing order of relative deadline
Best-Fit EDF-WM [KYI09] Increasing/Decreasing order of period
Worst-Fit EDF-MLD-Dfair-Cfair [GCS11] Increasing/Decreasing order of density
Next-Fit EDF-MLD-Dmin-Cexact [GCS11] Increasing/Decreasing order of utilization

EDF-RRJM [GCS11]
G-Scheduling

Global technique and Schedulability/Feasibility tests

EDF-Load [BB09]
EDF-RTA [BC07]

U-EDF [Nel+11; Nel+12]
RUN [Reg+11]

Table 5.1 – Available functionalities for the “test” part of FORTAS

View a scheduling

Schedulers, pre-emptive or non-pre-emptive

Deadline Monotonic (DM)
Rate Monotonic (RM)

Arbitrary Priority Assignement
Earliest Deadline First (EDF)
Least Laxity First (LLF)

PFair family (PF , PD2) [BGP95]
U-EDF [Nel+11; Nel+12]

RUN [Reg+11]

Table 5.2 – Available functionalities for the “view” part of FORTAS

5.8. Summary 151

Generate tasks and task sets

Generation techniques Types of task deadline Probability distribution of utilization Options

UUnifast [BB04] I-Deadline UNIFORM Number of task sets
Baker [Bak06] C-Deadline BIMODAL Minimum number of tasks

A-Deadline EXPONENTIAL Limit task set utilization
Limit lcm of task periods

Table 5.3 – Available functionalities for the “generate” part of FORTAS

Edit/Run an evaluation

Parameters for the evaluation

Define or generate the sets (See Table 5.3)
Define the scheduling algorithms (See Table 5.1)

Define the graphs result parameters
Graph result parameters

Options for axis values Comparison criterion (curve type)

Number of task set scheduled (Success Ratio) Scheduling algorithm
Number of task per task set Criterion for sorting tasks

Density or utilization of task set Placement heuristic
Number of processors used

Average remaining density or utilization on processors

Table 5.4 – Available functionalities for the “evaluation” part of FORTAS

Part IV

Conclusion and perspectives

Chapter 6

Conclusion

Une des maximes favorites de mon père était la distinction entre les deux sortes
de vérités, des vérités profondes reconnues par le fait que l’inverse est également
une vérité profonde, contrairement aux banalités où les contraires sont clairement
absurdes.

One of the favorite maxims of my father was the distinction between the two
sorts of truths, profound truths recognized by the fact that the opposite is also a
profound truth, in contrast to trivialities where opposites are obviously absurd.

Hans Henrik Bohr [Roz67]

Contents
6.1 Scheduling Sequential Task (S-Task) 156

6.1.1 P-Scheduling approach . 156

6.1.2 SP-Scheduling approach 156

6.2 Scheduling Parallel Task (P-Task) 157

6.3 Our tool: FORTAS . 157

6.4 Perspectives . 158

In this thesis, we have addressed the problem of hard Real-Time (RT) sche-
duling upon identical multiprocessor platforms. A RT system is a system having
time constraints (or timeliness constraints) such that the correctness of these
systems depends on the correctness of results it provides, but also on the time
instant the results are available. Thus, the problem of scheduling tasks on a hard
RT system consist in finding a way to choose, at each time instant, which tasks
should be executed on the processors so that each task succeeds to complete its
work before its deadline. In the multiprocessor case, we are not only concerned
by the respect of all deadlines but we also aim to efficiently use all the processors.
Is the number of processors enough? Is there a method to better utilize these
processors? A lot of research exists in the literature of the state-of-the-art to
propose solutions to this problem.

156 Chapter 6. Conclusion

6.1 Scheduling Sequential Task (S-Task)
First, we have studied Sequential Tasks (S-Tasks) scheduling problem. We have
investigated two of the mains approaches: Partitioned Scheduling (P-Scheduling)
approach and Semi-Partitioned Scheduling (SP-Scheduling) approach.

6.1.1 P-Scheduling approach
For the P-Scheduling approach, we have studied different partitioning algorithms
proposed in the literature of the state-of-the-art in order to elaborate a generic
partitioning algorithm (Algorithm 3 on page 72). Especially, we have investigated
four main placement heuristics (First-Fit, Best-Fit, Next-Fit and Worst-Fit),
eight criteria for sorting tasks and seven schedulability tests for Earliest Deadline
First (EDF), Deadline Monotonic (DM) and Rate Monotonic (RM) schedulers.
It is equivalent to 224 potential P-Scheduling algorithms. Then, we have analysed
each of the parameters of this algorithm to extract the best choices according to
various objectives.

Our simulations allowed us to confirm a common assumption: the heuristics
which have the best results in terms of success ratio are Best-Fit and First-
Fit. Likewise, the sorting task criterion which maximizes the success ratio is
Decreasing Density, similar to Decreasing Utilization. Moreover, this result has
been recently confirmed through a speedup factor analysis by Baruah [Bar13]
for EDF scheduler and Implicit Deadlines (I-Deadlines) tasks.

Finally, we have put ourselves in a practical case where we had to choose the
parameters of the algorithm according to the constraints of our problem. We
have identified three main practical cases and we have summed up our results for
each case in Table 3.2 on page 69.

6.1.2 SP-Scheduling approach
Afterwards, we have studied the SP-Scheduling approach for which we have pro-
posed a solution for each of the two sub-categories: with Restricted Migrations
(Rest-Migrations) where migrations are only allowed between two successive
activations of the task (in other words, between two jobs of the task, thus
only task migration is allowed), and with UnRestricted Migrations (UnRest-
Migrations) where migrations are not restricted to job boundaries (job migration
is allowed). For the Rest-Migration case we have provided Round-Robin Job
Migration (RRJM), a new job placement heuristic, and an associated schedulabi-
lity Necessary and Sufficient Test (NS-Test) for EDF scheduler. RRJM consists
in assigning the jobs of a task to a set of processors and define a recurrent pattern
of successive migrations using a Round-Robin pattern of migration. For the
UnRest-Migration case we have studied the Migration at Local Deadline (MLD)

6.2. Scheduling Parallel Task (P-Task) 157

approach which consists in using local deadlines to specify migration points. We
have provided a generic SP-Scheduling algorithm for MLD approaches and an
associated schedulability NS-Test for EDF scheduler. We have used an evaluation
to compare the performances of our Rest-Migration approach compared to the
UnRest-Migration with MLD approach. In particular, we have observed that the
approach with UnRest-Migration gives the best results in terms of number of
task sets successfully scheduled. However, we have noticed a limit on the ability
of this approach to split tasks between many processors: if the execution time of
the task is too small compared to the time granularity of processor execution, it
will be impossible to split the execution time. Thus, the Rest-Migration approach
is still interesting, especially as its implementation seems to be easier to achieve
on real systems.

6.2 Scheduling Parallel Task (P-Task)
Regarding Parallel Tasks (P-Tasks) scheduling problem, we have proposed the
Multi-Phase Multi-Thread (MPMT) task model which is a new model for
Multi-Thread tasks to facilitate scheduling and analysis. We have also provided
schedulability NS-Tests and a method for transcribing Fork-Join tasks to our new
task model. An exact computation of the Worst Case Response Time (WCRT)
of a periodic MPMT task has been given as well as a WCRT bound for the
sporadic case. Finally, we have proposed an evaluation to compare Gang and
Multi-Thread approaches in order to analyse their advantages and disadvantages.
In particular, even if we have showed that both approaches may be incomparable
(there are task sets which are schedulable using Gang approach and not by using
Multi-Thread approach, and conversely.), the Multi-Thread model allows us to
schedule a larger number of task sets and it reduces the WCRT of tasks. Thus, if
the tasks do not require too much communication between concurrent threads, it
seems interesting to model them with a Multi-Thread approach.

6.3 Our tool: FORTAS
Finally, we have developed the framework called Framework fOr Real-Time
Analysis and Simulation (FORTAS) to facilitate evaluations and tests of multi-
processor scheduling algorithms. Its particularity is to provide a programming
library to accelerate the development and testing of RT scheduling algorithms. It
is developed with a modular approach to facilitate the addition of new schedulers,
P-Scheduling algorithms, Global Scheduling (G-Scheduling) or SP-Scheduling
algorithms, schedulability tests, etc. This framework will be proposed as an open
source library for the research community.

158 Chapter 6. Conclusion

6.4 Perspectives
A lot of interesting questions and improvements are opened up for further re-
searches. Here we draw up a non-exhaustive list:

• For the scheduling of S-Tasks:

– In the P-Scheduling approach, we focused on simulations to evaluate the
parameters of our generic algorithm. Following the work of Baruah
[Bar13], it may be interesting to confirm the other results of evaluation
by theoretical analysis.

– We think that other SP-Scheduling algorithms should be further inves-
tigated by define a more precise taxonomy of different algorithms to
facilitate their study and comparison.

– We conjectured that SP-Scheduling approaches with Rest-Migration
would be easier to implement than approaches with UnRest-Migration.
It would be interesting to check this proposal by implementing various
SP-Scheduling approaches on actual RT systems.

• For the scheduling of P-Tasks:

– During the comparison of scheduling Gang tasks versus Multi-Thread
tasks, we have constrained our tasks to have only one phase since Gang
schedulers consider that the execution requirement of processes corre-
sponds to a “Ci × Vi” rectangle. Further research could be conducted
to assess how evolves the comparison according to the complexity
introduced by our MPMT task model.

– Our MPMT task model allows us to define different number of threads
for each phase of a task. In our study, we considered that this number
was previously given during the task definition. Following our work
with Bado et al. [Bad+12], it would be interesting to explore different
way to compute this value in order to maximize the success ratio and
the total utilization of the platform.

– Our MPMT task model should be studied more deeply and possibly
extended to handle different cases or find its limits. A comparison
with others P-Task models could be an interesting research direction.
The representation using precedence constraints as presented in several
publications and by Nelissen [Nel13] seems to be a important research
direction.

• Considering the development of FORTAS, with Frederic Fauberteau
recently arrived in our research group, we aim to improve this framework
and work with groups from other laboratories in order to combine the
expertise and benefits of tools that each one has created.

6.4. Perspectives 159

Concerning more personal perspectives, we plan to expand the theories and
practices of research developed during this thesis to other application areas:

• We want to continue the collaboration initiated with Vincent Sciandra
[SCG12] on the application of RT scheduling theory to public transport
systems and especially the European Bus System of the Future (EBSF)
European project. The approach using a representation of the constraints
with mixed criticality tasks seems promising.

• The fruitful discussions with Clément Duhart and Rafik Zitouni
(colleagues and PhD students) seem promising to apply the RT scheduling
theories to problems encountered in the field of sensor networks and espe-
cially for the Environment Monitoring and Management Agents (EMMA)
project that aims to improve energy management at home. The thoughts
that we have conducted on how to schedule home appliances in order to
reduce overall electricity consumption seems promising, especially for com-
parison with the approach proposed by EMMA which is to decentralize all
scheduling choices.

• Finally, very interested for years by parallel programming, we want to
consolidate our knowledge in this field to better integrate its specificities in
our research on RT scheduling.

List of symbols

Z Integers numbers: . . . ,−2,−1, 0, 1, 2, . . .
N Natural numbers: 0, 1, 2, . . .
R Real numbers
|x| Absolute value of x
[x; y] Interval of real values: {a ∈ R|x 6 a 6 y}
[x; y) Half-open interval of real values: {a ∈ R|x 6 a < y}
Jx; yK Interval of integers values: {a ∈ Z|x 6 a 6 y}
Jx; y) Half-open interval of integers values: {a ∈ Z|x 6 a < y}
dxe Ceil of x
bxc Floor of x
max Maximum
min Minimum
JAKB A has lower bound B such that JAKB = max(A,B)
JAKC A has upper bound C such that JAKC = min(A,C)
JAKCB JAKCB = JJAKBJC
mod Modulo
lcm Least common multiple
π A processor set
πk A processor
τ A task set
τ i A task set
τi A task
τπk A task set associated to processor πk
τπki A task associated to processor πk
τi � τj τi has a higher priority than τj
τi ≺ τj τi has a lower priority than τj

τhp(τ,τi)
The task set composed of the tasks in τ which have a priority higher than τi.
τj ∈ τhp(τ,τi) if τj ∈ τ and τj � τi.

τ lp(τ,τi)
The task set composed of the tasks in τ which have a priority lower than τi.
τj ∈ τ lp(τ,τi) if τj ∈ τ and τj ≺ τi.

n The number of tasks
m The number of processors
P The least common multiple of all task period, P def= lcm{T1, . . . , Tn}

Glossaries

Acronyms
RT

Real-Time. xiii–xv, xvii–xix, 3–6, 8, 10, 15, 19–21, 35, 38, 41, 44, 45, 50,
94, 95, 104, 121, 132, 136, 137, 142, 148, 149, 155, 157–159

A-Deadline
Arbitraty Deadline. 11, 20, 21, 25, 31, 32, 58, 82, 142, 143, 151,
— Glossary: A-Deadline

C-Deadline
Constrained Deadline. 10, 20, 24, 27, 38, 41, 58–60, 63, 64, 69, 86, 87, 96,
99, 108, 109, 111–114, 142, 143, 151,
— Glossary: C-Deadline

CI
Carry In. 115, 117–121, 168, 169,
— Glossary: CI

DBF
Demand Bound Function. 15, 25–29, 31–35, 37, 39, 41, 58, 140, 168,
— Glossary: DBF

DJP
Dynamic Job Priority. 21

DM
Deadline Monotonic. xiv, xviii, 20, 24, 57, 58, 100, 106, 123–130, 140, 142,
148, 150, 156

DPP
Dynamic Process Priority. 106, 107

DThP
Dynamic Thread Priority. 106, 107

DTP
Dynamic Task Priority. 19, 21, 24, 43, 79

164 Acronyms

EBSF
European Bus System of the Future. 159, 168,
— Glossary: EBSF

EDF
Earliest Deadline First. xiv, xviii, xxxiii, 21, 23–25, 31–33, 37–40, 43–45,
51, 57, 59, 61–64, 69, 72–74, 76, 79, 82, 83, 85, 87, 88, 91, 98, 106, 140, 142,
146, 150, 156, 157

EMMA
Environment Monitoring and Management Agents. 159

FJP
Fixed Job Priority. 21

FORTAS
Framework fOr Real-Time Analysis and Simulation. xv, xix, 6, 137, 148,
149, 157, 158

FPP
Fixed Process Priority. 100, 106, 107

FSP
Fixed Sub-program Priority. 103–113, 123, 126, 132

FThP
Fixed Thread Priority. 106, 107

FTP
Fixed Task Priority. 19, 20, 23, 42, 43, 45, 59, 61–64, 69, 79, 82, 103–113,
123, 126, 132

G-Scheduling
Global Scheduling. xiii, xviii, 35, 38, 40, 44, 70, 136, 138–140, 150, 157

GUI
Graphical User Interface. 136, 137, 141

I-Deadline
Implicit Deadline. 10, 20, 23, 24, 28, 38–40, 43, 51, 54, 57, 58, 60, 63, 64,
69, 86, 87, 142, 143, 145, 151, 156,
— Glossary: I-Deadline

Acronyms 165

IM
Index Monotonic. 123–130

LLF
Least Laxity First. 21, 106, 142, 150

LSF
Longest Sub-program First. 103, 106, 107, 110, 113

MLD
Migration at Local Deadline. 76, 78, 79, 82–84, 89, 91, 138, 156, 157, 168,
— Glossary: MLD

MPI
Message Passing Interface. 5

MPMT
Multi-Phase Multi-Thread. xiv, xv, xix, 94, 98, 100–103, 105, 108, 109,
111–114, 121, 126, 132, 157, 158, 169,
— Glossary: MPMT

N-Test
Necessary Test. 22–24,
— Glossary: N-Test

NC
Non Carry-in. 115, 117–119, 121, 169,
— Glossary: NC

NS-Test
Necessary and Sufficient Test. 23–25, 45, 57–59, 62, 63, 72–76, 78, 79, 82,
84, 85, 94, 108, 111–113, 148, 156, 157,
— Glossary: NS-Test

OPA
Optimal Priority Assignment. 20

OpenMP
Open Multi-Processing. 5, 16, 17

166 Acronyms

P-Scheduling

Partitioned Scheduling. xiii, xiv, xvii, xviii, 6, 35–38, 40–42, 44, 45, 50–53,
57, 59, 60, 64, 67, 68, 70–72, 74, 75, 78, 79, 82, 84, 85, 87–91, 136, 138–140,
146, 147, 150, 156–158

P-Task

Parallel Task. xiii, xiv, xvii–xix, 5, 6, 9, 15, 35, 45, 94, 157, 158, 168,
— Glossary: P-Task

Pthread

POSIX thread. 16, 17

RBF

Request Bound Function. 15, 24, 169,
— Glossary: RBF

Rest-Migration

Restricted Migration. xiv, xviii, xix, 6, 41, 71, 73, 74, 83, 84, 86, 89, 91,
156–158, 169,
— Glossary: Rest-Migration

RM

Rate Monotonic. xiv, xviii, 20, 23, 24, 57, 103, 106, 107, 113, 140, 142,
150, 156

RMA

Rate Monotonic Analysis. 136

RRJM

Round-Robin Job Migration. 73, 74, 91, 141, 156,
— Glossary: RRJM

RTSJ

Real-Time Specification for Java. 44

S-Task

Sequential Task. xiii, xiv, xvii, xviii, 5, 6, 9, 14, 15, 20, 21, 35, 37, 39, 41,
45, 50, 156, 158,
— Glossary: S-Task

Acronyms 167

S-Test
Sufficient Test. 23, 24, 37, 39, 45, 57, 58, 64,
— Glossary: S-Test

SP-Scheduling
Semi-Partitioned Scheduling. xiv, xviii, xxxi, 6, 35, 40, 42, 44, 45, 50,
70–72, 74, 75, 78, 79, 82, 83, 87–91, 136, 138–141, 150, 156–158, 168–170

TBB
Threading Building Blocks. 5

UML
Unified Modeling Language. 94

UnRest-Migration
UnRestricted Migration. xiv, xviii, 6, 41, 44, 71, 72, 76, 78, 83, 84, 86,
89, 91, 156–158, 168, 170,
— Glossary: UnRest-Migration

WCET
Worst Case Execution Time. 13, 14, 17, 18, 26–31, 41–44, 50, 74, 76,
79–82, 84, 91, 96, 99, 101–103, 108, 118, 120, 137, 140, 143, 170,
— Glossary: WCET

WCRT
Worst Case Response Time. xv, xix, 15, 24, 39, 43, 58, 77, 78, 94, 103–105,
113–115, 118, 121, 126, 127, 130, 131, 140, 157, 170,
— Glossary: WCRT

168 Glossary

Glossary
A-Deadline

A task is said to have A-Deadline when there is no link between its deadline
and its period, so Di 6 Ti or Di > Ti. 163

C-Deadline

A task is said to have C-Deadline when its deadline is lower or equal to its
period, so Di 6 Ti. 163

CI

A Carry In (CI) task refers to a task with one job with arrival instant earlier
than the interval [a; b] and deadline in the interval [a; b]. See Figure 4.7 on
page 116. 163

DBF

The Demand Bound Function (DBF) represents the upper bound of the
work load generated by all tasks with activation instants and absolute
deadlines within the interval [0; t]. See example on page 15. 163

EBSF

EBSF is an initiative of the European Commission under the Seventh Frame-
work Programme for Research and Technological Development. Starting
in September 2008; EBSF is a four-year project with an overall budget of
26 million Euros (16 millions cofunded) and is coordinated by UITP, the
International Association of Public Transport. See http://www.ebsf.eu/.
164

I-Deadline

A task is said to have I-Deadline when its deadline is equal to its period, so
Di = Ti. 164

MLD

In the SP-Scheduling approach with UnRest-Migration, MLD refers to
the solution of using local deadlines to specify migration points. See
Definition 3.3 on page 76. 165

MPMT

P-Task model given by Definition 4.8 on page 98. 165

http://www.ebsf.eu/

Glossary 169

N-Test

A test is said to be necessary if a negative result allows us to reject the
proposition but a positive result does not allow us to accept the proposition.
See Definition 2.12 and example on page 22. 165

NC

A Non Carry-in (NC) task is the opposite of a CI task. It refers to a task
with one job with arrival instant and deadline in the interval [a; b]. See
Figure 4.6 on page 115. 165

NS-Test

A test is said to be necessary and sufficient if a positive result allows us
to accept the proposition and a negative result allows us to reject the
proposition. See Definition 2.14 and example on page 23. 165

P-Task

Task model presented in Definition 2.6 (See page 16) for the Gang model,
Definition 2.7 (See page 18) for the Fork-Join model and Definition 4.8 (See
page 98) for the MPMT model. 166

RBF

The Request Bound Function (RBF) represents the upper bound of the
work load generated by all tasks with activation instants included within
the interval [0; t). See example on page 15. 166

Rest-Migration

In the SP-Scheduling approach, Rest-Migration refers to the case where
migration is allowed, but only at job boundaries. A job is executed on
one processor but successive jobs of a task can be executed on different
processors. See Figure 3.13.1 on page 71. 166

RRJM

Job placement heuristic used for the SP-Scheduling approach with Rest-
Migration. See Definition 3.1 on page 73. 166

S-Task

Task model presented in Definition 2.4 for the periodic case and Definition 2.5
for the sporadic case. (See page 13). 166

170 Glossary

S-Test
A test is said to be sufficient if a positive result allows us to accept the
proposition but a negative result does not allow us to reject the proposition.
See Definition 2.13 and example on page 23. 167

UnRest-Migration
In the SP-Scheduling approach, UnRest-Migration refers to the case where
migration is allowed, and a job can be portioned between multiple processors.
A job can start its execution on one processor and complete on an other
processor. See Figure 3.13.2 on page 71. 167

WCET
The Worst Case Execution Time (WCET) of a task is the maximum
execution time required by the task to complete. 167

WCRT
The WCRT of a task is the maximum duration between the activation of
the task and the moment it finishes its execution. 167

Bibliography

[AS04] Karsten Albers and Frank Slomka. “An Event Stream Driven
Approximation for the Analysis of Real-Time Systems”. In: Pro-
ceedings of the 16th Euromicro Conference on Real-Time Systems.
EuroMicro Conference on Real-Time Systems (ECRTS). Catania,
Italy: IEEE Computer Society, June 2004, pages 187–195. isbn: 0-
7695-2176-2. doi: 10.1109/ECRTS.2004.4.

(Cited on page 37).

[ABD05] James H. Anderson, Vasile Bud, and UmaMaheswari C.
Devi. “An EDF-based scheduling algorithm for multiprocessor soft
real-time systems”. In: Proceedings of the 17th Euromicro Conference
on Real-Time Systems. EuroMicro Conference on Real-Time Systems
(ECRTS). Balearic Islands, Spain: IEEE Computer Society, July 2005,
pages 199–208. isbn: 0-7695-2400-1. doi: 10.1109/ECRTS.2005.6.

(Cited on pages 40, 41, 70).

[AB08] Björn Andersson and Konstantinos Bletsas. “Sporadic Mul-
tiprocessor Scheduling with Few Preemptions”. In: Proceedings of
the 20th Euromicro Conference on Real-Time Systems. EuroMicro
Conference on Real-Time Systems (ECRTS). Prague, Czech Re-
public: IEEE Computer Society, July 2008, pages 243–252. isbn:
978-0-7695-3298-1. doi: 10.1109/ECRTS.2008.9.

(Cited on page 43).

[ABB08] Björn Andersson, Konstantinos Bletsas, and Sanjoy K.
Baruah. “Scheduling Arbitrary-Deadline Sporadic Task Systems
on Multiprocessors”. In: Proceedings of the 29th IEEE Real-Time
Systems Symposium. IEEE Real-Time Systems Symposium (RTSS).
Barcelona, Spain: IEEE Computer Society, Dec. 2008, pages 385–394.
isbn: 978-0-7695-3477-0. doi: 10.1109/RTSS.2008.44.

(Cited on page 43).

[AT06] Björn Andersson and Eduardo Tovar. “Multiprocessor Sche-
duling with Few Preemptions”. In: Proceedings of the 12th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications. Embedded and Real-Time Computing
Systems and Applications (RTCSA). Sydney, Australia, Aug. 2006,
pages 322–334. isbn: 0-7695-2676-4. doi: 10.1109/RTCSA.2006.45.

(Cited on page 41).

http://dx.doi.org/10.1109/ECRTS.2004.4
http://dx.doi.org/10.1109/ECRTS.2005.6
http://dx.doi.org/10.1109/ECRTS.2008.9
http://dx.doi.org/10.1109/RTSS.2008.44
http://dx.doi.org/10.1109/RTCSA.2006.45

172 Bibliography

[Aud01] Neil C. Audsley. “On priority asignment in fixed priority schedul-
ing”. In: Information Processing Letters 79.1 (May 2001), pages 39–
44. issn: 0020-0190. doi: 10.1016/S0020-0190(00)00165-4.

(Cited on page 20).

[Aud91] Neil C. Audsley. Optimal Priority Assignment And Feasibility Of
Static Priority Tasks With Arbitrary Start Times. Technical report.
University of York, Nov. 1991.

(Cited on page 20).

[Aud+93] Neil C. Audsley, Alan Burns, Mike Richardson, Ken Tin-
dell, and Andy Wellings. “Applying new scheduling theory to
static priority pre-emptive scheduling”. In: Software Engineering
Journal 8.5 (Sept. 1993), pages 284–292. issn: 0268-6961.

(Cited on pages 24, 58, 140, 150).

[Aud+91] Neil C. Audsley, Alan Burns, Mike Richardson, and Andy
Wellings. “Hard Real-Time Scheduling: The Deadline-Monotonic
Approach”. In: Proceedings of the 8th IEEE Workshop on Real-Time
Operating Systems. IEEEWorkshop on Real-Time Operating Systems
(RTOS). May 1991, pages 133–137.

(Cited on pages 20, 106, 123).

[Bad+12] Benjamin Bado, Laurent George, Pierre Courbin, and
Joël Goossens. “A semi-partitioned approach for parallel real-time
scheduling”. In: Proceedings of the 20th International Conference on
Real-Time and Network Systems. Real-Time and Network Systems
(RTNS). Pont à Mousson, France: ACM, Nov. 2012, pages 151–160.
isbn: 978-1-4503-1409-1. doi: 10.1145/2392987.2393006.

(Cited on pages xx, 158).

[Bak06] Theodore P. Baker. “A comparison of global and partitioned
EDF schedulability tests for multiprocessors”. In: Proceedings of the
14th International Conference on Real-Time and Network Systems.
Real-Time and Network Systems (RTNS). Poitiers, France, May
2006, pages 119–127.

(Cited on pages 37, 53, 60, 86, 142, 143, 151).

http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1145/2392987.2393006

Bibliography 173

[Bak05a] Theodore P. Baker. “An Analysis of EDF Schedulability on a
Multiprocessor”. In: IEEE Transactions on Parallel and Distributed
Systems 16.8 (Aug. 2005), pages 760–768. issn: 1045-9219. doi:
10.1109/TPDS.2005.88.

(Cited on page 38).

[Bak05b] Theodore P. Baker. Comparison of empirical success rates of
global vs. partitioned fixed-priority and EDF scheduling for hard real
time. Technical report. Florida State University, 2005.

(Cited on page 53).

[Bak03] Theodore P. Baker. “Multiprocessor EDF and Deadline Mono-
tonic Schedulability Analysis”. In: Proceedings of the 24th IEEE
International Real-Time Systems Symposium. IEEE Real-Time Sys-
tems Symposium (RTSS). Cancun, Mexico: IEEE Computer Society,
Dec. 2003, pages 120–129. isbn: 0-7695-2044-8. doi: 10.1109/REAL.
2003.1253260.

(Cited on page 38).

[BB09] Theodore P. Baker and Sanjoy K. Baruah. “An analysis of
global edf schedulability for arbitrary-deadline sporadic task sys-
tems”. In: Real-Time Systems 43.1 (Sept. 2009), pages 3–24. issn:
0922-6443. doi: 10.1007/s11241-009-9075-8.

(Cited on pages 39, 150).

[BRC06] Patricia Balbastre, Ismael Ripoll, and Alfons Crespo.
“Optimal deadline assignment for periodic real-time tasks in dynamic
priority systems”. In: Proceedings of the 18th Euromicro Conference
on Real-Time Systems. EuroMicro Conference on Real-Time Systems
(ECRTS). Dresden, Germany: IEEE Computer Society, July 2006,
pages 65–74. isbn: 0-7695-2619-5. doi: 10.1109/ECRTS.2006.17.

(Cited on pages 32, 77).

[BRC02] Patricia Balbastre, Ismael Ripoll, and Alfons Crespo.
“Schedulability analysis of window-constrained execution time tasks
for real-time control”. In: Proceedings of the 14th Euromicro Confer-
ence on Real-Time Systems. EuroMicro Conference on Real-Time
Systems (ECRTS). Vienna, Austria, June 2002, pages 11–18. isbn:
0-7695-1665-3. doi: 10.1109/EMRTS.2002.1019181.

(Cited on page 32).

http://dx.doi.org/10.1109/TPDS.2005.88
http://dx.doi.org/10.1109/REAL.2003.1253260
http://dx.doi.org/10.1109/REAL.2003.1253260
http://dx.doi.org/10.1007/s11241-009-9075-8
http://dx.doi.org/10.1109/ECRTS.2006.17
http://dx.doi.org/10.1109/EMRTS.2002.1019181

174 Bibliography

[Bar07] Sanjoy K. Baruah. “Techniques for Multiprocessor Global Schedu-
lability Analysis”. In: Proceedings of the 28th IEEE Real-Time Sys-
tems Symposium. IEEE Real-Time Systems Symposium (RTSS). Tuc-
son, Arizona, USA: IEEE Computer Society, Dec. 2007, pages 119–
128. isbn: 0-7695-3062-1. doi: 10.1109/RTSS.2007.35.

(Cited on pages 38, 39, 117).

[BF06] Sanjoy K. Baruah and Nathan W. Fisher. “The Partitioned
Multiprocessor Scheduling of Deadline-Constrained Sporadic Task
Systems”. In: IEEE Transactions on Computers 55.7 (July 2006),
pages 918–923. issn: 0018-9340. doi: 10.1109/TC.2006.113.

(Cited on pages 37, 58, 150).

[BF07] Sanjoy K. Baruah and Nathan W. Fisher. “The partitioned
dynamic-priority scheduling of sporadic task systems”. In: Real-
Time Systems 36.3 (Aug. 2007), pages 199–226. issn: 0922-6443. doi:
10.1007/s11241-007-9022-5.

(Cited on page 37).

[BF05] Sanjoy K. Baruah and Nathan W. Fisher. “The partitioned
multiprocessor scheduling of sporadic task systems”. In: Proceedings
of the 26th IEEE Real-Time Systems Symposium. IEEE Real-Time
Systems Symposium (RTSS). Miami, Florida, USA: IEEE Computer
Society, Dec. 2005, pages 321–329. isbn: 0-7695-2490-7. doi: 10.
1109/RTSS.2005.40.

(Cited on page 37).

[BGP95] Sanjoy K. Baruah, Johannes Gehrke, and Greg C. Plax-
ton. “Fast scheduling of periodic tasks on multiple resources”. In:
Proceedings of the 9th International Parallel Processing Symposium.
International Parallel Processing Symposium (IPPS). Santa Barbara,
California, USA: IEEE Computer Society, Apr. 1995, pages 280–288.
isbn: 0-8186-7074-6.

(Cited on pages 35, 37, 141, 150).

[BRH90] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell.
“Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor”. In: Real-Time Systems
2.4 (Oct. 1990), pages 301–324. issn: 0922-6443. doi: 10.1007/
BF01995675.

(Cited on pages 15, 25, 58, 140, 150).

http://dx.doi.org/10.1109/RTSS.2007.35
http://dx.doi.org/10.1109/TC.2006.113
http://dx.doi.org/10.1007/s11241-007-9022-5
http://dx.doi.org/10.1109/RTSS.2005.40
http://dx.doi.org/10.1109/RTSS.2005.40
http://dx.doi.org/10.1007/BF01995675
http://dx.doi.org/10.1007/BF01995675

Bibliography 175

[Bar+09] Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Sebastian Stiller. “Implementation of a Spe-
edup Optimal Global EDF Schedulability Test”. In: Proceedings of
the 21th Euromicro Conference on Real-Time Systems. EuroMicro
Conference on Real-Time Systems (ECRTS). Dublin, Ireland, July
2009, pages 259–268. isbn: 978-0-7695-3724-5. doi: 10.1109/ECRTS.
2009.31.

(Cited on page 39).

[Bar+96] Sanjoy K. Baruah, Neil K. Cohen, Greg C. Plaxton, and
Donald A. Varvel. “Proportionate progress: A notion of fairness
in resource allocation”. In: Algorithmica 15.6 (June 1996), pages 600–
625. issn: 0178-4617. doi: 10.1007/BF01940883.

(Cited on pages 35, 37).

[Bar13] Sanjoy Baruah. “Partitioned EDF scheduling: a closer look”. In:
Real-Time Systems 49.6 (Nov. 2013), pages 715–729. issn: 0922-6443.
doi: 10.1007/s11241-013-9186-0.

(Cited on pages 64, 156, 158).

[BB06] Sanjoy Baruah and Alan Burns. “Sustainable Scheduling Analy-
sis”. In: Proceedings of the 27th IEEE Real-Time Systems Symposium.
IEEE Real-Time Systems Symposium (RTSS). Rio de Janeiro, Brazil:
IEEE Computer Society, Dec. 2006, pages 159–168. isbn: 0-7695-
2761-2. doi: 10.1109/RTSS.2006.47.

(Cited on page 110).

[BBA10] Andrea Bastoni, Björn B. Brandenburg, and James H.
Anderson. “Cache-Related Preemption and Migration Delays: Em-
pirical Approximation and Impact on Schedulability”. In: Proceedings
of the 6th International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications. International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT). Brussels, Belgium, July 2010.

(Cited on pages 38, 127).

http://dx.doi.org/10.1109/ECRTS.2009.31
http://dx.doi.org/10.1109/ECRTS.2009.31
http://dx.doi.org/10.1007/BF01940883
http://dx.doi.org/10.1007/s11241-013-9186-0
http://dx.doi.org/10.1109/RTSS.2006.47

176 Bibliography

[BCG11] Vandy Berten, Pierre Courbin, and Joël Goossens. “Gang
fixed priority scheduling of periodic moldable real-time tasks”. In:
Proceedings of the Junior Researcher Workshop Session of the 19th
International Conference on Real-Time and Network Systems. Edited
by Alan Burns and Laurent George. Real-Time and Network
Systems (RTNS). Nantes, France, Sept. 2011, pages 9–12.

(Cited on pages xxi, 95, 98).

[Ber09] Marco Bertogna. “Evaluation of Existing Schedulability Tests
for Global EDF”. In: Proceedings of the 38th IEEE International
Conference on Parallel Processing Workshops. Edited by Leonard
Barolli and Wu chun Feng. IEEE International Conference on
Parallel Processing Workshops (ICPPW). Vienna, Austria: IEEE
Computer Society, Sept. 2009, pages 11–18. isbn: 978-0-7695-3803-7.
doi: 10.1109/ICPPW.2009.12.

(Cited on pages 38, 39).

[BC07] Marco Bertogna and Michele Cirinei. “Response-Time Anal-
ysis for Globally Scheduled Symmetric Multiprocessor Platforms”.
In: Proceedings of the 28th IEEE Real-Time Systems Symposium.
IEEE Real-Time Systems Symposium (RTSS). Tucson, Arizona,
USA: IEEE Computer Society, Dec. 2007, pages 149–160. isbn: 0-
7695-3062-1. doi: 10.1109/RTSS.2007.41.

(Cited on pages 39, 116, 117, 140, 150).

[BCL05] Marco Bertogna, Michele Cirinei, and Giuseppe Lipari. “Im-
proved Schedulability Analysis of EDF on Multiprocessor Platforms”.
In: Proceedings of the 17th Euromicro Conference on Real-Time
Systems. EuroMicro Conference on Real-Time Systems (ECRTS).
Balearic Islands, Spain: IEEE Computer Society, July 2005, pages 209–
218. isbn: 0-7695-2400-1. doi: 10.1109/ECRTS.2005.18.

(Cited on pages 39, 116).

[BB04] Enrico Bini and Giorgio C. Buttazzo. “Biasing Effects in
Schedulability Measures”. In: Proceedings of the 16th Euromicro
Conference on Real-Time Systems. EuroMicro Conference on Real-
Time Systems (ECRTS). Catania, Italy: IEEE Computer Society,
June 2004, pages 196–203. isbn: 0-7695-2176-2. doi: 10.1109/ECRTS.
2004.7.

(Cited on pages 142, 151).

http://dx.doi.org/10.1109/ICPPW.2009.12
http://dx.doi.org/10.1109/RTSS.2007.41
http://dx.doi.org/10.1109/ECRTS.2005.18
http://dx.doi.org/10.1109/ECRTS.2004.7
http://dx.doi.org/10.1109/ECRTS.2004.7

Bibliography 177

[BBB03] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M. But-
tazzo. “Rate monotonic analysis: the hyperbolic bound”. In: IEEE
Transactions on Computers 52.7 (July 2003), pages 933–942. issn:
0018-9340. doi: 10.1109/TC.2003.1214341.

(Cited on pages 24, 58, 64, 150).

[BGM07] Lamine Bougueroua, Laurent George, and Serge Midonnet.
“Dealing with execution-overruns to improve the temporal robustness
of real-time systems scheduled FP and EDF”. In: Proceedings of
the 2nd IEEE International Conference on Systems. International
Conference on Systems (ICONS). Sainte-Luce, Martinique, France,
Apr. 2007, pages 52–52. isbn: 978-0-7695-2807-6. doi: 10.1109/
ICONS.2007.18.

(Cited on pages 31, 44).

[Bur+10] Alan Burns, Robert I. Davis, P. Wang, and Fengxiang
Zhang. “Partitioned EDF Scheduling for Multiprocessors using a
C=D Scheme”. In: Proceedings of the 18th International Conference
on Real-Time and Network Systems. Real-Time and Network Systems
(RTNS). Toulouse, France, Nov. 2010, pages 169–178.

(Cited on pages 43, 140, 150).

[Cal+06] John M. Calandrino, Hennadiy Leontyev, Aaron Block,
UmaMaheswari C. Devi, and James H. Anderson. “LITMUSRT

: A Testbed for Empirically Comparing Real-Time Multiprocessor
Schedulers”. In: Proceedings of the 27th IEEE Real-Time Systems
Symposium. IEEE Real-Time Systems Symposium (RTSS). Rio de
Janeiro, Brazil, Dec. 2006, pages 111–126. isbn: 0-7695-2761-2. doi:
10.1109/RTSS.2006.27.

(Cited on page 137).

[Cha+12] Younès Chandarli, Frédéric Fauberteau, Damien Masson,
Serge Midonnet, and Manar Qamhieh. “YARTISS: A Tool
to Visualize, Test, Compare and Evaluate Real-Time Scheduling
Algorithms”. In: Proceedings of 3th International Workshop on Anal-
ysis Tools and Methodologies for Embedded and Real-time Systems.
International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS). Pisa, Italy, July
2012, pages 21–26.

(Cited on page 137).

http://dx.doi.org/10.1109/TC.2003.1214341
http://dx.doi.org/10.1109/ICONS.2007.18
http://dx.doi.org/10.1109/ICONS.2007.18
http://dx.doi.org/10.1109/RTSS.2006.27

178 Bibliography

[Cha+00] Robit Chandra et al. Parallel programming in OpenMP. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Oct. 2000.
isbn: 1-55860-671-8.

(Cited on pages 5, 17).

[CRJ06] Hyeonjoong Cho, Binoy Ravindran, and Douglas E. Jensen.
“An Optimal Real-Time Scheduling Algorithm for Multiprocessors”.
In: Proceedings of the 27th IEEE Real-Time Systems Symposium.
IEEE Real-Time Systems Symposium (RTSS). Rio de Janeiro, Brazil:
IEEE Computer Society, Dec. 2006, pages 101–110. isbn: 0-7695-
2761-2. doi: 10.1109/RTSS.2006.10.

(Cited on pages 35, 38).

[Cio86] Emile M. Cioran. The Trouble With Being Born. Edited by Sea-
ver Books. First published in 1973 by Gallimard with title “De
l’inconvénient d’être né”. 1986. isbn: 1611454433.

(Cited on page 7).

[CCGG08] Sébastien Collette, Liliana Cucu-Grosjean, and Joël Go-
ossens. “Integrating job parallelism in real-time scheduling theory”.
In: Information Processing Letters 106.5 (May 2008), pages 180–187.
issn: 0020-0190. doi: 10.1016/j.ipl.2007.11.014.

(Cited on page 45).

[Cor92] Thinking Machines Corporation. The Connection Machine
CM-5: Technical Summary. Thinking Machines Corporation, Jan.
1992.

(Cited on page 16).

[CKR09] Ayse K. Coskun, Andrew B. Kahng, and Tajana Simunic
Rosing. “Temperature- and Cost-Aware Design of 3D Multiprocessor
Architectures”. In: Proceedings of the 12th Euromicro Conference on
Digital System Design, Architectures, Methods and Tools. Euromicro
Conference on Digital System Design, Architectures, Methods and
Tools (DSD). Patras, Greece, Aug. 2009, pages 183–190. isbn: 978-
0-7695-3782-5. doi: 10.1109/DSD.2009.233.

(Cited on page 38).

http://dx.doi.org/10.1109/RTSS.2006.10
http://dx.doi.org/10.1016/j.ipl.2007.11.014
http://dx.doi.org/10.1109/DSD.2009.233

Bibliography 179

[CG11] Pierre Courbin and Laurent George. “FORTAS : Framework
fOr Real-Time Analysis and Simulation”. In: Proceedings of 2nd
International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems. International Workshop on Analy-
sis Tools and Methodologies for Embedded and Real-time Systems
(WATERS). Porto, Portugal, July 2011.

(Cited on page xxi).

[CLG13] Pierre Courbin, Irina Lupu, and Joël Goossens. “Scheduling
of hard real-time multi-phase multi-thread (MPMT) periodic tasks”.
In: Real-Time Systems 49.2 (2013), pages 239–266. issn: 0922-6443.
doi: 10.1007/s11241-012-9173-x.

(Cited on pages xx, 94, 98, 104, 108, 123, 126).

[CGG11] Liliana Cucu-Grosjean and Joël Goossens. “Exact schedulabi-
lity tests for real-time scheduling of periodic tasks on unrelated multi-
processor platforms”. In: Journal of Systems Architecture 57.5 (May
2011), pages 561–569. issn: 1383-7621. doi: 10.1016/j.sysarc.
2011.02.007.

(Cited on pages 12, 109).

[Dar58] Charles Robert Darwin. Selected Letters on Evolution and
Origin of Species. In a letter from Erasmus Darwin, Charles Darwin’s
brother, page 227. Dover Publications, 1958. isbn: 978-1-2580-3864-
9.

(Cited on page 3).

[DB11] Robert I. Davis and Alan Burns. “A survey of hard real-time
scheduling for multiprocessor systems”. In: ACM Computing Sur-
vey 43.4 (Oct. 2011), 35:1–35:44. issn: 0360-0300. doi: 10.1145/
1978802.1978814.

(Cited on page 22).

[DGC10] Robert I. Davis, Laurent George, and Pierre Courbin.
“Quantifying the Sub-optimality of Uniprocessor Fixed Priority Non-
Pre-emptive Scheduling”. In: Proceedings of the 18th International
Conference on Real-Time and Network Systems. Real-Time and
Network Systems (RTNS). Toulouse, France, Nov. 2010, pages 1–10.

(Cited on pages xx, 149).

http://dx.doi.org/10.1007/s11241-012-9173-x
http://dx.doi.org/10.1016/j.sysarc.2011.02.007
http://dx.doi.org/10.1016/j.sysarc.2011.02.007
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1145/1978802.1978814

180 Bibliography

[Dav+09] Robert I. Davis, Thomas Rothvoβ, Sanjoy K. Baruah, and
Alan Burns. “Exact quantification of the sub-optimality of unipro-
cessor fixed priority pre-emptive scheduling”. In: Real-Time Systems
43.3 (Nov. 2009), pages 211–258. issn: 0922-6443. doi: 10.1007/
s11241-009-9079-4.

(Cited on page 61).

[Der74] Michael L. Dertouzos. “Control Robotics: The Procedural Con-
trol of Physical Processes.” In: Proceedings of the International
Federation for Information Processing. International Federation for
Information Processing (IFIP). Stockholm, Sweden: American Else-
vier, Aug. 1974, pages 807–813. isbn: 0-7204-2803-3.

(Cited on page 21).

[DM89] Michael L. Dertouzos and Aloysius K Mok. “Multiprocessor
Online Scheduling of Hard-Real-Time Tasks”. In: IEEE Transactions
on Software Engineering 15.12 (Dec. 1989), pages 1497–1506. issn:
0098-5589. doi: 10.1109/32.58762.

(Cited on page 106).

[DG00] Raymond Devillers and Joël Goossens. “Liu and Layland’s
schedulability test revisited”. In: Information Processing Letters 73.5-
6 (Mar. 2000), pages 157–161. issn: 0020-0190. doi: 10.1016/S0020-
0190(00)00016-8.

(Cited on pages 58, 150).

[Dor+10] François Dorin, Patrick Meumeu Yomsi, Joël Goossens,
and Pascal Richard. “Semi-Partitioned Hard Real-Time Sche-
duling with Restricted Migrations upon Identical Multiprocessor
Platforms”. In: Proceedings of the 18th International Conference on
Real-Time and Network Systems. Real-Time and Network Systems
(RTNS). Toulouse, France, Nov. 2010, pages 207–216.

(Cited on page 41).

[Fei96] Dror G. Feitelson. “Packing Schemes for Gang Scheduling”.
In: Proceedings of the Workshop on Job Scheduling Strategies for
Parallel Processing of the 10th International Parallel Processing
Symposium. International Parallel Processing Symposium (IPPS).
Honolulu, Hawaii, USA: Springer-Verlag, Apr. 1996, pages 89–110.
isbn: 3-540-61864-3.

(Cited on page 16).

http://dx.doi.org/10.1007/s11241-009-9079-4
http://dx.doi.org/10.1007/s11241-009-9079-4
http://dx.doi.org/10.1109/32.58762
http://dx.doi.org/10.1016/S0020-0190(00)00016-8
http://dx.doi.org/10.1016/S0020-0190(00)00016-8

Bibliography 181

[FBB06a] Nathan W. Fisher, Theodore P. Baker, and Sanjoy K.
Baruah. “Algorithms for Determining the Demand-Based Load of
a Sporadic Task System”. In: Proceedings of the 12th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems
and Applications. Embedded and Real-Time Computing Systems and
Applications (RTCSA). Sydney, Australia, Aug. 2006, pages 135–146.
isbn: 0-7695-2676-4. doi: 10.1109/RTCSA.2006.12.

(Cited on page 25).

[FBB06b] Nathan W. Fisher, Sanjoy K. Baruah, and Theodore P.
Baker. “The Partitioned Scheduling of Sporadic Tasks According to
Static-Priorities”. In: Proceedings of the 18th Euromicro Conference
on Real-Time Systems. EuroMicro Conference on Real-Time Systems
(ECRTS). Dresden, Germany: IEEE Computer Society, July 2006,
pages 118–127. isbn: 0-7695-2619-5. doi: 10.1109/ECRTS.2006.30.

(Cited on page 53).

[For87] Maxime Le Forestier. Né quelque part. Song composed and
performed by Maxime Le Forestier and music composed with Jean-
Pierre Sabard. Title of the album “Né quelque part”. 1987.

(Cited on page xi).

[GC11] Laurent George and Pierre Courbin. “IGI Global”. In: edited
by Mohamed Khalgui and Hans-Michael Hanisch. IGI Global,
2011. Chapter Reconfiguration of Uniprocessor Sporadic Real-Time
Systems: The Sensitivity Approach, pages 167–189. isbn: 978-1-5990-
4988-5. doi: 10.4018/978-1-60960-086-0.ch007.

(Cited on pages xx, 149).

[GCS11] Laurent George, Pierre Courbin, and Yves Sorel. “Job vs.
portioned partitioning for the earliest deadline first semi-partitioned
scheduling”. In: Journal of Systems Architecture 57.5 (May 2011),
pages 518–535. issn: 1383-7621. doi: 10.1016/j.sysarc.2011.02.
008.

(Cited on pages xx, 72, 83, 141, 149, 150).

http://dx.doi.org/10.1109/RTCSA.2006.12
http://dx.doi.org/10.1109/ECRTS.2006.30
http://dx.doi.org/10.4018/978-1-60960-086-0.ch007
http://dx.doi.org/10.1016/j.sysarc.2011.02.008
http://dx.doi.org/10.1016/j.sysarc.2011.02.008

182 Bibliography

[GH09a] Laurent George and Jean-François Hermant. “A Norm
Approach for the Partitioned EDF Scheduling of Sporadic Task
Systems”. In: Proceedings of the 21th Euromicro Conference on
Real-Time Systems. EuroMicro Conference on Real-Time Systems
(ECRTS). Dublin, Ireland, July 2009, pages 161–169. isbn: 978-0-
7695-3724-5. doi: 10.1109/ECRTS.2009.29.

(Cited on pages 25, 29, 36).

[GH09b] Laurent George and Jean-François Hermant. “Character-
ization of the Space of Feasible Worst-Case Execution Times for
Earliest-Deadline-First Scheduling”. In: Journal of Aerospace Com-
puting, Information and Communication (JACIC) 6 (Nov. 2009),
pages 604–623. issn: 2327-3097. doi: 0.2514/1.44721.

(Cited on pages 26, 28, 37, 140).

[GRS96] Laurent George, Nicolas Rivierre, and Marco Spuri. Pre-
emptive and Non-Preemptive Real-Time UniProcessor Scheduling.
Rapport de recherche RR-2966. Projet REFLECS. INRIA, Sept.
1996.

(Cited on page 20).

[GB10] Joël Goossens and Vandy Berten. “Gang FTP scheduling of
periodic and parallel rigid real-time tasks”. In: Proceedings of the
18th International Conference on Real-Time and Network Systems.
Real-Time and Network Systems (RTNS). Toulouse, France, Nov.
2010, pages 189–196.

(Cited on pages 45, 97, 121, 123, 126).

[GFB03] Joël Goossens, Shelby Funk, and Sanjoy K. Baruah. “Prior-
ity -Driven Scheduling of Periodic Task Systems on Multiprocessors”.
In: Real-Time Systems 25.2-3 (Sept. 2003), pages 187–205. issn:
0922-6443. doi: 10.1023/A:1025120124771.

(Cited on page 38).

[GB98] Sergei Gorlatch and Holger Bischof. “A Generic MPI Im-
plementation for a Data-Parallel Skeleton: Formal Derivation and
Application to FFT”. In: Parallel Processing Letters 8.4 (Mar. 1998),
pages 447–458. doi: 10.1142/S0129626498000456.

(Cited on page 5).

http://dx.doi.org/10.1109/ECRTS.2009.29
http://dx.doi.org/0.2514/1.44721
http://dx.doi.org/10.1023/A:1025120124771
http://dx.doi.org/10.1142/S0129626498000456

Bibliography 183

[GKP88] Ronald L. Graham, Donald Knuth, and Oren Patashnik.
Concrete Mathematics: A Foundation for Computer Science. Addison
Wesley Publisher, Sept. 1988, page 638. isbn: 0201142368.

(Cited on page 54).

[GLS00] William Gropp, Ewing Lusk, and Anthony Skjellum. Using
MPI: Portable Parallel Programming with the Message Passing In-
terface. 2nd. MIT Press, Jan. 2000. isbn: 0-26257-132-3.

(Cited on page 5).

[Gua+09] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. “New Re-
sponse Time Bounds for Fixed Priority Multiprocessor Scheduling”.
In: Proceedings of the 30th IEEE Real-Time Systems Symposium.
IEEE Real-Time Systems Symposium (RTSS). Washington, DC,
USA: IEEE Computer Society, Dec. 2009, pages 387–397. isbn: 978-
0-7695-3875-4. doi: 10.1109/RTSS.2009.11.

(Cited on pages 114, 115, 117, 118, 121).

[HL94] Rhan Ha and Jane Win Shih Liu. “Validating timing constraints
in multiprocessor and distributed real-time systems”. In: Proceed-
ings of the 14th International Conference on Distributed Computing
Systems. International Conference on Distributed Computing Sys-
tems (ICDCS). Poznan, Poland, June 1994, pages 162–171. doi:
10.1109/ICDCS.1994.302407.

(Cited on pages 110, 111).

[HP06] Sangchul Han and Minkyu Park. “Predictability of least laxity
first scheduling algorithm on multiprocessor real-time systems”. In:
Proceedings of the 2006 International Conference on Emerging Direc-
tions in Embedded and Ubiquitous Computing. International Confer-
ence on Emerging Directions in Embedded and Ubiquitous Comput-
ing (EUC). Seoul, Korea: Springer-Verlag, Aug. 2006, pages 755–764.
isbn: 3-540-36850-7, 978-3-540-36850-2. doi: 10.1007/11807964_
76.

(Cited on page 44).

http://dx.doi.org/10.1109/RTSS.2009.11
http://dx.doi.org/10.1109/ICDCS.1994.302407
http://dx.doi.org/10.1007/11807964_76
http://dx.doi.org/10.1007/11807964_76

184 Bibliography

[Har+01] Michael González Harbour, José Javier Gutiérrez, José
Carlos Palencia, and José María Drake. “MAST: Modeling
and Analysis Suite for Real Time Applications”. In: Proceedings of
the 13th Euromicro Conference on Real-Time Systems. EuroMicro
Conference on Real-Time Systems (ECRTS). Delft, The Netherlands:
IEEE Computer Society, June 2001, pages 125–134. isbn: 0-7695-
1221-6.

(Cited on page 136).

[Hla+07] Pierre-Emmanuel Hladik, Anne-Marie Déplanche, Sébas-
tien Faucou, and Yvon Trinquet. “Adequacy between AU-
TOSAR OS specification and real-time scheduling theory”. In: Pro-
ceedings of the 2nd IEEE International Symposium on Industrial
Embedded Systems. IEEE International Symposium on Industrial
Embedded Systems (SIES). Lisbon, Portugal, July 2007, pages 225–
233. isbn: 1-4244-0840-7. doi: 10.1109/SIES.2007.4297339.

(Cited on page 44).

[HBL10] Martijn M.H.P. Holenderski Mike andvan den Heuvel,
Reinder J. Bril, and Johan J. Lukkien. “GRASP: Tracing,
Visualizing and Measuring the Behavior of Real-Time Systems”. In:
Proceedings of 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems. International
Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS). Brussels, Belgium, July 2010.

(Cited on page 137).

[JSM91] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel.
“On non-preemptive scheduling of period and sporadic tasks”. In:
Proceedings of the 12th IEEE Real-Time Systems Symposium. IEEE
Real-Time Systems Symposium (RTSS). San Antonio, Texas, USA,
Dec. 1991, pages 129–139. isbn: 0-8186-2450-7. doi: 10.1109/REAL.
1991.160366.

(Cited on page 21).

[Joh74] David S. Johnson. “Fast algorithms for bin packing”. In: Journal
of Computer and System Sciences 8.3 (June 1974), pages 272–314.
issn: 0022-0000. doi: 10.1016/S0022-0000(74)80026-7.

(Cited on pages 36, 50).

http://dx.doi.org/10.1109/SIES.2007.4297339
http://dx.doi.org/10.1109/REAL.1991.160366
http://dx.doi.org/10.1109/REAL.1991.160366
http://dx.doi.org/10.1016/S0022-0000(74)80026-7

Bibliography 185

[Jol12] Alexandre Jollien. Petit traité de l’abandon : Pensées pour
accueillir la vie telle qu’elle se propose. Edited by Seuil. Quote on
page 115 or or on the track “22–Zen” of the audio CD from 7’43.
2012. isbn: 978-2-0210-7941-8.

(Cited on page 49).

[JP86] Mathai Joseph and Paritosh K. Pandya. “Finding Response
Times in a Real-Time System”. In: The Computer Journal 29 (5
1986), pages 390–395. doi: 10.1093/comjnl/29.5.390.

(Cited on pages 24, 58).

[KI09] Shinpei Kato and Yutaka Ishikawa. “Gang EDF Scheduling
of Parallel Task Systems”. In: Proceedings of the 30th IEEE Real-
Time Systems Symposium. IEEE Real-Time Systems Symposium
(RTSS). Washington, DC, USA: IEEE Computer Society, Dec. 2009,
pages 459–468. isbn: 978-0-7695-3875-4. doi: 10.1109/RTSS.2009.
42.

(Cited on pages 16, 17, 45, 95).

[KRI09] Shinpei Kato, Ragunathan Rajkumar, and Yutaka Ishikawa.
A Loadable Real-Time Scheduler Suite for Multicore Platforms. Tech-
nical Report CMUECE-TR09-12. University of Tokyo and Carnegie
Mellon University, Dec. 2009.

(Cited on page 137).

[KY08a] Shinpei Kato and Nobuyuki Yamasaki. “Portioned EDF-based
scheduling on multiprocessors”. In: Proceedings of the 8th ACM
International Conference on Embedded Software. ACM International
Conference on Embedded Software (EMSOFT). Atlanta, Georgia,
USA: ACM, Oct. 2008, pages 139–148. isbn: 978-1-60558-468-3. doi:
10.1145/1450058.1450078.

(Cited on page 42).

[KY08b] Shinpei Kato and Nobuyuki Yamasaki. “Portioned static pri-
ority scheduling on multiprocessors”. In: Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing.
IEEE International Symposium on Parallel and Distributed Pro-
cessing (IPDPS). Miami, Florida, USA, Apr. 2008, pages 1–12. doi:
10.1109/IPDPS.2008.4536299.

(Cited on page 42).

http://dx.doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1109/RTSS.2009.42
http://dx.doi.org/10.1109/RTSS.2009.42
http://dx.doi.org/10.1145/1450058.1450078
http://dx.doi.org/10.1109/IPDPS.2008.4536299

186 Bibliography

[KY07] Shinpei Kato and Nobuyuki Yamasaki. “Real-Time Scheduling
with Task Splitting on Multiprocessors”. In: Proceedings of the 13th
IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications. IEEE International Conference
on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA). Daegu, Korea: IEEE Computer Society, Aug. 2007,
pages 441–450. isbn: 0-7695-2975-5. doi: 10.1109/RTCSA.2007.61.

(Cited on page 42).

[KY08c] Shinpei Kato and Nobuyuki Yamasaki. “Semi-Partitioning Tech-
nique for Multiprocessor Real-Time Scheduling”. In: Proceedings of
the WIP Session of the 29th IEEE Real-Time Systems Symposium.
IEEE Real-Time Systems Symposium (RTSS). Barcelona, Spain:
IEEE Computer Society, Dec. 2008, page 4.

(Cited on pages 41, 42).

[KY09] Shinpei Kato and Nobuyuki Yamasaki. “Semi-partitioned Fixed
Priority Scheduling on Multiprocessors”. In: Proceedings of the 15th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). San Francisco, California, USA, Apr. 2009,
pages 23–32. isbn: 978-0-7695-3636-1. doi: 10.1109/RTAS.2009.9.

(Cited on page 43).

[KYI09] Shinpei Kato, Nobuyuki Yamasaki, and Yutaka Ishikawa.
“Semi-partitioned Scheduling of Sporadic Task Systems on Multi-
processors”. In: Proceedings of the 21th Euromicro Conference on
Real-Time Systems. EuroMicro Conference on Real-Time Systems
(ECRTS). Dublin, Ireland, July 2009, pages 249–258. isbn: 978-0-
7695-3724-5. doi: 10.1109/ECRTS.2009.22.

(Cited on pages 36, 43, 76, 79, 84, 140, 150).

[LKR10] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Ra-
jkumar. “Scheduling Parallel Real-Time Tasks on Multi-core Pro-
cessors”. In: Proceedings of the 31th IEEE Real-Time Systems Sym-
posium. IEEE Real-Time Systems Symposium (RTSS). San Diego,
California, USA, Dec. 2010, pages 259–268. isbn: 978-0-7695-4298-0.
doi: 10.1109/RTSS.2010.42.

(Cited on pages 17, 18, 45).

http://dx.doi.org/10.1109/RTCSA.2007.61
http://dx.doi.org/10.1109/RTAS.2009.9
http://dx.doi.org/10.1109/ECRTS.2009.22
http://dx.doi.org/10.1109/RTSS.2010.42

Bibliography 187

[LRL09] Karthik Lakshmanan, Ragunathan Rajkumar, and John
Lehoczky. “Partitioned Fixed-Priority Preemptive Scheduling for
Multi-core Processors”. In: Proceedings of the 21th Euromicro Con-
ference on Real-Time Systems. EuroMicro Conference on Real-Time
Systems (ECRTS). Dublin, Ireland: IEEE Computer Society, July
2009, pages 239–248. isbn: 978-0-7695-3724-5. doi: 10.1109/ECRTS.
2009.33.

(Cited on page 43).

[LMM98] Sylvain Lauzac, Rami Melhem, and Daniel Mossé. “An effi-
cient RMS admission control and its application to multiprocessor
scheduling”. In: Proceedings of the 12th International Parallel Pro-
cessing Symposium. International Parallel Processing Symposium
(IPPS). Orlando, Florida, USA, Mar. 1998, pages 511–518. doi:
10.1109/IPPS.1998.669964.

(Cited on pages 58, 150).

[LSD89] John Lehoczky, Lui Sha, and Ye Ding. “The Rate Monotonic
scheduling algorithm: exact characterization and average case behav-
ior”. In: Proceedings of the 10th IEEE Real-Time Systems Symposium.
IEEE Real-Time Systems Symposium (RTSS). Santa Monica, Cal-
ifornia, USA: IEEE Computer Society, Dec. 1989, pages 166–171.
isbn: 0-8186-2004-8. doi: 10.1109/REAL.1989.63567.

(Cited on page 15).

[Leu89] Joseph Y. Leung. “A new algorithm for scheduling periodic real-
time tasks”. In: Algorithmica 4.1-4 (June 1989), pages 209–219. issn:
0178-4617. doi: 10.1007/BF01553887.

(Cited on pages 21, 106).

[LM80] Joseph Y. Leung and Maggie L. Merrill. “A Note on Pre-
emptive Scheduling of Periodic, Real-Time Tasks”. In: Information
Processing Letters 11.3 (1980), pages 115–118. doi: 10.1016/0020-
0190(80)90123-4.

(Cited on page 20).

[LL73] Chung Laung Liu and James W. Layland. “Scheduling Algo-
rithms for Multiprogramming in a Hard-Real-Time Environment”.
In: Journal of ACM 20.1 (Jan. 1973), pages 46–61. issn: 0004-5411.
doi: 10.1145/321738.321743.

(Cited on pages 12, 20, 21, 23, 24, 57, 58, 106, 140, 150).

http://dx.doi.org/10.1109/ECRTS.2009.33
http://dx.doi.org/10.1109/ECRTS.2009.33
http://dx.doi.org/10.1109/IPPS.1998.669964
http://dx.doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1007/BF01553887
http://dx.doi.org/10.1016/0020-0190(80)90123-4
http://dx.doi.org/10.1016/0020-0190(80)90123-4
http://dx.doi.org/10.1145/321738.321743

188 Bibliography

[Liu00] Jane Win Shih Liu. Real-Time Systems. 1st. Upper Saddle River,
NJ, USA: Prentice Hall PTR, Apr. 2000. isbn: 0130996513.

(Cited on pages 24, 37).

[LDG04] José M. López, José L. Díaz, and Daniel F. García. “Uti-
lization Bounds for EDF Scheduling on Real-Time Multiprocessor
Systems”. In: Real-Time Systems 28.1 (Oct. 2004), pages 39–68. issn:
0922-6443. doi: 10.1023/B:TIME.0000033378.56741.14.

(Cited on page 36).

[LG11] Irina Lupu and Joël Goossens. “Scheduling of Hard Real-Time
Multi-Thread Periodic Tasks”. In: Proceedings of the 19th Interna-
tional Conference on Real-Time and Network Systems. Edited by
Sébastien Faucou, Alan Burns, and Laurent George. Real-
Time and Network Systems (RTNS). Nantes, France, Sept. 2011,
pages 35–44.

(Cited on pages 98, 104, 108, 123, 126, 132).

[Lup+10] Irina Lupu, Pierre Courbin, Laurent George, and Joël
Goossens. “Multi-criteria evaluation of partitioning schemes for
real-time systems”. In: Proceedings of the 15th IEEE International
Conference on Emerging Techonologies and Factory Automation.
Emerging Technologies and Factory Automation (ETFA). Bilbao,
Spain: IEEE Computer Society, Sept. 2010, pages 1–8. isbn: 978-1-
4244-6848-5. doi: 10.1109/ETFA.2010.564121.

(Cited on pages xx, 59, 149).

[MMR98] Govindarasu Manimaran, C. Siva Ram Murthy, and Krithi
Ramamritham. “A New Approach for Scheduling of Parallelizable
Tasks in Real-Time Multiprocessor Systems”. In: Real-Time Systems
15.1 (July 1998), pages 39–60. issn: 0922-6443. doi: 10.1023/A:
1008022923184.

(Cited on page 44).

[MSD10] Thomas Megel, Renaud Sirdey, and Vincent David. “Mini-
mizing Task Preemptions and Migrations in Multiprocessor Optimal
Real-Time Schedules”. In: Proceedings of the 31th IEEE Real-Time
Systems Symposium. IEEE Real-Time Systems Symposium (RTSS).
San Diego, California, USA, Dec. 2010, pages 37–46. isbn: 978-0-
7695-4298-0. doi: 10.1109/RTSS.2010.22.

(Cited on page 39).

http://dx.doi.org/10.1023/B:TIME.0000033378.56741.14
http://dx.doi.org/10.1109/ETFA.2010.564121
http://dx.doi.org/10.1023/A:1008022923184
http://dx.doi.org/10.1023/A:1008022923184
http://dx.doi.org/10.1109/RTSS.2010.22

Bibliography 189

[Mok83] Aloysius Ka-Lau Mok. “Fundamental design problems of dis-
tributed systems for the hard-real-time environment”. PhD thesis.
Massachusetts Institute of Technology. Department of Electrical
Engineering and Computer Science, May 1983.

(Cited on page 21).

[Moo03] Gordon Earle Moore. “No exponential is forever: but “Forever”
can be delayed!” In: Proceedings of the 50th IEEE International
Solid-State Circuits Conference. Volume 1. IEEE International Solid-
State Circuits Conference (ISSCC). San Francisco, California, USA,
Feb. 2003, pages 20–23. isbn: 0-7803-7707-9. doi: 10.1109/ISSCC.
2003.1234194.

(Cited on page 5).

[Nel13] Geoffrey Nelissen. “Efficient Optimal Multiprocessor Scheduling
Algorithms for Real-Time Systems”. PhD thesis. Université Libre de
Bruxelles, Aug. 2013.

(Cited on page 158).

[Nel+11] Geoffrey Nelissen, Vandy Berten, Joël Goossens, and
Dragomir Milojevic. “Reducing Preemptions and Migrations in
Real-Time Multiprocessor Scheduling Algorithms by Releasing the
Fairness”. In: Proceedings of the 17th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications.
Embedded and Real-Time Computing Systems and Applications
(RTCSA). Toyama, Japan: IEEE Computer Society, Aug. 2011,
pages 15–24. isbn: 978-0-7695-4502-8. doi: 10.1109/RTCSA.2011.
57.

(Cited on pages 39, 150).

[Nel+12] Geoffrey Nelissen, Vandy Berten, Vincent Nelis, Joël
Goossens, and Dragomir Milojevic. “U-EDF: An Unfair But
Optimal Multiprocessor Scheduling Algorithm for Sporadic Tasks”.
In: Proceedings of the 24th Euromicro Conference on Real-Time
Systems. EuroMicro Conference on Real-Time Systems (ECRTS).
Pisa, Italy: IEEE Computer Society, July 2012, pages 13–23. isbn:
978-1-4673-2032-0. doi: 10.1109/ECRTS.2012.36.

(Cited on pages 39, 150).

http://dx.doi.org/10.1109/ISSCC.2003.1234194
http://dx.doi.org/10.1109/ISSCC.2003.1234194
http://dx.doi.org/10.1109/RTCSA.2011.57
http://dx.doi.org/10.1109/RTCSA.2011.57
http://dx.doi.org/10.1109/ECRTS.2012.36

190 Bibliography

[Reg+11] Paul Regnier, George Lima, Ernesto Massa, Greg Levin,
and Scott Brandt. “RUN: Optimal Multiprocessor Real-Time
Scheduling via Reduction to Uniprocessor”. In: Proceedings of the
32th IEEE Real-Time Systems Symposium. IEEE Real-Time Systems
Symposium (RTSS). Vienna, Austria: IEEE Computer Society, Nov.
2011, pages 104–115. isbn: 978-0-7695-4591-2. doi: 10.1109/RTSS.
2011.17.

(Cited on pages 40, 150).

[Rei07] James Reinders. Intel threading building blocks - outfitting C++
for multi-core processor parallelism. O’Reilly, July 2007, pages I–
XXV, 1–303. isbn: 978-0-596-51480-8.

(Cited on page 5).

[Roz67] Stefan Rozental. Niels Bohr: His Life and Work as Seen by His
Friends and Colleagues. Edited by North Holland Publishing
Co. Quote from Hans Henrik Bohr writing about his father Niels
Bohr in the “My father” section of the book. 1967.

(Cited on page 155).

[Sai+11] Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and
Christopher Gill. “Multi-core Real-Time Scheduling for Gen-
eralized Parallel Task Models”. In: Proceedings of the 32th IEEE
Real-Time Systems Symposium. IEEE Real-Time Systems Sympo-
sium (RTSS). Vienna, Austria: IEEE Computer Society, Nov. 2011,
pages 217–226. isbn: 978-0-7695-4591-2. doi: 10.1109/RTSS.2011.
27.

(Cited on page 45).

[SE48] Antoine de Saint-Exupéry. Citadelle. Collection Folio. Quote
from Section LXXXVII. Editions Gallimard, 1948. isbn: 978-2-0704-
0747-7.

(Cited on page vii).

[SE39] Antoine de Saint-Exupéry. Terre des hommes. Quote on page
59 of the original version. Le Livre de Poche, 1939. isbn: 978-2-0703-
6021-5.

(Cited on page xii).

http://dx.doi.org/10.1109/RTSS.2011.17
http://dx.doi.org/10.1109/RTSS.2011.17
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/RTSS.2011.27

Bibliography 191

[SCG12] Vincent Sciandra, Pierre Courbin, and Laurent George.
“Application of mixed-criticality scheduling model to intelligent trans-
portation systems architectures”. In: Proceedings of the WIP Session
of the 33th IEEE Real-Time Systems Symposium. IEEE Real-Time
Systems Symposium (RTSS). San Juan, Puerto Rico: ACM, Dec.
2012, pages 22–22. doi: 10.1145/2518148.2518160.

(Cited on pages xxi, 159).

[Sin+04] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Li-
onel Marcé. “Cheddar: a flexible real time scheduling framework”.
In: ACM SIGAda Ada Letters XXIV (4 Nov. 2004), pages 1–8. issn:
1094-3641. doi: 10.1145/1046191.1032298.

(Cited on page 136).

[Sut05] Herb Sutter. “The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software”. In: Dr. Dobb’s Journal 30.3 (Mar.
2005), pages 202–210.

(Cited on page 5).

[TC94] Ken Tindell and John Clark. “Holistic schedulability analysis
for distributed hard real-time systems”. In: Microprocessors and
Microprogramming 40.2-3 (Apr. 1994), pages 117–134. issn: 0165-
6074. doi: 10.1016/0165-6074(94)90080-9.

(Cited on page 77).

[UDT10] Richard Urunuela, Anne-Marie Déplanche, and Yvon Trin-
quet. “STORM : A Simulation Tool for Real-time Multiprocessor
Scheduling Evaluation”. In: Proceedings of the 15th IEEE Inter-
national Conference on Emerging Techonologies and Factory Au-
tomation. Emerging Technologies and Factory Automation (ETFA)
MF-000477. Bilbao, Spain: IEEE Computer Society, Sept. 2010. isbn:
978-1-4244-6848-5. doi: 10.1109/ETFA.2010.5641179.

(Cited on page 137).

[Woo91] John F. Woods. Usage of comma operator. 1991. url: https:
//groups.google.com/d/msg/comp.lang.c++/rYCO5yn4lXw/
oITtSkZOtoUJ.

(Cited on page 135).

http://dx.doi.org/10.1145/2518148.2518160
http://dx.doi.org/10.1145/1046191.1032298
http://dx.doi.org/10.1016/0165-6074(94)90080-9
http://dx.doi.org/10.1109/ETFA.2010.5641179
https://groups.google.com/d/msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/d/msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/d/msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ

192 Bibliography

[ZB09] Fengxiang Zhang and Alan Burns. “Schedulability Analysis for
Real-Time Systems with EDF Scheduling”. In: IEEE Transactions
on Computers 58.9 (Sept. 2009), pages 1250–1258. issn: 0018-9340.
doi: 10.1109/TC.2009.58.

(Cited on page 140).

http://dx.doi.org/10.1109/TC.2009.58

Scheduling Sequential or Parallel Hard Real-Time Pre-emptive Tasks upon Identical
Multiprocessor platforms

Abstract

The scheduling of tasks on a hard real-time system consists in finding a way to choose, at each time instant,
which task should be executed on the processor so that each succeed to complete its work before its deadline.

In the uniprocessor case, this problem is already well studied and enables us to do practical applications on
real systems (aerospace, stock exchange etc.). Today, multiprocessor platforms are widespread and led to many
issues such as the effective use of all processors.

In this thesis, we explore the existing approaches to solve this problem. We first study the partitioning
approach that reduces this problem to several uniprocessor systems and leverage existing research. For this one,
we propose a generic partitioning algorithm whose parameters can be adapted according to different goals. We
then study the semi-partitioning approach that allows migrations for a limited number of tasks. We propose a
solution with restricted migration that could be implemented rather simply on real systems. We then propose a
solution with unrestricted migration which provides better results but is more difficult to implement.

Finally, programmers use more and more the concept of parallel tasks that can use multiple processors
simultaneously. These tasks are still little studied and we propose a new model to represent them. We study the
possible schedulers and define a way to ensure the schedulability of such tasks for two of them.

Keywords: real-time, scheduling, multiprocessor, parallel, fork-join, gang, thread, migration, partitioning,
semi-partitioning, global

Ordonnancement de Tâches Temps Réel Dures Préemptives Séquentielles ou
Parallèles sur plateformes multiprocesseur identique

Résumé

L’ordonnancement de tâches sur un système temps réel dur correspond à trouver une façon de choisir, à chaque
instant, quelle tâche doit être exécutée sur le processeur pour que chacune ait le temps de terminer son travail
avant son échéance.

Ce problème, dans le contexte monoprocesseur, est déjà bien étudié et permet des applications sur des systèmes
en production (aérospatiale, bourse etc.). Aujourd’hui, les plate-formes multiprocesseur se sont généralisées et
ont amené de nombreuses questions telle que l’utilisation efficace de tous les processeurs.

Dans cette thèse, nous explorons les approches existantes pour résoudre ce problème. Nous étudions tout
d’abord l’approche par partitionnement qui consiste à utiliser les recherches existantes en ramenant ce problème
à plusieurs systèmes monoprocesseur. Ici, nous proposons un algorithme générique dont les paramètres sont
adaptables en fonction de l’objectif à atteindre. Nous étudions ensuite l’approche par semi-partitionnement qui
permet la migration d’un nombre restreint de tâches. Nous proposons une solution avec des migrations restreintes
qui pourrait être assez simplement implémentée sur des systèmes concrets. Nous proposons ensuite une solution
avec des migrations non restreintes qui offre de meilleurs résultats mais est plus difficile à implémenter.

Enfin, les programmeurs utilisent de plus en plus le concept de tâches parallèles qui peuvent utiliser plusieurs
processeurs en même temps. Ces tâches sont encore peu étudiées et nous proposons donc un nouveau modèle
pour les représenter. Nous étudions les ordonnanceurs possibles et nous définissons une façon de garantir
l’ordonnançabilité de ces tâches pour deux d’entre eux.

Mots-clés : temps réel, ordonnancement, multiprocesseur, parallèlle, fork-join, gang, thread, migration,
partitionnement, semi-partitionnement, global

	I General concepts and notations
	General introduction
	Real-Time Systems
	Motivations of the thesis
	Content of this thesis

	Introduction to rt Scheduling
	Introduction
	System models
	Processor model
	Task models
	Task parameters and definitions
	stask model
	Metrics for stask sets

	ptask model
	Gang task model
	Fork-Join task model

	Schedulers
	ftp schedulers
	dtp schedulers

	Feasibility and schedulability analysis
	Feasibility or schedulability?
	Necessary, sufficient or necessary and sufficient?

	Schedulability analysis for ftp schedulers on uniprocessor platform
	Schedulability analysis for dtp schedulers on uniprocessor platform
	edf uniprocessor schedulability condition: reconsideration
	The Load function
	Performance of LPP 2.1 with the simplex
	Example using LPP 2.1 to compute the Load function
	Useful properties of the Load function

	Allowance margin of task parameters
	Allowance of wcet for pre-emptive edf scheduler
	Allowance of deadline for pre-emptive edf scheduler

	Scheduling on multiprocessor platforms
	Scheduling stask
	psched
	gsched
	spsched

	Scheduling ptask

	Summary

	II Scheduling on multiprocessors platforms
	Scheduling stask
	Introduction
	psched
	Introduction
	Generalized P-Scheduling algorithm
	Criteria for sorting tasks
	Placement
	Optimal placement
	Placement heuristics

	Schedulability tests

	Multi-Criteria evaluation of Generalized psched algorithm
	Conditions of the evaluation
	Evaluation criteria
	Task set generation methodology

	Results
	Sub-optimality of ftp over edf
	Sub-optimality of placement heuristics
	Choosing a schedulability test
	Choosing criterion for sorting tasks
	Choosing a placement heuristic
	Choosing a task criteria for the best placement heuristic

	Summary

	spsched
	Introduction
	restmig approaches – rrjm
	Application to edf scheduler

	unrestmig approaches – mld
	Computing local deadlines
	Computing local allowance of wcet
	Application to edf scheduler

	edf restmig versus unrestmig evaluation
	Conditions of the evaluation
	Evaluated algorithms
	Evaluation criteria
	Task set generation methodology

	Results
	Success Ratio
	Density of migrations

	Summary

	Scheduling ptask
	Introduction
	Gang task model
	Metrics for Gang task sets

	Multi-Thread task model
	mpmt task model
	Metrics, definitions and properties for mpmt task sets
	Sub-program notation of the mpmt task model

	Fork-Join to mpmt task model
	Compute relative arrival offsets and relative deadlines

	Schedulers for Multi-Thread ptask
	Taxonomy of schedulers
	Hierarchical schedulers
	Global thread schedulers

	Schedulability analysis
	mpmt tasks – schedulability nstest
	fsp schedulability nstest
	(ftp,fsp) schedulability nstest

	mpmt tasks – wcrt computation
	The sporadic case - A new upper bound
	Previous work
	Adaptation to mpmt tasks

	The periodic case - An exact value

	Scheduling Gang tasks versus Multi-Thread tasks
	Gang dm and (dm,im) scheduling are incomparable

	Gang versus Multi-Thread task models evaluation
	Conditions of the evaluation
	Evaluation criteria
	Task set generation methodology

	Results
	Success Ratio
	wcrt of the lowest priority task

	Summary

	III Tools for real-time scheduling analysis
	Framework fOr Real-Time Analysis and Simulation
	Introduction
	Existing tools
	Motivation for FORTAS
	Test a Uni/Multiprocessor scheduling
	Placement Heuristics
	Algorithm/Schedulability test

	View a scheduling
	Available schedulers

	Generate tasks and task sets
	Generating a Task
	Generating Sets Of Tasks

	Edit/Run an evaluation
	Defining the sets
	Defining the scheduling algorithms
	Defining a graph result
	Generating the evaluations

	Summary

	IV Conclusion and perspectives
	Conclusion
	Scheduling stask
	psched approach
	spsched approach

	Scheduling ptask
	Our tool: fortas
	Perspectives

	List of symbols
	Glossaries
	Acronyms
	Glossary

