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Résumé : La liquéfaction des sols qui est 

déclenchée par des mouvements sismiques 

forts peut modifier la réponse d’un site. Ceci 

occasionne des dégâts importants dans les 

structures comme a été mis en évidence lors 

des tremblements de terre récents tels que celui 

de Christchurch, Nouvelle-Zélande et du 

Tohoku, Japon. L’évaluation du risque 

sismique des structures nécessite une 

modélisation robuste du comportement non 

linéaire de sols et de la prise en compte de 

l’interaction sol-structure (ISS). En général, le 

risque sismique est décrit comme la 

convolution entre l’aléa et la vulnérabilité du 

système. Cette thèse se pose comme une 

contribution à l’étude, via une modélisation 

numérique, de l’apparition de la liquéfaction et 

à l’utilisation des méthodes pour réduire les 

dommages induits.  

A cet effet, la méthode des éléments finis 

(FEM) dans le domaine temporel est utilisée 

comme outil numérique. Le modèle principal 

est composé d’un bâtiment fondé sur un sable 

liquéfiable. Comme la première étape de 

l’analyse du risque sismique, la première partie 

de cette thèse est consacrée à la caractérisation 

du comportement du sol et à sa modélisation. 

Une attention particulière est donnée à la 

sensibilité du modèle à des paramètres 

numériques. En suite, le modèle est validé pour 

le cas d’une propagation des ondes 1D avec les 

mesures issus du benchmark international 

PRENOLIN sur un site japonais. D’après la 

comparaison, le modèle arrive à prédire les 

enregistrements dans un test en aveugle.  

La deuxième partie, concerne la prise en 

compte dans la modélisation numérique du 

couplage de la surpression interstitielle (Δpw) 

et de la déformation du sol. Les effets 

favorables ou défavorables de ce type de 

modélisation ont été évalués sur le mouvement 

en surface du sol lors de la propagation des 

ondes et aussi sur le tassement et la 

performance sismique de deux structures.  

Cette partie contient des éléments d’un article 

publié dans Acta Geotechnica (Montoya-

Noguera and Lopez-Caballero, 2016). Il a été 

trouvé que l’applicabilité du modèle dépend à 

la fois du niveau de liquéfaction et des effets 

d’ISS. 

Dans la dernière partie, une méthode est 

proposée pour modéliser la variabilité spatiale 

ajoutée au dépôt de sol dû à l’utilisation des 

techniques pour diminuer le degré de 

liquéfaction. Cette variabilité ajoutée peut 

différer considérablement de la variabilité 

inhérente ou naturelle. Dans cette thèse, elle 

sera modélisée par un champ aléatoire binaire. 

Pour évaluer l’efficience du mélange, la 

performance du système a été étudiée pour 

différents niveaux d’efficacité, c’est-à-dire, 

différentes fractions spatiales en allant de non 

traitées jusqu’à entièrement traitées. Tout 

d’abord le modèle binaire a été testé sur un cas 

simple, tel que la capacité portante d’une 

fondation superficielle sur un sol cohérent. 

Après, il a été utilisé dans le modèle de la 

structure sur le sol liquéfiable. Ce dernier cas, 

en partie, a été publié dans la revue GeoRisk 

(Montoya-Noguera and Lopez-Caballero, 

2015). En raison de l’interaction entre les deux 

types de sols du mélange, une importante 

variabilité est mise en évidence dans la réponse 

de la structure. En outre, des théories classiques 

et avancées d’homogénéisation ont été utilisées 

pour prédire la relation entre l’efficience 

moyenne et l’efficacité. En raison du 

comportement non linéaire du sol, les théories 

traditionnelles ne parviennent pas à prédire la 

réponse alors que certaines théories avancées 

qui comprennent la théorie de la percolation 

peuvent fournir une bonne estimation. En ce 

qui concerne l’effet de la variabilité spatiale 

ajoutée sur la diminution du tassement de la 

structure, différents séismes ont été testés et la 

réponse globale semble dépendre de leur 

rapport de PHV et PHA.  
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Abstract: Strong ground motions can trigger 

soil liquefaction that will alter the propagating 

signal and induce ground failure. Important 

damage in structures and lifelines has been 

evidenced after recent earthquakes such as 

Christchurch, New Zealand and Tohoku, Japan 

in 2011. Accurate prediction of the structures’ 

seismic risk requires a careful modeling of the 

nonlinear behavior of soil-structure interaction 

(SSI) systems. In general, seismic risk analysis 

is described as the convolution between the 

natural hazard and the vulnerability of the 

system. This thesis arises as a contribution to 

the numerical modeling of liquefaction 

evaluation and mitigation.  

For this purpose, the finite element method 

(FEM) in time domain is used as numerical 

tool. The main numerical model consists of a 

reinforced concrete building with a shallow 

rigid foundation standing on saturated 

cohesionless soil. As the initial step on the 

seismic risk analysis, the first part of the thesis 

is consecrated to the characterization of the soil 

behavior and its constitutive modeling. Later 

on, some results of the model’s validation with 

a real site for the 1D wave propagation in dry 

conditions are presented. These are issued from 

the participation in the international benchmark 

PRENOLIN and concern the PARI site Sendai 

in Japan. Even though very few laboratory and 

in-situ data were available, the model responses 

well with the recordings for the blind 

prediction. 

The second part, concerns the numerical 

modeling of coupling excess pore pressure 

(Δpw) and soil deformation. The effects were 

evaluated on the ground motion and on the 

structure’s settlement and performance. This 

part contains material from an article published 

in Acta Geotechnica (Montoya-Noguera and 

Lopez-Caballero, 2015). The applicability of 

the models was found to depend on both the 

liquefaction level and the SSI effects. 

 

In the last part, an innovative method is 

proposed to model spatial variability added to 

the deposit due to soil improvement techniques 

used to strengthen soft soils and mitigate 

liquefaction. Innovative treatment processes 

such as bentonite permeations and bio-

grouting, among others have recently emerged. 

However, there remains some uncertainties 

concerning the degree of spatial variability 

introduced in the design and its effect of the 

system’s performance. 

This added variability can differ significantly 

from the inherent or natural variability thus, in 

this thesis, it is modeled by coupling FEM with 

a binary random field. The efficiency in 

improving the soil behavior related to the 

effectiveness of the method measured by the 

amount of soil changed was analyzed. Two 

cases were studied: the bearing capacity of a 

shallow foundation under cohesive soil and the 

liquefaction-induced settlement of a structure 

under cohesionless loose soil. The latter, in 

part, contains material published in GeoRisk 

journal (Montoya-Noguera and Lopez-

Caballero, 2015). Due to the interaction 

between the two soils, an important variability 

is evidenced in the response. Additionally, 

traditional and advanced homogenization 

theories were used to predict the relation 

between the average efficiency and 

effectiveness. Because of the nonlinear soil 

behavior, the traditional theories fail to predict 

the response while some advanced theories 

which include the percolation theory may 

provide a good estimate. Concerning the effect 

of added spatial variability on soil liquefaction, 

different input motions were tested and the 

response of the whole was found to depend on 

the ratio of PHV and PHA of the input motion. 
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Notations and abbreviations

For the sake of brevity, the notations and abbreviations are described by its most common

meaning in the present thesis, however, some symbols were not included in this list because

they concern single cases. We shall use boldface symbol (e.g. u, σ ) for vector and tensor

fields, and subscripts (e.g. pk, εv) to designate vector and tensor components in a Cartesian

coordinate system or additional information. Overdots are used to indicate time derivatives

(e.g., u̇ = ∂u/∂t ,ü = ∂2u/∂t2).

Latin alphabet

a acceleration

aout outcropping rock acceleration

arel relative acceleration

a1, a2 deviatoric hardening (ECP model parameters)

B base width

b yield surface shape (ECP model parameters)

Cc Autocovariance function

CS Anderson criteria of similarity

cu undrained shear strength

c1, c2 isotropic hardening (ECP model parameters)

D soil damping

D1, D2 property of material 1 and 2

D5−95 predominant duration

Deff effective property

Dr relative density

d distance between CSL and ICL (ECP model parameters)

Continued on next page...
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xvi Notations

dBEM dimensionality BEM parameter

E Young modulus

e void ratio

F global applied loads

Fk isotropic hardening function (ECP model)

f frequency

f0 fundamental frequency

fc central frequency

fk, fiso deviatoric and isotropic yield surfaces (ECP model)

g gravity acceleration vector

Gaux auxiliary shear modulus (ECP model)

Gmax maximum shear modulus

Gref shear modulus at reference pressure (ECP model parameter)

I Impedance ratio (inverse of αz)

IJMA instrumental seismic intensity

IRMS root-mean-square intensity

IA Arias Intensity

ISD maximum inter-story drift

k complex wave number

K permeability tensor

Kref bulk modulus at reference pressure (ECP model parameter)

Ks solid compressibility

Kw fluid compressibility

L Loading parameter (inverse of FS)

lc correlation length

Ly, Lz mesh length in horizontal and vertical direction

m cyclic loading path (ECP model parameters)

M Moment

Mw moment magnitude

n soil porosity

N Number of cycles or number of simulations

Continued on next page...



Notations xvii

Nc dimensionless bearing capacity factor

ne degree of nonlinearity (ECP model parameter)

p confinement pressure or mean stress

pc0 initial critical mean stress (ECP model parameter)

pc critical mean stress (ECP model parameter)

pf failure probability

pw pore pressure

p′ref mean effective reference stress (ECP model parameter)

Q compressibility parameter

q deviatoric stress

QA liquefaction index evaluated at area A

Qi nodal forces

qu bearing capacity

rela, rhys, rmob, r
ela
iso threshold domain (ECP model parameters)

RJB Joyner-Boore source-to-site distance

Rtol Convergence criteria for RHS linearization (ECP model)

rk friction mobilization degree (ECP model)

ru liquefaction ratio

R2 Coefficient of determination

Sa spectra of acceleration at the top of the building

t time

T period

TV/A period of equivalent harmonic wave

T0 Fundamental fixed base period

t5, t95 time for IA of 5% and 95%

Tm mean period

Tp predominant period

Ts fundamental period of the soil

u displacement

urw fluid displacement with respect to the solid skeleton

Utol Convergence criteria for unknown variables (ECP model)

Continued on next page...



xviii Notations

ud maximum drift at the top of the building

us solid displacement

uw water displacement

uz relative settlement of the structure

vrw fluid movement with respect to the solid skeleton

Vs 30 average shear wave velocity in the upper 30 meters

Vp p-wave velocity

Vs shear wave velocity

Greek alphabet

αk hardening evolution function (ECP model)

αpsi volumetric constant (ECP model parameter)

β plastic compressibility modulus (ECP mode parameterl)

βN Newmark integration parameter

β1, β2 correlation coefficients (Chapter 5)

∆pw excess pore pressure

δFE Relative difference of FEM with respect to the Prandtl solution

γ shear strain

γ spatial fraction of material 2 (Chapter 5)

γc critical spatial fraction

γN Newmark integration parameter

γeff effective spatial fraction

κ kinematic permeability tensor or hydraulic conductivity

λ compressibility index in plane e− ln p′

λ̇p plastic multiplier

µ arithmetic mean (in statistics)

ν Poisson ratio
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φpp friction angle at the critical state (ECP model parameter)

φ′

apt apparent friction angle

ψ characteristic friction angle (ECP model parameter)

ρ total average unit mass

ρ autocorrelation function (Chapter 5)

ρ∞ spectral radius at infinity
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ρw fluid mass

σ total stress tensor

σ′ effective stress tensor
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τ shear stress

τ lag separation (Chapter 5)
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ε1 axial strain
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Abbreviations

AR Amplfication Ratio

BEM Bruggeman Effective Medium
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2 1.1. Motivation

1.1 Motivation

Recent ground motions such as the Christchurch, New Zealand and Tohoku, Japan earthquakes,

both in 2011, evidence the need to account for the effects of the site geology and the nonlinear

soil behavior on the seismic risk analysis of structures. Although these so-called site effects

have been accepted and studied for more than 30 years by the engineering and seismological

communities; in modern building codes, they are only addressed by site amplification factors

depending on the intensity of the motion, the period of interest and some information of the

soil deposit, often limited to the average shear wave velocity in the upper 30 meters (Vs 30).

These factors embedded on the ground motion prediction equations (GMPEs) are derived from

mostly empirical functions and as a result, represent a blended average site amplification effect.

Liquefaction is described as the loss of soil strength due to the rapid increase in pore water

pressure and consequent reduction of effective stress. Seismically-induced soil liquefaction can

alter the characteristics of ground shaking at a site, however, at present these effects are not

included in current site amplification factors and building codes. In some contemporary building

codes, when a soil deposit is likely to be susceptible to liquefaction, effective stress site response

analysis is required to accurately assess the seismic risk. In general, this risk is the convolution

of the seismic hazard and the vulnerability of the site. A thorough characterization of the

possible input motions and the soil behavior is required for a reliable assessment of seismic risk.

Additionally, special attention is required to properly quantifying it, for example via advanced

numerical modeling. Lastly, if the risk is above a certain threshold, soil improvement may

be desired. Then again, a proper evaluation followed by the consequences to the original soil

characterization is needed.

Concerning liquefaction evaluation, a number of procedures have been developed in the

last 40 years. These range from simplified procedures based on empirical relationships and

correlations to advanced procedures based on site-specific, nonlinear ground response analyses.

Effective stress analysis accounting for the excess pore water pressure generation is necessary if

maximum shear strain becomes several percent. However, effective stress analysis is more time

consuming and less known than total stress analysis hence the latter is frequently carried out

even when shear strains become very large. Moreover, protocols for nonlinear code usage are

not very well established especially for liquefaction cases, and this has restricted their use in

practice. Moreover, it is not clear in which cases the use of effective stress is required.

Furthermore for a robust seismic risk assessment, the effect of the soil-structure interac-
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tion (SSI) on the structure’s performance as well as in that of the soil deposit have to be

addressed. The SSI effects have been the subject of numerous investigations assuming linearity

of both, structure and soil foundation. Nevertheless, to take into account the modeling of soil

liquefaction, the soil behavior must be nonlinear. In every-day engineering practice, nonlin-

ear structural seismic analysis procedures become more and more frequent. In contrast, the

addition of soil nonlinearity in the dynamic SSI analysis is still out of the usual practice, and

is restricted because of the high computational cost. As a general rule, the SSI effects are

assumed beneficial and ignored. However, a more precise knowledge of the expected structural

seismic response including both liquefaction and SSI effects could allow to reduce the cost of

new structures with the same reliability and improve the earthquake engineering practice.

1.2 Objectives

The main objective of this thesis is to be a contribution to the numerical modeling of soil

nonlinearity and, in particular, liquefaction evaluation and mitigation. In pursuit of the main

objective, several subordinate objectives are also addressed:

• Validate the numerical model for taking into account realistically the physical phenomena

of wave propagation and nonlinear soil behavior.

• Quantitatively assess the effects of pore-water pressure generation by using objective and

effective engineering demand parameters (EDPs) of the seismic site response and the

structure’s performance.

• Develop a procedure to model the uncertainty due to soil improvement techniques in

terms of spatial variability added with the treated soil.

This work aims to show how realistic finite element models (FEM) can be constructed and

applied in a practical way to deal with practical engineering issues associated to nonlinear SSI

and liquefaction effects. Several EDPs for both structure and soil responses are analyzed in

order to summarize their behavior under seismic loading. Different soils and structures are

tested and to a certain extent, conclusions and general tendencies are identified. The ultimate

goal is to encourage practice of coupled analysis, nonlinear soil modeling and SSI effects in order

to improve the assessment of the seismic risk analysis. Generally, the evaluation of the seismic

risk is related to the combined probability of attaining a threshold of a particular damage
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measure. However, the final calculation of this probability, often shown in the form of fragility

curves, has been intentionally excluded from the scope of the present work.

1.3 Outline

A schema of the thesis framework is shown in Figure 1.1. This thesis is organized in three main

chapters that are delineated with dashed boxes in the figure.
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Figure 1.1 – Schema of the thesis framework

As part of the initial step on the seismic risk analysis, chapters 2 and 3 are consecrated to

the characterization of the soil behavior and its constitutive modeling, respectively. Chapter

2 starts with a brief literature review on the numerical modeling of nonlinear soil behavior.

First the governing equations are established for both the dynamic behavior of saturated soils

and for the wave propagation. Some recent techniques to identify nonlinear soil behavior by

ground motion analysis are presented followed by an overview of nonlinearity characterization

via laboratory testing. A procedure is proposed to account for the error due to the external

measurements in cyclic triaxial testing.

Further on, chapter 3 presents the numerical tools used in this study. The finite element

method (FEM) in time domain and the constitutive soil model used for the numerical sim-

ulations are described. Special attention is given to the model’s sensibility to the numerical

parameters and the validation of the model for nonlinear behavior and 1D wave propagation.

Different numerical aspects developed within the model are discussed and some guidelines are
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provided for the time integration scheme and the boundary conditions.

Chapter 4, explores the effect of coupling excess pore pressure (∆pw) and soil deformation

on seismic site response analysis. With this purpose, a coupled (CPD) model is compared to a

fully drained (DPD) one where initial conditions are identical and differences are only due to the

generation of ∆pw. First, the effect on the surface motion is analyzed by 1D wave propagation

for two types of soils: loose-to-medium (LMS) and medium-to-dense (MDS) sands. This part

contains material from an article published in Acta Geotechnica (Montoya-Noguera and Lopez-

Caballero, 2016). Afterwards, a 2D soil-structure interaction (SSI) model is studied and the

effect of coupling is then evaluated in the structure’s settlement and seismic performance. At

this stage, only the LMS deposit is used and two structures with different predominant periods

are tested.

In chapter 5, an innovative method is proposed to model spatial variability added to

the deposit due to soil improvement techniques used to strengthen soft soils and mitigate

liquefaction. The method consists in coupling FEM with a binary random field in order to

account for the interactions between the natural soil and the treated one. First the method

is tested in a simple case, which is the bearing capacity evaluation of a shallow foundation

under purely cohesive soil. Afterwards, it is used to assess the liquefaction-induced settlement

of a structure under cohesionless loose soil. The latter, in part, contains material published in

GeoRisk journal (Montoya-Noguera and Lopez-Caballero, 2015).

Conclusions arising from this work and suggestions for future research are presented in the

last chapter. Three appendices are used to give more details on the signal motions, the soil

model parameters and the 2D modeling.
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This section aims to link wave propagation analysis with the dynamic behavior of soils.

Firstly the governing equations of dynamic soil behavior are presented. Then an introduction

to wave propagation in homogeneous and layered systems is followed by an overview of the

soil behavior under dynamic loading. Highlight is given to the soil properties that describe or

control the wave propagation and the relationship between field and laboratory measurements.

2.1 Governing equations

Concerning the dynamic behavior of saturated soils, the state of the system is described by

the displacement and pressure quantities. However, strains and stresses will appear in the

conservation equations. The relation between these two sets is done by the soil constitutive

laws.

For fully saturated soils, the behavior of the solid skeleton is derived assuming the principle

of effective stress proposed by Terzaghi (1943). The total stress tensor (σ) is separated into

two components: the effective stress tensor (σ′) and the pore pressure (pw). That is:

σ = σ′ − pw · I (2.1)

where I is the second-order identity tensor. In equation 2.1 the continuum mechanics sign

convention is assumed, i.e. tractions and fluid pressures are positive. This decomposition is

strictly correct only if the increment of pore pressure for a constant effective stress does not

deforms the soil skeleton.

The set of governing equations for the system is the following:

• Overall equilibrium for the soil-fluid mixture:

The momentum equation for a system subjected to a displacement u is:

divσ′ −∇pw + ρ · g = ρ · ü (2.2)

where ρ is the total average unit mass (ρ = n · ρw + (1 − n) · ρs); n is the soil porosity;

ρw, the fluid mass; ρs, the soil particle mass; g, the gravity acceleration vector and ü is

the solid skeleton acceleration.

• Equilibrium of water and flow conservation equation using generalized Darcy’s law:
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Assuming each phase as homogeneous, the fluid movement with respect to the solid

skeleton (υrw) is:

υrw = K · [−∇pw + ρw · (g − ρ · ü)] (2.3)

where K is the permeability tensor:

K =
κ

ρw · g
(2.4)

with κ being the kinematic permeability tensor, also known as the hydraulic conductivity

and measured in m/s.

Then, the combination of the mass conservation in both phases is:

divu̇+ divυrw = −n
ṗw
Kw

− (1− n)
ṗw
Ks

(2.5)

where Kw and Ks are respectively the fluid and solid bulk compressibility. These are

related by the compressibility parameter Q:

1

Q
=

n

Kw
+

1− n

Ks
(2.6)

By replacing equations 2.3 and 2.6 in equation 2.5, the mass conservation is finally described

by the following expression:

divu̇− div(K · (∇pw − ρw · g))− div(K · ρw · ü) +
ṗw
Q

= 0 (2.7)

2.2 Wave propagation

The case of SH-wave propagation in the vertical direction will be presented for a homogeneous

elastic media. Afterwards, the results will be extended for a multi-layer media and for soil

nonlinearity.

Theoretically, only body waves exist in an unbounded media. These waves can be decom-

posed in two: primary (p) and secondary (s) waves. As the name hints, p-waves have a higher

velocity and reach the surface faster. The energy in these waves travels by compressing and

dilating the material in the direction of propagation. In contrast, the s-waves move by shear-

ing the material in a transverse plane to the propagation direction. Considering that more
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than 90% of the energy radiated from an earthquake is carried by the s-waves (Boatwright and

Fletcher, 1984), this section will focus on these waves. Additionally, as only the shallow soil

layers will be modeled, a reasonable hypothesis is that the waves are purely vertical. Hence,

the analysis will consist of the SH wave propagation along the vertical direction. In order to

simplify the equations, in this section, the soil will be considered as homogeneous, isotropic and

elastic. These hypotheses will only be valid for very small levels of strains (i.e. γ < 1 · 10−7

according to Ishihara, 1993), but will be useful as reference to evaluate the level of non linearity

in other cases.

2.2.1 Motion equation simplified for 1D linear elastic material

If no body forces are considered, pore-water pressure is neglected and only horizontal displace-

ments (uy) are introduced, the equation of motion (2.2), in partial differences, is reduced to:

∂σyz

∂z
= ρ

∂2uy

∂t2
(2.8)

In the case of linear elastic behavior , the shear stress is related to the shear strain by the

shear modulus (i.e. σyz = 2G · εyz) and the strain - displacement relationship simplified by the

SH wave propagation is εyz = 0.5∂uy/∂z. Replacing these two definitions in equation 2.8, gives:

G

ρ

∂2uy

∂z2
=

∂2uy

∂t2
(2.9)

where G/ρ = V 2
s , the square of the shear-wave velocity. Further on, the shear stress (σyz) will

be refered to as τ and the shear strain (2εyz), as γ; which are of common use in laboratory

testing.

When vertical displacements are introduced, the propagation of compressive waves is given

by the p wave velocity (Vp) which is related by the following expression:

Vp

Vs

=

√

2− 2ν

1− 2ν
(2.10)

For a typical Poisson’s ratio (ν) of 0.3, the Vp is 1.87Vs. As the stiffness of the material

with respect to deformation increases, ν approaches 0.5, and the Vp approaches infinity, though

seismic recordings in stiff rock stations present clearer p and s arrivals.

The simplest case of a bounded media is a semi-infinite deposit where a condition of free-

field is imposed in one end, for example at z=0 (see Figure 2.1). Hence, two main boundary
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conditions are imposed: (1) at the surface no shear nor normal stresses are possible and (2)

at infinite depth induced displacement approaches zero. When these conditions are applied to

the body waves, surface waves appear. Mainly two types can be identified: Rayleigh and Love

waves. The former are present in any homogeneous elastic half-space and the latter are only

due to superficial layers of lower stiffness.

On one hand, Rayleigh waves can be thought of a combination of p- and s-waves with

a velocity slightly smaller than Vs for all ν less than 0.5 (Kramer, 1996). One important

characteristic is that the horizontal and vertical components are out of phase by π/2; thus

their identification is possible by evaluating the rotational phase between the two components.

Regarding particle motion, Rayleigh waves are identified by retrograde elliptic shapes at shallow

depths. Additionally, these waves are dispersive, which means that at higher frequencies, their

velocity is lower. This property is of key importance for geophysics evaluation of subsurface

stiffness profiles.

In the other hand, the Love waves are essentially SH waves that are trapped by multiple

reflections within the surficial layer. Their velocity varies from the Vs of the deeper layer at low

frequencies to that of the shallow layer at very high frequencies. Surface waves have very low

attenuation, thus at distances greater than about twice the thickness of the earth’s crust, the

peak ground motion will be produced by the surface rather than by the body waves (Kramer,

1996).

2.2.2 Homogeneous deposit lying over a semi-infinite bedrock

0

z

zr
H

outcropping
ur

2Ar

Bedrock

Surface
us

As Bs

Soil

Ar Br

0.5ur

Figure 2.1 – Homogeneous deposit lying over a semi-infinite bedrock : 1D analysis

For the first case, a uniform layer lying over a flexible rock is shown in Figure 2.1. In the

bedrock, the displacement field is the sum of the up-going (incident) and down-going (reflected)

waves:
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ur(zr,ω) = exp(i · ω · t) [Ar · exp(i · kr · zr) +Br · exp(−i · kr · zr)] (2.11)

where zr is the depth of the reference in the bedrock - in the Figure 2.1 equal to H - and kr is

the complex wave number. In the elastic case, kr is the ratio between the angular frequency

and the shear wave velocity, i.e. k = ω/Vs. Lastly, Ar and Br are the amplitudes associated to

the upward and downward propagating waves, respectively.

Similarly, in the soil deposit, the displacement field is given by:

us(z,ω) = exp(i · ω · t) [As · exp(i · ks · z) +Bs · exp(−i · ks · z)] (2.12)

The coefficients Ar, Br, As and Bs, depend on the boundary conditions. In the interface

(i.e. zr = 0 and z = H), the continuity of the displacements and stresses has to be assured.

This gives:

Ar +Br = As · exp(i · ks ·H) +Bs · exp(−i · ks ·H) (2.13)

Ar −Br =
ks ·Gs

kr ·Gr
[As · exp(i · ks ·H) +Bs · exp(−i · ks ·H)] (2.14)

The coefficient (ks · Gs)/(kr · Gr) is the complex impedance contrast (C) and it can be

simplified to (Vs · ρs)/(Vr · ρr), which is known as αz. Additionally, the inverse of αz is referred

to the impedance ratio (I), which will be used in this study. Note that when the rock is infinitely

rigid with respect to the soil deposit, I tends to ∞ and the upward and downward waves in

the rock are equal (i.e. Ar = Br).

Finally, as in the free surface (z = 0), no stresses are possible:

Bs = As (2.15)

Leaving Ar and Br as a function of As, it gives:

Ar =
1

2
As ·

[(

I + 1

I

)

· exp(i · ks ·H) +

(

I − 1

I

)

exp(−iksH)

]

(2.16)

Br =
1

2
As ·

[(

I − 1

I

)

· exp(i · ks ·H) +

(

I + 1

I

)

· exp(−i · ks ·H)

]

(2.17)

The transfer function (TF ) is the ratio between two wave fields in frequency domain and it

gives information solely of the soil between the 2 points. Thus, if the TF is computed between
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the displacements of the soil surface and the base (or bedrock) the response of only the soil

deposit will be seen. However, if the reference is taken at the outcropping bedrock (i.e. at rock

surface), the response will take into account the effect of the soil-base interface. The latter is

also known as the amplification ratio (Dobry et al., 1982), as it characterizes how much the soil

amplifies the rock energy. These functions can be expressed as:

TFsurf/bd =
2As

Ar +Br
=

1

cos(ks ·H)
(2.18)

ARsurf/out =
2As

Ar
=

1

cos(ks ·H) + i sin(ks ·H)/I
(2.19)

Regarding equation 2.18, two important aspects can be highlighted. Considering elastic

materials, the amplitude of the surface displacement will be at least equal to that of the bedrock,

i.e. only amplification is allowed. Additionally, when the cosine approaches nullity (i.e. when

ω ·H/Vs → π · n − π/2), the amplification tends to infinity. That is, for frequencies (f) equal

to (2n − 1) · Vs/(4H), n being the modes of the system. The response of the elastic wave

propagation is therefore highly dependent on the frequency of the input motion and it will

be strongly amplified depending on the geometry (depth) and the material properties (s wave

velocity). If a small damping (ξ) is present, the complex number will then be k∗

s = ks · (1− i ·ξ),

and the modulus of equation 2.18 turns to:

| TF |surf/bd=
1

√

cos2(ks ·H) + sinh2(ξ · ks ·H)
≈ 1

√

cos2(ks ·H) + (ξ · ks ·H)2
(2.20)

Hence the amplification will have a local maximum when f = (2n − 1) · Vs/(4H) but will

not reach infinity. Additionally, the amplitude for each mode will decrease with frequency.

The greatest amplification corresponds to the fundamental frequency (f0) evaluated at the first

mode (n = 1).

In contrast, equation 2.19 is related to the impedance ratio. Hence, the radiation damping

is due to the elasticity of the bedrock and it also prevents the amplification reaching infinity. At

resonance, the amplification is equal to the impedance ratio at all modes. But at the presence

of a small damping, the amplitude of the transfer function for mode n is:

| AR |surf/out n=
I

1 + 0.5 · (2n− 1) · π · ξ · I
(2.21)

This equation will be useful in the next chapter to evaluate the damping introduced by the
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numerical integration. Figure 2.2 shows the theoretical transfer function and amplification

ratio for an elastic deposit. The effect of material damping and radiation damping induced by

the impedance ratio is shown. As expected, material damping increases with frequency, hence

short wavelengths are more affected by small scale heterogeneities (more attenuated), compared

to larger wavelengths. In contrast, radiation damping is frequency-independent and depends

solely in the impedance ratio.
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Figure 2.2 – Theoretical a) transfer function for different material damping and b) amplification
ratio for an elastic deposit for different Impedance ratios (hence different radiation damping)

2.2.3 Multi-layer soil deposit

Finally, it is important to generalize the previous calculations for the case of multi-layer soil

deposit. The theoretical transfer function can be deduced from the mono-layer case (Kramer,

1996). The equations 2.16 and 2.17 can be generalized for amplitudes Am and Bm of the layer

m, as follows:

Am+1 =
1

2
Am

(

I∗m + 1

I∗m

)

exp(i · k∗

m · hm) +
1

2
Bm

(

I∗m − 1

I∗m

)

exp(−i · k∗

m · hm) (2.22)

Bm+1 =
1

2
Am

(

I∗m − 1

I∗m

)

exp(i · k∗

m · hm) +
1

2
Bm

(

I∗m + 1

I∗m

)

exp(−i · k∗

m · hm) (2.23)

where I∗m is the impedance ratio between the layers m and m+ 1:

I∗m =
ρm+1 · (V

∗

s )m+1

ρm · (V ∗
s )m

=
ρm+1 · (Vs)m+1(1 + i · ξm+1)

ρm · (Vs)m(1 + i · ξm)
(2.24)

Additionally, k∗

m is the complex number taking into account the damping of the layer m:
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k∗

m = km(1 − i · ξm) and hm is the height of the layer. In order to find the amplitudes of

all the layers, equations 2.22 and 2.23 are successively solved starting from the surface to the

bottom, given that at the surface (i.e. m = 1) the shear stresses must be equal to zero and the

amplitudes of the upward and downward waves must be equal (A1 = B1). The calculations are

then performed by setting A1 = B1 = 1.0. The transfer function between the surface and the

bedrock will then depend on the properties and height of each layer.

This function is the key formula for 1D wave propagation along borehole sensors since, if

the layer parameters are known via deconvolution, it allows theoretical computation of the free

surface waveform when the downhole waveform is given or vice-versa. It is also appealing to

resolve the inverse problem, then the objective will be to come back to the layer parameters

knowing the free surface and downhole waveform. Several algorithms can be found in the

literature, such as those proposed by De Martin (2010) and by Regnier (2013), to identify

the soil parameters by inversion methods. As long as the soil behavior is still elastic and

small damping is present, these methods are very useful. However, there are multiple solutions

for combinations of number of layers, their heights and properties and these will be affected

differently by stronger loadings and nonlinear behavior. As an example the theoretical transfer

function of the gradient profile presented in the verification section as P2 is shown in Figure

2.3b. Different number of layers - i.e. different discretization steps (∆z) - were tested and their

effect on the transfer function can be identified. It is interesting to note that while the first two

predominant frequencies are very similar, a great difference is presented for the third peak and

specially for the highest ∆z. In general, as the ∆z decreases, the high predominant frequencies

shift to the right. Additionally, it appears that the response arrives to a threshold for very low

∆z as values of 1 and 5m are very similar for all frequencies.

2.3 Nonlinearity identification by ground motion analy-

sis

Laboratory tests consistently indicate that the stress-strain relationship of soils is nonlinear,

especially at shear strains larger than about 1 · 10−5, however, nonlinearity identification by

ground motion analysis is still challenging because the site effect itself is poorly isolated. The

source and path effects are individual for every earthquake and tend to dominate the spectra

of ground motions. In the late 80s and 90s, several strong motion recordings such as the 1985
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Figure 2.3 – An example of a) a shear wave velocity profile and the consequent b) theoretical
transfer function for different number of layers - case of P2 profile on the verification section.

Michoacan earthquake, the 1989 Loma Prieta earthquake, the 1994 Northridge earthquake, the

1995 Kobe earthquake and the 1999 Chi-Chi earthquake, provided substantial evidence of soil

nonlinearity. The paper by Beresnev and Wen (1996) comprehends a state of the art on this

subject. In the last 25 years, the amount of available good-quality digital recordings of strong

motions at surface and at vertical arrays has provided additional techniques to identify and

measure soil nonlinearity in the wave propagation. Some of these techniques and results will

be presented and later applied if possible in this study.

2.3.1 Peak acceleration

Concerning soft soil amplification, Seed et al. (1976) presented site factors which are still being

used as reference nowadays. These amplitude dependent amplifications for different soil types

were issued from the mean values of several surface recordings of eight earthquakes with mag-

nitudes of about 6.5, occurring in the western part of the United States. The factors were given

as ratios between the peak surface acceleration of a soft deposit (PGA) and the peak horizontal

acceleration at outcropping rock (PHA) as shown in Figure 2.4a. The relationship of motions

recorded at different stations (in different site conditions) were used to calculate the curve for

stiff soil conditions and the curve of deep cohesionless soils. Values for PHA above 0.3g are ex-

trapolations as no data was available. Additionally, an estimated curve for soft to medium stiff

clay and sand was provided by the authors based on experience of the few peak accelerations

recorded on soft to medium clay deposits. These curves correspond to the average behavior,
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however no information was given in the original curves accounting for data dispersion. This

indicates that some caution should be exercised in interpreting site-response characteristics as

source and path effects could be also involved. Note that the threshold beyond which nonlin-

earity becomes perceptible is between 0.1 and 0.2g, however, according to Beresnev and Wen

(1996), in the laboratory, the soil behavior is slightly more nonlinear.

Using data of distant sites from the 1985 Michoacan earthquake and the 1989 Loma Prieta

earthquake, Idriss (1991) performed site response calculations for PHA values above 0.2g and

developed a median factor curve for soft sites. In comparison with the estimated curve by

Seed et al. (1976), higher amplifications for small PHA values are presented. For instance, for

PHA between 0.05g and 0.10g, PGA are 1.5 to 4 times greater. Additionally, the threshold for

nonlinearity is at 0.4g, more than twice the one estimated by Seed et al. (1976).
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Figure 2.4 – Peak ground acceleration (PGA) as a function of peak horizontal acceleration at
outcropping (PHA) a) estimations based on recordings and extrapolations (after Seed et al.,
1976; Idriss, 1991) and b) GMPE from Abrahamson et al. (2013)

In modern building codes, this amplification or deamplification is taken into account via the

ground motion prediction equations (GMPEs), which provide estimates of spectral accelerations

depending on the earthquake magnitude and focal mechanism, site-source distance, and site

characteristics. These equations are essentially a combination of regression analysis of recorded

seismograms and calibration of analytic models. Some modern GMPEs account for shallow soil

site conditions through Vs 30, hence a similar PGA - PHA relationship can be established if PHA

is calculated with a much higher Vs 30. Concerning PGA at soft soil deposits, most equations

show a deamplification with respect to PHA. Figure 2.4b shows results for the GMPE developed
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by Abrahamson et al. (2013) as part of the next generation attenuation (NGA) project. The

PHA values correspond to the GMPE PSA evaluated at the minimum period (i.e. T=0.01s),

with Vs 30 of 550m/s (i.e. Vr) and varying magnitude. As for PGA, the same parameters were

used except for varying Vs 30. It can be seen that the threshold for nonlinearity increases from

about 0.2g to 0.4g as Vs 30 increases. This threshold increases slightly as Vr increases. Compared

to the curve given by Idriss (1991) with the given Vr the threshold is similar for Vs 30= 300m/s.

However the amplification for values below the threshold is much smaller.

2.3.2 Borehole transfer function

Borehole vertical arrays are useful to identify the nonlinearity in a soil deposit. If the downhole

instrument is installed in the bedrock, the surface-to-bedrock Fourier spectral ratio gives a pure

(borehole) transfer function of the soil, nearly isolated from source and path effects. Recent

studies have focused on the analysis of these arrays and some examples will be presented.

Bonilla et al. (2011a) used recordings from the Tohoku earthquake, Japan 2011, with mag-

nitude (Mw) of 9, to evidence nonlinear site response. This event is one of the largest events

recorded in the near-field by numerous stations in borehole -i.e. in surface and at depth- (KiK-

net) and only at surface (K-net). The average shift to lower frequencies depending on the soil

conditions was evaluated by comparing the borehole transfer function (|TF |) evaluated for weak

motions (i.e. PGA<0.02g) were compared to the one computed for the Tohoku earthquake.

Figure 2.5a shows examples for four stations with very different average shear-wave velocity

in the top 30m (Vs 30). The Tohoku |TF | (in black) presents a deamplification for high fre-

quencies and a shift of the predominant frequency to lower values compared to the linear |TF |

confidence limits of 95% (light gray area) and 68% (dark gray area). It can be noted that the

frequency for the shift of deamplification between the linear and nonlinear increases with the

Vs 30. To better identify this nonlinear shift, Bonilla et al. (2011a) followed the procedure by

Field et al. (1997) and computed the average ratio between linear and nonlinear amplification

functions for 73 sites ranged in different Vs 30 classes as shown in Figure 2.5b. If this ratio

is larger than one, nonlinear behavior is suspected at a given frequency band. Nonlinear soil

effects appear to increase with decreasing Vs 30, but even at stiff sites (Vs 30 > 800m/s), non-

linearity can be evidenced. In this case, a clear separation is observed between classes and the

nonlinearity spreads through a large band. For example, for soils having Vs 30 < 400m/s the

nonlinearity is present from 3 to 30Hz.
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(a) (b)

Figure 2.5 – Borehole transfer function: a) for weak motions - linear behavior- confidence limits
of 95% (light gray area) and 68% (dark gray area) and for Tohoku earthquake - nonlinear
- (black line) and b) average ratio between linear and nonlinear |TF | for Vs 30 classes (after
Bonilla et al., 2011a)

An effort to quantify this nonlinearity was presented by Regnier (2013), by which two types

of parameters were defined: the frequency shift (Sh) and the percentage of non-linearity (PNL).

The former is the frequency lag of the cross-correlation between the mean linear and nonlinear

|TF | and the latter is the normalized area between the nonlinear |TF | and the 95% confidence

limit of the linear |TF |. The normalization is made by the mean linear |TF |. These parameters

were tested in more than 200 KiK-net sites with more than 45000 events, of which less than

1% was above 0.05g. Nonlinearity was primarily identified at the superficial layers, as the

shallowest velocity contrasts are more affected by this soil behavior. As the use of H/V spectral

ratios gave similar results as those with |TF |, these parameters could be calculated without

the downhole sensors. In this type of sites, the nonlinearity can be triggered at lower PGA

values hence, above a PGA threshold of 0.075g there is a probability above 40% that nonlinear

soil behavior takes place. The borehole sensor in KiK-net stations is generally located about

100m from the surface though, Vs at 40m is in most cases above 500m/s. Hence, the |TF | at

KiK-net stations takes into account an elastic amplification from 100m to at least 40m and the

nonlinearity of the superficial less stiff soil.

2.3.3 Time-frequency spectral functions

In order to see the spectral changes, time-frequency transforms are useful, as they produce a

spectral estimate centered at each time element of the data (Reine et al., 2009). In this respect,
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a 1D frequency data trace is mapped into a 2D spectrogram, which has dimensions of time and

frequency. Mainly two types of time-frequency transforms can be used to compute the spectral

function: (1) those with fixed time-windows and (2) those with frequency-dependent time-

windows. The most recognized time-frequency transform is the short-time Fourier transform

- STFT - (Hauge, 1981 and Dasgupta and Clark, 1998), in which the Fourier transform is

applied to a time data trace which is gated by a sliding window function. This window can be

described by, among other, a rectangular, a Hamming or a Gaussian window. When using the

latter, the STFT is called a Gabor transform. In the work of Wu et al. (2009) and Wu and Peng

(2011) a 5% Hanning window is used. Concerning the second type, the S-transform (Stockwell

et al., 1996) and the wavelet transform (Rioul and Vetterli, 1991; Chakraborty and Okaya,

1995) are becoming more popular as they can better localize the time extent of the energy at

high frequencies (i.e. f > 50Hz). The S-transform uses a Gaussian window function with a

fractional distribution width equal to the inverse of the center frequency (i.e. σ = 1/f), hence

it analyzes shorter data segments as the frequency increases. Lastly for the wavelet transform a

modulated Gaussian, or Morlet, wavelet is used. Once the type of wavelet is chosen, a time-scale

decomposition is obtained, where increasing scale corresponds to decreasing frequency.

Reine et al. (2009) compared time-frequency transforms precision and accuracy to esti-

mate attenuation. One example is shown in Figure 2.6. Relative amplitudes are shown for

each case where the highest values (shown in red) are for the primary arrival. As expected,

frequency-dependent transforms present broader frequency ranges of stability while using fixed-

time windows will result in peaks and notches in the natural log spectral ratio for very high or

very low frequencies, respectively. Moreover, concerning the frequency-dependent transforms,

the use of shorter time windows for higher frequencies helps to isolate the primary arrival from

the coda and to reduce the influence of spectral fluctuations by averaging. While for the fixed-

time window transforms, the stability range and the spectral averaging at high frequencies will

depend on the size of the time-window specified. Hence a careful decision of this time window

size for the STFT could give comparable results with the S-transform in a chosen frequency

range.

Studies by Iai et al. (1995) and Bonilla et al. (2005) among others, have identified cyclic

mobility by the presence of large acceleration peak values riding over a low frequency carrier.

The soil behavior under this phenomena will be addressed in the next chapter, yet it can be

briefly explained by the apparent stiffness recovery when the soil is in the phase transformation

between contractancy and dilatancy. In this phase, the spikes in acceleration are due to spikes
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Figure 2.6 – Time-frequency spectral functions : a) STFT, b) Gabor transform, c) S-transform
and d) wavelet transform (after Reine et al., 2009). Only relative amplitudes are shown where
red depicts the highest values.

in stress and pore pressure generation. Time-frequency spectral functions are useful to identify

the evolution of energy in these two domains.

Bonilla et al. (2011a) used the S-transform of the two horizontal components at surface of the

Tohoku earthquake to identify the cyclic mobility on station MYG013 and the liquefaction on

station CHB024 as shown in Figure 2.7. The highlighted regions on the acceleration indicate

the high frequency spikes on a predominantly low frequency motion, characteristic of cyclic

mobility. Furthermore, the S-transform shows shifts of energy to lower frequencies in these

same time windows. However, for CHB024 station, the energy for frequencies higher than 0.5

Hz after around 125s is almost zero (dashed line in bottom panel of Figure 2.7b). Hence, it

is possible that true liquefaction was triggered at this moment. Bonilla et al. (2011a) noted

that field surveys close to the location of CHB024 station observed liquefaction; however, no

information was provided on this subject for MYG013 station.

Similar to the borehole transfer function, the ratio between the time-frequency transforms at

surface and at borehole provides information solely of the soil behavior by removing source and

path effects of the input motion. Studies by Wu et al. (2009) and Wu and Peng (2011) analyze

the temporal changes in the site response of various boreholes at different levels of peak ground

acceleration (PGA). The shift to lower values of the resonant frequency and the acceleration

deamplification is identified by using the sliding-window technique to compute the time-history

spectral ratios by STFT from a pair of surface and borehole stations. This procedure was used

with the EW component recording of Tohoku earthquake on station FKSH10 and results are
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(a) (b)

Figure 2.7 – Surface acceleration and normalized S-transform evaluated at surface acceleration
for both components of the Tohoku earthquake recorded at two stations: a) MYG013 and b)
CHB024 (after Bonilla et al., 2011a)

shown in Figure 2.8. The first two traces show similar peaks in frequency but for the main

shock, in the third trace, the frequency dropped almost 3Hz. For the last trace, the frequency

is again increased hence a soil recovery can be evidenced.
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Figure 2.8 – Temporal changes on the |TF | calculated for the EW component recording of
Tohoku earthquake on station FKSH10: a) time history of acceleration and windows for the
|TF | evaluation and b) |TF | for each time window (following procedure by Wu et al. (2009)

The computed STFT for FKSH10 and MYGH04 are shown in Figure 2.9. Above the STFT,

the surface and borehole recordings are shown in white and black, respectively. Below, the
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measure peak frequencies for each time window are shown with red dots and the least-squares

logarithmic fitting after the PGA is the blue dashed curve. Finally, at the panel on the bottom,

the measured peak spectral ratios are shown. Coseismic frequency and amplitude recovery after

the mainshock reached to at least 90% of the reference value.

Figure 2.9 – STFT for the Tohoku earthquake recorded at stations (a) FKSH10 and (d)
MYGH04. Below, are the peak frequencies (b and e) and the peak spectral ratios (c and
f). The vertical dashed line denotes the PGA value and horizontal black solid and dashed lines
show the reference value and uncertainties of the peak frequency obtained by averaging all the
spectral ratios for the windows before the p-arrivals of all the earthquakes between 2011/01/01
and 2011/03/28 (after Wu and Peng, 2011)

The reductions in the amplitude of the spectral ratios and in the peak frequency correspond

to a reduction in soil strength and an increase in soil damping observed during laboratory studies

and presented in Section 2.4. Assuming a homogeneous elastic soil layer of depth H with a

constant shear wave velocity (Vs) over a half-space bedrock with large impedance contrast,

recalling equation 2.20 presented at the beginning of the section, the fundamental frequency

(f0) of the soil layer can be computed by:

f0 =
Vs

4H
=

√

G/ρ

4H
(2.25)

where G is the shear modulus and ρ is the soil density. Hence as frequency decreases, G

decreases. Additionally, the soil damping (D) can be related to the deamplification of the

spectral ratio by taking the amplification ratio as was shown in equation 2.21, thus with the
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assumption of large impedance contrast, Wu et al. (2009) simplified the equation to:

|TF | =
4

πD
(2.26)

Finally, Wu et al. (2009) used the displacement-based shear strain firstly introduced by Hill

et al. (1993) defined as:

γDB =
du

dz
=

du/dt

dz/dt
=

PGV

Vs
(2.27)

Figure 2.10 shows the mean and one standard deviation G/Gmax degradation and D evo-

lution, called ξ in the figure, with γDB as presented by Hill et al. (1993) for the 2004 Mw 6.6

Mid-Niigata Earthquake Sequences in Japan. Gmax was evaluated as the average shear mod-

ulus before the earthquake. The results although with great variation, agree with the shear

degradation reference curves for clay from Vucetic and Dobry (1991) and the damping evolution

from EPRI (1993). The major drawback is the low level of strains. Unfortunately, the authors

did not presented similar curves for the Tohoku earthquake in the previously addressed article

(Wu and Peng, 2011).

Figure 2.10 – Normalized shear modulus degradation and damping evolution with shear strain.
Mean values are shown in solid circles and open squares, respectively. Vertical solid bars show
one standard deviation. The solid and dashed lines show the modulus reduction curve for
clay (Vucetic and Dobry, 1991) and the typical range of damping ratio for clay (EPRI, 1993),
respectively. (after Wu et al., 2009)
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2.3.4 Seismic interferometry

Another technique to measure nonlinearity evolution is the seismic interferometry. It is a

technique based on the correlation of waves recorded at different receivers with the advantage

that it does not need a source at one of the locations and is independent of the behavior

beyond the receivers. Two methods can be distinguished to perform interferometry: cross-

correlation and (more recently) deconvolution. The primary difference between them is that

the latter eliminates the characteristics of the incoherent excitation more effectively than does

correlation. However, since the deconvolution is unstable due to the zeros in the denominator,

a conjugation is used instead and a corrector parameter (ε) is added to the denominator, as

follows:

D(ω) =
uj(ω)u

∗

k(ω)

|u∗

k(ω)|
2 + ε

(2.28)

Interferometry is widely used for the identification of equivalent or homogenized mechanical

properties of a geotechnical structure (e.g. shear wave velocity and attenuation or damping)

under the condition of one-dimensional wave propagation. Figure 2.11 shows a clear example

of identifying the shear wave velocity of the soil deposit for the initial part of a ground motion.
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Figure 2.11 – Seismic interferometry example: a) time history of horizontal acceleration and b)
interferometry with surface (acausal)

Snieder and Safak (2006) used seismic interferometry by deconvolution to extract the Mi-

likan library building response and for separating intrinsic attenuation from radiation damping.

Two applications were identified: on one hand, when the deconvolution is performed with the

signal recorded at the top floor, the upgoing and downgoing propagating waves are clearly
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separated and the shear-wave velocity of the building can be identified. On the other hand,

when the deconvolution is done with the waveform recorded in the basement, only the upward

wave is visible and it provides information on the fundamental mode of the building. The ad-

vantage of interferometry is that it separates the mechanical properties of the media from the

excitation and the surrounding soil (Curtis et al., 2006). Deconvolution is often used, rather

than correlation, because it eliminates the characteristics of the incoherent excitation more

effectively; however an additional parameter is needed to avoid instabilities near the notches

in the spectrum. As only the deconvolved waves are independent of the excitation when the

building response is linear; the nonlinearity of the system can be identified by comparing the

deconvolved waveforms for events with different strengths.

Hence, if interferometry is used for strong ground motions and at different stages, i.e. for

different time windows with different amplitudes, the evolution on the nonlinear behavior can

be identified, namely decrease of shear modulus and increase of damping with shear strain. Re-

cently, great advancements have been made concerning this subject. Besides the classical elastic

shear-wave velocity (Vs) profiles inversion by deconvolution, Chandra et al. (2015) presented

in-situ estimations of the shear modulus degradation curves for soils between sensors from two

sites: the Garner Valley Downhole Array (GVDA) and the Wildlife Liquefaction Array (WLA).

More than 5000 events with magnitudes (ML) up to 5.5 were used for each array, however the

maximum PGA value was 0.12g and 0.3g for GVDA and WLA respectively. Figure 2.12 shows

some examples of the results corresponding to the WLA and the motions with NS direction.

For the superficial layer, the average results fit well the laboratory measurements performed

by Cox (2006) although a great dispersion is present. As not many strong ground motions

were recorded, minimum normalized shear degradation found was 0.8, for deformations about

2 · 10−4; however, nonlinearity was identified at very low deformations (e.g. 1 · 10−6) and was

satisfactorily fitted by a hyperbolic model. Surprisingly, some degradation was also presented

between 7.7 and 30m.
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Figure 2.12 – Normalized shear modulus degradation and damping evolution with shear strain.
NS direction. The solid black curve corresponds to the hyperbolic model and the gray-filled
circles represent the results from Cox (2006). In red are shown the mean and one standard
deviation for different bands of strain (after Chandra et al., 2015)

2.4 Dynamic soil behavior characterization

When a seismic wave is propagated through a soil deposit, the energy is felt by the soil as a

series of shear loading and reloading that will affect both the media and the propagation of the

wave. The behavior of soils under dynamic loading is mainly characterized by (1) the elastic -

or maximum- stiffness represented by the Young modulus( Emax) in compression tests or shear

modulus (Gmax) in shear tests; and (2) the degradation of the secant shear modulus (G) and

the evolution of damping (D) with respect to shear strain (γ), known as the nonlinearity curves.

The decrease of G involves the decrease of the shear wave velocity (Vs) and hence a shift to

low frequencies, as was shown earlier. Additionally, the increase in D causes a deamplification

of the amplitude of the propagating motion. Finally at high levels of strain, other phenomena

appear related to the evolution of volume change and of pore water pressure generation, in the

case of saturated media.

An accurate characterization of soils is of key importance for site-response-analysis. This

characterization can be performed by laboratory testing or via in-situ measurements. A large

variety of tests are available, each with different advantages and limitations mainly related to

the level of strains tested. While efforts can be made to reduce the errors in the interpretation,

testing equipment and sampling disturbance; uncertainties related to the inherent variability

of soils resulting by natural geologic formations and inherent or induced anisotropy should not

be neglected (Kramer, 1996).



28 2.4. Dynamic soil behavior characterization

Element laboratory tests use small specimens that are assumed to be representative of a

larger body of soil. The most common element test used for low levels of strain is the resonant

column (RC), while as for high levels of strain three cyclic shear tests are generally used: triaxial

(TX), direct (CDS) and torsional (CT). When using the conventional triaxial testing system,

that has the load and the displacement transducer outside the cell, Tatsuoka et al. (1995) found

that the Young modulus (E) will be underestimated and the damping (D) value, overestimated.

A procedure to use laboratory data from cyclic triaxial test where strains are measured

externally is proposed in order to use it for nonlinear modeling of dynamic soil behavior.

2.4.1 Measurement errors in triaxial test

Tatsuoka et al. (1995) presented data from numerous laboratory tests, performed by them

and by other researchers, to illustrate the importance of measuring deformation characteristics

accurately. Concerning the conventional triaxial testing system, three errors can be identified:

• Because of the piston friction, the measured load will be greater than the load applied;

hence, both E and D can be overestimated.

• However, due to the deformation of the loading piston measured by the external trans-

ducer, E may be underestimated.

• Additionally, due to the frictional forces developed at the sample ends, known as bedding,

the specimen deformation adjacent to the platens is restrained resulting in non-uniform

loading and deformation that will cause an underestimation of E and an overestimation

of D.

Globally, these errors will result in an underestimation of the Young modulus (E) and an

overestimation of the damping (D) value, the latter being more important.

Figure 2.13 shows the effect of bedding error in cyclic triaxial tests on undisturbed Pleis-

tocene clay performed by Mukabi (1994) and presented by Tatsuoka et al. (1995). Figure 2.13a

shows the stress-strain relation obtained for the 10th cycle from one undrained cyclic TX test.

The axial strain was measured both locally using a pair of local deformation transducers (LDTs)

and externally from the axial displacement of the specimen cap with a proximeter. For this case,

the E value measured externally is 60% of the one measured locally (i.e. Eext = 0.6Eloc). Addi-

tionally, the D value from the strains measured with the proximeter is more than twice the one

measured locally. Figures 2.13b and 2.13c show a comparison of E and D values, respectively,
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based on locally and external measured axial strains for undrained and drained conditions and

for two different single amplitude axial strains (εa). In all cases, the Eext are smaller than Eloc

and it seems that the difference increases with decreasing modulus and with increasing strain

level. Concerning the damping values, no clear tendency can be seen between the bedding

error and the measured damping. However, for the lower level of strain (i.e. εa= 5 · 10−6), the

damping external and local ratio shows more dispersion and higher values. Furthermore, the

drainage conditions do not show a clear effect on the bedding error.
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Figure 2.13 – Effect of bedding error in cyclic triaxial tests: a) typical stress-strain relation, and
comparison of b) E and c) D values based on local and external measures of axial strains for
undrained and drained conditions and for two strain levels on undisturbed OAP clay (modified
from Tatsuoka et al., 1995)

In addition, Tatsuoka et al. (1995) compared local and external deformation measurements

for 46 CD triaxial compression tests in three different sands and found that E values measured
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externally were always smaller and down to 55% those measured locally. Unfortunately, even

if these differences decrease with strain, the high scatter of the data was not systematic nor

related to each test. Therefore the authors judged that a precise correction of the bedding error

for externally measured axial strains is not feasible. However, some attempts have been made

to theoretically explain differences in E and D values and will be presented in shortly.

2.4.2 Similarities between methods to calculate the deformation prop-

erties

Provided that the measurements of the deformation properties are sufficiently accurate, stat-

ically -monotonic and cyclic- determined Gmax and shear modulus degradation curves can be

compared with those obtained by the corresponding dynamic tests (such as resonant column)

or evaluated by wave propagation -e.g. field interferometry.

Tatsuoka et al. (1995) presented a comparison between the maximum shear modulus (GTX
max)

from triaxial (TX) tests and the corresponding elastic shear modulus (Gin−situ
max ) obtained from

field shear wave velocity. In the laboratory tests, the shear modulus was defined at strains less

than 1 · 10−5. Mostly CU monotonic triaxial compression tests were performed but also some

cyclic triaxial tests were used. Each data point was obtained by averaging the tests under a

similar condition. Concerning field data, the shear modulus was measured at a depth for which

the concerned undisturbed samples for the triaxial tests were retrieved. Five different types of

soil were tested: sedimentary soft rock (mudstone and sandstone), cement-treated sandy soil

(slurry and dry) and deep mixing methods treated soils. Three different sampling methods were

used: rotary core tube (RCT), block sampling and direct coring. The former is more commonly

used but it produces more sample disturbance.

Figure 2.14a shows the results for Gmax from TX tests as a function of the Gmax measured

in-situ divided in two categories: those measured locally and those measured externally. It

can be observed that all Gmax obtained based on externally measured axial strains are much

lower than the corresponding Gin−situ, with values down to 10 times smaller. These difference

is primarily due to bedding error and not to sample disturbance. The later however can explain

the differences between Gmax based on local strain measures and Gin−situ; which is significantly

lower. Mostly samples obtained by RCT presented these Gmax of half the in-situ corresponding.

Concerning shear modulus degradation curves, Figure 2.14b shows a comparison between

five laboratory tests: the dynamic resonant column (RC) test and four static tests: monotonic
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triaxial compression (MTX), cyclic triaxial (CTX), monotonic torsional shear test (MTS) and

cyclic (CTS) performed on Ticinio sand at the same confinement pressure (p′=49 kPa). Even

if some differences were presented in the initial shear modulus, there were never above 20%;

thus, suggesting that even by using monotonic loading the elastic stiffness can be evaluated

accurately. Concerning the decay curves, differences can be observed between the monotonic

and cyclic tests, specially for the triaxial one. Tatsuoka et al. (1995) explained this by the

differences in extension and compression maximum and minimum stress ratio in the CTX test.

These differences will increase when less stiff soils are tested. Lastly, in Figure 2.14b, a very good

agreement can be found between the cyclic tests and the resonant column, even for medium

levels of strain, due principally to the small -or lack of- increase in the pore water pressure

hence low level of softening. However, differences in the decay between static and dynamic

tests becomes more complicated due to the effects of variable strain rates in the latter.
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Figure 2.14 – Comparison of deformation properties: a) Gmax from field shear wave velocity and
from triaxial tests for sedimentary soft rocks and cement-mixed soils and b) G degradation with
shear strain curves from different laboratory tests (strain was measured locally in the triaxial
test) (modified from Tatsuoka et al., 1995)

When strains are measured externally, discrepancies can be found when using different lab-

oratory tests. As an example, Figure 2.15 shows the shear degradation and damping evolution

curves based on resonant column (RC) and cyclic triaxial (TX) test - with external strain

measurement- for two different soils from the work of Pitilakis and Anastasiadis (1998). The

black line also present in the figure will be addressed later. The soils tested were a silty-clay

with PI=23% and confining pressure σ′

0=160kPa; and a sand with e= 0.575 and σ′

0 = 100kPa.
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Three important aspects can be highlighted from their results. Firstly, in TX the Gmax value

measured was lower than that from RC, i.e. 25% for the silty-clay and 70% for the sand. Never-

theless, both tests seem to follow the same degradation curve of G with strain as the GTX
max were

attained for higher strains. In contrast, there are some differences in the evolution of damping

with strain for the clay specimen. This can be due to three main aspects: mainly, as discussed

before, the bedding error in the TX if the strains were measured externally, the stress path used

- i.e. the initial conditions, the stress ratio and the strain rates - and the drainage conditions

(specially for higher levels of strain). For the TX, an initial isotropic state is then modified by

cyclically loading the vertical stress while keeping the lateral stress constant. In contrast, for

the RC the initial state is triaxial and the lateral and vertical stresses are kept constant while

a cyclic shear stress is imposed.

A methodology is proposed in order to estimate the real Gmax value (i.e. for lower levels of

strain of about 1 · 10−6) from the cyclic triaxial tests (TX) with external strain measurements,

that have a minimum strain of 1·10−4. The TX data for strains were no stabilization of modulus

is present are fitted to the hyperbolic equation of Nakagawa and Soga (1995):

G

Gmax
=

1

1 + α · γβ
(2.29)

where α and β are the geometric parameters (i.e. the intersect and the slope of the logarithmic

fit), γ is the shear strain - not in percentage - and Gmax is the unknown variable. In order

to find this value, a linear regression is fitted to the data plotted in log(Gmax/G − 1) as a

function of log(γ) and the coefficient of determination (R2) is optimized by changing the value

of Gmax. Figure 2.16 shows the best hyperbolic fit for both soils. The Gmax values found were

72kPa for the silty-clay and 52kPa for the sand, similar to those found with the RC. This

values correspond to 0.6 and 0.8 external-to-local ratios, which are reasonable values according

to those presented by Tatsuoka et al. (1995) and shown in Figure 2.13b. The corresponding

R2 values were 0.99 and 1.00, respectively. The proposed models are compared to the G vs. γ

curves shown in figures 2.15a and 2.15b and agree with both tests.

Finally, the normalized shear modulus degradation curves are shown in Figure 2.17 for both

tests and for the proposed model. Additionally the model given by Darendeli (2001) is shown.

It is interesting to note that the normalized curve for TX data are 10 times stiffer for the clay

and 5 times for the sand than the RC ones. In contrast, those with the proposed model are

between both tests for the clay and slightly less stiffer than the RC for the sand. Concerning
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Figure 2.15 – Shear modulus degradation and Damping evolution comparison between resonant
column (RC) and cyclic triaxial (TX) tests for a) and c) Silty-clay with PI=23% and confining
pressure σ′

0=160kPa; and b) and d) sand with e= 0.575 and σ′

0 = 100kPa (modified from
Pitilakis and Anastasiadis, 1998)

the Darendeli curves, for the clay it agrees more with the RC curve but with the sand it has a

better agreement with the proposed model.



34 2.4. Dynamic soil behavior characterization

γ [%]
0.0001 0.001 0.01 0.1 1 10 50

G
m

a
x
/G

 -
 1

 [
1
]

0.1

1

10

50

R
2
=0.99

data
α= 0.61; β=0.81

(a)

γ [%]
0.0001 0.001 0.01 0.1 1 10 50

G
m

a
x
/G

 -
 1

 [
1
]

0.1

1

10

50

R
2
=0.998

data
α= 1.26; β=0.85

(b)

Figure 2.16 – Shear modulus degradation : hyperbolic fit of cyclic triaxial (TX) test results for
a) Silty-clay with PI=23% and confining pressure σ′

0=160kPa; and b) sand with e= 0.575 and
σ′

0 = 100kPa (from Pitilakis and Anastasiadis, 1998)
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Figure 2.17 – Normalized shear modulus degradation curves for resonant column (RC) and
cyclic triaxial (TX) tests for a) Silty-clay with PI=23% and confining pressure σ′

0=160kPa; and
b) sand with e= 0.575 and σ′

0 = 100kPa (from Pitilakis and Anastasiadis, 1998)

2.4.3 Differences between laboratory and in-situ measurements

As discussed above, even considering that the laboratory tests were sufficiently accurate, some

differences between theGmax values can still be present between those obtained in the laboratory

and by field shear wave velocity. Stokoe and Richart (1973) compared measurements in the

field by the cross-hole (CH) seismic method and in the laboratory by the resonant column (RC)

method for different soils. Good agreement was found for the silty sand and the shale (i.e.
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relative differences of less than 10%); but for the sandy silt and the clayey silt, the laboratory

values were 30% smaller than the field values. Pitilakis and Anastasiadis (1998) comparisons

of Vs from CH and RC methods, present similar results; although, variations of 30% are also

present for some sands, silts and soft clays. Recall that Tatsuoka et al. (1995) presented values

50% smaller corresponding to sample disturbances for accurate local strain measurements in

cyclic TX test (refer to Figure 2.14a). Other than this source of differences, Stokoe and Richart

(1973) mentions the importance of selecting the appropriate confining pressure and evaluating

secondary time effects, i.e. the increase of Vs with time which is inversely proportional to

the particle size. In addition, other reasons have been identified by Pitilakis and Anastasiadis

(1998), for example: aging, anisotropy, representative volume and inherent variability.

Tatsuoka et al. (1995) and Pitilakis and Anastasiadis (1998), among others, agree that the

initial or maximum stiffness (Gmax) is better estimated from field seismic surveys. However the

question remains on how should the shear degradation curve, measured at the laboratory, is to

be fitted to the field Gmax value.

A 1D equivalent linear seismic response analysis was performed by Pitilakis and Anastasiadis

(1998) in order to test different procedures. Among them:

1. G(γ)in−situ = G(γ)lab: The maximum shear modulus and degradation curve measured in

the laboratory;

2. G(γ) = G(γ)lab +∆(Gin−situ
max −Glab

max): The same degradation curve but translated to the

in-situ Gmax value;

3. G(γ) = G(γ)lab/Glab
max ·G

in−situ
max : Normalize the laboratory degradation curve and multiply

it by the in-situ Gmax value.

The first option will not only affect the soil degradation but will modify the wave propagation

as it will shift the natural frequency of the deposit to lower values and will deamplify the

acceleration amplitude. The second option has the same normalized shear degradation curve

as in the laboratory but applied to a stiffer initial value will result in stiffer decay for all shear

strains; hence at strong accelerations, the response will be amplified for higher frequencies and

deamplified for lower ones. The third procedure was also suggested by Tatsuoka et al. (1995) as

it takes into account the strain level-dependency and the stress path during loading. Compared

to the normalized curve in laboratory, this procedure will give a steeper degradation (or higher

decay) which will result in less deamplifications for weak motions and higher deamplifications
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for stronger ones. The third procedure gave the best and more reasonable results according to

Pitilakis and Anastasiadis (1998) and is therefore recommended by the authors.

2.4.4 Summary of the proposed procedure

The proposed procedure to use laboratory data from cyclic triaxial test where strains are

measured externally for nonlinear modeling of dynamic soil behavior can be summarized in

three steps:

1. Find the maximum shear modulus (Gmax) by fitting the logarithmic equation 2.29 pro-

posed by Nakagawa and Soga (1995).

2. Compare the Gmax values found with those in the literature or available from other tests.

Note that this value should not be more than twice the measured one as it only accounts

for the external-to-local strain measurement error.

3. Normalize the fitted degradation curve and multiply it by the in-situ Gmax value.

2.4.5 Comparison of the proposed procedure with that of Ishihara

(1996)

Instead of fitting a logarithmic equation to the shear modulus reduction curve, Ishihara (1996)

proposed an empirically based correction factor (Cr) as a function of the shear strain to be ap-

plied to the normalized curve. This correction is expressed as Cr(γ) = (G/Gmax)
in−situ/(G/Gmax)

TX

and depends on the degree of sample disturbance. It is to be applied to the normalized shear

modulus degradation curve of the laboratory. Four degrees of disturbance were identified:

A Highly undisturbed;

B Block sampling;

C Tube sampling;

D Reconstituted samples.

The Cr values for each degree are given in Figure 2.18. The Cr values for degree D correspond

to the mean values of results of highly undisturbed samples recovered by the ground freezing
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Figure 2.18 – Correction factor Cr(γ) for different degrees of sample disturbance from Ishihara
(1996)

technique and reconstituted samples. The curves B and C were then suggested based mainly

on interpolation. For degree D, Cr presents the lowest value of 0.65 for a shear strain of 1%.

Figure 2.19 shows the tests presented by Pitilakis and Anastasiadis (1998) with the correc-

tions of Ishihara (1996) applied to the TX data. It can be noted that if Cr for degree D is

used, the corrected curves are in agreement with the RC normalized curve. The proposed fitted

curve is similar to the corrections C for the silty clay and D for the sand, which is accordance

with the differences of Gmax shown between the tests. Concerning the damping values, Ishihara

(1996) stated that “the influence of sample disturbance has been shown to be inconsequential

and therefore the value determined from the tests on any sample may be used for the analysis

purposes”.

2.4.6 Empirical models for the shear degradation and damping evo-

lution curves

Several authors have proposed shear degradation and damping evolution curves based on em-

pirical data. Figures 2.20 and 2.21 shows some examples. In Figure 2.20 are shown the ranges

presented by Kokusho (1980) for different confining pressures (p′) from cyclic triaxial tests in

dense Toyoura sand and the ranges for sand resulting from data of four different sites in the

United Stated presented by Seed et al. (1986). As expected, less nonlinearity and damping

is expected as p′ increases, hence less degradation is presented for a same level of γ and less

energy is dissipated. Comparing with Seed et al. (1986) curves for sands, a similar behavior in
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Figure 2.19 – Applied correction factor (Cr) from Ishihara (1996) to the normalized shear mod-
ulus degradation curves for cyclic triaxial (TX) tests performed by Pitilakis and Anastasiadis
(1998) for a) Silty-clay with PI=23% and confining pressure σ′

0=160kPa; and b) sand with e=
0.575 and σ′

0 = 100kPa.

both shear degradation and damping evolution is presented even if the sand type is different.
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Figure 2.20 – Kokusho (1980) curves of a) normalized shear modulus degradation and b) damp-
ing evolution as a function of shear strain for dense Toyoura sand at different confining pressures
(p′). The ranges for sand (black solid and dashed curves) given by Seed et al. (1986) are also
shown.

Concerning clayey-silty soils, Vucetic and Dobry (1991) presented mean curves for varying

plasticity index (PI) as shown in Figure 2.21. The effect of PI in clays is similar to the effect

of p′ in sands that is, for higher PI, less nonlinearity and damping. Compared to the references
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of Seed et al. (1986), the variation in these curves is more important. All these curves are, in

general, used as reference and compared to other laboratory data and to numerical simulations.

However, as limited data was used for each set of curves, these are only valid for limited cases.
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Figure 2.21 – Vucetic and Dobry (1991) curves of a) normalized shear modulus degradation
and b) damping evolution as a function of shear strain for different plasticity index. The ranges
presented by Seed et al. (1986) for sand are also shown.

In contrast, Darendeli (2001) used data from various research projects of resonant column

and torsional shear tests performed on more than 20 sand sites to develop a model for the

estimation of normalized modulus reduction (G/Gmax) and damping (D) curves as a function

of shear strain depending on several variables. The tests were sequentially performed on intact

samples from soils described as having low void ratio and not liquefiable during seismic activity.

The tested soil samples ranged from natural clean sands to clays, characterised by broad in-

tervals of sampling depth (3-263 m), effective confining pressure (p′) ranging from 30-2750kPa,

plasticity index (PI) from 0-132%, and over-consolidation ratio (OCR) ranging from 1 to 8.

Additionally, D curves were found to depend also, but not as important, on the excitation

frequency (fexc) and the cycles of loading (N). The model was calibrated using a first-order,

second-moment Bayesian technique. An interesting aspect of the proposed model is that not

only the mean value is given for each shear strain but also the standard deviation. Figure 2.22

shows an example for these curves with different effective confining pressures. The used param-

eters are: PI= 0, OCR= 1, fexc = 1 and N= 10. Additionally, plus and minus one standard

deviation is given for p′ = 500kPa. It is noted how this variability is important compared to

the variation due to the effective confining pressure. As expected, the soil is stiffer for higher
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p′ i.e. the shear modulus degradation shifts to higher strains.
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Figure 2.22 – Darendeli (2001) curves of a) Normalized Shear modulus degradation and b)
Damping evolution as a function of shear strain for different effective confining pressures. With
PI= 0, OCR= 1, fexc = 1 and N= 10. The ± standard deviation is given for p′ = 500kPa

A similar behavior is presented for an increase in PI, not shown here, with the exception

that for higher PI values, the damping at low strains slightly increases. It is important to note

that due to test data collection limitations, the equations are recommended by the author only

for strains below 1%. Additionally, the PI lacks representativeness for values above 30% as

less than 9% of samples where in this range. According to Guerreiro et al. (2012), this could

have introduced a bias in the development of the curves, as they exhibit a narrower breath

for varying values of PI, when compared with the proposals by Vucetic and Dobry (1991).

Darendeli (2001) curves propose a reduction of damping ratio at very large strains, specially

marked at low confining pressures and low plasticity index that has never been captured so far

in laboratory tests nor seen in other proposed curves. Similarly, the OCR values are also not

very well represented above 2 (9 samples against 101 samples for OCR ≤ 2).

In the same laboratory, Menq (2003) performed resonant column and torsional shear tests

on solely sand sites and presented some modifications to the curves proposed by Darendeli

(2001), which apply for more coarser material. The main differences is that G/Gmax as well as

the D curves are now dependent on the uniformity coefficient (CU) and the 50% diameter size

(D50), in addition to the effective confining pressure (p′) and that the D curves depend only

on the N value. Figure 2.23 shows an example for these curves with different effective confining

pressures and different CU . D50 was set to 1mm and N to 10. When CU is equal to 8, the
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G/Gmax curves are inside the ranges given by Seed et al. (1986) and are similar to those given

by Darendeli (2001) and they shift to the right as the CU decreases. Concerning the damping

curves, values are below all other values presented. The effect of D50 is the opposite of that of

CU , in fact, an increase in D50 will give an increase in nonlinearity and a decrease in damping.
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Figure 2.23 – Menq (2003) curves of a) Normalized Shear modulus degradation and b) Damping
evolution as a function of shear strain for different effective confining pressures. With CU =
1.8 (solid lines) and 8 (dashed lines), D50 = 1mm and N= 10

2.5 Modeling dynamic soil behavior

2.5.1 Equivalent linear analysis

Equivalent-linear (EQL) analysis is probably the most commonly used procedure in practice

to simulate nonlinear soil behavior because of the small computational effort and few input

parameters. Most of its popularity is related to its implementation in the computer code

SHAKE developed by Schnabel et al. (1972) for one-dimensional ground response analysis of

layered sites. Later modifications were implemented in the versions SHAKE91 (Idriss and Sun,

1992) and SHAKE04 (Youngs, 2004).

EQL modeling is based on a total stress representation of soil behavior and in the visco-

elastic concept. The only input parameters in addition to the unit mass, are the maximum

shear modulus (Gmax) and the nonlinearity curves: normalized modulus (G/Gmax) reduction

and damping (D) evolution as functions of shear strain (γ). The equivalent linear properties are

then corresponding to couples of G and D for a determined effective shear strain level (γeff),
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usually taken as 65% of the peak strain calculated from the input motion. This coefficient

controls the nonlinearity and can be reduced to improve high-frequency response.

Since the computed strain level depends on the values of the equivalent linear properties,

an iterative procedure is required to ensure the compatibility with the evolution of the non-

linearity curves at each layer. In other words, to ensure that the strain-compatible properties

are consistent with the properties used to perform the dynamic response analysis. Although

convergence is not absolutely guaranteed, differences of less than 10% are usually achieved in

less than 5 iterations (Schnabel et al., 1972).

Two main limitations have been identified in the EQL analysis: (1) overestimation of the

maximum acceleration and (2) underestimation of hiqh frequencies amplification. The former is

related to the overestimation of stresses as the relationship between maximum stress and strain

is simplified as linear. This overestimation increases with strain, as the nonlinearity increases.

The reason for the latter is the overestimation of damping ratio for small amplitude (high cycle)

vibration. This effect is more important for the small to medium earthquakes.

Even though the iterative process allows the nonlinear soil behavior to be approximated, the

response method is still linear. Hence, the strain compatible properties are constant throughout

the duration of the earthquake, regardless of whether the strains at a particular time are small

or large (Yoshida and Iai, 1998). Additionally, the method is incapable of representing the

changes in soil stiffness that actually occur during the earthquake as no strain accumulation

neither softening due to pore-water pressure generation is possible (Kramer, 1996).

Ishihara (1993) suggests that equivalent linear methods can be used as long as no hys-

teresis degradation is present. That is when no progressive change is evidenced in the shear

modulus and damping ratio due to cycles of load application. This strain-dependent but cycle-

independent behavior is present for medium strains (i.e. approximately 10−5 < γ < 10−3).

Above this level, the soil properties change not only with strain but with the progression of

cycles. This change depends on the shear stress loading and its effective confining stress evalua-

tion. The use of constitutive laws, in which the stress-strain relation is described for each step of

loading, unloading and reloading, becomes necessary. This type of response analysis was termed

by Ishihara (1993) as step-by-step integration method and are employed in history-tracing type

models.
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2.5.2 Nonlinear models

Two types of nonlinear models can be identified: those that rely on the description of the back-

bone and hysteretic curves and advanced constitutive models based on the plasticity framework

and can take into account the initial and critical state, volume deformations and drainage con-

ditions, among others.

The backbone - or skeleton - curve is the nonlinear shear stress-strain relationship for mono-

tonic loading. The hysteretic curves are the nonlinear energy dissipating scheme that are usually

related to the backbone curve by a series of rules. The most common are the Masing (1926)

rules by which unloading of any cycle starts with a shape that is identical to that of the nega-

tive part of the initial loading (backbone curve) enlarged by a factor of two; and, for reloading

the positive part of the initial loading backbone curve is used. Two additional rules called

the extended Masing rules are also very popular. The first one concerns the maximum strain

history; thus, if the unloading or loading curve exceeds the maximum past strain and intersects

the backbone curve, it follows the backbone curve until the next stress reversal. The second

one consists in the cycle history; hence, if an unloading or loading curve crosses an unloading

or loading curve from a previous cycle, the stress-strain curve follows that of the previous cycle.

In contrast, advanced constitutive models are described by intrinsic soil properties and

geometric parameters and are capable of simulating complex soil behavior under a variety of

loading conditions. The key components of such models include a yield surface, flow rules, and

hardening (or softening) laws.

2.5.3 Comparisons between models

The geotechnical literature provides numerous examples of ground response modeling using

an equivalent-linear code with total stress analyses or true nonlinear methods (Chin and Aki,

1991; Yu et al., 1993; Kramer et al., 2011; Yoshida, 2013, among others). For weak ground

motions, when the soil behavior is still not substantially modified, equivalent-linear analysis

(e.g. SHAKE) can provide similar results. However, for large accelerations and soft soils, this

method notably differs from true nonlinear techniques.

As SHAKE is based on an equivalent-linear shear-stress relationship, the maximum shear

strain and the corresponding maximum acceleration are some times overestimated, which can

result in a conservative design. However, the underestimation of the high frequency energy

at large strains causes the underestimation of accelerations for the corresponding frequencies.



44 2.5. Modeling dynamic soil behavior

In other words, acceleration amplification for long periods is underestimated. This underesti-

mation could be highly prejudicial for flexible buildings. In addition, peak displacements and

shear strains are often underestimated which will result in damages on the structure above

them. As these factors depend on the frequency content as well as in the degree of nonlinearity,

the evaluations of SHAKE scatter. Hence, true nonlinear models which track the exact form

of stress-strain relationship, like the one used in this study, are suggested for dynamic response

analysis in the most general case (Beresnev and Wen, 1996).

Foerster and Modaressi (2007b) simulated the wave propagation of two earthquake arrays (

Loma Prieta 1989 and Kobe 1995) with the 1D version of the ECP model, known as CyberQuake

(Modaressi and Foerster, 2000), and with SHAKE. In general, the response of the studied

sites was better reproduced with the effective-stress nonlinear constitutive model than with

the equivalent linear approach. Both the overestimation of maximum accelerations and the

underestimation for high frequencies were attested.

The equivalent-linear and the nonlinear models have different formulations and underlying

assumptions thus differences in their results are expected. For instance, the implementation of

empirical dependencies of shear modulus and damping on strain, the use of effective strains and

the inability to represent the development of permanent and shear-induced volumetric strains

(Kramer, 1996). One of the limitations of the equivalent-linear models is the inability to model

the generation, redistribution and eventual dissipation of excess pore-pressure during and after

earthquake shaking; which is of key importance in the behavior of liquefiable soils. To account

for this particular capability, the nonlinear models can be formulated in terms of effective

stresses. In chapter 4.2, the comparison is made between the total and effective stress analyzes

in the interest of solely evaluating the effect of coupling excess pore-pressure generation and

deformation.
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This chapter describes the numerical tools used in this thesis. Special attention is given to

the numerical integration, the evaluation of the added damping due to the dissipative Newmark

scheme and the discretization in time. The nonlinear constitutive model is briefly described

and its sensibility to some of the numerical parameters is shown. Lastly, some results of the

model’s validation for the 1D site response analysis are presented.

3.1 Finite Element Model

The finite element code used throughout the analyses is GEFDyn. It was created at Ecole Cen-

trale Paris on the early 80s as a program for the analysis of static and dynamic soil behavior

with coupling soil, water and air (Aubry et al., 1985). Thereafter, it has been continuously im-

proved by, among others, Aubry and Modaressi (1985); Modaressi (1987); Aubry and Modaressi

(1989). In this study, 2D coupled pore pressure and soil deformation finite element computa-

tions with plane-strain assumption will be performed. The soil is modeled using quadrilateral

isoparametric elements with eight nodes for both solid displacements and fluid pressures.

For the case studies of chapters 4 and 5, the numerical model is divided into two steps:

first, the initial stress state is obtained by the conservation equations in static conditions and

then, the dynamic behavior is analyzed starting from the previously found stress state. The

initialization step is important to correctly model the consolidation process or the construction

by layers, for example.

To take into account the coupling of pore pressure and soil deformation, Biot (1941) equa-

tions for the dynamic behavior of saturated porous media were introduced in GEFDyn by

Modaressi (1987). Three formulations exist: in terms of (1) absolute displacements of the solid,

the fluid and the pore pressure (us−uw−pw) (Zienkiewicz and Shiomi, 1984), (2) absolute dis-

placement of the solid, relative displacement of the fluid and the pore pressure (us−urw−pw);

and (3) absolute displacement of the solid and the pore pressure (us − pw) (Zienkiewicz and

Taylor, 1991). The first two are useful for high frequency range, but when these are low, the

relative displacement of the fluid can be neglected and the simplified us − pw formulation can

be used. As further simplifications, soil grain compressibility is assumed to be null and thermal

effects are ignored.

Note that the pore water pressure generation and dissipation will depend on the permeability

tensor and the compressibility bulk parameter. The main advantage of the simplified model is

related to the reduction of the numerical cost, due to the reduction of the degrees of freedom.
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The inaccuracies of this approach are seen only in high-frequency, short-duration phenomena

which are presented in the work of Zienkiewicz et al. (1999).

3.2 Numerical integration

An implicit Newmark numerical integration scheme is used in the dynamic analysis for the

discretization in time. The step-by-step integration uses a predictor-corrector scheme Modaressi

(1987). The Newmark method is one of the most popular classical numerical time-integration

algorithm and guarantees accuracy of first order (Kuhl and Crisfield, 1999).

Disregarding the iterative algorithm which handles the nonlinearity, the governing finite

element equation of a viscoelastic media at time tn+1 = tn + ∆t, commonly known as the

equation of motion is:

M · ü(tn+1) +C · u̇(tn+1) +K · u(tn+1) = F(tn+1) (3.1)

where M, C, and K are the global mass, damping and stiffness matrices, respectively, F is the

vector of the global applied loads, and u, u̇ and ü are the vectors of displacement, velocity and

acceleration, respectively.

Newmark method approximate solution consists in assuming that u, u̇ and ü are known

variables at the time tn and are related to those of time tn+1 by the finite difference formula

describing their evolution with equations 3.2 and 3.3 :

u(tn+1) = u(tn) +∆t · u̇(tn) + (
1

2
− βN) ·∆t2 · ü(tn) + βN ·∆t2 · ü(tn+1) (3.2)

u̇(tn+1) = u̇(tn) + (1− γN) ·∆t · ü(tn) + γN ·∆t · ü(tn+1) (3.3)

where βN and γN are the numerical parameters that assure precision and stability of the algo-

rithm. The higher modes of semi-discrete equations are artifacts of the discretization process

and they are not representative of the behavior of the governing partial differential equations.

Hence, it is generally desired to introduce some algorithmic damping to remove the participa-

tion of the high-frequency modal components even if second-order accuracy is lost (Hughes,

2000). For a damping ξN , less than unity, the Newmark method is unconditionally stable when

the equations 3.4 are satisfied:
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γN ≥ 1

2
and βN ≥ (γN + 1/2)2

4
(3.4)

Otherwise the stability can be conditional to the period (T ) and the time step (∆t), as

follows:

γN ≥ 1

2
(3.5)

∆t

T
≤ ξN · (γN − 1

2
)/2 +

[

(γN + 1
2
)2/4− βN + ξ2N · (βN − γN

2
)
]1/2

2π · [(γN + 1
2
)2/4− βN ]

Thus, to assure stability of higher modes (i.e. lower periods), either the time step should be

reduced or the damping should be increased. When γN > 1
2
and βN = (γN + 1

2
)
2
/4, the stability

is unconditional but the numerical damping depends on T and ∆t as follows:

ξN = π

(

γN − 1

2

)

∆t

T
+O

(

∆t

T

)2

(3.6)

Note that in this equation, the first derivative with respect to the normalized frequency

(∆t/T ) is positive for∆t/T=0, an indication of first-order accuracy. Additionally the numerical

dissipation of low modes (i.e. ∆t/T <0.1) is more important compared to other numerical

algorithms that present zero slopes hence second-order accuracy (Hughes, 2000).

The modes of the system can be considered independently in order to investigate the stability

and accuracy characteristics of the integration scheme in the linear regime (Kontoe et al., 2008).

The governing equation is then a single-degree-of-freedom (SDOF) model and the solution leads

to the set of equations 3.7:
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(3.7)

whereA is the amplification matrix that determines algorithmic characteristics such as stability,

accuracy and numerical dissipation. The spectral radius at infinity (ρ∞) is the maximum

eigenvalue of the amplification matrix. The algorithm is conditionally stable when ρ∞ ≤ 1. For

ρ∞ equal to 1, the dissipation is equal to zero, but as ρ∞ decreases, the algorithmic dissipation

increases for the higher modes.

Kuhl and Crisfield (1999), among others, propose to calculate γN and βN as a function

of the spectral radius at infinity (ρ∞) to achieve an “optimal high-frequency dissipation with
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minimal low-frequency impact”, i.e. to decrease amplitude with time when the response is near

to free-oscillations. Figure 3.1 shows the spectral radii as a function of normalized frequency

for different sets of Newmark parameters. The minimum value of βN that retains unconditional

stability is γN/2. However as may be seen from the black dashed lines in Figure 3.1, for values

of βN such that γN/2 ≥ βN < (γN + 1
2
)
2
/4, the eigenvalues of A bifurcate and become real

beyond some ∆t/T . Thus, the high frequencies are not effectively damped. In the other hand,

as it can be seen with the color lines, when the Newmark parameters are related by ρ∞, i.e.

βN = (γN + 1
2
)
2
/4, the spurious high frequencies are the most effectively filtered.
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Figure 3.1 – Spectral radii as a function of normalized frequency for different sets of Newmark
parameters. Color lines show parameters related by ρ∞ and dashed lines show an example for
γN=0.83 and different β values.

The relations are:

βN =
1

(ρ∞ + 1)2
and γN =

3− ρ∞

2ρ∞ + 2
(3.8)

Note that these equations satisfy the equation 3.4 of unconditional stability; thus, the solution’s

stability is independent of the frequency and time step. When ρ∞ is equal to 1.0 (βN = 0.25,

γN = 0.5), there is no dissipation and therefore no numerical damping is added. On the other

hand, the algorithm with ρ∞ = 0 leads to the strongest possible high-frequency dissipation but

achieves very poor accuracy in the low modes. Thus, it is not useful for most applications.

3.2.1 Numerical damping

Theoretically, below the elastic shear strain threshold, no hysteretic dissipation of energy takes

place. However, even if the mechanism is not well understood, there is experimental evidence of
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such dissipation (Darendeli, 2001). Some advanced constitutive models, as the one used in this

study, require the addition of a small amount of low strain damping to avoid spurious response

at very low strain levels. This damping is introduced by the numerical algorithm of the dynamic

equilibrium solution in the time domain and is applicable for strains less than 0.01%. In this

section, two ways to quantify the numerical damping (ξN) induced by the dissipative integration

scheme in the case of elastic soil behavior are presented. The first one is by analyzing the time

domain of the surface displacement of a soil deposit over a rigid bedrock; and the second one is

by calculating the deamplification of the transfer function of a deposit over an elastic bedrock.

As no material damping should be present, a scaled motion with a maximum acceleration

(PHA) of approximately 1 · 10−5g is applied to the bottom of a soil deposit. With a very small

PHA, the behavior is assured to be elastic.

The first method consists in comparing the wave propagation of the soil deposit with a

single degree-of-freedom (SDOF) model. This is done under the hypothesis that the response is

near to free oscillation and the damping is small (i.e. less than 1%) (Ruiz and Saragoni, 2009).

For a homogeneous case, the exact solution of the displacement is:

u(t, z) = exp(−2ξN · π · ωh · t)[d0 cos(ω
h
d · t) + c sin(ωh

d · t)] (3.9)

with

c =
v0 + ξN · ωh · d0

ωh
d

(3.10)

ωh
d = (1− ξ2N)

1/2 · ωh

where ωh
d is the damped natural angular frequency for mode h. Recall that fh

d = 2π · ωh
d .

Hughes (2000) derived the discrete solution and arrived to the conclusion that after one period,

for small ξN , the amplitude decay is:

AD ∼= 2π · ξN (3.11)

In order to evaluate the numerical damping added, different spectral radii were tested in

a simple one dimensional wave propagation test of a 20m homogeneous elastic soil overlying

a rigid bedrock. The material properties are shown in Table 3.1 and correspond to profile P1

that will be used to test the model parameter’s sensibility in section 3.4. Likewise, the input

motion used corresponds to a japanese recording at a KiK-net station and is shown in section
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3.4, Figure 3.9a. The spectral radii tested are listed in Table 3.2. The time step (∆t) is constant

for all simulations and set to 1 · 10−3s and the element size is 25cm.

Material ρ [kg/m3] ν[1] Vs[m/s]
Soil 2000 0.4 300
Rock 2500 0.3 1000

Table 3.1 – Material elastic properties for numerical damping evaluation for P1 profile.

ρ∞ βN γN
1 0.25 0.50
0.9 0.28 0.55
0.7 0.35 0.68
0.5 0.44 0.83
0.3 0.59 1.04
0.0 1.00 1.50

Table 3.2 – Newmark parameters tested and calculated by equation 3.8

Figure 3.2 shows the surface displacement (u) as a function of time (t) for the different

spectral radii. It evidence the effect of the numerical damping for the different cases shown as

the rate for the amplitude decay after the peak acceleration. However, it can be noted that this

decay is not linear with respect to the spectral radius.
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Figure 3.2 – Surface displacement time history for the different spectral radius (ρ∞)

The numerical damping was evaluated by simplifying equation 3.9, as done by Ruiz and



52 3.2. Numerical integration

Saragoni (2009), as follows:

u

umax
= y · exp(−2π · f0 · ξN · t) (3.12)

where umax is the maximum displacement and f0 is the predominant frequency. Figure 3.3a

shows an example of the displacement normalized by the maximum value as a function of time

normalized by the natural angular frequency (ω0 = 2π · f0). The envelope after the peak is

then fitted by an exponential function where the slope coefficient is equal to the damping value.

Note that the exponential decay is best analyzed at the end of the signal while the initial

part is more related to the vector y which describes the second part of equation 3.9. This

procedure was performed for all the values tested. Additionally, other soil columns were tested

which will be used in Chapters 4 and 5. Figure 3.3b shows the numerical damping (ξN) as a

function of the spectral radius (ρ∞) for all the soil profiles. It can be seen that even for the

smallest ρ∞ the damping is less than 1%. This damping is independent of the soil and the

motion properties. Additionally, the theoretical equation 3.6 is evaluated for the predominant

frequency (f0=3.75Hz) and the time step (∆t = 1 ·10−3s) and shown in Figure 3.3b. Neglecting

the quadratic terms, the results agree well with the computed values for the different soils and

with ρ∞ above 0.2. When ρ∞ equals 0, the ξN varies for the different cases possibly due to the

high value of damping that is approaching unity.
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Figure 3.3 – Induced numerical damping of a soil deposit over a rigid bedrock: a) Normalized
surface displacement as a function of the normalized time history and b) ξN as a function of
the spectral radius (ρ∞) calculated by exponential decay and by equation 3.6 in dashed line.

The second method consists in measuring the amplitude of the transfer function between
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the surface and the outcropping displacement known as the amplification ratio (|AR|) at the

different modes (Dobry et al., 1982). When no damping is present, the amplitude of all modes

is equal to the impedance ratio (I) between the rock (r) and the soil (s). Which is defined as:

I =
ρr · Vs r

ρs · Vs s

. Otherwise, when no material damping exist, the deamplification is due to the

numerical damping, thus it can be evaluated as follows:

ξN(ω) =

I
|AR|

− 1

(2n− 1)π · I/2
(3.13)

Figure 3.4a shows the |AR| for the different spectral radii without any kind of smoothing.

Note that for the undamped case, the maximum amplitude for all modes is approximately equal

to the impedance ratio (i.e. I = 4.16 for this model); although as no dissipation is allowed some

spurious peaks are present. However, these peaks are not visible for the other spectral radii.

Additionally, it can be seen how the deamplification is greater for the second and third modes,

hence this numerical damping is shown to be frequency dependent. The damping is quantified

for each mode using equation 3.13 and it is shown in Figure 3.4b as a function of spectral

radius. In the figure, the damping evaluated with the first approach is also shown. Note that it

is similar to that of the first mode, thus both approaches are useful to quantify the numerical

damping induced in the model. Once more, the theoretical equation 3.6 is evaluated for the

first three modal frequencies and the time step (∆t = 1 · 10−3s) used. Results are shown in

Figure 3.3b as black dashed lines. Neglecting the quadratic terms, the results agree well with

the computed values for the first mode; however differences increase for higher modes and for

higher damping. The second method is more reliable as it is measured in the response and

allows to quantify the damping for different frequencies without any approximations.

As high-frequency dissipation is advisable, a ρ∞ equal to 0.8 (i.e. γN=0.611 and βN=0.301)

will be used, unless it is mentioned different. The corresponding ξN is approximately 0.1% for

the frequencies close to 5Hz. It is important to remark that this numerical damping affects

principally the elastic response of the model (i.e. for shear strains (γ) lower than 10−5) and for

greater values of γ the damping is provided by the material degradation as will be shown in

the next section.



54 3.2. Numerical integration

5 10 15 20 25
0

2

4

6

8

10

f [Hz]

|A
R

| 
[1

]

 

 

  1
0.9
0.7
0.5
0.3
0.1
  0

ρ
∞

 [1]

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

ρ
∞

 [1]

ξ
N

 [
%

]

 

 

1st mode
2nd mode
3rd mode
Rigid
Theory

(b)

Figure 3.4 – Induced numerical damping of a soil deposit over an elastic bedrock: a) Amplifica-
tion ratio (|AR|) between the surface and the outcropping displacement and b) ξN as a function
of the spectral radius (ρ∞) for the first three modes. No smoothing was used for the |AR|.

3.2.2 Discretization

3.2.2.1 Mesh size

In dynamic modeling, the discretization in space is given by the minimum shear wave velocity

(Vsmin), the highest frequency (fmax) of interest in the analysis and the maximum number

of points per wavelength (n). The minimum wavelength (λ) visible to the soil is directly

proportional to Vsmin and inversely proportional to fmax, i.e. λ = Vsmin/fmax. Hence, the

element size is bounded by:

∆z ≤ Vsmin

n · fmax
(3.14)

It is usually admitted that 10 points per wavelength are sufficient to obtain good numerical

results, hence n = 10·(Ne−1), where Ne is the number of integration points per element defined

by the integration order. In this study, a quadratic approximation is used, hence Ne equals

3, i.e. 9 integration points per element. However, is important to remark that for non-linear

models, the shear-wave velocity will decrease with the shear-strain amplitude; thus more points

per wavelength should be used. In general for this study, ∆z is 0.5m; that, for a fmax of 20Hz

and n of 10, a minimum Vsmin of 50m/s will still be feasible.
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3.2.2.2 Time step

The discretization in time depends on the element size (∆z) and the shear wave velocity (Vs),

but also on the mass matrix determination, the damping used and the fundamental period of

the system. The use of finite element methods imposes a basic stability criterion. In other

words, as a wave propagates in space it reaches one point after the other; but if the time step in

the analysis is too large the wave front can reach two consecutive elements at the same moment.

This would violate a fundamental property of wave propagation and can lead to instability. The

time step therefore needs to be limited. Foerster and Modaressi (2007a) derived the critical

time step for a series of cases for 1D isoparametric elements and nodal quadrature. The most

restrictive case tested was that of a rigid bedrock used for explicit schemes; which gives:

∆t <
∆z

Vs

√

3A · B

8βN
(3.15)

where A = (23+
√
345)/120 and B = (37−

√
345)/60 when the diagonal consistent scheme

is used to diagonalize the mass matrices. If the traditional lumping scheme is used instead

A = 1/6 and B = 2/3. Foerster and Modaressi (2007a) showed some advantages of using the

diagonal consistent scheme as it gives smoother results specially avoiding the high frequency

spurious oscillations in acceleration, which are due to numerical instabilities. It is important

to highlight that these coefficients are only valid for the 1D case whereas for 2D or 3D cases,

coefficients will change.

In the present case the time step should be smaller than 3 · 10−3s. An additional stability

criterion results from the nonlinear implementation of the numerical solution of wave propaga-

tion. Similar to the spatial discretization, the smallest fundamental period of the system (Tn)

chosen, should be represented by 10 time steps (Preisig and Jeremic, 2005) - equal to 5 · 10−3s

in this case if 3 modes are used. Lastly a third criterium is related to the dynamic analysis,

by which the numerical time step is also affected by that of the input motion. In general, the

numerical time step should be 5 times smaller than the latter (Preisig and Jeremic, 2005). All

of these criteria should be respected in order to avoid stability and convergency problems.

Furthermore, the time step will affect the attenuation at high frequencies, due to the dis-

sipative scheme of the Newmark method chosen. As an example, the elastic model for profile

P1, used above for the numerical damping calculation, is tested with different time steps. The

numerical parameters used are βN=0.28 and γN=0.55, which correspond to ρ∞ of 0.9 and ξN

about 0.06% when ∆t = 1 · 10−3s. The same input motion is used and is applied to a rigid
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bedrock. Figure 3.5a shows the transfer function between the acceleration at surface and the

one used as input. For a given set of Newmark parameters, the damping increases with the

time step; specially for the second and third modes. However, if the time step is below the one

calculated with equation 3.15, the damping is only slightly increased. Note that the time steps

were changed by a factor of 5 thus the damping is increased when the highest value is used,

which corresponds to the motions time step -5 · 10−3s-. In fact, the peak acceleration at surface

is very similar for the other values, refer to Figure 3.5b, whereas for the highest time step some

differences can be seen even before the maximum amplitude. Referring to the approximation of

numerical damping given by equation 3.6, by neglecting quadratic terms, ξN is described by a

linear function directly proportional to the time step and inversely proportional to the period.

In this case, damping is given by : ξN ≈ 0.16∆t/T . Thus, for the smallest time step tested, ξN

is about 0.03% and it is ten times fold for the highest time step used.
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Figure 3.5 – Effect of the time step in a) the transfer function and in b) the surface acceleration.
Results for P1 and the elastic model.

3.3 Soil behavior model

Previously the numerical model was debriefed and some aspects of the integration of the system

of equations were introduced. However, embedded on these equations is the constitutive model

of the soil behavior which relates the stresses due to the loads imposed in the system to the

strains in the material. The soil behavior is simulated in this analysis with the elastoplastic

multi-mechanism model developed at École Centrale Paris and known as ECP model. In this
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section a synthesis of the mechanical behavior of soils will be presented, followed by a brief

description of the soil model and the calibration of its parameters.

The model is written in terms of effective stresses of Terzaghi (1943), as it was already

mentioned in the beginning of this chapter, because when water is present, the soil mechanical

behavior is determined by the contact forces between grains which depend on the total stresses

but also on the pore-water pressure. One important remark of this approach is that the true

cohesion will not be used. That is, the shear strength for a zero mean effective stress will be

null for saturated soils.

The ECP model can take into account a large range of deformations due to its decomposition

into pseudo-elastic, hysteretic and mobilized domains. According to the critical-state concept,

the macroscopic behavior of sands and clays is similar and is related to the proximity of its

initial state to the critical state or steady-state rather than to the absolute measurements of

density (Roscoe and Pooroshasb, 1963; Been and Jefferies, 1985; Ishihara, 1993). The critical

state is defined as the state defined by the mean stress (p′) and the void ratio (e) where there

is constant deviatoric stress (q) for increasing strain and no volumetric strain and is shown as

a curve at the space e− p′
− q. Hence the contractant or dilatant behavior is given by the

initial position with respect to this curve. Three hardening evolutions are used for the different

mechanisms. For monotonic mechanisms: (1) the deviatoric, which is based on the plastic

strain and is dependent on deviatoric and volumetric strains, and (2) the isotropic, where only

volumetric strains are involved; and for cyclic loading: (3) the kinematic hardening that relies

on the state variables at the last load reversal. A brief description of the model will be given;

however for more details, refer to Aubry et al. (1982), Hujeux (1985) and Lopez-Caballero and

Modaressi-Farahmand-Razavi (2010) among others.

3.3.1 Model description

Following the incremental plasticity theory, the strains (ε) and the strain-rate (ε̇) can be de-

composed into an elastic (reversible) and a plastic (irreversible) part:

ε = εe + εp (3.16)

ε̇ = ε̇e + ε̇p (3.17)

The elasticity behavior is isotropic and nonlinear, where the maximum bulk (Kmax) and
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the maxium shear (Gmax) moduli are functions of the mean effective stress (p′), as follows:

Kmax = Kref

(

p′

p′ref

)ne

(3.18)

Gmax = Gref

(

p′

p′ref

)ne

(3.19)

with Kref and Gref being the bulk and shear moduli at the reference stress (p′ref) and ne, the

degree of nonlinearity. The relation of the stiffness with the confinement pressure is derived

from the Hertz theory of elastic spheres under isotropic stresses and its applications in granular

soils have been studied by many authors as Hardin (1978); Biarez and Hicher (1994); Tatsuoka

(2001), among others. In most cases, ne is near 0.5 for sands and is higher for clays. Its value

can be calibrated with in-situ measurements of G or Vs which increase with depth.

For the multi-mechanism model three deviatoric mechanisms in three perpendicular planes

are taken into account. Adopting the soil mechanics sign convention (i.e. compression positive),

the deviatoric primary yield surface on the k plane is:

fk = qk − p′

k
· Fk · rk · sin φ

′

pp (3.20)

where φ′

pp is the friction angle at the critical state, p′

k
is the mean stress and qk is the second

invariant of the deviatoric stress tensor defined on the k plane as follows:

p′

k
=

σii + σjj

2
(3.21)

qk = (s2
k 1

+ s2
k 2

)1/2 (3.22)

with:

sk 1 =
σii − σjj

2
(3.23)

sk 2 = σij (3.24)

Note that equation 3.20 is an evolution of Cam-Clay model where 2 new variables are added:

b and rk. The parameter b controls the effect of the density and overconsolidation in the shape

of the yield surface in the p′
− q plane. It is embedded in the isotropic hardening associated
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with the volumetric strain by:

Fk = 1− b · ln

(

p′

k

pc

)

(3.25)

The effect of density is also present in the variable pc, which is the mean stress at the critical

state and is defined as:

pc = pc0 · exp(β · εp
v
) (3.26)

where pc0 is the stress corresponding to the critical state of the initial density and initial void

ratio and εp
v
is the volumetric plastic strain. The parameter β is the plastic compressibility

modulus which is related to the evolution of void ratio with respect to the increase in mean

stress.

Lastly, the isotropic hardening generated by plastic shearing is controlled by the degree of

mobilized friction rk. It allows the decomposition of the behavior into pseudo-elastic, hysteretic

and mobilized domains and therefore, allows simulations ranging from loads inducing small

strains to very strong earthquake motions. rk is described by:

rk = relak +

(

ε
p

k

a+ ε
p

k

)

(3.27)

that varies from the size of the elastic deviatoric domain where no hardening is produced (relak ),

to the unit value at the perfect plasticity. Lopez-Caballero and Modaressi-Farahmand-Razavi

(2013) defined an apparent friction angle (φ′

apt) as follows:

sinφ′

apt
=

qk

p′

k
· Fk

(3.28)

Thus, rk is useful for evaluating the state of the soil in the deposit by representing the

“distance to reach the critical state” as:

rk =
sinφ′

apt

sinφ′
pp

(3.29)

The hardening evolution is given by the following law:

ṙk = λ̇
p

k

(1− rk)
2

a
(3.30)

where λ̇
p

k is the plastic multiplier of the k mechanism. The variable a is of key importance as

it controls the stiffness in the plastic domain. It is divided in two components, known as the
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plastic stiffness parameters related by the following equation:

a = a1 + (a2 − a1) ·αk(rk) (3.31)

where:

αk(rk) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if rela < rk < rhys
(

rk−rhys
rmob−rhys

)m

if rhys < rk < rmob

1 if rmob < rk < 1

The parameter m controls the response of the cyclic loading path and is best when equal

to 1 (Kordjani, 1995). The parameters rela, rhys and rmob designate the hardening threshold of

the pseudo-elastic, hysteretic and mobilized domains, respectively. These parameters are very

important in liquefaction modeling as they control the degradation hysteresis and the pore-water

pressure change in undrained conditions or the volume change in drained conditions. Concerning

αk, a physical interpretation was given by Hujeux (1985), where αk · ε
p

k represents the fraction

of the plastic shear strain increment due to relative tangent displacement between grains, with

total mobilization of the shear strength. This displacement induces the rearrangement of grains

hence the evolution of plastic volumetric strains. The remaining fraction, i.e. (1 − αk) · ε
p

k

corresponds to the displacement with partial mobilization; thus, since no grain rearrangement

is present, no volumetric plastic strains are produced. The parameter αk controls that until a

certain level of shearing, no volume variations are allowed, in drained conditions, and that in

undrained conditions, the pore pressure evolution will depend, among others, on the level of

deformations, specially at cycle accumulation (Modaressi, 2003).

The plastic potential has the form of the original Cam-clay surface, and the flow rule can

be non-associated (i.e. the characteristic angle (ψ), that limits the dilating and contracting

domain, is different to the critical friction angle φ). The evolution of the volumetric plastic

strain is given by the flow rule based on Roscoe’s dilatancy, as follows:

(ε̇p
v
)k = (ε̇pd)k ·αk(rk) · αψ ·

(

sinψ − qk

p′

k

)

(3.32)

where αψ is a parameter that can control the volumetric behavior. Note that these mechanisms

can not account for the isotropic behavior of soils. In other words, an isotropic consolidation

can not be modeled except if it is at the critical state. Therefore a fourth mechanism is added

to account for isotropic stress paths.
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Concerning the isotropic mechanism, only volumetric strains are produced. The yield surface

is then:

fiso = |p′|− d · pc · riso (3.33)

where:

riso = relaiso +
ε
p

v iso

c1
pc

pref
+ ε

p

v iso

(3.34)

ṙiso = ε
p

v iso

(1− riso)
2

c1
pc

pref

(3.35)

The parameter d is the mean stress difference in a logarithmic scale between the isotropic

consolidation line and the critical state line and c1 is the isotropic hardening parameter which

controls the isotropic evolution in a similar manner as a1 and a2 do in the deviatoric mechanism.

Camoes (2014) analyzed the effect of c1 in the εv − p′ plane for an isotropic compression test.

Results showed that for higher c1, the stiffness rate decreases; hence, the volumetric strain

increases for small p′ values. However at low c1 values, the mechanism will evolve faster and

the transition between pre-consolidation and virgin states is more abrupt.

The parameter relaiso designates the extension of the elastic domain for the isotropic mecha-

nism and is usually ten times smaller than the deviatoric counterpart. Note that the equation

3.33 describes a vertical line that cuts the deviatoric yield surface of equation 3.20 at a mean

stress given by the εp
v
.

To couple the four mechanisms, the plastic volumetric strains of each mechanism are summed

and the critical stress (pc), which is common for all the mechanisms, is changed. For a general

case, where all mechanisms are active, the plastic multiplier is the solution of a 4×4 non linear

system where the hardening modulus matrix is composed of deviatoric terms in the diagonal

and volumetric hardening in all terms. Then, softening is related to a global dilative state,

where ṗc < 0 and p > pc; while, hardening is related to a global contractive state, i.e. ṗc > 0

and p < pc.

For the cyclic yielding surface, it is necessary to take into account the stress state and its

direction for each mechanism. Hence, two historic state variables are introduced: (1) the nor-
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malized deviatoric stress tensor at the last load reversal (T h
k
) and (2) its direction. Respectively,

T h
k

=
sh
k

p′h
k
· F h

k
· sinφpp

(3.36)

th
k

=
sh
k

qh
k

(3.37)

where sh
k
is the deviatoric stress tensor and the index h denotes the historic variable. On that

account the cyclic yielding surface can be written as:

f c
k
= qc

k
− p′

k
· Fk · r

c
k
· sinφ′

pp (3.38)

with

qc
k

=

(

1

2
Tr(sc

k·s
c
k
)

)1/2

(3.39)

sc
k

= sk − (T h
k
− th

k
· rc

k
) · p′

k
· Fk · sin φpp (3.40)

Like in the monotonic case, the mobilization of the cyclic mechanism is controlled by the variable

rc
k
. When the stress state is inside of the yield surface, i.e. the circle defined by rk of equation

3.20, the cyclic mechanism is deactivated and the monotonic mechanism is activated. Then, rc
k

is set to rela at each change of direction. Introducing the position of the last load reversal, the

equation 3.27 applied for the evolution of rc
k
can be expressed by:

rc
k
= rela +

|εpk − ε
ph

k |

a+ |εpk − ε
ph

k |
(3.41)

where ε
ph

k is the plastic distortion of the mechanism k at the last load reversal h. Note that

the variable a is the same for the monotonic and the cyclic loading.

For the isotropic mechanism, the successive consolidation thresholds are orthogonal planes

to the mean stress axis at a distance rc
iso

. The equation 3.33 derives to:

f c
iso

= |p′h
k
|− d · pc · r

c
iso

(3.42)
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where:

p′h
k

= p′

k
− d · pc · r

h
iso

(3.43)

rh
iso

=
p′

k

d · pc

(3.44)

The evolution of the isotropic hardening variable rc
iso

is given by equation 3.34; however the

parameter c changes for the cyclic case and is called c2.

3.3.2 Model Parameters identification

In the literature, a series of publications can be found concerning the identification of ECPmodel

parameters. They differ principally in the applications and the lab tests available for calibration.

Lopez-Caballero (2003), Lopez-Caballero and Modaressi (2011a) and Carrilho Gomes et al.

(2015) propose some methodologies focused in seismic analysis. The twenty model parameters

were classified by the former according to the different mechanisms and are divided in two

groups: whether they can be directly measured or not.

Elasticity
Critical State
and Plasticity

Flow Rule
and Isotropic
Hardening

Threshold
Domains

Directly
measured

Gref , Kref ,
ne and pref

φ′

pp, pco, d and
β

ψ

Undirectly
measured

b
a1, a2, c1, c2,
αψ, and m

rela , rhys ,
rmob and relaiso

Table 3.3 – Classification of the ECP model parameters as proposed by Lopez-Caballero (2003)

The model parameters shown in Table 3.3 as undirectly measured are geometric parameters

that allow the calibration of different lab tests. In lack of experimental data, a library of

different types of soils can be found in the model website (GEFDyn, 2009).

1. Elasticity

The elasticity domain is described by the shear (G) and bulk moduli (K) and can be

related to the mean stress (p) with the parameter ne. These parameters are related to

the shear and compression wave velocity (Vs and Vp) measured with geophysical tests.

The Poisson coefficient (ν), the shear and the bulk modulus are defined as follows:
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ν =
1

2

[

(Vp/Vs)
2 − 2

(Vp/Vs)
2 − 1

]

; G = ρ · V 2

s
and K =

2G · (1 + ν)

3 · (1− 2ν)
(3.45)

As the vertical stress increases with depth (i.e. σv = ρ · g · z), the stiffness moduli are

also generally increasing with depth. This relation is possible in the ECP model via the

mean stress p = σv(1 + 2k0)/3 and ne as following:

Kmax = Kref

(

p′

p′ref

)ne

and Gmax = Gref

(

p′

p′ref

)ne

(3.46)

with Kref and Gref being the bulk and shear moduli at the reference stress (p′ref) usually

taken as 1MPa and ne, the degree of nonlinearity. Therefore, a gradient shear wave profile

can be used to find the parameter ne. However, for constant profiles, this value is set to

zero.

2. Critical State and Plasticity

The friction angle at the perfect plasticity (φ′

pp) is measured via the triaxial test and

corresponds to:

sin(φ′

pp) =
3M

6 +M
(3.47)

where M is the slope of the perfect plasticity line in the stress plane q-p′.

The initial critical mean stress (pc0) defines the distance from the initial state to the

critical state line in the plane e-ln(p) as it does the state parameter of Been and Jefferies

(1985) (ψBJ ), with the distinction that the latter is defined as the void ratio difference

between the initial state and the critical state line. The triaxial compression test at the

same initial mean stress in the deposit is used to calculate this value. On the absence of

this test, empirical correlations for clays and sands can be found in the literature with

respect to the over consolidation ratio (OCR) and the relative density (Dr), respectively.

The parameter d defines the distance between the isotropic consolidation line and that of

the perfect plasticity in the plane e-ln(p). As following:

d = exp

(

∆e

λ

)

(3.48)

When no consolidation has been performed before the test, experimental results performed
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by Saim (1997) show that ∆e can be assumed as 0.1 for all types of sands and clays. In

this analysis, d was set constant and equal to 2.0, hence the value of ∆e will be function

of λ.

The compressibility modulus (β) is the inverse of the critical state slope at the plane

(εp
v
-lnp′

c
) and it depends on the initial void ratio (e0) and the compressibility index (λ),

as follows:

β ≃ 1 + e0
λ

(3.49)

Hence for the same soil, at higher density, β decreases and less εp
v
is developed. Note that

the previous equation is given for the plane e − lnp′, if the plane were to be e − logp′,

the slopes are related by the natural number: i.e. Cc = 2.3 · λ.

Lastly, the geometric parameter b controls the shape of the yield surface. For clays, this

value is near 1, which will mean a Cam-Clay yield surface and for sands it approaches 0

(Coulomb type surface). In this study, clays take a value of 0.8 and sands a value of 0.2.

3. Flow Rule and Isotropic Hardening

The characteristic friction angle (ψ) is also issued from the triaxial tests and corresponds

to the limit of contractant / dilatant behavior. It is often known as transformation phase

state and, is supposed equal to φ′

pp in most cases. Additionally, it is of key importance

for the cyclic behavior of sands.

Additionally, a total of 6 geometric parameters control the hardening and softening in the

monotonic and cyclic loading paths: a1, a2, c1, c2, αψ, and m. Of these, special attention

is given only to the first four parameters and their calibration will be explained in the next

section. The remaining two parameters are usually kept constant: αψ, that control the

evolution of the volumetric plastic strain, and the parameter m, which is the exponential

of the evolution of αk for the cyclic loading, are taken equal to unity (Kordjani, 1995).

4. Threshold domains

The hardening thresholds (rela , rhys , rmob and relaiso) are related to strain thresholds of

the shear stiffness degradation curves (G/Gmax − γ). In general as a increases, the rate

of stiffness degradation and damping evolution decreases hence lower stiffness and higher

damping are present for small strains. However, as this variable depends on 6 parameters

(i.e. the 3 hardening thresholds, m, a1 and a2), the degradation curves can be adjusted.
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It is important to remark that these curves, very popular in soil dynamics, are not an

input of the model, instead they are the consequence of the evolution of hardening due

to plastic strains.

Carrilho Gomes et al. (2015) proposed a methodology to calibrate these parameters.

Firstly, the pseudo-elastic threshold is related to the maximum shear modulus (Gmax)

and the strain threshold for elasticity (γela) by the ratio between the shear stress at

elasticity (τ ela) and at perfect plasticity (τ pp) as follows:

rela =
τ ela

τ pp
=

Gmax · γ
ela

p′ · sinφ′
pp · F

(3.50)

Similarly, the hysteretic threshold is related to the threshold strain γ0.7, for which G =

0.7Gmax, by the following equation:

rhys =
τ0.7

τ pp
=

0.7Gmax · γ0.7
p′ · sinφ′

pp · F
(3.51)

At this domain, the total threshold strain can be decomposed in an elastic and a plastic

part. Knowing that the elastic part is described by the ratio between the shear stress and

the maximum shear modulus and the total strain is approximated to the ratio between

the shear stress and the linear equivalent shear modulus, the plastic strain at threshold

is equal to 0.3γ0.7.

Finally, the isotropic hardening parameters at monotonic and cyclic loading, c1 and c2 are

calibrated with undrained triaxial tests. The monotonic isotropic hardening evolution is

the rate in the plane (η/M − ε1), where η = q/p′. In addition, the cyclic parameter is

taken as half of the monotonic one, i.e. c2 = 0.5c1.

3.4 Sensibility of the numerical model parameters

The results presented in this section form part of the international benchmark PRENOLIN

(Improvement of PREdiction of NOnLINear effects caused by strong seismic motion) which

started at april 2013 and ended on october 2015. The main objective of the project is to assess

the epistemic uncertainties between nonlinear codes in simple 1D conditions and with respect

to real recordings. Additionally, it aims to develop guidelines for deterministic, physic-based,

nonlinearity predictions for use in seismic hazard assessments. These guidelines are divided in 2
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categories: required geotechnical/ geophysical measurements and quality control for nonlinear

computations (Régnier et al., 2014).

The research program was divided into two parts: verification (i.e. comparison between

different codes) and validation (i.e. comparison between simulations and real recorded sig-

nals). The analyses were done in simple conditions : no pore-pressure generation and only

one-component vertically incident shear waves. The verification phase was performed in canon-

ical (i.e. really simple) sites; while for the validation phase, three japanese sites were chosen.

Some of the results for the second phase will be shown in the next section.

For the first phase, two constitutive models were used in the GEFDyn program: an isotropic

elastic (EL) and the École Centrale Paris (ECP) elastoplastic multi-mechanism model. For very

low acceleration amplitudes, the response is in the elastic domain and the ECP model matches

the EL model’s behavior and the exact (or analytic) solution. For stronger excitations, an

exact solution is not available; although, the ECP model provides results that are in reasonable

agreement with the majority of the other nonlinear codes used in the PRENOLIN benchmark.

As a whole, two profiles were subjected to one impulse, two sinusoidal motions and two real

accelerograms with three different scaling factors. Additionally, three bedrock conditions have

been analyzed: elastic (deformable), rigid and elastic-rigid (i.e. very high impedance between

soil and bedrock).

In this section, the canonical sites of the verification phase are used to analyze the sensibility

of some numerical model parameters. For the sake of brevity only some cases are shown and

focus is given on the effect of the parameters in the seismic site response. For more information

concerning the results of this phase refer to Régnier et al. (2014).

3.4.1 Soil profiles

The soil profiles used were called canonical sites which are idealistic (or unrealistically simple)

cases that should have identical results between codes or should exhibit explainable differences.

Two profiles were used: P1, a shallow mono-layer of constant shear velocity (Vs) and P2, a deep

mono-layer of gradient Vs. The former has the bedrock at 20m depth while for the latter, the

bedrock is at 100m. The soil Vs for P1 is 300m/s and for P2 is an exponential function from

150m/s in the surface to 500m/s at 100m with a coefficient of 0.25. The bedrock Vs is equal to

1000m/s for P1 while is doubled for P2.

The material is assumed as a cohesionless soil and the water is located at 100m depth. The
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poisson coefficient for the sediment is 0.4 and for the rock is 0.3. The density for the sediment

is taken as 2000 kg/m3 while for the rock is 2500 kg/m3. The attenuation quality factor was

set to be equal to 5000, thus a damping (ξ) equal to 1 · 10−4. For other models, this value is

used as input for the calculations; whereas, for the ECP model, the damping was provided by

the numerical integration as seen in section 3.2. Thus a ρ∞ equal to 0.9 (i.e. γN=0.55 and

βN=0.28) was used, which was proofed in section 3.2 to present a numerical damping (ξN) of

6 ·10−4 with a time step (∆t) of 1 ·10−3s. Although it is slightly higher than the one prescribed

it is judged to be acceptable for stability reasons.

Concerning the nonlinear soil properties, only the shear modulus (G) and damping (D)

curves as a function of the shear strain (γ) were provided. For the P1, only one curve was pro-

vided; and for the P2, five curves were given corresponding to different depths. It is important

to remark that in other constitutive models these curves do not depend on the confinement

pressure; although, this relationship has been evidenced by laboratory tests, e.g. in the work of

Darendeli (2001). Therefore, for the ECP model, the soil parameters that define these curves

had to be calibrated for smaller sublayers; however, the behavior will be always influenced by

the confinement pressure. The other soil parameters required in the ECP model were found by

the use of empirical correlations following the methodology defined by Lopez-Caballero (2003)

and a set of hypothesis that were necessary due to the lack of information.

Regarding the hypothesis, it was assumed that the soil was a clay (i.e. b = 0.8). Therefore,

the mean stress ratio between the initial critical state and the actual state (pc0/p) is constant

and the overconsolidation ratio (OCR) is equal to unity, i.e. the soil is normally consolidated.

As the friction angle at the perfect plasticity (φ′

pp) was given, the plasticity index (Ip) was found

with the correlation given by Lopez-Caballero (2003). The simulated normalized shear modulus

(G/Gmax) and damping (D) curves with respect to the shear strain (γ) at different depths are

shown in Figures 3.6 and 3.7 for the two soils, respectively. The reference curves given by the

PRENOLIN organizers are shown in solid black lines and the sand ranges presented by Seed

et al. (1986) are shown in dashed lines. Most of the reference curves are in the sand ranges for

both G/Gmax and damping; however, for P2 deep layers the curves are stiffer and present less

nonlinearity as it to be expected due to the high confinement pressure. It is to be noted that

the calibration was focused on the normalized modulus decay while for the damping evolution,

high overestimations are present. Carrilho Gomes et al. (2015) introduced in the ECP model

an additional parameter to control damping at high strains. In sands, the reduction achieved in

damping curves produced no significant influence on the seismic soil response, since the profiles
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of maximum shear strain, peak ground acceleration (PGA) at surface and normalized response

spectra (PSA) were similar for both the modified and the standard model. For clays, however,

a small effect was seen caused by an increase in stiffness. The model parameters of both profiles

defined for each soil layer can be found in the appendix A.
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Figure 3.6 – Shear modulus (G) degradation and damping (D) evolution with shear strain (γ)
for profile P1. The PRENOLIN reference curves are shown in solid black lines and the ranges
by Seed et al. (1986) are shown in dashed lines.

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

γ [%]

G
/G

m
a

x
 [

1
]

(a)

10
−4

10
−2

10
0

0

10

20

30

40

50

60

70

γ [%]

D
 [

%
]

 

 

 −5
−15
−25
−35
−45
−55
−65
−75
−85
−95

z [m]

(b)

Figure 3.7 – Shear modulus (G) degradation and damping (D) evolution with shear strain (γ)
for profile P2. The PRENOLIN reference curves are shown in solid black lines and the ranges
by Seed et al. (1986) are shown in dashed lines.
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3.4.2 Input motions

The input motions were selected to analyze different aspects of the nonlinear soil behavior.

Firstly, two sinusoidal motions shown in Figure 3.8 were tested: (1) A monotonic signal with

increasing amplitude and (2) the same motion with an additional linear trend. The first one is

intended to analyze the mobilization of large-strain resistance; and the second, the development

of permanent deformations. These analyses permit to test the constitutive model. Therefore,

the effect of some numerical parameters can be evaluated. In general, the wave propagation and

the acceleration amplification is not affected; although the strain evolution at the integration

points can be drastically modified.
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Figure 3.8 – Acceleration, velocity and displacement time histories of the sinusoidal motions a)
1 and b) 2

Additionally, two real motions were tested with different frequency content. In this study,

they will be called: real HF (for the one with mostly high frequency content) and real LF (with

predominantly amplitudes at low frequencies). Both models were tested with 4 scale factors in

order to test different levels of nonlinearity: 1) 0.5 m/s2, 2) 2 m/s2, 3) 5 m/s2 and 4) 0.05 m/s2

(which was added after). The real HF has a magnitude (Mw) of 6.4, with depth (D) of 122

km and epicentral distance (Re) of 39 km, recorded at the japanese KiKnet station IWTH15,

which has a Vs 30=1200m/s. The other motion, real LF, has a Mw of 6.6, D of 10 km and Re

of 20 km; recorded at Flagbjarnarholt (ESMD iceland station). Only the EW component was

used for the model. The acceleration, velocity and displacement time histories for both motions

are shown in Figure 3.9. The color code will be helpful for the evolution of shear stress-strain

curves.
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Figure 3.9 – Acceleration, velocity and displacement time histories of the real motions a) HF
and b) LF with scale factor 3 (PHA=5m/s2)

3.4.3 Effect of some model parameters

3.4.3.1 Auxiliary shear and bulk moduli

The system of equations to be solved is linearized as a first-order Taylor series and an iterative

method is used. It consists of a Newton-Raphson simplified solution in which a corrector for each

variable is used to calculate the new approximation. In fact, for each step in time, a number of

iterations are performed until the convergence criteria is attained. The simplification consists

of using an auxiliary (or initial) matrix for all the iterations; thus, avoiding to recalculate,

assemble and triangularize the matrix for each iteration. This technique is useful for coupled

analysis and specially for big systems. However, if the auxiliary value is too small, the result

can diverge from the first iterations and the evaluation of the constitutive equations can be

affected. Modaressi (2003) proposed values of three or five times the real value; although, it

was intended for monotonic cases. For the present study, two cases were tested: (a) Gaux = Gref

and (b) Gaux = 10Gref (where Gref is described by equation 3.19). Figure 3.10 shows the shear

stress-strain plots at 19m (i.e. near the base) for the profile P1 with elastic bedrock and the

sinus 1 motion. As it is seen for the first case, some jumps in the loops evidence a numerical

problem. By simply adjusting the auxiliary value, the loops are fixed and the shear behavior

seems to follow the Masing rules.

Even though the shear stress-strain plots shown vary greatly; it has a small effect on the

obtained displacement and acceleration. The surface displacement time history and acceleration

response spectrum are shown in Figure 3.11. As it can be seen, differences are due to high
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Figure 3.10 – Shear stress-strain plots near the base for the profile P1 with elastic bedrock and
the sinus 1 motion: (a) Gaux = Gref and (b) Gaux = 10Gref at 19m.

frequency peaks presented in the second case and reflected at the higher amplitudes near the

end of shaking.
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Figure 3.11 – Surface displacement and acceleration for the profile P1 with elastic bedrock and
the sinus 1 motion: (a) time history displacement and (b) acceleration response spectrum

The mean and extreme values of the goodness-of-fit criteria proposed by Anderson (2004) are

evaluated at the surface for the two cases and are shown in Figure 3.12. The Anderson criteria

is a quantitative analysis that consists in comparing ten intensity measures (IM) computed for

the two signals in different frequency bands. Refer to Appendix C.3 for further details on these

criteria. In Figure 3.12, the bigger the circles, the higher the score. This representation intends
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to highlight the best and the worse criteria; although, it lacks the information of the different

frequencies. In this case, the lower values correspond to those of the highest frequencies or for

the first frequency band (i.e. very low frequencies). One of the IM with the lowest score is the

displacement, as it is computed by the double integration of the acceleration time vectors and

can introduce non-realistic residuals. If available, the time history of velocity and displacement

should be used to evaluate the criteria. In this case, as seen in Figure 3.11a the displacement

time histories are very similar. The IM with the lowest score is in this case the Fourier spectra

that presented some differences at high frequencies.
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Figure 3.12 – Anderson criteria average mean and extreme values for the surface acceleration
of profile P1 with elastic bedrock and the sinus 1 motion in the two cases of auxiliary moduli

3.4.3.2 Error tolerance

The convergence criteria consists of two sets of error tolerances. The first set is called Utol and

corresponds to the value of the unknown variables. The second, Rtol, fits the inequality given

by the right-hand-side (RHS) vector of the linearization. For the present case, the variables

are the displacements (u) and the pressures (p). These values depend on the auxiliary moduli

and the analysis type. In general, the first criterium is easier to attain; while, in some analyses,

the second one is not fulfilled. Modaressi (2003) proposed again some values: Utol equal to

10−3 and Rtol, 10
−2. For the present study, the effect of Rtol is evaluated. Two values were

tested: (a) 10−2 and (b) 10−3. For both cases, the auxiliary moduli are ten times the actual

one. Some effects of the Rtol value can be observed in the shear stress-strain plots and in the

high-frequency peak amplitudes on acceleration; although the average solution is not drastically

changed. As before, Figure 3.13 shows the shear stress-strain plots at 19m (i.e. near the base)
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for the profile P1 with elastic bedrock and the sinus 1 motion. It is noted that both the shear

strain and stress are reduced thus the damping is lower.
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Figure 3.13 – Shear stress-strain plots near the base for the profile P1 with elastic bedrock and
the sinus 1 motion: (a) Rtol = 10−2 and (b) Rtol = 10−3 at 19m.

Concerning the wave propagation, the surface displacement time history and acceleration

spectrum are shown in Figure 3.14. The high frequency peaks presented for the response

spectrum with Rtol = 10−2 have been smoothed out. Though their existence was a problem

of error tolerance on the analysis. Concerning, the displacement time history only a slight

difference can be identified at the end of the motion.
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Figure 3.14 – Wave propagation for the profile P1 with elastic bedrock and the sinus 1 motion:
(a) surface displacement time history and (b) acceleration response spectrum
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It is important to highlight that these results depend on the input parameters: the dis-

cretization in time and space, the input motion and the soil model parameters. Hence, the

sensibility of these parameters on the global response will vary in other cases.

3.4.3.3 Boundary conditions

Lateral boundaries

Concerning lateral boundary conditions, as the signal propagation is one-dimensional and

as the response of an infinite semi-space is modeled, equivalent boundaries have been imposed

on the lateral nodes (i.e. the displacements of nodes at the same depth in two opposite sides

are the same in all directions and if 1D columns are used - and only one element is used in the

horizontal direction- the normal stress on these boundaries remains constant) (Lopez-Caballero

and Modaressi, 2011b). As the lateral limits of the problem are considered to be far enough

from the structure in the middle of the model, periodic conditions are verified.

Bedrock’s boundaries

For the bedrock’s boundary, the pore pressure conditions are assumed to be impervious.

Therefore, no flux occurs across the interface boundary between the studied domain and the

underlying semi-infinite space. Concerning the mechanical conditions, three approaches will

be analyzed in this section: rigid, elastic and borehole. The former is relative to the bedrock,

hence displacements and forces are relative to those at the input as a uniform excitation.

This condition is used to model vibrating tables or centrifuge tests, as the base is infinitely

rigid compared to the soil deposit. Thus, the very strong mechanical characteristics bind the

total motion to be the incident plus the reflected wave; which is what is normally registered

at surface stations under rock conditions (i.e. outcropping bedrock). As the motion on the

overlying bedrock is equal to that of the outcropping bedrock, the response on the deposit is

given as relative to the input motion (arel). Hence, the acceleration at a depth z is given by:

a(z) = arel(z) + aout, where aout(z) is the outcropping motion.

On the other hand, the elastic bedrock is modeled with paraxial elements simulating “de-

formable unbounded elastic bedrock” (Modaressi and Benzenati, 1994). This condition, often

called absorbing boundaries, is used when the deformability and the transient evolution of the

motion have to be taken into account. As an unbounded medium is simulated, the obtained
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movement at the bedrock is composed of only the incident waves while no input from the infi-

nite domain exist. The paraxial elements efficiently evacuate outgoing (diffracting) waves in a

local domain. Additionally, they introduce the vertically incident shear waves, defined at the

outcropping bedrock, after deconvolution. This type of bedrock will be used in the model ana-

lyzed in chapters 4 and 5. The rigid and borehole conditions will be only used in this chapter

and precisely in section 3.5.

Although the wave propagation and the equations that describe it have already been ad-

dressed in section 2.2, the system will be rewritten in other terms in order to properly define the

equivalent response for the borehole boundaries. The schema shown in Figure 3.15 is taken as

reference. According to Bielak and Christiano (1984); Bielak et al. (2003), the problem consists

Ω0

Ω
+

u0b

u0i

u0e

Pe(t)

Γ0

Γ

Figure 3.15 – Model of equivalent response for borehole boundaries (inspired by the Domain
Reduction Model by Bielak et al., 2003)

in determining the scattered wave (u) and the total stress tensor (σ) in Ω0 and Ω
+ due to a

driving field u0, satisfying a suitable radiation condition at infinity such that :

divσ − ρ · ü = 0 in Ω0 ∪ Ω
+ (3.52)

σ = λ · (Tr · ε) · I + 2µ · ε (3.53)

σ · n = 0 in Γ0 (3.54)

u(0) = 0 = u̇(0) in Ω
+ (3.55)

u− = u+ + u0
in Γ (3.56)

σ− · n = σ+ · n + σ0 · n in Γ (3.57)

In this case, the driving field (u0) consists of an incoming wave defined in all of Ω plus

its reflection from the free surface. As long as the relative motion (u) satisfies the preceding
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set of equations, it is also applicable for problems where u0 and σ0 are related by a nonlinear

constitutive equation. Considering the 1D wave propagation, the incident SH-wave of unit

amplitude can be defined at the bottom of a soil deposit of depth H by:

wi = exp(i · [ωt− kL ·H ]) (3.58)

where ω is the excitation frequency and kL = ω/Vs is the wave number of layer L. The radiation

condition for this problem simply states that, in ΩL, w
t − wi must consist of outgoing waves

only. Hence a solution of equation 3.58 at interface ΩL is given by:

wt =
2 · cos(kN ·H) · exp(i(ωt+ kLH))

cos(kN ·H) + i · αz · sin(kN ·H)
(3.59)

Recall that αz is the inverse of the impedance ratio (I) and is defined as αz = 1/I =

(VsN · ρN)/(VsL · ρL). When the bedrock is infinitely rigid with respect to the soil deposit,

VsL ≫ VsN hence αz ≈ 0. Regarding equation 3.59, the second part of the denominator can

then be neglected and the cosines cancel out, resulting in two times the equation 3.58. In

other words, the amplitude of the total wave will be twice the incident wave as it will be in an

outcropping recording. The difference in this case is that the absorbing boundary then needs

only to satisfy a radiation condition for the incompatible outgoing waves. Hence, the motion

arriving from any given location may be specified in the interface of the computation region

(Γ) rather than through an artificial boundary outside the model (Bielak et al., 2003).
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Figure 3.16 – Comparison between PHA at the bedrock and at the outcropping as a function
of the impedance ratio

It is clear that if the same outcropping motion is used and only the boundary conditions
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are modified, the soil response is different. As an example, the three boundary conditions were

used for the P1 profile and for the real 0 LF motion. The response of elastic and nonlinear soil

behavior is shown in the following Figures 3.17 and 3.18. Concerning the maximum acceleration

profile, Figure 3.17 shows a gradual amplification with wave propagation for the elastic case,

as was seen in section 2.2; in contrast, nonlinearity produces peaks of acceleration and deam-

plifications at different depths. Although these profiles show some discrepancies between the

three boundaries, the pseudo spectra of acceleration at surface (PSA) is only slightly modified

between the elastic and the borehole conditions, as shown in Figure 3.18.
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Figure 3.17 – Maximum acceleration profile for the P1 and the real 0 LF motion with (a) an
elastic and (b) a nonlinear behavior

3.4.3.4 Gradient moduli: effect of ne

The P2 profile, as said earlier, has a gradient shear-wave velocity (Vs) with depth. Hence the

shear and bulk modulus too. This gradient can be related to the confinement stress with an

exponential function like the following:

Kmax = Kref

(

p′

p′ref

)ne

and Gmax = Gref

(

p′

p′ref

)ne

(3.60)

where Kmax and Gmax are the moduli at the effective mean stress (p′) and are described by a

reference (Kref and Gref evaluated at p′ref) and an exponential value ne. When this value is

zero, the moduli will have no dependence on stress.

Results of geophysics test and inversions are commonly expressed by layers of non-dependent
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Figure 3.18 – Pseudo spectra of acceleration at surface (PSA) with (a) an elastic and (b) a
nonlinear behavior

moduli (i.e. ne = 0) that increase with depth as steps with jumps between values. Hence

many site-specific-analysis programs are not capable of relating the moduli with stress in a

continuous matter. In order to verify the same non linear computations, within the scope of

the PRENOLIN benchmark, the effect of considering these steps rather than the gradient curve

is evaluated for the P2 profile. As the number of steps increases, the two approaches should

present less differences. Thus, a very small distance between steps is used (i.e. 1m per step)

and a regression analysis was performed to find one pair of values for Gref and ne that best

fit the profile with p′ref constant. It is important to remark that, even though the maximum

moduli will not change with depth in each step; its degradation due to shear strain will depend

on stress. The Vs profile for both cases is shown in Figure 3.19.

The profile of maximum acceleration is shown in Figure 3.20 for motion real 1 HF with

elastic and rigid base. Interestingly, the differences are negligible for the former case; however,

they increase when a rigid base is used. For this case, the multilayer profile presents, in general,

much higher accelerations at depth and its evolution is less smooth. This could be due to the

differences in the evolution of nonlinearity and shear modulus degradation in each of the layers

that would cause an increase in the impedance ratio between the layers and the amplification

of the acceleration.



80 3.5. Numerical model validation

100 200 300 400 500

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

V
s
 [m/s]

z
 [

m
]

 

 

n > 0
n = 0

Figure 3.19 – Shear-wave velocity (Vs) profile for P2 with different n values
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Figure 3.20 – Maximum acceleration profile for the P2 with the real 1 HF for a) elastic and b)
rigid base

3.5 Numerical model validation

In present, a variety of surface and borehole pair recordings from downhole arrays are available.

For instance, the Kiban-Kyoshin Network (KiK-net), in Japan, is composed of 688 stations with

high-quality surface and downhole digital 3-component accelerometers. While the stations are

located in a variety of site conditions (i.e. 200< Vs,/30 < 800); in most, only velocity profiles

obtained from downhole PS logging measurements are available. Additionally, most of the

borehole stations are located at depths higher than 100 m which will add more complexity to

the model. Furthermore, even if a large database is available; only a small fraction are strong

ground motions, e.g. from more than 46000 recordings between 1996 to 2009, only 370 (i.e.
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less than 1%) had a PGA above 0.5m/s2 at borehole (Regnier, 2013). In fact, there are limited

available and complete vertical array data for the validation of nonlinear soil behavior in 1D

wave propagation. Additionally, for a successful validation of nonlinear soil behavior a series of

conditions have to be present in order to be appropriate for the model simplifications.

As part of the international benchmark PRENOLIN, three Japanese sites were chosen for

the validation of the numerical model. The selection criteria were in part followed from the work

of Regnier (2013). The input motion selection was done by the organizers of the benchmark

PRENOLIN. Laboratory tests and in-situ measurements were performed to properly charac-

terize the soil deposit. Lastly, the adjustments of the site profile by transfer function inversion

was performed by the PRENOLIN organizers.

The basic assumptions for these sites were:

• waves essentially propagating vertically;

• 1D soil configuration is possible, i.e. no lateral velocity variations;

• evidence of strong nonlinearity;

• existence of strong ground motion recordings;

• low probability of liquefaction nor cyclic mobility in the area.

Two sites were taken from the Port and Airport Research Institute (PARI) and are called

Sendai and Onohama. The latter was rejected as the site characterization evidenced a high

spatial variability of soil parameters and therefore violated the second of the basic assumptions

previously stated. The other site corresponds to the KiK-net station KSRH10. In this study,

results will be shown only for the PARI station Sendai because at the time of writing the other

sites were not fully analyzed.

In the following, the site properties and model parameters will be presented. Afterwards,

the input motions recorded and calculated with the ECP model will be compared and the

evolution of nonlinearity will be shown.

3.5.1 PARI Sendai

P1 is a shallow stiff site of 7m of fine sand with slightly gradient Vs profile followed by rock.

The borehole is at 10.4m depth and the water-table is placed at 1.45m. After the soil charac-

terization, 2 layers were identified. The first 3m are considered as moderated compacted sand
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with a density (ρ) of 1850kg/m3; followed by 4m of stiffer sand (ρ=1890kg/m3). The shear

wave velocity (Vs) profile and the theoretical transfer function between surface and borehole

are shown in Figure 3.21.

0 100 200 300 400 500 600

−10

−8

−6

−4

−2

0

elastic

layer 1

layer 2

Vs [m/s]

z
 [
m

]

w.t.

(a)

f [Hz]
0 5 10 15 20 25 30 35

|T
F

| 
[1

]
0

5

10

15

20

25

30

f
0
 = 9Hz f

1
 = 22.3Hz

(b)

Figure 3.21 – Elastic properties: a) Shear wave velocity (V s) profile and b) Transfer Function
for Profile P1 - Validation

As the soil is assumed to be horizontally homogeneous, a 2D finite element computation with

plane-strain assumption was performed. The soil was modeled using quadrilateral isoparametric

elements with nine integration points per element. The width of the elements is 1m and the

thickness is 0.25m, which is in agreement with the suggestions made by Foerster and Modaressi

(2007a) to prevent numerical dispersion for strong ground motions. For a maximum frequency

of 25Hz (of engineering interest in this study) and a minimum initial Vs of 120m/s (at the

surface), a minimum of 38 points per wavelength is allowed in the elastic domain. The number

of points is high, although it will decrease as the soil softens and the Vs decreases. As in the

previous models, the time step (∆t) is 1 · 10−3s and a dissipative Newmark integration scheme

is used with ρ∞ equal to 0.9 (i.e. γN=0.55 and βN=0.28).

Concerning the lateral boundary conditions, equivalent - or periodic - boundaries have been

imposed on the lateral nodes. These conditions are valid because the response of an infinite

semi-space is modeled and is assumed that the wave propagation is purely one-dimensional

and vertical. Also referred as tied-nodes, they consist in linking the nodes at opposite sides

at the same depth to constant horizontal stress and equal displacements in all directions. For

the bedrock’s boundary, the borehole condition described above is used. Different impedance

ratios were tested in order to confirm that the motion at the bottom of the model was the
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same as the recorded at borehole. Lastly, as the in-situ measurements attested that the soil

above 1.45m was saturated a special condition was used for the numerical modeling. Thus, the

mass of the water was taken into account for the correct calculation of the initial effective stress

state, however, as one of the constraints of the PRENOLIN project, no excess pore-pressure

generation (∆pw) was allowed. The GEFDyn model was therefore used by decoupling ∆pw of

the soil deformation as if the soil would be fully drained. This kind of analysis will be called

DPD and will be further explained in chapter 4.

3.5.2 Model parameters

Each layer had a set of shear degradation and damping curves -known as the nonlinearity

curves-, hence 2 sets of model parameters were calibrated. Besides these curves and the elas-

ticity parameters, no other information was given concerning the other parameters for soil

characterization. The ECP model parameters for each layer can be found in appendix A. The

nonlinearity curves are presented for P1 at each meter in Figure 3.22, the given curves are

shown in black. As it can be noted, the damping at large strains is overpredicted; although

focus was given to calibrate mostly the shear degradation at low and moderate shear strains.
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Figure 3.22 – Shear modulus (G) degradation and damping (D) evolution with shear strain (γ)

3.5.3 Input motions

The input motions correspond to the borehole recordings. Three time series (TS) with different

frequency contents were selected for each of the 3 levels of peak horizontal acceleration at
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TS Mw R PHA PGV IA D5−95 CAV5 fc
[km] [m/s2] [cm/s] [m/s] [s] [m/s] [Hz]

1 9.0 162.7 2.46 16.50 1.204 100 20.9 5.9
2 7.1 81.3 0.62 3.93 0.074 23 2.33 6.9
3 6.4 19.1 0.61 2.50 0.032 12 0.99 8.5
4 6.8 169.4 0.25 2.13 0.011 26 0.48 5.1
5 5.9 96.4 0.25 1.63 0.003 8 0.14 5.7
6 7.2 83.4 0.35 2.47 0.015 26 0.64 4.6
7 5.9 94.7 0.12 0.66 0.001 15 0.034 5.7
8 6.4 208 0.05 0.34 3e-4 18 0.001 2.5
9 5.8 175.9 0.03 0.22 2e-4 19 1e-4 4.6

Table 3.4 – Input motion parameters for SENDAI - Validation - EW component recorded at
borehole

borehole: (1) PHA>0.6m/s2, 0.2< PHA<0.4m/s2 and PHA <0.15m/s2. Some of the input

motion parameters are shown in Table 3.4 and correspond to the EW component of the borehole

recordings. The moment magnitude (Mw) and the epicentral distance (R) were reported by

the PRENOLIN organizers. As it can be observed, in each acceleration level, the motions have

different central frequencies (fc). Note that all have fc below the fundamental site frequency

(f0=9Hz), but TS 3 value is very near to it and could have caused some resonance. The first

input motion corresponds to the 2011 Tohoku earthquake and is almost six times stronger

than the second one, with respect to PHA. Unfortunately, no other input motion with high

acceleration was recorded that fitted the criteria; hence, only strong nonlinearity could be

analyzed for TS 1.

Figure 3.23 shows the acceleration response spectra of the EW component motion recorded

at borehole. It is interesting to note that while the peak acceleration (shown for minimum

period - T=0.01s) is decreasing with the input motions, the frequency content varies for each

motion. For instance, TS 2 and TS 3 have similar PHA values but the latter has less energy

in higher periods (or lower frequencies). Additionally, TS 8, which has the highest epicentral

distance has most of the energy concentrated at high periods and presented the lowest fc.

3.5.4 Comparison between recorded and numerical results

Given the complexity of the seismic signals, different parameters with respect to amplitude,

frequency content, duration and energy could be analyzed; however, in this study only some

examples will be given. First, individual cases of acceleration time histories, Fourier and re-

sponse spectra will be shown for TS 1, 6 and 9, one of each amplitude level. Then, a summary
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Figure 3.23 – Acceleration spectra of the input motions - Validation - EW component recorded
at borehole

of the peak acceleration and the Anderson criteria will follow. The surface acceleration time

history for TS 1, 6 and 9 is shown in Figure 3.24. Real recorded and numerical results show

very good agreement at almost all instants, except for the peak value overestimated for TS 1,

and some amplitudes for TS 9. As the motions are long and the frequency content is difficult

to observe in these figures, other representations are needed.
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Figure 3.24 – Surface acceleration time history for a) TS 1, b) TS 6 and c) TS 9. EW component.

The response spectra of the surface acceleration and the transfer function for TS 1, 6 and

9 are shown in Figures 3.25 and 3.26, respectively. All present fair agreements between the

recorded and the modeled motion, specially at low frequencies. Concerning TS 1, a higher

deamplification and a greater shift to low frequencies can be observed in the recordings. Even

though this motion had a high PHA value, the nonlinearity evidenced in both the recordings
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and the modeled response was low. Still, the model response presented even lower nonlinearity.

Moreover at high frequencies (f>15Hz) another peak in the Transfer function is evidenced,

specially for TS 9. For the latter, the amplification is also overestimated.
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Figure 3.25 – Surface acceleration spectra for a) TS 1, b) TS 6 and c) TS 9. EW component.
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Figure 3.26 – Transfer function between surface and recorded borehole acceleration for a) TS
1, b) TS 6 and c) TS 9. EW component.

The relationship between the maximum acceleration at surface (PGA) and at borehole

(PHA) is shown in Figure 3.27a for the real recordings and for the numerical model. For most of

the motions, the numerical results match well the measured ones. For TS 1, Tohoku motion, the

differences are more important but while for the EW component, the real recordings evidence

more nonlinearity than that observed in the model, for the NS component, the response is

inversed. However, the analysis of only the maximum acceleration is very limited as it does not

account for other aspects of the input motion, as for example the frequency content and energy

duration. Hence the goodness-of-fit criteria defined by Anderson (2004) was applied to the nine

motions and each horizontal component recorded and modeled at the surface. Details of this
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criteria are provided in Appendix C. Results are shown in Figure 3.27b as a function of PHA.

Two values are presented: the average of all frequency bands -known as S1 - and the average

of a low pass frequency band (0.05<f<15Hz) - S2. In general, all time series presented good

similarity, even TS 1. Regarding S1, it seems that the match is better for stronger motions;

while for S2 values there appears to be no dependency with PHA.
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Figure 3.27 – Summary for NS and EW components of all input motions: a) Peak ground
acceleration (PGA) as a function of peak horizontal acceleration at borehole (PHA) and b)
Anderson criteria for surface acceleration (mean of all frequency bands and mean for frequencies
between 0.05 and 15Hz)

Figure 3.28 shows the average values of each Anderson criteria. Concerning both averages :

S1, mean of all frequency bands, shown in Figure 3.28a, and S2, mean for frequencies between

0.05 and 15Hz, shown in Figure 3.28b, the least similar parameter is the Fourier spectra;

however, for the S1 value, other parameters, such as the Response Spectra (Sa) , the peak

values (PGA and PGD) and the intensities (IA and IV ) presented also smaller values for the

weakest motions (i.e. TS 7, 8, 9) and TS 5.

Differences in the weak motions are principally presented for low frequencies and therefore

results are better without comparing these frequencies. For example, Figures 3.29a and 3.29b

show the values for each frequency band for the similarity in PGA and IA, respectively. Both

criteria present zero values in the low frequencies for almost all motions, except for motions 1

and 6 were there is still energy (as shown in the response spectra of Figure 3.23). Except for TS 5

where other causes of error are identified, the level of similarity is very good for frequencies above

1Hz. Possible causes of differences can be the non-verticality and the component orientation

not taken into account in the model.
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Figure 3.28 – Anderson criteria for surface acceleration: a) CS1: mean of all frequency bands
and b) CS2: mean for frequencies between 0.05 and 15Hz
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Figure 3.29 – Anderson criteria for surface acceleration at each frequency band: a) PGA and
b) Ia

Concerning the component orientation, additional analyses were made with the rotated

motion (ROT), finding the axes for the highest intensity (measured in this case as maximum

PHA or IA) which is supposed to be horizontal and aligned with the earthquake source direction

(Penzien and Watabe, 1974). In theory, using the ROT will produce higher nonlinearity as it

has a higher intensity. However, calculating the transfer function with the similar ROT of the

recorded surface acceleration, the amplification is generally higher and the shift in frequency

is less important. Comparing with numerical results, the ROT motion seems to give similar

results at surface, specially for TS 5 that presented the highest dependence between components

and are not shown here for the sake of brevity.

3.5.4.1 Evolution of nonlinearity

The evolution of nonlinearity for the different PHA can be analysed by observing the deam-

plification and frequency shift in the transfer function (|TF |) shown in Figure 3.30 for the

modeled and the recorded motions. The first peak amplification for the weak motions was in

general overestimated by the model; however, for the strong motions -i.e. TS 1, 2 and 3- the
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model gave satisfactory results. Only these motions, present clear nonlinear behavior: with

deamplifications of almost half the elastic value and a frequency shift of approximately 1Hz;

in contrast, TS 4 and 6 do not show any shift in frequency. For both modeled and recorded

motions, |TF | of TS 6 presented the deamplification but without the shift to lower frequencies.

Whereas for TS 5, while the amplitude of the modeled motion’s |TF | is above the weakest

motion; for the recorded motions, the amplitude is below TS 2 and 3. This motion presented

the lowest similarity according to Anderson criteria which is probably due to the simplifications

of the model; however, in general, the similarity was very high for all the motions even if it

consisted entirely in a blind test and no modifications were done to the model parameters.
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Figure 3.30 – Transfer function for all motions with EW component: a) modeled and b) recorded

3.5.4.2 Profile analysis

Whereas for the real recordings, only the borehole and surface motions are available, for the

numerical model the evolution of maximum shear stresses and maximum accelerations can

be analyzed with depth and are shown in Figure 3.31. Concerning the profile of maximum

acceleration, all motions present generally a gradual increase in amplification as it arrives to

the surface. Note that almost all motions, except for TS 5 and 7, present an initial acceleration

amplification in the bottom elastic layer followed by a sudden deamplification and a smooth

amplification to the surface. With respect to the maximum shear stress (τmax) profile, note

that for the weakest motions the increase with depth is in general smooth. In contrast for TS

1, 2 and 3, the τmax changes for each depth. It is interesting to note how the soil behavior is

modified for each input motion and introduces heterogeneities on the profile.
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Figure 3.31 – Profiles for a) maximum acceleration and b) maximum shear stress

3.5.5 Partial conclusions

While very limited information was provided for the soil characterization and the validation

was entirely a blind test, results are very satisfactory, specially for the nonlinear behavior of the

strong ground motions. Concerning, frequencies below 1Hz, the similarity was lower however

this is a known limitation of the numerical analysis and finite element models. The limited

number of input motions tested, specially concerning high levels of nonlinearity, was a drawback

of the analysis; however, considering the simplifications of the model -i.e. homogeneous, 1D

wave propagation, no pore-pressure, etc.- results were close to the recordings.

In general, the present case provides results to validate the site response analysis of the 1D

wave propagation. The finite element code as well as the constitutive soil model were satisfac-

torily validated for nonlinear dynamic behavior; however, this case presented some differences

with respect to the general framework of this study. For instance, the soil was a very stiff sand

and no laboratory test data was available concerning the liquefaction resistance or porosity of

the material. Additionally, the homogeneity of the deposit and consequent condition of 1D soil

configuration can be faulting while surface waves are hardly negligible.
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The excess pore pressure (∆pw) generation and consequent reduction in effective stress leads

to the softening of a liquefiable soil deposit that can alter ground motions in terms of amplitude,

frequency content and duration. However, total stress analyses, which are the most currently

used, do not take into account coupling of excess pore pressures and soil deformations. To

assess this effect two models were tested: i) A Biot hydraulic and mechanical computation

of a saturated soil deposit with coupling pore pressures and soil deformations (CPD) and ii)

a mechanical computation of a decoupled model (DPD) with the same initial state. Both

analyses were performed with the ECP model. First, the 1D wave propagation on a 20m soil

column is modeled with the two analyses and focus is given to the modifications of the surface

signal in terms of peak values and response spectra (Section 4.3). This part contains material

from an article published in Acta Geotechnica (Montoya-Noguera and Lopez-Caballero, 2016).

Afterwards, a 2D soil-structure model is studied in Section 4.4. The effect of coupling is then

evaluated in the soil-structure interaction (SSI), the structure settlement with respect to free

field and the structure seismic performance.

As ∆pw depends on the soil properties, two sands were analyzed for the 1D analysis : loose-

to-medium (LMS) and medium-to-dense (MDS). The results regarding the profile of maximum

accelerations and shear strains, the surface accelerations and their corresponding response spec-

tra are discussed. The mean values of the normalized response spectra ratio of surface accel-

erations between CPD and DPD analyses show a deamplification of low and high frequencies

(i.e. at frequencies lower than 1.0Hz and higher than 10Hz) that tend to increase with the

liquefaction zone size. When LMS deposits are subjected to strong ground motions, the cou-

pling of ∆pw and soil deformation is of great importance in order to accurately model the free

field response. On the contrary if for such cases DPD models are used, while peak acceleration

predictions could be conservative, the amplification on the low frequencies could be largely

underestimated which might be prejudicial for flexible buildings.

To evaluate the effect on the structure’s performance, two structures lying on an LMS

deposit were tested. Higher differential settlements were obtained with the CPD model for

both structures and most motions tested. In this regard, the use of DPD models will not be

recommended for structure design when dealing with strong earthquakes and LMS deposits.

In contrast, due to the SSI effect in the structure for which the predominant period was near

to that of the soil, the maximum inter-story drift (ISD) was consistently overestimated by the

DPD models.
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4.1 Introduction

The performance of structures during earthquakes is strongly influenced by the behavior of the

soils that support them. Local site effects can influence structures’ performance in two primary

ways: by imposing additional deformations on the structure through ground failure and by

influencing the ground motions that excite them. The reliable and economical seismic design of

structures requires that local site effects on the ground motions be accurately predicted (Bird

and Bommer, 2004; Kramer et al., 2011).

Liquefaction is a phenomenon commonly observed in earthquakes in which the strength and

stiffness are significantly reduced by the generation of excess pore water pressure in saturated

cohesionless soils. In loose sands, the tendency of densification causes the excess pore water

pressure to increase and the effective stresses to decrease. Some consequences are excessive ver-

tical settlement, lateral spreading, flooding of low-lying land and even soil failure. Additionally,

liquefaction also affects the dynamic response of soil deposits. As the soil stiffness decreases so

does the shear-wave velocity and the predominant frequency shifts to lower values. Similarly, as

the strains increase, the energy dissipation increases and the soil amplification will be reduced

causing a “strong-motion deamplification effect” (Beresnev and Wen, 1996).

Advanced nonlinear models can be formulated in terms of effective stresses to account for

the generation, redistribution and eventual dissipation of excess pore-pressure (∆pw) during

and after earthquake shaking; which is of key importance in the behavior of liquefiable soils. In

this work, the comparison is made between analyses with and without ∆pw in the interest of

evaluating the effect of coupling excess pore-pressure generation and deformation. To address

this subject, only a limited number of studies have been published and are presented in the

following section. Each study used a different technique but in all the fundamental variation

is in the presence or lack of ∆pw; thus for clarity the two analyzes will be referred to: coupled

pore-pressure and deformation (CPD) and decoupled (DPD).

4.1.1 Summary of previous findings

Hartvigsen (2007) performed a series of CPD and DPD analyses of 1D wave propagation in

different soil columns and subjected to a variety of earthquake motions. The main conclusions

of the parametric study were also published by Kramer et al. (2011). In total, nine 20-m thick

soil profiles were subjected to 139 input motions. The nonlinear site response program PSNL

written by S. Kramer (more information in Anderson et al., 2011) was used to perform both the
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CPD and DPD analyses. The program is written in effective stress but for the former, the bulk

modulus of the pore fluid was reduced to a very low value. Thus, while the weight of the water

contributes to the dynamic soil response (i.e. the inertial effect), there is no generation of excess

pore-water pressure. As a result, they presented a correction function for the response spectra

(PSA) obtained by the ratio of CPD and DPD analyses. This correction, called the response

spectra ratio ( RSR = PSACPD/PSADPD), is a function of period and of the loading parameter

(L) that is the inverse of the factor of safety (FS) defined by the cyclic stress approach (Seed

and Idriss, 1971) and is shown in Figure 4.1a.

(a) (b)

Figure 4.1 – Response spectral ratio (RSR=PSACPD/PSADPD ): a) Mean values and b)
Variation with period for 1.8 < L < 2.0 (after Kramer et al., 2011)

The RSR can then be applied to a total stress analysis to obtain a more accurate response

spectrum for liquefiable soils. Among the main features of this factor is that even for very

low L, an amplification is evidenced -i.e. RSR > 1 - above a certain period (Ta). This period

increases with L (from about 0.13s at L= 0.5 to about 1.7s at L=2). Additionally, for L above

1, values of RSR below 1 are obtained for periods around 0.1s, whereas for shorter periods,

RSR is again increased (up to a maximum of about 0.7). The combination of the mid-period

deamplification trough and long period amplification evidences the shift to low frequencies

that occurs as a result of soft-site amplification (Beresnev and Wen, 1996). For the lowest

liquefaction resistance shown (L=2), maximum RSR is approximately 1.4 at T≈3s and the

minimum is about 0.5 at T≈0.5s. A regression analysis was used to obtain the RSR but the

correlation between the residuals was low as shown in Figure 4.1b for the highest L range, hence

the applicability of the function is unlikely. Additionally, the use of a loading parameter reduces
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the analysis to a simplified procedure where the input motion variability is only expressed by

the peak acceleration and the magnitude scaling factor while the soil response is only described

by the SPT blow count and the reduction factor.

Similarly, Yoshida (2013) used the YUSAYUSA program (Yoshida and Towhata, 2003) for

the CPD and the DPD analyses and compared results also with SHAKE (Schnabel et al., 1972).

A total of 268 sites were subjected to eleven earthquake motions. Again the only difference

between the analyses is consideration of excess pore water pressure generation or not; however,

no information on how this was performed was stated. The comparison was focused on five

frequently used intensity measures of the surface time history: the peak acceleration (PGA),

peak velocity (PGV), peak displacement (PGD), instrumental seismic intensity (IJMA) and

spectral intensity (SI). All intensity measures evaluated with SHAKE were in general higher

than with DPD analyses, except for PGD. The highest difference of more than 1.5 to 1 was seen

for PGA values. Concerning the comparison between CPD and DPD analyses, the differences

are consistently higher and for most cases DPD presented higher values. Once more, PGA

difference was the highest of up to 1 to 4 as shown in Figure 4.2a.

(a) (b)

Figure 4.2 – Relation between CPD (EF) and DPD (NL) analyses : a) PGA and b) PGD.
Colors define the different earthquake motions used. (after Yoshida, 2013)

Whereas for PGD shown in Figure 4.2b, the CPD values were greater than with the DPD

which could affect the design of underground structures such as piles and pipelines. Once more,

the program used for these analyses only took into account the SPT blow count to describe

soil behavior. In contrast with Hartvigsen (2007) results, no clear trend between the two
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analyses was identified, possibly due to the great variability of sites tested, some of those with

no liquefiable soil.

A similar procedure from Hartvigsen (2007) was performed by Gingery et al. (2014) but

applied to ground motion prediction equations (GMPEs) that do not account for liquefaction.

The four GMPEs used were the updated attenuation relationships for the western U.S. from

the Next Generation Attenuation (NGA) project (Chiou and Youngs, 2008) that accounted

for soil conditions. An amplification function (AF) for each of the GMPEs was calculated

from the logarithmic ratio of PSA from recorded motions in 19 liquefiable soil deposits and

the evaluated NGA GMPE, i.e. ln(AF ) = ln(PSArec/PSANGA) . The correction functions

presented in general a similar trend as the RSR proposed by Hartvigsen (2007) but with higher

maximums and minimums; although these factors are hard to compare, as they are applied to

different analyses (i.e.CPD vs DPD and measured vs. GMPEs). However, an interesting aspect

of these results is that added to the known long period amplification, a second amplification

can be observed in Figure 4.3 for short periods (around T≤0.05 seconds) which could be the

result of acceleration spikes that occur in association with the dilatational part of liquefaction

phase transformation behavior.

Figure 4.3 – Proposed model of the amplification function (ln(AF ) = ln(PSArec/PSANGA))
for each GMPE and varying PGA and Vs 30 (after Gingery et al., 2014)



Chapter 4. Effect of coupling pressure and deformation 97

4.2 Coupled and Decoupled dynamic approach

The dynamic behavior of saturated porous media is described by the governing equations ini-

tially proposed by Biot (1941). When the absolute displacement of the fluid and soil grain

compressibility can be neglected the simplified us − pw formulation given by Zienkiewicz and

Taylor (1991) might be used. This formulation and the set of equations were presented in

sections 2.1 and 3.3 and will only be briefly recalled.

The coupling of excess pore water pressures and deformations on the soil behavior involves

the effective stress principle, the mass conservation and the Darcy’s laws. Following the principle

of effective stress proposed by Terzaghi (1943), the effective stress (σ′) which is applied to the

solid skeleton is the sum of the total stress (σ) and the pore pressure (pw). Biot (1941)

performed the extension to three dimensional consolidation and arbitrary loads variable with

time and is expressed by two main equations:

• The momentum equation for the soil-fluid system is given by :

divσ′ −∇pw + ρ · g = ρ · ü (4.1)

where ρ is the total average unit mass (ρ = n · ρw + (1 − n) · ρs); n is the soil porosity;

ρw, the fluid mass; ρs, the soil particle mass; g, the gravity acceleration vector and u is

the solid skeleton displacement.

• The equilibrium of water and flow conservation equation using the generalized Darcy’s

laws is as follows:

divu̇− div(K · (∇pw − ρw · g))− div(K · ρw · ü) +
ṗw
Q

= 0 (4.2)

where K is the permeability tensor defined by K =
κ

ρw · g
, κ being the kinematic per-

meability tensor, and Q is the compressibility parameter (Q−1 = n
Kw

+ 1−n
Ks

), Kw and Ks

being the fluid and solid compressibility, respectively.

Note that the pore water pressure generation and dissipation will depend on the permeability

tensor and the compressibility parameter. Hence, the DPD model can be simplified by either

reducing the compressibility to nearly zero as was done by Hartvigsen (2007), or by increasing

the permeability to infinity. In this study another approach was chosen. It consists in keeping

the same inertial effects, while no excess pore pressure is generated.
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For the inertial effects, the DPD model has a total average unit mass equal to the coupled

model, so the weight of the water contributes to the dynamic soil response (equation 4.1). With

respect to the pore water pressure (pw), for the dynamic analysis fixed conditions are used in the

DPD model hence no excess pore pressure generation is allowed. Both models are performed

with the effective-stress analysis and with the same constitutive model, but for the DPD there

is no excess pore pressure generation. The DPD has the same initial state but reproduces a fully

drained condition therefore the soil stiffness degradation depends only on the shear strain. In

contrast, for the analysis of the effect of the groundwater level (e.g. on the dry versus saturated

case) there is a difference in the initial state as the density and the predominant frequency are

lower for the dry case. This kind of analysis has been presented by among others Brennan et al.

(2005); Saez et al. (2013); Carrilho Gomes and Lopes (2014) and will not be presented in this

work.

4.3 Free field response

This section studies the effect of coupling excess pore pressure (∆pw) generation and soil de-

formation on the one dimensional signal propagation through nonlinear liquefiable soils. Three

aspects of the motion response are evaluated: i) the maximum acceleration and shear strain

profile, ii) the maximum surface acceleration and iii) the corresponding response spectra. A

discretization of the response spectra for different time steps of the motion and for different

levels of liquefaction are analyzed.

4.3.1 Soil behavior

The buildup of excess pore pressure depends on many factors concerning the soil as well as

the input motion. Laboratory studies on clean homogeneous soil indicate that the rate of pore

pressure generation depends on the soil relative density, the initial effective confining pressure

with respect to the overconsolidation ratio (OCR) and the prior strain history, among others

(Ladd et al., 1989). According to the concept of critical-state soil mechanics, the behavior of

cohesionless soils is related to the proximity of its initial state to the critical state or steady-

state line rather than to the absolute measurements of density (Roscoe and Pooroshasb, 1963;

Been and Jefferies, 1985; Ishihara, 1993). For the ECP model, Aubry et al. (1982) defined this

distance as the stress ratio p0/pc0, in which p0 is the initial mean stress and pc0, the stress
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corresponding to the critical state of the initial density. When this ratio is higher than 1, the

soil behavior will be contractant; otherwise, it will be contractant/dilatant.

In order to study the effects of coupling pore pressure generation two sand deposits with

different initial behavior are used. They correspond to two relative densities: loose-to-medium

(LMS) and medium-to-dense (MDS). The model parameters were calibrated and validated with

laboratory tests by Saez (2009) and Costa D’Aguiar et al. (2011). They were determined with

the procedure defined by Lopez-Caballero et al. (2007) and are presented in the appendix A.

Some results of the numerical simulations of two laboratory tests are shown to better understand

the behavior of the soils used: a drained monotonic triaxial and an undrained cyclic shear tests.

The volumetric strains (εv) as a function of the axial strains (ε1) from the simulations of

the triaxial drained test are shown in Figure 4.4a for three confining pressures (p0): 50, 80 and

100kPa. The volumetric strains are below zero for the LMS even for low pressures, which means

that the soil deposit is contracting. The tendency of densification causes the increase in pore

pressure generation, which ultimately triggers the liquefaction phenomena. On the contrary,

the MDS presents a contractant/dilatant behavior for the confinement pressures tested.
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Figure 4.4 – Results of the simulated laboratory tests: a) Volumetric strain (εv) as a function of
the axial strain (ε1) from the monotonic triaxial drained test, and b) liquefaction curves from
the undrained cyclic shear test

Figure 4.4b shows the cyclic stress ratio (SR = τcyc/p0) as a function of the number of

loading cycles to produce liquefaction (N) issued from the undrained cyclic shear test. As

qualitative comparison, the modeled test results are compared with the curves given by Byrne

et al. (2004) for Nevada sand at different relative densities (i.e. Dr = 40 and 60%). It is noted
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that the obtained curves for the LMS are closer to the reference for Dr = 40% ; while, the MDS

curves are closer to those of Dr = 60%.

4.3.2 Input earthquake motions

A wide-range selection of recorded accelerograms were used to define an appropriate nonlinear

dynamic analysis. The earthquake signals were proposed by Bradley et al. (2010), Iervolino

and Cornell (2005), Sorrentino et al. (2008), Jafarian et al. (2011) and Raghunandan and

Liel (2013). The earthquake signals used are near-to-source strong motions recorded in dense

soil conditions. These signals are supposed to have minimal noise and are appropriate for

an outcropping bedrock condition. Thus, 273 unscaled records were chosen from the Pacific

Earthquake Engineering Research Center (PEER) database.

The statistics of some intensity measures (IM), defined in appendix C, are calculated at

outcropping conditions and are shown in Table 4.1. The coefficient of variation (CV ) is high for

all parameters and it is about 150% for IA. A high variation in IA is of great importance given

that after the sensitivity analysis performed by Lopez-Caballero and Modaressi-Farahmand-

Razavi (2010), it was proved to be the most influential input variable on the liquefaction index

(QH=10). Figure 4.5 shows the response spectra of all the input earthquake motions previously

filtered to 20Hz. The spectral amplitude has a 5% structural damping. Similarly, a great

variation is presented on the response spectra.

Table 4.1 – Input motions intensity measures for free field response analysis

Parameter Range Mean CV [%] Median

PHA [g ] 0.01 − 1.68 0.32 85 0.28
PGV [cm/s] 0.2 − 121.22 28.38 90 18.97
Tm [s] 0.10 − 1.73 0.55 60 0.50
Tp [s] 0.03 − 1.60 0.34 71 0.27
TV/A [s] 0.08 − 1.44 0.48 50 0.45

IA [m/s] 0.01 − 12.38 1.46 146 0.52
D5 95 [s] 0.87 − 36.65 12.07 68 9.62
Irms [m/s2] 0.01 − 2.32 0.47 88 0.36
SI [m] 0.01 − 2.14 0.41 78 0.33
SED [cm2/s] 0.02 − 34100 1919 211 353

4.3.3 Initial soil response

To verify that the only difference in the CPD and DPD models behavior is due to pore water

pressure generation, the spectral ratio and the maximum shear modulus profile are evaluated
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Figure 4.5 – Response spectra of acceleration for the outcropping motions

and shown in Figure 4.6 for LMS. A sample signal at very low amplitudes (i.e. with a PHA

≈ 1 · 10−5g) is used to ensure elastic soil behavior.
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Figure 4.6 – Initial behavior of the coupled (CPD) and the decoupled (DPD) model: a) transfer
function and b) the maximum shear modulus profile for the LMS

The transfer function is calculated as the ratio between the Fourier transforms of accelera-

tions in the surface and at the bottom of the soil deposit and it characterizes the amplification

produced by the soil deposits. The first amplification peak corresponds to the fundamental

elastic period (Ts) of the soil and in this case is equal to 0.27s for both models. As the results

are the same; it can be proved that the initial elastic behavior of both soils is identical. Thus,

as in the nonlinear model the behavior depends on the initial state, if it is proved to be the

same, it should also be the case for the contractant or dilatant tendency. Therefore, differences
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in the response will only be due to the effect of ∆pw on the coupled model. Concerning MDS,

it was also proved that the initial behavior for both analyzes was identical but it is not shown

here for the sake of brevity.

4.3.4 Nonlinear soil response

Nonlinear soil response is usually characterized by a deamplification of the ground motion at

high frequencies as well as a shift of the energy towards low frequencies (Beresnev and Wen,

1996). Evidence of such behavior beyond an acceleration threshold dependent on the soil deposit

has been observed in seismological observations by among others Field et al. (1997); Assimaki

et al. (2008); Bonilla et al. (2011a) and is taken into account by some geotechnical models.
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Figure 4.7 – Acceleration time history at a) outcropping and obtained at b) surface with CPD
and DPD analyses for the loose-to-medium sand (LMS)

An example of the nonlinear response is presented for one strong ground motion and for the

LMS deposit. The motion used corresponds to the Northridge earthquake of 1994, 90 degrees

component, recorded in station Castaic - Old Ridge Route with moment magnitude of 6.69

and site-to-source distance of 20 km. The acceleration time history at the outcropping rock is

shown in Figure 4.7 together with the corresponding surface acceleration of both models. At

the beginning, the two models present similar accelerations, thus for the strongest shaking the

responses are very different. In terms of acceleration intensity, there is a strong deamplification

at surface for both models of about 3 to 1 with smaller values for the CPD model. Furthermore,

after approximately 5s, while the CPD analysis presents a shift towards low frequencies, the

DPD column continues to have high amplitudes. At this time, the maximum liquefaction ratio
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(ru(t) = ∆pw(t)/σ
′

v0) through the column is equal to 0.8 (refer to the trace in Figure 4.7b).

Liquefaction is described in this analysis as the significant reduction of the effective stress and

therefore accounts for both phenomena: true liquefaction when ru = 1.0 and cyclic mobility

when 0.8 < ru < 1.0 with development of large strains (Koutsourelakis et al., 2002; Popescu

et al., 2006). Thus, liquefaction is said to be triggered when ru equals 0.8.

As the frequency content is of great interest for nonlinear behavior, the response spectra

(PSA) with a 5% structural damping is shown in Figure 4.8 for the three acceleration time

histories. PSA were normalized with the peak acceleration value, as recommended by Seed

et al. (1976), so that the general forms of the spectra may be examined without reference to the

specific variations in acceleration associated with them. With respect to CPD, the DPD model

overestimates the amplification for short periods (i.e. T<0.2s) and for the periods between

0.5 and 2s; however it is underestimated for the periods between 0.2 and 0.5s and the long

periods (i.e. T> 2s). While an overestimation of PSA will lead to higher design costs, the

underestimation could be highly prejudicial for the reliability of the seismic structure design.

10
−2

10
−1

10
0

0

1

2

3

4

5

T [s]

P
S

A
/P

S
A

(T
=

0
) 

[1
]

 

 

ξ= 5 %outcropping
FF CPD
FF DPD

Figure 4.8 – Normalized response spectra for the LMS with a structural damping (ξ) of 5%)

In the following sections, to present the results for all the motions tested focus will be given to

these two main characteristics of nonlinearity: (1) peak values amplification or deamplification

and (2) frequency shift in the response spectra.

4.3.5 Peak surface acceleration

The effect of local geology on the peak acceleration has been studied for many decades. Some

researchers as Trifunac and Brady (1975) and Seed et al. (1976), among others, focused on the
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correlations between distance from source, earthquake magnitude and site conditions. Concern-

ing soft soil amplification, Idriss (1990) and Dickenson and Seed (1996) studied eight earth-

quakes of magnitude close to 6.5 recorded at different soil site conditions. The main conclusions

were: i) “the peaks of strong motion do not grow linearly with earthquake magnitude”, ii) the

accelerations are amplified for weak motions and deamplified for stronger ones and iii) this

relationship depends on the local site conditions of the deposit. These studies were based on

strong motion recordings and therefore include topographic as well as geological site effects (e.g.

basin effect, layering and intrinsic variability).
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Figure 4.9 – Peak ground acceleration at free field (PGA) as a function of peak horizontal
acceleration at outcropping (PHA) for a) both deposits (CPD model) and b) comparison with
estimations based on recordings and extrapolations from Seed et al. (1976) and Idriss (1991)

In the studies by Seed et al. (1976) and Idriss (1991), site amplification factors were given

as ratios between the peak surface acceleration of a soft deposit (PGA) and the peak horizontal

acceleration at outcropping rock (PHA) as was presented in Section 2.3. Similarly, Figure 4.9a

shows the relationship between PHA and PGA obtained for the LMS and the MDS deposits.

The results shown correspond to the CPD model and a logarithmic curve is fitted to the data.

For LMS, an amplification of the signal is presented for PHA less than 0.1g; and PHA<0.3g for

MDS. It appears that this value is a threshold for nonlinearity due to the ground motion as has

been shown by Beresnev and Wen (1996) and Régnier et al. (2014) among others; although, it

changes for each soil.

The obtained trends for each soil are also shown in Figure 4.9b for comparison with the

curves for soft sites given by Seed et al. (1976) and Idriss (1991). It is important to recall
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that the amplification/deamplification curve from Seed et al. (1976) were estimated for soft to

medium stiff clay and sand based on experience of few peak accelerations recorded at weak

and intermediate ground motion. Concerning the factor curve from Idriss (1991), only real

data from the 1985 Michoacan earthquake and the 1989 Loma Prieta earthquake were used for

PHA below 0.2g while for higher values, site response calculations were used. Compared to

the results of Seed et al. (1976), both soils as well as the curve by Idriss (1991) present higher

amplifications for small PHA values. However, the latter presents twice the amplification for

PHA about 0.1g. Additionally, the threshold for nonlinearity for LMS is similar to that given

by Seed et al. (1976), while that of MDS is sligthly smaller than that given by Idriss (1991).

The comparison of the results with the coupled (CPD) and the decoupled (DPD) analyses

is shown in Figure 4.10 for each soil. For low PHA values, the response is similar for the CPD

and the DPD analyses, which is to be expected as there is little or no pore pressure generation.

However, above the threshold of nonlinearity, the peak acceleration at surface is bigger for the

DPD model as the attenuation given by the liquefaction triggering is not present. Nonetheless,

it appears some attenuation caused by the soil resistance degradation given by the induced

shear strains, as was shown by Kramer et al. (2011).
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Figure 4.10 – PGA as a function of PHA for the coupled (CPD) and the decoupled (DPD)
models for a) LMS and b) MDS

As the MDS has less tendency for densification, less deamplification due to excess pore-

pressure is expected hence the differences between both analyses are smaller. In contrast, it

can be seen that in the LMS deposit, differences between the two models are bigger and are

present from smaller PHA values. Additionally, the MDS presents more dispersion as the PHA
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increases, mainly for the CPD analysis, which is probably because of the high frequency spikes

in acceleration.

The relationship between the CPD and DPD models for other earthquake’s intensity mea-

sures is analyzed. First, the Arias intensity (IA) of the signal at surface for both models is

calculated and the ratio IACPD/IADPD as a function of PHA is shown in Figure 4.11a. The

IA is a measure of the total energy delivered per unit mass and has been found to be a bet-

ter measure of earthquake severity and liquefaction triggering (Koutsourelakis et al., 2002;

Lopez-Caballero and Modaressi-Farahmand-Razavi, 2010). In general, the DPD model tends

to overestimate the energy at the surface compared to the CPD model as the ratio is less than

1 for almost all motions.
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Figure 4.11 – CPD/DPD ratios as a function of PHA: a) Arias Intensity (IA) and b) Co-seismic
settlement (uz)

However, it seems that the effect of coupling is different for the two sands. In the LMS

deposit, the ratio shows almost no dependence on PHA for values below the threshold of 0.2g

but for higher PHA, the ratio decreases drastically down to values of 0.2. In other words, when

no pore-pressure excess is generated the energy at surface is the same for both models but

when the liquefaction ratio is important, more energy is presented in the DPD model. As in

general MDS presents smaller values of liquefaction ratio, the ratio between both models does

not appear to have a dependence on the PHA value throughout the range tested; although, in

average the energy of the DPD is higher than that of the CPD.

Similarly, Figure 4.11b depicts the settlement CPD/DPD ratio. As expected for most cases

the settlement is greater for the DPD model as both PGA and IA are greater. Once more, while
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for the LMS the ratio depends on the PHA for values above the threshold; the MDS presents

no dependence of the PHA value. It is interesting to note how these two figures are alike, yet

more dispersion is present for the co-seismic settlement.

In an effort to integrate liquefaction in the relationship between surface acceleration for both

models, the results are ranged by the Liquefaction Index (Q) evaluated at the CPD model for

the LMS deposit and shown in Figure 4.12. This value is defined by Shinozuka and Ohtomo

(1989) as:

QH =
1

H

∫ H

0

ru end(z)dz (4.3)

where ru end is the liquefaction ratio, previously defined, evaluated at the end of shaking. A

value of 1.0 indicates conditions of initial liquefaction throughout the thickness H , thus gives

information of the liquefaction ratio as well as the total liquefied depth. The thickness H used

in this analysis is 10m however, other values will be tested afterwards.
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Figure 4.12 – PGA of the DPD and CPD models grouped by the liquefaction index for LMS

In Figure 4.12 it can be seen that PGA values for the DPD model can be twice as big as

the ones of the CPD model and that it appears to be a relationship between these differences

and the liquefaction index Q. The values were divided in three groups according to the QH=10m

value, namely, QH=10m ≤ 0.2, 0.2 < QH=10m ≤ 0.5 and QH=10m > 0.5, and will be used in

section 4.3.7.

4.3.6 Acceleration profile

For the purpose of analyzing the motion variation throughout the soil deposit, three cases were

chosen from different stages of the relation between PHA and PGA (shown in Figure 4.12):
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for the first case, both columns amplify the maximum acceleration by a factor of 2 ; for the

second one, PGA is almost equal to PHA; and for the last case, the peak acceleration is greatly

attenuated (i.e. PGA ≃ 0.25PHA). Moreover, the difference between DPD and CPD increases

with cases. The earthquakes corresponding to each case are identified in Table 4.2.

Table 4.2 – Earthquakes used for detailed analysis. IM values are evaluated at the outcropping
motion

# Event Year RSN* Mw R† Vs PHA IA D5−95 PGV CAV5
[km] [m/s] [g] [m/s] [s] [cm/s] [cm/s]

C1 Chi-Chi 1999 1587 7.62 62.11 845.34 0.06 0.06 34.28 5.15 2.41
C2 Landers 1992 882 7.28 26.84 344.67 0.14 0.67 37.04 14.95 10.96
C3 Valparaiso 1985 San Isidro** 7.8 65 814 0.68 20.64 37.32 42.9 66

*Record sequence number at the NGA database PEER (2013); **COSMOS (2012)
† Joyner-Boore source-to-site distance.

The time history profiles of the liquefaction ratio (ru(t)) are shown in Figure 4.13. Case C1

is not shown as ru is less than 0.05 throughout the profile, while cases C2 and C3 present totally

liquefied zones. It is interesting to note that although the same subsoil model is shaken, different

motions liquefy different depths. Moreover, the time evolution of the motion’s frequency content

causes the liquefaction triggering at different time for each depth. For example, the motion in

case C3 presents three acceleration peaks (at around 10, 15 and 20s) and with each, liquefaction

gradually appears in deeper soil.

(a) (b)

Figure 4.13 – Time history of ru profile and outcropping input motion for a) C2 and b) C3

To identify the differences between the CPD and the DPD models, a comparison of the

evolution with depth of two soil parameters is shown in Figure 4.14 for the three cases. These
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parameters are: (i) the maximum horizontal acceleration amax and (ii) the maximum absolute

shear strain (|γmax|). The liquefaction ratio at the end of shaking ru end profile from the CPD

model is also shown.
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Figure 4.14 – Liquefaction ratio at the end of shaking, maximum acceleration and shear strain
profile

For the first case, in Figure 4.14a, the CPD model presents peaks on the acceleration profile

that correspond to the peaks on shear strain and the peaks on ru at about 10m. In the DPD

column, however, the peaks on the |γmax| and the amax profiles are sligthly shifted but follow the
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same trend and present the same amplitude. The small differences between the CPD and DPD

column can be due to the low pore pressure ratio along the profile (ru end < 0.1). As for the

second case, in Figure 4.14b, liquefaction initiated around 8m (i.e. ru end > 0.8) and thus more

differences between models are visible. With respect to the amax profile, for the CPD model

it can be seen below 8m a maximum twice the PHA value. Immediately above it, the amax

drops to values below PHA and once more gradually increases as it reaches the surface. This

behavior is important in order to understand the variability in the surface because even if it is a

homogeneous deposit, as the motion propagates to the surface a liquefied layer attenuates the

energy and inhibits liquefaction in shallower soil. Similarly, the |γmax| profile has its maximum

at the same depth. While for the DPD column, the amplification and deamplification on

acceleration are lower, and the peak on the |γmax| profile is significantly smaller. Finally, for

the third case shown in Figure 4.14c, liquefaction appears in three layers, which work as in

the previous case. Note how the amax is inversely related to the ru profile and when the ru

increases, the acceleration is deamplified. The spikes in amax can be distinguished also at the

|γmax| profile, with strains six times bigger than the average. Regarding the DPD column, and

like in the second case, |γmax| profile is generally constant and amax has an almost monotonic

behavior, although this time it decreases as it approaches the surface.
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Figure 4.15 – Shear stress and strain plots throughout the shaking with the coupled (CPD) and
the decoupled (DPD) model for case C3 at: a) z=8m and b) z=18m

Figure 4.15 shows the shear stress strain plots throughout the shaking with CPD and DPD

analyses for case C3 at two different depths. For Figure 4.15a at z=8m, the DPD analysis

presents higher |γmax|; however, at z=18m, in Figure 4.15b, the soil is completely liquefied and
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an important development of permanent deformations is evidenced for the CPD analysis. In

contrast, the |γmax| of the DPD model is almost constant with depth and there appears to be

almost no shear modulus degradation.

4.3.7 Acceleration response spectra

As seen in section 4.3.4, the frequency content of the ground motion is changed because of

the nonlinear soil response. This change depends on the evolution of pore water pressure with

time and therefore could be better understood if it is separated in different time windows. The

influence of coupling excess pore water pressure and deformations will therefore be asset by

calculating the response spectra of the surface acceleration from the CPD and DPD models in

different time windows. The time instants when the Arias intensity (IA) of the outcropping

acceleration reaches 5 and 95% are used to define these windows because of their relation to

the energy of the motion and the evolution of the liquefaction ratio. To exemplify this, the

surface accelerogram and the mean and maximum liquefaction ratio in the whole column with

the CPD analysis are shown in Figure 4.16 for the 1994 Northridge earthquake presented in

Section 4.3.4.
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Figure 4.16 – Time histories of the surface acceleration and mean and maximum ru throughout
the profile (CPD model) for Northridge 1994 earthquake

In this case, the spikes on acceleration match the rapid increase of ru and the two vertical

lines, corresponding to t5 and t95, roughly coincide with the start and end of the maximum

and mean ru increase throughout the profile. To obtain these time series, first the ru evolution

with time is calculated for all depths and the maximum and mean values at each time instant
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is taken. It can be seen how the frequency content as well as the amplitude in acceleration

changes for the three time windows.

In the surface, the settlement for both analyses is similar at the beginning of the motion

(i.e. before t5), as it is shown in Figure 4.17 for the three cases. During the predominant time

window defined by t5 < t ≤ t95, important changes are evidenced between the two analyses and

as it was seen in Figure 4.11b, the maximum settlement is higher for the DPD model. However,

at the last part of the motion (i.e after t95), the settlement is practically constant for the three

cases shown.
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Figure 4.17 – Settlement time evolution at surface for cases: a) C1, b) C2 and c) C3

Similarly, the time evolution of the Arias intensity (IA) is shown in Figure 4.18 for the three

cases. In addition to the surface response, the outcropping Arias intensity is shown in solid

black line. In comparison with the settlement time evolution, less differences are evidenced for

case C1 while for C2 and C3 the time series differ greatly and earlier. Specially for C3, IA is still

increasing after t95 for DPD which is almost ten time the value of CPD. With respect to the

outcropping IA evolution, it can be noted that the energy is first (for C1) amplified by CPD and

DPD analyses in the surface by almost seven times. For C2 and C3, the energy rate for CPD

decreases when the maximum ru is above 0.8 hence differences start to be evidenced between

the CPD and the DPD analyses. The time instant for this change is close to t5, however it

can be slightly lower or higher depending on the maximum energy. For this analysis, the latter

value is used as it is related to the outcropping motion and is easily obtainable.

The response spectra of the horizontal acceleration at surface are plotted in Figure 4.19

for the three cases and the three time windows. For the first case ru ≤ 0.03, thus all time
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Figure 4.18 – Arias intensity time evolution at surface for cases: a) C1, b) C2 and c) C3. The
outcropping IA is shown in solid black line.

windows have a near match between both models which confirms that significant softening did

not occur. While for the second case, only for the first time window (i.e. prior to significant

rise of pore pressure), the responses of the CPD and DPD columns are similar. Afterwards,

the DPD column produced a much higher peak whereas for the CPD column, the coupling of

excess pore pressure and its subsequent soil softening inhibits the transfer of the intense high-

frequency peaks to the ground surface. A shift towards the short periods is clearly shown in the

second case and after the majority of the energy has passed (i.e. t > t95). For periods higher

than 1s, the CPD column presents larger spectral values than the DPD column. Lastly, for the

third case shown in Figure 4.19c the difference between columns increases, even for the first

time window. Thus, as the ru increases, a great attenuation for the CPD column with respect

to the DPD one is seen. As the differences in spectral accelerations between both models are

so important, little can be told about the shift in period.
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Figure 4.19 – Response spectra of surface acceleration at the different time windows and the
different cases

Response spectral ratio

To assess the effect of the soil stiffening on the frequency content of the surface signal, Hartvigsen

(2007) proposed to characterize the effects of pore pressure with a response spectral ratio (RSR)

defined as:
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RSR(T ) =
PSACPD(T )

PSADPD(T )
(4.4)

where PSACPD(T ) corresponds to the horizontal acceleration response spectrum at surface

evaluated with the CPD analysis and PSADPD(T ) is the corresponding response spectrum for

the DPD analysis. All results are ranged by the QH=10m value and are shown together with

the mean and the standard deviation in Figure 4.20. It can be seen that, although the mean

is below unity, some extreme cases presented RSR values above it, i.e. higher PSA values for

the CPD analysis. Specially, the CPD amplification at long periods (i.e. T>1s) and also the

amplification for periods around 0.05s. Interestingly, this latter is mostly observed for LMS,

in Figure 4.20a, while at this period most cases present the minimum RSR values for MDS,

in Figure 4.20b. In the previous studies from Hartvigsen (2007) and Gingery et al. (2014),

different soils were used and for the analysis they were averaged by the liquefaction resistance

(i.e. the inverse of the factor of safety) and the Vs 30 profile, respectively. Thus, probably the

particularities of each soil were averaged.
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Figure 4.20 – Response Spectral Ratio (RSR) mean and standard deviation for a) LMS and b)
MDS. All values are shown ranged by the QH=10m value

For both LMS and MDS it appears that RSR is related to the liquefaction index (QH=10m).

In general, as QH=10m increases, the RSR decreases for almost all periods. For LMS, at low

QH=10m values the dispersion is higher, but it seems that the average behavior is around unity.

However, at the same QH=10m level, MDS presents a deamplification of the CPD model for

periods below 0.1s. For a better comparison with respect to the liquefaction index, the responses
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were divided in three groups according to the QH=10m levels shown in Figure 4.12 and the mean

values are shown in Figure 4.21. While for LMS the mean of each group or level are very

different from each other, for MDS the three levels presented similar curves.
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Figure 4.21 – Mean Response Spectral Ratio (RSR) of each QH=10m level for a) LMS and b)
MDS. The mean curves presented by Kramer et al. (2011) are shown in dashed lines.

In Figure 4.21, the mean values presented by Kramer et al. (2011) for different loading

parameter (L) ranges are shown for comparison. Recall that L is the inverse of the factor of

safety hence, L can be directly related to the liquefaction index. Comparing with the analysis

results, the RSR for the smallest period (i.e. the ratio between peak accelerations) are similar

to those for LMS. However, the amplifications are higher and shifted to shorter periods. The

period between deamplification and amplification presented is about 1s and close to that of

MDS. This period appears to be related to the soil type however, as Kramer et al. (2011) used

different combinations of very dense gravel with looser sands, the curves present the average

shift of all soil types. In addition, the second peak shown for LMS at periods around 0.05s is

only visible for the highest L range and is shifted to longer periods (about 0.25s). Once more,

the use of very different soil types could explain this difference since for the MDS curves, a

trough is presented instead of a peak at about the same periods.

Normalized response spectral ratio

As it can is seen in Figure 4.20, results show a high dispersion, in part because each input

motion presents a different peak acceleration. Seed et al. (1976) recommended that to examine

a wide range of input motions without reference to the specific variations in acceleration, the
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response had to be normalized. Additionally, the deamplification of the PGA due to CPD, has

already been discussed in section 4.3.5. Thus, for the normalization, the PGA is used, which

corresponds to the value of the response spectra at the shortest period evaluated. Therefore

the normalized response spectral ratio (NRSR) is defined as:

NRSR(T ) =
PSACPD(T )/PGACPD

PSADPD(T )/PGADPD
(4.5)

where PSACPD(T )/PGACPD corresponds to the normalized response spectrum at surface for

the CPD model and PSADPD(T )/PGADPD, for the DPD model. Figure 4.22 shows the mean

NRSR for each of the three groups according to the QH=10m levels shown in Figure 4.12. It can

be seen that the CPD amplification of periods around 0.05s for the LMS and the deamplification

for the MDS are more visible. Interestingly, at these periods, the highest amplification is for

medium levels of liquefaction (i.e. 0.2 < QH=10m < 0.5); while at long period, the highest

amplification is for the highest liquefaction level (i.e. above 0.5). This aspect agrees with the

conclusions of Gingery et al. (2014) concerning the acceleration spikes of cyclic mobility.
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Figure 4.22 – Mean Normalized Response Spectral Ratio (NRSR) of each QH=10m level for a)
LMS and b) MDS

As in the analysis of the individual cases, the NRSR evolution with time is shown in Figure

4.23 for the loose-to-medium sand. In it, the logarithmic mean NRSR curves are obtained for

each time window. Once more, for the time window before t5 (i.e. before the energy of the

motion has arrived), the NRSR are almost equal to 1 for all cases. As for the other time windows,

3 parts can be distinguished. For periods between 0.1 and 1s, the DPD model presents higher
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values of acceleration. Thus, the analyzes without coupling would be conservative. However,

it is interesting to note how as the liquefaction potential and the time increases, the NRSR

increases for the low (i.e. T < 0.1s) and high (T > 1.0s) periods. These values can attain

important discrepancies of up to 2.5. As it can be seen, high period amplification in the more

liquefied soils is not fully considered in models that lack of coupling pore pressure. Hence,

the response of buildings with high predominant periods could be non-conservative. Another

important discrepancy between the CPD and DPD models is found for periods around 0.05s

and was also shown for the case C2 in Figure 4.19b. The peak in the CPD model could be due

to coseismic pore-water migration and consequent soil recovery which could not be present in

the DPD model. Once more, structures with periods around this value could be subjected to

higher accelerations if a CPD analysis were to be used.
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Figure 4.23 – Mean NRSR values ranged by Q levels for LMS

The logarithmic mean NRSR curves obtained for each time window for the medium-to-dense

sand are shown in Figure 4.24. Contrarily to LMS, for low levels of liquefaction NRSR is not

equal to unity, not even before the ground motion. Instead, for all levels of liquefaction and

specially for the first two time windows, a minimum on NRSR is evident at periods around

0.05s. Additionally, the differences between the CPD and the DPD models at long periods is

shifted, for T ≈0.8s. Nonetheless, for longer periods the CPD model presents higher values of

acceleration. They can attain important discrepancies of twice the value of the DPD model.

Even if the soil density is higher and that it appears to have a dilatant tendency; at high

acceleration levels, there is still a shift to lower frequencies captured in the CPD models.

However, high period amplification for strong ground motions is not present in decoupled pore
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pressure and deformation models.
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Figure 4.24 – Mean NRSR values ranged by Q levels for MDS

As an attempt to include the effects of pore pressure generation, Hartvigsen (2007) proposed

a function relating the amplification of the acceleration with the seismic hazard and the soil

properties. However, given the great variability of the spectral ratio with period, input motion

and soil properties, as shown in Figure 4.20, it is unlikely to capture the detailed effects of

∆pw coupling on individual response spectra with an overall function. Due to the proper input

motion variability, individual cases can be somewhat different of the general case (e.g. peaks

for periods around 0.08s). On that account, for a complete analysis of important structures the

use of a constitutive model with coupling excess pore pressure and soil deformation would be

recommended when ∆pw is significant and strong ground motions are expected.

4.3.8 Partial conclusions

A finite element analysis was used to investigate the effect of coupling excess pore pressure and

soil deformation on the nonlinear response. Two soil profiles of 20m have been used: a loose-

to-medium (LMS) and a medium-to-dense sand (MDS). Two mechanically equivalent models

were subjected to 183 unscaled earthquake motions: one taking into account coupling (CPD)

and one without (DPD). The same effective-stress model was used for the calculations and the

initial elastic behavior was proved to be the same.

The present study aimed to highlight the importance of accurate modeling of liquefiable

soils in order to improve performance-based earthquake engineering. In fact a simple geometry
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is used to illustrate the problem, although a 2D SSI model will be presented in the following

section to analyze the effect of CPD on the structure performance.

The preliminary conclusions drawn from this study are as follows:

• The acceleration is amplified at surface for small input motions and deamplified for

stronger ones in the DPD as well as in the CPD model. Nonetheless, deamplification

for strong ground motions is more significant in the CPD column and it increases with

PHA as it accounts for softening of liquefied soils in addition to the proper strain-related

degradation. As a result, models that do not include coupling of excess pore pressure

will predict higher surface accelerations. As the relative density of the soil increases, the

effects of coupling decrease thus they are still present.

• The surface Arias intensity as well as the co-seismic settlement are highly overestimated

by the DPD model with respect to the CPD one. For strong ground motions, settlements

can be even six times greater without coupling.

• It appears that the difference between maximum surface acceleration for the two models

is related to the Liquefaction Index (QH=10), hence as the liquefaction zone increases the

need for a more complete analysis is required.

• Regarding the soil behavior throughout the profile, it can be concluded that spikes of

acceleration are found at the same depth of spikes of shear strain and maximums on

liquefaction ratio for the CPD model; however, shear strain spikes on the DPD model do

not correspond to spikes in acceleration thus other mechanisms are involved.

• Concerning the response spectra, it appears that the DPD model underestimates the

amplification at low and high periods while it overestimates the spectral amplitudes at

periods between 0.1 and 1s, for the LMS profile. This variation is more important in the

time interval after the 95% of Arias intensity as the soil has softened on the CPD model.

Moreover, this variation increases with the liquefaction zone. On the MDS profile, the

response spectra is also underestimated by the DPD model for high periods. For cases

where the liquefaction index is above 0.5 and after the predominant window of the motion,

the DPD model presents twice the value of the CPD model.

• From a probabilistic point of view, the response spectra follows the same trend; although

the variation between one event and another is significant. Therefore a generalization

would be unlikely to capture the detailed effects of pore pressure coupling.
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4.4 Soil structure interaction response

This section concerns the assessment of the effect of excess pore pressure (∆pw) and deformation

for the nonlinear response of liquefiable soils on the structure performance. A 2D soil-structure

interaction (SSI) model was analyzed. The ECP elastoplastic multi-mechanism model (Aubry

et al., 1982; Hujeux, 1985) is used to represent the soil behavior. Due to computational costs

of a 2D model, the models were subjected to 90 unscaled earthquake signals chosen from

the previously used set. To account for the effect on the SSI, two structures with different

predominant periods were used. As seen in the previous section, the effect of coupling pore

water pressure and soil deformation is most important when the soil is loose and significant

∆pw is generated. Hence, in this section only the loose-to-medium sand (LMS) is used. In the

interest of quantifying the effect of ∆pw on the SSI, two mechanically-equivalent models -one

with coupled pore water pressure and soil deformation (CPD) and one without (DPD) - were

performed with the same effective-stress analysis. Three aspects were evaluated: i) the response

spectra of acceleration at surface and at the structure, ii) the structure settlement and iii) the

structure seismic demand.

4.4.1 Structure model

In order to take into account the interaction effects between the structure and the soil, the

modified width plane-strain condition developed by Saez et al. (2013) was assumed in the finite

element model. Two soil-structure interaction models are considered in this work. A width of

4m is used for the soil profile in both models. The dynamic performance of the structures tested

is different as they have different height, weight and predominant periods. The structures used

will be called B01 and T040. They simulate reinforced concrete (RC) buildings with a shallow

rigid foundation, standing on saturated cohesionless soil. A schema of the models is shown in

Figure 4.25. Three points are marked for future reference: free-field response at 3m from the

boundary (FF), structure’s base (SB) and structure’s top (Top).

B01 is modeled as a RC frame of one span and two stories and T040 is a single-degree-of-

freedom (SDOF). Both structures lay on a 6m width and 10cm thick rigid foundation. Con-

cerning the soil model, a 50m wide and 20m thick deposit is overlaying an elastic bedrock. The

soil corresponds to the loose-to-medium (LMS) sand of the previous section.

In order to simulate the B01 structure, plastic hinge beam-column elements are used which

take into account axial force (F ) and bending moment (M) interaction (Prakash et al., 1993).
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Figure 4.25 – Schema of the numerical model for a) B01 and b) T040

The force and moment diagram for the beam elements in B01 is shown in Figure 4.26. This

structure is a large-scale, one-span, two-story frame model proposed by Vechio and Emara

(1992). In contrast, the T040 is a single degree of freedom (SDOF) modeled with an elastic

perfectly plastic behavior and is equivalent to a one-span, three-story building (Saez et al.,

2013). It is a simplified model of a moment frame mid-rise structure according to the building

type classification of HAZUS-MH MR3 (2003). This additional structure is used in this study to

highlight the effects of the soil behavior in the structure performance near resonance. The main

characteristics of both structures are shown in Table 4.3. Between the structure’s foundation

and the soil, interface elements are used to allow relative movement of the structure with respect

to the soil, in order to avoid the traction effect. These elements follow a Coulomb-type plastic

criterion.
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Figure 4.26 – Force and Moment diagram for beam elements in B01

The effect of the building’s weight on the increment of the horizontal stress state (∆σyy) in
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Property B01 T040

Total height [m] 4.2 6
Width [m] 4 N/A
Mass [ton] 45 120

Fundamental fixed-base period T0 [s] 0.24 0.40

Table 4.3 – Structures properties

the deposit is shown in Figure 4.27. It is noted that as the weight of the structure increases,

so does the effect on the soil stress state. The effect on the stress state is greater under the

structure’s foundation and decreases approximately with the square of depth. The significant

depth (Ds) was defined by Terzaghi (1943) as the pressure bulb of 20% of the external loading

because approximately 80% of the structure’s settlement takes place above this depth. For B01,

Ds is about 4m and for T040, it is about 11m.

(a) (b)

Figure 4.27 – Increment of the horizontal stress (∆σyy) before shaking for a) B01 and b) T040

The building’s weight affects the stress state (horizontal, vertical and shear) and also the

volumetric deformations, hence it affects the “distance to reach the critical state”, defined in

the ECP model by the degree of mobilized friction (rk) explained in section 3.3 as follows:

rk =
qk

p′k · Fk · sinφ′
pp

(4.6)

where p′k is the mean stress, qk is the deviatoric stress, φ
′

pp is the friction angle at the critical state

and Fk is the isotropic hardening associated with the volumetric plastic strain (εpv). Thus, the

effect of the building’s weight on the soil behavior is better related to the degree of mobilized

friction (rk) which is shown in Figure 4.28 for both structures. As the rk value approaches
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unity, the soil approaches perfect plasticity. Evidently, the soil under the building presents

higher values. Additionally, as T040 is heavier, the effect on rk is higher. As the coefficient of

earth pressure at rest (k0) also increases with the building load, the surrounding soil is stiffened

but without the effect of the shear stress. Thus the soil on this region will present higher

liquefaction resistance.

(a) (b)

Figure 4.28 – Degree of mobilized friction (rk) before shaking for a) B01 and b) T040

Concerning the initial seismic behavior, Figure 4.29 shows two transfer functions (|TF |) -

with fixed base and with soil-structure interaction (SSI) effects (top/FF) for the two structures.

In addition, the |TF | of the soil deposit (FF/bedrock) is also shown. A scaled motion with

a very low amplitude (i.e. PHA≈ 1 · 10−5g) was used to evaluate the pseudo-elastic behavior

of both soil and structure. Firstly, it is interesting to note that, even if B01 has two stories,

only one resonant frequency (or mode) is observed - as the other one is above 15Hz. Hence

both structures behave as SDOFs. The SSI effects consist of a shift to lower frequencies due

to the flexibility of the foundation soil and a deamplification due to the material and radiation

damping added by the soil (Mylonakis and Gazetas, 2000). As expected, structure B01 being

more rigid presents a higher interaction with the soil foundation; hence, the deamplification and

the frequency shift are greater. Nevertheless, the relative position of the fundamental frequency

of the soil with respect to that of the structure and the frequency content of the input motion

is very important for the inelastic dynamic SSI effects (Saez et al., 2013). Thus, as T040 main

frequency is lower than that of the soil, higher SSI effects are expected when nonlinear soil

degradation causes a shift of the soil frequency to lower values.
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Figure 4.29 – Transfer function of the free-field and the structure for a) B01 and b) T040

4.4.2 Input earthquake motions

Due to the computational cost of the 2D SSI model, not all the input motions used in the

analysis of the free field response were used. As was seen in the previous section, the effect

of coupling pore-pressure and deformation is mostly important for the nonlinear soil behavior.

Therefore, only near-to-source strong motions recorded in dense soil conditions with mostly

PGA above 0.3g were chosen from the initial selection. In total 90 recordings were used. The

events range between 6.2 and 7.7 in magnitude and the recordings have site-to-source distance

below 70km and dense-to-firm soil conditions (i.e. 30m averaged shear-wave velocity (Vs 30)

above 600m/s).

The histogram of some intensity measures (IM), defined in appendix C, is shown in Figure

4.30a for the motions used in the 1D FF analysis (in blue) and the motions selected for the

2D SSI model (in red). As it is noted the difference is mostly on the PHA value however, all

the other IM distributions are also affected. Figure 4.30b shows the response spectra of all the

input earthquake motions. PSA for the motions only used in the 1D FF analysis are shown

in light gray while the ones used in both analysis are in dark gray. Concerning the latter, the

average PHA is above 0.3 but some weak motions were also tested for comparison.

4.4.3 Initial SSI model response

As in the 1D model, it is important to verify that the only difference in the CPD and DPD

models response is due to pore water pressure generation. Thus, the degree of mobilized friction
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Figure 4.30 – Input motions used for the SSI model: a) IM histogram comparison with 1D FF
analysis (in blue) and b) response spectra of acceleration for the outcropping motions

(rk) before shaking is shown in Figure 4.31 for both analyses in the model with T040. This value

accounts for the deviatoric and mean stresses as well as the volumetric strains, thus, if both

analyses present similar initial rk values, it is possible no difference is presented in the other

parameters. As no significant difference is noticed; it can be proved that the initial behavior of

both deposits is identical. Therefore, differences in the response will only be due to the effect of

∆pw on the coupled model. These parameters were also evaluated for both analysis with B01

but as the results between CPD and DPD were similar, they are not shown here for the sake

of brevity.

4.4.4 Seismic soil behavior

The effect of coupling pore pressure and soil deformations on a soil-structure interaction model

is highly complex and will affect several aspects of the response. First the analysis for one input

motion will be shown and then some results concerning all the motions will be addressed.

As explained in section 4.2, the main difference in the analyses will be given by the induced

strains due to pore pressure generation. As the latter increases, the difference in the soil

deposit in terms of acceleration, shear strains and settlements increases. Figure 4.32 and Figure

4.33 show the time histories of different parameters observed on the SSI model with T040

structure and for one motion tested. The motion used is the Mw 6.93, January 1994, Northridge

earthquake recorded in Pacoima Dam in southern California. The unscaled record was taken

from the PEER database under the RSN 788. This station has a site-to-source distance (RJB) of
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(a) (b)

Figure 4.31 – Degree of mobilized friction (rk) before shaking in the model with T040 for a)
CPD and b) DPD analyses.

73km and a 30m-averaged shear-wave velocity (Vs 30) of 895m/s. First, in Figure 4.32, the time

evolution of the liquefaction ratio (ru = ∆pw/σ
′

0) is shown for a profile far from the structure -i.e.

in free field, refer to point FF in Figure 4.25. Below the ru profile, the acceleration time history

at the outcropping bedrock is shown. It can be noted that although the same soil properties

are used for each layer, due to the increase in mean stress and the stress ratio difference, pore

pressure generation appears heterogeneously in the deposit. Additionally, the differences in

the frequency content of the motion causes liquefaction at different times. Recalling from the

previous section, liquefaction is said to be triggered when ru equals 0.8. Thus for this motion,

liquefaction first appears between 6 and 7m depth at around 8s, then it starts in two other

deeper zones. After the predominant duration of the motion, i.e. at around 15s, the pore

pressure migrates to other depths. At the end of shaking, ru is almost evenly distributed and

it is above 0.8 for depths between 5 and 15m.

The surface acceleration time history is easily related to the liquefaction evolution with

time, as it is shown in Figure 4.33a for the structure’s base. With respect to the outcropping

motion, the surface peak amplitude is almost one third for the DPD model and is slightly lower

for the CPD one. After the first liquefaction triggering at 8s, the responses start to differ. The

CPD model presents a shift towards low frequencies after approximately 10s, while the DPD

shows higher spikes at higher frequencies. Similarly, the relative settlement of the structure

with respect to free field (|uz|), shown in Figure 4.33b, evolves differently starting from 8s. Due
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Figure 4.32 – Time history liquefaction ratio at free-field (i.e. near the boundaries of the 2D
model with T040 structure) for one motion tested. Below is the acceleration time history at
the outcropping bedrock

to the pore pressure migration, evidenced in Figure 4.32, differences in |uz| are greater after the

predominant duration of the motion and by the end of the shaking, the CPD model presents

results more than 4 times higher than the DPD. The CPD acceleration time history after

liquefaction triggering shows large acceleration peak values riding over a low frequency carrier,

which are due to the dilatant tendency of cohesionless soils near the phase transformation line

and have been observed in surface earthquake recordings by among others Bonilla et al. (2011b);

Gingery et al. (2014); Kramer et al. (2015). Note that the relative settlement rate follows these

peaks, for example about 26s and 35s. In contrast, the rate on |uz| for the DPD model appears

to be negligible after the PHA value.

Concerning the entire deposit an important issue is the building load and its effects on the

soil behavior. Figure 4.34 shows the liquefaction ratio at the end of shaking for all the deposit

with T040. As the soil under the structure is stiffened, liquefaction is not presented there;

however, around this area and because of the differences in the stress state, high ru values

appear beyond the structure’s influence, with respect to free-field.

Figure 4.35 shows the maximum shear strains for the CPD and the DPD models. For the

former, values are often twice the value of those in the DPD model. Furthermore, while for

the CPD model, the maximum values appear to be related to the places where maximum ru

values are located; for the DPD, the maximum values are more evenly distributed through the

deposit.

In terms of time history and in the entire deposit, the response for each motion varies
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Figure 4.33 – Time history analysis for one motion tested: a) acceleration at T040 structure’s
base and c) relative settlement of T040 structure with respect to free field

Figure 4.34 – Liquefaction ratio at the end of shaking for one motion tested in the SSI with
T040

greatly, due to the differences in frequency, energy and duration content of the motion. Hence

to analyze all the motions tested, focus will be given to three engineering demand parameters

(EDPs): (1) peak ground acceleration (PGA) at the structure’s base, (2) co-seismic relative

settlement of the structure with respect to free field (|uz|) and (3) maximum inter-story drift

(ISD). These parameters are often used for seismic structure performance when SSI effects are

taken into account and are often used for numerical analysis.
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(a) (b)

Figure 4.35 – Maximum shear strains for one motion tested in the SSI with T040: a) CPD and
b) DPD analyses

4.4.5 SSI effects on a 2D model

Before analyzing the effect of coupling pore pressure and deformations, the SSI effects will be

identified. On that account the 2D model without the structure was subjected to the suite

of motions. Differences between 1D and 2D models are presented in appendix B and solely

the effect of the structure’s presence will be presented in this section. Figures 4.36 to 4.38

show the comparison between some EDPs evaluated in the model with the structure (FF SSI)

and without (FF 2D). As expected, the results vary for the building used and for the type of

analysis.

Regarding the acceleration at surface, the PGA values at 3m from the left lateral boundaries

(refer to point FF in schema 4.25) are shown in Figure 4.36. As the PGA level increases, the

effect of the SSI is more important. While for B01 the acceleration peak is higher when the

SSI is presented, it is the contrary for the T040. Additionally, more differences are presented

in the CPD analysis which is expected since it is affected by the liquefaction ratio that evolves

differently in the deposit.

The maximum settlement (uz) at FF 2D is also affected by the inclusion of SSI effect as

shown in Figure 4.37. As expected, uz is reduced when the structure is present. Once more, with

the CPD analysis the differences are greater than with DPD analysis and appear to increase

with uz (i.e. increase of PHA). CPD values reached up to 4 times less the value when SSI effect

is present. Later on in order to assess the effect of coupling pore pressure and deformations on

the SSI response, the settlement of the structure will be given relative to the settlement on FF
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Figure 4.36 – SSI effect on the peak ground acceleration (PGA) at free-field for a) B01 and b)
T040.

SSI (i.e., |uz| = uz SB − uz FF ).
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Figure 4.37 – SSI effect on the settlement (uz) at free-field for a) B01 and b) T040.

Concerning, the liquefaction evaluation in the soil deposit, the liquefaction index (Q) will

be used to compare the different models. This index was defined by equation 2.6 in section

4.3.5 for the free-field response analysis in the 1D model, now it is extended to the 2D model

as follows:
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QH·L =
1

H · L

∫ H

0

∫ L

0

ru end(y, z)dydz (4.7)

where ru end is the liquefaction ratio evaluated at the end of shaking (ru end = ∆pw end/σz 0) .

When QH·L is equal to unity, it means that liquefaction is present throughout the thickness H

and the length L hence it gives information of the liquefaction ratio as well as the total liquefied

area. The FF 2D model is compared in Figure 4.38 with the SSI effect of the two structures.

Different values of H and L were tested: (1) a box under the structure of H=4m and L=10m

(in magenta), (2) the entire FEM, H=20m and L=50m (in blue), (3) a column of H=10m in

FF and (4) a similar column below the structure.
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Figure 4.38 – SSI effect on the liquefaction index (QH·L): a) and c) for B01 and b) and d) for
T040. The colors correspond to the size of the area depicted on the schema
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It can be noted that QFEM presents only a slight increase when the structure is present,

most notably for T040. In contrast, in the 4×10 box under the structure, the effect of SSI

on liquefaction varies greatly. First, more dispersion is evidenced and in most cases, more

liquefaction will appear when the structure is present. With T040, Q is up to 5 times greater

than in the FF 2D model. The results with B01 are somewhat different as it seems that for

high liquefaction levels less SSI effect is present. For T040, a plateau at about 0.7 is found for

the Q values evaluated with SSI in the box which can be related to the pore pressure migration

and the fact that these values are measured at the end of shaking and not at their maximum.

With respect to the Q values evaluated at the two columns, once more the SSI effect is more

important for Q evaluated for FF 2D model above 0.3 for T040. It is interesting to note that

the similarities between both columns might indicate that the SSI effect is similar near the

boundaries and in the center of the model. However, this value is an average over height but

it does not show the principal depth where liquefaction takes place. In order to better analyze

this aspect, two cases will be presented: (1) for a low level of liquefaction where SSI reduces Q

under structure and (2) for a high level of liquefaction where SSI increases Q.

Figure 4.39 shows the liquefaction ratio (ru) at the end of shaking in the whole deposit of the

model without structure and with the structures used for a motion that presented a low level of

liquefaction. For the case of FF, ru is not horizontally homogeneous which is probably due to

the surface waves as is shown in Appendix B. When a structure is present, the ru distribution

is modified in the whole deposit even near the lateral boundaries (i.e. FF SSI). However with

B01, Q evaluation in a FF SSI column is similar than in FF 2D, as the magnitude of ru is

similar even if the depth of maximum ru has changed. Concerning the SSI effect under both

structures, in this case ru is significantly reduced but it is increased in the surrounding.

For a high level of liquefaction, the response is different as it is shown in Figure 4.40. In this

case, more ru is presented under B01 structure while slightly less is visible in the surrounding.

However, for T040, the results are inversed and higher Q values are presented outside the box of

4×10. It can be seen how the choice of this area will affect the response as if for this case the box

would be slightly bigger the results would have been similar as for B01. Liquefaction evolution

is shown to be very complex and while only the state at the end of shaking is shown here, the

differences within the 2D model can be due to the motion’s frequency evolution with time and

the consequently difference in ru. To compare the different motions tested, the liquefaction

index evaluated at the whole deposit (QFEM) will be used as it is an average measure for the

entire model.
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(a) (b) (c)

Figure 4.39 – SSI effect on the liquefaction ratio (ru) at the end of shaking for a) no structure,
b) B01 and c) T040

(a) (b) (c)

Figure 4.40 – SSI effect on the liquefaction ratio (ru) at the end of shaking for a) no structure,
b) B01 and c) T040

Furthermore, the values obtained for QFEM appear to be related to the PHA and the

equivalent harmonic period (TV/A) values as shown in Figure 4.41 for both structures. TV/A

is an approximation of the predominant period of the motion taken as the intersection of the

constant spectral acceleration and velocity. It is computed by:

TV/A = 2π
αV (ξ = 5%)

αA(ξ = 5%)

PHV

PHA
where

αV (ξ = 5%)

αA(ξ = 5%)
=

1.65

2.12
(4.8)

Green and Cameron (2003) found a close relation between this IM and the amplification of

soft soil sites. Similarly, Kawase (2011) uses the inverse of TV/A to examine the relationship

between observed strong motions and structural damages. In this figure, equi-PGV lines will

be a slope from left-down side to right-up side. For the soil tested, the highest liquefaction

ratio was found for PGV higher than 50m/s and PGA between 0.2g and 0.8g. It is interesting
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to note that even if the peak acceleration is above 0.2g, which has known to be a threshold

for nonlinearity, if the PGV is low, QFEM is also low. With respect to the structures, it can

be seen that the same motions present similar results however the liquefaction index is overall

higher for T040 as it was already shown.
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Figure 4.41 – Relation between input IM: PHA and TV/A and liquefaction index (QFEM) for :
a) B01 and b) T040 structures

4.4.6 Surface acceleration

The amplification (or deamplification) of an earthquake motion due to site effects has been

studied for many decades. In engineering practice, site amplification factors are often used

to take into account these effects. An example of these factors, is the pioneering work of

Idriss (1990) and Dickenson and Seed (1996) based on empirical measurements and engineering

judgment of ratios between the peak surface acceleration of a soft deposit (PGA) and the

peak horizontal acceleration at outcropping rock (PHA) and shown in the previous section.

Advanced numerical models of seismic soil behavior are useful to analyze the nonlinear effects

on the ground motion; however, when no coupling of pore pressure and soil deformation is

present, the model could largely overestimate the peak accelerations at surface.

Concerning the peak ground acceleration (PGA) at the structures base, Figure 4.42 shows

the comparison between the CPD and DPD analyses for both buildings. The values are ranged

by the liquefaction index evaluated at the entire soil deposit QFEM , presented previously. For

most cases, in Figure 4.42, the coupling produces a deamplification on the acceleration as
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it accounts for soil softening due to the pore pressure increase. However, for two motions

with T040 structure, the peak acceleration is greater for the CPD analysis. Regarding the

liquefaction index, the PGA values appear to be related to the level of liquefaction in the

soil. Except for two motions with B01 structure, where the value of QFEM is low while the

deamplification is doubled. In general, PGA is similar for both structures when a CPD analysis

is used, while, with a DPD analysis, the PGA appears to decrease for the heaviest structure

(i.e. T040). Finally, the differences between the analyses are higher and more dispersive for

B01.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1:1

1:2

PGA
CPD

 [g]

P
G

A
D

P
D

 [
g

]

 

 

Q
FEM

≤ 0.2

0.2 < Q
FEM

≤ 0.5

Q
FEM

 > 0.5

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1:1

1:2

PGA
CPD

 [g]

P
G

A
D

P
D

 [
g

]

 

 

Q
FEM

≤ 0.2

0.2 < Q
FEM

≤ 0.5

Q
FEM

 > 0.5

(b)

Figure 4.42 – Mean peak ground acceleration (PGA) at structures base for CPD and DPD
analyses for : a) B01 and b) T040 structures

Considering that the structures tested have different predominant periods (T0), the acceler-

ation response spectra (PSA) is evaluated at each T0 value and the comparison between CPD

and DPD is shown in Figure 4.43. For B01, almost 25% of the cases presented higher values

when a CPD analysis is performed, mainly those with low levels of liquefaction. In contrast, as

the T0 value of T040 is near the fundamental elastic period of the soil, the behavior presents

less dispersion and higher PSA values with the decoupled model for almost all cases. Insofar

as surface acceleration is concerned, the lack of coupling will produce a conservative analysis.

Finally, as for the 1D case, the response spectra ratio (RSR) is evaluated for the accelerations

at the base of each structure. Recalling that RSR is defined by:

RSR(T ) = PSACPD(T )/PSADPD(T ) (4.9)
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Figure 4.43 – Comparison of CPD and DPD results for the response spectra of acceleration at
structures base evaluated at the predominant structure period: a) B01 and b) T040

The mean values for each liquefaction index level are shown in Figure 4.44. In dashed

line, the response for the 1D model is also shown. For B01 (Figure 4.44a), the CPD response

spectrum is greater for all levels of liquefaction when periods are above approximately 0.1s.

In contrast, for T040 (Figure 4.44b), differences between the analyses are smaller and CPD

results are only greater for periods above 1s when Q is high. With respect to free-field, it seems

that in this case, the relation of RSR with Q is less significant which is probably related to

the effect of the soil-structure interaction. For instance, for B01 the mean values for high and

intermediate Q levels are similar in all the period range used and it differs from the mean for

low Q only above 1s. With respect to the structures predominant period, for B01 (T0=0.24s),

the CPD response presents almost twice the DPD values for all levels of liquefaction; while

for T040 (T0=0.4s), the CPD is only slightly higher for Q above 0.5. Two aspects are worth

highlighting: it seems that the soil-structure interaction (SSI) effect is important for B01 while

it is almost negligible for T040 and compared to this effect, the coupling effect is significantly

lower and only relevant for periods longer than 1s.

4.4.7 Structure relative settlement

In contrast, regarding the relative settlement of the structure with respect to free-field, shown

in Figure 4.45, taking into account the effect of coupling in most cases will result in higher

values, except for 25% of motions tested with B01. This could be prejudicial for the structures
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Figure 4.44 – RSR at structure’s base for: a) B01 and b) T040

performance. Specially for T040, where the difference between the analyses is bigger and the

settlement with CPD is above 10cm for approximately half of the motions tested. This value

corresponds to the limit for slight damage state of reinforced concrete frame buildings given

by Bird et al. (2006). Above it, cracks in structural elements appear and damage has to be

repaired. In some cases, settlement from the DPD analysis is almost ten times smaller than

that of the CPD one.
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Figure 4.45 – Comparison of CPD and DPD results for the relative settlement with respect to
free-field: a) B01 and b) T040
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4.4.8 Structure seismic demand

Regarding the seismic demand on the structure, the maximum drift at the top of the building

(ud) and its corresponding base shear, in terms of spectra of acceleration (Sa) are presented in

Figure 4.46 for both structures. The capacity curve obtained by modeling the static pushover

test is compared to the dynamic SSI and the structure with fixed base with the same outcropping

signals. The dynamic response agrees well with the push-over model for all cases except for the

high drift values presented by B01 with fixed base, which is due to the nonlinear model used

for this structure. However, for the motions used and in the SSI case, results are not affected.
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Figure 4.46 – Static and dynamic capacity curves for a) B01 and b) T040

With respect to the SSI effect, it is clearly seen that it is more important for the B01 structure

with both CPD and DPD analyses as both the drift and the acceleration are significantly

reduced compared to the fixed base. In fact, for this structure, the response is completely

linear taking into account the SSI effect; while for T040, the response is still nonlinear - i.e.

structural damage appears. The decrease in ud and Sa for B01, is principally due to the rigidity

of the structure and the higher deamplification and frequency shift evidenced for even very weak

motions. In contrast, the T040 has a fundamental frequency lower than that of the soil and for

weak motions, no important SSI effects are shown.

Figure 4.47 shows the nonlinearity evolution of the soil - B01 structure system by analyzing

the transfer function (|TF |) between the top floor and the free field (FF). In this case, the whole

signal was used to evaluate |TF |. As seen in Figure 4.47b, the system without coupling presents

a lower amplitude of the predominant frequency even for low PHA values. This deamplification
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drops drastically after about 0.7g and the frequency is reduced by more than 1Hz for the highest

PHA. In contrast, with CPD analysis the deamplification is smaller and almost no frequency

shift is evidenced. The latter can be explained by the liquefaction presented in the deposit that

can isolate the SSI effect between the surficial soil and the structure.
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Figure 4.47 – Nonlinearity evolution at the structure’s |TF | (Top/FF) for B01

Another way of analyzing structures’ nonlinearity evolution is by computing the cross-

correlation of the acceleration on the top of the structure with itself (also known as the auto-

correlation). According to Snieder and Safak (2006), the amplitude decay gives information of

the damping or attenuation while the time delay of the first peak is related to the shear wave

degradation and consequent frequency shift. Figure 4.48 shows the cross-correlation of three

motions with different levels of PHA for each analysis. With respect to the time delay, only

a slight increase is evidenced with CPD analysis. In contrast, with DPD analysis the delay

is strongly increased with increasing PHA. For CPD, it is interesting to note that the motion

of intermediate level (PHA = 0.8g) presents less attenuation than the low level motion, as

the latter presents an acceleration amplification of the soil deposit while the liquefaction that

appears with the former attenuates the strain level of the surficial soil layers.

In order to further analyze this, Figure 4.49 shows the maximum shear strain (|γmax|) in

the deposit for the three cases. As the negative of the logarithm is used, the lower the value

the higher the shear strain level. For the intermediate PHA level, liquefaction appears around

10m while near the surface, the strain level is low. Hence the soil’s behavior is almost elastic

and the damping is low. Whereas for the high PHA case, liquefaction appears about 5m and



Chapter 4. Effect of coupling pressure and deformation 141

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Time, t [s]

c
ro

s
s
 c

o
rr

e
la

ti
o

n
 [

1
]

 

 

PHA=0.1g
PHA=0.8g
PHA=1.7g

(a) CPD

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Time, t [s]

c
ro

s
s
 c

o
rr

e
la

ti
o

n
 [

1
]

 

 

PHA=0.1g
PHA=0.8g
PHA=1.7g

(b) DPD

Figure 4.48 – Cross-correlation at the structure’s top of three acceleration levels for B01

the strains are greater at the surface and specially immediately below the structure.

(a) (b) (c)

Figure 4.49 – Maximum shear strain level in the CPD analysis with the three acceleration levels
for B01

Similarly, Figure 4.50 shows the nonlinearity evolution by |TF | for T040. For this structure,

the amplitude of the predominant frequency for the low PHA values is similar for both the

CPD and the DPD analyses and it differs only for PHA above 0.7g when DPD presents lower

amplitudes and a shift to low frequencies. This can be explained by the position of the soil’s

predominant frequency with respect to that of the structure. In this case, for quasi-elastic

behavior the latter is lower which means the structure is more flexible than the soil. But as

the intensity level of the input motion increases, the soil looses its strength and becomes more

flexible than the structure. Hence, the SSI effect is greater and lower amplitudes are evidenced.
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Figure 4.50 – Nonlinearity evolution at the structure’s |TF | (Top/FF) for T040

The nonlinearity evolution with the CPD analysis is closely related to the liquefaction level

as seen in Figure 4.51 for both structures. In this case, the liquefaction index is measured in

a column of 10m at FF SSI (QFF ). For both structures, the amplitude of the predominant

frequency is gradually decreasing with QFF , however for values above 0.3 the amplitude is

drastically decreased.
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Figure 4.51 – Relation of |TF | (Top/FF) with the liquefaction index (QFF ) for the CPD analysis

Finally to compare the effect on the drift in structures with different height, the maximum

horizontal displacement evaluated at each level for B01 and for the top at T040 is normalized
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by each corresponding height, which is known as the maximum inter-story rift (ISD). The

comparison of CPD and DPD results are shown in Figure 4.52. It is interesting to note how

the two structures present very different results. For B01, the CPD values are greater than

DPD for almost all cases; while for T040, it is the contrary. Concerning the latter, the values

with the DPD analysis are more than doubled when QFEM is above 0.5. For B01, with CPD

analysis the ISD is higher for low levels of liquefaction. In these cases, the SSI effect is higher

than the coupling effect, hence the drift is increased. But when the liquefaction increases, the

coupling effect is more important as the soil will attenuate the motion and the structure drift

will be reduced. With respect to the capacity curve (shown in Figure 4.46), for the same input

motions, T040 presents higher seismic demand and for many cases, the structure presents high

nonlinearity and possible structure damage evidenced in the higher ISD compared to B01.
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Figure 4.52 – Comparison of CPD and DPD results for the maximum inter story drift (ISD) :
a) B01 and b) T040

4.4.9 Partial conclusions

A finite element analysis was used to investigate the effect of coupling excess pore pressure and

soil deformation on a soil-structure model. Two mechanically equivalent models were subjected

to 90 unscaled earthquake motions: one taking into account coupling (CPD) and one without

(DPD). The same effective-stress model was used for the calculations and the initial elastic

behavior was proofed to be the same. The present study aimed to highlight the importance of

accurate modeling liquefiable soils in order to improve performance-based earthquake engineer-



144 4.4. Soil structure interaction response

ing (PBEE). The main finding of this study is the higher differential settlements obtained with

CPD model for both structures and most motions tested. Additionally, due to the nonlinear

SSI effect of B01, the maximum ISD was consistently underestimated by the DPD analysis.

Hence, the use of DPD models will not be recommended for a PBEE design.

Two main effects are involved in this analysis: the coupling of pore pressure and soil defor-

mation and the interactions between the soil deposit and the structure. These can be beneficial

or detrimental for different EDPs tested but the analysis should include both as it seems that

the complex relation between them will vary for each motion, soil and structure tested.
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Soil improvement techniques used to strengthen cohesive soils or to mitigate liquefaction are

becoming widely used even though there remains some uncertainties given the spatial variability

introduced in the design (Kasama et al., 2012). The success of these techniques is related to

the effectiveness of the method - that is, how much of the soil is being changed - but also to its

efficiency in improving the soil behavior - that is, how much are the consequences optimized.

The effectiveness can be measured by the spatial fraction of the treated soil with respect to the

total treatment area, for example the amount of gravel or clay introduced in a sand deposit.

However, these techniques present an important uncertainty with respect to the final different

spatial configurations on the vertical as well as in the horizontal direction.

To analyze the effects of added spatial variability due to soil improvement techniques a

discrete auto-regressive code is coupled to the finite element program presented in the last

sections. The former is used to generate the treated ground soil as a binary mixture composed

of two materials: the reference soil and the added improved material. Two cases have been

analyzed: the effect of a binary mixture of purely cohesive soils on the bearing capacity of a

shallow foundation and the effect of a two sand mixture on the seismic liquefaction evolution

and the induced structure settlements. The latter, in part, contains material published in

GeoRisk (Montoya-Noguera and Lopez-Caballero, 2015).

The bearing capacity case is a well known geotechnical problem with an exact solution for

the homogeneous case and can be simplified by a linear dependency of one input parameter,

i.e. the undrained shear strength (cu), and one output parameter, the bearing capacity (qu),

thanks to Prandtl’s equation : qu = Nc · cu. Due to its simplicity, this problem was used to

test the binary random field given by the auto-regressive code and analyze, among others, the

effect of its parameters: the spatial fraction (γ) and the correlation coefficients in each direction

(β). First different isotropic and anisotropic correlations were analyzed. Then, for each γ the

average effect of spatial variation was used to define an effective cu for which a uniform model

gives the same qu output, proving that for this problem it is possible to define a homogeneous

model that captures the average behavior of spatially varying fields. Afterwards, traditional

and more sophisticated homogenization theories were tested to predict the relation between

effectiveness given by γ and efficiency measured by the average qu. Among the former, the

Wiener bounds, also known as the arithmetic and harmonic averages, will either underestimate

or overestimate the average value, respectively. Instead, the Bruggeman effective medium

(BEM) theory is the most suited approximation as it accounts for each material independently

and involves a parameter dBEM related to the percolation threshold. These theories were also
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used for different contrasts between the two soils’ properties and an equation relating the soils

cu ratios and dBEM was found. Lastly, an optimization procedure is given in order to establish

the domain of averaging or local average area for which the qu variation due to the spatial

variability is reduced.

Concerning the effect of added spatial variability on soil liquefaction, a finite element soil-

structure interaction model is coupled with the auto-regressive code. The reference model is

the two-story inelastic structure B01 founded on the loose-to-medium sand (LMS) presented in

the previous section. In the treatment zone, a medium-to-dense sand (MDS) is added with the

auto-regressive code. First, the interaction between the two soils in the binary random field is

analyzed in time. It is shown that more liquefaction can be produced in MDS clusters when

they are surrounded by LMS due to the migration of pore-water pressure, which affects both

the settlement and the Arias intensity in the deposit. Then, the relation between the technique

effectiveness and the average efficiency is evaluated for different input motions. To measure

the latter, the relative surface settlement of the structure with respect to free-field (|uz|) at the

end of shaking is used. Once more, the traditional theories fail to predict the average behavior,

even so, for most motions and γ values, the response is beyond the Wiener bounds. Whereas

a good fit was provided by the generalized effective medium (GEM) theory. This theory is

an extension of the BEM equation but adds two additional parameters that account for the

phase contrast below and above the percolation threshold. These parameters were found by an

optimization procedure for each motion tested. Finally, other engineering demand parameters

(EDPs) were analyzed but the behavior of the average as well as the variation related to the

spatial fraction changed significantly for each motion.

5.1 Introduction

Field and laboratory test results consistently show that soil parameters vary spatially in both

the horizontal and the vertical directions. Natural processes and geological formations cause

inherent spatial variability; in addition, limited observations and measurement errors add an

important amount of uncertainty. The quantification and consequences of spatial variability

and uncertainty in the soil properties is of great importance for geotechnical earthquake engi-

neering. Commonly, these aleatory and epistemic uncertainties in a soil deposit are addressed

with probabilistic analyses. In those analyses, the soil properties change randomly following a

specified probabilistic distribution.
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Another source of spatial variability is due to the implementation of soil improvement tech-

niques. Methods such as soil-mixing, Bentonite permeations, bio-grouting and densification

techniques are becoming widely used to strengthen soft soils and mitigate liquefaction. Signif-

icant advances have been made in the equipment and methods used although, the high degree

of spatial variability introduced in the design and its effect of the system’s performance are less

known (Kasama et al., 2012). This added spatial variability can differ significantly from the

inherent or natural soil variability. The former is more likely to be a distribution of different

soil deposits with horizontal and vertical correlations than a random continuous change (Jones

et al., 2002). In this study, this variability is modeled by a binary random field generated by

an auto-regressive code. In it two very different soil types are used and the interaction between

these is evaluated. One of the most influential factors on the treated ground is the effectiveness

of the mixing process (i.e. spatial fraction of the treated soil) which adds important variations

with different spatial configurations on the vertical as well as in the horizontal direction (DeJong

et al., 2013).

These spatial configurations will have an important impact in complex phenomena like

bearing capacity or liquefaction-induced settlement. Studies on the random heterogeneity of soil

properties assert that phenomena governed by highly non-linear constitutive laws are affected

the most. Nobahar and Popescu (2000), Griffiths and Fenton (2001) and Popescu et al. (2005a),

among others, have studied the effects of inherent random soil heterogeneity on the bearing

capacity (qu) of shallow foundations. All of them have used Monte Carlo (MC) simulations

considering a continuous heterogeneous field. The evaluation of the bearing capacity depends

on the failure slip surface which preferentially travels through lower strength soil hence depends

on the spatial distribution in the mixture. Similarly, the increase of excess pore water pressure

(∆pw) and consequent loss of strength depends on the interaction between the surrounding

soil. Laboratory tests in heterogeneous soils have shown that the ∆pw is generated first in loose

deposits and when water migrates to neighboring dense sand, it is softened and eventually

liquefied. This interaction also affects the liquefaction-induced settlements (Coelho et al., 2004;

Dashti et al., 2010; Chakrabortty and Popescu, 2012). Extensive research has been performed

on the calculation of these settlements but rarely they include the variability of soil properties

and modeling of different soil deposits (Koutsourelakis et al., 2002, among others).

The aim of this work is to assess the effect of added spatial variability due to soil im-

provement techniques. On that account, a 2D finite element model is coupled with a discrete

auto-regressive code. The latter is used to generate the treated ground soil as a binary mix-
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ture composed of two materials: the original or reference soil and the added material. Two

aspects are analyzed: (1) the success of the soil improvement technique, which is related to

the effectiveness of the method - i.e. how much of the soil is being changed -, and (2) its

efficiency in improving the soil behavior -i.e. how much are the consequences improved. First,

an overview of previous studies on inherent and added spatial variability is presented. Then,

the auto-regressive code is tested in a simple case concerning the strengthening of purely co-

hesive soils and its effect on the bearing capacity of a shallow foundation. Afterwards, the

effect of a two sand mixture on the seismic liquefaction evolution and the induced structure

settlements is evaluated. For this case, the nonlinear behavior of the soil and the complexity

of the input motion modify the relationship between the treatment effectiveness and the eval-

uated efficiency. To assess the efficiency of the mixing process, the co-seismic settlements of

the structure founded on a rigid shallow foundation and the liquefaction of the soil deposit are

estimated for different levels of effectiveness by ranging the spatial fraction from untreated to

fully treated, with different spatial distributions for each case.

5.2 Previous studies on soil heterogeneity

Uncertainty in geotechnical soil properties is often divided into aleatory and epistemic uncer-

tainty as shown in Figure 5.1 (Jones et al., 2002; Helton et al., 2006). The former consists on

the spatial variability together with the random testing errors, and the latter, on the systematic

errors on measurement procedures, the modeling or conversion errors and the statistical errors

due to insufficient data. While the epistemic uncertainty can usually be reduced by acquisition

of additional data or improvements in measurement procedures; the aleatory uncertainty is

inherent to the variable and cannot be reduced by additional information (Jones et al., 2002).

Uncertainties

Epistemic Aleatory

Measurement errors Limited data Testing errors Spatial variability

Inherent Added

Figure 5.1 – Uncertainty in geotechnical soil properties (adapted from Jones et al., 2002)

Concerning the spatial variability, two types can be distinguished: (1) inherent spatial vari-

ability of soil deposits and (2) spatial variability introduced on the soil by means of increasing
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its strength and (or) mitigate liquefaction potential. Some studies on soil heterogeneity will

be shortly discussed; however, focus was given to those concerning either bearing capacity of

shallow foundations or seismic liquefaction.

5.2.1 Inherent spatial variability

Soil variability can be seen in different scales: ranging from the mineral composition at the

grain size (micro scale) to the geological size of several kilometers. It is clear that the definition

of soil variability can be radically different on each of these scales. However, these are not

independent and multiple spatial scales contribute to characterize the soil variability. This study

will be focused in the geotechnical scale, between the test specimen scale and the geological

scale. Phoon and Kulhawy (1999) decomposed geotechnical variability in three aspects: the

inherent variability, the measurement errors, and the transformation uncertainty. Although the

separation of these aspects is difficult and will be normally assessed as a whole. The inherent

spatial variability originates from the natural geological processes that produced and continually

modify the soil mass. Among these processes are the variation in mineral composition, the

environmental conditions (temperature, pressure and humidity), past stress and seismic history.

The effects of these processes depend on the scale of the study (Koltermann and Gorelick, 1996).

Accounting for spatial variability, a soil property (F ) is described by Phoon and Kulhawy (1999)

as:

F (y, z) = t(y, z) + ε(y, z) (5.1)

where t(y, z) is the trend or deterministic function given the mean soil property at horizontal

position y and vertical position z; and ε(y, z) is the residual or fluctuating component that

accounts for both inherent spatial variability and uncertainty due to measurement errors or

lack of information. This latter is often described as a homogeneous random field (Vanmarcke,

1983) which is defined by :

• probability density function (PDF) : the statistical function of all the possible values;

• variance: the scatter degree from the mean value which is generally described by the

normalized quantity known as the coefficient of variation (CV);

• correlation structure : the coherence degree as a function of distance;
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This definition of spatial variability holds by three basic assumptions: stationarity, homo-

geneity and ergodicity. By which, the mean value (µ) and the standard deviation (σ) are

constant over the whole domain. Additionally, the covariance (C) depends only on the sepa-

ration and not on the absolute position. Furthermore, the field is independent of the size, as

each sizable sample is representative of the whole (Webster and Oliver, 2007).

Several studies have been published on the description and estimation of spatial variability

in the field of geotechnical engineering. Among the most important contributions are those

published by Vanmarcke (1983), Fenton and Griffiths (2008) and Phoon (2008).

5.2.1.1 Probability density function (PDF)

Popescu et al. (1998b) concluded that most soil properties exhibit non-Gaussian distributions

that can change for different materials and sites. An evident reason is that most soil properties

can not have negative values. For most applications in geotechnical engineering, however,

the normal and the lognormal distribution functions are used (Phoon, 2008). Although, for

cohesive soil strength, some researchers recommended Beta distributions including Harr (1977)

and Failmezger (2001). Additionally, a right skewed PDF was evidenced in shallow layers,

indicating a stronger influence of a lower bound; while strength of deeper soils followed a more

symmetrical distribution (Popescu et al., 1998b). If experimental data is available, several

estimation methods can be used to identify the PDF. For example the method of moments

(such as the local average technique), the method of maximum likelihood or the method of

Bayesian estimation. Refer to van Gelder (2000) and Huber (2013) among others for more

information.

5.2.1.2 Coefficient of variation (CV)

The variance (σ2) is the second moment of distribution and describes the degree of data fluc-

tuation about the mean value. The coefficient of variation is the ratio between the standard

deviation and the mean value (i.e. CV=σ/µ) and is more commonly used as it is a normalized

quantity. Issued from a variety of in-situ measurements and laboratory tests, many researchers

have provided recommended CV ranges to account for inherent soil variability. For instance,

Cherubini et al. (1993) found that CV decreases as the mean undrained shear strength (cu)

increases: from a range of 30% to 90% for a µcu of 20kPa to a range of 12% to 45%, for a µcu

of 400kPa. These ranges include also the variation due to measurement errors. Without these
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Correlation model Autocorrelation function ρ(τ) [1] Correlation length lc [m]

Exponential exp(−2 |τ |
θ
) θ

Squared exponential exp(−π τ2

θ2
) θ

Triangular 1− |τ |
θ
if τ ≤ θ, 0 otherwise 2θ

Cubic θ3

(θ+|τ |)3
2θ
5

Damped sinusoidal sin(χ)
χ

where χ = π
|τ |
θ

θ

Table 5.1 – Theoretical autocorrelation functions presented by Huyse and Walters (2001)

errors, Phoon and Kulhawy (1996) recommended CV ranges for the soil strength measured by

cone tip resistance measurements at clays between 10% and 40% and at sands between 20%

and 60%. A thorough literature review on CV values of inherent spatial variability for various

laboratory soil properties is presented by Jones et al. (2002).

5.2.1.3 Correlation structure

The correlation structure describes the similarity or coherence between fluctuations recorded

at two points as a function of the distance between those points. This function is called

the autocorrelation function (ρ(τ)) which depends on the parameter θ defined as the scale of

fluctuation by Vanmarcke (1977) as:

θ =

∫

∞

−∞

ρ(τ)dτ = 2

∫

∞

0

ρ(τ)dτ (5.2)

where τ is the lag separating the pairs of the random field. The scale of fluctuation depends on

the sample size, hence, Journel and Huijbregts (1978) recommended a sample distance smaller

than 0.2θ. In order to compare the scale of fluctuations of different autocorrelation functions,

Vanmarcke (1983) proposed the use of the correlation length (lc) as shown in Table 5.1 presented

by Huyse and Walters (2001).

The amount of information on the correlation length is limited compared to that of CV eval-

uations of inherent variability. Relatively little quantitative data on the spatial variability of

soil properties have been reported and it mostly concerns the variation in the vertical direction

(Jones et al., 2002). Huber (2013) compiled numerous publications on spatial variability in a

database to use as guideline for the scales of fluctuation in the vertical (θv) and horizontal (θh)

direction depending on the different properties, soil types and applied theoretical autocorrela-

tion functions. Most of the data came from CPT tests and to calculate the scales of fluctuation

a lognormal distribution was used. Additionally, for most cases, an exponential autocorrelation
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frictional soils cohesive soils
scale [m] 0 ∼ 10 10 ∼ 30 0 ∼ 15 15 ∼ 40 40 ∼ 60
θv [m] 0.18 ± 0.78 30 0.29 ± 1.14 23.30 ± 1.6 50
scale [m] 0 ∼ 50 50 ∼ 100 0 ∼ 100 100 ∼ 500
θh [m] 2.35 ± 0.43 90 2.27 ± 1.72 25.54 ± 0.3

Table 5.2 – Mean values and standard deviations of the lognormally distributed horizontal and
vertical correlation lengths of CPT data for frictional and cohesive soils presented by Huber
(2013)

function was used. A summary of the scales of fluctuation for cohesive and frictional soils

presented by Huber (2013) is shown in Table 5.2. Note that the values given depend on the

sample size, thus, the relation is different for the types of soils and the direction. In general,

it seems that θ is slightly shorter for cohesive soils. Concerning the different directions, θh is

at least thrice the value of θv, which is due to the direct relation of the soil properties and the

increasing confinement pressure with depth often seen as layering or stratification (Nobahar,

2003).

5.2.1.4 Effects of inherent spatial variability

It has already been shown, and is generally accepted, that soil properties present a spatial

variability; however, its effects on geotechnical systems are still being acknowledged. One

common approach to assess the effects of spatial variability on different geotechnical systems is

the probabilistic analysis. For over more than 25 years different studies have been presented: for

example concerning 2D analysis on settlements (Phoon et al., 1990; Paice et al., 1994; Fenton

and Griffiths, 2002), on liquefaction potential (Popescu et al., 1997; Fenton and Vanmarcke,

1998; Popescu et al., 2005b), on surface ground motion (Rahman and Yeh, 1999; Assimaki

et al., 2003) and on bearing capacity (Nobahar and Popescu, 2000; Griffiths and Fenton, 2001;

Popescu et al., 2005a; Li et al., 2015), among others. The methodology used in essentially

all these studies was Monte Carlo simulation. Studies on the random heterogeneity of soil

properties assert that phenomena governed by highly non-linear constitutive laws are affected

the most (Popescu et al., 2005b). In general, they agree that soil heterogeneity affects the

system by inducing a certain degree of variability in the response where mainly changes in the

mean response are evidenced. In most of these studies, mean values were compared to the

response obtained from deterministic analyses (i.e. assuming uniform soil properties). These

studies have evolved with the advances on the computer industry; yet, the mayor drawback is
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still the high computational cost.

Phoon et al. (1990) analyzed the effect of spatial variability of linear-elastic soils on the

settlement of a single pile. The Young modulus was modeled as a homogeneous random field

and the first order second moment (FOSM) technique was used to assess the mean and coeffi-

cient of variation of the pile head settlement. Design charts were provided for the variation of

CV and reliability index for different relative stiffness of soil/pile, slenderness ratio of pile and

correlation distances. Paice et al. (1996) modeled elastic soil stiffness with spatially correlated

fields and studied its effects on the total settlement of a uniformly loaded flexible-strip footing.

A range of coefficients of variation and depths of the spatially variable soil layer were used.

The study results indicated significant effects of soil heterogeneity on the response variability.

Compared to the deterministic analysis using the mean value, only a modest increase in average

settlement was predicted (for instance, a 12% increase with CV equal to 42%). These relatively

small changes were explained by the fact that elastic settlement is a linear phenomenon; there-

fore, the spatial variability effects on the resulting average settlements were modest. Further

developments were performed on the model by Griffiths et al. (2002) to investigate the variation

of total settlements under a single footing and differential settlements between two footings.

Concerning the effect of soil spatial variability on liquefaction, Popescu et al. (1998a) and

Fenton and Vanmarcke (1998), among others, conducted several numerical studies using Monte

Carlo (MC) simulations. Their main conclusion on the importance of spatial variability in

the liquefaction phenomenon was the presence of pockets that increase the vulnerability of the

entire soil deposit and its implications on risk evaluation. Popescu (1995) stated that the pattern

and the amount of dynamically induced excess pore water pressure were strongly affected by

spatial variability of soil properties. In particular, by the used probability distribution and the

description of its left tail, which corresponds to the presence of loose pockets in the soil deposit.

Koutsourelakis et al. (2002) and Popescu et al. (2005b) presented their results as fragility

curves for different parameters as average liquefaction ratio, maximum horizontal displacement,

maximum ground settlement and structure tilting. These curves are strongly dependent on

the soil properties and seismic motions; therefore, they are only to be used for a qualitative

assessment of similar cases. Comparing the stochastic analysis with “corresponding” uniform

soils with the same mean properties, Popescu et al. (2005b) showed an increase of about 20%

in the excess pore water pressure when a CV of 40% was used.

Additionally, Nobahar and Popescu (2000); Griffiths and Fenton (2001); Popescu et al.

(2005a); Li et al. (2015), among others, have studied the effects of inherent random soil hetero-
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geneity on the bearing capacity (qu) of shallow foundations. Once more, all of them have used

Monte Carlo (MC) simulations considering a continuous heterogeneous field. As the evaluation

of the bearing capacity is also governed by highly nonlinear constitutive laws, the comparison

with uniform soil also showed great differences. For example, Nobahar and Popescu (2000) and

Griffiths et al. (2002) found a 20-30% reduction in the mean qu for heterogeneous soils with CV

= 50%, compared to the corresponding value of a uniform soil with the same mean properties.

Instead of focusing on these comparisons, several studies including Asaoka and Matsuo

(1983); Kasama et al. (2012); Ching et al. (2015); Otake and Honjo (2015), have concentrated

in simplified ways to evaluate the effects of the soil spatial variability on structure performance

by defining a Local Average (LA) of soil property for an appropriate volume. The notion of

LA was, probably, introduced by Vanmarcke (1977) in the study of geotechnical structures,

he stated that the system is controlled by the average over a certain size of line, area or

volume, referred as LA, rather than by the soil parameter value at a single point. In fact,

LA is recommended in practical design codes, such as Eurocode 7 (CEN, 2004), to determine

characteristic values of geotechnical parameters. To account for the performance of systems

with spatially variable soil deposits, a successful assessment on LA could reproduce the same

statistical response of random field analysis. On the basis of these arguments, Honjo and Otake

(2013) proposed appropriate sizes of LA regions for various geotechnical structures. These

regions were supposedly related to the mechanism controlling the limit state; thus they were

independent of the random field characteristics and of the absolute soil properties.

Another approach to analyze the effect of spatial variability on geotechnical applications is

through laboratory tests. For instance, undrained cyclic triaxial tests on sand-gravel (Budiman

et al., 1995) and sand-silt (Konrad and Dubeau, 2002) mixtures and centrifuge tests on mixtures

of sand with different densities (Ghosh and Madabhushi, 2003; Chakrabortty et al., 2010)

and with different permeabilities (Maharjan and Takahashi, 2012) evidence the decrease of

liquefaction resistance of the mixture compared to that of uniform samples. A schema of the

centrifuge test performed by Chakrabortty et al. (2010) is shown in Figure 5.2d. In general,

it was found that the effect of the loose sand zone was to induce increased excess pore water

pressure (∆pw) in the surrounding dense sand or create drainage paths, through which the ∆pw

can be drained out causing differential settlements. While the effect on liquefaction is well

evidenced, the effect on the induced-settlements is yet to be clarify. Concerning the centrifuge

tests, Garzón et al. (2014) presented a new technique to evaluate the spatial variability on the

soil properties by coupling a discrete random field generation method of nine cohesive soils
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with a centrifuge consolidation test. The resulting effective normal stress, calculated for each

cell by measurements of the unit weight and water content, not only depended on the intrinsic

behavior but also on the neighboring soil. With respect to the centrifuge tests on liquefaction

resistance (e.g. Ghosh and Madabhushi, 2003; Chakrabortty et al., 2010), it is possible that the

initial state of the loose and dense sand was greatly affected however, no reference was given

on this aspect. This technique could be useful to validate numerical models with controlled

spatial variability; however, it is not easily applicable in a probabilistic analysis and thus its

application for geotechnical systems is limited.

5.2.2 Added spatial variability

Concerning ground improvement methods, also experimental and numerical analyses can be

found. For the former, Hausler and Sitar (2002), Coelho et al. (2004) and Dashti et al. (2010)

performed various centrifuge tests to study the densification of liquefiable soils. Important

conclusions were drawn with respect to the soil-structure interaction (SSI) effect on the pore-

pressure induced softening. Even if a decrease on settlement was evidenced, there appeared

to be an increase of energy transmitted to the structure. Furthermore, the presence of the

structure reduced vertical flow and caused long-term horizontal pore pressure migration from

underneath which induced important relative settlements.

Numerically, Bradley et al. (2013) studied soil improvement by jet grouting on the seis-

mic response of a liquefiable deposit. The improved soil was a cementitious material thus no

water migration was allowed. Again, all cases were effective at mitigating liquefaction; yet,

some presented negative consequences on surface (e.g. large lateral displacements and vertical

settlements). Additionally, soil improvement caused an increase in surface acceleration, spe-

cially at moderate-to-long periods. For example, the analysis of a structure vulnerability after

a liquefaction countermeasure was performed by Lopez-Caballero and Modaressi-Farahmand-

Razavi (2013). The mitigation method modeled was preloading, and the structural behavior

was analyzed by two parameters: relative settlement and the inter-story drift. While the former

was reduced after preloading, the latter was increased due to the higher surface amplification.

These cases highlight the need for an optimization through which liquefaction resistance could

be increased without the decrease in the structure vulnerability.

These examples are important; although, densification by compaction, grouting or mixing

produces rarely a homogeneous soil. On the contrary, it results in a heterogeneous mixture of
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the original soil and the added one (DeJong et al., 2013). Even if in reality, grouted columns are

designed to have specific diameters and spacings, the material is in most cases an heterogeneous

mixture of the added soil (or cement) and the original one. Generally, it is difficult to measure

the mechanical properties of these columns in the field. Lambert et al. (2012) performed

laboratory tests in samples from soil-cement mixed columns and found heterogeneities in the

sides as well as in the core of the columns, as shown in Figure 5.2a, that consequently affected

the mechanical properties. Different studies have assessed the fraction of soil remaining in the

columns, for example Boulanger et al. (1998) estimated it at about 20%.

(a) (b) (c)

(d) (e)

Figure 5.2 – Examples of added heterogeneity after soil treatment: a) In-situ soil-cement column
(after Lambert et al., 2012), b) laboratory tests of sand specimens with bentonite suspension and
c) comparison of liquefaction curves (after El Mohtar et al., 2013), d) centrifuge test modeling
of heterogeneous soil model (after Chakrabortty and Popescu, 2012) and e) In-situ sample of
bio-stabilized gravel resistivity mapping before and during treatment (after Van Paassen, 2011)

Other improvement processes such as bentonite suspensions can be used to increase lique-

faction resistance in sands. Figures 5.2b and 5.2c show a Cryo-SEM image of a sand-bentonite

specimen and the liquefaction curves for a clean sand and the permeated specimens presented

by El Mohtar et al. (2013). In the field scale, this technique and others such as vibro-compaction

or bio-grouting have additionally an uncertainty of up to which depth or size the soil is affected,

e.g. some areas can be more compacted than others or can have more bacteria-induced cemen-
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tation. Examples on the latter are shown in Figure 5.2e of resistivity in-situ measurements

presented by Van Paassen (2011).

To the best knowledge of authors, there is no numerical or experimental studies related to

two-soil random mixtures of a liquefiable deposit accounting for both soil and seismic motion

variability. These heterogeneous deposits exhibit large, sudden variations from one location to

another, unlike natural soil deposits where those variations could be gradual. Therefore, the

results of this study may overemphasize the effects of soil heterogeneity on water migration in

spatially variable soils. However, as most laboratory soil testing procedures use uniform soil

samples for assessing the liquefaction potential, their results in terms of cyclic induced ∆pw

may well be on the under-conservative side when applied to natural soil deposits exhibiting

inherent or added spatial variability (Chakrabortty and Popescu, 2012).

5.3 Discrete random field model

The models to generate binary random fields can be divided in two main approaches according

to their definition of spatial dependence: the logistic spatial generalized linear mixed models

(SGLMM) that treat dependence indirectly by applying a latent Gaussian Markov random field

over the lattice (Banerjee et al., 2003) and the autologistic models that do it directly through the

autocovariate, i.e. a function of the observations themselves (Hughes et al., 2011). The homo-

geneous autologistic model was derived by Bartlett and Besag (1969) and is a nearest-neighbor

model defined as a conditional probability. On the contrary, the SGLMM, firstly introduced by

Whittle (1963), are defined as a joint probability distribution and are computationally costly

(Besag, 1972). The spatial discretization for this work follows the autologistic model.

The one-sided approximation of the conditional autoregressive binary model in two dimen-

sions under the assumption of homogeneity was derived from the Ising model to a 1st order

Markov serie by Honjo (1985). The main properties of the model will be briefly discussed;

even though, more information can be found in Bartlett and Besag (1969); Besag (1972); Honjo

(1985). The model is discretized into a rectangular grid m× n, where each element is assigned

one of the possible values: 0 (material 1) or 1 (material 2). The binary mixture is defined with

the spatial fractions γ1 = N1/(N1+N2) and γ2 = 1−γ1, where Nmat is the number of elements

of material mat. Since only one of the two definitions is needed, in this work the equations will

be given for γ2 and the subindice will be dropped. This value gives the probability of failure

(P (xij = 1)). Thus, the expectation of xij , a value of the binary random variable Xij, is given
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by:

E[xij |xi−1,j , xi,j−1] = α+
1

2
(β1 · xi−1,j + β2 · xi,j−1) (5.3)

where α, β1 and β2 are the auto-regressive coefficients and are bounded between 0 and 1.

Evaluating the expectation, gives:

E[xij ] = α +
1

2
(β1 ·E[xi−1,j ] + β2 · E[xi,j−1]) (5.4)

that under the condition of homogeneity, it can be expressed by:

γ = α+
1

2
(β1 + β2) · γ (5.5)

therefore,

α =

[

1− 1

2
(β1 + β2)

]

· γ (5.6)

By replacing α in equation 5.3, the model gives:

E[xij |xi−1,j, xi,j−1] =

[

1− 1

2
(β1 + β2)

]

· γ +
1

2
(β1 · xi−1,j + β2 · xi,j−1) (5.7)

Finally, the binarization is performed by comparing E[xij ] to a random number (uij) that

follows a uniform distribution function between 0 and 1, where each element is independent.

This process makes use of MC simulations to converge to a given γ value. The procedure to

generate the field of size m× n is schematized in Figure 5.3 and has the following steps:

1. Assign the value of the corner element (xi=1,j=1) : As it is assumed that the model tends

to homogeneity, E[x1,1] equals γ, thus the binarization process turns to:

x1,1 =

⎧

⎪

⎨

⎪

⎩

0, if γ ≤ u1,1[0, 1]

1, otherwise

(5.8)

2. Assign the values for the lower horizontal boundary xi=2,...,m,1,j=1: Based on the 1D model

where β1 = β2, so:

E[xi,1|xi−1,1] = (1− β1) · γ + β1 · xi−1,1 (5.9)

Again if E(xi,1) ≤ ui,1, then x(i, 1) = 0; otherwise, x(i, 1) = 1.
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3. Repeat previous step but for the left vertical boundary xi=1,j=2,...,n:

E[x1,j |x1,j−1] = (1− β2) · γ + β2 · x1,j−1 (5.10)

4. Fill up the interior of the rectangle xi=2,...,m,j=2,...,n: 2D model with equation 5.7.

1. 2. 3. 4.

Figure 5.3 – Procedure scheme for the auto-regressive discretization model

Some simulations of a binary random field of size m=40 and n=16, with element size (1m

× 0.5m), are shown in Figure 5.4. Different cases are shown: Figure 5.4a shows one case

without correlation (i.e. β1 = β2 = 0) and γ = 0.4. For the same spatial fraction, Figure

5.4b shows the effect of the (nearly) isotropic correlation; thus patches or clusters are formed.

As β increases, so does the average area of the patches. This area is related approximately

to the exponential of β2; however, when β approaches unity, an anisotropy is introduced by

the one-sided approximation. Honjo (1985) measured this anisotropy for different cases and

concluded that it is not significant for low β values (i.e. approximately less than 0.7). Further

developments, for example, the centered autologistic model proposed by Caragea and Kaiser

(2009) remedies the bias due to non-negative autocovariate by applying a parametrization

similar to the auto-Gaussian models. However, according to the comparison of this new model

with the traditional one performed by Hughes et al. (2011), the regression parameters in the

centered model are only reliable for very large lattices (m,n > 900) and no more than moderate

spatial dependence.

Two extremes cases are also shown for perfect correlation in one direction and not at all in

the other: when β1 = 1 and β2 = 0, horizontal layers are formed (shown in Figure 5.4c); and

when β1 = 0 and β2 = 1, vertical columns can be simulated (in Figure 5.4d). In these cases,

the anisotropy is seen as the patches are elongated in the direction with larger β.

5.3.1 Correlation structure

Honjo (1985) stated that the one-sided approximation is preferred to the general case, be-

cause of the simple derivation of the autocovariance function (Cc(r, s)) which is evaluated by
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Figure 5.4 – Simulations of a binary random field for : γ = 0.4 with a) no correlation (β1 =
β2 = 0) and b) high isotropic correlation (β1 = β2 = 0.7); and for γ = 0.7 with high anisotropic
correlation : c) horizontal layers (β1 = 1 and β2 = 0) and d) vertical columns (β1 = 1 and
β2 = 0)

cross-correlation at two points separated by r and s in the horizontal and vertical directions,

respectively, as :

Cc(r, s) = γ · (1− γ) · βr
1 · β

s
2 (5.11)

According to equation 5.11, β1 and β2 have a direct physical interpretation as they give

the one step correlation of the process in the horizontal and vertical direction, respectively.

Note that the element expectation (E[xij ]) is influenced only by its nearest-neighbors xi−1,j

and xi,j−1, which is a Markov property (Honjo, 1985). The correlation structure shows an

exponential decay, which is expected as it was assumed the Markov definition of order 1. Recall

that the autocorrelation (ρ) is the autocovariance normalized by the variance (σ2) in this case

equal to γ · (1 − γ). Figure 5.5a shows ρ values for different β values with β1 equal to β2 and

r equal to s, which is equivalent to the lag (τ) defined for the random fields in section 5.2.1.3.

Note that when τ is equal to 1, ρ is equal to the product of the correlations (i.e. β1 · β2).

The failure probability for the system of m×n lattice points was also found by Honjo (1985)

as follows:

pf = 1−
[

β
mγ
1 · βnγ

2 · exp
(

−m · n(
γ

2
)2 · ln β1 · ln β2

)]

· (1− γ) (5.12)

where β
mγ
1 and β

nγ
2 come from the boundaries, exp(·) term results from the inside 2D lattice

and (1− γ) is the marginal non failure probability of the initial point. Figure 5.5b shows the
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calculated pf for an increasing square area of size N = m = n with two different γ values. It

can be seen that when β is equal to unity, the whole area acts as one element, thus pf = γ. On

the other hand, when β = 0, the system has a pf equal to 1. It is interesting to note that pf is

highly sensitive to β, even for very low values (e.g. 0.1 or 0.2) and specially for low γ values.
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Figure 5.5 – Correlation structure of the binary random field for β1=β2: a) autocorrelation
function with τ=r=s and b) failure probability for γ equal to 0.1 and 0.5

5.3.2 Homogenization theories

The process of homogenization consists of deriving the effective properties for an heterogeneous

system so that it can be viewed as homogeneous on a particular macroscopic scale depending on

the property of interest (Koplik, 1991). Most of the advancements in this field come from the

analytic and experimental work in a variety of transport processes, such as the electric current,

heat flux, mass flux or magnetic induction, among others. The effective medium depends on

the geometry (e.g. shape and size of particles) and the topology or connectivity among particles.

Traditional theories are based on certain geometric arrangements, such as vertical or horizontal

layers, for which the effective properties have an exact solution. These arrangements are only

extreme cases and are often regarded as bounds of the solution. In contrast, while the effective

medium theories (EMTs) are also based on one exact solution, they combine the effect of each

material on the system. The other theories presented have only studied the geometry of the

particles hence, they have neglected all possible interactions. On this purpose, EMTs have been

combined with the percolation theory, which is a statistical tool to study the probabilistic and
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geometric properties of connected clusters of one material in a heterogeneous system (Frary

and Schuh, 2005).

5.3.2.1 Traditional theories

Traditional homogenization theories are often used to describe geotechnical properties. For

example, the work on spatial variability effect on bearing capacity of Popescu et al. (2005a)

often compares the average results of the heterogeneous soil models with the “corresponding

homogeneous soil”. According to the authors, the homogenization is the mean value of the

Monte Carlo simulations; although this is only true for vertically layered materials (i.e. parallel

to the bearing capacity) described by classical homogenization theories. If, on the contrary, the

layers are horizontal (i.e perpendicular or serial) the effective properties of the homogeneous

model would be a harmonic average. It is clear that for random fields, these are only extreme

cases which are known as Wiener (1912) bounds. For a mixture of properties D1 and D2 where

γ is the spatial fraction of D2, the Wiener (1912) bounds are defined as:

• Parallel :

D|| = (1− γ) ·D1 + γ ·D2 (5.13)

• Serial :

D⊥ =
1

(1−γ)
D1

+ γ

D2

(5.14)

D1

D2

D1 D2

As previously stated, the Wiener (1912) bounds correspond to two averages: the arithmetic

and harmonic averages. However, an additional average called the geometric average is often

used to compare values with different ranges, which is the case in study. The geometric average

normalizes the ranges by applying the sum on a logarithmic scale, as follows:

DG = exp[(1− γ) lnD1 + γ lnD2] (5.15)

Another case that can be exactly modeled as homogeneous consists of concentric-shell struc-

tures, i.e. one material coating the other at spheres of different size. When D2 > D1 , the

properties can be described by the HS equation expressed by Hashin and Shtrikman (1962) as:
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• Material 1 coating material 2:

DHS+ = D2 +
1− γ

1
D1−D2

+ γ

d·D2

(5.16)

• Material 2 coating material 1:

DHS− = D1 +
γ

1
D2−D1

+ 1−γ

d·D1

(5.17)

D1

D2

D1

D2

where d is the dimensionality. This parameter binds the model to fluctuate between the Wiener

bounds; hence, when d is equal to unity, they become the parallel bound and as it tends to

infinity it approaches the perpendicular one. Actually, HS bounds are narrower than the Wiener

bounds and are often used as they are simple and intuitive. However, they still give wide

predictions, specially if the ratio between the material properties is big.

5.3.2.2 Bruggeman symmetric effective medium (BEM)

Besides these traditional homogenization theories, another approach consists in identifying

an effective property for which the average behavior of the heterogeneous model remains un-

changed. This approach is known as the effective medium theory (EMT) and is based on the

exact solution for one single spherical inclusion embedded in an infinite medium. There are

two types of EMTs: the asymmetric which deals with dilute particles of very small size in a

matrix, and the symmetric, which treats each phase independently and equally. The former is

also known as the Maxwell-Garnett equation:

Deff −D1

Deff + (dBEM − 1) ·D1
= γ

D2 −D1

D2 + (dBEM − 1) ·D1
(5.18)

Note that this equation coincides with the lower HS bound when D2 > D1 and the upper HS

bound otherwise. In the other hand, the symmetric EMT is the classical theory of conduction

in mixtures presented by Bruggeman (1935) and known as the BEM approximation. When the

properties of both materials are of similar magnitude, the BEM equation is:

(1− γ)
D1 −Deff

D1 + (dBEM − 1) ·Deff

+ γ
D2 −Deff

D2 + (dBEM − 1) ·Deff

= 0 (5.19)
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where dBEM is equal to half the mean number of bonds presented at any site of the network

(Kirkpatrick, 1973). The BEM equation gives a more precise solution as it accounts for each

material independently. An additional advantage is the possibility to include multi-soil mixtures

as follows:

∑

i

γi
Di −Deff

Di + (dBEM − 1) ·Deff

= 0 (5.20)

Although the EMTs are base on spherical inclusions, they have been widely used in the

literature for various particle geometries and microstructural arrangements.

5.3.2.3 Generalized Effective Medium (GEM)

Traditional homogenization theories are based on the geometric arrangements among the phases,

e.g. parallel and series (Wiener, 1912) or concentric (Hashin and Shtrikman, 1962). Effective

medium theories (EMT) are derived on the exact solution for a single spherical inclusion in

an infinite medium therefore also neglect interactions among particles. However, percolation

theories as statistical tools have been developed to describe the topology of heterogeneous

materials.

The percolation theory is focused on the existence of a percolating cluster that connects

opposite sides of a system. Two types of percolation processes can be identified in lattices as

shown in Figure 5.6 given by Bunde and Kantelhardt (2005): the bond, related to the junctions

or paths (marked with bold lines), and the site percolation, related to the nearest-neighbors or

elements (marked with dashed lines). The first emergence of the percolation cluster corresponds

to the critical fraction (γc, often noted by pc but to keep consistency in the case study, γ will

be used instead). The specific value of the threshold depends on: (1) the lattice type which

includes dimensionality and symmetry, (2) the percolation type, (3) the system size (being finite

or infinite), and (4) the correlations among the materials (Brunini et al., 2011).

Some systems have exact solutions though they correspond to infinitely large non correlated

occupations. For example, for a square lattice the exact bond percolation is 0.5 and for site

percolation it is slightly higher (about 0.59); as for a triangular one, the bond percolation is

about 0.35 while the site percolation is 0.5. When the system is not sufficiently large, there is

a range of fractions, spanning over a width ∆, in which the percolation transition can possibly

occur. As the system size increases, ∆ decreases and γc approaches the infinite value. When

positive correlations exist, more clusters will be formed and γc tends to decrease. When in a
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Figure 5.6 – Example of the percolation types on a discrete random field: a) γ < γbond
c , b)

γ = γbond
c , c) γ = γsite

c and d) γ > γsite
c (after Bunde and Kantelhardt, 2005)

square lattice, the next-nearest-neighbor is considered in site percolation, γc decreases to about

0.41 (Roman et al., 1986).

When a perfect phase contrast is present, that is, the property of interest of one of the two

materials is either zero or infinite, the percolation theory describes the effective properties as:

Deff ∝(γ − γc)
t for γ > γc , 0 otherwise (5.21)

Deff ∝(γc − γ)−s for γ < γc , ∞ otherwise (5.22)

As in most cases, no perfect phase contrast is present, an approximation defined for all γ

values is required. McLachlan et al. (1990) derived a semi-empirical correlation that includes

the effective diffusivity in the BEM equation. They replaced the dimensionality by the inverse

of the percolation threshold (i.e. 1/γc) and introduced the exponents s and t. The resulting

equation is known as the generalized effective medium (GEM) equation:

(1− γ)
D

1/s
1 −D

1/s
eff

D
1/s
1 + (γ−1

c − 1)D
1/s
eff

+ γ
D

1/t
2 −D

1/t
eff

D
1/t
2 + (γ−1

c − 1)D
1/t
eff

= 0 (5.23)

where s and t are the scaling exponents for γ < γc and γ > γc, respectively. They are universal

percolation quantities and are supposedly independent on the discrete or percolation type, the

size nor the correlation of the system. Their values can be found via numerical simulations and

if certain physical processes can be described by the same set of scaling exponents, then the

physical laws governing these phenomena must be fundamentally the same (Sahimi, 2003). Al-

though equation 5.23 is semi-empirical, it has been shown both experimentally and numerically

to yield good predictions for many transport properties when dealing with binary heterogeneous

materials (Chen, 2008).
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5.4 Bearing capacity model

A finite element model is used to evaluate the bearing capacity of a shallow foundation situated

on the middle of the model. Two-dimensional, plane-strain analyzes are performed with the

general purpose finite element code GEFDyn (Aubry and Modaressi, 1996). The numerical

model uses quadrilateral isoparametric elements with eight nodes. A rigid perfectly plastic

model is implemented to simulate the behavior of purely cohesive soils. While the Young

modulus (E) and the Poisson’s ratio (ν) influence the computed settlement, the bearing capacity

of a footing depends primarily on the undrained shear strength (cu) (Griffiths et al., 2002). Thus

in the present study, to simplify the analyses, E and ν are kept constant and equal to 100MPa

and 0.3, respectively; while, each simulation of the binary random field is used as input for cu

at each element on the model. Hence, for binary value (xij) equal to 0, the soil 1 is used with

cu1 equal to 20kPa; and for xij=1, soil 2 is used with cu2 = 100 kPa. A schema of the model

is shown in Figure 5.7. The dimensions are given by the width of the base (B), in this case

4m, and are taken from the recommendations of Griffiths and Fenton (2001): a depth of 2B

(8m) and a width of 5B (20m). The size of the elements is 0.25 m in both directions which

corresponds to B/16, which was also used by Chen et al. (2012). A rigid bedrock underlies

the soil and as only vertical loads are applied, horizontal displacements are inhibited on the

lateral boundaries. Additionally, no friction is assumed between the footing and the soil thus a

perfectly smooth footing is simulated, i.e. free horizontal displacements.

2B

Γ2 Γ3

Γ1

qu = (
∑

Qi)/B

B

B/16

Bedrock

5B
z

y

Figure 5.7 – Schema of the numerical model

u · ey =0 ∀x ∈ (Γ1 ∪ Γ2 ∪ Γ3)

u · ez =0 ∀x ∈ Γ1

The test consists of applying an increasing vertical displacement (uzmax) at the center of

the foundation (i.e. at one node) with free rotations allowed for the foundation. As the latter

is rigid, a uniform displacement is considered in this interface. The ultimate bearing capacity

is taken when uzmax/B = 2.5% (10 cm) and is equal to the sum of the nodal forces (Qi) in

the interface between the soil and the structure’s foundation divided by the width of the base
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(i.e. qu = (
∑

Qi)/B). For a homogeneous weightless soil, this value is given by the Prandtl’s

solution as qu = Nc · cu, where Nc is the dimensionless bearing capacity factor and equals

2 + π or 5.14 (Prandtl, 1921). The finite element analysis for the homogeneous cases of soils

1 and 2 presented a relative difference with respect to Prandtl’s solution of 14.7 and 6.85%,

respectively. The latter is one percentual point below to the results of Chen et al. (2012) with the

same properties and mesh size and similar to those of Popescu et al. (2005b). These differences

are due to some of the assumptions in the model, for example, the use of a rigid foundation,

including shear stresses at the soil-structure interface, gradual development of plastic zones, as

well as inherent approximations induced by the numerical methods which are further explained

by Nobahar (2003).

Furthermore, because of the inherent approximation of the numerical method, the results

depend on the mesh size. By refining the mesh, these differences could be reduced (thus not

eliminated) but the computational cost would increase for the ensuing random-field simulations.

The effect in the increase of the mesh discretization, i.e. number of elements in each direction,

has been evaluated by other authors, for example the results presented by Chen et al. (2012)

show about 50% decrease in the numerical error when the mesh discretization is increased by

4. Due to the rigid footing, the vertical stress distribution is not uniform; instead, a stress

concentration is presented at the vicinity of the footing edge which will cause higher plastic

strains. If a finer mesh is used in this region, the capability to reproduce plastic strain concen-

tration in narrower zones is enhanced hence the accuracy in qu will improve; however, it will

add more complexity to the generation of the random field and it will not be considered in this

study. Given the large amount of random field simulations, the present mesh size was judged

to be sufficiently accurate and efficient. Figure 5.8 shows the relative difference of the finite

element model with respect to the Prandtl’s solution (δFE) as a function of the undrained shear

strength (cu) for the homogeneous cases. It is noted that the rate decreases with increasing cu

almost exponentially. As in the study of Griffiths et al. (2002) and in order to take into account

this discretization error, most of the results will be normalized by the deterministic value of the

uniform case for soil 2, hence the effect of this marginally higher numerical estimation will be

relatively insignificant.
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Figure 5.8 – Relative difference of the Finite Element model with respect to the Prandtl solution
(δFE) as a function of the undrained shear strength (cu) of a homogeneous soil deposit

5.4.1 Coupling binary random field with FEM

The spatial discretization is used to analyze the heterogeneous deposit. The spatial fraction

(γ) is varied from 0.1 to 0.9 (9 values) and several spatial distributions per value were done.

Different auto-regressive coefficients on both directions were tested to analyze the effect of

the correlation length. As an example, two spatial distributions for the same spatial fraction

(γ = 0.5) and the same auto-regressive coefficients (β1 = β2 = 0.9) are shown in Figure 5.9.

They correspond to the extreme values of bearing capacity found for this set of values: the

minimum shown in Figure 5.9a (qu=148 kPa) and the maximum, in Figure 5.9b (qu=287 kPa).

Soil 1 that has a smaller cu is in red and soil 2 is in blue. It is clear that for the mesh that

presented the minimum qu the weaker soil is mostly concentrated near the foundation; while

for the other one, the stronger soil under the foundation interconnects from the surface to the

deeper zone. The spatial variability is not simply affecting the value of the bearing capacity

but it modifies the basic form of the failure mechanism. These two distributions presented very

different qu values, thus a convergence analysis was performed to choose the sufficient number

of simulations per γ value.

The convergence of both the mean and the standard deviation obtained for the bearing

capacity is shown for one case (γ = 0.1 and β1 = β2 = 0.4) in Figure 5.10. The average values

are shown in red and the confidence intervals, in dotted blue lines. The latter are obtained with

the t-student and χ2 statistical models with 5% confidence level for the mean and standard

deviation, respectively. 200 spatial distributions were tested; although, after approximately 50

the statistical convergence appears to be stable hence is sufficient for the application considered
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(a) (b)

Figure 5.9 – Binary mixture for 2 distributions with γ = 0.5 and β1 = β2 = 0.9: a) minimum
qu (148 kPa) and b) maximum qu (287 kPa). In red (cu1=20kPa) and in blue (cu2=100kPa).

in this work. As expected the mean value converges more quickly and presents less variation.

In contrast, the standard deviation has more variation and wider confidence intervals. Here on,

a maximum of 50 simulations are performed for each case.
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Figure 5.10 – Convergence of the a) mean and b) standard deviation of the bearing capacity
(qu) for γ = 0.1 and β1 = β2 = 0.4. The average values are shown in red and the confidence
intervals, in dotted blue lines.

5.4.1.1 Effect of the mixture fraction

The uniform vertical displacement (uzmax) at the rigid foundation is normalized by the width

of the foundation and shown in Figure 5.11 for all γ values used as a function of the qu value

which is also normalized by qu evaluated for γ = 1. It is noted that even if the ultimate bearing
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capacity is taken for 2.5% of the normalized settlement, the value is already stable at 2% for

the highest qu, while for lower qu values uzmax/B is constant at about 1%. Additionally, it

seems that the variation increases with γ.
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Figure 5.11 – Normalized settlement as a function of the normalized bearing capacity for dif-
ferent spatial fractions. An isotropic correlation of β1 = β2=0.3 is used

The evolution of qu as a function of γ is shown in Figure 5.12 for different correlation values.

For the sake of brevity only four cases are presented: the uncorrelated model (i.e. β1 = β2 = 0)

and 3 other values of isotropic correlation. The box-and-whiskers plot is useful to show scalar-

value statistics because of the large amount of uncertainty information compared to mean and

standard deviations. Additionally, due to its flattened shape, box plots are better when it is

desired to compare the uncertainties in a number of related variables (Helton et al., 2006).

The box is composed of three quartiles, corresponding to 25%, 50% and 75% of data and the

whiskers are the lowest and highest values within 1.5IQR (Inter-quartile range). Values outside

the whiskers are outliers and are drawn as blue dots. The mean values are in red and joined

by the curve. The relative position of the mean value with respect to the median (i.e. the

second quartile) is an indicator of the symmetry, and with respect to the other quartiles, of the

skewness. Moreover, the size of the box and length of the whiskers gives information about the

spread or dispersion of the data.

It can be seen in Figure 5.12a that when no correlation is used less dispersion is presented.

Whereas, when a high correlation is used, like shown in Figure 5.12d, the dispersion increases.

Additionally, the dispersion is higher for the middle spatial fractions; though, it seems that the

spatial configuration is of key importance when a similar fraction of both materials is used. This

could be explained by the higher interaction between the soils and the resulting failure surfaces.

When the isotropic correlation increases, the soils are “packed” in clusters and therefore each

distribution will have a different behavior.
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(d) β1 = β2=0.9

Figure 5.12 – Models with different heterogeneity surface fraction γ and different auto-regressive
coefficients
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On the other hand, the uncertainty fluctuation (or dispersion) in soil properties is com-

monly quantified by the coefficient of variation (CV). It is defined as the ratio between the

standard deviation and the mean value; thus it is a normalized quantity and it is of great use

in probabilistic analysis. Representative values of CV can be found in the literature based on

laboratory data, in-situ tests or engineering judgment and they range from 10 to 50% for the

undrained shear strength (Phoon and Kulhawy, 1999). In this analysis, the CV of the bearing

capacity (qu) due to discrete spatial variability was calculated for the different spatial fractions

and isotropic correlations.

Figure 5.13 shows the CV value as a function of the spatial fraction for each correlation and

for all the distributions tested. It is interesting to note how the CV increases with the degree of

correlation and it is more important for spatial fractions near 0.5. In general, compared to the

ranges given by Phoon and Kulhawy (1999), the values are very low (i.e. never above 20%).

This is due to the fact that the variability measured is only induced by the spatial variability,

referred by other authors as inherent random heterogeneity, and it does not take into account

the measurement errors and uncertainty in physical parameters, present in experimental data.

According to these values, thus, it seems that uncertainties due to spatial variability are lower

to those related to the strength values (induced by measurement, statistical and transformation

errors).
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Figure 5.13 – Coefficient of variation (CV) of the bearing capacity (qu) as a function of the
spatial fraction (γ)
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5.4.1.2 Effect of anisotropic correlation

An important effort is evidenced in geotechnical engineering in order to quantify the correlation

length in the spatial variability. Jones et al. (2002) present a literature review of some laboratory

and in-situ tested properties scale of fluctuation in horizontal and vertical direction, however the

amount of information concerning these values is limited in comparison to the CV of inherent

variability. In general, the correlation length in the horizontal direction is more than one

order of magnitude larger than in the vertical one. However, if the spatial variability due to

improvement technique is modeled, the vertical correlation will be increased. At the moment,

very little information can be found hence a parametric analysis was performed for different

correlations. For two spatial fractions (0.4 and 0.6), only one correlation was changed from

0.1 to 0.9 while the other one was fixed and equal to 0.1. The mean and CV of the bearing

capacity are shown in Figure 5.14. As the correlation increases, the mean decreases and the

CV increases. However, the effect of the correlation is more important for the CV value (e.g.

for β = 1 the CV is twice the one without correlation; while the decrease in the mean value is

only 2%). For γ= 0.4, the vertical correlation presents in general higher values for both mean

and CV values; although it is the contrary for γ = 0.6.

5.4.2 Homogeneous equivalent models

In theory, homogeneous equivalent models are uniform fields described by an effective property

that takes into account the effect of spatial variability. They are interesting from an engineering

point of view because instead of analyzing N simulations of heterogeneous or random fields,

it is easier to carry out simulations of spatially uniform fields with a random variable. In the

same manner, the variability drawn from the spatial variability could also be used to generate

marginal probability density functions (PDF) or cumulative density functions (CDF). Figure

5.15 shows the normalized CDF of the bearing capacity for a γ of 0.1, 0.5 and 0.9 and all

different correlations. As it is seen, again, the isotropic correlation plays an important role

in the CV (refer to the inclination in the CDF in Figures 5.15b and 5.15c). Additionally, for

γ of 0.9, the type of the distribution changes; though, for instance, the results for a β of 0.9

have a lognormal distribution -as it presents a positive skewness- while for a β of 0.1, a normal

distribution is adequate. Jones et al. (2002) summarized the inherent variability on strength

characteristics given by in-situ and laboratory measurements and suggest a lognormal PDF for

undrained shear strength (cu) in clays and a normal one for cu in silty-clays. Hence, as the cu
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Figure 5.14 – Anisotropic correlation effect on the a) and c) mean and b) and d) CV of the bear-
ing capacity for a spatial fraction of 0.4 and 0.6, respectively. The coefficient in the horizontal
(β1) and vertical (β2) correlation is varied while in the other direction it is fixed to 0.1.

decreases, the distribution shifts from lognormal to normal, as it does with the results for γ

of 0.9. An accurate function of probability could be very useful to construct fragility curves

that take into account the spatial variability uncertainty due to a soil improvement technique.

However the success of this kind of analysis requires an accurate safety limit or threshold related

to the deterministic properties.

The evaluation of the bearing capacity (qu) is linearly dependent to the undrained shear

strength (cu). Though, the effective property (ceffu (γ)) is equal to µqu(γ)/5.14, where µ, indi-

cates the mean value of all the qu values resulting from the heterogeneous models for a specified

γ. It is reasonable to believe that the same numerical error - i.e. 10% in average - with respect
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Figure 5.15 – Experimental cumulative density function of the bearing capacity for : a) γ=0.1,
b) γ=0.5 and c) γ=0.9

to the Prandtl’s solution is present in all cases; therefore, for the homogeneous model the error

is deducted from the effective property (otherwise it would be counted twice). Figure 5.16a

shows the mean of ceffu as a function of γ for the different correlations tested. The average

corrected effective property (ceff
∗

u ), shown in the figure in black, was used for the homoge-

neous equivalent model. In Figure 5.16b, the results are compared with the qu mean values for

all correlations. As expected, the homogeneous models have the same behavior and could be

described by an equation. It is important to note that these models take into account all the

correlations tested and their respective dispersion; however the general behavior with respect to

the spatial fraction (i.e. the shape of the function) is the same for all cases hence the equation

should be similar.

Now, the traditional homogenization theories are compared to the numerical results. Figure

5.17a shows the mean qu values normalized by the qu2 as a function of γ and the Wiener and HS

bounds. As it is shown, if the homogeneous models take the arithmetic mean as the effective

property, the heterogeneous model will always present lower resistance (i.e. lower qu values).

Additionally, for lower spatial fractions (γ < 0.4) the mean values are lower than the HS−

bound.

When comparing to the geometric average, shown in Figure 5.17b, results for γ > 0.6

and low correlation (β < 0.4) are well fitted, on the contrary, they will present lower values.

Because the log-transformed variable is symmetric and quantiles are preserved under monotonic

transformations, the geometric mean of a lognormal distribution is equal to its median. In the

study performed by Griffiths et al. (2002), the random field had a lognormal distribution, hence,
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Figure 5.16 – Input and Output of the homogeneous equivalent model : a) Effective property
(ceffu = µqu(γ)/5.14) for all isotropic correlations and average corrected value (ceff

∗

u ), in black,
used as input and resulting b) Bearing capacity qu as a function of the spatial fraction (γ) in
black compared to the average of the heterogeneous models

as expected the mean bearing capacity was closely related to the geometric average (or median)

of the shear strength. In similar studies but with other probability distribution (e.g. Popescu

et al. (2005a) used gamma and beta distributions), the median is different from the geometric

average and random field results were almost always below the deterministic case.
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Figure 5.17 – Heterogeneous mean normalized qu values compared to a) traditional homoge-
nization, b) different averages and c) Bruggeman symmetric effective medium theories (dBEM

= 1.5)

Finally as it can be seen in Figure 5.17c, the mean values are well fitted by the BEM

equation in which, for the case tested, dBEM was found by a root-mean-square fit to a value
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of 1.5. Though if an homogeneous equivalent model should be compared with discrete spatial

heterogeneous models, the BEM could be used.

5.4.2.1 Effect of the contrast ratio of the soil properties

The spatial variability effect depends on the soils tested; hence, seven more soil property ratios

(cu2/cu1) were used and the normalized mean and CV values are shown in Figure 5.18. In this

case no correlation was introduced, which was found to increase the variability, and its effects

have been formerly addressed. The undrained shear strength (cu) of each set and the respective

ratios are shown in Table 5.3. In Figure 5.18a, the lower and upper quartiles (i.e. 25 and 75%)

are also shown however the dispersion is very low compared to the mean value. Note that as the

ratio increases, the shape of the model changes thus it could only be represented by an equation

with an additional parameter, such as the dBEM of equation 5.19. Figure 5.18b shows the CV

values of all the cu ratios tested, in general, as the difference between the materials increases,

the dispersion increases, like with higher isotropic correlation. Which is to be expected as the

failure surface changes more drastically. Additionally, the CV values tend to be higher for

spatial fractions near 0.5, except for the ratio of 20. However, for all cases the CV is lower than

7%, which is less than half the maximum value due to isotropic correlation.
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Figure 5.18 – Different soils cu ratios tested: a) mean and percentiles 25 and 75% and b) CV
values

Concerning the cases of equal ratio and different cu, the results are similar and hence it

depends more on the contrast between the materials and not so on the values used. Figure 5.19

shows the mean values of the normalized qu for different soils with the same cu ratio. Results
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cu2/cu1 ratio cu1 [kPa] cu2 [kPa]
2 20 40
3 20 60
4 20 80
5 20 100
10 10 100
20 10 200
2 30 60
20 5 100

Table 5.3 – Sets of soil model parameters tested

are only slightly different when both shear strengths are low; which is probably due to the

slightly higher numerical error. Yet, the general relationship of qu with γ is the same and is

mostly dependent on the ratio.
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Figure 5.19 – Mean normalized qu for different soils with the same cu ratio of : a) 2 and b) 20

Finally, with regard to the homogenization theories, the BEM equation was used to fit

the bearing capacity of the different sets of soils tested. The parameter dBEM was found by

the minimization of the root-mean-square error. The results are shown in Figure 5.20. It is

interesting to note that the changes in the shape of the curves from the bearing capacity ratio

as function of the spatial fraction, shown in Figure 5.20a, for the different cu ratios, agree very

well with the dBEM proposed. Figure 5.20b shows the relationship between the proposed values

for dBEM and the cu ratio. A logarithmic equation appears to fit the data with a coefficient of

determination (R2) equal to 0.99, as following:
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dBEM = (cu2/cu1)
0.28 (5.24)
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Figure 5.20 – BEM equation for the different cu ratios tested: a) bearing capacity ratio as
function of the spatial fraction and b) dBEM values as a function of the cu ratio

5.4.2.2 Effect of the effective loaded zone

As was seen in Figure 5.9, it seems that for evaluating the bearing capacity (qu) of the founda-

tion, not all the soil deposit strength is mobilized. Instead, there appears to be a defined region

for which the average shear strength is related the most with the qu value. The existence of

an equivalent homogeneous soil deposit that could reproduce (statistically) the same response

as a spatially variable deposit is encouraging for practical purposes. The Local Average (LA),

introduced by Vanmarcke (1977), determines the characteristic value of the homogeneous de-

posit. LA applications in the assessment of the bearing capacity have been studied by Asaoka

and Matsuo (1983), Griffiths and Fenton (2001) , Kasama et al. (2012) and Honjo and Otake

(2013), among others. The former proposed appropriate sizes of local averages to evaluate the

effects of spatial variability for various geotechnical structures. Concerning the bearing capac-

ity of shallow foundation in cohesive soils, a size of Ly × Lz=2B × 0.7B was suggested. It

corresponds to the rectangle where is located the majority of the plastic zone obtained by the

Prandtl-type ultimate bearing capacity equation. This size was said to be independent of the

random field characteristics and of the absolute strength of the cohesive soils. Thus, the size

of the averaging area purely depends on the mechanism controlling the limit state, but not on
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the spatial variability properties of the soil parameters.

For the discrete random field presented in this analysis, an optimization procedure was

established to find the LA area. For the sake of brevity, only the case of maximum variation is

presented, i.e. β1 = β2 = 0.9; however, the other cases were also analyzed and the results were

similar. The optimization consisted in maximizing the coefficient of determination (R2) that

is a measure of how well the BEM model fits the numerical response. In the fit, the bearing

capacity values are related to the effective spatial fraction (γeff), calculated at the area below

the foundation of size Ly × Lz. The distances Ly/2 and Lz were varied every element size

(B/16). As an example, three cases are shown in Figure 5.21 : a) evaluated in all the deposit

(5B × 2B) , b) at the suggested area from Honjo and Otake (2013) (2B × 0.7B) and c) the

optimized area found (2.4B × 1.1B). The optimized area is shown in dark shade in Figure 5.9.

Globally, the dispersion is reduced when using an appropriate γeff , although some dispersion

is still present for the optimized area. Concerning the mean values evaluated at different bins,

the BEM equation is in general appropriate for the three cases, except for higher γeff as shown

in Figure 5.21b.
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Figure 5.21 – Bearing capacity as a function of γeff for β = 0.9: a) evaluated in all the deposit
(5B × 2B) , b) at the suggested area by Honjo and Otake (2013) (2B × 0.7B) and c) the
optimized area (2.4B ×B).

Recalling the two random fields simulations presented in Figure 5.9 of maximum and mini-

mum qu values, the results for γ = 0.5 are isolated from the previous figure and shown in Figure

5.22. Once the effective γ is evaluated, in the optimized area, the extreme cases are closer to

the BEM equation hence, less dispersion is presented. Note that the difference between the γ

for all the model and for the optimized area is almost 50% for the extreme cases. However,
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there is still some dispersion around the trend.
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Figure 5.22 – Bearing capacity as a function of γeff for γ = 0.5 and β = 0.9: a) evaluated in
all the deposit (5B × 2B) and b) at the optimized area (2.4B ×B).

A summary of the optimization is shown in Figure 5.23 for two correlations. The R2 value for

each area tested is mapped into the mesh. As the results are horizontally symmetric, only half

of the mesh is shown. For β = 0.9, even if R2 for the area of 2B×0.7B (shown in dashed box in

Figure 5.23a) is above 0.9, it is improved for the optimized area (shown in the solid box). The

remaining box, in dash-dot, corresponds to the entire plastic zone of the Prandtl-type ultimate

bearing capacity equation, equal to 1.5B × 0.7B, which presented a slightly smaller R2 value.

When the correlation is low, for instance β= 0.3 shown in Figure 5.23b, in general R2 values

are closer to 1 and more evenly distributed compared to the results for β= 0.9 that drop faster.

Additionally, the resulting coefficient of variation (CV) is shown in Figure 5.24 for the same

correlations. CV is reduced when the optimized area is used, yet there is still a remaining

dispersion due to the different failure mechanisms induced by the spatial variability. The

reduction is more important for β=0.9 and compared to the initial CV values, from Figure

5.13, the corresponding maximum value is still higher for this isotropic correlation. In other

words, the variation due to the spatial correlation is more important than that of the local

average.
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Figure 5.23 – Optimization summary results for the coefficient of determination R2 values of
varying LA area in the mesh with different correlations: a) β=0.9 and b) β=0.3
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Figure 5.24 – CV decrease due to the optimization for a) β=0.9 and b) β=0.3

5.4.3 Partial conclusions

Homogeneous equivalent models can present the same qu values when the accurate mean shear

strength (cu) of the binary random field is taken as input, due to the linear dependency be-

tween qu and cu. Because of its capability to account for the different mixture properties, the

Bruggeman effective medium (BEM) equation appears to accurately predict the mean bearing

capacity for varying spatial fractions (γ); while, traditional homogenization techniques will, in

general, overestimate the resistance of the two-soil mixtures. However, for a given γ and a given

correlation, the spatial distribution affects the qu with coefficient of variation (CV) of approx-

imately 20%. CV can be reduced if the optimized LA area is taken into account, although it
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can not be avoided as it is due to the radically different failure mechanisms (surfaces) that are

developed.

The results shown in this analysis have taken into account the FEM model error. First, it

has been measured as the ability of the finite element method to reflect the actual behavior of an

homogeneous (ideal) soil and it has been subtracted before applying the Prandtl’s formula. It

has been assumed that both the finite element method and the Prandtl’s formula are sufficiently

reasonable approximations to the behavior of soils to allow the investigation of the major

features of stochastic soil behavior under loading from a rigid foundation. Note that the effects

of the spatial variability in the CV of qu have been evaluated independently of these assumptions

and are associated with traditional usage of this engineering problem.

The numerical model of discrete spatial variation applied in a probabilistic framework ap-

pears to properly include heterogeneity on the soil. Other cases of added spatial variability by

soil improvement techniques, such as soil-mixing for liquefaction mitigation, will be analyzed

with this random discrete model in the next section.

5.5 Settlement induced by seismic liquefaction

For the purpose of studying the effect of soil heterogeneity induced by a mitigation method

on the seismic response of a structure, the model presented in section 4.4 will be used. It

consists of a reinforced concrete building with a shallow rigid foundation standing on saturated

cohesionless soil. A schema of the model is shown in Figure 5.25. The reference soil deposit is

composed of 20m of loose-to-medium (LMS) sand overlaying an elastic bedrock. The soil deposit

used is the same as the one used in the previous chapter. Additionally, the same elastoplastic

multi-mechanism model is used to represent the soil behavior and the model parameters are

shown in section 4.3. As for the structure, only the nonlinear model of the previous chapter is

used, called B01. Its parameters and additional information are shown in section 4.4.

Concerning the treated ground soil the recommendations of Mitchell et al. (1998) were used.

By which height (H) should be given by the extension of the liquefiable layer, in this case H

=4m below the water table, and length (L) should extend from the edge of the foundation of

size B a distance bigger to the depth of treatment (i.e. L > B + 2H). The soil heterogeneity

is simulated with the discrete autoregressive-model defined in section 5.3.

For this application the treated zone is composed of two materials: a treated medium-to-

dense sand (MDS) and the original LMS. These materials were also used in chapter 4.2. Their
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Figure 5.25 – Schema of the numerical model

model parameters and some laboratory test simulations are shown in Appendix A. The soil

behavior differs in a number of aspects, for instance, concerning the liquefaction resistance an

undrained stress controlled cyclic shear test was simulated. The cyclic stress ratio (SR = τ/σ′

v0)

as a function of the number of loading cycles to produce liquefaction (N) is shown in Figure

5.26 for both soils. As a qualitative comparison, the modeled test results are compared with

the curves given by El Mohtar et al. (2013) for a clean sand and a sand with 3% of bentonite

permeations. It is noted that the obtained curves are closer to the reference for a clean sand

corresponding to the LMS; while, the MDS curves are closer to those of a treated soil. It is also

worth noting that, the hydraulic conductivity (κ) is different for the two soils: 1 · 10−4 for LMS

and 1 · 10−5 for MDS. These values were taken from the literature of the soil model calibration

and their influence in the response will be evaluated in section 5.5.5.
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Figure 5.26 – Simulated liquefaction curves for both soils and comparison with results from El
Mohtar et al. (2013)

As an example, a zoom on the heterogeneous zone of two spatial distributions are shown

in Figure 5.27 and correspond to a spatial fraction (γ) of 0.5 and auto-regressive coefficients

(β1 and β2) equal to 0.4. As it can be seen, β does not give a constant correlation length in

each row or column, but it is an average on the model. Similarly, γ is the average over the
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entire area; even though, there are regions with different composition as in the top left corner

in Figure 5.27a.
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Figure 5.27 – Zoom on the heterogeneous zone for 2 distributions with γ = 0.5 and β1=β2 =
0.4

5.5.1 Input earthquake motion

As the computational cost of many random field simulations is important, a careful selection was

performed to have strong input motions appropriate for the numerical model. As a deformable

bedrock is used and the hypothesis of outcropping rock recordings is made, the earthquake

signals should be near-to-source strong motions from dense soil stations. These signals are

supposed to have minimal noise at high frequencies. The selected earthquake motions and

some intensity measures (IM) are shown in Table 5.4. The definition of these IM can be found

in the appendix C.2. Figure 5.28 shows the acceleration time histories, the normalized response

spectra of the signals with a structural damping (ξ) of 5% and the smoothed Fourier spectra.

During this study, the PEER center launched a new database called NGA-West2 with several

changes and updated information (Wair et al., 2012). Among the changes, EQ4 was originally

reported with a Vs 30 of 1000m/s and in the new database, a value of 382m/s was given. However,

since the calculations were already performed, the results will be presented. The last motion,

EQ 9, is only used in section 5.5.7 as an additional test case.

5.5.2 Non-treated soil deposit response

First, the response of the model without treatment is analyzed. This is the reference case when

γ = 1. In this section, focus will be given to the spatial distribution effect on the liquefaction

evolution; though, for the sake of brevity, only results for EQ1 will be presented. Figure 5.29a
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Table 5.4 – Input motions’ identification and some intensity measures

# Event Year RSN* Mw RJB
† Vs 30 PHA IA D5−95 PHV

[km] [m/s] [g] [m/s] [s] [cm/s]

EQ1 Northridge 01 1994 1050 6.69 4.9 2016 0.43 1.79 9.84 51.23
EQ2 Kocaeli, Turkey 1999 1165 7.51 3.6 811 0.21 0.80 13.3 34.64
EQ3 Friuli, Italy 02 1976 133 5.91 14.4 660 0.23 0.22 2.83 12.5
EQ4 Irpinia, Italy 1980 292 6.9 6.78 382 0.25 1.19 15.07 36.40
EQ5 Loma Prieta 1989 765 6.93 9.64 1428 0.41 1.05 6.53 31.57
EQ6 Northridge 01 1994 1012 6.69 9.87 706 0.25 0.93 8.07 27.39
EQ7 Loma Prieta 1989 810 6.93 18.41 714 0.40 2.04 9.66 17.53
EQ8 San Fernando 1971 77 6.61 1.81 2016.1 1.18 8.59 6.68 103.23
EQ9 Loma Prieta 1989 763 6.93 9.96 729.7 0.32 0.68 4.64 20.66

*Record sequence number at the NGA database (http://ngawest2.berkeley.edu/)
† Joyner-Boore source-to-site distance.

shows the pore pressure ratio (ru = ∆pw/σ
′

v0) at the end of the shaking (i.e. co-seismic analysis).

When ru is equal to unity, the soil has loosened all its strength and it is totally liquefied. As it

can be observed, most part of the deposit is liquefied, with the highest ratio above 5m.

The relative settlement of the structure with respect to free-field at the end of shaking

(|uz|) is 26cm. According to the limits given by Bird et al. (2006) for rigid body settlement, it

corresponds to a moderate damage state, between 10 and 30cm, where some structural damage

in load-bearing elements are visible and serviceability is affected. Figure 5.30 shows the co-

seismic and post-seismic relative settlement and liquefaction ratio under the right column and

at 3.5m depth. Although, all ∆pw is not dissipated, there is almost no contribution of post-

seismic consolidation to the total settlement (i.e. less than 0.2%). By comparing the time

histories with the acceleration at outcropping, also shown in Figure 5.30, it is interesting to

note that while the high acceleration peak produces the biggest increase in the liquefaction

ratio, the relative settlement is gradually increased and its rate is higher after 10s. At this time

a second peak in acceleration is evidenced at higher frequencies which is probably also affecting

the LMS ∆pw evolution.

5.5.3 Liquefaction mitigation analysis

Deep mixing techniques such as jet-grouting, bio-grouting, bentonite suspensions or wet-soil

mixing use stiffer materials to form foundation elements to stabilize soft soils and mitigate

liquefaction. These techniques are widely used even though there remain some uncertainties
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Figure 5.28 – Input earthquake motions: a) acceleration time histories, b) Normalized response
spectra of acceleration and c) Fourier spectra
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Figure 5.29 – Liquefaction ratio (ru) at the end of shaking for EQ1: a) before and b) after soil
treatment and c) difference between them

given the spatial variability introduced in the design (Kasama et al., 2012). Sometimes, given

the poor soil conditions and the high seismic demand, soil mixing is used to replace an entire
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Figure 5.30 – Time histories of the (a) relative settlement (|uz|) and the (b) liquefaction ratio
(ru) under the right column and at 3.5m depth before and after mitigation for EQ1. Post-
seismic behavior is depicted with dotted lines. The acceleration time history at outcropping is
shown below

portion of the deposit. This last case is analyzed and is also used as reference (γ=0). The

liquefaction ratio at the end of shaking is shown in Figure 5.29b. It is interesting to note that

while ru decreases directly under the structure, it increases on the surrounding soil. Figure 5.29c

shows the difference between the two cases. Negative values, in blue, denote the places where the

liquefaction is greater before treatment (LMS case) and the places where liquefaction increases

after treatment (MDS case) are the positive values, shown in red. Two zones presented higher

ru values after treatment: (1) a layer of a couple of meters immediately below the treatment

zone and (2) the soil below 15m.

Recalling the definition of the liquefaction index (Q) given by Shinozuka and Ohtomo (1989)

to quantify the excess pore-pressure generation as:

QH·L =
1

H · L

∫ H

0

∫ L

0

ru(y, z)dydz (5.25)

where ru is the liquefaction ratio evaluated at the end of shaking andH and L are the height and

length of the soil deposit. A value of 1.0 indicates conditions of initial liquefaction throughout

the H · L area and thus gives information of the liquefaction ratio as well as the total liquefied

zone. After the entire portion of the soil is replaced, and if QH·L is evaluated in the mitigation

zone (i.e. H=4m and L=20m), it decreases 44%. However, for the entire soil deposit (i.e.

H=20m and L=50m) the use of soil mixing only decreases 6% the QH·L value, which means

that liquefaction in the model is reduced under the structure, but is present in other locations.

These results are in accordance with those of Coelho et al. (2004) and Lopez-Caballero and



190 5.5. Settlement induced by seismic liquefaction

Modaressi-Farahmand-Razavi (2013) and can be explained by the energy of the motion that

must be dissipated. As it is constant for both cases, the reduction in one zone will necessarily

affect other parts of the deposit. Additionally, the pore-pressure migration can be seen from the

loose untreated sand to the mitigation zone in the boundaries between both soils. An interaction

is therefore present in the mixture which will be of great importance in the heterogeneous deposit

case.

Concerning the relative settlement (|uz|), shown in Figure 5.30a, the damage state is still

moderate according to the limits given by Bird et al. (2006) however it corresponds to a reduc-

tion of more than 40% compared to the case before treatment (i.e. LMS). As the pore-pressure

migration continues after shaking, the liquefaction ratio under the right column and at 2.5m

depth increases (shown in Figure 5.30b); although, there is almost no contribution of post-

seismic consolidation to the total settlement.

5.5.4 Heterogeneous models

One of the most influential factors on the treated ground is the effectiveness of the mixing pro-

cess, which adds important variations in the soil. This heterogeneity depends on the mitigation

technique, but will in general have a spatial correlation on the vertical and horizontal direc-

tion. Studies on this topic usually apply homogeneous random field techniques to account for

the spatial variation (Jones et al., 2002). In them, properties are described by a probabilistic

function where a mean value and a coefficient of variation is provided. In the present analysis,

it was assumed that the heterogeneous deposit is composed of two materials: a treated-soil

and the remaining soft soil. This could be the case of mixing techniques such as soil-mixing or

bio-treatment. The interaction of these soils is important as the loose sand induces an increase

in excess pore-water pressure in the surrounding treated sand.

As recalled before, Chakrabortty and Popescu (2012) analyzed centrifuge experiments of

heterogeneous sand deposits. Results show an increase in excess pore water pressure for the

heterogeneous case compared with an average-density homogeneous sand. However, the anal-

ysis was deterministic and the use of a traditional homogeneous equivalent model could be

inappropriate due to the fully nonlinear behavior. The spatial discretization described in Sec-

tion 5.3 is used here to generate the heterogeneous deposits. The spatial fraction (γ) is varied

between not treated to fully treated (i.e. from 1 to 0) and 20 independent spatial distributions

per γ value were realized.
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As already shown, the auto-regressive coefficients β1 and β2 control the correlation length

in the horizontal and vertical direction. These parameters, which are normalized by the size

of the heterogeneous zone, describe the degree of correlation of the spatially random values.

Thus, a value close to 1 will imply a smoothly varying field, while a small value will imply a

ragged field. Concerning added spatial variability due to soil improvement, little is known of

the possible correlation lengths thus for this analysis, both coefficients were fixed to 0.4 (i.e. a

correlation length close to 8m in the horizontal direction and of 1.6m in the vertical one). This

values are slightly higher than those found in the literature for inherent or natural variability in

CPT data shown in section 5.2.1, specially for the vertical direction, which is probably the case

given the soil improvement techniques that can be possibly used. The effect in the liquefaction-

induced settlement of different spatial correlations (e.g. magnitude of the correlation lengths

and differences between the horizontal and the vertical correlations) could be interesting but it

is out of the scope of this study.

5.5.4.1 Relative settlement of the structure

In order to better understand the interaction between the two soils in the heterogeneous deposit,

the results for different treatment efficiencies (i.e. γ values) will be analyzed. Figure 5.31 shows

the box-and-whisker plots for the relative settlement of the structure with respect to free-field

(|uz|). These plots were already used and explained in Section 5.4. They provide a clear

representation of various statistic parameters and help indicate the distribution of the data.

For instance, if the mean value (shown in red) is equal to the median or 50% quartile (i.e.

shown in the middle of the box), the distribution is symmetric, as is the case of most of the γ

values in Figure 5.31 except for γ=0.4 and 0.9. Additionally, the size of the box is an indicator

of the spread or dispersion of the data. Moreover, when the quartiles are not equidistant as

for some of the γ values in Figure 5.31, the distribution is skewed: e.g. data at γ=0.3 shows

a positive skew while data at γ=0.4 has a negative skew. However, the length of the whiskers

provide more information on the skewness to identify if it is due to a few extreme values, as is

the case of γ=0.3. In order to analyze the effect of the treated soil in the relative settlement,

concerning Figure 5.31, two aspects will be discussed : the variation of the average value and

the dispersion for each γ value.

At first, the efficiency of the soil improvement can be analyzed from the evolution of the

average relative settlement with the spatial fraction, shown in Figure 5.31 in red. For this case,

it seems that a small amount of treated soil (e.g. γ= 0.9) will not reduce, in average, the
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Figure 5.31 – Box-and-whiskers plot for the relative settlement (|uz|) of the structure with
respect to free-field for EQ1

relative settlement. In contrast, it appears that below a certain spatial fraction, the average

settlement will be greatly affected if a greater amount of denser soil is used. In other words,

it seems that the relation between the relative settlement and the spatial fraction is nonlinear

and divided into two concave curves: one that is mostly related to the natural soil (higher γ

values) and another highly sensitive to the introduced soil (lower γ values).

Furthermore, regarding all values it can be observed that higher variation is present for

γ equal to 0.3 and 0.5 while for 0.4, it is very small. This value could be the percolation

threshold dividing the two curves, from which the interactions between the two soils change. It

can be noted that this relation differs from the arithmetic or geometric average value of both

soils, hence, traditional homogenization theories should not be used as reference. Otherwise,

while for some spatial fractions the average value will be overestimated; for others, it will be

underestimated. This aspect will be treated in detail in section 5.5.7.

In order to verify that the number of simulations (N) used is sufficient, the statistical

convergence of the mean and the standard deviation of the relative structure settlement is

shown in Figure 5.32 for γ equal to 0.3 and 0.4. The blue dashed lines correspond to the 5%

and 95% confidence intervals obtained with the t-student and χ2 statistical model, respectively.

Although there is still some variation in the results, for N=20 the statistical convergence is

satisfactory for this analysis.
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Figure 5.32 – Convergence of the mean and standard deviation of |uz| with EQ1 and β1 = β2 =
0.4. Two spatial fractions are shown: a) γ = 0.3 and b) γ = 0.4.

5.5.4.2 Water migration and soil-interaction in a heterogeneous deposit

For the same spatial fraction, the relative settlement can vary greatly only due to the distribu-

tion of the two soils in the deposit. As an example, a zoom on the heterogeneous zone of the

spatial distributions for γ = 0.5 that present the minimum and maximum |uz| was shown in

Figure 5.27 and correspond to 19.4 and 24.2 cm, respectively (i.e. a relative difference above

20%). It is noted that for the minimum |uz| in Figure 5.27a , the MDS elements (colored in

red) are mostly near the bottom of the intervened zone while most LMS are in the center and

surrounded by MDS. Even so a site percolation is present near the left column, that is a verti-

cal path of MDS nearest-neighbor elements. On the contrary, for the maximum |uz|, in Figure

5.27b, the soils are in smaller clusters and only a bond percolation is present on the middle.

Additionally, the LMS elements are mostly at the bottom. The different interactions between

the LMS and MDS elements could be the cause of the difference in |uz|. Thus, as more clusters

develop (i.e. for very low or very high spatial fractions), more interactions develop between the

two soils; therefore, more variation on the |uz| value is shown.

Before analyzing the seismic behavior, it is important to see the effects of spatial variability

in the stress state on the deposit prior to shaking. The structure’s weight imposes in the

deposit an increment in the vertical, horizontal and shear stresses. Concerning the shear stress

(τ), interface elements between the structure foundation and the soil are used to allow relative

movement of the structure with respect to the soil, in order to avoid the traction effect and

the concentration of τ in the center line below the foundation. Hence, as shown in Figure

5.33a for the homogeneous case before the mitigation method, τ is primarily concentrated in

the foundation’s edges due to its rigidity and is distributed in depth. After replacement of all
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the soil in the intervened zone, shown in Figure 5.33b, the weight of the treated soil induces

an additional τ for greater depths. When spatial variability is included, the previous effect is

replicated in each interface between the two soils. Figures 5.33c and 5.33d show the initial τ at

the extreme cases, i.e. with minimum and maximum |uz|, respectively. The LMS elements are

drawn as boxes with a diagonal and show in general, less τ . Comparing the two cases, it can

be noted that τ is greater below the intervened zone for the case of maximum |uz|, specially at

the left side below the foundation’s edge where a column of LMS elements is almost completed

through the deposit.

(a) (b)

(c) (d)

Figure 5.33 – Shear stress (τ) distribution for the homogeneous cases before shaking: a) LMS
and b) MDS, and the extreme cases with γ=0.5 and β=0.4: c) minimum and d) maximum |uz|.
Diagonal marked boxes represent the LMS elements.

As shown in chapter 3.3, the behavior of the soil depends on the mean stress (p′k) and the

devatoric stress (qk) in the deviatoric plane, as well as in the isotropic hardening (Fk) associated

with the evolution of volumetric plastic strains (εpv) and the friction angle at the critical state

(φ′

pp). These variables are all related by the degree of mobilized friction (rk), as follows :
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rk =
qk

p′k · Fk · sinφ′
pp

(5.26)

Thus as rk approaches unity, the soil approaches perfect plasticity. rk before shaking is shown

in Figure 5.34 for the same cases shown above: the homogeneous models and the extreme |uz|

cases for γ and β equal to 0.4. The effect of the building’s weight, shown in Figure 5.34a before

treatment, is mostly perceived above 5m and 20m width, which coincides with the treatment

zone. Specially, the soil under the structure’s base presents higher values of up to 0.6 which will

tend to an increase of pore pressure generation; while near the foundation’s edge rk is near zero,

hence low liquefaction susceptibility. When all the soil is replaced in the treatment zone by

more dense sand, shown in Figure 5.34b, rk is reduced in all this area and specially around the

building. It is interesting to note that although the zone is below 1m, it affects the soil above as

rk is also decreased. However, just under the foundation’s edge rk still presents values of about

0.6, yet recall that the water table is also at 1m thus no liquefaction is possible. Concerning

the extreme heterogeneous cases with γ and β equal to 0.4, a zoom on the treatment zone is

shown in Figures 5.34c and 5.34d, as it is mostly in this area where changes are visible. It is

clear that for the distribution that gave the maximum |uz|, the LMS elements are in places

where the building’s weight had greater effect: under the structure’s base and above 5m.

In order to analyze the different interactions between the two soils, three aspects will be

presented: (i) the time history at one element that is at the same depth, (ii) the profile below

the left column and (iii) the entire model. First, the comparison of the time evolution of the

liquefaction ratio (ru) between the homogeneous cases (i.e. before treatment - LMS - and fully

treated - MDS) and the 20 simulations of heterogeneous cases are shown in Figure 5.35 for one

element. It is situated below the right column and at 2m depth. Other positions were analyzed,

but the response varies greatly with the confinement pressure and the effect of the structure

and are not shown here for the sake of brevity. The comparison in the same element position

of the different spatial distributions is interesting as it permits to analyze the numerous soil

interactions (e.g. when the element is embedded in a cluster or in contact with the other soil)

while leaving the majority of other factors unchanged, such as the depth, the stress state and

the initial shear modulus. Nonetheless if different positions in the same model are compared,

these will have different confinement pressures with distinct liquefaction evolution. For the sake

of brevity, only one element is shown in the present analysis. The responses are divided into

two figures: the behavior of the models where the element in the chosen position is composed
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(a) (b)

(c) (d)

Figure 5.34 – Degree of mobilized friction (rk) before shaking in the model for the homogeneous
cases: a) LMS and b) MDS, and the extreme cases with γ=0.5 and β=0.4: c) minimum and d)
maximum |uz|. Diagonal marked boxes represent the LMS elements.
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of LMS is shown in green in Figure 5.35a and those composed of MDS are shown in magenta

in Figure 5.35b.

0 10 20 30
0

0.2

0.4

0.6

0.8

1

t [s]

r u
 [
1
]

 

 

LMS
MDS

(a)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

t [s]

r u
 [
1
]

 

 

t
95

t
5

LMS
MDS

(b)

Figure 5.35 – Liquefaction ratio evolution with time for (a) LMS and (b) MDS elements at 2m
depth and under the right column for γ = 0.4 and β1 = β2 = 0.4. The homogeneous cases
before (LMS) and after (MDS) treatment are also shown.

Concerning Figure 5.35a, it is interesting to note that some LMS elements in the heteroge-

neous model present more pore pressure generation than those of the homogeneous LMS model.

In contrast, some cases resemble the MDS model behavior. For these cases, the LMS element

is principally surrounded by more denser sand, hence less pore-pressure migration can occur.

In general, the behavior is affected by its neighbors although it depends on the position and

the clusters formed. A clear example is shown in Figure 5.36 for a LMS element completely

surrounded by MDS. The LMS has less liquefaction resistance; however, MDS elements act as

a barrier for excess pore pressure generation.

Similarly in Figure 5.35b, almost all MDS elements have higher ru than the corresponding

homogeneous model. Additionally, for some MDS elements in the heterogeneous model the

ru starts increasing after the predominant time of the motion (i.e. for t > t95=13s), while it

mostly decreases or stays constant for those composed of LMS, which emphasizes the interac-

tion between the different soils. This interaction was also shown in the centrifuge analyses of

Chakrabortty et al. (2010); although the comparison was made with a density-average homo-

geneous deposit and the elements compared were not at the same depth. While, in general, in

the homogeneous deposits the pore-water pressure starts to dissipate at the end of shaking, the

LMS elements in the heterogeneous model keep feeding water to neighboring MDS elements.

This water migration has been analyzed by Chakrabortty et al. (2004), Ghosh and Madabhushi
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(2003), Popescu et al. (2005b), among others.
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Figure 5.36 – Liquefaction ratio evolution with time for a LMS element surrounded by MDS
elements for γ = 0.4 and β1 = β2 = 0.4.

Two profiles below the left column of the structure are shown in Figure 5.37 for all the spatial

distributions used with γ = 0.4 and β1 = β2 = 0.4. The homogeneous models before (LMS)

and after (MDS) treatment are also shown as reference. The γ chosen presented the highest

variation of the liquefaction index evaluated at the soil deposit (QFEM) shown in Figure 5.45a.

The profiles correspond to: a) the settlement and b) the Arias intensity (IA). Regarding the

settlement profile in Figure 5.37a, it can be seen the important fluctuations in the heterogeneous

zone and down to almost 10m. For the LMS model, the settlement is concentrated in the treated

zone but for the MDS and most of the heterogeneous models, the settlement is greater for lower

depths. This is reasonable because the MDS inclusions will stiffen the soil above, creating a

higher impedance with the deeper zones where the profile will become more vulnerable.

In addition, Figure 5.37b shows the IA profile. This value is a measure of the total energy

per unit mass defined by Arias (1970) as:

IA =
π

2

∫ tend

0

a(t)2 dt (5.27)

Its evolution expresses the amplification (or deamplification) of the energy through the soil

profile. As ru increases and the soil softens, the seismic energy is deamplified by the soil. In

contrast, as the heterogeneous models present less ru below 7m, the energy is amplified for

deeper soil. However, as γ is small, the behavior of the heterogeneous model is closer to that

of the MDS model. For all heterogeneous models, IA at surface is higher than that of the
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untreated LMS model which will cause an amplification of the structure motion.
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Figure 5.37 – Profile below the structure of (a) settlement and (b) Arias intensity at the end
of shaking for γ = 0.4 and β1 = β2 = 0.4.

To compare the results of the entire deposit, Figure 5.38 shows the differences between the

heterogeneous model with the maximum |uz| and the homogeneous LMS model. Again, results

are shown for γ = 0.4 and β1 = β2 = 0.4, as an example. Figure 5.38a shows the ru differences

(i.e. ruHET − ruHOM) and it clearly depicts the interactions between the two soils. As in the

time histories (Figure 5.35a), the results vary greatly from one position to another. For this

case, the heterogeneous model presents, in general, lower ru values, specially in the treated zone

(except for some regions). Although, immediately below the treated zone and at the bottom

of the model, ru increased after the inclusion of the denser sand. The explanation is that the

interface around this zone acts as a barrier for the water migration and as the layered cases

studied in the laboratory, a water film is formed around the liquefied sand (Fiegel and Kutter,

1994; Kokusho and Kojima, 2002; Konrad and Dubeau, 2002, among others).

Similarly, the settlement at the end of shaking difference (sett.HET −sett.HOM ) between the

heterogeneous and the homogeneous model before treatment is shown in Figure 5.38b. As in the

profile under the building column, before treatment the most part of the settlement is located

below the structure, but after the heterogeneity is added, the highest settlement is found under

the treated area. These two comparisons are evidence of the complexity added with the spatial

variation by which neither the liquefaction apparition nor the settlement is homogeneous even

for the untreated remaining soil, that is, below and beside the intervened zone.

However, the comparison of the Arias intensity ratio (i.e. IAHET/IAHOM), in Figure 5.38c,
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Figure 5.38 – Difference between the heterogeneous with maximum |uz| and the homogeneous
LMS model for (a) the liquefaction ratio (ru), (b) the settlement and (c) the Arias intensity
(IA) at the end of shaking

is mostly regular in the horizontal direction. The seismic motion is more amplified by the

heterogeneous model for the soil near the surface and at the lower half of the soil deposit. The

ratio is the lowest immediately below the treatment zone which corresponds to the highest

values of liquefaction ratio in the heterogeneous model.

5.5.5 Permeability and soil type effect

In order to further understand the effect of the spatial variability, some changes in the soils

were tested. Principally, the effect of the permeability was analyzed. As was noted, the two

soils have different soil parameters, among them, different hydraulic conductivity (κ). As has

been shown, the pore pressure migration plays an important role in the effect of the spatial

variability on |uz|. The excess pore pressure (∆pw) generation is related to the state of the

soil with respect to the critical state, i.e. the dilatant or contractant tendency. Additionally,

∆pw dissipation and redistribution is related to κ. Hence, different scenarios were tested and

are summarized in Table 5.5 as three types: (1) two soils with the same soil parameters except

for κ, in other words, spatial variability is only affecting κ; (2) all soil parameters are different

except for κ; and (3) the same as the previous case but with different sets of κ values. In

general, all the soil parameters are related, though when the permeability decreases, the other

soil parameters decrease too. However, when a cementitious process is used the permeability

can be varied, while leaving the other soil parameters practically unchanged.

In Figure 5.39a, the previously used soil mixture with different soil parameters (LMS and

MDS) is compared to the first scenario where only LMS soil parameters are used and γ denotes

the spatial fraction of κ equal to 10−4 (corresponding to that of the LMS). The first case corre-
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Table 5.5 – Cases tested for permeability and soil type

ID Soil 1 Soil 2 κ1 κ2

LMS MDS 1 · 10−4 1 · 10−5

LMS LMS 1 · 10−4 1 · 10−5

LMS LMS 1 · 10−4 1 · 10−3

LMS MDS 1 · 10−4 1 · 10−4

LMS MDS 1 · 10−4 1 · 10−3

LMS LMS 1 · 10−4 1 · 10−6

sponds to a 5% Bentonite permeation on sand, which as measured by Gueddouda et al. (2010)

produces a decrease in κ of one order of magnitude (i.e. for this case, κ=10−5). Results show

that if the whole treated area is changed, the settlement is increased by less than 10%. Addi-

tionally, a 10% Bentonite inclusion was modeled, that is a decrease of two orders of magnitude

yet, the average effect on the spatial variability was the same. If however, κ is increased in one

order of magnitude due to inclusions of a more coarser material, the settlement decreases 20%.

In contrast, when both κ and the dilatant tendency is increased, which is the previously used

soil, the reduction is about 40%.
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Figure 5.39 – Effect of the spatial variability of different soil parameters on |uz|: a) when only
the permeability varies and b) when various soil parameters vary. Mean and the envelope of
one standard deviation.

Furthermore, in Figure 5.39b, two additional scenarios are shown: the opposite case is shown

in light blue, which is increasing the dilatant tendency while κ is kept constant; and in olive

green, the soil parameters change and for this case MDS κ is higher than that of LMS. For the

former, the results are similar to those of the original mixture. Once more, κ shows little effect
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on the settlement of spatial variable soil. However, when MDS κ equals to 10−3, ∆pw is easily

dissipated and the soil improvement is slightly more efficient, as the settlement reduction is

more than 45% for γ=0. Concerning the different spatial fractions tested, it can be noted that

significant changes in the average value are only seen for γ below 0.7 for a lower κ and below

0.5 for a higher one. In other words, it seems that for high γ values the response is mainly

controlled by the original soil. However, as shown in Figure 5.39a, if only κ is changed the

system response is affected even when a small amount of treated soil is added (i.e. for γ about

0.8).

As the difference in κ is mainly observed in the pore pressure generation and dissipation,

Figure 5.40a shows the time evolution of ru under the structure right column and at 3m depth

for the MDS case, that is where all the treated area has been replaced. Once more, the

interaction between the soils is evidenced as ru starts increasing after the predominant duration,

i.e. above t95, for almost all soils as consequence of the pore pressure migration from LMS at

the surroundings. Concerning the highest κ, ru does not increase at this depth because of the

high rate of pore pressure dissipation. Hence the absolute relative settlement at the end of

shaking is smaller than for other permeability values tested as shown in Figure 5.40b. Once

more, for κ equal to 10−5 and 10−6, the response is very similar. Moreover, the different jumps

on the settlement roughly coincide for all the soils with the peaks in the input displacement

time history, shown also with a scaling factor of 50.
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Figure 5.40 – Time evolution of a) liquefaction ratio and b) |uz|: for different soil parameters.
The input displacement time history, shown also with a scaling factor of 50.
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5.5.6 Random field discretization

The effect of the random field discretization was analyzed by reducing the element size in the

horizontal direction by half for the entire FEM. The |uz| results for the original coarse mesh

are compared with the fine one for two motions in Figure 5.41. As expected, the average |uz|

is slightly higher with the fine mesh for almost all γ values tested. However, the difference

in the mesh discretization appears to affect all the spatial fractions similarly. Concerning the

variation, it is only slightly reduced with the fine mesh and is mostly noted for EQ4.
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Figure 5.41 – Effect of the mesh size of the binary random field on |uz| for : a) EQ1 and b)
EQ4

5.5.7 Homogenization theories and other input motions

In the previous chapter, concerning the bearing capacity of shallow foundations over cohesive

soils, some homogenization theories were compared with the average behavior as a function

of γ. Similarly, Figure 5.42a shows the mean |uz| values normalized by the value for the

homogeneous LMS and the Wiener and HS bounds. Contrarily to the results obtained for the

bearing capacity, the heterogeneous model presents higher |uz| than all bounds tested, which

could be prejudicial for engineering design. As seen with the effect of other soil parameters, the

relation of the settlement with γ appears to be related to either the response of one material

or the other; in other words, it is mainly controlled by the interaction between the materials.

Compared to the bearing capacity assessment, the emergence of a percolation-like behavior is

caused by the properties contrast and its effect in the behavior. For a highly heterogeneous
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system in the vicinity of the percolation threshold (γc), there are several local clusters that are

mainly composed of the more stiffer material (MDS), and which are the principal components

of what becomes the percolating cluster.
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Figure 5.42 – Homogenization theories for the original LMS -MDS soil mixture: a) traditional
theories and b) generalized effective medium (GEM) equation for EQ1

Figure 5.42b shows the GEM equation for EQ1. The percolation threshold and the scaling

exponents were found by an optimization of the average |uz| of all γ values. The least-squares

method was used and the variables were bounded between 0 and 1. The γc found is equal to

0.35, which is slightly below the values found in the literature for transport properties which is

expected given the correlation in both directions and the important interactions between the

soils shown previously. The scaling exponents s and t are equal to 0.24 and 0.21, respectively.

As these are similar, the effect of having very high or very low γ is relatively similar. In other

words, the system is affected for even a small amount of spatial variability. The GEM equation

gives a well suited fit for the effective settlement of the structure, which is related to the theory

of the percolation threshold, i.e. that after a certain value, there is a well-connected cluster

that connects opposite sides of the system.

Figure 5.43a shows the mean |uz| as a function of γ for the eight motions tested. It is noted

that the effect of the spatial variability is very different for each input motion but as the initial

|uz| is also different, the relative difference values (∆|uz|) are shown in Figure 5.43b. Note that

the shape of the function, i.e. positive or negative concavity or s shape, appears to be related

to other factors than only the initial |uz| value. For instance, EQ2 and EQ7 have a similar

|uz| for the non-treated case however the former presents a positive concavity and the latter
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a negative one. This shape is related to the interactions between the two soils, though when

the addition of a small fraction of treated soil affects only slightly the response and then for

low γ values it drops, the relation has a positive concavity as for EQ2 and EQ5. In the other

hand, when by only adding a small fraction, the settlement is drastically reduced while it is not

greatly affected by low γ values, the shape is described as a negative concavity as for EQ3 and

EQ7. Concerning the other motions, a combination of both phenomena is identified.
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Figure 5.43 – |uz| relation with γ for all motions tested: a) mean values, b) relative difference
and c) normalized mean values compared to GEM equation

Furthermore, Figure 5.43c shows the normalized |uz| with respect to the case before treat-

ment (i.e. LMS). The average values are shown in dashed lines. Additionally, the GEM equation

was calibrated for all motions and results are shown in Figure 5.43c as solid lines. The percola-

tion threshold γc and the scaling exponents found also by least squares optimization are shown

in Table 5.6.

Table 5.6 – Calibration of GEM parameters

s t γc
EQ1 0.24 0.21 0.35
EQ2 0.1 0.26 0.18
EQ3 0.54 0.99 0.53
EQ4 0.14 0.19 0.3
EQ5 0.31 0.29 0.1
EQ6 0.73 0.3 0.44
EQ7 0.59 0.94 0.76
EQ8 0.02 0.08 0.1

The GEM equation gives a well suited fit for the effective settlement of the structure under
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the earthquake motions tested. Note that EQ1 and EQ4 have a similar normalized response

and thus similar coefficients. Contrary to the results of the previous section concerning the

bearing capacity for different clay mixtures, it appears that in this case the response is not

only depending on the values of the extreme cases. For instance, even if EQ3 and EQ5 have

similar |uz| ratio between the extreme cases (i.e. |uzMDS|/|uz LMS|), the effect of different γ

values is very different. Additionally, the percolation threshold does not seem to depend on the

|uzMDS|/|uz LMS|, as seen for EQ2 and EQ6.

In an effort to understand the relation between the input motion and the effect of the

different spatial fractions, the value ∆|uz| for γ = 0.5 was compared to 15 intensity measures

(IM), defined in the appendix C.2. Figure 5.44 shows the relation with the three IM that

presented the best relation: the Arias intensity (IA), the peak horizontal velocity (PHV) and

the period of equivalent harmonic wave (TV/A). As it can be seen, the values appear to be

closely related to the input PHV values except for three motions (EQ1, EQ4 and EQ8). The

black line corresponds to a logarithmic fit without the outliers motions and the coefficient of

determination (R2) is calculated without the latter. Besides the fact that these motions present

the highest PHA and highest |uz LMS|, EQ1 and EQ8 were the only ones to be identified as

pulse-like according to the procedure defined by Baker (2007). Additionally, as was noted above,

EQ4 was recorded in soft soil, with a Vs 30 below 400m/s, though it could have high frequency

content. This motion was not identified as pulse-like by Baker (2007) procedure but it could

be according to another definition of pulse-like developed by Dickinson and Gavin (2011).

The PHV is more likely to characterize ground-motion accurately at intermediate frequencies

because it is less sensitive to the higher frequency components Kramer (1996). Finally, Figure

5.44c shows ∆|uz| for γ = 0.5 as a function of TV/A, which gave the highest efficiency from all

IM tested taken into account all motions. TV/A is the equivalent period corresponding to the

intersection of the constant spectral acceleration and spectral velocity and is computed by:

TV/A = 2π
αV (ξ = 5%)

αA(ξ = 5%)

PHV

PHA
where

αV (ξ = 5%)

αA(ξ = 5%)
=

1.65

2.12
(5.28)

where αV and αA are the Newmark-Hall median spectrum amplification factors for the constant

velocity and the constant acceleration regions with 5% damping. Green and Cameron (2003)

found a close relation between this IM and the amplification of soft soil sites. In this case, TV/A

appears to better describe ∆|uz| for γ = 0.5 as it takes into account the PHV as well as the

inverse of the PHA. According to Kawase (2011), TV/A is a simplified indicator of the dominant



Chapter 5. Effect of the spatial variability 207

period of the motion which appears to be related to the potential damage of structures. While

for PHV, R2 is closer to unity it does not take into account all motions. In Figure 5.44c, the

predominant period of the soil (T0) and the structure (T FB
str ) is shown in solid and dashed lines,

respectively. The differences of EQ3 and EQ5 with respect to the general trend, once more

evaluated by logarithmic fit, can be due to the resonance with the soil for these motions.

Lastly, an additional motion was used to test only the relation of ∆|uz| for γ = 0.5 with

the different IM. It corresponds to the Loma Prieta earthquake of 1989 and identified as EQ9.

This motion is also classified as non-pulse like according to Baker (2007). Fifty simulations

were performed and the mean value is shown as a green triangle in Figures 5.43 and 5.44. As

it can be seen, this additional motion agrees well with the trend found by logarithmic fit for

PHV and TV/A.
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Figure 5.44 – Relation of the relative difference for γ=0.5 and different IM: a) IA, b) PHV and
b) TV/A

5.5.8 Other EDPs

The effect of spatial variability in the seismic response on a soil structure interaction model can

be analyzed by different engineering demand parameters (EDPs). In this study, focus was given

to the assessment of this effect on the relative settlement of the structure with respect to free

field. However, as the soil behavior is nonlinear and the seismic excitation is highly complex,

the effect on other EDPs is different.

Regarding the liquefaction index (Q) evaluated at the end of shaking for the whole deposit

shown in Figure 5.45a, there is a clear relationship with |uz| (seen in Figure 5.31), which explains

the importance of pore water pressure generation and migration through the soil deposit. How-
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ever, Q presents higher variation specially for lower spatial fractions. A possible explanation

is that liquefaction triggering depends on the spatial distribution and the presence of clusters

while the relative settlement depends on the response of the entire deposit. Similarly, the Arias

intensity (IA) evaluated at the structure’s base at the end of shaking is shown in Figure 5.45b

and presents a close relationship with the inverse of Q and of |uz|, though the variation is

generally higher.
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Figure 5.45 – Box-and-whiskers plot for: a) the Liquefaction Index (Q), b) Arias intensity (IA)
and c) maximum inter-story-drift (ISD)

In contrast, the maximum inter-story drift (ISD) of the structure, shown in Figure 5.45c,

presents a very different relation with the spatial fraction. The mean values change drastically

and the dispersion is significantly high. Probably, more simulations are required to have a

convergence of the mean and standard deviation on this parameter, as it depends on the non-

linearity of the structure behavior as well as on the soil variability. However, it is important to

highlight that in spite of the average increase in ISD as more MDS is included, the drift is not

very high and the structure has not suffer significant damage.

Finally, Figure 5.46 shows the same EDPs relation with γ for all input motions tested. In

this case, the input motions that presented some similarities in the |uz| response have a different

behavior for other EDPs. For instance, while EQ1 and EQ4 presented similar overall response

for |uz|, they present substantial differences regarding the EDPs shown in Figure 5.46. For

instance, with EQ4 and for γ equal to 0, ISD is decreased more than 20% compared to γ equal

to unity, while with EQ1, the corresponding value is slightly increased. In general, the EDP

normalized values are higher than those for |uz|. For some motions, values can be greater than

unity which means that after the soil improvement these EDPs have increased thus it will be
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prejudicial for the system. In particular, the increase in IA is above twice the initial value for

EQ7 and for EQ5, all EDPs shown present a considerable increase.
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Figure 5.46 – Mean values relation with γ for all motions tested for: a) the Liquefaction Index
(Q), b) Arias intensity (IA) and c) maximum inter-story-drift (ISD)

5.5.9 Partial conclusions

A numerical model of discrete spatial heterogeneity was used to assess the liquefaction induced

settlement of an inelastic soil-structure system. Correlation in both directions was introduced

by the nearest-neighbor model. The effect of the spatial fraction (γ) of the treated-untreated soil

mixture was analyzed. At least twenty simulations were used for each γ. The main conclusions

of the present study are:

• For all motions tested, the case of the fully-treated soil reduces the relative settlement

of the structure with respect to free-field but increases the liquefaction ratio under and

around the treated area.

• Owing to excess pore-pressure migration, treated soil surrounded by loose sand can present

liquefaction and therefore low fractions of soil treatment have very low efficiency. Simi-

larly, once the loose sand is well surrounded by treated soil, improvement in the relative

settlement is small.

• While the relative settlement (|uz|) appears to be related to the liquefaction index (Q),

the latter presents more variation due to the pore-pressure migration. Even so, with some

motions, Q could be increased at adding denser soil to the deposit.
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• The generalized-effective-medium (GEM) equation is well fitted for the average |uz| as

a function of γ with all the earthquakes tested; while, the traditional homogenization

techniques will overestimate the efficiency of the inclusions for most motions.

The coupling of the discrete spatial variation code and the finite element model applied in

a probabilistic framework appears to properly include heterogeneity on the soil. However, the

effect of multivariate discrete models should be further analyzed. Furthermore, the effect of the

soil properties correlation (in the horizontal and vertical direction) on the liquefaction-induced

settlements should be investigated and, if possible, related to real in-situ measurements of

added spatial variability due to mitigation techniques.



Chapter 6

Conclusions

The current seismic design philosophy is based on nonlinear behavior of structures where the

foundation soil is often simplified by a modification of the input acceleration depending on the

expected site effects. The latter are generally limited to depend on the shear-wave velocity

profile or a classification of the site. Findings presented in this work have illustrated the impor-

tance of accounting for both soil nonlinearity due to seismic liquefaction and for soil-structure

interaction. The first part of this work was devoted to show the need to take into account in the

numerical modeling the coupling of excess pore pressure (∆pw) and soil deformation (CPD). In

this regard, the differences between this approach and the decoupled one were quantified via

the simulation of nonlinear 1D wave propagation and SSI. The effect of coupling was evaluated

in both the structure’s settlement and its seismic performance. The second part was focused on

the efficiency of soil improvement techniques (e.g. soil-mixing, bentonite permeations or bio-

grouting) on mitigating excessive seismic ground settlements of a structure on liquefiable sandy

profiles. In this case, the effect of the added spatial variability due to improvement techniques

was assessed by coupling FEM with a binary random field generated by an auto-regressive code.

General Conclusions

Even if partial conclusions were already given throughout the dissertation, the main obtained

results are highlighted in this chapter and discussed in the light of their contribution to the

main objective:

• With respect to the nonlinear modeling, the ECP model was validated with a real site

for the 1D response analysis in a blind test. The model parameters were calibrated with

211
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few laboratory and in-situ data and enriched with empirical correlations found in the

literature. According to the Anderson criteria, the model provides good similarities for

different motion intensity levels, specially for frequencies above 1Hz. In this case, the sim-

ilarity is less for the weak motions as the model overpredicts the first peak amplification;

however it is able to capture the shift to lower frequencies as well as the deamplification

due to the nonlinear behavior for strong motions.

• With respect to the effects of CPD on the free-field (FF) response it was found that even

though the maxima on acceleration, Arias intensity and settlement are overestimated with

the DPD analysis, the acceleration response spectra (PSA) is underestimated for periods

below 0.1s and above 1s. Moreover, if PSA is evaluated after the predominant period of the

motion differences between the analyses increase as the CPD causes a deamplification due

to soil softening. The effects of CPD on PSA were found to depend on the ∆pw generation

thus on the soil’s contractant tendency and the liquefaction index (Q) measured in the

deposit hence a period-dependent correction function described by the ratio between the

PSA for CPD and for DPD, called the Response Spectra Ratio (RSR), is presented for

different Q and different time windows. The general tendency of this function was found

to be similar to others found in the literature, even though only two soil profiles were

studied.

• Concerning the effects of CPD on the structural response it is important to analyze also

the soil-structure interaction (SSI). Even if in FF, the DPD presented higher settlement,

the structure’s weight affects the soil behavior and hence the structure’s settlement with

respect to FF is in general underestimated with DPD models. Additionally, if the SSI

effects are significant, the differences in the PSA found in the FF are amplified by the

structure’s predominant period. Moreover, the combination of these effects causes an

underestimation of the maximum ISD by the DPD analysis. However these results are

dependent on both the soil’s and structure’s behavior as well as in the input motion.

• In the last chapter, an important aspect of the numerical modeling of liquefaction miti-

gation techniques was addressed: the uncertainty in the technique’s efficiency due to the

spatial variability introduced in the deposit. The water migration from natural to treated

soil causes the latter to liquefy thus for low levels of treatment, the structure’s settlement

could be even increased depending on the spatial distribution of the two soils. Further-

more, it was shown that the relation between the levels of treatment and the resulting
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settlement can not be described by traditional homogenization theories such as arithmetic

or harmonic averages, as it is usually done. In addition, this relation is dependent on the

input motion used because of the different interactions within the deposit.

Further research

• The ECP model validation of nonlinear 1D site response analysis has been presented

however additional cases of borehole arrays dealing with liquefaction evolution should be

tested, for example the liquefaction array sites of Port Island (Japan), Wildlife (USA)

and Belleplaine (France). Additionally, it is desirable to improve the database of valida-

tion cases of liquefiable soil and structure interaction models with instrumented sites or

physical experiments performed in shaking tables or in centrifuge tests.

• The relation of both SSI and CPD effects was shown to be highly complex. Thus, the

effects of CPD could be further evaluated for other soil deposits and other structures in

order to increase the reliability of the results. In addition to the nonlinearity of the soil,

the structure’s nonlinearity could be further analyzed comprehending the evaluation of

damage and failure.

• Furthermore, in order to take into account the three components of the input motion

and its effects on the CPD analysis a 3D modeling is desirable but this will cause an

important increase in computational ressources. In this case, it is necessary to include a

model able to reduce the added computational cost to a more rational size with reliable

and accurate results. For example, the Domain Reduction Method briefly described in

section 3.4 could be used. In addition, this method could allow to introduce the whole

incident wave in the model.

• Concerning the numerical modeling of the added spatial variability for the evaluation

of the bearing capacity of a cohesive deposit, the model could account for multi-soil

variability thus incorporating the Bruggeman effective medium theory for discrete random

fields. Furthermore, the validation of this model could be possible via centrifuge tests with

controlled spatial variability.

• With regard to the induced spatial variability by liquefaction mitigation techniques, two

approaches could be envisaged for further research. On one hand, a total coupling of FEM
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with a model of the transport, permeation or injection process of the treated material to

a saturated soil deposit could provide an insight of the different spatial distributions.

Thus, the interactions within the deposit will be taken from the initial static case and

the evolution of the mechanical properties would be modeled. However, this approach

will need to take into account the inherent spatial variability and other uncertainties that

will cause the eventual heterogeneity in the process. On the other hand, the latter could

be addressed in a probabilistic framework from which a probability distribution function

and random field properties could be assessed by only modeling the application of the

soil improvement process. Afterwards, this model would be used as input for the binary

or multi-soil discrete random field coupled to FEM. Doubtlessly, validation of the model

with in-situ measurements or laboratory tests could contribute to this work.
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Soil model parameters
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According to the concept of critical-state soil mechanics, the behavior of cohesionless soils is

related to the proximity of its initial state to the critical state or steady-state line rather than

to the absolute measurements of density (Roscoe and Pooroshasb, 1963; Been and Jefferies,

1985; Ishihara, 1993). For the ECP model, Aubry et al. (1982) defined this distance as the

stress ratio p0/pc0, in which p0 is the initial mean stress and pc0, the stress corresponding to

the critical state of the initial density. When this ratio is higher than 1 and under drained

conditions, the soil behavior will be contractant; otherwise, it will be contractant/dilatant.

Several soil mechanics tests are modeled in order to show the general response of the ECP

elastoplastic model with the different soils tested. The tests concern both monotonic and cyclic

paths at drained and undrained conditions with varying effective consolidation pressures (p′).

In order to ease the comparison between the soils tested, all simulations were performed with

the same p′ values: 10kPa, 40kPa and 60kPa, which correspond to depths of 1m, 5m and 10m,

approximately.

Two soil deposits were used in this study. They present different initial behaviors and

correspond to two relative densities: (LMS) loose-to-medium and (MDS) medium-to-dense.

The model parameters were determined with the procedure defined by Lopez-Caballero et al.

(2007) and their calibration and validation is presented in Lopez-Caballero and Modaressi-

Farahmand-Razavi (2013).

A.1 LMS

The parameters are divided into five groups corresponding to the different mechanisms and are

shown in Table A.1.

A.1.1 Drained triaxial test

Figures A.1 and A.2 show the results obtained by the model for a simulated triaxial drained

test. The response is showed in four planes: the q – ε1, εv – ε1, εv – p and η – ε1. For the LMS,

the volumetric strains are below zero for all confinement pressures tested, which means that the

soil deposit is contracting. This densification is presented even for low pressures, for example

in the case of the soil near the surface. The tendency of densification causes the increase in

pore pressure generation, which ultimately triggers the liquefaction phenomena.
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Parameter [0-1]m [1-10]m [10-15]m [15-20]m
ρs [kg/m

3] 2700 2700 2700 2700
n0 0.35 0.59 0.59 0.47
k0 0.6 0.6 0.6 0.6
κ [m/s] 1 · 10−5 1 · 10−5 1 · 10−5 1 · 10−4

Elasticity
Kref [MPa] 69.74 628.0 628.0 628.0
Gref [MPa] 32.19 290.0 290.0 290.0
ne 0.0 0.5 0.5 0.5
pref [MPa] 1.0 1.0 1.0 1.0
Critical State and Plasticity
φ′

pp[
◦] 30 30 30 30

β 33 33 33 33
d 2.00 2.00 2.00 2.00
b 0.20 0.20 0.20 0.20
pc0 [kPa] 39.8 39.8 50.0 80.0
Flow Rule and Isotropic Hardening
ψ[◦] 30 30 30 30
αψ 1.0 1.0 1.0 1.0
a1 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4

a2 2 · 10−3 2 · 10−3 2 · 10−3 2 · 10−3

c1 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

c2 2 · 10−3 2 · 10−3 2 · 10−3 2 · 10−3

m 1.5 1.5 1.5 1.5
Threshold Domains
rela 3 · 10−2 3 · 10−2 3 · 10−2 3 · 10−2

rhys 4 · 10−2 4 · 10−2 4 · 10−2 4 · 10−2

rmob 8 · 10−1 8 · 10−1 8 · 10−1 8 · 10−1

relaiso 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

Table A.1 – ECP model parameters for loose-to-medium sand (LMS)
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Figure A.1 – Simulated drained triaxial tests for LMS: a) q – ε1 and b) εv – ε1
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Figure A.2 – Simulated drained triaxial tests for LMS: a) εv – p and b) η – ε1

A.1.2 Consolidation test

Figure A.3 shows the simulated response of cyclic isotropic and oedometric consolidation tests.

A.1.3 Drained cyclic strain-controlled shear test

To define the cyclic behavior, drained cyclic shear tests with strain control are simulated for

different confinement pressures. The shear modulus degradation and damping evolution with

shear strain is shown in Figure A.4. As a reference, the mean of the empirical equation of

Darendeli (2001) for the same effective stresses, IP= 0%, OCR=1, f=1Hz and N=10 cycles are

also shown in the figure. The obtained shear modulus degradation curves (G/Gmax − γ) match
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Figure A.3 – Simulated consolidation tests for LMS: a) isotropic and b) oedometric

relatively good; whereas for the damping (D) it can be seen an underestimation for strains less

than 0.001% and an overestimation for large strains.
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Figure A.4 – Simulated drained cyclic shear test for LMS: a) normalized shear modulus degra-
dation (G/Gmax)and b) damping (D) curves as a function of γ

A.1.4 Undrained cyclic stress-controlled shear test

Regarding the characterization of the liquefaction resistance, an undrained cyclic shear test

was modeled for varying confinement pressures. Figure. A.6 shows the cyclic stress ratio

(SR = τcyc/p0) as a function of the number of loading cycles to produce liquefaction (N). As

qualitative comparison, the curves given by Byrne et al. (2004) for Nevada sand at different
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Figure A.5 – Simulated drained cyclic shear test for LMS: a) G – γ and b) D – G/Gmax

densities (i.e. Dr = 40 and 60%) are also shown. It is noted that the obtained curves are closer

to the reference for a Dr = 40% and that the resistance is similar for the levels of stress tested.
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Figure A.6 – Simulated undrained cyclic shear test for LMS: SR – N

A.2 MDS

Table A.2 shows the parameters for the MDS deposit.

A.2.1 Drained triaxial test

Figures A.7 and A.8 show the results obtained by the model for a simulated triaxial drained

test for MDS. The response is showed in four planes: the q – ε1, εv – ε1, εv – p and η –
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Parameter [0-5]m [5-10]m [10-15]m [15-20]m
ρs [kg/m

3] 2700 2700 2700 2700
n0 0.35 0.59 0.59 0.47
k0 0.5 0.5 0.5 0.5
κ [m/s] 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4

Elasticity
Kref [MPa] 79.47 444.0 444.0 444.0
Gref [MPa] 36.68 222.36 222.36 222.36
ne 0.0 0.4 0.4 0.4
pref [MPa] 1.0 1.0 1.0 1.0
Critical State and Plasticity
φ′

pp[
◦] 31 31 31 31

β 43 43 43 43
d 3.50 3.50 3.50 3.50
b 0.20 0.20 0.20 0.20
pc0 [MPa] 1.80 1.80 1.80 1.80
Flow Rule and Isotropic Hardening
ψ[◦] 31 31 31 31
αψ 1.0 1.0 1.0 1.0
a1 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4

a2 4 · 10−3 4 · 10−3 4 · 10−3 4 · 10−3

c1 6 · 10−2 6 · 10−2 6 · 10−2 6 · 10−2

c2 3 · 10−2 3 · 10−2 3 · 10−2 3 · 10−2

m 1.5 1.5 1.5 1.5
Threshold Domains
rela 5 · 10−3 5 · 10−3 5 · 10−3 5 · 10−3

rhys 3 · 10−2 3 · 10−2 3 · 10−2 3 · 10−2

rmob 8 · 10−1 8 · 10−1 8 · 10−1 8 · 10−1

relaiso 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

Table A.2 – ECP model parameters for medium-to-dense sand (MDS)
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ε1. In contrast with the previous soil, for the MDS the volumetric strains are above zero for

strains larger than 1%, for all confinement pressures tested, which means that the soil deposit

is contractant/dilatant.
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Figure A.7 – Simulated drained triaxial tests for MDS: a) q – ε1 and b) εv – ε1
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Figure A.8 – Simulated drained triaxial tests for MDS: a) εv – p and b) η – ε1

A.2.2 Consolidation test

Figure A.9 shows the simulated response of cyclic isotropic and oedometric consolidation tests.
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Figure A.9 – Simulated consolidation tests for MDS: a) isotropic and b) oedometric

A.2.3 Drained cyclic strain-controlled shear test

To define the cyclic behavior, drained cyclic shear tests with strain control are simulated for

different confinement pressures. The shear modulus degradation and damping evolution with

shear strain is shown in Figure A.10. As a reference, the mean of the empirical equation of

Darendeli (2001) for the same effective stresses, IP= 0%, OCR=1, f=1Hz and N=10 cycles are

also shown in the figure. The obtained shear modulus degradation curves (G/Gmax− γ) match

relatively good; whereas for the damping (D) it can be seen an underestimation for strains less

than 0.001% and an overestimation for large strains.
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Figure A.10 – Simulated drained cyclic shear test for MDS: a) normalized shear modulus degra-
dation (G/Gmax)and b) damping (D) curves as a function of γ
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Figure A.11 – Simulated drained cyclic shear test for MDS: a) G – γ and b) D – G/Gmax

A.2.4 Undrained cyclic stress-controlled shear test

Regarding the characterization of the liquefaction resistance, an undrained cyclic shear test

was modeled for varying confinement pressures. Figure. A.12 shows the cyclic stress ratio

(SR = τcyc/p0) as a function of the number of loading cycles to produce liquefaction (N). As

qualitative comparison, the curves given by Byrne et al. (2004) for Nevada sand at different

densities (i.e. Dr = 40 and 60%) are also shown. It is noted that the obtained curves are closer

to the reference for a Dr = 40% and that the resistance is similar for the levels of stress tested.
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A.3 Soils used in chapter 2

In chapter 3, three additional soil profiles were used. They consist of the cases for the verification

and validation of the nonlinear model presented for the international benchmark PRENOLIN.

The first two are called P1 and P2 and are canonical soil profiles used in this study to analyze

the model’s sensibility with respect to the numerical parameters. The model parameters for

each layer are shown in Tables A.3 and A.4 for the two soil profiles, correspondingly. As

only limited information was available, most parameters do not vary between layers. So as to

maintain a constant mean stress ratio, pc0 varies and therefore β changes. Additionally, the

geometric parameters for the calibration of the shear modulus degradation were varied: i.e. rela

, rhys and a1 and a2.

Layer 1 2 3 4 5
z [m] 1 5 10 15 20

Elasticity
Kref [MPa] 840.0 840.0 840.0 840.0 840.0
Gref [MPa] 180.0 180.0 180.0 180.0 180.0

ne 0.00 0.00 0.00 0.00 0.00
pref [MPa] 1.0 1.0 1.0 1.0 1.0

Critical State and Plasticity
φ′

pp [◦] 30 30 30 30 30
β 55 54 53 52 52
d 2.00 2.00 2.00 2.00 2.00
b 0.80 0.80 0.80 0.80 0.80

pco [MPa] 0.01 0.06 0.11 0.17 0.23
Flow Rule and Isotropic Hardening

ψ [◦] 30 30 30 30 30
αψ 1.00 1.00 1.00 1.00 1.00
a1 8.0e-07 1.0e-05 2.0e-05 2.0e-05 7.0e-05
a2 2.0e-06 5.0e-05 6.0e-04 1.5e-03 5.5e-03
c1 1.7e-01 1.7e-01 1.7e-01 1.7e-01 1.7e-01
c2 3.5e-01 3.5e-01 3.5e-01 3.5e-01 3.5e-01
m 1.00 1.00 1.00 1.00 1.00

Threshold Domains
rela 0.100 0.026 0.013 0.005 0.007
rhys 0.600 0.080 0.040 0.030 0.060
rmob 0.800 0.800 0.800 0.800 0.800
relaiso 0.0010 0.0010 0.0010 0.0010 0.0010

Table A.3 – ECP model parameters for P1 - Verification phase

Additionally, in section 3.5, some results for the validation of the model with the surface

recordings of a japanese borehole site are presented. The site is the PARI station Sendai. The
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Layer 1 2 3 4 5 6 7 8 9
z [m] 1 5 10 15 20 40 60 80 100

Critical State and Plasticity
φ′

pp [◦] 30 30 30 30 30 30 30 30 30
β 55 54 53 52 52 52 51 51 51
d 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
b 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

pco [MPa] 0.01 0.06 0.11 0.17 0.23 0.45 0.68 0.91 1.13

Flow Rule and Isotropic Hardening
ψ [◦] 30 30 30 30 30 30 30 30 30
αψ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a1 5.0e-6 1.0e-5 1.7e-5 2.0e-5 2.5e-5 4.0e-5 2.0e-5 4.0e-5 5.0e-5
a2 5.0e-5 1.0e-4 5.0e-4 1.0e-3 1.5e-3 9.0e-4 1.0e-3 9.0e-4 2.0e-3
c1 1.7e-1 1.7e-1 1.7e-1 1.7e-1 1.7e-1 1.7e-1 1.7e-1 1.7e-1 1.7e-1
c2 3.5e-1 3.5e-1 3.5e-1 3.5e-1 3.5e-1 3.5e-1 3.5e-1 3.5e-1 3.5e-1
m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Threshold Domains
rela 0.020 0.012 0.007 0.006 0.006 0.009 0.005 0.004 0.005
rhys 0.050 0.090 0.070 0.050 0.050 0.060 0.010 0.010 0.030
rmob 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800

relaiso 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Table A.4 – ECP model parameters for P2 - Verification phase

Table A.5 shows the ECP model parameters for the two layers. However the parameters for

both layers are very similar as the difference between the mean pressures is not significant

As the shear wave velocity changes each meter, the shear and bulk moduli were set to be

pressure independent hence nel = 0. Note that only four parameters differ for the two layers.

They correspond to the hardening parameters (a1 and a2) and the threshold domains (rela and

rhys) that control the hardening evolution and are calibrated with the nonlinearity curves of

shear degradation modulus with strain, as explained in section 3.3.

.

A.4 General conclusions

Concerning the simulated damping (D) evolution with strain, generally an underestimation

for strains less than 0.001% and an overestimation for large strains is present. For purely

elastic behavior, no hysteretic dissipation of energy should take place; however, even if the

mechanism is not well understood, there is experimental evidence of such dissipation Kramer
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Layer 1 2
z [m] 3 7

Critical State and Plasticity
φ′

pp[
◦] 32 30

β 30 30
d 2.00 2.00
b 0.20 0.20
pco [MPa] 0.20 0.55

Flow Rule and Isotropic Hardening
ψ[◦] 32 30
αψ 1.00 1.00
a1 6.96e-5 1.12e-4
a2 1.39e-4 2.23e-4
c1 2.00e-3 2.00e-3
c2 1.00e-3 1.00e-3
m 1.00 1.00

Threshold Domains
rela 6.00e-2 2.96e-2
rhys 4.20e-1 5.00e-1
rmob 8.00e-1 8.00e-1
relaiso 1.00e-3 1.00e-3

Table A.5 – ECP model parameters for P1 - Validation

(1996). Some advanced constitutive models, as the one used in this analysis, require the addition

of a small amount of damping to avoid spurious response at very low strain levels. This

damping is introduced by the numerical algorithm of the dynamic equilibrium solution in the

time domain known as the predictor-corrector Newmark scheme Katona MG (1985). In this

case, the numerical damping “added” into the model is 0.1% and is applicable for strains less

than 0.01% Montoya-Noguera and Lopez-Caballero (2016). Concerning the large strains, the

damping overestimation is due to the fact that in the ECP model the Massing rules are verified.

This overestimation is supposed to cause an underestimation of displacements and some ground

motion properties. In this regard, a new version of the model including a degradation factor for

the plastic rigidity was implemented by Carrilho Gomes et al. (2015). This factor depended on

the shear strain level and controlled the damping at large shear strains. The preliminary results

showed that for sands “the reduction achieved in damping curves had no significant influence

on the seismic soil response, since the profiles of maximum shear strain, PGA at surface and

normalised PSA were similar”.
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(a) (b) (c)

Figure B.1 – Horizontal and vertical acceleration at three time instants for a very weak motion:
a) after SH waves are reflected from the surface (t=0.1s), b) when it is reflected from the bottom
(t=0.2s) and c) once more reflected from surface (t=0.3s)

As the wave propagates through the model, the soil degradates and soil deformations cause

the modification of the wave. In a 2D model, when this phenomena occurs, some heterogeneity

is evidenced due to the differences in soil deformation throughout the deposit. Though, when

a vertically shear wave propagates through a soft soil, surface waves and vertical accelerations

can be evidenced. As the 2D model increases in width, more differences can be evidenced in

the wave propagation and in the soil behavior through the deposit. Additionally, differences

increase as the intensity of the motion increases; hence, while for quasi-elastic behavior almost

no difference appears, as soil nonlinearity evolves, more the models will differ.

In this section, the effects of soil deformation on the signal response will be analyzed. First,

differences between a 2D soil column of 1m length, called hereafter the 1D model, and a 50m

length soil deposit, called 2D model. The main difference in the models is the length while

all the other geometric and numerical parameters were kept constant. The elements in the 2D

model are discretized each 0.5m in the horizontal direction in the center of the model and in a

zone of 20 length; outside this zone, the discretization is doubled (i.e. each 1m).

When the SH waves are reflected from the surface, vertical waves are generated in a 2D

model as can be seen in Figure B.1 for three time instants after a motion of PHA≈0.01m/s2

is injected into the base of the model. As Vs is below 200m/s, at t=0.1s the first SH wave is

already reflected from the surface and the vertical wave appears. But as soon as the waves

are reflected, differences are observed at the horizontal as well as in the vertical acceleration

amplitudes in the center of the model.
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The models present differences in various aspects, however, for the sake of brevity, results

will be shown mainly on three:

• Shear stress and strain;

• Liquefaction ratio ;

• Acceleration

Firstly, the maximum shear modulus (Gmax) profile and the transfer function (TF) of the

soil deposit, evaluated between the surface and the bedrock, are shown in Figure B.2. The soil

is modeled with the ECP elasto plastic model but, since a scaled motion with a PHA =1 ·10−6g

was used, the behavior is quasi-elastic. At this stage, the only differences observed between the

1D and the 2D model are in the TF for frequencies higher than 20Hz; although this is a known

limitation of the finite element model due to the discretization in time and space. Concerning

other aspects of the analysis, no significant difference can be observed.
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Figure B.2 – a) Shear modulus profile and b) TF - surface/bedrock - quasi-elastic behavior

B.0.1 Shear stress and strain

In contrast, when a strong motion is used differences can be important between the 1D and the

2D models. Figures B.3 to B.7 show the profiles of the maximum values for some parameters

for a strong ground motion with a PHA = 0.2g. Profiles in the 2D model were taken from

the centerline, although, only small differences are perceived for other profiles. In other words,
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the 2D model does not differ in the horizontal direction. Figure B.3 shows the profiles of

maximum shear stress and strain. Concerning the maximum shear stresses, the 2D model

presents slightly higher values. However, the biggest difference is in the shear strains; where

the 2D model presents the maximum value at 8.5m while for the 1D model, it is 0.5m below.
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Figure B.3 – a) Maximum shear stress and b) strain for a strong motion - Nonlinear behavior

To better understand the shear stress and strain differences, Figure B.6 shows the time

history for the depth of maximum values for 2D, i.e. z=8.5m and 1D, z=9m. Note that the

difference between the models does not start at the same time. Yet, the shape of the stress-strain

loops are similar.

B.0.2 Liquefaction ratio

The profile of liquefaction ratio (ru) at the end of shaking is shown in Figure B.5 for both

models. The models present similar values above 5m, then differences start to increase and are

larger at the bottom of the deposit. Again, the location of the maximum values differ for about

0.5m; thus, the liquefaction ratio is intimately related to the shear strains in the soil.

Finally, regarding the same depths of maximum values, the time evolution of the liquefaction

ratio is shown for 8.5 and 9m. For the former, the models start to differ after 12s when the 2D

model presents a rapid increase of pore pressure. For the latter, the difference is greater after

32s, when pore pressure dissipation is evidenced in the 2D model.
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Figure B.4 – Time history of shear stress and strain: a) and c) at 8.5m and b) and d) at 9m

B.0.3 Acceleration

The difference in peak values is also observed in the profile of maximum horizontal acceleration

shown in Figure B.7 where the 2D model presents a maximum value at the same depth. Al-

though the 1D model presents also some peaks about this depth, the maximum value is found

at 16m. Concerning the maximum vertical acceleration profile, most of the peaks are at deeper

soil.

Although some differences have been evidenced concerning shear stresses and strains, lique-

faction ratio and acceleration, the main difference bears on the high frequencies, or low periods,

as it can be seen in the response spectra shown in figure B.8 for two depths. At surface, slightly
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Figure B.5 – Profile of liquefaction ratio ru at the end of shaking for 1D and 2D centerline

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

t [s]

r u
 [
1
]

 

 

1D
2D

(a)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

t [s]

r u
 [
1
]

 

 

1D
2D

(b)

Figure B.6 – Liquefaction ratio time evolution at : a) 8.5m and b) 9m

smaller values are observed for the 2D model response below 0.2s, i.e. frequencies above 10Hz.

However, differences are more important at 8m, where the 2D model response has clearly a

spurious energy for periods shorter than 0.2s which is probably due to the previously observed

high shear strains and liquefaction.

Due to the complexity of the acceleration in terms of frequency, duration and energy, two

methods are applied to compare and quantify the differences between signals.
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Figure B.7 – Differences in the Peak acceleration profile : a) horizontal and b) vertical
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Figure B.8 – Response spectra of the horizontal acceleration : a) at surface and b) at 8m

B.0.3.1 Signal coherency

Figure B.9 shows the evolution with time of the coherency (γc) between the two models for

two depths. The γc is evaluated between the two motions with an incremental time window.

For the motions in the surface, above the watertable, γc is above 0.8 during all the time for

frequencies below 10Hz. Additionally, no loss of coherence is percieved before 8s, not even for

very high frequencies (e.g. above 30Hz). In contrast, at the liquefied area at 8m depth, the

coherence for small frequencies drops to 0.8 between 12 and 18s. However, it seems that the

coherency loss with frequency has a similar trend for both depths tested.
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Figure B.9 – Coherency between 1D and 2D models with incremental time windows : a) at
surface and b) at z=9m (liquefied area)

It is interesting how the loss of coherence at the liquefied area has little incidence in shallower

soil, as shown in Figure B.10. While for the liquefied area, the coherence is lost, γc is above 0.9,

1m below and above. As seen previously, it appears that the loss of coherency with frequency

is constant through depth; except for a more rapid loss near the surface and near the bottom

of the deposit.

Figure B.10 – Signal coherence between 1D and 2D centerline with depth

B.0.3.2 Signal similarity: Anderson Criteria

Figure B.11 shows the maximum, minimum and mean values of all the frequency bands for

the 10 similarity criteria defined by Anderson (2004). Again, the accelerations at the surface
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and at 9m depth are used. Most of the criteria show a good fit, with mean values above

9. As expected, the peak ground displacement (PGD) shows the lowest values as only the

acceleration was used as input and the velocity and displacement are derived values. Besides

PGD, the Fourier spectra (Fs) also presented low values, specially at surface.
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Figure B.11 – Anderson signal similarity between 1D and 2D models : a) at surface and b) at
z=9m (liquefied area)

The mean of all criteria evaluated at different depths is shown in Figure B.12 for all frequency

bands used. The last column shows the criteria evaluated at large band (LB), i.e. from 0.05 to

15Hz. As was previously observed, the differences between the models is shown principally at

the liquefied area and at the high frequency band. Additionally, two criteria are also shown in

Figure B.12 : peak ground displacement (PGD) and Fourier spectra (Fs). The former presents

low values practically at all depths and all frequency bands, while the latter, is principally

affected for frequencies above 5Hz and for the LB.

B.0.3.3 Interferometry

Finally, the interferometry by cross-correlation with the surface was used in the two models

and is shown in Figure B.13. Once more, the effect on liquefaction is clearly visible at 9m for

the 1D model and at 8.5m for the 2D model; where the down-going wave (at the positive time

delay) is completely attenuated. As liquefaction weakens the soil deposit, the motion is again

reflected to the surface. The main difference between the models is in the amplitude of this

new upgoing reflection which as it concerns principally high frequencies, is less visible in the

2D model.
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Figure B.12 – Signal similarity between 1D and 2D centerline with depth : a) mean of all
criteria, b) PGD and c) Fs
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Figure B.13 – Interferometry with strong ground motion - Nonlinear behavior : a) 1D and b)
2D centreline
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Figure B.14 – Particle trajectory : a) at surface and b) at z=8m (liquefied area)
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C.1 Signal processing

Most of the times, recorded ground motions are processed before any engineering and seismo-

logical analysis. According to the PEER center, this processing has two major objectives: (1)

correction for the response of the strong-motion instrument itself; and (2) reduction of random

noise in the recorded time series (Chiou and Youngs, 2008). Different signal processing tech-

niques have been established and several studies on this subject have been published by, among

others,Boore et al. (2002); Bazzurro et al. (2004); Boore (2005); Mollova (2007); Graizer (2012).

Three important aspects or steps can be identified : (1) instrument correction, (2) baseline

correction and (3) filtering. Most discussions of signal processing are on the latter two. Com-

monly, velocities and displacements are integrated from the acceleration time vectors which

introduces a non-realistic residuals. The aim of baseline correction is to remove this spurious

trends by fitting polynomials with different degrees to the velocity or displacement vector and

substracting the derived fit to the acceleration vector. The fits depend on the time points for

which different linear, bilinear or quadratic segments are fitted and mostly a qualitative assess-

ment is required based on a constant, or nearly constant, overall level of permanent displacement

(Bazzurro et al., 2004).

Concerning filtering, causality in filters alter the phase spectrum in order to preserve the

correct arrival time for each frequency component but affects the spectral values at frequencies

much higher than the high-pass corner frequency (Boore et al., 2002). Whereas acausal filtering

results in fewer phase distortions which leaves the phase spectrum unaltered but results in

spurious pre-event low frequency transients in the time history. Additionally, acausal filtering

requires significantly larger quiet periods added (i.e., padding) to maintain compatibility with

velocity and displacement time histories and spectra. Boore (2005) recommend to keep the

padded portion if motions are used in structural or site response calculations to avoid higher

amplitudes for long periods in the response spectra or, conversely, for low frequencies in the

Fourier spectra. Globally, the question on whether to use causal or acausal filters depends on

the intended use of the data, desirability for compatible processed time series and considerations

of computer storage space. For analyses of spatial arrays, where relative timing is important,

causal filtering is preferred, as is done in seismological observatories for earthquake locations

(Chiou and Youngs, 2008).

Bazzurro et al. (2004) presented a statistical evaluation on the causality of filters, of the

filter order and high pass cut-off frequency (fHP ) and of the residual displacement offset. Only
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the Butterworth filter was used. They found that neither causality nor the filter order affect

statistically the amplitude of the response spectra even if causal filters result in a slightly larger

variability in both elastic and inelastic response. However, when causal filters are used PGV

and PGD are on average reduced up to 10% and 15%, respectively. Differences in PGA, IA and

duration were negligible. Similarly, the order of the filter showed no significant effect on the IM

tested. Yet, as expected, increasing fHP caused a decrease in PGV of 5% and in PGD of 15-20%.

With respect to the residual displacement, when it is preserved, the generated inelastic response

spectra are consistently higher than those caused by records with offset removed. Furthermore,

PGV and PGD are considerably larger when residual displacements are preserved (5-20% and

50-60%, correspondingly).

Mollova (2007) investigated the effect of different types of causal filters with different orders

on six intensity measures (IM): PGA, PGV, PGD, IA, Tp and D5, 95). All parameters except

to Tp showed a dependence on the choice of the filter. D5, 95) presented small changes whereas

the peak values and IA changed significantly. For instance, a 20% decrease on PGA was

observed with increasing the passband ripple used for Chebyshev filter. A rather small suite

was used thus more studies should be performed to verify these findings. The sensitivity on

the filtering method presented by Pacific Engineering at the NGA COSMOS joint working

group meeting showed that for most of the nearly 1000 components studied the elastic response

spectra differences associated with the different filtering methods are small and they do not

appear to result in systematic high or low bias of response spectra within the common pass

band (Chiou and Youngs, 2008).

Most processing schemes are still subjective, non-unique and uncertain (Boore, 2005). For

instance, corner frequencies are often selected by visual examination of the Fourier amplitude

spectra, time points and polynomial orders for baseline corrections are hand picked and the

length of padding is subjected to numerical computational cost. According to Bazzurro et al.

(2004), unless there are independent sources of information, such as co-located Global Posi-

tioning System (GPS) sensors for the case of recovering static displacements, or estimates of

low-frequency noise levels for the case of high-pass filtering, the selection of processing param-

eters relies on judgment.

In the present study, the following signal data processing was established. It is a collec-

tion of techniques used by the PEER center, the California Institute of Technology and the

US Geological Survey (USGS), among others (Wang, 1996; Withers et al., 1998; Chiou and

Youngs, 2008). The procedure is based on near-field pulse-like time histories associated with a
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strong ground motion. The important small frequency components are recovered by the data

processing technique developed by Iwan and Chen (1995). All signal motions are processed

before being introduced in the numerical model and a visual inspection was performed in the

time histories for acceleration, velocity and displacement. The main steps are:

1. Apply a 4th order Butterworth (1930) band pass filter between 0.01 - 25Hz (zero-phase

digital filter) to the acceleration time history. This filter is smooth compared to other

known transforms such as the Ormbsy or cosine taper, as it never goes to zero and does

not reject (filter out) completely frequency content of the signal higher than the certain

level (Graizer, 2012).

2. Apply a least-mean-square linear fit in order to eliminate any uncertainty in the instru-

ment centering.

3. Integrate the acceleration time history to obtain a zero initial velocity vector. The trape-

zoidal integration rule is used.

4. Apply a segmented polynomial baseline fit to the velocity to remove any non-physical

trends. Since the ground velocity physically starts and ends at zero, the baseline is

fitted to the initial and final portions of the velocity time history. The start and end

point are found via an LTA/STA ratio (Withers et al., 1998). These two polynomials

are continuously connected by the lowest order (smoothest) polynomial baseline. The

objective of this correction is to diminish the small frequency noise or drift introduced in

the signal recording and playback process (Wang, 1996, According to Report No. EERL

96-04 of California Institute of Technology).

5. Integrate the baseline corrected velocity time history to obtain a displacement time his-

tory, assuming zero initial displacement. And differentiate the velocity to obtain the

corrected acceleration time history. A central difference differentiation scheme is used.

6. Apply a Hanning taper of 2.5% as the signal is theoretically infinite but signal analysis is

only defined on finite signals. The taper consist on multiplying the first and last parts by

a cosine-type signal in order to obtain an acceleration time history starting and ending

in zero.

7. Apply a multiplicative filter that accounts for the diminution of the low-frequency motions.

The high pass filter used is the Butterworth filter. Similar to Boore et al. (2002), the order



Appendix C. Signal tools and processing 245

used is 4. The corner frequency is calculated as:

fc =
1

DT [H2
0/(1−H2

0 )]
1/2n

(C.1)

where DT is the motion duration in seconds andH0 is the modulus of the transfer function

corresponding to frequency 1/DT .

An example of the baseline correction scheme is shown in Figure C.1. It can be seen that the

acceleration, velocity and displacement are zero at the end of the corrected signal. Although,

there are some motions were the proposed scheme deteriorates the displacement vector like in

Figure C.2 due to the high amplitude observed at the end of the signal.
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Figure C.1 – Signal processing scheme

C.2 Earthquake parameters

Motions that have sufficient strength to affect people and their environment are described as

strong ground motions and are the primary interest of earthquake engineers. However, evalua-

tion of the earthquakes’ effect at a particular site requires quantitative descriptions that given

the complexity, require a large amount of information. The primary three characteristics of
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Figure C.2 – Signal processing scheme

strong ground motions are: amplitude, frequency content and duration. The ground-motion

parameters often called intensity measures (IM) provide information of one or more charac-

teristics. To involve the liquefaction hazard and assess its effects, it is important to perfectly

characterize the ground motion by an IM efficient, sufficient and predictable (Kramer and

Mitchell, 2006). In this section, some parameters are defined, taken from Lopez-Caballero and

Modaressi (2011b). Where a(t) is the acceleration as a function of time (t), v(t) the velocity,

DT the duration of the strong motion, PSV the pseudo-velocity spectra and fi and Ci are the

ith frequency and Fourier amplitude respectively.

1. Peak Horizontal Acceleration (PHA) [g ]

The largest absolute value of horizontal acceleration obtained from the accelerogram. It

is often presented in units of gravity acceleration: g= 9.81m/s2. PHA can be correlated

to earthquake intensity and with peak vertical acceleration (PVA) although, PHA is

a parameter that does not provides information neither of the frequency content nor

the duration of motion. The simplified procedure for liquefaction evaluation developed

by Seed and Idriss (1971) relates the maximum shear stress to the PHA but it is also

required a scaling factor to include additional information about the magnitude of the

ground motion.
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2. Peak horizontal velocity (PHV) [cm/s]

It also characterizes ground-motion amplitude. This peak type intensity measure is de-

fined by the maximum absolute velocity of the ground motion signal. PHV is more likely

to characterize ground-motion accurately at intermediate frequencies because it is less

sensitive to the higher frequency components Kramer (1996).

3. Predominant Period (Tp) [s]

A spectral parameter that provides a useful representation of the frequency content. It

is defined as the period of vibration corresponding to the maximum value of the Fourier

amplitude spectrum. Although radically different frequency content motions can have the

same Tp value.

4. Mean Period (Tm) [s]

Rathje et al. (1998) proposed the mean period (Tm) as it better represents the overall

frequency content of a ground motion and can be estimated more reliably with empirical

ground motion data compared to Tp. It is defined as:

Tm =

∑n
i C

2
i

1
fi

∑n
i C

2
i

for 0.25Hz ≤ fi ≤ 20Hz (C.2)

5. Period of equivalent harmonic wave (TV/A) [s]

In general, PGA and PGV ratio increases with increasing magnitude and source-to-site

distance (Kramer, 1996). As an alternative to Tp and Tm, Green and Cameron (2003) used

the PGA and PGV values of a given ground motion to calculate the period corresponding

to the intersection of the constant spectral acceleration and velocity regions of a 5%

damped Newmark-Hall type spectrum. TV/A is computed by:

TV/A = 2π
αV (ξ = 5%)

αA(ξ = 5%)

PGV

PGA
where

αV (ξ = 5%)

αA(ξ = 5%)
=

1.65

2.12
(C.3)

αV and αA are the Newmark-Hall median spectrum amplification factors for horizontal

motions corresponding to the constant velocity and constant acceleration regions of 5%

damped response spectra. An interesting aspect, is the closer relation of this IM with

the amplification of soft soil sites. To analyze this aspect, Green and Cameron (2003)

presented a quadratic fit to the PGA/PHA ratio and the TV/A/Ts ratio, where Ts is the
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fundamental elastic period of the soil deposit. Analogous to damped SDOF oscillators,

as the TV/A/Ts ratio approaches 1 (i.e., resonance), the dynamic response of the profiles

increase, resulting in an increase in the PGA/PHA ratio.

6. Arias Intensity (IA) [m/s]

According to Arias (1970), the orthogonal component of horizontal acceleration is pro-

portional to the sum of the total energies per unit weight stored in the oscillators of a

population of undamped linear oscillators, uniformly distributed with respect to their nat-

ural frequencies, at the moment the earthquake ends. IA integrates the root-mean-square

acceleration over the entire duration.

IArias =
π

2g

∫ DT

0

a(t)2, dt (C.4)

The Arias intensity is an integral component and therefore reflects the three ground

motion characteristics: amplitude, frequency and duration. Kayen and Mitchell (1997)

developed a procedure to evaluate liquefaction hazard using IA to characterize both load-

ing and soil resistance. The SPT and CPT resistances were empirically correlated to the

intensity measure and the liquefaction initiation potential was expressed by a factor of

safety. The Arias intensity procedure benefits from the fact that only one piece of ground

motion information is required as compared to the cyclic stress method that requires two

(Kramer and Mitchell, 2006).

7. Cumulative absolute velocity (CAV ) [m/s]

Similar to IA, (Reed and Kassawara, 1990) proposed CAV as another time integral in-

tensity measure of the acceleration throughout the earthquake shaking. Because of that,

it includes the effect of the amplitude and the frequency. It is defined as the area under

the absolute accelerogram:

CAV =

∫ DT

0

|a(t)| dt (C.5)

8. Cumulative absolute velocity 5cm/s2 (CAV5) [m/s]

The cumulative absolute velocity after application of 5cm/s2 threshold acceleration is a

time integral modified intensity measure.

CAV5 =

∫ DT

0

⟨χ⟩|a(t)| dt where ⟨χ⟩ =

⎧

⎨

⎩

0 for |a(t)| < 5cm/s2

1 for |a(t)| ≥ 5cm/s2

⎫

⎬

⎭

(C.6)
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Kramer and Mitchell (2006) evaluated the efficiency, sufficiency and accuracy of nearly 300

intensity measures, CAV5 was the intensity measure that best predicted the generation

of excess pore pressure, hence liquefaction potential of saturated sandy soils.

9. Cosenza & Manfredi dimensionless index (ID) [1]

Regarding structural demand, (Cosenza and Manfredi, 1997) showed that the intensity

measure that is better correlated to plastic cycles demand is the Cosenza & Manfredi

dimensionless index defined as:

ID =
2g

π

IA
PHA · PGV

(C.7)

10. Significant duration (D5, 95) [s]

The duration of strong-motion acceleration is defined by Trifunac and Brady (1975) as

the time interval during which the central 90% of the contribution to IA takes place.

Although this parameter is not sufficient, as it does not account for neither the energy

nor the frequency content of the motion; it is useful to identify the primary location of

the energy in specially long motions.

D5, 95 = t95IA − t5IA (C.8)

11. Strain Energy Density (StED) [Joule/m3]

The dissipated strain energy density (or unit energy) is a recently proposed intensity

measure that accounts not only for earthquake characteristics (induced stress) but also

its consequent soil deformation. It is defined as the cumulative enclosed area of the

earthquake-induced shear-strain loops and is proved to have a unique relationship with

excess pore water pressure. CAV5 and the other intensity measures depend only in earth-

quake stress history, while seismically-induced pore pressure generates due to plastic de-

formation and irrecoverable volumetric strains. StED incorporates both stress and strain

histories. Jafarian et al. (2011) provided an equation obtained by regression analysis:

log(StED) = 2.502(Mw − 4.9)− 4.803log(Rclstd)− 0.023σ′

v0 (C.9)
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where StED is the imparted strain energy density in kJoule/m3, Rclst, d is the closest

distance from source in km, Mw is the moment magnitude and σ′

v0 is the effective over-

burden pressure in kPa. However, estimation of StED for a particular soil deposit is

difficult and needs a great numerical effort.

C.3 Anderson criteria

Anderson (2004) proposed a similarity score based on 10 criteria that compare two signals in

terms of different intensity measures e.g., duration, amplitude, spectral shape and energy. Ad-

ditionally, the comparison is made for different frequency bands. In the present study, as the

criteria is used for signal motions issued after a numerical analysis, the frequency bands have

been modified: i.e. the highest frequency evaluated is 15Hz (and not 50Hz, as originally sug-

gested). The spacing of the frequency bands is approximately logarithmic which increases the

weight on the lower frequencies, of higher importance for the response of large structures. The

criteria and frequency bands used in this study are shown in tables C.1 and C.2, respectively.

Number Symbol Similarity of:
C1 SDa Arias duration
C2 SDe Energy duration
C3 SIa Arias Intensity
C4 SIv Energy Integral
C5 Spga Peak Acceleration
C6 Spgv Peak Velocity
C7 Spgd Peak Displacement
C8 Ssa Response Spectra
C9 Sfs Fourier Spectra
C10 C* Cross Correlation

Table C.1 – Anderson criteria for accelerogram similarity (Anderson, 2004)

As some intensity measures need the velocity and displacement time histories, a trapezoidal

integration rule is applied to the acceleration. However, if these vectors can be obtained di-

rectly from the numerical analysis, its use is preferable in order to avoid integration drifting.

Afterwards, all the three vectors are band pass filtered and the 10 IM are evaluated. Finally,

the similarity is given by equation C.10. The use of this function has several advantages. For

instance, it permits to have values between 0 and 10 which is a comfortable range; additionally,

it is symmetrical though it has the same score whether motion 1 is bigger than motion 2 or vice

versa. However, the main advantage is that it penalizes severely differences of a factor greater
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Band Frequency limits [Hz]
B1 0.05 - 0.1
B2 0.1 - 0.2
B3 0.2 - 0.5
B4 0.5 - 1.0
B5 1.0 - 2.0
B6 2.0 - 5.0
B7 5.0 - 15.0
B8 0.05 - 15.0

Table C.2 – Frequency bands used for Anderson criteria. Modified from (Anderson, 2004)

than 2.5 which “should not be considered useful fits for engineering applications” (Anderson,

2004). On the other hand, small differences have less effect; for example, when the difference is

half the value of the smaller IM , the score is 8. Two alternatives were proposed by the author

to define the final score : S1 defined as the average of all 10 scores in each of the 9 frequency

bands; or, S2, the average of all scores evaluated without band pass filtering. The former is

preferable as it gives more importance to low frequencies and can provide more information of

the differences between the motions.

Si(IM1, IM2) = 10exp

{

−
[

(IM1 − IM2)

min(IM1, IM2)

]2
}

(C.10)

C.4 Coherency

An alternative measure to compare two signals is the coherency which describes the similarity

between the motions in the frequency domain, as follows:

γjk(ω) =
Sjk(ω)

√

Sjj(ω) · Skk(ω)
(C.11)

where the smoothed cross spectrum (Sjk(ω)) and autospectra Sjj(ω) and Skk(ω) are the Fourier

transforms of the cross-covariance (Cjk) and the autocovariances (Cjj and Ckk), respectively.

The coherency describes the degree of positive or negative correlation between the amplitudes

and phase angles. A value of 1 indicates full coherence, i.e. perfect correlation. The modulus

of the coherency is called the lagged coherency (|γ|). |γ| is often used to evaluate the local

spatial variation due to heterogeneity in the soil deposit while isolating the wave passage effect.

Several empirical and semi-empirical models have been developed to relate the spatial coherency
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from data recorded at dense instrument arrays (Zerva and Zervas, 2002; Zentner, 2013, among

others)

C.5 Ground motion database

The ground motions were selected based on 2 main criteria. First, a wide range of character-

istics: i.e. 6.2 < Mw < 7.7; 10 < R < 28km; 300 < V s30 < 800m/s. Second, the number

of standard deviations a specific ground motion parameter (or intensity measure, IM) is above

the predicted mean, called ε, had to be greater than 0.4. Special attention was given to avoid

bias in structural response, thus, the median response spectra of the 25 ground motion records

scaled based on the five different IMs were verified to be very similar.
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Figure C.3 – Magnitude, Distance and Shear-wave velocity

Table C.3 – Selected Ground motion records from NGA database

# Event Year RSN* Mw R† Vs 30 IA D5−95

[km] [m/s] [m/s] [s]

1 Helena Montana-01 1935 1 6.0 2.07 593.35 0.1 2.5

2 Parkfield 1966 33 6.19 15.96 527.92 0.5 5.5

3 San Fernando 1971 59 6.61 89.37 813.48 0.0 10.4

4 San Fernando 1971 72 6.61 19.45 600.06 0.3 13.0

5 San Fernando 1971 73 6.61 17.22 670.84 0.2 11.8

Continued on next page
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# Event Year RSN* Mw R† Vs 30 IA D5−95

[km] [m/s] [m/s] [s]

6 San Fernando 1971 77 6.61 0.0 2016.13 8.9 7.3

7 Gazli USSR 1976 126 6.8 3.92 259.59 5.7 7.0

8 Tabas Iran 1978 143 7.35 1.79 766.77 11.8 16.5

9 Coyote Lake 1979 150 5.74 0.42 663.31 0.8 3.5

10 Victoria Mexico 1980 265 6.33 13.8 471.53 2.0 8.2

11 Irpinia Italy-01 1980 286 6.9 17.51 496.46 0.2 27.0

12 Irpinia Italy-01 1980 292 6.9 6.78 382.0 1.4 15.2

13 Coalinga-01 1983 369 6.36 25.98 648.09 0.3 13.6

14 Morgan Hill 1984 451 6.19 0.18 561.43 3.9 4.1

15 Morgan Hill 1984 454 6.19 14.83 729.65 0.1 8.6

16 Morgan Hill 1984 455 6.19 14.9 1428.14 0.1 9.5

17 Morgan Hill 1984 459 6.19 9.85 663.31 0.9 7.3

18 Morgan Hill 1984 476 6.19 45.47 713.59 0.1 9.1

19 Nahanni Canada 1985 495 6.76 2.48 605.04 3.9 7.5

20 Nahanni Canada 1985 496 6.76 0.0 605.04 0.9 7.3

21 Whittier Narrows-01 1987 663 5.99 14.5 680.37 0.3 9.8

22 Loma Prieta 1989 755 6.93 19.97 561.43 1.5 15.7

23 Loma Prieta 1989 763 6.93 9.19 729.65 0.9 5.0

24 Loma Prieta 1989 765 6.93 8.84 1428.14 1.7 6.5

25 Loma Prieta 1989 781 6.93 48.24 586.08 0.1 13.4

26 Loma Prieta 1989 788 6.93 72.9 895.36 0.1 12.1

27 Loma Prieta 1989 789 6.93 83.37 1315.92 0.1 10.6

28 Loma Prieta 1989 795 6.93 75.96 1249.86 0.1 11.9

29 Loma Prieta 1989 797 6.93 74.04 873.1 0.1 14.2

30 Loma Prieta 1989 804 6.93 63.03 1020.62 0.1 12.1

31 Loma Prieta 1989 809 6.93 12.15 713.59 1.6 9.0

32 Loma Prieta 1989 810 6.93 12.04 713.59 2.7 9.7

33 Cape Mendocino 1992 828 7.01 0.0 422.17 3.8 17.7

34 Landers 1992 879 7.28 2.19 1369.0 7.0 13.8

35 Big Bear-01 1992 925 6.46 59.74 509.1 0.1 25.4

36 Northridge-01 1994 943 6.69 65.84 501.75 0.1 13.2

37 Northridge-01 1994 946 6.69 46.65 572.57 0.0 15.2

Continued on next page
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# Event Year RSN* Mw R† Vs 30 IA D5−95

[km] [m/s] [m/s] [s]

38 Northridge-01 1994 952 6.69 12.39 545.66 3.0 7.7

39 Northridge-01 1994 957 6.69 15.87 581.93 0.3 11.6

40 Northridge-01 1994 989 6.69 9.87 740.05 0.7 9.0

41 Northridge-01 1994 1011 6.69 15.11 1222.52 0.2 8.7

42 Northridge-01 1994 1012 6.69 9.87 706.22 1.1 8.0

43 Northridge-01 1994 1013 6.69 0.0 628.99 1.8 6.5

44 Northridge-01 1994 1021 6.69 31.27 600.06 0.1 14.1

45 Northridge-01 1994 1033 6.69 46.31 485.67 0.1 17.6

46 Northridge-01 1994 1041 6.69 35.53 680.37 0.3 10.8

47 Northridge-01 1994 1050 6.69 4.92 2016.13 0.9 4.3

48 Northridge-01 1994 1052 6.69 5.26 508.08 1.8 10.1

49 Northridge-01 1994 1060 6.69 79.83 509.1 0.1 15.4

50 Northridge-01 1994 1074 6.69 41.26 421.0 0.1 15.9

51 Northridge-01 1994 1078 6.69 1.69 715.12 0.9 8.3

52 Northridge-01 1994 1080 6.69 0.0 557.42 4.1 6.7

53 Northridge-01 1994 1091 6.69 23.1 996.43 0.4 8.3

54 Northridge-01 1994 1096 6.69 64.46 662.7 0.1 18.4

55 Kozani Greece-01 1995 1126 6.4 14.13 649.67 0.3 8.6

56 Kocaeli Turkey 1999 1148 7.51 10.56 523.0 0.3 11.1

57 Kocaeli Turkey 1999 1161 7.51 7.57 792.0 0.5 8.2

58 Kocaeli Turkey 1999 1165 7.51 3.62 811.0 0.8 15.1

59 Chi-Chi Taiwan 1999 1197 7.62 3.12 542.61 5.9 8.7

60 Chi-Chi Taiwan 1999 1227 7.62 0.7 553.43 1.1 32.0

61 Chi-Chi Taiwan 1999 1234 7.62 27.57 665.2 1.0 31.4

62 Chi-Chi Taiwan 1999 1257 7.62 52.46 1525.85 0.2 25.9

63 Chi-Chi Taiwan 1999 1347 7.62 57.69 996.51 0.1 23.3

64 Chi-Chi Taiwan 1999 1472 7.62 54.28 558.76 0.3 31.8

65 Chi-Chi Taiwan 1999 1485 7.62 26.0 704.64 1.4 11.3

66 Chi-Chi Taiwan 1999 1492 7.62 0.0 579.1 2.9 16.7

67 Chi-Chi Taiwan 1999 1510 7.62 0.89 573.02 3.0 31.2

68 Chi-Chi Taiwan 1999 1511 7.62 2.74 614.98 3.7 29.5

69 Chi-Chi Taiwan 1999 1518 7.62 55.14 999.66 0.1 22.7

Continued on next page
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# Event Year RSN* Mw R† Vs 30 IA D5−95

[km] [m/s] [m/s] [s]

70 Chi-Chi Taiwan 1999 1549 7.62 1.83 511.18 9.3 30.8

71 Chi-Chi Taiwan 1999 1555 7.62 70.61 537.92 0.3 21.7

72 Chi-Chi Taiwan 1999 1577 7.62 62.67 704.96 0.1 36.7

73 Chi-Chi Taiwan 1999 1585 7.62 43.99 728.01 0.0 35.5

74 Chi-Chi Taiwan 1999 1587 7.62 62.11 845.34 0.1 34.6

75 Manjil Iran 1990 1633 7.37 12.55 723.95 7.5 29.1

76 Sierra Madre 1991 1642 5.61 17.79 680.37 0.4 3.7

77 Hector Mine 1999 1763 7.13 89.98 724.89 0.0 23.3

78 Hector Mine 1999 1764 7.13 102.4 480.22 0.0 27.0

79 Hector Mine 1999 1787 7.13 10.35 726.0 1.9 11.7

80 Anza-02 2001 1949 4.92 76.93 581.0 0.0 7.5

81 Gilroy 2002 2032 4.9 129.58 597.34 0.0 8.1

82 Nenana Mountain Alaska 2002 2091 6.7 199.27 424.9 0.0 21.7

83 Denali Alaska 2002 2107 7.9 49.94 399.35 0.2 24.3

84 Denali Alaska 2002 2111 7.9 42.99 341.56 0.1 23.1

85 Chi-Chi Taiwan-03 1999 2461 6.2 23.44 542.61 0.3 13.8

86 Chi-Chi Taiwan-03 1999 2495 6.2 21.34 496.21 1.8 5.2

87 Chi-Chi Taiwan-03 1999 2626 6.2 18.47 573.02 0.2 8.9

88 Chi-Chi Taiwan-03 1999 2627 6.2 13.04 614.98 1.0 12.5

89 Chi-Chi Taiwan-03 1999 2661 6.2 21.11 652.85 0.3 10.0

90 Chi-Chi Taiwan-06 1999 3300 6.3 27.57 553.43 0.3 12.6

91 Chi-Chi Taiwan-06 1999 3507 6.3 22.69 511.18 0.7 13.9

*Record sequence number at the NGA database (http://ngawest2.berkeley.edu/)

† Joyner-Boore source-to-site distance.
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GEFDyn (2009). Géomecanique Eléments Finis DYNamique. Online; accessed 14/10/2015.

Ghosh, B. and Madabhushi, S. P. G. (2003). Effects of Localized Soil Inhomogeneity in Modifying Seis-

mic Soil-Structure Interaction. In Proceedings of the 16th ASCE Engineering Mechanics Conference,

Seattle,WA.

Gingery, J., Elgamal, A., and Bray, J. (2014). Response Spectra at Liquefaction Sites during Shallow

Crustal Earthquakes. Earthquake Spectra, doi:10.1193/101813EQS272M. In press.

Graizer, V. (2012). Effect of Low-Pass Filtering and Re-Sampling on Spectral and Peak Ground

Acceleration in Strong- Motion Records. In 15th World Conference on Earthquake Engineering

WCEE, Lisboa, Portugal.

Green, R. and Cameron, W. (2003). The influence of ground motion characteristics on site response

coefficients. In Pacific conference on earthquake engineering, page 19, University of Canterbury,

Christchurch, New Zealand. New Zealand Society for Earthquake Engineering. Paper No. 90 on

CD.

Griffiths, D. and Fenton, G. (2001). Bearing capacity of spatially random soil: The undrained clay

Prandtl problem revisited. Géotecnique, 51(4):351–359.
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Régnier, J., Bonilla, L. F., Bard, P. Y., Bertrand, E., Hollender, F., Kawase, H., and Sicilia, D.

(2014). PRENOLIN Project: A Benchmark on Numerical Simulation of 1D Non-Linear Site Effect.

Preliminary Results from the Verification Phase on Idealistic Cases. Abstract and presentation for

the Seismological Society of America Annual Meeting. PRENOLIN participants: D. Assimaki, D.

Boldini, S. Iai, S. Kramer, E. Foerster, C. Gélis, G. Gazetas, J. Gingery, Y. Hashash, P.Moczo, S.

Foti, G. Lanzo, F. Lopez-Caballero, D. Roten, K. Pitilakis, F. DeMartin, B. Jeremic, A. Nieto-Ferro,

M.P. Santisi, and D. Mercerat.

Reine, C., Van Der Baan, M., and Clark, R. (2009). The robustness of seismic attenuation mea-

surements using fixed- and variable-window time-frequency transforms. Geophysics, 74(2):WA123–

WA135.

Rioul, O. and Vetterli, M. (1991). Wavelets and signal processing. IEEE Signal Processing Magazine,

9(LCAV-ARTICLE-1991-005):14–38.

Roman, H. E., Bunde, A., and Dieterich, W. (1986). Conductivity of dispersed ionic con-

ductors: A percolation model with two critical points. Physical Review B, 34(5):3439–3445,

doi:10.1103/physrevb.34.3439.



274 Bibliography

Roscoe, K. H. and Pooroshasb, H. B. (1963). A fundamental principle of similarity in model tests for

earth pressure problems. In Proc. of 2nd Asian Regional Conference on Soil Mechanics, volume 1,

pages 134–140, Tokyo.

Ruiz, S. and Saragoni, G. (2009). Free vibration of soils during large earthquakes. Soil Dynamics and

Earthquake Engineering, 29(1):1–16.

Saez, E. (2009). Dynamic non-linear soil structure interaction. PhD thesis, Ecole Centrale Paris,

France.

Saez, E., Lopez-Caballero, F., and Modaressi-Farahmand-Razavi, A. (2013). Inelastic dynamic soil-

structure interaction effects on moment-resisting frame buildings. Engineering structures, 51(1):166–

177.

Sahimi, M. (2003). Heterogeneous materials 1: Linear transport and optical properties. Springer, New

York.

Saim, R. (1997). Dès comportements repères des grains sans colle à un exemple de sol réel. PhD
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