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Abstract

In this thesis we are interested in the problems underlying the design and the man-
agement of home care plans. A home care plan defines the set of medical and/or social
activities that are carried out day after day at a patient’s home. Such a care plan is
usually constructed through a complex process involving a comprehensive assessment
of patient’s needs as well as his/her social and physical environment. Specification of
home care plans is challenging for several reasons: home care plans are inherently non-
structured processes which involve repetitive, but irregular, activities, whose specification
requires complex temporal expressions. These features make home care plans difficult to
model using traditional process modeling technologies. First, we present a DSL (Do-
main Specific Language) based approach tailored to express home care plans using high
level and user-oriented abstractions. DSL enables us through this thesis to propose a
temporalities language to specify temporalities of home care plan activities. Then, we
describe how home care plans, formalized as timed automata, can be generated from
these abstractions. We propose a three-step approach which consists in (i) mapping be-
tween elementary temporal specifications and timed automata called Pattern automata,
(ii) combining patterns automata to build the activity automata using our composition
algorithm and then (iii) constructing the global care plan automaton. The resulting care
plan automaton encompasses all the possible allowed schedules of activities for a given
patient. Finally, we show how verification and monitoring of the resulting care plan can
be handled using existing techniques and tools, especially using UPPAAL Model Checker.

Keywords: Timed Automata, Domain Specific Language, UPPAAL Model
Checker, Home Care Plan.



Résumé

Dans cette thése nous nous sommes intéressés aux problémes concernant la conception
et la gestion des plans de soins a domicile. Un plan de soins & domicile définit I’ensemble
des activités médicales et/ou sociales qui sont menées jour aprés jour au domicile d’un
patient. Ce plan de soins est généralement construit a travers un processus complexe
impliquant une évaluation compléte des besoins du patient ainsi que son environnement
social et physique. La spécification de plans de soins a domicile est difficile pour plusieurs
raisons: les plans de soins & domicile sont par nature des processus non structurés qui
impliquent des activités répétitives mais irréguliéres, dont la spécification requiert des
expressions temporelles complexes. Ces caractéristiques font que les plans de soins a
domicile sont difficiles & modéliser en utilisant les technologies traditionnelles de modéli-
sation de processus. Tout d’abord, nous présentons I'approche basée sur les DSL (Langage
spécifique au domaine) qui permet d’exprimer les plans de soins a domicile en utilisant des
abstractions de haut niveau et orientées utilisateur. Le DSL nous permet a travers cette
thése de proposer un langage de temporalités permettant de spécifier les temporalités des
activités du plan de soins a domicile. Ensuite, nous décrivons comment les plans de soins
a domicile, formalisés grace aux automates temporisés, peuvent étre générés a partir de
ces abstractions. Nous proposons une approche en trois étapes qui consiste a: (i) le map-
ping entre les spécifications temporelles élémentaires et les automates temporisés appelés
"pattern automata", (ii) la combinaison des "patterns automata" afin de construire les
automates d’activités en utilisant I'algorithme de composition que nous avons défini, et
aussi (iii) la construction de 'automate de plan de soins & domicile global. L’automate de
plan de soins a domicile résultant englobe tous les schedules autorisés des activités pour
un patient donné. Enfin, nous montrons comment la vérification et le suivi de 'automate
du plan de soins a domicile résultant peuvent étre faits en utilisant des techniques et des
outils existants, en particulier en utilisant I'outil de verification UPPAAL.

Mots clés : Automates temporisés, Langage spécifique au domaine, Outils de
verification UPPAAL, Plan de soins a domicile.
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General introduction

A general trend that can be observed these recent years in health domain is the develop-
ment of the home care. Home care refers to health care or supportive care delivered by
health care professionals at patients’ homes. The target objective for social and economic
reasons is to enable people who require care to remain at home instead of having long-
term stays in hospitals or health establishments. Several types of care may be provided at
patient’s home including health services, specialized care such as parenteral nutrition or
activities related to daily living such as bathing, dressing, toilet, etc. All the medical and
social activities delivered for a given patient according to certain frequencies are sched-
uled in a so-called home care plan. In [51], the home care plan is defined as "a provisional
list of treatments to achieve which may include activities and treatments, prescribed or
not, associated with the frequency and schedules". Hence, the notion of a home care
plan is a key concept in home care. As a part of the project Plas’O’Soins!(Plateforme
d’Aide au Suivi et a la cOordination des activités de Soins a domicile), we are interested
by the problems underlying the design and management of the home care plans in order
to bring some comfort to the coordinator, avoid the collision when planning activities or
to ensure the feasibility of the home care plan, etc.

The design of a home care plan is challenging for several reasons. First, process mod-
eling in the medical field is in general not an easy task |44|. Indeed, medical processes
require usually complex coordination and interdisciplinary cooperation due to involve-
ment of actors from various health care institutions. Moreover, home care plans display
the following features that make them difficult to handle with traditional Business Process

Management (BPM) technologies:

e Home care plan can be viewed as a collection of repetitive activities (e.g., medical
activities) which are repeated during a given period. The activities are however
enacted according to an irregular schedule. The irregularities of an activity have two
main causes. First, the activity very often has to follow the evolution of the needs
which is usually irregular. This type of irregularity is characterized by strengthening
or weakening in the rhythm of realization. Then, an activity which requires human
resources has to respect life cycles appropriate to this type of resources and in

particular rest time of the weekend. This type of irregularity induces interruptions

thttp:/ /plasosoins.univ-jfc.fr/



2 General introduction

in the rhythm of the realization. Specification of irregular activities requires the

use of suitable temporal constraints.

e Home care plans are essentially unstructured processes in the sense that each patient
has his/her own specific care plan. Indeed, the home care plan for each patient is
developed on an individual basis because each patient is unique whether at his/her
pathology or needs. Therefore, it is simply not possible to design a unique pro-
cess capturing in advance the care plans of all the patients. In other words, the
traditional approach “model once, execute many times” is not sustainable in our

context.

e Home care plans are associated with complex temporal constraints. Indeed, the de-
sign of a home care plan requires the specification of the frequencies of the delivered
home care activities. Such specifications are expressed by healthcare professionals
in natural language, using usually a compact repetitive form: everyday in the morn-
ing, once every 2 days in the evening during 15 days, etc. But they may also have

irregularities or exceptions: Mondays and Fridays, except public holidays.

Given the crucial role played by temporal constraints in home care plans, it appears
clearly that such specification could take benefit from existing theory and tools in the
area of timed systems. There exist in the literature many formal models enabling explicit
representation of timed systems [1]|5][6][8]|9]|23]. Among the well-known formalisms, we
have time extensions for Petri Nets(PNs) [34] and Timed Automata(TA) |6][39].

Petri Nets were introduced in the 1960’s by Carl Adam Petri as a graphical and
mathematical modeling tool. It consists of four elements: places (represented by circles),
transitions (represented by rectangles), edges also called arcs (represented by directed
arrows) and tokens (represented by small solid (filled) circles). The initial model of
Petri Nets was atemporal. There exist several extensions that take into account time
constraints among which: Time Petri Nets(TPNs) |[79] where a time interval is assigned
to each transition, Timed Petri Nets(TdPNs) [100] whose transitions have exact duration.
Other representations of time may involve places, called timed places Petri nets [105]
or arcs, called timed arc Petri nets [55]. Among all these time variants, TPNs are most
widely used for the expression of a large majority of temporal constraints [24][36][117].

In addition to Petri Nets, another well-known model has been extended to represent
the time constraint: Timed Automata were introduced in [3|[6] as an extension of finite

state automata that enables explicit modeling of time. Informally, Timed Automata
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are finite states automata enriched with clock variables. Moreover, transitions of timed
automata are annotated with guards, expressed as time constraints, and clock resets.

Several contributions aiming to compare TPN and TA have been made [25][32][33][38].
Formalisms of TPN and TA show lots of common characteristics such as: they allow both
to model real-time systems and have specific tools for properties verification [107]. Also
they show the extreme difficulties to handle algorithmic analysis of timed models, for
example, Timed Automata suffer from undecidability problems of language inclusion and
complementation [6], and Time Petri Nets from undecidability problem of reachabil-
ity [63]. Even though both are likely to meet our expectations, we use in our approach
Timed Automata. The advantage of TA formalism is that the problem of reachability
is decidable in polynomial space [6]. Also Timed Automata benefit from a very active
theoretical research, which among other things allowed to develop very efficient tools such
as Uppaal [18| or Kronos |35]. In our work, Timed Automata will be used as a basis to
develop a formal framework to analyze home care plans.

As mentioned, we adopt as referring formal model for the specification of home care
plans, the model of Timed Automata. However, due to the complex features of home care
plans, it is not feasible to ask home care professionals to construct such formal specifi-
cations nor to use traditional process modeling technologies [123], usually based on GUI
(Graphical User Interface), to design a home care plan process and then to automatically
generate the corresponding timed automaton. To cope with such difficulties, we describe

below the main features of our approach:

e The cornerstone of our approach lies in the definition of a Domain Specific Language
(DSL) and a user centred specification language tailored to express home care plans
using high level abstractions. We conducted a thorough analysis of current practices
of home care professionals, in particular home care coordinators, in order to identify
the main elementary temporal expressions used in this context. The DSL framework
incorporates a GUI which is intended to be used in particular by the coordinator,

to specify patient’s home care plans.

e In order to ensure the feasibility of the home care plan and the non collision of
defined activity, we propose an automatic transformation of user specifications into
timed automata. This approach enables home care professionals to continue using
a constrained form of a natural language to express complex temporal constraints

(through a GUI), while being able to generate automatically timed automata-based
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specifications of home care plans. In fact, the home care plan consists of a set of
activities which are at their turn defined by a set of elementary temporal specifi-
cations that specify their scheduling. Thereby, building the home care plan timed

automata involves the following steps:

1. Pattern automaton construction: The identification of the elementary pat-
terns that are useful to specify home care plans. Each elementary temporal
expression is formalized in the form of a timed automaton called pattern au-
tomaton. This pattern captures the temporal constraints of an elementary

temporal specification and also the duration of the associated activity.

2. Activity automaton construction: The use of these elementary patterns to
specify atomic activities. In fact, pattern automata are combined together
using specific composition operator tailored to take into account the specific
semantics of health care activities. The composition generates the activity
automaton (i.e., the timed automaton specifying the schedule of a given ac-

tivity).

3. Home care plan automaton construction: The automatic construction of a
global home care plan by composition of the basic activities. The global home
care plan automaton is generated using the composition operator. A timed
word of such an automaton corresponds to a possible legal schedule of the
activities and hence a care plan automaton describes all the possible legal

schedules of a home care plan for a specific patient.

e The obtained formal specifications are exploited to support automatic verification
and monitoring of home care plans. For example, we show that realizability of
home care plan, which asks wether there is a schedule of activities that satisfies
the plan, is reduced to the emptiness of the corresponding timed automaton while
some monitoring issues are reduced to the membership or language recognition.
Interestingly, the important task of the coordinator consists in grouping together
the activities of home care plan in a set of Interventions while trying to minimize the
total number of interventions at patient’s home and also to reduce the overall cost of
home care. Interventions generation can be computed automatically using a specific
composition operator while ensuring some required properties (e.g., interleaving
interventions are not allowed, idle time between the activities of a same intervention

is controlled, etc. ).
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The thesis is organized as follows. Chapter 1 describes the general context of this
work and its main challenges. Chapter 2 introduces main concepts of Domain Specific
Languages (DSL) and Timed Automata and application of these approaches in the med-
ical field. Chapter 3 presents the contribution of this thesis which consists in modeling
and analyzing home care plans. First, we describe the DSL based approach in which
we identify the main building blocks in the home care plan and we propose a language
that enables to express regular or irregular repetitions of an activity within some period
in a condensed form similar to that used by doctors. Then, the general modeling pro-
cess is presented together with the construction of the proposed automata, i.e., pattern
automata, activity automata and home care plan automata. We also present some verifi-
cation and monitoring issues using UPPAAL Model Checker. The validation step of our
work is presented in the prototyping part (Chapter 4) in which we show the architecture
of the prototype and we describe the implementation details. Finally, we conclude this
manuscript by recalling the contribution of this thesis and discuss some future research

directions.
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8 Chapter 1. Context and problematic

The home care is a starting point of this thesis. The trend is to consider the home
care as a unified way, even if it encompasses intervention of different types of structures.
To ensure a good organization, quality and efficiency of care, coordinators organize and
translate the various treatments to achieve in a corresponding home care plan. The home
care plan is the main component of the home care, since it allows to coordinate different
activities being performed and the various actors (physician, nurse, nurse auxiliary, liberal
helper, etc.) involved in the home care as well as it’s the input element to the intervention
planning.

In this chapter, we present the context in the field of home care, highlighting its major
challenges which prompted in this context the development of projects based on Infor-
mation and Communication Technologies (ICT) among which the Plas’O’Soins project !.
This latter will be described in the second part. Finally, we present the contribution of

this thesis associated with this project.

1.1 Home care area

In recent years, home care landscape has undergone a significant evolution. This is mainly
due to the major concerns of actual societies which aim to manage ageing population and
to cope with the congested hospitals and centers [64]. Indeed, elderly people with loss of
autonomy are especially vulnerable and often exhibit chronic diseases requiring continuous
care for a long term. Keeping such a population in its social environment is a key point to
avoid any risk of depression or exclusion, especially, when other factors are involved such
as: children living further away, or family dispersal [47||58]. Thus, alternative structures
to traditional hospitalizations have emerged. For example: (a) Hospitalization At Home,
a sanitary alternative which is generally provided for patients with serious diseases; (b)
Nursing Home Service, a medico-social logic which provides nursing care and general
hygiene to elderly people; and (¢) Maintaining At Home, a set of home services, which
provides help to the addict people to allow them staying at home as long as possible, help
(such as domestic help, etc.).

The development of home care is motivated by economical and political reasons
[51]]91] that try to control the health care costs; the demographic issue related to the
ageing population; the social aspects related to the patient’s wishes, as well as by tech-

nology advances where the progress on ICT contributes to the improvement of the home

thttp:/ /plasosoins.univ-jfc.fr/
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care area.

1.1.1 Home care in France
1.1.1.1 Overview

According to INSEE ?(Institut National de la Statistique et des Etudes Economiques)
in Figure 1.1, France counts 12.19 million of persons over 65 years old at January 1st
2015 that is 1.4 million more than in 2013. The ageing French population led to an
increase number of fragile and dependent people. The home care concept appeared in
France since 1950s through the development of some structures. Recently the National
Federation of the Home Health Care Structures (Fédération Nationale des Etablissements
d’Hospitalisation A Domicile- FNEHAD) underlined the increasing number of home care
structures [51]. In fact, between 2005 and 2008, there was an increase of more than 120%

in the number of home care and an increase of nearly 148% in the number of admitted

patients.
% Men %Waomen Both % Men %Women Both
Total population (million) 100,00 51,60 65,53 |Total population (million) 100,00 51.60 66,32
Under 20 years 24 60 48,90 16,09| |Under 20 years 2470 43,90 16,37
From 20 to 64 years 57.90 50,80 37.93| |From 20 to 64 years 56.90 50,80 37.76
65 years and over 17,60 57,90 11,51 65 years and over 18,40 57.50 12,19
Age group at January 1st 2013 Age group at January 1st 2015

Figure 1.1: Age group in France at January 1st 2013 and January 1st 2015. source:
INSEE

Moreover, home care structures differ in their technical and medical ability (punctual
care, rehabilitation care at home, palliative care, etc.) and their status: public establish-
ment, private PHPS (Participating in the Hospital Public Service), associative private,
profit-making private [51] as well as in their sizes which can be variable (small struc-
tures in general). This difference is mainly due to the clinical and social patient’s needs.
Indeed, home care structures try to satisfy the needs of the admitted patients on an in-
dividual basis. This implies an organizational complexity involving actors from different

structures |20|. We describe in what follows some considered aspects in the home care.

2http://www.insee.fr/fr /default.asp
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1.1.1.2 Home care actors

The home care area implies an interdisciplinary cooperation due to the involvement of
actors from various health care institutions. We can distinguish several types of ac-
tors [14]]20] [61][98]:

e Treating physician: he is freely chosen by the patient. Her agreement is a neces-

sary condition for the patient’s home care acceptance.

e Home care coordinator: he is the physician who is in charge of the control
activities and care coordination between different health professionals. Her main
tasks are [17]:

— Elaborating the patient’s home care plans and updating them according to the

evolution of the patient’s health state on the advice of the treating physician.

— Monitoring the execution of the home care activities: from the information
provided by different involved actors, the coordinator can be informed about

the duration in the performance of activities.

e External or internal actors: actors can be full time employees (internal actors
of the home care structure) or part-time employees (external actors). These actors

are regularly involved at the patient’s home such as:
— Nurse: she evaluates the conditions of the patient receiving home care services
and provides skilled nursing care and verifies if other services are required.

— Nurse auxiliary: she is involved in the general hygiene care (toilet, dressing,
bathing, etc) in the oversight of treatment taking, transfer, displacement inside

home, etc.
— Nutritionist: he supports the patient for the nutrition phases.
— Therapist: such as pathologist who takes into account therapy needs.

e Social workers: they assist the patient and his/her family in their formalities to

obtain material and financial support.

e Patient’s family, friends, etc.: they contribute in the patient’s home care for
free. Family members or neighbors participate regularly or occasionally to provide

various services to overcome the patient’s disability.
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1.1.1.3 Home care services

The medical and social care delivered for a given patient during the home care can be
listed as follows |98|:

e Punctual care: it represents technical and complex care adapted to a not stabi-

lized pathologies for determined period.

e Continuous care: it represents technical care of varying complexity. This type
of care can vary from nursing care to maintain functioning levels for progressive

pathologies.

e Rehabilitation care: this care is intended for patients after the acute phase of a

neurological disease, orthopedic, cardiology or poly pathology for a fixed duration.

e Home help services: these services are provided by social service structures such
as household duties (shopping, cooking, cleaning, etc) and general hygiene services

(bathing, dressing, toilet, etc).

Figure 1.2 illustrates the actors types (roles) involved in the Plas’O’Soins project with

their different goals.

1.1.2 Home care processes

Home cares involve complex and various processes and information exchanges. Figure 1.3
shows a generic vision of the home care processes proposed by FNEHAD [51]|. This car-
tography follows the ISO 9000 standard which classifies the home care processes into three
types: (1) Management processes, these processes contribute to set the target objectives
of the home care, (2) Support processes (human resources, purchasing and logistics, IS
management, etc.); these processes are essential for the proper functioning of the home
care, they allow the allocation of necessary resources to ensure that the home care meets
the patient’s needs, (3) Operational processes (processing of admission request, delivery
of care, coordination and monitoring of care, etc), these are the most important processes
in home care; indeed they manage the care in order to ensure the patient’s satisfaction.
Operational processes have already been considered in the literature [99][125]. One of
their most important features is the "singularity", i.e. each process is specific to each
patient. This is mainly reflected by the design of Home care plan which is specific to
each patient [125].
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Figure 1.2: Use cases of the Plas’0O’Soins platform

Indeed, with this configuration we can say that the home care plan is the core element,
since it appears at the pre-admission phase and is used by the realization, the coordination
and the monitoring phases. These phases may lead to its modification, which can vary

from the addition of an activity to a complete overhaul of the home care plan.

1.1.3 Home care challenges

In the current situation, the structures that provide care and home services are faced with
a main challenge related to the monitoring and coordination of activity, as described in
the white paper published by the FNEHAD [51]. These challenges are: the coordination

of cares and the continuity of cares.

Coordination of cares

The care coordination is defined in [67] as follows: " The care coordination is a well thought
out organization of patient care activities between two or more participants (including the
patient) involved in the patient’s care in order to ease the provision of appropriate health
care services".

Thus, care coordination requires essentially the coordination and communication be-
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Management processes
Management

Operational processes

> Preadmission > Delivery of care
Coordination and monitoring of care

Processing of
admission
request

> Billing stays >
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Human Purchasing || ARNS2Ve || Knowledge, 1S
Resources || and Logisctics Management Quality, Risk Management

Figure 1.3: Main processes of home care (adapted from [51])

tween the different actors (care actors from different institutions, family, etc.) involved in
the home care. Therefore, with the lack of inter-organizational communication and also
between involved actors in a same structure. It is then important to provide a system
which allows to assist the coordination of care, in order to ensure the fluidity of data

transmission between involved actors in the patient’s home care.

Continuity of cares

There are several definitions of the concept of the continuity of cares among which [45]:"
continuity of care consists in avoiding any interruption in the patient monitoring. It s
ensured by coordination between practitioners (physician, nurse, etc) and it’s an essential
criterion of quality of care".

Therefore, continuity of care deals with the ability to handle unexpected events and,
hence, requires efficient communication between home care actors, implying a need for
traceability of care provided and the history of the treated patients.

Many studies pointed out the lack of coordination and continuity of care in the home
care area [20][99][125]. A common conclusion of these works lies in the need of automatic
support to ensure the connection and information flows through the different involved
actors or organizations. In response to this challenges, there is a considerable interest in
exploiting the ICT solutions to enhance the quality and safety of the home care. The

European Union undertaken a number of research projects in this direction: (1) Mobil-
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ity (I2HOME), a solution allowing the elderly or disabled people to control the various
electronic devices of their homes using their mobile phones or other objects [99]. (2) Re-
mote monitoring (CAALYX, eCAALYX), solution dedicated to older or elderly persons
at their home, it consists to collect five various vital signs and detect anomalies [99]. (3)
COPLINTHO 32, a communication platforms allowing the interaction between all involved
actors in the care process and which puts the patient in a central position, etc. We will

present in what follows some ICT tools used in the home care area.

1.1.4 Overview on main software tools

There are a multitude of tools based on the ICT domain that improve the quality of the
patient home care. Some are based on remote monitoring systems PROSAFE [28]), others
on telealarm systems (presence verte! [125]), or systems enabling to remotely establish
the medical diagnosis (ViSaDom [88], DIATELIC ° |125]). In the following we present
some tools in order to identify their specificity, their covered activities, their operating

mode and their limitations.

e AtHome of ARCANS: ARCAN is a software editor for managing personal home care
coordination. AtHome is a software solution specific to each home care structure.
AtHome manages all home care information (patient, billing, purchasing, inventory,

communication and administration, etc.).

e Apozem': is a software designed for some home care structures. Apozem manages
all forms of home care support of the elderly people. It also manages the patient
and his/her home care support (home care plan, transmission, etc.), and the edition

of regulatory statements (medical register, annual activity report, etc.).

e Medlink®: is an integrated IT solution, specific to each home care structure.
Medlink allows to improve the quality of care while reducing administrative tasks
and costs. It also provides an access control (read, write, view) according to the

role of involved actors.

3http://www.iminds.be/en /projects/2014/03 /07 /coplintho
“hhttp:/ /www.presenceverte.fr

Shttp://www.diatelic.com

Sarcan.fr

"http://www.medisys.fr/

8www.med-link.org
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e Hippocad?: offers an application architecture based on a process approach and
focuses on the operational home care of the patient’s therapeutic project. Hippocad
includes control services in the realization of home services, manages emergencies,
unforseen and delay in a reactive manner, and integrates automatically the various

reports.

In spite of the fact that these tools have the advantage of improving the home care support
by providing means of traceability, driven alerts to the involved actors and information
restitution in a real time (e.g., personalized report), etc., they are still far from meeting
the identified difficulties. Indeed, these tools are not suitable, they are difficult to handle.
They are not able to deal with patient constraints (patient constraints in a textual form
and are unexploited, no patient agenda, etc.). The home care plan description is made
in an unstructured manner, and the planned interventions are adjusted manually. And

generally these tools lack of patient-centred sharing infrastructure.

1.2 Plas’0O’Soins Project

Plas’O’Soins is a cooperative project financed by the ANR!, the French National Re-
search Agency (Agence Nationale de la Recherche). The project consortium brings to-
gether academic and industrial of the ICT and health domain and end-users from different
home care structures in France. The objective of Plas’O’Soins is to set up a hardware and
software platform designed to address the needs of the home care structures. The needs
in terms of coordination, planning and monitoring of patient’s care and actor’s activities
ensuring continuity of care for a patient in his overall care support.

The proposed hardware and software platform allows to store all useful information
(patient’s profile, protocols, prescriptions, interventions, analysis results, etc) and their

evolution, in order to provide at any moment :

e The restitution of the current state of the patient’s home care process, globally or

with a specific vision tailored to the concerned actor’s profile.

e The timely reporting of information (alerts, arrived on site, delays, schedule
changes, etc) towards the appropriate actor whether a service emergency, a social

actor, doctor, family, etc.

http:/ /hippocad.com/
Ohttp:/ /www.agence-nationale-recherche.fr/
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e The planning and coordination of activities, and their dynamic re-planning.

e The consistency check of information integrity, traceability of activities and inter-

ventions.
e The help to the decision process by providing static data.

As depicted at Figure 1.3, the Plas’O’Soins platform is mainely concerned with the
"delivery of care" and "coordination and monitoring of care" processes, while being in-
teroperable with the tools that support the other processes, such as "billing" or "human
resources". The platform features are grouped around the following processes(see Fig-
ure 1.4):

Reports and information
provided by the patient
|

Y
Patient
admission
Care objectives g
v Home care organization
s N\ .
Designing the home “':;?; p[unal bae
care plan

New o
assessment TZ l 1
of requested s N
situation 5 ...Planned home

Planning the home care

BO IRE

j) care plan

Care events,

4 ™

Monitoring the home | ...Realized #6me activity reports,
care care p prescriptions, ...
\ ~ .
Home care report
: Patient record,
Patient \ output letter, -

discharge /

Figure 1.4: Processes managed by Plas’O’Soins platform

e "Patient admission" process: it handles patient-related information and
his/her treatment that enable the creation or updating of patient records by the

Plas’O’Soins platform.
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e "Patient discharge" process: it allows the edition of the exit documents, as well
as archiving and transmission of eventual information tailored to another concerned

structure.

e "Home care organization" process: this central process of the platform is
specific to each patient. Indeed the patient’s home care is carried out through three
main activities: the design of the home care plan, the planning of the home care
and the monitoring of the home care. The design of the home care plan is the initial
activity that determines the two others. Collaborations between these activities can

be defined as shown in Figure 1.4 (the numbers refer to those in Figure 1.4):

— 1: First, the platform assists the coordinator in the design of the home care
plan (provisional list of activities, involved actors, etc) which corresponds to
the provisional home care plan. The information which compose the provi-

sional home care plan are made available to the planning activity;

— 2: The planing activity indicates that the home care plan was planned within
a determined time (e.g., week 51 of the current year). If a solution is not found,
the home care plan should be reviewed and re-planned or manual planning is

imposed by the coordinator;

— 3: The planned home care plan is available at any moment by the monitoring

activity;

— 4: An identified problem at the care execution can lead to the modification of

current planning, but keeping the same home care plan;

— 5. An identified problem at the care execution can require the modification
of the current home care plan (and thus the creation of a new version of the

home care plan) thus, a new planning is necessary;

— 6: An identified problem at the care execution may require warnings for con-
tinuing the home care support without trigger a change in the planning or a

modification in the home care plan.

This decomposition into three activities induces three visions of the home care plan:
(1) the provisional home care plan, which consists of scheduled activities to do at
patient’s home, (2) the planned home care plan, which consists of planned activities to

do at patient’s home, and (3) the realized home care plan,which consists of activities
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already realized at patient’s home. These three home care plans VISIONS must be

managed simultaneously.

1.2.1 Our contribution within Plas’O’Soins project

Our work focuses on the design and analysis of the home care plan. To achieve this goal,

we conduct the following steps:
e The Requirement analysis;
e The Definition of the Domain Specific Language (DSL);
e The definition of the formal model using Timed Automata theory;
e The implementation of the proposed model.

Note that, In the rest of this thesis, we will talk about the home care plan referring
to the provisional home care plan. In the following, we will describe the requirement

analysis. The other steps will be presented in the next chapters.

1.3 Requirement analysis

We conducted an on site analysis to understand the main concepts underlying the home
care plan in the patient’s home care. More precisely, we carried out interviews and
observation phases with two home care structures: UMT-Mutualité Tarnaise and Centre
Hospitalier d’Albi. During this phases, we were able to access and to collect several
anonymized home care plans.

Thanks to the collected information, we could understand the manipulated data, the
work of the involved actors especially the coordinators and the various difficulties related
to the design of the home care plan.

Thus, home care plan is defined as a provisional list of care activities to be performed
in the patient’s home care. Home care plan encompasses all the services provided for a
given patient and is essential to scheduling the delivery of such services at patient’s home
by health care professionals. More precisely, home care plan is a personalized list of care
to achieve in a considered home care. It regroups activities which comprise a frequency
(e.g., 3 times a week, everyday, on June 12th, etc), a period (e.g., from 01/01/2015 to

3

05/31/2015), an interval (e.g., morning, afternoon or evening), a duration in terms of
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minutes (e.g., 30mn, 15mn, etc.), and a required qualification (e.g., nurse auxiliary, nurse,
etc.). During the patient’s home care period, the home care plan may change or evolve

according to the evolution of the patient’s health conditions.

In the following, we will present the results concerning this requirement analysis.

1.3.1 Involved actors in home care plan

Once the patient is supported by a home care structure, a comprehensive assessment of
his/her needs must be taken into account, e.g., medical, social and psychological needs.
This evaluation which usually takes place at patient’s home, can be realized in one or
more stages and involves various actors. Each actor brings his/her skills and contributes
to the evaluation depending on the patient’s health complexity. Among these actors we
find social worker, therapist, attending physician, nurse, etc. Patient’s family and helpers

can contribute in this evaluation stage in order to be involved in the home care plan.

All the collected information will allow to the home care coordinator producing the

home care plan.

1.3.2 Home care plan activities

A home care plan can be viewed as a collection of repetitive activities. A home care plan
activity corresponds to the notion of medical or social activity (e.g., nursing activity or
dressing, bathing activities). The care activity duration can vary from few minutes to
hours. A same activity may occur several times in the same day. Some activities can
take place at any time (e.g., monitoring of some parameters ), others must be conducted
in a fairly specific interval (e.g., between 8am and 9am for mobilization activity) or in
a precise time (e.g., at 6pm for example for the lovenox injection activity). A home
care plan activity is also defined by a period, which can be the same as the period of
the home care plan or different (e.g., from 01/01/2013 to 03/31/2015) and the required

qualification (e.g., nurse , nurse auxiliary, etc).

Irregular activities are inherent to the home care plans because the activity very often
has to follow the evolution of needs of the patient. For example, a given activity toilet

may be associated with complex frequency, e.g., every two days except Sunday evening.
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1.3.3 Example of a home care plan

The home care plan is used in all home care structures and is mainly expressed through
a paper format. Figure 1.5 shows a real example of home care plans that have been made
anonymous for confidentiality reasons. The home care plan content may vary form one
home care structure to another. Here we give the general elements that can be described

in a home care plan.

e Period of the home care plan: corresponds to the period of validity of the home
care plan (e.g., from 01,/01/2015 to 01/01,/2016).

e Activities: in the home care plan all the activities are described with their tem-
poralities (e.g., Toilet every day in the morning, dress on Monday Wednesday and
Friday evening, etc). Each activity is associated with a duration and an actor type

(in some cases the number of involved actors is specified).

e Medicine: drug prescription by the attending physician is managed by the home
care structure through the home care plan. Each drug is described by a name and

temporalities which correspond to the administering time.

e Material: in the home care structures, the patient must have a material prescription
in adequacy with his/her pathology. e.g., anti-bedsore mattress, medical bed, etc.

Each material is associated with a temporal information.

e Consumable: a set of consumable is used to support the patient’s home care. e.g.,

syringes, examination gloves, thermometers, etc.

As a part of this thesis, we focus on the activities.

1.3.3.1 Elaboration of home care plan

The home care plan is present in all home care structures. Designing and monitoring of
the patient’s home care plan are fundamental activities for a successful patient’s home
care. Figure 1.6 which is based on the corpus of on-site information analysis, shows how

the patient’s home care plan is carried out:

1. Design the home care plan. Firstly the coordinator creates the home care plan
for each patient using a comprehensive assessment of the patient needs as well as
his/here social and physical environment. The care plan is generally written in a

paper format and can be updated at any moment by the coordinator;
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Figure 1.5: Example of home care plan

2. Planning interventions. Once the home care plan is created, it is used as an input
for the planning activity. The latter is in charge to determine the intervention (start
intervention time, end intervention time and the involved actor type). Planning
activity must ensure that the patient and the involved actor are available in the
defined time interval and that the required materials and consumable have been
delivered at patient’s home. In addition, to avoid too many movements of the actors,
planning will try to group together activities that can be performed in the same
time intervals. Some constraints occur in the planning activity such as: involved
actors constraints (respect actor’s agenda, respect zone wish, respect patient’s wish,
etc), patient constraints (respect patient’s personal agenda, respect of the desired
actor, etc), and organism constraints (respect of work schedule, respect of maximal

duration of interventions, etc);

3. Execution and monitoring of the home care plan. Here the involved actors
can inform the coordinator about these problems at the execution phases. The
identified problems may either cause a modification at the planning phases, or
modification of the home care plan (which leads to the creation of a new version of
the home care plan), or lead to warning without causing modification in the home

care plan.
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Figure 1.6: Process for the creation and the management of the home care plan

1.3.4 Problems related to the design and monitoring of the home

care plan

As a conclusion of the on site analysis, we identified the following problems related to

the design and monitoring of the home care plan. which are:

e A home care plan is usually elaborated in a paper format and so its handling is
becoming more complicated. First, the number of admitted patients in home care
structures increases which leads to an increasing number of home care plans that
become difficult to manage such as the difficulty to update or to maintain multiple
versions of a given patient’s care plan. Another consequence is that the paper format
lacks formal structure. Therefore, a written information may be not understood or
may be redundant, etc [5]. Finally, in a long-term patient’s home care, the involved
actors accumulate knowledge about their patients without always plotted on paper.

In this case, there are obvious risks for the safety of the patients.

e A home care plan is constructed through a complex process. Indeed, the realization
process requires the coordination of an interdisciplinary team involving different

actors coming from diverse medical institutions [44].

e A home care plan is an unstructured process in the sense that each patient must have
his/her own specific home care plan. Indeed, a home care plan is always specified
on an individual basis because each patient possesses specific characteristics which

are necessary to take into account. It is not possible to design a unique process
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capturing in advance the home care plans of all the patients.

e A home care plan is associated to complex temporal constraints. Indeed, it is
necessary to specify the frequency (more or less regular) of every home care plan.
This specification is expressed by health care professionals in natural language by
using specific expressions: every day in the morning and in the evening, once every

2 days in the evening during 15 days, etc.

e A home care plan is needed for planning. In fact during the existing analysis in
different home care structures, we noticed the absence of interventions generation
mechanism. Everything is done manually by the coordinator. Manual support of
the planning activity can in some cases (for a complex home care plan) increase the
error risk. For example, planning an intervention that will be impossible because the
coordinator forgot to take into account the involved actor’s unavailability. Another
possibility is the difficulty to propose an optimal planning. This difficulty is mainly
due to the fact that the human capacity can not compute all possible combinations

of interventions in order to choose the best configuration.

In this context, and within Plas’O’Soins project, we are interested in the problem under-

lying the elaboration of the home care plan by the coordinator.

1.4 Objective of the thesis

To cope with the aforementioned problems, we propose to adopt the following approach:

e The definition of the user-centred DSL, used to describe the main concepts of the
home care plan at a high abstraction level. DSLs are already widely used in the
fields of computer science an mathematics, and are recently used in the medical area
[53][56][83][84][109][118]. The DSL will describe the home care plan activities and
their relationships. It will be defined through a temporality model that will allow to
specify intervals of realization for repetitive activities of the home care plan, where
the repetitions can present irregularities and exceptions. This model will allow the
coordinator to describe by himself the specificities of the home care plan. The DSL
framework incorporates a GUI which is intended to be used in particular by the
coordinator in their daily activities, which consists to manage and to evolve the
home care plan, and to monitor the execution of the programmed activities by the

involved actors at home.
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e The definition of an automatic transformations of user specifications into formal
model based on timed automata. This transformation is indispensable to perform

any kind of verification and monitoring of the home care plan.

e The verification and monitoring execution of the home care plan. Among the ver-
ification that we have identified, there is a realizability checking of the home care
plan, the intervention generation, and the monitoring of the home care plan. While
checking the realizability is proper to our work, the monitoring and interventions
generation are identified within the project. However, the last two are developed
separately from our work using a traditional approach based on existing algorithm
and on business rules. As part of this thesis we propose an approach based on timed

automata.

1.5 Conclusion of Chapter 1

In this chapter, we presented the home care area and highlighted its main modeling
challenges. Much work has already been achieved in this area, but there is still not a
satisfactory solutions. We described the conducted requirement analysis which consist
in carrying a set of interviews and collect and analyse some scripts documents. This
requirement analysis has led us to define problems faced by the coordinator during the
home care plan elaboration. Response elements were outlined, especially by addressing
two scientific aspects regarding DSL and timed automata.

The domain specific language and the timed automata formalism will be subject of a

detailed presentation in the next chapter.
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In section 2.1 of this chapter, we present an overall view of the DSL concepts, its
definition, its main advantages that have strengthened our choice together with some
disadvantages, its development process steps, as well as some related work that used DSL
in the medical field.

The section 2.2 is dedicated to the presentation of timed automata. We begin with
some background knowledge on timed automata. Then we describe some extensions and
subclasses of timed automata that we consider useful in the context of this thesis. We
consider mainly the extension that takes into account activities with duration. Also,
we present the software tools that enable model checking using timed automata. Before

concluding, we present some existing works that use timed automata in the medical field.

2.1 Domain specific language

With the increasing of human needs, software engineering becomes more and more com-
plex and sophisticated. Applications must be at the height of performance expected by
the users. Over the years the trend of software engineering is to always increase the
abstraction level of the programming languages [87].

The level of programming languages can be summarized as follows (1) low-level pro-
gramming languages, which are more machine oriented languages (e.g., Assembler, etc.),
(2) third-generation programming languages, which are more problem-oriented languages
that try to answer to a wide class of problems (e.g., C, C++, etc.), and more recently
(3) Domain Specific Language. While the (1) and (2) do not always permit optimal way
to answer to a given problem, the DSL on the contrary allows to offer a solution more
specific and less complex [78| [115].

Indeed, by focusing on a particular domain, it is easier to learn about the standard
concepts of the domain and thus optimize and specialize the offered solution. Both for
the programmer during development or modeling, than for the end user (who may not

have a priori knowledge in computing) when using the solution.

2.1.1 Definition of DSLs

Several definitions of a DSL exist in the literature [52] [62] [73] [80] [121], depending
on the application domain. In the technical domain for example we usually talk about
domain specific programming languages, because they involve computer science experts

and require programming competences. In software engineering or business domain, we
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talk rather about domain specific modeling languages, because they are user-centred and
require domain competences only [72| [103]. Among the domains where we find DSL,
there are [121]: drawing and 3D animation [48] [66], financial products [13], telecom-
munications and telephony |71] |72], protocols [40], driver device |101], robotic [26] |96],
and more recently the medical domain |77] [84] [118|. This variety of the applications
domains shows the increasing importance of DSLs in the software engineering landscape.
The development of a DSL in a domain is often argued by profits such as reliability,
productivity and flexibility [68].

In the context of this work, we use DSL. emphasizing more on the modeling language
rather than the programming language. Because the solution that we offer is user-centred
for the home care domain. Briefly, the domain specific modeling language (DSML) is a
particular type of the DSL that is user-centred, and allows to propose a solution using a
high level of abstraction. The solution corresponds to directly model the concepts domain.
The DSML development enables users to fully engage in the proposed solution [50] [72].
Thus, users do not have to worry about the code, because it’s generated automatically
from the model using specific DSM tools! [114].

2.1.2 Main features of a DSL

Here we give the main advantages that prompted and still prompt today to development
of the DSLs [121]:

e Easier programming: DSLs are defined by a syntax that is similar to that used
by the domain experts, which enables these (usually) non-programmers to be able
to fully engage in the language programming. Among the advantage of this impli-
cation, we find the reduction of the language learning effort by the domain expert
and the ease of its understanding. In addition, DSLs unlike general-purpose pro-
gramming languages are known to be concise, this is mainly due to the offered
abstraction level. This features have the advantage to facilitate the developed pro-

grams analysis and thus to detect and correct errors earlier and quickly.

e Improved safety/quality: Unlike general-purpose programming languages, the
use of DSLs enables automatic verification of a set of properties [111]. Thanks to
the high level abstraction offered by the DSL, it is possible to use the traditional

program analysis by reusing some verification tools |[101|. These verifications allow

thttp:/ /www.dsmforum.org/tools.html
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to quickly detect problems in the verified application and thus increase productivity.
Moreover, focusing on specific domain enables both the optimization at compile time
of the DSL as well as the development of specific tools such as, editors, debuggers,
etc |72].

e Systematic reusing: Unlike general-purpose language that allows to abstract the
common operations in libraries that are not always automatically reused, the DSLs
are designed to lead to the systematic reuse. Indeed, DSL is characterized by a set of
abstraction corresponding to concepts and knowledge domain. These abstractions
are each of them associated with a code pattern that will be automatically generated
and thus lead to the reuse of code at design time of the DSL. Besides, the code
reuse in term of DSL also involves all the domain expertise that is captured during
the design time of the DSL [101].

These features are introduced to ensure gains in productivity and quality in DSL-based
approach [81|. Hence, drawbacks associated with this approach are identified in the

literature

e The cost: Much effort should be given in the design and the implementation
processes. It is also necessary to add cost of training and education for the end-

users.

e Portability and Compatibility: Since DSL is designed for a particular domain,
it lies in a non-standard and redundant language inducing hard problem in com-

patibility and portability.

Knowing the advantages and drawbacks facilitates the decision to define the DSL.
Among the tools that are used to define DSLs there is Meta-modeling tools. Meta-
modeling tools are development tools that allow to generate code from domain spe-
cific model [65]. Example of the most often used tools: (1) Eclipse modeling project
2 which provides development tools based on models. It consists on three frameworks
(Eclipse Modeling Framework (EMF?), Graphical Editing Framework (GEF *), Graphi-
cal Modeling Framework (GMF °)). (2) MetaEdit+ ¢, which is an environment used for

2http:/ /www.eclipse.org/modeling/
3http://www.eclipse.org/modeling /emf/
4http://www.eclipse.org/gef/

Shttp:/ /www.dsmforum.org/tools.html
http://www.metacase.com /products.html
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creating modeling language and code generation [95]. And (3) XMF, a meta-modeling
environment for language design. It combines a set of extended standard (e.g., MOF
(Meta-Object Facility)[49], OCL (Object Constraint Language) [75|, EBNF (Extended
Backus-Naur Form)[104], etc.) [41]

2.1.3 DSL development

Figure 2.1 shows the two necessary steps to develop a DSL, namely the design and the

implementation processes. In what follows, we will describe each step in more details.
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DSL design

Figure 2.1: Design process of a DSL (adapted from [72])

2.1.3.1 DSL design

Designing a language based on DSL is a difficult task. Indeed, in the design process of a
DSL much time and efforts are devoted to the analysis of the different domain elements.
Especially, commonalities analysis between those elements, as well as the particularity of
each of them. All these in order to design a language which is simple, readable, sufficiently
expressive and easily understood.

In what follows, we present necessary steps to assist in the definition of the Domain
Specific Language namely: domain analysis, program family analysis and language defi-

nition.

Domain analysis

The domain analysis concept is the first step in a DSL design process. It is considered
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as an essential and major step in the domain identification approach. This concept has
been defined for the first time by Neighbors [86] and was later revisited by McCain [76],
Arango [12]| and Pietro-Diaz [97].

The domain analysis consists in studying an application domain in a precise manner
and determine its common information elements in order to reuse them systematically.
This domain study is done in order to collect relevant information using different infor-
mation sources, such as: interviews with domain experts, existing tools (systems), various
documents (reports, manuals, etc. ). Besides the common characteristic of the domain,
the domain analysis identifies also the terminology, the key concepts of the domain and
the various involved actors in the domain as well as their needs and objectives [43][111].
Even if in some cases the domain analysis allows to design a DSL, it remains insufficient

in general.

Program family analysis

Program family analysis corresponds to a complementary approach of the domain anal-
ysis. Indeed, domain analysis is interested only to the commonalities between domain
element and not to particularities. In |94], a program family analysis is defined as follows:
"We consider a set of programs to be a program family if they have so much in common
that it pays to study their common aspects before looking at the aspects that differentiate
them". Thus, a program family in addition to being defined as a domain [86], it also has

the particularity to take into account specific properties of the domain elements [111].

Several methodologies exist to develop a program family. [94] provides for example a
methodology to develop a program family based on the successive refinement. Another
newest work proposes an approach called FAST (Family-oriented Abstraction, Specifica-
tion, and Translation) [122] that allows to define program families from identifying the
domain terminology, commonalities among all members of the programs and variations.

The gathered information in the domain analysis and program family analysis are
then used for the definition of the DSL. We will see in the following how this information

are exploited to design a dedicated language.

Language definition
DSL design or more precisely language definition corresponds to define the syntax and

semantic of the language.
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Abstract syntax/Concrete syntax: Using the information gathered during the do-
main analysis and program family analysis phases, DSL designer should be able to define
the syntax of the dedicated language. there exist two types of syntax: (1) The abstract
syntax, which corresponds to the vocabulary and grammar of the DSL. And (2) the
concrete syntax, which corresponds rather to the specification of the notation of DSL
elements |65]. There are several notations for representing the DSL syntax, such as BNF

(Backus-Naur Form), meta-modeling tools, etc.

Semantic: Once the syntax is defined it is necessary to define the semantics of the
language in order to give it a sense. There are two types of semantics: static semantic
and dynamic semantic [82]. Static semantic is interested in the verification program
or model before its execution (e.g., type verification, etc.). Dynamic semantic is rather

interested in the program or model behavior during its execution.

2.1.3.2 Implementation

There are several implementations techniques of DSL. The choice of one technique de-
pends mainly on the DSL type whether internal or external [52|. Briefly, an external
DSL is an independent language develop from scratch and it’s not based on any other
language. An internal DSL is a language developed on the basis of an existing language
called the host language. FExternal DSL implementation requires the creation of tools
and support such as: the interpreter and compiler |81]. Internal DSL implementation
requires the creation of a pre-processor [81] or extension of the compiler or interpreter of

the host language [90].

2.1.4 Using DSL in medical field

Here, we cite two recent works concerning the use of a DSL-based approach in the medical
field.

In the context of Medical Imaging System, [119| propose iDSL, a domain specific
language that enables performance evaluation of the medical imaging system. Authors
defines the grammar of the iDSL language based on a set of concepts (process, resource,
system, etc.) relative to the domain. And its semantic through an automatic transfor-
mation into MoDeST (Modeling and Description language for stochastic Timed Systems)

model |27]. The transformation into MoDest enables automatic performance evaluation
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for model checking and simulation.

|37] proposes an approach for modeling the Clinical pathway using domain specific
modeling languages. Clinical pathway is defined as a plan that enables to describe a
set of patients goals, and how to achieve them in an efficiency manner [74]. Authors
propose to develop the domain specific language considering some requirements such as,
temporal dependencies and indefinite order relations between treatments steps, etc. The
modeling language was implemented using MetaCase-tool and was tested on the example

of "Wisdom tooth treatment".

2.1.5 Discussion with respect to DSL

Studying and analyzing the DSL development steps allow us to position our work as
follows: The domain analysis and program family analysis correspond to our requirement
analysis. The language definition corresponds to the definition of the temporalities lan-
guage expressed using a BNF notation (we will give more detail in the next chapter). For
verification and monitoring purpose, we opted for another DSL implementation approach
based on formalizing using timed automata.

With respect to related work in the medical field, the approach proposed in |37] is close
to our work. The proposed DSL may be associated in our case to the home care plan.
However, authors have used the meta-modeling tools for implementing the DSL, which
is not our case. In fact, as a part of this thesis, the DSL concepts allow us to describe
the home care domain concepts through the UML class diagrams in collaboration with
end-users, in order to define temporalities specification language which can assist the
coordinator during the elaboration of the home care plan. The language implementation

is achieved using among others HCI framework (VaadinT).

2.2 Timed automata

Timed automata were introduced in [6] as a finite state automata enriched with a clock
variable. Figure 2.2 shows a sample example of timed automaton A which is composed
of a set of states (e.g., so and s7), where sy the initial state and s; the accepting state
(final state), as well as transitions with labels over the alphabet ¥ = {a, b} and a clock

which is a continuous variable over the set of real-valued numbers R=°. Initially, the

"https://vaadin.com /home
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clock is set to 0. While transitions are instantaneous, in every state, the time may elapse.
In fact, the clock can be used to define constraints attached to the transitions and/or
states. Constraints attached to the states are called invariants. They allow to specify
that the automaton can remain in the state while the invariants conditions (boolean
functions) are satisfied. Also, Constraints attached to the transitions are called guards.
They allow to specify that the automaton can move from one state to another, depending
on the attached constraints result. Here, the clock ¢ is used in the guard of the transition
labeled with b, means that b cannot be recognized when (b < 3 ) is true. In addition,
clocks are grow over the time and can reset upon triggering of transitions. For example
here, the clock t is reset to 0 on the a-labeled transition from the state s, to si.

Timed automata recognize timed words in the form of (a,ty), ...,(a,t,) where a is a
symbol of the automaton and t; is the time attached to each symbol a. The occurrences
of times increase monotonically, i.e., tg < tg < ... < t,. As an example w= (a, 0)(b,4) is
a timed word which is accepted by the automaton of the Figure 2.2, where b has been
recognized four units of time after a, while w= (a, 0)(b, 1) is not recognized by this

automaton, since b can not be recognized before 3 units of time after a.

t1>3

Figure 2.2: Timed automaton

2.2.1 Clock valuations

Based on the definition of [3] and [6], let X be a set of clocks over R=%. A clock constraint
is a formula x 1 ¢, with x € X, € {=, <, <, >, > } and ¢ € N. We note ¢(X) the set
of clock constraints over X.

A valuation v for clocks of X is a function (v: X — R=?) that associates to each clock
x the time value v(z). We note R, the set of valuation of X. Given d € R=?, v-+d denotes
the valuation that associates v(z)+d to every x € X. Also, given a subset of clocks r €

X, [r < 0]v denote the clock valuation v such that v'(z)=0 if x € r (i.e., a valuation
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associates 0 value to clocks of r) and v/(x)= v(z) if x € X\ r.
Definition 2.2.1 (Timed automaton) is a tuple A = (S, Sy, 2, X, Inv, T, F') where:

e S is a finite set of locations or states of the automaton;

e [ C S is a set of final states;

So C S is a set of initial states;

Y. is a finite set of transition labels;

X is a finite set of clocks;

Inv: S — ¢(X) associates an invariant to each state of the automaton;

T CSxYx¢(X)x2¥ xS is a set of transitions. A transition (s, a, ¢, \, s )

represents an edge from location s to location s on symbol a. ¢ is a clock constraint,

and the set X C X gives the clocks to be reset after firing such a transition.

The set of timed words recognized by the automaton of Figure 2.2 constitutes the timed

language noted L(A).

2.2.2 Semantic of timed automata

The semantics of timed automaton is defined as a transition system where each state of
the automaton is represented by a pair (s,v) where s € S and v is a valuation over X s.t.
v satisfies the invariant Inv(S). The semantic of a timed automaton is then expressed in

terms of two types of transitions [6]:

e Action transition: this type of transition can be triggered instantaneously if the

current value of the guard is satisfied. Formally:

For a state (s,v)and a real-valued time increment d = 0, (s, v) =% (s,v + d) if for all 0
< d” < d, v+ d’ satisfies the invariant Inv(s).

e Time transition: this type of transition consists of staying in the same state and

increasing the values of clocks respecting the invariant. Formally:

For a state (s,v) and a transition (s, a, ¢, A, s') such that v satisfies ¢, (s,v) = (s, v[A

:—0]).
Resuming the timed automaton shown in Figure 2.2, a possible run of the automaton is:
(So, 0) —05 (So, 0.5)—)1(80, 15) — (81, 0) —1 (81, 1) —3 (81, 4) —b (S(), 0)
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2.2.3 Properties of timed automata

We recall briefly in this section some interesting properties on timed automata. Note

that we use as a reference the original model proposed by Alur and Dill [6]. Indeed,

decidability and complexity results vary depending on the considered timed automata
model [6].

Closure of timed automata

Timed automata are closed under the union, projection and intersection however
they are not closed under the complementation |6]. The union and intersection
closure of timed automata are based on a same closure as for untimed automata [59].
The closure under projection® is reduced to replace transitions with ¢ (empty word)
on the not mapped alphabet. Concerning the non closure of the complementation,

a detailed proof was presented in [6] and a new proof can also be found in [10].

Language inclusion

The timed language inclusion problem consists, given two timed automata A and B
in deciding whether or not L(A) C L(B). This problem has been shown undecidable
since it can be reduced to A NB- () and knowing that timed automata are not closed

under complementation [6].

Langage equivalence

The timed language equivalence problem consists to check if L(A)= L(B). This
problem has been shown undecidable since it can be reduced to L(A) C L(B) and
L(B)C L(A) [6].

Universality

The universality problem of timed automata consists to check, if a timed automaton
A defined over an alphabet ¥, can recognize all possible timed words over ¥. In [6]
it is shown that this problem can be reduced to the inclusion problem, making the

universality problem undecidable.

Reachability and langage emptiness

8Projection enables to map a timed automaton A to timed automaton B by replacing the alphabet

which is not in B by e.



36 Chapter 2. State of the art

The rechability/emptiness problems are fundamental properties that make easy the
verification of some systems behavior. Indeed, the emptiness problem consists to
check if L(A)— () and the reachability problem consist to determine if there is a run
that allows to reach some identified states of the automaton. These problems are
equivalent since, checking if the language L(A) is empty, consists to ask if there is
an execution (run) that allows to reach a final state (or some other states) from the
initial state of the automaton. These problems have shown to be Pspace-complet
and the detailed proof can be found in [6][10].

These decision problems, especially the non closure under complementation, make
difficult the use of timed automata to solve some verification problems. This situation
has thus prompted the emergence of some variants and extensions of timed automata

that allow to remedy to this problematic.

2.2.4 Variants of Timed automata

In order to solve the decision problems that are undecidable, several studies and researches
have been realized on the model of Alur and Dill [6]. We expose in the following some
interesting classes and extensions of timed automata which will be useful in the context
of this work.

2.2.4.1 Deterministic timed automata

A timed automaton is called deterministic if it satisfies the following conditions:
1. Only one start location;

2. Given two transitions from the same source and with the same alphabet, their clock
constraints are disjoint. i.e., for all s € S, for all a € X, for every pair of transitions
(s, a, 1, A, s) and (s, a, ¢, A, s ), the clock constraints ¢; and ¢, are mutually

exclusive.

In [6], it has been proved that the deterministic timed automata is closed under the
complementation (can be complemented), thus languages inclusion is decidable. De-
terministic timed automata are strictly less expressive than (non-deterministic) timed
automata [10]. The problem of the determinization of non-deterministic timed automata
is undecidable [116].
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2.2.4.2 Event-clock automata

The class of Event-clock Automata has been defined in [7]. This model which englobes
FEvent-recording automata and Fuvent-predicting automata has been introduced to make
decidable universal problem and the languages inclusion problem of timed automata. An
FEvent-recording automaton is a timed automaton containing, for each symbol a, a clock
that records the time of the last occurrence of a. An Fvent-predicting automaton is timed
automaton containing clocks which provide the time of the next occurrence of a symbol.

The problem of the determenization ° of the event-recording automata is decidable.

2.2.4.3 Timed automata with silent transitions

Timed automata with silent transitions correspond to timed automata augmented with
a non observable action-labeled transitions, also called e-transitions. Among the prop-
erties of timed automata with e-transitions is that they are more expressive than timed
automata without e-transitions, more specifically when e-transitions reset clocks, i.e.,
s =917k 5" |22]|31]|46]. Several methods were proposed to remove e-transitions when
they do not reset clocks [21][46]. These methods are complex and can only be applied
when e-transitions do not reset clocks [22|. Timed automata with e-transitions are not

close under complementation [6][21].

2.2.4.4 Timed automata with action duration

There exist a limited works that propose modeling action with duration using timed
automata. Among the few existing models we found: Timed Automata With non In-
stantaneous Action Transition and Durational Action Timed Automata (DATA). Timed
Automata With non Instantaneous Action Transitions was introduced for the first time
in [102] in order to specify the actions of systems which can take some time to be com-
pleted. Thus to model a non instantaneous actions in this type of model, each transition
must be equipped with two kinds of constraints, initiation-constraint (to specify the be-
ginning of the action) and completion-contraint (to specify the end of the action). It
has been shown in [16][102][110] that Timed Automata With non Instantaneous Actions
are more expressive than timed automata and less expressive than timed automata with

e — transition.

9To make deterministic a non-deterministic timed automaton
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DATA were introduced in [19]. The major difference of this model compared to
the model of timed automata is found in the associated states invariants. Indeed each
state of the automaton (except the start state) has a termination condition of the action
potentially in execution. This condition is of the form {z >t} , where x € X and t € R™.
It allows the system to control the action termination without forcing it to leave this state
once action is executed (the system can stay there indefinitely). It has shown in [70] that

DATA is closed under all boolean operations.

2.2.5 Software tools

In order to support verification and analysis of the modeled systems using timed au-
tomata, several model checkers have been proposed. Among the best known, Kronos|35],
Hytech [112], and UPPAAL [18]. We explain in what follows the general principle of
model checking, and describe the model checker that we have chosen as a part of this

work.

2.2.5.1 Model checking

Model checking consists in testing a model, i.e. if it satisfies or not some properties.
Figure 2.3 illustrates the principle of model checking. The model checker can be defined
as the tool that allows to realize the model checking, since it receives as input the model
and the property to verify, and provides as an output the answer regarding the property
(if it’s satisfied or not) [15].

Yes

No

Model checker

Figure 2.3: Principle of model checking

Several properties have been defined in the literature. They are generally classified

in the following categories: Reachability properties which verify if a given state can be
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reached or not; Safety properties which state that under some conditions, something bad
will never happen in the system; And finally liveness properties which state that under
some conditions, something Good will happen in the future [15].

There are several tools for model checking, among them, Kronos, Hytech and UP-
PAAL. Kronos is a tool that allows to verify the timed automaton. Among works that
use kronos [29][89]. Hytech is a tool that allows to verify an hybrid extension of the
timed automata '° and reachability and safety properties |57][112]. UPPAAL is a tool
that allows to verify timed automata characterized by a set of clocks, set of channels for
synchronisation automata, urgent actions, etc., and checks properties such as reachability,
safety, liveness and deadlock [31].

As a part of this thesis we will use the UPPAAL Model Checker that happens to be
the most used in the timed system verification. Its main advantage over Kronos or Hytech
is that it’s easy to use thanks to its graphical user interface, in particular a simulation

module that facilitates the testing phase and helps to faster detect eventual errors.

2.2.5.2 UPPAAL Model Checker

UPPAAL is a tool for modeling, simulating and verifying real time systems. UPPAAL
uses an automaton extension. Among the elements of UPPAAL model:

(1) Start state: Each automaton is composed of a single start state represented by a
double circle.

(2) Guards: Guards allow to express the conditions that must be satisfied on tran-
sitions. These conditions are timed conjunction constraints and constraints of integer
variables.

(3) Reset operation: It corresponds to an initialization of the value of the clock.

(4) Channels, synchronization and urgent: UPPAAL allows to verify a networks of
timed automata, communication between automata is done through communication chan-
nels enabling a message exchange. Synchronization is the communication element be-
tween the automata. It enables the simultaneous crossing transitions between automata
(e.g., (send) a! and (receive) a? corresponds to a normal synchronization between one
transmitter and one receiver). UPPAAL allows to declare a channel as being urgent in
order to prevent automata to linger in a state.

(5) Invariant: It corresponds to conditions associated with the states of the automa-

ton, expressed as a constraint on the clock values.

10An hybrid timed automata combines both continuous and discret behavioral [2]
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UPPAAL tools

The UPPAAL graphical user interface (UPPAAL GUI) comprises three parts:
1. A modeling environment;
2. A simulation environment;

3. A verification environment.

File Edit View Tools Options Help
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Figure 2.4: UPPAAL: modeling environment

The UPPAAL editor as shown in Figure 2.4 allows to construct a set of automata,
define a tree automata, and configure and declare variables.

The UPPAAL simulator as shown in Figure 2.5 allows to simulate the execution
of automata and to follow the execution evolution. Simulation with UPPAAL can be
controlled by the user, in this case he may even choose by himself the transition to follow,
or the simulation can be automatic. In this case the tool selects randomly transitions to
follow.

The UPPAAL verifier as shown in Figure 2.6 allows to perform the verification of
some properties. For example, can the automata reach the state f from the initial state?
These properties must be written in a formal manner in order to be understood by the
tool. The user can add or remove properties through this interface and at the end of the

verification an answer is displayed to indicate whether or not the property is satisfied.
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Figure 2.5: UPPAAL: simulation environment
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Figure 2.6: UPPAAL: verification environment

UPPAAL property specification language

UPPAAL uses a subset of (Timed Computational Tree Logic) TCTL logic [8] to spec-
ify the properties to verify. Briefly TCTL logic is a timed extension of the Computational
Tree Logic (CTL) [42]. TCTL was defined in [4], it corresponds to a logical tree which
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is interpreted on timed transitions systems [31]|[108]. The TCTL formulas that are sup-
ported by UPPAAL [54]:

e AlJy): For any execution, the property ¢ is always verified;

A <> 1. For any execution, there is a state where 1 is verified;

El]ip: There exist an execution where v is always verified;

E <> 1 There exist an execution leading to a state where v is verified;

@ ~ 1: Whenever ¢ is satisfied , then eventually ¢ will be satisfied.

2.2.6 Timed automata in the medical field

Several studies involving methods based on formal model exist in the literature. Up to
our knowledge there are only few works which concern the medical domain. We review
in what follows some of these works.

In the context of Ambient Assisted Living (AAL)[120], |85] proposes a model based
on a network of timed automata (i.e., parallel composition of several timed automata) to
tackle the problem of modeling a risk detection system for elderly’s home care and allows
to generate alarm if there is evidence of problem. The model enables to represent the
patient’s environment, characterized by a house equipped with a wireless sensor network
in each room, each bed/armchair and a magnetic sensor at the entrance door, as well
as patient’s behavioral, and decides to generate an alarm if it detects some evidence of
problem. The critical properties (e.g., reachability, safety and liveness) were verified using
UPPAAL Model Checker.

[69] proposes a formal method based approach to the development of the Generic
Patient Controlled Analgesic (GPCA) infusion pump. The objective was to develop
methodologies that ease the safety property verification. Authors use the timed automata
model to approach the problem of safety-assured development of the pump software.
Thus, they propose to transform manually the (GPCA) model expressed in Simulink !
and Stateflow'? into a network of timed automata, which was then verified with respect

to a set of generic safety properties.

Hhttp: //fr.mathworks.com /products/simulink /
2http://fr.mathworks.com /products/stateflow /
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[106] proposes a formal approach to model procedure of the medical treatment de-
scribed in the Medical Guidelines (GLs) in the case of Imatinib (drog) dose adjustment
protocol. Authors propose to formalize medical treatments described in GLs using ex-
tended timed automata with Task (TAT)|11|. Briefly TAT corresponds to timed automata
where each state is associated with a piece of code. Semantic of TAT is the same as for
TA extended with queue. The resulting formal model was verified using TIMES toolbox
[113].

As part of Model Driving Design (MDD), 92| proposes a model translation tool,
which allows to convert automatically a verification model based on timed automata to a
model which can be simulated and tested using Simulink/ Stateflow. Knowing the strong
needs of testing and verification of a medical device, authors propose to experiment their
tool on an implementable cardiac pacemaker. They propose among others to model the
pacemaker software using timed automata. FEach timing cycle of the pacemaker was
modeled using timed automata with a local clock. The model was then verified using
UPPAAL and translated to be tested by Simulink. The experiment showed that the tool
preserves the behavior of the pacemaker model from UPPAAL to Stateflow.

Always using implementable cardiac medical devices, [126] proposes a methodology
for testing and verifying the proper functioning of a medical device within a closed loop
of the patient'®. To do so, they define a real time Virtual Heart Model (VHM) to model
the proper functioning and malfunctioning of the heart. The VHM was modeled using a
network of timed automata which allows to capture the timing properties of the heart. As
use case, a pacemaker device has also been modeled using a network of timed automata.

Tests and experimentation showed a clinically-relevant response.

2.2.7 Discussion with respect to timed automata

The study of some extension and subclasses of timed automata have allowed us to better
understand what exists, in order to reuse or redefine the model that is most suited to
the constraints that we want to model in this thesis. In fact, as a part of this thesis, we
opted for timed automata with € —transitions and invariants in the states. The different
results of expressiveness [22|[31]|46] have strengthened our choice.

Given a non-atomicity of activity that we will handle, it was necessary to make an

overview of what is being done in the modeling of activity with duration using timed au-

13Closed-loop context of the patient is " a function of both the environment and the input from the

device controller and must be captured by the device evaluation process" [126]
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tomata. The two works above, both enable to represent the activity with duration, nev-
ertheless they fail to respond to our expectations as they are represented. Indeed, Timed
Automata With non Instantaneous Action Transitions make heavier the constraints on
transitions and modifies the timed language acceptance by breaking this latter into initi-
ation and completion language acceptance. Add to this the fact that it’s less expressive
than timed automata with ¢ — transitions.

Regarding DATA, they can control the duration of an activity. However, if two activ-
ities (or more) follow each other, there is no way to control the time that elapses between
these two activities. This feature is completely excluded in our case, since, we must not
only control the duration of the executed activity, but also control the time interval be-
tween activities. Add to this, the two Timed automata models with non Instantaneous
Action Transitions and DATA can not be used directly in the existing verification tools
but they must be transformed first.

From this finding, we propose in the next chapter a formal model which will allow
us, among others, to control the execution time of activities to respect the time interval
between activities, and which can be directly used by verification tools such as UPPAAL
|18].

Concerning the related work, all described works use the timed automata formalism
in the medical field. But while some of them simply reuse the timed automata as it is
defined in Alur and Dill, others propose extension (e.g., TAT) to better adapt to their case
studies. However any of these works have been interested in modeling semi-structured
systems, none has taken into account the duration of the activity and also, except for the

verification (e.g., reachability, safety), monitoring was not mentioned in these works.

2.3 Conclusion of Chapter 2

In this chapter we introduced the paradigms of domain specific languages. We have
presented its various benefits and the design steps necessary to its definition. Then we
exposed the formalism of timed automata on which this thesis is based. In the last part
of this chapter, we mentioned the few works that use timed automata in the medical
field. These works ignore several aspects of modeling such as the activity duration and
the monitoring. In the next chapter, we will present the considered formal model which is
based on timed automata formalism. We try through this formalism to take into account

properties which we consider absent in other works.
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As mentioned before, the design of a home care plan highlights several difficulties.
To tackle such difficulties, we propose in this thesis an approach based on three specific
components (Figure 3.1): (1) A DSL which provides a user centred specification language
for the involved actors; (2) A formal model based on timed automata which defines an
automatic transformation from user centred specifications to timed automata, and (3)
A checking module which uses the resulting timed automata from (2) to support an
automatic verification and monitoring. This approach will give rise to a tool that will be
described in the next chapter.

This chapter is organized as follows. Section 3.1 describes the DSL based approach in
which we mainly identify elementary temporal expressions. The general modeling process
is presented at section 3.2 together with the construction of the proposed automata, i.e.,
pattern automata, activity automata and care plan automata. Section 3.3 presents some

verification and monitoring issues. We conclude at section 3.4.

Figure 3.1: Underlying processes to the elaboration of the home care plan

3.1 A DSL-based approach for specifying home care

plans

The design of a home care plan is a complex collaborative process, managed by a primary
medical coordinator and carried out by an interdisciplinary team. In order to understand
such a design process and also to understand how a medical coordinator approaches the

problem, we conducted in the context of the Plas’O’Soins project a thorough on-sites
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analysis of current practices in the field of home care. In particular, we carried out
interviews with different professionals of home care institutions and we realized several
analyzes of key documents and procedures. This study showed the central role played
by care plans as primary components of effective care coordination at patient’s home.
Indeed, the proposed DSL approach deals with inherent concepts to the home care area.
That’s why we have defined the DSL for home care as being the set of objects that may
be involved in the home care plan and manipulation that can be done on these objects.
In the following, we define the main building blocks of the DSL, as well as the temporal
specification used to express regular or irregular repetitions occurring in the home care

plan.

3.1.1 The main building blocks

The proposed DSL provides high level abstractions that can be used by a care coordinator
to design a home care plan for a given patient. Figure 3.2 summarizes the main building
blocks of the DSL in the UML class diagram. This figure highlights the main concepts of
a DSL tailored to express home care plans. It corresponds to only concepts that interest

our work, which are:

HemaHealthCare
L -karnovskylndice : integer Organism
-ﬁ'stNa'nal: string girNumber : | : 0.* <] Ensures 1 e
ey 1 <1 Conserns 1. |-startDate : date -adress : string
-birth : date jate * data :
-weight ! integer | ant
-administrative Information : RichText
Gives rise to
1.0
HomeCarePlan
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<1 Groups ® -end : date 1.0 0.*
.active : boolean [ CarePlanActivity
. established : date | = /5 ©0MPO5ed o I ityNumber : integer — Activity
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Inte rvention -comment : string i ] theoritical Duration : integer
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-intervention Numbar : intager - «ffe|-duration ! integer
-start : sting 1. 1.7 [-numberOfActor : integer o o
-end : string
: 0. & &
(RS Ly Temporality Qualifies Rearoups
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-period : string 1 1
-days : string 1.
. -timeRa s st : ActivityType Catagory
[» Requires nge g
ActorTy pe <] Requires  [ibel: string -libel : string
0. |-entiled : string = -ccamCode | string
. 0.*

Figure 3.2: UML class diagram for a home care plan (partial)
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e Patient: it is important to have the main features of the patient involved in the

home care plan elaboration, such as: personal information (last name, first name,
phone number. etc.), physical characteristics (weight to take into account eventual
weight overload), comments (wish of the patient about the actor type, etc.). The

input of this information is provided by the coordinator.

Home health care: includes everything about medical prescription, the health

care type, the therapeutic project, etc.

Care plan activity: an activity denotes a medical or social service provided to
persons in their own homes. The proposed DSL includes several predefined activi-
ties identified by our analysis of the application domain. Examples of the predefined
activities are: (i) Health services: monitor medications, drug injection, aftercare,
etc. (ii) Activities of daily living: bathing, assist with meal planning and prepa-
ration, dressing, maintain clean household, etc. Each activity is associated with
description which provides additional information about the activity, in particular,
a description of an activity includes the required qualification of the actors who are
allowed to carry out the activity as well as the temporal constraint expressed as

quadruplet (Period, Days, Time ranges, Duration), where:
— Period specifies the time period during which the activity is defined;
— Days indicates the days within a period in which an activity must take place;
— Time ranges indicates the time slots in which the activity can occur;
— Duration specifies theoretical duration which corresponds to the average of

already observed durations.

Intervention: an intervention is a collection of activities that can be scheduled
together. Interventions are defined by grouping together activities that can be per-
formed by a same actor type and which occur in the same time range. Interventions
may be specified manually by the coordinator or computed automatically from the

specifications of the activities and then proposed to the coordinator for validation.

Besides the aforementioned concepts, the proposed DSL is enriched with additional

constraints derived from the domain knowledge (e.g., medical knowledge represented in

ontologies, etc).
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3.1.2 User centred specification of home care plan

Each activity of the care plan is associated with a set of elementary temporal specifi-
cations. These specifications provide the information about the time when the activity
should be performed, expressed as a quadruplet (Days, Time ranges, Period, Duration),
and allow us to provide a language that can express regular or irregular repetitions of
an activity in some period under a condensed form, similar to that used by doctors (e.g.
Everyday morning and evening).

Thus, the elaboration of the home care plan is mainly based on the specification of
the time which characterizes activities. In order to make the specification of the time
much easier to the coordinator, we propose a temporal specification language which better
capture the most often used temporal expressions.

Indeed, the conducted analysis in the home care area led us to suggest a temporal
specification language with a high level of abstraction based on three forms of elementary
specifications [30|. Each instance of the quadruplet (Days, Time ranges, Period, Duration)
corresponds to an elementary specification.

For the formal definition of the temporal expression, we use a BNF notation. Briefly,
an element inside embraces associated with one of the following symbols 7 % 4+ means
respectively that the element may be present or absent, that it is present an indefinite

number of times and that it is present at least once.

Temporal expression
We define below each element of the temporal specification, i.e., Period, Days, Time

ranges. Knowing that Duration corresponds to the time duration of home care plan

activity.
e Period
1. <period> ::= <starting-date> "-"<ending-date>?
2. <starting-date>::=/a date with the format mm/dd/yy/
3. <ending-date>::=/a date with the format mm/dd/yy/
e Days

1. <days-expression-form1>::= <date>-|"holiday" | <date>-+"holiday"

2. <days-expression-form2>::—<day-of-week >-+["except (" <date>*["holiday"|")"|
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3. <days-expression-form3>::="everyday"|"every(n)days("<date>")"["except("
<date >* <day-of-week>* ["holiday"|")"]

where:
4. <date>:=/a date with the format mm/dd/yy/

5. <day-of-week>::= "monday"| "tuesday" |"

wednesday" | "thursday" |"friday

H|
n ‘ "

"saturday sunday"

e Time ranges

1. <intervals>:= (<integer> "times") |<interval>-+

where:
2. <integer>::= /nmumber of occurrences of the activity in the day/

<interval>::— <string-form >|<pair-form>|<hour-form >

<string-form>::="morning"|"midday"|"afternoon" |"evening"|"night"

<pair-form >::=<starting-hour>"-"<ending-hour>

A

<hour-form>::—<hour> /an hour with the format hh:mm

Note that Days and Time ranges can take different forms (patterns). Patterns as-
sociated with Days can be: (a) Absolute dates, expressed as <days-expression-form1>,
specifies the specific date in a time range (holidays is used to describe all the dates of pub-
lic holidays); (b) Relative days, expressed as <days-expression-form2 > specifies days of a
week; or (c¢) Everyday, expressed as <days-expression-form3>, specifies that the activity
occurs repetitively everyday or every n days from a given date. Patterns associated with
Time ranges are periods in the day (e.g. morning, afternoon, evening, night), time interval
(e.g. 10h-11h), or a starting hour of the activity (e.g. 10h).

Combination of elementary specifications allows to express specifications of irregular-
ities and exceptions. In fact, to avoid ambiguity, when a same day occurs in different
elementary temporal specifications, the coordinator must use exceptions. An exception
is introduced via the keyword except.

Table 3.1 shows a simple example of a specification using this language. Each row
of the table corresponds to an elementary temporal specification. The first two for the
activity Toilet and the last two for the activity Dress. The case of the activity Dress shows
an example where an exception is needed. In fact, we have an exception on 04/20/13,

since on 04/20/13 the activity takes place only in the morning. The general form of a
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Activity [ Days Time ranges Period Duration
Toilet Monday Wednesday Friday | morning evening | 01/01/13-03/31/13 | 30
Sunday morning 01/01/13-03/31/13
Dress Everyday except(04/20/13) | morning evening | 01/01/13-03/31/13 | 20
04/20/13 morning 01/01/13-03/31/13

Table 3.1: Specification of activities Toilet and Dress

specification is therefore (E1) except (Day1 Day2 Day3 ...) where (E1) is a specification that
can be expressed by the quadruplet (days, time range, period, duration) and Day1l Day2
Day3... are days to exclude from E1 (we call them "exception Days").

Roughly speaking, the notion of a legal schedule of a care plan activity is defined as
a sequence of allowed instances of this activity which satisfies the set of temporal speci-
fications. An example of a legal schedule for the activity Toilet of Table 3.1 corresponds
to the sequence: Toilet at 09h00 on 01/01/13; Toilet at 18h on 01/01/13; ...; Toilet at 10h00 on
03/31/13.

The proposal of temporality language has led to the development of a GUI to support
a coordinator in designing a home care plan. We will present in the next chapter this
GUL

3.2 General modeling process with timed automata

From the graphical user interface, the coordinator can specify the home care plan which
consists on different activities associated with their temporal specifications. Recall that
our main objective is to build the care plan timed automata. To achieve this objective,
we propose a three steps approach (Figure 3.3): (Step 1) Pattern automata construction,
which consists in mapping between elementary temporal specifications and timed au-
tomata called Pattern automata, (Step 2) Activity automata construction, which consists
in combining patterns automata to build the activity automata using our composition
algorithm, and (Step 3) Home care plan automata construction, which consists in con-
structing the global care plan automata.

This modular approach allows an incremental definition of a home care plan (which
may be complex or not) by progressively aggregating, at first time, Pattern automata,
and at the second time, Activities automata.

Among the advantages of this approach, is to facilitate the reuse of some components,
in particular Patterns automata which makes the construction of the care plan more easier

than if it is built directly from the specified temporal specifications, as well as to facilitate
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Step 1: Patterns automata

Step 3: Care plan automata

Figure 3.3: The three steps approach

the control and monitoring of the various home care plan components. To achieve this
tasks we rest on timed automata theory to propose a new composition operator suitable
to our context. This operator enables to capture some specific properties of activities,
example duration of the activities of the home care plans. Dealing with a duration raises
significant challenges, since one has to ensure that some specific properties are satisfied
such as: prevent interleaving of activities, ensure continuing of activities executions from
the beginning till the end of the specified duration, etc. This makes the definition au-
tomata much more complex. In fact, the notion of duration is not well mastered, since
most of the existing works considered timed automata without duration. In our approach,

we handled the problem of duration as follows:

e We extend the basic model of timed automata with a notion of the execution state
which is particular state where the automaton waits for the execution of the activity
according to specified duration. It should be noted that the extension does not
increase the expressive power of the basic automata, and hence, does not impact

their computational properties.

e We designed carefully the composition operator in order to take into account dura-

tion in the composition process.

In the remainder of this chapter, we present the formal model based on timed au-
tomata and we provide a detailed presentation of pattern automata, together with the

construction of the activity automata and care plan automata.
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3.2.1 A formal model based on timed automata with duration

The formalism of timed automata is used to model home care plans. As already said,
several variants of timed automata have been proposed in the literature. We consider
in our work timed automata with e-transitions (i.e., silent transitions) and invariants
(i.e., guards on the states). The activities of care plan are not instantaneous but have
a duration. This is why we need to capture the notion of duration of an activity in our
timed automaton. This is achieved through the identification of the notion of execution
states of an activity automaton. More precisely, we distinguish between three kinds of
states in a given activity automaton: the start states where the automaton stays before
the activity starts, the execution states where the activity is executed, and the waiting
states where the automaton indicates that the activity has been terminated. Note that
to achieve this goal, we slightly modified the definition of timed automata to introduce
this set of states namely: waiting states (denoted W), execution states (denoted E) and
start states (denoted St). Tt is worth noting that this set is used to construct "pattern
automata" and by the composition operator to generate the activity automata and the
care plan automata. The proposed modification doesn’t impact the semantics of the
generated automaton and hence standard tools, such as UPPAAL can still be used to
handle the verification task. A formal definition of the extended timed automaton is

given below:

Definition 3.2.1 (timed automata (with an implicit duration))
Let A = (S, s0,%, X, Inv, T, F,W, E,St) be timed automaton where:

e S is a finite set of locations or states of the automaton with sy the initial state,
F C S is the set of final states, W C S is the set of waiting states, 2 C S is the

set of execution states, and St C S is the set of start states;

Y is a finite set of transition labels including {c};

X is a finite set of clocks. W.l.o.g., we assume that the time unit is in minute,

because there is mo precision beyond the minutes in the home care plans;

Inv: S — ¢(X) associates an invariant to each state of the automaton;

T CSxExd(X)x2¥ xS is a set of transitions. A transition (s, a, ¢, \, s )

represents an edge from location s to location s on symbol a. ¢ is a clock constraint,

and the set A C X gwves the clocks to be reset after firing such a transition.
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xd == 480, A, {xt}

xt==d, £

xd <= 720~ d xt <= d xd <= 1440

Figure 3.4: Fxample of a part of timed automaton for a task A

As an example, Figure 3.4 shows the timed automaton corresponding to an activity
A that must be done in the time interval 8h-12h (i.e., the activity can be at least started
at 8h or at most at (12h-d)) and having a duration d. At the beginning, the automaton
is at the state sg € St then it starts the execution of the activity A when it enters the
state s; € E. The automaton stays at this state for the whole duration d of the activity A
then moves to s, € W. The automaton uses the clocks {xg4, x;}, invariants and transitions
guards to control the execution of the activity A. The clock z, is used to control the
execution of the activity within a day, the value x4, <= 720 d of the invariant means
that the activity Toilet must begin before 12am-d. The clock x; is used to control the
activity duration, when the transition labeled with z; == 0 is fired this means that the

activity A has been executed with respect to the fixed duration.

This timed automaton recognizes timed words. For example timed word = (A,
480)...(A, 2400).(A, 3840) is an execution which is accepted by the automaton of Fig-
ure 3.4, where A belongs to X and the occurrences of time increase monotonically, i.e.,
to < ... < t,.

3.2.2 From elementary temporal specifications to pattern au-

tomata

Each elementary temporal expression is formalized in the form of a timed automaton
called Pattern automaton. There are several temporal expressions that can be used by
care professionals, such as: once a day, every n days, every another day, etc. However,
in our work we focus on the most used temporal expressions i.e., absolute dates pattern
(days-expression-form1), relative days pattern (days-expression-form2) and everyday pat-
tern (days-expression-form3). We present in the following each pattern automaton in
detail.
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3.2.2.1 Relative days pattern

Relative days pattern is used to express a regular repetition of the activity of the care
plan. For each row of temporality expressed as (Relative days, Time ranges, Period,

Duration) defined for an activity a of the care plan, the corresponding timed automaton
pattern Agp= (5, s0, 2, X, Inv, T, F,W, E, St) is defined as follows :

e S is a finite set of states, with sy the initial state. The total number of
states is: NbStates = 3+(NbTimeRanges — 1) * 2 * NbDays+ NbDays. Where
NbTimeRanges is the number of times ranges and NbDays is the number of spec-
ified Days;

e Fis the set of final states. We always have one final state;

e ¥ = {Activity name} U {e} is the set of transition labels, where ¢ defines the silent

transition;

o X = {w4,x¢, 7,7y} is the set of clocks, where x, is used to control the execution of
the activity within a day, z; is used to control the activity duration, x,, is used to
control the execution of the activity in a day of the week and x, is used to control
the execution of the activity in a day of the period. W.l.o.g., we assume that the

time unit is the minute;

o Inv ={Vs € S, Inv(s) = (zq < EndTimerange — d) and s € St,Inv(s) = (zg <
24h) and s € W, Inv(s) = (x; < d) and s € E};

o7 C SxXU{e} x ¢(X) x 2% x S is the set of transitions. Each transition
corresponds to a day of the week. The number of transitions is: NbTransitions =
3+(7 — NbDays)+NbDays * 2 x NbTimeRanges. Where 3 corresponds to the two
return transitions to the initial state (the first one to reset x4 in the same week,
another one is to reset x,, in order to move to the next week in the period) and the

transition to the final state. ¢ is a clock constraint.

The timed language accepted by the automaton Agp is the set of timed words asso-
ciated with accepting runs. It is formulated as follows:
end(P)—start(P T%x24h))—1 m— n— i ;
L(Arp) = fw/w = [ OV T NI 2 (a,)))), 6 € [di + ko
24h x T+ start(P) + start(I7),d; + k x 24h 7 + start(P) + end(I7)]}.
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This timed language L(Agp) consists in concatenating successively the timed word
(a, tfk) according to three parameters: the existing time ranges in a day j € [0,n-1]; the
different days of the week i € [0,m-1] and finally the different weeks contained in a period
k € [0,((end(P)-start(P))/(7*24h))-1] where Period is defined by start(P) and end(P),
Time ranges by start(/7) and end (7). The d; are the different specified relative days and
k is the index of the week.

Hence, L(Agp) corresponds to all the schedules of a given activity which satisfy the

corresponding relative days constraint.

Activity | Days Time ranges | Period Duration

Toilet | Thursday except(05/01/14) | morning 05/05/13-05/05/14 30

Table 3.2: Specification of activity Toilet

Consider for example the specification of the activity Toilet (Table 3.2). According to
this specification, the activity Toilet must be performed every Thursday except on 05/01/14
which also corresponds to Thursday (i.e., the activity Toilet must be repeated every Thurs-
day of the period except on Thursday 05/01/14). The corresponding timed automaton
Arpe=(S, 50,2, X, Inv, T, F, W, E, St), depicted in Figure 3.5, is defined as follows:

xw == 0 && xw < 1440, € [t
xw == 1440 && xw < 2880, ¢ (2)
xw == 2880 && xw < 4320, ¢ )

xw == 4320 &8& xw < 5760, €

xd <= 690 xd == 480 && xw >= 5760 &8 xw < 7200
t<=30 ‘ d <= 1440

88 xp < 519840, Toilet, {xt} 5) f_\" 0 e ® DN
s1 d

xw == 5760 && xw < 7200 88 7
xp>= 519840 && Xp < 519864, € )

xd >= 480 88 xw >= 5760 88 xw < 7200 xt==30
8& xp == 519864, Toilet, {xt} xt==230, ¢
@ 52

xd == 1440 8&
xp == 525600, €

(14)

xw == 7200 && xw < 8640, €

xw >= 8640 && xw < 10080, € (11)

xd == 1440 && xp < 525600 &8& xw == 10080, €, {xd, xw} (12)

xd == 1440 &8 xp < 525600 &8& xw < 10080, €,{xd} (13) )

Figure 3.5: Erample of a timed automaton in case of relative days (here Thursday ex-

cept(05/01/14))

e S= {s0, 51, 82, 3, 54} with sq the initial state (which is also the start state for the

activity Toilet), W = {s3} and E = {s1, s2};
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o ['= {s4};

o > = {Toilet} U {e};

o X— {wg, x4, p, 0}

e T is the set of transitions where:

— Transitions (1, 2, 3, 4, 10 and 11) express the fact that the activity Toilet does
not take place during the other days of the week except Thursday ie. (Sat-
urday, Sunday, Monday, Tuesday, Wednesday and Friday). However, Thursday is
represented by three transitions labeled differently: the transition 5 expresses
the fact that the activity Toilet is done every Thursday that are in the period
before the 05/01/14, transition 6 is used to respect the fixed duration of the
activity. Same thing for the transitions 8 and 9 but this time the activity Toilet
is done every Thursday that are in the period after 05/01/14. At the end, the
transition 7 expresses the fact that on Thursday 05/01/14 the activity Toilet is

not performed.

— Transitions 13 and 12 are respectively used to reset the clock of days in the
same week of the period and to reset the clocks of days and weeks in the same

period.

— Transition 14 is used to express the end of the period and terminates the

execution of the automaton.

For example a timed word = (Toilet, 6240 ).(Toilet, 16320).(Toilet, 26400).(Toilet,
36480). (Toilet, 46560).(Toilet, 56640).(Toilet, 66720).(Toilet, 76800).(Toilet, 86880).(Toi-
let, 96960).(Toilet, 107040).(Toilet, 117120).(Toilet, 127200).(Toilet, 137280).(Toi-
let,147360).  (Toilet, 157440).(Toilet, 167520).(Toilet, 177600).(Toilet, 187680).(Toi-
let, 197760).(Toilet, 207840).(Toilet, 217920).(Toilet, 228000).(Toilet, 238080).(Toi-
let, 248160).(Toilet, 258240).(Toilet, 268320). (Toilet, 278400).(Toilet, 288480).(Toi-
let, 298560).(Toilet, 308640). (Toilet, 318720).(Toilet, 328800).(Toilet, 338880).(Toi-
let, 348960).(Toilet, 359040).(Toilet, 369120).(Toilet, 379200).(Toilet, 389280).(Toilet,
399360).(Toilet, 409440).(Toilet, 419520). (Toilet, 429600).(Toilet, 439680).(Toilet,
449760).(Toilet, 459840).(Toilet, 469920). (Toilet, 480000).(Toilet, 490080). (Toilet,
500160).(Toilet, 510240). is an execution which is accepted by the automaton of Fig-

ure 3.5
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3.2.2.2 Absolute dates pattern

Absolute dates are used to define precise dates for an activity of the care plan, e.g.
12/12/2013, 12/14/2013, etc. For each elementary temporal specification expressed as
(Absolute dates, Time ranges, Period, Duration) defined for an activity a of the care
plan, the corresponding timed automata Asp= (5, so, 2, X, Inv, T, F, W, E, St) is defined

as follows :

e S is a finite set of states, with sy the initial state. The total number of states
is: NbStates = NbDates + 3+ (NbTimeRanges — 1) * 2 x NbDates. Where
NbTimeRanges is the number of times ranges and NbDates is the number of

specified dates;
e [ is the set of final states. We always have one final state;
e ¥ = {Activity name} U {€} is the set of transition labels;

o X ={ x4, m, x,} is the set of clocks expressed in terms of minutes where x4 is used
to control the execution of the activity in a time of the day, x; is used to control
the activity duration and z, is used to control the execution of the activity in a day

of the period;

o Inv —{Vs € S, Inv(s) = (xq < EndTimeRange — d) and s € St, Inv(s) = (x4 <
24h) and s € W, Inv(s) = (x; < d) and s € E};

o T'C SxXU{e}x¢(X)x2% xS is the set of transitions. The number of transitions
between two states of time range depends of the number of the specified dates for
an activity. The number of transitions NbTransitions =2 + NbTimeRanges * 2 x
NbDates+ NbIntervals. Where NbDates is the the number of specific dates when
the activity will be performed during the period, NbIntervals is the number of
intervals [Start date, End date| where the activity will not be performed, and 2
corresponds to the return transition to the start state and the transition to the

final state.

The timed language accepted by the automata A 4p is the set of timed words associated

with accepting runs. It can be formulated as follows:
L(Aap) = {w/w =T T10=, (a, 1)), t] € [D; + start(I7), D; + end(I7)]}.

J=0
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This timed language L(A4p) consists in concatenating successively the timed word
(a, tf) according to two parameters: the existing time ranges in a day j € [0,n-1] and
each date i € [0,m-1]. Time ranges are defined by start(’) and end(I7). D; are different
specified dates.

Hence, L(A4p) corresponds to all the schedules of a given activity which satisfy the
corresponding absolute dates constraint.

The example bellow illustrates the mapping of an elementary temporal specification
into timed automaton using absolute dates pattern. Table 3.3 shows the specification of
the activity Toilet that takes 30 minutes.

Activity | Days Time ranges | Period Duration

Toilet 05/06,/13,05,/08,/13,05/09/13 | morning 05/05,/13-05/05/14 | 30

Table 3.3: Specification of activity Toilet: Absolute dates pattern

The corresponding timed automaton Aap= (S, sg, 2, X, Inv, T, F, W, E,St) depicted

in Figure 3.6 is defined as follows:

xp >= 0 88 xp < 1440, ¢ (1)

xd >= 430 && xp >= 1440 && xp < 2880, Xt=<=30

Toilet, xt =0 2) \@ xt==30,¢€ 3)

S

xp >= 2880 && xp = 4320, € {4)

xd >= 480 8& xp >= 4320 8& xp < 5760, xt<=30 xd <= 1440

% Toilet, xt:=0 5] xt==30, ¢ 6
S0 L s—fs—z\ !
®d <= 690 xd == 480 && xp »= 5760 && xp < 7200, xt <= 30 i
Toilet, xt :=0 6] @ xt==30, ¢ (8) xd == 1440 8&

Xp == 525600,
[

xp >= T200 && xp < 525600, ¢ ©) (11)

®xd == 1440 &8& xp = 525600, ¢, xd := 0 (10)

Figure 3.6: Example of a timed automaton in case of Absolute dates

o S— {sg, 1, S2, S3, S4, S5} is a finite set of states with sy the initial state, W— { s4}
and E={s1, s2, s3};

o F:{Sg)}‘

o > = {Toilet} U{e};
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o X—= {xda T, xp},
e T is the set of the following transitions:

— Transition (2) specifies that when the automaton is at state s,, it can move to

state s; to trigger the execution of the activity T'oilet in the state s; on con-
dition that the conjunction of state invariant (z4 < 690). Where 690 minutes
= (12h*60minutes)-30 minutes of activity duration at sy and the transition
guard (zg > 480 && 1z, > 1440 && z, < 2880) allow it. (z4 > 480)
ensures that the activity T'oilet can be performed only in the morning and
(r, > 1440 && =, < 2880) ensures that the activity Toilet takes place in
the date 05/06/2013 of the period. The transition (3) is used to respect the
fixed duration of the activity. The state invariant (z; < 30) ensures that the
automata stays at state s; during 30 minutes to perform the activity T'oilet.
Same principle for transition (5 and 6) for 05/08/2013, and transitions (7 and
8) for 05/09/2013.

Transitions (1, 4, 9) are triggered when x,, is outside the specified dates. Tran-
sition (1) represents the interval between the beginning of the period and the
first specific date. Transition (4) represents the interval between the two spe-
cific dates. Transition (9) represents the interval between the last specific date
and the end date of the period. For those transitions the automata can move
from sy to s, at any moment where (z4 > 0 && x4 < 690), the guard is
composed of a single condition on the clock z,, it ensures the validity of the

interval where the activity should not be done.

Transition (10) enables the automaton to move back from s; to sy, without
performing any activity, at the end of the day (i.e., when x, equals 1440) within
the specified period (i.e., z, < 525600). Upon this transition, the variable z,

is reset to record the beginning of a new day.

Transition (11) is fired at the end of the period (i.e., when z, equals 525600)
and enables the automaton to move to the final state s; and terminate the

execution.

For example the timed word= (Toilet, 1920).(Toilet, 4800).(Toilet, 6240) is an execu-

tion which is accepted by the automaton of Figure 3.6
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3.2.2.3 Everyday pattern

Everyday combined with time ranges and period can be used as a particular case of
Relative days. There are two ways to represent the corresponding temporal specification
pattern. One is based on the representation of Relative days where all the seven transitions
of a time range will be labelled with the activity name. And the other way is illustrated
in the following example.

Consider the following elementary temporal specification of the activity Toilet that

takes 30 minutes:

Activity | Days Time ranges | Period Duration
Toilet Everyday | morning 05/05/13-05/05/14 | 30
Table 3.4: Specification of activity Toilet: Everyday pattern

The corresponding elementary temporal timed automaton Agp — (S, so, &, X, Inv,
T, F, W, E, St) depicted in Figure 3.7 is defined as follows:

xt == 30

xd == 480, Toilet, xt :=0 = xt==130, ¢ (2)
(1)

xd <==690

¢ xd == 1440

xd == 1440 &&
xp == 525600, €

(4)

*xd == 1440 &8 xp =< 525600, €, xd := 0 (3)

Figure 3.7: Example of a timed automaton in case of Everyday

e S is a finite set of states, with sy the initial state. The total number of states is:
NbStates = NbTimeRanges x 2 + 2 where NbTimeRanges is the number of times
ranges. W= {sy} and E= {s;}.

o F:{Sg}‘
o ¥ = {Toilet} U{e};

o X={wg4, z, 2}
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e T'is the set of transitions where N0Transitions = NbTi1meRanges 2+ 2. We will

see the meaning of each transition:

— Transition (1) specifies that when the automaton is at state sg, it can move
to state s; to trigger the execution of the activity Toilet in the state s;. The
conjunction of state invariant (x4 < 690) at s¢ and the transition guard (x4 >
480) ensure that the activity Toilet can be performed only in the morning (i.e.,
when the value of 4 is between 480 and 690). Transition (2) is used to respect
the fixed duration of the activity. The state invariant (x; < 30) ensures that

the automata stays at state s; during 30 minutes to perform the activity Toilet.

— Transition (3) enables the automaton to move back from sy to so, without
performing any activity, at the end of the day (i.e., when z, equals 1440)
within the specified period (i.e., z, < 525600). Upon this transition, the clock

x4 is reset to record the beginning of a new day.

— Transition (4) is fired at the end of the period (i.e., when z, equals 525600)
and enables the automaton to move to the final state s3 and terminate the

execution.

The timed language accepted by the automata Agp is the set of timed words associated

with accepting runs. It can be formulated as follows:

L(App) = {w/w = JJLGa"=stertENPU T 0, 1)), 8] € [0+ 24h + start(P) +
start(17), i 24h + start(P) + end(I7)]}.

This timed language L(Agp) consists in concatenating successively the timed word
(a, t7) according to two parameters: the existing time ranges in a day j € [0,n-1] and the
day i € [0,((end(P)-start(P))/24h)-1]. Period is defined by start(P) and end(P), Time
ranges by start(/7) and end([7).

Hence, L(Agp) corresponds to all the schedules of a given activity which satisfy the

corresponding Everyday constraint.

3.2.3 Activities Automata

Now that we have seen how to build the "Elementary temporal specification timed au-
tomata" using temporal specification patterns, we will see here how to construct an

activity automaton. As said previously, care plan activity is characterized by a set of
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temporal specifications. In order to build activity automaton we have to combine its as-
sociated patterns automata. For this purpose, we define a specific composition operator
noted "()". This operator mixes the asynchronous product (or shuffle) on some states
and a specific synchronisation product on other states (waiting states) in addition to
blocking actions (in the execution states). Blocking is used to prevent the interleaving
of activities. Indeed, since the activities are not instantaneous (i.e., they have duration),
the composition operator must ensure that at a specific instant of time ¢, there is only
one activity being executed (i.e., only one activity automaton is in an execution state).
Synchronous is needed when the activity automaton is at waiting states in order to syn-
chronize the reset of the day and week clocks (respectively, the variables x4 and z,). A

formal definition of the proposed composition operator is given below.

Definition 3.2.2 (Composition of timed automata) Let A= (Si, s}, X1, Xy,
Invy, Ty, Fi, Wy, Ey, Sty) and Ay — (Sa, 82,30, Xo, Inve, Ty, Fy, Wy, Ey, Sty) be two timed
automata. The composition of Ay and As, denoted Ay () As, is the timed automaton
(S1 x Sy, 8V x 89, ¥y Uy, Xy UXy, Inv, T, F}, X Fy , W, E, St), where Inv (S1,Ss) =
Inv (S1) N Inv (S3) and the set of transitions T is the union of the following sets:

1. {((81782)757¢7/\7 (Slla 8,2)) : (81757 Qsl;/\lfsll)e T1 and (82;€)¢2; )\2;3/2) S TQ; 51 and S2
are both waiting states and A = A\ U Xy, ¢ = ¢1 A ¢ }.

2. {((81732)7a’¢a )‘7 (8/17812»'. ((Slfaygb)/\fs,l) €T, 82:8/2) or ((82: a, ¢7 )‘: S/2 )6 15,
s1=81), s1 and sy are both start states, or, sy is start state and sy is waiting state,

or, s1 is waiting and sy is start state }.

3. {((s1,52), a, P, A\, (51, 85)): ((51, a, ¢, A\, s1)€ Th, sa=s, s9 is a waiting/start state,
sy 1s an execution state) or ((sa, a, ¢, A\, sh)€ T,s1=5",81 is a waiting/start state,

So 1s an execution state) }.
The sets W, E and St are defined as follows:
° W:{(Sl,SQ) €S x Sy: 51 € Wy and s9 € Wy }

o St—{(s1,82) € S1 X Sy: (s1 € Sty and sy € Sty) or (s; € Sty and sy € Wy) or
(81 € W1 and So € Stg) }

o F—{(s1,89) € S1xS3: (s1 € W1USty and sy € Ey) or (s € Ey and sy € WoUSts)).
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Observe that the composition operator is closed w.r.t the definition 3.2.1 in the sense
that it takes as an input two timed automata as defined in 3.2.1 and generates as an
output an automaton compliant with this definition. Hence, it is possible to use the
result of a composition as an input for another composition, thereby, enabling incremental
composition.

Note that, when using the composition operator to construct activity automaton, the
alphabet ¥;, i« = 1,..n of each temporal specification automaton (associated to activity
automaton) has a same activity label (i.e. ¥ =¥y = X3 = ...).

Table 3.5 illustrates an example of the activity Toilet composed of two temporal spec-

ifications.
Activity | Days Time ranges | Period Duration
Toilet Monday | Morning 01/01/14- | 30
Thursday 12/31/14
Sunday Evening 01/01/14-
12/31/14

Table 3.5: Elementary temporal specifications

Given a set of elementary temporal specifications of a given activity (expressed in
rows of Table 3.5), we first build the pattern automaton for each elementary temporal
specification. Figures 3.8 and Figures 3.9 show the pattern automata A,; and A, as-
sociated respectively with the first and the second elementary temporal specifications of
Table 3.5. Timed automaton A,; recognizes timed words corresponding to the execution

of the activity Toilet on Monday and Thursday morning.

(xw == 0 && xw < 1440) || ( xw >= 2880 && xw < 7200) || (xw >=8640 && xw < 10080), ¢

== 4 == 144 = , Toilet, xt := 0 == ==
X xXw xXw ollet, X m xt 0, € 53 xp 525600, €

xd 5= 480 &8 xw >= 7200 &8 xw < 8640, Toilet, xt := 0 ~ e
@ xt==30,¢
O/

xd == 1440 && xp < 525600 8& xw == 10080, ¢, xd =0, xw :=0

xd == 690

xd == 1440 && xp = 525600 && xw < 10080, €, xd := 0

Figure 3.8: Timed automaton A,q.

Timed automaton A, recognizes timed words corresponding to the execution of the

activity Toilet on Sunday evening.
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(xw == 0 && xw < 5760) || [xw >= 7200 && xw < 10080), €
(e 30 _ xd == 1440 88
X xd < Tﬂ\ xp == 525600, €

52

xd =>=1080 88 xw >= 5760 && xw < 7200,
Toilet, xt :=0 @ xt==130, ¢

50
xd <=1260 u

\ xd ==1440 && xp < 525600 && xw == 10080, €, xd := 0, xw =0

xd == 1440 && xp < 525600 && xw < 10080, €, xd :=0

Figure 3.9: Timed automaton A,s.

Having A, and A, automata, we construct the activity automaton using the defined
composition operator. Figure 3.10 shows the composition result. The resulting automaton

encompasses all the possible schedules of the activity Toilet specified in Table 3.5.

(xw == 0 &8 xw < 1440) || { xw >= 2880 && xw < 7200) || (xw >=8640 && xw < 10080), ¢

xt<=30 88
d <gop | X0 7480 B8 xw >= 1440 88 xw < 2880, g <1440

(xw == 0 && xw < 5760) ||
(xw == 7200 &8 xw < 10080), € Toilet, xt := 0 PN Xt—30, ¢

SOS2[ xd »= 480 && xw >= 7200 && xw < 8640, 5252

Toilet, xt:=0 f‘\51 52 xt==130, €
b
= - xt <= 30 88
(xw == 0 &8 xw < 1440) || { xw »= 2880 && xw < 7200) || e il
50501, (xw >=8640 &8 xw < 10080), ¢ N
{xw == 0 88 xw < 5760} || /@\352 i
ol s

(xw >= 7200 && xw < 10080), € Xp — 525600, ¢

xd 5= 480 && xw >= 1440 88  xt<=308&
xd <=1260

xw < 2880,Toilet, xt:=0

xt==30, ¢

xt <= 30 8&&
xd <=1260 xd == 1440 pr

525°0
xd >= 480 && xw >= 7200 && vz %
xw < 8640, Toilet, xt := 0 5150 5350 xd >=1080 &8 i
xt==130, ¢ xw = 5760 &8 xw < 7200,
xt <= 30 && Toilet, xt:=0

xd <=1260
xd == 1440 && xp < 525600 &8& xw == 10080, €, xd =0, xw :=0

xd = 1440 &8 xp < 525600 && xw < 10080, €, xd := 0

Figure 3.10: Activity (Toilet) timed automaton.

3.2.4 Care Plan Automata

Recall that the care plan is composed of a set of activities. Thus, in the same spirit
as for the activity automaton, the care plan can also be described by means of timed

automaton, but this time, by combining its associated activities automata.
Note that, when using composition operator to construct care plan automaton, X;,

i = 1,..n of each temporal activity automaton have a different activity label (i.e. 3; #

S £ Yy £ ).
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Table 3.6 illustrates an example of care plan composed of two activities: Toilet and

Injection.

Activity | Days Time ranges | Period Duration

Toilet | Everyday | Morning 01/01/14-12/31/14 30

Injection | Everyday | 09h00 01/01/14-12/31/14 20

Table 3.6: Example of home care plan
xt <=30 7t ==20

xd == 480, Toilet, xt ;=0 @ xt==130, ¢ xd == 540, Injection, zt := 0 /;)._1\ st==30, €

xd == 1440 xd <= 1440
xd <= 690 xd <=540

xd == 1440 && xp < 525600, €, xd := 0 xd == 1440 && xp < 525600, €, xd := 0

xd == 1440 83
xp == 525600, €

xd == 1440 8&
xp == 525600, ¢

ATm\a( Alnlecllon

Figure 3.11: Toilet and Injection automata.

50,51 50,572 51,52
xd == 540, Injection, zt:=0 t==20, € xd >= 480, Toilet , xt=0 \m xt==30, ¢
7t <=20 xd <= 690 xt <= 30
88 xd == 690 88 xd == 1440
. 51,50 52,50 5 xd == 1440
xd == 480, Toilet , xt:=0 Q xt==30, ¢ : xd == 540, Injection, zt:==0 z X
xt <= 30 && xd == 540 xd == 540 7t <= 20 52,52

88 xd <= 1440

xd == 1440 &8 xp < 525600, €, xd:= 0

53,53

©_( xd == 1440 &8 xp == 525600, ¢

Figure 3.12: Home care plan timed automaton

Figure 3.12 shows the result of composition of the Toilet and Injection automata (Axzies
and Arpjection) of Figure 3.11. The resulting automaton encompasses all the possible
schedules of the activities Toilet and Injection. For example, a timed word of the form:
(Toilet, 480).(Injection, 540).(Injection, 1980).(Toilet, 2001)...(Injection, 524700), which is
accepted by the care plan automaton of Figure 3.12, corresponds to a legal plan within

the specified period.
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3.3 Formal analysis of home care plan using timed au-

tomata

With a formal model describing the behavior of home care plans at hand, it becomes
now possible to handle automatic verification and monitoring of home care plans. Here
we focus on realizability verification, monitoring and interventions generation. These
verification tasks are important in the sense that a planning error or a bad monitoring
can have dramatic consequences.

We discuss below how to use the proposed framework to verify and monitor the home
care plans using UPPAAL Model Checker.

3.3.1 Realizability of home care plans

It is important to check the realizability of a home care plan, i.e., to check whether or
not the activities included in the home plan can be effectively scheduled and performed
according to the constraints specified in the plan. In other words, a home care plan is
realizable when each activity can be performed without interruption in the imposed time
range in any specified period. Checking realizability of a home care plan can be reduced
to the emptiness problem of the corresponding timed automaton. In fact, the emptiness
problem for a timed automaton A consists in verifying whether or not L(A) is empty. A
standard way to achieve such a test is to check reachability of the final state from the
initial state.

Consider again the timed automaton shown in Figure 3.12. We check in the following
if the final state (s3, s3) is reachable from the initial state (g, s;). The emptiness checking
is performed using the following query!: E <>(Process.FinalStateName).

Figure 3.13 shows the emptiness checking of the home care plan timed automaton of
Figure 3.12 using UPPAALL. The status box shows the query result (satisfied or not). In

our example, the query is satisfied, which means that the home care plan is realizable.

3.3.2 Monitoring of home care plans

Note that most of the activities of a home care plan are manual, i.e., performed manually

by professionals. In current state of affairs, the activities that have been performed are

"Note that UPPAAL model checker uses a subset of TCTL (Timed CTL) as query language to express

properties.
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E% Ce/Users/takesrit/Dropbox/mapping activities/Automata uppaal/uppaal-4.0.13/sh... E‘Elg
File Edit View Tools Options Help
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E«<» (Process.51_S5S2F &s& Frocess.xd == 895 =z Frocess
E<>( Process.532 S51F || Process.50_S51P) =& (Process

Comments

E<>( Process.51_SO0F || Process.51_52F) =& (Frocess
E<>( Process.31 S0P || Process.51 S52P) =& (Process
E<>»( Process.53_S53P)

-

o
©
o
©
o

4w

Query
E=={ Process.533_S3F)

Comment

Canwe getthe final state?
Yes

-

Status
Established direct connection to local server. -
(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2010 - server,
E < =( Process.53_S3F)

Property is satisfied.

1

Figure 3.13: Emptiness checking timed automata with UPPAAL.

often recorded manually on paper. Our goal is to enable electronic recording of executed
activities in order to keep track of the execution of home care plans. Such information can
then be used to monitor home care plans. For example, compliance of execution traces
w.r.t. a home care plan may be checked by reducing this problem to the membership
problem in the timed automata framework. Also, the monitoring system may be used to
detect executions that deviate from the specification. For example, if in the scheduled
home care plan the activity Injection is provided at 09h00 and takes 30 minutes, and after
execution we find out that it was in fact done at 10h00, it is important to be able to

detect this type of deviation. Below an example of query:

E<> (Process.S0S’1) && (Process.xp >= 1440 && Process.xp < 2880 && Process.xd >=
660 && Process.xd <= 720).

This query checks that the activity Injection which was done on January 2 between

11h00 and 12Hh00 is well complying with a scheduled home care plan timed automaton
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of Figure 3.12. In other words, is there an execution which satisfies this activity 7 The
answer is property not satisfied since Injection was scheduled starting from 9h00. More
generally, a monitoring system can be enhanced with rules that enable to trigger alerts

when particular deviations are detected.

3.3.3 Grouping activities into interventions

Grouping together activities that can be performed by a same type of actor (nurse, nurse
auxiliary, etc.) and which occur in the same time range is called Intervention. Interventions
may be specified manually by the coordinator or computed automatically from the spec-
ifications of activities and then proposed to the coordinator for validation. The concept
of intervention is really important in the sense that it allows to reduce the waiting time
between activities in order to avoid multiple movings at the patient’s home. The analysis
of activities to specify interventions is a complex task since it requires to ensure com-
patibility of time ranges by taking into account the duration of each activity (multiple
configurations are possible). It is also necessary to ensure that the grouped activities
can be made by a same type of actor. The composition operator can be modified in or-
der to incorporate the interventions in the computed care plan automaton (the obtained
automaton is called interventions automaton). This is achieved by modifying the activity
automaton in order to take into account the Intervention state. More precisely, we modify
Definition 3.2.1 to consider an automaton as a tuple A— (S, s, X, X, Inv, T, F, W,
E, St, Int) where Int denotes the set of intervention states. In addition, a specific time
parameter, denoted Tmin, is added to control the idle time between the activities within
the same intervention. Tmin can be defined as " the minimum waiting time between two
activities before starting a new intervention". In fact, the value of Tmin can be used as
a parameter that can be defined by the coordinator and given as input to the compo-
sition operator to compute the interventions automaton (i.e., care plan annotated with
interventions).

Figure 3.14 shows how the automaton of Figure 3.11 is modified to illustrate the Toilet
automaton with interventions which will be used to generate interventions automaton.
Indeed, let Aj,; be the automaton corresponding to Toilet automaton with interventions.
A — (8,50, 2, X, Inv, T, F, W, E, St, Int) is defined as follows:

o S ={sq, 51,892,835} with sy the initial state;

o W ={s3};
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xd == 480 &&xi = Tmin , Xt==10
Intervention, xt:=0 ﬂToilel
,U
. . . xt <= 60 xd <= 1440 xd == 1440 &&
” xd == 480 && xi <= Tmin, Toilet, xt:;i} - xt=—60,¢, xi:=}® xp = 10080 , €
xd <=660 \ 4 —— 1240 && xp < 10080 , €, xd:= 0 j)
Figure 3.14: Toilet automaton with interventions.
o [/ = {Sl};
o St={so};
e Int = {sy}, is an intervention state which is instantaneous;
o = {84};
e Y = {Toilet, Intervention} U {¢};
o X = {x4,x¢,x,,2;} is the set of clocks, where z; is used to control the minimum
idle time fixed by the coordinator;
e T is the set of transitions.

In order to build the interventions automaton, it is necessary to add an additional rule

in the definition of the composition operator "(9)" to take into account the intervention

state. The new rule is defined as follows:

o {((s1,52),a,0,\, (51,55)): ((s1,a, ¢, A, s})€ Th, so sy, so € WUEUSE, s1 € Int)

or ((sz

ca, O, A\, sh) € Ty, s1=8],51 € WUFEUSt, sy € Int) }.

And the set Int is defined as follows:

o Int={(s1,52) € S1 X Sa: (51 € Int and sy € Int) or (s; € Int and sy & Int)}.

Note that the new composition operator remains closed w.r.t. the modified Definition

3.2.2. Let us consider the example of Table 3.7 which illustrates an example of home care

plan composed of two activities Toilet and Dress. The Toilet automaton with interventions

is depicted at Figure 3.14.
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Activity | Days Time ranges | Period Duration
Toilet Everyday | 08h00-12h00 01/11/15-01/17/15 60
Dress Everyday | 10h00-12h00 01/11/15-01/17/15 30

Table 3.7: Example of home care plan

Figure 3.15 shows the resulting care plan automaton with interventions using

the added rule to the composition operator.

The interventions automaton en-

compasses all the possible interventions that can be performed at patient’s home.
A timed word w= (intervention,540).(Toilet,540).(Dress,600).(Intervention, 1980).(Toi-
let,1980).(Dress, 2040).(Intervention, 3420).(Toilet, 3420).(Dress, 3480).(Intervention,
4860).(Toilet, 4860).(Dress, 4920).(Intervention, 63000).(Toilet, 63000).(Dress, 6360).(In-
tervention, 7740).(Toilet, 7740).(Dress, 7800).(Intervention, 9180).(Toilet, 9180).(Dress,

9240), where intervention corresponds to the start of an intervention, is accepted by the

interventions automaton, and illustrates possible interventions within the specified pe-

riod.
50_54 50_82 _ 51.5%
1 e e g U408 60 &
X0 xd <= 660 _xdezi xd<=720 & xd <= 1440

xd <= 600 & Y Fny xt==30,8, {ui} e xi <= 0, Toilet, {xt} Y
d=T08& AU —— xt == 60,
Xi » 0, Intervention, £, {xi}
{xt xa) - xa==0

xd>= 600 & Xd»= 480 & Toilet, §

xd <=T20 & xd<=T720 &

xi <-D Dress, {xt} xi =0, Intervention . {xt, xa} Iz

i . xa<=0
xdsg:gﬁuu & 5150 8250 52_8
- xt <z 60 & ud <= 1440 & ate=3) & 82 8§92
xd <= 690 xd == 630 xd <= 690 wd <= 1440 d <= 1440
xd>= 480 &xd <=T720 & T xd>=6008xd<=T208& xt==30, xd <=
(.. xi <= 0, Toilet, {xt} xt==60,€, {xi} Xi <= 0, Dress, {xt} £, {xi}
xa==0,
xi>zapaxdras - TOWLD xd >= 600 & xd <= 720 & E?:;DG
Xi >0, Intervention , {xt.xa} B i >0, Intervention . {Xt, xa}
xd == 1440 &
wa <=0 m xp == 10080,
l_ @ <=l e.{
xd ==1440 &
xp < 10080, €, {xd} @
§3_83
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Figure 3.15: Example of interventions automaton.

We described in this chapter our approach to generate formal specifications of home

care plans, expressed as timed automata, from a set of high level and user oriented



72 Chapter 3. Modeling and analyzing home care plan using timed automata

abstractions. The resulting care plan encompasses all the possible legal schedules of
activities for a given patient. We describe then how verification and monitoring of the
resulting home care plan can be handled using UPPAAL Model Checker. The next

chapter will deal with the implementation of the proposed approach.
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In order to test and validate our work, we have implemented the approach that we pro-
posed in this thesis. We implemented our prototype as a part of the project Plas’O’Soins,
which aims to provide a software platform for modeling, planning and monitoring home
care plans. Pointing out that our work is in parallel with Plas’O’Soins project and
we address identified problems with another vision. We have the same starting point,
namely, temporal specifications. But we bring other performance such as realizability
check, monitoring and interventions generation using UPPAAL Model Checker. As part
of this thesis, we developed four main components: (i) The graphical user interface
that allows to assist the coordinator for editing home care plans, (ii) The temporality
automata generator that enables to generate temporality automata of each activity
from extracting information about the temporal specifications in the database, (iii) The
care plan timed automata generator which consists on constructing the home care
plan timed automata using the result of (ii), this construction is an implementation of
our composition algorithm, and (iv) The interventions generator which consists in
grouping together activities that can be performed in a same time range and by a same
type of actor. These four components have been implemented using JavaTM platform
version 8, Netbeans' framework and Vaadin? framework. Here, we describe the technical

details of the prototype implementation and present some tests on real home care plans.

4.1 Overview of the prototype

Before going into the details of the prototype architecture and implementation, it is
necessary to have the intuition and the general view of the prototype functioning.

Figure 4.1 illustrates through a BPMN 3 process, a structured overview of the gen-
eral functioning of our prototype, since the elaboration of the home care plan by the
coordinator, till its verification phase.

Upon admission of a new patient, the coordinator creates for him /her a personalized
home care plan, taking into account his/her medical needs as well as his/her social and
physical environments. This activity is represented by the collapsed subprocess Create
Home care plan (see Figure 4.1). An expended version of the decomposable activity Create

Home care plan is shown in Figure 4.2.This latter presents the set of elementary human

Thttps://netbeans.org
Zhttps://vaadin.com/home
3http://www.omg.org/spec/BPMN /2.0/PDF/
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Figure 4.1: BPMN process of prototype functioning

activities, such as:

- Create Create period Create Home care
d '| patien’s infos Home care plan plan activities

|
&y . el
st ’_.( )|;ﬁ.i1@'_'@ao
temporalities ) — "'- ‘{.‘____]
|

Coordinator

Create Home care plan

Figure 4.2: Fxpended view of the subprocess Create Home care plan

Create patient’s infos: create general information about the patient (Last name,

first name, address, weight, etc.);

Create period Home care plan: create the start date and end date of the home care

for the created patient;

Create Home care plan activities: create the required home care plan activities for

the given patient;

Create activities temporalities: specify the repetitiveness of the care plan activities.

Once the home care plan created, the coordinator can trigger a set of analysis which

will be executed automatically by the system. The coordinator must check the validity



76 Chapter 4. Prototype and experimentations

of the home care plan. The collapsed sub process Check Home care plan in Figure 4.1
encompasses a set of automatic activities which contribute to the realizability verification.
Figure 4.3 shows a corresponding expended version which comprises of a set of automatic

activities, which are:

( .
JeR -
- ) | nslruct %} %} N ) - E‘T“f _-E
O lal Qﬂ{ tempority (5 o T e
. |

Coordinator

Check Home care plan

Figure 4.3: Ezxpended view of the subprocess Check Home care plan

e Construct temporality automata: generate temporalities timed automata using ac-

tivities frequencies;

e Construct Care plan automaton: compute the composition of all temporality au-

tomata in order to construct care plan automaton;
e Check with UPPAAL: check the realizability using UPPAAL Model Checker.

After checking the home care plan, if it is realizable, the coordinator can, if he wishes,
initiate the interventions generation using UPPAAL Model Checker. Figure 4.1 illus-
trates the corresponding automatic activity Generate interventions. If the care plan is not
realizable, an error message is displayed on the GUI to inform the coordinator about the
reason. The coordinator must then re-edit the home care plan.

Another analysis which can also be made by the coordinator is monitoring. After the
execution of the home care plan by the actors, the coordinator can check for a given
period if the executed activities correspond (in terms of time ranges) to the scheduled
activities. The monitoring is a very important step for the proper conduct of patient

care.
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4.2 Architecture of the prototype

Our architecture, depicted in Figure 4.4, comprises several modules, which are used for

modeling and analyzing home care plans.

T—8

= ‘ N Tr—r— Data Base TempuralllyAulumah\
- Generator
Kphiﬂl User Interface

— Formal Model

Care Plan Timed Automata
Generator

UPPAAL Model Checker

Figure 4.4: Architecture of the prototype

In what follows, we present in details the different components of our architecture.

4.2.1 GUI for editing home care plans

Developing a graphical user interface (GUI) for editing home care plans is the starting
point in the process of modeling and analyzing home care plans. This editing represents
a major challenge for the successful management of care and is essential to propose ways
that enable greater efficiency for end-users.

After observing the practices and collecting opinions of end-users, we have developed
a GUI that has been performed using Vaadin framework. It provides a set of windows and
dialogue boxes offering the possibility to better attend the coordinator in the elaboration
of the home care plan.

After editing patient’s information and specifying the period of the home care plan,

the coordinator performs two necessary steps in order to elaborate the home care plan.

4.2.1.1 Editing home care plan activities

In order to edit the home care plan, the coordinator opens a window as shown in Figure
4.5 which allows to enter the activities with their repetitiveness for the given patient.

The order of the entries is irrelevant. The labels of the activities are chosen from a list
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of allowed labels. Actor type for each activity and duration are initialized by the system
by default (we associate for each activity a nominal duration and an actor type), but the
coordinator has the possibility to change their values. He may even impose a name of

actor (when the coordinator wants to assign an actor with specific skills).

We see for example in Figure 4.5 four different planned activities. Temporal specifi-
cations are edited into four main fields: Days, Ranges, Period and Duration. The values
of these fields can be entered through a dialogue box (4.2.1.2) to allow an assisted entry.
The value of the period is by default the same as that of the home care plan. The main
actor type is associated with each activity (this is the type of actor who is responsible
for the activity). The activity ID in the first column (A1, A2, ...) is attributed by the

system. It is specific to each entry.

Care plans of the selected home care

) ) @ are plan active | Start date : 15 / 09 / 2014 End date : 15 / 09 / 2015
Expected activities | potential intervention | Interventions to planify
Activity ID Activity Days Ranges Period Main actor type Main actor status Mbr actors Duration *
J5| Dress everyday 10h 15/09/14-15/09/15  MNurse auxiliary Salaried 1 10
M Toilet Monday Saturday 9h-11h 15/09/14-15/09/15  Nurse auxiliary Salaried 1 30
A Parenteral nutrition  Tuesday Friday 10h-11h 15/09/14-15/09/15  Nurse auxiliary Salaried 1 30
M Enteral nutrition Monday Saturday except(public holidays) 8h-12h 20n-22h  15/09/14-15/09/15  Nurse auxiliary Salaried 1 60
Sunday except(public holidays) 8h-12h 15/09/14-15/09/15  Nurse auxiliary Salaried

Figure 4.5: Editing home care plan activities

4.2.1.2 Editing activities temporalities

Dialogue boxes have been designed to guide the entry of temporal specifications. Figure

4.6 shows the editing of a temporality for an activity.

Indeed, expressing activities temporalities is essential to specify their repetitiveness.
We can see for example in Figure 4.6 several fields to be completed: Date (which refers
to a calendar), Time ranges (which refer to times of the day, time slots or fixed times),
the Period and the Principal actor type. However, activities repetitiveness is not always
fully regular but there may be exceptions. The button "except public holidays" allows

to insert exceptions.
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Figure 4.6: Dialogue box for editing activities

» To"

[ morning
1! noon

D afternoon
[ evening

O night
HH MM  HH MM

8 00 12 00

[0 oo | [z | o0 |
0 |0 |2 oo

© Cancel

4.2.2 Storage in the database

9/15/15

( @ Add )

3]

@ Add

temporalities

The various data handled on the GUI are spread over the database. We used in our case
Mysql* database version 5.6. This later memorizes all factual data handled to manage the

home care of patients as plain texts. The connection between the GUI and the database

is done through Java Persistence API

“http:/ /www.mysql.fr
Shttps:/ /eclipse.org/eclipselink /jpa.php

(JPA)®.
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4.2.3 Temporality automata generator

Temporality automata generator enables to generate temporalities timed automata ac-
cording to several input temporalities corresponding to each activity in the database for a
given patient. Indeed, temporality automata generator consists in three main components

as shown in Figure 4.7.

Temporality automata generator

/ Temporality \

extractor

, Syntactic . m
analyser 1
Data ﬂ

base Automata - Temporalities automata

\ calculator /

Figure 4.7: Components of temporality automata generator

e Temporality extractor: We have implemented a parser which extracts, for each
patient, the corresponding care plan temporal specifications as plain strings. Tem-
porality extractor browses several tables in the database to extract temporal spec-
ifications (Days, Time ranges, Duration and Period) of each activity corresponding

to the ongoing home care plan of the patient.

e Syntactic analyser: It allows to structure the different temporality fields (Days,
Time ranges, Period and Duration) and activity name, in class objects. Figure
4.8 shows the UML class diagram of the resulting class objects. It highlights the

necessary concepts to express Elementary specification, such as:

— <Activity>: this class corresponds to the activity of the home care plan,

characterized by its duration and name;

— <Day>: this class defines the pattern type that will be used for each elemen-
tary specification. Days type can take only one type among the three defined
in the diagram (AbsoluteDate, SpecificDay, or Everyday). Exception class

allows to express exceptions as dates;
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<Range>: this class represents the start and the end time of the elementary

specification expressed in hours and minutes;

<Period>: this class represents the start and the end date for the validity of

each specification;

<Actor>: this class represents the actor involved in a specification and his/her

type. The coordinator may in some cases precise the actor name.

<<enumeration>> Period 1.* El ification 1 Acivity
DaysType -startDate : Date ] -id : Integer T -id : Integer
ABSOLUTE_DATES| |-endDate : Date 0.+ v -name : String
SPECIFIC_DAYS 1.x 1. ~duration : Integer
EVERYDAY 1
Actor
-id : Integerl 1* 1
s ﬁ:ﬁ""ype Range Day .., [AbsoluteDate
<<enumeration>> -startHour : Integer -type : DaysType | | date : Date
Day_Of Week -startMinute : Integer ~ .
MONDAY -endHour : Integer - e 1.* .
TUESDAY <<enumeration=> -endMinute : Integer T- - A T ~ {XOR}
WEDNESDAY ActorType - -
THURSDAY gme o o~ o
FRIDAY clor =
SATRUDAY NurseAuxiliary | Exception | | EveryDay | | SpecificDay
SUNDAY ~dale : Date _day : Day_Of Week

Figure 4.8: UML class diagram for temporal specifications

e Automata calculator: It is in charge to build temporality automata according to
the result of the syntactic analyser, especially the type of Days (Everyday, Absolute
dates or Relative days). Figure 4.9 shows the UML class diagram which includes

all the class objects necessary for the construction of the temporality automata.

— <Automaton>: this class is used to identify the temporality automaton;

— <State>: this class describes a state of the automaton associated with its
name, id and the type (start state, waiting state or execution state, etc.);

— <Invariant>: this class defines the clock conditions in each state of the au-
tomaton;

— <Transition>: this class describes a transition of the automaton, by specifying
the source and the target state. Transition class is linked to three other classes:
Update class, Label class and Guard class. They allow to describe the details

of temporality automaton transitions;

— <Clock>: this class defines a clock of the automaton with its name and type.
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Clock Automaton 1.* State
-id : Integer -id : Integer 1 -id : Integer
-name : String -name : String
-type : ClockType -isFinal : Boolean
-islnitial : Booelan
1 -isWaiting : Boolean

<<gnumeration>>

Invariant

-clockld : Integer

-operator : ComparaisonOperator

-isStarting : Boolean
-isExecution : Boolean
-isIntervention : Boolean

ComparaisonOperator -value : Long 0.*
LITTLE . ]
LITTLE OR EQUAL 0..
GREATER Transition
GREATER_OR_EQUAL s e Guard
EQUAL _startState : Integer -clockld : integer

-targetState : Integer - -operator : ComparaisonOperator
0.* -value : Long
<<enumeration>> 1
ClockType

HOUR_IN_DAY
DAY_IN_WEEK 0.1 1 Label
DAY_IN_PERIOD Update -value : String

ACTIVITY_DURATION -clocks : List<Clock> -duration : Integer

INTERVENTION_TIMEOUT

Figure 4.9: UML class diagram for temporality automata

4.2.4 Care plan automata generator

Care plan automata generator provides an implementation of our composition opera-
tor 3.2.2. Indeed, the care plan automata generator computes the composition of all
temporality automata built by the temporality automata generator corresponding to the
ongoing care plan of the patient. Once the care plan automata is built, appropriate
XML files (sample in Figure 4.10) are generated in order to be read by UPPAAL Model
Checker. Each element of this XML file corresponds to an information on the constructed
care plan automaton. The XML file has as a root tag <nta> which regroups a set of

tags, such as:

e < Declaration>: this tag describes the global declarations of the automaton. In our

work, it is used to declare the clocks defined in the automaton.

e <name>: it is used to identify the automaton name. In Figure 4.10, the automaton

name is A;

e <Location>: this tag allows to define each state of the automaton by a unique

identifier, a name and an invariant;

o < Transition>: this tag is used to define the source and the target state, the label,

the guard and the clock updates of a transition.
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1 <?xml versgion="1.0" encoding="utf-8"?>
P |%|<!DOCTYPE nta PUBLIC '-//Uppaal Team//DTD Flat System 1.1//EN"'
3 ‘http://www.it.uu.se/research/group/darts/uppaal/flat-1 1.dtd'>
4 <ntax
5 <template>
& <name>A</name>
T H ﬁeclz*ration)
8 clock xd0: clock xp0: clock xt0: clock xdl: clock xpl: clock xtl:
a int nbDress = 0;
10 wvoid Dress()
11 {
12 nbDress++:
13 }
14 int nbToilet = 0;
15 wvoid Toilet()
16 {
17 nbToilet++;
18 }
19 r</declaration>
20 H <location id="id0">
21 <name>S0_S0</name>
22 <label kind="invariant">xdD &lt;= 660 and xdl &lt:;= 675</label>
=3 r </location>
24 [ <location id="idi">
=3 .
26 B #‘:ranaition}
27 ] <source ref="id0"/>
28 <target ref="idl"/>
2 <label kin "gmard">xdl &gt;= 600 and xdl &lt;= 720</label>
30 <labkel kind="assignment">Dress(), Xtl = 0</label>
r </transition>
[</template>
H<system>// Place template instantiations here.
system A:
r</system>
’<fnta>|

Figure 4.10: Part of an XML file generated by care plan automata generator

4.2.5 Connection with UPPAAL

Once the construction of the home care plan automaton is completed, the analyzing
step of the care plan automata and the interventions generation is achieved using UP-
PAAL Model Checker. UPPAAL uses, as input, the XML file generated by the care
plan automata generator, and provides as output the answer about analyzed properties
(realizability or monitoring) and contributes for the interventions generation.

For example, Figure 4.11 shows how UPPAAL Model Checker displays the care plan
timed automata using the XML file of Figure 4.10. Figure 4.12 shows how UPPAAL
Model Checker uses TCTL queries.

We will see in more details in section 4.3 a real example of the care plan verification

and how the answers are displayed to the coordinator through the graphical user interface.

4.2.6 Interventions generator

Interventions generator enables to provide to the coordinator a complete list of inter-

ventions to be performed by actors, day after day, during all the period of the home
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Figure /.11: UPPAAL uses XML file of Figure 4.10 to display the corresponding care

plan timed automaton

File Edit View Teols Options Help

DabBlaee[{e-e

Editor | Simulator | Verifier

Query
E=>(A.55_53)

Status

(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2010 — server.
Disconnected.
Established direct connection to local server.

{Academic) UPPAAL version 4.0.13 {rev. 4577), September 2010 — server.
E<>(A.55_53)
Property is satisfied.

Figure 4.12: UPPAAL uses TCTL queries to verify the care plan automaton

care plan. Indeed, once the home care plan is validated, the coordinator can trigger the

interventions generation. In order to generate interventions, the system follows the steps
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below:

1. Construct the pattern automata by adding intervention transitions and intervention

states.

2. Construct the activities timed automata with interventions using the modified com-
position operator on the corresponding pattern automata. An example of an activity

automaton with interventions is depicted in Figure 3.14.

3. Construct the home care plan timed automaton with interventions using the mod-
ified composition operator on the constructed activities automata. An example of

care plan timed automaton with interventions is depicted in Figure 3.15.

4. Before building the interventions list to be provided to the coordinator, different

requirements must be taken into account, which are:

e The idle time between the activities of the home care plan;

e The non-interleaving interventions;

e The selection of actor type who intervenes in each intervention;
e The time range of each intervention.

e Different optimisation criteria such as minimize the global waiting time of
interventions. Minimize the total number of interventions and different costs

problems.

Execute the home care plan automaton with interventions using UPPAAL. This
enables to generate all possible schedules of interventions to perform at patient’s
home. Timed words of such automaton satisfy the first two requirements. Time
range of each intervention and different optimisation problems have not been con-
sidered in our current prototype. Implementation of the optimisation problems

require a specific investigation.

5. Once the interventions are generated, the most qualified (having the highest skills)

actor type is designed to execute the corresponding activities.
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4.2.7 Monitoring

Another important step supported by our prototype is the monitoring. Once the care
plan validated and the activities performed at patient’s home, the coordinator can check
the consistency between scheduled activities and those executed. This verification is done
with respect to certain criteria such as: Has the activity X been given? Has the activity
time range been well respected? The developed prototype can answer such questions
using UPPAAL Model Checker and following the two steps below:

1. Once the care plan executed, the system retrieves the log file. The log file contains
the execution trace of the care plan by the actor (at patient’s home). It describes

each executed activity with its time range (start time and end time).

2. Using TCTL requests, the system queries the care plan timed automaton (elabo-
rated home care plan) to report anomalies. As mentioned before, this procedure
involves the membership question, which consists on taking the care plan timed
automaton, and some information about the executed care plan from the log file,
and determine if there is an execution of the care plan automaton which satisfies

the tested information.

4.3 Test and experimentation

We now show how the prototype can be used to facilitate the analysis and interventions
generation of home care plans. In fact, our prototype will assist the coordinator in
checking the care plan by validating it, if there is non error, or by identifying the problem
if it exists. It will also assist the coordinator for generating interventions which are an
important step for the planning.

To better understand and see concretely the prototype functioning, we propose in what
follows treating a real example of care plan of an anonymous patient (for confidentiality
reasons). We will test different analysis and verification steps (realizability, interventions

generation and monitoring) that we have identified previously.

4.3.1 Realizability test

Testing realizability of the home care plan consists in testing whether or not each activity

can be performed without interruption in the determined time ranges throughout the
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specified period of the home care plan.

In order to assess the efficiency of our prototype, we apply two case studies illustrating

different situations, for which we will check realizability properties.

Case study 1

We demonstrate the usefulness of the application by illustrating prototype running results
on an anonymous patient case. Figure 4.13 shows his/her care plan. We see in this
example that, for this patient, the care plan is composed of three activities: Toilet, Dress
and Injection. Each activity is characterized by temporal assertions. For example, the
activity Toilet is described by a temporal specification which contains an exception on
public holidays in Days field. The Period is the same for all the activities and the Durations

varies from 20 to 60 minutes.

Care plans of the selected home care

+) (=) & % - Care plan active ! Start date : 04 / 01 / 2015 End date : 06 / 02 / 2015

Activity ID  Activity | Days Ranges Period Duratior | Main actor type  Main actor status  Main actor Nbr actors

At Toilet Monday-Saturday except(public holidays)  8h-12h 20h-22h  01/11/2015-01/17/2015 60 Nurse auxiliary Salarfed Cécile Martin 1
A2 Dress Everyday 10h-12h 01/11/2015-01/17/2015 45 Nurse auxiliary Salaried Pierre Curie 1
A3 Injection 01/11/2015 10h 01/11/2015-01/17/2015 20 Nurse Liberal Daniel Dubreuil 1

Figure 4.13: Example of a home care plan: Use case 1

Once the care plan created, the coordinator clicks on the saving button to record the
care plan elements in the database. The coordinator then checks the care plan by clicking
on the corresponding button to check the realizability of the care plan.

The concerning modules of our prototype construct the care plan automaton which
is then verified using UPPAAL Model Checker. We use the TCTL query: E<> (Pro-
cess.FinalStateName). This request means: is the care plan realizable?

Figure 4.14 shows the UPPAAL answer through the GUI. The care plan of the patient
is realizable in all circumstances. The coordinator can then validate the care plan and

trigger interventions generation if needed ( see subsection 4.3.2).
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Checking care plan

The care plan is realizable

© Close

Figure 4.14: Dialog box showing the realizability of a care plan

Case study 2
We illustrate here a second example of a home care plan of another patient in Figure 4.15.
The care plan comprises three activities: Toilet, Dress and Parenteral nutrition. Each of
these activities is specified by one temporality row. We find the three types of patterns,
Everyday, Absolute dates and Relative days. The Period is the same for all activities and
the Duration varies from 20 to 60 minutes.

In the same way as in the first case study, the coordinator clicks on the saving button
to record the care plan after creating, and then clicks on the corresponding button to

check the realizability of the care plan.

Care plans of the selected home care

) ) =B & re plan active | Start date : 04 / 01 / 2015 End date : 06 / 02 / 2015
Exp Potential intervention terventions to planify
Activity ID  Activity Days Ranges Duratior  Period Main actor type | Main actor status  Main actor  Nbr actors Z
Al Toilet Monday-Saturday except(public holidays) 8h-12h 20h-22h 60 01/11/2015-01/17/2015 Nurse auxiliary Salaried Cecile Martin 1
v] Dress Everyday 10h-11h 45 01/11/2015-01/17/2015 Nurse auxiliary Salaried Pierre Curie 1
¥ Parenteral nutrition 01/11/2015 10h 0 01/11/2015-01/17/2015 Nurse Liberal Daniel Dubreuil 1

Figure /.15: Example of a home care plan: Use case 2

Figure 4.16 shows the UPPAAL answer through the GUI. The care plan is not realiz-
able and the problem is detected on Sunday, January 11th, 2015 for the activity Parenteral

nutrition.
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Indeed, we observe that the activity Parenteral nutrition is scheduled on 01/11/2015
at 10HOO and takes 40 minutes. If it starts execution and ends after 40 minutes, the
following activity Dress which is also scheduled from 10H00 to 11H00 on 01/11/2015 and
takes 45 minutes will not be performed and finished before 11H00. For this reason, a
deadlock in the care plan automaton execution is detected. The coordinator must then

re-edit the care plan.

Checking care plan

y: Activity: Parenteral nutrition Days: 11/01/2015 Ranges: 10h
lem at 10HO0 on Sun Jan 11 2015

@ Close

Figure 4.16: Dialog box showing the non realizability of a care plan

4.3.2 Interventions generation test

We have underlined the necessity of grouping compatible activities. A general processing
for grouping activities on the basis of various criteria and constraints would be very useful
for an efficient planning of these activities.

We take back the example of Figure 4.3.1. After having tested the realizability, the
coordinator triggers interventions generation by clicking on the corresponding button.
The system uses the modified composition operator (considering the interventions states)
to generate an exhaustive list of interventions for each day of the period of the care plan.

Figure 4.17 shows the list of interventions through the GUI for the coordinator.

4.3.3 Monitoring test

We defined monitoring as a way to detect executions that deviate from the specifications.
We illustrate in this part the same example as the one we saw in 4.3.1 for which we test

the monitoring.
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Interventions of the care plan x

-On Sunday 01/11/15:

- From 10H00 to 11HO5 by Murse:

-Injection during 20 mn
-Dress during 45 mn
-On Monday 01/12/15:

- From 10HOD to 11H45 by Nurse auxiliary:

“Dress during 45 mn
Toilet during 60 mn

-From 20H00 to 22H00 by Murse auxiliary:

-Teilet during 60 mn
-On Tuesday 01/13/153:

- From 10HOD to 11H45 by Nurse auxiliary:

-Dress during 45 mn
-Teilet during 60 mn

-From 20H00 to 22H00 by Murse auxiliary:

-Teilet during 60 mn
-On Wednesday 01/14/15:

- From 10HO0 to 11H45 by Nurse auxiliary:

-Dress during 45 mn
-Toilet during 60 mn

-From 20H00 to 22H00 by Murse auxiliary:

-Toilet durine 60 mn
-On Thursday 01/15/15:

- From 10HOD to 11H45 by Murse auxiliary:

-Dress during 45 mn
-Teilet during 60 mn

-From 20H00 to 22H00 by Nurse auxiliary:

Toilet during 60 mn
-On Friday 01/16/15:

- From 10HOD to 11H45 by Nurse auxiliary:

-Dress during 45 mn
-Teilet during 60 mn

-From 20H00 to 22H00 by Murse auxiliary:

-Teilet during 60 mn
-On Saturday 01/17/15:

- From 10HOO to 11H45 by Nurse auxiliary:

-Dress during 45 mn
-Teilet during 60 mn

-From 20H00 to 22H00 by Murse auxiliary:

-Teilet during 60 mn

( @Cose )

Figure 4.17: List of interventions

Once the care plan executed at patient’s home, a log file is retrieved by our applica-

tion. This log file contains information concerning executed activities at patient’s home

associated with their date, start and end hour. Figure 4.18 shows a sample of a log file

corresponding to the execution of the home care plan illustrated in 4.3.1.

2015-01-11
2015-01-11
2015-01-12
2015-01-12
2015-01-12
2015-01-13
2015-01-13
2015-01-13
2015-01-14
2015-01-14
1i 2015-01-14
12 2015-01-15
13 2015-01-15
14 /2015-01-15
15 2015-01-16
2015-01-16
2015-01-16
2015-01-17
2015-01-17
2015-01-17

oW R

o

g e

S o m

20:08:37 [Activity]

5 [Activity]
[Activity]
[BRctivity])
[Activity]
[Activity]
[Activity]
[Activity]
[Activity]
[Rctivity])
[Activity]
[Activity]
[Bctivity]
[Activity]
[Activity]
[Bctivity]
[Activity]
[Activity]
[Activity]
[ARctivity]

Injection [Date] 11/01/2015 [Sl:alrcl{mu‘] 10h00 [EndHour] 10h20
Dress [Date] 11/01/2015 [StartHour] 10h20 [EndHour] 11h05
Dress [Date] 12/01/2015 [StartHour] 10h00 [EndHour] 10h45
Toilet [Date] 12/01/2015 [StartHour] 10h45 [EndHour] 11hd45
Toilet [Date] 12/01/2015 [StartHour] 20h30 [EndHour] 21h30
Dress [Date] 13/01/2015 [StartHour] 10h00 [EndHour] 10h45
Toilet [Date] 13/01/2015 [StartHour] 10h45 [EndHour] 11h45
Toilet [Date] 13/01/2015 [StartHour] 2ih20 [EndHour] 22h20
Dress [Date] 14/01/2015 [StartHour] 10h00 [EndHour] 10h45
Toilet [Date] 14/01/2015 [StartHour] 10h45 [EndHour] 11h45
Toilet [Date] 14/01/2015 [StartHour] 20h30 [EndHour] 21h30
Dress [Date] 15/01/2015 [StartHour] 10h00 [EndHour] 10h45
Toilet [Date] 15/01/2015 [StartHour] 10h45 [EndHour] 11h45
Toilet [Date] 15/01/2015 [StartHour] 20hl0 [EndHour] 21hilQ
Dress [Date] 16/01/2015 [StartHour] 10h00 [EndHour] 10h45
Toilet [Date] 16/01/2015 [StartHour] 10h45 [EndHour] 11h45
Toilet [Date] 16/01/2015 [StartHour] 20h40 [EndHour] 21h40
Dress [Date] 17/01/2015 [StartHour] 10h00 [EndHour] 10h45
Toilet [Date] 17/01/2015 [StartHour] 10h45 [EndHour] 11h45
Toilet [Date] 17/01/2015 [StartHour] 20h00 [EndHour] 21h05

Figure 4.18: Log file example

Using this log file and UPPAAL Model Checker, our application will now test the



4.3. Test and experimentation 91

elaborated care plan through TCTL queries in order to detect activities that have been
executed without respecting the scheduled time ranges. The TCTL queries are of type:

Ql: E<>(Se && xd —— startHour && xt —— (endHour - startHour) && xp >—
date && xp < (date + 24h))

Q2: E<>(Sw && xd == startHour && xt == (endHour - startHour) && xp >=
date && xp < (date + 24h)).

These queries mean: Are there an execution state Se and its waiting state Sw of the

label Activity where these 2 queries are satisfied?

1 2015-01-11 20:08:37 [Activity] Injection [Date] 11/01/2015 [StartHour] 10n00 [EndHour] 10820.......... OK
2 2015-01-11 20:10:37 [Activity] Dress [Date] 11/01/2015 [StartHour] 10h20 [EndHour] 11h05..........

3 2015-01-12 22:00:30 [Activity] Dress [Date] 12/01/2015 [StarcHour] 10h00 [EndHour] 10h45..........

4 2015-01-12 22:09:03 [Activity] Toilet [Date] 12/01/2015 [StartHour] 10h45 [EndHour] 11h45
5 2015-01-12 22:12:37 [Activity] Toilet [Date] 12/01/2015 [StartHour] 20h30 [EndHour] 21h30
2015-01-13 22:00:45 [Activity] Dress [Date] 13/01/2015 [StartHour] 10h00 [EndHour] 10h45..........
2015-01-13 22:01:03 [Activity] Toilet [Date] 13/01/2015 [StartHour] 10h45 [EndHour] 11h45
2015-01-13 22:05:30 [Activity] Toilec [Date] 13/01/2015 [StartHour] 21h20 [EndHoux] 22nz20..
S 2015-01-14 21:50:15 [Activity] Dress [Date] 14/01/2015 [StartHour] 10h00 [EndHour] 10h45...
10 2015-01-14 21:55:01 [Activity] Toilet [Date] 14/01/2015 [StartHour] 10h45 [EndHour] 11h45..
11 2015-01-14 21:58:25 [Activity] Toilet [Date] 14/01/2015 [StarcHour] 20h30 [EndHour] 21h30..
12  2015-01-15 21:40:45 [Activity] Dress [Date] 15/01/2015 [StartHour] 10h00 [EndHour] 10h45...
13 2015-01-15 21:42:11 [Activity] Toilet [Date] 15/01/2015 [StarcHour] 10h45 [EndHour] 11h45
14 2015-01-15 21:46:22 [Activity] Toilet [Date] 15/01/2015 [StartHour] 20hl0 [EndHour] 21n10
15 2015-01-16 22:10:45 [Activity] Dress [Date] 16/01/2015 [StartHour] 10h00 [EndHour] 10h45..........
2015-01-16 22:12:11 [Activity] Toilet [Date] 16/01/2015 [StartHour] 10h45 [EndHour] 11h45
2015-01-16 22:16:22 [Activity] Toilet [Date] 16/01/2015 [StartHour] 20h40 [EndHour] 21h20
2015-01-17 21:40:45 [Activity] Dress [Date] 17/01/2015 [StarcHour] 10h00 [EndHour] 10h45..........
2015-01-17 21:42:11 [Activity] Toilet [Date] 17/01/2015 [StartHour] 10h45 [EndHour] 11h4S
20 2015-01-17 21:46:22 [Activity] Toilet [Date] 17/01/2015 [StartHour] 20n00 [EndHour] 21h05

Figure 4.19: Result

Figure 4.19 shows the result of the monitoring. OK means that the activity was

performed respecting the scheduled temporalities and not OK means an anomaly.

4.3.4 Experimental evaluation

Here we present the performance evaluation on the proposed approach for the generation
of the home care plan automaton, the interventions generation and also evaluation on
realizability and monitoring tests. This experiment was done on four home care plans
expressed using the different temporality patterns defined in this thesis: (i) Everyday
pattern, (ii) Absolute dates pattern, (iii) Relative days pattern, and (iv) all the three
patterns together. Each home care plan is composed of four activities and planned for
one week period.

The experiment has been achieved on Intel Core i3 1.90GHZ with 4Go of RAM and
UPPAAL-4.1.19. Figure 4.20 shows the evolution of the running time (w.r.t care plan
automaton generation, realizability check, interventions generation and monitoring) and
depending on the used pattern type.

We give more explanation depending on each pattern:
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Figure 4.20: Ezecution time

e Care plan automaton generation: in this case, we note that the running time in-

creases with the number of states and transitions in different timed automata.
Indeed, when the home care plan is expressed using Everyday pattern or Absolute
dates pattern, the running time is quite low because the number of states and tran-
sitions is quite reduced in contrast with Relative days pattern. In this last one, the
number of transitions is multiplied approximatively by 7 (number of week days).
In the same way, if the care plan is expressed in term of a composition of the three

patterns the running time is even greater.

Realizability: we note that UPPAAL Model Checker supports well the scalability.
Proof, a reduced running time whatever the size of the care plan timed automaton.

Only one TCTL query is necessary to check the realizability of the care plan.

Monitoring: the running time is still also quite reasonable for the monitoring. The
slight variation in the running time is due to the number of tested information from
the log file. This corresponds to execute many times same queries related to the

different activities.

Interventions generation: As we can see, for a Relative days pattern automaton, in-
terventions generation takes more time than the two other patterns automata. This
is due to the increased number of transitions and states in this kind of automata.
However, the running time becomes higher when generating interventions for an
automaton combining the three patterns. This is due to the possible combinations

of activities resulting from the composition operator (with interventions).
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4.4 Conclusion of Chapter 4

We described in this chapter the prototype which allows to generate the care plan timed
automata from the input of temporal specifications defined for a set of activities using the
GUI. The resulting care plan automata were verified using the UPPAAL Model Checker
through XML files and TCTL queries. We exposed the technical details of the prototype
implementation which we exploited in order to conduct tests and experiments. In fact, we
tested the prototype using real home care plans. These tests allowed us to assess efficiency
of the prototype regarding the realizability, interventions generation and monitoring. In
our experiments, we have found out that the application works well for the tested home

care plans.






Conclusion

We investigated in this thesis the issues related to the design and analysis of the home
care plan. Home care plans are inherently unstructured processes. This is due to the
specificity of each patient, i.e., a specific care plan is required for each specific patient, as
well as to the irregularity of repetitive activities within a plan. Nevertheless, we showed
that using appropriate temporal expressions, it is possible to specify the schedule of such
activities. In fact, we describe in this thesis a detailed presentation of the approach
to construct temporal specification of the home care plan using a DSL. The obtained
specification plays the role of a process model that must be enacted by a business process
management or a workflow system.

In order to formally describe the home care plans constructed using the proposed
DSL, we rested on a formal framework based on timed automata. Our proposal includes
an approach to generate a formal specification of the home care plan, expressed as timed
automata. We propose a three steps approach which consists in (i) the identification of
the elementary patterns that are useful to specify the home care plans,(ii) the proposition
of a specific composition algorithm that enables to combine patterns automata to build
the activity automata, and then (iii) the construction of the global care plan automaton.
The resulting care plan automaton encompasses all the possible allowed schedules of
activities for a given patient. Once the care plan automaton is constructed, we can
benefit from model checkers to make different analysis in a declarative way. We have
illustrated realizability verification, monitoring of a care plan and grouping of activities
into interventions using UPPAAL Model Checker.

Our specification language can easily be extended in order to increase its expressivity
and its usability. Extensions are performed by introducing other patterns for defining
elementary temporal expressions. For example, patterns such as "n times per day or
per week" would be useful in a medical context. For preserving our modeling, it is
necessary to ensure that each of these supplementary patterns can be transformed into
timed automata.

The elaboration of a home care plan is an instance of the MTSPTW (Multiple Trav-
eling Salesman Problem With Time Windows) with a time windows constraint for each
activity and the optimization of interventions. In this type of problem, precedence con-
straints between tasks are very often considered. Introducing such constraints between

activities into a care plan is sometimes necessary (for example, an injection of Lovenox
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must be followed by a blood control before 15 days). Since it is possible to model prece-
dence constraints with automata, we envisage an extension of our specification language
to express this kind of constraint and to adapt our modeling into timed automata.

The interest of timed automata to model and solve planning and scheduling problems
has been addressed in previous works [124]|93|. Planning determines the possible plans
while scheduling assigns resources to activities in order to respect the various constraints.
Our approach deals only with planning preparation through the generation of interven-
tions. An interesting issue will be to study how our care plan automata can be used
to facilitate scheduling. For example, it has been shown [124] that optimal schedules
correspond to shortest paths in timed automata. In our context, such an approach can be
bind to optimal rounds after introducing distances between patients’ homes. Extension
of timed automata into priced timed automata [60| can also be worthwhile to consider
since it permits to assign costs to activities. It is important to note that, when assign-
ing resources to interventions, availability of human actors can be expressed with our
temporal expressions.

In all these works for modeling planning and scheduling problems by automata, the
specification of the problem is generally made by experts directly with the automata
formalism. It would be necessary that end users can specify directly the main constraints
of the problem. We think that our specification language can be enriched to offer such a

possibility.
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