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Abstract

In this manuscript, I will describe my thesis work on the fabrication

and measurement of single Quantum Dot (QD) tunnel junctions. Af-

ter the introduction chapter, the second chapter of this thesis will

introduce the fundamental concepts needed to describe a single QD

junction, such as the concepts of quantum confinement and Coulomb

blockade. Furthermore, I will describe the most emblematic QD sys-

tems. In the third chapter of this manuscript, I will describe the

ligands exchange methods, the sample fabrication methods and the

measurement setups. In the fourth chapter, I will describe my tunnel-

ing spectroscopy study of single PbS QDs as function of temperature

and gate voltage. Three distinct signatures of strong electron-phonon

coupling are observed in the Electron Tunneling Spectrum (ETS) of

these QDs. In the shell-filling regime, the 8 times degeneracy of the

electronic levels is lifted by the Coulomb interactions and allows the

observation of phonon sub-bands that result from the emission of op-

tical phonons. At low bias, a gap is observed in the spectrum that

cannot be closed with the gate voltage, which is a distinguishing fea-

ture of the Franck-Condon blockade. From the data, a Huang-Rhys

factor in the range S ∼ 1.7 − 2.5 is obtained. Finally, in the shell

tunneling regime, the optical phonons appear in the inelastic ETS



d2I/dV 2. In the fifth chapter, I present a tunnel spectroscopy study

of single HgSe QDs as function of gate voltage and light illumina-

tion. Upon tuning the gate voltage, different occupation levels of the

QD can be reached. The gap observed in the ETS changes with the

occupation level. A large inter-band gap, about 0.9 eV, is observed

for the empty QDs, and an intra-band gap about 0.2 eV is observed

for the doubly occupied QD. Upon illuminating the QD junction, a

photocurrent can be measured using an especially designed demodu-

lation technique. From this measurement, the lifetime τ ∼ 65 µs is

extracted for the photogenerated electron-hole in the QD.
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Chapter 1

Introduction

Nanostructured materials may be defined as those materials whose structural

elements—clusters, crystallites or molecules—have dimensions in the 1 to 100 nm

range[1]. The investigation of nanostructured materials attracted much attention

and many results were obtained on Quantum Dots (QDs)[2–4], nano-wires[5, 6]

and nano-plates[7–9]. The possibility of controlling the size and the chemical com-

position of these nano-objects make them suitable for many applications, ranging

from photo-electronic devices[2, 10], to sensors or bio-imaging applications[11].

The semiconductor nanocrystals are called artificial atoms or QDs as a result

of the effects of quantum confinement on their electronic spectrum[12, 1]. The

QDs can be prepared by various techniques, including Molecular Beam Epitaxy

(MBE), lithography, Metal Organic-Chemical Vapor Deposition (MOCVD) and

colloidal chemistry[1, 2]. The synthesis of QDs through colloidal chemistry in

solution provides significant advantages for the fabrication of nanometer sized

building blocks and, ultimately, for the fabrication of devices[13, 2]. A first ad-

vantage is that these synthetic methods are not very expensive, in comparison to
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MBE for instance. Furthermore, a variety of materials can be synthesized. Not

only homogeneous structures can be grown but also heterogeneous structures

such as core-shell nanocrystals. Finally, the growth of new nanostructures can

be explored at a face pace, in contrast to the much less versatile physical MBE

methods, whose growth chambers are usually dedicated to one type of materials.

Following the synthesis of these quantum confined materials, proper methods

of characterization have to be devised. While optical spectroscopy is commonly

employed to characterize the electronic spectrum of QDs, we believe that the

Electron Tunneling Spectrum (ETS) is a more relevant characterization when

the goal is to introduce the QDs into electron conducting devices. Indeed, the

ETS provides a good measure of the Density of States (DOS) and consequently,

a proper characterization of the effects of quantum confinement in the QDs. In

the bulk, the DOS is a smooth function of the energy. However, in QDs, the DOS

becomes a discontinuous function of the energy.

The scanning Tunneling Microscope (STM) provides a first method to mea-

sure the ETS of QDs, this instrument has been employed many times in the past

ten years[14–19]. In contrast, on-chip tunneling spectroscopy of colloidal QDs has

been employed only a few times. This last method presents several advantages

though: (1) The junction is highly stable at low temperature, which allows high

resolution measurements of the elastic and inelastic ETS. (2) Gate effects on the

QDs can be measured. Today, the nanogaps circuits, a nanogap consists in two

electrodes separated by a nanometric distance (∼ 10 nm), can be fabricated by

standard e-beam lithography, thermal evaporation and lift-off. The development

of on-chip spectroscopy has been hampered by the difficulty of trapping a single

colloidal QD into the nanogap. In the past, the strategy employed by different
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groups to trap a single nanoparticle within a nanogap was to use self-assembly

methods based on molecular or electrostatic interactions. However, several ex-

periences in the group lead to the conclusion that most of these methods were

no more efficient than pure random deposition. For this reason, most groups

employing those methods had to fabricate and measure hundreds of samples be-

fore getting a good one. Facing this situation, our group developed a new method

with the goal of detecting in real time the trapping of a single nanoparticle within

a nanogap.

In this method, as described in previous publications[20–22], the chip is main-

tained in a high vacuum box (10−6 mbar) and the QDs are projected through a

fast pulsed valve from a colloidal solution. After each projection, the tunnel-

ing current across the nanogaps is measured to check for the presence of a QD

within the nanogap. The cycle of projection is repeated until one QD is trapped

in the nanogap, which lead to a sharp increase of the current between the elec-

trodes. This sharp increase of the current is detected by the measurement setup

which reacts by stopping the projection system. Using this method, we have

fabricated, in the group, junctions with different nanoparticles systems, e.g. Au

nanoparticles[20], Fe3O4 nanoparticles[21], PbS QDs[22] and HgSe QDs. These

last two studies constitue the core of this thesis manuscript and are described in

chapter 4 and chapter 5, respectively. In this study of PbS QDs, we have observed

three distinct signatures of strong electron-phonon coupling in the ETS. In the

shell-filling regime, the 8 times degeneracy of the electronic levels is lifted by the

Coulomb interactions and allows for the observation of phonon sub-bands that

result from the emission of optical phonons. At low bias, a gap is observed in the

ETS that cannot be closed with the gate voltage, which is a distinguishing feature
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of the Franck-Condon (FC) blockade. From the data, a Huang-Rhys factor in the

range 1.7 to 2.5 is obtained. Finally, in the shell tunneling regime, we found the

optical phonons in the inelastic ETS d2I/dV 2.

To improve the projection system based on a fast pulsed valve, we developed

another system based on the electrospray technique. The ElectroSpray Ionization

(ESI) deposition process is based on: the charging of the nanoparticle solution

passing through an injector needle, the formation of a spray of charged droplets,

the transfer of these charged droplets through several chambers of decreasing

pressures, and, finally, the deposition of the charged nanoparticles on the chip

circuit. We employed this ESI to fabricate HgSe QDs junctions described in chap-

ter 5. With these junctions, we studied the evolution of the tunneling spectrum

as the QD occupation level is changed by gating. In the depleted QD, the inter-

band gap is observed while in the charged QD, the intra-band gap is observed.

Furthermore, we attempted the first measure of the photocurrent across a single

colloidal QD.
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Chapter 2

State of the art

2.1 Basic concepts

2.1.1 Quantum tunneling

Quantum tunneling is a microscopic phenomenon where a particle can penetrate

through a potential barrier even when this barrier is higher than the kinetic energy

of the particle. This motion is not allowed by the laws of classical dynamics,

but, thanks to the Heisenberg uncertainty principle, this is allowed in quantum

mechanics. In a tunnel junction, the tunneling rate can be calculated by using the

Fermi’s golden rule. This situation is typically described quantum mechanically

by a Hamiltonian containing three terms:

Htotal = Hleft +Hright +Ht (2.1)

Here Hleft is the Hamiltonian describing the electrons on the left side of the

barrier, Hright is the Hamiltonian for electrons on the right side of the barrier,
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and Ht is the tunnel Hamiltonian that describes how the left and right electrodes

are coupled. If Ht is small enough such that it can be treated as a perturbation,

then the Fermi’s golden rule can be applied. The tunneling rate is given by:

Γi→f = 4π2

h
|〈Ψi|Ht|Ψf〉|2δ(Ei − Ef ) (2.2)

Here Ψi is the initial state and Ψf is the final state. If the electron tunnels

from left to right, then Ψi should be an eigenstate of Hleft and Ψf should be an

eigenstate of Hright. The Dirac delta function, δ(Ei −Ef ), ensure that tunneling

occurs only if the initial and final states have the same energy.

If both the left and right electrodes are metallic, then, there will be many

initial states and many final states. The total rate will be given by a double sum

over all possible initial states and all possible final states. There are so many

states in a metal that the double sum can be converted into a double integral

over energies. One of the integrals is readily performed using the properties of

the delta function. If we write the tunneling matrix element that couples every

initial state to every final state as, |〈Ψi|Ht|Ψf〉|2 = T (ε), then the total tunnel

current is given by the Landauer formula[1, 2]:

I(V ) = 2e
h

∫ +∞

−∞
T (ε)[fL(ε)− fR(ε)]dε (2.3)

fL(ε) = 1
exp[ ε−µL−eφL

kBT
] + 1

(2.4)

fR(ε) = 1
exp[ ε−µR−eφR

kBT
] + 1

(2.5)
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where fL(ε) and fR(ε) are the Fermi distributions for the electrons in the

left electrode (L) and right electrode (R), respectively. V=φL − φR is the bias

voltage across the junction and T (ε) is the transmission coefficient of the junc-

tion. All details regarding the physics of the tunneling junction are included in

the transmission coefficient. We provide now two different examples where the

transmission coefficient can be easily calculated. In the case of a simple tunnel

barrier of height φ̄ and width d, the transmission coefficient of the junction can

be obtained in the Wentzel-Kramers-Brillouin (WKB) approximation:

T (ε) = exp[−2d
~

√
2m[φ̄− ε]] (2.6)

By introducing this transmission coefficient in the Landauer equation, equa-

tion 2.3, one gets the formula first obtained by J.Simmons[3]:

I = I0[φ̄exp[−Aφ̄1/2]− (φ̄+ eV )exp[−A(φ̄+ eV )1/2]] (2.7)

I0 = e

4π2~(βd)2 (2.8)

A = −2βd
√

2m
~

(2.9)

where β ∼ 1. In the low voltage limit, when the tunnel barrier is rectangular,

this last formula can be written as:

I = e2√2mφ
h2d

V exp[−2
~

√
2mdφ̄] (2.10)
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which shows that the tunnel junction has a Ohmic behavior at low voltage,

i.e. the tunnel current increases linearly with the voltage, I ∼ V, as shown in

figure 2.1, where it can be seen that the differential conductance dI/dV is constant

and featureless at low bias. This formula also shows that the current decreases

exponentially with the distance, I ∼ exp(-βd), where the attenuation coefficient

β0 ∼ 1Å for a tunnel barrier of height φ̄ = 1 eV.
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I(p
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-2 0 2
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80
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Figure 2.1: (a) Electron tunnel characteristics I∼V for a tunnel junction with a
rectangular potential barrier described by the WKB approximation. (b) Corre-
sponding differential conductance dI/dV .

At high voltage, when the barrier becomes triangular, the Simmons’s formula

can be written in the Fowler-Nordheim forms:

I ∝ V 2exp[
−4d

√
2mφ̄3

3~eV ] (2.11)

In more complicated cases, as when a nanoparticle or a molecule is present

within the tunnel junction, a more powerful formalism to calculate the transmis-
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sion coefficient, such as the Non-Equilibrium Green Function (NEGF) formalism,

must be employed. The NEGF formalism can be associated with a structure

determination method such as the Density Functional Theory (DFT), to allow

precise calculations of electronic transport in molecular system or QDs. In the

NEGF formalism, the tunneling current through the double barriers junction

is still written using the Landauer formula, equation 2.3, but the coefficient of

transmission is given by:

T (ε) = − 1
π
Tr( ΓL(ε)ΓR(ε)

ΓL(ε) + ΓR(ε)
Im[Gr(ε)−Ga(ε)]) (2.12)

g(ε) = − 1
π
Im[Gr(ε)−Ga(ε)]) (2.13)

where the Green function Gr(ε) and Ga(ε) describe the electron states of the

nanoparticle at the center of the junction. The function g(ε) represents the spec-

tral function, i.e. density of states, of the nanoparticle, while ΓL(ε) and ΓR(ε)

describe the coupling of the nanoparticle with the left and right electrodes, respec-

tively. In the simple case where a single electronic level exists in the nanoparticle

at the energy ε0 which is described by the Green function:

Gr,a(ε) = 1
ε− ε0 + iΓ/2 (2.14)

the spectral function will be:

g(ε) = Γ

(ε− ε0)2 + (Γ/2)2 (2.15)

and the transmission coefficient is:

9



T (ε) = ΓLΓR
(ε− ε0)2 + (Γ/2)2 (2.16)

Γ = (ΓLΓR)/(ΓL + ΓR) (2.17)

In this case, the transmission coefficient is a Lorentzian centered on the en-

ergy ε0 of width Γ, as shown in figure 2.2. When this formula is used to describe

electronic transport through a molecule , then ε0 represents the energy of Highest

Occupied Molecular Orbital (HOMO) or Lowest Unoccupied Molecular Orbital

(LUMO) of the molecule. Calculating the I-V characteristic and the correspond-

ing dI/dV differential conductance, one can see figure 2.2 that a single electronic

level at the energy ε0 that give rises to a peak in the transmission coefficient

will also provides a peak in the differential conductance. This is the reason why

the Electron Tunneling Spectrum (ETS) is such an interesting characterization of

the electronic properties of the nanoparticles, where the differential conductance

dI/dV can be interpreted in the first approximation as the density of states in

the nanoparticle.

To finish, it should be noticed that two distinct regimes of tunneling can

be distinguished, depending on the ratio of tunneling rates, Γin/Γout, where the

tunneling rate Γin is the tunneling for electrons entering the island, Γout is the

tunneling rate for electrons escaping the island. The regime Γin < Γout is called

shell-tunneling regime, the regime Γin > Γout is called the shell-filling regime.

10
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2.1.2 Coulomb blockade

For double tunnel barriers junctions, electronic transport from source to drain

through a nanoparticle, i.e. nanoparticle, implies necessarily charge variations in

the nanoparticle of the amount of at least a single charge e. When the size of

the nanoparticle is small enough, the effect of this excess electron can be large

enough to react back on the tunneling probability of another electron. This

charge feedback is called Coulomb blockade effect which has been found in the

early 50’s by Gorter. The Coulomb blockade can take place not only in metal

and semiconductor islands where the charge carriers are electrons and holes but

also in superconductor islands in which the charge carriers are Cooper pairs.

Charging an island , whose capacitive coupling with the neighboring electrodes

is given by C, with an electron of charge e requires the Coulomb energy:

Ec = e2

2C (2.18)

The Coulomb blockade model is only valid if electron states are localized

on the island. This implies that the tunnel resistance between the nanoparticle

and the electrodes be sufficiently high. A estimation of the minimum resistance

required can be obtained by considering the Heisenberg energy uncertainty:

∆E∆t >
h

4π (2.19)

where ∆E = Ec is given by the Coulomb energy and the characteristic time

for charge fluctuation, ∆t, is given by the time required for charging a capacitance

C through a tunnel resistor RT :

12



∆t = RTC (2.20)

These relations lead to the minimum tunnel resistance for the existence of the

Coulomb blockade, which is:

RT >
h

2πe2 = 4.1kΩ (2.21)

In addition, the Coulomb blockade energy must far exceed the energy of ther-

mal fluctuations, i.e.,

Ec � kBT (2.22)

Figure 2.3: The equivalent circuit of a single electron transistor.

In presence of Coulomb blockade, the number of electrons in a metallic island

or a semiconducting QD can be controlled by the application of a gate voltage.

An island, connected to two electrodes, whose electron occupation number is

controlled by a gate voltage, is called a Single Electron Transistor (SET). The

Constant Interaction (CI) model[4] provides an approximate description of the

13



Coulomb blockade effect in QDs. The CI model is based on two important as-

sumptions. First, the Coulomb interactions of an electron in the QD with all other

electrons, inside and outside the QD, are parameterized by a constant capacitance

C. Second, the discrete electronic energy spectrum, calculated for non-interacting

electrons, is unaffected by the Coulomb interactions. The equivalent circuit of a

SET is shown in figure 2.3. The CI model approximates the total ground state

energy, U(N), of a QD occupied by N electrons with the formula:

U(N) = (e(N −N0)− CgVg)2

2C +
∑
N

En,l(B) (2.23)

where N=N0 for Vg = 0 V. The term CgVg is a continuous variable and rep-

resents the charge that is induced on the QD by the gate voltage, Vg, through

the gate capacitance, Cg. The total capacitance between the QD and the source,

drain and gate is C=Cs + Cd + Cg. The last term of equation 2.23 is a sum over

the occupied states, En,l(B), which are solutions of the single-particle Schrodinger

equation. The electrochemical potential of the QD is defined as µQD(N)=U(N)-

U(N-1). Electrons can flow from left to right when µQD is between the potentials,

µleft and µright, of the leads where eVDrain=µleft-µright, i.e., µleft > µQD(N) >

µright. For small voltages, VDrain ∼ 0, the Nth Coulomb peak is a direct mea-

sure of the lowest possible energy state of an N-eletron, i.e., the ground state

electrochemical potential µQD(N). From equation (2.23) we obtain:

µQD(N) = (N −N0 −
1
2)Ec −

Cg
C
eVg + EN (2.24)

where EN is the energy of the top most filled single-particle state for a N-

electron QD. From this last relation, one can obtain the so-called addition energy:

14



∆µ(N) = µQD(N + 1)− µQD(N) = U(N + 1)− 2U(N) + U(N − 1)

= Ec + EN+1 − EN = e2

2C + δ

(2.25)

where δ is the energy difference between two quantum states. The related

atomic energies are defined as A=U(N)-U(N+1) for the electron Affinity and

I=U(N-1)-U(N) for the Ionization energy. Their relation to the addition energy

is ∆µ(N)=I-A. The electrochemical potential of a QD is changed linearly by the

gate voltage with the proportionality factor α=Cg/C. The α-factor also relates

the peak spacing in the gate voltage to the addition energy:

∆µ(N) = eα(V N+1
g − V N

g ) (2.26)

where V N
g and V N+1

g are the gate voltages of the Nth and (N+1)th Coulomb

blockade peaks, respectively.

2.1.3 Tunneling spectroscopy

The properties of QDs can be characterized by optical absorption spectroscopy

or fluorescent spectroscopy, however, the Electron Tunneling Spectrum (ETS)

is a more relevant characterization when the goal is to introduce the QDs into

electron-conducting devices.

The Scanning Tunneling Microscope (STM) provides one method of measur-

ing the ETS of single QDs. STM characterization of QDs have been reported

previously[5–10]. In those experiments, the QDs are dispersed on a conducting

substrate[11], the ETS of QDs is obtained by measuring the conductance between
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Figure 2.4: (a) The schematic of single QD ETS measurement with STM. (b)
The schematic of a single nanoparticle junction on a chip circuit.

the STM tip and the substrate. A schematic of STM spectroscopy measurement

is shown in figure 2.4 a.

While STM has been employed several times to study the ETS of colloidal

QDs systems, on-chip tunneling spectroscopy of colloidal QDs has been employed

only a few times[12–14]. The principle of the experiment is to trap a colloidal

nanoparticle (metallic or semiconducting) between two metallic electrodes, as

shown in figure 2.4 b. This method of on-chip tunneling spectroscopy presents

several advantages: (1) The junction is highly stable at low temperature, which

allows high resolution measurement of the elastic and inelastic ETS. (2) A gate

electrode can be introduced to fabricate a SET (figure 2.4 b).
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2.2 Band structure of semiconducting QDs

2.2.1 Density of states

When the radius of QDs is smaller than the Bohr radius, the electronic spec-

trum of the QDs is discrete instead of continuous, this effect is called quantum

confinement[15–17]. The exciton Bohr radius of a QD is given by:

Rex = �2εrε0

e2 ( 1
m∗e

+ 1
m∗h

) (2.27)

where εr is the relative dielectric constant of the QD, ε0 = 8.85 ×10−12 F/m

is the absolute permittivity of vacuum, m∗e and m∗h are the electron and hole

effective masses, respectively.

Figure 2.5: Schematic of the band structure of a bulk semiconductor (blue lines)
and discrete energy levels for QDs (black lines).

The energy spacing between discrete energy levels, shown in figure 2.5, de-

pends on the QDs size, which can be controlled easily by colloidal chemistry,
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leading to the possibility of band gap engineering[18, 19]. The effect of quan-

tum confinement is visible in the electronic DOS which is the density of available

states per unit energy[16, 15]. As shown in figure 2.6, in a bulk semiconductor,

the electronic DOS, g(ε), in three dimensions (3D) is directly proportional to the

square root of the energy:

g(ε) = 1
2π2 (2m∗

~2 )3/2√ε (2.28)

which is a continuous function of energy. Upon doping the bulk semiconduc-

tor, the Fermi level moves into the conduction band. Because of the continuous

DOS, electronic transport becomes possible and the semiconductor behaves as a

metallic system. Reducing the dimensionality of the system to 2D, e.g. as in a

quantum well where the electrons are confined in one direction and free to move

in the two other spatial dimensions, the DOS exhibits a stair-like evolution with

the energy. At each step, the change in the DOS is given by:

g(ε) = m∗

π~2 (2.29)

These equal height steps correspond to the quantized electronic levels in the

direction of confinement. In a 1D system, for example in nanowires, the electron

is only free to move along one direction, the DOS resembles to an array of spikes

separating the sub-bands. Within each sub-band, the DOS decreases with the

energy as:

g(ε) = 1
~π

√
m∗

2E (2.30)
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For 0D systems, such as QDs, where the electron is confined in the three spatial

dimensions, the DOS is described by a comb of δ-functions[20, 16]. The electron

confinement produces a series of discrete energy levels, which provides the atomic-

like behavior to the QDs and their unique optical and electrical properties[21, 22].

Figure 2.6: The schematic representation of DOS for 3D, 2D, 1D and 0D system.

2.2.2 Band structure of PbS QDs

This thesis presents the investigation of electron tunneling spectrum as well as the

fabrication of the corresponding devices for PbS and HgSe QDs. In this section,

I will introduce the band structure of those QDs. PbS belongs to the class of IV-

VI semiconductors with narrow band gap and small electron and hole effective

masses, m∗e(h) ∼ 0.08m0, where m0 is the electron mass in vacuum. The small

and almost equal electron and hole effective masses lead to a large Bohr radius
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∼ 20 nm. Because of this large Bohr radius, the electrons, holes and excitons are

strongly confined[23]. Thus, the band gap in these QDs can be size tuned on a

large energy range which make them suitable for various applications, such as,

near-infrared detectors[24], solar cells[25, 26] and LEDs[27].

Bulk PbS has a narrow band gap, Eg = 0.286 eV at 4.2 K and Eg = 0.42 eV

at 300 K. It has the rock salt structure with a lattice constant a = 5.936 Å and

has a large relative dielectric constant εPbS = 170[23]. The smallest band gap is

located at the L point, consequently, the first discrete energy levels 1Se and 1Sh

are located at the L point[8, 11]. There are four equivalent L point valleys in the

Brillouin zone[11], as shown figure 2.7. Including the two-fold spin degeneracy,

this implies that the levels 1Se and 1Sh, are eight times degenerated.

a

b

c

Figure 2.7: (a) Rock salt structure. (b) The schematic of the Brillouin zone of
the rock salt structure. (c) Band structure of PbS.
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2.2.3 Band structure of HgSe QDs

HgSe belongs to the II-VI semiconductor class, it has the zinc blende struc-

ture with a lattice constant a = 5.997 Å and a relative dielectric constant εHgSe

= 25.6, the hole effective mass is m∗h =0.78m0 and the electron effective mass

is m∗e = 0.05m0[23]. Bulk mercury chalcogenides have a large mobility about

15000 cm2/V s at room temperature[23]. The band structure of HgSe has been

subject to debate[29] as a consequence of the controversial result based on angle-

resolved photoemission spectroscopy by Gawlik et al[30]. The consensus about

the band structure of HgSe, shown in figure 2.8 c, is that HgSe is a zero gap

semiconductor[28] with an inverted band structure. The band structure was

obtained from magneto-absorption measurements, optical experiments and theo-

retical calculations[31]. The Hg s level forms a state of Γ6 symmetry (with space

for two electrons) at the Brillouin zone center. This state is pulled down below

the anionic p-like Γ8 level due to the large effective positive charge of the Hg

core. Because the number of valence electrons is sufficient to occupy only two

of the four levels of Γ8 character, the unoccupied Γ8 levels become part of the

conduction band, which consequently becomes degenerate with the valence band

maximum at Γ point, creating a zero energy gap[29].

Because of their inverted band structure, the mercury chalcogenides, HgSe

and HgTe, attracted an intense interest recently with the search for topological

materials[32]. The crystal structure, Brillouin zone and band structure[28] of

HgSe are shown in figure 2.8. It should be noticed that despite the apparent

strong similarities between HgSe and HgTe, an important difference exists. As

shown by DFT calculations, [33], for HgSe, the Γ6 band is also below the Γ7 band,
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a

b

c

Figure 2.8: (a) The schematic of zinc blende structure. (b) The schematic of
Brillouin zone for zinc blende structure. (c) The band structure of HgSe, as
calculated with GW approximation (solid lines) and density-functional-theory
calculation within the local-density approximation (dash lines), respectively[28].
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unlike HgTe. Figure 2.9 shows the calculated band structure of HgTe and HgSe

extracted from Ref.[33]
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Figure 2.9: Band structure of (a) HgTe and (b) HgSe using the hybrid quasi-
particle self-consistent GW (QSGW) approximations (G: Green’s function; W:
screened Coulomb interaction)[33]. Both systems have an inverted band struc-
ture. In HgTe, the band Γ6 is below the bandΓ8. In HgSe, the band Γ6 is below
both bands Γ7 andΓ8.

2.3 Examples of tunnel spectroscopy in differ-

ent QD systems

As we already mentioned earlier, different strategies can be employed to fabricate

quantum confined materials and devices. These different methods and materials

produce QDs with distinct spectral characteristics. The most two important

parameters that characterized the spectral properties of the QD are the Coulomb

energy, Ec = e2/r, which is inversely proportional to the radius of the QD and

the mean level spacing δ = 1/(g(εF )r3), which is inversely proportional to the

product of the density of states and the volume of the QD.

From these two relations, different regimes can be distinguished. When the
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density of states is large as in metals, the addition spectrum of the QD will

be mostly controlled by the Coulomb energy. This regime occurs in metallic

nanoparticles or in large microfabricated semiconducting QDs with the Fermi

level in the conduction band.

This can be seen by considering the ratio δ/Ec ∼ 1/r2. At large r, this ratio

becomes much smaller than one, indicating that the Coulomb energy dominates

the addition spectrum for large r. For small QDs, in contrast, the mean level

spacing δ is the largest energy scale. This regime happens in colloidal QDs or in

molecules.

The distribution of the electronic levels is another major difference that dis-

tinguishes small from large QDs. In small colloidal QDs or in molecules, where

the mean level spacing is large, the electronic levels are distributed according to

a shell structure, similar to atoms, with levels labeled by a principal quantum

number (n=1, 2, ...), an orbital number S, P, D, ..., and eventually magnetic

and spin numbers. In this case, the electronic level distribution follows a regular

pattern that can be precisely calculated, for example with the k.p. theory.

In large semiconducting QDs or in metallic nanoparticles where the mean

levels spacing is small and the Fermi wavelength is smaller than the size of the

QD, the distribution of the electronic levels is random and is described by the

random matrix theory.

To illustrate this presentation, I provide below different examples of the tunnel

spectroscopy of QDs in different regimes.
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2.3.1 Microfabricated large QDs

One of the first method to fabricate SET employed microfabrication techniques

and 2D electron gas forming at the interface of III-V heterostructures. L. Kouwen-

hoven et al[4]., fabricated the pillar structure QD SET shown in figure 2.10 a.

The QD of the heterostructure is formed in the central well made of undoped

In0.05Ga0.95As and has a thickness of 12 nm. Undoped Al0.22Ga0.78As layers

form the tunneling barriers. The upper barrier has a thickness of 9 nm and the

lower barrier is 7.5 nm thick. The conducting source and drain contacts are made

from Si-doped n−GaAs. The metal electrode around the pillar is used to apply

the gate voltage. The measurements are performed at a temperature of 200 mK.

Figure 2.10 c shows a color plot of the differential conductance dI/dV as

function of gate voltage and drain bias. The white diamond areas correspond

to the regions of Coulomb blockade, dI/dV = 0. While for colloidal QDs the

Coulomb energy is mostly determined by the self-capacitance, Cself =4πε0εrr, for

large microfabricated QDs, the capacitance coupling with the electrodes is large

and, consequently, the Coulomb energy is determined by the total capacitance

C= Cs+Cd+Cg. In this microfabricated QD, because the Debye length is smaller

than the size of the QD, upon charging with the gate voltage, the screening length

decreases and, consequently, the capacitance between the QD and the electrodes

increases. As Ec ∼ e2/C, the Coulomb energy decreases upon increasing the gate

voltage as shown in figure 2.10 c. The decrease of the Coulomb energy upon

increasing the gate voltage is a characteristic behavior of large microfabricated

QDs.

From the figure 2.10 c, one can extract the mean level spacing, δ, as the
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Figure 2.10: (a) The schematic of the semiconductor heterostructure. The dot is
located between the two AlGaAs tunneling barriers. A negative voltage applied
to the side gate squeezes the dot thus reducing the effective diameter of the dot
(dashed line). (b) SEM image of the QD pillars device. (c) The differential
conductance, dI/dV , plotted on a color panel. The white regions correspond to
Coulomb diamonds, dI/dV=0. Red indicates positive conductance while blue
indicates negative conductance.

26



distance between the thin red lines, and we obtain δ ∼ 1 meV. This mean level

spacing is about one order magnitude larger than in metallic nanoparticle, but

remains very small in comparison to the colloidal QDs. Furthermore, in this

microfabricated QD, the electronic levels do not seem to follow a shell distribution,

instead, they seem to be randomly distributed.

2.3.2 Nanotubes and nanowires based QDs

Another way to microfabricate QDs is to start from synthesized nanowires such

as semiconducting InAs nanowires or carbon nanotubes. R. Leturcq et al[34].,

fabricated a QD junction from a suspended single-wall carbon nanotube, a SEM

image of which is shown figure 2.11. In this method, the QD is formed by a local

gate electrode. The QD induced in the nanotube is ’naturally’ separated from

the other parts of the nanotube by tunnel barriers. Figure 2.11 b shows that the

Coulomb diamonds have a four-fold symmetric dependence with the gate voltage

due to the four-fold degeneracy of the electronic states of the QD. The figure

2.11 c shows a zoom on the tip of one of the diamonds, where phonon sub-bands

are observed at the edges of the diamonds. Actually, in this nanotube QD, the

electrons are not coupled to phonons modes but instead to vibrons modes of the

nanotube itself. Furthermore, it can also be observed that the conductance is

suppressed around zero drain bias, and this, for any gate voltage. This behavior

has been interpreted as a consequence of the Franck-Condon blockade, which we

will describe in more details in the chapter dedicated to the PbS QDs.

27



Figure 2.11: Data extracted from ref[34]. (a) The SEM image of the suspended
carbon nanotube device. (b) The current I as function of gate and drain voltages,
the white regions correspond the Coulomb diamonds which are four-fold periodic.
(c) The zoom on the tip of a diamond, the phonon sub-bands are observed at the
edge of the diamond.
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2.3.3 STM spectroscopy of colloidal semiconducting QDs

Nanocrystals can be obtained easily by colloidal synthesis. Many technologically

important metal, semiconducting and even superconducting QDs can be synthe-

sized as uniform sub-20 nm nanocrystals[35]. Small size semiconducting QDs

exhibit strong quantum confinement and, consequently, constitute a remarkable

play ground for tunneling spectroscopy.

Figure 2.12: (a) The schematic of tunnel processes across discrete energy levels
of QD. (b) The conductance curve, dI/dV , as function of bias voltage measured
across a single PbSe QD, extracted from ref[11]. (c) The I/V curve, dashed line,
and dI/dV curve, red line, measured across a single PbS QD, extracted from
ref[8]. (d) The dI/dV curve as function of bias voltage measured across a single
CdSe QD of diameter 3 nm. The inset is a zoom on the phonon-induced sub-bands
observed on the S state. Those data are extracted from ref[36].

P. Liljeroth et al., measured the ETS of single colloidal PbSe QDs by STM at
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5 K[11]. The differential conductance curve, dI/dV , as function of bias voltage, is

shown in figure 2.12 b. Since the dI/dV is proportional to the DOS, the discrete

energy levels, 1Se, 1Sh, 1Pe and 1Ph are observed in the dI/dV curve in the

shell-tunneling regime.

B. Diaconescu et al., measured the ETS of single PbS QDs by STM at 100

K[8]. The differential conductance curve (red solid line,) and I-V curve (black

dashed line) as function of bias voltage are shown in figure 2.12 c. Six discrete

energy level, 1Dh, 1Ph, 1Sh, 1Se, 1Pe and 1De are observed in the dI/dV curve

in the shell-tunneling regime.

Z. Sun et al., measured the ETS of single CdSe QDs by STM at 4.8 K[36].

The differential conductance curve dI/dV as function of bias voltage is shown

in figure 2.12 d. In this tunneling spectrum, the 1S and 1P are also visible.

Furthermore, as shown in the inset, additional sub-bands appear for each level.

These sub-bands are the consequence of the coupling of the electrons with the

lattice vibrations, i.e. phonons, of the QD. Indeed, when electrons are interacting

with phonons, the discrete electron levels peaks become dressed with additional

sub-bands separated by the phonon energy ~ω0, as shown in the inset of figure 2.12

d. The electron-phonon coupling strength is dependent on the electron orbital

symmetry, the number of added electrons, and the size and dielectric environment

of the QD.

2.3.4 On-chip spectroscopy of colloidal semiconducting QDs

D. Klein et al[14]. fabricated the first on-chip junction with a CdSe QD and

measured the ETS of the junction at 5 K. In this device, the gold electrodes are
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Figure 2.13: (a) and (b) The differential conductance of CdSe QD, dI/dV , as
function of drain and gate voltages, the white areas correspond to the Coulomb
blockade region. (c) The SEM image of CdSe colloidal QDs deposited on the chip
with two electrodes separated by a ∼ 10 nm gap.

functionnalized with di-thiol (SH) alkyl molecules. One side of the di-thiol chain

is bound to the gold electrode, it is expected that the other side is bound to the

QD. As discussed previously, one of the major advantage of on-chip tunneling

spectroscopy is to allow the application of a gate voltage, as shown in figure 2.13

a and b. In this figure, the Coulomb diamonds can be observed in ETS. At the

most positive gate voltage, the QD is depleted of electrons and the inter-band

gap is observed in the ETS. Furthermore, an additional small gap is observed

at the degeneracy point of the Coulomb diamonds, a phenomena which may

also be related to the Franck-Condon blockade that we observed in the PbS

QDs. Surprisingly, the discrete levels 1S, 1P, etc... are not observed in the ETS

spectrum of this QD. Since this first experiment, no other on-chip tunneling

spectroscopy experiment with colloidal QDs has been reported.
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2.3.5 Colloidal metallic nanocrystals

While on-chip tunneling spectroscopy of QDs is rare, on-chip tunneling spec-

troscopy of colloidal metallic gold nanoparticles is more common[12, 37]. While

most tunneling spectroscopy studies of metal nanoparticles could only resolve the

effects of Coulomb blockade, the work of F. Kuemmeth et al[12]. is remarkable

as it is one of the few works where the discrete electronic level structure of a

metallic nanoparticle could be resolved.

F. Kuemmeth et al[12]. fabricated colloidal gold nanoparticles junction by

submerging a nanogap covered chip circuit in a gold colloidal solution. The silicon

chip circuit was functionalized with positive amine NH+
3 groups, the nanoparticles

were functionalized with negative carboxylic COO− groups. This functionaliza-

tion allowed an electrostatic assembly of the nanoparticles on the chip. The figure

2.14 d shows that the gold nanoparticles are distributed on the chip surface, and

only one gold nanoparticle contributes to the current between the two electrodes.

To resolve the discrete electronic level structure where the mean level spacing is

very small, about 100µeV, the ETS had to be measured at very low temperature

T ∼ 90 mK. The Coulomb diamonds are observed in the plot of the differential

conductance dI/dV as function of gate and drain bias, figure 2.14 a. The figure

2.14 b is a zoom on the tip of a Coulomb diamond. The bright lines correspond

to peaks in the differential conductance, shifting with the gate voltage. These

bright lines corresponds to the discrete energy levels of the gold nanoparticle.

Figure 2.14 c is a profile as function of drain voltage extracted from figure 2.14 b.

Because the gold nanoparticle has a high density of states, the spacing between

two peaks is very small, δ ∼ 300 µeV. Consequently, the addition energy will be
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mostly determined by the Coulomb blockade energy. Furthermore, because the

screening length in metallic nanoparticles is very small, the self-capacitance of

the nanoparticle will depend only on the size of the nanoparticle. Consequently,

the Coulomb energy is independent of the gate voltage, and, for this reason, the

Coulomb diamonds have the same size upon increasing the gate voltage, in con-

trast to the large microfabricated QD where the Coulomb energy decreases upon

increasing the gate voltage. Finally, an analysis of the distribution of the elec-

tronic levels shows clearly that the levels are not distributed according to a shell

structure. Instead, as discussed in Ref.[12], the electronic levels seem distributed

according to the random matrix theory.
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Figure 2.14: (a) The differential conductance, dI/dV , as function of gate and
drain bias measured on a colloidal gold nanoparticle single electron transistor.
(b) Zoom on the tip of diamond shown in panel a. (c) Line profiles obtained
from panel b. (d) SEM image of the colloidal gold nanoparticle single electron
transistor in which only one nanoparticle contributes to the current flow between
source and drain electrodes.
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2.3.6 Conclusion

To conclude this description of different QD systems, we have seen that the elec-

tron tunneling spectrum depends on the Coulomb energy, Ec, the mean level

spacing, δ, the ratio between these last two quantities and the strength of the

electron-phonon coupling. Table 2.1 summarizes the different spectrum patterns

expected in the most important categories. In metallic nanoparticle systems, col-

umn I of table 2.1, the density of states is large, which implies that the mean

level spacing is very small. Because the Fermi wavelength is smaller than the

nanoparticle diameter the energy of the electronic levels will be highly sensitive

to the disorder in nanoparticle, in particular at the surface, and, consequently,

will follow a random distribution as described by the random matrix theory.

Furthermore, as the screening length is also smaller than the nanoparticle diam-

eter, the Coulomb energy will not depend on the gate voltage, and the Coulomb

diamonds should keep the same size as the gate voltage is increased. In large mi-

crofabricated semiconducting QDs, column II table 2.1, the mean level spacing is

also small and the electronic levels are also randomly distributed. Two important

differences distinguish this type of QDs from the metallic nanoparticles. First,

because the screening length is large, comparable to the size of the QD, upon

charging the QD, the capacitance coupling of the QD with the electrodes change

and so is changing the Coulomb energy. This leads to a spectrum where the size

of the Coulomb diamonds decreases upon increasing the gate voltage. Second,

because the electron density in the QD is much smaller than in a metallic sys-

tem, the QD can be depleted with the gate voltage. When this happens, the

Coulomb diamond structure disappears and only the inter-band gap appears in
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the tunneling spectrum.

Finally, in small colloidal QDs, column III in table 2.1, the mean level spacing

is large, usually larger than the Coulomb energy and the Bohr radius is larger

than the QD. In this case, the addition energy depends mostly on the inter-level

spacing and the electronic levels are distributed along a shell structure, for those

states located within a single band. In addition, the energy interval between the

electron-type levels and hole-type levels depends on the inter-band gap.
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QD systems

Colloidal
metallic

nanoparticles
(∼ 10 nm)

Microfabricated large
QDs (∼ 1 µm)

Colloidal QDs (∼ 10
nm)

Mean level
spacing δ ∼ 0.1 meV ∼ 1 meV ∼ 100 meV

Coulomb
energy Ec

∼ 80 meV ∼ 100 meV ∼ 40 meV

The ratio
δ/Ec

∼ 0.0013 ∼ 0.01 ∼ 2.5

The density
of states

High density of
states

High density of states Atomic like (S, P, D)

The shape
of Coulomb
diamonds

Table 2.1: Comparison of different systems. The unoccupied states are repre-
sented by dashed lines and the occupied states are represented by the solid lines.
First column: For a metallic colloidal gold nanoparticle, the density of states is
large and so the mean level spacing is very small. The screening length is also very
small, consequently the Coulomb diamonds are identical to each other. Second
column: For a large microfabricated semiconducting QD, the density of states is
smaller than a metallic nanoparticle but still much larger than for a colloidal QD.
In that case, the distribution of electronic levels follows a random distribution as
for metallic nanoparticle. As the screening length is much larger in semiconduc-
tor, the size of the Coulomb diamonds shrinks as the gate voltage increases. Third
column: For colloidal semiconducting QDs, the mean level spacing is very large
and, consequently, the spectrum is mostly determined by the shell distribution
of the electronic levels, except when the Fermi level is located on a degenerated
level, where Coulomb n-1 diamonds appear, where n is the degeneracy of the
electronic level.
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Chapter 3

Samples preparation and

experimental setups

3.1 Samples preparation

3.1.1 Synthesis of PbS QDs

In a 50 mL three neck flask, 0.44 g of lead oxide (PbO), 2 mL of oleic acid and 10

mL of phenyl ether are heated under argon at 150 ◦C for 1 h. The final solution

is orange red. Meanwhile 32 mg of sulfur are mixed in 2 mL of oleylamine and

strongly agitated until full dissolution of the sulfur precursor. The flask is heated

at 190 ◦C and the sulfur mixture is quickly injected. The temperature is set at

180 ◦C and the reaction is performed for 5 min. The flask is cooled down and the

QDs are cleaned using toluene as nonpolar solvent and ethanol as polar solvent.

The PbS cubes have 10 nm edges, as observed through TEM, figure 3.1, and

from the width of the diffraction peaks in the XRD, figure 3.2 a, using the Scherrer
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Figure 3.1: The TEM images of PbS QDs.

equation. The XRD diffractogram, figure 3.2 a, is consistent with the rock salt

structure. The absorption spectrum, figure 3.2 b, is not very structured but we

can estimate the optical gap around 2.3 µm (0.55 eV) with two other features at

2.1 µm and 1.7 µm.

3.1.2 Synthesis of HgSe QDs

In a 100 mL three necks flask, mix 1 g of mercury acetate with 40 mL of oleic acid.

The system is degased under primary vacuum for 1 h at 85 ◦C. In a 25 mL three

necks flask on a Schlenk line with a small heating mantle, introduce 12 mL of the

mercury oleate solution and 30 mL of oleylamine. Put under vacuum at 85 ◦C

for at least 30 min. Switch the atmosphere to Ar. introduce quickly 0.9 mL of

TOPSe 1M. The solution turns dark almost immediately. After 30 min the flask is

quenched by adding 1 mL of dodencathiol. The heating mantle is removed and the

39



 

20 25 30 35 40 45 50 55 60
0

20

40

60

80

100
 experimental data
 bulk value

(2
22

)(3
11

)

(2
20

)

(2
00

) PbS cube
Lscherrer 10nm

 

XR
D 

sig
na

l in
te

ns
ity

 (a
.u

.)

2θ (°)

(1
11

)  

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.1

0.2

0.3

 

Ab
so

rb
an

ce
 (a

.u
.)

Wavelength (µm)

ba

Figure 3.2: (a) The XRD diffraction curve of PbS QDs. (b) The absorption
curve of PbS QDs.

solution is let cooled down. The content of the flask is cleaned by adding ethanol

and the solution is centrifugated for a few minutes. The formed dark pellet needs

to be redispersed in toluene. The cleaning is repeated two more times. The TEM

images are shown in figure 3.3, the HgSe QDs are mono-dispersed and the sphere

have a size of about 10 nm.
 

  

Figure 3.3: The TEM images of HgSe QDs.
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3.1.3 Ligands exchange

After synthesis, the colloidal QDs are surrounded by long organic ligands which

make them hydrophobic and are usually dispersed in a nonpolar solvent such as

toluene. To reduce the width of the tunnel barrier between the QDs and the con-

ducting gold electrodes, it is important to remove the organic ligands. Following

the works by the Talapin’s group at Chicago which have shown [1] that it was

possible to replace the organic ligands by small anions such as S2−, several groups

used similar kind of methods for removing the organic ligands. In particular, E.

Lhuillier et al. (B. Dubertret’s group) working in the laboratory replaced the

organic ligands with S2− anions to fabricate transistors and photo-conducting

devices[2]. In these devices, a large increase of the conductance is observed after

ligands exchange. To realize a ligands exchange[1] as depicted figure 3.4, the

solution of colloidal QDs is diluted with hexane to a concentration of 5 mg/mL,

then, 1 mL of this colloidal solution is mixed with 1 mL of polar solvent NMF

(N-methylformamide) which contains Na2S (5 mg/mL). The mixture is stirred

for 10 min. One minute after stopping stirring, the NMF phase and the hexane

phase separate with the QDs having been transferred from the hexane to the

NMF as the organic ligands are replaced by the sulfur anions. Then, the NMF

phase is extracted and washed with hexane three times to remove any remaining

organic ligands. After this washing step, 1 mL of acetonitrile is added to the

NMF phase to precipitate the QDs. The precipitate is re-dispersed in NMF and

filtered through a 0.22 µm PVDF filter. The QDs dispersion in NMF can be

stable for several weeks.
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Figure 3.4: Ligands exchange on QDs.

3.1.4 Fabrication of nanogaps circuits

The work performed for thesis required nanogap chip circuits. To that end, we

have a collaboration with C. Ulysse from LPN (Marcoussis). He provided us with

several wafers of nanogap chip circuits, as depicted figure 3.5. The electrodes of

Cr (5 nm)/Au (25 nm) are fabricated by e-beam lithography, thermal evaporation

and lift-off. These electrodes are deposited on a p-doped silicon wafer covered

by a 300 nm thick silicon oxide layer. The distance between two electrodes is

about 10 nm, forming the nanogap within which the nanoparticle will have to be

trapped. After deposition of the nanogap electrodes by e-beam lithography, we

use optical lithography to pattern the contact electrodes connected to the small

nanogap electrodes. One 3 inch wafer contains 36 chips and one chip (8× 8 mm)

contains 32 nanogaps which consist of 32 drain electrodes and one common source

electrodes[3], as shown in figure 3.5.

To prepare a chip for the experiment, one chip cut from the wafer is glued on

a ceramic chip holder containing 44 pins. 32 of those pins are connected to the
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= 1152 nanogaps

Figure 3.5: A wafer contains 36 chips, each one contains 32 nanogap as shown
on the SEM picture.
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drain electrodes and one of the pins is connected to the common source electrode.

All these connections are made with a wire bonder (Kulicke & Soffa) using Al

(diameter=25 µm) wires. Two of those pins are connected to the p-doped silicon

substrate with Al wires and silver epoxy , which is used a back gate. The ceramic

chip circuit can be installed into a PLCC chip holder, as shown in figure 3.6,

which is connected to the measuring instruments.

Source

Drains

Gate

PLCC holder
Silver epoxy

Ceramic substrate

Al wire

Figure 3.6: The image of a chip installed in a PLCC holder.

3.2 Experimental setups

In order to trap a single nanoparticle within the nanogap, various methods have

already been explored by different groups. Most groups employed a similar strat-

egy consisting in functionalizing the nanoparticles and electrodes, such that the

nanoparticles will self-assemble within the nanogap circuit. Different types of

interactions can be employed such as electrostatic, Van der Waals or covalents

interactions. However, after several experiments in the group, it was concluded
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that these functionalization methods are barely more efficient the pure random

deposition of the nanoparticles on the chip circuit. Furthermore, because these

functionalization methods have to be realized in solution, the trapping of the

nanoparticle within the nanogap cannot be detected by measuring the tunnel

current. Indeed, because of ionic currents, it is almost impossible to measure

a tunnel current within a solution. Consequently, to test for the presence of a

nanoparticle within the nanogap, the chip circuit has to be dried, which is a

delicate step where the nanoparticle can also move. This drying step add an

additional random contribution to the placement of the nanoparticle in solution.

Facing this random process, two kind of strategies are possible. Either, we

could fabricate and measure hundreds of samples, which is the method employed

by most groups working with nanogap circuits, or we monitor continuously the

tunnel current during the assembly step. We decided for the second method. The

need to measure the tunnel current in real time prevented the use of assembly

methods in solution, for this reason, our method is based on the projection of

nanoparticles in vacuum.

3.2.1 The projection system

Our group developed a new method for trapping a single QD into a nanogap[3–

5]. The principle of the method is to maintain the sample in a high vacuum box

(10−6 mbar) and to project the QDs through a fast pulsed valve from the colloidal

solution (figure 3.7). After each projection, the tunneling current between the

nanogaps is measured to check for the presence of one QD within the nanogap.

The cycle of projection is repeated until one QD is trapped in the nanogap, which
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lead to a sharp increase of the current between the electrodes. This sharp increase

of the current is detected by the measurement setup which reacts by stopping the

projection system, as shown in figure 3.7. Using this method, we have fabricated

junctions with different nanoparticles system, such as Au nanoparticle[3], Fe3O4

nanoparticle[4] and, finally, PbS QDs[5], which will be described in chapter 4.

Figure 3.7: Schematic of the projection system.

3.2.2 Measurement methods

After wire bonding the chip circuit and before starting the projection, the chip is

submitted to several tests of the electrical connections. Indeed, at the beginning

of the chip preparation, the resistance between the drains and the source is huge,

with immeasurably small currents. Consequently, it is not possible to test for a

proper connection of the source and drain wires simply by measuring the current

across the electrodes. However, as the gate electrode is separated from the drain

and source electrodes by the insulator dielectric 300 nm thick, a capacitance of
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a few picofarad can be easily measured between the electrodes and the gate. We

use this capacitive coupling to test whether the electrodes are properly connected.

Other tests include measures of the amount of leaking current between the drain

electrodes and the gate, the source and the gate, and finally between the drain

and the source.

As there are many connections and to avoid mistakes on this repetitive process,

the setup has been automatized as much as possible using a scanner card and a

matrix card controlled by a Labview program. The sketch of the electronic circuit

is shown figure 3.8 a and a screen view of the Labview program is shown figure

3.8 b.

On this sketch, one can see that the 32 drain electrodes are connected to a

scanner which provide one output, thus, this output is connected to one or more

of the drain electrodes through the scanner. This output of the scanner is then

connected to a matrix card, together with the source and the gate electrode. On

this matrix card are also connected several instruments (Keithley 2400, lock-in,

current amplifier). The connections of the matrix card are controlled digitally

with the Labview program. The matrix card connects the instruments to the

chip electrodes.

To test the chip circuit, five Labview sequences are run. Each sequence

changes the connections of the matrix card.

These sequences are :

(1) Measure of the current between the source and the gate. A voltage up to

2 V is applied on the gate, the chip is discarded if a current more than 1 micro

A is measured on the source electrode.

(2) Testing of proper wire connection on the source. An AC oscillation (1 kHz
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Figure 3.8: (a) Schematic of electronic measurement circuit. (b) Screen capture
of the Labview program.
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to 15 kHz) is applied to the gate. The current is measured on the source electrode.

For a good connection, the current should change with frequency and reaches a

maximum of 100 nA. If the source is disconnected, no current is measured.

(3) Testing of current leaks with the drain electrodes. A gate voltage of 1 V

is applied. A source voltage from -1 V to +1 V is applied on the source. The

current is measured for every drain electrodes. Drain electrodes shortened with

the source are opened by electromigration. Drain electrodes shortened with the

gates are removed of the list of valid electrodes and are left disconnected from

the scanner during subsequent measurements.

(4) Test of proper bonding of the drain electrodes. An AC voltage (1 kHz to

15 kHz) is applied on the gate to measure the capacitance between the gate and

the drain electrodes. Disconnected wires are left disconnected from the scanner

during subsequent measurements.

(5) Finally, a full IV curve, from -1 V to +1 V, is measured for each drain

electrode. The current should not be larger than 1 pA at the highest voltage.

1 pA is noise level of the setup. If the current is large, the electrode is left

disconnected from the scanner in subsequent measurements.

Just after the tests sequences, the projection is started. The fast pulsed valve

is opened for a short period ( 10 ms) to deposit the QDs on the chip. After a

delay of 1 min required to pump the residual solvent introduced into the chamber,

the current across all nanogaps is measured. This cycle, shown figure 3.9 a, is

repeated until the current reaches a value above the predefined threshold of the

order of 10 pA. Usually, after trapping a QD within a nanogap, the current reaches

values of 1 nA or more, as shown in figure 3.9 b.

The SEM images of projected QDs on the chip are shown in figure 3.10, one
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a b

Figure 3.9: (a) The schematic of projection cycle. (b) The projection curve: the
drains current as function of time.

can see that the HgTe and PbS QDs are well mono-dispersed on silicon wafer.

This projection method has significant advantages. First, because the sample is

fabricated in high vacuum, the tunneling current can be measured during the

projection of the nanoparticles. Second, the method allows hundreds of trials, i.e.

projection-measure, in a few hours, which increase significantly the probability of

fabricating single nanoparticle devices.

500 nm 1000 nm

a b

Figure 3.10: (a) The SEM image of deposited HgTe QDs. (b) The SEM image
of deposited PbS QDs.
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3.2.3 The electrospray ionization system

To improve the projection system based on the fast pulsed valve described above,

we developed another system based on an electrospray technique. This Electro-

Spray Ionization (ESI) system has been used to fabricate HgSe QDs junctions,

as described in chapter 5. The ESI system has been originally developed to ob-

tain charged molecular beams for mass spectrometry applications[6–10]. John

Bennett Fenn and Koichi Tanaka have been awarded the Nobel Prize in chem-

istry in 2002 for their contribution to the development of electrospray ionization

for large molecules in mass spectrometry applications[6]. A description of the

deposition process follows[8, 9]: (1) The analyte solution is charged by the ap-

plication of a high voltage (∼ 3 KV) on the injector needle. (2) At the output

of the injector needle, a spray of charged droplets is formed as a consequence of

Coulomb repulsion. (3) As the beam of charged droplets goes through a series

of vacuum chambers of decreasing pressure, the volume of the droplets decrease

as the solvent evaporates. As the volume of the droplet decreases, the Coulomb

energy increases in the droplet because the number of charges remains constant

in the droplet as it evaporates. When the charge-to-volume ratio of the charged

droplet arrives at the Rayleigh limit, the Rayleigh limit is the upper limit for

the charge density on a droplet, a local deformation at the droplet surface turn

into a protrusion from which a small jet of offspring droplet leaves the original

parent droplet. (4) As the size of offspring charged droplets is reduced until no

solvent is left, the naked charged analyte molecules are left and form a beam that

is directed against a substrate. The ESI process is shown in figure 3.11 c.

To form the stable charged droplets spray, an onset voltage is required for the
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injector needle[8], equation 3.1, where Von is the onset voltage, γ is the surface

tension of the solvent, rc is the needle radius, and d is the distance between needle

tip and counter electrode (figure 3.11 c). The smallest onset voltage is usually

looked for. The equation 3.2 gives the radius R of the charged droplets coming

out of the needle[8], where ρ is the density of solution, Vf is the volume flow

rate, and γ is the surface tension of the solvent. From equation 3.2, a low flow

rate leads to small droplets, which is the optimum ESI condition for deposition

of analyte molecules or QDs.

Von ∼ 2× 105(γrc)1/2 ln(4d/rc) (3.1)

R ∝ (ρV 2
f γ)1/3 (3.2)

The ESI technique has been employed to depose large biomolecules[11, 6],

polymers[12, 13], metal-organic complex[14–16], nano-tube[17] and nanoparticles[11]

in several types of experimental studies, e.g., STM[18–20], photoemission[21] and

optical spectroscopy[22–26].

The ESI technique has been successfully combined with the projection system

to fabricate single QD junction on-chip in our group. As for the previous pro-

jection system, the tunneling current is monitored to check for the trapping of a

single QD into the nanogaps during the ESI deposition process.

The ESI based deposition system is composed of two parts (figure 3.11 a).

The first part of the ESI system is an UHV4, ultra-high vacuum compatible,

electrospray deposition system, from MolecularSpray Ltd. This part of the ESI

system contains three chambers with pressure about 1.2 × 101 mbar, 3 × 100
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Figure 3.11: (a) The schematic of electrospray system. (b) The image of spray on
a high voltage needle. (c) The evolution of charged droplets during electrospray
deposition.

mbar and 4 × 10−3 mbar during the deposition, respectively. The second part

of the ESI system is a large UHV chamber (2 × 10−6 mbar)in which is installed

two pairs of shields used to control the vertical and horizontal positions of the

beam by applying a voltage on these shields. The chamber also contains an ion

beam current collector and a sample holder. The shields are useful not only to

control precisely the position of the nanoparticles beam but also for filtering the

beam. By applying a voltage on the shield, uncharged solvent droplets will not

be deflected by the shields. However, small charged molecules, such as unbound

ligands molecules, will be deflected very far off the chip. Finally, the charged

nanoparticles will be only slightly displaced by the electric field. In practice,
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we apply the required voltage to locate the nanoparticle beam in the center of

the chip. The ion beam current collector is a simple metallic plate connected to

a current-voltage amplifier. When the nanoparticle beam hits this collector, a

current is measured. This current collector is used to check for the presence of

the beam and to align it. The sample holder is separated from the main chamber

by two gate valves, which allows (dis)connecting the sample chamber without

breaking the vacuum in the main chamber and the sample chamber. After a

nanoparticle is detected within a nanogap, the two gate valves are closed, the

sample chamber is disconnected and transferred into the glove box. The sample

chamber is then open in the nitrogen environment of the glove box, the chip is

removed from his holder and inserted into a similar holder on the cryostat in the

glove box. The main advantage of the ESI system with respect to the pulsed valve

setup is a large reduction in the amount of solvent that is being projected on the

chip circuit. As most of the excess organic ligands are contained in the solvent,

reducing this solvent projection on the chip allows obtaining cleaner samples.

Figure 3.12 shows the SEM images of CdSe QDs deposited on the silicon wafer

by the ESI system. The QDs are well dispersed and no ’dirt’ is observed around

the QDs.

3.2.4 Cryostat measurement setup

After the projection step and trapping of the QD in the nanogap, the chip is

transferred into the cryostat installed in the glove box. The cryostat is a closed

cycle cryocooler from Advanced Research System, Inc, its base temperature is

about 5 K. The cold head of the cryostat comes out in the glove box. After
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100 nm 400 nm

Figure 3.12: The SEM images of CdSe QDs deposited on silicon wafer.

inserting the sample, the cryostat is sealed with a shield and pumped down to

low pressure (10−7 mbar). For photocurrent measurements, we use a shield fitted

with a window.

Keithley (Gate)

Transformer

Nanoparticle

DC+AC

Keithley (Source)

Lock-in 1

AC

DC
I/V

Keithley (Drain)Lock-in 2 Filter

Figure 3.13: The circuit of measurement system.

The schematic of measurement circuit is shown in figure 3.13, a Keithley and

a Lock-in amplifier are the source of DC and AC voltages, respectively. The DC

and AC voltages are combined together with a transformer. Another Keithley is

used to apply the gate voltage. The drain electrode is connected to a current to

voltage amplifier (Femto), the output is read by a Keithley. The first harmonic
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signal (dI/dV ) and the second harmonic signal (d2I/dV 2) are measured by the

Lock-in amplifier 1 and the Lock-in amplifier 2, respectively.

Diode

Transformer

Nanoparticle

DC+AC

Keithley (Source)

Lock-in 1

AC
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I/V

Keithley (Drain)Lock-in 3

Function Generator

Lock-in 2

FilterFilter
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0 1ω ω+

1ω

0ω
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hv

Keithley (Gate)

Figure 3.14: The circuit of photocurrent measurement system.

To measure the photocurrent of a single HgSe QD, we designed a new setup.

Indeed, measuring the photocurrent directly with the above setup was very dif-

ficult as the photocurrent is only a small fraction of the direct tunnel current.

To discriminate the photocurrent from the direct tunnel current, we designed

another setup where not only the drain voltage is modulated at the frequency ω0

but the light power is also modulated at the frequency ω1, then, the photocurrent

is measured at the frequency ω0 + ω1. The details of circuits are shown figure

3.14. Three reference signals (ω0 = 17 Hz, ω1 = 52 Hz and ω0 + ω1 = 69 Hz) are

generated by a function generator. The Lock-in amplifiers 1 and 2 are synchro-

nized to the signals ω0 and ω1, and are connected to the source electrode and the

LED diode, respectively. The Lock-in amplifier 1 is used to measure dI/dV , using

the ω0 signal as the reference frequency. A LED diode is installed outside the

cryostat facing the window inserted in the cryostat shield. The distance between
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the sample and the LED is ∼ 10 cm. The LED provides photons of energy hν ∼

1.88 eV to create electron-hole pairs in HgSe QD with a modulation frequency ω1.

The photoexcited electron-hole pairs are separated by the source voltage mod-

ulated at the frequency ω0. Consequently, the photocurrent is generated at the

frequency ω0 + ω1, which is measured by the Lock-in amplifier 3. The reference

signal ω0 + ω1, is obtained from the function generator.
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Chapter 4

Tunneling spectroscopy of single

PbS QDs

In this thesis, we decided to apply the projection system for the fabrication of

single nanoparticle junction with narrow gap semiconductors. This study was

possible thanks to the collaboration of B. Dubertret and E. Lhuillier who started

the synthesis of narrow gap semiconductors QDs in their group. They provided

the QDs and I just had to do the ligand exchange before using them. Lead

chalcogenides (PbS, PbSe and PbTe...) are characterized by narrow band gap in

mid-infared and small electron and hole effective masses. These QDs have possible

applications in LEDs[1], solar cells[2] and field effect transistors[3]. While optical

spectroscopy is usually used to characterize the properties of QDs, ETS is a more

relevant characterization when the goal is to incorporate the QDs into electron

conducting devices. In this work, we have studied the ETS of PbS QDs. They

are characterized by strong quantum confinement and a size-tunable band gap on

a wide energy range. A TEM image of the PbS QDs is shown in figure 4.1 a, the
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size of cubic PbS is around 10 nm. The projection curve, i.e. the tunnel current

measured as function of time, is shown figure 4.1 d. A sharp increase of the

current is observed indicating that a single nanoparticle getting trapped within a

nanogap is likely responsible for this increase of the current. In situations where a

large number of nanoparticles are required for the current to exceed the threshold,

the current is observed to increase continuously. Thus, a sharp increase of the

tunnel current during the projection can be safely considered as a signature of

single nanoparticle trapping[4, 5]. After projection, the SEM image, figure 4.1

b, shows that the QDs are well dispersed on the chip. At this point, it should

be noticed that we usually do not make any SEM image of the sample after the

projection. Because of the sensitivity of the samples to air and charging effects

from the SEM electron beam, making SEM images usually damages the sample. I

found that a good method to prepare the sample was to project nanoparticles on

the sample for some time, check on the SEM that nanoparticles were present and

well dispersed on the chip, then, re-insert the chip in the projection system to keep

projecting nanoparticles until a sharp increase of the current is observed. If so, the

chip is immediately inserted on the cryostat and measured at low temperature.

It can take a very long time, up to two months, to measure completely the I-V

characteristics of a single junction.

To summarize, from these SEM images and because the measured projection

curve shows a sharp increase of the tunnel current, these is no doubt that the

conducting circuit obtained are single nanoparticle junctions.

10 circuits chips have been fabricated and the ETS have been measured from

T=300 K to T=5 K. In this studies of PbS QDs, three samples A, B and C are

shown here, we have observed three distinct signatures of strong electron-phonon
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Figure 4.1: (a) The TEM image of PbS QDs.(b) The SEM image of ∼ 10 nm
spaced electrodes in which a PbS QD has been deposited. (c) QDs are projected
onto the chip-circuit in high vacuum using a fast pulsed valve. (d) After each
projection, the tunneling current is measured (VDrain=1 V, VGate=0 V, T=300
K). When the tunneling current is exceeds the threshold, the projection stops.
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coupling in the ETS. In the shell-filling regime, the 8 times degeneracy of the

electronic levels is lifted by the Coulomb interactions and allows the observation

of phonon sub-bands that result from the emission of optical phonons. At low

bias, a gap is observed in the ETS that cannot be closed with the gate voltage,

which is a distinguishing feature of the Franck-Condon (FC) blockade. From the

data, a Huang-Rhys factor in the range 1.7 to 2.5 is obtained. Finally, in the shell

tunneling regime, the optical phonons appears in the inelastic ETS d2I/dV 2.

4.1 Coulomb blockade in single PbS QDs

Figure 4.2 shows the dI/dV curves measured on sample A at two different tem-

peratures. At the highest temperature, T = 77 K, the curve shows conductance

peaks corresponding to the excited hole levels 1Sh, 1Ph and electron level 1Se of

the QD. At the lower temperature, T = 5 K, the ETS is modulated by sharp

conductance peaks which are characteristics Coulomb blockade peaks in the shell

filling regime[6, 7]. In this regime, the tunneling rate Γin for electrons entering

the QD is larger than the tunneling rate Γout for electrons escaping the QD. The

inset of figure 4.2 shows that a single Coulomb peak has a width ∼ 20 meV which

is much broader than the thermal smearing at T = 5 K. Similar broadening were

observed in STM spectra on CdSe[8] and PbS[9] QDs.

Because PbS has the rock salt crystal structure and, as a result, has the

direct band gaps at four equivalent L points in the Brillouin zone[10, 11], the

excited levels 1Se and 1Sh are 8 times degenerated, after accounting the spin

degeneracy. In the shell filling regime, this implies that such 8 peaks separated by

Coulomb blockade should be observed in the conductance curve. From the voltage
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Figure 4.2: Conductance curve dI/dV for sample A. The curve at T = 77 K
shows the main excited levels 1Sh, 1Ph and 1Se. The curve at T = 5 K shows that
the degeneracy of the excited levels has been lifted by the Coulomb interactions
and gives rise to Coulomb peaks. This last curve has been shifted up for clarity,
where the dash line indicates zero level. The inset is a zoom on the Coulomb peaks
showing that their width, ∼ 20 meV, is larger than thermal smearing ∼ 0.45 meV.
For these measurements, VGate = 0 V.
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separation between two peaks in figure 4.2, we obtain the value Ec ∼95 meV

for the Coulomb energy. This experimental value is consistent with calculated

Coulomb energy Ec = e2/2Cself where Cself = r/(1/κm + 0.79/κPbS) is the self-

capacitance of the QD, using for the diameter 2× r ∼ 8.5 nm, κm = 4πεmε0 with

εm = 1.8, which is the average dielectric coefficient of the media surrounding the

QD, and κPbS = 4πεPbSε0 where εPbS = 170 is the static dielectric coefficient of

PbS. This analysis ignores a possibly small contribution of the electrodes to the

Coulomb energy.

Σ = 0.5e
2

r
( 1
κm
− 1
κPbS

) + 0.47 e2

κPbSr

κPbS − κm
κPbS + κm

(4.1)

From these parameters and equation 4.1, we also obtain the polarization

energy[12, 13], Σ ∼ 95 meV. We also extract, the tunneling gap Eg ∼ 840 meV

which is related to the excitation gap Eg0 through the relation Eg = Eg0 + 2Σ,

which allows extracting the excitation gap Eg0 ∼ 640 meV at 5 K. This value

is consistent with the excitation gap expected from k.p. four bands envelope

function formalism[10].

Figure 4.3 a shows the dI/dV curves for sample A as function of gate voltage,

shown on the color plot figure 4.3 b. At any gate voltage, exactly 8 Coulomb

peaks can be clearly observed as function of drain voltage. This implies that the

injected electrons are indeed populating the 1Se and 1Sh levels of the QD. The

fact that excitation occur primarily in one direction is due to asymmetric tunnel

barriers[14]. This behavior can be simulated with the SIMON simulator. This

software has been designed by C. Wasshuber and allows simple simulations of

Coulomb blockade in QDs.
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Figure 4.3: (a) dI/dV curves for sample A at VGate = -27, -17, -7, 0, 7, 17, 27 V
(from bottom to top).(b) The color plot of dI/dV as function of drain and gate
voltage at 5 K. The red dashed lines are used to highlight the eight Coulomb
peaks of the 1Sh excited level. The yellow dashed line is used to calculate the
back-gate lever arm αC . (c) The zoom on the dI/dV curves at low bias from
VDrain = -0.15 V to VDrain = 0.15 V for VGate = -17, -7, 0 V (from bottom to
top). (d) The zoom of the color plot (a) from VDrain = -0.15 V to VDrain = 0.15
V. The white horizontal dashed lines highlight the gate voltage where the number
of electrons in the QD is changed by one. This zoom shows that the gap at low
bias cannot be lifted by the gate voltage. On panels a) and c), the curves have
been shifted up for clarity.
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In the simulation, we defined the QD as a system with one electron level

(7 times degenerated) and one hole level (three times degenerated). The QD is

separated from the Drain (electrode 1) and Source (electrode 2) by two tunnel

barriers, J1 and J2, which are characterized by their resistances, (R1, R2) and

their capacitances (C1,C2). Furthermore, a gate electrode is included in the

simulation, characterized by a gate capacitance Cgate. The lever arm η1(2) for

the electrode 1(2) depends on the capacitance through the relation η1(2) = 1 −

C1(2)/
∑
C.

For a symmetric junction with identical tunnel barriers, the electronic spec-

trum should also be symmetric with respect to the axe VDrain = 0, as observed

on the simulated spectrum figure 4.4 a. On the positive side, the electron (hole)

levels are labeled e+ (h+), on the negative side, the electron levels are labeled

e− (h−). Upon increasing the gate voltage, the electron and hole levels evolve

symmetrically with respect to the Drain bias, as shown by the simulation figure

4.4 a and the sketch figure 4.4 c. Upon increasing the capacitance of one of the

junctions, the spectrum becomes non-symmetric with respect to VDrain = 0. In-

deed, as the lever arm changes from η = 0.5, an electronic level will be observed

at different |VDrain| voltages on both sides of the spectrum. In highly asymmetric

junctions such as in STM experiments, electron type levels are only seen on one

side of the spectrum, while hole type levels are observed on the other side, as

shown figure 4.4 b.

In the STM experiment described in Ref.[15], it was shown that the nature

of the electronic level, i.e. hole or electron type, could be identified by studying

the evolution of the electronic levels with the lever arm. This lever arm can

be changed through the height of the tip, which depends on the tunnel current
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Figure 4.4: Simulation of a QD constituted of an electron level, seven times
degenerated, and a hole level, three times degenerated. Panel a) Symmetric
junction. In this spectrum, the electronic levels evolve symmetrically around the
axis VDrain = 0 upon increasing the gate voltage. Panels a) to b), the level arm
η increases upon increasing the capacitance of the junction 2. As this level arm
increases, the electron (hole) levels on the positive (negative) side are shifted to
higher voltages. In the highly asymmetric junction, panel b), the electron levels
are only seen on one side, while the hole levels are seen on the other side. Panels
a) to e), the tunnel resistance asymmetry increases. As this asymmetry increases,
the Coulomb splitting of the spectrum disappears on one side of the spectrum as
the system evolves from shell filling to the shell tunneling regime.
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Figure 4.5: Simulation of the electronic spectrum for different values of the
capacitance. For the symmetric junction, panel a), the electron and hole states are
observed on both sides of the spectrum, they evolve symmetrically with respect
to the axis VDrain = 0. As the lever arm increases, the electron (hole) disappear
on the positive (negative) side of the spectrum. In this last situation, the electron
and hole states are parallel to each other in the VDrain − VGate diagram.
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setpoint. It was shown that, upon changing the lever arm, the electronic levels

of the same type (electron or hole) should evolve anti-symmetrically with respect

to the axe VDrain = 0, see figure 4.4 d. Thus, we see that the electronic levels

evolve differently with the gate voltage and the lever arm, as sketched figure 4.4

c and figure 4.4 d.

Figure 4.5 shows the simulated electronic spectrum for different values of the

capacitances of the junctions. This figure shows clearly that a large difference in

the capacitance of the junction J1 and J2 leads to electron levels appearing on

the negative side only and hole levels appearing on the positive side only. Upon

increasing the gate voltage, the electron state approach the Fermi level of the

electrodes, while the hole state go away from the Fermi level. For this reason,

the electron and hole levels appearing on the opposite side of the axis VDrain = 0

are seen to move parallel to each other in the VDrain − VGate diagram.

In our data, the observation of an asymmetric spectrum implies that the

junction is asymmetric with a large difference between the source and drain ca-

pacitances, implying that the lever arm is close to 1.

4.2 Phonon sub-bands and Frank-Condon block-

ade

4.2.1 Phonon sub-bands in electron tunneling spectrum

The Coulomb diamonds are also observed for sample B, as shown in figure 4.6

b. From the experimental value of Coulomb energy Ec ∼ 50 meV we find that

the QD diameter is 2 × r ∼ 16 nm. With this bigger diameter, the excitation
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level are too broad to be clearly observed. However, as figure 4.6 a show, this

sample allows the clear observation of phonon sub-bands. A zoom at the Coulomb

peaks measured on sample B, figure 4.6 a, clearly shows that the Coulomb peak

is constituted of sub-bands separated by an energy of ∼ 8 meV. These peaks can

also be observed for sample A, but with lower resolution. These peaks are equally

spaced and strongly resemble the expected response when the electron level is

coupled to phonon modes[16–18]. This behavior has been observed previously

in STM spectroscopy of CdSe QDs[8], in molecules[19–21] and nano-tubes based

QDs[22, 23], as described in chapter 2.

In bulk PbS, the energy of the zero-wave-vector (Γ-point) transverse-optical

phonon is 8.1 meV as observed through far-infrared absorption[24] spectroscopy

and Raman spectroscopy[25, 26]. Thus, the observed side-bands are consistent

with the emission of these transverse optical-phonons. Furthermore, vibronic

quantum beats have also been observed in femtosecond optical spectroscopy[26,

27] of PbS QDs.

4.2.2 Frank-Condon blockade

The coupling of electronic levels with phonons can be described in terms of the

Frank-Condon model[16–18]. In the case of a single phonon mode ~ω0, the FC

theory gives for the transition probability:

X2
0n = | < 0|X|n > |2 = e−λ

2
λ2n

n! (4.2)

between a state with 0 phonon and a state with n phonons where λ is the

electron-phonon coupling strength, also called the Huang-Rhys factor. Figure
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Figure 4.6: dI/dV curves for sample B, plotted on panel (a) from VGate = 0
V (bottom) to VGate = 1.2 V (top) and shown on the color plot (b) as function
of drain and gate voltage, measured at 5 K. There panels show that the gap a
low bias cannot be lifted by the gate voltage. The zoom on the dI/dV curve at
VGate = 0.4 V and the zoom on the color plot show that a single Coulomb peak is
formed of phonon sub-bands separated by the phonon energy �ω0 ∼ 8 meV. (c)
Theoretical amplitude, equation 4.2, of the FC peaks as function of the number
of emitted phonons for two values of the Huang-Rhys factor λ = 1 (dashed line)
and λ = 2.5 (continuous line). At large λ, the matrix element goes to zero for
small n, indicated the FC blockade.
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4.6 c shows the tunneling probability obtained from the equation 4.2, as func-

tion of the number of emitted phonons for two values of the Huang-Rhys factor.

When tunneling on the QD, the electron shifts the equilibrium coordinate of the

QD by an amount proportional to the Huang-Rhys factor λ. As the overlap

between states of different phonons occupation is exponentially sensitive to this

geometrical displacement, the tunneling probability of ground-state to ground-

state transition is exponentially suppressed for strong electron-phonon coupling

as shown by the continuous line, λ = 2.5, on the figure 4.6 c. This phenomena,

called Frank-Condon blockade[28, 29], could be responsible of the conductance

suppression at low bias for both samples A and B, as shown figure 4.3 and figure

4.6, respectively.

While the Coulomb blockade can always be lifted at appropriate gate voltage

values, the FC blockade cannot be lifted at any gate voltage because of the

strong electron-phonon coupling, as shown figure 4.6 and figure 4.7, which is a

distinguished feature of the FC blockade. The first observation of FC blockade in

a tunneling experiment has been observed on carbon nano-tube based QDs[22, 23]

where the electrons were coupled to vibration modes (vibrons) of the nano-tube.

For equilibrated phonons, this suppression dominates until the bias voltage

is high enough, eV ∼ λ2~ω0[28, 29], to escape from the FC blockade regime

by transitions from zero phonons to highly excited phonon states. From the

observed gap values for sample A (∼ 25 meV) and sample B (∼ 50 meV), we

find that the electron-phonon coupling constant is in the range λ ∼ 1.7 − 2.5,

which is very large, of the order of the Huang-Rhys factor obtained from Raman

scattering experiments[25]. While there is no consensus on the effects of quantum

confinement on electron-phonon coupling, see. Ref. [30] for a review, it has been
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suggested that a large electron-phonon coupling in QDs could be the consequence

of trapped charges at the surface of QDs[25] or polaronic effects that would arise

as a consequence of the discrete electronic levels[31].

4.3 Inelastic tunneling spectroscopy of PbS QDs
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Figure 4.8: (a) dI/dV curve for sample C showing the excited hole levels, 1Sh
and 1Ph, at 5 K. Note the absence of the Coulomb peaks in this shell-tunneling
regime.(b) Inelastic ETS d2I/dV 2 showing three lowest phonons mode (blue line)
compared to the Raman spectrum (yellow line) extracted from Ref[25].

Phonon modes can also be observed in the inelastic ETS[32], as shown in figure

4.8 b for sample C which is in the regime of shell-tunneling[7, 6], In this regime, the

tunneling rate Γin for electrons entering the QD is smaller than the tunneling rate

Γout for electrons escaping the QD, and, consequently, do not present Coulomb

peaks, as shown figure 4.8 a. The absence of the sharp Coulomb blockade peaks

does not allow the observation of phonon sub-bands, however, the absence of the
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gap at low bias allows measurements of the inelastic ETS (d2I/dV 2), as shown

in figure 4.8 b. This spectrum shows the first three optical phonon modes (blue

line) at the position expected from Raman spectroscopy (yellow line)[25]. The

energy of the first phonon mode is around 8 meV which is the energy of phonons

extracted from the phonon sub-bands in sample B.

4.4 Capacitive coupling between the gate and

QDs

In this section, we return to the sample A and B. Using the formula for the ca-

pacitance between a metallic sphere of radius r and a metallic plane at a distance

d:

C =
+∞∑
n=1

log(d/r +
√

(d/r)2 − 1)

sin h(n log(d/r +
√

(d/r)2 − 1))
(4.3)

We calculate the capacitance between the QD of radius r and the gate at the

distance d =300 nm, which gives Csp/e =5.3 V −1 for sample A and Csp/e =10.2

V −1 for sample B. We find for the experimental values C/e =0.1 V −1 for sample

A and C/e =2.5 V −1 for sample B. These values are smaller than the theoretical

values because of the screening effects due to the electrodes, which depend on the

exact position of the QD with respect to the electrodes. One can see, for sample

A, that the back-gate lever arm is different for the Coulomb peaks and the excited

levels (1Se, 1Sh). While the lever arm for the Coulomb peak is αC =dEc/dVGate

∼ 0.0085, it seems that the excitation peaks are barely shifting with the gate.

This can be understood as a consequence of the good screening properties of PbS
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which has a large static dielectric coefficient.

a

b

Figure 4.9: (a) Color plot of the differential conductance for sample A measured
at the temperature T = 77 K, as function of drain and gate voltages. This plot
shows the splitting of the excitation level with the gate voltage. (b) Differential
conductance as function of drain voltage extracted from the color plot at VGate =
0 V .

However, measuring the differential conductance map at higher temperature,

T=80K, shown figure 4.9, one can see that the excited levels 1S and 1P are actu-

ally shifting and splitting with the gate voltage. We believe that this observation

is possible at 80 K and not 5K because of the absence of the Coulomb peaks
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at the higher temperature. The origin of the splitting is not completely clear.

Because the amplitude of this splitting is very large, ∼ 100meV , it cannot be due

to a Starck effect. One plausible explanation is that this phenomena is related

to a screening effect. As seen for large microfabricated QDs, the accumulation

of charges in a QD leads to a gate voltage dependent screening length, and so,

to a gate dependent Coulomb blockade. In semiconductors, the screening length

is actually related to the Debye length, which provides a measure of the band

bending in the semiconductor in presence of an electric field. In the case of PbS,

because the bands are four times degenerated, the amplitude of band bending

could be different for each bands as they are corresponding to different crystal-

lographic orientation, and so, they are oriented differently with respect to the

applied electric field. Thus, the observed splitting of the excited peak in the color

plot shown figure 4.9 could be related to the lifting of the four-fold degeneracy of

the excited level.

A final remark regarding the observation of Coulomb diamonds is in order.

Indeed, the observation of Coulomb diamonds is usually expected in metallic

nanoparticles or in semiconducting QDs where the Fermi level has been driven in

the conductance or valence band with the gate voltage. At T=5 K, we see that

the applied gate voltage is not sufficient to push the excited levels across zero bias,

however, the broadening of excited levels is sufficient to produce a residual density

of states within the semiconducting gap, allowing the QD to effectively behave

as a metallic nanoparticle. This is consistent with the recent STM observation

of mid gap states in PbS QDs[9] and transport measurements in PbS QDs thin

films[33].
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4.5 Conclusion

To summarize, we found that the elastic and inelastic ETS of PbS QDs is charac-

terized by signatures of strong electron-phonon coupling. In the shell-tunneling

regime, three phonon modes can be observed in the inelastic ETS d2I/dV 2. In the

shell-filling regime, where the Coulomb blockade peaks are observed, the lowest

energy phonon mode leads to the apparition of sub-bands that can be observed

in the elastic ETS dI/dV . In this regime, we observe that the Coulomb block-

ade cannot be lifted at any gate voltage, which is likely the consequence of FC

blockade. Thus, this first report of the observation of FC blockade induced by

coupling of electrons to optical phonons teaches us that using QDs with weak

electron-phonon coupling should help improve electronic transport in QDs thin

films.
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Chapter 5

Tunneling spectroscopy of single

HgSe QDs

As described in chapter 2, HgSe has an inverted band structure, with the s-like

Γ6 level below the Γ8 and the Γ7 levels, where the Fermi level is located on the Γ8

level. The consequence of quantum confinement in those inverted band structure

is two-fold. On the one hand, the position of the Γ6 level increases in the band

structure. Below some critical radius, the Γ6 level should becomes higher than

the Γ8 level. In HgTe, a critical radius r = 9 nm has been calculated[1]. At

this point, we are not aware of any similar calcuations for HgSe, and we do not

know what should be the critical radius for HgSe. On the other hand, quantum

confinement leads, of course, to the apparition of discrete levels in the valence

and conduction band, separated of a few hundreds meV. This band structure is of

interest for application in Infra-Red Detectors[2–4], which can make use of either

interband[5–7] or intraband transitions[3, 8].

The interband transition and the intraband transition of HgSe QDs have been
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studied by optical characterization[3, 8], however, as already discussed in the

chapter 4 on PbS, electron tunneling spectroscopy is a more relevant charac-

terization when the goal is to fabricate QDs-based electron-conducting devices.

Using the ESI technique, which is described in the chapter 3, we fabricated single

HgSe QD junctions.
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Figure 5.1: (a) TEM image of HgSe QDs. (b) The XRD diffraction curve of
HgSe. (c) After each projection, the tunnel current is measured (VDrain = 0.5 V,
VGate = 0 V, T=300 K). When it exceeds the threshold, the projection is stopped.
(d) SEM image of ∼ 10 nm spaced electrodes in which a QD has been deposited.

Figure 5.1 a shows that the HgSe QDs are sphere of size ∼ 10 nm in diameter,
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well crystallized as shown by the XRD spectrum, figure 5.1 b. The QDs are

deposited on the chip circuit with the ESI system until a sharp increases of the

tunnel current is observed, as shown in figure 5.2 c. After a typical deposition,

figure 5.1 d shows that the HgSe QDs are well dispersed on the chip. We have

successfully fabricated several HgSe QD junction circuits with the ESI techniques

and the ETS of HgSe QD junction are measured at the temperature T ∼ 80 K.

5.1 The interband and intraband transition of

HgSe QD

Figure 5.2 b shows a sketch of the main electronic levels in the QD. The electron

transition from 1Sh to 1Se is called interband transition and the electron transi-

tion from 1Se to 1Pe is called intraband transition. Both of these two transitions

have been observed by optical absroption (figure 5.2 a) by E. Lhuillier et al., our

collaborator who provided the HgSe samples.

Figure 5.3 shows the conductance spectrum dI/dV as function of gate voltage

for two samples, A and B. Overall, the differential conductance maps are found

to be similar for both samples. These maps present distinct regimes according

to the carrier filling. At the most negative voltage, in the regime labeled I, the

conductance map shows a large gap of amplitude about ∼ 1.8 V. At the highest

voltage, regime labeled IV, the conductance map shows a smaller gap about ∼

0.4 V. Assuming that the voltage drop across one junction corresponds to one

half of the applied voltage, as expected for a symmetric junction, the measured

gaps corresponds respectively to the interband gap, ∼ 0.8 eV, and the intra-band

80



1Se

1Pe

1Sh

HgSe QD

7200 cm-1

2100 cm-1

a b

Figure 5.2: (a) Optical absorption spectrum of HgSe QDs. (b) The schematic
of the intra-band gap is 2100 cm−1, the inter-band gap is 7200 cm−1.

gap, ∼ 0.2 eV. These values are consistent with the values obtained from optical

absorption experiment.

The evolution of the spectrum as the gap voltage is changed depends on the

carrier filling of the QD. At large negative voltage, regime I, the Fermi level is

within the band gap as sketch figure 5.4 a. Consequently, the large inter-band

gap is observed in the conductance spectrum. At lower gate voltage, regime II

and regime III, the Fermi level is located on the first excited level 1Se. In the

regime II, only a single electron is present on the 1Se level. In regime III, two

electrons are present on this level. Indeed, this level has a two-fold degeneracy

because of the spin. The amplitude of the gap reaches a minimum at the charge

degeneracy point between the regime II and regime III, figure 5.4 c. At this

degeneracy point, the gap is controlled by the Coulomb energy and the spectrum

has the characteristic look of a Coulomb diamond tip. At higher gate voltage,
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Figure 5.3: Conductance spectrum dI/dV as function of drain voltage and gate
voltage measured on two samples A and B. The curves shown on panels (a)
and (b) are extracted from the color maps (c) and (d), respectively, at the gate
voltages indicated by the arrows. On the color plot, the dashed lines separate the
different regimes labeled I to IV discussed in the text. The red lines indicate the
edges of the main structures in the spectrum, i.e. gap edges and Coulomb edges.

regime IV, the Fermi level is within the intra-band gap, figure 5.4 d, consequently,

this gap is observed in the conductance spectrum.

The novelty of the observed spectrum should be emphasized. Indeed, as dis-
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Figure 5.4: The schematic of the location of Fermi level in the HgSe QD at dif-
ferent gate voltages. The location of fermi level in (a), (b), (c) and (d) correspond
to the gate voltages in regime I, II, III and IV in figure 5.3. The Fermi level is
represented by the red dashed line.

cussed in chapter 2, most observations of discrete electronic spectrum have been

done in large semiconducting QDs, where the density of states in the conduction

band is large. Consequently, a metallic diamond structure is usually observed

when the Fermi level is located within the conduction band. In contrast, in QDs,

as the density of states is low even in the conduction band, with only a few levels

1Se, 1Pe, etc, only n-1 Coulomb diamonds are present, where n is the degeneracy

of the level. When the Fermi level is on the 1Se level, the differential conductance
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map shows a single Coulomb diamond, as observed in the spectra shown in figure

5.3. This is the first time that this type of electronic spectrum has been observed.

5.2 Photocurrent measurement on a single HgSe

QD

Beyond its fundamental interest, the fabrication of single nanoparticle devices

could be of interest for applications where single spins or single charges have to be

manipulated. For example, the development of methods for reading the resonance

frequency of single spins is of interest for application in quantum information[9]

as well as for the development of chemical sensors. Among different methods

currently developed for reading single spin states, one method has particularly

attracted our attention[10]. This method is based on measurements of the photo

current in P-doped silicon. It has been shown by Maxwell and Honig[11] and

Schmidt and Solomon[12] that the photo-current depends on the spin polarization

of trap centers. This phenomena allows the Electrical Detection of Magnetic

Resonance (EDMR) through measurement of the photocurrent.

To progress in that direction, we attempted a measure of the photo-current

across a single QD. To that end, we developed a method, described in chapter

3, where the drain bias is modulated at the frequency ω0 = 17 Hz and the

power of the illuminating light is also modulated at the frequency ω1 = 52 Hz.

Consequently, the resulting photocurrent is modulated at the frequency ω0 + ω1

= 69 Hz. A lock-in technique is employed to detect the signal at this frequency.

The light is applied with a photo-diode (wavelength = 660 nm). The maximum
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Figure 5.5: Photo-conductance dI/dV as function of light power of the LED
diode.

light power applied is estimated to be about 2 × 10−4 Wm−2. Measuring the

photoconductance, at VDrain = 1 V, at different LED power, we found that the

photocurrent was quickly saturing at its maximum value and that no significant

changes in the photocurrent was observed by doubling the LED power, as shown

figure 5.5.

The major advantage of this method is to allow extracting the small photo-

current contribution, measured at the frequency ω0 + ω1, from the large direct

tunnel current across the QDs measured at the frequency ω0.

Figure 5.6 a and figure 5.6 b show, respectively, the conductance and the

photoductance maps measured on sample A. A small photoconductance signal

85



a

b

c

Figure 5.6: (a) Conductance spectrum measured under light illumination at
the frequency ω0, as function of drain and gate voltage. (b) Photo-conductance
measured at the frequency ω0 +ω1, as function of drain and gate voltage. (c) The
red line shows the photoconductance extracted from panel (b) compared with
the dark conductance (black line). The dash line is the conductance spectrum
extracted from panel (a).

can be clearly resolved. Figure 5.6 c shows the photoconductance as function

of drain voltage compared with the conductance signal. While the direct tunnel

conductance is about 0.1 nS at VDrain = 1 V, the photoconductance is only

5 × 10−6 nS. While this signal is very small, it is clearly related to the light

generated current. Indeed, measuring the photo-conductance while darkening the

LED light, shows a strong reduction in the measured photocurrent by a factor of

2, well beyond experimental resolution.

As shown figure 5.5, the measured photocurrent quickly reached a maximum

with the light power, indicating the absorption saturation of the QD. Assuming

that only a single exciton can be created in the QD upon absorption of a pho-
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ton, then the photocurrent will be limited by the lifetime τ of the exciton in the

QD. Further, assuming that every exciton dissociates and contributes to the pho-

tocurrent, the maxium photo-current is related to the life time through the simple

formula I = 2e/τ . From the data, we extract a photocurrent IPC ∼ 5× 10−6 nA

at the drain voltage VDrain = 1 V. This implies that the residence time of the ex-

citon in the QD is equal to τ = 2e/IPC ∼ 65 µs. In QDs, the fluorescence lifetime

is usually much lower than 1µs in the case of a direct recombination. However,

in presence of an electron trap, the recombination between the electron and the

hole can be much longer and fluorescence lifetime larger than 1 µs are commonly

observed. Thus, it seems plausible that the residence time of the exciton could

be as large as 65 µs before its dissociation and collection by the electrodes.
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5.3 Conclusion

In this study of HgSe QDs, we studied the tunneling spectrum as function of

electron occupation number. Upon increasing the carrier filling, the ETS shows

the inter-band gap for the empty QD, a Coulomb blockade feature when the

Fermi level is located on the two-fold degenerated first excited level 1Se, and

finally, the intra-band gap when the Fermi level is located between the first and

second excited levels. An additional remark on the band structure is in order.

As described earlier, HgSe has an inverted band structure in the bulk. In theory,

the band inversion should lead to the formation of surface states. We note that

the interpretation of the experimental tunneling spectrum in our HgSe QDs did

not require to take into account the possibility of surface states. This absence

may indicate that the band structure should have recovered the normal order,

i.e. with the Γ6 band above the Γ8 band, as expected in strongly confined QDs

structures. A study as function of QD diameter would be of interest to identify

the signature of surface states in the tunneling spectrum.

On this same system, we also attempted the first measurement of the pho-

tocurrent in a single colloidal QD. Recently, new developments in QDs synthesis

allowed the preparation of QD doped with only a few doping atoms[13]. The

fabrication of junctions with those doped QDs followed by measurements of the

photocurrent provides a possible way for the electrical reading of a single spin.
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Chapter 6

Conclusions and prospects

The goal of this thesis was to fabricate single nanoparticle junctions from colloidal

solutions of semiconducting QDs. and study the electron tunneling spectroscopy

of these junctions at low temperature. To overcome the difficulty of fabricating

single nanoparticle junctions, we developed a method based on the projection

in-vacuum of the nanoparticles onto the chip circuit. A first projection method,

employing a fast pulsed valve, has been employed to fabricate single PbS QD

junctions. To improve this projection system, I developed another setup based

on the electrospray technique. The electrospray ionization system has been used

to fabricate single HgSe QD junctions. All of the junctions are measured at low

temperature, using a cryostat installed in a glove box under argon.

For PbS QD junctions, we found that the elastic and inelastic ETS of PbS

QDs is characterized by signatures of strong electron-phonon coupling. In the

shell-tunneling regime, the phonon modes can be observed in the inelastic ETS

d2I/dV 2. In the shell-filling regime, where the Coulomb blockade peaks are ob-

served, the lowest energy phonon mode leads to the apparition of sub-bands that
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can be observed in the elastic ETS dI/dV . In addition, in this regime, we found

that the Coulomb blockade cannot be lifted at any gate voltage, which is likely

the consequence of FC blockade. Thus, this first report of the observation of

FC blockade induced by coupling of electrons to optical phonons teaches us that

using QDs with weak electron-phonon coupling should help improve electronic

transport in QDs thin films.

For the study of HgSe QD junctions, we observed the evolution of the tunnel-

ing spectrum as the QD occupation level is changed by gating. Upon increasing

the carrier filling, the ETS shows either the inter-band gap for the empty QD, a

Coulomb blockade feature when the Fermi level is located on the two-fold degen-

erated first excited level 1Se, and finally, the intra-band gap when the Fermi level

is located between the first and second excited levels, 1Se and 1Pe. We note that

the interpretation of this electronic spectrum did not require to take into account

the possibility of surface states, indicating that the band structure should have

recovered the normal order, i.e. with the Γ6 above the Γ8 band, as expected in

strongly confined QDs structures. Furthermore, we attempted the first measure

of the photocurrent across a single colloidal QD.

Regarding future works, a first proposal could be the study of the evolution

of the band structure in HgSe QDs as function of their size. Indeed, as bulk HgSe

has an inverted band but not the strongly confined QD, a study as function of

QD diameter may allow the identification of the band crossing and possibly the

formation of the surface states in the larger sized QDs. This study could be of

much interest for the contemporary quest of topological materials.

Another possible direction of research would be to control more precisely the

nanoparticle beam position. Indeed, as discussed earlier, the landing position
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of the nanoparticles can be controlled by applying an electric field on the path

followed by the beam. We can imagine that by precisely controlling the beam

position, it could be possible to depose ordered arrays of nanoparticles.

Finally, another direction of research would be to employ doped QDs. Re-

cently, new developments in QDs synthesis allowed the preparation of QD doped

with only a few doping atoms. The fabrication of junctions with those doped

QDs followed by measurements of the photocurrent provides a possible way for

the electrical detection of the resonance of a single spin.
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