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Abstract 
 
 
Due to its growing success with consumers as a preferred way to 
access video content, VoD (Video On Demand) services streaming is 
gaining unprecedented interest from the IPTV and the Internet video 
streaming industries alike. Unlike the rigid linear video services 
programming that is the norm in broadcast TV, the on-demand 
content access provides a great flexibility allowing end-users to browse 
and consume video content in a non-scheduled way. Besides 
providing a VoD offering to meet evolving end-users expectations for 
flexibility and differed-time access, it is today very important for a 
service provider to offer a very large content library (popular and niche 
content) to capture the broadest audience possible. Targeting a very 
large audience with a large video content library puts a very heavy 
burden on service providers with scalability being the chief design 
issue.  
This thesis takes the view that P2P streaming systems can be an 
appropriate candidate to meet the challenges of professional VOD 
system in terms of large content library, large number of customers, 
and cost imperatives. P2P VOD streaming essentially relies on the 
many-to-one communication approach where the VOD session is 
provisioned through a multisource streaming session. In other words, the 
receiving peer receives multiple complementary video sub-streams 
from different contributing peers.  
 
A first contribution of the thesis focuses on the content injection 
strategy and how the different content fragments should be 
dispatched in the network to achieve the highest performance at VoD 
services provisioning epoch. In fact the way the content library is 
fragmented and spread in the network plays a critical role in (i) 
determining the content availability level, and (ii) improving the 
network capacity in meeting the demand for content by maximizing 
the number of VOD sessions that can be delivered.  
We demonstrate that the random injection strategy is not appropriate 
to maximize the number of simultaneous VoD streaming sessions in the 
network. After gaining a better understanding of the factors driving 
P2P-based VoD streaming systems, we provide guidelines to better 
operate such system to achieve different performance objectives 
and/or fit specific network configurations. Further, we propose a new 
content dispatching strategy that maximizes the number of served VoD 
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sessions. This approach relies on the content popularity to effectively 
distribute the content among peers in the network in a way to facilitate 
streaming load balancing, and thus achieve better system resources 
utilization.  
 
Our second scientific contribution consists of addressing the issue of 
resources allocation in P2P streaming systems. First, we introduce three 
basic resource allocation models that use a single-criterion algorithm 
(Available Uplink, Popularity Score, and Critical Score) to select 
contributing STBs and satisfy an incoming VoD request. We individually 
evaluate the performance of every single-criterion resource allocation 
strategy, and highlight its strengths and weaknesses in dealing with 
different situations. The learning from this analysis has been employed 
to develop a dynamic resource allocation algorithms for P2P streaming 
systems.  
Last but certainly not least, we addressed on the problem of 
maximizing the P2P streaming system capacity by using Bayesian 
approach to dynamically alternate between different resource 
allocation strategies. This switching between different resource 
allocation strategies is guided by a dynamic statistical analysis of 
performances. A key contribution resides in effectively combining 
different, and potentially conflicting, performance objectives when 
deciding on which resource allocation strategy to use for the given 
time interval. Moreover, a VoD service operator can specify any 
performance objectives (decision criteria) that meet its requirement, 
and our approach will adapt in order to maximize them. We show that 
this is an efficient way to greatly improve the performances of a P2P 
streaming system, such as minimizing the VoD requests rejection rate, 
when facing constantly changing content demand patterns.  
As part of our effort to develop algorithms that can be effectively 
deployed by broadband operators, we developed a full-scale 
emulator for P2P streaming that can support up to 10,000 peers. The 
P2P streaming emulator includes a VOD request generators, along with 
a SuperNode (with backend DB) that tracks and allocate network 
resources.  
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Section 1 – Introduction 
 
 
Faced with ever growing video quality and bandwidth requirements, 
Video-on-Demand (VoD) service providers are looking for ways to 
reduce their cost base through the design of scalable VoD systems. 
Peer-to-peer (P2P) networks have increasingly become a dependable 
scalable alternative to traditional point-to-point communications. As a 
consequence, many research works have shown interests in combining 
VoD systems with P2P communication paradigm to improve scalability 
and reduce operation costs – traditionally driven by bandwidth cost. 
The Internet streaming industry is today powered by commoditized 
streaming resources offered by Content Delivery Networks (CDNs), 
which is driving the service cost down and favoring the raise of 
professional, QoS-enabled Internet video streaming services such as 
Hulu, Netflix, Amazon VOD, etc. The obvious economies of scale 
offered by CDNs backend streaming capacities are mainly behind the 
success of Internet streaming services.  
In this context, VOD streaming systems operated by traditional 
broadband operators need to be significantly overhauled to achieve 
higher scalability, cut the per-service cost, and ultimately be a viable 
alternative to Internet streaming services. P2P-based VOD streaming 
services have the potential to deliver great benefits in this sense.  
Peer-assisted VOD streaming systems in managed networks builds on 
the tremendous resources (bandwidth, storage space, and power) 
available at end-systems to deliver the VOD service at a fraction of the 
cost. In such VOD systems a peer that requests access to a given VOD 
content will receive the service in form of a multi-source streaming 
session from different other STBs in the network.  
 
P2P-based streaming in the context of a broadband network consists 
of fragmenting the different video contents into complementary 
fragments and then spreading them in the different STBs. This way a 
VoD service requested by a given requesting peer can be served by 
other contributing peers in the network, provided that they have the 
necessary fragments and uplink capacity to do so. Both content and 
bandwidth availability are two important dimensions that should be 
managed by P2P streaming systems.  
In our streaming architecture, the actual VoD streaming service is 
provisioned through a multipoint-to-point streaming session where 
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multiple complementary video sub-streams are streamed from a set of 
contributing peers to the receiving peer.  
Clearly, the contents offered for streaming have to be fragmented and 
spread in the network beforehand. Content Injection is in fact a key 
part of the system that necessitates optimization. Depending on how 
the content is duplicated and spread in the network, the system can 
more or less better satisfy the demand for content. In this thesis, we 
introduce and evaluate multiple strategies, and present the 
advantages of each one of them. 
 
In a second scientific contribution of this thesis, we address the problem 
of resource allocation (RA) in P2P-VoD systems. Indeed, as the central 
node receives VoD requests and fulfills them by allocating contributing 
peers to stream the VoD session, uplink resources of peers are 
committed for the duration of the title (resp. movie). Considering that 
each peer would typically store a wide range of content parts, the 
resource allocation decision becomes critical for maximizing the 
network utilization, and minimizing VoD requests rejection rates. In fact, 
as the peers’ uplink capacity gets saturated, all content parts 
contained in these peers become unavailable to satisfy new VoD 
requests. Ideally, the resource allocation algorithm should carefully 
weigh which peer to commit so as to leave necessary resources 
available to satisfy the most probable future VoD requests. 
We present several single-criteria resource allocation strategies, which 
can be alternatively used to deal with a wider range of network 
conditions in terms of (i) popularity trend shifts, (ii) a changing level of 
network saturations, (iii) specific content scarcity, etc. In order to 
decide which RA strategy to choose as the system is operating, we use 
two simple performance objectives: maximize VoD request success 
rate and balance the streaming load among active peers. A key 
scientific contribution here resides in using Bayesian fusion approach to 
combine the two performance objectives and evaluate the different 
RA strategies in a much more granular and effective way. Such a 
statistical fusion of performance objectives allows to considerably 
outperforming a linear combination of objectives.  
 
Another key contribution of our work resides in developing a full-scale 
emulator of a P2P-based VoD streaming system that handles actual 
VoD requests and relies on a full-scale peers database to track 
available resources. Our system is a credible proof-of-concept for the 
implementation of P2P-based VoD streaming systems that can handle 
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hundred thousands of peers while using complex Bayesian algorithms 
to optimally allocate system resources.  
 
 

1. Problem Statement 
 
Many P2P systems have already been studied in the literature for video 
streaming. Therefore, there currently exists a multitude of approaches 
for content streaming. Most of these approaches are focused on live 
streaming. Little work has been done for VoD streaming. In such 
approach, the library of contents is usually larger (10,000) than in a live 
streaming context (usually around 10 contents available at a given 
time). Therefore, it is necessary to design a solution that can support 
large libraries of contents.  
As revealed above, it is clear that while the video distribution market is 
developing quite rapidly, and the current solutions do not meet the 
challenges of high quality, real-time distribution of legal video content. 
New solutions are necessary to solve these problems. Particularly, a 
broadband operator–focused solution is a very promising approach 
that conciliates both (i) the QoS imperative by operating in a 
managed network and (ii) the scalability of peer-to-peer approach.  
 
The focus of this work is to address two critical aspects related to the 
scalable distribution of VoD content in a managed broadband 
network.  
 
First, this work focuses on investigating different content fragmentation 
and dispatching algorithms. In fact, the way different titles in a content 
library are spread in the peers play a major role in defining the 
availability of the content and meeting the varying demand from 
users. If a small group of peers holds all of the popular contents, it 
becomes more likely that these popular contents will rapidly become 
unavailable as the small set of peers get their uplink saturated with an 
increasing demand. On the other hand, spreading the content as 
much as possible require making compromises on the size of a content 
fragment and thus the number of complementary sub-streams to 
deliver the VOD session. Too many sub-streams would increase the 
chances of failure.  
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Second, resource allocation (RA) in peer-assisted VoD systems plays a 
major role in the system performance and its viability. The resource 
allocation here refers to the process of assigning contributing peers to 
stream the content requested by the receiving peer. The resource 
allocation strategy is another critical aspect that determines the 
streaming system performances. In fact, the way resources are 
allocated, and progressively consumed, to satisfy the arriving VoD 
requests is critical in defining when the network reaches saturation and 
starts rejecting VoD requests.  
 
We now present the main research questions addressed in this work. 

1. What are the key design elements for an efficient peer-to-peer 
video-on-demand streaming system? Where do the key 
performance trade-offs lie? And what drives the per-VoD service 
delivery cost? The focus here is to identify key implementation 
issues.  

2. What are the best content dispatching approaches? And for 
what use cases are they individually best suited? Determining the 
best content dispatching algorithm requires rigorous 
mathematical modeling of how the content availability varies for 
a given popularity model.  

3. What are the best resource allocation strategies? And how do 
they perform for a different content demand variation? How can 
resource allocation strategies be combined in a genetic 
algorithm to produce the best results against a wide range of 
content popularity changes?  What mathematical models are 
best suited to capture and predict content popularity dynamics 
(demand)? 

4. How do the dynamic aspects of the demand in VoD systems 
impact the efficiency of the streaming system?    

  

2. Overview of the proposed solution 

 
This thesis focuses on developing a fully scalable VoD streaming system. 
In order to provide scalability, we explore the use of the P2P 
communication paradigm. The P2P streaming system is managed by a 
central server, the Super Node, so as to control all the system resources 
and ensures coordination, cost-effectiveness, and QoS. Ideally, our P2P 
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streaming system should be supplemented by a CDN as a fallback 
option during extremely high demand hours. This hybrid P2P-CDN 
network is a more reliable, scalable, and manageable system for VoD 
that can be deployed in broadband networks where minimum service-
level agreements are required. 
 
The first scientific contribution of this thesis consists of developing 
effective P2P content dispatching strategies that optimize the system 
performance in dealing with demand for content. The initial content 
injection is, indeed, what determines how the content availability in the 
system varies throughout peak demand cycles.   
Based on our thorough investigation of the content injection issues we 
devised a new content injection mechanism called Popularity-
Weighted Content Dispatching (PW-CD). PW-CD exploits the 
knowledge of individual title popularity to spread the content parts in 
the P2P network in a way to ensure that peers are equally popular. In 
other words, the expected utility of each peer is the same, which 
means the overall P2P network resources (peers bandwidth) will be 
equally consumed as the content demand increases. The key to 
superior performances here is to ensure that streaming load is always 
distributed over the peers, and peers become saturated at the same 
pace.  
 
Another major scientific contribution in this thesis is related to resource 
allocation in the P2P streaming system. Besides the content injection, 
resource allocation is another key factor that determines how the P2P 
streaming system capacity is maximized by optimally preserving the 
resources of the right peers in anticipation of future content demand.    
We first designed and evaluated three different resource allocation 
strategies: Highest Uplink First (HUF), Lowest Critical Score (LCS), Lowest 
Popularity Score (LPS). Further, we designed an original dynamic 
resource allocation framework that can switch between different basic 
resource allocation strategies depending on current network 
conditions and the most likely content popularity shifts. Our approach is 
called Learning-Based Resource Allocation (LB-RA) and it relies on 
Bayesian fusion to statistically predict future demand and assess which 
basic resource allocation strategy would be most suitable for the next 
time period. More specifically, two methods are used in LB-RA to 
determine the “best fit” strategy by using a combination of multiple 
performance metrics: Bayesian Fusion, and Evidence Theory. LB-RA is 
meant to be a P2P resource allocation framework that feature any 
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number of basic resource allocation strategies, which are developed 
by service providers to meet their particular needs in terms of network 
size, active users base, content library size, etc.  
 
Last but not least, we developed a full scale P2P streaming emulator 
that can emulate a large network with up to 100,000 peers and a 
content library containing up to 50,000 video titles characterized by a 
different popularity. 

3. Thesis outline 

  
This thesis is broken down into five parts. Part I is the current introduction 
chapter. Part II presents the background and consists of Chapter 2 and 
Chapter 3. The Chapter 2 offers a comprehensive literature review 
discussing many aspects presented in this thesis. This related works 
chapter covers content streaming networks, peer-to-peer video-on-
demand systems, and resource allocation strategies.  
Chapter 3 presents an in-depth analysis of P2P-VoD systems. An 
overview of such systems is proposed and the key performance factors 
described. We also define multiple performance evaluation metrics 
that are used to evaluate the performance of P2P streaming system 
along dimensions that matters the most to the service provider and 
end-users. 
 
Part III is dedicated the system design and architecture part, and 
features Chapters 4 to 7. Chapter 4 focuses on the network design, 
and presents the hybrid P2P-CDN architecture of our approach. It also 
features the video fragmentation process applied to the video 
contents in the system. 
Chapter 5 investigates the important issue of content injection. It 
presents a content replication algorithm to compute the number of 
duplicates for each content in the network. Then, it presents several 
content injection approaches, including the Popularity-Weighted 
Content Injection, which ensures a fair dispatching of contents through 
the network of peers. 
Chapter 6 and 7 focus on the important issue of resource allocation in 
P2P streaming systems. First, Chapter 6 presents multiple basic 
approaches to perform the task of resource allocation in P2P streaming 
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systems, starting with single-metric ones, and moving on to multi-criteria 
based resource allocation.  
Chapter 7 introduces the Learning Based Resource Allocation, a 
dynamic approach that dynamically adapts to the content demand 
pattern while considering the system current conditions in terms of 
saturation. Two techniques are used here to drive the LB-RA 
adaptation: Bayesian fusion, and Evidence theory. 
 
Part IV presents the simulation parameters and the results obtained for 
all approaches. It consists of Chapter 8 to 10. Chapter 8 gives an 
overview of our full-scale experimental platform, its advantages, and 
limitations.  
This is followed by Chapter 9, which provides an evaluation of the 
Content Injection algorithms. Finally, Chapter 10 offers a 
comprehensive performance evaluation of the resource allocation 
approaches for P2P streaming system. 
The final part of the thesis is the conclusion and future work part, which 
contains Chapter 11. Chapter 11 concludes the thesis and provides a 
discussion of potential future work.  
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Ch. 2 : Literature Review 
 
In this section we discuss current Video Streaming mechanisms and the 
processes involved in such systems. A large number of approaches are 
based on Peer-to-Peer networks, but none offers a viable solution to 
Video-on-Demand streaming. Moreover, a lot of work has been done 
in the literature for peer resource allocation in P2P networks, with each 
approach being efficient when facing a particular demand pattern. 

1. Content Streaming Networks 
 
Multiple solutions exist, in order to stream contents. In this section, we 
present each of those network paradigms, and evaluate their 
strengths. We start by investigating server-based approaches, before 
presenting peer-based solutions. 

1.1. Server-based approaches 
	  
The traditional solution for streaming video over the Internet relies on 
the client-server communication paradigm [1][2]. A client sets up a 
connection with a video server, and video content is then streamed to 
the client directly from the server (see Figure 1.a). This method presents 
numerous limitations, as investigated in [3]. In this approach, the 
maximal number of simultaneous sessions is limited by the uplink 
capacity of the server. Standard servers present an uplink capacity of 
around 20 MB/sec. A standard video stream requires more than 400 
KB/sec, meaning that such approach reaches its limit with 50 
simultaneous sessions (see Figure 2). 

One slight variation of client-server communication model is the 
Content Delivery Network (CDN) [4][5]. In a CDN-based solution, the 
video source server first pushes video content to a set of content 
delivery servers placed strategically at the network edges. Instead of 
downloading from the video source server, a client is directed to a 
nearby content delivery server to download the video (see Figure 1.b).  
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(a) 
 

(b) 

Figure 1: Server-based content distribution systems architecture. (a) Client-Server (b) CDN. 

CDNs effectively reduce the video startup delays, and the traffic 
imposed on the network (reduced number of network hops), then 
serves more users. For example, YouTube employs CDN to stream video 
to the users, as do most professional video streaming services such as 
Hulu[7] and Netflix[8]. The major challenge for server based video 
streaming solutions, though, is its scalability[9] (see Figure 2).  

Indeed, the maximal number of simultaneous sessions is directly linked 
to the number of servers in the CDN. In order to support more sessions, it 
is then necessary to increase the number of servers, thus increasing the 
overall cost of the system. With VoD systems growing faster every day, 
the bandwidth provisioning, at video source servers or in CDNs, must 
grow proportionally with the number of video users.  
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600 

Maximal server 
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20.000 
 

 
(a) (b) 

Figure 2: Maximal throughput of content distribution systems.(a)  Parameters (b) Estimation. 

 

1.2. Peer-based approaches 
 
In a network of thousands of clients, VoD streaming systems operated 
by traditional broadband operators need to be significantly 
overhauled to achieve higher scalability, cut the per-service cost, and 
ultimately be a viable alternative to Internet streaming services. P2P-
based VoD streaming services (see Figure 3) have the potential to 
deliver great benefits in this sense [10][11]. Those systems are storing 
data at the peers, and using the peers to send this data to each other 
[12][44][45]. The more clients join the network, the more internal 
throughput there is.  

In order to provide content to all requesting users, it is necessary to be 
able to cope with the maximal theoretical demand of the network. 
Therefore, the maximal throughput capacity needs to be higher than 
the maximal theoretical demand.  
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Figure 3: Content distribution system : Peer-to-Peer. 

 

Figure 2 presents the maximal streaming capacity of each of the 
introduced content delivery systems, variated over the size (number of 
clients) of the network. It appears clearly that client-server and content 
delivery networks approaches can support a limited number of peers. 
Because the P2P approach uses the clients uplink capacity for sending 
data, its internal theoretical throughput increases with the number of 
peers.  

2. Peer-to-Peer Video-on-Demand Systems 
 
An extensive amount of research works address the scalability issues 
that arise when designing VoD streaming systems [13][14]. An important 
effort has been put into multicast-based approaches, which are more 
focused on the live streaming scenario [15][16]. In the following, we 
review the most relevant approaches. 

2.1. Tracker-based approaches 

2.1.1. pcVoD 
 
In pcVoD [17], some of the peers are only providing data. In other 
solutions, such as BitTorrent, if peers become offline, a “no-seeds” 
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problem can appear. In order to prevent this from happenning, in 
pcVoD, some peers always stay online. The pcVoD solution relies on a 
centralized and reliable Control Center to authenticate user and node 
and also to provide content-directory services (see Figure 4). 

Content-providing peers with large bandwidth guarantee the 
streaming bitrate of new released lack-of-cache videos. Each 
demanding peer has storage space to cache videos. Cached video 
on normal peers is encrypted to prevent illegal spread. For 
implementation simplicity and networking efficiency, like in BitTorrent, 
pcVoD uses reliable Trackers to manage the connections of peers and 
caching. There are multiple Trackers to manage the connections and 
cache of different video. When a peer demands a video from the 
video list at the Control Center, the address of Tracker with the 
demanded video will be obtained from the URL of the video list. 
Afterwards, the peer sends a request to the tracker, which returns a list 
of candidate peers with the video cached. The receiving peer is then 
able to simultaneously retrieve the video fragments from the different 
candidate peers. This approach requires that the providing peers be 
always online, in addition to the availability of the Control Center and 
the Trackers.  

 
Figure 4 : pcVoD Architecture. 

pcVoD introduces storage management to improve the efficiency of 
storage space in P2P systems. Each peer is required to share certain 
size of hard-drive storage cache, and an algorithm manages how to 
use the space. The algorithm computes the priority of the caching of a 
stream, based on the number of peers requesting the stream, and the 
number of peers that already cached this stream. This algorithm is 
different from traditional caching schemes, such as Least-Recently-
Used, aging, and popularity-based [44]. 
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This architecture adds some security to the whole P2P concept, by 
using a Control Center, and by encrypting stored data at the peers. 
However, it uses a simple tracker to track the peers, meaning that the 
requesting peer is the one that will choose which peer will be seeding 
data to it. Nothing manages the overall network, as each peer decides 
what will be downloaded from whom.  

2.1.2. BitTorrent and BASS : BitTorrent Assisted Streaming System 
 
BitTorrent [18][19][20] splits a file into many pieces and pushes the 
different pieces to different clients, allowing them to trade pieces 
amongst each other. It uses a tracker program running on a server (as 
opposed to a gossip protocol) to disseminate lists of peers. To govern 
how pieces of the file are requested and swapped amongst peers, it 
follows rarest-piece-first and tit-for-tat policies, respectively. In rarest-
piece-first, the client requests a part based on the number of copies it 
sees available and chooses the least common one. In tit-for-tat, the 
peers seeding the most will have the highest priority when requesting 
content themselves.  

Due to the rarest-piece first policy, BitTorrent P2P content sharing 
system is quite unsuitable for multimedia streaming, which requires 
data sequencing and timely delivery. Simply forcing BitTorrent to 
request pieces in-order would not be sufficient because clients would 
only contain subsets of each others data. Then, bittorrent’s tit-for-tat 
policy, which aims to have requesting peers seeding parts to each-
other would fail, for those peers would all already possess the same 
parts. In order to assess those issues, BASS [21] augments BitTorrent with 
an external media server (see Figure 5), with the only modification to 
BitTorrent being that it does not download any data prior to the current 
playback point.  
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Figure 5 : BASS Architecture. 

It is allowed to use the rarest-piece-first (subject to the previous 
condition) and tit-for-tat policies. Data from BitTorrent is held in local 
storage until it is needed. From the media server, BASS downloads 
pieces in-order, skipping over pieces that have already been 
downloaded by BitTorrent, or are currently in the process of being 
downloaded and are expected to finish before their playout deadline 
arrives. If the media server is altered to limit the amount of data a client 
is allowed to stream from it, BASS can also encourage users to 
participate in distribution using the tit-for-tat policy. 

In this approach, whenever a peer requests a content, it is the one 
choosing the seeding peers (among a list of peers holding the content, 
generated by the Tracker), without an overview of the whole network. 
This is a big limitation for the system. 

 

2.2. Tree-based approaches 

2.2.1. P2Cast and P2VoD  
 
P2Cast [22] is an architecture that relies only on unicast connections 
among peers (see Figure 6). The key idea of P2Cast is to have each 
client act as a server while it receives the video. P2Cast peers do not 
only receive the requested stream, but also contribute to the overall 
VoD service by forwarding the stream to other clients, as well as, 
caching and serving the initial part of the stream. This system uses a 
tree-based approach for streaming any given video content. In such a 
system, whenever a peer requests a content, two cases can occur: 
first, if the content is not currently requested, the peer will start a new 
branch, and request a direct seed from the Server. Second, if the 
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content is already requested by another peer, the new requesting 
peer will attach itself to the lowest level of the branch formed by the 
peers requesting this content, thus asking other peers to seed the 
content to it, instead of overloading the server.  

P2VoD [23] has a very similar approach, except that the algorithms 
involved in the creation of a tree differ in some aspects. Also, in P2Cast 
system, a video session is only open for a short period of time starting 
when the first client joins the video session. The result is that P2Cast can 
support more video sessions than P2VoD, which means greater 
bandwidth requirement to the server in P2Cast than in P2VoD. Several 
works use a network scheme very close to P2Cast and P2VoD [24][25]. 

 

 
Figure 6 : Tree-based approach of P2Cast. 

In the case of a lot of clients requesting the same content at the same 
time, this approach is very efficient in Live Streaming. On the other 
hand, if we consider VoD streaming, a lot of various contents can be 
requested at a given time from the server. This means that a lot of 
client will request a direct seed from the main server, overloading that 
server. Indeed, VoD streaming systems need to offer large video 
content libraries, which will put some scalability strain on the overall 
system: the larger the content library the less likely to have enough 
peers receiving the same content, and it is more difficult to construct a 
video content distribution tree. 
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2.2.2. GridCast 
 
GridCast [26][27][28] is a system, based on OCTOPUS [29],  that aims to 
perfect Live Streaming by using Peer-to-Peer networks. Each peer, 
when watching a content, stores the content, and acts as a server for 
any other peer requesting the same content. Another advantage of 
storing already watched parts of a content, is that when a client 
decides to go back in time, it can use the data it already stored, 
instead of requesting a new seed. As for the peer willing to go forth in 
time, the system uses anchors: some key parts of the movie are pre-
loaded, and when the user tries to advance, playback is automatically 
moved to the closest pre-loaded anchor.  

In order to select the seeding peers, and the peers you seed for, an 
algorithm of distance, based on relative playback positions, is used. 
According to this algorithm, your closest neighbors are the ones whose 
movie is at the same playtime as yours (see Figure 5).  

 
Figure 7 : GridCast Architecture 

This approach tends to cluster the peers in sub-networks, and reduces 
a bit of the interest of having a large Peer-to-Peer network. 
Furthermore, while it is efficient for contents watched by many peers at 
the same time (like, for a Live Streaming System). For a large library of 
contents, the peers are less likely to be watching the same content, 
thus reducing the interest of GridCast. 
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2.3. Overlay 

2.3.1. PROMISE 
 
In PROMISE [30][31], peers are interconnected through a P2P network. 
For each session, multiple sending peers cooperate to serve a 
requesting peer. Senders are chosen based on the current network 
conditions and the reliability of peers to render the best quality. 

PROMISE is a system that can be deployed on the top of multiple 
existing P2P solutions. It has the advantage of taking into account the 
fact that peers in a P2P network are not proper servers, and, therefore, 
may reduce their sending rate at any time, or even disconnect. 
Therefore, it tends to use multiple seeding peers for the same content. 

The design of PROMISE relies on an application level P2P service called 
CollectCast. CollectCast chooses the sending peers and orchestrates 
them in order to provide the best quality for the receiver. CollectCast 
monitors everything in the network, therefore making it possible to 
predict peers streaming rates and decide from which peers to seed.  

 
Figure 8 : PROMISE Architecture 

In order to select the seeding peer, PROMISE proposes three strategies: 
random, end-to-end, and topology-aware. While random selects 
randomly a peer among those available, the others tend to predict the 
most efficient transfer, network-wise. End-to-end evaluates the link 
quality between the requesting peer, and the potential seeding peer, 
and selects the one with the highest link quality. The Topology-Aware 
strategy constructs an approximate topology, and considers the 
quality of each segment in the path. Furthermore, this strategy takes 

Asking'Peer'

Peer+to+Peer'
Substrate'

Seeding'Peer'

Seeding'Peer'



Page 31 of 107 

into account the shared segments (when multiple peers stream, they 
may come to use the same segments). This allows to prevent 
bottleneck situations during the transfer. 

Set-top-boxes tend to stay connected all the time. Therefore, it would 
be a waste of bandwidth to download the same piece of content 
from multiple peers. 

2.4. Hybrid CDN-P2P  

2.4.1. LiveSky 
 
LiveSky [32][33] uses three major components : (1) a Management 
Center, (2) Cache servers, (3) clients. The Management Center 
monitors the whole system, the cache servers store the contents, and 
the clients watch and serve contents. When a client requests a 
content, it is directed to its Edge Super Node (Edge SN), the closest 
cache server. Edge SN have multiple roles. The first role is to send data 
to the requesting peer. They also work as a tracker, meaning that, if 
any peer in the network has the requested content, they redirect the 
peer to the P2P overlay.  

 

 
Figure 9: LiveSky architecture. 
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Note that it means that the P2P network is not entirely used for the 
transfers. Indeed, for a given peer, LiveSky only uses the ones that are 
close to said peer. Such system greatly reduces the interest of P2P, 
which comes from the huge network size, because it clusters the peers 
in sub-networks of smaller size. 

3. Resource Allocation Strategies in P2P-VoD 
 
The decision of allocating streaming resources to an incoming VoD 
request is a complex one with diverse implications on the system 
performances. The resource allocation algorithm can identify many 
contributing peers that can be used to satisfy the VoD request – these 
latter peers can have different available bandwidth capacities, and 
different stored content. The decision to use one of these peers to 
satisfy the current VoD request means reducing its uplink capacity for 
an extended period of time, and thus possibly shutting the peer’s 
content out of the system. In this section, we investigate several 
strategies for peer resource allocation in VoD systems. 
 

3.1. User-based strategies 
 
Several strategies were proposed by Zou et al. [34]. First, they present 
User algorithms. Those strategies are based on data computed directly 
from the peers. With those strategies, each peer computes some 
information, it is ready to send to the requesting peer, when requested. 
The requesting peer then selects the best peer, based on this 
information. The User-based Algorithms only uses data computed by 
the peers individually. This information is easy to access, and doesn’t 
require any special type of peer-to-peer network. 

3.1.1. Random algorithm 
 
This algorithm randomly chooses one serving node regardless of 
bandwidth and other state information. In most research works 
reported in the literature, this algorithm serves as a baseline for 
performance evaluation [47]. 

 

 



Page 33 of 107 

3.1.2. Fastest Link 
 
This algorithm selects the peer with the largest uplink bandwidth 
regardless of the number of current sessions being served by that same 
peer. It emulates some file sharing systems where the only information 
available from the searching processes is the peers’ speeds in terms of 
bandwidth capacity. In this case, it may be reasonable to choose the 
fastest serving peer [34]. 

3.1.3. Greedy algorithm 
 
The Greedy strategy [48] selects the peer that has the maximal ratio of 
uplink bandwidth available over the number of sessions currently 

served by the peer. It compares the values of !
!!!

 , with b the uplink 

bandwidth, and n the number of seeding sessions of the peer, and 
selects the maximal. The rationale here is to tap the available 
bandwidth capacities at peers while avoiding unfairly putting a burden 
on peers with many downstream activities.   

3.1.4. Fit algorithm 
 
The idea of the fit algorithm [34] is to match the link speed of the 
requesting peer and the residual bandwidth of serving peers and save 
fast peers for later requests. It is directly linked to the Greedy Algorithm. 
However, in the Fit algorithm , if several peers are available for seeding 
at a speed higher than the download rate of the receiving peer, the 
receiving peer would select the source peer with uplink capacity that is 
the closest to the asking peer.  

3.2. Global-based strategies 
 
Zou et al. also introduce Global strategies [34], based on information of 
the overlay network. Those strategies require a global overview of the 
network, and therefore need a central entity gathering the 
information. By using a central node, it is possible to monitor the 
network. Then, this node is able to provide information of everything 
happening in the netwok. This overview the network is relevant for the 
following resource allocation algorithms.  
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3.2.1. Greedy/Fit algorithms 
 
These algorithms are the same as the ones presented previously [34], 
except that they use the information gathered from to compute the 
bandwidth available at the peers, instead of querying each peer. 

3.2.2. Batch Greedy/Batch Fit 
 
These strategies [34] try to group the queries, in order to treat them in a 
“batch” mode. The central node gathers a number of queries, before 
starting to respond to the peers. Those queries are not treated in the 
ranking they were sent, but in a rank depending on the bandwidth 
available at the requesting peer. First, the queries from the peers with 
the highest downlink capacity available are envisaged, and then, the 
queries for the peers that have lower downlink capacity.  The idea is to 
maximize the number of peers for streaming for the peers that have a 
high downlink capacity. Even though, with this method, response time 
will be higher, these methods tend to allocate the resources more 
efficiently. 

3.3. Reputation System 
 
A substantial amount of work has been done into reputation-based 
resource allocation strategies in peer-to-peer networks [35][36][37]. 
Each peer in the network is assigned a Reputation value. This value is 
based on multiple criteria, such as bandwidth, storage capacity, and 
the amount of content it already streamed.  

3.3.1. Highest Reputation Strategy 
 
The Highest Reputation Strategy [38] is the most straightforward 
strategy. When choosing the best peer to provide a content, we look 
at the reputation of all available peers, and select the one with the 
highest reputation. This strategy tends to assure a good streaming 
quality for the user. On the other hand, it may push all users to ask to 
the same peers, thus resulting in a faster saturation of the peers with the 
highest reputation. 
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3.3.2. Tit-for-tat Strategy 
 
The tit-for-tat strategy was rendered popular by Bittorrent [46]. This 
approach favours the peers that contribute the most to the network, 
by allocating upload to first to the peers uploading the most. 

3.3.3. Black List Strategy 
 
This strategy identifies peers with the lowest performance, or the ones 
with reputation values below a certain threshold [39]. Thus, peers that 
consistently offer services of low quality for a certain period are 
excluded from the set of eligible contributing peers. Thus, this strategy 
improves the quality offered to the remaining peers actively 
participating in the P2P system. 

3.3.4. Comparable Reputation Strategy 
 
In this strategy, peers are able to request services only from peers that 
have reputation values close to theirs [40]. The underlying idea of this 
strategy is the matching of the performance level offered by a peer 
with the performance level provided to him. Thus, this strategy results in 
layered communities, that is, services of similar quality are exchanged 
among peers of the same layer. The quality of offered services is high in 
the top layer if there are high-performing peers in the peer-to-peer 
system, while in the bottom layer the services offered are in most cases 
useless or even harmful for other peers. 

3.3.5. FairTrust 
 
FairTrust [41] is a system with a trust-based fairness-oriented peer 
selection. This approach employs a reputation system for the peers, 
and aims to have the peers participating equally. The focus is rather on 
fairness of contribution load rather than maximizing the resources 
utilization.  

3.4. Topology-based Strategies 

3.4.1. Neighbor-based 
 
Koo et al. [42], present a neighbor-based approach to resource 
allocation. These approaches try to group peers into classes, based 
upon their similarities. A first approach is based on the number of bytes 
downloaded by a peer at a given time, while a second one introduces 
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the idea of comparing the contents stored in peers, in order to group 
the peers together in virtual groups. This second approach introduces 
the concept of similarity among peers in the same group.  

3.4.2. Localization and Congestion-aware system 
 
More recently, Fouda et al. [43] introduced a Localization and 
Congestion-aware system in order to improve overall capability by 
reducing total link cost. In their approach, they use the topology of the 
network to compare the available peers. According to this topology, 
and to their knowledge of the transfers already occurring in the 
network, the aim is to reduce the probability of congestion in the 
network, by avoiding highly used paths.  

4. Summary 
 

In this chapter, an overview of existing approaches to content 
streaming has been presented. By far, the most scalable approach is 
the Peer-to-Peer network paradigm. However, this approach raises 
some new issues for content streaming. 

First, multiple P2P network schemes exist for content streaming. Indeed, 
a large amount of work has been done in Peer-to-Peer Video 
Streaming, with multiple approaches being created. Each of those 
work proposes a new network scheme. LiveSky proposes the most 
efficient scheme for Video-on-Demand streaming, with its hybrid CDN-
P2P approach.  

Peer-to-peer networks also raise a peer resource allocation problem. 
Several approaches aim to provide algorithms for automatic peer 
allocation. Those strategies tend to be limited to a single metric for 
evaluation. Furthermore, those approaches keep the same strategy for 
peer selection in any given context, meaning that their peer selection 
is not induced by the demand pattern faced by the system. Therefore, 
they could be enhanced by using multiple metrics, and adapting their 
peer selection algorithm to the context. 
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Ch. 3 : Analysis of a P2P-VoD System 
 

In this section, we first analyze the main performance factors in P2P-
VoD systems. Then, we present some evaluation metrics used with such 
networks.  

1. Key performance factors of a P2P-VoD System 
 
A P2P-VoD system is a complex architecture with respect to many 
aspects that impact the system performances. In this subsection, we 
present each of those performance factors. First, we will review the key 
performance factors affecting a P2P-based streaming system: the 
number of peers and uplink at each peer. Then, we explain how 
modifying the number of titles (size of the content library), and the 
number of parts (fragments) per title can influence a P2P-VoD system. 
Finally, we investigate the impact of the demand (VoD requests 
distribution over the content library) before showing how important the 
initial content dispatching is for the overall system performance. 

1.1. Number of sessions per peer 
 
Each peer can contribute to a certain amount of sessions in parallel. 
The more uplink a peer possesses, the more sessions it can contribute to 
at any given time. The number of simultaneous VoD sessions to which a 
given peer j can contribute simultaneously is given by (1): 

 𝑈! =   
𝐸!
𝐵  (1) 

where 𝑈! is the number of simultaneous sub-sessions for peer j,  𝐸! is the 

uplink available at peer j, and 𝐵 is the uplink bandwidth required to 
stream a title part.  

𝑈!  is critical to increase the overall P2P VoD system capacity. By 

increasing the capacity of each individual peer to contribute VoD 
sessions, the overall system is able to manage and satisfy more sessions.   

1.2. Number of peers 
 
In a P2P-VoD network, each peer is both able to request and to stream 
titles available in the content library.  This means that the VoD system 
capacity increases with the number of peers active in the network – as 
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the number of peers increases the demand (VoD requests) becomes 
more distributed across the peers’ base, and the system can manage 
ratios of requesting/idle peers. Each peer has its own uplink capacity, 
with its own limit on the number of simultaneous sessions to which it can 
participate. The theoretical maximum number of sessions U that can be  
in the VoD system is given by (2): 

 
𝑈 =    𝑈!

!

!!!

 (2) 

where 𝑈! is the maximum number of sessions of peer j, N is the total 

number of peers, and U is the maximum number of sessions that can be 
supported in the system. If we assume that all peers have the same 
maximum number of sessions 𝑈!, (2) is reduced to (3): 

 𝑈 = 𝑁 ∗ 𝑈! (3) 

where N is the number of peers, 𝑈! the maximum number of sessions 
that can be supported by a peer (based on uplink capacity), and U 
the maximum number of sessions in the network.  

Furthermore, it is worth recalling that the titles are fragmented into parts 
and stored at the peers. By increasing the number of peers, we also 
increase the overall space for storing titles.  Then, assuming all peers 
have the same storing capacity, the overall storage capacity of the 
network is defined by (4): 

 𝐾 = 𝑁 ∗ 𝐾! (4) 

where N is the number of peers, 𝐾! the storage of peer j, and K the total  

storage capacity of the network. We show that the storage capacity K 
is less critical than the uplink capacity U; this latter is the main constraint 
of the overall system capacity, in terms of the number of simultaneous 
VoD sessions that can be supported.  

1.3. Number of titles 
 
In a P2P-VoD system, a large content library of titles should be made 
available for all peers. A large content library is indeed critical to 
increase the VoD system utility. Those titles are fragmented and stored 
at the peers in a distributed manner. The larger the content library, the 
more space we require in order to store all of them. Furthermore, with a 
bigger library, the users are given more choices, and their queries may 
become more varied. Working with a large number of titles is one of 
the main difficulties in VoD systems [45]. Rarely requested content 
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poses an important burden on the VoD system: as the demand (VoD 
requests) is horizontally stretched over different titles, it becomes 
extremely hard to maintain a high VoD system capacity in terms of 
simultaneous VoD sessions that can be supported [51].  

1.4. Popularity per title 
 
Titles provided in a VoD system have their own popularity, defined by 
the probability of being requested during a given period of time. Highly 
popular titles require a higher availability in the network (with more 
copies spread across more peers) in order to satisfy the demand for 
these latter titles and minimize the VoD requests rejection rates. It is 
important to note that the popularity distribution across the content 
library usually follows a Pareto model where 20% of titles tend to 
generate 80% of the demand [53].  

Zipf’s law (see Figure 10) is commonly used as a model to capture 
demand distribution. Early in 1994, Dan and Sitaram [54] considered 
the distribution of hits on the available videos and chose Zipf 
distribution to model video popularity. Wolf and Yu, in 1997, noticed 
that in their study, with varying degrees of skew week by week. Breslau 
et al. [55] confirmed that Zipf-like distribution roughly matched their 
access pattern when analyzing webpage requests distribution. Later in 
2000, Acharya and Smith [56] showed that Zipf distribution with a fixed 
parameter α does not accurately model the video file popularity 
distribution. In 2002, Cherkasova and Gupta [57] argued that although 
the distribution of client accesses to media files can be approximated 
by a Zipf-like distribution, the time scale plays an important role in this 
approximation.  
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Figure 10: Representation of Zipf's Law for 100 contents. 

1.5. Number of parts per title 
 
In most P2P-VoD systems, titles are divided into smaller parts [45]. This 
enables peers to stream more titles at a time, because the bandwidth 
required to stream a title fragment is much lower than the one required 
for the entire title. Having titles fragmented into a higher number of 
fragments means that less uplink bandwidth is required at each 
contributing peer, while more peers will be required to satisfy a given 
VoD session. While the overall quantity of uplink required is unchanged, 
a larger number of fragments tend increase the overall system 
capacity [45].  

It is important to note that a higher number of title fragments would 
mean that a given VoD session will be provisioned through as many 
VoD sub-sessions streaming from contributing peers. Testbed tests 
shows that it is very challenging to coordinate a large number of multi-
source streaming sessions while meeting stringent video streaming QoS 
[52].  

1.6. Demand pattern and evolution 
 
The VoD content demand generated by the peers (i.e., users) usually 
varies drastically throughout the day and for different days of the 
week. Peak demand hours usually happen around primetime hours, 
and lead to a surge in the number of VoD requests with a high number 
of active multi-source streaming sessions that pushes the system to 

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zipf

Content ID

Po
pu

la
rit

y



Page 41 of 107 

saturation. It is important to highlight the link between content demand 
and network saturation. A VoD request is indeed satisfied using the 
uplink of several contributing peers and for the duration of the content 
(usually 2 hours for a movie). Many research works in the literature have 
proposed mathematical models to analyse demand variations over 
the time.  

1.7. Original Content Dispatching: initial titles injection in the P2P 
network 

 
In order to deploy content in the network and make it available for 
later P2P VoD streaming, each title is split into parts that are duplicated 
based on their expected popularity before being stored in different 
peers. First of all, it is important to determine the number of times each 
title should be duplicated. Multiple works have been done in that 
direction. In this work, we use a popularity-to-availability model to 
establish how many copies of every title should distributed in the 
network (5). 

 𝐶! =   𝐾 ∗ 𝑝! (5) 

where 𝐶! is the number of copies of title i, 𝐾 the total storage space, 𝑝! 
the popularity of title i. Then, a strategy is used to inject the titles in the 
network. Existing research works have different approaches to achieve 
an efficient content dispatching strategy.  

2. Performance evaluation metrics of a P2P-VoD 
System 

 
In order to evaluate P2P systems, it is necessary to define some metrics. 
In this subsection, we introduce the Rejection Rate, the Success Rate, 
the Entropy, and the Latency metrics. 

2.1. Rate of VoD sessions rejected  
 
Whenever a peer requests a title, if all of the parts are available 

then this VoD request is deemed successful. If a part of this title is not 
available in the network, the VoD request is rejected. The rejection rate 
of our system is calculated as (6). 
 𝑅(Δ) =   

𝑟(Δ)
𝑑(Δ) (6) 
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where 𝑅(Δ) is the VoD rejection rate over a time period Δ, 𝑟(Δ)  the 
number of sessions rejected over the time period Δ, and 𝑑(Δ)  the total 
number of VoD requests received over the time period Δ.  
The VoD rejection rate is an important performance metric as it can be 
used by the service provider to quantify to what extent the demand is 
being rejected. This metric has a direct implication how the content 
demand is being met, and whether the service providers are missing on 
revenue opportunities. The VoD rejection rate can therefore be a useful 
indicator of the efficiency of the resource allocation strategy.  
We also define the success rate, 𝑆!(𝑇), described in (7).  
 𝑆! Δ =   1−   𝑅!(Δ) (7) 

where 𝑆!(Δ) is the Success Rate of strategy l on period Δ, and 𝑅! Δ  the 
rejection rate using the strategy l on period Δ. 
 

2.2. Peer Participation and streaming load distribution over 
active peers 

 
In a P2P network, each peer contributes to the system by streaming 
parts of titles to other peers. To evaluate the peers participations’ level, 
we use the entropy of the participation of every peer during the 
considered emulation time. It allows to define how well spread the 
participation is among the peers (see Figure 11). Clearly, one of our 
objectives in designing a P2P-VoD system is to make sure that all peers 
are equally taped, which should increase the system utilization. 

 
(a) 

 
(b) 

Figure 11: Comparison of two Peer Participation Entropies – (a) H=6.1 (b) H=6.8. 

The definition of entropy is introduced in information theory [49], which 
describes entropy as a way to express the level of heterogeneity of a 
variable. Gomez et al [50] also used the entropy to analyze P2P traffic. 
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We express the participation rate of a peer in (8):  

 𝑅! =   
𝑟!
𝑟!!

!!!
 (8) 

 

where 𝑅! is the participation probability of peer j, and 𝑟! the number of 

times peer j participated. Then, the Entropy (𝐻 𝑁 ) is calculated by (9): 

 
𝐻 𝑁 =   −    𝑅! ∗ 𝑙𝑜𝑔(𝑅!)

!

!!!

 (9) 

where 𝐻 𝑁  is the entropy for N peers, and 𝑅! the participation rate of 

peer j. Then, the aim is to maximize the entropy, meaning that all peers 
participated equally.  

2.3. VoD Provisioning Responsiveness 
 
The responsiveness measures the average delay necessary to fulfill a 
VoD request: from the time of the reception of VoD request, to the time 
a list of contributing peers is generated. Responsiveness is a very 
important aspect to consider when considering delay-sensitive VoD 
streaming systems. Managing thousands of requests per hour could be 
very challenging for the SuperNode, as every single VoD request 
involves multiple database queries. When dealing with complex multi-
criteria resource allocation (RA) algorithms, there will always exist a 
tradeoff between the efficiency of the RA algorithm, and its 
responsiveness. 

3. Summary 
 
In this chapter an overview of performance factors and evaluation 
metrics for P2P-VoD systems was presented. First, we discussed the 
multiple parameters that can impact on the performances of such 
systems, such as the size of the network and the number of contents 
shared within the network. Then, we presented metrics to evaluate the 
performances of a P2P-VoD system, the most important one being the 
VoD Success Rate. 
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Section 4 : P2P-VoD System 
 
P2P-VoD systems are complex systems, relying on multiple parameters 
and design choices. In this section, we present an analysis of such 
systems, the parameters that influence the efficiency of it, and some 
methods to evaluate this efficiency. 
First, we present the choices made for our solution, and present other 
implementation designs from the literature. Then, we propose some 
metrics to evaluate the efficiency of a P2P-VoD system. Two main 
metrics are then kept: server load, and peer participation fairness. In 
order for us to evaluate our optimization methods, we need a fast and 
reliable method. Therefore, we propose to build a P2P emulator, 
designed to evaluate the efficiency of our system, based on our 
evaluation metrics. This emulator consists of two parts: the central 
node, and the peers. In our implementation, the central node is the 
actual code that would be running in a real deployment. On the other 
hand, peers are emulated through a single computer that creates the 
peer requests and uses the central node responses to evaluate the 
efficiency of the approach. 

1. Video Fragmentation 
 
Before describing the basic components of the system, it is important to 
first briefly describe the main characteristics of the video fragmentation 
process, which is central to the peer-assisted VoD streaming 
architecture.  

The video content is first transformed from a track-based video file 
format into a packet-level video file format ready for streaming. 
Afterwards, the aggregated packet-level video file is further sub-
streamed into several complementary sub-streamed files (content 
fragments); each sub-streamed video file is meant to be streamed by 
a different contributing peer to the requesting peer. The objective here 
is to reduce the contribution (in terms of bitrate) of each contributing 
peer so as to overcome the limited uplink capacities in asymmetrical 
broadband networks.  

The advantage of packet-level (in contrast with Frame-level) video 
content sub-streaming resides in the fact that the original video file 
would be split into sub-streams of packets with a, more or less, 
predictable constant data-rate for each sub-stream, leading to a more 
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deterministic streaming system. As illustrated in Figure 12, an original 
video stream is sub-streamed at packet level into different sub-
streamed complementary video files. The couple (start, step) is used to 
uniquely identify a given sub-stream from a particular video content. 
The parameter start represents the first RTP’s Sequence Number (SN) of 
a sub-stream, while step represents the stride between successive RTP 
sequence numbers of packets belonging to the sub-stream. For 
instance, the sub-stream containing the first 20% of the packets in the 
aggregated video stream is identified by the filter start=1/step=5, 
meaning the sub-stream is composed of RTP packets with the SN= 1, 6, 
11, 16, 21, etc.  

 
Figure 12: Packet-level video file sub-streaming. 

 
The packet-level video file fragmentation requires managing different 
aspects to allow for effective multi-source streaming. The packets 
should be sequence-numbered and time-stamped in the same space 
to allow the receiving peer to multiplex the different sub-streams into 
one original aggregated packet stream to be appropriately decoded 
and displayed. Therefore, both RTP’s [58] sequence numbers and time 
stamps are generated at the video fragmentation time with fixed 
starting RTP sequence number and time stamp so that the video 
content stay consistent as it spreads in the overall network upon 
subsequent VoD sessions completion.  
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2. System Components 
 

It is now clear that the entire concept of Peer-assisted VoD 
architecture for broadband networks is based on the multi-source 
streaming that, in turn, relies on the sub-streaming of video content into 
complementary versions. In the following, we describe the overall 
network architecture, describing the role of all entities and the 
interaction among them.  

The different components of the peer-assisted VoD architecture 
described above are depicted in Figure 13. 

 

 
Figure 13: Content distribution system architecture: Managed Peer-to-Peer. 

At the highest level, the system comprises of three basic components: 
the Supernode, the peers, and the Cache. 

2.1. SuperNode 
 
The SuperNode (SN) is where the main intelligence in the system lies – it 
allocates resources (uplink bandwidth of contributing peers) for each 
incoming VoD request. In order to perform this, the SN tracks two main 
resources: (i) the currently available uplink bandwidth at each peer, 
and (ii) the content stored in each peer. When a given receiving peer 
requests a specific VoD content, a VoD request is sent from that latter 
receiving peer to the SN. The SN looks up its database to determine the 
most appropriate set of contributing peers that might stream 
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complementary streams to the receiving peer. Clearly, the SN handles 
the VoD session initiation signaling, while the load of serving the actual 
video streams is handled by the contributing peers and eventual 
caches; 

2.2. Peer 
 
The peer can be a Set-Top Box or some other intelligence (device with 
computing capabilities) which typically sits close to a user’s viewing 
capabilities (TV, projector, and monitor). The peer is assumed to have 
significant storage capacities materialized by a hard disc that can 
contain sub-streams from different video titles of a video content 
library; upon sending a VoD request to the SN, a requesting peer will 
receive a response from the SN with a list of potential contributing 
peers that will provide complementary VoD sub-streams. The 
requesting peer then initiates real-time sub-streaming sessions with the 
contributing peers through RTSP/RTP protocols.  

2.3. Cache 
 

The cache is a large data store. The cache can be considered as a 
passive peer in the sense that it can contribute to VoD sessions, but will 
never request a VoD session in the network. The main role of the cache 
is to offset the limited uplink bandwidth capacities available at peers – 
the cache can also contribute to VoD sessions with much higher data 
volumes. Typically, in an Internet video streaming scenario, the caches 
will be located in a CDN provider’s network in order to ensure high 
availability and performance predictability. The caches can be hosted 
by the broadband operator if the peer-assisted VoD platform is 
deployed as part of an IPTV solution. 

3. Summary 
 
In this section, we introduced a  P2P-VoD system, complete with its 
implementation. It features three main types of components, (1) the 
Super Node, (2) the Peers, and (3) the Cache. This system has been 
fully tested and is used as a test-bed. 
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Section 5 : Content Dispatching 
 

In this section, we investigate a very important aspect of CDNs and P2P 
systems: content dispatching.  
The first question that comes to mind, once you have a full system, is: 
how and where do I store the contents? Because a large number of 
peers are available, we then have a large storage space at our 
disposal. This means that each content can be stored at the peers 
multiple times. We investigate the optimal content replication strategy. 
Also, peers have a limited uplink capacity. Therefore, multicast 
streaming will prove more efficient than a single-cast. This is one of the 
reasons presented for splitting the contents into chunks, which are then 
spread throughout the peers. Once the optimal replication and chunk 
number are found, it is then time to select at which peer each chunk is 
going to be stored. Content dispatching is a very complex problem, 
and we propose several algorithms to solve it, each of which is then 
evaluated with our simulator. 

1. Popularity-to-Availability Translation 
 

1.1. Impact of Video Content Fragmentation 
 
It is clear that the number of copies of title in the network plays a 
preponderant role in the overall performances of the P2P-VoD system. 
Fragmentation of the video content into several complementary sub-
streams has the advantage of creating a higher availability of the 
content since it is more likely to find all necessary sub-streams (for a 
VoD session) in the network, and have necessary uplink capacities at 
peers contributing with these latter sub-streams, during peak demand 
hours. Obviously, to a certain extent, the finer the granularity of content 
fragmentation the better the content availability will be. Any given 
video title will be available in a higher number of peers, lowering the 
probability of network saturation for that same content. Yet, a too high 
fragmentation granularity might not necessarily translate into a higher 
availability, and might instead lead to a lower reliability of the VoD 
system when considering a realistic failure probability in the system due 
to peers being frequently turned off or other reliability factors related to 
the underlying network infrastructures. 
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1.2. Proportional Content Popularity to Content Availability 
Model 

 
In the proportional popularity-to-availability model, two video contents 
with the exact same popularity will be allocated the same storage 
capacity in the network with the same number of copies spread 
around the P2P network – assuming that the two video contents have 
the same duration and bandwidth requirements.  

In the same way, a video content Cont-1 that is 10 times more popular 
than Cont-2, will be 10 times more available in the network. In this 
model, the relative popularity of each title is first calculated in terms of 
average number of requests received during a fixed period of time 
which gives a sense of the absolute popularity of the content. 
Afterwards, the different absolute popularities per content are 
transformed into relative popularities - with the sum of all titles’ relative 
popularities equal to 1. This relative popularity is then translated into a 
relative storage space and, finally, to an exact storage space (i.e., 
number of copies in the P2P network) since the overall storage 
capacity available in the network is a-priori known by the network 
operator. The relative popularity of a title is calculated as shown in (1). 

 𝑅𝑃! =
𝑃!
𝑃!!

!
 (10) 

Here, RPi is the relative popularity of the title i expressed as a fraction of 
1. The relative popularity RPi is derived from the absolute popularity Pi of 
the title i that is retrieved from the Zipf distribution. Pi is expressed in 
terms of an average number of requests received for the title i during 
10 hours. This relative popularity RPi is then easily transposed into a 
storage space in the network Si to be allocated to the title i, using the 
total storage space available in the network TS that is a-priory known 
(see (11)). TS is, in fact, the sum of storage spaces available in each 
peer. 

 𝑆! =   𝑅𝑃! ∗ 𝑇𝑆  (11) 

Finally, one can determine the exact number of copies per title i using 
the size (in bytes) of the video content i. It is worth mentioning that the 
video content size is usually tied to the video content duration, which 
has an important impact in the network dimensioning as it will be 
revealed in the following sub-section.  
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2. Content dispatching strategies 

2.1. Serial content fragments dispatching 
 
The serial content fragments dispatching strategy is the simplest 
algorithm to inject the content in the network. After, allocating a given 
storage space for each fragment using the popularity distribution in the 
content library, the algorithm consists in sequentially injecting any given 
fragment from any given title. We start by injecting the first fragment of 
the most popular title, moving to the second fragment, and so on. The 
peers are organized in a predefined list from peer #1 to peer #10,000. 
When injecting any new fragment, the algorithm checks if there is 
enough space in the peer #1, then the peer #2, and so on.  

2.2. Random content fragments dispatching 
 
It is important to balance the overall VoD streaming load evenly over 
the peers. One way to ensure that is to dispatch the content fragments 
randomly in the network – in this case the peers are selected randomly 
when the different content fragments are being injected. It is important 
to note that the overall content availability per title is still the same as 
with the serial content dispatching; it is based on the relative 
popularity-to-availability model discussed in 1.2.  

2.3. Popularity-Weighted content fragments dispatching 
 
As discussed earlier, it is important to make sure that all peers 
contribute to the same extent in the peer-assisted VoD delivery 
process. Not only the content fragments pertaining to a given title 
need to be as spread in the network as possible, but also all the peers 
need to equally contribute in the P2P streaming delivery process.  

In order to achieve this last point, the fragments will be first assigned a 
weight that is proportional to their relative popularity (i.e., relative 
popularity of the title they are part of); then, each time a peer receives 
a fragment its overall popularity score is incremented by the fragment’s 
popularity weight. In this case, the content dispatching process will 
each time make sure that all peers have a popularity score associated 
to them, and updated as the fragments are being dispatched in the 
P2P network.  

The popularity-weighted dispatching algorithm takes also into account 
the content spreading constraint by favoring the title’ fragment 
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injection in a new peer if this latter already contains a fragment of the 
same title being currently injected. More specifically, the algorithm first 
considers injecting a given fragment content in the peer with the 
lowest popularity score; if this latter already contains a fragment of that 
content, then the algorithm considers the peer with the second lowest 
popularity score, and so on. After each fragment injection in a given 
peer, the peer popularity score SPS of this latter peer is augmented with 
the fragment popularity; also, the list of peers, re-ordered from the 
lowest SPS to the highest, might change after each single fragment 
injection. The algorithm can as well track the number of fragments from 
a given title being stored in any peer in order to extend the above 
reasoning line to a case where there are fewer peers with larger 
capacities compared to the content library size.  

The popularity-weighted content dispatching strategy aims at resulting 
in a balanced P2P streaming network with the different peers having 
the same popularity score and contributing at the same level in 
delivering VoD sessions.  

3. Summary 
 
In this section, we showed the impact of content dispatching on P2P-
VoD systems. Then, we introduced multiple dispatching strategies. In 
order to propose a fair strategy, we created the popularity score, used 
to rank peers based on the popularity of the contents they hold. Then, 
we presented a content dispatching strategy based on this ranking, 
the Popularity-Weighted Content Dispatching. 
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Section 6 : Static Resource Allocation 
 

When a peer requests a content, because of content replication, 
multiple peers are available to seed the content. In this section, we 
investigate how to select the contributing peers. 

Each content is replicated multiple times in the network of peers. 
Therefore, when a peer requests a content, multiple peers are able to 
seed said content. Peer selection is a very complex problem in peer-to-
peer systems. We first present this problem as a resource allocation 
problem. Then, we present and evaluate static strategies for resource 
allocation. Those static strategies have many advantages, and each 
performs well when facing certain content demand. Such demand 
fluctuates over time. Depending on the time of the day, the day of the 
week, and even the month of the year, demand changes. We present 
some work from the literature regarding this evolution. Then, we 
characterize each strategy in relation with the observed demand 
pattern. 

1. Introduction to Peer resource allocation 

1.1. Why resource allocation is a key performance factor 
 

The architecture presented previously clearly shows how a broadband 
operator can push to the network edge most of the complexity and 
cost associated with the process of provisioning VoD services. 
Accommodating incoming VoD requests at the SN becomes an 
exercise of finding all necessary/complementary content fragments 
(sub-streams) at peers that have necessary uplink bandwidth. In the 
following, we refer to the process of finding appropriate contributing 
peers to satisfy a given VoD request as “resource allocation” (RA). As it 
will be revealed in the following Sections, the resource allocation task is 
of utmost importance to optimize the network (peer) resources 
utilization by delaying the occurrence of network saturation events, 
and reducing their persistence. 

Since the resource allocation task is performed in real-time basis every 
time the SN receives an incoming VoD request, the VoD service 
provider can dynamically vary resource allocation strategies to do 
several things, such as: 
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• Accommodate a change in the content library, where new titles 
are added and other replaced.  

• Vary the RA strategy throughout the time in order to better 
accommodate different time of the day (primetime, working hours, 
etc) different days of the week, and different weeks of the year. 
One can build dynamic RA strategies that better accommodate 
the usual popularity distribution (per content category) changes.  

• Capture a shift in general popularity trends, when the initial 
popularity distribution over the titles of the content library shows a 
fundamental long-term change.  

It is worth noting that the content fragmentation and dispatching is 
done beforehand following advanced popularity-to-availability 
translation models.  

Following the content dispatching, the SuperNode (SN) is made aware 
of what every peer contains in terms of content fragment. The SN is 
also aware of peer’s uplink capacity reserved for the contribution to 
VoD sessions (through multi-source streaming); the SN then keeps track 
of the available uplink capacity per peer as VoD sessions are served 
and uplink capacity consumed.  

Clearly, the uplink capacity available at peers is the most important 
resource in the above introduced P2P VoD streaming system. A non-
optimal resource allocation strategy would typically over-use the uplink 
bandwidth of critical peers and cause a premature and prolonged 
situation of network resources. Network saturation will lead to very high 
VoD request rejection rates, and obviously a loss of revenue for the 
service provider.  

1.2. Characterizing the resource allocation process 
 
The objective of any P2P streaming resource allocation strategy is to 
maximize the success rate, 𝑆!(𝑇), described in (16). This success rate, 
computed for a given period T, depends on the strategy l used in that 
previous period. The number of titles and the number of peers are fixed 
during the evaluation. Characteristics such as the number of sessions 
available at each peer and the number of sessions necessary to 
stream each title, are also fixed parameters. Every period of time T, we 
evaluate the performance of each strategy l, and select the one that 
maximizes 𝑆!(𝑇). 
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Parameters: 
 𝑆!(𝑇): Success Rate of strategy l on period T 
 𝑥!: Success of demand k: 1 if success, else 0 
 𝑑: Total number of VoD requests – this is the aggregated demand 

level  
Variables: 
 𝑙: Resource allocation strategy selected  
Metric: 

We select the strategy l that maximizes 𝑆!(𝑇), the success rate on 
period T (12).  
 

𝑆!(𝑇) =
𝑥!!

!!!

𝑑  (12) 

2. Single-metric based resource allocation 
 
In this Section we introduce three resource allocation (RA) strategies 
we consider, explaining the characteristics of every strategy and the 
performance objectives behind their respective designs. We will 
particularly emphasize the ability of RA strategies to accommodate 
varying content popularity distribution, fairness among content 
popularity categories, high demand for VoD services, etc.   

It worth noting that we classify the different resource allocation 
algorithms into two distinct categories: passive and active. In the 
passive the resource allocation algorithm use pre-calculated metrics to 
select appropriate contributing peers for an incoming VoD request. On 
the other hand, an active resource allocation will rely on performance 
metrics that vary over time.  

2.1. Caracterisation of basic resource allocation strategies 

 
Resource allocation strategies aim to define a ranking function f, in 
order to select the best peer 𝜃 that can satisfy the current VoD request.  
f is defined in (13).   
 
 𝜃 = 𝑎𝑟𝑔!max  (𝑓 𝜃! ) (13) 

Where 𝜃 is the best peer for the current VoD request, f the ranking 
function, and 𝜃!  is peer j. In the following subsection, we introduce 

three resource allocation strategies and their respective ranking 
function, f. 
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2.2. Higher Available Uplink Capacity First (HUF) 
 

In this simple active resource allocation strategy, the peers are 
discriminated and ranked using their available uplink bandwidth. 
Whenever a new VoD request is received, the central server searches 
its database and retrieves all peers that can contribute in delivering 
the VoD session. At this point, the server will choose contributing peers 
with the highest available uplink bandwidth. Each time a resource 
allocation decision is made the uplink bandwidth capacities 
associated with the selected contributing peers is updated to reflect 
the resources used up by the provisioning of the recent VoD session. 
This means a current resource allocation decision will unavoidably 
influence future ones. 
The ranking function is therefore defined as (14).  
 𝑓:𝜃! → 𝑢! (14) 

 
Where 𝜃! is the peer j. 𝑢! number of new VoD sessions that can still be 

supported by peer j.  
The focus of the HUF strategy is to make sure that the uplink capacities 
of the different active peers are equally exploited. The idea behind this 
strategy is to maximize the utilization of the peers in an effort to not 
over-use some peers – and lock the title fragments they contain – while 
other peers still have abundant uplink capacity. At the highest level, 
the objective of HUF is to deplete the peers resources in a uniform 
manner as the demand for title surges. This prevents the rapid 
saturation of part of the peers pool, which will cause a shutdown of 
important bandwidth and content resources.   
By focusing on the available uplink, this strategy tends to keep the 
number of peers saturated to a minimum. This proves to be very 
efficient when the demand is increasing – with HUF the peers (peers) 
resources are evenly depleted as the demand surge, which means the 
content availability stay relatively high. This strategy is said to be 
“active” because based on how saturated the system is, it can choose 
different peers based on their available uplink capacity.  
 

2.3. Lowest Popularity Score (LPS) 
 
This resource allocation strategy relies on the SPS (peer Popularity 
Score) metric, which is used to individually measure the popularity 
(resp., importance) of every active peer. During the title dispatching 
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phase, every time we inject a new title fragment in a given peer, we 
increment the peer popularity score (PS) with the relative popularity of 
the title fragment. The PS essentially measure the importance of the 
peer and the likelihood of it being tapped to satisfy future VoD 
requests. The PS is also used in some advance title injection strategies 
(e.g., popularity-weighted title injection, introduced in Section 2) in 
order to make sure that all peers have comparable popularity, and will 
consequently be equally utilized during the VoD service provisioning 
phase.  
We assume that the popularity’s score of each title which is directly 
related to the probability of the title to be requested. Then, we define 
the Popularity score of a peer as shown in (15). 
 

𝜌! =    𝑝!
!∈!!

 (15) 

where 𝜌! is the Popularity’s Score of peer j, 𝑝! is the popularity of title i, 

and 𝑄! the set of parts held by peer j.   

LPS is a passive resource allocation strategy that uses the SPS (peer 
Popularity Score) to select the different contributing peers necessary to 
satisfy an incoming VoD request. The idea here is to each time select 
peers with the lowest SPS in order to preserve the peers containing the 
most popular title fragments (i.e., peers with the highest popularity 
score). A resource allocation strategy that relies on LPS would primarily 
preserve the resources of popular peers; on the other hand, the LCS 
strategy (described below) does exactly the contrary by preserving 
peers with the scarcest title.   
This strategy is very suitable for most demand environments. As long as 
the demand is according to the predicted content popularity, this 
strategy is very efficient. It starts showing its limits as soon as there is a 
shift in the content popularity trends. It also underperforms during peak 
demand hours because it doesn’t take into account the available 
uplink, and thus cause certain peers to be depleted long before 
others. 

2.4. Lowest Critical-Score (LCS) 
 
This is a passive resource allocation strategy based on the Critical Score 
(CS) associated with each peer. The critical score is used to rank the 
different peers in respect to their criticality to the VoD session delivery 
process. It is used as a complementary indicator besides the SPS to 
identify peers that contain very rare title; these latter peers should be 



Page 58 of 107 

consequently preserved as much as possible because the less popular 
titles are usually the most affected with high VoD rejection rates during 
peak demand periods. In other words, peers containing less popular 
titles are the first to get their uplink capacity saturated, leading to 
excessive rejections of VoD requests targeting the less popular titles. 
We compute the Critical Score 𝜕 of a title in (16). 
 𝜕! =   

1
𝐶!

 (16) 

where 𝜕! is the Critical Score of the title i, and 𝐶! is the number of copies 
of the title i in the network. Then, we define the Critical Score of a Peer 
as shown in (17). A title with a low critical score means that the title is 
not very popular so there are only few copies of the title stored in the 
network.  
 ∆!=    𝜕!

!  ∈!!

 (17) 

 
Where ∆! is the Critical Score of peer j, 𝜕! is the Critical Score of the title i, 

and 𝑄! the set of parts stored at peer j.  Calculating the critical score of 

a peer would essentially allow one to measure how many scarce title is 
contained in any active peer.  
After computing the critical score of each peer, the peers that contain 
less popular titles will have a higher critical score. This is due to the fact 
that less popular titles have a very limited number of title fragments 
spread in the network compared to popular titles.  
In the LCS-based resource allocation strategy the RA algorithm tries to 
use peers with the lowest CS when building the list of contributing peers 
in response to a VoD request.  This way, we minimize the excessive 
rejection rates affecting the VoD requests targeting the less popular 
titles. Less popular titles are usually affected by the highest rejection 
rates. The ranking function is therefore defined as (18). 
 𝑓:𝜃! →

1
∆!
   (18) 

Where 𝜃! is the peer j. and ∆! the critical score of peer j. 

When the demand is very high, rare (long tail) contents are likely to be 
requested among all the queries. Considering that there are a 
disproportionate number of long tail titles, preserving peers containing 
these content tend to produce better performances during peak 
demand hours. Further, LCS tends to outperform other RA strategies 
when the content [popularity shift, and new titles become very 
popular.  
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3. Multi-criteria resource allocation 

3.1. Hierarchically Combined Resource Allocation Strategy 
 
The Hierarchically Combined Resource Allocation strategy is based on 
selecting the peers by using multiple metrics, organized in a 
hierarchical way. By increasing the number of metrics in and improving 
the resource allocation decision with a two-round process we aim to 
increase the overall system performances and flexibility by exercising a 
high degree of control.  

Very simply put, during a resource allocation decision the objective is 
to first choose the set of suitable contributing peers using a first criterion 
(say HUF). Afterwards, a second criterion (say LPS) is used to have a 
second level. Figure 14 shows an example of Hierarchic Resource 
Algorithm. 

 

 
Figure 14: Combined Resource Allocation example : HUF-LCS 

 

3.2. Multi-objective Optimization 
 
To solve the multi-objective problem, the plain aggregating approach 
is used. This approach consists of converting the problem into a single-
objective optimization problem by aggregating the objectives. 
Afterwards, we can apply any single-objective optimization technique 
[59][60][61] to the new objective function. This technique has the 
advantage of producing a single compromise solution requiring no 
further interaction with the decision maker. Mathematically, the new 
objective function (criterion) feq is written as shown in (19). 

 𝑓!" 𝑥 =    𝑤! . 𝑓!(𝑥)
!

!!!
   (19) 
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    Where kff …1  are the original objective functions to be minimized 

and 
x is parameters vector; wi are weighting parameters that satisfy 

the following relations (20).  

 
0 ≤ 𝑤! ≤ 1

𝑤!

!

!!!

= 1
   (20) 

The weights wi are also known as importance factors and are 
considered as a measure of the significance of each objective in the 
optimization process. A representative convex part of the Pareto[62] 
set can be sampled by running several times a single objective 
optimization algorithm, each time with a different vector of importance 
factors.  

This process can be illustrated geometrically. In the objective function 

space a line L according to cxfwT =)( is drawn (see Figure 15). The 

minimization of feq can be interpreted as searching for the value of c 
for which L just touches the boundary of the feasible domain A, as it 
proceeds outwards from the origin. Selection of weights w1 and w2, 
therefore, defines the slope of L, which in turn leads to the solution 
point where L touches the boundary of A. 

Tw is the transpose of 

the vector of 
weighting 
parameters; 

c  is a constant; 

A is the feasible 
domain; 

Line L corresponds to: 

1 1 2 2w f w f c+ =  

f1 and f2 are the 
objective functions;  

Figure 15: Representation of the plain aggregating approach in the bi-objective case. 

Upon the reception of a VoD request at the SN, each of the basic RA 
strategies returns a list of peers able to seed the fragments (sub 
streams) necessary for the VoD session: HUF, LCS, and LPS. Then, we 
build a new list by combining those lists: for each requested content 
fragment, we randomly pick one of the three solutions obtained. It is 

f1 

f2 

A 

L 
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worth recalling that every VoD sessions is provisioned from 4 sub-
streams (content fragments. The new objective function will afterwards 
minimize (21). 

 
𝐹(𝑥) = 𝛼 ∗

𝑃𝑆!
𝑃𝑆!"#

+   𝛽 ∗   
𝐶𝑆!
𝐶𝑆!"#

+   𝛾 ∗   
𝑈𝑝!
𝑈𝑝!"#

!"#

!

 (21) 

With: 𝛼 + 𝛽 + 𝛾 = 1 , 𝑥  the current solution, where : peer is the total 
number of peers (10,000), Upi is the available uplink of the peer i, CSi is 
critical score of the peer i and, PSi is the critical score of the peer i.  
 

Each time we generate a new solution we compare its fitness (F) with 
the previous best solution. We store the best solution, and repeat these 
steps until the stopping criterion is satisfied.  Here, the stopping criterion 
is N iteration in order to achieve a minimum responsiveness; where N is 
an empirically fixed integer. 

At the end of the process, we return the solution stored, which has the 
best Fitness amongst all the generated ones. The whole procedure is 
illustrated in Figure 16.  

 

 
Figure 16: Multi-objective resource allocation optimization. 

The values of  𝛼, 𝛽, and 𝛾 were fixed empirically and allow to obtain the 
best approximation of the problem to a linear problem.  

This approach will come with significant drawbacks, however. In fact, it 
requires pre-established weights for the different RAs. Obviously, one 
can determine ideal weights for each of the RA strategies in order to 
achieve the best performances over a long time period. However, this 
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fixed strategy will fall short of achieving high performances during the 
different conditions that the system transition between in the short-
term. The end result will be a significant underperformance compared 
to potential.     

4. Summary 
 
In this section, we presented resource allocation and its impact on P2P-
VoD systems. Then, we proposed multiple single-metric based resource 
allocation strategies. In order to combine those resource allocations, 
we examined the possibility of using a hierarchical combination of the 
criterias, as well as a multi-objective optimization method. Those 
approaches are usually efficient for combining multiple strategies, but, 
in the P2P-VoD scheme, merging strategies tends to reduce the 
advantages of each approach, resulting in a less performing method. 
 
  



Page 63 of 107 

Section 7 : Dynamic Resource Allocation 
 
In this section, we describe an advanced RA strategy that uses a 
Bayesian approach to effectively alternate between RA strategies 
based on the popularity trends and the P2P network resources 
(content/uplink) availability.  The originality resides in the very design of 
a Bayesian [63] approach that can characterize popularity trends and 
rely on any number of performance objectives (metrics) to come to 
effectively the final decision in terms of selected RA strategy. Finally, 
this dynamic RA algorithm can easily be augmented with additional 
basic RA strategies from which to alternate.   

1. Towards dynamic resource allocation 
 

1.1. Why performances evolve over time 
 
In a real-life deployment of a VoD system, many aspects change over 
time as the system is running. First of all, the library of titles evolves, with 
new titles introduction and old titles deletion from the P2P streaming 
system. Also, the popularity of each title varies over time, depending 
on multiple criteria, such as the time of the year, 
dependency/correlation between titles’ demand, and so on. Several 
works [64][65][66][67] have been made to predict the evolution of the 
popularity of a title in a VoD system. Content demand tends to vary on 
hourly, daily and weekly basis.  
All the above fluctuation in demand will lead to a different pattern of 
VoD requests arrival rate and a different distribution of popularity over 
the content library. In this context, multiple resource allocation 
strategies would lead to various performances in terms of VoD system 
utilization, and timing and frequency of the saturation situation. 
Employing one single resource allocation strategy to cope with the 
fundamental changes in the demand would not produce the best 
performances. One should consider the use of different resource all 
action strategies to deal with different situations in terms of content 
demand shift. An effective dynamic switching between different RA 
strategies is of utmost importance here.  
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1.2. Why resource allocation is a key performance factor 
 
As presented before, the content demand exhibits a changing pattern 
over time so the P2P-VoD system needs to adapt to this situation. The 
decision of allocating participating resources to an incoming VoD 
request is a complex one with diverse implications on the system 
performances. For instance, the resource allocation algorithm can 
identify many contributing peers that can be used to satisfy the VoD 
request – these latter peers can have different available bandwidth 
capacities, and different stored content. The decision to use one of 
these peers to satisfy the current VoD request means reducing its uplink 
capacity for an extended period of time, and thus possibly shutting the 
peer’s content out of the system.  

2. Dynamic resource allocation 
 
As revealed above, this P2P streaming resource allocation (ARA) 
dynamically switches between different RA strategies on a real-time 
basis as the VoD system is running and processing VoD requests. In 
order to achieve this, we select the best-fit strategy by using a 
combination of multiple metrics.  
 

2.1. Dynamic Switching between different RA strategies 
 
At the core of this dynamic RA switching scheme is the ability to predict 
the most likely trends shifts in the content popularity. The VoD system 
operation time is split into discrete time periods and the popularity 
trends are constantly observed within each one of these time periods. 
In this experiment we use a 4-hour time period, but this can be 
changed in practice to match specific VoD consumption trends 
observed in the target audience. ARA essentially uses long-term 
popularity trends as the aggregate point to which the average 
popularity should eventually revert. In other words, ARA assumes 
relatively stable long-term popularity trends and treats the popularity 
distribution within the individual 4-hour time periods as deviations from 
the mean.  
By analyzing the popularity trends in the previous time period, ARA can 
predict the following time period with a certain level of confidence. 
Again, the assumption here is that the long-run popularity trends are still 
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valid, and any short-term deviation from the trend is only transient. 
More on the popularity prediction model are given in following sub-
sections.  
Once the popularity prediction for the next time period is performed – 
and the system has a good idea of the likely frequency and intensity of 
VoD requests for every title in the content library – ARA will assess how 
every basic RA strategy would perform in terms of both success rates 
and entropy. Bayesian approach is here used to effectively blend 
together both performance objectives (success rate and entropy) and 
use the result to compare how the different RA strategies would 
perform in the following time period.  
It is worth recalling that the time period between each strategy switch 
can be adjusted to accommodate any particular situation. For 
instance, the service provider can increase the time period to 6 hour 
on a weekend where the demand is strong and sustained throughout 
the day. On the other hand, the time period can be reduced to 2 
hours in a week day where most of the demand is concentrated 
around prime time. 
 

2.2. Resource Allocation Strategy Evaluation and Selection 
 
In this section, we aim to select the best resource allocation strategy for 
the upcoming period. For each of the resource allocation strategies 
(HUF, LCS, LPS), we estimate the probability of reaching a certain level 
of performances. Performances are evaluated in terms of two 
performance metrics: the success rate and the entropy. In order to 
combine those metrics, we use a Bayesian Fusion approach. As 
revealed earlier, this approach allows one to fuse different 
performance metrics.    
Bayesian Inference is a statistical approach that aims to determine a 
probability, known as posterior probability, based on a prior probability 
and the previously gathered data.  In the following, we explain how 
Bayesian is applied in dynamic RA strategy:  
 
a) The popularity trends are predicted for the following time period 

(say 6 hours) based on past observations and assuming a long tail 
type popularity model that has been well researched in the 
literature [68]. 

b) We determine the prior probabilities: the success rate and the 
entropy, when using each one of the three RA strategies. This 
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consists of evaluating the performance of each one of the 3 RA 
strategies against the predicted popularity distribution for the 
following time period.   

c) Based on the observations above, we calculate the probabilities of 
having the performance metric (success rate or entropy) in a 
certain range. We can then build a histogram that associates a 
probability of having the performances fall in any of the different 
ranges.  

d) At this point, we can express the probability density as a function by 
applying a Gaussian fit on the histogram of the prior probabilities. 
The objective here to derive a function for the probability distortion 
that can be leveraged by the Bayesian approach.  It is important 
to note that this process will lead to 6 Gaussian functions: 3 RA 
strategies by 2 performance metrics.  

e) Then, we use Bayes’ theorem to essentially combine the two 
Gaussian functions associated with the two performance metrics 
for any RA strategy. At this point, we obtain a common way to 
compare the different RA strategies while still considering the 
performances along the two dimensions: success rate and entropy.  
This processed is referred to as obtaining posterior probabilities.  

f) In order to evaluate the different RA strategies against each other 
we use Montecarlo Simulation to pick the strategy that jointly 
maximizes both the success rate and the entropy throughout the 
following time period.  

2.2.1. Prior probabilities 
 
Bayes’ rule provides a way to make inferences about an object 
described by a state x given an observation z. It requires an expression 
of the relationship between x and z to be expressed as a joint 
probability: 𝑝 𝑥, 𝑧 .  
In this case, the states x are the strategies HUF, LCS, and LPS, while the 
observations z are the entropy or the success rate. The goal is to 
determine the strategy with the highest probability of producing a high 
success rate and entropy level. 
The chain-rule of conditional probabilities expands as shown in (22). 
 
 𝑝 𝑥, 𝑧 =   𝑝 𝑥 𝑧 𝑝 𝑧 =   𝑝 𝑧 𝑥 𝑝(𝑥) (22) 

 
 
Thus, Bayes’ rule is obtained using (23). 
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   𝑝 𝑥 𝑧 =   
𝑝 𝑧 𝑥 𝑝(𝑥)

𝑝(𝑧)  (23) 

The value of this fundamental result depends on the interpretation of 
the probabilities p(x|z), p(z|x), and p(x). The objective here is to 
determine the various likelihoods of different values of an unknown 
state x. The prior probability, p(x), expresses the values of x that may be 
expected according to prior beliefs. On the other hand, p(z|x) 
describes, for each fixed state x, the probability that the observation z 
will also be made: the probability of z given x. The new likelihoods for 
the state x are obtained by multiplying the original prior information 
and the new information gained by observation. This gives p(x|z), 
which is the posterior probability, describing the likelihoods of x given 
the observation z. 
In this approach, we then determine six probabilities distributions, two 
per strategy (one for each performance metric). The posterior 
probability of a strategy is in fact the probability of achieving a certain 
level of performance (success rate or entropy level) when using the 
said strategy.  
 

2.2.2. Probability density 
 
This fusion is based on the probabilities of achieving a certain level of 
performances in terms of success rate or entropy level. Therefore, in this 
approach, we start by evaluating p(S|𝑌!), the probability density of 
success S knowing that we chose strategy 𝑌! , and p(H| 𝑌! ), the 
probability density of entropy with strategy 𝑌!.   
In order to better illustrate the core idea behind this Bayesian 
approach, Figure 17a shows how the success rate evolves over time in 
a typical time period, while Figure 17b shows the likelihood of having 
the success rate in any range given in Figure 17a. The likelihood is here 
expressed using a probability distribution in order to better substantiate 
the expected performance with more details than a mere average.  



Page 68 of 107 

 
(a)  

(b) 
Figure 17: Success  rate analysis. (a) Success Rate over time, (b) Histogram of the success rate. 

Finally, we apply a Gaussian fit on the probability density of each 
performance metric (success rate and entropy) in order to express 
those histogram as functions, as shown in Figure 18. The interest of 
doing so is to use the function in the Bayesian procedure to fuse 
together two (or more) performance metrics.  

 
Figure 18: Gaussian fit of the success rate histogram. 

2.2.3. Posterior probabilities 
 
In this stage of the process, we compute the posterior probabilities of 
each strategy. To do so, we use Bayes’ theorem in (24). Those posterior 
probabilities represent the probability of using each RA strategy, 
knowing individual performances along two dimensions: entropy level 
and success rate. 
 𝑃 𝑌! 𝐻, 𝑆 =   

𝑃 𝐻, 𝑆 𝑌! 𝑃(𝑌!)
𝑃(𝐻, 𝑆)  (24) 

 
Where 𝑌! is one strategy, H the entropy, S the success rate. 
Then, we select the best strategy, based on a maximum “a posteriori” 
estimation, computing the value (25). 
 𝑌! = 𝑎𝑟𝑔!max𝑃(𝑌!|𝐻, 𝑆) (25) 
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Where 𝑌! is the best strategy, l belongs to the group of strategies, 𝑌!   is 
strategy l, H the entropy, S the success rate. 

2.2.4. Monte-carlo Simulations 
 
Now, we compare the performances of the three different RA 
strategies by evaluating the “a posteriori” probability of each strategy : 
𝑃(𝑌!|𝐻, 𝑆).  We use Montecarlo simulation (Figure 19). This allows us to 
evaluate the different RA strategies with a significant added level of 
detail, which narrow the level of uncertainty regarding the 
outperformance of the final RA we choose for the following time 
period.  
In a Monte-Carlo simulation, we randomly place points in a previously 
known area. In this case, we use the 1x1 square, since the curves are in 
that space. Then, we count the number of points that are in the area 
we aim to determine : here, under the curve. The area under the 
curve, as shown in Figure 19, is the number of points under the curve 
divided by the total number of points we placed, multiplied by the 
total area (26).  
 𝐴 =

𝐼
𝑂 ∗ 𝐺 (26) 

 
With A the area under the curve, I the number of points inside/under 
the curve, O the total number of points, and G the area where the 
points are generated.  

 
Figure 19: MonteCarlo simulation - 2000 shots - area: A = 𝟕𝟒𝟔

𝟏𝟐𝟓𝟔
∗ 𝟎.𝟑𝟑 = 𝟎.𝟏𝟗. 
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The results of the Montecarlo simulation returns a value for each 
posterior probability.  We then get three values, one per strategy. Since 
we are using a maximum a posteriori estimator, we select the strategy 
with the highest Montecarlo value. This strategy is the best fit for the 
upcoming demand, based on a Bayesian fusion. 
 

3. Strategy selection based on Evidence Theory 
 
In this section, we start by presenting the Evidence theory. This theory 
can be viewed as an extension of probability theory. It is suitable for 
characterizing uncertainty when evidence is imprecise because it 
allows one to estimate probabilities of intervals instead of probabilities 
of specific values. We then explain how this approach can be used to 
efficiently dyniamically select a peer resource allocation strategy. 

3.1. From Bayes to Dempster-Schafer 
 

Although some aspect of probability like the Bayesian probability is 
closely related with possibility theory, both differ in some major aspects. 
The Bayesian approach requires to make strong assumptions to 
estimate the likelihood of the available evidence. Because it is based 
on posterior probability evaluation, it is sensitive to imprecision in our 
predictions. Furthermore, this approach is quite heavy, due to the need 
to keep prior values stored in memory, in order to compute the new 
posterior probabilities. 
On the other hand, the Evidence theory approach does not require 
the user to assume anything beyond what is already available. This 
approach treats uncertainty due to imprecision differently than 
uncertainty due to randomness. It is lighter to set up, and even 
computes faster.  
 

3.2. Dempster-Schafer Theory 
 
We first present the probabilities in those intervals,  called basic 
probabilities. Then, we introduce Plausibility and Belief, which are used 
in evidence theory to characterize the belief in the occurrence of an 
event. 
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3.2.1. Basic Probability Assignment 
 

The idea of the Dempster-Schafer Theory is that numerical values of 
uncertainty may be assigned to overlapping sets and subsets of 
hypotheses, as well as to individual hypothesis. These measures of 
uncertainty are known as “basic probability assignment”. 

Let Θ = {ℎ!, ℎ!,… , ℎ!}  be a finite set of hypotheses (frame of 
discernment). A basic probability assignment (bpa) is a function 
𝑚: 2! → [0,1] such that :  
 𝑚 ∅ = 0 (27) 

And: 
 𝑚 𝑥

!  ∈  !!  

= 1 (28) 

All of the assigned probabilities sum to unity and there is no belief in 
the empty set. Any subset 𝑥 of the frame of discernment for which 𝑚(𝑥) 
is non-zero represents the exact belief in the proposition depicted by x.  

 

3.2.2. Belief function 
 

The belief represents the confidence that a value lies in A or any 
subset of A. Therefore, a belief measure is a function 𝐵𝑒𝑙: 2! → [0,1], 
computed from the sum of probabilities that are subsets of the 
probabilities in question. We have :  

 𝐵𝑒𝑙 𝐴 = 𝑚 𝐵
!  ⊆!  

 for all 𝐴 ⊆ Θ (29) 

 With A a subset of Θ, B the subsets of A, and 𝑚(𝐵) the basic 
probability assignment of B. 
 

3.2.3. Plausibility function 
 

The plausibility of a subset A represents the extent to which we fail to 
disbelieve A. It is a function 𝑃𝑙𝑠: 2! → [0,1], defined by: 

 

 𝑃𝑙𝑠 𝐴 = 𝑚 𝐵
!∩!!∅  

 for all 𝐴 ⊆ Θ (30) 

With A a subset of Θ, B the subsets of Θ that do not intersect with A, 
and 𝑚(𝐵)  the basic probability assignment of B. The plausibility 
measure is clearly related to the belief function :  
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 𝑃𝑙𝑠 𝐴 =   1− 𝐵𝑒𝑙(¬𝐴) (31) 

 With 𝐴 a subset of Θ, and ¬𝐴 the rest of the subsets in Θ. 𝐵𝑒𝑙(¬𝐴) is 
also called the doubt in A. 
 

3.3. Application to Resource Allocation Strategy selection 
 

3.3.1. Plausibility applied to strategy evaluation 
 
 

Several methods use the Evidence Theory for modeling uncertainty 
with consideration on the analysis of computed measures in expert 
systems [69]. There, the analysis is basically the comparison of the 
measures, i.e. possibility measures, coherent lower previsions, additive 
probabilities and belief function. Method of uncertainty is also known 
to be useful in the analysis of prognostics [70]. 

The aim here is to select the best strategy 𝜔∗ in a set Ω, based on 
multiple criteria. Figure 20 presents an analytical hierarchic 
modelisation of this problem. 

 

 
Figure 20: Analytical Hierarchy Process model of Strategy Choice 

3.3.2. Problem formulation 
 
In our approach, we select the best strategy using the maximum of 
plausibility estimator. We express the problem as follows: 
 
Find 𝜔∗ ∈ Ω such as :  
 𝜔∗ = 𝑎𝑟𝑔!∗∈!  max  (𝑃𝑙𝑠 𝜔 ) (32) 
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where 𝜔∗ is the best strategy, Ω is the set of all strategies, 𝜔 a strategy, 
and 𝑃𝑙𝑠 𝜔  the plausibility of strategy 𝜔. 
 

3.3.3. Plausibility estimation 
 
In order to select the best strategy, we estimate the plausibility for each 
strategy to be the best one. In order to combine the basic probability 
assumptions, obtained for each strategy with each criteria, we use : 
 
 

𝑚!⊕𝑚! 𝑥 =

      0                                                                                                            𝑖𝑓  𝑥 = ∅

𝑚! 𝐴 ∗𝑚! 𝐴!∩!!!  

1− 𝑚! 𝐴 ∗𝑚! 𝐴!∩!!∅  
        𝑖𝑓    𝑥 ≠ ∅

 (33) 

   

An important feature in the above formula is in the denominator, which 
can be interpreted as a measure of conflict between the sources. It is 
directly taken into account in the combination as a normalisation 
factor. The measure represents the mass which would be assigned to 
the empty set if masses were not normalised. 
We then select the strategy that presents the maximum of plausibility : 
this strategy is the most plausible to be the best strategy. 
It is key to note that, with a larger set of criteria and strategies, the 
number of solutions to evaluate increases, thus increasing the 
complexity. In such cases, a genetic algorithm can be used to reach 
an optimal solution in fewer iterations. 

4. Summary 
 
In this section, we presented a dynamic resource allocation. The 
system evaluates the performances of multiple strategies, and 
automatically uses the best fit strategy. In order to select the best 
strategy, two parameters are used : rejection rate, and peer 
participation entropy. Therefore, a combination of those parameters is 
required for selecting the best performing resource allocation. We first 
presented a Bayesian method. Then, another method, based on 
Evidence Theory, was introduced. 
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Section 8 : Simulation Platform  
 
In this section, we present the simulation platform used for our 
evaluations. 

1. Experimental platform overview 
 

Our emulator is a very close approximation of the behavior of a full-
scale peer-assisted VoD streaming system. The Super Node is a 
complete implementation, that could immediately be used in a real 
system. The Peers, on the other hand, are simulated. A simulator 
generates the requests from the peers and communicates with the 
SuperNode. 

First, we have a full-scale implementation in Python of the central 
server, called the Super Node (SN). The SN can process VoD requests in 
real-time. Each VoD request targeting a specific title leads the SN to 
lookup the database for peers with the content parts and enough 
uplink capacity to stream the content parts. The SN then returns a list of 
peers that can satisfy the VoD request by contributing a specific part to 
the multi-source streaming session – note that by deciding which peers 
to select for the VoD request, the SN is effectively making a resource 
allocation decision. The SN keeps the database up-to-date by 
reflecting changes after processing every new VoD request. Figure 21 
illustrates the process at the highest level. 

A second part of our emulation environment consists of the actual VoD 
requests emulator. Its role is to randomly generate VoD requests from 
different peers, and following a specific popularity distribution over the 
content library. The VoD requests are generated based on a realistic 
content popularity model with a typical Pareto’s 20/80 rule.   

The VoD requests generator reads a trace file containing a list of VoD 
requests, organized per hour, title requested, and the source of the 
request (peer’s ID). Clearly, we can test different system parameters 
using the same demand, over the content library.  Finally, the VoD 
requests generator is able to run up to 60 times faster than real time, 
which makes it possible to run a 10 hours emulations in 10 minutes. 
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Figure 21: Implementation of a P2P assisted VoD system. 

2. Dynamic evaluation platform  
 
In order to select the best resource allocation strategy, we use an SN 
simulator to evaluate each strategy’s performance for the upcoming 
time period (see Figure 22). The simulator implements our LB-RA 
algorithm with the Bayesian approach to select the best RA strategy. 
The SN simulator runs 10 times faster than the actual SN and is 
responsible of evaluating every RA strategy and logging its 
performance in terms of our two performance metrics: success rate 
over time, and entropy level over time. 
There are two major steps in our experimentation with two different 
time frames. First, the VoD requests generator and the SN work in real-
time to replicate a typical scenario that an SN will be faced with in a 
real deployment. On the other hand, the SN simulator actively 
evaluates the different RA strategies against predicted future content 
demand. It is crucial to note that the simulator computes the best 
strategy for the upcoming time period while the SN is still running and 
processing VoD requests of the current time period.  
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Figure 22: High-level view of the dynamic evaluation platform for LB-RA. 

 In order to evaluate each resource allocation strategy, we generate a 
trace file corresponding to the upcoming demand, and test each 
strategy with this trace file. Every 3 hours, the predictor (here located at 
the SuperNode) generates a trace file of the upcoming demand 
covering the next 3 hours. Then, it sends to the simulator a trace to 
request the Strategy Update. At this step, the simulator provides the 
best RA strategy to be used using the PL-RA algorithm.  
The entire system is implemented in Python and is available on 
Bitbucket as an open source project [71].  
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Section 9 : Content Injection 
 
 
In this section we analyze the performance of several content injection 
strategies in P2P-VoD streaming systems. We work with a broadband 
network composed of 10,000 active STBs, a content library of 20,000 
titles with an average duration of 2h, and an uplink capacity of 1024 
Kbps at each peer. Note that each presented result is actually an 
average of up to 10 simulation runs of 10 hours each. Each run consists 
of generating VoD requests originating from different peers and 
following a Zipf-based popularity distribution model over the content 
library. The Zipf model has been found to be very accurate in 
capturing the popularity of media content provisioned through 
different forms (e.g., books, CDs, DVDs, etc.). 
By using the Zipf popularity model we try to capture what is usually 
referred to as the “Long Tail” phenomenon reported by many media 
retail companies such as Amazon.com and Netflix . This allows us to 
reproduce a 20/80 Pareto distribution where 80% of the VoD requests 
are issued for 20% of the most popular titles. 

1. General Study: Random algorithm 
 
Figure 23 represents the total number of simultaneous VoD sessions 
being served throughout the simulation time, which reveals how well 
the VoD streaming system handles peak hours in terms of VoD service 
demand. We can observe that the number of simultaneous VoD 
sessions stays relatively stable, hovering around 2,930 sessions.  
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Figure 23: Number of VoD Sessions over time. 

 
 
Figure 24 represents the participation dispersion. It is shown that, 
although most of the peers participate in a number of VoD sessions 
between 80 and 90, there exist some peers which participate in a low 
number of VoD sessions (between 1 and 60). This result means that 
some peers are underused and it could explain that the number of 
simultaneous VoD sessions do not reach its maximum value (3,000). 

 
Figure 24: Participations dispertion. 
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Therefore, at the moment, our goal should be to try to explain why 
some peers only participate in a low number of VoD sessions. 
Regarding this concern, Figure 25 represents the peer popularity score 
associated to each peer. This parameter represents the sum of the 
relative popularity of all the sub-streams stored in each peer. We can 
observe that the peers have a popularity score which oscillates 
between 0.13 and 0.16 for the different nodes. Taking into account that 
in our simulations the most popular content has a relative popularity of 
0.0004, this result means that there are peers which have much more 
popular contents than others, due to the random placement of the 
content. 

 
Figure 25: Peer Popularity Score. 

Figure 26 represents the average popularity score associated to the 
peer which participates in a specific number of VoD sessions. It 
appears is clearly that the peers participating in a low number of 
sessions have a lower average popularity score than the peer which 
participate in a higher number of sessions. The reason why some peers 
are underused is because they do not have very popular contents.  
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Figure 26: Relation between popularity score and participations dispertion. 

2. Popularity-Weighted Content Dispatching 
(PWCD) Algorithm 

 
Figure 27 illustrates the popularity score figures associated to each peer 
when the popularity-weighted dispatching algorithm is used. Clearly, 
this algorithm guarantees that the sum of popularity of all sub-streams 
contained in a given peer is equivalent to the sum of popularity of all 
fragments contained in any other peer in the network.  
 

 
Figure 27: Popularity score for each peer, using the PWD algorithm. 

 
It is expected that the different peers contribute at the same level in 
the process of delivering VoD services.  
Figure 28 represents the participation dispersion. This figure shows that 
all the peers participate in a number of VoD sessions between 70 and 
100, and most of them between 80 and 90. It means than using this 
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new algorithm there are no underused peers, and therefore the 
number of simultaneous VoD sessions should have been increased. 

 
Figure 28: Participations dispersion, using the PWD algorithm. 

Figure 29 represents the number of simultaneous VoD sessions obtained 
using the new algorithm. We can observe than now this parameter has 
increased from approximately 2,950 sessions to around 3,000 sessions, 
which was previously presented as the maximum theoretical number of 
simultaneous VoD sessions. Therefore, this mechanism achieves our 
goal. However, we can observe in the presented results that it is 
possible to have more than 3,000 sessions. Before sending a VoD 
request to the indexing server the peer checks if it has any of the 
required sub-streams in its local storage. If it has some of them, then the 
indexing server only tries to establish connections for the rest of sub-
streams. It means that sometimes some VoD sessions use less than 10 
uplink connections in the network. Therefore, there are more uplink 
connections available for the new requests, and consequently the 
network is able to support a bit more than 3,000 simultaneous sessions. 

 
Figure 29: Number of VoD sessions over time. 
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Section 10 : Resource Allocation 
 
In this section, we evaluate static and dynamic resource allocation 
approaches in P2P-VoD systems. In order to assess their performances 
in large Peer-to-Peer deployments, our simulations feature a system 
with 100,000 peers. Each peer can simultaneously seed up to 5 
simultaneous VoD sub-streams to other peers, and can hold up to 500 
movie parts, which means the system can store up to 50,000,000 parts.  

We use a content library containing 50,000 different video titles. Each 
title in the library is characterized by a different popularity behavior as 
illustrated in Figure 30, and the overall popularity distribution over the 
entire content library follows a Long Tail model modeled with a Zipf law. 
It is worth recalling that the different titles are duplicated in the network 
based on their expected popularity. Each duplicate is split into 5 
complementary parts before storage in the network. The way the parts 
are spread in the network was investigated in the literature. It will be 
fixed throughout the experimental evaluation in order to more closely 
evaluate the resource allocation strategies.  

1. Dynamic demand evolution 
 

Most of the related research works in the literature agree on choosing 
a Zipf law, as shown in equation (11), for representing the titles 
popularity in a VoD system. This law can only represent title popularity 
at a given time, and does not comprehend the evolution of the 
popularity. Carsten et al. proposed a model based on a time-evolving 
Zipf distribution, and on the date of apparition of a title in the network. 
The initial popularity distribution is computed using a Zipf law (11).  

 𝑝! =   
!
!
∗    𝑘!

!!!   (34) 

where 𝑝! is the popularity of title i, and M the number of titles. Then, the 
evolution of the popularity of each title is represented by a highly 
granular expression. This popularity model captures popularity shifts, 
including the effect of adding a new title to a large content library and 
making it available to users for the first time – a process that is part of 
the VoD system operation. As new titles are introduced and receive 
users’ attention, the popularity gets redistributed among all titles of the 
library. Figure 30 illustrates how new titles become increasingly popular 
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following their introduction before progressively receiving less and less 
requests – this phenomenon has been shown  to be the main driver of 
popularity trend shifts over time in systems with Long Tail–type offerings 
(e.g., YouTube, Netflix, Amazon Video, etc.). As it can be observed 
from Figure 30, different titles may command different popularity 
patterns with different popularity intensity, and different duration of the 
peak, different popularity declining curve.  

 
Figure 30: Popularity evolution of multiple titles added at different times in the network. 

In our emulations, we use the above-mentioned Carsten et al. work to 
model the overall content popularity changes. Titles are injected in the 
network of peers at the beginning of the emulations, but are available 
in the network only after a period of time, defined for each title. Thus, 
the content library constantly grows over time.  

It is important that the popularity growth and the absolute popularity of 
new titles are different from a title to another. As illustrated in Figure 30 
(Content A-E), while the popularity model for each title is the same, 
there are still differences in the intensity/sustainability of the initial 
popularity spike.  

Our simulations rely on real content popularity data from a Youtube, a 
large consumer digital media offering. This data was originally 
collected from YouTube by Xu Cheng et al., and it is publically 
available online. Youtube service reach is broad enough and can thus 
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be considered a fairly good proxy for consumers’ expected demand 
for a large VoD library. Furthermore, we integrated the Youtube 
content popularity traces with Carsten et al.’s approach to content 
demand evolution in order to better reproduce real-world content 
popularity shifts. 

In our content popularity model, each title has its own popularity 
fluctuation dynamics that evolve as described above. We believe that 
the increasing of a real content popularity with an additional 
popularity variation (at title level) dimension produces a very 
reasonable content popularity model.  The number of VoD requests 
per hour varies significantly in a typical day, with rises of the demand in 
the morning, and the evening. Besides the temporal variation in 
demand intensity, the popularity pattern can vary with different titles 
receiving more requests than other depending of the time of the day. 
In order to assess the ability of the system to react in the case of 
multiple demand scenarios, we vary the intensity of the demand. This 
intensity evolves every 6 hours, to better reflect the fundamentally 
different content popularity patterns associated for different times of 
the day. While the 6-hours figure was obtained from the discussions in 
Little et. al, one should recognize that this a rather arbitrary figure that 
should be varied by the service provider to meet the particular context 
of the deployment.  In our study, we varied this figure between 2h and 
12h, and there was no material impact on the system performance. 

2. Resource Allocation Strategies evaluation 
 
In this section, we present the results obtained when using HUF, LCS, 
LPS, and the LB-RA algorithm.  
 

2.1. Dynamically Selected Strategies by LB-RA 
 
Figure 31 shows the strategies selected over time by LB-RA algorithm 
based on the Bayesian statistical analysis. HUF and LCS are the only 
strategies used throughout the emulation time. First, LB-RA starts the first 
time period with HUF before switching to LPS for the following time 
period, then uses LCS, and then finally switches back to HF for the last 
time period. 
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Figure 31: Strategies selected by LB-RA, over time. 

It is important to recall that the main drivers of LB-RA strategies 
selection are: (i) most likely popularity pattern and intensity in the 
following time period. This is estimated based on the recently observed 
popularity deviations from the long-run popularity pattern-intensity; (ii) 
the current content availability in the network which is the 
consequence of past RA decisions.  
 

2.2. Peer Saturation 
 
 
Figure 32 presents the number of saturated peers, measured each 
hour. A saturated peer is a peer that has no more available bandwidth 
to contribute in any VoD session, meaning the contents contained in a 
saturated peer become unavailable. Each peer contains certain 
content parts, and, therefore, some peers are more “critical” than 
others. It is important to note that a title is considered available only if 
all of its 5 parts are available from peers in the network.  
It is crucial to maximize the number of contents available at any time in 
order to maximize the number of VoD sessions. Although it’s not a 
completely inversely proportional relationship between rejection rates 
and the number of saturated peers, this latter metric is a relatively 
reliable leading indicator of the VoD rejection rate. Figure 32 shows 
that LB-RA manages to limit the number of saturated peers by 
switching between different RA strategies and by maintaining a 
superior content availability for most of the emulation time (see Figure 
33).  
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Figure 32: Number of saturated peers over time. 

 
Figure 33 illustrates the content availability in the system throughout the 
emulation time, and for every RA strategy evaluated. This performance 
metric essentially tracks how many unique titles are currently available 
for streaming (i.e., there are bandwidth resources to satisfy a VoD 
requests for titles). Naturally, at the start of the emulation at t=0h, all 
50,000 titles are available. However, as both the popularity intensity 
and pattern change, the different RA strategies experience different 
content availability throughout the emulation. Again, one can notice 
that LB-RA and HUF result in the same content availability evolution for 
the first time period as LB-RA was effectively using HUF during that 
period – note that both started with the same full content availability at 
t=0h.  
One can clearly observe from Figure 33 that LB-RA tends to maximize 
the number of available contents at any time. During the first time 
period, LB-RA selected HUF, thus ensuring that all contents are 
available by depleting peers resources in an even manner. In this first 
time period, network resources are plenty and content availability is 
high, which means that the ultimate consequences (rejection rate) of 
resource allocation decisions is not yet felt. LCS and LPS are passive RA 
strategies so they tend to prioritize the use of the same peers, which 
lead to their early saturation and subsequent VoD rejections due to 
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reduced content availability. When the high content demand starts to 
take its tall, LB-RA switches to LPS and thus manages to maintain a 
content availability lead over other RA strategies.  

 
Figure 33: Overall content availability over time (number of unique title available over time). 

 
A final observation here is that the Bayesian approach helps LB-RA to 
focus on objective statistical outcomes that takes into account current 
conditions and expected popularity trends, instead of just applying the 
same rule regardless of the system conditions. For instance, from t=14h 
to t=18h, one can observe that LCS and LPS maintain a lower number 
of saturated peers compared to LB-RA. However, this lower number of 
saturated peers does not translate into a higher content availability, 
which means that many of the unsaturated peers here contain 
somehow similar content and thus don’t help satisfying the incoming 
content demand in its diversity.  
 

2.3. Peer Participation  
 
Figure 34 shows how each resource allocation strategy performed in 
terms of entropy.  Obviously both HUF and the Greedy Algorithm 
outperform all other approaches in terms of balancing the load over 
the active peers. This is due to the fact that their respective resource 
allocation algorithms are designed to mainly preserve fairness in terms 
of peers’ bandwidth usage. This ensures that peers resources are 
consumed “in unison”, which preserves a high level of content 
availability as the demand increases.   
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Figure 34 : Evolution of the peer participation entropy, averaged every hour, over time. 

 
Table 1 summarizes the overall peer participation entropy in the system. 
LB-RA performs similarly to LCS and LPS while HUF and Greedy 
outperform all other RA strategies. As discussed earlier, those two 
approaches are designed with a focus on maximize the entropy, so it is 
not surprising that they outperform all other allocation strategies when 
it comes to participation level. Therefore, HUF and the Greedy 
approach perform better than LB-RA, with a higher mean and maximal 
entropy values. 
 

Table 1 : Entropy evaluation for each strategy. 

Strategy Mean Max 

LCS 6.4 7.9 
LPS 6.6 7.5 
HUF 8.0 8.9 

Greedy 8.6 9.1 
LB-RA 6.5 7.9 

 
The participation results only deliver one part of the picture as it does 
not indicate the actual overall P2P network utilization. The participation 
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entropy is indeed an indicator of fairness and how even is the system 
utilization. It is not an indicator of the overall system utilization, per se. 
This is rather captured by the VoD requests rejection rate. The VoD 
requests rejection rate is in many cases more important to VoD services 
provider. In fact, the entropy metric should be rather used as a guide 
to improve resource allocation algorithms, while the rejection rate is the 
ultimate metric to measure the performance of a resource allocation 
algorithm and the overall yield of the system.   
 

2.4. Rejection Rate 
 
Figure 35 presents the evolution of the rejection rate over time, for 
each RA strategy. It is important to note that the rejection rate is very 
negatively correlated with the content availability shown in Figure 33. 
During the first 6 hours, LB-RA used the same parameters as the HUF 
strategy, thus resulting in similarly good results. Then, as content 
demand evolved and exhibited a specific popularity pattern, LB-RA’s 
underlying statistical performance prediction model caused it to switch 
from HUF to LPS at t=6h. By switching between strategies, LB-RA 
managed to avoid the rejection peak in the period between t=6h and 
t=12h, when the demand is at its peak. While other strategies 
experienced a rejection rate of nearly 60% during peak hours, LB-RA 
manages to achieve a rejection rate of nearly 0% during this time 
period. The reason for this outperformance resides in the fact LB-RA 
enters the peak hour period with a much better network configuration 
in terms of available resources.  
As clearly shown in Figure 35, at t=12h, LB-RA has a higher content 
availability than any other resource allocation strategy. This situation 
allows LB-RA to better storm the surge in demand. In other words, LB-RA 
provisioned the first active sessions using contributing peers that are not 
the most critical in case of intense content demand. By strategically 
changing resource allocation strategies from a time period to another, 
LB-RA will result in a different network configuration in terms of which 
peers get saturated first and which titles become unavailable. This 
fundamental difference in terms of network saturation pattern is 
essentially behind the performance difference in terms of experienced 
VoD rejection rates. LB-RA’s strength resides in its better management 
of peers’ resources (uplink capacity) for the long run.  
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Figure 35:  Evolution of the Rejection Rate, averaged every hour, over time. 

 
Although both HUF and LB-RA entered the second time period with 
relatively similar network resources availability, LB-RA progressively 
outperformed HUF due to the use of LPS. Clearly, passive resource 
allocation strategies such as LPS and LCS tend to perform relatively well 
during peak demand hours as they preserve the most 
demanded/valuable resources in anticipation of high demand.  A 
critical reason for this outperformance is that both LCS/LPS would 
assign the same level of priority to peers with somehow similar content, 
which means there is higher probability that the preserved peers would 
have complementary content that can be used to satisfy VoD 
requests. On the other hand, HUF is only concerned with the fairness in 
terms of peers’ bandwidth usage, regardless if the spared peers can 
be used together to satisfy VoD requests. While HUF depletes peers 
resources in a fair and arbitrary manner, it does so without regard to 
what nature of content contained in these peers. This key difference 
causes passive RA strategies to slightly outperform during extreme 
demand pressures. Figure 36 shows clearly the gain obtained by using 
LB-RA in terms of rejection rate. 
Between t=12h and t=18h, LCS and LPS present a peak of the VoD 
requests rejection rate of about 40%, while LB-RA reduces it down to 0% 
and sustains that level rejection rate till the end to the third time period. 
LB-RA remarkably keeps the VoD requests rejection rate at a minimum 
as the low-demand time period starts at t=12h. Note that during the 
third time period (t=12h to t=18h) LB-RA kept using the LCS strategy. By 
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doing so, LB-RA maintains a higher content availability throughout the 
third time period. Note that the VoD request rejection rate declines as 
the content availability increases with the availability of a wider range 
of titles. 

 

Figure 36: Cumulated Rejection Rate 

 
At t=18h, HUF rejection rate is down to near 0%, while LB-RA reaches a 
50% rejection rate (Figure 35). HUF achieves lower minimum rejection 
rates, because its content availability rises (see Figure 33). In fact, as LB-
RA used LCS in the two time periods preceding t=16h, it focused on 
using the resources of peers with most popular content while 
protecting the ones with less popular content. Note that over the entire 
third time period LB-RA still managed to achieve a very low VoD 
rejection rate (less than 5%).  
Finally between t=18h and t=24h, all RA strategies performed relatively 
in the same manner. An intense content demand combined with more 
contents appearing in the library resulted in a very high VoD rejection 
rate across the board. 
Table 2 shows the overall performance of each strategy according to 
the rejection rate metric. By combining the best strategy on each 
period of time, LB-RA clearly reduced the rejection rate. This helps 
summarize the performances measured over the simulations. LB-RA 
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shows clear outperformance in terms of total VoD sessions delivered 
throughout the operation time. As explained earlier, this 
outperformance is mainly driven by a better management of the 
inventory of available resources by opportunistically switching to 
appropriate resource allocation strategy as the demand profile 
changes. To put the results in context, LB-RA rejected 15,527 less VoD 
requests than HUF, the second best performer, over only 24 hours. These 
remarkable improvements represents an opportunity for service 
providers to increase productivity of their underlying resources, and 
ultimately generate greater revenues. By combining multiple strategies, 
and adapting over time, LB-RA managed to reduce the rejection rate 
efficiently. 
 

Table 2 : Rejection Rate evaluation for each strategy. 

Strategy Mean Max 

LCS 29% 69% 
LPS 23% 58% 

HUF 10% 55% 
Greedy 30% 63% 
LB-RA 6% 55% 

 

3. Dempster-Schafer Theory applied to LB-RA 
 
 In this section, we present the results obtained with ARA using the 
Evidence Theory, labelled "ARA-Evidence". We compare those results 
to the ones obtained with static strategies, and with the ones obtained 
with ARA using a Bayesian Approach, labelled "ARA-Bayes". 

3.1. Rejection Rate 
 
Figure 37 presents the evolution of the rejection rate over time. It 
appears clearly that both dynamic strategies greatly reduce the 
rejection rate. Indeed, when all static strategies reach a higher than 0.5 
rejection rate at 13 hours, both dynamic approaches maintain a close 
to 0 rejection.  
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Figure 37: Rejection rate over time for each approach. 

 
This can also be oserved in Figure 38 which displays the total (meaning 
the sum of all rejection rates, from the start, up to time t) rejection rate 
over time. All three static RA rise quickly to 2 and higher, while the 
dynamic approaches manage to stay near 0 rejection, rising up to 1.5 
towards the end of the simulation. 
 

 
Figure 38: Cumulated Rejection Rate over time for each approach. 
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3.2. Entropy 
 
Figure 39 presents the evolution of the entropy when using each 
strategy. Here, HUF is clearly the most efficient. This is due to its design : 
HUF automatically selects the least participating peers, and, therefore, 
tends to spread the participations to all peers. On the other hand, the 
dynamic strategies aim to maintain a low rejection rate, while 
maintaining a good peer participation entropy. 
 

 
Figure 39: Peer participation entropy evolution over time for each approach. 

 

3.3. Overall results and discussion 
 
Table 3 presents the overall results for all strategies. Both ARA strategies 
tend to perform similarly, greatly reducing the overall rejection rate. 
 

Table 3 : Overall evaluation for each strategy. 

Strategy Rejection Rate Entropy 

LCS 29% 6.4 
LPS 23% 6.6 
HUF 10% 8.0 

Greedy 30% 8.6 
LB-RA Bayes 6% 6.5 

LB-RA Evidence 6% 6.5 
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Because those two strategies dynamically select the best choices, and 
switch accordingly, they both obtain very similar results. However, this 
approach does not require posterior probability estimation, whereas 
the Bayesian approach is based on it. Therefore, the bayesian 
approach is a more complex solution to strategy evaluation.  By using 
the evidence theory, we managed to greatly reduce this complexity, 
while maintaining efficient RA selection. 

4. Summary 
 
While LB-RA, using Bayes and Evidence, has outperformed other RA 
strategies by most metrics, many more fundamental lessons can be 
drawn from the above performance evaluation and analysis. A key 
learning is that it is important to let the LB-RA switch strategy more 
frequently based on popularity predictions and expected statistical 
performance of the different alternatives. Although LB-RA has shown 
better performances in most time periods, the level of outperformance 
tends to weaken or reverse in any given time period, which means that 
another strategy switch could have helped. Thus, additional RA 
strategy switching flexibility for LB-RA would be more appropriate in 
realistic VoD system deployment settings. Furthermore, important 
content popularity trends shifts tend to last a random time period (not 
exactly 6h), which further justifies moving LB-RA to a free RA switching 
policy, i.e., having continuous assessment of future performances. 
Another key observation from the experimental results analysis is that 
the content availability does actually drives the observed VoD requests 
rejections. Obviously, the resource allocation algorithm play an 
important role in determining content availability evolution as it 
allocates specific resources to incoming VoD requests. As seen with LB-
RA performances, an element of popularity prediction does actually 
help maintain a high content availability and thus a low rejection rate. 
In our performance evaluation, we specifically randomly varied the 
intensity of popularity and the actual popularity pattern in order 
reproduce an environment that is as close as possible to real settings. 
While LB-RA’s underlying Bayesian approach will never be able to 
precisely predict the specifics of future content demand, statistical 
performance predictions show a significant potential to improve the 
streaming performances of the system. Although the VoD service 
provider can further improve RA strategies and add new ones (as 
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discussed below), the very Bayesian approach proposed in this paper 
will be invaluable in guiding the system for an optimal switching 
between RA strategies. Finally, the popularity prediction model can 
also be adjusted and improved to better meet the specific behavior of 
the VoD users’ base.  
In this paper, we arbitrarily used three different RA strategies, two 
passive ones, and one active ones. Our comprehensive performance 
analysis shows that each one of the RA strategies has its advantages 
and shortcomings. First, passive RA strategies have the advantage of 
being content-aware and thus tend to deplete peers’ resources in a 
manner that is more effective during extreme content demand hours. 
The preserved peers tend to contain complementary content, which 
would allow the system to provision more VoD sessions when resources 
are extremely rare. However, passive RA strategies are extremely 
ineffective at managing system resources during non-peak hours, and 
tend to shut down a significant part of the peers pool very early on. 
Second, an active approach like HUF is very effective at maintaining a 
high content availability before peak hours, but it fails to apply any 
form of positive discrimination during the peer selection process to 
rather preserve peers that can be used together. Clearly, our analysis 
points to the fact that a service provider can certainly devise 
additional RA strategies to effectively deal with very specific conditions 
during the system operation. Also, the network and demand 
specificities should be important inputs in the process of designing new 
RA strategies. Realistically, a VoD service provider will end up with a 
number of RA strategies that can cover all possible situations, which 
further highlights the importance of a proactive strategy like LB-RA. 
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Section 1 – Conclusion 

4. Summary of Results and Contributions 
 
The most significant contribution of this work has been to show that 
hybrid P2P-CDN systems, when using dynamic resource allocation, are 
reliable for VoD, and provide a scalable alternative to CDN 
approaches.  Most of our research focused uniquely on P2P streaming 
system - the weak point in a CDN-P2P hybrid architecture -, although 
the most realistic scenario for using P2P streaming systems in a 
commercial broadband network would involve the use of CDNs as 
backup.  
 
In this thesis, we addressed the performances optimization of a P2P-
VoD system from three different angles in order to increase system 
efficiency and ultimately maximize the revenues for the service 
provider.  

Content Dispatching in P2P streaming systems: 
First, we thoroughly studied different content fragments dispatching 
strategies along with their impact on the overall system performances. 
Two important properties that should be targeted as much as possible 
when designing content dispatching algorithm are: (i) the peers should 
be equally popular with the overall cumulated popularity of all 
fragments contained in any STB 1  (set-top-box) comparable to any 
other STB – this will favors balancing the streaming load among the 
different STBs; and (ii) content fragments from any given title should be 
as spread as possible in the network of STBs in order to improve the 
overall availability of this title and make it less sensitive to transient STB 
saturation events.  
Taking into account these two performance factors, we present a new 
dispatching algorithm to equalize the participation of peers in the 
sessions provided by a content delivery network associated to set-top 
boxes (peers). To this end, the new algorithm ensures that the 
fragments of any title are as spread as possible to reduce the 
probability of having all the peers containing a fragment of a specific 
title being saturated quickly. In this thesis we show that this new 

                                            
1	  We	  use	  STB	  and	  peer	  interchangeably.	  The	  peer	  in	  our	  P2P	  streaming	  system	  will	  be	  located	  in	  the	  
set-‐top-‐box	  installed	  at	  the	  customers	  premises	  by	  the	  broadband	  operator.	  	  



Page 100 of 107 
 
 

algorithm considerably improve the STBs resources during peer 
demand hours, and it is therefore able to maximize the number of VOD 
sessions delivered during the peak hours.  

Resources Allocation in P2P Streaming Systems: 
Second, this thesis presents low-complexity scalable resource 
allocation strategies that can be deployed to optimize system 
resources in P2P streaming systems. In fact, with every P2P streaming 
session served the system use the uplink bandwidth of other peers (STBs) 
and during peak hours most of peers uplink is saturated which leads to 
system saturation.  
This thesis investigated many passive and active resource allocation 
strategies and derived new performance metrics to quantify the 
performance gains and identify the factors behind these gains. At the 
highest level, it has been found that the best resource allocation 
strategies are the one that best handle network resources saturations 
as they gradually build up. More specifically, it is important to design a 
resource allocation strategy that delays the saturation events as much 
as possible, while making sure that the streaming load is evenly 
distributed among STBs at any point of time during the operation 
phase. A key performance factor for resource allocation strategies is 
their ability to preserve the system resources needed the most for 
handling peak demand hours: this requires the resource allocation 
strategy to be aware of the content popularity cycles and trends.    

Learning-Based Resources Allocation (LB-RA) in P2P Streaming Systems: 
Third, one of the most important contribution of this thesis is a new 
approach for a resource allocation strategy in P2P-VoD systems. 
Instead of designing a new sophisticated RA strategy that can perform 
relatively well across a wide range situations, LB-RA offers a framework 
that allows the service provider to combined multiple strategies that 
can individually outperform in specific conditions. LB-RA uses a 
Bayesian approach to statistically evaluate the different RA strategies 
against the most probable content demand changes, and ultimately 
select the best strategy for the next time cycle. The result is an RA 
strategy that outperforms in most situations in terms of popularity 
pattern trends and network saturation levels. LB-RA gives the VoD 
service providers means to enforce the most effective RA strategy that 
meets the requirement of their specific situations and their formulated 
performance objectives.  
The Bayesian fusion approach is used to combine together different 
performance objectives for the resource allocation algorithm, without 
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losing effectiveness. At the core of our RA algorithm is our ability to 
forecast future content popularity patterns based on observed trends – 
popularity forecasts are continuously adjusted as more evidence 
become available. The different RA strategies are evaluated by using 
these forecasted popularity trends and judged based on their 
performances in respect to the combined performance objectives.  

5. Future Work 
 
In the following, we present some possible scientific directions our 
future works might explore: 
 

• Dynamic content re-dispatching – This thesis proposed a 
popularity-based approach (PWCD) to inject content in the P2P 
streaming system. While this content injection algorithm perform 
relatively well when it comes to balancing the streaming load 
among all peers and maximizing the system resources, it is not 
suited for situations where content popularity constantly shifts. 
Designing a content injection algorithm that dynamically and 
optimally (minim traffic overhead) responds to popularity shifts in 
the network. 

 
• Prediction filters for LB-RA – The efficiency of the LB-RA approach 

is in large part dependent on its ability to accurately predict 
content demand patterns at aggregate level. A possible future 
research avenue would be to investigate the use of better 
prediction. 

 
• Genetic Algorithm for large sets of metrics/strategies – LB-RA 

computes the best strategy from a relatively small set of 
strategies, according to a fusion of a small set of metrics. 
Admittedly, ideally a service provider would develop a large 
number of strategies to choose from in order to cover a wide 
range of possible network conditions. This will require the use of 
scalable algorithm able to converge within a reasonable time 
frame. Genetic algorithms can be a good candidate here. 
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