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ABSTRACT 
Non-destructive testing methods (NDT) are essential for estimating concrete properties (mechanical or 
physical) and their spatial variability. They also constitute an useful tool to reduce the budget 
auscultation of a structure. The proposed approach is included in an ANR project (EvaDéOS) whose 
objective is to optimize the monitoring of civil engineering structures by implementing preventive 
maintenance to reduce diagnosis costs. In this thesis, the objective was to characterize at best a 
peculiar property of concrete (e.g. mechanical strength, porosity, degree of saturation, etc.), with 
technical ND sensitive to the same properties. For this aim, it is imperative to develop objective tools 
that allow to rationalize a test campaign on reinforced concrete structures. 

For this purpose, first, it is proposed an optimal spatial sampling tool to reduce the number of 
auscultation points. The most commonly used algorithm is the spatial simulated annealing (SSA). This 
procedure is regularly used in geostatistical applications, and in other areas, but yet almost unexploited 
for civil engineering structures. In the thesis work, an original optimizing spatial sampling method 
(OSSM) inspired in the SSA and based on the spatial correlation was developed and tested in the case 
of on-site auscultation with two complementary fitness functions: mean prediction error and the error 
on the estimation of the global variability. This method is divided into three parts. First, the spatial 
correlation of ND measurements is modeled by a variogram. Then, the relationship between the 
number of measurements organized in a regular grid and the objective function is determined using a 
spatial interpolation method called kriging. Finally, the OSSM algorithm is used to minimize the 
objective function by changing the positions of a smaller number of ND measurements and for 
obtaining at the end an optimal irregular grid. 

Destructive testing (DT) are needed to corroborate the information obtained by the ND measurements. 
Because of the cost and possible damage to the structure, an optimal sampling plan to collect a limited 
number of cores is important. For this aim, a procedure using data fusion based on the theory of 
possibilities and previously developed is used to estimate the properties of concrete from the ND. 
Through a readjustment bias requiring DTs performed on carrots, it is calibrated. Knowing that there 
is uncertainty about the results of DTs performed on carrots, it is proposed to take into account this 
uncertainty and propagate it through the calibration on the results of the fused data. By propagating 
this uncertainty, it is obtained mean fused values with a standard deviation. One can thus provide a 
methodology for positioning and minimizing the number of cores required to auscultate a structure by 
two methods: first, using the OSSM for the results of fused properties values in each measuring point 
and the second by the minimization of the average standard deviation over all of the fused points 
obtained after the propagation of DTs uncertainties. 

Finally, in order to propose an alternative to the possibility theory, neural networks are also tested as 
alternative methods for their relevance and usability. 

Keywords: NDT, inspection, concrete structure, optimization, spatial variability, uncertainties, data 
fusion, artificial neural networks. 
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RÉSUMÉ 
Les méthodes de contrôle non destructif (CND) sont essentielles pour estimer les propriétés du béton 
(mécaniques ou physiques) et leur variabilité spatiale. Elles constituent également un outil pertinent 
pour réduire le budget d’auscultation d’un ouvrage d’art. La démarche proposée est incluse dans un 
projet ANR (EvaDéOS) dont l’objectif est d’optimiser le suivi des ouvrages de génie civil en mettant 
en œuvre une maintenance préventive afin de réduire les coûts. Dans le cas du travail de thèse réalisé, 
pour caractériser au mieux une propriété particulière du béton (ex : résistance mécanique, porosité, 
degré de Saturation, etc.), avec des méthodes ND sensibles aux mêmes propriétés, il est impératif de 
développer des outils objectifs permettant de rationaliser une campagne d’essais sur les ouvrages en 
béton armé. 

Dans ce but, premièrement, il est proposé un outil d’échantillonnage spatial optimal pour réduire le 
nombre de points d’auscultation. L’algorithme le plus couramment employé est le recuit simulé spatial 
(RSS). Cette procédure est régulièrement utilisée dans des applications géostatistiques, et dans 
d’autres domaines, mais elle est pour l’instant quasiment inexploitée pour des structures de génie civil. 
Dans le travail de thèse, une optimisation de la méthode d’optimisation de l’échantillonnage spatial 
(MOES) originale inspirée du RSS et fondée sur la corrélation spatiale a été développée et testée dans 
le cas d’essais sur site avec deux fonctions objectifs complémentaires : l’erreur de prédiction moyenne 
et l’erreur sur l’estimation de la variabilité. Cette méthode est décomposée en trois parties. Tout 
d’abord, la corrélation spatiale des mesures ND est modélisée par un variogramme. Ensuite, la relation 
entre le nombre de mesures organisées dans une grille régulière et la fonction objectif est déterminée 
en utilisant une méthode d’interpolation spatiale appelée krigeage. Enfin, on utilise l’algorithme 
MOES pour minimiser la fonction objectif en changeant les positions d’un nombre réduit de mesures 
ND et pour obtenir à la fin une grille irrégulière optimale.  

Des essais destructifs (ED) sont nécessaires pour corroborer les informations obtenues par les mesures 
ND. En raison du coût ainsi que des dégâts possibles sur la structure, un plan d’échantillonnage 
optimal afin de prélever un nombre limité de carottes est important. Pour ce faire, une procédure 
utilisant la fusion des données fondée sur la théorie des possibilités et développée antérieurement, 
permet d’estimer les propriétés du béton à partir des ND. Par le biais d’un recalage nécessitant des ED 
réalisés sur carottes, elle est étalonnée. En sachant qu’il y a une incertitude sur le résultat des ED 
réalisés sur les carottes, il est proposé de prendre en compte cette incertitude et de la propager au 
travers du recalage sur les résultats des données fusionnées. En propageant ces incertitudes, on obtient 
des valeurs fusionnées moyennes par point avec un écart-type. On peut donc proposer une 
méthodologie de positionnement et de minimisation du nombre des carottes nécessaire pour ausculter 
une structure par deux méthodes : la première, en utilisant le MOES pour les résultats des propriétés 
sortis de la fusion dans chaque point de mesure et la seconde par la minimisation de l’écart-type 
moyen sur la totalité des points fusionnés, obtenu après la propagation des incertitudes des ED.  

Pour finir, afin de proposer une alternative à la théorie des possibilités, les réseaux de neurones sont 
également testés comme méthodes alternatives pour leur pertinence et leur simplicité d’utilisation. 

Mots-clés: CND, surveillance, structure en béton, optimisation, variabilité spatiale, incertitudes, 
fusion des données, réseau de neurones. 
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1.1. Framework and context 

Nowadays, most of the structures for human use (buildings, bridges, etc.) are made of 

concrete. It is of vital importance to ensure that they function correctly during their service life 

and it has become crucial to find a reliable and efficient method for evaluating the condition of a 

structure at different times of its life span. Traditionally, the most commonly used method for the 

evaluation of a concrete structure has been visual inspection [1]. It is usually carried out by an 

expert engineer, who defines the most degraded zones of the structure and takes some samples 

(cores) in order to refine his analysis and eventually propose a reparation procedure. This method, 

which is subjective and remains informal, can only be used when a number of pathologies in the 

concrete, like cracking and spalling, are visible. Other pathologies, such as reinforcing steel 

corrosion are difficult to identify with visual inspection alone. Besides, using only the destructive 

test extracted from the studied structure to establish a diagnosis makes it unreliable for different 

reasons: 

- The quantity of cores extracted from a studied structure element will be minimum and 

certainly not enough to make a reliable diagnosis, due to its price and how these test can 

compromise the integrity of the structure, thus, too many extracted cores could result in a 

decrease of the lifespan of the structure. 

- The concrete is a heterogeneous material and the assessment of its properties/pathologies 

can be complex due to concrete intrinsic variability. It is also due to concrete spatial 

variability that at the same time can be due to the evolution of concrete properties affected 

by weather conditions (humidity, wind, etc.) or it can also be due to concrete segregation 

due to inappropriate formulation or casting procedure. Moreover, the destructive 

measurement itself can be variable depending on how many cores are tested, the 

environmental conditions at the moment of the cores extraction, how the cores are stored 

and the type of test used to assess a concrete property in particular. 

 For that reason, non-destructive testing (NDT) is an interesting complement in the diagnosis 

of a concrete structure [2-7]. It started to be used in reinforced concrete structures due to the 

increasing need to objectively evaluate their condition. The aim was also to manage the safety of 

the structure and to eventually set up a maintenance plan [8-10]. NDT also opened up the 

possibility of preventive maintenance, which is three to twenty times less expensive than repair in 

terms of energy and financial resources [11]. This is possible because, with NDT, pathologies and 

damages in the concrete and even the reinforcing steel corrosion can be detected before their 

consequences can be observed. 

In France, the management of the concrete structures has become a subject of interest for their 

managers. They want to ensure the security, preservation and quality of service provided to the 
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users of their structures at a minimum cost. In order to do this, they have to implement an 

effective system which allows monitoring a structure by also being able to predict its evolution. 

To this aim, different research projects were carried out like SENSO, ACDC-C2D2, etc. which 

objectives were the following: 

? Combination of different NDT’s to evaluate the properties and degradation state of a 

structure by doing measurements in laboratory slabs.  

? Readjustment of the measurements made in a real structure and calculation of degradation 

indicators, which will allow to obtain an objective, useful and reliable information of the 

structure state.  

The current French ANR project EvaDéOS (Evaluation non destructive pour la prédiction de 

la Dégradation des structures et l’Optimisation de leur Suivi) also aims to take into account the 

temporal variability of the measurements to choose and to develop degradation models, in order 

to propose an appropriate maintenance strategy by ensuring appropriate levels of serviceability 

and safety at a minimum cost. This project, contrary to the past two projects, is focused in the 

reinforcement steel corrosion, induced by carbonation, which is one of the most common 

pathologies. Moreover, they are directly related to structural damage and reduction of the 

structure durability.  

EvaDéOS, contrary to other studies made before about the inspection and maintenance of 

corroding reinforced concrete structures [4], does not focus on structures already affected by 

corrosion of reinforcement steel. In contrast, the project is focused on structures that are not still 

affected by the reinforcement steel corrosion, but for which the process is likely to be initiated 

due to its specific exposure or to its age. Hence, this project takes place on a preventive stage, in 

which the indicators indicating the initiation of the corrosion (carbonation depth or chloride 

content) are not yet visible. This is why the use of NDT is vital, as well as the intervention of 

other disciplinary fields to be able to propose a complete plan, from the diagnosis to the decision 

of the maintenance strategy including the prediction of the concrete degradation.  

1.2. Thesis subject !

The project EvaDéOS is divided into 6 operational tasks as shown in figure 1.1. The task 3 

which is “Evaluation and Characterization”, involves all of the developments that are necessary 

in the domain of NDT, but also semi-destructive and destructive testing. The objectives of this 

task are: 

- The multi-technical approach for structures inspection taking into account the spatial and 

temporary variability in the measured data. 
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- The quantification of a degraded depth in the concrete presenting mechanical, physical 

and chemical properties significantly different from the ones present in the core of the 

structural element. 

- The validation and adjustment of the inputs used in the degradation models and also the 

evaluation of pathological indicators to update the outputs estimated by the degradation 

models. 

!

Figure 1-1. Operational tasks in EVADEOS project. 

The current thesis which title is “Tools to optimize non-destructive testing campaigns on 

reinforced concrete structures” focused on the first objective of task 3. It concentrated primarily 

in the development of statistical tools that take into account the variability of the concrete 

properties/pathologies obtained by NDTs, or destructive testing. The study of the combination of 

different NDT methods to obtain the most reliable information of a concrete structure was also 

made. In order to do this, different skills were needed. That is why it was planned to divide the 

development of the thesis in three French laboratories with different, but complementary 

specialties.  

One of the laboratories is the I2M. It is located in the city of Talence at the University of 

Bordeaux 1. This laboratory is specialized in some NDT like Electric Resistivity and Rebound 

hammer. It is also specialized in geostatistics applied to civil engineering, especially in the 

domain of spatial variability. They also specialized NDT combination methods like neural 

networks and surfaces of response. Another laboratory is the LMA-LCND. It is located in the 

city of Aix en Provence at the University of Aix-Marseille. This laboratory is specialized in the 

Ultrasonic technique, as well as a data fusion method called Theory of Possibilities. The last 

laboratory involved in this thesis is the LMDC, located in the city of Toulouse at the University 

Paul Sabatier – INSA Toulouse. This laboratory is specialized in the Ground-Penetrating Radar 

(GPR) and electrical resistivity method, as well as the neural networks as a NDT combination 

Task 1 

EvaDéOS 

Task 2 

Task 3 

Task 4 

Task 5 

Task 6 

Management and coordination 

Evaluation and characterization 

Prediction and degradation models 

Reliability and decision  

Validation and valorization 
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method. As it can be seen, the three laboratories have different and complementary skills for the 

development of this thesis.  

As it was said before, to estimate the degradation state of a concrete structure, it is important 

to plan a maintenance strategy at a minimum cost. For that aim, the development of an optimal 

diagnosis process is mandatory. Until now, projects like SENSO and ACDC have focused in 

developing the different NDT methods and have also developed a data fusion method to obtain 

the most reliable information of the properties of a concrete slab or structure. However, it is 

important to emphasize that often the diagnosis is limited by a budget. Hence, it is important to 

develop an optimal methodology for the assessment of concrete properties on real structures, 

taking into account variability of both NDT and DT. This was the main objective of this thesis.  

The first axe of the thesis was about the study of the spatial correlation and variability of 

NDT for creating an optimal spatial sampling that will eventually be useful to plan this strategy. 

Its objective would be to evaluate the properties of a concrete structure accurately using a 

combination of fast and low cost NDT, higher quality NDT and eventually semi-destructive or 

destructive testing obtaining a convenient cost/benefice ratio (figure 2.2). The optimal location of 

the few semi-destructive or destructive testing (DT) would be obtained by two different methods. 

The first one consists in taking into account the spatial variability of the concrete properties 

obtained by a NDT combination method, data fusion or artificial neural networks (third axe of 

the thesis), to later locate optimally a fixed number of DTs using the spatial sampling method 

developed, thus, reducing the estimation error on the original field. The other one, treated in the 

second axe of the thesis, seeks the reduction on the number of DTs and their optimal location by 

studying the sensitivity of the error obtained on the concrete properties estimated by data fusion. 

This error is obtained by introducing and propagating a fixed value of DT uncertainty through 

the data fusion process.  
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!

Figure 1-2. Optimal inspection strategy. 

In this manuscript, a state of the art of the knowledge necessary to develop the proposed 

approach is presented (chapter 2). This knowledge includes destructive testing variability on 

laboratory and on-site samples, non-destructive and destructive testing spatial variability for on-

site measurements, and the description of three NDT combination methods commonly used 

(surface response, data fusion and artificial neural networks). Moreover, this work was divided in 

three principal axes, which are at the same time concatenated and valuable to propose a reliable 

diagnosis strategy at a minimum cost. The first one (chapter 3), is the spatial variability analysis 

of NDT measurements, which objective is to propose an optimal spatial sampling of NDT 

measurements and coring of samples for complementary semi-destructive or destructive testing, 

taking into account the spatial correlation of NDT measurements of concrete properties obtained 

by a NDT combination method. The second one (chapter 4) consists on propagating the 

variability (uncertainties) of the concrete properties (porosity, water content, carbonation, etc.) 

obtained by destructive testing, through a NDT data fusion process developed in the ACDC 

project. The third one (chapter 5) consisted on testing a NDT combination method different to 

the data fusion one (Artificial Neural Networks) and comparing their performances. For this to 

be possible, it was used and exploited all the data concerning measurements of NDT made in 

SENSO and EVADEOS projects by the laboratories involved and their collaborators. Finally, an 

on-site application of the developed methods is presented (chapter 6). 
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2.1. Introduction  

The diagnosis of concrete structures has become an important issue due to the ever-

increasing need for maintenance and repair interventions on structures. More importantly, the 

continuous increase of building costs often makes repair operations economically more viable, 

even if the deterioration of the structure is at an advanced stage. However, the diagnosis has its 

own cost, and it must be included in the maintenance/repair budget. Throughout the years, 

different strategies and methods have been used and normalized in different countries to 

evaluate the degradation state of a structure and for establishing a diagnosis. The strategies are 

usually based in the identification and evaluation of different pertinent properties of the concrete 

(i.e. compressive strength, water content, porosity). However, must of these strategies have 

focused on destructive tests that are variable, due to several factors like: the test protocols, the 

size of the samples/cores, the few number of samples/cores that are tested, etc. Besides, these 

samples are rather made in laboratory, where the conditions are not as the on-site conditions, or 

taken from a part of a structure, which will not be representative of the structure concrete actual 

state. Moreover, these strategies are also time/budget consuming, which leads to propose new 

strategies that include non-destructive testing (NDT), to obtain a more complete and less 

expensive assessment without decreasing the quality of the final diagnosis. 

 Nevertheless, the use of NDT adds a layer of uncertainty to the already uncertain concrete 

evaluation. NDTs measurements can also be variable or uncertain, due to factors such as 

weather conditions at the moment of measurement (temperature, humidity, etc.), the NDT used, 

among others. Hence, to reduce the uncertainties on the use of NDTs, different NDTs can be 

combined to evaluate a certain concrete property, reducing the variability or uncertainty of the 

measurement that each NDT may have. However, these combinations are often based on 

laboratory results, thus, it is difficult to obtain satisfactory results for an on-site case. This 

trouble will lead to the use of a calibration process that includes on-site NDT measurements and 

some destructive tests results from extracted cores.  

In this chapter, a state of the art of different methodologies used throughout the years to 

evaluate the actual state of an existing concrete structure is presented. From destructive testing, 

passing through non-destructive test, to finally arrive to a combination of the two of them. It 

will also be shown different statistical tools that have been used in other fields with different 

purposes, and that have been slowly successfully incorporated into concrete structures 

evaluation.  

2.2. Concrete variability 

The concrete is a complex material which heterogeneity depends on many factors like the 

natural variability of its constituents, its formulation, the quality of vibration and compaction, 
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the initial concrete temperature, its evolution on different environmental conditions, etc. As a 

consequence, evaluating its initial quality and aging evolution has always been of major interest 

not only for structures monitoring, but also for structural design calculations during its service 

life.  

Different evaluations are taken into account to assess different concretes or/and concrete 

properties or pathologies that are called indicators. For instance, Breysse [1]! presents three 

principal categories of indicators: mechanical (e.g. compressive strength, Young’s modulus), 

physical (e.g. porosity, water content) and linked to pathologies (e.g. carbonation, chloride 

content). These categories can provide a reliable concrete performance as they consider both 

mechanic and durability indicators. Traditionally, the methods used to evaluate different 

concrete properties (most of them focus on assessing the compressive strength of the concrete) 

are: i) destructive test on samples made in laboratory on controlled conditions, ii) destructive 

test on samples made with the same structure concrete or iii) destructive test on cores extracted 

directly from the structure. The two first methods provide what is usually called potential 

concrete properties and the third one provides actual concrete properties. In the following 

sections, indicator results will be compared by their mean values and their coefficient of 

variation (COV), which is the relationship between the mean and the standard deviation of the 

studied data samples. A high value of COV indicates an important variability of the measured 

indicator result, hence, a bad estimation of the studied indicator. Besides, the COV is also 

highly influenced by the number of samples used to estimate it, as it is noticed in the next 

sections. 

2.2.1. Destructive test on laboratory samples 

This kind of studies, were performed in the late nighties mostly to calibrate the existing 

standards to assure repeatability on laboratory destructive tests. For this aim, the projects 

AFREM “Durabilité des bétons” and GRANDUBE [2,3] performed different destructive tests to 

assess two indicators: carbonation and porosity, to compare different tests and concretes.  

For porosity, two concrete types were used: a B25 and a B80. The maximal dimension of 

aggregates was 20mm. The cylindrical samples (30 for B25 and 30 for B80) were poured and 

held in a wet room for 60 days. The tests were made according to standards ISO 5017 and ISO 

6275 with drying temperatures of 60°C, 80°C and 105°C. Table 2.1 shows the mean and 

coefficient of variation (COV) of porosity for the two studied concretes at the three drying 

temperatures.  
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Table 2-1. Mean and coefficient of variation (COV) of porosity obtained with the two standards 
(ISO 5017 and ISO 6275) for the two studied concretes, at the three drying temperatures with the 

two standards [2]. 

  
ISO 5017 ISO 5017 ISO 5017 ISO 6275 

60°C 80°C 105°C 105°C 

B25 
Mean 16.6 17.2 18.1 17.7 

COV (%) 5.2 5.9 4.0 8.4 

B80 
Mean 6.7 8.6 11.8 11.1 

COV (%) 12.4 17.6 3.0 12.8 

The conclusions for this study pointed that the results of the measured porosities for B25 

after drying at 60°C, 80°C and 105°C increased slightly with the drying temperature but their 

values are close. In the case of B80, the drying process at 60°C and 80°C does not allow water 

draining from the samples quickly enough: after 30 days of drying the masses are not still 

constant. Only drying at 105°C allows a stabilization of the mass after a reasonable time length. 

At 105°C, the COV of the distribution of results is minimum for both concretes and, the values 

obtained at 105°C according to ISO 6275 are similar to those obtained according to ISO 5017. 

However, the COVs of porosity obtained with ISO 6275 is two to three times more important to 

the COVs obtained with the ISO 5017. The difference can be explained by the saturation 

methods used by both standards. For ISO 6275, the saturation is made by the immersion of the 

sample, while for the ISO 5017 is a vacuum saturation. Both saturation methods have the same 

aim, but the vacuum saturation is faster and according to COV values, ISO 5017 is more 

accurate. 

Additionally, another study was made for carbonation [3]. The objective was to define more 

precisely the modalities of implementation of an accelerated carbonation process, in order to 

ensure the reproducibility of tests. The tested concrete was a B35. The cylindrical samples (4 for 

each laboratory involved in the study) were poured vertically and underwent the curing process 

in a wet room for 28 days. The CO2 rate was of 50%, the preconditioning was made in two 

parts: saturation and then 2 days of drying at 40°C. The relative humidity was regulated at 65%. 

Table 2.2 shows the mean value and the coefficient of variation of carbonation depth obtained 

by 6 different laboratories for different times of carbonation exposure (0, 7, 14 and 28 days). 

Table 2-2. Mean value and coefficient of variation of carbonation depth obtained by 6 different 
laboratories for different times of exposure (0, 7, 14 and 28 days) [3]. 

Time in 
days 

B35 

Mean (mm) COV (%) 
0 0 0 
7 6.8 17.1 

14 9 15.7 
28 11.7 11.8 



Chapter 2:!Diagnosis of concrete structures - State of the art 

28 
 

As it can be seen, the coefficients of variation are not important, but it can be explained 

mainly because of the exchange between the gas mixture and the concrete: CO2 migration and 

water exchange. The local conditions in the vicinity of the surface of a test sample, the relative 

humidity of the gas mixture between others, are likely to be influenced by the presence of other 

test samples located near the studied sample.  

To conclude this study, it was suggested that the critical factors to take into account for 

ensuring the reproducibility of the accelerated carbonation test were: the definition of a 

fabrication method of test sample, the identification of a preconditioning and the choice of an 

identical CO2 content. Moreover, it was suggested to study the comprehension and if any, the 

control of the interactions, such as water exchange that may exist between different concrete 

samples during the accelerated carbonation test. 

Finally, for assessing the concrete compressive strength by destructive test, many studies 

have been made considering different factors that can have an influence in the obtained 

compressive strength value, for instance, the diameter of the cylindrical sample. Neville, in his 

study [4], concludes that it is necessary to use 3 times more cylindrical samples of 50 mm of 

diameter than samples of 100 mm. The European program of measurement and testing [5] 

concludes in their study that samples of 100 mm of diameter have a compressive strength of 

approximately 7% superior than samples of 50 mm of diameter. Moreover, Nibikin and al. [6] 

made a study over 300 samples of 50 and 75 mm of diameter for two different kinds of 

concrete. The conclusion that can be seen in figure 2.1 was that the compressive strength 

decreases with the augmentation of the l/d radio, where l is the length and d is the diameter of 

the sample. 

!

Figure 2-1. Compressive strength from the samples with 50 mm and 75 mm of diameter in function 
of l/d ratio. 
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 Another factor that can modify the compressive strength value is the type of curing. A study 

made by Lydon et al. [7], compared 48 samples made with 8 different concretes submitted to 3 

different curing methods: i) submerged in water at 20ºC, ii) sealed in two layers of plastic film 

and two of aluminum foil and iii) placed in a room at a constant temperature and humidity 

(20ºC and 68% RH), named CTHR. Table 2.3 shows that for different curing methods the 

coefficient of variation of the cubic compressive strength varies between 18 % and 21 %. 

Table 2-3. Mean value and coefficient of variation of the cubic compressive strength obtained with 
different samples summited to the three different curing methods (Water, Sealed and CTHR). 

Curing 
method 

Mean 
(N/mm2) 

COV (%) 

Water 60.8 21.0 
Sealed 59.6 18.0 
CTHR 57.3 20.4 

As it can be seen above, different factors can have a great influence in the moment of 

obtaining a reliable and constant compressive strength value on samples. This could be 

confirmed by a study made by COFRAC [8]. Different samples, which diameters vary between 

59 and 95 mm were extracted from 3 years old concrete blocks. They were tested by different 

laboratories to obtain the respective compressive strength value. At the end of the study, the 

mean compressive strength value obtained was of 38.7 MPa with a COV of around 15%, which 

is significant.   

2.2.2. Destructive testing on samples made with the same concrete structure 

The quantification of on-site concrete variability has been of major interest to include it on the 

models for the prediction of the lifespan of a structure. Notably, the studied indicators to be 

injected in these models are the mechanic properties, like the compressive strength or the 

Young’s modulus, and durability indicators, such as the water content, porosity, chloride 

migration, carbonation, etc. The project APPLET [9] developed a large experimental program 

on two sites: the A86 tunnel on west Paris and the viaduct of Compiègne. Two different kinds 

of concretes (A1 and A2 respectively for each site) were tested in order to accomplish this 

objective. Forty cylindrical samples in total were made at the same time the concretes A1 and 

A2 were poured on their respective sites.  

Different test were made in order to characterize both concretes. Table 2.4 shows the mean 

and coefficient of variation values for: compressive strength, Young’s modulus, porosity, water 

content, chloride migration and carbonation depth for A1 and A2.   
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Table 2-4. Mean and coefficient of variation values for compressive strength, Young’s modulus, 
porosity, water content, chlorates migration and carbonation depth for A1 and A2 [9]. 

!
A1 A2 

!
Mean COV (%) Mean  COV (%) 

Compressive strength (MPa) 83.8 10.5 71.9 12 
Young’s modulus (GPa) 46.8 6.2 40.8 7 

Porosity (%) 12.9 7.9 14.3 7 
Water content (%) 4.3 8 4.9 8 

Chloride migration coefficient (10-12 m2/s) 2.53 12.4 2.56 21.9 
Carbonation depth (Accelerated 
carbonation) (mm) 

4.3 37 10.1 33 

As it can be seen, the coefficients of variation are very similar between concretes A1 and A2, 

except for the chloride migration, which varies by 10% between A1 and A2. This study also 

allowed establishing a suitable probability density function for each studied property, which 

would be very useful for probabilistic approaches for service life prediction models. One could 

select from the database the parameters that are relevant for a new study in terms of physics and 

chemistry (indicators evaluation) but also for indicators sensitivity: depending on the considered 

phenomena and the associated modeling some indicators with low variability may have a 

pronounced influence on the outcome and vice versa. Table 2.5 shows the retained density 

functions for the different studied indicators.  

Table 2-5. Retained density functions for the different studied indicators [9]. 

Studied indicators  Retained density functions 
Compressive strength  Lognormal, normal 

Elasticity modulus Lognormal, gamma 
Porosity Lognormal, gamma 

Water content Not available  
Chloride migration coefficient  Lognormal 

Carbonation depth  Weibull, normal 

2.2.3. Destructive test on cores extracted directly from the structure 

As it is known, samples made with the same structure’s concrete do not reflect the actual 

structure’s state, because these samples are not exposed to the same conditions as the structure 

(mechanical and environmental). This is the reason for which other studies have been made in 

order to assess on-site concrete by extracting several cores from a structure element and making 

destructive tests to obtain the different mechanic and durability indicators.  

Such is the case of the Punta Perotti’s building in Italy [10]. It was a building of more than 

10 years old, exposed to aggressive environmental conditions, such as its proximity to the sea 

and its location on a windy area. Thanks to its later demolition, a huge experimental campaign 

could be made to assess the concrete’s compressive strength on each floor of this building. A 
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total of 103 cores were extracted from the interior columns of floors -1 (47 cores) and 2 (56 

cores). For both floors, figure 2.2 shows the histogram of the compressive strength and table 2.6 

shows the mean and coefficient of variation of the compressive strength. 

!

Figure 2-2. Histogram of the compressive strength for both studied floors. 

Table 2-6. Mean and coefficient of variation of the compressive strength for both studied floors. 

Floor Mean f (MPa) COV (%) 

-1 33.0 18.3 

2 28.2 14.4 

It was expected that the compressive strength at floor -1 was higher, due to its lower location 

(granulate segregation at the moment of casting). Nevertheless, the coefficient of variation for floor 

2 is smaller than the one of the floor -1. This can be explained looking at figure 2.2, which shows 

greater measurements dispersion for floor -1. From figure 2.2 it can also be observed a normal 

distribution of the compressive strength for both floors, in accordance to the results found on the 

table 2.5 from the APPLET project. However, from table 2.5 and table 2.4 it can be concluded, as it 

was expected, that on-site extracted cores have a coefficient of variation greater than on-site 

samples. 

Another study made by Pucinotti [11], aims specifically to assess the compressive strength of 

on-site concrete. For this objective, 359 cores were extracted from samples made at the Laboratory 

for Materials and Structures of the Mediterranean University of Reggio Calabria (Mod IF, Mod AB 

and Mod CD) and from thirteen existing structures in Italy: four buildings (Mend 1, Mend 2, Mend 

3 and Mend 4), three road viaducts (STR3, STR5 and STR7) and six road tunnels (STR1, STR2, 

STR4, STR6, STR8 and STR9). Structures STR were built in the province of Reggio Calabria 

between the years 2004 and 2008. Table 2.7 shows the mean and coefficient of variation for each 

one of the studied elements. 
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Table 2-7. Mean and coefficient of variation values for each one of the studied structure elements. 

Core type Mean f (MPa) COV (%) 
Mod IF 26.5 18.9 

Mod AB 35.4 17.0 
Mod CD 32.9 18.3 

Mend 1 21.7 18.5 
Mend 2 15.9 25.1 

Mend 3 27.6 17.0 
Mend 4 36.2 13.1 

STR 1 37.8 9.3 
STR 2 45.8 13.0 

STR 3 38.0 10.5 
STR 4 41.9 11.9 

STR 5 42.9 15.4 
STR 6 32.4 16.5 

STR 7 37.2 15.4 
STR 8 33.9 7.7 

STR 9 37.1 17.7 

As it can be seen, for the smallest mean compressive strength value (Mend 2) the coefficient of 

variation is the highest. However, for the highest mean compressive strength value (STR 5), the 

coefficient of variation is not the smallest. This can be explained by the difference between the 

numbers of cores used for each structure. Moreover, the smallest COV values (STR 1 and STR 8) 

correspond to high compressive strength values above all structure elements mean values, and they 

also correspond to structures where a high number of cores were extracted (52 and 28 cores 

respectively). In this study, compared to the previous one, COV values vary significantly and 

compared with the A1 and A2 concretes (COV sample values from table 2.5), all COV values from 

table 2.7 are not more important, which indicates the influence of the location and number of the 

extracted cores at the moment of evaluating a concrete structure indicator. A higher indicator COV 

can be obtained from the same structure element, rather if the indicator is not homogeneously 

distributed along the structure element (very different indicator values in different parts of the same 

structure element), or if the number of cores extracted is too small to be representative. 

Another study made by Masi et al. [12], shows the effect of measuring a concrete property in 

different parts of a structure element. This study compares compressive strength values from cores 

extracted from different parts of a beam from an Italian school building. The beam was divided in 

zones, making the difference between the superior and inferior side (E and F), lateral sides (A, B, C 

and D) and end sides (G and H) at both ends of the beam (Figure 2.3). Moreover, another three 

zones were discriminated along the beam: beginning, middle and end. A total of 37 cores were 

extracted from this beam: 
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- thirteen cores from the inferior part of the lateral side (B-D), 

- ten cores from the superior part of the lateral side (A-C), 

- six cores from the superior side (E-F) and, 

- eight cores at the end sides (G-H). 

 Figure 2.4 shows their location.  

!

Figure 2-3. Zones of the studied beam. 

!

!

Figure 2-4. Location of the 37 extracted cores. 

The mean value of the compressive strength for the beam is 23.1 MPa with a coefficient of 

variation of 21 %. However, if we take a look at table 2.8, where the mean compressive strength 

values are discriminated by zones (A-C, B-D, E-F and G-H), it can be clearly seen that the 

smallest mean value is obtained from the ends of the beam, followed by the mean value at the 

superior side. This can be explained, because of the solicitations at these parts of the beam for 

the G-H zone, and due to the effect of consolidation over bleeding for the E-F zone. Moreover, 

it can be seen that the COV value is the biggest between all zones, which can be explained by 

the combination of the effect of consolidation over bleeding and the small compressive strength 

value detected at the beginning of the beam (13.3 MPa). 
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Table 2-8. Mean and coefficient of variation values of compressive strength for the different studied 
zones of the beam. 

Zone Mean f (MPa) COV (%) 
A-C 25.2 14 

B-D 25.3 14 
E-F 19.5 31 

G-H 17.2 18 

This study, which discriminates zones of a structure element, shows very clearly that an 

indicator should not be evaluated with standard statistics (mean, COV, etc.). A more complex 

study of the variability of a concrete structure element should be made to discriminate critical 

zones for a diagnosis on a studied structure element. 

2.3. Spatial variability of concrete 

2.3.1. Introduction 

The spatial variability represents the heterogeneity of a studied data set distributed on a 

studied structure element, such as the amount of erosion on a field or material’s properties on a 

structure element. In the case of concrete, this spatial variability can be represented as variations 

of mechanical and physicochemical properties, or problematic areas in the elements of a 

structure. It can result from the intrinsic variability of the material, like the size or nature of the 

aggregates, its implementation or its exposure conditions, such as the temperature or humidity 

[13-15]. Determining the spatial variability in a structure would have a great implication on 

damage assessment of different parts of a structure or for reliability analyzes [16]. 

Spatial variability on concrete properties can be quantified by destructive, semi-destructive 

and non-destructive tests. The experimental data is normally analyzed with statistical and 

geostatistical tools. If spatial variability is determined by standard statistics (mean, COV, etc.), 

the property’s data set of points are considered independent, in other words, each point value is 

independent from the others. In this case, the property variability is expressed in terms of 

standard deviation or coefficient of variation. However, most of the time, it can be said that, for 

a given number of measurements distributed on a surface, two close measurements have a 

higher similarity than two more distant ones. This spatial dependence can be noted as a spatial 

correlation, which can be crucial at the moment of reliability calculation for a structure element 

[17] and, at the same time, it can be represented by a geostatistical function known as the 

variogram [18].   

2.3.2. Spatial correlation: Variogram 

The variogram is defined as half the variance of the difference between two data items from 

two different locations separated by a distance h (Equation 2.1). 
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 ! ℎ = !
!!"# ! ! − !(! + ℎ)                                       (2.1) 

For a series of observed measurements with a limited series of pairs separated by a distance 

h (N(h)), an empirical variogram can be determined as: 

 !! ℎ = !
!!!(!) !"#!(!)

!!! ! !! − ! !! + ℎ !.                                                      (2.2) 

For each empirical variogram, a model can be fitted by the least squares method to obtain a 

mathematical function that can be used later to compute the expected value of the measurement 

at any additional point. Figure 2.5 shows an example of a variogram model (spherical type) that 

can be fitted to an experimental variogram (2.3):                                                                  

                      (2.3)              

In equation 2.3, three main parameters can be inferred: nugget (Co) that describes the 

variance of a measurement made several times at the same location (uncertainty due to lack of 

repeatability), sill (Co+C) that represents the global variance (global variability of the material 

tested on the structure), and range (a) which represents mathematically the maximum distance 

where data are correlated. 

!

Figure 2-5. Empirical variogram and the fitted model with its parameters. 

From figure 2.5, it can be deduced visually the correlation length, which is the real 

maximum distance where data are correlated. It provides information about the necessary 

sampling distance, such as to get statistically quasi-independent measurements. There are 

different variogram models that can be fitted to a certain experimental variogram. The most 

commonly used, are the spherical, exponential and Gaussian variograms. Its choice is usually 

a<h<0 if        0.5 -
h

 1.5 C)(Co=(h)
3

!
!
"

#

$
$
%

&
'
(

)
*
+

,
+

a

h

a
γ

a>h if        CCo=(h) +γ



Chapter 2:!Diagnosis of concrete structures - State of the art 

36 
 

made by experience [19]. Figure 2.6 shows other examples of commonly used variogram 

models that can be fitted to an empirical variogram.  

Name Equation Form 

Gaussian 

 

 

Exponential 
 

 

Linear 
 

 

Figure 2-6. Examples of commonly used variogram models that can be fitted to an empirical variogram. 

Other possible way of modeling spatial correlation is by establishing a covariance function. 

This function, contrary to the variogram, tends to zero when the distance between two points 

tends towards infinity. This means that the two points values separated a distance h are 

independent from each other. This covariance function C(h), can be expressed by the equation 

4, and it is also in function of the range (a) and the sill C. 

! ℎ = !. exp − !
!                    (2.4) 

Few studies have been made regarding the indicators spatial correlation on a concrete 

structure element. De Larrard, for instance, made different measurements of porosity (ϕ), 

coefficient of tortuosity (τ) and the overall thermal activation parameter of the leaching kinetics 

(ko), on concrete cores extracted from two vertical and one horizontal line of a concrete wall 

[20]. His objective was to establish a spatial autocorrelation of properties on the studied wall. 

Figure 2.7 shows the different covariance functions for the three lines and the three studied 

properties and table 2.9 shows the different correlation lengths found for the three studied 

properties. Peculiarly, in this case, the found correlation lengths are the same for the three 

studied lines. However, due to the low number of measurements made, the correlation lengths 

and the covariance functions may easily vary with more number of measurements. 
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!

Figure 2-7. Different covariance functions for the three studied lines of the studied wall and the three 
studied properties (ϕ, τ and ko). 

Table 2-9. Different correlation lengths found for the three studied properties (ϕ, τ and ko). 

Property Correlation length 
(m) 

Porosity (ϕ) 0.4 -2 

Coefficient of 
tortuosity (τ) 1.2 - 2.3 

Thermal activation 
parameter of the 

leaching kinetics (ko)  
1.2 - 2.1 

 

Another study made by O’Connor [21], aims to model the spatial correlation of surface 

chloride concentration and the apparent coefficient of diffusion. He did it by making destructive 

test on extracted cores of a beam from Ferrycarring Bridge in Ireland. Figure 2.8 shows the 

experimental and fitted Gaussian models with correlation lengths of 1-2 m for both indicators. 

Only 5 cores were extracted for testing. Hence, the variogram may not be reliable. 

!

Figure 2-8. Experimental and fitted Gaussian models for the studied indicators: surface chloride 
concentration (Ce) and the apparent coefficient of diffusion (Dapp). 

The previous studies showed that the spatial modeling of an indicator is made by 

destructives test on a very few number of samples limiting their reliability.  However, NDTs can 

also be modeled spatially and as they are sensitive to indicators, they can show the spatial 
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distribution of an indicator indirectly. Nguyen [17], shows an application of spatial modeling of 

two NDTs measurements (rebound hammer number (RH) and indirect ultrasound velocity 

(IUV)), on a bridge pile in Marly-France. Figure 2.9 shows the experimental and fitted spherical 

model for IUV and fitted exponential model for RH. The correlation lengths for both NDTs 

were of 40 cm. These variograms were estimated with a total of 30 IUV and 24 RH 

measurements, which makes them more reliable than the ones of the previous studies. 

!

Figure 2-9. Experimental and fitted variograms for the studied NDTs: a) IUV and b) RH. 

In these two first sections, it has been studied two ways of evaluating the concrete on a 

structure element through the variability of its indicator (mechanical or durability): the first one 

being punctual, concerns the concrete variability as a material and, the second one being 

continuous, concerns the modeling of the spatial variability of a concrete indicator on a structure 

element exposed to environmental conditions for a period of time. It is very difficult to 

dissociate both kinds of variability in the case of concrete. Hence, from now on they would be 

treated together as one. Besides, the difficulty to make a reliable spatial correlation modeling of 

a concrete indicator by destructive testing (generally very few number of measurements 

available) or, the impossibility to evaluate a structure element indicator by only destructive 

testing, lead us to considerate an alternative by NDT evaluation, which do not compromise the 

integrity of the studied structure and it is less expensive than destructive testing. Hence, the 

number of measurements can be increased significantly, increasing also the available 

information on the structure indicators to consequently increase the quality and reliability of the 

indicators assessment on a studied structure.  However, the results from this section may be 

useful as a reference to posterior studies related to DTs uncertainty or for the calibration of 

indicators obtained by the combination of NDTs, in order to improve the NDT evaluation. 
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2.4. Concrete evaluation by combining NDT methods 

2.4.1. Relationship between NDT and indicators 

As it could be seen in the previous sections, concrete is a complex material that cannot be 

characterized like a fabricated material, such as the steel that is mostly homogeneous and its 

properties are well identified. Several studies have focused on the estimation of concrete 

indicator variability or the spatial indicator variability of a structure element by destructive tests 

[2-12, 23-27]. The issue is that to be able to make reliable studies for an entire structure 

element, it is necessary to extract a huge amount of cores, which can compromise the integrity 

of the studied structure element. It must also be counted the fact that the extraction of cores to 

make destructive test can be very expensive.    

An alternative way for evaluating concrete indicators is by doing non-destructive tests. These 

methods are not only less expensive than the destructive ones, but they are also of easy 

implementation. NDT have traditionally been used on geology, due to the large studied 

surfaces. Civil engineering applications, most specifically, on concrete structures, were 

implemented in the nineties mostly to detect defects like cracks or voids in concrete [28-30]. 

Other more recent studies have focused on the evaluation of an indicator of a concrete structure 

element by the combination of NDTs and destructive tests (DT) [10, 31-36]. Most of them use 

one or several NDTs that are sensitive to an indicator. For example, while acoustic methods 

(e.g., ultrasound) are sensitive to mechanical properties and porosity, electric and 

electromagnetic methods are sensitive to water content and chloride contamination. However, to 

link a NDT to an indicator, it is important to choose correctly the information of the technique 

that is going to be useful to determine the required indicator. In the case of compressive 

strength, ultrasound pulse velocity (UPV) and rebound hammer number (RH) are often used 

together with some DTs to establish a correlation law. This is because UPV and RH are 

recognized to be sensitive to mechanical concrete properties. The use of both methods together 

reduces the uncertainty on compressive strength evaluation. 

The problem of using NDTs is that even if they are related to the indicators, their relation to 

them is not constant. This is due to uncertainties encountered related to several factors like: 

material and exposure heterogeneities, limited measurement precision or quality of available 

data, and model uncertainties due to simplifications [37]. Breysse made a review of the 

assessment of concrete strength by ultrasound pulse velocity and the rebound hammer number 

by taking into account several correlation laws obtained in different studies [38]. The most 

common ones are the power law, linear law, polynomial and exponential laws (Table 2.10).!

None of the laws are related to each other and, besides, the results obtained have a degree of 

uncertainty. This study demonstrates that there is no universal law to assess the compressive 
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strength on concrete or any other indicator and that a model is established only from the actual 

measurements. Moreover, the quality of the assessment strongly depends on the model used and 

the quality of measurements. 

Table 2-10. Number of existing models in the literature for concrete strength estimation [38]. 

Model type Form fc = f(US) fc = f(R) 

Exponential X = a ebY 26 8 
Power  X = a Yb 17 31 
Linear X = a Y + b 18 28 

Polynomial (2) X = a Y2 + b Y + c 6 15 

In France, in order to approach this problem in a more objective way, a national project 

called SENSO was implemented [39]. The objective of this project was to establish correlation 

laws between NDTs and indicators. For this aim, several laboratory samples were made, with 

different kind of concretes and different saturation degrees. Several NDTs were used and by 

means of a statistical analysis the most relevant NDT information/measurements were selected. 

These relevant measurements are called Observable. Five non-destructive methods and 17 

observables were chosen after a large database analysis [40]. Table 2.11 shows the different 

observables chosen and their sensibility to the indicators (porosity, saturation degree and 

compressive strength). 

It is to be expected that all chosen observables have not the same reliability. To assess the 

quality of each observable, one must be able to determine the uncertainties of measurements 

for each observable. A measurement may be wrong, thus, it must be removed from the 

calculation. It can also be imprecise (noise measurement) or, it can be inconsistent (drift on the 

measurements) [41]. These uncertainties on the observables measurements can lead to a low 

quality of the established correlation law. However, these uncertainties can be limited by 

increasing the number of measurements in a limited area considered homogeneous, or by 

eliminating imprecise and extreme values. 
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The mentioned uncertainty on NDT’s observables can also be quantified by the variability. 

This can allow the estimation of the number of measurement necessary to obtain a punctual 

value with a given confidence level [42-43].  

Three kinds of variability were identified on the ACDC and SENSO French projects [17], 

which represents different scales of the NDT studied: 

" Punctual, which represents the repeatability of the measurements made on the same point. 

It reflects the measurement error due to the equipment, the study protocol, or 

environmental conditions at the moment of the measurements, like the temperature or the 

humidity. 

" Local, which represents the intrinsic variability of the concrete at a local scale or the 

reproducibility of the measurements. It reflects the concrete’s heterogeneity due, for 

example to the casting.  

" Global, which represents the concrete variability on a larger scale, like a concrete batch. 

As the correlation laws were established for a limited range of validity, not all the possible 

concretes are included in these estimated correlation laws. Nevertheless, it is always possible to 

estimate out of the valid range, but the quality of the estimation decreases with the increment of 

the validity field interval. Thus, for another concrete not included for estimating the correlation 

laws, for example an in-situ concrete, a calibration process should be required.   

The calibration is normally based on DTs made on extracted on-site cores. However, as 

mentioned before, their number must be limited, thus, the importance of their pertinent 

location. Two approaches are proposed by the EN 13791: the correlation (A) and the 

calibration (B). The approach A consists on identifying a specific law in the form of a 

correlation curve based on experimental measured data and, the approach B consists on 

recalculating the estimated value by a chosen law (already defined). In the study mentioned 

above and made by Breysse [38] based on synthetic data simulations it is shown, that for a 

number of cores (N) higher than 5, approach A is more reliable. For N equal to 5, both 

approaches have the same reliability. For N between 3 and 4, approach B is more reliable. 

Finally, for N between 1 or 2, it is only possible to use approach B, but the uncertainty can be 

pretty high.  

Studied observables may also be sensitive to several indicators simultaneously as shown in 

table 2.11. When the variability of these indicators is not controlled, the value obtained directly 

of the evaluated indicator can have a high uncertainty. Hence, to improve the correlation 

between the studied indicator(s) and the NDTs, studies on the combination of NDTs have been 
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made since the sixties. Malhotra cited in his paper [30], that a higher correlation is expected if 

the ultrasonic and rebound methods are combined for the determination of compressive 

strength, rather than use them separately. 

However, combining the methods does not prevent them from technical limitations attached 

to each one of them. The quality of an evaluation can be affected by several factors. Such as, the 

characteristics of the inspected concrete, the spatial or temporal (evolution) variability of the 

concrete indicators, the form of the correlation law used, and errors related to measurements if 

measurement conditions are not well controlled.  

As it is the case for one technique, the interest of a combination must be weighed against the 

evaluation quality, the increased cost related to the number of measurements and to "expensive" 

methods, the technique accessibility for constrained auscultation, and the complexity in the 

interpretation of the results. 

The following sections describe three combination methods used in the frame of ACDC, 

SENSO and EVADEOS projects to assess the indicators on auscultated concrete structures: 

response surface, data fusion and neural network. These approaches will be detailed, as well as 

their interest and applications will be mentioned. 

2.4.2. Response Surface 

A response surface (RS) studies the relationship between several input variables (x) and 

one or more response or measured variables (y) [44]. The input variables “x” are characterized 

by a set of recorded statistical information as distribution functions (which could be correlated 

or not), standardized moments, etc. These are generally spatial-temporal processes, called 

stochastic processes and they are reduced to random variables when time and space indices are 

fixed.  

Usually the response is unknown, but it can be represented by a low-degree polynomial 

model: 

                             (2.5) 

Where β is a vector of unbiased ordinary least-squares estimators of the same size as x and 

∈ is a random experimental error. Two principal models are generally used in RS:  

" The first-degree model that is used generally as multiple regression:  

                           (2.6) 
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" And the second-degree model:  

             (2.7) 
 

The idea is to use a sequence of designed experiments to obtain an optimal response. The 

surface design can be represented as a design matrix (D) of order n x k (n: number of 

variables, k: number of measurements): 

                (2.8) 

An easy way to estimate a first-degree polynomial model is to use a factorial design [45]. 

This would be enough to determine which independent variables have an impact on the 

response variable(s). Once the significant independent variables are determined, a more 

complicated design, such as a central composite design [46] can be implemented to estimate a 

second-degree polynomial model, which continues to be just an approximation. However, the 

second-degree model can be used to optimize (maximize, minimize, or attain a specific target), 

such as the minimization of the response prediction variance.  

This kind of combination method, have been used in different fields for different 

objectives. For example, to enhance surface layer properties of aircraft aluminum alloy by shot 

peening [47] or to optimize the laser cutting parameters for composite [48]. In the geology 

field, RS has been used for probabilistic assessment of rock slope stability [49] or for practical 

geotechnical reliability analysis [50]. In the case of concrete, RS is mostly used for optimizing 

a concrete mixture to enhance some properties of specific concretes (e.g. alkali-slag concrete, 

ASR concrete, concrete containing paper mill residuals, concrete with hybrid blends of 

metakaolin and fly ash, foam concrete, steel fiber reinforced concretes, etc.), like fracture 

properties, process improvement, density, strength or ductile behavior [51-62]. 

RS has not been used frequently for concrete evaluation by the combination of NDTs. A 

study made by Sbartaï et al [63], aims to evaluate the compressive strength and water content 

of a concrete by the combination of GPR, electrical resistivity and ultrasonic pulse velocity. In 

this study, the SENSO project database was used to train and test the RS. The entire database 

was used for training the RS, but to validate the results, only a part of the SENSO database 

was chosen (testing data). A full quadratic response surface (with cross terms) is used because 

of the mathematical form of the correlations between the observables of NDT methods (e.g. 
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ultrasound pulse velocity) and studied indicators (compressive strength and water content). 

For the training database, good correlation can be observed (Figure 2.10) between actual data 

and the data calculated by RS. 

!!!!!!!!

!

! !

Figure 2-10. Correlation between actual data and the data calculated by response surface for the training 
database [63]. 

However, on the testing database, the correlations are not as good. Figure 2.11 shows that 

the correlations are more dispersive on the testing database for both compressive strength and 

water content. It is also important to highlight that the RS tends to over-estimate the 

compressive strength. 
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!

!

Figure 2-11. Correlation between actual data and the data calculated by response surface for the testing 
database [63]. 

2.4.3. Data Fusion 

Data fusion is the integration of data as a combination of multiple sources to obtain 

improved information (less expensive, of higher quality or more relevant information). There 

are two terms commonly used to refer to data fusion: one is information fusion, which is 

employed mostly to define already processed data, and the other is data fusion, which is used 

for raw data [64].  

The data fusion methods can be classified into three principal categories: data association, 

state estimation and decision fusion.  

The data association methods must determine the set of measurements that correspond to 

each target. The goal is to establish a set of observations or measurements that are generated 

by the same target over time.  

The state estimation methods aim to determine the state of the target under movement 

(normally the position) given by the observations, like the case of sensors. They are also 
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known as tracking methods, but in their general form it is not sure that the target information 

are relevant. This means that some of the observations could come from the target and the 

others could be noise. The goal is to obtain a global target state from the observations. 

Finally, the decision fusion methods are based on the knowledge of the perceived situation, 

which is provided by many sources of data. These methods aim to make a relevant conclusion 

about the events and activities that are produced from the detected targets. These methods 

often use symbolic information, and they must give a pertinent result considering the 

uncertainties and constraints. 

The choice of the technique can be made according to the following criteria: 

" Considering the relationships between input data sources that can be defined as: 

complementary (when the information provided by the input sources represents different 

parts of the scene and could then be used to obtain more complete global information), 

redundant (when two or more input sources provide information about the same target and 

could then be fused to increment the confidence), or cooperative (when the provided 

information is combined into new information that is typically more complex than the 

original information). 

" Considering the input/output data types and their nature. 

" Considering the abstraction level of the employed data: raw measurements, signals, 

characteristics or decisions. 

In most data fusion methods, the input information (numerical or symbolic) is represented 

as a degree of confidence in an event with real values, taking into account the imprecise, 

uncertain, and incomplete nature of the information [65]. This degree of confidence is 

represented as a behavior operator, which can be context dependent, context independent 

variable and context independent constant. 

The context dependent operators rely on a global knowledge or the sources to be fused 

(conflict between the information given by the sources or reliability of the different sources). 

These kinds of operators are interesting for classification problems, since they are adaptable. 

The context independent variable operators may be independent of the context, but their 

behavior depends on the information to combine. Lastly, the context independent constant 

operators have the same behavior whatever the values of the information to fuse. Moreover, 

they are treated without any contextual or external information. They are also used on the three 

most commonly used data fusion formalisms, which are the probabilistic and Bayesian theory, 

the fuzzy sets theory and the possibility theory. 
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The probabilistic and Bayesian theory takes into account the information intrinsically 

statistical by nature [65]. Its degrees of confidence are represented by probabilities. If we 

consider E an event to be evaluated an x1 and x2 the pieces of information provided by two 

different sources, from the Bayes theorem we have: 

                            (2.9) 

The operator involved is a product of probabilities, which is conjunctive. The term p(x1,x2) 

is normalized, hence, constant for all events. In the case of independent sources, the expression 

on equation 2.9 would be reduced to: 

               (2.10) 

The fuzzy set theory is used when the information included is uncertain. This means that the 

information given is between the true and false states. True can be represented by 1, and can 

also mean belongs. On the contrary, false can be represented by 0, and it can also mean does 

not belong. Examples of fuzzy sets can be the size of a person [41], or the state of the 

temperature [66]. Figure 2.12 shows the difference in the representation of classic sets and 

fuzzy sets for the state of temperature. 

!
Figure 2-12. True values for the theories of classical and fuzzy sets. 

Essentially, the classic sets are a simplified version of fuzzy sets, where the value of 

temperature can only be 1 or 0. Hence, a temperature value (X) can only belong to one of the 

three sets (Ω): cold (froid), warm (tiède) and hot (chaud). However, in the case of the fuzzy 

sets, X can belong to two sets at the same time (cold-warm or warm-hot). Each set is 
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characterized by a membership function (μcold, μwarm and μhot), and the degrees of membership 

associated with each element μΩcold, μΩwarm and μΩhot, are included between 0 and 1. There is 

no general method to obtain these functions. It is more of a subjective choice made by an 

expert in the field. The algorithm of Fuzzy C Means is commonly used, which is based on the 

minimization of a criterion of classification. Fuzzy sets essentially represent imprecise 

information. Uncertainty is accessible only by the deduction of different membership functions.  

A way of deducing the membership functions is by the theory of possibilities. A fuzzy set 

represents a restriction on the variable X, which in this case is the temperature. This restriction 

is associated to a possibility distribution (Пix), and it is defined to be numerically equal to the 

membership function (uF), which means that its value also varies between 0 and 1. 

A membership function is not a measure of confidence on fuzzy sets. This is why the use of 

possibility theory can be justified [67]. There are two confidence measurements: 

- The measure of possibilities that is used when fuzzy sets are concordant: 

                                (2.11) 

- The measure of necessity that is used when the fuzzy sets are not concordant: 

                                (2.12) 

The possibility П and necessity N are respectively defined from the possibility distribution 

for an event  by the equations 22 and 23, with  as the opposite event of A. These 

measures offer great flexibility in modeling because they have not undergone the constraints 

imposed initially by the probabilities. 

                                                      (2.13) 

                                        (2.14) 

Normalization constraints are introduced in the theory of possibilities, but they are lower 

than in probability theory. One of the two measurements (need or possibility) is always located 

at one end of the interval [0, 1]. These constraints are described in the following equations: 

                                            (2.15) 

                                                      (2.16) 

Π(A∪B) = max(Π(A),Π(B))

N (A∩B) = min(N (A), N (B))

A⊂Ω CA

Π(A) = sup π (x), x ∈ A{ }

N (A) = inf 1−π (x), x ∉ A{ }=1−Π(AC )

sup π (x), x ∈Ω{ }=1

Π(A) <1⇒ N (A) = 0
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                                               (2.17) 

                                          (2.18) 

                                          (2.19) 

In the theory of fuzzy sets and possibilities, one of the advantages is that symmetrical sums 

and operators considering the conflict or reliability of the sources are possible. The most 

common operators are T-norms, T-conorms and medium [68]. A common feature of these 

operators is that they provide a result of the same nature as the starting functions and thus has 

the same interpretation in terms of imprecision and uncertainty. Moreover, they can take no 

partial binary decision before the combination, which could complicate the overcoming of 

contradictions. The decision is taken after obtaining the result of the combination. The choice 

of a fusion operator can be based on the criteria proposed by Bloch [69]: the behavior of the 

operator, the properties assigned to the operator, the relative behavior to conflict situations, and 

the ability to discriminate different situations. 

The first applications of data fusion concern mainly multi-sensor military applications [70-

71]. In 1994, the terminology related to NDT data fusion was first introduced, but was thought 

to be too complex [72-73]. However, with time and because of the growing interest of the 

aerospace and nuclear industries, NDT data fusion became more easily accepted and started to 

move from the laboratory to reach on-site testing. Nowadays, NDT data fusion is used in a wide 

range of NDT methods applications. For instance, increasing the expertise of natural risks by 

mixing fuzzy logic and evidence theory [74]. Other application on non-concrete materials would 

be to facilitate signal interpretation and to increase defect detection and characterization of a 

carbon fiber reinforced composite material [75]. In this study, they used data fusion processes of 

eddy current and infrared thermography based on statistical and probabilistic algorithms.  

In the case of concrete, data fusion has been used for improving the effectiveness of the GPR 

and ultrasonic pulse echo technique due to the automated measurements on bridges. 

Additionally, the high potential of reconstruction and data fusion was demonstrated for the 

improvement and simplification of the interpretability of large data sets measured with impulse-

echo methods [76]. Furthermore, the multi sensor data fusion approach has been used for 

automatic honeycomb detection in concrete [77]. For this study, they combined impact-echo, 

ultrasonic pulse echo and GPR data using the Dempster’s rule of combination and the 

Hadamard product.!

N (A) > 0⇒Π(A) =1

max Π(A),Π(AC ){ }=1

min N (A), N (AC ){ }= 0
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Two studies about the evaluation of durability indicators on concrete elements using the 

theory of possibility have been made [78-79] during the French SENSO project. In this context, 

Ploix et al. [79] made a study to estimate simultaneously two pairs of indicators: saturation 

degree and porosity, or saturation degree and young’s modulus, for undamaged concretes, 

under laboratory conditions. These estimations are obtained by a method based on the theory of 

possibilities and fuzzy sets. As this method is then used for further studies on this thesis, its 

principle is going to be described as follows: 

 First, linear correlation laws between the observables of table 2.11 and each of the studied 

pair of indicators pair are obtained. Then, the fuzzy set membership functions for each 

observable are created using the theory of possibilities, called distribution of possibilities.  

These distributions of possibilities have a trapezoidal form and are composed of two 

principal parameters:  

" a (equation 2.20), which depends on the local variability of the observable’s measurement 

and defines the width of the distribution. 

! = ! !
!!!!                   (2.20) 

" and β, which is a number between 0 and 1, which assess the slopes and the width of the set 

that is equal to 1. For further studies, the value of β is equal to 0.2. 

Figure 2.13 shows an example of the distribution of possibility function for a measured central 

frequency of direct radar wave of 1.1 GHz. 

!

Figure 2-13. Example of the distribution of possibility function for a measured central frequency of direct 
radar wave of 1.1 GHz. 

Then, using the extension principle, this distribution of possibility function is expressed in 

terms of the studied pair of indicators (equation 2.21), as it is illustrated in figure 2.14 for 

porosity (P) and saturation degree (S).  
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!!"#!$ !, ! = !!"#"$ !! !|!!!!!(!,!)!!              (2.21) 

!

Figure 2-14. Extension principle for porosity (P) and saturation degree (S). 

For the fusion process, the adaptive operator obtained by Delmotte (equation 2.22) was 

used.  Its definition implies that its global behavior will be disjunctive (max), if only a few 

sources are reliable and/or inconsistent, and on the contrary, conjunctive (min), if most of the 

sources are reliable and/or consistent.  

    !! !, ! = 1 − !! !max! !!!! !, ! + !!min![min! 1 − !!!! !, ! ,max!(!! !, ! )] (2.22) 

In equation 2.22, α is the average reliability over all sources and ti is the global reliability 

(equation 2.23), which is composed of: 

" The proper reliability (ti
proper), which corresponds to the general ability of the 

source to evaluate unknown parameters, 

" And the concordance reliability (ti
conc), which represents the degree of agreement 

of one source’s data with all of the other sources. 

!! = !
! !!!"#! + !!!"#!$"                   (2.23) 

Finally, to obtain a solution for P and S, or any other pair of indicators, two decision 

criterions were used: the maximum criterion, which provides the solution where the values of 

indicators reach 1 for the degree of possibility. Also, the threshold criterion, which provides a 

set of solutions for a degree of possibility greater than a chosen threshold. Figure 2.15 shows 

an example of the decision criteria for a resulting distribution for P and S. 
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!

Figure 2-15. Example of the decision criteria for a resulting distribution for P and S. 

The quality of the results is then evaluated by a quality estimator (EQ) [80], which allows 

quantifying both, the quality and the reliability of the indicator evaluation. This estimator is 

based on the morphology of the possibilities surface produced by data fusion and more 

specifically on the emergence of the peak solution as shown by “hs” in figure 2.16. 

!

Figure 2-16. Fusion of the three distributions of three observables in the space with 2 indicators a) 
coherent distributions b) non coherent distributions. 

Quality assessment is associated with the consistency of the information obtained from the 

observables and not with the absolute value of the indicator. Smaller the hs, better the quality 

EQ of the indicators estimation and more reliable the information.  

Villain and al. [78], tested this method to estimate the indicators: porosity (P) and chloride 

content (Cl) on a concrete beam from a wharf in a tidal zone of the Nantes–Saint-Nazaire Port. 

Three observables were combined: capacitive large-sized electrode permittivity, GPR wave 

velocity and impact echo frequency to obtain the targeted indicators. Moreover, to this aim, 

three inversion methods were used: one based on a matrix inversion of the complete model, a 

second based on a 2D graphical solution and the last one based on a 2D-data fusion process. 

Similar results were obtained with all three methods, but the result of the data fusion method 

showed a satisfactory porosity prediction (12.2%), and an estimated chloride content value too 

low (-0.07 g/100 g). Figure 2.17a and b, shows the fusion distribution before fusion (2D) and 
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after fusion (3D). It can be noted that the three observables converge even though the result for 

Cl does not correspond to the expected result.  

!

Figure 2-17. Fusion distributions for the wharf beam (a) Before fusion in 2D and (b) After fusion in a 3D 
perspective. 

This on-site application shows that the linear regression curves of NDT methods on a 

specific concrete cannot be directly used on another unknown concrete (even if it appears to be 

very similar in description). Consequently, calibration procedures including the inputs and 

outputs of the data fusion tool may be proposed in order to design new regression curves that 

are adapted to the test structure, improving the quality of fusion results. Additionally, another 

calibration procedure including the analysis of several cores from the studied structure can be 

made in order to adjust fusion results to it.  In order to do this, it is also important to overcome 

the uncertainties of uncontrolled concrete parameters obtained by NDTs and DTs that 

significantly alter the dependence between the NDT and the indicator. 

2.4.4. Artificial Neural networks 

The Artificial Neural Networks (ANN) is a statistical method that tries to simulate the 

learning capacity of the brain. It is non-parametric, which means that the adjusted model’s 

parameters do not have a physical meaning, and can work with non-linear models, which makes 

it flexible and able to respond to decision support, diagnosis and prediction issues. 

The base of the ANN is the artificial neuron (figure 2.18). It is represented by an activation 

function (F), which depends on the inputs (X), the bias term (b), and the attributed input weights  

(wi). The activation function can take different forms, normally non linear. Table 2.12 shows the 

most commonly used activation functions. 
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!

Figure 2-18. Artificial neuron. 

Table 2-12. Most commonly used activation functions. 

Name Equation 
Linear f (S) = S 

Hyperbolic 
tangent  

Sigmoid  

 

The association of several neurons is called artificial neural network. The most commonly 

used is the Multi-Layer Perceptron (MLP), where the information travels in a unique sense, 

form the inputs to the outputs. It is composed from three layers minimum, which are:  

" The inputs layer that is composed of the inputs. 

" The hidden layer, which is composed from the neurons. 

" And the output layer, which is composed from the outputs. 

The idea is to introduce input and output data to the ANN, and to make it learn the 

relationship between both through a process called training. It is usually done in five steps 

illustrated in figure 2.19. The objective of this process is to find the most accurate weights that 

minimize the error between the theoretical output and the one calculated by the ANN. For this, 

a series of steps must be followed: 
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!
Figure 2-19. Learning process and functioning of ANN. 

(i) Data structuration: A database composed from pertinent inputs and their respective 

outputs must be divided in three smaller bases: The first one is the training base, which is 

the one used for the training process. The second one is the test base, which is used to 

control and to stop the training process. Finally, the third one is the validation base that is 

not involved in the training process, which means that it will be useful to test the ability of 

the trained ANN for unknown data. 

(ii)  Learning process: It consists on adjusting the parameters wi and b from the activation 

functions of the neurons, in order to minimize the error between the ANN’s estimated 

outputs and the targeted outputs. The most used error is the Mean Square Error (MSE) and 

the algorithm most used is the back propagation of the gradient error. This algorithm is 

based on the calculation of the error gradient, and aims to minimize the output error of the 

network by changing the weight. The gradient of the error denoted En, is calculated as 

follows:   

                           (2.24) 

Where W is the weight matrix. The new weights of the matrix W in step (n +1) are then 

calculated by the equation 2.25, where η is the training step.   

                           (2.25) 

The advantage of ANN lies in their generalization ability [81]. The application of this type of 

model appeared only in the early 1990s for the prediction of the concrete’s compressive strength 

[82-84]. Other applications have been made regarding the durability of concrete. For instance, 

damage assessment of pre-stressed concrete beams by using natural frequency data [85], or the 

prediction of drying shrinkage of concrete, which is directly related to the apparition of new 
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cracks in the concrete [86]. However, a limited number of works have been published regarding 

ANN developments in the field of the non-destructive evaluation of reinforced concrete 

structures. For example, to interpret of GPR images of reinforced concrete to detect the 

presence, the size, and the depth of a reinforcing bar [87-88]. Also, for the extraction of 

dimensional information from steel reinforcing bars in concrete using images generated by an 

inductive sensor [89]. Besides, using impact-echo bispectra to detect and to classify the flaws in 

a concrete structure [90].  

In order to estimate properties in the concrete by using NDT and ANN, even fewer works 

have been made. Viriyametanont [91], used two kinds of information from the GPR (direct air 

signal and the reflected steel signal information) to estimate the water content of concrete. For 

the first model (PCM1- direct air signal), the inputs were: 

" Maximal amplitude of the direct air signal first positive pic. 

" Maximal amplitude of the direct concrete signal first positive pic. 

" Temporal position of the direct concrete signal first positive pic.!

" Maximal amplitude of the direct concrete signal first negative pic.!

" Temporal position of the direct concrete signal first negative pic.!

" Maximal amplitude of the direct concrete signal first positive pic.!

" Maximal amplitude of the direct concrete signal second positive pic.!

" Temporal position of the direct concrete signal second positive pic.!

Hence, for PCM1 he used 7 inputs, one hidden layer with 14 neurons and one output. On the 

contrary, for the second model (PCM2 - reflected steel signal), he used the same inputs as 

PCM1, 16 neurons and also, 1 output. Figures 2.20a and 2.20b show the results for the 

validation database for both models (PCM1 and PCM2).  As it can be seen, for PCM1, the 

absolute error for 76% of the examples is less than 1%, while for PCM2, the absolute error for 

83% of the examples is also less than 1%. This shows that both models can evaluate pertinently 

the water content.  
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Figure 2-20. Results of the validation database for the chosen ANN water content models: a) PCM1 and 
b) PCM2. 

Sbartaï [92], used a perceptron model with three inputs:  

" Direct signal attenuation. 

" Reflected signal attenuation. 

" Temporal position of the reflected signal. 

a 

b
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The objective was to estimate the concrete water content and the chloride content. For the 

water content a model (PCM1) with three inputs mentioned before, one hidden layer with 5 

neurons and one output was used. 

As for the chloride content, a model (PCM2) with four inputs, which are the three inputs 

mentioned before and the output of PCM1 (estimated water content) were used. Moreover, 

one hidden layer with 5 neurons and one output was also used. Figures 2.21a and b show the 

results for the test database for both models (PCM1 and PCM2). As it can be seen, for 

PCM1, the absolute error for 70% of the examples is less than 1%, while for PCM2, the 

absolute error for 90% of the examples is also less than 0.5 kg of Cl/m3. This shows that not 

only PCM1 can evaluate pertinently the water content, but if we add the output of PCM1 as 

an input of PCM2, it is possible to evaluate an even more complex indicator as is the 

chloride content, in a pertinent way.  
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Figure 2-21. Results of the test database for the chosen ANN chloride content models: a) PCM1 and b) 
PCM2. 

Finally, Sbartaï et al [63], made another study, which aims to evaluate the compressive 

strength and water content of a concrete by the combination of GPR, electrical resistivity and 

ultrasonic pulse velocity. In this study, the SENSO project database was used to train and 

test the ANN. A model with 10 inputs, one hidden layer with 16 neurons and 1 output were 

used to estimate the respective studied indicators. Figures 2.22a and b show the results for 

the test database for both indicators. The compressive strength is estimated with a mean 

absolute error of 5 MPa, and the water content is estimated with a mean absolute error of 0.9 

%, which is very promising. 
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Figure 2-22. Results for the test database for water content ANN and compressive strength ANN. 

2.5. Conclusions 

The objective of this chapter was to establish a state of the art of different methodologies 

used throughout the years to evaluate an existing concrete structure from NDT measurements. It 

was described the use of different methods (destructive and non-destructive and the 

combination of both of them) to assess different indicators of the concrete (e.g. compressive 

strength, porosity, carbonation, etc.).  

For destructive test, it was highlighted that an indicator on a studied concrete can be variable, 

and this variability can be intrinsic to the material or it can be due to other factors, like type of 

test, test’s conditions, size of the sample, etc. The variability of concrete obtained by destructive 

tests was also discriminated in three groups: laboratory samples, in-site samples and on-site 

cores. Later, it was also emphasized that if different cores are extracted from different parts of a 

structure element, the evaluated indicator will not have the same values, introducing a new kind 

of variability, which is called spatial variability. A geostatistical tool called a variogram can 

model the spatial variability, and at the same time, the variogram can be used to make a spatial 

interpolation (kriging) to estimate unknown values in a studied area. It was also emphasized that 

b
a 
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even if destructive tests are not fully adapted to evaluate an indicator on a structure element, 

they may be useful to posterior studies related to DT indicators uncertainty. 

Later, the idea of using non-destructive tests to evaluate a concrete indicator was 

introduced, sustained by the fact that destructive test are expensive, time consuming and 

damaging to the structure. It was also highlighted that NDTs are variable themselves and that 

indicators can have combined effects on NDT measurements. Relationships between NDTs and 

indicators were presented to estimate the indicators, as well as the idea to use DTs for 

calibrating the results of the regression. As a simple regression is inadequate to evaluate an 

indicator of different concrete structures, the notion of NDT combination was presented. Three 

different commonly used methods were described: response surface, data fusion and artificial 

neural network. Their applications in different fields were described, as well as their successful 

incorporation into concrete structures evaluation.  
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3.1. Introduction 

NDT methods are sensitive not only to anomalies in the concrete but also to its physical and 

mechanical properties variation. For instance, ultrasound, impact-echo and rebound hammer are 

used to assess the concrete compressive strength, while electrical resistivity and GPR are sensitive 

to water content. Moreover, concrete inhomogeneity often leads to spatial variability in structures 

[1-4]. In addition, recent reliability studies have shown that the spatial correlation may govern the 

reliability of structural components [5]. Some studies have been carried out with the aim of 

analyzing spatial variability but, none of them has focused on sampling optimization for optimal 

inspection. 

Among NDT methods, some, such as ultrasonic pulse velocity, rebound hammer, GPR, etc. are 

fast and inexpensive. The general frame that is promoted is that of a two-step approach where a fast 

technique is first used to obtain a general view of the spatial distribution for a particular property of 

the concrete (strength, moisture, etc.), and where the critical zones can be analyzed more into 

details in a second step, with NDT measurements of higher quality and/or cores. This approach 

takes advantage of the two types of ND investigations (fast and slow) and destructive testing while 

keeping the cost/benefit ratio within reasonable limits.  

Nonetheless, to maximize the contribution of NDT methods or coring procedure in a previously 

investigated structure, it is imperative to carry out optimal spatial sampling for localizing the most 

critical zones in order to optimize the diagnosis.  

This chapter presents a new idea for the diagnosis of reinforced concrete structures based on an 

original methodology of NDT spatial sampling optimization, making use of geostatistical tools 

such as the variogram, described in the previous chapter, and kriging, described in the next section. 

An algorithm inspired on the Spatial Simulated Annealing (SSA) [6], which is used for 

geostatistical applications [7] was developed in order to attain a NDT spatial sampling 

optimization. SSA has been used for instance in other fields such as measuring radioactivity 

releases [8], and ecosystem studies [9]. However, this algorithm has never been used on concrete 

structures studies. 

This approach offers a new solution for a very important problem in concrete structure 

evaluation and can be applied to any NDT technique and to a large variety of concrete structures as 

bridges, buildings, tunnels, nuclear plants, etc. An original Optimization Spatial Sampling Method 

(OSSM) was developed and tested with three different fitness functions: the mean kriging standard 

deviation, the mean prediction error and the variance estimation error [10]. The performance of the 

OSSM was explored a) with simulated 2D data inferred from a specified spatial correlation 

(variogram) and b) with two different observables: ultrasonic pulse velocity measurements 
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obtained on a horizontal profile (1D case) and capacity of large electrodes – Permittivity 

measurements obtained on two horizontal profiles (2D case) of a wall of a thermal power plant 

located in Le-Havre, France.   

3.2. Spatial interpolation: Kriging 

Kriging is a widely used method for spatial interpolation [11] that can predict an unobserved 

measurement (Zv*) using the weights of the surrounding observed measurements (Zi) according to 

the following equation:    

!!∗ = !! !!! ,!
!!!                                                                (3.1) 

where λi is the weight of the ith observation. The method is based on the minimization of the 

variance of the interpolation error (e) (equation 3.2) of the estimated value (equation 3.3). 

! = !! − !!∗                                                                 (3.2) 

                    !!! = !"# ! + !!!!!!"#! !! !,!! − 2 !! !!"# !!∗,!!!
!!!

!
!!!

!
!!!              (3.3) 

The minimization is obtained by doing the derivation of !!! and equaling to zero. After doing 

this procedure, the equation obtained is: 

                                      !!!!"#! !! !,!!!
!!! = !"# !!∗,!! !!!!!!!∀! = 1…!.                     (3.4) 

In matrix form the equation obtained is: 

    !!!! = !!,                                                               (3.5) 

Where Ks is the Covariance matrix of the known values; ks is the covariance vector of each 

known value Zv* and !! is the weight vector of each known value. The objective of this 

minimization is to obtain the weights !! associated to each of the rounding points of the unobserved 

measurement (Zv*). 

In the case of the ordinary kriging, which statement is that the mean is unknown, there is a 

constrained minimization problem. Therefore, it is convenient to use the Lagrange method to solve 

it. The Lagrange method consists on adding the Lagrange multiplier (µ) to !!! (equation. 3.6) to 

assure the inverse of the matrix Ks.  

                    ! !, ! = !!! + 2! !! − 1!
!!!                                (3.6) 

After doing the minimization, the equation obtained is: 

            !!!!"#! !! !,!!!
!!! + ! = !"# !!∗,!! !!!!!!!!!!∀! = 1…!!!!!!!!!!!!! !!!!

!!! .           (3.7) 
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After obtaining the weights !!, the variance of interpolation error of the estimated value in the 

ordinary kriging (!!!) is: 

     !!! = !"#! ! − !!!!"#! !!∗!,!! − !!
!!! .                              (3.8) 

This variance can be seen as the uncertainty of the estimated value Zv*. This uncertainty 

becomes more important as the distance between the observed and the estimated value increases. 

On figure 3.1, case of one dimension, synthetic simulation is implemented supposed a spherical 

variogram, with a sill equal to 1, nugget equal to 0 and range equal to 2 m.  It can be seen for a 

different number of observed points (N) that the !!! increases with the increment of the distance 

between the estimated and known value and that !!! reach a maximum when the estimated value is 

right in the middle of two known measurements. It can also be seen that !!! increases with the 

decrease of N and in the case of 2 measured points, !!! reach a maximum when the distance 

between the estimated and known value is the same as the range. Therefore, it can be inferred that 

when the !!! achieves its maximum, the data are no longer correlated, hence, the estimated values 

with a distance from the observed points more important than the correlation length, will have the 

same value and the same !!!.  

!

Figure 3-1. Case one dimension. Effect of sampling on !!! for a spherical variogram with nugget of 0, sill of 
1 and range of 2 m. Known values (green points), estimated values (red points) and kriging variance for each 

estimated point (blue points). 

In figure 3.2a and b, three simulations were implemented with the same variogram model, the 

same sill and nugget but different ranges (correlation lengths) 1m, 2.5m and 5m. The simulated 

variograms can be seen in figure 3.2a. Figure 3.2b presents the relationship between the Kriging 

variance and the number of points. From this figure, it can be seen that the necessary sampling 

0 

0.4 

0.8 

1.2 

0 1 2 3 

γ 
(h

) 

lag distance h (m) 

Variogram 



Chapter 3:!Optimal Spatial Sampling Method (OSSM) 

76 
 

points (N) is less with the variogram of range equal to 2.5 m, than that for the variogram of range 

equal to 1m to obtain the same !!!. 

!

Figure 3-2. Effect of the range/correlation length on the !!! and the sampling with three variograms with the 
same model, nugget and sill, but with ranges of 1 m, 2.5 m and 5 m respectively. 

From the presented simulation, it can be inferred that Kriging is an interesting tool for a 

sampling strategy implementation. The correlation length of the distributed points is significantly 

dependent of the number of point’s measurements. This means that the correlation length play an 

important role (Kriging interpolation, sampling evaluation) and should be evaluated on site. The 

next section will focus on the use of the variogram and Kriging tools for implementing spatial 

optimization sampling strategy.  

3.3. Presentation of the strategy 

For the structure manager, it is important to regularly assess the condition of the structure to 

know when he must proceed to some maintenance or reparations. Visual inspection is not enough 

or might be inadequate, while several NDT measurements are time consuming and expensive. 

Taking cores throughout the structure is not just expensive, but it would also affect structural 

stability and safety. In addition, the results provided by NDT remain local information and cannot 

be generalized to the whole structure. Hence, a good compromise between different inspection 

strategies would be required to classify and evaluate accurately the maintenance and/or repair 

zones in the structure, accounting for both time and cost efficiency. 

To define an appropriate maintenance/reparation strategy at a minimum cost, it is necessary to 

implement an optimal inspection strategy (OIS). This strategy consists of carrying out first a pre-

auscultation of the structure under test, using a “fast” and low cost NDT to evaluate and model the 

spatial variability. In a second step, the Optimization Spatial Sampling Method (OSSM) developed 

for this study will make possible to define the number and the optimal locations of more refined 

measurements or of samples to be taken for complementary diagnosis or future monitoring of the 

concrete structure. 
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The OSSM, which will be fundamental to the planning of an OIS, uses the spatial correlation 

and variability of NDT to evaluate the mechanical properties of a concrete structure in the best way 

possible, using a combination of fast and low cost NDT, higher quality NDT, and eventually coring 

in order to reach a relevant diagnosis of the actual condition of the concrete structure at an 

acceptable cost/benefit ratio (Figure 3.3).  

!

Figure 3-3. Optimal inspection strategy. 

3.4. Optimization algorithm 

3.4.1. Principle of the method 

The optimization algorithm has the aim to optimize the first sampling of pre-auscultation using 

fast NDT methods and to find the best locations with less number of sampling. An example of the 

method is presented on figure 3.4. To find the best locations, a fitness functions are minimized 

using a specific algorithm. This specific algorithm is inspired by Spatial Simulated Annealing 

(SSA), which was adopted for our case study.  

The Optimization Spatial Sampling Method (OSSM) starts with an initial set “so” of n values 

distributed on a regular grid in a space S of N measurements organized in a regular grid “SO”. This 

set is progressively modified by relocating one value of so to a random available location in SO. 

When the new configuration, s1, is established, the fitness function is evaluated. This configuration 

will be accepted with a probability of acceptance P calculated with the step function described in 

(equation 3.9): 

! = !! − !! 

! = 0!!!!!!!!!!"!Δ ≤ 0,                                                       (3.9)  

!! = 1!!!!!!!!!!"!Δ > 0, 
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where Jo is the fitness function value for so and J1 is the fitness function value for s1. Figure 3.4 

shows the illustration of this method for one step. 

!

Figure 3-4. One step’s illustration of the OSSM. 

Three fitness functions were tested for the optimization algorithm. They are defined below. 

3.4.2. Fitness functions definition  

3.4.2.1. Mean kriging estimation error standard deviation (MKSD) 

At each iteration “i” of the algorithm, ordinary kriging is used for estimating J1. This spatial 

interpolation method not only estimates unobserved measurements but also predicts the kriging 

variance for each estimated value. Hence, the first fitness function used is the mean of the square of 

the kriging variance calculated for all the estimated points, and normalized with respect to the mean 

value of the N original points (Mean_R). 

!"#$ = !!!
!"#$_! !(%)                                                                (3.10)     

This function represents the uncertainty that exists when one tries to represent the original 

measured field with a smaller number of measurements, n (n<N). Moreover, this fitness function 

that is used in SSA and other geostatistical applications has the advantage that s1 is not limited to 

Regular grid (so) => Jo 

Irregular grid (s1) => J1 

SO 

SO 

SO 

If J1 < Jo : 
New so = s1 
 
If not : 
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the available locations of SO, but the moved value of s1 can be place anywhere in S. Hence, 

MKSD is a flexible fitness function that can cover all the space S without the necessity of extra 

measurements. 

3.4.2.2. Mean prediction error (MPE) 

This function is the mean of the prediction error, which is the absolute difference between the 

measured (Z) and the estimated (Z*) values calculated across all the points n, and normalized with 

respect to the average of the N original points (Mean_R). 

!"# = !!!∗
!"#$_! !(%)                         (3.11) 

This function represents the error that is committed when attempting to represent the original 

measured field with a smaller number of measurements n. 

3.4.2.3. Variance estimation error (VEE) 

This function represents the error in the calculation of the global variance with a smaller number 

of known measurements (n). Zero error means that the global variance calculated with n is the 

same as the global variance calculated with the N original measurements. Thus, the VEE is 

evaluated as one minus the ratio between the variance of n known measurements (Vi) and the 

variance of the N original measurements (VN):  

!"" = 1 − !!
!!
!(%)                                                                                                    (3.12) 

Unlike MKSD, to be able to use MPE and VEE as fitness functions, the moved value of the new 

configuration s1 must be placed in an available location of the SO grid.  

The algorithm developed in this work differs from the original SSA for a few reasons: (i) while 

the SSA works in a continuous domain, the original domain is discretized on the grid S; (ii) rather 

than the Metropolis Accepting Criterion (MAC) [6], it uses a step function criterion, which was 

found to give better results than MAC since the resulting fitness function values after the 

optimization were smaller and the optimization process ran faster; (iii) there is no need to use a 

cooling factor (as in SSA) [6] because the new location of the moving point is chosen randomly 

among the candidate locations in S. 

3.5. Validation of the algorithm    

The potential of the OSSM with each of the three fitness functions (MKSD, MPE, VEE) has 

been tested first on a synthetic case, then on a real case study.  
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3.5.1. Validation of the OSSM on simulated data 

3.5.1.1. Performance of OSSM fitness functions 

The potential of the OSSM proposed above with each of the three fitness functions (MKSD, 

MPE, VEE) was explored first in a synthetic field of 9 m x 9 m, with 49 known values regularly 

separated by a distance of 1.5 m, that was simulated using a Fourier Integral Method [12] (Figure 

3.5a). This field was generated using a spherical variogram, with a nugget equal to 0, a sill equal to 

4.56 and a range of 2.6 m (Figure 3.5b). To simplify, the simulated variogram was omnidirectional, 

which implies that the material structuration of the variability is the same in all directions of the 

simulated area. This is a limit of the simulation, because in some cases, some heterogeneity in a 

particular direction due for instance to the casting process is possible which can modify the 

variogram. It was an unconditional simulation with a mean of 9.94 and a variance of 4.13.  

!
Figure 3-5. a) Simulated field, b) Variogram used to simulate the synthetic field. 

After the simulation of a 2D surface that represents a concrete slab, the three fitness functions 

are evaluated with a number of measurements decreasing from 49 to 3. For each number of points 

the locations of the points are in regular configuration. The fitness functions are then calculated for 

each case representing a number of points “n”. Figures 3.6a and 3.6b show the relationship between 

each fitness function and the number, n, of known values in the case of a regular grid. As expected, 

all the fitness function values (FFV) decrease as n increases. It can also be seen that VEE is a little 

more sensitive to n than MPE and MKSD. The contrast between the minimum and maximum 

number of points is about 75% for VEE and about 73% for MPE and MKSD. 
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!

!
Figure 3-6. Relationship between each fitness function (MKSD, MPE and VEE) and the number of known 

values (n) in the case of a regular grid. 

 

With a fixed number “n” of known values, the OSSM is used later to minimize the FFV just by 

relocating the n values on the grid, passing from a regular grid to an irregular one. For a clearer 

view of the impact of the OSSM, as an example, let us assume that 16 NDT measurements are to 

be made on the field considered. The first step for the optimization consists in obtaining a kriging 

map for a regular grid with the 16 NDT measurements (figure 3.8b). The fitness function initial 

values (FFVo) are shown in table 3.1. Starting from the initial values of fitness functions obtained 

with the regular grid, the OSSM is applied for 4000 iterations to obtain the final fitness function 

values (FFVf) shown in table 3.1.  

The results of the optimization shows that, in the case of optimization with MKSD as the fitness 

function, the FFV only decreased by 0.39% from a regular grid to an optimal irregular grid. In fact, 

the value of MKSD did not decrease even if the number of iterations was increased (figure 3.9c). 

Additionally, the kriging map obtained with this fitness function (figure 3.8c) is not a good 

representation of the original field. The variance obtained at the end of the optimization is not only 

significantly smaller than the real variance but is also lower than the variance obtained with a 

regular grid, moving farther from the real global variance value. Several optimizations were carried 

out on different sets of simulated data using this fitness function and poor performance of the 

algorithm was always observed, even for different n known points as it can be seen in figures 3.7a-

c.  
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!

Figure 3-7. Relationship between each fitness function and the number of known values (n) in the case of a 
regular grid. a) MPE, b) VEE and c) MKSD. 

!
Figure 3-8. (a) Simulated field. (b) Kriging map obtained with a regular grid of 3m x 3m and 16 known 

values and Kriging maps obtained after the OSSM with each fitness function. (c) MKSD. (d) MPE. (e) VEE. 
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Table 3-1. Initial fitness function values (FFVo) for a regular grid composed of 16 known value and final 
fitness function values (FFV1) for an irregular grid composed of 16 known values after 4000 iterations of 

OSSM. 

 
Original 

Statistical 
Values  

REGULAR GRID OPTIMIZED REGULAR GRID 

 
MKSD MPE VEE MKSD MPE VEE 

FFV (%) - 14.06 10.84 57.76 14 5.54 13.72 

Mean 9.94 9.42 9.7 9.97 9.82 

Variance 4.13 1.74 1.51 3.15 3.56 

!
Figure 3-9. Evolution of the fitness functions with the number of iterations. (a) MPE. (b) VEE. (c) MKSD. 

In the case of the optimization with MPE as the fitness function, the FFV of MPE decreases by 

49% from a regular grid to an optimal irregular grid. Moreover, figure 3.8d shows that the kriging 

map obtained is close to the original field. This fitness function seems to give more importance to 

the zones where the variability is stronger. Finally, in the case of the optimization with the VEE as 

the fitness function, the value of VEE is reduced by 76% by passing from a regular grid to an 

irregular one, and the kriging map obtained (figure 3.8e) is in good agreement with the original 

field.  

In figure 3.10, it can be seen the illustration of OSSM comparing the regular grid and the optimized 

irregular grid for 36, 25, 16, 9 and 4 number of points (n) and MPE and VEE as the fitness 

functions. As MKSD was proven to be ineffective, it was not illustrated. 
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!
Figure 3-10. Illustration of OSSM comparing the regular grid and the optimized irregular grid for 36, 25, 16, 

9 and 4 number of points (n) and MPE and VEE as the fitness functions. 

As it can be seen, the difference between the regular grid kriging maps and the MPE and VEE 

maps, start being noticed at n = 25, but it becomes evident from n = 9. Additionally, when n = 36 

not significant difference can be seen between the kriging maps of MPE and VEE. However, when 

n decreases, the difference starts to become more noticeable. MPE tries to choose the points that 

will create a kringing map more similar to the original field, including intermediary values. On the 

contrary, VEE will choose the points that will define the extreme values on the field (minimums 

and maximums). 

3.5.1.2. Performance of OSSM with the modification of the range 

As it was shown in section 3.2, the performance of kriging to predict unknown values can be 

affected by the correlation length. If C and Co are constant for different variograms, a higher 

prediction error will be obtained if the correlation length value is smaller, and less important if it is 

higher. As the chosen fitness functions (MPE and VEE) depend directly from the kriging results, it 
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is important to consider the affectation of OSSM when the correlation length is modified. In order 

to do this, OSSM performance was evaluated when different simulated fields have the same C, Co 

variogram parameters and same mean value, but different range (a). 

A studied area with a correlation length too short (homogeneous field) or too long (highly 

heterogeneous field) can affect the performance of OSSM. Two alternative simulated fields with 

the same C, Co variogram parameters and same mean value as the simulated field of the previous 

section, but different a were created to this aim. Figure 3.11 shows the simulated fields and 

variograms for the three different ranges (a = 1.6, 2.6 and 3.6 m). As it can be seen, the correlation 

length can highly modify the appearance of a field with the same global variance and the same 

mean value. While the field with a = 1.6 m seems quite homogeneous, the field with a = 3.6 m 

seems very heterogeneous.  

!

Figure 3-11. Simulated fields and variograms for a = 1.6, 2.6 and 3.6 m. 

The performance of the OSSM was tested for the three data sets of the three different fields for 

an n = 16. Figure 3.12 shows the MPE and VEE in function of the range for the cases of n = 16 and 

n = 9. As it can be seen MPE decrease as a increases for the optimal grids of both n. The same 

behavior can be seen for the regular grid of n = 16, but for n = 9 the MPE values are similar for the 

regular grid. VEE seems to decrease as a increases for both n and both regular and optimal grid. 

Moreover, it can also be seen that a better optimization (decrease of fitness function values from a 

regular grid to an optimal one) can be obtained as the value of a is more important. 
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!

!

Figure 3-12. MPE and VEE in function of the range for the case of n = 16 and n = 9. 

!

3.5.2. Validation of the OSSM on a case study: Thermal power plant in Le-Havre 

3.5.2.1. Presentation of the structure 

The thermal power plant operated by EDF and located in Le-Havre, France, is one of the sites 

being investigated for two French national research projects (C2D2-ACDC and EVADEOS), in 

which EDF is a partner. The objectives of these projects were to test a methodology to evaluate, by 

NDT, the concrete properties, and its variability in order to implement it in a model, which would 

predict the structure lifespan. The case study concerns confinement walls in three sub-zones of the 

plant (I, III and IV). The walls of these three zones were built in 1965, 2004, and 1973 respectively. 

The proximity of the sea induces severe environmental conditions for the concrete in terms of 

humidity and chloride content. The length of the walls varies from 5 to 20 m and their height is 

about 2 m. Figure 3.13a shows the location of the walls considered for the projects. 
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!

Figure 3-13. (a) Location of the chosen walls for the project. (b) Chosen wall for the case study (wall III-N). 

The industrial approach of concrete assessment implies to reduce the number of NDT tests and 

cores to optimize the auscultation cost. Hence, the wall chosen for the case study was the wall III-N 

(figure 3.13b), which was built in 2004. Many NDT methods have been used in the projects, but 

only two methods, one acoustic (sensitive to compressive strength) and one electric (sensitive to 

saturation degree) were used here and analyzed to apply and validate the OSSM. The observables 

chosen were: ultrasonic pulse velocity and capacity of large electrodes – Permittivity. 

3.5.2.2. Experimental tests using ultrasonic and capacitive measurements 

Two types of measurements were made: one horizontal profile (1D) and two parallel horizontal 

profiles (2D). Because the low height of the wall (~1.80 m), it was decided to inspect only a 

horizontal profile to estimate the variograms for each studied observable. A series of 30 ultrasonic 

pulse velocity (UPV) and capacity of large electrodes – Permittivity (CLEP) measurements were 

made for pre-auscultation of the wall III-N to attain this objective. Additionally, a series of 10 

CLEP measurements organized in two horizontal profiles were made for auscultation. Figure 3.14 

shows the grid detail for pre-auscultation and auscultation, while figures 3.15a and 3.15b display 

the UPV at different locations of the wall along a horizontal profile with a fixed step and the CLEP 

map at different locations of the wall along two horizontal profiles with a fixed step.  
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!
Figure 3-14. Grid detail for pre-auscultation and auscultation. 

!
Figure 3-15. a) UPV original profile. b) CLEP original field. 

Each mesh is 20x20 cm. UPV and CLEP measurements were taken at the center of each mesh 

to keep a distance of 20 cm between two measurements. This distance was chosen in order to be 

smaller than the expected correlation length. Such a value also guarantees that the volumes of 

concrete investigated with ultrasonic waves at two close measuring points are not overlapping.   

3.5.2.3. Spatial sampling design for ultrasonic measurements 

In the simulated data, we used a general case with 2D data. However, we consider 1D and 2D 

data on the case study. It can be emphasized that the 2D is more general, and the 1D is a particular 

simplified case. The algorithm is then adapted for the two cases. Figures 3.16a and 3.16b show the 

corresponding variogram of the measured values for each observable. The variograms in this case 

are unidirectional. For the UPV, an exponential variogram model (10) was fitted on the 

experimental data. The curve fitting results are a nugget equal to 0 (m/s)2, a range of 0.62 m and a 

sill equal to 1 426 (m/s)2.  

! ℎ = 1!426 1 − exp − !
!.!"         (3.10) 

However, for the CLEP a gaussian variogram model (11) was fitted on the experimental data. 

The curve fitting results are a nugget equal to 0.038, a range of 1.58 m and a sill equal to 0.062.  
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! ℎ = 0!062 1 − exp −3 !
!.!"

!
       (3.11) 

!
Figure 3-16. Variograms of UPV and CLEP. 

The efficiency of the OSSM was explored with different sampling sizes (n). Figures 3.17a-d 

shows the variation of the two fitness functions – MPE (figure 3.17a and 3.17c) and VEE (figure 

3.17b and 3.17d) – with n measurements organized on a regular grid (before the OSSM) and with 

location optimized on an irregular grid (after the OSSM). The MKSD was not taken into account 

due to the ineffectiveness of the function, previously demonstrated in the synthetic data example. 

!
Figure 3-17. Relationship between each fitness function and the number of known values (n). a) MPE_UPV, 

b) VEE_UPV, c) MPE_CLEP and d) VEE_CLEP. 

For the UPV case, if MPE is used as the fitness function, a significant decrease in the FFV can 

be seen (figure 3.17a). FFV decreases 34 % on average from a regular grid to an irregular one. 

Moreover, for the case of 20 measured values, the FFV decrease is around 42 %, and even for the 

minimum number of measured values (n = 6), the FFV decreases by 32 % from a regular grid to an 

irregular one. On the contrary, if VEE is used as the fitness function, a decrease of FFV even more 

important in average than the one from MPE (approximately 60%) is obtained. From figure 3.17b, 
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it can be inferred that, if n is reduced to 25, 20 or 16, the new global variance is equal to the one 

obtained with the original 30 measurements.  

For the CLEP case, the decreases of the FFV values for both fitness functions (MPE and VEE) 

are not as significant as for the UPV case. However, if MPE is used as the fitness function, FFV 

decreases 26 % on average from a regular grid to an irregular one. Moreover, it can be seen in 

figure 3.17c that the reduction of FFV for different number of known values (n) is constant in 

average (approximately 30%), although for the case of 8 known values the decrease of FFV is only 

of 9%. This is expected knowing that the total number of CLEP measurements (N) is 10. On the 

contrary, if VEE is used as the fitness function, a decrease of FFV similar in average than the one 

from MPE (approximately 22%) is obtained. In figure 3.17d can be inferred that, if n is reduced to 

8, the new global variance is equal to the one obtained with the original 10 measurements. 

However, it can also be seen that there is no tendency in the decrease of FFV from a regular grid to 

an irregular one and n, although no better solution could be found for the case of n = 2. 

In the case of a small number of measured values, the difference between the two fitness 

functions (MPE and VEE) can be seen more clearly. In the case of UPV (figures 3.18a-c), an 

example of the kiging profiles obtained after OSSM with MPE (figure 3.18b) and VEE (figure 

3.18c) as the fitness functions, and 6 known values (n = 6). Hence, 20% of the total number of 

measured values (N). In figure 3.18b, it can be seen that MPE searches for values to mimic the 

original UPV profile (figure 3.18a) as well as possible, while VEE searches for extreme values 

(figure 3.18c) to better approach the global variance. In the case of CLEP (figures 3.18d-f), an 

example of the kiging maps obtained after OSSM with MPE (figure 3.18e) and VEE (figure 3.18f) 

as the fitness functions, and 6 known values (n = 6), which means 60% of the total number of 

measured values (N). In figure 3.18e, it can be seen that with MPE it is almost obtained the same 

original CLEP field (figure 3.18d). However, with VEE, the extreme values zones (figure 3.18f) 

can be well identified. 

In other words, reproducing the original UPV profile or CLEP field implies that all values 

(measured and predicted) will be as close as possible to original values, and the mean of all values 

will be similar to the mean of original values. Furthermore, the fact that VEE searches for extreme 

values induces that the variance of all values (measured and predicted) will be similar to the 

variance of original values. In table 3.2, it can be seen the statistical values (mean and variance) for 

both observables (UPV and CLEP) of the original fields and the kriged fields obtained after OSSM 

with MPE and VEE as the fitness functions, and n = 6. As it was expected, for both cases (UPV 

and CLEP), with MPE a mean closer to the original one is obtained, and with VEE a global 

variance closer to the original one is obtained. 
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Figure 3-18. a) Original UPV profile, b) Kriging UPV profile after OSSM obtained with MPE as the fitness 
function and n = 6, c) Kriging UPV profile after OSSM obtained with VEE as the fitness function and n = 6, 
d) Original CLEP field, e) Kriging CLEP map after OSSM obtained with MPE as the fitness function and n = 

4, f) Kriging CLEP map after OSSM obtained with VEE as the fitness function and n = 4. 

!

Table 3-2. Mean and variance values for UPV and CLEP of the original fields and the kriged fields obtained 
after OSSM with MPE and VEE as the fitness functions, and n = 6. 

!  
Original MPE VEE 

UPV 
Mean (m/s) 4601 4602 4589 

Variance (m²/s²) 1466 669 1002 

CLEP 
Mean  9.85 9.84 10.03 

Variance 0.34 0.31 0.32 

The MPE and the VEE showed then interesting performance (a FFV decrease between 26% and 

49% for MPE and between 22% and 76% for VEE from a regular grid to an optimal irregular one). 

It should be noted that the MPE leads to a smaller mean prediction error in the kriging map and a 

mean value closer to the original one than the VEE. On the other hand, the VEE provides a 

variance closer to the global variance than the MPE. Thus a specific attention must be paid to what 

is expected before selecting the most suitable fitness function for analyzing a particular data set. 

For instance, if the structure manager wants to know the spatial distribution of a property for future 

structure control or to locate the zones of maintenance, MPE should be used. If, on the contrary, he 

wants to estimate the global variability of the material for reliability computation, VEE should be 

used. However, a good compromise can be the combination of the two fitness functions using for 

example a multi-objective optimization for a better evaluation of mean and variance.  
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3.6. Conclusions  

This chapter proposes an approach that may enable a concrete structure to be characterized 

efficiently by taking advantage of NDT methods with a good cost/benefit ratio. This approach is 

based on a 2-step strategy, in which a first investigation is carried out with a quick and low cost 

NDT technique, thus followed by the identification of specific areas where a refined investigation 

will be carried out with NDT or destructive test.  

This contribution offers a new and formalized solution for an important problem of concrete 

structure evaluation and can be applied to a large variety of NDT methods and concrete structures 

such as bridges, building, tunnels, nuclear plants, etc. Moreover, it can be also expanded to other 

type of structure investigations (soils, masonries, tunnels, etc.). 

Here, a preliminary study of a structure was carried out with a single NDT technique. Then, to 

select the most reliable and critical zones for complementary diagnosis (high quality NDT, coring, 

semi-destructive tests, etc.), an optimization spatial sampling method (OSSM) was developed. 

Three fitness functions were tested to quantify their efficiency in the OSSM: the Mean Kriging 

Standard Deviation (MKSD), the Mean Prediction Error (MPE) and the Variance Estimation Error 

(VEE).  

These functions were analyzed for a simulated field and also for on-site ultrasonic pulse 

velocity and capacitive large electrodes permittivity measurements made on a wall of a thermal 

power plant in Le-Havre, France. The main conclusions are the following: 

- It is possible to improve the knowledge of the material properties (mean, variance, extreme 

values) and to locate specific areas where the investigation will be refined, by using a 

methodology based on variographic theory. When compared to investigation programs based 

on a regular grid, it enables to reduce the number of measurements to reach a given quality 

and/or to increase the quality if the number of measurements remains constant.  

- The MKSD fitness function does not provide an improvement in the representation of the 

simulated field from n measurements organized in a regular grid to n measurements arranged 

in an irregular grid after OSSM. This was revealed by a decrease of only 0.39% in the FFV 

of MKSD. Furthermore, the global variance calculated after OSSM was almost the same as 

the one obtained with a regular grid.  

- MPE and VEE as fitness functions showed a high improvement in the representation of all 

cases studied (simulated field and on-site ultrasonic velocity measurements). The use of 

these two fitness functions considerably increased the global variance value from a regular 
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grid to an optimal irregular grid, not only in the case of simulated data but also in the case 

study. 

- In the simulated data case, the FFV of MPE decreased by 49% on average for all numbers of 

points n, while the FFV of VEE decreased by 76%. The performance of the OSSM algorithm 

was not as good in the on-site case, where the FFV of MPE decreased by 34% for UPV and 

by 26% for CLEP, while the FFV of VEE decreased by 60% for UPV and by 26% for CLEP. 

This is due to the fact that the simulated case presents more variability and the measurement 

error was not considered. It may seem that VEE is the best choice for a fitness function but it 

is important to point out that MPE and VEE have different objectives and they may be 

complementary. The choice of one fitness function has to be done by considering the real 

objectives of the material assessment (mainly mean values or variance).  

- The MPE and VEE values are affected by the variation of n and a. Both values decrease as a 

increases, and both values increase as n decreases.  

- As VEE and MPE have complementary information, a good compromise can be the 

combination of the two fitness functions using for example a multi-objective optimization 

for a better evaluation of mean and variance. 
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4.1. Introduction 

Non Destructive Testing (NDT) provides on-site measurements by following procedures that 

allow the creation of concrete sustainability indicators by data fusion. Its exploitations are 

initially studied in the laboratory. They lead to correlation laws between the NDT measurements 

called "observables" and the concrete properties called "indicators". As described in chapter 2, 

these laboratory laws were developed in the SENSO project in a multi-linear form, mostly 

involving two indicators regarding data fusion applications for concrete characterization. 

Nevertheless, the direct use of these correlations laws for in situ measurements and the 

identification of the concrete indicators are not possible: supplementary and unmonitored 

parameters others than the evolution of indicators due to environmental conditions (moisture, 

wind, etc.), generate biases between the known laboratory correlation laws and the unknown on-

site ones. A fusion data tool developed in the ACDC project and described in chapter 2 [1] 

improves the assessment of indicators (Saturation, Compressive strength, porosity, etc.) on 

concrete structures from on-site NDT measurements. This tool takes into account the reliability 

and sensitivity of observables for each one of the indicators. Moreover, for the transfer of the 

correlation developed in laboratory to on-site measurements, it is required an adaptation and 

updating phase in order to take into account the potential biases, due to concrete variability.  

In this chapter, two types of updating proposed and developed in the ACDC project are 

described to adapt the fused values to the studied structure: i) updating by the inputs made 

directly from on-site NDT and DT measurements, and ii) updating by the outputs using the results 

of the fusion [2]. Figure 4.1 shows the fusion process with the mentioned updating methods. As it 

can be seen, the fusion process starts by combining the measured observables using the described 

data fusion tool to obtain the Fused Indicators (FI) and the quality estimators (EQ) [3] for each 

auscultated point. If the EQs are not acceptable, the updating by inputs will be made. This update 

will take into account not only the measured observables, but also the indicators obtained by 

destructive tests (DTI) when available, in order to modify the correlation laws. The fusion process 

will be repeated to obtain new FI and new EQs for each auscultation point. If the EQs are still not 

acceptable, an updating by outputs called coherence (COH) will be made. This updating will take 

into account only the EQs to modify the correlation laws. The fusion process will be repeated 

until the FI obtained have acceptable EQ values. Finally, to adapt FI values to the DTI values a 

updating by outputs called Affine Transformation (AT) is made. This updating will take into 

account the DTIs and the FIs obtained after the first updating to obtain the final values of the 

adjusted indicators (FIAT) for each auscultation point. 
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!

Figure 4-1. Flowchart of the fusion process with its respective updating methods. 

However, as it was described in chapter 2, NDT measurements and DTs made on extracted 

cores can lead to variable results in a zone considered homogeneous, making the results in a 

specific auscultation point uncertain and unreliable. These uncertainties can be included and 

propagated in the fusion and the updating processes to obtain a precision on the final FIAT values 

for each auscultation point. Figure 4.2 shows how the NDTs and DTs uncertainties are included 

and propagated in the fusion and updating processes. As it can be seen, the NDT uncertainties are 

introduced in the observables and they can propagate directly on the fusion and updating by 

inputs processes. However, these uncertainties are assumed treated in the fusion process, as they 

are included in the distribution of possibilities for each observable. Nevertheless, the DTIs 

uncertainties are introduced in the DTIs and they can propagate directly in the updating by inputs 

and the updating by affine transformation. In the ACDC project, the propagation of DTs 

uncertainties through the updating by inputs showed not to be the best approach, as the method 

used for this update uses a mean value of NDTs and DTs, thus, it is not sensitive to DTs 

uncertainties. That leaves us with the propagation of DTs uncertainties through the updating by 

affine transformation.  
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!

Figure 4-2. Flowchart of the fusion process, its respective updating methods and the NDT and DT 
uncertainties. 

Therefore, in this chapter a method to propagate these DTs uncertainties through the updating 

by affine transformation is proposed to obtain ranges of possible fused indicator values for each 

auscultated point, called in this chapter errors or precisions. This method is applied to a case 

study (Marly’s bridge), where two indicators are obtained (saturation degree and compressive 

strength) from the fusion of three different observables (Impact Echo dynamic modulus, 

Capacitive Large Electrodes Permittivity and GPR Direct Wave Velocity). The propagation of 

compressive strength and saturation degree DT uncertainties is made to obtain a mean error of all 

auscultation points for each studied indicator. Then, the influence of the variation of indicators 

DTs uncertainties on their errors is studied, as well as the influence of their errors on the number 

and selection of cores to be extracted. 

4.2. Updating by inputs: Mean value method (MV) 

As it was introduced in chapter 2, the employed fusion data tool is based on the SENSO 

project correlation linear laws between the observables of table 2.11 and the indicators. This 

correlation laws were obtained with samples made in laboratory, and the general equation for 

each indicator is: 

 !! = !! + !! ∙ !!      (4.1) 

Hence, to adjust the obtained fusion indicators to the structure, it is necessary to update the 

correlation laws. The proposed method in the project ACDC consists in using the mean of each 

NDT measurements and the mean of the studied indicators obtained by destructive tests (DT) 

from cores extracted directly from the structure. Both means correspond to a “reference value” 
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necessary to update the correlation law by moving it to the reference value. In other words, the 

updating of the correlation law is made by changing the coefficient ai of the equation 4.1. This 

method of updating is called updating by a mean value (MV) and its principle is illustrated in 

figure 4.3. 

!

Figure 4-3. Principle of updating by a mean value (One observable, one indicator simplified case). 

This method modifies the correlation laws to improve convergence of the possibility 

distributions of the fused results, which increase the EQ values (described in chapter 2) and, thus, 

the reliability of the results. However, MV may not be enough to make the results of the fusion 

reliable.  

4.3. Updating by outputs 

4.3.1. Updating by coherence (COH) 

When EQ values are still not acceptable after the updating by a mean value, another method 

called updating by coherence (COH) was developed to assure a good convergence, hence, 

elevated EQ values, consequently, reliable results. This method consists in modifying the 

coefficients ai and bi of the Eq. 1 by optimizing a cost function (equation 4.2). 

! !! , !! = 1 − EQ! !! , !! !!
!!!                        (4.2) 

The objective is to ensure the convergence of the possibility distributions of the fused values 

results in the indicators plan I1 and I2 for all the measured points. 

Once the convergence is ensured, another updating can be made to update the fused results of 

all measured points to the DT results. This updating is called affine transformation and it is 

described in the next section. 
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4.3.2. Updating by affine transformation (AT) 

When the possibility distributions of the fused values results are more coherent after the first 

updating, it is time to update the indicators values obtained from the fusion after the first updating 

(FI) to the DTs indicators values obtained from the n cores extracted (DTI). To make it happen, 

an Affine Transformation (AT) is made to link the DTI and the FI by a linear relationship 

(equation.4.3).  

!"!!,! = ! !!!,! + !!           (4.3) 

Where DTIn,j represents the n DTI values for the indicator j, !!!,! represents the n FI values 

for the indicator j and c and dj represent the linear AT coefficients where the value of dj depends 

on the indicator j. 

The AT objective is to do a linear regression to estimate the AT coefficients (c,dj) from the Eq. 

3 relation, which will be fundamental to obtain the new FI updated values (FIAT) on the N 

auscultation points (equation 4.4). Figure 4.4 illustrates the updating by inputs and outputs 

methods in a two-steps updating. 

!"!" !,! = ! !!!,! + !!           (4.4) 

!

Figure 4-4. Illustration of the two-steps updating: MV/COH and AT for 4 fused indicators values (FI), 3 
NDT fused Observables (orange lines) and 3 DT measured values (red points). 

The updating by AT process allows to adapt the N fusion indicators to the n DT indicators. 

However, as it is known, it is impractical and expensive to extract several cores in the same zone 

considered homogeneous for different auscultation points of a structure, to have more reliable 

DTI results. Hence, there is always going to be uncertainties on DTI results when cores are 

extracted from site. It is expected to reduce these uncertainties and manage their influence on the 

result of fusion process. 

The objective of this chapter is to give to the structure manager a precision on all indicators 

values evaluated by NDT in function of the number of the cores to be extracted. To this aim, it is 

necessary to insert the uncertainties on the DTIs, and to propagate them on the fused data after the 
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first updating (FI) for each auscultation point. The principle of this method is presented in the 

following section.  

4.4. Optimizing on-site core selection depending on the indicator DT 
uncertainty/variability 

4.4.1. Presentation of the methodology 

In this section, it is presented a method to assess the sensitivity of FIAT to DTIs uncertainties, 

as well as the influence of DTIs uncertainties to the number and selection of extracted cores. 

Figure 4.5 shows the principle of the method to introduce and propagate the DTIs uncertainties on 

FIAT values for each auscultation point. As explained in the introduction, the DTIs uncertainties 

are propagated through the updating by the AT.  

The first step is to create a simulated DTI reference corresponding to the knowledge of DT 

values for each point of the database. In figure 4.5, it can be seen that if we use the AT 

coefficients from a previous inspection (cR and dR,j) and the fused indicators after the first 

updating on the N auscultation points (FI(N,j)), we can create this reference base of N number of 

values (DTIR(N,j)). The second step is to introduce a DTI uncertainty value to this reference base, 

called uncertainty indicator (aaj) and its distribution discretized in 10 000 values, to propagate 

them through the updating by the AT process. At the end, we obtain the FITA values for each 

auscultation point, in which each one is the mean of the 10 000 found after the updating by AT. 

For each auscultation point it is also found a standard deviation (σFIAT(i,,j)). The mean of all 

σFIAT(i,,j) obtained is the error used in this study. 

!

Figure 4-5. Illustration of the method to introduce the DTIs uncertainties on FIAT values for each auscultation 
point. 

The σFIAT(N,,j) values may vary depending on the number of cores, hence, number of DTIs. 

Moreover, they can also vary depending on the distribution of values the DTIs may have in the 

auscultated structure. The next section are going to describe the detail of the introduction and 
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propagation of the DTIs uncertainties on FIAT values for each auscultation point and the 

illustration of this method on a case study (Marly’s bridge-France). It is also going to be 

described a method to study the influence of the number and values distribution of the DTIs on 

σFIAT(i,,j) for the case study. 

4.4.2. Insertion of uncertainties on DT data and their propagation to fused results 

As mentioned in the last section, the AT creates a linear relationship between the FI and the 

DTI. To introduce DT uncertainties, several steps may be followed. 

First, a DTIR(N,j) reference base for both indicators is created using the AT coefficients (cR, dRj). 

These AT coefficients are estimated form the DTI(n,j) of the n extracted cores and the FI(n,j) results 

on the same positions as the DTI(n,j) from a previous inspection. For creating DTIR(N,j), cR, dRj and 

the results obtained after the first updating FI(N,j) are used in the equation 4.5.  

!"!! !,! = !! !! !,! + !!"           (4.5) 

If there are not DTI(n,j) and FI(n,j) results from a previous inspection available, the values of cR 

and dRj will be given the value of  1. Then, an uncertainty indicator (aaj), one for each indicator j, 

which can be estimated by previous experiences (see chapter 2) or given by the laboratory is 

introduced in the DTI reference base (DTIR(N,j)) by creating 10 000 simulated values (dtii,j,k) 

randomly for each dtiR(i,j) value following an uniform distribution. 

 For example, for a value dtiRi,j: 

!"#!,!,! = !! !!!,! + !!" + !"!!,!          (4.6) 

 Where vaaj,k is a random number between –aa and aa and !"#!,!,! is the kth simulated value of 

!"#! !,! . The counter i represents a value on the DTIR(N,j) base, j represents the indicator and k 

represents the number of the simulated value. Therefore, for each dtiR(i,,j), there will be an uniform 

distribution with a standard deviation. As it could be seen in chapter 2, for several indicators, a 

normal or lognormal distribution could have been more appropriate to propagate the uncertainties, 

as these distributions have been generally found for most indicators values obtained by 

destructive test. However, the choice of a uniform distribution was chosen for this study to 

illustrate the methodology that can be used with any statistical distribution.  

Later, the propagation of the DTs uncertainty is made. Having 10 000 DTIR(N,j) sets, and using 

the FI(N,j) obtained from the current inspection, it can be calculated 10 000 AT coefficients (c and 

dj) with the following expression (example for the kth simulated value of !"#! !,! ): 

 !"!!,!,! = !!(!!!,!) + !!,!                         (4.7)  
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Afterwards, each ck and dj,k are used to estimate 10 000 FIAT(i,j) for each auscultation point. At 

the end, for each auscultation point, a matrix FIAT(i,,j,10 000) with a uniform distribution, with a mean 

value and a standard deviation (σFIAT(i,,j)) is obtained for each auscultation point of FIAT(N,j).  

4.5. (Insertion(of(uncertainties(on(DT(data(of(a(case(study:(Marly(
Bridge(;(France(

4.5.1. Presentation of the structure 

The auscultated bridge, located in Marly, France, is one of the sites being investigated for a 

French national research project (C2D2-ACDC), in which SETRA is a partner. The objectives 

of this project are to provide a framework for preventive monitoring of reinforced concrete 

structures and to assess by NDT, the concrete properties and pathologies. Additionally, it will 

also help to identify degradation models for concrete structures to eventually show how it is 

possible to enhance the results of predictive modeling through NDT. 

The case study concerns three piles (S, ZBL and Sadam) of the bridge that was built in 

1965. The exposure of these piles encourages critical environmental conditions for the 

concrete in terms of humidity. The length of the piles is about 2 m and their height is about 18 

m. Figure 4.6 shows the location of the auscultated piles. 

!

Figure 4-6. Location of the auscultated piles. 

The industrial approach of concrete evaluation implies to use the NDT fusion data tool 

developed during this project to assess concrete properties and pathologies. These fusion 

results are improved by taking into account the DTIs uncertainties and to propagate them into 

the updating by AT process to see their influence into fusion results. Hence, 49 measurements 

points from the three auscultated bridge piles were chosen for the DTI uncertainty study. 

Several NDT methods were used on this site, but for this study, only the impact echo, 
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capacitive and GPR methods were selected here to assess the compressive strength (Rc) and 

saturation degree (Sr) of the concrete piles. A series of 49 Impact Echo dynamic modulus 

(IEE), Capacitive Large Electrodes Permittivity (CLEP) and GPR Direct Wave Velocity 

(DWV) measurements were made for the auscultation of the piles. Figure 4.7 shows the grid 

detail of the auscultation points. Moreover, 7 DTI results for Sr and Rc obtained from 7 cores 

extracted from a previous inspection were used for this study. 
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!

Figure 4-7. Grid detail of the auscultation measurements. 

4.5.2. Introduction of uncertainties on compressive strength and saturation degree DTs  

As it was presented in the section 4.4, to begin we have to create a reference base 

(!"!! !,! ) that will allow us to introduce DTIs uncertainties. On this case study, in order to 

create this base, the Equation 5 is used, where j=1 represents Sr and j=2 represents Rc. 

Furthermore, the AT coefficients (cR, dRSr, dRRc) (Table 4.1) that were estimated from DTs 

made from 7 cores from a previous inspection, were used to create the !"!! !",! . Figures 4.8a 

and 4.8b show the reference base values for Sr and Rc. 

Table 4-1. AT coefficients for the creation of !"!! !",! . 

c 1.39 
dSr (%) -36.32 

dRc (MPa) -17.25 

!

Figure 4-8. Reference base values DTIR(N,j) for: a) Sr and b) Rc. 

From DTIR(49,j), the introduction of uncertainties on Sr and Rc DTs is made with the 

Equation 6. The uncertainty indicators, aaSr = 10% and aaRc = 5 MPa, were estimated from 
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previous experiences. Figures 4.9a and 4.9b show the FIAT(49,,j) and σFIAT(49,,j)  for both 

indicators. A mean of 2.94% for σFIAT(49,1) (<σFIAT(49,Sr) >) and a mean of 1.67 MPa for 

σFIAT(49,2)   (<σFIAT(49,Rc) >) for all the 49 auscultated points. As expected, the FIAT(49,j) values 

obtained after the introduction of the uncertainties are exactly the same as the values of the 

reference base DTIR(49,j), since the objective of the introduction of uncertainties is to obtain a 

standard deviation (quantified degree of uncertainty) for the fusion results for all 49 

auscultation points.  

!

Figure 4-9. FIAT(49,j)  and σFIAT(49,j)  for: a) Rc and b) Sr. 

4.5.3. Influence of the variation of uncertainty indicators values (aaSr and aaRc) on the 
errors <σFIAT(49,Sr)> and <σFIAT(49,Rc)> 

In the previous section, <σFIAT(49,Sr)> and <σFIAT(49,Rc)> for all 49 auscultated points of 

Marly’s Bridge were calculated with specific values of aaSr and aaRc. However, if the values of 

aaSr and aaRc vary, it would have a direct effect on the variation of the errors <σFIAT(49,Sr)> and 

<σFIAT(49,Rc)>. Figure 4.10 illustrates how <σFIAT(49,Sr)> and <σFIAT(49,Rc)> evolve with the 

variation of  aa. As it can be seen, there is a linear relationship between <σFIAT(49,Sr)>, 

<σFIAT(49,Rc)> and aa, as expected due to the linearity of AT. From figure 4.10 it can also be 

highlighted that the evolution of <σFITA,Sr> is more important, which would mean that the 

FIAT(49,Sr) are more sensitive to DTs uncertainties than FIAT(49,Rc). 
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!

Figure 4-10. Evolution of <σFIAT(49,Sr)>, <σFIAT(49,Rc)> as a function of aa. 

4.5.4. Study of the influence of the number and values distribution of the DTIs  

Until now, the estimation of <σFIAT(49,Sr)> and <σFIAT(49,Rc)>  have been made with 7 cores, 

which were the ones extracted from a previous inspection. The interest of this section is to study 

the influence of a different number of cores selected differently in the propagation of the 

incertitude, hence, in the errors <σFIAT(49,Sr)> and <σFIAT(49,Rc)>. That is interesting for the owner 

in order to be able to understand the uncertainties of the fusion process as a function of the 

number of cores, thus, as a function of the cost. 

When the number of cores is changed, it is possible to obtain different FIAT(N,j) values as a 

function of the number of cores used to propagate the uncertainties. This difference is going to 

depend not only on the number of cores used, but also on their DTI values. For instance, in the 

case of 7 cores used, it is not the same to use only the cores that have Sr an Rc maximum and 

intermediary values leaving the minimum values out, or to use the cores that have only Sr an Rc 

intermediary values and so on. Hence, there are a determined number of possible combinations 

for each number of cores that we use. For our study on simulated data reference database of 

Marly’s case, 49 possible locations can be used to extract a determined number of cores n for 

DT tests. Consequently, for instance, if we want to extract only 2 cores, 1 176 combinations 

would be possible to place the cores.  

Therefore, to minimize the number of combinations used, only the combinations that 

includes maximums, minimums or intermediary values close to the mean are considered to have 

a true effect on <σFIAT(49,Sr)> and <σFIAT(49,Rc)> values. For this reason, an strategy to analyze the 

influence of the errors <σFIAT(49,Sr)> and <σFIAT(49,Rc)> on the number of cores n to be potentially 

extracted from Marly’s bridge have been implemented. Figure 4.11 shows the flowchart of the 

strategy made in two stages. The first stage consist in taking a determined number n values from 

the DTI reference base for both indicators j, to create different configurations including 

minimum, maximum and intermediary values of both indicators (15 in total). Then, for each 

configuration of n DTI reference values, the introduction of uncertainties (aaj) is made to finally 

obtain a mean standard deviation of the N values of FIAT, (<σFIAT(49,j)>) hence 15 in total for 
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each indicator. Later, on the second stage, the best configuration between the 15 tested is chosen 

for both indicators by finding the smallest <σFIAT(49,j)> value between the 15 found for the 15 

tested configurations for both indicators and each n. Then, a variable number of n is taken from 

the DTI reference base using the best configuration found. The introduction of uncertainties is 

made for each n to finally obtain a <σFIAT(49,j)> for each indicator and each n. 

!

Figure 4-11. Flowchart of the two stages strategy. 

4.5.4.1. Stage 1 : Choice of the best configuration 

The steps explaining the detailed strategy are the following: 

i) Use of the DTIR(N,j) reference base from figure 4.8 to choose 10, 7 or 4 DTIR Sr and Rc 

values (number of cores n to be extracted), thus, three cases. 

ii) Choice of 15 configurations to place n for the three different cases following the next 

criteria. First, the maximum, minimum and intermediary values close to the mean of Sr and 

Rc in DTIR(N,j) were located. Then, the configurations to place the n cores were chosen as 

shown in Table 4.2. 

Table 4-2. Configurations to place n for the cases of 10, 7 and 4 cores to extract. 

Configurations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Sr 
Max - - n - - - n/2 - n/3 - n/2 - - n/4 n/6 

Min n - - - - - n/2 - n/3 - - n/2 - n/4 n/6 

Int - - - - n - - - n/3 - - - n/2 - n/6 

Rc 
Max - - - n - - - n/2 - n/3 n/2 - - n/4 n/6 

Min - n - - - - - n/2 - n/3 - n/2 - n/4 n/6 

Int - - - - - n -   - n/3 - - n/2 - n/6 

It is possible that the minimum values of Sr are not located in the same positions as the 

minimum values of Rc. The same applies to the other configurations. 
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Figure 4.12 illustrates an example of the location of n = 10 with the configuration 1. The red 

line represents the 10th smallest value of Sr in the DTIR(49,j) reference base. The chosen 

positions are highlighted in green for both indicators. 

!

Figure 4-12. Example of the location of Sr and Rc for of n = 10 with the configuration 1 including the 10 
smallest values of Sr. 

iii) Introduction of the uncertainties (aaSr = 10% and aaRc = 5 MPa) on the chosen n dtiR(i,j) 

values from DTIR(49,j) reference base for each case and configuration. Table 4.3 shows the 

<σFIAT(49,Sr)> and <σFIAT(49,Rc)> values obtained for each configuration, for the cases n = 10, 7 

and 4 respectively after the introduction of the uncertainties.  

Table 4-3. <σFIAT(49,Sr)> and <σFIAT(49,Rc)> values for the 15 configurations and n = 10, 7 and 4. 

!
n = 10 n = 7 n = 4 

Configuration <σFI(49,Sr)> 
(%) 

<σFI(49,Rc)> 
(MPa) 

<σFI(49,Sr)> 
(%) 

<σFI(49,Rc)> 
(MPa) 

<σFI(49,Sr)> 
(%) 

<σFI(49,Rc)> 
(MPa) 

1 4.86 3.07 6.30 3.69 13.23 8.24 

2 3.59 4.35 4.43 5.68 5.80 8.18 

3 2.69 1.37 3.75 1.81 5.26 2.22 

4 2.52 2.53 3.22 3.48 5.40 8.28 

5 2.04 1.21 2.40 1.44 3.39 2.17 

6 2.13 1.32 2.51 1.51 4.66 3.30 

7 2.02 1.22 2.37 1.46 3.15 1.96 

8 1.97 1.12 2.33 1.29 3.08 1.69 

9 2.04 1.26 2.42 1.47 3.19 1.78 

10 2.03 1.20 2.42 1.42 3.23 1.94 

11 2.12 1.22 2.56 1.42 4.05 2.56 

12 2.16 1.37 2.72 1.79 3.23 1.82 

13 2.32 1.61 3.02 2.13 5.05 3.95 

14 2.00 1.22 2.39 1.36 3.23 1.78 

15 2.05 1.18 2.43 1.38 3.42 2.30 

 iv) Choice of the best configuration: The best configuration is chosen by selecting the 

smallest values of <σFIAT(49,Sr)> and <σFIAT(49,Rc)> between all the 15 configurations. As 

illustrated in tables 4.3, for all 3 cases (n = 10, 7 and 4), the smallest values of both 
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<σFIAT(49,Sr)> and <σFIAT(49,Rc)> are the ones from the configuration 8, which includes the 

maximum an minimum values of Rc. 

The coincidence that the minimum value of <σFIAT(49,Sr)> and <σFIAT(49,Rc)> are found exactly 

in the same configuration, lead us to think that there may be a relationship between 

<σFIAT(49,Sr)> and <σFIAT(49,Rc)>. Figure 4.13a-c, shows <σFIAT(49,Sr)> in function of 

<σFIAT(49,Rc)>  for the 15 configurations for the 3 cases. As it can be seen, a tendency of 

power form was found (R2 between 0.69 and 0.75). Moreover, when the number of cores 

decreases, the correlation between <σFIAT(49,Sr)> and <σFIAT(49,Rc)>  also decreases. 

!

Figure 4-13. <σFIAT(49,Sr)> in function of  and <σFIAT(49,Rc)>  for the 15 configurations for the case: a) n = 10, 
b) n = 7 and c) n = 4. 

4.5.4.2. Stage 2: Analysis of the chosen configuration 

In the previous section, it was found that for the Marly’s bridge study, the best configuration 

to study the influence of the errors on the number of cores to be extracted is the configuration 8, 

which includes the maximums and minimums of Rc. Therefore, if we vary the number of cores 

using this configuration, it is possible to obtain a relationship between the error <σFIAT(49,Sr)> 

and <σFIAT(49,Rc)> for both indicators and the number of cores to extract n. Figure 4.14 shows 

this relationship including the bars of errors for <σFIAT(49,Sr)> and <σFIAT(49,Rc)> for each n, which 

represents the standard deviation for <σFIAT(49,Sr)> and <σFIAT(49,Rc)> from all the 49 auscultated 

points. As it can be seen, as n increases, <σFIAT(49,Sr)> and <σFIAT(49,Rc)> decreases. For both 

indicators (Rc and Sr), it was found a power relationship, and from figure 4.14 it can also be 

seen that if we increase the number of cores n from 3 to 10, the error <σFIAT(49,Sr)> decreases by 

52% for Sr, and the error <σFIAT(49,Rc)>  decreases by 47% for Rc.  

y = 0.4693x1.3849 
R² = 0.75174 

0.0 

1.5 

3.0 

4.5 

6.0 

1.5 2.5 3.5 4.5 5.5 

<σ
F

I (
49

,R
c)

> 
(M

P
a)

 

<σFI(49,Sr)> (%) 

n = 10 

y = 0.4665x1.3074 
R² = 0.70372 

0.0 

1.5 

3.0 

4.5 

6.0 

1.5 2.5 3.5 4.5 5.5 6.5 7.5 

<σ
F

I (
49

,R
c)

> 
(M

P
a)

 

<σFI(49,Sr)> (%) 

n = 7 

y = 0.463x1.2657 
R² = 0.69435 

0.0 

3.5 

7.0 

10.5 

14.0 

1.5 4.5 7.5 10.5 13.5 

<σ
F

I (
49

,R
c)

> 
(M

P
a)

 

<σFI(49,Sr)> (%) 

n = 4 

a b 

c 



Chapter 4:!Consideration of uncertainties on destructive tests in the data fusion process 

112 
 

!

Figure 4-14. <σFIAT(49,Sr)> and <σFIAT(49,Rc)> in function of n. 

From figure 4.14 if we compare <σFIAT(49,Sr)> and <σFIAT(49,Rc)>  it can be inferred that the 

error for Rc is smaller than the error for Sr by 1% approximately in average. It can also be 

inferred from this figure that if we make a sum of the variances of <σFIAT(49,Sr)>, <σFIAT(49,Rc)> 

<<σFIAT(49,Sr)>> and <<σFIAT(49,Rc)>>  for each indicator respectively, it can be deduced that each 

FIAT(N,j) value can vary from 2% to 3.8% for Sr, and from 1.1 MPa to 2.47 MPa for Rc in 

average if we reduce the number of cores from 10 to 3.  Moreover, if we search for a 

relationship between <σFIAT(49,Sr)> and <σFIAT(49,Rc)>  in this case, which is the variation of n for 

the same configuration (figure 4.15), a better relationship of exponential form (R2 = 0.96) is 

found confirming that the errors of Sr and Rc may be related. 

!

Figure 4-15. Relationship between <σFIAT(49,Sr)> and <σFIAT(49,Rc)>. Case of the variation of n for the chosen 
configuration. 

4.6. Conclusions  

In this chapter, a proposal of the introduction of the uncertainties representing the variability 

of indicators obtained by destructive tests of the studied material of a studied concrete structure is 

made. The propagation of these uncertainties to the indicators obtained by fusion is made through 
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the updating by affine transformation, which assumes a linear relationship between the indicators 

obtained by destructive test and the indicators obtained by the fusion process. 

This contribution offers to the structure manager additional entry information for the 

indicators prediction models. This additional information is the precision (standard deviation and 

statistical distribution) of the indicators obtained by the fusion of NDT methods for each 

auscultation point of the studied structure, as well as the sensitivity of this precision to the number 

and selection of cores. Hence, it is possible to offer to the structure manager a number of cores to 

extract as well as their position for a given indicator uncertainty. The method used to obtain this 

variation can be applied to any concrete structure.  

Here, the case study concerns three piles (S, ZBL and Sadam) of a bridge located in Marly – 

France. Two indicators were chosen for this study: Saturation degree (Sr) and Compressive 

strength (Rc). Seven DT indicator results of Sr and Rc, obtained from the extraction of seven 

cores made in a previous auscultation. Moreover, 49 measurements of Impact Echo dynamic 

modulus (IEE), Capacitive Large Electrodes Permittivity (CLEP) and GPR Direct Wave Velocity 

(DWV) from the three auscultated bridge piles were chosen to estimate the fused indicator values 

of Sr and Rc for each auscultated point, for the DT uncertainty study. The main conclusions are 

the following: 

- Finding a predictable linear relationship between the mean standard deviations <σFITA,Sr>, 

<σFITA,Rc> and aa, it could be observed that the increase of <σFITA,Sr> is more important 

compared to <σFITA,Rc>. This means that the indicator results for saturation degree are more 

sensitive to DTs uncertainties than the compressive strength.  

- A study of the influence of the number and values distribution of the DTIs selected from 

extracted cores on the error σFIAT(i,,j) was developed for the case study. A DT reference 

base was estimated using the affine transformation. Three cases of 10, 7 and 4 cores with 

15 different configurations including maximum, minimum and intermediary values were 

tested. The chosen configuration for this study was the one containing maximum and 

minimum values of Rc, which includes the location of the first n/2 highest and n/2 smallest 

values of Rc in DTIR(N,j). This configuration had the smallest values of <σFITA,Sr> and  

<σFITA,Rc> between all the 15 configurations. This confirms that the best configuration 

belongs to the indicator that has more variability throughout the studied structure 

(important difference between max and min) for fused and DT indicators values, which at 

the same time are correlated. Moreover, a relationship of power form between <σFITA,Sr> 

and  <σFITA,Rc> values found for the 15 configurations was found for each n case. !



Chapter 4:!Consideration of uncertainties on destructive tests in the data fusion process 

114 
 

" For the chosen configuration, we varied the number of cores n. For this case study it was 

found that as n increases, the errors <σFITA,Sr> and <σFITA,Rc> decreases. Moreover, it was 

obtained a power form relationship between the error (<σFITA,Sr> and <σFITA,Rc>) for both 

indicators and the number of cores to extract n. For Sr, <σFITA,Sr> decreases by 52% if we 

pass from 3 to 10 number of cores. Even though, for Rc, <σFITA,Rc> decreases only by 47%.!

" An exponential relationship between <σFITA,Sr> and  <σFITA,Rc> , which is the variation of 

the number of cores for the best configuration was found confirming that the errors of Sr 

and Rc may be related.!
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5.1. Introduction 

As the data fusion by theory of possibilities has shown to be reliable and consecutively has 

been used in different French projects to determine different indicators from measured 

observables, it has an important limitation, which is that there must be a linear correlation 

between the target indicators and the measured observables for being able to apply the method. 

Therefore, as the Artificial Neural Network (ANN) has different advantages as its simple and 

inexpensive application, as well as it does not need a linear correlation between the target 

indicators and the measured observables like the data fusion method, it also has shown to be 

effective on inversion applications on concrete [1-2]. For this reason, ANN was tested and its 

performance has been evaluated in this chapter as an alternative NDT combination method.   

This chapter shows the capacity of ANN for the prediction of four concrete indicators: water 

content (w), porosity (P) compressive strength (Rc) and carbonation depth (Pc). It is presented in 

this chapter, the model optimization procedure: selection of the network architecture, 

modification of the number of neurons in the hidden layer and, input and output information. The 

development of the neural models has been made with the Matlab toolbox “Neural Network”. 

This toolbox has different advantages as the definition of simple architectures, the choice of 

transfer functions, the choice of optimization algorithms, etc.  

Each selected model was tested using a multilayer perceptron (MLP) and the optimization of 

the learning process was made by crossed validation of the Mean Square Error (MSE) (equation 

5.1) between the target values (VT) and the predicted values (VP) of the learning and validation 

base. The algorithms used to train the MPLs were whether the Levenberg-Maquardt (LM) or the 

Scaled Conjugate Gradient (SCG). Other important criterion to stop the learning process for this 

study was the coefficient of determination (R2), which minimum value was selected according to 

the training performance of each MPL. 

!"# = !
! !!−!! !!

!!!      (5.1) 

The performance of the different ANN models for each targeted indicator (w, P, Rc and Pc) 

was first tested with the SENSO database. Later, an application of the selected ANN models for 

w, P and Rc was made on a wall of Le-Havre site. Finally, a comparison between the 

performance of the ANN and the data fusion is made using the results of w, P and Rc obtained 

with both methods for Le-Havre thermal power plant, clarifying that the data fusion results are 

the ones obtain from the raw data fusion process (without updating). 
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5.2. Database used for the implementation of neural models of w, P and Rc 

The database used for the creation of the different ANNs is the laboratory based SENSO 

database. This database, which is the same used for the creation of multi-linear correlation laws 

that relate one observable with a pair of indicators and, which are used for the data fusion process 

(see chapter 2) is composed of 222 samples of 9 different concretes: G1, G2, G3, G3a, G4, G5, 

G6, G7, G8, hence, different porosities. The composition of each concrete is shown in table 5.1.  

The samples of each concrete are also at different saturation degrees: 0 %, 40 %, 60 %, 80 % and 

100 %.  

 

Table 5-1. Composition of the SENSO concretes G1, G2, G3, G3a, G4, G5, G6, G7, G8 [3]. 

 

 

Seventeen observables (table 2.11) were measured on the different samples; hence, countless 

input configurations are possible to estimate the different targeted indicators (w, P and Rc). 

However, only seven observables are used to form the different tested input configurations, as 

they are considered to be the most relevant to estimate the targeted indicators. These observables 

were chosen based on tests from previous studies, which objective was to assess the same 

indicators, but with the fusion data tool described in chapter 2. These studies did not only 

consider the sensitivity of each observable to the targeted indicators, but also which and how 

many observables must be combined to obtain the most accurate estimation of a pair of targeted 

indicators. Table 5.2 shows the different observables used for this study.  
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Table 5-2. Observables used on the tested MPL models configurations for the estimation of w, P and Rc. 

Number Observable 
4 Surface Ultrasound - Wave velocity 3 cm (m/s) 
5 Ultrasound Pulse - 250kHz transmission velocity (m/s) 
7 Impact Echo - Dynamic modulus of Young (GPa) 
8 Impact Echo - Compressive waves velocity (m/s) 
9 Capacity of large electrodes - Permittivity 

11 Log of the quadripole resistivity 5 cm 

The ANN bases for the 3 targeted indicators were composed choosing samples of the SENSO 

database randomly as following: 

- Training base: 70 % of the SENSO database samples. Hence, 156 samples. 

- Validation base: 15 % of the SENSO database samples. Hence, 33 samples. 

- Test base: 15 % of the SENSO database samples. Hence, 33 samples. 

5.3. General architecture of the adopted neural models  

A Multi-Layer Perceptron (MPL) composed of one input layer, one hidden layer with an 

optimized number of neurons has been selected for the estimation of the targeted indicators: w, P, 

Rc and Pc. The number of inputs for the input layer of each MPL model is defined by the 

different tested configurations showed in the following sections. The tested configurations were 

also chosen based on tests from previous indicators assessment made with the fusion data tool 

described in chapter 2, and which results showed to be accurate.  

As it was mentioned in chapter 2, different transfer/activation functions linear or not can be 

applied to make a transformation for the added values of the hidden and output layer. In the case 

of this study, the tan-sigmoid function was used as the transfer function for the hidden layer and 

the linear function was used for the output layer. Table 5.3 shows the forms and equations for the 

used transfer functions. 

Table 5-3. Forms and equations of the tan-sigmoid and the linear transfer functions. 

Name Equation Form 

Linear f (S) = S 

 

Hyperbolic 
tangent ( )

S S

S S

e e
f S

e e

−

−

−
=

+
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5.4. Neuronal model for the prediction of water content 

5.4.1. Selected architecture 

Figure 5.1 and Table 5.4 show the optimized architecture and the tested input configurations 

of the MPL model for the estimation of w (MLP-w). 

!

!

!

Figure 5-1. Architecture of MLP-w. 

!

Table 5-4. Tested input configurations for the estimation of w. 

Input observables 
configurations 

4 5 7 
4 5 9 
5 7 9 
5 8 9 

5 9 11 
5 9 14 
7 9 11 

4 7 9 11 
4 8 9 11 
5 7 9 11 
6 8 9 11 

For each tested input configuration several tests were made to obtain the optimal number of 

neurons in the hidden layer. The variable chosen to optimize the number of neurons was the 

Mean Square Error (MSE) (Eq. 1). Figure 5.2 shows the performances of the MLP-w of the best 5 

tested input configurations (smallest MSE) for the training, validation and test base.  
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Figure 5-2. Performances of the MLP-w of the best 5 tested input configurations for the training, validation 
and test base. 

As it can be observed, the stabilization of the MSE is between 4 or 5 neurons for all five input 

configurations. We retain then, 4 neurons in the hidden layer for the configurations 579, 589 and 

5914 and, 5 neurons in the hidden layer for the configurations 5911 and 7911. 

5.4.2. Results on SENSO base and choice of the best configuration 

Each one of the 5 MLP-w bases was trained with the optimal number of neurons in the hidden 

layer found in the previous section. The learning algorithm used was the Levenberg-Maquardt 

due to its simplicity, reduced calculation time, and satisfying results. The minimum value of R2 

used to stop the training process was 0.9.  

Figure 5.3 shows the learning optimization process for the 5 MLP-w. As it can be seen the 

MSE vary from 0.76 %2 to 1.02 %2 for the training base and, from 0.48 %2 to 0.9 %2 for the 

validation base. Besides, the R2 is of 0.99 on average for the three bases of all MLP-w. 
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Figure 5-3. Training optimization process for the 5 MLP-w studied. 

To choose the best MLP-w between the 5 studied, an Absolute Mean Error (AME) (equation 

5.2) was calculated, between the target w values of the SENSO base and the estimated values. 

Figure 5.4 shows the AME for the 5 MLP-w. As it can be seen, the AME varies between 0.5 % 
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and 0.7 %. Hence, the best MLP-w is the one that has the minimum AME among the others. In 

this case, it belongs to the MLP-w obtained with the input configuration 579. 

!"# = !
! !!−!!!

!!!      (5.2) 

!

Figure 5-4. Absolute mean error for the results of the 5 MLP-w studied. 

Figure 5.5 shows the correlations between the predicted and measured water content values for 

the training, validation and test bases of MLP-w for the configuration 579. For the training base 

composed of 156 samples, the correlation is quite good as the MSE is inferior to 1 % and the R2 is 

equal to 0.99. For the test and validation base, composed of 33 samples, the correlations also 

showed to be good as the MSE are inferior to 0.5 % and 1 % respectively and both R2 are over 

0.98. Consequently, these results confirm the quality of the chosen MLP-w. 

!

Figure 5-5. Correlations between the predicted and measured water content values for the training, validation 
and test bases of MLP-w for the configuration 579. 

5.5. Neuronal model for the prediction of porosity 

5.5.1 Selected architecture 

Figure 5.6 and Table 5.5 show the optimized architecture and the tested input 

configurations of the MPL model for the estimation of P (MLP-P). 
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Figure 5-6. Architecture of MLP-P. 

Table 5-5. Tested input configurations for the estimation of P. 

Input observables 
configurations 

5 7 9 
5 9 11 
7 9 11 

4 8 9 11 
6 7 9 11 

Figure 5.7 shows the performances of the MLP-P of the best 2 tested input configurations 

(smallest MSE) for the training, validation and test base.  

!

Figure 5-7. Performances of the MLP-P of the best 2 tested input configurations for the training, validation 
and test base. 

As it can be observed, the stabilization of the MSE is between starts at 6 neurons for both 

input configurations. Thus, we retain 6 neurons in the hidden layer for both configurations. 

Contrary to the water content case, it was very difficult to find input configurations that could 

gave results with an acceptable MSE, which is a sign that calibration will be necessary for 

another set of data. 
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5.5.2. Results on SENSO base and choice of the best configuration 

Each MLP-P was trained with the optimal number of neurons in the hidden layer found in the 

previous section. The learning algorithm used was also the Levenberg-Maquardt due to its 

acceptable results. Contrary to the water content case, not all the bases of the tested configuration 

had a R2 value more important than 0.9. Hence, the learning process stopped when two of the 

three bases had a value of at least 0.9 and the other one a R2 value of at least 0.8. 

Figure 5.8 shows the learning optimization process for both MLP-P. As it can be seen the 

MSE is 0.24 %2 in average for the training and validation bases of both MLP-P. Besides, the R2 is 

over 0.9 for the training and validation bases of both MLP-P and over 0.8 for the test bases of 

both MLP_P. 

!

Figure 5-8. Training optimization process for both MLP-P studied. 

To choose the best MLP-P, the Absolute Mean Error was calculated between the P measured 

values of the SENSO base and the P estimated values. Figure 5.9 shows the AME for both MLP-

P. As it can be seen, the AME was 0.37 % for the 48911 configuration, and 0.42 % for the 7911 

configuration. Both AME are acceptable. Besides, if the measurements of the 4 observables are 

not available, the input configuration 7911 can also be used.  

!

Figure 5-9. Absolute mean error for the results of both MLP-P studied. 

Figure 5.10 shows the correlations between the predicted and measured porosity values for the 

training, validation and test bases of MLP-P for both configurations. For the training base 
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composed of 156 samples, the correlation is quite good as the MSE is inferior to 1 % and the R2 is 

over 0.9 for both MPL-P. For the validation base, composed of 33 samples, the correlations also 

showed to be good as the MSE are inferior to 0.3 % and the R2 are over 0.9 for both MPL-P. As 

for the test base, an acceptable correlation is found with a MSE inferior to 0.8 % and a R2 over 

0.8. 

!

Figure 5-10. Correlations between the predicted and measured water content values for the training, 
validation and test bases of the MLP-P models for the input configurations 48911 and 7911. 

5.6. Neuronal model for the prediction of compressive strength 

5.6.1. Selected Architecture 

Figure 5.11 and Table 5.6 show the optimized architecture and the tested input configurations 

of the MPL model for the estimation of Rc (MLP-Rc). 
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Figure 5-11. Architecture of MLP-Rc. 

!

Table 5-6. Tested input configurations for the estimation of Rc. 

Input observables 
configurations 

4 5 7 
5 7 9 

5 9 11 
7 9 11 
8 9 11 

4 8 9 11 
5 7 9 11 
6 8 9 11 

 

Figure 5.12 shows the performances of the MLP-Rc of the best 3 tested input configurations 

(smallest MSE) for the training, validation and test base.  
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Figure 5-12. Performances of the MLP-Rc of the best 3 tested input configurations for the training, 
validation and test bases. 

As it can be observed, the stabilization of the MSE is between 5 and 6 neurons for the three 

input configurations. We retain then, 5 neurons in the hidden layer for configurations 5911 and 

8911, and 6 neurons in the hidden layer for the 48911 configuration. Contrary to the water 

content case, it was very difficult to find input configurations that could gave an acceptable MSE, 

as for the training, validation and test bases its value is between 15 and 19 MPa2 for the 3 

configurations. Therefore, other configurations were tested using also the water content values 

estimated with the MPL-w described above as an input. The chosen one was the 5911w with 7 

neurons in the hidden layer, which had the smaller value of MSE (9.8 MPa2) in average for the 

three bases (training, validation and test). 

5.6.2. Results on SENSO base  

The chosen MLP-Rc was trained using also the learning algorithm Levenberg-Maquardt due 

to its acceptable results. The criteria to stop the learning process was, as mentioned above, the 

crossed validation of both bases (validation and training) by the minimization of MSE. As the 

water content and porosity cases, R2 was also used to stop the learning process. The learning 

process stopped when the value was at least 0.9 for the three bases. 

Figure 5.13 shows the training optimization process for the chosen MLP-Rc. As it can be seen 

the MSE is below 10 MPa2 for the training and validation bases and, over 10 MPa2 for the test 

base. Besides, the R2 is of 0.99 on average for all MLP-Rc bases and the estimated AME between 

the Rc measured values of the SENSO base and the Rc estimated values are 2.1 MPa, which is an 

acceptable approximation. 
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Figure 5-13. Training optimization process for the chosen MLP-Rc studied. 

Figure 5.14 shows the correlations between the predicted and measured compressive strength 

values for the training, validation and test bases of MLP-Rc for the configuration 5912w. For the 

training base composed of 156 samples, the correlation is not bad as the MSE is inferior to 10 

MPa and the R2 is equal to 0.96. For the validation base, composed of 33 samples, the correlation 

also showed to be acceptable as the MSE is also below 10 MPa and the R2 is 0.98. Finally, for the 

test base, composed of 33 samples, the correlations also showed to be correct as the MSE are 

inferior to 12 MPa2 and R2 is 0.96.  

!

Figure 5-14. Correlations between the predicted and measured water content values for the training, 
validation and test bases of MLP-Rc for the configuration 5911w. 
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SENSO base (see table 5.1). The different samples of each concrete are also at two different 

saturation degrees: 50% and 100 % and different carbonation depths. Besides the EVADEOS 

database also includes 23 samples of a wall made with the same concrete C1, a saturation degree 

of 60 % in average, three different carbonation depths and two different faces: one with steel 

reinforcement and one without. Finally, from the SENSO-Pc database, 16 samples of concretes 

G3, G3a, G7 and G8 (see table 5.1) completely saturated and with different carbonation depths 

were also incorporated. 

Seventeen observables (table 2.11) were measured on the different samples. Hence, countless 

input configurations are possible to estimate the targeted indicator: carbonation depth (Pc). The 

difficulty with this indicator is that only some of the measured observables are barely sensitive to 

Pc compared with their respective notable sensitivities to w, Rc or P. A careful study during the 

EVADEOS project was made to choose the pertinent observables sensitive to Pc that can be 

combined to obtain acceptable estimated values of Pc. Thus, only six observables were used 

together, as they are considered to be the most relevant to estimate the Pc. The results presented 

below use the 6 observables together as an only input configuration. Other configurations were 

tested using less number of observables, but the best training performance was obtained using the 

6 observables as an input configuration. Table 5.7 shows the 6 observables used for this study. 

Table 5-7. Observables used on the tested MPL for the estimation of Pc. 

Number Observable 
4 Surface Ultrasound - Wave velocity 3 cm (m/s) 
5 Ultrasound Pulse - 250kHz transmission velocity (m/s) 
9 Capacity of large electrodes - Permittivity 

11 Log of the quadripole resistivity 5 cm 
14 GPR pic to pic amplitude 
16 Direct wave GPR velocity (cm/s) 

The ANN bases for the targeted indicator were composed choosing samples of the SENSO 

database randomly as follows: 

- Training base: 70 % of the SENSO database samples. Hence, 45 samples. 

- Validation base: 15 % of the SENSO database samples. Hence, 10 samples. 

- Test base: 15 % of the SENSO database samples. Hence, 10 samples. 

5.7.2. Selected architecture  

Figure 5.15 shows the optimized architecture and the tested input configurations of the 

MPL model for the estimation of Pc (MLP-Pc). 
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Figure 5-15. Architecture of MLP-Pc. 

!

The transfer functions used for the tested MPL-Pc are the same as the ones used for the 

previous MPL indicators cases: tan-sigmoid for the hidden layer and linear for the output layer. 

The learning process was made using the Scaled Conjugate Gradient (SCG) learning 

algorithm. Even if this algorithm take longer to make the learning process, their fitting to the 

training and validation bases is better for this case than the fitting obtained with Levenberg-

Marquardt learning algorithm. The minimum value of R2 considered for this case was 0.8.  

Figure 5.16 shows the performance of the MPL-Pc for the training, validation and test 

bases.  
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Figure 5-16. Performance of the MLP-Pc for the training, validation and test bases. 

As it can be observed, the stabilization of the MSE was at 8 neurons. 

5.7.3. Results on SENSO base 

Figure 5.17 shows the training optimization process for the chosen MPL-Pc. As it can be seen, 

the MSE is between 50 and 70 mm2 for the training and validation bases and, below 20 mm2 for 

the test base. Moreover, the R2 is above 0.8 for the training base and above 0.9 for the test base.  

!

Figure 5-17. Training optimization process for the chosen MPL-Pc. 

Furthermore, the Absolute Mean Error calculated between the Pc measured values and the 

Pc estimated values was of 5.9 mm. Hence, to assess its performance, this model will be tested 

on the on-site case of the next chapter. 

Figure 5.18 shows the correlations between the predicted and measured carbonation depth 

values for the testing, validation and test bases of the chosen MPL-Pc model. For the training 

base composed of 45 samples, the correlation does not seem very good as the MSE is 70 mm2 

and the R2 is below 0.9. For the validation base, composed of 10 samples, the correlations 
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showed to be better as the MSE is below 55 mm2 and the R2 is over 0.9. Moreover, for the test 

base the MSE was below 20 mm2 and its R2 above 0.9.  

!

Figure 5-18. Correlations between the predicted and measured carbonation depth values for the training, 
validation and test bases of MPL-Pc model. 

5.8. Performance on selected models and comparison between data fusion 
and ANN on a case-study: Le-Havre thermal power plant 

Le-Havre thermal power plant was selected to test the performance of the chosen MPL 

models of w, P and Rc and to compare it to the performance of the data fusion tool (without 

updating) developed on the ACDC project and described in chapter 2. As carbonation was not 

significant for this site, the MPL-Pc models were not tested here. 

In chapter 3, section 3.5.2 Le-Havre thermal power plant is presented. Only one wall (Wall 

III-N), which is the same used for the OSSM study (chapter 3) is considered in this chapter. 

Figure 3.13 shows the location of the studied wall III-N and figure 3.14 shows the grid detail: 

one for the 2D data, hence, 10 auscultation points, and one for the correlation depth data (LC-

1D), hence, 27 auscultation points. Hence, a total of 37 measurements of 5 observables:  

- 5 - ultrasonic pulse velocity (UPV),  

- 7 - Impact Echo - Dynamic modulus of Young (IEE), 

- 8 - Impact Echo - Compressive waves velocity (IE_Vp),  

- 9 - capacity of large electrodes – Permittivity (CLEP) and, 

- 11 - Log of the quadripole resistivity 5 cm (RE5)  

were made for pre-auscultation and auscultation. Besides, a total of 5 cores (3 for 

auscultation and 2 for pre-auscultation) were extracted to obtain the values of Rc, P and w by 

destructive testing. 

5.8.1. Performance(of(w,(P(and(Rc(MPL(models(

The estimated 37 values of w, P and Rc were calculated as follows: 
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- For w: Measurements of the observables UPV, IEE and CLEP were used as inputs for the 

MPL-w model. Figure 5.19 shows the 37 estimated w values and the 5 targeted w values 

representing the w values obtained from destructive test made on the 5 cores extracted. 

!

!

!

Figure 5-19. Estimated 37 w values and targeted w values of the 5 extracted cores of the wall III-N. 

- For P:  Measurements of the observables IEE, CLEP and RE5 were used as inputs for the 

MPL-P model. Figure 5.20 shows the 37 estimated P values and the 5 targeted P values 

representing the P values obtained from destructive test made on the 5 cores extracted. 

 

!

Figure 5-20. Estimated 37 P values and targeted P values from the 5 extracted cores of the wall III-N. 

- For Rc: Measurements of the observables UPV, CLEP and RE5, as well as the estimated 

values of w calculated above were used as inputs for the MPL-Rc model. Figure 5.21 

shows the 37 estimated Rc values and the 5 targeted Rc values representing the Rc values 

obtained from destructive tests made on the 5 cores extracted. 
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Figure 5-21. Estimated 37 Rc values and targeted Rc values from the 5 extracted cores of the wall III-N. 

To evaluate the performance of the MPL models, Relative Mean Error (RME) (equation 

5.3) was calculated between the DT targeted indicators values and the estimated indicators 

values located in the same positions as the DTs. Figure 5.22 shows the values of RME for the 

targeted indicators. 

!"# = !
!

!!!!!
!!

!
!!!      (5.3) 

!

Figure 5-22. RME values of w, P and Rc obtained by ANN. 

As it can be seen, all RME values for both P and Rc targeted indicators are below 20 %, 

and 50% for w. which is is surprising. If we consider that the ANN is a method that is quite 

good to interpolate values, and all observable and targeted indicator values with the exception 

of P are between the limits of the SENSO ranges, the indicators estimation should be better. 

Hence, a calibration of the MPL models or a calibration of the outputs should be considered in 

order to obtain better results. 

5.8.2. Performance(comparison(between(data(fusion(and(ANN(

As said at the beginning of this chapter, this on-site application was chosen to compare 

both methods: ANN and data fusion. For being able to compare them, it is important to put 

both methods under the same conditions. As the RNA is trained only with laboratory data 
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(SENSO data), the outputs of this method are adapted to this data. The data fusion tool as it 

was developed, uses multi-linear correlation laws between one observable and a pair of 

indicators that were obtained from the same laboratory data (SENSO data). Then, as it is 

described in chapter 2 and 4, an updating of the method is necessary to adjust the raw fused 

results to the data measured on-site. However, for being able to compare both methods, the 

raw fused data was used without updating. 

As described in chapter 2, the data fusion tool estimates a pair of indicators at a time, the 

estimation of the 3 targeted indicators is going to be as follows: 

- For Sr and Rc: Measurements of the observables UPV, IEE, IVP, CLEP and RE5 were 

used as inputs. Figure 5.23 shows the 37 estimated values of Sr and Rc as well as the EQ 

for each estimated value. 

 

!

Figure 5-23. Estimated Sr, Rc and EQ values of the wall III-N. 

!

- For Sr and P: Measurements of the observables IEE, CLEP and RE5 were used as inputs. 

Figure 5.24 shows the 37 estimated values of Sr and P as the EQ for each estimated value. 
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Figure 5-24. Estimated Sr, P and EQ values of the wall III-N. 

!

It is important to highlight that these estimated values are the results of the raw fused 

values not updated (see chapter 2 and 4). This is made to put both methods under the same 

conditions to later compare their performances. 

As it can be seen in figure 5.24, the Sr estimated values obtained from the Sr and Rc fusion 

are closest to the targeted values than the ones obtained from the Sr and P fusion. Following 

the same evaluation as the MPL models performance, the RME was calculated between the 

DT indicators values and the estimated indicators values located in the same positions as the 

DTs. Figure 5.25 shows the values of RME for ANN and data fusion for the targeted 

indicators. Moreover, table 5.8 shows the mean values for the estimated and targeted 

indicators, as well as the AME and RME between the estimated and targeted indicators for 

both ANN and data fusion.  
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Figure 5-25. RME values of w/Sr, P and Rc obtained by ANN and data fusion. 

Table 5-8. Mean values, AME and RME for the estimated and targeted indicators for ANN and data fusion. 

!  

Estimated 
(Mean) 

Targeted 
(Mean) 

AME 
(%) 

RME 
(%) 

ANN 
w (%) 6.3 13.8 7.0 49.9 
P (%) 15.4 18.4 3.1 16.5 
Rc (Mpa) 47.4 42.4 7.2 17.1 

Fusion 
Sr (%) 60.3 75.7 12.3 15.4 
P (%) 20.0 18.4 1.9 10.8 
Rc (Mpa) 53.1 42.4 15.9 38.1 

As it can be seen, for ANN, the RME values for the 3 targeted indicators are below 20 %. 

For data fusion (raw results), the RME values for Sr and P are below 15 %, while the RME 

value for Rc is over 35 %. These results not only confirm that Sr and P estimated values are 

more reliable than Rc estimated values, but it also shows that with data fusion performance is 

better for the estimation of Sr and P, while the ANN performance is better for the estimation 

of Rc. 

5.9. Conclusions 

Artificial Neural Network method is tested as an alternative NDT combination method.  In 

this chapter, it is shown the aptitude of ANN for the prediction of four concrete indicators: 

Water content (w), porosity (P) compressive strength (Rc) and carbonation depth (Pc).  

First, the performance of the different ANN models for each targeted indicator (w, P, Rc 

and Pc) was first tested with the SENSO database. The chosen models were the following: 

- For w, the MLP-w obtained with the input configuration 579!as the MSE is 

inferior to 1 %, the R2 is over 0.98 and the AME is below 1%.  

- For P, the MLP-P models obtained with the input configuration 48912!or 7912!

as the MSE is inferior to 1 %, the R2 is over 0.8 and the AME is below 0.45% for both 

models. 
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- For Rc, the MLP-Rc obtained with the input configuration 5912w, which 

means that a better estimation of Rc can be obtained with w as an input value.!For this 

model, the MSE is inferior to 12 MPa2, the R2 is over 0.95 and the AME is below 2.5 

MPa.  

- For Pc, the model MPL-Pc has a MSE below 70 mm2, the R2 is over 0.9 and 

the AME is below 6 mm.  

Later, an application of the selected ANN models for w, P and Rc was made on a wall of 

Le-Havre site. A total of 37 measurements of 4 observables: ultrasonic pulse velocity, Impact 

Echo - Dynamic modulus of Young, Impact Echo - Compressive wave velocity, capacity of 

large electrodes – Permittivity and Log of the quadripole resistivity 5 cm were made for pre-

auscultation and auscultation.!Besides a total of 5 cores were extracted to obtain the indicators 

destructive tests values of Rc, P and w. The performance of the ANN models as well as the 

comparison between ANN and data fusion methods was made. It was concluded that for ANN, 

the RME values for P and Rc are below 20 %, while for w is 50%. For data fusion (raw results 

without updating), the RME values for Sr and P are below 15 %, while the RME value for Rc 

is over 35 %. Therefore, in this case, the estimation of Sr and P is better with data fusion 

method, while the estimation of Rc is better with ANN. 

For future works, it would be important to find a way to update either by found neural 

network models or by outputs. This in order to obtain results that can fit better to targeted 

values, as it was already developed for the fusion data tool (see chapter 4).  
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6.1. Introduction 

As mentioned in chapter 2, Non-Destructive Testing (NDT) methods are essential not only 

for detecting anomalies, but also for assessing concrete indicators and their variability during 

the diagnosis of civil engineering structures. NDT is a powerful tool for reducing the 

auscultation budget of a concrete structure. The proposed approaches described in chapters 3, 4 

and 5 are included in EVADEOS project which goal is to optimize the monitoring of civil 

engineering structures by implementing preventive maintenance to reduce costs.  

In the case of this chapter, the aim was to use the tools developed during this thesis on a case 

study, which includes non-destructive and destructive measurements taken on a wall of the 

CEA-Saclay, France.  

- First, the performance of the OSSM described in chapter 3 was explored on non-

destructive measurements taken on the studied wall. Besides, the fusion tool developed 

in a previous project and described in chapter 2 was used to obtain saturation degree and 

porosity in each auscultated point of the wall. These indicators were used later to locate 

optimally some destructive tests using the OSSM.  

- Since for this structure, there is no correlation between the fused and the destructive 

testing indicators, as assumed in the updating by affine transformation, the propagation 

of DTs uncertainties proposed in chapter 4 was not made.  

- Finally, the performance of the artificial neural network models described in chapter 5 

was tested principally for carbonation depth model, but also for water content, porosity 

and compressive strength.  

CEA-Saclay is one of the studied sites selected for EvaDéOS project. The interest of this site 

is that the concrete is significantly carbonated with relative depths close to the reinforcement 

depth. The case study considers two walls: one facing north (Wall N) and the other facing south 

(Wall S). These walls were built in 1979, their lengths vary between 20 and 40 m and their 

height is approximately 2.2 m. Figure 6.1 shows the location of the walls inspected as part of 

this project. 
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Figure 6-1. Location of the inspected walls. 

A pre-auscultation and auscultation campaign was made in July 2014 where different NDT 

methods such as capacitive method, ultrasound, impact echo, resistivity, rebound hammer, 

permeability and GPR were used. The weather was rather hot and dry, which affected mostly 

the measurements of low penetration methods. The industrial approach of concrete assessment 

implies to reduce the number of NDT tests and cores to optimize the auscultation cost. For this 

study, only the North wall (wall N) was considered. 

6.2. Validation of the OSSM  

6.2.1. Spatial sampling design for NDT measurements: Impact Echo and Capacitive 
method 

Many NDT methods were used in this measurement campaign, but only the measurements of 

the permittivity by the capacitive method (P_Capa) and the compression wave velocity 

measured by the impact-echo technique (Vp_IE) were used and analyzed here to test and 

validate the developed approach. These observables are very sensitive to two different 

indicators: Vp_IE is very sensitive to the porosity and P_Capa is very sensitive to the saturation 

degree, thus, two different fields to test the OSSM. Moreover, these methods were used in the 

data fusion process to estimate the porosity and saturation degree as mentioned below. 

For being able to do this, a series of 28 capacitive and impact echo measurements were made 

for the pre-auscultation of the wall N. They are distributed along two parallel horizontal lines. 

Figure 6.2 shows the grid detail. A spherical variogram was fitted to P_Capa and Vp_IE 

experimental data. The fitted curves have a nugget of 0.02 and 0 (m/s)2, a range of 0.6 m and 
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0.51 m and a sill of 0.24 and 8894 (m/s)2 respectively. These variograms and the kriging method 

were then used for the spatial interpolation process in order to obtain the original fields for both 

NDTs. Figure 6.3 shows the Vp_IE and P_Capa original fields and variograms. As it can be 

seen, three different zones of 13 m large are clearly identified.  

 

!

Figure 6-2. Grid detail for the pre-auscultation of the wall N. 

The OSSM performance was explored with different number of measurements (n). Figure 

6.4 shows the variation of the two objective functions - MPE (Figure 6.4a and Figure 6.4c) and 

VEE (Figure 6.4b and Figure 6.4d) – with n measurements organized on a regular grid (before 

optimization) and with the optimized location of those n measurements organized on an 

irregular grid (after the OSSM) for P_Capa and Vp_IE. 

If MPE is used as the objective function, we can observe a significant decrease in its value 

for P_Capa (Figure 6.4a) of 49% on average from a regular grid to an irregular one. In the case 

of Vp_IE (Figure 6.4c), there is a decrease in average of 55% for MPE. From Figure 6.4b, it can 

be deduced that if n is reduced to 13, the new global variance is equal to that obtained with the 

original 28 measurements P_Capa. In figures 6.4a and 6.4b it can also be seen that if we fix a 

MPE value of 2% for P_Capa and a MPE value of 1.6% for Vp_IE, we can reduce the number 

of measurements from 18 to 8 just by organizing the 8 measurements in an optimal irregular 
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grid. Figure 6.5 illustrates the reduction of number of measurements from 18 to 8 by fixing a 

MPE value. As it can be seen for both NDTs, the details of the kriging maps obtained with the 

18 measurements organized in a regular grid are not lost when the number of measurements is 

reduced to 8 organized in an optimal irregular grid, if we compare them to the original maps. 

 

 

 

Figure 6-3.!Variograms and original fields of Vp_IE and P_Capa. 

0 

3000 

6000 

9000 

12000 

0 0.25 0.5 0.75 1 1.25 1.5 
ɣ 

(h
) 

h (m) 

Variogram Vp_IE 

0.0 

0.1 

0.2 

0.3 

0.4 

0 0.25 0.5 0.75 1 1.25 1.5 

ɣ 
(h

) 

h (m) 

Variogramme P_Capa 

 Original field – Vp_IE 

X (m)
10 20 30 40

Y
 (

m
)

1

1.5

2
6

6.5

7

 Original field – P_Capa 
X (m)

10 20 30 40

Y
 (

m
)

0.6

1

1.4

1.8
3900

4000

4100

4200

4300

4400



Chapter 6:!On site application - CEA Saclay 

147 
!

!

Figure 6-4. Relationship between the number of measurements and the fitness function values for a) MPE 
(P_Capa), b) VEE (P_Capa), c) MPE (Vp_IE) and d) VEE (Vp_IE). Regular grid (blue points) and optimal 

irregular grid (red points). 

!

Figure 6-5. Illustration of the reduction of number of measurements from 18 to 8 by fixing a MPE value for 
P_Capa and Vp_IE. 

We can better visualize the impact of the optimization from Figures 6.6a to 6.6d.  

- Figure 6.6a shows the original map with 28 Vp_IE measurements, 

- Figure 6.6b shows the kriging map obtained with 13 measurements organized in a 

regular grid,  

- Figure 6.6c shows the kriging map obtained with 13 measurements organized in an 

irregular grid optimized by the algorithm with MPE as the objective function and, 
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- Figure 6.6d, shows the kriging map obtained with 13 measurements arranged in an 

irregular grid optimized by the algorithm with VEE as objective function.  

!

Figure 6-6. a) Original Vp_IE map with 28 measurements, b) Kriging map made with 13 measurements 
organized in a regular grid, c) Kriging map made with 13 measurements organized in an optimal irregular 

grid obtained after OSSM with MPE as fitness function, d) Kriging map made with 13 measurements 
organized in an optimal irregular grid obtained after OSSM with VEE as the fitness function. 

MPE and VEE showed interesting performances. Their value is reduced by 52% and 75% on 

average for both NDT methods going from a regular grid to optimal irregular one. Note that 

MPE leads to a smaller mean prediction error in the kriging map and a mean value closer to the 

original one than the mean obtained with VEE. On the other hand, VEE provides a variance 

value closer to the global variance than MPE. In this case VEE and MPE gave an almost 

identical kriging map. However, special attention should be paid to what is expected before 

selecting the most appropriate objective function to analyze a particular data set. For example, if 

the structure manager wants to know the spatial distribution to optimize further controls or if he 

wants to locate the priority zones to schedule maintenance, MPE must be used. If, on the 

contrary, he wants to estimate the overall variability of the material for reliability calculation, 

VEE should be chosen. Since the aim of our work is to optimize the monitoring of civil 

engineering structures by NDT methods, MPE will be privileged in the next section. 

6.2.2. Spatial sampling design for destructive testing 

As part of a complete and reliable inspection, destructive laboratory testing on concrete 

samples obtained by coring is needed to confirm and calibrate the results of the indicators 

obtained by the fusion of different NDT methods [1]. Because of the cost of both coring and 

destructive testing can be prohibitive, and it can induce damage to the structure, it is important 

to propose an optimal spatial sampling plan to extract a limited number of cores. 

In this chapter, the objective is to locate in the best way possible the cores to extract, to make 

destructive tests to obtain the saturation degree and porosity for each core. In order to do this, 

ideally we should have the measurements of saturation degree and porosity for each auscultation 

point to use the OSSM. However, as mentioned before, it is not usual to take 28 cores. 

Therefore, we combined the capacitive method, impact echo and electrical resistivity through a 
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fusion process based on the theory of possibilities and described in chapter 2 to obtain the 

reference maps for saturation degree and porosity at each point of the auscultated wall. It is 

assumed that these reference maps have a similar spatial variability from the ones that would be 

obtained if destructive tests were made on 28 cores extracted in each one of the auscultated 

points. Only 25 points were selected for the OSSM implementation due to the non-destructive 

measurement errors identified in the fusion process. 

For each one of the concrete indicators (porosity and saturation degree), a variogram was 

determined. As shown in Figure 6.7a, a spherical variogram with a range of 0.18 m, a sill of 

38.9% and a nugget of 0% has been fitted to the saturation degree data. It is important to point 

out that the range is a fitted parameter and the correlation length is of about 60 cm as can be 

seen in figure 6.7a. In contrast, for the porosity, no model could be fitted (Figure 6.7b). This 

means that the distribution of the porosity throughout the wall is constant, which means that for 

any distance between measurements the variance is similar. The location of cores for assessing 

the porosity doesn’t have significant effect and can be anywhere.  Hence, the cores for assessing 

the porosity can be located at the same positions as the ones obtained after OSSM made for the 

saturation degree with MPE and VEE as fitness functions. We can see from figure 6.7 that if 

correlation and a variogram can be found for the NDT data, concrete indicators do not 

necessarily show the same spatial correlation. This can be due to the dependency of NDT to 

more than one concrete indicator.  

!

Figure 6-7. Empiric variograms (points) and the respective adjusted models (lines) of the indicators studied 
on the auscultated wall. a) Saturation degree variogram, b) Porosity variogram. 

For this approach, it was used two objective functions: MPE_Sr and VEE_Sr for the 

saturation degree. We study this minimization for different number of cores. Figures 6.8a and 

6.8b show the evolution of each objective function according to the number of cores organized 

in a regular grid before optimization (blue curve), and in the case of an irregular grid after 

optimization (red curve). The advantage of this transition to an irregular grid is to give an 

additional degree of freedom in the grid to reduce the objective function value. 
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Figure 6-8. Relationship between the number of cores and fitness function values for a) MPE_Sr, b) MPE_P. 
Regular grid (blue points) and optimal irregular grid (red points). 

It is noted on the figures 6.8a and 6.8b that the error decreases to 24% and 45% in average 

from a regular grid to an irregular one for the case of OSSM with MPE_Sr and VEE_Sr 

respectively. However, although the location of the cores on an irregular grid significantly 

decreases the error, the decrease is not as important as in the case of spatial optimization of 

NDTs. It can be expected due to the reduced number of cores (known values). 

Figure 6.9 shows an example of the optimization with 5 cores. In the left part of the figure, 

we have the reference maps for saturation degree and porosity obtained after fusion. In the 

middle part of the figure, we have the kriging maps for saturation degree and porosity after 

optimization carried out with 5 cores and MPE_Sr as the objective function. Finally, in the right 

part of the figure, we have the kriging maps for saturation degree and porosity after optimization 

carried out with 5 cores and VEE_Sr as the objective function. In the figures, it can be clearly 

seen the objective of each fitness function. Even though the number of cores is only 5, the 

kriging maps obtained with the locations provided by OSSM and MPE_Sr as the fitness 

function for both reference maps (Sr and P) are quite similar. Moreover, when VEE_Sr is used 

as the fitness function, it is observed that the optimized locations search to find the maximum 

and minimum zones. Besides, using exactly the same locations for Sr and P, optimizing only the 

locations of Sr, confirms that the variability of the porosity is constant. Hence, satisfying results 

for Sr and P can be obtained with only the optimized locations of Sr. 
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Figure 6-9. Saturation degree and porosity reference maps. Left side: original maps. Middle: kriging maps 
after optimization made with 5 cores and MPE_Sr as the objective function. Right side: kriging maps after 

optimization made with 5 cores and VEE_Sr as the objective function. 

6.3. Estimation of carbonation depth by Artificial Neural Networks 

As mentioned in chapter 5, Artificial Neural Networks (ANN) showed to be a promising 

NDT combination tool to predict carbonation depth (Pc) values. The chosen ANN model was a 

multilayer perceptron with one input layer composed of 6 observables (Table 5.7), one hidden 

layer composed of 8 neurons and one output. This model (MPL-Pc) was obtained with the 

scaled conjugate gradient training algorithm, which showed better results than the Levenberg-

Marquardt. With this model, an Absolute Mean Error (AME) of 5.9 mm was obtained for the 

EVADEOS and SENSO-Pc databases. 

Table 5.7. The 6 observables used as inputs for the MPL-Pc. 

Number Observable 
4 Surface Ultrasound - Wave velocity 3 cm (m/s) 
5 Ultrasound Pulse - 250kHz transmission velocity (m/s) 
9 Capacity of large electrodes - Permittivity 

11 Log of the quadripole resistivity 5 cm 
14 GPR pic to pic amplitude 
16 Direct wave GPR velocity (cm/s) 

In the case of CEA, 26 pre-auscultation measurements out of the 28 were selected, due to the 

absence of some NDT measurements and used on the MPL-Pc. Moreover, 15 Pc values were 

obtained by destructive tests made from extracted cores in order to evaluate the performance of 

the MPL-Pc on the studied case. Figure 6.10 shows the 26 estimated and targeted values of Pc. 

For this case study an AME of 10 mm was obtained, hence a Relative Mean Error (RME) of 49 

%. 

X (m)
10 20 30 40

Y
 (

m
)

0.6

1

1.4

1.8

17

18

19

20

21
X (m)

10 20 30 40

Y
 (

m
)

0.6

1

1.4

1.8 60

65

70

75

80

P (%) 

Reference map 
(obtained after fusion) 

Kriging map, 
MPE_Sr (n=5) 

Sr (%) 

X (m)
10 20 30 40

Y
 (

m
)

1

1.5

2

60

65

70

75

80

X (m)
10 20 30 40

Y
 (

m
)

1

1.5

2
18

19

20

21

X (m)
10 20 30 40

Y
 (

m
)

1

1.5

2
17

18

19

20

21

Kriging map, 
VEE_Sr (n=5) 

X (m)
10 20 30 40

Y
 (m

)

1

1.5

2

60

65

70

75

80



Chapter 6:!On site application - CEA Saclay 

152 
!

!

Figure 6-10. Estimated values of Pc with MPL-Pc and targeted values obtained from 15 DTs of the wall N. 

The carbonation is a concrete pathology that affects principally the surface of the concrete 

and it evolves with time. Hence, concrete indicators such as w, P and Rc are also expected to be 

affected by it. For example, some works have showed that carbonation decreased the porosity of 

concrete by clogging up the pores and reducing the pore sizes, thus, for an important 

carbonation depth value an increase of Rc is expected  [2-5]. Carbonation could affect w, but in 

this case study it should mostly be affected by the weather conditions at the moment of the 

measurements. The w, P and Rc MPL models defined in chapter 5 and based on non-carbonated 

concretes were also tested and the indicators results were compared to the DTs results obtained 

on surface concrete (carbonated part of the extracted cores) and on core concrete (non-

carbonated part of the extracted cores) for w and P indicators. Figure 6.11 shows the results for 

the estimated w, P and Rc and the targeted values of on core and surface concrete indicators for 

w and P, and the targeted values for Rc. Figure 6.12 shows the RME values and table 6.1 shows 

the AME values for Pc, Rc, w-surface, w-core, P-surface and P-core. 

0 

8 

16 

24 

32 

40 

H
0 

H
1 

H
2 

H
3 

H
4 

H
5 

H
6 

H
7 

H
8 

H
9 

B
0 

B
1 

B
2 

B
3 

B
4 

B
5 

B
6 

B
7 

B
8 

B
9 

B
10

 
H

11
 

B
11

 
H

12
 

H
13

 
B

13
 

P
c 

(m
m

) 

Estimated Targeted 



Chapter 6:!On site application - CEA Saclay 

153 
!

!

Figure 6-11. Estimated w, P and Rc and the targeted values of on core and surface indicators for w and P, 
and the targeted values for Rc. 

As it can be seen in figure 6.12, there is a slightly decrease of the MPL model performance 

for the estimation of P if we want to evaluate the porosity on surface. On the other hand, a 

performance increase of the MPL-P model is found if we want to evaluate the core porosity 

(RME P-surface value more important than RME P-core value). This is expected, because the 

data used to train the model was obtained from non-carbonated concretes. However, the same 

does not apply for the estimation of w. The RME does not only increase significantly (the 

double compared to Le-Havre case study presented in chapter 5), but also the performance of 

the MPL-w model is worse if we want to estimate the water content of core concrete than if we 

want to estimate the water content of surface concrete (higher RME value obtained with w-core 

than the one obtained with w-surface). Therefore, as the estimation of Rc depends on the results 

of the w estimated, it is expected that the performance of MPL-Rc model to be highly 

decreased.   
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Figure 6-12. RME values for Pc, Rc, w-surface, w-core, P-surface and P-core. 

The increase of RME values demonstrates the need of a calibration to obtain better results 

adapted to the structure, as a performance decrease of the MPL models was found for the 

estimation of core concrete indicators, which are not carbonated. Besides, the difference of 

RME values between the core and surface concrete indicators shows that the performance of the 

MPL models for the estimation of the indicators on surface, are affected by the presence of the 

carbonation. Thus, as the MPL-w model performance was the most affected, affecting also the 

performance of the MPL-Rc model significantly, a new MPL-wc model was trained with the 

EVADEOS and SENSO-Pc databases, which contain carbonated concretes. This, in order to 

estimate better the water content on surface for the study case. The new MPL-wc model was 

trained with the scaled conjugate gradient algorithm, which as well as the Pc case (described in 

chapter 5) showed better results than the Levenberg-Marquardt algorithm. Figure 6.13 shows 

the architecture of this MPL-wc model with the same 6 inputs as the Pc case and 7 neurons in 

the hidden layer. 

With this new MPL-wc model an AME of 2.2 % and a RME of 24 % (table 6.1) was 

obtained when the estimated values are compared to w-surface values. Consequently, a 

significant increase in the estimation of w-surface is obtained. Now, if we take these new water 

contents estimated values and we include them in the MPL-Rc model, we obtain a AME and 

RME of 18.7 MPa and 48.1 % respectively (table 6.1), that are half of the ones obtained before. 

Even though, the improvement on AME and RME are significant for Rc, these values remain 

important. It is expected, as the values of w used for the estimation of Rc are the w-surface. For 

obtaining a better estimation of Rc, we should use w-core values, but for now we do not have a 

MPL-w model that gives a good estimation of w-core values when the surface of the concrete is 

carbonated.  
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Figure 6-13. Architecture of the MPL-wc. 

Table 6-1. Mean, AME and RME values for Pc, Rc, w-surface, w-core, P-surface and P-core estimated and 
targeted values for the estimation of w-surface with MPL-w and MPL-wc models. 

!  

Estimated 
(Mean) 

Targeted 
(Mean) AME  

RME     
(%) 

With MPL-w 
model 

Pc (mm) 25.4 21.3 10.0 49.1 
w-surface (%) 4.2 8.6 4.3 49.7 
w-core (%) 4.2 13.6 9.3 68.3 
P-surface (%) 19.9 17.3 3.3 19.1 
P-core (%) 19.9 19.8 1.9 9.6 
Rc (MPa) 67.4 39.2 35.0 89.8 

With MPL-wc 
model 

w-surface (%) 6.5 8.6 2.2 24.0 
Rc (MPa) 55.7 39.2 18.7 48.1 

6.4. Conclusions 

This chapter provides an approach that can contribute to an effective characterization of 

structures by implementing NDT methods with the aim of limiting inspection costs. A 

preliminary study of a concrete structure was carried out with two non-destructive testing 

methods (capacitive method and impact echo) to evaluate the spatial correlation of a wall on the 

CEA site in Saclay, France. A first spatial optimization was made for later use in the case of a 

future auscultation with more performant NDTs or for a monitoring of the site. Then, the fusion 

of three NDTs (capacitive method, impact echo and electrical resistivity) is made by the theory 

of possibilities method to obtain the saturation degree and porosity values for the studied wall. 

After the fusion of the non-destructive measurements and the estimation of the two studied 

concrete indicators, a variogram model could be fitted only for the saturation degree. This 
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variogram was then used for the spatial optimization of the cores to extract from the studied 

wall. 

For NDT spatial optimization, two objective functions were exploited: MPE and VEE. 

However, for cores to extract case, spatial optimization using only MPE and VEE for Sr as the 

objective functions were retained because no variogram model could be fitted for P, which 

means that its variability is constant throughout the studied wall. NDT optimization was tested 

with twenty-three, eighteen, thirteen, eight and three measurement points. All cases showed a 

decrease of the objective functions: 52% for MPE and 75% for VEE on average. It was also 

showed that if a MPE value is fixed, a decrease of the number of measurements is possible by 

organizing the reduced number of cores in an optimal irregular grid. Between regular and 

irregular spatial distribution of measurements for spatial optimization for destructive testing 

samples (cores), the algorithm was tested with five, four, three and two cores. The algorithm 

was run with MPE_Sr and VEE_Sr as fitness functions. All cases showed an important decrease 

of objective functions, but not as important as the NDT case. Maybe this difference can be due 

to a more important variability on NDTs (important difference between max et min values), 

than on DTs. The reduced number of cores can also explain this difference. 

Later, the estimation of Pc values for each auscultated point was made by the use of the 

ANN model (MPL- Pc) described in chapter 5. Their AME and RME were 10 mm and 49 % 

respectively, which are a sign that a calibration to obtain better results adapted to the structure is 

necessary. MPL models for w, P and Rc were also tested and its results were compared to DTs 

made on surface and on core for the cases of w and P. In general, it was observed a decrease of 

the MPL models performance with the exception of MPL-P. Therefore, these results are good 

indicators not only for the need of a calibration to obtain better results adapted to the structure, 

but also, that the performance of the MPL models are affected by the presence of the 

carbonation. For this reason, a new model for w (MPL-wc) trained with SENSO-Pc and 

EVADEOS databases was developed. Its performance for the assessment of w-surface of the 

studied structure was increased significantly compared to the MPL-w model. 

For future works, it will be important to develop a calibration process for the MPL 

implemented models and a careful consideration must be made to whether taking into account 

the effect of carbonation in the calibration process for the original w, P and Rc MPL models or 

to develop new models including carbonated concretes to assess the different indicators 

effectively. Moreover, the inclusion of the indicators uncertainties on the OSSM can be a good 

way of evaluating its performance, either as input data or as another fitness function. 
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In order to estimate the degradation state of a concrete structure, it is important to plan a 

maintenance strategy at a minimum cost. For that aim, the development of an optimal diagnosis 

strategy is necessary. Until now, for assessing concrete properties in relation with the 

degradations destructive testing on cores is the most usual method. The location of cores is 

generally done after a visual inspection of the structure that can provide information about the 

presence or the consequence of pathology. The results of destructive testing, which are the 

concrete properties linked to the pathologies, called indicators, are used as inputs for prediction 

models. However, visual inspection as a diagnosis method remains informal and subjective. 

Regarding destructive testing, because of the concrete own variability and the spatial variability 

of concrete indicators a large number of cores must be extracted, so the cost of destructive 

testing can be prohibitive and disabling for the integrity, particularly if the structure is very large.  

For that reason, non-destructive testing (NDT) is an interesting complement in the diagnosis 

of a concrete structure. However, NDTs are variable themselves and the concrete indicators can 

have combined effects on NDT measurements. So the combination of NDT methods is necessary 

and a methodology for exploring this combination and for merging the results is necessary. 

French projects such as SENSO and ACDC have focused in developing different NDT 

methods to be used in combination and have also developed a data fusion method to obtain the 

most reliable information of the properties of a concrete slab or structure. To be used in real 

structure the fusion procedure requires a calibration by DT on cores. The minimum number of 

cores determines the quality of the calibration.   

EvaDéOS project proposes a global methodology in which the concrete properties assessed 

by NDT are used as inputs of predictive models and as data for the actualization of the 

prediction. For this purpose it was necessary to provide information about spatial variability of 

properties. The assessment of spatial variability will require a minimal number of measurements, 

which is the main interest of NDT in comparison with DT. Nevertheless, it is important to 

emphasize that the diagnosis is limited by a budget. Hence, it is important to develop an optimal 

methodology for the assessment of concrete properties on real structures, taking into account the 

variability of both NDT and DT. Moreover it is also important to determine the minimum 

number of cores regarding the quality of fusion calibration. This was one of the objectives of this 

thesis. The other objective was to extend the combination methodology to other concrete 

properties. Because EvaDéOS project mainly focused on corrosion, carbonation was explored by 

NDT combination. A new approach of combination methodology was proposed by using 

artificial neural networks (ANN). 

The first axe of the thesis was about the study of the spatial correlation and variability of 

NDT for creating an optimal spatial sampling method that will eventually be useful to plan an 
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optimal inspection strategy. With this method it was shown that it is possible to improve the 

knowledge of the material properties (mean, variance, extreme values) and to locate 

specific areas where the investigation will be refined, by using a methodology based on 

variographic theory. When compared to investigation programs based on a regular grid, it 

enables to reduce the number of measurements to reach a given quality and/or to increase 

the quality if the number of measurements remains constant. The optimal spatial sampling 

method uses two fitness functions: Mean Estimation Error (MPE) and Variance Estimation Error 

(VEE). They have different objectives and they may be complementary. The choice of one 

fitness function has to be done by considering the real objectives of the material assessment 

(mainly mean values or variance). Both fitness functions showed a high improvement in the 

representation of all cases studied (simulated field and on-site ultrasonic velocity measurements). 

However, the VEE values are highly affected by the variation of the number of measurements 

and the correlation length, while the MPE values are only affected by the modification of the 

number of measurements.  

The second axe of the thesis, seeks the reduction on the number of DTs and their optimal 

location by studying the sensitivity of the error obtained on the concrete properties estimated by 

data fusion. This error is obtained by introducing and propagating a fixed value of DT 

uncertainty through the data fusion process. A proposal of the introduction of the uncertainties 

representing the variability of indicators obtained by destructive tests of the studied material of a 

studied concrete structure is made. The propagation of these uncertainties to the indicators 

obtained by fusion is made through the updating by affine transformation, which assumes a 

linear relationship between the indicators obtained by DT and the indicators obtained by fusion 

of NDT. 

This contribution offers to the structure manager additional entry information for the 

indicators prediction models. This additional information is the precision (standard 

deviation and statistical distribution) of the indicators obtained by the fusion of NDT 

methods for each auscultation point of the studied structure, as well as the sensitivity of 

this precision to the number and selection of cores. The method used to obtain this 

variation can be applied to any concrete structure.  

The method was applied on a case study, where the studied indicators saturation degree and 

compressive strength have different variability. For the saturation degree, the indicator values 

obtained by fusion and the ones obtained by destructive test have a variability of 10 %, while for 

compressive strength is the double. For this study, it was found that the fused results for 

saturation degree are more sensitive to the value of DTs uncertainties than for compressive 

strength. It was also found that even though different configurations including minimum, 
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maximum and intermediary values were tested, the best configuration to place the cores for both 

indicators, belongs to the indicator that has more variability throughout the structure, in this case, 

compressive strength. Moreover, it was found that the error found for both indicators is 

correlated, when the configurations changes, but the number of cores is fixed. Then, if we fix the 

best configuration and we change the number of cores, a decrease power relationship between 

the error found for both indicators and the number of cores is found. In this case, an important 

decrease of the errors for both indicators is found, when the number of cores is reduced from 10 

to 3. Moreover, the errors of both indicators for this case (fixed configuration and variable 

number of cores) are also correlated.   

In the third axe of the thesis, the Artificial Neural Network (ANN) method was tested as an 

alternative NDT combination method.  In this chapter, it is shown the aptitude of ANN for the 

prediction of four concrete indicators: water content (w), porosity (P) compressive strength 

(Rc) and carbonation depth (Pc). The performance of the different ANN models for each 

targeted indicator (w, P, Rc and Pc) was first tested with the SENSO database.  

An MLP-w model for the estimation of w obtained with an input configuration composed of 

the observables UPV, IEE and CLEP was chosen!as the MSE is inferior to 1 %, the R2 is over 

0.98 and the AME is below 1%. Moreover, two MLP-P models for the estimation of P obtained 

with input configurations composed of the observables 4, 8, 9, 12 and 7, 9, 12 were chosen!as the 

MSE is inferior to 1 %, the R2 is over 0.8 and the AME is below 0.45% for both models. 

Besides, an MLP-Rc model for the estimation of Rc obtained with an input configuration 

composed of w and the observables UPV, IEE, RE5 was chosen as the MSE is inferior to 12 

MPa2, the R2 is over 0.95 and the AME is below 2.5 MPa. Finally, an MLP-Pc model for the 

estimation of Pc obtained with an input configuration composed of the observables UPV, CLEP, 

RE5, GPRV was chosen as the MSE is below 70 mm2, the R2 is over 0.9 and the AME is below 

6 mm. It was also found for the case study that the estimation of saturation degree and porosity is 

better with the data fusion method, while the estimation of Rc is better with ANN. 

Finally a case study was presented on reinforced concrete walls at CEA-Saclay. OSSM for 

NDTs spatial optimization, but also for the spatial optimization of the cores to extract for 

evaluating optimally two indicators, saturation degree and compressive strength were used. 

The values of both indicators for each auscultation point were obtained by the data fusion 

method and their spatial correlations were evaluated. However, no variogram model could be 

fitted for the porosity, even though a variogram model could be fitted for the NDTs used to 

estimate both indicators. This means that the porosity variability is constant throughout the 

studied structure element. Nevertheless, the OSSM was used for the saturation degree to 

optimize the cores location for both indicators. NDT and DT optimizations showed an 
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important decrease of the fitness functions. However for the DT case this is not as significant as 

the NDT case may be because the NDT variability (difference between minimum and maximum 

values) is more important than the DT variability. The reduced number of cores can also explain 

this difference. 

Later, the estimation of Pc for each auscultated point was made by the use of the MPL-Pc 

model. The AME and RME were 10 mm and 49 % respectively. Moreover, MPL models for w, 

P and Rc were also tested and their results were compared to DTs made on surface and on core 

for the cases of w and P. In general, it was observed a decrease of the MPL models performance 

with the exception of MPL-P. Therefore, these results are good indicators not only for the need 

of a calibration to obtain better results adapted to the structure, but also, that the performance of 

the MPL models is affected by the presence of carbonation. For this reason, a new model 

for w (MPL-wc) trained with SENSO-Pc and EVADEOS databases was developed. Its 

performance for the assessment of w-surface of the studied structure was increased 

significantly compared to the MPL-w model. 

For future works: 

As the fitness functions used for the optimization spatial sampling method (OSSM) have 

complementary information, a good compromise can be obtained from the combination of the 

two fitness functions using for example a multi-objective optimization for a better evaluation of 

mean and variance. A cost function could also been implemented. 

Until know the OSSM developed has been used with a single value for each auscultation 

point. For future works it is intended to study the performance of the OSSM by using also the 

variance of each auscultation point as an additional input. Moreover, the inclusion of the 

indicator errors obtained by the propagation of DTs uncertainties on the OSSM can also be a 

good way of evaluating its performance, either as input data or as another fitness function. 

Until know, the measurement values obtained for each auscultation point, have been 

considered for an average auscultation depth. It would be interesting that for future works, the 

method could be used for a concrete cover to the reinforcement depth.  

It is also intended to continue to work on the artificial neural networks. First, it will be 

important to develop a calibration process for the MPL implemented models and a careful 

consideration must be made to whether taking into account the effect of carbonation in the 

calibration process for the original w, P and Rc MPL models or to develop different models 

including carbonated concretes to assess the different indicators effectively. Second, until now 

the only way of evaluating the performance of the MPL implemented models is by comparing 

the results obtained from the models and the targeted values obtained by destructive test. It 
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would be interesting, for future works, to develop a method to evaluate the quality of the results, 

when destructive test values are not available. 
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