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Abstract

This thesis proposes a methodology which integrates formal methods in the specification, design,
verification and validation processes of complex, concurrent and distributed systems with
discrete events perspectives. The methodology is based on the graphical language HILLS (High
Level Language for System Specification) that we defined. HiLLS integrates software
engineering and system theoretic views for the specification of systems. Precisely, HiLLS
integrates concepts and notations from DEVS (Discrete Event System Specification), UML
(Unified Modeling Language) and Object-Z. The objectives of HILLS include the definition of a
highly communicable graphical concrete syntax and multiple semantic domains for simulation,
prototyping, enactment and accessibility to formal analysis. Enactment refers to the process of
creating an instance of system executing in real-clock time. HILLS allows hierarchical and
modular construction of discrete event systems models while facilitating the modeling process
due to the simple and rigorous description of the static, dynamic, structural and functional aspects
of the models.

Simulation semantics is defined for HiLLS by establishing a semantic mapping between HiLLS
and DEVS; in this way each HiLLS model can be simulated by a DEVS simulator. This approach
allow DEVS users to use HiLLS as a modeling language in the modeling phase and use their own
stand alone or distributed DEVS implementation package to simulate the models.

An enactment of HiLLS models is defined by adapting the observer design-pattern to their
implementation.

The formal verification of HiLLS models is made by establishing morphisms between each level
of abstraction of HILLS and a formal method adapted for the formal verification of the properties
at this level. The formal models on which are made the formal verification are obtained from
HILLS specifications by using the mapping functions. The three levels of abstraction of HILLS
are: the Composite level, the Unitary level and the Traces level. These levels correspond
respectively to the following levels of the system specification hierarchy proposed by Zeigler:
CN (Coupled Network), 10S (Input Output System) and IORO (Input Output Relation
Observation). We have established morphisms between the Composite level and CSP
(Communicating Sequential Processes), between Unitary level and Z and we expect to use
temporal logics like LTL, CTL and TCTL to express traces level properties. HILLS allows the
specification of both static and dynamic structure systems. In case of dynamic structure systems,
the composite level integrates both sate-based and process-based properties. To handle at the
same time state-based and process-based properties, morphism is established between the
dynamic composite level and CSPZ (a combination of CSP and Z);

The verification and validation process combine simulation, model checking and theorem
proving techniques in a common framework. The model checking and theorem proving of HILLS
models are based on an integrated tooling framework composed of tools supporting the notations
of the selected formal methods in the established morphisms.

We apply our methodology to modeling of the Alternating Bit Protocol (ABP) and the
Automated Teller Machine (ATM).



The thesis has contributed to the following publications:

1.

Ighoroje, U.B., Maiga, O., Traoré, M.K. The Formal Framework for the DEVS Driven
Modeling Language. In Proceedings of European Modeling and Simulation Symposium
(EMSS) 2011, Rome (Italy), September 2011.

Ighoroje, U.B., Maiga, O., Traoré, M.K.: The DEVS-driven modeling language: syntax
and semantics definition by meta-modeling and graph transformation. In: Proceedings of
the 2012 Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S
Symposium Article No. 49. Society for Computer Simulation International San Diego,
CA, USA (2012).

. Maiga O., Ighoroje U.B. and Traoré M.K. Intégration des Méthodes formelles dans la

spécification et la vérification et validation des modeles de simulation. In Proceedings of
MOSIM 2012, Bordeaux (France), June 2012.

. Maiga O., Ighoroje U.B. and Traoré M.K.. DDML: A support for communication in

Modeling and Simulation. 3rd IEEE Track on Collaborative Modeling and Simulation-
CoMetS’12. Toulouse (France), June 2012.

Maiga O and Traoré M.K. Approche Formelle de vérification et validation des modé¢les de
simulation. In : Journées Scientifiques de I’Ecole Doctorale des Sciences pour I’Ingénieur
(EDSPI), Clermont-Ferrand (France), June 2013.

Maiga O. and Traoré M.K. An Integrated approach to the specification, simulation, formal
analysis and enactment of discrete event systems. AUSTECH 2015, Abuja, Nigeria,
October 2015.

Aliyu H. O., Maiga O., Abdoul-Wahab H. 1. and Traoré M.K. Introducing HiLLS: High
Level Language for System Specification. AUSTECH 2015, Abuja, Nigeria, October
2015. Best Presentation Award.

Maiga O., Aliyu H. O. and Traoré M.K. A New Approach to Modeling Dynamic
Structure Systems. Accepted for publication at European Simulation and Modeling
Conference (ESM’2015), Leicester, United Kingdom, October 2015.

Aliyu H. O., Maiga O. and Traoré M.K. A Framework for Discrete Event Systems
enactment. Accepted for publication at European Simulation and Modeling Conference
(ESM’2015), Leicester, United Kingdom, October 2015.

Papers under review:

l.

Aliyu H. O., Maiga O. and Traoré M.K. AnnoGram4MD: A Language for Annotating
Grammars for High Quality Metamodel Derivation. Submitted to the 28" International
Conference on Software Engineering, Austin, TX, May 14-22, 2016

Aliyu H. O., Maiga O., and Traoré M.K. Yet another Visual Language for DEVS.
International Journal of Modeling and Simulation and Scientific Computing.

Keywords: HiLLS, System Theory, Software Engineering, Modeling and Simulation, formal
methods, Verification and Validation, Enactment



Résumé

Titre: Un Langage Intégré pour la Spécification, Simulation, Analyse Formelle et En-action des
Systémes a événements discrets.

Cette these propose une méthodologie qui integre les méthodes formelles dans la spécification, la
conception, la vérification et la validation des systémes complexes concurrents et distribués avec
une perspective a événements discrets. La méthodologie est basée sur le langage graphique
HILLS (High Level Language for System Specification) que nous avons défini. HiLLS inteégre
des concepts de génie logiciel et de théorie des systemes pour une spécification des systemes.
Précisément, HiLLS intégre des concepts et notations de DEVS (Discrete Event System
Specification), UML (Unified Modeling Language) et Object-Z. Les objectifs de HILLS incluent
la définition d’une syntaxe concrete graphique qui facilite la communicabilité des modeles et
plusieurs domaines sémantiques pour la simulation, le prototypage, I’enaction et I’accessibilité a
I’analyse formelle. L’Enaction se définit par le processus de création d’une instance du systeme
qui s’exécute en temps réel (par opposition au temps virtuel utilisé en simulation). HiLLS permet
la construction hiérarchique et modulaire des systeémes a événements discrets grace a une
description simple et rigoureuse des aspects statiques, dynamiques et fonctionnels des modéles.

La sémantique pour simulation de HiLLS est définie en établissant un morphisme sémantique
entre HILLS et DEVS; de cette fagon chaque modele HiLLS peut étre simulé en utilisant un
simulateur DEVS. Cette approche permet aux utilisateurs DEVS d’utiliser HiLLS comme un
langage de spécification dans la phase de modélisation et d’utiliser leurs propres implémentations
locales ou distribuées de DEVS en phase de simulation.

L’enactment des modeles HiLLS est basé sur une adaptation du patron de conception
Observateur pour leur implémentation.

La vérification formelle est faite en établissant un morphisme entre chaque niveau d’abstraction
de HIiLLS et une méthode formelle adaptée pour la vérification formelle des propriétés a ce
niveau. Les modeles formels sur lesquels sont faites les vérifications formelles sont obtenus a
partir des spécifications HiLLS en utilisant des morphismes. Les trois niveaux d’abstraction de
HiLLS sont : le niveau composite, le niveau unitaire et le niveau des traces. Ces niveaux
correspondent respectivement aux trois niveaux suivants de la hiérarchie de spécification des
systemes proposée par Zeigler : CN (Coupled Network), I0S (Input Output System) et IORO
(Input Output Relation Observation). Nous avons établi des morphismes entre le niveau
Composite et CSP (Communicating Sequential Processes), entre le niveau unitaire et Z, et nous
utilisons les logiques temporelles telles que LTL, CTL et TCTL pour exprimer les propriétés sur
les traces. HILLS permet a la fois la spécification des modeles a structures statiques et les
modeles a structures variables. Dans le cas des systémes a structures variables, le niveau
composite integre a la fois des propriétés basées sur les états et les processus. Pour prendre en
compte ces deux aspects, un morphisme est défini entre le niveau Composite de HiLLS et CSPZ
(une combinaison de CSP et Z).

Le processus de vérification et de validation combine la simulation, la vérification exhaustive de
modele (model checking) et la preuve de théorémes (theorem proving) dans un Framework
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commun. La vérification exhaustive et la preuve de théorémes sur les modeles HiLLS sont basées
sur les outils associés aux méthodes formelles sélectionnées dans les morphismes.

Nous appliquons la méthodologie de modélisation de HiLLS a la modélisation du Alternating Bit
Protocol (ABP) et a celle d’un guichet automatique de dépot de billet (Automated Teller
Machine) (ATM).
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1.1 Context

It is a known fact that software development projects have low level of success compared to
projects in other domains like construction. Success in these domains is due to well-defined
engineering methodologies and standards. To increase success in software and hardware systems
development there is a need to define principles, languages, methodologies and tools that help
projects managers, designers and developers in the different steps. Over the years multiple
development methods and software life cycle models classified as classic approaches and agile
methodologies have been proposed. Classical approaches (Waterfall model, incremental methods
etc.) articulate around four main phases: specification, design, implementation, verification and
validation. The differences between them reside in how steps follow each other, details of each
step and how verification and validation is conducted through the different phases. A common
critic of most of these approaches is that error is detected very late or interaction with the product
is very late. While classical approaches follow rigorously a requirement document and a defined
project plan, agile methodologies (eXtreme Programming, Scrum, Feature Driven Development,
Adaptive Software Development) focus on the interaction with the customer, changes in
requirements and proposition of an early version of the software. A list of recommendations to
complement the deficiencies of software development can be to:

- Capture Requirement in a precise and unambiguous way

- Integrate Many languages in one or different phases

- Detect and correct errors in the early phases

- Conduct Verification and validation through all the phases

- Make an early version of the software available

- Use Formal methods in complement to simulation and testing

- Use Object-Orientation Principles in design and implementation

- Generate code from models

In modeling and analysis of complex systems, it is important that the abstract model should
accurately capture the structural and behavioral aspects of the system to make verification and
validation using techniques such as simulation and formal analysis effective and the
implementation of the system possible. System development generally requires knowledge of the
system domain, modeling methodology, and model analysis and execution techniques. Domain
experts are concerned with system characteristics, problems and behavior. Modeling experts use
mathematical formalisms, algorithms, and/or computer programs to develop abstractions of
systems. These abstractions must be translated into some semantic domain to investigate system
properties. Due to the difference in concerns and expertise between experts involved in the
system development, it is required to utilize a framework that supports communication and
cooperation between domain experts and experts in other domains like modeling and simulation
and formal methods. What is needed to achieve this is an intermediate notation which is highly
communicable, expressive, and low enough to reduce the complexity of code synthesis for
simulation, prototyping, enactment and formal analysis. This representation should be able to
express the structural and behavioral characteristics of complex systems without ambiguities. In
the area of software, systems, business processes and data engineering some notables languages
such as Unified Modeling Language ™ (UML) [OMG 2010a], System Modeling Language ™
(SysML) [OMG 2010b], Business Process Modeling Notation (BPMN) [OMG 2012] and Entity
Relationship Diagrams (ERD) [Chen 1976] respectively have been used as specifications that
provide easy visual constructs that facilitate cooperation between domain engineers and technical

15



experts. Employing similar constructs for real-time, concurrent and distributed systems modeling
with discrete event perspective would facilitate the system development process; this is a part of
the objectives of this thesis.

Over the years, several modeling techniques for dynamic systems have been developed. The
Discrete Event System Specification (DEVS) [Zeigler 1976] formalism has emerged as a
preferred formalism because other formalisms have been proven to have an equivalent DEVS
representation [Vangheluwe 2000]. Although DEVS is specifically tailored to suit discrete event
systems, it supports full range of dynamic system representation. In particular, a Differential
Equation System Specification (DESS) can have an approximate Discrete Time System
Specification (DTSS) by selection of a sufficiently small constant time interval (discretization). A
DTSS model, in turn has an equivalent DEVS representation. Also, quantization of a DESS
system can result in an approximate DEVS model. As such, approximate models of continuous
and hybrid systems can be developed with DEVS. DEVS also promotes separation of concerns
by separating the model, simulator, and experimental frame thereby facilitating system
development. The DEVS simulation protocol is well defined. However, DEVS is semi-formal
and it does not provide concrete guidelines to express system structure, behavior, and traces. The
modeler is free to develop system models in ways that are most appealing. The absence of a
common agreed concrete syntax for DEVS has led to different implementations such as
DEVSJAVA [Sarjoughian and Zeigler 1998], SimBeans [Priehofer et al. 1999], James II
[Himmelspach and Uhrmacher 2004], etc. that makes collaboration between modelers and
communicability of models difficult. An Objective of this thesis is to define a new language that
reuse DEVS and provide a concrete syntax for modeling systems and make models
communicable and improve collaboration.

Simulation and testing have been used as traditional methods of verification and validation to
assess the qualities of the models by exploring some of the possible situations and scenarios and
comparing with system specification. The limitation of simulation is that it does not guarantee
that a verified system is error free because only some part of the system behavior is explored. On
the other hand, formal analysis involves using deductive verification, axioms, and proof rules to
determine the correctness of systems or models. They derive static properties when simulation
derives dynamic properties. Formal methods have been used in the specification, development
and verification of software and hardware systems but its use with computer simulation has not
been explored exhaustively. Formal methods can be a good compliment of simulation thereby
contributing to the reliability and robustness of systems [Micheal 1997]. Mathematical proof of
correctness is the most effective means of model verification and validation if its applicability is
possible [Balci 1997]. Formal analysis techniques allow for exhaustive check for the conformity
of the specification to requirements and rigorous proof of assertions about the system. Advances
in Formal methods have increased the range of systems that this can be applied to. Hence,
integrating formal methods with a well-established simulation technique like DEVS would enable
to derive premises or logical consequences of the model and confirm that the abstract
specification conforms to the operational specification [Traoré 2006]. A goal of this thesis is to
complement simulation-based verification by formal analysis techniques to check the multiple
aspects of systems properties.

The increasing complexity of hardware systems, software systems and embedded systems often
requires the use of different languages for modeling their different aspects. In general a system
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development requires many models that provide several complementary views on the system
structure and behavior. Communication between experts is constrained by the disparateness of
the descriptions of the various aspects of the system in their respective domains. Usually, an
exhaustive study of a complex system is done by adopting one of the two following prevalent
methods:
a. Creating different models of the same system with different formalisms to express the
aspects of the system required by experts of different domains.
b. Transforming a model defined in a specific formalism into models of other languages to
carry out the investigations.

These methods are not without serious drawbacks. In addition to the difficulty of mutual
communication between experts, the use of (a) is haunted by an arduous task of updating the
different versions of the specification to maintain consistency. The time and efforts required to
specify different models in different languages, yet for the same system could dissuade one from
embarking on that track. By taking benefits of the Model-Driven Engineering (MDE), method,
(b) solves the problem of manually specifying multiple models of same system. However, it is
still characterized by inconsistencies resulting from two sources:
- Difference in the capabilities of different formalisms to effectively create abstractions of
certain aspects of a system.
- Misinterpretations of the source model by the target languages due to lack of precisely
defined semantics for the source language.

To handle the presented challenges, a system development methodology should provide a
language with a concrete syntax that promotes communicability of models and collaboration
between experts. Since DEVS is proven to be a common denominator for discrete event systems
modeling and simulation, it can be used as a base formalism in a system development
methodology with a provided concrete syntax to solve the communication and collaboration
issues. The development methodology should include other analysis techniques to complement
simulation to cover different aspects of system behavior. It is also important to maintain
consistency between the different views of the system during the development process; this is an
aspect of system development addressed by the language proposed in this thesis.

1.2 Objectives

Our objective is the definition of a modeling language called HiLLS with support for a precise
and consistent unification of the various aspects of a system in one model. This approach is
expected to make the model adaptable to multiple analysis techniques. The objectives of HiLLS
include:

e High communicability: define a graphical concrete syntax for HiLLS that is easy to
learn and communicate and make sharing and discussing models between experts
simple thereby facilitating their cooperation.

e High expressive power: define the abstract syntax of HiLLS by integrating DEVS and
Object-Z to support the precise modeling of complex systems with discrete event
perspective. HILLS inherits the expressiveness and properties of DEVS and Object-Z.
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o Simulation applicability: adopt DEVS as a semantic domain for HiLLS by defining a
semantic mapping from HiLLS to DEVS so that HiLLS models can be simulated by
using DEVS existing simulators.

o Amenability to formal analysis: make HiLLS models amenable to formal analysis so
that the user can analyze static and dynamic properties of the model by generating the
formal models and verification conditions from it to ease the verification process

e Hierarchy and Modularity: adopt modular and hierarchical structuring concepts from
the DEVS formalism and object oriented structuring concepts from Object-Z and
MOF (Meta Object Facility).

o Availability of supporting tools: provide supporting tools that facilitates the design of
graphical models as well as automated code synthesis for simulation and integrated
support for visualization and formal analysis.

o Automated code synthesis: Generate code from HiLLS models to reduce error in
translation process.

e Executability of models: provide enactment semantics for the automatic generation of
a real-time executable code of the system from the HILLS models.

e Maintainability of consistency between all the views: use HILLS specifications as
front-ends from witch other views are generated to maintain consistency between the
different views and reduce the task of updating them.

1.3 Outline

Chapter II explores the state of the art in the modeling and simulation domain in general and
DEVS-based modeling and simulation framework in particular. We discuss formal methods with
focus on Z, Object-Z and CSP formal notations. We present also Formal analysis of DEVS
models. Chapter III introduces the HiLLS language and presents its objectives. It presents the
abstract syntax, concrete syntax and the set-theoretic semantics of HILLS. Chapters IV presents
the operational and logical semantics of HiLLS. Application of HiLLS to the modeling and
analysis of the ABP (Alternating Bit Protocol) and ATM (Automated Teller Machine) is
discussed in chapter V. The general conclusion of the thesis is drawn in chapter VI.
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I1.1 Introduction

Nowadays, the daily life of a man occurs in an environment made up of complex systems going
from simple tools of entertainment to critical systems such as embedded systems on medical
systems, individuals cars, trains, planes and materials whose failures can be fatal for him. The
study of these systems is done through experiments of various kinds. The construction of physical
models to test certain characteristics of the system are often very dangerous, expensive, and even
impossible in much of cases. One of the methods making it possible to study systems consists in
characterizing the system studied by a system of equations and the use of mathematical
techniques to determine the analytical solution or approximate solution by using approximation
techniques. These methods known as analytical methods present some limits, they are difficult to
use in the study of some category of systems like manufacturing systems, military systems, etc.

Simulation exceeds the limits of the analytical and numerical methods in the study of complex
dynamic systems. It is largely used in industry and academia. It covers all the scientific,
economic and social fields. Simulation has been applied to aeronautics, urban and interurban
transportation systems, demography; propagation of epidemics, etc. Simulation has several
advantages such as the facilitation of the experimentation process by using less financial and
data-processing resources. Simulation is used to check that our models give us coherent results
compared to the data of the real system and in conformity with the formal and verifiable
requirements of this last.

Different simulation approaches exist in the literature: discrete-time, continuous and discrete-
event simulations. For a comprehensive view on simulation, reader can consult the following
papers: [Kreutzer 1986], [MacDougall 1987] and [Fishwick 1995]. In the simulation area, the
discrete-event simulation approach has emerged as well accepted system analysis technique.
Some known formalisms like UML integrate discrete-event modeling techniques in the
specification and analysis of systems. Our thesis concentrates on the discrete-event approach to
systems modeling and analysis.

This chapter presents modeling and simulation in general and DEVS-based modeling and
simulation in particular as a background for the operational semantics of HILLS. The chapter also
discusses formal methods with focus on Z, Object-Z and CSP formal notations, existing formal
verification approaches of DEVS models and basic concepts of the formal languages used as
logical semantic domain for HiLLS. Basic concepts of system design and language engineering
are presented as background respectively for enactment methodology of HiLLS and the
integration approach used to define HiLLS. Related work of integrated languages is also
discussed.

I1.2 Modeling and Simulation
I1.2.1 Simulation life Cycle

Simulation process turns around three main activities: modeling, simulation and the verification
and validation activities (Figure 1). The modeling phase consists of using a particular simulation
modeling approach to create an abstraction of the real or proposed system of interest named the
problem entity in [Sargent 2000]. The conceptual model is the simplified representation of the
problem entity developed in the analysis and modeling phase for a particular study. The computer
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programming and implementation phase consists to build the computerized model. Inferences
about the problem entity are obtained by conducting computer experiments on the computerized
model in the experimentation phase.
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Figure 1: Simulation Life Cycle

The modeling and simulation process needs to ensure different kind of validity relation between
the problem entity, the conceptual model and the computerized model. Conceptual model validity
is defined as determining that the theories and assumptions underlying the conceptual model are
correct and that the model representation of the problem entity is reasonable for the intended
purpose of the model. Computerized model verification is defined as ensuring that the computer
programming and implementation of the conceptual model is correct. Operational validity is
defined as determining that the model’s output behavior has sufficient accuracy for the model’s
intended purpose over the domain of the model’s intended applicability. Data validity is defined
as ensuring that the data necessary for model building, model evaluation and testing, and
conducting the model experiments to solve the problem are adequate and correct”.

11.2.2 Verification and Validation

Different definitions of model verification and validation exist in the literature with different
formulations. The definition adopted in [Sargent 2000] is “ensuring that the computer program of
the computerized model and its implementation are correct”. In [Sargent 2000] Model validation
is adopted to mean “substantiation that a computerized model within its domain of applicability
possesses a satisfactory range of accuracy consistent with the intended application of the model”.
Validation is the process of comparing real system data and collected as simulation results with
respect to experimentation conditions [Zeigler et al. 2000]. Different V&V techniques exist in the
literature.

[Sargent 2000] gives a non-exhaustive list of techniques that can be applied in the V&V process:
e Animation (Displaying the operational behavior graphically and values of various
performance measures through time),
e Comparison to Other Models (Various results of the simulation model being validated are
compared to results of other models that have been validated),
e Face Validity (asking people knowledgeable about the system whether the model and/or
its behavior are reasonable),
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e Degenerate Tests (testing the degeneracy of the model behavior by appropriate selection
of values of the input and internal parameters),

e Event Validity (comparing event occurrences in the model to that of the system),

e Extreme Condition Tests (testing how model react to unlikely combination of factors),

e Historical Data Validation (compare model to system by using the system’s collected
data),

e Internal Validity (analyzing the degree of variability in model behavior),

e Parameter Variability—Sensitivity Analysis (testing the effect of input and parameters
variability upon the model’s behavior and output),

e Multistage Validation (developing the model’s assumptions, testing the assumptions and
testing input-output relationship between the system and the model) etc.

A recommended procedure for some of these techniques in V&V is given by the author in
another paper [Sargent 2001]. In model testing, the model is subjected to test data or test cases to
determine if it functions properly. These techniques are independent from the modeling language
used.
[Balci 1997] gives a list of principles and techniques in verification, validation and accreditation
of simulation models that can help in assessing model credibility. Taxonomy of more than 77
V&V techniques is provided to assist simulation practitioners in selecting proper approaches for
simulation model V&V (Figure 2). Taxonomy of 38 V&V techniques is presented for object-
oriented simulation models. The cited principles turn around the application of V&V in the entire
M&S lifecycle:

e The specification of simulation objectives and conditions

e C(lear specification of the requirements,

o The nature of V&V results,

e Detection of error in M&S phases etc.

The techniques include those presented in [Sargent 2000]. Some techniques come from software

engineering and others are specific to simulation field. The selection of V&V method may
depend on model type, simulation type, problem domain, and M&S objectives.
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Figure 2. Taxanomy of Verification, Validation and Testing Techniques [Balci 1997]

I1.2.3 DEVS-Based Modeling and Simulation Framework

11.2.3.1 Entities of the Framework
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The DEVS formalism defines a modeling and simulation framework composed of the following
entities: the source system, the model, the simulator and the experimental frame (Figure 3).

Experimenal Frame

Behavioral
Database

Simulation'Relation
Modeling Réfation

Figure 3. M&S Entities and Relationships between them [Zeigler et al. 2000]

11.2.3.1.1 Source System

The source system is real or virtual system concerned by the modeling and simulation process. It
is the source of observables data that constitutes behavioral database. The term system in this
thesis is used for any entity of the real world, phenomenon or process that can be represented in
form computable by a machine.

1I. 2.3.1.2 Model

The model is a simplified and abstract representation of the system. This representation can be
physical, mathematic or logical. A model is used to study the structure and behavior of a system
in a particular context. The results of the study are only meaningful in the specified context. The
specification of models in the DEVS framework obeys to a hierarchy proposed by Zeigler
[Zeigler et al. 2000].

11 2.3.1.3 Simulator

A Simulator is an engine capable of reproducing the behavior of a model. The type of simulator
used depends of the formalism used to create the associated model.

1I. 2.3.1.4 Modeling and simulation relations

The existing relations between these entities are: the modeling relation between the system and
the model and simulation relation between the model and the simulator. The modeling relation
refers to the degree at which the Model faithfully represents the System and the simulation
relation refers to correspondence between model design and its implementation.

11.2.3.1.5 Experimental Frame

24



The experimental frame (Figure 4) defines the limited set of circumstances under which the
system is observed, modeled and studied. The operational formulation of the objectives of the
experimentation is a part of the experimental frame specification in a context. There is no agreed
framework for the factors that can characterize a context. There are similarities between the
acts of specifying a model for a real system and that of specifying a context. However, there
is a common agreement to recognize that a model of context must make explicit at least the
underlying objectives, assumptions and constraints of the study.

y

> System

EXPERIMENTAL FRAME

Generator Acceptor Transducer -

Figure 4. Experimental Frame and its Components [Zeigler 1983]

The set of experimentation circumstances defined by a frame consists of input, output, run
control and summary variable sets. Constraints are imposed on the time segments of input and
run control variables. Formally, the experimental frame is the following structure:

EF =<T,1,0,C,Q;,Q¢, SU >, where:

e T is the time base

e [ is the set of input variables, inputs are received from the model

e O is the set of output variables, outputs are sent to the model

e ( is the set of run control variables which will be monitored to avoid situation that violate
the frame constraints

), is the set of input segments,

e (. is the set of run control segments, i.e., constraints on the combinations of run control
variables (including temporal constraints) which capture the domain operation required by
the frame. Input/output behavior of a model in this frame is accepted as long as the run
control constraints are not violated.

e SU is the set of summary mappings which are statistical and other aggregations of the
input/output behavior into reduced and manageable spaces.

Different definitions of experimental frame and propositions for its structure and components
have been proposed in the literature [Zeigler 1976] [Rozenblit 1985]. In most of the propositions,
an experimental frame is composed of three type of components interconnected as shown in
Figure 4. This structuration of the experimental frame allows the separation between a model and
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the different contexts in which it can be experimented. So a model can be experimented using
different experimental frames.
¢ Generator: Produces the input segments sent to a model. A generator is generally
modeled in DEVS as a component without input port that generates outputs within
constant or variable period of time.
e Acceptor: Continually tests the run control segments for satisfaction of the given
constraints.
e Transducer: Collects the input/output data and computes the summary mappings. This is
generally modeled by a DEV'S model without output.

In [Rozenblit 1991] the basic experimental frame/model coupling results in the architecture
where control of frame components is concentrated within the master experimental frame module
whereas the simulators are responsible for execution of model component's dynamics. The
centralized architecture involves a single experimental frame module directly linked to the global
coordinator.

In [Traoré and Muzy 2005], authors advocated the separation between a model and its context, as
a systematic part of the M&S process like the separation between a model and its simulator. This
separation of concerns gives the following pairs: system/context pair, model/frame pair, and
simulator/experimenter pair. In this approach experimenters adhere to the same message passing
protocol as simulators during simulation.

11.2.3.2 System Specification Hierarchy

The systems specification hierarchy is the basis for a framework for modeling and simulation.
We base our understanding of a system on Zeigler’s hierarchy of system specification [Zeigler et
al. 2000]. This framework employs a general concept of dynamical systems and identifies useful
ways in which such systems can be specified. The proposed hierarchy is composed of five levels:
OF, IORO, IOFO, IOS, and CN. This hierarchy is organized such that knowledge about the
system is increased in higher levels; and knowledge of lower levels can be derived from higher
levels. Modeling the structure of a system is done at the IOS and CN level. Knowledge of the
behavior is given at the IORO level and this can be derived from IOFO knowledge. Usually,
simulation algorithms are applied to the model to generate the behavior (IORO).

1l 2.3.2.1 Observation Frame (OF)

This level is concerned by how to stimulate the system with input, what variables to measure and
how to observe them over a time base. It is the input output observation frame.

An observation frame is a structure of the form =< X,Y,T >, where X is the input interface , Y
is the output interface and T is the time base.

At this level the system is seen a black box with input and output ports (Figure 5).
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Figure 5. System at OF level

X:X1XX2XXXn
Y=Y1XY2X...><Yp

111.2.2.2.2 Input Output Relation Observation (IORO)

This level establishes a relation between input segments and output segments i.e. for each input
segment w € (X,T) applied to the system it associates a corresponding output segment p €
(Y, T) observed in the same time interval.

An IORO is a structure of the form IORO =< X,Y,T,Q,R >, where <X,Y,T > is an
Observation Frame, Q = (X, T) is the set of input segments and R is the input/output relation that
define the behavior of the system.

R= {(a), p)/ dom(a)) = a’om(p)} cQx (Y , T ) , with @ an input segment and p an output segment.
dom(f) is the observation time interval of f.

111.2.3.2.3 Input Output Function Observation (IOFO)

This level adds the knowledge of the initial state and every input stimulus produces a unique
output.

Given an IORO =< X,Y,T,Q,R > with R ={(@, p)/dom(w)=dom(p)}c Qx(Y,T). For each
(w,p) we can find a function f; € F = {f,, f5, ... f, ..} such that p = f;(w). The input/output
relation R is partitioned to a set of functions F = {fy, f5, ... fi, .- }-

An IOFO structure is defined as follows:

IOF0 =< X,Y,T,Q,F >

X,Y,T,et Q are the same as in IORO;

feEF=fcQx(Y,T)isa function, and if p = f(w) then dom(p) = dom(w).

Given an IOFO =< X,Y,T,Q,F > one can derive anIORO =< X,Y,T,Q,R >, withR =
User f-

111.2.3.2.4 Input Output System (10S)

The objective of this level is to determine how states are affected by inputs; given a state and an
input what is the state after the input stimulus is over? What output event is generated by a state?
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At TOFO level we know the initial state but not the other states (intermediary states and final
states). IOFO is extended to IOS by defining the set of states and transitions.

An IOS is a structure of the form I10S =< X,Y,T,Q, Q,A,A >, where X,Y, T, et Q) are the same
as in IOFO; Qis the set of states; A: Q X Q — Q is the global state transition function and A: Q X
X - Y (or A:Q — Y) is the output function.

111.2.3.2.5 Coupled Network (CN)

This level defines the components and how they are coupled together. The components can be
specified at lower levels or can even be structure systems themselves-leading to hierarchical
structure.

A CN level structure is of the following form:

CN =< T, Xy, Yy, D, {My/d € D}, {Id /d €D U{N},{Zy/d €D U {N}}} >

where, X} is the set of input;
Yy is the set of output;
D is the set of components names;
vd € D, M, is an 1OS or a CN;
vd € D U {N}, I; € D is the set of influencer of d,
Zq:Xier, YX; = XYy is coupling function
YX;=X;ifi=N
=Y ifi#N
XYy=Yifd=N
=Xy ifd#+N
11.2.3.3 DEVS Modeling formalism

Models in DEVS are distinguished into atomic and coupled models [Zeigler et al. 2000]. Atomic
models are component models that cannot be decomposed. The behavior of atomic models are
specified in terms of input and output events, state space, transition functions from state to state,
output functions and time advance function. Coupled models are hierarchical composition of
atomic or coupled models. Two versions of DEVS exist: the original sequential version called
Classic DEVS (CDEVS) [Zeigler 1976] and the parallel version called Parallel DEVS (PDEVS)
[Chow 1996]. For the rest of the document the term DEVS refer to PDEVS.

11.2.3.3.1 Atomic DEVS

A DEVS atomic model is a structure of the form: M =< X,Y, S, 8int, Sext) Oconsr A ta >, where
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X ={(p,v),p € IPort Av € dom(p)} is the set of inputs, IPort is the set of input ports,

Y ={(q,v),q € OPort Av € dom(q)} is the set of outputs, OPort is the set of output ports,
S is the state space,

Oint: S — S is the internal transition function

Oext: @ X XP = S is the external transition function

Ocong:S X X b — S is the confluent transition function which resolves collision between internal
and external events

A:S = YP s the output function,
ta:S —» R* U {+o0} is the time advance function.
Atomic DEVS provides a more appropriate way of modeling a system at IOS level

The semantics of an atomic model is as follows: at each time, the model is in some state s. If the
lifetime of the state elapse i.e. e = ta(s) then the model send and output y = A(s); if he receives
no input within this simulation cycle he goes to the next state s’ = §;,:(s)(internal transition)
with a new lifetime ta(s") else the next state is s" = 8.0, (s, x) (confluent transition, where x is
the set of all events received by the model in this simulation cycle). If events are received before
the time elapse e < ta(s) then the next state is s" = 8., (5, €, x)(external transition, x is the set
of events received) with a new lifetime ta(s"). See [Zeigler et al 2000] for more details of
simulation algorithms for DEVS.

In the example of the following figure (Figure 6), the model is initially in state s,, after the
expiration of the duration t(s,) and the reception of the input bag x;, an output bag y; = A(sy) is
sent at the time instant ¢; and the model execute confluent transition with the new state defined
by 51 = Ocon(So, x1) for a new duration equal to ta(s;). In this state no event is received before
the total expiration of the duration (s;) , this results in an output bag y, = A(s;) and an internal
transition with new state defined by s, = §;,,;(s) for a new duration ta(s,). In state s3, the
model is stimulated by the input bag x, at the time instant ¢, before the expiration of its duration
(e < ta(s3)); this results in an external transition with new state s, = 8o, (S3, €3, X4)
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Figure 6. Example of transitions occurrences

11.2.3.3.2 Coupled DEVS

A coupled model is a structure of the form: M =< X,Y,D,{My}4ep, EIC, EOC,IC >, where
X and Y are the same as in the case of atomic model,

D is the set of names of models which compose M;

M, is the model wich name is d;

EIC {((M, ipm), (d, ipd))/ipM € IPortsy ipy € IPortsd} is the external input coupling
relation
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EOC c {((d, opq), (M, opM))/opM € OPortsy opy € OPortsd} is the external output coupling
relation

IC {((a, opy), (b, ipb)) /opq € OPorts, ip, € IPortsb} is the internal coupling relation ;

Coupled DEVS provides basic concepts that appropriately capture the different aspects of a
system at CN level.

A DEVS model is simulated by following a well-defined simulation protocol. We explain this
protocol by considering the example of Figure 7.

M

> A22 [P > B1 Y S
e i i .Y A23 |
L C

Figure 7. Example of Coupled Model

From each coupled model hierarchy corresponds a simulation tree; the corresponding simulation
tree of the coupled model of Figure 7 is shown on Figure 8.

Simulation tree

Model Hierarchy /\ Root )
-

Legend
Root: Root Coordinator
CX: Coordinator for
model X
SX: Simulator for model
X

All CX and SX manage,
each, 2 variables tn and tl
which represent
respectively the time of
next transition and the
time of last transition.

Figure 8. Correspondence between Model Hierarchy and Simulation Tree

The Root coordinator is responsible of starting the simulation at a time t by sending an
initialization message (i,t) to its child CM. When CM receives the message (i,t), it forwards it to
its children so that they can forward it also to their children in case of coordinators or update their
tl and tn in case of simulators. The initialization process is shown on Figure 9 and Figure 10.
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tn=t+ta(s)

SA1 (i,t) to its child CM

— ~
Sends an initialization message
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The coordinators transmit the
message (i,t) to their children

The simulators update their
tn and tl. At the reception of
the message (i,t|
tl=t-e tl=t-e tl=t-e ge (i)

tn=t+ta(s) tn=t+ta(s) tn=t+ta(s)

Figure 9. Sending of initialization message

After the updates of their tn and tl, each simulator sends a done message to its parent coordinator
which also calculates its tn and tl and sends it to its parent. This process ends with the sending of
the done message of the top-level coordinator to the root coordinator.

— =,
/ Root \ t=CM.tn

7
(Tiy[tn)?
tn=min{CA.tn, CB.tn, SC.tn}

cM tl=max {CA.tl, CB.tl, SC.tl}

. y h

~ldtn)

tn=min{SB1.tn, SB2.tn}
tl=max {SB1.tl, SB2.tl}

‘Q,tn)

(d,tn (d,tn)
Each simulator sends a (d,t)
to its parent

Each coordinator calculates its
C [ tn and tl and sends (d,t) to its
parent

tn=min{SA1.tn, CA2.tn} CA CB
tl=max SA1.tl, CA2.tl}

SA1 CA2 tn=min{SA21.tn, SA22.tn, SA23.tn}
tl=max {SA21.tl, SA22.t], SA23.tl}

—_ ", Updates the simulation clock
/ Root \—V with (d,t) receive from its child
\ P ™

L

Figure 10. Sending of done messages to parents
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The root coordinator sends a first message (*,t) message to its child CM (Figure 11) so that it can
forward it to its children.

-~
( Root \
N~
(*tn) - =
I / Root \—F The root sends (i,t)
N _
cM

Each coordinator sends (*,t) to
* *
(*,tn) (*}n% (*tn) c ’ its children ses fils
J

Each non imminentand non
CA CB influenced simulator juste

update its local time

(*tn) . -
n
(*tn) ( N Each imminent and
S }—Vinfluenced simulator makes
~ AN an confluent transition

N
sB1 ( SB2
( ) ) Each imminent and non
N influenced simulator makes
an internal transition
—

( N\ Each non imminentand

S ’ »> influenced simulator makes
A _ an external transition
\ The outputs of imminent
( children are forwarded to
SA23 } their receivers

N
Figure 11. Sending star message

At the reception of the (*,t) message, imminent simulators send their outputs to their respective
parents coordinators and all the simulators (including the imminent ones) wait for eventual inputs
to decide which transition to perform. Each coordinator will send the received outputs as input to
its children by analyzing coupling relations of the coupled model associated to it. Imminent
components that are not influenced will make internal transition. Imminent and influenced
components will make confluent transition. Non-imminent and influenced components will
external transition. The cycle ends by sending of (d,tn) done message by all the components
(including non-imminent and influenced components that have not performed any transition) to
their parent coordinators like in the end of the initialization process.

An important property of the DEVS formalism is the closure under coupling property which
ensures that any coupled model has an equivalent atomic model.

11.2.3.3.3 Modeling with DEVS

11.2.3.3.3.1 University Bus System

A bus shuttles between a downtown station and a university station, providing students and non-
students with a transportation service. The growing number of users leads the university
administration to set up a study to evaluate the performances of the bus system. We then consider
a model for the UBS, with user identification possibilities. A user enters the model when he lines
up in a station. He exits from the model when he gets off the bus at a station.

The university Bus System is a DEVS atomic model.
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UBS =< X, Y, S, 61:1’11," 6ext' 6C07’lf’ /1, ta >
X = {Hello1l,Hello2} etY = {Byel, Bye2}

Hello1,Hello2,Byel,Bye2 € {(identity, statut)/ statut € {"Student", "non — Student"}}
and identity is a string.

S ={WyW,,B,P,D,S"}

W, is the ordered list of users waiting at the downtown station,
W, is the ordered list of users waiting at the university station,
B is the ordered list of passengers in the bus,

P € {1,2,3,4} is the current position of the bus (1: downtown station, 2: university station, 3:
from downtown to the university, 4: from the university to downtown),

D is the duration of the current action,
S" € {"loading", "unload", "travel"} is the current status of the bus,
7 is the current simulated time..
Internal transition functioné;,;: S —> S
Oint Wy, W,,,B,P = 4,D,S = travel, ) =
= (Wy,W,,B,P=1,D =0,S =unload, 7 =7+ D)if B+
= W4y W,B,P=1,D=v,S=load,t=t+D)if Wy+@and B =0
= (W, W,B,P=3D=p,S1=1+D)siW,=0etB =0

If the bus arrives at the university station (the travel time is elapsed, then an internal transition
must occur), it must stop to let the passengers get off. If the bus is empty, the users waiting at the
station can immediately start getting in it. If the bus was empty, and no one was waiting at the
station, a stop is not required.

Oine(Wy,W,,,B,P =1,D,S = unload, ) =
= (W4, W,,B =rest(B),P,D =u,S,1=17+D)if B+ 0
= Wy, W,,B,P,D =0,S =load,t=71+D)if B=0

All the passengers in the bus must get off when the bus stops at the station. They do it, one by
one. When all the passengers get off the bus, the users waiting at the station can start getting in it.

Oine(Wy,W,,B,P =1,D,S = load, 1) =
= (Wy,W,,B,P =3,D =p,,S ="travel", t =1+ D) if Wy =0Qor|B| =«a
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= (W, = rest(W,),W,,B = B + first(W,),P,D = u,S,t=t+D)if Wy # 0 A ||Bll < «

If there is no one waiting, the bus can start its travel to the other station. Also if the bus is full, the
bus can start its travel to the other station. If not, users can get in it, one by one.

Similar specifications are done at the following lines for the case the downtown station is
considered.

Oine(Wyq,W,,,B,P =3,D,S = travel, ) =
=Wy,W,,B+@,P=2,D=0,S=unload,t=71t+D)if B+ 0
=Wy W,,B,P=1,D =v,S =load,t=t+D)if W, #@and B =0
= Wy, W,,B,P=3,D=p,St=t+D)if W,=0and B=0

Oine Wy, W,,,B,P = 2,D,S = unload, ) =

= (W4, W, B =rest(B),P,D =u,S,1=1t+D)if B+ 0
=Wy, W,,B,P,D =0,S =load,t=1t+D)if B=0

Oint Wy, W,,,B,P =2,D,S =load, 1) =

= Wy4,W,,B,P =3,D = p,,S ="travel", 1t =1+ D)if W, =@ or||B|| =«

= Wy, W, =rest(W,),B =B + first(W,),P,D =u,S,t=1t+D)if W, #0 A ||Bl| < a

a € N is the capacity of the bus

B1 € R* est le temps de Voyage de la gare du centre-ville jusqu'a la gare de 'université,

B2 € RY is the travel time from downtown station to university station

u € R* is the time for a user to get in the bus

v € RY is the time for a user to get from the bus

first(list) returns the first element of list

rest(list) returns list, which has been reordered after its first element has been removed,

||B|| gives the number of element of list B,

"list + element" performs an adding of “element” to “list”, and reorders “list”,

External transition functiond,.,;:Q X X - §

Sext((Wq, Wi, B,P,D,S,7), €, (x1,%;)) =

=Wy +x,W,,B,P,D=D—¢e,S,1T=1+D)if x;, #0and x, = 0
=Wy W, +x,,B,P,D=D—¢e,S,t=1+D)if x, =0and x, # @
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=Wyg+x,W,+x,,B,P,D=D—e¢,S,1=1+D)if x; #0and x, # 0

A user can line up at the downtown station, at any time. Then, the time he enters the UBS is
updated to the current time, and the time he enters the bus is set to +oo. Similar situation at the
university station. Situation where two users line up simultaneously at the downtown and the
university station.

Confluent transition function: 5.4, 7: S X X b§
Oconf(8,x) = Oext (s, ta(s),x) Vs €S

Output function 4: S - Y

AWy, W,,B #@,P =1,D,S = "unload",t) = (Byel = first(B),Bye2 = Q)

AWy, W,,B #@,P =2,D,S ="unload",t) = (Byel = @, Bye2 = first(B))

A passenger who gets off the bus at any station exits the system too.

AWy, W,,,B #= @,P,D,S,t) = (Byel = @, Bye2 = @) in all other cases.

Time advance function ta: S > R* U {+o0}

ta(Wy,W,,B,P,D,S,t) =D

11.2.3.4 DEVS modeling Tools

Over the years, several modeling platforms and tools have been developed based on DEVS
theory and its extensions. DEVS models have been constructed using programming languages or
some XML-based storage structures. Most of these platform dependent methods take advantage
of reusability in object oriented programming by extending and reusing classes of DEVS models.
Some notable platform-dependent tools include:

DEVS-Scheme [Zeigler 1990] : is a knowledge-based environment for modeling and
simulation based on the Scheme functional language (a variation of Lisp)

DEVS-C++ [Zeigler et al. 1996] is a DEVS-based modeling and simulation environment
written in C++, which implements parallel execution and supports large-scale systems
DEVSim++ [Kim 1994] is an object-oriented DEVS simulator implemented in C++ that
defines basic classes that can be extended by users to define their own atomic and coupled
DEVS components

ADEVS [Nutaro 1999] provides a C++ library based on DEVS, which developers can use
to build their own models, and supports integration with other simulation environments
DEVSJAVA [Sarjoughian and Zeigler 1998] is a DEVS-based modeling and simulation
environment that provides Java classes for users to implement their own models. It also
supports PDEVS, DSDEVS, RT-DEVS and 2D/3D cellular automata models. Distributed
simulation is also possible due to the integration of several distributed implementations of
DEVS abstract simulators. DEVSJava is now a part of DEVS-Suite, which provides some
graphical facilities for modeling and simulation activities [Kim et al. 2009].

VLE [Quesnel et al. 2009] is a modeling library that in addition to the DEVS formalism,
implements in C++ several modeling formalisms like Petri nets, 2D/3D cellular automata,
Quantized State Systems, etc. and allow heterogeneous integration of models of these
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formalisms in PDEVS coupled model and their simulation by PDEVS simulators.
Coupled models can be created in VLE graphically but atomic models are defined
textually in C++. VLE integrates particular ports called initialization and observation
ports respectively used for initialization and observation of models. The observation ports
are connected to EOV (Eyes of VLE) which present simulation results in different forms.

e (CD++[Wainer 2009] provides a C++ library to specity models in CDEVS, PDEVS and
Cell-DEVS, an extension integrating cellular automata and DEVS. DEVS models and
Cell-DEVS models can be mixed in the same simulation in CD++. CD++ integrates
multiple simulation algorithms implementations including parallel and distributed
simulation strategies. CD++ also provides an Eclipse plugin allowing the edition of
DEVS and Cell-DEVS models both textually and graphically, as well as the graphical
visualization of Cell-DEVS simulation results.

e SimBeans [Priachofer et al. 1999] is a component-based software architecture based on
Java and JavaBeans. The idea is to provide a set of layered components that can be used
in model creation, output results analysis, and visualization using DEVS.

e PythonDEVS [Bolduc and Vangheluwe 2002] is a basic implementation of CDEVS in
Python programming language.

e JDEVS [Filippi and Bisgambiglia 2004] is a DEVS modeling and simulation environment
written in Java. It allows general-purpose, component-based, object-oriented, visual
simulation of models

e James II [Himmelspach and Uhrmacher 2004] implements DEVS theory including
PDEVS, PdynDEVS and cellular automata to model and simulate agent systems. The
toolkit supports software-in-the-loop simulation to test agents in virtual environments.
James II integrates sequential and multi-threaded implementations of various simulation
algorithms.

While these tools have been very beneficial and expressive for constructing DEVS models, using
them requires knowledge of the programming platform. To discuss the models built with these
platform-based tools, the domain engineers would need to understand the programming language
making them less communicable. Graphical modeling approaches are better in this regard since
they are visual. They are easier to discuss and share with domain experts. Advances in software
engineering have enabled modelers to use graphical models and perform automated code
synthesis from the graphical models to the desired text-based modeling language. All these
DEVS implementations support building models in a hierarchical and modular manner
independently from simulators (according to the separation of concerns introduced by the DEVS
modeling and simulation framework). This is a system oriented approach not possible in other
popular discrete event simulation tools like GPSS [Schriber 1980], Simscript [Chao 1971],
Simula [Dahl and Nygaard 2003], etc.

DEVSML 2.0 (DEVS Modeling Language) [Mittal and Douglass 2012] is a revised version of
DEVSML [Mittal et al. 2007] based on Finite and Deterministic DEVS (FDDEVS) [Hwang and
Zeigler 2009] and defined by EBNF grammar. The earlier version of DEVSML developed
models in Java and used XML for interoperability. DEVSML is composed of a transparent
simulation layer and a platform independent modeling layer. The simulation layer is realized
earlier by DEVS/SOA. The proposed DEVSML 2.0 integrates to the simulation layer a
transparent modeling framework with inclusion of domain specific languages and
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transformations. The transformations include model-to-model transformation (transform a
specific model to another model), model-to-DEVSML (transforms a model to DEVSML) and
Model-to-DEVS (transforms a DSL to a specific DEVS platform to allow simulation). Another
language called NLDEVS is proposed (Natural Language DEVS). A DEVSML specified model
is executable by using DEVS.

SimStudio [Traoré 2008] is a plugin-based modeling and simulation platform based on the DEVS
formalism. The use of DEVS as a base formalism makes it possible to couple heterogeneous
models [Vanguluvwe 2000] and utilize the defined operational semantic. It aims to provide a
complete M&S tool chain to assist the model developer from model design to results analysis. In
order to incorporate the existing tools and make it possible to easily add new features, SimStudio
uses a modular software architecture relying on plugins (Figure 12). While SimStudio has its
native plugins for modeling, simulation, visualization, and management, other tools for modeling,
visualization, simulation, and analysis can be plugged onto the platform. The platform consists of
the following axis:

e Modeling Axis: consisting of graphical and textual tools for model design. The modeling
modules provide their output specification in XML format as understandable by
SimStudio. SimStudio adopts HILLS as its modeling language. The native modeling
plugin for SimStudio is the HILLS Editor.

o Simulation Kernel: the core of SimStudio for automatically generating code for
operational analysis, parallel and distributed simulation. The role of the simulation kernel
is to automatically generate an operational solution from a model specification, then to
handle its deployment and execution on various types of platforms (Java, C++,
Python...), according to the user’s choice. This can range from a simple execution offline
or on a server to a distribution on a computing grid or cluster.

e Analysis Axis: integrating tools for formal analysis. The modules here would analyze both
the model and simulation results and compare with system specification and desired
properties. Existing tools for formal analysis (CTL, Z, CSP ...) are plugged into
SimStudio via its underlying XML-based structure.

e Visualization Axis: animation and visualization of the simulation results to facilitate
interactive exploration of the system under study.

o  Management Axis: provides services like user management, model storage and querying,
web-based collaboration...
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SimStudio relies on the generic and platform-independent structure of XML to enable addition
and integration of existing tools.

Related works address some visual notations and realizations for DEVS models. Some notable
graphical approaches integrating UML to DEVS modeling include DEVS/UML [Money 2008],
Executable UML with DEVS (eUDEVS) [Risco-Martin et al. 2009], and the object-oriented co-
modeling methodology [Sung and Kim 2010]. Other approaches such as CD-++ Builder [Matias
et al. 2010], PowerDEVS [Pagliero et al. 2003], and The revised DEVS graph [Song and Kim
2010] are based on the definition of new languages.

[Feng 2004] proposes Dcharts, formalism for modeling and simulation based design of
reactive software systems. It is a UML-like statechart language but does not follow the
UML standard.

DEVS/UML provides a representation of DEVS models as UML state machines. A
simulator has been proposed for such models. But all models representable by this
approach are a subclass of DEVS (finite state assumptions) because of the difficulty of
expressing DEVS concepts in UML state machines.

eUDEVS approach is doing the opposite of DEVS/UML, it transforms UML models into
DEVS models but the models obtained are in a restricted class of DEVS called FD-DEVS
(Finite and Deterministic DEVS).

In [Sung and Kim 2010] the authors present an approach using a subset of UML to
support the process of object-oriented modeling based on DEVS. This approach uses
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UML to model parts of the behavior of objects and DEVS to complete the missing
discrete event information. They use the Use case diagrams, class diagrams and sequence
diagrams of UML. The procedure to transform a given sequence diagram model in DEVS
is adapted only to finite sets of states.

In [Nikolaidou et al. 2008] SysML profile for DEVS is proposed as a standardized,
graphical representation language of DEVS models stored in DEVSML, consequently
transformed into executable code for existing DEVS Simulators, as DEVSJava and
DEVSim++. SysML profiles are based on UML lightweight extension mechanisms. The
authors argue that SysML is more suitable than UML for the graphical representation of
DEVS models, since SysML language and especially block diagrams provide the natural
representation of DEVS model decomposition. It is important to notice here that SysML
is a UML profile. In the profile, DEVS model entities are defined as stereotypes of
SysML entities, while constraints are used to restrict SysML semantics to DEVS
formalism. A DEVS Coupled model is defined by SysML Block Definition Diagrams.
Since SysML Block Definition Diagrams do not depict how components are
interconnected, Internal Block Diagrams are used to describe coupling between
subcomponents defined in the Block Definition Diagram. DEVS Atomic models are
defined as stereotypes of SysML blocks. For DEVS Atomic models, a state machine
diagram is used for the definition of internal transition function, output function and time
advance function. An activity diagram is used for the definition of the external transition
function. The reason of using two different kinds of diagrams to define internal and
external transition functions is not clear in the paper. While the idea of the paper is
interesting, the defined SysML profile for DEVS completely depends on SysML and
inherits the same limitations and drawbacks.

The revised DEVS Graph is a structured diagram form of the DEVS formalism (C-
DEVS). DEVS Graph uses the concepts of ports and messages for structuring sequential
events and it introduces the concepts of phase transition diagram to simply represent state
transitions. A tool to facilitate model construction and enable transition from the graphical
model to code would be a useful contribution and addition since this is not provided. It
does not however provide a means to represent P-DEVS models; hence its modeling for
parallel simulation is not practical.

[Schulz et al. 2000] discusses the equivalence between the Discrete event system
specification (DEVS) and statemate statecharts for embedded systems modeling.
Statemate [Harel et al. 1990] is a successful commercial implementation of statecharts.
Authors show that DEVS also can be used for modeling systems addressed by statecharts
and more.

[Zinoviev 2005] proposes a mapping of DEVS models onto UML models. In fact they
map DEVS atomic and coupled models to UML state machines and components
respectively. The way the transformed models will be simulated or analyzed is not
precised. The mapping approach of DEVS atomic models state space to UML state
machines states proves that this approach is limited to a subclass of DEVS.

Existing approaches including model transformations from DEVS to finite state machines and
transformations of UML models into DEVS models do not address the general case because all
the models obtained through the transformations are simply a subset of all models that can be
represented by DEVS. HILLS is more expressive than existing approaches because it can specify
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infinite systems by providing concepts that can represent them graphically in a finite manner. Our
approach presents two advantages: it gives a complete methodological approach and the resulting
visual language allows the automated generation of simulation code and accessibility to formal
analysis; and the automated synthesis of code for enactment.

11.2.3.5 Verification and Validation of DEVS models

What kind of analysis one can do on DEVS models? The de-facto verification method of DEVS
models is based on the analysis of simulation results. To achieve simulation of DEVS models,
one needs a DEVS modeling tool that implements DEVS concepts and operational semantics.
Analyzing DEVS models necessitate collecting simulation results, animating and visualizing the
results and using statistical techniques to analyze simulation traces. Most of the presented DEVS
tools allow only textual modeling in General Purpose Programming Language (GPPL) like Java
or C++ and executing the models. It is not clear however how data is collected, or animation and
visualization and analysis are done using these platform dependent DEVS modeling tools. Most
of these do not provide any integrated means of verification and validation for DEVS models.
From these tools it is not easy to get access to other analysis tools. There is a need to integrate
different techniques such as simulation, model checking, symbolic reasoning and theorem
proving to completely analyze system properties. In section I1.3.4, we discuss DEVS models
formal verification and validation approaches.

11.2.3.6 DEV'S extensions

Many extended formalism from DEVS have been introduced:
e DEVS&DESS for combined continuous and discrete event systems,
e G-DEVS [Giambiasi et al. 2001] for the modeling of Discrete Event Systems where the
trajectories are organized through piecewise polynomial segments,
RT-DEVS [Cho and Kim 2001] for real-time Discrete Event Systems,
Cell-DEVS [Wainer 2004 ]for cellular Discrete Event Systems,
Fuzzy-DEVS [Kwon et al. 1996] for fuzzy Discrete Event Systems,
ml-DEVS (Multi-Level DEVS) [Steiniger et al. 2012],
Symbolic DEVS [Chi 1997],
DSDEVS (Dynamic Structuring DEVS) [Barros 1995] and dynDEVS [Uhrmacher 2001]
and tho-DEVS [Uhrmacher et 2006] for Discrete Event Systems changing their coupling
structures dynamically,
e ALRT-DEVS (Action-Level Real-Time DEVS) [Gholami and Sarjoughian
2012][Sarjoughian and Gholami 2013],
e [-DEVS (Imprecise Real-Time for Embedded DEVS Modeling) [Moellami & Wainer
2011].

In addition, some subclasses such as SP-DEVS [Hwang and Cho 2004] and FD-DEVS [Hwang
and Zeigler 2007] have been defined for achieving decidability of system properties. FRT-DEVS
(Finite Real-Time DEVS) [Hwang 2012] is a subclass of RT-DEVS for making RT-DEVS
properties formal verification decidable.

111.2.2.6.1 DEV'S for dynamic structure systems
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We present in this section, state of the art in dynamic structure systems modeling and simulation.
We will focus DEVS-based approaches and particularly on DSDEVS because it is used as a
semantic domain for HiLLS to allow simulation of HILLS dynamic structure models.

Dynamic structure systems are characterized by the following on the structure and/or behavior of
a system:

e Changes in the set of components: many systems are characterized by the dynamically
changing number of their components. Existing components can be deleted and/or new
components can appear during execution. To support this future a dynamic structure
modeling and simulation framework should provide basic addComponents() and
deleteComponent() operations and their semantics, i.e. define how these operations affect
the structure and the behavior of the network that contains them and the other
components.

e Dynamic couplings: some dynamic structure systems are essentially characterized by the
variability of coupling links between components of the same network. To allow dynamic
couplings, linking and unlinking operations should be provided. It will then be possible to
link newly added to other components, or unlink existing components or redirecting
outputs of some components to others.

e Dynamic interface: most systems assume static number of interaction ports but some
systems undergo interface changes in time, i.e the number of input or output can change
in time. Example of such kind of systems can be found in biology. Changes in the
interfaces of a component can lead to changes in links between components at network
level. addPort() and removePort() are the basic operations that can allow this kind of
changes.

e Dynamic behaviour: refers to how a component can change its behavior depending on
local or network situation. Changing behavior can lead to the redefinition of some or all
the functions that govern the way the component reacts to external and internal events and
the computation and nature of its outputs.

The major problem that arises when these operations are applied is how to ensure consistency
between structure and behaviour? The consistency problem is related to the control of changes in
components behaviors and their network structure. Different approaches have proposed different
modeling approaches and controls scheme. We discuss in this section the existing approaches in
the literature.

11.2.3.7.1 DSDEVS

Dynamic-structured DEVS (DSDEVS) [Barros 1997] has been proposed for over two decades to
model dynamic-structured discrete event systems for simulation. It is a variant of DEVS with
capability for modeling structural dynamics. It retains the specification of atomic DEVS while
introducing a "network executive" model as part of the coupled model specification. Being the
manager of structural changes, the network executive declares state variables that store the
structural information of the system network containing it so that there is a one-to-one
correspondence between the executive's instantaneous states and the network's structure. This
concept was extended in [Barros 1997] to develop formalisms for modeling structural dynamics
in Differential Equation, Discrete Time and Discrete Event Systems. As proposed in [Barros
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1997] a discrete event dynamic structure system is a couple DSDN = (y, M,) where y is the
name of the network executive and M, is the dynamic of network. The structure of M, is of the
form M, =< X,,S,,50, YV, ¥V, 2%, 8y, A, T, > where

- X, and Y, are the input and output interfaces of the system,

- §, is the set of states,

- Sp 1s the initial state,

- X" is the set of possible structures of the network,

- y:§, — X" is the function which associate to each state of the network a corresponding

structure. VX € 2* A sy € Sy, ¥(sy) =< D, {(Mi}iep, {Ii}iep, (Zi}ien >
- 6,:Q, X (XU {@}) - S, is the transition function,
- A S, — Y is the output function and
- 7,5, = R* U {+00} is the time advance function.

In DSDEVS only single central network executive is responsible of the management of structural
changes in the network. This prevents ambiguity when different components require structural
change. The single executive ensure also structure and behaviour consistencies. An Object
Oriented implementation of the DSDEVS formalism is the DELTA Environment. DELTA has
been implemented in Smalltalk [Barros 1995].

Based on Barros' work, [Hu et al. 2005] developed formalism with a few differences and
additional concepts to simulate dynamic reconfigurations in component-based systems. In
addition to the structural operations defined by Barros on individual components, they extended
the same operations to the interfaces (and ports) of components. This approach would foster a
more fine-grained analysis of complex systems. However, the authors did not provide a formal
specification of the formalism; in all the examples provided, the concept was rather hardcoded in
some java implementations of the DEV'S simulation protocol.

11.2.3.7.2 dynDEVS

Another formalism based on DEVS which addressed the modeling of dynamic structure systems
is dynDEVS [Uhrmacher 2001]. In contrary to DSDEVS which introduce the network executive
for the specification of structural changes, dynDEVS introduces the transition functions,p, and
py at the level of atomic and coupled model definitions respectively. dynDEVS Atomic models
are defined as follows: dynDEVS =< X, Y, Mipit, M (M;p;r) > where

— X,Y are the sets of inputs and outputs;

Minit € M(Mjy;e) 1s the initial model,;

- M(mg,;) is the least set of the form < S, Sipnit, Oint> Oext> A, ta, pg, > where S is the set of
state, S;nir €S 1s the initial state, 8, Oexe, A, ta are respectively internal transition,
external transition, output and time advance functions with the same meaning as in DEVS
and py:S = M(my,;;) the model transition function which allows switching from
different specifications of the same systems during simulation when it must respond to
external and internal events and their implied state changes. To support continuity
between models p, preserves the values of variables common to two successive models
and assigns “default initial” values to the “new” variables.
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dynDEVS coupled is defined as follows: dynDEVS =< X, Y, njpir, N(Mipnic) >where

- X,Y are the sets of inputs and outputs;
Ninit € N(M;p;¢) 1s the initial configuration;

= N(nyp;) is the least set of the form < D, py, {dynDEVS;}, C,Z; j, Select > where D is the
set of components names, py:S = N(n;,;) the network transition function with S =
Xaep@medynpevs,S™> {dynDEVS;} is the set dynDEVS components, I; is the set of
influencers of i, Z;; . is the i-to-j output-input translation function; Select is the tie-
breaking function. The function py preserves the state and structure of models and
initializes the new components.

The particularity of dynDEVS is that all components can change structure and/or behaviour. This
is powerful but can lead to inconsistencies and complex implementation.

11.2.3.7.3 Rho-DEVS

Rho-DEVS [Urmacher et al. 2006] is a new formalism that evolves from dynDEVS [Urmacher
2001]. Rho-DEVS introduces Dynamic ports and multi-couplings to handle changes in variable
structure components interfaces and enabling or disabling certain communications between
components in addition to the capability of specifying models which can adapt their own
interaction structure and their own behaviour inherited from dynDEVS. In contrary to dynDEVS
which is based on Classic DEVS and the assumption of a static set of ports, p — DEVS is based
on Parallel DEVS and manages a variable set of ports where special type of port contains
structural change information. This information is produced by a special function. Multi-
couplings bring some facilities for modelling special systems like cellular biological systems.

While DSDEVS has a sound formal background, model specification can be very laborious
because modeler must list all the possible structures of the system as a part of the state space of
the network executive (the manager of structural changes) which can grow exponentially
depending on the number of components and dynamic couplings between them. As DSDEVS,
dynDEVS modeling approach is not easy due to same reason and the complexity of specifying
S = Xaep@meaynpevs,S" - Like DEVS itself, DSDEVS and dynDEVS doesn’t have a concrete
syntax and logical semantics. HiLLS proposes a simpler approach to modeling structural
dynamics without need for a separate "executive" model to capture structural information: these
informations are inherent in the system's configuration and appropriate structural changes occur
naturally with state transitions. The ability to specify this aspect in a graphical language also
makes our approach easier to use and accessible to a larger audience. We choose DSDEVS as our
preferred formalism to a semantic domain of HiLLS for dynamic structure systems.

11.2.3.7.4 DYS-DEVS

A recent formalism DYS-DEVS for the specification of dynamic structure discrete event systems
using single point encapsulated control functions is proposed in [Muzy and Zeigler 2014]. In this
approach, at each time only one component (atomic component or coupled component) is
responsible of structure changes. Two cases are possible: the component responsible of the
structure changes can be the same every time (static single point) or can change during simulation
(dynamic single point). DYS-DEVS distinguish between basic DYS-DEVS and network DYS-
DEN models. A basic DYS-DEVS model is defined by DYS — DEVS = (M, S, t},) where M is
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the set of possible structures in form of classic DEVS atomic models
(DEVS = (X,Y,S, 8ext, Oint, A, ta) ) of the component, S is the disjoint union the partial state sets
of each possible structure and 7,: M' X § - M X S is the structure transition function. A network
model is defined by DYS — DEN = (X, S, tx) where X is the set of possible network structure, S
is the disjoint union of state sets of possible network structure states and 73: X X § = X X S is the
network structure transition function. DYS-DEVS and dynDEVS introduce similar structural
changes control functions at atomic and network level. The difference between these functions
resides in the fact that dynDEVS functions depends only on the current state while DYS-DEVS
functions depend on the actual structure and the state. While the approach is formally defined, the
modeling difficulty remains the same as with DSDEVS and dynDEVS for the same reasons.

11.2.3.7.5 Kiltera

[Posse 2008] proposed a visual modeling environment and code generators for DEVS and
cellular systems. The author proposed also the Kiltera language based on process algebras (pi-
calculus) and discrete-event modeling approaches. Kiltera is a language for the modeling and
simulation of discrete-event dynamic structure systems. A Kiltera model is composed of
concurrent and distributed processes communicating asynchronously via channels. Distributed
modeling (site-dependant behavior) view and execution by implementing a variant of the time
warp algorithm. The operational semantics of the Kiltera language is defined in terms of a labeled
transition system and implemented simulation algorithms. Kiltera use the unicasting (i.e only one
process react to a given event if many are listening to it) approach in the communication between
processes by default. Multicasting is also possible by using a particular keyword. A limitation of
this approach is that this multicasting is decided at the level of events (not easy and low level).
Dynamic structure is modeled using process composition operators (choice, parallel, sequential),
timeouts, sending of channels between processes, ending processes. Kiltera has concrete textual
modeling syntax. The complexity of the language resides in the fact that it merges many concepts
at the same level.

11.2.3.7.5 Other approaches to Dynamic Structure Systems Modeling and Simulation

Multimodels [Oren 1991] offer another possibility to represent dynamic structure models. The
Multimodeling approach provide a framework for representing models containing several
submodels, where only one model can be active at any time under some conditions. The structure
changes in the multimodel result in change from one model to another due to the activation
conditions. [Barros et al.1998] integrated the dynamic structure DEVS formalism with the
multimodel paradigm by representing multimodels within the DSDEVS and DEVS formalisms so
that they can be mapped to HLA/RTI distributed simulations.

[Santucci and De Gentili, 2009] proposed Dynamic variable structure modeling and simulation
applied to the modeling and simulation of the Claude Levi-Strauss’s mythical thought
morphodynamics by merging DSDEVS concepts, the notion of structural supervisor of [Baati et
al. 2007] and simulation algorithm of [Hui & Wainer, 2006]. The proposed implementation reuse
classic-DEVS abstract simulator for simulation because of the target application.

DSDEVS-hybrid is a formalism for the modeling of hybrid variable structure systems proposed
in [Pawletta et al. 2002]. DSDEVS-hybrid defines a variable structure system by using the

45



DSDEVS formal specifications, and parts of dynDEVS simulation algorithms. A coupled model
noted is similar to coupled model in CDEVS extended with specifications and methods for
continuous and variable structure systems and a specific state variable that store structural change
information in the system. A toolbox of DSDEVS-hybrid for Matlab is described in [Deatcu and
Pawletta 2009]. Another DEVS-based approach proposed by other authors for modeling variable
structure hybrid systems is presented in [Chen et al. 1999]. [Hagendorf et al. 2009] proposed the
extended Dynamic Structure DEVS (EDSDEVS) that combines CDEVS, PDEVS and DSDEVS
in order to combines also the advantages of these approaches.

I1.3 Formal Methods

A main challenge in the domain of complex dynamic systems modeling is to provide languages,
methods and tools that will improve modeling process and helps to assess model integrity (i.e. to
prove that the specified model satisfy the requirements of the systems). Formal methods are
mathematical techniques applied to the specification, analysis, design and implementation of
complex software and hardware [Clark and Wing 1996, Kuhn et al. 2003, Lamsweerde 2000].
The use of formal methods can greatly increase the understanding of a system through formal
specification and formal verification. Formal specification is the process of describing a system
and its desired properties, using a language with a mathematically-defined syntax and semantics.
The kinds of system properties might include functional behavior, timing behavior, performance
characteristics, or internal structure. Formal specification may be manipulated by automated tools
for user confirmation through deductive theorem proving techniques. These automated methods
can be used to generate concrete scenarios illustrating desired or undesired features about the
specification. Z [Spivey 1992], CSP [Haore 1985], VDM [Dines et al.1978], B method [Abrial
1996], CTL [Emerson 1991] are some examples of formal methods. In the literature a distinction
is made between formal specification formalisms and formal methods. Specification formalisms
formally define formal abstract syntax and semantics for system specification. Formal methods
are based on specification formalisms; they propose a concrete syntax and offer a methodology
for models development. Most formal notation are used as formal specification formalism and
formal method (examples are Z, VDM, Object-Z etc.).

Formal specification techniques can be classified into the following five main paradigms
[Lamsweerde 2000]:

e History-based specification characterizes the maximal set of admissible histories over
time. The properties depicting the behavior of the system are specified by temporal logic
assertions.

e State-based specification characterizes the maximal set of admissible system states. The
properties depicting the states of the system are specified by invariants constraining the
system objects at any snapshot, and pre- and post-assertions constraining the application
of system operations at any snapshot.

e Transition-based specification characterizes the required transitions from system state to
state. The properties of interest are specified by a set of transition functions which give
for input states and triggering events (eventually guarded by necessary precondition) the
corresponding output states.

e Functional specification characterizes the system as a structured collection of
mathematical functions that are grouped, either by types then defining algebraic
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structures, or into logical theories (high-order functions). The properties of interest are
specified as conditional equations that capture the effect of composing these functions.
Operational specification characterizes the system as a structured collection of processes
that can be executed by some more or less abstract machine.

Formal verification is based on two main techniques: model checking and theorem proving.

Model checking is an automated technique to check the absence of errors (i.e., property
violations) that requires a model of the system under consideration and a desired property
and systematically checks whether or not the given model satisfies this property. Typical
properties that can be checked are deadlock freedom, invariants, and request-response
properties. It can be used to check partial specifications, then providing useful
information about system’s correctness even if the system is not completely specified.
Also, it can produce counterexamples which typically are subtle errors in design. The
problem of model checking is the state explosion problem. However, the improvements in
model checking algorithms, data structures, and availability of faster computers and
efficient representation of state transitions increase the size of systems that could be
verified. As model checkers, we can cite SPIN [Holzmann 2003], SMV [McMillan 1992],
UPPAAL [Larsen et al 1997], etc.

Theorem proving is a technique where both the system and its desired properties are
expressed as logic-based formulas, in terms of axioms and inference rules. Theorem
proving is the process of finding a proof of a property from these axioms and rules, and
possibly derived definitions and intermediate lemmas. In contrast to model checking,
theorem proving can deal with infinite state spaces, but it usually results in a slow and
often error-prone process. As theorem provers, we can cite Z/EVES [Saaltink 1999], FDR
[FDR 2010], HOL [Gordon and Melham 1993], Isabelle [Paulson 1993], PVS [Owre et al.
1992] etc.

Formal methods have been used extensively in the specification of reactive systems. Examples
worth of note include Statecharts [Harel 1998], Z, VDM, CSP... For systems with multiple static
and dynamic aspects, extensions and combinations of formal methods have been proposed. For
example, CSP has been extended to include timing aspects. This is called Timed CSP [Reed and
Roscoe 1986]. The following are other combination of formal methods:

Z and CSP [Fischer 2000] is an extension of Z for specifying CSP process. This
integration is made regarding syntax and semantics. The tool used for verification of
properties on the CSP-Z specification is FDR.

ZCCS [Galloway and Stoddart 1997] is the combination of Z and Calculus of
Communicating Systems (CCS) [Milner 1980]. A ZCSS specification is a CSS
specification with data and axioms specified in Z

CSP-OZ [Fischer 2000] is an integration of Object-Z and CSP. CSP-OZ defined a new
semantics from those of CSP and Object-Z. Another combination of these languages
CSP/Object-Z [Smith and Derrick 2001] adopts two different views for the same system
using the two syntaxes. The object components are specified by the Object-Z and
concurrency is specified by the CSP. The CSP part uses Object-Z classes. The link
between both is defined by the links between operations and events and between classes
and processes. These languages do not have tools to verify properties. Their refinement
relations are based on those of Z and CSP.
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e CSP2B [Butler 1999] and CSP||B [Schneider and H. Treharne 2002] are two variants
combining CSP and B.For CSP2B, CSP-like specifications are associated with
specifications to control the execution order of operations defined in the B machine
associated with it. CBS||B maintains two dimensions: CSP and B parts. The CSP part acts
as a coordinator of the operations of the concurrent B machines associated with it.

In the next section, we present the Z and CSP formal notations. Z and CSP are used a semantic
domains for HiLLS that allow formal analysis of its models.

I1.3.1 Z language

Z [Spivey 1992] is a formal notation introduced for abstract, declarative, non-executable
requirements specifications free from implementation details. The language has formal semantics
and has been standardized [ISO 2002]. Z is a typed language, consisting of three parts: a
mathematical language, a schematic language and a refinement theory. The Z Formalism uses
mathematical data types to model the data in a system. The notation of predicate logic allows the
abstract description of the operations that cause state changes in the system. An important
element in Z is the way of decomposing a specification into small pieces called schemas.
Schemas are used to describe both the dynamic and static aspects of a system. It brings together
data and operations. The schemas allow the reuse of existing schemas specifications with well-
defined operations. Through the use of schema inclusion, it is possible to describe systems at the
highest level of abstraction and increase the level of details in the specification at subsequent
phases. In Z, the properties of operations, and their effects on the state of the system, can be
explored and reasoned about formally using tools like Z/EVES [Saaltink 1997, Saaltink 1999].
The Z formal language is expressive and allows and unambiguous requirements specification by
showing what has to be done, not how it should be done (free of implementation details).

In most case studies of system specification with Z, the methodology used is to treat the system
as having an overall state schema. The operations are defined in terms of state changes on the
overall state schema resulting from the composition of the different state schema. An operation is
defined by specifying its signature, its precondition and postcondition. The signatures of the
operation schemas include a primed and an unprimed version of the signature of the state schema
and the input and output parameters. A change of state is a relation between the current state and
future state of the system.

Several extensions have been proposed for the Z language. These extension include object
oriented extensions like Object-Z [Smith 2000] [Duke et al. 1991], Z++ [Lano 1991], OOZE
(Object Oriented Z Environment) [Alencar and Goguen 1991], MOOZ (Modular Object-Oriented
Z) [Meira & Cavalcanti 1990], ZEST [Cusack & Rafsanjani 1992]) ([Stepney 1990]), process
algebra extensions like ZCCS [Galloway and Stoddart 1997], CSPZ [Fischer 2000], etc. Some of
these extensions also have been extended to include real-time features like TCOZ (Timed
Communicating Object-Z) [Mahony and Dong 2000].

11.3.1.1 A simple specification of the stack data structure in Z

The stack (Figure 13) is characterized by a global constant maxLenght that models the maximum
number of elements that can be stored in it. The state schema declares and constrains one state
variable contents which is a sequence of integers to hold the items in the stack while the INIT
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schema sets the state variable to a default value when invoked. The three operations pop, push
and fop manipulate the state schema; while the first two result in to changes of state by modifying
the state variable contents as first indicated by the schema inclusion AStack in their upper
segments and their post-conditions as portrayed by the last predicates in their respective second
segments, the last operation does not affect the value of any state variable when invoked and that
is why it has no schema inclusion. The first predicate in the second segment of each of the
operations specifies the pre-conditions for them to be successfully invoked. We assume that a
basic knowledge of predicate logic is enough to understand the details of the sample model.

SO,
maxLength: Z ASrack

outl: Z
maxLength = 50

# contenis = 1
Stack._

confents: seq £

ont! = head contenis
contents' = tail contents

# contents < maxLength

sl
ASrack

____InitStack in?: £

AStack

# contenis < maxLength

confenis = { =
contents' = contents  {in?)

fop
AStack
out!: 7

#confents 2 1
our! = head contents
contents' = conients

Figure 13. the Stack specification in Z
I1.3.2 Object-Z

Object-Z is a conservative object oriented extension of Z. On top of the Z notion of schema,
Object-Z introduces the concept of class schema which captures the object-oriented notion of a
class by encapsulating a single state schema with all the operation schemas which are defined on
its variables. Like in other object oriented languages, a class in Object-Z may inherit from other
classes and have a visibility list restricting the way objects of the class may be used.

An Object-Z class has a unique name (Figure 14) as an identifier to differentiate it from other
classes in the specification. In addition to the class name, the header may also specify some
generic parameters.
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Figure 14. Template of Object-Z class

Since the class encapsulates its contents, the visibility list specifies the interface through which
the elements of an object of the class may be accessed. i.e., a list of variables and operations that
can be visible outside the class in similitude to public attributes and methods in Object-
Orientation. An Inherited Class designates an existing class whose definition is imported for
reuse. A Local Definition may be a local type or constant definition (usually specified in an
axiomatic schema) or a reference to another class. A class may have a maximum of one state
schema that defines its state space through the declaration of state variables and invariants (if
any). This may be followed by a specification of the initial state and finally, the operations that
use and/or manipulates the elements of the class. Further details about Object-Z's syntax and
semantics can be found in [Smith 2000].

There are many specification formalisms for logical analysis; we have chosen Object-Z for three
properties, two of which it inherits from Z (its base formalism).

1. Zis said to be considerably universal to be suitable for describing DESs for most kinds of
logical analysis and

2. Z allows for separation of concerns. i.e., its syntax enable to decouple the specification of
system properties from the requirements investigation logics and

3. Object-Orientation (which is peculiar to Object-Z) which enables to modularize a
complex specification.

The state schema is nameless by convention and has its declarations partitioned by a A into
primary and secondary variables. Secondary variables are implicitly available for change in any
operation and are usually defined in terms of primary variables. Both constants and state
variables can be object references. The operations are defined either as operation schemas or
operation expressions.

An operation schema extends the notion of a schema in Z by adding to it a delta-list. The delta-
list is a list of the primary variables which the operation may change when it is applied to an
object of the class; all other primary variables remain unchanged. When two or more operations
are combined to define a new operation, however, their delta-lists are united so that the new
operation may change any variable which any of its constituent operations could have changed.
In this way, delta-lists enable a more flexible calculus for combining operations than would be
allowed by Z schemas alone.
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Apart from conjunction A, other operation operators are the parallel operator ||, the choice
operator [ |, the enrichment operator ¢, hiding and renaming. The parallel operator | is a binary
operator introduced into Object-Z to allow specification of inter-object communication. The
operator identifies and equates input variables in either operation with output variables in the
other operation having the same base name. The identified input variables are hidden in the
resulting operation; the output variables are not hidden and so may be equated with other input
variables in subsequent parallel compositions.

The choice operator [] is a binary operator which allows the specification of nondeterministic
choice between operations. The meaning of op;[Jop, is that either operation op; occurs or
operation op, occurs but not both.

The enrichment operator * allows operations to be interpreted within the class' local environment
enriched with the declarations and predicates of another operation or schema.

11.3.2.1 Stack specification in Object-Z

Figure 15 shows The Object-Z version of the stack data structure presented in I1.3.1 to illustrate
some main features of Object-Z. The Stack is now represented as a class in Object-Z. Contrary to
Z, the state schema and the operations are defined within a single class. The visibility list of the
class contains the three operations; pop, push and top and the INIT function meaning that these
can be accessed in any instance of the Stack class just the same way public features are accessed
in other Object-oriented paradigms. As in the Zversion, the class declares and initializes a global
constant maxLenght that models the maximum number of elements that may be stored in any
object of the class. The unnamed state schema of the stack class is the same as the definition of
the state schema of the Z version. The INIT operation of the class plays the same role as the
corresponding schema of the Z version; it is the constructor of the class. Similar to the use of
schema inclusion in the Z version, the delta lists included in the operations pop and push indicate
that they result in to changes of state by modifying the state variable contents. The delta lists
simplify specifications. As in the Z version, no delta list is included in top operation since it does
not affect the value of any state variable when invoked. Pre and post-conditions of the operations
have the same meanings as in Z specification.

Stack
Hpop, push, tap, INIT)

mnxLanght:?

maxlenght = 50

[contents ey =

NIT—
contants = <=
- —pop—
3 [Contonts)
|outli
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aull = head{contants)
contonts’ = talljcontents)

push
A [oontmots)
In?i
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contents’ = in? “contents
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LT A e

fcontents = 1
oul! = haad{contanta)

Figure 15. A sample model in Object-Z
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11.3.3 CSP

CSP (Communicating Sequential Processes) [Hoare 1985] is a formal notation used for the
specification and analysis of concurrent systems. CSP is a process algebra where basic elements
are processes and events. In CSP, processes are independent entities that can communicate with
each other. A process can execute events or actions. The way a process engages on events
defines its behavior. Each process P is characterized by the set of events it can accept; this set is
called the alphabet of the process and is denoted by a(P).

Formally, the syntax of CSP is defined by the following grammar:

The basic process in CSP is STOP; it is the process that does nothing.

To specify the behavior of a process, the prefix (=) operator is used to defined explicitly
the events that the process can execute and how it behaves after executing events. For
example a = P defines a process that behaves like P after executing the eventa.
Specifying a complex behavior may require a sequence of prefix operator, use of
parentheses and recursion.

Input and output events: Communication between processes is realized through exchange
of input and output events on channels. An input event is denoted by c¢? v where c is the
channel and v is the value received through it. An output event is denoted by c! v where ¢
is the channel and v is the value sent on it. For example c?v — P is a process that
executes an event v received on channel ¢ and behave like P. Similarly, c!v — Q is a
process that sends an output event v on channel ¢ and behaves like Q.

Choice operator: There are several choice operators in CSP; the simpler is the operator
denoted by | that is applicable to processes of the form a — P. For example, the process
a = P|b — Q is the process that behave like P if it executes event a or Q if it executes
event b. [-] and [ are other choice operator used in CSP called respectively internal and
external choice operators. P [-] Q is the process that can execute all the events that can be
executed by P or Q and behaves like P if the executed event is initiated by another
process and belongs to a(P) or Q if it belongs to a(Q). Pl1Q is the process that behaves
nonderministically as P or Q on internal events.

Hidden events: In CSP, it is possible to hide some event from the alphabet of a process. If
P is a process and A is a set of events then P\A is the process where elements of A are
considered as internal events of the process.

Parallel composition: The process P4 llp Q is the parallel composition of P and Q. In this
concurrent process, P can only execute events belonging to A and Q can execute only
those in B. Events in A N B are executed by P and Q synchronously.

Interleaving: Interleaving is like a parallel composition without synchronization. In the
interleaving process P|||Q, the constituent processes P and @ can execute events
independently.

The semantics of CSP is based on three kinds of behaviors for expressing properties:

Traces, i.e. finite sequences of events, for safety properties based on trace refinement;
Stable failures, i.e. traces augmented with a set of events that cannot be executed, for
liveness properties and deadlock freedom based stable failures refinement;
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e Failures/divergences, i.e. stable failures augmented with traces ending in an infinite loop
of internal events, for livelock-freedom based on failures/divergences refinement.

A divergence is a trace for which a process is not blocked and do not show any observable
behavior, i.e. it executes internal actions in an infinite loop.

For verification purpose FDR computes all the traces, failures and divergences of processes
making verification of infinite state systems impossible without using abstraction techniques.

11.3.4 Formal Verification and Validation of DEVS models

We present in this section the different techniques used in the literature for the verification and
validation of DEVS models using formal methods.

Related works have addressed formal analysis of DEVS models. These proposals range from
formal model-checking of sub-classes of DEVS, transformation of DEVS into formal methods
for verification purposes, generation of traces from DEVS models for testing, or introducing
clock constraints to DEVS to conform to some formal method. We present some notable works
on this.

11.3.4.1 RTA-DEVS

Rational Time-Advance (RTA) DEVS is a subclass of C-DEVS that is realized by mapping the
time advance to a rational number [Saadawi and Wainer 2010]. This work defines a
transformation approach to obtain a Timed Automata (TA) [Alur 1999] that is behaviorally
equivalent to RTA-DEVS. This restriction imposed on the elapsed time translates into having
rational constraints in guards in the transformed TA model and ensures termination of
reachability algorithms implemented in UPPAL, as irrational constants in TA guards render
reachability analysis undecidable. The authors were able to show the behavioral equivalence of
RTA-DEVS and TA by using timed weak bisimulation. Then following the conditions of this
bisimulation, they construct a TA model for the basic behavior elements of RTA-DEVS, namely
internal and external transitions. Then, they deduce the required constant values on the TA model
to complete the bisimulation equivalence. This transformation, while beneficial for modeling the
behavioral properties of an atomic DEVS model cannot be effectively applied to a system with
many components. Earlier, they had proposed a technique for verification of DEVS models based
on Model-checking [Saadawi and Wainer 2009]. The technique is to specify graphically DEVS
models using Eclipse-CD + + [Mathias et al. 2010] and transforming these models into timed
automata in UPPAAL model-checker [Larsen et al. 1997]. They illustrated their approach by a
case study and compared their results using UPPAAL and the results of simulation in CD + +.

11.3.4.2 RT-DEVS

The Real-Time DEVS formalism (RT-DEVS) introduces a time advance function that maps each
state to a range with maximum and minimum time values [Hong et al. 1997]. RT-DEVS was
used to model a real-time system of train-gate-controller. It introduced an algorithm to build a
timed reachability tree to be used for safety analysis. Further work on verifying RT-DEVS has
been done using timed automata and UPPAAL [Circirelli et al. 2010], and a transformation from
RT-DEVS to UPPAAL is shown. This transformation allows weak synchronization between
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components of TA model as RT-DEVS semantics uses weak synchronization. The transformation
given did not show formally timed behavior equivalence between RT-DEVS and TA models.

11.3.4.3 DEVS and LTS

Ernesto Posse worked on the development of an alternative theoretical foundation for DEVS
[Posse 2008], not on the concept of I/O System within Zeigler's hierarchy of system specification,
but based on structural operational semantics focusing on determinism and compositionality
properties. The meaning of DEVS models is given in terms of labeled-transition systems. The
advantage of this approach is that it allows us to reason about DEVS using existing tools for
labeled-transition systems (LTS) and we can compare DEVS to other formalisms described in
terms of labeled-transition systems. However, this is done only for Classic DEVS. Moreover,
using only LTS would hide the structural properties and functional couplings of a model in the
coupled network hierarchy.

11.3.4.4 FD-DEVS

The Finite and Deterministic DEVS (FD-DEVS) [Hwang and Zeigler 2009] is a class of DEVS
defined by making the following assumptions: 1) the sets of events and states are finite; 2) the
time advance is a mapping from states to non-negative rational numbers; and 3) an external input
event can either reschedule or continue processing. The main restriction imposed here is that
there can be no use of the time that has elapsed in a state to determine its transition to another
state (a characteristic of the general DEVS formalism is that such elapsed time information can
be employed in a unrestricted manner.) The network behavior of FD-DEVS is abstracted as a
finite-vertex reachability graph, in the context of no restriction on the occurrences of external
events. The authors developed an algorithm to do this abstraction. The key idea is that infinitely
many instances of elapsed times of components in a FD-DEVS network can be abstracted by time
zone equivalence. Based on the time zone abstraction technique, an algorithm to generate a finite-
vertex reachability graph was introduced and their completeness and time complexity were
investigated. However, an operational framework is not proposed.

11.3.4.5 DEVS and Semantic Composability Theory

The formal theory for semantic composability examines simulation composability using formal
definitions and reasoning [Weisel et al. 2005]. Because DEV'S and semantic composability theory
appear to have certain topics in common, the authors raise the question of their relationship. They
noted that a fundamental difference between the two theories is the requirement in composability
theory for the computability of models. They show that composability theory and C-DTSS (and
thus DTSS, DEVS...) are both sufficiently powerful to express all simulations that can run on a
computer. An operational framework is also not proposed.

11.3.4.6 Z-DEVS

In [Traoré 2006], the author presented a method to make DEVS models amenable to formal
analysis using the Z method. In this work, he defined Z-DEVS, a formalism that combines the
DEVS well-established M&S paradigm with the Z formal paradigm. Specifying simulation
models in Z-DEVS makes them accessible to formal analysis. Then, ambiguities and

54



inconsistency in requirements could be discovered early, when they can be corrected with much
less expense than after code has been developed. Also, hidden properties can be revealed, using a
theorem proving tool such as Z/EVES. The logic-based M&S framework that he proposed aims
at building models of better quality and at increasing the understanding of key concepts such as
VV&A, reuse and composability.

I1.3.4.7 $DEVS

Another interesting work that has linked Z and DEVS is presented in [Trojet et al. 2009]. It has
proposed a lightweight transformation approach of DEVS models to Z so that proofs can be
performed on the resulting specification. The approach is based on their defined “constraints-
based DEVS framework™ noted ¢pDEVS. ¢pDEVS allows to capture the behavior of a system
using DEVS and its static constraints using predicate logic expressed in Z. This allows checking
that the behavior of the system meets the specified constraints or not using Z/EVES theorem
prover.

11.3.4.8 TC-DEVS

Time Constrained DEVS (TC-DEVS) is a class of DEVS that expands the DEVS atomic model
definition with the introduction of multiple clocks incremented independently of other clocks
[Dacharry and Giambiasi 2007]. Classic DEVS atomic models can be seen as having only one
clock that keeps track of elapsed time in a state, and is reset on each transition. TC-DEVS also
added clock constraints similar to TA (to function as guards on external and internal transitions).
However, it allows clock constraints in states as invariants that contain clock differences. TC-
DEVS is then transformed to an UPPAAL TA model. The paper however, did not explain a
transformation of TC-DEVS state invariants to UPPAAL TA when the model has invariants with
clock differences. Earlier, the authors had proposed linking DEVS and Timed Automata, in order
to extend the design methodology for control systems, using DEVS to specify the low-level
behavior of the control being designed, and Timed Automata to specify the high-level behavior or
properties that the control should meet [Dacharry and Giambiasi 2005]. They introduce the
concept of simulation relations between DEVS models and Timed Automata in order to verify
that the control meets the specification of the concept. This concept is based on an analogous
approach generally found in the Timed Automata theory where it is used for formal reasoning
about the behavior of Timed Automata. Using this approach, it is possible to augment the design
quality, increasing at the same time the understanding of a system by counting on validation and
verification techniques consisting of not only simulation, but as well formal methods and model-
checking. Again, Timed Automata theory can only expose the behavioral properties of a system.

11.3.4.9 DEVS and Temporal Logic

A method of verification of DEVS models in the environment DEVSim++ has also been
previously proposed [Hong and Kim 2004]. The approach is to specify the model in DEVS
(operational formalism) and use the temporal logic (TL formalism assertions) to specify the
properties and time constraints of the system. The authors use a projection technique (external
TLA assertions) to reduce the state space. The lifetimes of the states are not taken into account so
the function of play time is not defined at the atomic model, but the temporal logic allows
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expressing constraints on sequences of states. The technique used by the authorsis very
similar to the technique of model-checking using Buchi automata [Biichi 1960].

A transformation method of DEVS models in TLA+ has been earlier proposed [Cristia 2007].
The main conclusion of this work is that DEVS models describing discrete event systems can be
easily translated into TLA+ specifications. This would be beneficial for DEVS since it lays the
basis for a formal semantics of this powerful modeling language. Having a TLA+ specification of
a DEVS model enables for formal verification of the model or to model-check it with the tools
already available for TLA+ specifications. However, a generalization of the conversion of DEVS
in TLA + has not been studied.

11.3.4.10 DEV'S and Reachability Analysis

It has been shown that verification of general DEVS models through reachability analysis is not
decidable [Hernandez and Giambiasi 2005]. The authors of this work based their deduction on
building a DEVS simulation Turing machine. Since in Turing machines the halting problem is
not decidable (i.e. with analysis only, we cannot know in which state a Turing machine would
be), they concluded that this is also true for DEVS models: we cannot know if we reach a
particular state starting from initial state, and hence reachability analysis for general DEVS is
impossible. They argue that reachability analysis maybe possible only for restricted classes of
DEVS. This result however was based on introducing state variables into DEVS formalism with
infinite number of values.

11.3.4.11 DEVSPecl

DEVSPecL is a specification language for writing DEVS models in BNF format [Hong and Kim
2006]. This language is dedicated to modeling, simulation and analysis of discrete event models
and it is based on a verification methodology that had been earlier proposed for the logical
analysis of discrete event systems [Kim et al. 2001] without taking into accounts the temporal
information and OpenDEVS [Thomas et al. 2006], whose characteristics are the preservation of
model information, modeling, object-oriented and type-checking. Note that OpenDEVS is a
proposal for standardized exchange format for DEVS that has not been implemented. The main
objective of DEVSpecL is to provide a textual language for code generation to multiple target
languages and tools for performance analysis by simulation and verification by testing. The
testing technique adopted is a combinaison of white-box testing and black-box testing.
DEVSpecL is textual and provides a test-based verification technique. At first sight our work and
DEVSpecL appears to have same objectives; however there are fundamental differences between
the two approaches. DEVSpecL is textual while ours is graphical. DEVSpecL adopts a test-based
verification technique while ours offers formal verification techniques at different levels of
abstraction.

Our work differs from all of the above. We use visual notations that have equivalent DEVS

representation and the semantics are defined using formal methods. Therefore we can use both
simulation and formal analysis to ensure the integrity of our models.
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I1.4 System Design

We present in this section system design with UML and some design patterns as background for
our enactment semantics. We also present related works on the enactment of discrete event
systems.

I1.4.1 Unified Modeling Language

UML [Rumbaugh et al. 2004] is a standard object oriented notation for software systems design
independent from specific software development process (e.g., XP, RUP), or technology (e.g.,
Java, .NET, embedded real-time). UML is customizable to target specific domains like hardware,
embedded systems, real time systems, business rules, networks (MARTE, SPT, SysML). UML
has several supporting tools from which diagrams can be saved and exchanged in XMI format;
these tools can generate code, reverse engineer code, and perform impact analysis, refactoring,
and complexity analysis.

UML has the concept of class, structured class and component. Structured class defines Port and
Connector and provides means to describe a class as an aggregation of parts. There is no support
for flow-oriented communications in UML structured classes. An important fact is that UML
makes a clear distinction between structured classes and components. A component is a
structured class that represents a modular part of a system that has required or provided interfaces
and ports. Components can be assembled together by using assembly connectors to form larger
components. Many UML standard stereotypes that apply to component exist: <<subsystem>>,
<<process>>, <<service>>, <<specification>>, <<realization>>, <<Implement>>. Subsystem
component represents a unit of hierarchical decomposition of a system. A system may have
specification and realization elements. A specification component defines a domain of objects by
only defining their interfaces. A realization component is a realization (implementation) of a
specification component without attributes and methods. Provided interfaces are directly realized
by the component itself or by realizing components or publicly provided by a port of the
component. Required interfaces are designated by usage dependency from the component itself,
or realizing component or required by a public port of the component. Implement component is
similar to realization component; it has a dependency with a separate specification component. A
process component is a transaction-based component. A service component is a stateless
functional component.

In UML, behavioral specification is generally done by using activity diagrams, sequence
diagrams, and state machine diagrams. It is known that these diagrams do not have formal
semantics and no precise operational semantics is defined to make them executable. For example
Activity diagrams semantics are described by informal text. Each existing tool for modeling
activity diagrams implements its own operational semantics (which is generally domain specific).
Some works addressed the formalization of the semantics of activity diagrams in Petri nets
[Staines, 2010].

A more precise subset of UML called Foundational UML (fUML) [OMG 2013] is defined for
specification of executable UML models. The subset fUML defines a semantics called base
semantics.

11.4.1.1 Formal verification of UML models
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It is a known fact that UML specifications are ambiguous and difficult or impossible to analyze
formally. The adequate use of OCL constraints helps a lot to avoid ambiguities, but even then
tool support is lacking. Some tools with limited capabilities exist for validating OCL and UML
specifications [Gogolla et al. 2007].

The static semantics of UML is not completely defined and the dynamic semantics is mostly left
to the decision of supporting tools. The implementation freedom in the dynamic semantics is
intentional since the goal of UML is to provide a unified framework for various application
domains with different needs. This freedom makes the validation problem of UML models
dependent form semantic choices of available tools.

Facing the difficulty or impossibility of formal verification of arbitrary UML models, some
proposes to limits the elements of models in some ways. Some authors propose to use a subset of
UML [OMG 2013]. The problem of this approach is that a small subset may make the formal
verification of models feasible or decidable, but at the same time it restricts the expressiveness of
the language. In the opposite, a large subset is very expressive in modeling however, it is difficult
or impossible to formally verify.

11.4.1.2 Code generation from UML models

Most UML tools allow code generation from UML diagrams. UML class diagrams are
particularly used by the tools to generate code to GPLs like Java, C#, C++. The generated code is
most of the time incomplete and requires additional coding in implementation phase which make
synchronization of that code and the diagram between developers difficult. To allow generation
complete code for methods, additional diagrams like activity diagrams and textual specifications
are used to complement class diagrams. The way of combining UML diagrams, OCL and action
semantics to deliver complete implementation code for a system is not part of UML standard
leading to individual solutions that fail to consistently keep the link between the diagrams and the
generated code.

11.4.1.3 Systems Modeling Language (SysML)

The Systems Modeling Language (SysML) is a standard graphical modeling language that
customizes UML (by the profile mechanism) for the specification, analysis, design, verification
and validation of systems including hardware, software, and processes. SysML is more
expressive and flexible than UML for systems modeling. SysML reuses a subset of UML
(activity diagrams, use-case diagrams, sequence diagrams, state diagrams, and package
diagrams), and adapt class diagrams to be block definition diagrams and composite structure
diagrams to be internal block definition diagrams. SysML adds also new diagrams (requirement
diagrams, parametric diagrams). As UML, SysML is supported by a broad range of UML tools
and its diagrams can also be exchanged between tools by using the standard XMI format. The
advantages of SysML over UML for systems engineering is that SysML Requirement diagrams
can be used to efficiently capture functional, performance, and interface requirements, whereas
UML is subject to the limitations of Use Case Diagram to define high-level functional
requirements. Also, SysML Parametric diagrams can be used to precisely define performance and
quantitative constraints while UML provides no straightforward mechanism to capture this sort of
essential performance and quantitative information.
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We choose UML design pattern for enactment. Since UML is not completely formal, we use only
a subset that is formalizable.

I1.4.2 Object-Oriented design patterns

Design patterns in Object-Oriented modeling are documented solutions to some general problems
that can be reused to build new models. In this subsection, we present the overviews of two
design patterns from [Gamma et al. 1994] that are re used to define the metamodel of our
enactment framework.

11.4.2.1 Observer design pattern

It is a behavioral pattern for establishing relationships between objects at runtime such that
changes in the state of an object (referred to as subject) trigger some actions in another (the
observer). It is defined by the Gang of Four [Gamma et al. 1994] as a pattern that "define a one-
to-many dependency between objects so that when one object changes state, all its dependents
are notified and updated automatically."

Figure 16 shows an overview of the observer pattern. The basic idea is that the Subject maintains
a list of references to some independent objects called the Observers. Whenever there is a change
of state in the subject, all its observers must be notified by the invocation of the update method of
each of them. Each observer (i.e., ConcreteObserver) must implement its update method to
implement the corresponding actions to be taken whenever this happens. This pattern is widely
used in Graphical User Interface (GUI) programming and it provides the underlying principle for
the Model-View-Controller (MVC) architecture [Krasner & Pope 1988] so that all views are
automatically updated whenever there is a change of state in the model.

(=>4 fordll {obs: observers){

Subject : : obs.update()
-observers: List<Observer> : 'l ————————————— 4
HnotifyObservers()g-. - —. - . uinterfaces
+hasChanged() : bool nofifies Observer
t+setChanged() +updatey)

T |
ConcreteSubject ConcrateObserver
tupdate()

Figure 16. Observer design pattern

11.4.2.2 Command design pattern

The command design pattern is shown in Figure 17. A command in this context means a method
call. The pattern provides a methodology to encapsulate a command in an object and issue it (the
command) in such a way that the requested operation and the requesting object do not have to
know each other.
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From Figure 17, Client is the requesting object while the method action() of Receiver is the
requested operation. Client creates the request command and delegates its execution to the
Invoker which manages a queue of command threads. The invoker identifies the receiver of the
request carried by each command in its queue and then executes the command. When its
execute() method is invoked, the command delivers its request by invoking the appropriate
action() method. This pattern provides a methodology for asynchronous(i.e., non-blocking)
method call, sharing of a method call among multiple objects, saving method calls in a queue so
that they are executed when the necessary conditions have been satisfied, etc., it has also been
used to decouple clients from server methods in Asynchronous Remote Method invocation
(ARMI) [Raje et al. 1997].
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Figure 17. Command design pattern

11.4.3 Enactment of discrete event systems

Enactment refers to the prototyping of a system in real-time i.e. execution of a system using real-
world clock.

PROTOB [Baldassari et al. 1989; Baldassari and Bruno 1991] is system development
environment that integrates tools, for modeling, prototyping and implementation of distributed
systems using an operational software life cycle paradigm. In PROTOB, systems are described
with PROT nets, an Object-Oriented formalism that combines high-level features of timed Petri
nets, and workflows to model event-driven distributed systems. PROT nets describes a system as
consisting of interacting autonomous objects called "actors" where each actor is an instance of a
class. The behaviour of a class is described in a Petri nets dialect as consisting of places
(describing the states) and tranmsitions through which places are connected with arcs. An active
place has a queue of message-carrying tokens that are moved from places to places through
transitions. Some places are designated for Input/Output operations to allow actors interact with
one another. Message passing between actors is achieved by moving tokens between their 1/O
interfaces. According to the authors, operational program codes can be generated from PROT
nets specifications for general purpose languages though it is not clear what the structures of such
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codes look like. The similarity between PROTOB approach and the enactment framework
presented in this thesis is that system description in both cases are based on some well-defined
formalisms - Petri nets in PROTOB and DEVS in our framework. Interestingly, the approach
proposed in this paper can arguably accommodate a broader category of DESs based on the fact
that the underlying formalism, DEVS, has been proven to provide a common denominator for
most DES formalism including Petri nets.

In [Hu & Zeigler 2004], the authors proposed an approach of Model Continuity to Support
Software Development for Distributed Robotic Systems based on Modeling-Simulation-
Execution methodology [Hu & Zeigler, 2002]. As defined by the authors, Model continuity refers
to the ability to use the same model of a system throughout its design phases, provides an
effective way to manage this development complexity and maintain consistency of the software.
Model continuity is ensured by using the same model in modeling, simulation and execution
phases. Real-Time DEVS and Dynamic Structure concepts are used in modeling phase in order to
support the modeling of the robots sensors and actuators as activities and dynamic
reconfiguration of robots. In the simulation phase, different DEVS simulator implementations
(supporting different communications schemes from point to-point socket communication to
advanced middleware such as CORBA) are used for the incremental verification of the model.
The real-time execution is achieved by mapping the robot specifications into a real hardware
execution environment controlled by DEVS real-time execution engine; it is however not clear
what is the methodology used in building the said execution engine. The main similarity with this
work and the one presented in this thesis is that system description is based on DEVS in both
cases. The difference is in the fact that their enactment engine resides in hardware for enactment
of robot systems while ours is a software enactment on any suitable computer system.
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I1.5 Language engineering
I1.5.1. Definition of a Language

The general concept of language refers to the cognitive ability to learn and use complex
communication systems, or to describe the set of rules that makes up these systems, or the set of
elements that can be produced from those rules. All languages rely on the process of relating
signs or sounds with particular meanings.

There are broadly three aspects of languages, which include language form, language meaning
and language in context. Language semantics is concerned with how meaning is inferred from
words and concepts. Pragmatics deals with how meaning is inferred from context. Natural
languages are spoken or signed languages, they are distinguished from constructed and formal
languages. Our concern in this section is about constructed languages implied in software
engineering processes.

11.5.1.1 Language constituents

Formally a language, L is defined by L = < A, C, S, M4, Mys >; with an abstract syntax, A, a
concrete syntax, C, a semantic domain S, a mapping function between C and A, Mca, and a
semantic mapping function between A and S, Mg, as shown in Figure 18. The abstract syntax is
the definition of the conceptual elements, relationships between them, and the well-formed rules.
It defines the set of syntactically correct models. The concrete syntax of a language can be textual
or graphical notations. The semantics describe the meaning of the models, usually in terms of a
mathematical model of computation or semantic domain.

Language
L

Syntaxes Semantics

Concrete Syntax Parsing Mgy (-4 Abstract Syntax MA-S Semantic Domain Semantic Mapping
s R
C A S M
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N

/ N

Visual Textual

Figure 18. Defining a language

Different abstract syntax definition languages exist in the literature: ADL, MOF, Ecore, BNF,
EBNF. Different frameworks have been developed for the definition of the abstract syntax of a
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language depending on the language type (graphical or textual) and the abstract syntax definition
language used. Examples are: Eclipse TMF (Textual Modeling Framework), Eclipse GMF
(Graphical Modeling Framework), GME (Generic Modeling Framework).

11.5.1.2 Semantics

Semantics is defined as a precisely defined mapping of the elements of a language into a
precisely defined domain of values. The mapping is termed the semantic mapping. The domain of
values is termed the semantic domain. The semantic domain may consist of purely mathematical
constructs, such as sets, functions, or algebras, or it may itself be a language, such as B, Object-Z,
or even a subset of the source language.

Different styles of semantic exist:

Axiomatic semantics: characterize a program by a set of satisfied properties by variables.
It maps language constructs into logical theories, consisting of mathematical structures
together with axioms defining their properties. It uses a declarative approach for
description of the properties and their evolutions by constraints and operations. The
Hoare’s logic allow the specification of this kind of properties in the form {P}i{Q} which
means if the logical formulas P (called pre-condition) is true before the execution of the
instruction i, then the logical formulas Q (called post-condition) will be true after the
execution. This kind of semantics is not operational but allows mathematical proof of
programs properties. Axiomatic approaches support general reasoning and a
comprehensive expression of language features, but at the cost of using elaborate
formalisms for which support tools may not exist.

Denotation semantics: associate to each expression e of the language, its denotation [e]
which is a well-defined mathematical object that represents the computation represented
by this expression. It describes in form of functions the effects of a program on a state
without saying how this program is executed.

Translational semantics: defines the semantics of a language by translating it to another
language which has a well-defined semantics. This transformation allows the use of tools
associated to target language to perform some actions (verification, simulation, animation
etc.) on the models of the source language. It is necessary in this case to precise how the
semantics of transformed models are interpreted and how results obtained in the target
platform are interpreted in the source platform.

Operational semantics: maps a language into structures of an abstract execution
environment. It describes how every valid expression of the language is interpreted in
terms of successive steps giving its value. It is composed of rules which describe the
effects of the constructs of the language. It describes how a program is executed. An
operational semantics allows the description of the evolution of a model during its
execution. It allows staying in the same technological platform and manipulating the
concepts of the formalism for simulation and animation.

We define for HiLLS, axiomatic and operational semantics by translating its models to languages
with well-defined semantics like Z, CSP and DEVS for formal analysis and simulation.

I1.5.2 Visual Languages
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A visual language describes its concrete syntax as a set of graphical elements and the relations
between them. Each graphical element is characterized by its attributes such as the form, the
color, the dimensions, the position, etc. A visual language is said to be geometric if the positions
of graphical elements are important. If the positions of elements are not important the language is
connection based. A hybrid language is geometric and connection based.

For the definition of abstract syntax of a visual language, two approaches exist: the first is based
on graph transformations which extends existing techniques for textual languages to graphical
languages. The second approach is based on metamodeling. Metamodeling defines the abstract
syntax of the language by a metamodel and a set of constraints to define the static semantics.
These constraints are expressed in the metamodeling language itself (multiplicities and
relationship constraints) or a constraint specification language such as OCL (Object Constraint

Language).

The concrete syntax is represented by a graphical metamodel which is conform to the metamodel
of graphical elements representations. The mapping between the abstract and the concrete syntax
associates to each concept its representation (Figure 19). A constraint specification language such
as OCL is usually needed for this mapping. The most used tools such as XMF (eXecutable
Metamodeling Facility), GME (Generic Modeling Environment), Kermeta (Triskel
Metamodeling Kernel) and Eclipse GMF (Graphical Modeling Framework) have their own
metamodeling languages (Xcore, MOF, Ecore etc.) and graphical elements specification
languages (GEF for GMF).

MOF, Kermeta,
Ecore, etc.

Confoprfi to
onform to

Abstract Syntax Concrete Syntax
(Metamodel) (Metamodel)

Contraints

language
(ocL)

Mapping

Y

Graphical Editor

Figure 19. Mapping between abstract and concrete syntaxes

Many research efforts in the literature towards making visual modeling languages MDE-
compliant have led to the provision of formal semantics for such languages and have shown that
the use of mathematical tools and mechanisms is the most pragmatic approach to adopt. In the
late 90's, [Spivey 1998] demonstrated that mathematical notations provide an essential means to
precisely describe the must-have properties of a system, provide a reliable source of reference for
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investigating such properties and requirements and promote a common understanding among the
stakeholders in the design, development, use and optimization of the system.

[Lano and Biccaregui 1999] pointed out that there are certain ambiguous cases in the UML
semantics that inhibit model transformation efforts involving UML models. They proposed a
formal semantics for the UML using structured theories in a simple temporal logic to solve the
problem. [Szlenk 2006] holds a similar view about the UML while acknowledging its
universality in dealing with the intricacies of software systems via modeling. The paper provided
a mathematical foundation based on lists and functions to express the conceptual UML class
diagrams so as to remove the semantic ambiguities that make model verifications and
transformations more difficult than the engineers could imagine.

In [Barret et.al. 2011], the lack of precise and common reference points for semantic definitions
was identified as a great challenge to the MDE-based exploration of the potentials of many visual
modeling languages. The authors maintained that the semantics of UML metamodel described
with a mixture of the Object Constraint Language (OCL) and natural language is not amenable to
rigorous formal analyses. By evaluating the various methods of defining semantics of modeling
languages, they maintain that the use of some mathematical frameworks with well-defined
meanings will help in automating the generation and analysis of supporting tools for the

language.

I1.5.3 Integrating Heterogeneous languages
11.5.3.1 Levels of Integration

In the literature, different notions designating the use of different language in the specification of
a system have been discussed. Some notions have similar meanings and similar techniques to
deal with syntactic and semantic relationships between the involved languages. Some techniques
address only the transformation between languages (inter-model communication or cooperation)
and neglect the syntactical integration level.

As defined earlier, each language has abstract syntax, concrete syntax and semantic domains.
Integrating heterogeneous languages implies different cases:

- Common syntax, common semantics (eg., composing different models written in
Simstudio)

- Common syntax, different semantics (eg., composing Statecharts and CSP models written
in Java)

- Different syntaxes, common semantics (eg., composing different DEVS models written in
different DEVS implementations like DEVSJAVA, PyDEVS, DEVS-Scheme, DEVS++
etc.)

- Different syntaxes, different semantics (eg., composing Petri Net and DEVS models)

[Grofe-Rhode 2004a] classified integration into the following levels:

- Syntactic integration: concerned by the integration of languages rather than integrating
models. It defines syntactic transformations between languages.
- Methodological integration: unifying development activities of different methods.
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- Ontologic integration: concerned by the explicit representation of concepts and their
relationships.

- Formal semantic integration: defining the semantic relationships between the participant
languages or models or defining a common semantic domain.

All of the different integration levels can be used together in a complete integration method as
declared by the author.

11.5.3.2 Semantics of Integration

Different approaches to semantics of integration of heterogeneous specifications exist in the
literature:

- Common semantic domain called system model: In this approach the different modeling
languages are formalized into a common (formally defined) modeling notation called
system model which serves as the semantic basis and for analyzing consistency of
models. This approach has been adopted in many efforts towards the formalization of
UML semantics [Lano 2009], [Grofe-Rhode 2004b].

- Model transformation approach: In this approach, model transformations and consistency
issues are typically dealt with at the syntactic level of the modeling notation. [Boronat et
al. 2009], [De Lara and Vangheluwe 2002]. All the models are translated to a common
formalism syntax which is used to carry investigation about the system [Vangheluwe
2004].

- Multiformalism and Heterogeneous semantics: In this approach different models specified
in different modeling languages are interrelated and executed as co-simulation [Ptolemy
I1], [Mosterman and Vangheluwe 2004], [Patel and Shukla 2004].

[GrofBe-Rhode 2004b] discusses the semantic integration of heterogeneous specifications using
the approach of a common reference model and the mathematical theory of transformation
systems. The approach has applied to semantics of the integration of UML specifications (ex.
Integration of class diagrams and state diagrams). [Lano 2009] applied similar approaches to
provide semantics to UML specifications.

In [Boronat et al. 2009], a multimodeling language is defined of as a set of sublanguages and
correct model transformations between some of the sublanguages. The abstract syntax of each
language is defined as a Metamodel and associated OCL constraints in MOF (Meta-Object
Facility). In their approach, the semantics of a multimodeling language is given in term of the
semantics of it sublanguages semantics in the mathematical theory of institutions and connections
between them. The purpose of the connections is to ensure semantic correctness of model
transformations. A prerequisite of this approach is the use of the same metalanguage to define the
abstract syntax of sublanguages.

11.5.3.2.1 Ptolemy II

[Patel and Shukla 2004] proposes an extension to SystemC [Bhasker 2002] which is basically
based on a discrete-event model of computation for system-level modeling and simulation. It has
been extended by adding three different models of computations for heterogeneous modeling and
simulation of multi-domain hardware/software and embedded systems. The added models of
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computation include CSP (Communicating Sequential Processes), SDF (Synchronous Data
Flow), and FSM (Finite State Machine). SystemC extensions use similar principles in Ptolemy
[Ptolemaeus 2014] which basically integrates the notion of variety of models of computation for
different domains modeling and co-simulation (where all components are necessarily built in
java, which is a low level approach). Ptolemy II integrates four distinct and complementary
classes of syntaxes for multi-domain modeling: block diagrams (from UML), bubble-and-arc
diagrams, imperative programs, and arithmetic expressions. An agreed common denominator to
all these syntaxes is defined and is composed of a common type system and expression language.
Block diagrams are used to express concurrent compositions of communicating components;
bubble-and-arc diagrams are used to express sequencing of states or modes; imperative programs
are used to express algorithms; and arithmetic expressions are used to express functional numeric
computation. Ptolemy II also integrates a number of semantic domains that are operational in
nature. Particular interoperability mechanisms are used to make the different execution semantics
communicate and exchange data [Tripakis et al. 2013]. Ptolemy II offers a coherent approach to
the integration of the heterogeneous models but the target purpose is simulation and some part of
the specification use low level routines.

11.5.3.2.2 AtoM3

[De Lara and Vangheluwe 2002] proposes a Tool for Multi-formalism and Meta-Modelling
(AToM?) as a multi-formalism visual modelling environment. In the environment, a metamodel
is created for each language used in the development process. Model transformation is defined
between the different languages. The tool is used to describe formalisms commonly used in the
simulation of dynamic systems, as well as to generate custom tools to process models expressed
in the corresponding formalism. Metamodels of the following formalisms are available in the
environment: Entity-Relationship, GPSS, Deterministic Finite state Automata, Non-Deterministic
Finite state Automata, Petri Nets, Data Flow Diagrams and Structure Charts. These metamodels
are the basis for the automated multi-paradigm modeling [Mosterman and Vangheluwe 2004]. In
[Feng et al.2007], the authors use Dcharts [Feng] for system behavior specification and translate
it for simulation using the simulation engine of AToM3 and model checking using FDR2. The
mutli-formalism approach in AToM3 is based on metamodeling and model transformation to
establish cooperation between the different formalisms. This approach doesn’t address the
integration of languages at syntactic level.

11.5.3.2.3 ForSyDe

ForSyDe (Formal System Design) is a system-level specification methodology [Sander and
Jantsch 2004], [ForSyde 2014] implemented on top of the functional language Haskell. Initially
based on a synchronous model of computation, it offers also the multi-paradigm modeling
capability. The purposes of ForSyde are code synthesis (by using a refinement technique to
generate implementation code to VHDL or C/C++ based on design transformation rules) and
simulation of System on Chip, Hardware and Software systems. A limitation of this approach is
the lack of object-oriented and component-based modeling features.

11.5.3.2.4 ModHel'X

ModHel'X [Hardebolle and Boulanger 2007] is a framework for heterogeneous modeling
implemented in EMF by providing an extensible set of models of computation, multi-view
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modeling and semantic adaptation mechanisms. ModeHel’X also has a simulation-based
multiformalism approach like Ptolemy [Ptolemaeus 2004] and SystemC [Patel and Shukla 2004].

11.5.3.2.5 MOOSE

[Fishwick 1995] introduces Multimodeling as the process of creating multimodels (or hybrid
models) by heterogeneous coupling of models of different types. Each language can completely
specify a model (an independent module) structure and behavior. The purpose of this approach
called MOOSE (Multimodeling Object Oriented Simulation Environment) mainly focuses on
how the models of different types can communicate in a simulation. Later, an XML-based
environment called RUBE is created to support the Multimodeling and simulation process with
visualization and user interaction capabilities [Fishwick et al. 2003]. RUBE is composed of MXL
(Multimodeling Exchange Language) and DXL (Dynamic Exchange Language). The
methodology consists in transforming the heterogeneous models created in MXL into
homogeneous DXL models.

11.5.3.2.6 DEVS/RAP KIB

[Sarjoughian 2005] proposed a multi-formalism modeling composability framework using the
concept of Knowledge Interchange Broker for composing disparate modeling formalisms. The
approach is applied to the composition of models of Discrete-Event System Specification and
Reactive Action Planning formalisms (DEVS/RAP KIB). The composition used the model of a
vehicle specified using the DEVS formalism and a model of the control agent of the vehicle
specified using the Reactive Action Planning Formalism. The author advocated the composition
of modeling formalisms instead of composing models but the syntactic level of the composition
is not addressed. The proposed approach to multi-formalism composition is based on
characterizing how two formalisms can interact with one another via Input and output mappings.
This approach to multi-formalism composability is more oriented to how models communicate in
execution phase and is not concerned by solving the problem at abstract syntax level of the
composed formalisms. The approach is influenced by the purpose of the languages used which is
simulation execution and analysis. The approach is similar approaches to co-simulation and
interoperability approaches with the appropriate transformations of exchanged messages between
models of different formalisms.

11.5.3.3 Integration beyond the operational level

Some frameworks use hierarchical composition of heterogeneous models e.g. ModHel’X,
Ptolemy II, SystemC, RUBE. Some frameworks require models at the same level of the
composition to use a unique model of computation. This is the case of ModHel’X. The execution
of these hierarchical models is sequential in most of these frameworks. For example ModHel’X
selects one component to observe at each step.

The look of all these approaches in detail, shows that each of them uses one or more of the
following modelling approach:

- Component-based modeling formalism
- State-based modeling language
- Process Networks
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- Event graphs

- Synchronous reactive modeling

- Finite-state machine

- Discrete-event modeling formalism

- Continuous systems modeling

- Data flow diagrams (synchronous data flow, dynamic data flow)
- Functional modeling language

Some of these modeling approaches are very similar. For example Data flow diagrams and
Process Networks are all used for the specification of concurrent systems in Ptolemy II. Finite
State machine, discrete event and synchronous reactive modeling are used for specifying
behavior. The formalisms can be classified as structural, behavioral, temporal or functional
specification formalism. While they address the integration problem at operational level
(interoperability of different Models of computation), we propose to build a language as a
coherent whole by integrating syntactically and semantically languages that complement each
other and have strong basis and high expressiveness (OO paradigm, Object-Z, DEVS) and using
different semantic domains (DEVS, Z, CSP) for different purposes (simulation, theorem proving,
model checking). In this manner, HiLLS address structure, static semantics, behavior, and
functional specification of systems. We are confident that the defined language is expressive
enough to handle the class of systems addressed by these frameworks because the language is
rooted in DEVS-based system theoretic concepts and DEVS has been proven to be the common
denominator of discrete event formalisms [Vangheluwe 2004] and able to approximate
continuous systems [Zeigler et al. 2000]. Ptolemy II also uses a discrete event formalism closely
related to DEVS but the integration is not done at syntactic level.

I1.5.4 Language integration techniques

Different mechanisms for integrating heterogeneous languages exist in the literature: embedding,
aggregation, inheritance.

11.5.4.1 Language embedding

The embedding of heterogeneous languages defines a new language with a single abstract syntax
tree. The abstract syntax tree of the new language consist of the elements of the participants
languages.

11.5.4.2 Language aggregation

This mechanism aggregates a set of languages for specifying different views of a system.
Aggregation of heterogeneous languages results in separate abstract syntax trees for each
language. It establishes a relationship between languages in terms of references. Aggregation is
generally used to combine behavioral and structural specification languages.

11.5.4.3 Language inheritance

This mechanism refines or extends an existing language by inheriting from existing concepts in
language. It reuses existing concepts of the base language and extends it by new concepts.

11.5.4.4 Extension

69



A language L extends another base language B if L contains the concepts of B and additional
concepts. The new concepts introduced by L may specialize (extend or restrict) concepts in B. A
given language may define its proper extension mechanisms so that the resultant language can be
compliant the standard of the base language and supported by related tools. For example UML
has particular extension mechanisms.

11.5.4.5 Model Composition

Several techniques and tools for integrating metamodels, usually referred to as metamodel
composition in the literature have been proposed. We provide brief descriptions of metamodel
merge, interfacing and refinement , described by [Emerson and Sztipanovits 2006] and used in
the MetaGME environment [Ledeczi et al. 2001]. We also discuss language extension and
restriction proposed by [Erdweg et al. 2012]:

e Metamodel merge: The metamodel merge is used to integrate two metamodels that share
some common abstractions of real world entities into a unified whole. It is synonymous to
the MOF's Package Merge technique that recursively take the union of model elements
matched by name and metatype in the two source packages with two exceptions: 1)
Metamodel merge occurs at class level instead of package level and 2) common concepts
do not necessarily have to match by name in metamodel merge. Once matching classes
are identified, the two classes cease to exist but merge into a new class in the integrated
metamodel; the new class encompasses all attributes and associations of the source
classes.

e Metamodel extension and restriction: Metamodel extension is the mechanism of adding to
the vocabulary of an existing language. There are two input metamodels: the base
metamodel representing an independent and stand-alone language and extension which
captures a set of concepts (that do not necessarily qualify to be an independent language)
to be added to the base metamodel's vocabulary. One unique characteristic of this
technique according to [Erdweg et al. 2012] is that it is a conservative integration, i.e. the
participating language fragments must be reused as- is. Object-Orientation's inheritance is
used as a means of realizing metamodel extension such that the extension class simply
inherits the base class and provide additional concepts by means of attributes and/or
associations.Metamodel restriction on the other hand is the opposite of extension. It
involves the restriction of the use of certain concepts in the vocabulary of a language.
According to [Erdweg et al. 2012], this may be achieved by specifying rules that rejects
any model that contains the restricted constructs during validation.

e Metamodel Interfacing: Metamodel interfacing is employed to combine two metamodels
describing the vocabularies of two distinct but related domains in order to explore the
relationships between the two domains. It's implementation requires the creation of new
classes and relations (that do not necessarily belong to either of the two source
metamodels) which serve as the interface between the distinct metamodels through
associations.

o Metamodel refinement: Class refinement is used to establish relationships between closely
related (or in fact, same concepts) expressed at different levels of abstraction in two
independent metamodels. Specifically, a hierarchical containment relationship is created
between the two metamodel with the more abstract metamodel fragments as the
container(s) of the more detailed descriptions provided by the other.
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I1.5.5 Integrated languages for system specification

We present here related work on integrated languages for system specification. We concentrate
major works that are important for our work.

11.5.5.1 DEVS-based Real-Time System Design

[Kim et al. 2001] described real-time system design as a process that involves iterations of
modeling, logical/behavioral analysis and simulation for performance evaluations until quality
assurance properties are proven before finally enacting the implementation of the candidate
system. The authors are of the opinion that seamless transitions between the development
processes would be restrained if they were treated with different models. They proposed a
unifying design methodology based on DEVS formalism to specify models of different phases of
discrete-event systems with a common semantics. While the DEVS formalism itself was used to
model the system in a general sense and to treat the simulation phase of the development, two
extensions of the formalism, Communicating DEVS [Lee 2013] and Real-Time DEVS [Hong et
al. 1997], were employed to handle the specific issues of the analysis and implementation phases
respectively. While the framework suggests a sound integration of the system development
processes, it would address a considerably smaller audience than it would if it were built behind
some universal visual notations to enhance communication among experts outside the DEVS
community. Also, its applications are limited to static-structured systems as no case of systems'
structural dynamics is considered.

11.5.5.2 Clepsydra

Clepsydra Methodology [Ciacciac et al. 1995] promotes use of different languages for
requirements and design specifications because the use of a unique language for both phases does
not adequately fit all the required purposes [Hoare et al. 1990]. It combines the Z language for
requirements specification and Larch language for design specifications. The Z language is
chosen for its simpler semantics and its logical and abstract specifications. The Larch language is
adopted by the authors because of its peculiar structure divided in LSL (Larch Shared Language)
and LIL (Larch Interface Language) sections. A relationship is defined between design phases.
Requirements and design specifications can be formally analyzed by using available tools for Z
and Larch.

11.5.5.3 UML-B

Motivated by the need to enhance the use of formal methods in the industry, a team of
researchers at the Southampton University developed the UML-B [Snook et al. 2004] [Snook &
Butler 2008] to provide an environment for a refinement-based object-oriented behavioral
modeling of complex systems. While UML is highly communicable and universal for object-
oriented modeling, Event-B is known for its preciseness and amenability to rigorous formal
reasoning with system models. Essentially, UML-B is a UML profile that provides visual
concrete notations for B's modeling constructs to enhance the communication of systems and
verification techniques among industrial partners. The semantics of the language is given in B to
take full benefits of its existing tools for formal verifications. However, the language cannot be
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extended to include simulation and/or prototyping since the underlying language, Event-B has no
time base, an essential requirement of simulation and prototyping protocols.

11.5.5.4 ModelicaML

ModelicaML [Shamai et al. 2009]; [Pop et al. 2007] presents yet another innovative way to
provide support for the specification, analysis and simulation of systems' functional requirements,
structure and dynamic behavior within one platform. This was done by combining the
UML/SysML and Modelica [Modelica 2012]. Modelica is an equation-based object-oriented
modeling language (with sound formal semantics) to specify and simulate the dynamic behaviors
of discrete- and continuous-time systems. The SysML on the other hand is a UML profile used
for the specification, analysis, design, and verification of systems. [OMG 2012]. ModelicaML
extends the profile with additional constructs that accommodate the specific artifacts of
Modelica. The unification takes advantage of the communicability of the SysML to communicate
Modelica models more easily with domain experts. However, [Shamai et al. 2009] also pointed
out that ModelicaML takes benefit of the descriptive power of the graphical constructs of SysML
at the expense of the loosely defined semantics inherited from the UML while they intend to
leverage this drawback with the precise semantics of Modelica. This still brings us back to the
not-yet-answered question: to what extent is the mapping from UML/SysML to Modelica when
the source language is devoid of a generally accepted formal semantics? The application is also
limited to static-structured systems.

I1.5.5.5 uSZ

[Biissow et al. 1998] propose the uSZ language which results from the combination of several
languages. nSZ is a language of specification and checking of reactive systems based on the
combination of Z [Spivey 1992], flow diagrams and Statecharts [Harel 1998]. Statecharts is one
of the most popular formalisms of specification of the reactive systems because of the availability
of tools like STATEMATE [Harel et al.1990] supporting its specifications. The language uses Z
notation to specify the functional part of the system whereas the Statecharts and the flow
diagrams are used respectively to specify its dynamic and structural aspects. Several works were
proposed for the formalization of the semantics of the statecharts which constitutes the heart of
the notation uSZ. A formalization of uSZ by using a metamodel and Object-Z as metalanguage
has been proposed by Geisler [Geisler et al. 2000]. This work shows that the Object-Z language
can be used in the field of modeling and simulation.

11.5.5.6 MontiArcAutomaton

The MontiArcAutomaton Modeling Framework [Look et al.2013] [Ringert et al. 2013]integrates
six independently developed modeling languages to model robotics applications: a component &
connector architecture description language called MontiArc that uses the notion of components
and connections between components via typed ports, automata that models the behavior of
atomic components, I/O tables for specifying input and output relations, class diagrams for
modeling the system’s static structure, OCL for constraints specification, and a Java DSL for
specifying guards on transitions. The framework is designed for the complete modeling of
structural and behavioral characteristics of cyber-physical systems using the integrated languages.
The goals of the framework include analysis, platform independent development, problem
specific modeling, support for reuse and code generation to different target platforms like Java

72



and Phyton. The analysis of MontiArcAumaton models is done by generating code to Mona
System [Henriksen et al. 1996] which have simulation and formal analysis (safety and
equivalence checking) capabilities based on monadic second-order logic. All the languages used
are implemented as languages in form of context-free grammars. The integration of the languages
is done by aggregating the architecture description language and UML/P class diagrams,
extending MonticArc by inheritance and embedding the Java DSL and the OCL language in the
automata language using the Eclipse-based compositional Framework Monticore [Krahn et al.
2010] which offers embedding, aggregation, and inheritance integration mechanisms of
heterogeneous languages. The framework used supports only the integration of textual languages.

Ultimately, most efforts towards unifying modeling constructs have yielded some highly
communicable front-ends for some abstract and not-quite-friendly but precise and formally sound
modeling formalisms. This has helped to make the benefits of these precise languages available
to a larger audience. However, they are not immunized against the threat posed by the imprecise
semantics of the graphical constructs. They also, in most cases, pay little attention to the
verification of the correctness and completeness of specified models with respect to the
language's syntax. Ensuring the quality of a system specification starts from making sure the
model itself is a faithful instance of the language. It is when this is achieved that the
dependability attributes of the specified system can be effectively investigated.

I1.6 Conclusion

We presented in this chapter, the field of modeling and simulation in general and DEVS-based
modeling and simulation framework in particular. DEVS has been shown to be a common
denominator for modeling and simulation of discrete systems [Vangheluwe 2004]. We presented
the existing DEVS implementations and discussed problems of communicability of their models
and collaboration between experts. We pointed out that most DEVS implementations do not
provide integrated means of verification and validation. Verification is generally performed
during simulation execution which cannot cover all the scenarios and can leave some design
errors undetected. There is a need to complement simulation with additional verification and
validation techniques such as model checking and theorem proving. To make the formal analysis
possible, we integrate DEVS and other languages, such as Object-Z, to allow the modeling of
complementary views of the system in the modeling phase and make the models adaptable to
different analysis methodologies at the verification and validation stage.

In defining the semantics formally, we realize that one formal method might not be suitable to
fully capture all aspects of a system. While most of the already published works try to translate
DEVS into one formal method (thereby focusing on only one aspect of a system), we make use of
several formal methods to capture these different aspects depending on the power of the method
chosen. Most of the works described above use a subset of DEVS by creating assumptions which
could limit their implementation. However, we create a refinement of DEVS. We combine
software engineering and system theoretic modeling views into our formalism. We also relax the
assumption of finite state space. To solve the infinite state space problem, we create partitions of
the infinite state space into classes of equivalence states (which we call configurations) using a
finite set of variables.
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The objective of HiLLS is not to avoid heterogeneity but integrate them in coherent manner at
different levels. The differences of HiLLS with multiformalism approaches and integrated
languages presented are that it integrates:

A graphical concrete syntax that ease the modeling process and communicability of
models. The graphical syntax uses similar notations to UML concrete syntax for classes
and relationships. Some of the frameworks have graphical notation but the set of
graphical element is too large (e.g. Ptolemy II).
A formal object-oriented specification language based on predicate logic namely Object-
Z. For accessibility of formal methods to non-expert users, we use Object-Z because it is
based on the widely known Z notation and because predicate logic is accessible to
computer scientists more than other logics.
System theoretic concepts for formal component-based modeling that guarantees closure
under coupling property. This is not proven for many other approaches.
Different semantic domains for different purposes. The models for simulation and formal
analysis are extracted from the HiLLS specifications.

o Simulation execution is parallel. HiLLS can benefit from DEVS-PADS

implementations because of the mapping to DEVS.

o Model checking and theorem proving are possible
A dynamic structure modeling approach that ease to modeling of such systems
graphically and make them amenable to different kind of analysis techniques.
Enactment semantics for real-time execution of systems.

The next chapter presents HiLLS and how it integrates concepts from different languages and
formalisms.
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III. The High Level Language for Systems
Specification
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II1.1 Introduction

In general, the definition of a model specification language consists of syntax, semantics
domain(s), syntax mapping and semantic mapping(s). The syntax is further divided into two:
abstract syntax and concrete syntaxes. While the abstract syntax defines the set of well-formed
models that can be specified with the language, concrete syntax describes the concrete notations
we have chosen to represent the entities and relationships defined in the abstract syntax. The
semantics of the language is the precise and detailed meanings of its concrete modeling
constructs while semantic domain is the context from which such meanings are derived.
Following the same paradigm of language definition, we describe the components of HiLLS in
the tuple:

HILLS = (A, C, Mac,{S;3}, {Mys,}) such that:

A is the abstract syntax

- C s the concrete syntax

- My syntactic mapping between the abstract and concrete syntaxes

- Sis the family of semantic domains of the language, i.e. S = {Simulation, Logic, Enactment}
For every semantic domain, s in S, there is a mapping function, my, of the abstract syntax A to s.

Most language definitions provide one semantic domain, we define a family of semantic domains
and semantic mappings for HiLLS to capture the multiple use cases mentioned earlier. Figure 18
illustrates the relationships between the components. We discuss the various components in
details in the subsequent sections.

Concrete

Syntax Abstract Syntax

(Graphical) (DEVS+02)

0JO0R010

Figure 20. HIiLLS definition elements
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This chapter presents HILLS syntaxes and set-theoretic semantics. It discusses how the abstract
syntax of the language is built using the abstract syntaxes of constituent languages.

I11.2 Informal Presentation of HiLLS

In this section we present a modeling example to introduce HiLLS in system modeling. We
consider the modeling of simple traffic lights. HiLLS allow system modeling as extended classes
with additional compartment for the discrete event behavior and two boxes at the left and the
right containing input and output ports declarations respectively. The notation used for a system
class is similar to that of UML class. HiLLS uses the concepts of inheritance and composition
between systems with similar semantics to inheritance and composition in UML.

TrafficLight[d:R, t:R, :R ]

b b

control: {0,1] signal:Color

[

1
l

MainTL SubordinateTL

l subordinate *

() [ 1

SynchronizedTL OppositeTL

] ]

| |
| |

Figure 21. Traffic Light and subordinate

Traffic lights allow controlling circulation at crossroads. In Figure 21, we have an abstract traffic
light class TrafficLight[d:R,t: R, k: R]with three parameters that define the durations of its
configurations and an output port Signal for sending the color of the light. We have a main traffic
light MainTL and a subordinate traffic light SubordinateTL classes that inherit form
TrafficLight[d: R, t: R, k: R]. The SubordinateTL has two subclasses: SynchronizedTL and
OppositeTL.

The various configurations (corresponding to the states) of the traffic light model are: move,
brake and stop. These configurations are finite i.e., their times advances (duration) are finite (they
are represented as rectangle with compartments). The duration of move, brake and stop are
respectively determined by the value d, # and k. The behaviour of MainTL is described in Figure
22. MainTL is continuously and successively making internal transition from move to brake,
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from brake to stop and from stop to move by sending respectively Yellow, Red and Green as
output on port Signal. Note that the internal transitions are represented with labelled continuous
lines between the configurations. The label represents here the output.

MainTL

>

Signal:Color|

move brake stop

signall=Yellow
>

e

Sighall=Green

Figure 22. Traffic Light
The output of the traffic light informs the environment (road users) with the colors of the light

displayed as outputs.

The SynchronizedTL and OppositeTL have an input port of type color. It has the following
configurations: move, toBrake, brake, toStop, stop and toMove. move, brake, and stop are infinite
configurations 1i.e., their time advances are infinite (note that they are also represented as
rectangle with compartments like finite configurations but with additional vertical line in the
right). fomove, tobrake and tostop are transient configurations i.e., their time advances are equal
to zero (note that there are represented as circle). The Synchronized TL always goes to the
configuration corresponding to the color of the received input. Precisely, it makes external
transition to fomove, tobrake and tostop for the reception of Green, Yellow and Red respectively
before making instantaneous internal transition to move, brake, and stop. The behavior of the
SynchronizedTL is presented in Figure 23.
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SynchronizedTL

>

input:Color

>

Signal:Color

/e
i) _

| % |

|

|

input?Red | v

input?Yellow

move —> brake stop
SignallYello Signal!Red

SignallGreen @ input?Green

\

Figure 23. Behavior of SynchronizedTL

The behavior of the OppositeTL is presented in Figure 24.

OppositeTL

>

input:Color

>

Signal:Color

SignallGreen @ input?Red

(
b

input?Green | v
1

move brake stop
»

> SignallRed

SignallYellow

Figure 24. Behavior of OppositeTL
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Traffic light system at a crossroad is composed of a MainTL, a SyncronizedTL and two
OppositeTL as shown in Figure 25. The predicates shown in the schema box inside the system
class specify the couplings between the main traffic light and the subordinate traffic lights. For
example the coupling predicate synchronized.input == main.signal means that there an internal
coupling between the output port signal of main and the input port input of synchronized. Note
that we did not show here how the outputs of the subordinate traffic lights are used. To complete
the specific additional components like Display units (without output port) can be connected to
the subordinate TLs to receive and display their outputs.

CrossroadControlTL

main MainTL

synchronized.input == main.signa :| )

oppositel.input==main.signal

soppositel.input==main.signal

synchronized.input = main.signal;

opposite2

oppositel.input=main.signal;

OppOSiteTL soppositel.input=main.signal;

SynchronizedTL

J ) workin synchronized
| working |

true P' o b

oppositel

Figure 25. Crossroad control traffic lights

More details will be given on abstract and concrete syntaxes of HiLLS in next sections.

IT1.3 HiLLS Abstract Syntax

A specification of a system in system theory includes the specification of its structure and
behavior. For system structure specification, important concepts are decomposition and
composition. Decomposition defines how a system can be broken down into components systems
[Zeigler et al. 2000]. Composition is how component systems may be coupled together to form a
larger system. The closure under coupling property of the DEVS formalism guarantees that a
composition of system is also a system. In order to decompose a system, one needs to divide a
system into meaningful parts that can represent subcomponents in the system. Each part of the
system must be characterized by well-defined attributes for the definition of its internal state and
interfaces. Attributes domains can be defined by concepts and how they can be manipulated.
System theory offers means to define systems in a hierarchical and modular manner but lacks
some constructs to define new concepts (other than the concept of model and its transition
functions) like the concepts of classes and their attributes. Object-Oriented modeling is known to
be an excellent paradigm to define concepts and their relations and how these concepts can be
manipulated. These concepts form the basis for the definition of objects internal state and
behavior. While system theory focuses on system structure (the inner constitution of a system)
and behavior (its outer manifestation), software engineering focuses on the static, dynamic, and
functional aspects of a system. The static view is the time-independent view of a system. The
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static aspects remain the same throughout the life cycle of the system. In particular, the static
model describes the components of the system, the attributes (simple and complex), relationships
between components, and the input and output ports of each components. The dynamic view
captures the changes that the system undergoes with time and in response to events (internal or
external). Dynamic modeling provides a view of a system in which control and sequencing are
considered, either within a component (by means of state machines) or between components (by
analysis of component interactions). The functional view is a high-level view of how several
interactions work together to implement a system concern. It captures the functionality of the
system — what the system can do. We believe that system theory paradigms (DEVS, RT-DEVS,
DSDEVS) and software engineering paradigms (object orientation, formal methods) can
complement each other to design and analyze complex systems. We integrate object orientation
in DEVS-based system theory by using Object-Z [Smith 1992].

Object-Z is a conservative object oriented extension of the Z formal notation. The main concept
in Object-Z is that of the class schema which captures the object-oriented notion of a class by
encapsulating a single state schema with all the operation schemas which may affect its variables.
We choose object-Z over other object oriented languages like UML for many reasons. The first
reason is that Object-Z has a formal syntax and semantics and reasoning techniques developed
for it contrary to UML which lacks precise and formal semantics. To avoid the impreciseness of
UML, OCL (Object Constraints Language) [OMG 2010] is used to enforce the static semantics of
UML models. OCL is not sufficient to express complex behavioral constraints needed for
operations [Rusu and Lucanu 2011]. The second reason is that Object-Z is more expressive than
UML class diagrams; this makes it possible to encapsulate the static semantics of model elements
with the domain model of a system in terms of invariants defined in the corresponding Object-Z
classes. Object-Z offers other facilities to express properties of a class temporal history similar to
temporal logic formulas. So Object-Z can play the role of UML, OCL and linear temporal logic
in a formal integrated manner.

The objective of this section is the detailed description of the HILLS metamodel. We show how
the HiLLS abstract syntax is defined from the abstract syntaxes (metamodels) of the selected
languages (or fragments of languages). The first metamodel is concerned by pure object oriented
concepts borrowed from EMOF [OMG 2015]. The concepts of this metamodel will play the role
of interfaces between concepts from system theory and predicate logic. The second metamodel
presents the abstract syntax of object-Z specification concepts. This part of the language brings
possibilities to specify data and data transformations by using logical expressions and predicates.
The third metamodel describes the system theory concepts of the language, i.e. concepts that are
used to define the internal behavior of a system. The complete metamodel is finally presented; it
shows how the different parts are integrated to form a precise and coherent whole. Formal
transformation between HiLLS and the different semantic domains and selected languages will
use this metamodel.

HiLLS combines Object-Z concepts with system theory concepts. Since Object-Z abstract syntax
is defined as BNF grammar, our first problem is to translate this grammar to a formal Object-Z
metamodel by adopting the metamodeling architecture of EMF/Ecore and extend it with system
theory concepts.

I11.3.1 Object-Z concepts Metamodel
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The Object-Z expressions and predicates are used for the specification of data and operation
bodies. It contributes also to the definition of the static part of a system (Figure 26).
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Figure 26. Object-Z Metamodel
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Class HClass describes the Object-Z class which, by virtue of its inheriting the class HClassifier,
may consist of a state schema (class StateSchema) that declares the state variables (class
Declaration) and possible constraints on them, a specification of the initial state (class /nif) which
describes the object's starting state, operations (class Operation) that serves as the interfaces to
communicate with the object and which may manipulate the state variables by means of
predicates (class Predicate), local definitions (class AxiomaticSchema) to specify constants,
global variables.

In addition to the amenability of Object-Z to formal analysis, the level of refinement provided by
this segment of the meta-model helps to precisely and completely model systems' behavior in a
generic form that can be refined to executable program code for the enactment of systems.

I11.3.2 System Theory concepts from DEVS

HiLLS describes a complex system as an assembly of components (having autonomous
behaviors) interacting with one another to produce the overall behaviors of the system. Thus, the
overall behavior of the system is dependent on the characteristics of individual components and
the way they influence one another. A component, being a system in itself may also contains its
own components (sub-components); the smallest indivisible system, one without components is
called the unitary system. This hierarchy of system-component composition typifies a tree
structure with a system at the root and its components as direct children of the root node. By a
depth-first traversal of the hierarchy tree, the compositions of individual components can be
discovered recursively with all siblings of any node being components of their parent node and
unitary systems constituting the leaves of the tree.

A system may have one input interface and/or one output interface through which it interacts
with the environment by sending and/or receiving events. In HiLLS, we refer to all services and
messages exchanged between a system and its environment as events. In either case, an interface
contains one or more variable(s) representing the por#(s) through which different kinds of events
are received (for input interface) or sent out (for output interface). The domain of a port is a
specification of the kind of events it may receive or produce; this is modeled as the Object-Z
classifier in the metamodel to accommodate all primitives and user-defined classes of events.
Thus, by implication, the domain of a port defines the set of events that may be received or
provided through it. In HiLLS, system attributes comprise the state variables, ports and
parameters. While variables and ports may take different values from their respective domains at
different instants, parameters are defined with constant values that persist throughout the system's
life cycle.

In HIiLLS, a system serves as a logical boundary for all its components. Hence, peer components
may interact and collaborate directly with each other but a component can interact with external
systems only through the input and output ports of the parent system. Based on these
requirements, we classify system couplings into three categories: Internal Coupling, Input
Coupling and Output Coupling. In all cases, the coupling predicate facilitates the exchange of
events between two ports. The concepts of Internal Coupling, Input Coupling and Output
Coupling are adopted from the DEVS' External Input Coupling, Input Coupling and External
Output Coupling (Zeigler, Prachofer & Kim 2000) respectively. While Internal Coupling is
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established between two peer components of same system, nput Coupling is defined between the
input of a system and that of one of its components to enable the component receive some
external events and Output Coupling, by connecting the output of a component to that of its
parent allows it (the component) to send events to some external system. In any case, the port
producing the event (the influencer) is referred to as the sender while that which is influenced is
called the receiver.

The discrete event part of the language is formalized by the following metamodel (Figure 27).
This metamodel defines the concept of state-machine, configuration, event and transitions.

By associating certain behaviors and possibly some activities (set of actions that do not change
the state of a system) to some unique sets of constraints on the system attributes, HiLLS allows
the user to define configurations for the different circumstances of the system. Hence, the
system's dynamics is described by the sequence of transitions between the configurations.

A discrete events model of a system can have an unimaginable size of state space. The size of the
state space can even become infinite leading to a problem of state explosion. In order to represent
a system with a large number of states, we use a finite number of state variables (after abstracting
the key variables that can give a reasonable description) to partition the state space into a finite
number of Configurations. A Configuration is a partition or subdivision of the state space into
non-overlapping and nonempty subsets of states. As such, a configuration has the following
properties:

o every state in the state space belongs to a particular Configuration;,

o the sets of Configurations are mutually disjoint;
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Figure 27. Discrete Event (part) Metamodel

The metamodel is accompagnied by the following constraints:
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context Port
inv owner_Constraint ('A port is used for either input or cutput and not both'):
inOwner->isEmpty () xor owtOwner->isEmpty()
def:
owner:System = if (inOwner-»>isEmpty()) then outOwner else inOwner endif

context Coupling
inv No_feedback coupling ('Coupling ports of same system is illegal'):
sender.owner <> receiver.owner

context InputCoupling
inv EIC_Constraints ('sender = input of container, receiver = cutput of a component’):
sender.owner.components. target-» includes(receiver.owner) and
sender.owner.inputs -» includes(sender) and --sender is an input port of its owner
receiver.owner.inputs -» includes(receiver) --receiver is an input port of its owner

context OutputCoupling
inv EOC_Constraints ('sender = input of a compenent, receiver = cutput of container'):
receiver.owner.components.target->includes(sender.owner) and
sender.owner.outputs -> includes(sender) and --sender is an cutput port of its owner
receiver.owner.outputs -» includes(receiver)--receiver is an cutput port of its owner

context InternalCoupling
inv IC_Constraints ('sender = output of a compenent, receiver = input of a component'):
sender.owner.outputs -» includes(sender) and
receiver.owner.inputs -» includes(receiver)
inv peer_Constraint ('influencer and influencee must be components of same system'):
sender.owner.hContainer = receiver.owner.hContainer
Figure 28. OCL Constraints of Discrete Event Metamodel

The states in a Configuration are “alike” (as a result of the configuration on state variables and
similar transitions to states belonging to the same Configuration); thus they are related by an
equivalence relation and a Configuration is an equivalence class of states; and a Configuration is
defined by Properties and a Property is a cross product of SubSets of the domains of the state
variables. The concept of configuration is introduced to facilitate the graphical representation of
the discrete event behavior of models. The configurations are probably infinite sets of state; we
use operations to determine the target state in a transition between configurations. For example;
supposing we have a state space defined by two integer variable S = {(x,Z), (¥, Z)} then we may
have configurations like c; = (x <0Ay <0),c; =(x <0Ay>0),c3=(x>0Ay <0)and
¢, = (x> 0Ay>0), cach defining a unique subset of the state space of interest to the modeler
such that the union of all configurations must yield S.

A configuration can be unitary or composite. A composite configuration is composed of other
configurations. Each Configuration has a TimeAdvance function that maps each member state to
a real time advance. The lifetime ore time advance defines the maximum sojourn time of the
system in a configuration before an internal transition event takes place. This value is generated
by the lifetime function of the configuration which is a function of some system attributes. Based
on its sojourn time, we classify a configuration into one of three categories: a tramsient
configuration lives for a duration of zero time unit and most often has an instantaneous (or no)
task associated to it. In contrast, a passive configuration is an abstraction of a circumstance in
which a system remains indefinitely until an external influence overcomes its inertia. It is
assigned an infinite lifetime. The third category is the finite configuration with a sojourn time
greater than zero and less than positive infinity; we use this as an abstraction of states that reign
for a limited period or to schedule a limited delay. HIiLLS also allows the modeler to specify
activities in configurations. An activity is a set of operations that do not result into a change of
state which may be performed by the system during its sojourn in a configuration.
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The structural and behavioral dynamics of a HiLLS' state machine is modeled by the successive
transitions between its configurations. A transition is accompanied by a sequence of
computations for the reconfiguration of state variables and possibly, the generation of output
events. The computations may also involve the derivation of output events in some cases. A
configuration transition may occur as a self-scheduled event, or an impulse-driven event or a
combination of both. From the moment a non-passive (transient or finite) configuration is
assumed, an internal transition event is scheduled to occur at the end of its (the configuration's)
life time provided no external influence is received before this time. A non-transient (finite or
passive) configuration undergoes an external tramsition if an event (impulse) is received at an
input port before the end of its reign. The third category, confluent transition, which is peculiar to
non-passive configurations is a combination of the first two - it occurs when an event is received
just at the end of the tenure of the current configuration; thus, the received event is treated
instantaneously followed by a transition to either the scheduled target configuration or another
depending on the result(s) of processing the received event.

Transitions take place from a source to a target configuration. In the case where a transition has
two or more candidate target Configurations, a sequence of pre-conditions is specified to help the
system decide on the path to the appropriate target. Conditions are defined by predicates on
system attributes; since predicates evaluate to true or false, a condition would always generate
two paths (one for each of the truth values), each leading to a candidate target configuration or
another condition.

I11.3.3 Object Orientation Concepts from EMOF

This metamodel defines the traditional concepts of class, data types and attributes. The
metamodel of the object oriented part of HILLS is presented in Figure 29. It is composed of the
following elements:

e NamedElement: It is the base class that describes any entity or relationship in a
metamodel that has a unique name. Therefore, every metamodel element that could be
identified by a name inherits a name attribute from this class.

o Package: A package is a classifier that is a logical collection of classifiers.

e Class: It describes a class which models an independent entity. A class may have some
attributes (eAttributes) and/or references (eReferences) describing its structural features
and it may inherit from some other classes by referring to them as superTypes.

e Attribute: It describes attributes which model the named data contained in a class. Every
attribute has a type that is defined by a data type. The minimum and maximum numbers
of possible occurrences of an attribute in a class are defined by lowerBound and
upperBound respectively; this is known as the cardinality of the attribute.

e Operation: A class has 0 or more operations that define its behaviour. An operation has 0
or more parameters classified as input and output.

e DataType: It describes the named types of data held by attributes. These may be
primitive types like integer, boolean, etc.

e Enum: It describes an Enumerator, simply called Enum which is a special kind of data
type which explicitly enumerates a finite list of values, called literals that an attribute may
possibly take.
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e EnumlLiteral: It models a named literal that is specified in an Enum. In addition to its
name, a literal has a unique integer value associated to it which signifies its position in the
list of literals defined by the containing Enum.

e Reference: It describes references which are named associations between classes in a
metamodel. Thus, a reference of a model is an association from the class to another class
(identified by eReferenceType). Like attributes, a reference also has a cardinality that is
described by its lowerBound and upperBound. A reference with containement is a
stronger type of association which implies ownership of the target of the association by
the class from which it originates. Finally, a reference’s Opposite is a corresponding
reference that is navigable in the opposite direction.
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Figure 29. HiLLS Object Oriented part metamodel

Following the recommendation of the metamodel interfacing technique, we introduce an excerpt
(Figure 29) from the Ecore metamodel [Budinsky et al. 2003] to be used as the interface between
the DEVS/RT-DEVS and the Object-Z metamodels. The motivation for our choice of the
interface segment is twofold: 1) there is significant overlap between the concepts it describes and
those of the Object-Z that would enable them merge reasonably with; the DEVS/RT-DEVS
metamodel can as well extend the object concept to describe systems if we consider a system as
an object with autonomous behavior and I/O ports through which it may influence or be
influenced by its environment; 2) the relationships between the classes provide a renowned
pattern that could add more clarity to the overall metamodel.

I11.3.4 HiLLS Complete Metamodel

Using the meta-model merge technique [Emerson and Sztipanovits 2006], the class HClassifier
describes constructs that are common to the system-theoretic and software engineering parts of
the HiLLS syntax while each of the two adds its peculiarities through meta-model extension
[Emerson and Sztipanovits 2006]. HClassifier describes an object having state attributes,
constants, operations as the interface for interacting with its environment and history.
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HSystem extends HClassifier to describe a system that in addition to possessing the mentioned
properties also has ports through which it may influence or be influenced by its environment,
components and the processes that define its autonomous behavior.

In addition to facilitating logical reasoning, some Object-Z concepts such as predicate and
expression are reused to precise the necessary details of certain abstract system-theoretic
concepts, thanks to the meta-model refinement technique [Emerson and Sztipanovits 2006] [Khan
and Risoldi 2012]. For example, Predicate in Object-Z is reused to refine the properties,
activities and sojourn Time of configurations in the system-theoretic part. It also gives the precise
details of the computations associated with configuration transitions. Similarly, Expression and
Declaration provide the details of events and ports respectively. By virtue of this integration and
the type system inherent in the details, formal methods can be used to investigate the logical
correctness and consistencies of models.

The integrated metamodel is presented in Figure 30. By applying the metamodel merge
technique, the pairs of classes - of the form (Interface, Object-Z) - (Attribute, Declaration),
(Operation, Operation) and (OZClass, Class) fuse to form HDeclaration, HOperation and HClass
respectively. Though the metamodel merge technique recommends that the resulting class from
merging two or more classes should bear all attributes and relations of the merged classes, we
considered it necessary to use our discretion to remove duplicate properties by retaining the ones
at such levels of refinements to allow for the extraction of all merging participants. This may
require further research to enhance the metamodel merge technique.

The DEVS metamodel integrates with the interface through the inheritance of HClass by
HSystem; we can as well consider this to be integration by metamodel extenxion technique. Also
to avoid duplicate of concepts, the HClass' state replaces the stateSpace of HSystem since the
former provides a better refinement to satisfy all participating formalisms.

For the moment, we are still investigating the consistency issues surrounding having inheritance
between HSystems or between HClass and HSystem. Therefore, we employ the metamodel
restriction technique to prevent such specification.

The class refinement technique is used extensively to provide detailed descriptions of abstractly
specified concepts in the DEVS metamodel through containment relationships between them and
appropriate concepts in the Object-Z metamodel. Particulartly, class refinement underscores the
following Class-containment reference pairs: (Port, portDecl), (ConfigurationTransition,
computations), (Event, value), (Configuration, timeAdvance),(Configuration, activities) and
(Configuration, timelnterval).
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Figure 30. Complete Metamodel integrating the different parts

Some OCL constraints associated to complete metamodel are given in Figure 31.
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Figure 31. OCL constraints

Communications between components of a complex system are done via the ports in the input
and output interfaces. System specification languages often assume static (permanent) couplings
of these components. However, in reality, many systems are dynamic structure systems.

A dynamic-structured system is one whose set of components and/or the topology of their
connections are time-varying (change dynamically). Static-structured systems on the other hand
are characterized by a fixed number of interacting components and permanent links between the
components that influence one another. Examples of such dynamic couplings exist in automatic
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switching systems, relay systems, gear transmission systems and computing networks in which
sessions (connections) are automatically established and destroyed between different devices, the
ecosystem in which the number of components (plants and animals) changes as a result of
growth, reproduction and death. Intuitively, we know that the pattern of interactions between the
components would not remain the same. On the other hand, an automobile gear transmission
system is one in which the set of components may be considered fixed but the linkages between
them changes following some rules. Another situation where structural dynamics can be very
useful is the modeling of redundancy in system design to ensure uninterrupted operations. In this
case, an isolated component may be automatically loaded into operation in the event of the failure
of the active component.

In HiLLS, structural dynamics is realized in configurations with coupling predicates, predicates
dedicated to specifying the instantaneous relationships between two ports of different systems in
an assembly.

The difference between our work and existing approaches presented in section I1.2.5 for the
modeling of dynamic structure systems is that we described ports as some special state variables
declared in the interfaces for exchanging events with the environment. In addition to the
instantaneous variations in the events held in a port, the source and/or destination of such event
may also change with time; this concept practically translates into structural changes in the
system. Thus, a coupling predicate (in a configuration) specifically defines a relationship between
two ports, each belonging to different systems. Hence, by specifying the couplings between the
components of a system in its configurations, we are able to manage its structural dynamics
through transitions between the configurations.

Similar approaches exist in the literature that addressed how to integrate heterogeneous models
and how to analyse them. Vallecillo [Vallecilo 2010] proposed a system modeling approach that
uses metamodel integration techniques in the context of the RM-ODP [Linington et al. 2011].
The approach is to integrate metamodels of languages of different views of a system into a global
metamodel having two-way correspondences with each view metamodel with the primary aim of
maintaining consistencies between models of disparate system's views. One interesting strength
of the approach is that stakeholders can simply deal with system elements in their respective
views as no concrete syntax is provided to the global metamodel because it is considered that it
would be too complex to be handled by users.

Interestingly, the trade-off is between creating many simple models of different views and
creating just one somewhat more complex unified model. Our approach is different in that we
propose to develop the unified metamodel into a complete language that replaces the many
different languages while all views can be automatically generated with the help of MDE thereby
reducing the required manpower - we can see from Figure 30 that the size and complexity of the
unified metamodel is just about that of the largest of the participating metamodels. Moreover, use
of the unified metamodel allows for reuse of some language constructs to enrich the specification
of others.

Another approach to system specification and analysis that is interestingly related to ours has

been proposed by Attioghé [Attioghé 2010]. In order to ensure consistencies between
heterogeneous specifications for multifaceted analysis of complex systems, the author advocates
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the specification of an abstract reference model from which specific models are derived for
different analysis of system properties. The derivation of specific models may be done by
translation of the reference model to the specific facet or by extension of the reference model.
The idea also, is that observations from the results of specific analyses can be fed back in to the
reference and transmitted to all facets. The idea was demonstrated with a case study that uses a
specification in B [Abrial 1996] as a reference model that is checked using the B4free tool
[CLEARSY 2009] and extended to derive a specific facet model for analysis with ProB
[Leuschel and Butler 2008]. While this approach and that presented in this paper share some
common intents, there are some fundamental differences in the methodologies they adopt,
particularly in the area of the source and composition of the formalism for specifying the
reference model. Firstly, the author proposed the specification of abstract mathematical model
using First Order Logic (FOL) or some ad-hoc formalism while we propose to fully define a
language that formally integrates concepts from formalisms to specify a unified model. Secondly,
the case study provided also suggests that the reference model’s usability is restricted to formal
methods while we intend we intend derive equivalent models for formal methods, simulation and
enactment from our unified model. In that way, the integrated formalisms (and techniques)
complement one another not only through feedbacks to the unified model but also through reuse
of constructs for refinement where necessary. Lastly, we have adopted a metamodel-based
approach to formalism integration to considerably raise the level of abstraction of the unified
model - thanks to model transformation techniques - as to bridge the gap between the formal
techniques and domain experts.

[At-Ameur et al. 2004] presented a component Oriented approach to solve the problem of global
requirements validation in the domain of embedded systems especially in avionics. The approach
consists of specifying a central model representing the static structure and global constraints of
the system and a set of views for specific analysis purposes. Each view is specified using a
separate formal language suite for a given aspect of the system (for example timed automata) and
associated tools (e.g., UPPAAL) to verify specific properties of the system. To ensure
consistency, coherence criteria is specified between the different views by using a concept of
institution presented by the authors. For each view, the formal language used is represented by a
suitable institution and the synchronization between them is realized by synchronization relation
between the corresponding institutions on the models and linked to the central model. The case
study presented used UPPAAL and LUSTRE to validate the reconfiguration mechanism of a
command and slaving subsystem, in charge of controlling three aerodynamic surfaces of an
aircraft but it is not very clear how the synchronization is done at the operational level. The
approach gives a sound synchronization technique between the views but the approach is
constrained by required skills in the languages used for these views. The central model defined is
not rich enough to allow the derivation of the models for the specific views.

I11.4 HIiLLS Concrete Syntax

In this section, we present the concrete syntax of HiLLS. The concepts and the relationships
specified in the abstract syntax are drawn in the same style as the abstract syntax with the
graphical notations replacing the corresponding elements. Elements that are represented in
dashed boxes are realized within other graphical elements. HILLS models possess properties like
attributes, functions (or subroutines), and associations. Associations are rendered in HiLLS with
the same notations as in the UML.
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The notation of a HILLS model (Figure 32 b) is similar to that of a UML class in structure and
use with a few additional elements. It has the traditional UML Class compartments for name
(label and template), attributes (state variables and system parameters; note that complex
attributes are formed by composition), and functions. In addition to these, there is a fourth
compartment which houses the state machine (consisting of configurations and transitions
between them) for expressing the system's dynamic behavior. Unlike the conventional way of
writing attribute declarations and function signatures directly in their respective compartments in
the class diagram, HiLLS uses a schema in the attribute compartment to declare all simple state
variables and a second schema in the same compartment to specify all system's parameters.
Similarly, functions are defined in schemas placed in the third compartment. This allows the
modeler to go a step beyond just writing the function signatures; the entire body of the function
can be specified formally in a platform-independent form. The input and output interfaces of the
model are denoted by rectangles attached to the left and right sides respectively of the attribute
(second) compartment with inner circles denoting the ports. A port is labeled with its name and
domain. Figure 32 a shows HiLLS class for which discrete event behaviour is not specified.

The notation for a finite configuration is a box with four compartments for label, properties,
activities, and sub-configurations and a symbol, £, that denotes its life time function (Figure 32 d).
Passive configuration has a concrete symbol similar to that of finite configuration except that the
rectangle has a vertical stripe attached to its right edge as an indication of its infinite life time.
The transient configuration does not share much resemblance with the other two. It is denoted by
a circle with three compartments for its label, properties and activity. Its shape implicitly defines
its zero life time.

For external transitions, we use a dashed arrow emanating from the top or bottom (and away
from the edges) of the source configuration. An infernal transition is a solid arrow drawn
normally to the right side (not the corner/edge of a finite configuration) of the source
configuration while the confluent transition is denoted by a dashed-dotted arrow originating from
the top-right edge of a finite configuration or as a tangent to a transient configuration from the
right. In any case, the arrow goes into the left corner (inflow) of a condition diamond or
terminates as a normal to the left side of the target configuration. The condition diamond is a
diamond shape containing a predicate which specifies a condition that is tested during a transition
event to choose one of two paths to the appropriate target configuration (depending on the truth
value of the condition). A transition arrow may enter the condition diamond through either of its
horizontal corners and emanate from both the top and bottom corners to define two contrasting
paths for the truth values of its predicate. Note that the two arrows emanating from a condition
diamond must take the same form as that entering it. Transition operations are represented by
labels of their respective arrows.
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Figure 32. HiLLS Concrete Syntax

II1.5 Queuing Network example

We present the modeling of a simple queuing network to illustrate some concepts of HiLLS not
shown in the traffic light example. We choose Queuing Network example because it is widely
known and intuitive.

We consider a model of a queuing network (QueueinNetwork) with two unitary components: a
queue and a server. Figure 33 is the specification of the composite HSystem QueueinNetwork.
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Figure 33. Queueing Network

The Queue has a buffer to hold resources that are waiting to be served by the Server. The Queue
has ports Enter (for receiving resources fed via the in port of QueueinNetwork), Control (for
receiving permission from the Server’s Sem port to send a resource), and Exit (for sending a
resource to the Server when it is its turn, this resource is received by the Turn port of the server).
A served resource is sent out of the server through the Done port and it leaves the system through
the out port. The couplings include the input coupling from the input port in of QueueinNetwork
to the input port in of the Queue, the internal coupling from the output port sem of server to the
input port control of queue, the internal coupling from the output port exit of queue to the input
port turn of server, and the output coupling from the output port done of the server to the output
port out of in of QueueinNetwork.

Figure 34 is the Queue Atomic Model. We consider that the queue component has a buffer
(realized by aggregation) to hold Resources to be served by the server. It also keeps the
bufferSize, max (the maximum number of elements that can be stored in the buffer) as state
variables, and a value for Check (integer value used to check if the server is busy when a new
Resource appears on an empty queue). The functions enqueue(), dequeue(), and setCheck() are
called from the state machine to perform some operations. The queue can be in any of three
configurations: Empty, Buffering, and Full; depending on the configuration of the bufferSize. It
has two input ports: Control (to receive signals (1 or 0) from the server when it is/not ready to
serve resources) and in (used to add new Resources to the queue, as long as it is not Full; and an
output port, Exit (to send resources to the server). When in any configuration, and it receives an
input 1 from the Control port (external transition event; represented as Control?1), the server
indicates that it is free to serve Resources. If in Full, a resource is sent through an intermediate
state and dequeued. (Exit!/dequeue(); representing the output through Exif port) and transitions to
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Buffering (internal transition). If in the Empty configuration, since no Resource is in the buffer, it
setCheck(1) (assignment operation). If in the Buffering configuration, it checks the buffer size
(conditional transition, represented by the diamond shape); if it is equal to 1, it transitions to the
Empty configuration after sending a resource through the exit port and dequeuing.
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II1.6 Set-theoretic semantics of HiLLS

A good understanding of the semantics of a language enhances the investigation of the quality
(e.g., completeness, correctness and consistency) of models [Szlenk 2006]. Though the concepts
and their relationships are captured in the abstract syntax, the semantics definition is required to
explain and complement it and serve as a guide for its implementation [Kleppe 2008]. Any model
specification language must come compete with rigid rules that clarify the legal syntactic
representations with clear descriptions of their meanings [Harel & Rumpe 2004]. HiLLS models
are meant to serve multiple use cases in different semantic domains. At present, our focus is on
three broad areas: simulation, formal analysis and enactment. The mathematical semantics
provides a basis for common understanding among all semantic domains by clarifying potential
cases of ambiguities in the abstract syntax that could lead to different interpretations. It also
clarifies the rules and constraints of the syntax.

The mathematical semantics of HiLLS provides a universal, domain-independent precise
description of its abstract syntax. By providing a common point of reference for all concrete
semantic domains and avoiding conflicting model interpretations. It is expected to serve a
number of purposes:

- To add missing details to the syntax by clearly specifying relationship rules and
constraints in unambiguous terms.

- To provide a basis for logical reasoning with models

- To provide a guide for precise understanding of the language's syntax and in the
development of its supporting tools.

The motivation for this mathematical foundation of HiLLS lies in the imperativeness of a precise
mathematical semantics definition and its associated benefits to a modeling language as have
been identified by many research efforts in the literature. Without a precisely defined semantics,
a language's syntax, no matter how well defined, could suffer a myriad of conflicting
interpretations thereby making it very difficult (if not impossible) to accurately check model
qualities. The proper handling of formal mathematics is indispensable for developing automated
analysis tools for a modeling language. Transformations of a model into different semantic
domains as well as the use of formal specification techniques in industrial applications require a
deep understanding of the underlying mathematics [Varro & Pataricza 2003]. The UML, in spite
of its proven success in the field of software engineering has been identified by many research
works [Diskin 2003; Szlenk 2006; Kleppe 2008] as one important language whose potentials
have not been fully exploited due to the non-existence of formal semantics in its specifications.
[Diskin 2003] described the various manifestations of the gap created by this deficiency as "lack-
of-semantic syndrome". Many tentative to provide formal semantics to UML used standard
mathematics to define what is called “semantic model” [Lano and Bicarregui 1999].

As a meta-language for defining the language concepts, we use basic mathematical notations. The
advantage of this approach lies in the versatility and universality of mathematical notations. The
language of set theory underpins several formalisms [Fishwick 2007]. Thus, we use handy and
intuitive mathematical notations based on elementary set theory to explain the HiLLS metamodel.
A good knowledge of elementary set theory, relations and simple logics would help the reader
understand the expressions used. We consider this semantics as an independent axiomatic
semantics of HILLS.
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II1.6.1 Formalization

We propose here a mathematical basis for HILLS to present the key concepts of the language. A
HILLS model can be composed of other models (0 or many). We distinguish two types of
models: the unitary model which has no sub-components and composites models which are
aggregations of unitary or composite models. The semantic model describes structure and
behavior. Structural aspects include attributes and relations between them; the structural part
defines the data space of a model. For the definition of the data space, primitive data type
(integer, Boolean, strings, reals) and user defined data types (HiLLS classes) are used. The
behavior is defined by the transition relation. The behavioral part defines the temporal ordering of
the steps of the system depending on system’s configurations and received events.

We define the following sets and concepts:
TypeName is the set of type names.
Universe is the universe of values.

We assume also that some specific values are element of Universe. —oo € Universe, +o €
Universe, true € Universe, false € Universe.

Each type has an associated domain of values. Domains of types are defined by the following
function

dom: TypeName — 2U™Verse This function satisfy the following property
vVt € TypeName,dom(t) # Q.

We assume that Integer, Real, Real® , String, Boolean € TypeName

dom(Integer) = Z, dom(Real) = R, dom(Real*) = R U {—o0, 40}, dom(String) = char,
dom(Boolean) = {true, false}

Each of these types is associated with its basic operations. For example, Integer is associated
with the basic arithmetic operators (+, -,X,+) and Boolean is associated with the logical
connectives. These basic are rather standard, we assume their properties in standard mathematics.
The formal semantics of predicates, expressions and related logic concepts are defined for
Object-Z; we will not focus on this here.

VarlD is the set of variable identifiers.
IReference is the set of input ports references
OReference is the set of output ports references.
ModelReference is the set of model references
Conf 1D is the set of configurations identifiers
ClassName is the set of all possible class names
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OpName is the set of all possible operation names

Object is the universe of objects

Objectld is the set of object identifiers

IT1.5.1.1 Variables

A variable is of the form var =< identifier, domain, initValue, value > where:

- identifier € VarlD, identify uniquely the variable in the scope

- domain is the set of possible values of the variable. 3 t € TypeName such that domain <
dom(t). The following function associates a type to each variable identifier type: VarID —
TypeName

- initValue € domain is the initial value provided at initialization (if not, the initial value will
be the default one of the domain)

- value € domain is the current value of the variable

II1.5.1.2Variable assignment

A variable assignment is a function that assigns to each variable a value in the domain of that
variable v: VarID » dom(Type(v)) (or v:VarID - v.domain)

A variable domain can be defined by primitive data types such as: Boolean, integer, double,
Strings etc. and user defined HILLS classes.

I11.5.1.3 Operations

An operation is of the form op =< input, output, preCondition, postCondition >
input is the list of input parameters (parameters are also variables),

output is the list of output parameters,

preCondition is the set of predicates that must be satisfied to make the operation possible
postCondition is the set of predicates that must be satisfied after the call of the operation.
I11.5.1.4 HIiLLS classes

A HILLS class is defined by C =< Name, VAR, OPS., Init; > where:

Name € ClassName is the name of the class

- VAR is the set of attributes (attributes are variables) of the class C,
OPS. is the set of methods (or operations) of the class C

Init is the set of possible initial states for instance objects.

IT1.5.1.5 Classes and objects
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A class is a collection of objects. This means that we can create objects sharing the same features
(attributes and operations) from a class. Objects are different by their identifiers. Each object has
a state which is defined by actual values of is attributes.

An object is of the form obj =< id, class, as > where

- id € Objectld is the identifier of the object

- class is the class of the object

- as is the set of assignment to variables of class

ClassToObjID: ClassName — 20PJectld iq a function that assigns a set of object identifiers to a
class name.

ClassToObj: ClassName — 2°PJ€¢t s the function that assigns a set of object to a class name
ObjToClass: Object = ClassName assigns an object to a unique class

ObjldToClass: Objectld — ClassName assigns an object identifiers to a class

1dToObj: Objectld — 2°PJ€¢t s the function that assigns a set of object to an object identifier.

An object may have temporary variables i.e. parameters of operations and variables declared only
in operations body. The evaluation of an object state depends on the evaluations of its instance
variables and temporary variables.

I11.5.1.6 Inheritance
A class may inherit for another class. A class may have different subclasses.
parent: Class — IP Class

Let Cl € Class, V¢ € parent(Cl) we have VAR, € VAR, and OPS. € OPS,. A class inherits
the set of attributes and operations of its parent.

I11.5.1.7 Ports

Ports are like external variables, we make here a difference between them because of their
particular role.

A port is of the form port =< reference, domain, modelReference > where reference €
IReference U OReference is the reference (or unique identifier) of the port. If reference €
IReference, the port is called input port. If € OReference , the port is called output port. The
reference attribute defines the role played by the port: receiving or sending events.

Input ports in a model must have different references
Output ports in a model must have different references

From now, we will refer to elements of a tuple by using the dot notation (commonly used in other
languages). For example if p is a port, p. reference gives access to the reference of the port.

111.5.1.8 Events
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An Event is of the form ev =< portReference, domain, value > where portReference €
IReference U OReference is the reference of the port, domain is the type of the event and
value is the value received on the associated port. If portReference € IReference, the event
is called input event (or external event). If portReference € OReference it is called output
event (or internal event).The portReference defines the source or target of an event.

Many events can have the same port reference at the same time. This means that a port can
receive zero or finitely many events at the same time. Events are instantaneous, their occurrence
are known in the operational level.

IB? et OB? are sets of bags of input and output events.

The notation for an external event on input port p is of the form p.x|x € dom(p).
Similarly, notation for an output event on output port q is of the form g*.y|y € dom(q)
I11.5.1.9 Configurations

A configuration is of the form ¢ =< Name, PredPart, Act > where

Name is the name of the configuration,

PredPart is the predicate part of the configuration, and

Act is the sequence of activities to be executed in the configuration.

We pose SC = UC U CC where UC is the set of unitary configurations and CC is the set of
composite configurations (these sets are disjoints UC N CC = Q).

The set of configuration is like a control graph of the system proposed by the modeler.

We note RootConf as the set of root configurations. Root configurations are top level
configurations in the graphical representation of the model. A root configuration can be unitary or
composite.

We introduce the relation € between configurations such that s € s’ if s is sub-configuration of
s'. The relation verifies:

S € RootConf = Vs € SC, (S & s). A root configuration don’t have parent

Vs € SC, (s & s). The relation is not reflexive

Vs,s' € SC,(s © s' = s' & s) the relation is not symmetric

Vs € SC,s & RootConf = 3!s’ € SC | s c s'. Every non root configuration has a parent.

Vs € SC,s & RootConf = 3s’ € RootConf | s c* s'. Reachability of non-root configuration
from a root configuration,

Vs € SC,s ¢* s. Every chain is acyclic
c* and ¢*are respectiveley the reflexive and anti-reflexsive transitive closure of C .
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If two configurations s and s’ are such that s c s’,s" is called the parent of s and s a child of s'.
We define the following functions:

parent: SC — SC s the function which associate to each configuration its parent such that
parent(s) = s' & s c s'.The domain of parent is dom(parent) = SC — RootConf.

parent™: SC — IPSC is the function that associate to each configuration the set of its ascendants
parents (i.e. its parent and the parent of its parent and so on).

parent*(s) = {s' € SC|s c* s'}. Vs € SC,parent(s) S parent™(s).

subConf:SC — IPSC is the function that associate to each configuration its direct sub-
configurations defined by:

Vs € SC subConf(s) = {s' € SC|s' c s}.
If s is an unitary configuration then subConf (s) = @, else subConf (s) # 0.

subConf™*:SC — IPSC , is the function which associates to each configuration its related sub-
configurations (its direct sub-configuration, the sub-configurations of its sub-configurations, and
SO on).

subConf*(s) = {s' € SC|s' c* s}. Vs,subConf (s) S subConf*(s).
I11.5.1.10 Predicates
Terms: t = x|c|f (tq, ..., t)

x is a variable, c is a constant or proposition and f is a function symbol with arguments which
are terms.
f =rl~plp AqlpV qlvxp|3xp.

p and q are predicate terms. The objective here is not to be complete about the notion of
predicates. The abstract syntax gives the complete structure of predicates usable in the language.

C (V) is the set of constraints (predicates) on state variables.

Y:S - PC(V) U C(coupling) is a function which associate to each configuration a set of
constraints (to be taken in conjunctive form Acey () €) on state variables or couplings. The set of
all constraints of a configuration is defined by the function y* as follows:

SESCY (S =y©)n (UsesubConf(S)lp(S)) n (nsEparent*(S)lp(S)) (to be taken in the form
(/\cew(s) C) A (VsesubConf(S) /\ced)(s) C) A (Aseparent*(s) /\C’E‘L/J(S) CI)) i.e. the set all constraints of
S is equal to the intersection of the set of constraints directly associated to S, the union of the sets
of constraints directly associated to its sub-configuration and the set of constraints directly
associated to its parent.

In particular if S is a unitary configuration ¥*(S8) = ¥(S) N (Nseparent(s) Y(S))
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if § is a root configuration " (S) = Y(S) N (Usesubconss) Y (S))

let s € SC, a configuration, we note § = {a € SM| E of Y*(s)}, the set of states satisfying the
constraints of s.

The function P* verifies the following conditions:
Userooconf S = SM A Vs,s' € RootConf,5Ns" =@ fors # s’

VS € CC, Usesubcons(s)S = S A Vs, s’ € subConf(S),5Ns =@ fors s’

The root configurations constitute a partition of the state space. For each composite
configuration, the sub-configurations constitute a partition of the subspace associated to it. These
constraints make it possible to avoid ambiguities.

I11.5.1.11 HiLLS model classes
MCys =< DataStruct, StateMachine, Com > . Com is the possible set of components.

If Com is empty the model class represents a family of unitary models. If Com is non empty the
model class represents a family of composite models i.e. composed of sub-components.

DataStruct =< reference, IB,0B,V,0P,P >

reference € ModelReference is the unique identifier of the model
IB is the input interface (the possibly empty and finite set of input ports)
X = Uperp{(p, v)|v € dom(p)} is the input space with respect to IB
OB is the output interface (the finite possibly empty set of output ports)
Y = Ugeop{(q,v)|v € dom(q)} is the output space with respect to OB
V is the set of state variables;

P is the set of parameters

OP is the set of operations. An operation is a function that modifies the values of one or more
variables. Each operation op possesses a pre-condition (pre op) and a post-condition (pos op).
The pre-condition pre op represents the necessary conditions for the operation to be executed
and the post-condition represents the effects of the operations on state variables.

StateMachine =< ConfID,SC, Tint, Text) Tcong, W, @, Act, T >:

P: S = PC(V) U C(coupling) is the function that associate to each configuration a set of
constraints.

Act is the set of activities (an activity in HILLS doesn’t modify the state variables);

@:SC — Act is the function that associate to each configuration an activity. When an activity is
associated to a composite configuration, it is the same activity which is carried out in its sub-
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configurations i.e. VS € CC (¢(S) = a = Vs € subConf*(S), ops ¢(s) D ops a). The activity
of a composite configuration is shared by all its sub-configurations (Activities of parent
configurations must be executed in sub-configurations).

T:SC - (IP SM - R* U {+0}) tel que Vs € SC,T(s):5 —» R* U {+}
a €5, T(s)(a) will be noted Ts(a).
VS € CC,Vs € subConf*(S),Va € 5,T;(a) = Ts(a)) if T is defined.

Effect:OP x Eval(VarID) - Eval(VarlID) is the function who indicates for each operation
how the evaluations of the variables change with the application of this operation. We assume
here that the effect of an operation is deterministic

The effects of a sequence of operation ops on state is the succesive application of all the
operation of ops. The evaluation is done atomically. Formally, let Ev, = a the current variables
evaluation on which the operations of ops will be applied.

V0 < i< #ops — 1,Effet(ops(i), Ev;_,) = Ev;
Effet(ops,a) = Ev#ops—l
We note SM = [[,evarip dom(v) = [lyevarip Sy the set of all atomic states (the state space).

Y: S - PC(V) associate to each configuration a set of predicates on state variables (only state
variables). Coupling constraints are not used in HILLS unitary models specifications.

Tine € SC X C(V) X OB? x P OP x SC is the set of internal transitions

. . . <c,y,ops>
The internal transition (s, ¢, y, ops, s’) € T, Will be noted s ——— ;' s’,

. . <l,ops>
In particular (s, <>,1, 0ps,s") € T, will be noted s ——; s’ (where <> represents the

absence of constraint).
C(e) is the set of constraints a on the elapsed time e of the form:

a = e~t|le —t~t'|le + t~t'|e x t~t'|a; Nay|a; Va,ou~ € {=,<,<,>,>}, e, t, t are
positive real numbers, -, +, * are subtraction, addition and multiplication operators in R, a; and
a, are conditions on e.

Toxe € SC x C(V) X IB? x C(e) X P OP x SC is the set of external transitions

.. , . <m,x,c(e),ops>
The external transition(s, m, x, c(e), ops, s’) € T,,; will be noted s ¢S

!

. , . <x,c(e),ops> ,
In particular (s, <>, x, c(e), 0ps,s’) € T,y Will be noted s —— >, s'.

Teong S SC X C(N) x IB? x OBP x P OP x SC is the set of confluent transitions.
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Unicity of transitions and coherences of outputs in internal and confluent transitions (avoiding
non determinism).

Conditions to avoid external non-determinism:
Let (s, c,x,c(e),ops,s") € T,y and (s, c’, x', c'(e), ops’, s'") € T,,; (same source configuration) :

cedAx=x)A(cle) & c'(e)) = s =s"NEffet(ops,a)
= Effet(ops’,a),Vvaesn{b e SM|b E c}
s'#Es" =)V +x)V (c(e) ® c’(e))

Conditions to avoid internal non-determinism
Let (s, c,y,0ps,s") € Ty, and (s, c’,y', ops’, s'") € Ty, (same source configuration):

(cec) =5 =s"Ay=y)ANEffet(ops,a) = Effet(ops’,a),Va € §n
{b e SM|b = ¢}
sS'#s" "= (D)

Conditions to avoid confluent transition non-determinism.

Let (s,c,x,y,0ps,s") € Teons and (s,c’,x',y',0ps’,s"") € Tyons (same source configuration):

(ced)ANx=x") =s"'=s"ANy =y")NEffet(ops,a) = Effet(ops’,a),Va €
sn{beSM|b & c}
sSEs"=(dc)V(x+x")

Output coherence in internal and confluent transitions

(s,c,y,0ps,s") €Ty and  (s,c’,x',y',0ps’,s") € Teony (we have the same source
configuration):

(ceod)=0=y)

II1.5.1.12 Traces

A trace is a finite or infinite alternate sequence of state and events.

. Ait+1 Xit1 Xit1 . .
t = Spa1S1Ay ... Ay Sy, ... With §; ——, 5,101 S; —; S, Or S; — . S;41 Vi = 0 (a;is a

bag of events). A state s if reachable if there exists a finite trace sy, 513 ... @, S, such that
Sp =S.

Com =< {Md}deMReferencer EIC,IC,EOC >
The M, are HILLS unitary or composite models

EIC < {(((M,p), (k,d)))/p € IReference, k € IReferencey, d € MReference}where,
IReference, is the IReference of the sub-model of reference d.

EOC < {((l, d),(q, M))ll € ORefrence,, d € MReference,q € OReference}
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1c = {((L,d), (k,d"),),l € OReferencey,d,d’ € MReference, k € IReference,}

A composite model defines a containment hierarchy which roots is the composite model itself.
We define the relation € between models.

m € m' if m is a sub-model of m’ i.e. m € {My}gemreferencen,

The relation verifies:

M € CompositeModel = VYm € {Mg}qcmreference »M € M. A root configuration don’t have
parent

VYm € Model, (m € m). The relation is not reflexive
vm, m' € Model,(m € m' = 7(m’' € m)). The relation is not symmetric

vm € Model,m ¢ RootModel = 3!m' € CompositeModel | m € m'. Every non root model
has a container.

vm € Model,m & RootModel = 3Im’ € RootModel | m €" m'. Reachability of non root
model from a root model.

vm € Model,7(m €t m). Every chain is acyclic
€* and €%are respectiveley the reflexive and anti-reflexsive transitive closure of € .

If two models m and m' are such that m € m',m’ is called the container of m and m a sub-model
of m'.

subModels: Model — IP Model is a function which associate to each model its sub-models.
vm € Model subModels(m) = {m' € Model|m' € m}

By definition we have: m € UnitaryModel = subModels(m) = @.

For a composite model CMy;; s, subModels(CMy;;1s) = {Ma}acmreference

Definition: |subModels(m)| is called the high of the model m.

subModels*: Model — IP Model determine the of all models in the containment hierarchy of a
model.

vm € Model, subModels*(m) = {m' € Model|m' € s}.
vm, subModels(m) S subModels*(m).

m € UnitaryModel = subModels*(m) = @
container: Model - Model s the function which associate to each model its container such that

container(m) =m' & mem'.
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container*: Model —» IPModel is the function that associate to each model the set it’s related
container (i.e. its container and the container of his container and so on).

container*(m) = {m' € Model|lm € m'}. vm € Model, container(m) < container*(m).
I11.5.1.13 Parameterized model

A HiLLS model has may have parameters. Non-parameterized models (non-initialized models)
can be created form parameterized models by assigning specific values to parameters.

A model is a model with specific values for parameters:
NIMy1s = PMys U< PInit >

PMy;;1s 1s a HILLS model (unitary or composite)
PInit is the set of assignments to parameters.

J:PMy;1s X [Ipep dom(p) —» NIMpy, ;s is the function that create a non-initialized model from
a parameterized model. J is defined as follows:

JM,ay, ..., an) = MU<{p; = ay, .., Pn = @y} >, YM € PMyy;;5, a; € dom(p;)
(PInit = {p; = ay, ..., pn = ,})
I11.5.1.14 Initialization of a model

The init schema of a HILLS gives the set of possible initial states. An initialized model can be
defined by choosing an initial state in the set of states defined by the init schema.

An imodel is a model with a defined initial state:

IMys = NIMy s U< Sy, Init >

NIMy;; s 1s a HILLS non-initialized model

So € SC is the initial configuration of the model.

Init is the set of assignments defining the initial state in the initial configuration S
IMy;;11s 1s a HILLS non-initialized model

I: NIMyj11s X [lyey dom(v) = [My;; ;s is the function that create an initialized model from a
non-initialized model. I is defined as follows:

IM,ay,...,a,) = MU Sy, {v; = ay, ...,y = ap} >
(Init = {v; = ay, ..., vy, = ay} € Sp)
II1.5.1.15 Domain model
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A domain model (or metamodel of the problem domain) in HiLLS is a structure of the form
CG = (ClassNode, ModelNode, PortNode, PortModel, Assoc, Inherit, CE, MC) where

- ClassNode is the set of class nodes ,

- ModelNode € ClassNode is the set of model class nodes,

- PortNode is the set of port nodes,

- PortModel = {(P,M)pcportnode,meModelNoder} 1S the set of containment relations
between ports and models,

- Assoc = {(C,C") € ClassNode?|C € Assoc(C") is the set of association edges

- Inherit = {(C,C") € ClassNode?|C = parent(C")} is the set of inheritance relations.

- CE = (CE(P,P"),D)pp'cportNode pepredicate 18 the set of communication relations
between model nodes (instances of communication edges are coupling edges), and

- MC ={(M,M")|M' € subComp(M) )}y m’emodeinoae the set of model containment

relations. MC € Assoc.
Classes and associations can be instantiated by objects and links respectively.

I11.6.2 Closure under coupling of HILLS

The HiLLS is closed under coupling as the DEVS formalism is. We give here the justification is
of this important property in system theory which guarantees hierarchical construction of models.

Let CM =< DataStruct, StateMachine, Com > a HiLLS model with Com #<>. The closure
under coupling property states that there exists an unitary HiLLS model
UM =< DataStruct’,StateMachine’, Com' = @ >which behavior is equivalent to that of CM.

DataStruct =< reference,IB,0B,V,0P,P >

StateMachine =< ConfID,SC, Tint, Text) Teong, ¥, @, Act, T >

Com =< MReference,{Mg}qemreference, EIC,1C,EOC >

We obtain UM’s constituents as follows:

DataStruct’ =< reference’,IB’,0B",V',0P',P' >

Where,

reference’ = reference

IB' = IB

OB' = OB

V'=V U (Ugep Va4 U {ey}) where e, the implicit elapsed time variable of subcomponents M,;.

d € MReference,

OP' = 0P U (UdEMReference OPd) operations
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P'=PuU (U deMReference Pd) parameters

StateMachine' =< ConfID',SC",Tint', Text', Teons» W', @', Act', T' >

ConfID" = ConfID X [lgemreference ConfID, (naming convention for the element of SC*)
SC" = laemreference SCa

CeSC,Y'(C)=y(mey(C))U (UdEMReference l/)d(nd(C))) (my is the projection that returns
the configuration of the components of name d and 1, is the function that determines the
constraints associated to a configuration of the component of name d).

C esc, (p’(C) = (p(T[CM(C)) U (UdEMReference (pd(nd(c)))
Act’ = Act U (UdEMReference ACtd)

II1.5.2.1 Time advance function

Vs € SM, Tconf(s) (S) = mindeMReference{Tconf(sa) (Sd) - ed}
We define the following sets:

- IMM(s) = {d € Mreference|og = Teong(s) (s)}: The set of references of components
those configuration duration expired; It is the set of imminent components
- INF(s)={d €D /3i€I(d),i € IMM(s) Ax} # @} where
xg = {A(s)/i € IMM(s) N 1(d)}
The set of references of influenced components
- CONF(s) = IMM(s) N INF (s) the references of confluent components
- INT(s) = IMM(s) — INF(s) determines components that will execute an internal
transition
- EXT(s) = INF(s) — IMM(s) this set determines the no-imminent and influenced
components;
- UN(s) =D —IMM(s) — INF(s). These components will not execute any transition.

II1.5.2.2 The internal transition relation

Let C = (¢, (...,cq,...)) € ConfID D = MReference

A(A 2ycUlu ) u(u
(c, o ) Dc ( dercd) Ve ( dEDYCd) 0PS¢ ( deDOpscd) i(c', .__'C'd’ ) c Ti’nt

where

DY, 0PSe
> € Tint

pCd'xCd'yCd'Opst ’

Ca Cd ETconfd/\(eld=0)ideCONF(S)
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pCderdlce(Cd)'opSCd ’

Ca cg4€E Textd A (e’d =e;+ Tcd(S)) lf de EXT(S)

DcYc,0PSc ' .
cg—C 3 €Tinea N (e'g=0)if d € INT(s)

da=cah (e'a=eq+Te,(s)) if d € UN(s)

I11.5.2.3 The external transition relation
Let C = (¢, (...,cq, -..)) € ConfID

pc/\(/\deD pcd) rxcU(UdeD xcd)'cec/\ (/\dED Cecd)'OPch(UdeD Opscd)

(€, Cgy o) (¢ gy ) ETot
where
DX e Cec,0DS
cXcCec cc, c Text
pCderd'Ce(cd)lopSCd ’ , B
Cq CdETextd/\(ed:ed+TCd(S)) lfUMEI(d)/\xcd;tQ)

c'ag=cqg N (e’d =e;+ Tcd(s)) otherwise

I11.5.2.4 The confluent transition relation

INF'(s)={d € D /3i € I(d), (i € IMM(s) ou N € I(d))et x5 + 0}
x2 ={2;(s)/i € IMM(s) N I1(d)} U {x,/x, € x? et M € I(d)}

CONF'(S) =IMM(s) N INF'(S)
- INT'(s) = IMM(s) — INF(s);
- EXT'(S) = INF(s) — IMM(s)
pc/\(/\dED pcd) :xcU(UdED xcd)'ﬁVcU(UdEDYCd)'Opch(UdED Opscd) , , ,
(¢, ., Cqy ) i (€, Cay) € Teons

DeXeYe,0PSe
s

c € TCOTlf

b)Y, 0PSc ' . 1
cg—C 3 E€ETimaN(e'g =0)if d € INT'(s)

pCderdlyCdvopSCd 1}

cq C'q € Teonsa N (€' = 0) if d € CONF'(s)

pcd,xcd,ce(cd)(ed+Tcd(S)),Opscd ’

Ca Cg4€E Textd A (eld = O) lf de EXT,(S)

c'ag=cqg N (e’d =ez+ Tcd(s)) otherwise
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II1.7 HIiLLS Usability Assessment

We present here a survey on the usability of HILLS as a systems modeling langauge. We
followed the methodological principles of [Ringert et al. 2013].

Our study involved 48 students in Computer Science:

e 12 from the MSc in Computer Science at the African University of Science and
Technology (AUST, Abuja, Nigeria); this degree is carried out in 18 months and admitted
students are holding BSc in Electrical and Computer Science; therefore, they have a good
knowledge of UML, Object-Orientation and discrete mathematics, but they don’t have a
significant background in simulation or system theory; and

e 36 from the MSc in Web and Mobile Engineering at the Blaise Pascal University (UBP,
Clermont Ferrand, France); this degree is carried out in 24 months and admitted students
are holding BSc in mathematics or Computer science with sound knowledge of UML,
Object-Orientation and discrete mathematics, but without any background in simulation
or system theory.

We have built 12 modeling teams of 4 members each. Each team worked during one month
(October 2015) on the modeling of three problems: the Traffic Light (TL), the ABP and the
ATM. We distributed a survey to be completed by each team, and our analysis is based on the
results of these questionnaires (all filled by all teams). The filling principle adopted by each team
is to first fill the survey by each member, and then to summarize results in one unique survey
after discussions on individual results and mutual agreement on the final results.

The survey consists of four groups of questions, which are then broken down by technology
(UML, DEVS, HiLLS) and/or model built (TL, ABP, ATM), and for which the only possible
answers are High, Medium and Low:

1. Time to learn the given technology

2. Cost in time of the building of the given model with the given technology

3. Degree of collaboration made possible within the team by the given technology in

building the given model
4. Degree of confidence of the team in the model built with the given technology
5. Availability of software support for the given technology

Globally, students evaluated the time to learn HiLLS to be medium while the time to learn DEVS
is high. UML is evaluated to be easy to learn (Figure 35). We think that the use of concrete
syntax elements similar to that of UML reduced the complexity of learning HiLLS. Globally, the
time spent to model TL, ABP and ATM is medium while it is globally low for UML and high for
DEVS. The degree of involvement and discussion in modeling with HiLLS is high for UML and
HiLLS while it is globally medium for DEVS. Globally, the confidence in created models is high
for all the technologies. Tool support is high for UML while it is low for DEVS and HiLLS.
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Figure 35. Survey results

The results of the survey show that HiLLS is accessible to students for modeling systems and
promotes collaboration between team members [Aliyu et al. 2015 a].

I11.8 Conclusion

We have introduced the HiLLS, a graphical modeling language that combines universal modeling
paradigms from system theory and software engineering. It is meant to facilitate the specification
of complex DESs models for the exhaustive investigation of static and dynamic properties using
multiple established computational analysis techniques such as simulation, formal methods and
enactment.

We have presented the abstract syntax, concrete syntax and set-theoretic semantics of HiLLS. We
have shown the rationale behind the concepts expressed in its syntax, the corresponding
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formalisms from which they have been adopted as well as the integration of the concepts to
achieve the objectives of HiLLS. We used metamodel integration techniques to define the
abstract syntax of HiLLS. Our proposal deals with the problems arising from the manual
specifications of separate models of the same system (with disparate formalisms) for
investigating different static and dynamic properties of system, i.e., (1) the herculean task of
creating and maintaining consistencies between the different models, (2) limited model reuse, (3)
constrained communication between stakeholders and (4) collaboration of tools.

From the perspective of language design, this work demonstrates that disparate languages can
actually be combined in a symbiotic way to define a manageable integrated language that
consistently subsumes all participants. And from system analysis perspective, it bridges the gap
between domain experts and formal system analysis methodologies.

We are confident that with appropriate tooling and integration with legacy tools for the
underlying formalisms, HiLLS would make the benefits of many analysis methodologies
available to a wider audience especially among domain experts through high levels of
abstractions, in addition to facilitating the process of formal investigation of system properties
through reduced modeling tasks and improved model reusability. The next sections discuss the
basis of the analysis aspects of HILLS models using techniques like simulation, formal methods
and enactment.
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IV. Translational Semantics of HiLLS
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IV.1 Introduction

We have defined HIiLLS with multiple semantic domains. The semantics of HiLLS models in
these domains are defined by translation. We call them the translational semantics of HiLLS. The
translational semantics include the operational semantics for simulation, the operational
semantics for enactment, the logical semantics to Z and the process-based semantics to CSP.
While the operational semantics for simulation uses virtual/logical time to reveal and forecast the
system's behaviors (dynamic properties) in specified experimental frames, the operational
semantics for enactment uses clock-time execution to prototype the real-time behavior of the
system. The logical semantics based on Z and CSP on the other hand offer the mathematical
techniques to investigate statically (no time basis) the conformity of a model to requirements and
rigorously prove or disprove logical assertions about the system's properties. Through increased
understanding of systems and designs, these methods instinctively complement the conventional
testing for software and hardware systems considering the fact that testing can only reveal the
presence of errors in a system, but cannot guarantee their absence. The fact that the real system is
not required for the investigations also adds to the economics of time and resources guaranteed
by these techniques in the process of system development as design errors and faulty assumptions
are detected and resolved in the early stages of the development process.

We presents in this chapter, the details of the translational semantics of HiLLS. The operational
semantics for simulation is defined by semantic mappings to DEVS and DSDEVS presented in
sections V.2.1 and V.2.2 respectively. At the other hand, the logical semantics of HILLS is
expressed at three levels of abstraction by using different formal methods to capture the
corresponding properties that can be specified. This is done so that we can derive different
insights about the model. We can also take advantage of existing tools for formal analysis to
derive properties of the model. Figure 36 shows the different mappings from HILLS to formal
methods.

HILLS Hierarchy

Formal methads

Dynamic _
CM Associated tools
Process-Based
Static CM - o
atic (CSP) .
State-Based
UM i " > {Z/EVES)
(Z)
Temporal
Traces - :
Logic

Figure 36. From HILLS to Formal Methods
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The HILLS paradigm focuses on three levels of abstraction, which correspond respectively to CN
(Coupled level), IOS (Input Output System) and IORO (Input Output Relation Observation)
levels of Zeigler’s hierarchy of system specification [Zeigler et al. 2000]:
- Composite model level (concerned with structural properties and functional couplings).
- Unitary model level (concerned with system dynamics characterized by states and state
transitions.
- Traces level (concerned with traces and trajectories of the system).

System theory uses the concepts of decomposition and composition in systems engineering.
Decomposition of a system consists in breaking a large system into smaller pieces that are easy to
model and check. Each sub-system realizes a set of functionalities of the original system. Unitary
testing is generally used to check and validate each component with some “level of confidence”.
The composition concept consists of building the model of the original system from smaller
components that realize its complete behavior in a hierarchical manner. An error is to consider
that, the system composed by individually correct sub-components is also correct. It is known
that integration testing is also needed at system level in software engineering. Concurrency and
interaction between components in the system can rise to problems (Synchronization, response
time, reachability, fairness between components, starvation, livelock, global deadlock etc.) that
are not possible to reveals at unitary component level. For example, using traffic lights at
crossroads to control traffic flow needs also to take into account some synchronization and
scheduling problems between the lights. The validity of individual light model is not sufficient to
validate a model composed of concurrent lights at a crossroads. Composite system level
verification and validation needs special formalisms that concentrate on concurrent and
distributed systems verification. The specification of a composite model defines how the
components are inter-connected and how they influence each other. This level does not require
knowledge from what occurs inside the models which compose it. Properties of this level are
those which target process-based formal methods like process algebras. At this level, a semantic
mapping function maps a HILLS composite model onto concurrent processes defined in CSP
(communicating sequential processes). We can use FDR refinement checker or Isabelle/HOL to
check our models in this domain.

At the unitary level, HILLS highlights the concept of state and transitions. Stated-based formal
methods like Z capture the properties of this level perfectly. At this level, a semantic function
maps the state transition diagram onto Z notation. The Z specification language is known to be
able to capture safety and liveness properties of state transition systems. We can take advantage
of Z/EVES [Saaltink 2003] to check our models at this level.

At the traces level, the properties of system traces (which are expressed as footprints of the state
transition system) are expressed in CTL (computational tree logic). A state transition system can
have safety, invariants, liveness, and fairness properties. It is known that one temporal logic is
not able to express all these properties. It is sometimes necessary to use another temporal logic to
express adequately some family of properties.

IV.2 Operational Semantics for Simulation

We recall that the operational semantics maps a language into structures of an abstract execution
environment. It describes how every valid expression of the language is interpreted in terms of
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successive steps giving its value. It is composed of rules which describe the effects of the
constructs of the language. An operational semantics allows the description of the evolution of a
model during its execution. Transition systems are mathematical foundation of operational
semantics of languages. Structural Operational Semantics (SOS) [Plotkin 1981] is an operational
semantics definition techniques based on a transition system where states are valid predicates of
configurations of the systems. The source of a transition is called premise and the target is called
consequence. SOS is generally used in grammar-based language engineering.

We define the operational semantics of HILLS by a semantic mapping to DEVS (Figure 37).

HILLS Hierarchy Semantic Domain

Dynamic DSDEVS
M 'l DSDEVS — Simulator

Static CM s PDEVSCN > Simstudio
UM »  PDEVSIOS —  Simstudio

Figure 37. HiLLS operational Semantics mappings

IV.2.1 Semantic mapping to DEVS

The set of models specifiable by HiLLS can be split into two subsets: the subset of static
structure models and the subset of dynamic structure models. The original DEVS formalism is
only capable of simulating static structure models while DSDEVS is its extension that is capable
of simulating dynamic structure models.

We present in this section the semantic mapping of HiLLS static structure models to DEVS. We
show here how to build an equivalent DEVS model of a given HILLS model with static structure.

DEVS, being a mathematical formalism solely for system specification has no specific constructs
for representing objects. Since the formalism also does not prescribe any concrete syntax, the
user may take advantage of the freedom to represent and object as mathematical structure with its
essential attributes and operations constituting the elements of the structure. HILLS operations
are also specified as mathematical functions that may be called from the DEVS-specific functions
such as the transition and output functions.

1V.2.1.1 HiLLS unitary model to DEVS atomic model

HSystem translates to Atomic or Coupled DEVS models for simulation. A HSystem with empty
hComponents translates to a atomic model; otherwise, it translates to coupled model and
HSystem.hComponnents.target refers to the set of individual HSystems that are instantiated to
form the components of the HSystem in context in this case. HiLLS ports are used to build the set
of input and output of the equivalent DEVS model.
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A configuration translates to a subset of S, the state space. The sojourn times function of
configurations in HiLLS translate to the time advance functions ta, of states in DEVS. Internal,
External and Confluent transitions in HiLLS are extracted to build DEVS’ §;n; 8oy and 8cony
functions respectively. The output parts of Internal and Confluent transitions in HiLLS are used
to build the A function of DEVS.

DEVS, like many other conventional simulation formalisms do not take the state activities into
account since the advancement of simulation time is virtual while real physical time is required to
execute activities. So the mapping of HiLLS to DEVS do not consider the translation of activities
associated to configurations.

Let UMy;;1s =< DataStruct, StateMachine, Com > with Com = @ be an HILLS unitary
model.

We recall that DataStruct =< reference, IB,0B,V,0P,P > and StateMachine =<
ConfID,SC, Tint, Texts Teong, ¥, @, Act, T >.

UMy s has an equivalent DEVS atomic model A =< X,Y,S, §int, Sexts Oconsr A ta > where:
X ={(p,v)|p € IReference A3d € DomID,v € dom(d) A (p,d) € IB}.

Y ={(q,v)|q € OReference A3d € DomID,v € dom(q) A (q,d) € OB}.

S =SM = [lvevarip dom(v);

The internal transition function 6;,,: S — S is defined by:
c,y,0ps . .. . . .
Vs —— s’ € Ti: where ¢ is condition, y is a bag of output events, ops is the set of operations

applied then we have:

Ya€esn {b € S|b E ¢ A Nopeops Pre op}, dine(a) = Ef fect(ops, a) such that
Effet(ops,a) E Aopeops Pos op (b E ¢ means that the state b verifies the conditions of the
sequence ¢).

The external transition function &,,¢: Q X X2 — S is defined by:
x,c,c(e),ops . . . . . ..
Vs ——— s’ € T,,; where c is a condition, x is the bag of input events, c(e) is the condition

on the elapsed time e and ops is the set of operations, we have : Va € § N {b ESIbECA
Nopeops Pre 0}, 80x¢((a, €),x) = Ef fet(ops, a) such that Ef fet(ops, a) & Nopeops Pos op

The confluent transition function §¢opnf: S X X b S is defined by:

X,C,y,0pS . .. . . .
Vs ——— 5" € Tonr Where c is a condition, x is the bag of input events, y is the bag of output
events, and ops is the set of operations, we have:
Ya€esn {b € S|b E ¢ A Nopeops Pre op}, Oconf(a,x) = Ef fet(ops, a) such that

Effet(ops,a) E Aopeops POS op

The output function A: S — Y? is defined by:
C.y,0ps . .- . .
Vs —— s’ € T;,+: where ¢ is a condition, y is the bag of output events, and ops is the set of

operations,Va € 5§ N {b € S|b E ¢ A Nopeops Pre op},/l(a) =y

C,X,y,0DS . .. . . .
Vs ——— s’ € T;ony Where c is a condition, x is the bag of input events, y is the bag of output
events, and ops is the set of operations, we have

Ya€esn {b E S|b E ¢ A Nopeops Pre op},/l(a) =y.
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The time advance function ta: S - R* U {+o0} is defined by:
s € SC,Va € §5,ta(a) = Ts(a).

We proved by construction here that every HILLS unitary model UMy;;;shas an equivalent
DEVS atomic model A.

1V.2.1.2 HiLLS composite model to DEVS coupled model

We now show how a HiLLS composition static structure composite model is mapped to an
equivalent DEVS coupled. The equivalent DEVS model is defined by construction from the
HiLLS model.

Let MCy11s =< DataStruct, StateMachine, Com > with Com # @ be HiLLS static structure
composite model. We recall that Com =< {Mg}4emreferences EIC, IC, EOC >.

MCys has an equivalent DEVS coupled model CM =< X,Y,D,{M;}4ep, EIC,EOC,IC >
where

X ={(p,v)|p € IReference A3d € DomID,v € dom(d) A (p,d) € IB}.

Y ={(q,v)|q € OReference A3d € DomID,v € dom(q) A (q,d) € OB}.

D = {d|Hcomponents.names}

CM. {Md}deD = com. {Md}deMReference

CM.EIC = com.EIC

CM.IC = com.IC

CM.EOC = com.EOC

This proves by construction that every HILLS composite static structure model CMy;;;shas an
equivalent DEVS coupled model CM.

1V.2.1.3 Traffic Light example

We the traffic light presented in Figure 38. Its behavior extends the behavior of the main traffic
light presented in Figure 22. It has the possibility of receiving inputs from a controller through
control port that switch it on or off. The signal port constitutes the single output port, which
makes it possible to send the color corresponding to current configuration of the traffic light. The
various configurations of the traffic light model are: off, move, brake, stop, shutting-down,
booting. The configurations shutting-down and booting are transitory configurations, i.e. their
lifespans are null. For any configuration different from off, when it receives the external event of
value 0, it makes an external transition to pass to the shutting-down configuration in which it
sends Black as output before making an internal transition immediately to pass to the off
configuration. While being in the off configuration, if it receives an external event of value 1, it
makes an external transition towards the booting configuration before making an internal
transition to the move configuration. Without external event, the traffic light behaves like the
MainTL presented in Figure 22. The confluent transitions similar to the external transitions.
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Figure 38. controlled Trafficlight

We give here, the equivalent atomic DEVS model TrafficLightpgys of the traffic light
HSystem presented in Figure 38.

Traf ficLightpgys =< X,Y,S, 8ints Oext Ocongr A, ta > where:
X = {(signal, {0,1})}

Y = {(color,{Green, Orange, Red, Black})}

S = {move, braking, stoping, of f, shutting_down, booting}.

6int: S-S5
Oine(move) = brake
Oint(brake) = stop
Sint(stop) = move
Oint (shutting_down) = of f
Sint (booting) = move
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Internal transition function is not defined for the "off” state because its time advance is infinite as
will be shown later. Hence, an external input event is required to change the state via an external
state transition function.

Sont:Q X X > S
8ext(s,€,0) = shutting_down Vs € S\{off}, Ve € R*
Sexc(off,e,0) = of f Ve € RT
Soxt(0f f,e,1) = booting Ve € R
Seoxt(s,e,1) = s Vs € S\{off},Ve € R

In any state other than the off state, the system transits to the shutting down state upon receiving
a zero (0) input and returns to the same upon receiving a 1 input.

ScongiS X X2 = S

Oconf(8,X) = Oy (s, ta(s),x) Vs €S
ta:S » Rt U {+0}

ta(moving) = 10

ta(braking) = 3

ta(stoping) =5

ta(shutting_down) = ta(booting) = 0

ta(of f) = +oo

1S —>YP
A(moving) = Orange
A(braking) = Red
A(stoping) = Green
A(shutting_down) = Black
A(booting) = Green

We will illustrate the mapping of composite systems to DEVS in chapter V.

IV.2.2 Semantic mapping to DSDEVS

HiLLS models can represent static structure systems or dynamic structure systems. We have
presented the mapping of HiLLS static structure models to DEVS in the previous section. We
present here the mapping HiLLS dynamic structure models in DSDEVS [Barros 1997]. HiLLS
Dynamic structure models can then be simulated by DSDEVS algorithms.

Sine each DSDEVS atomic is exactly the same as DEVS atomic model, the mapping of HiLLS
composite dynamic structure will reuse the HiLLS to DEVS semantic mapping rules at the
atomic level.

Let MCyj11s =< DataStruct, StateMachine, Com > with Com # @ be HiLLS dynamic
structure composite model. We recall that DataStruct =< reference, IB,0B,V,0P,P >,
StateMachine =< ConfID,SC, Tint, Text) Teong, W, @, Act, T > and

Com =< {Md}deMReference,ElC, IC,EOC >.
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MCyy11s has an equivalent DSDEVS model
DSDN = (},M,, =< X,, Sy, S0, ¥y ]/,Z*,&X, Ay T >) Where:

X = MCy1s.name

X, ={(p,v)|p € IReference A3d € DomID,v € dom(d) A (p,d) € IB}.

Y, ={(q,v)|q € OReference A3d € DomID,v € dom(q) A (q,d) € OB}.

Sy = SM = [lyevarip dom(v) X CONF ( where CONF is the set of configuration names);
So,y = MCyjps- INIT (the initial state is defined by the INIT of MCpy;5)

The transition function 8,: Q, X (X U {@}) — S,is defined by:

c,y,0ps . .. . . :
Vs —— s’ € T;,; where ¢ is condition, y is a bag of output events, ops is the set of operations

applied then we have: Ya€esn {b € S|b E ¢ A Nopeops Pre op}, 6X((a, TX(a)),d)) =
Effet(ops,a) such that Ef fet(ops,a) E Aopeops POS op.

x,c,c(e),0ps . . . . . .\
Vs —— s’ € T,,; where c is a condition, x is the bag of input events, c(e) is the condition

on the elapsed time e and ops is the set of operations, we have : Va € s N {b ESIbECA
Nopeops Pre op}, 5,((a,e),x) = Effet(ops,a) such that Ef fet(ops, a) E Aopeops P0S op.

X,C,y,0PS

Vs ——— 5" € Tconp Where c is a condition, x is the bag of input events, y is the bag of output
events, and ops is the set of operations, we have:
Ya€esnN {b € S|b E ¢ A Nopeops Pre op}, 5,((a,x), ) = Effet(ops,a)such that

Effet(ops,a) E Aopeops P0s op.

2 = {CMcong s} where CMons,s =< Dy, ((Mi}iep)ss (Uiien)ss {Z3ien)s >

ConfECONFASES),

: .. , _XGYops x,c,0ps cy.ops
Given a transition between s and 8’: s ——— 5 € Topr OF S—— 5 € Tyyy O S— 5 €

Tcon f

Dsl = Ds U {d-name}deaddedComponent(s) - {d-name}dEdroppedComponent(s)

{M;}iep)sr = ({M;}iep)s U addedComponents(s) — droppedComponents(s)

({Ii}ien)s =
({I;}iep)s U {d € addedComponents(s)|3C € EIC' UIC' UEOC' AC.target =i} —{j €
I;|j € droppedComponents(s)}

y:Sy - X" is defined by Vs, € Sx,y(sx) = Mconf,sx where conf is the actual configuration.

The output function 4,: S, — Y is defined by:

C.y,0ps . .. . .
Vs —— s’ € Tyt where ¢ is a condition, y is the bag of output events, and ops is the set of

operations,Va € 5§ N {b € S|b E ¢ A Nopeops Pre op}, L(a) =y

C,X,y,0ps . .. . . :
Vs —— s’ € T¢ons Where c is a condition, x is the bag of input events, y is the bag of output
events, and ops is the set of operations, we have

Yaesn {b E S|b E ¢ A Nopeops Pre op},/lx(a) =y.
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The time advance function 7,: S = R* U {+00} is defined by:
s € SC,Va € §,ta(a) = Ts(a).

An Object Oriented implementation of the DSDEVS formalism is the DELTA Environment.
DELTA has been implemented in Smalltalk [Barros 1995].

IV.3 Operational Semantics for Enactment
IV.3.1 Enactment

By enactment, we mean the synthesis of a software prototype of the system that can be executed
to generate the footage of its real-time behavior in a given experimental frame. A typical analysis
using enactment pays attention not only to the sequence of successive states but also to the
activities associated with such states and their periods of execution. An activity refers to a set of
time-consuming and interruptible tasks performed by the system while in a particular state which
do not involve the reception of inputs, sending of outputs or change of state variables. For
example, the display of advertisements on the screen of an Automated Teller Machine (ATM)
when it is in idle state and the playing of the ringing tone of a telephone during an incoming call
are activities associated to the respective states. Hence enactment methodology should provide a
means to verify a system's real-time behavior by managing the scheduling and processing of its
activities and events (internal and external) using the real world physical time. In the case of an
embedded system, we may refer to enactment as the synthesis of codes for relevant hardware
simulation and prototyping environments.

In this thesis, we present an Object-Oriented approach to system enactment that relies on the
synthesis (from system specifications) of executable codes based on Object-Oriented General-
Purpose languages. In this section, we will introduce an Object-Oriented description of discrete
event systems. Based on the template provided by this description, we will show in subsequent
sections how executable program codes can be synthesized from system specification with the aid
of Model-Driven Engineering (MDE).

IV.3.2 Enactment Methodology

The methodology we propose is to express DEVS-based concepts using the dialect of the
observer design pattern for the purpose of enactment. We do this by registering system ports as
observers of other ports that may influence them. However, we acknowledge the fact that the
notification process in the observer pattern poses some undesired effects during the exchange of
messages between ports; the processes of the system sending the message will be blocked until
the receiving system finishes treating the message received. The effect is even more complicated
when there is a cascade of notifications. This is due to the synchronous calls to the update
methods of the observers. We have tried to address this problem by using the command pattern to
decouple the subject from its observer during notifications.

Figure 39 shows our attempt to introduce asynchronous message passing between the subject and
its observers to make it more suitable for enacting systems' behaviors in real time. Compared to
the command pattern presented in Figure 17, Subject, Observer, Notifier, Notification and
ConcrerteNotification are equivalent to Client, Receiver, Invoker, Command and
ConcreteCommand respectively. Therefore, subject will delegate the notifications of observes to
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Notifier and continue its activities. Since the subject does not expect any return value from these
method calls, it is easy to just use the "fire and forget" approach. Notifier has a pool of threads to
which the requests are assigned on arrival, hence it does not have to always create threads thereby
minimizing the overhead that may be incurred due to thread creation.

Notifier > ainterfacen
Natification

+execute()

7

Subject <<inslantistes>> | ConcreteNotification
-observers; List<Observer>| y
FnofifyObservers() — - — - graxecute() : void
thasChanged() ; bool llf
+setChanged|) lf_( ______ : b
| obs, |
|be Upote | uinterfacen
L — | Observer

ConcreteSubject | [ConcreteObserver | [/PYeLc(

Figure 39. Observer pattern with asynchronous notification

1V.3.3 Metamodel of the framework

We present the metamodel of the enactment framework in the segment of Figure 40 that is
enclosed within a dashed box. Using the observer pattern with asynchronous notification, a

DES is described as AbstractSystem which implements the Observer interface while its generic
input and output ports can observe and can be observed by other objects. A system has a clock
that monitors the time advance of the current state; the clock inherits the Subject class so that it
can notify the system at appropriate instants.

All methods in the AtomicSystem and CoupledSystem classes are abstract; therefore the concrete
atomic and coupled system classes using the framework must implement them to provide the
specific elements of the system being modeled. The wupdate method of the AbstractSystem class
has the implementation of the enactment protocol (to be provided in the next sub-section) which
calls the wuser-defined functions when they are needed. The dolnternalTransition,
doExternalTransition and doConfluentTransition allow the user to describe the internal, external
and confluent transition functions respectively. setCurrentStatus method is used to define the
system's states based on the instantaneous values of the state variables to be defined by the user
in the concrete class. Similarly, mapTimeAdvance and mapQutputEvents methods must be
implemented to provide the time advance and output functions respectively. Method
mapActivities can be used to define the activities to be enacted for each state during execution.
An activity is a set of operations that do not lead to change in state variables, reception of inputs
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and output events. Coupling between any two ports in the CoupledSystem is realized by adding
the target port to the list of observers of the source port.

e e
i i
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: : Runnable |
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Figure 40. Metamodel of enactment framework

1V.3.4 Enactment protocol

A transition in the state of an AtomicSystem can be triggered by a timed event (an automatic
notification from the clock when the time advance of the current state has elapsed), an input event
(a notification from an input port upon receipt of a new value) or both. By default, an
AtomicSystem is a registered observer of its clock and all its input ports, so this allows for
automatic notifications from both sides. In any case, an event is an object that encapsulates a
message (value) and information about the nature of its source, whether a port or clock. When the
system receives notifications, all events received are stored in the event bag (eventBag) of the
system. Then the system's reaction will depend on the content of the bag. If the event bag
contains one time event, then it sends outputs (if any) to the appropriate output port(s) and then
check if there are also input events in the bag. If a port event is found, then the
doConfluentTransition method is invoked, otherwise dolnternalTransition method is invoked.

If the event bag contains only input event(s), then doExternalTransition method is invoked.

126



IV.3.5 Implementation

We have implemented the framework's metamodel and enactment protocol in Java. To use the
framework, we can simply create classes inheriting from the AtomicSystem and CoupledSystem
classes of the framework to get the skeletons of the appropriate system unit. The user only needs
to specify the properties that are peculiar to the system under study while the enactment
mechanism is driven by the framework.

IV.3.5 Traffic Light Example

We present as example, the enactment of a traffic light control system to illustrate the extension
of the enactment framework for real time execution of DES. The system consists of two
components, control and display. The four configurations of the control, their durations and the
corresponding light color to be on the display unit are summarized in Figure 41. The control unit
has only one output port which is connected to the only input port of the display unit. Whenever,
there is a change in the state (internal transition) of the control unit, it sends an output which is
received by the display unit to show the appropriate light color to the road user.

Control Duration of Display
states control state color
(units)
ready 3 yellow
moving 10 Green
braking 3 Yellow
stopping 5 Red

Figure 41. Specification of traffic light system

The specification of the system is presented in Figures 42-45. The control unit is shown in Figure
42. Tt is an atomic unit, so it has to extend the framework's AtomicSystem class which provides
the required system-specific methods to be completed as indicated by the methods with
@override annotation in Figure 35. The single output port is created using the addOutputPort
method provided by the framework. Since it has no input port, it cannot receive any input event,
hence we did not provide implementations for external and confluent transition methods as they
will never occur.

For experimental purpose, we have chosen 1000 milliseconds as the unit of the time advance
durations specified in Figure 41. Before effecting a transition to a new state, in the internal
transition method, the system invokes the oufput function to place a value on the output port
depending on the active state. The activity function is also not implemented here as the
component is not observed for any action in this context.
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package exsmple;

import enactment.AtomicSystem;
import enactment.Port;

import enactment.Utilities;

import enactment.designExceptions.k;
import java.util.Arraylist;

[Flpublic class Trafficlight extends AtomicSystem |

i

private enum Statug{MOVING, BRAKING, STOPING, RERDY};
private Status state;

[Hpublic Trafficlight(3tring name) {

super (name) ;
registerPortal);
state=5tatus.READY;}

Eprivate void registerPorta{){

try {//addInputPort{name, type); addlutputPort(name, type);
addCutputPort ("ztatuzluc”, new String()).
} catch (DuplicateldException ) {e.print3tacklrace():}

Blverride
[Hprotected long computelifeSpanFunction() {

long ltime;//Itime i3 in milliseconds

if (state=3tatus,BRAKING) ltime = Z000;
else if(gtate=Statua.MOVING) ltime = 10000;
else if(state="Status.STOPING) ltime = S000;

else if (state=3tatu3.READY) ltime = -000;
else 1time=2000 veturn 1time:}

B0verride
Hprotected void doInternalTransgition() {//internal transition fun

maplutputEvents (state); //send output on port"atatusCut”
Syatem.out.println(Utilitiea.getCurrentTime(j+":"+" "+
getame () .tolpperCase()+": Internal tramaition from "+astate);
if (atate==3tatus.MOVING) state = Status.BRAKING: //aet targe
else if(3tate==5tatus.BRAKING) 3tate =3tatua.3TOPING;

it

=1

else if(atate=Status.STOPING) state = Status.READY:

else if (state=5tatus.READY) state =Status.MOVING;

else state =Status.MOVING;
System.out.println{Utilities,getCurrentTime()+":"

+" "+thiz,getlame () tolpperlage()+": [ev atatsr "+atate) ;]

@0verride
[lprotected void doExternallranaition{Arraylist<Porty eventBag){

/1 Bo-external transition specified)

{0verride
[protected wvoid doConfluentTransition(Arraylist<Port» eventBag) {

// Bo confluent transition specified)

Boverride
[lprotected void meplutputEventa(Object event) |

Status st = (Status)event;

if (st=>5tatus.READY) sendMessage("statuzluc”, "Gk
else if (3t=Statu3.MOVING) asendMesaage("statusluc
else if(st=>5tatus.BRAKING) sendMessage("s
else sendMessage("3tatusluc”, "YELLCH");

Boverride
[lprotected void mapActivitiea() {

// no ectivities specified]

128



Figure 42 Control unit of the traffic light system

The display unit is presented in Figure 43. It is also an atomic unit and maintains only one
state with approximately infinite time advance as indicates by the Long. MAX VALUE in the
computeLifeSpanFunction. So, it will never receive a time event since the time advance will
never expire. Therefore, only external transition is possible. Whenever, it receives an input
event (which is an instruction from the control unit), it changes the color of light displayed to
the new color received.
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package example;

import java.util.Arraylist;

import enactment.Atomiciyaten;

import enactment.Port;

import enactment.Utilities;

import enactment.designExceptions.*;
[Fpublic class Display extends AtomicSystem {
private String color;
[  public Display(String name) |
super (name) ; regiaterforta(};
color = "RED"; ]
[ private void registerParta() {
5 try | addInputPort ("input”, new String(}):

Jcatch (DuplicateldException ) {e.printtackTrace() ;}}

Boverride
protected void delnternallranssition() {}
@Override
[Flprotected void doExternalTransition(ArrayList<Port> eventBaq) |
color = (String) eventBag.remove () .getValue();
Jystem.out.println(Teilitiea.getCurrentTime ()+": "

+this,getName () .toUpperCase ()+": received: "+ color ),
mapActivities() 1}
Boverride
protected void defonfluentTrandition (Arraylist<Porty eventBag) {}
BOverride

[Fprotected long computelifeSpanfunction() |
long lapan = Long, MAX VALUE; return lapan;}
flverride
protected void meplutputEvents (Chject event) { }
Goverride
[Hprotected void maphetivities() |
System.out.println(Utilities.getCurrentTime()+": "+
getame () . tolpperCase ()+":Diaplaying color:"+color+™\n") i}

1
Figure 43 Display unit of the traffic light system

Figure 44 shows the composite system that has the control and display units as components.
Being a composite system, it extends the CompositeSystem class of the framework which
provides the required methods to be completed. It basically creates and registers its
components and establishes any coupling(s) between them. In this case, there is only one
coupling between the components as shown.
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package example;

import java.util.ArrayList;

import enactment, Compoaitedystem;
import enactment, Port;

import enactment.designfxceptions. ¥,

Fpublic class TrafficTest extends CompoaizeSysten |{
private Trafficlight lightControl;
private Display displayUnit;

H  public Trafficlest(String nare) |
super(name) ;
lightControl = new Trafficlight("concrol”);
displaylnit = new Display("Display");
registerComponentai) ;
doouplings();
L
-private void registerComponenta() |
4
addComponent (LightControl) ;
addComponent (displayUnit) ;
} catch (Duplicateldfxception €) (e.print3tackTrace();}
i
Bverride
protected void doCouplings() |
- try |//connectIC(source aya, source port, target 3ys, target port)
connectIC(lightContral, "staruafuc”; displayUnit, "impuc");
} cateh (InvalidCouplingException €) {e.printStackTrace();
} catch (NoSuchPortExistsException e) {e.printitackTrace();}

Figure 44 Coupled traffic light system

Figure 45 shows an excerpt from the result of the enactment of the specification. The first
column of the result shows the wall clock time, the second column shows the identity o thte
component in context and the third column shows the event being reported. Note that each
component has its clock that monitors its activities based on the ticks of the wall clock. With a
starting state of "READY", the "CONTROL" received a time event at "15:31:37", sent an
output as specified in the model and did an internal transition to assume the "MOVING" state.
The output sent by "CONTROL" was received in by the "DISPLAY" at the same time which
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concurrently changed its display color (activity) accordingly. Other lines of the result segment
can be read similarly.

B console 3

cteminated TraficEnact i Applicatio] O Pregram Fis sl b v 22 (13 g 015 153130
15;31:37; COMTROL: TIME EVENT RECEIVED

15:31:37; (CNTROL: Intermal transition from READY

15:31:37; COMTROL: Mew state: MOVING

15:31:37: DISPLAY: INPUT EVENT RECEIVED
15:31:37: DISPLAY: received: GREEM
15:31:37; DISPLAY:Dsplaying color;GREEN

15:31:47: (OWTROL: TIME EVENT RECEIVED
15:31:47: (ONTROL: Intermal transitiom from MOVING
15:31:47 COWTROL: New state: BRAKIMG

15:31:47; DISPLAY: INPUT EVENT RECEIVED
15:31;47; DISPLAY; received: YELLOW
15:31:47; DISPLAY:Dsplaying color:YELLOW

15:31:56: COMTROL: TIME EVENT RECEIVED
15:31:5@: CONTROL: Intermal transition from BRAKING
15:31:56: (OWTROL: New state: STOPING

15:31:56: DISPLAY: INPUT EVENT RECEIVED
15:31:58; DISPLAY: received: RED
15:31:58; DISPLAY:Dsplaying color:RED

15:31:55: CONTROL: TIME EVENT RECEIVED
15:31:55: CONTROL: Internal transition from STOPING
15:31:55: CONTROL: Mew state: READY

15:31:55: DISPLAY: TNPUT EVENT RECEIVED
15:31:55; DISPLAY: received: YELLOW
15:31:55: DISPLAY:Displaying color;YELLOW

15:31:58: CONTROL: TIME EVENT RECEIVED
15:31:58: CONTROL: Internal transition from READY
15:31:58: CONTROL: Mew state: MONTNG

15:31:58; DISPLAY: INPUT EVENT RECEIVED
15:31:58: DISPLAY: received: GREEN
15:31:58; DISPLAY:Displaying color:GREEN
Figure 45 Results of the enactment of the traffic light system

IV.4 Semantic mapping to Z
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This section presents the mapping of HILLS models to Z notation.

IV.4.1 Transformation approach to Z

Some compromises are necessary between HILLS and Z concepts due to fundamental
differences between them. HILLS has notions of internal and external events where external
events are initiated by some outside components. Z makes no formal notion of events or
distinctions between internal and external operations. In Z, if the precondition of an operation
is satisfied it is free to occur and no particular component is assumed to initiate it. In
translating the HILLS concepts into Z, we made no difference between internal, external and
confluent transitions, they are all considered as operation schemas. Only the differences
between their input and output variables and a naming convention make the difference. Since
Z is used for specifying systems mainly for time-independent static analysis, we do not
consider it necessary to represent the sojourn time in Z.

Each unitary model has in addition to its operations specifying the methods of the class, the
operations schemas representing the different transitions in the behavioral part of the HILLS
model representing it.

In HIiLLS specifications we have simple classes and model classes. Each simple class in
HiLLS is mapped to one state schema and associated operations. The mapping is
straightforward because HiLLS uses also Z predicates and expressions to specify data and
data transformations.

Let C =< Name, Params, State, OPS., Init. > be a HIiLLS class (not a model class). C is
translated to a Z state schema CStateSchema and associated operations (COPS;);e[1,40ps,]-

CZState is defined as follows:

- CZState.Name = C. Name

- CZState.Params = C.Params

- CZState.DeclPart = C.State. DeclPart
- CZState.PredPart = C.State. PredPart
- CZState.INIT = C.INIT

An abstract type, Status is defined with a finite alternative values comprising of configuration
names in the HiLLS specification. A secondary variable, configuration of type Status, is
declared in the state schema and the properties of the configuration in HiLLS translate to the
constraints to derive corresponding values of configuration in the predicate part of the state
schema.

For each operation
op =< Name, input, output, DeclPart, preCondition, postCondition > € OPS.
op is translated to an Z operation schema opZ as follows:

- opZ.name = op.name + C.Name (to precise that the operation is for C because
different classes can have operations with the same name)

- opZ.input = op.input (opZ.input € opZ.DeclPart)

- opZ.output = op.output (opZ.output € opZ.DeclPart)
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- opZ.DeclPart = op.DeclPart U C.State. DeclPart U C. State. DeclPart’ (or
opZ.DeclPart = op.DeclPart U AC. Name where C.Name is the reference of
CZState resulting from the translation of the state schema to Z )

- preopZ = C.State. PredPart A pre op

- post opZ = post op A (/\xeop.Deltalistx’ = x)
pre and post are respectively precondition and postcondition operators.

HiLLS model class has activities associated to configurations. An activity is also a Z
operation with its own declarations, preconditions and postcondition. They can access to
model attributes but don’t modify them. Activities are translated as operations. The only
difference is the absence of deltalist for activities because they don’t modify model state.

A HiLLS model class is a class with additional state machine and ports. The state machine is
composed of configurations and transitions between configurations. A configuration is just a
set of predicate.

Every configuration transition translates to an operation in Z with the name of source
configuration constituting part of its pre-conditions, the computations accompanying the
transition make the body of the operation and the name of the target configuration becomes
the primed value of the derived variable configuration. For external and confluent transitions,
the triggers translate to input variables of the operation (the type of each input variable is the
type of the port from which the trigger is received). Similarly, for every internal and confluent
transition where an output(s) is/are produced, an output variable is declared in the operation
with same type as the corresponding output port. Finally, three operation expressions,
InternalTransitions, ExternalTransitions and ConfluentTransitions that combines all
operations derived from internal, external and confluent transitions respectively is defined.

The translation of the different kind of transitions is as follows.
1V.4.1.1 Internal Transitions

Output ports referenced in the transition are declared as output parameters with their
corresponding type. The assignments of values to these ports are added as post condition of
the corresponding operation.

We recall that T, € SC x C(V) X OB? x P OP x SC is the set of internal transitions.

Let t=(s,c,y,0ps,s") €Ty, be an internal transition between configuration s and
configuration s’ where c is a predicate, y is the bag of output events (each event in y is of the
form g*.v|v € dom(q)) and ops is the sequence of reconfiguration operations.

The internal transition t is translated to a Z operation schema tZ where:

- tZ.name = int + s.name + s’.name + C.name (this naming convention is to
precise that this operation represents an internal transition between s and s’ in the state
machine of class C.

- tZ.input = Upper.ops OP- input

- tZ.output = (Ueey €. port.name: dom(e.port)) U (U,pec.ops OP- output)
tZ.DeclPart = (Aopet.ops 00- DeclPar) U tZ. output U C. State. DeclPart U
C.State.DeclPart’
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- pretZ = (C.State. PredPart) A (s. PredPart) A (t.c) A (Aopet.ops PT€ OD)

- posttZ = (/\opet.ops post Op) A (/\opet.ops(/\xeop.Deltalistx’ = x))
A (Aeey €. port.name’ = e.value)

- A theorem to prove post tZ E s'. PredPart i.e. the post condition of the operation
results in a state that satisfies the constraints of s’

The translation is schematized in Figure 46.

s s’
pl ql
[c]/y [ops]
pi P qi
on gm
act act
1 2
intss’"Model

tZ.DeclPart

pretZ

post tZ

Figure 46. Translation of an internal transition to Z
1V.4.1.2 Conditional internal transitions

In the case of conditional transitions between configurations the translation rules to Z
operation is the same for each alternative transition if the target configurations are different
(Figure 47). If more than one alternative have the same target configuration, then the name of
each operation for each these alternatives is of the form:

tZ.name = int + s.name + s'.name + C.name + indice(c)

The special integer indice(c) depending on the predicate ¢ is added to the name to
distinguish between the different alternative transitions between configuration s and
configuration s").
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S3

\

/y2 [ops2]

act3

c2

S1 S2

pl ql
[c1] /y [opsl]

actl act2

intS1S2Model
t12Z.DeclPart

intS1S3Model
t13Z.DeclPart

pre t127 pre t13Z
post t12Z post t13Z

Figure 47. Conditional internal transition to Z

1V.4.1.3 External Transitions

Input ports referenced in the transition are declared as input parameters with their
corresponding type. The reception of values on these ports are added as pre conditions of the
corresponding operation.

We recall that T, € SC X C(V) X IB? x C(e) Xx P OP X SC is the external transition
relation.

Let t = (s,¢,x,pe, 0ps,s’) € T.,; be an external transition between configuration s and
configuration s’ where c is a predicate, x is the bag of intput events (each event in x is of the
form q.v|v € dom(q)), p. is a predicate on the elapsed time since the last event, and ops is
the sequence of reconfiguration operations.

The external transition t is translated to a Z operation schema tZ where:

- tZ.name = ext + s.name + s'.name + C.name (the prefix ext is used to precise
the type of transition)

- tZ.input = Ugeyx e.port.name: dom(e. port)) Uopet.ops OP- input

- Z.output = Ugpet.ops OD- Output

- tZ.DeclPart = (Aopet.ops 00- DeclPar) U (tZ.input) U (C.State. DeclPart) U
(C.State.DeclPart")

- pretZ = (C.State. PredPart) A (s.PredPart) A (t.c) A (/\opet_ops pre op)
A (t.pe) A (Aeex €. port.name = e.value)

- posttZ = (/\opet.ops post op) A (/\opet.ops(AxEop.Deltalistx, = x))
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- A theorem to prove post tZ & s'. PredPart i.e. the post condition of the operation
results in a state that satisfies the constraints of s’.

[c] x [pe] / [ops]

pl
pi

pn

act

tZ.DeclPart

extss’Model

pretZ
post tZ

qm

act

Figure 48. External Transition translation to Z

1V.4.14 Conditional external transitions

As in the case of conditional internal transition, a conditional external transition will be
translated to different operations (one for each alternative) and the same naming convention

applies (Figure 49).

/ [ops2]

act3

extS1S2Model
t127.DeclPart

pre t12Z
post t12Z

1
pe
L | false
o — L eH>— = — — —= —> a
an

S2

/ [ops1]

extS1S3Model
t13Z.DeclPart

pre tl3Z
post t13Z

Figure 49. Conditional external transition to Z

1V.4.1.5 Confluent Transitions
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Input and output ports referenced in the confluent transition are declared respectively as input
and output parameters with their corresponding type. The reception and sending of values on
these ports are respectively added as pre conditions and postconditions of the corresponding
operation.

We recall that Teonp € SC X C(V) X IB? x OBP x P OP x SC is the confluent transition
relation.

Let t = (s,c,x,y,0ps,5") € Teony be an external transition between configuration s and
configuration s’ where c is a predicate, x is the bag of intput events, y is the bag of output
events, and ops is the sequence of reconfiguration operations.

The confluent transition ¢ is translated to a Z operation schema tZ where:

tZ.name = conf + s.name + s'.name + C.name (the prefix conf is used to
precise the type of transition)

tZ.input = Ugex €. port. name: dom(e.port)) U (Uopet.ops OP- input)

Z.output = (Uppet.ops OP- output) U (Ueey e.port.name: dom(e.port)))
tZ.DeclPart = (/\opet.ops op. DeclPart) U (tZ.output) U (tZ.input) U
(C.State.DeclPart) U (C.State. DeclPart")

pre tZ = (C.State. PredPart) A (s. PredPart) A (t.c) A (/\opet_ops pre op)

A (Aeeyx €. port.name = e.value)

post tZ = (Aopet.ops POSt 0p) A (/\opet.ops(/\xeop.Deltalistx, = x)) A

A (/\eey e.port.name’ = e. value)

A theorem to prove post tZ & s'. PredPart i.e. the post condition of the operation

results in a state that satisfies the constraints of s’.

[c]x/y [ops]

|_ ——————————————— - a1

confss’Model——
tZ.DeclPart

pretZ
post tZ

Figure 50. Confluent transition to Z

1V.4.1.6 Conditional confluent transitions
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The same translation principle used for internal and external conditional transition applies to
conditional confluent transitions.

S3

1

/y2 [ops2]

act3

@

x
_false]

[
q1
|_ ﬂﬂ__ﬂl[o_psl]_» a
Sils

confS1S2Model——— confs1S3Model——
t12Z.DeclPart

t13Z.DeclPart

pre t12Z pre t13Z
post t127 post t13Z

Figure 51. Confluent conditional transition to Z

We will illustrate the mapping of HiLLS to Z in chapter V.

IV.5 Semantic mapping to CSP

The HILLS Composite level is the architectural level defining the overall structure of a
system with components and functional couplings between components. At the composite
level, the components operate concurrently and their interactions are instantaneous and
parallel. At this level of abstraction, HILLS can be translated to several formal methods,
notably process calculi. Process calculi are a diverse family of related approaches to formal
modeling of concurrent systems. Process calculi [Baeten 2004] provide a technique for high-
level description of interactions, communications, and synchronizations between collections
of independent processes. They also provide algebraic laws that allow process descriptions to
be manipulated and analyzed, and permit formal reasoning about equivalence between
processes. Leading examples of process calculi are CSP (Communicating Sequential
Processes) [Hoare 1985], CCS (Calculus of Communicating Systems) [Milner 1980], ACP
(Algebra of Communicating Processes) [Bergstra and Klop 1987], pi-calculus [Milner et al.
1992a],[ Milner et al. 1992b], and LOTOS (Language of Temporal Ordering Specification)
[Bolognesi and Brinksma 1989]. Each of these provides access to different kinds of
techniques, automated tools and analysis. However, CSP has emerged as our preferred
formalism for three main reasons. First, CSP is well established for modeling concurrent
systems [Abdallah et al. 2004] making it a target for industrial and academic research and
development. Second, CSP gives access to several analytical tools like the industrial FDR2
refinement checker [Broadfoot and Roscoe 2000], ProBE animator [Formal Systems 2011a],
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CSP TypeChecker [Formal Systems 2011b], CSP-Prover [Isobe et al. 2007], Isabelle/HOL
[Camilleri 1990] ... These tools allow process expressions to be automatically checked for
properties, such as deadlock freedom and compliance with system specifications also
expressed in CSP. Third, CSP supports hierarchical development of process models.
Furthermore, CSP models can be transformed into other process algebra to enable analysis in
their domains. For a very comprehensive review of CSP, the reader should consult Hoare’s
book [Hoare 1985] and Roscoe’s Understanding Concurrent Systems [Roscoe 2010].

The basic building blocks of a HILLS coupled network are models, ports, and couplings. In
general, every model stands for an instantiation of a specific CSP process. The HILLS
framework maps the behavior of unitary models to Z. Here, we are interested in events that
are visible to the environment. In HILLS, these are realized with Ports. Ports are mapped to
CSP channels (compound events) with names and types. These channels belong to the
alphabet of some process. Processes communicate through compatible channels. Such
communications are analogous to couplings in HILLS. The couplings are modeled as parallel
composition of processes with appropriate synchronization sets demonstrating the flow of
objects between processes.

Generally, an arbitrary port of a HILLS model defines a logical point of interaction between
the model and its environment. A port typically represents the set of interaction events with
the environment through its interface. Hence, ports in HILLS can be mapped onto CSP
compound events. These events are realized through CSP channels. We define a translation
function y that maps a HILLS port to CSP channel local to corresponding process of its
associated model:
Y : Port —» Channel
Hence, if ¢ is the name of a port and T is the type of object communicated down it, we would
have that
Yp)=cT={cx|x €T} € X

HiLLS couplings are also mapped to CSP channels that are visible outside of individual
subcomponents: W: Coupling — Channel because they only relate to compatibles, which
exactly correspond to role of channels in CSP.

A model in HILLS is defined by a set of ports (input and output ports) and a component
specification that represent the abstract behavior of the model. Since models can have many
ports, ports allows a model to define multiple interface to its environment. A HILLS model
can be mapped to a CSP process. The alphabet contains only external events (or channels).
We define a function M that maps a HILLS model to CSP process
M : Model — Process
Hence, if A, is a HILLS model and S;;,;¢rnq: represents the set of all internal events,
M(Am) = Py \ Sinternat = Ap

Where Py is a process and the alphabet of A, is given as

aA, = U{Y(p) | p € ModelPorts}

HiLLS unitary models are represented by their equivalent abstract processes where data
transformation is not taken into account. This CSP abstract process takes into account only
events. Each event in the equivalent CSP process is an abstract representation of a HiLLS
operation which defines the real state changes and communication effects caused by its
occurrence. A unitary model is translated into a process which is written as an external choice
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of all its possible events, where after an event occurrence, the process recursively offers all
events again.

Let M =< State, Init, Ops > be a unitary model represented in its Z-based form as a state
schema State, init schema Init and operations Ops where

Ops = {tZ| t € Tine} U{tZ|t € T} U {{tZ| t € Tconf}} where tZ is the equivalent Z
operation schema of the transition t. It comes naturally that Ops is a finite set because the
number of transitions in HiLLS model is finite.

The equivalent CSP process of M is as follows:

P(M) =[lcom opeops PTe com_op A op = P(com_op(State,))

Composite models are top level processes composed of other processes with defined
synchronization between them.

We refer to the equivalent CSP process of a model by its name.
A composite model in HILLS is composed of several interacting models. These models are
coupled or connected via port attachments or couplings. Communications between the models
take place between ports that are compatible. Such communication is synchronous and can be
generalized as follows.
Composite models belong to the domain of the function M. Hence, if C is a composite model
there exists an equivalent CSP process.
M(C) = C,
Let Sub be the set of all sub-models of the coupled model C. Then
V= ”P:Sub (P[[RC]]rXp)
V' is the parallel composition of all the sub-models.
Cp =V [[REC]D \ Hic
This is the n-way parallel composition of all the sub-models in Sub. Where
P[R.] is a renaming operation that changes port names to coupling names:
X, represents the alphabet of P. This is the set of external channels (after renaming).
V [Rgc] is the renaming operation used to rename coupling names from a sub-model to
the name of an external port of the composite model.
H, ¢ denotes all the internal couplings that are hidden.

We illustrate the HiLLS to CSP transformation by using the example shown in Figure 52.
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[P:I X.c == self.a; I:lzl E:I Q.i==P.h; I:lzl
Y.e == X.d; b cCl| self.d ==Q; d:D

self.b==Y.f; Tnit

P.g == Self.a;
Init: Q.i==P.h;
X.c == self.a; Self.d == Q.j; am
Y.e == X.d; Ijil 'F
self.b==Yf; working

true >
Q

working
true

‘ YMm
N er

Figure 52. Illustration of HILLS to CSP translation

A is a composite model with input port a and output port b. It is composed of two sub-models
(X and Y). X is a composite model with sub-models P and Q and ports c and d. For the
composite model A, we note m as the name of the InputCoupling between X and A, u is the
of the InternalCoupling between X and Y, and r is the name of the OutputCoupling
between Y and A. For X, r is an InputCoupling between X and P, s is an InternalCoupling
between P and Q, and t is an OutputCoupling between between Q and X. We start with the
composite model X with unitary models P and Q. For these two we assume to have some
definitions at hand (e.g. as given by their IOS definitions in Z) and just use their names: P, Q.

To determine the process term of the coupled model X, first we have to compose processes P
and Q in parallel. Note that for communication to take place between two processes, they
must synchronize on a common channel. So if we use the names of the ports h and i attached
to the ¢, communication cannot take place. Instead, we use the name of the coupling in the
synchronization set and carry out an appropriate renaming of the port names to the coupling

names on the coupled model by P [[S' r/ h g]] which renames h and g to s and r respectively

and Q HS, t /i jﬂ which renames 1 and j to s and t respectively. Thus the communication
between P and Q is modeled by the CSP paradigm of synchronous communication:

P[*7 gl ot 0[]

To complete the process description of the coupled model X, the channel r has to be renamed
into ¢ (the input port of X) and t has to be renamed into d (the output port of X). Finally, the
internal channel (InternalCoupling) s between P and Q has to be hidden. Hence

X=(P[* /g s @[> ;D \isp ﬁc’ i, tm

We hide the channel s because when X is treated like a component within another composite
model, channel s is seen as an internal event. The only visible channels become r and t which
are accessible from the outside by ports ¢ and d. We can apply the same principles to derive
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the CSP process of the complete network A. The communication between processes X and Y
is also modeled by the CSP synchronous communication model:

m,u u,v
X[™ %, al i o ¥ [ ]
Hence, the process description of A is:

A=&™ Y gl i Y[V D N“' */rm, vm \ {u}

For the example we have considered, the coupled models have at most two sub-models. In
more practical examples, this is not usually the case. We shall show how to derive the CSP
process description of a coupled model with more than one sub-model. This would also be
realized by a parallel composition of the child models. Generally, from CSP theory, if we
have three concurrent processes (P, Q and R) with X, Y and Z being their respective alphabets.
The parallel composition can be given as:

(P xlly Q) xuvllzR = P xllyuz (QY”ZR)

In composing a large network, we use the indexed notation for n-way parallel composition:

i1 (P, X)) = Py xillxau.uxn (oo (Proq xot T xn By) o)

Consider the example the coupled model below with three atomic models P, Q, R (Figure 53).

PM

|:1>:| P.g == self.a;
T P.f==Q.k
Q.j==P.h;

R.p==Q.n
R.g==P.i

RM R self.c==Q.m;
> \’ Self.d==R.r;

Self.e==R.s

Init
P.g == self.a;
P.f==Q.k;
Q.j==P.h;
R.p==Q.n
R.q==P.i
self.c==Q.m;
Self.d==R.r;

Self.e==R.s ’\Q

working
true

Figure 53. Translation of HILLS composite model to CSP

After carrying out the renaming operations of the ports to the coupling names, we have

ltl ) ) ) ) ) ) )
Pﬁx y O/f,g,h,im’Q [[y X, W Z/',k,m,n]] andR[[O zZ,u v/q,p,s,r]]-

The parallel composition of processes P, Q and R becomes:
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IfX ={x,t,y,o}and Y = {y,x,w, z}, and Z = {0, z, u, v}, then

lt’ ) ) ) )
V=(pP ﬁx Y O/f,g,h,iN xlly @ [[y oY Z/j,k,m,n]]) xovllz R[” %% Y /q p,s,7]

x,t,¥,0,w,z, u are the names of the couplings between RM, P, Q and R

V' is the parallel composition of all the sub-models. Thus, the process description of the
composite model A is defined as follows. Let S be the set of internal coupling channels that
would be hidden to form the composite model A,

S={xy,0,2z}

A= (V\S) ﬁa,c,d,e/t,w’v’u‘m
IV.6 Tooling Framework

The HILLS-to-DEVS mapping allows the automation of simulation code synthesis since
already implemented DEVS simulators are available. Formal analysis of HILLS models are
also done by taking advantage of already existing tools using model-driven techniques. A
critical aspect of success of Model Driven Software Development (MDSD) is using a
common metamodel. In our case, the EMF’s Ecore is the meta-modeling language because
HILLS graphical editor is developed using Eclipse Framework. The federated tooling
framework, as shown in Figure 54 , permits to transform concepts of the architectural model
of HILLS (HILLS.ecore) into the semantically equivalent concepts of the architectural models
of the formal methods chosen, for example CSP.ecore, Z.ecore, and CTL.e (corresponding to
the three levels of abstraction in HILLS). All these architectural models conform to Ecore.
Thereafter, a semantic mapping (or meta-transformation) that relates the architectural
concepts of the HILLS meta-model to the semantic equivalent elements in the meta-model of
the input languages of the tools is defined. This mapping is done at two levels: Model-to
Model Mapping (meta-model mapping of HILLS to the input languages; done with
QVT/ATL) and Model to Text mapping (mapping the meta-models of the input languages of
the tools to textual templates for code generation; done with JET/XPand/Acceleo). The tool
integration methodology is based on a model-driven plugin architecture consisting of the
HILLS graphical editor (for creating the models) and Transformers.

The transformers are at the core of the development of the federated tooling framework. Their
main function is to transform the model files created by the graphical editor to the input files
that would be used to feed the tool for formal analysis.
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Figure 54. Overview of HIiLLS tooling Framework

V1.7 Conclusion

We have given, in this chapter, the translational semantics of HiLLS, opening the way to
simulation, formal analysis and enactment of HiLLS-specified models:

For simulation, we have mapped HiLLS onto DEVS (for general systems) and onto
DSDEVS (for variable structure systems).

For enactment, we have presented an Object-Oriented framework that provides a
template to guide the synthesis/writing of program codes from HiLLS models and the
protocol for real time enactment of system's behavior. The main idea is to be able to
generate or specify an operational model in form of software systems to verify and
validate the real-clock time behavior of system models with respect to requirements.
For formal analysis, we have presented semantic mappings between HiLLS at one
hand, and Z and CSP at the other hand. These mappings allow the use of Z-supported
tool (like Z/EVES) and CSP-supported tools (like FDR). The semantic relationship
between HiLLS and CTL is still in investigation to provide a formal way of expressing
trace-based properties. This is part of our future work.
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V. Application
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V.1 Introduction

HILLS describes the possible system behavior in a mathematically (using state transitions and
Z-based specifications of data and operations) precise and unambiguous manner. The domain
modeling capability of HiLLS enables domain experts to participate in the system
development process by capturing their domain knowledge in precise and comprehensible
models on which other technical experts can collaborate. The HILLS specification of models
provides the basis for many verification techniques ranging from model checking, theorem
proving, simulation, or model-based testing. Once the HILLS model is built and properties are
formalized using the appropriate property specification language, possible analyses may
consist in:

- Studying system behaviour and producing traces of it by using HILLS simulators or
DEVS-based simulators. At the first time some simulations can be performed before
any other form of verification to eliminate simple modelling errors. Even though a
specification has been successfully and formally verified by model checking or
theorem proving techniques i.e. no errors have been detected. This does not guaranty
total absence of design flaws because only correctly formulated properties or theorems
have been verified. For example, some required behavior may have been omitted in
the modeling phase unintentionally, or some important requirements may not be
discovered and formalized or may be stated incorrectly. There is no guarantee that
formal analysis will detect these kinds of errors. Simulation is necessary in these cases
to explore the behavior of the system and probably discovering faults and completing
the requirements.

- The precise modelling of discrete event dynamic systems often leads to the discovery
of incompleteness, ambiguities, conflicts and inconsistencies in informal
specifications of the system under study. It is necessary to check these conflicts in
specifications earlier because such problems are usually only discovered at a much
later stage of the design. A first step in identifying ambiguities, conflicts and
inconsistencies in the specification is to run partial checks while doing the
specification of the model. This is very helpful to drive a complete and concise
specification in an incremental specification process. More can be done after the
specification is achieved (e.g., verifying that there is an initial state), since such a
specification is opened to all the verification and theorem proving means that are
available in the tooling framework associated to selected formal methods.

- Demonstrating properties. Given a formal definition of requirements through
experimental frames, and a formal specification of the model, theorem proving tools
or model checking tools can be used to assist in proving that the specification meets
the requirements, i.e., that the experimental frame can be applied to the model and the
expected results correctly obtained. For each property of the system, the model
checker analyzes system states to check whether they satisfy the desired property. If
model checker reaches a state that violates the desired property, the model checker
provides a counterexample that indicates how the model could reach the undesired
state. The counterexample describes an execution path that leads from the initial state
to a state that violates the property. HILLS simulators can be used to replay the
violating scenario, to obtain useful debugging information, and adapt the model (in
case of modeling error) or the property (in case of property specification error) to
resolve the problem. If the property verification by model checking doesn’t provide a
result, theorem proving can be used or try to reduce the model and repeat the process.
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This can open the way to the management of models libraries in one hand, and
experimental frames libraries in the other hand, and automatic selection, retrieval and
matching processes.

- Internal consistency checks: checking that each class operation preserves the model
invariants.

- Semantic consistency checks: semantic consistency checking can consist of checking
that model invariants are preserved, conflicts do not exist between invariants defined
in the domain model and constraints defined in the discrete event behaviour of the
model, no inconsistencies exist between operation specifications of a HiLLS class and
state machines configurations and transitions.

We present in this chapter some applications of HiLLS in modelling and analysis of complex
systems.

V.2 Alternating Bit Protocol

The alternating bit protocol [Bochmann and Gecsei 1977], is a communication protocol being
used for the transmission of messages. This protocol is conceived to make reliable
transmissions even in the situations of errors. An error can occur when the communication
channel is disturbed. These disturbances can cause a loss, deterioration or duplication of
transmitted messages. In this case, only the transmissions made successfully are taken into
account, when an acknowledgement of delivery is sent to the source of the message. The
protocol ensures also the fact that a message is not lost definitively.

The communication protocol has the following components: a transmitter (Sender), a receiver
(Receiver), two transmission channels: a channel for the transmission of the messages and
another for the emission of acknowledgement of delivery.

Each communication channel is assumed to be a FIFO (First In First Out) channel such that
messages are treated in the order in which they enter the channel. The instantaneous reliability
of a communication channel may be affected by factors such as congestion levels and the
presence of disturbances from the environment. Depending on the channel's condition, a
message may be delivered immediately or after some delay to the other end of the channel. It
may also be duplicated or lost within the channel.

The basic idea in the alternating bit protocol is that each message accepted for first
transmission is tagged alternatively with 0 or 1 called control bit. This control bit used to
distinguish retransmissions of previous message from transmissions of new messages. The
tagged message is then periodically retransmitted until the tag is returned by the receiver as an
acknowledgement of message receipt.

The Sender accepts a message from its environment and sends it to the Receiver component
via the communication channel dedicated to transmitting messages. When the receiver
receives the message with the good control bit, it delivers it to its environment and sends (via
the transmission channel dedicated) an acknowledgement consisting of the control bit of the
message just received to the transmitter (Sender) which authorizes it to accept a new message
and to transmit it with a control bit equal to the opposite of the control bit of the previous
message. To ensure reliability of communications between Sender and Receiver in the
presence of possible message losses, Sender resorts to retransmissions if the
acknowledgement is not received after a defined waiting period by resending the message
(with the same control bit) on the assumption that the message is lost in the channel. This
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process is repeated until the expected acknowledgement is received when the next message in
the buffer (if any) is sent with a control bit which is the binary complement of that of the last
message sent.

—b[ Input:Message } . Alternating Bit Protocol

.......

. >| msgin:Message msgOut:Message |+« «

| senderl msgOut:Message I .., P msgln:Message | receiver :
ack:{0,1} : : ack{0,1}d+.  +
— : L

Generator C e P| msginMessage e . Accumulator
: . ol ackin.1

Message : .. .>| output:Message
channel .
: ack channel
msgOut:Message | .
ackOut:{0,1} |, ...

.
.................................................................

Experimental Frame

---------- p Communication within ABP — Communication between ABP and Experimental Frame

Figure 55. Alternating Bit Protocol and its Experimental Frame

Figure 55 shows a block diagram of the protocol coupled with an experimental frame. The
experimental frame is a representation of the environment within which the ABP specification
is observed. The Generator and Accumulator represent the source and destination respectively
of the message being transmitted using the protocol.

V.2.1 HiLLS specification of ABP

Figure 56 shows a black box view of the ABP's specification in HiLLS showing the various
components of the system with their input and output interfaces as well as the hierarchical
composition of the entire system. The ABProtocol has four components: sender (an instance
of HSystem Sender), receiver (an instance of HSystem Receive), msgChannel (an instance of
HSystem CommLine[T] with T as Message) and ackChannel (an instance of HSystem
CommLine[T] with T as Integer). Each of sender and receiver has a complex attribute buffer
which is a list of instances of HClass Message. CommLine[T] is a generic(template) HSystem
for communication lines, hence msgChannel and ackChannel are communication lines for
transmitting messages (Message) and acknowledgement bits (Integer) respectively. Message
is modelled as an HClass and not HSystem for the same reason that it is considered to be a
non-autonomous object. It can be seen from Figure 56 that the specification consists of a
composed HSystem ABProtocol with hcomponent references to three atomic HSystem
specifications: Sender, Receiver and CommLine[T]. We will zoom into one of the
components, and the composed system to show the details of their internal definitions. We
expect that this will be sufficient to show the reader the differences between the internal
details of an atomic and a composed system specification in HiLLS. The main difference
between the two is that a composed system defines couplings between its components while
an atomic system does not.
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Figure 56. HiLLS metamodel of the alternating bit protocol

V.2.1.1 HIiLLS' specification of Message

buffer

Message HClass is shown in Figure 57. The state schema declares two state variables header
with a constraint that restricts the possible legal values of header to 0 or 1 representing the
header (control) bit of the message. The Init specifies the default values of the state variables.
In addition to the Init, four operations are defined. It is important to state here that every
operation with a defined type has an implicit output variable, out!/, having same type as the
operation. This out! variable used to store the output produced by the operation. The
decorations '!" and apostrophe (') is a notation we have adopted from Object-Z to denote
output variables and the final value of a state variable after an operation is executed

respectively.

V.2.1.2 Generator

Message

header:Z
content:Z2

header € {O,1}

rinit
header = O
content = O

r+ getHeader[ ]|[Z]—
[ out! = header
r+ setHeader[in:Z]|[ ]-

ine {0,1}

header’ = in
r+ setContent[in:Z]|[ ]-
[ content’ =in

r+ getContent[ ]|[Z ]—
[ out! = content

Figure 57. Message HClass
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The Generator (Figure 58) represents the component of the experimental frame that is
responsible of generating messages to send for the sender. The Generator has an attribute
messages which is a sequence of Message and a real parameter hatchingPeriod which is
the time period that it spends before generating a new message (hatch()) for transmission
through the unique output port outPut. It has only one configuration which duration is
defined by the parameter (duration = hatchingPeriod).

Generator

| messages : seq; Message

| hatchingPeriod:R output:Message
| hatchingPeriod = 5.5

- hatch[ ]|[ ]

output! = head( messages)
messages’ = tail(messages)

hatch()

hatching
true

duration = hatchingPeriod

Figure 58. HiLLS model of the Generator

V.2.1.3 Sender

The Sender model is described by the HSystem in Figure 59. Sender has an attribute buf fer
(Figure 56) which is a sequence of messages for storing messages for transmission. Sender
also has an attribute flag of type integer that represents the control bit of the last transmitted
message and a parameter waitinPeriod that define the waiting duration of the Sender after
the sending of a message. It is duration after which the Sender timeout and resend the
message remaining in buf fer.

The sender has two ports: a port msgln for the acceptance of the messages from the
environment and a port ack for the acknowledgements of delivery. It has an output port
msgOut for the transmission of received messages with their control bit. Initially the buffer is
empty (buf fer =<>) and the flag is equal to zero (flag = 0); this situation corresponds to
the idle configuration. When a new message is received in the idle configuration, the sender
adds it to the buffer (buffer' = buffer Nn< m >), flip the flag (FlipFlag()) and set the
control bit to the actual value of the flag (head (buffer).setFlag(flag)) for transmission
in the transient sending configuration.
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Figure 59. HiLLS model of the Sender

V.2.1.4 Receiver

Receiver is described by the HSystem in Figure 60. Recall from Figure 56 that Receiver has
an attribute buffer, which is a collection of messages as depicted by the containment reference
from Receiver to Message. Figure 56 shows an additional state attribute, flag of type integer
whose legal values are restricted to the elements of the set {0,1} by the state constraints.
When a new message is received, its header bit is extracted and stored in flag before it is
acknowledged and delivered; the value of flag is compared to the header bits of subsequent
messages that arrive, same value implies duplicate messages while a different value implies a
new message. This behavior is described in detail by the fourth compartment. The receiver
has a global variable, indicator of type Colors as defined in the second compartment. This
variable is used to model the light indicator as an activity that manifests the instantaneous
states of the system to an observer in real time. It has an input port, msgln of type Message
and two output ports, ack and msgOut of types Integer and Message respectively. Messages
are received through the msgln and acknowledged through ack while messages are delivered
(without duplicates) to the target device through msgQOut.

The third compartment contains the /nit and two operations, setFlag and checkHeader. The
fourth compartment contains the description of the system's behavior with the configuration
transition diagram. Two configurations, waiting and receiving are defined with predicate
properties buffer = <> and buffer #<> respectively. i.e., each configuration is assumed
whenever its specified predicate (on the state variables) is satisfied. Hence, from the
specification of the /nit, the initial configuration of any object of Receiver is waiting. At the
assumption of each configuration, the activity function invokes the display operation which
displays the specified color of light indicator for a period equal to the sojourn time of the
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configuration. For example, the yellow indicator is displayed during the waiting
configuration. Since waiting is a passive configuration as depicted by its concrete
representation, the system remains in this state until a message m is received at the input port
msgln which triggers an external transition to the receiving configuration.

The computation accompanying the transition adds the received message to buffer which
leads to the satisfaction of the property of the target configuration. The prime decoration on
buffer' in the computation indicates its final state after the transition. The receiving
configuration is transient, hence an internal transition occurs automatically; the first
computation invokes the checkHeader operation to determine whether the received flag has
the same flag as the current value of flag. Note that the flag stores the header bit of the last
message received, so if checkheader returns frue, it means the received message is a duplicate
of the previous one; hence only acknowledgement is sent to sender by taking the path
described by the upper arrow to waiting configuration. If checkHeader returns false, the
message received is genuinely a new message; hence it is acknowledged and delivered as
described by the operations accompanying the lower arrow that leads to the waiting
configuration.

Receiver
: [ﬁ' gJ flag ._-z : Colors = Green|Yellow E‘C%E
msgin. Vessage flag = 0 4 fag <1 indicator-Colors MmsgOut:Message
buffer
~ [l start [JI[ ]~ — [- JeheckHeader [ ]|[Bool] . 0.1
P If head{buffer).getHeader{)== flag Message
ag = Then out! = trus e
buffer’ =<> Else aut! = false s
—_— Endif content; Z
r—[ '!5ﬂﬂ:'ﬂﬂ [} - Jdisplay[in:Colors]|[ 1— header = {0,1}
[flag’ = head(buffer).getHeader() Tndlcatar = In
[+]start] J|[ ]|——
— ack! flag, buffer = tail{buffer) header =0
waiting content=0
’ ”_.F buffer==<= -+ getHeader| J|[Z]-
EAL display(Yellow) out! = header
S "
imsain?mi + setHeader[in:Z]|[ ]-
| 5
_____ L M
buffer' = buffer™<m> | ———— heckHeader() ;) header’ = in
Jisplay(Green) + setContent[in:Z]|[ ]-
content’ = in
setFlag(); ack! fag, ~+ getContent[ ]|[7 1-
msgOut! head{buffer); buffer’ = tail{buffer) out! = content

Figure 60. Receiver HSystem
V.2.1.5 Communication line

The Communication line ComLine[T] presented in Figure 61 is a unitary HSystem with
generic parameter T that is the type of data that can be transmitted through the line.
ComlLine[T] has one input port input and one output port output both of type T. It has two
configurations wainting (buffer =<>) and sending (buffer #<>). Initially, the
communication line waits for a data of type T (message or acknowledgment) in the waiting
configuration. At the reception of a message msg on its input port (input? msg), it adds it in
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the buffer and go to the sending configuration for the transmission of the message
(pushForward()) after some period (duration = 2 * delay()). It transmits, or delays or
lost the received message (pushForward())) depending on the level of reliability c_level of
the line and passes to the waiting configuration if =<> , and becomes ready to accept a new
message. If buffer #<> it go back again to the sending configuration. While in the
sending configuration the line can receive a new message which will be added to the

buffer.

CommLine[T]
buffer ; seqT
B c level : Z =
Ll level = 1 » level <4 o il
— [-] pushForward[ ]|[ ]—
buffer = <>
—[-Jreceive [in:T]|[ ]— Ifc_level =3 Then
- output! head(buffer);
buffer' = buffer “<in> buffer’ = lﬂ“l[buﬁ&l‘}j
Else
If ¢ level==3 Then
{-] delay [ ]I[F ] output! head|(buffer);
Else
level = (1.4) o .
buffer’ = tail{buffer);
out = ¢_level * len(buffer)/10 i (buffer)
Endif
[ e e e S e e e e N N N N N receiveimsgy), !
| I recelva(msgT 7| elmsg); |
p ([input?msn) . |
| L= sending [Input?msg]|
— waitin
L - buffer == pushFarward(); g
— - duration = 2 * delay() & buffer == <=
= hiffer = < =:
! [input?msg]
[ i :
receive(msg); pushForward();, |

Figure 61. The HiLLS model of the Medium
V.2.1.6 Accumulator

The Accumulator (Figure 62) is the component of the experimental frame that plays the role
destination of the messages transmitted. It has one input port input of type Message and one
attribute messages which is a sequence of type Message. The Accumulator only receives
messages (input?msg) and store them in messages (messages' = messages N<
msg >). It has no internal and confluent transition because it has no output port.
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Accumulator

>
input:Message

| messages : seq Message

Init
messages = <>

' |
| [input?msg]

|
: waiting
I_

- true

Figure 62. The Model of accumulator
V.2.1.7 Protocol

The definition of the ABP is described by Figure 63. An input port and an output port are
defined each having type Message. The state variables are described by the hcomponent
references sender, receiver, ackChannel and msgChannel in Figure 56. The predicate part of
the state schema defines the constraints that specify the ports that must be connected
(coupled) permanently. The connect() operation simply ensures the couplings are established
between appropriate ports at the creation of an object of ABProtocol. The first coupling
specification, sender.msgln=self.input, is an EICg that connects the an input port, input, of
ABProtocol to an input port, msgln of sender, which is one of its components.

ABProtocol

> sender.msgln == self.input; sender.ack == ackChannel.cutput;

output:Message

inputMessage || msqChannel.input == sender.msgOut; self output == receiver.msgOut;
receiver.msglin == msgChannel.output; ackChannel.input == receiver.ack;

onnect[ JI[ ]
sender.msgln =selfinput; sender.ack = ackChannal.output;
msgChannel.input = sender.msgOut; ackChannel.input = receiver.ack;
receiver.msgln = msgChannel.output; self.output = receiver.msgOut;

working

. connect() - s

Figure 63. ABProtocol HSystem

The couplings sender.ack = ackChannel.output, msgChannel.input = sender.msgQOut,
receiver.msgln = msgChannel.output and ackChannel.input = receiver.ack are all Internal
Couplings between peer elements of 4ABProtocol. In each case, the right hand side describes
the sending port and the receiving port is described by the left hand side. For example, the
first one states that the output port output of ackChannel is coupled with the input port ack of
sender. In the fourth compartment, only one passive configuration working is specified which
does not change. This implies that the composed model does not add any extra behavior to
that which is defined by the interactions between its components.

155



V.2.2 Equivalent models of the ABP in DEVS

To illustrate how HiLLS models are generated, we will show equivalent DEVS models only
for the Receiver and the Protocol itself.

To add clarity to the example presented here, we describe the message object based on the
rules presented in Section 5. Therefore, we represent Message as a mathematical object in the
form of a structure as:

Message = (V,F)

Where V and F are sets of variables and functions respectively. Therefore, from the HiLLS
specification of Message HClass in Figure 11, we derive V and F as follows:
V = {(header,Z), (content,Z)| header € {0,1}}

F = {getHeader, setHeader, getContent, setContent}
getHeader: Message — Z is a function that returns the header bit of a message
setHeader: Z — Z. is a function that sets the value of the seader bit of a message
getContent: Message — Z is a function that returns the content of a message
setContent: Z — Z is a function that sets the content of a message.

V.2.2.1 Receiver in DEVS
The Receiver in Figure 60 has no component, hence it is translated to an Atomic DEVS.

Receiverppys = (X,Y,S, 8int, Oexts Ocons, A, ta)
X = {(msgIn,Message)}
Y = {(ack,{0,1}), (imsgOut, Message)}

S = {((buffer,seq Message), (flag,{0,1}),
(phase, {waiting, sending}))| phase = waiting < buffer = (), phase = sending &

buffer + ()}

The state variables flag and buffer constitute a subset of the S in DEVS and the complement is
provided by the variable phase whose domain is the set of configuration names specified in
the fourth compartment of the HSystem in Figure 60. The collection of the properties of each
configuration constitute the predicate part of set S.

V.2.2.1.1 Internal transition function, 8ip;: S — S

dint(sending, buf fer, flag) = (waiting, tail (buffer), flag),
if head(buffer).getHeader() = flag

St (sending, buf fer, flag) = (waiting, tail (buffer), head(buffer). getHeader( )),
if head(buffer).getHeader() # flag

The derived internal state transition function is described by these two equations. From a state
in which phase = sending and if condition is satisfied, then an internal transition event will
result into a state in which phase=waiting, buffer is its initial value before transition without
the first element and flag's value retains its value before transition. This equation is derived
from the upper path from sending to waiting configuration in Figure 60 by extracting all
computations along the path except those meant for sending output events to some ports. Any
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state variable that is not modified in the computations is assumed to be unchanged; that is the
case with flag as it is not modified in the computations and it is reported in the derived DEVS
model as unchanged.

Similarly following the lower path from sending to waiting in Figure 60, from a state in which
phase = sending and if condition is satisfied, then an internal transition event will result into a
state in which phase=waiting, buffer is its initial value before transition without the first
element and flag has a value equal to the output of the function invoked in the third element
of the triple (target state).

V.2.2.1.2 External transition function, 8qyp: S X R* X X2 > §

Sext ((Wwaiting, buf fer, flag),e,m € Message) = (sending, buf fer ~(m), flag)

From a state in which phase=waiting and the corresponding predicate stated is satisfied, the
receipt of an event m € Message will trigger an external state transition into a state in which
phase=sending, buffer is equal to its value before transition with the received event m
appended to the sequence and flag's value is equal to its value before transition. This equation
is derived from Figure 60 by following the external transition from configuration waiting to
sending, the trigger [msgln?m] translates into the input event m € Message where Message
is the type of input port msg/n in Figure 60.

V.2.2.1.3 Confluent transition function, 8p:S X X? — S

No confluent configuration is specified in Figure 60, hence 6,,:(s) = 0.Vs € S
V.2.2.1.4 Output function, A: S — Y?

A(sending, buf fer, flag) = {(ack, flag), (msgOut, head (buffer))},
if head(buffer).getHeader() = flag

A(sending, buffer, flag) = {(ack, flag) }, if head(buffer).getHeader() # flag

The derived output functions are described by these two equations. They are obtained by
traversing the (non-external) configuration transition paths in a HiLLS specification and
extracting the output expressions if any. The first equation is derived by traversing the lower
path from sending to waiting in Figure 60; this path contains two output instructions
ack!=flag and msgOut!=head(buffer) which translate into (ack, flag) and (msgOut,
head(buffer)) respectively. Similarly, the second equation is derived by traversing the upper
internal transition path from sending to waiting in Figure 60.

V.2.2.1.5 Time advance function, ta:S - R U {+o0}
ta(waiting, buf fer, flag) = +,V buf fer € seq Message, flag € {0,1}
ta(sending, buf fer, flag) = 0,V buf fer € seq Message, flag € {0,1}

The time advance function derived from the HiLLS specification in Figure 60 is described by
these two equations. They are simply derived from each configuration by extracting the
specified sojourn time. In this example, the two configurations specified have pre-defined
sojourn times inherent in their concrete representation as explained previously in Section 4;
the passive configuration waiting has a pre-defined sojourn time of positive infinity while the
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transient configuration sending has a pre-defined sojourn time of zero. Supposing a finite
configuration is specified, the sojourn time defined by the modeler will be extracted to build
the time advance function of the DEVS equivalent model.

V.2.2.2 ABProtocol in DEVS

ABProtocol (Figure 63) translates to a Coupled DEVS model because its set of hcomponents
is not empty.

ABProtocolpgys = (X, Y, D, {My}4ep, EIC, IC, EOC)
X = {(input, Message)}

Y = {(output, Message)}

D = {sender,msgChannel, ackChannel, receiver}

X and Y are derived from the input and output interfaces respectively of Figure 63. The set D
is built from Figure 56 by extracting the names of all hComponent references having
ABPRotocol as source. The set {My},¢p refer to the complete DEVS equivalent of each of
the target HSystem of the hComponent references from which set D is built. We have
provided the DEVS equivalent of the HSystem referenced by receiver € D.
i.e., Receiverpgys. Therefore, M,oceiver = Receiverpgys. Similarly, if the detailed
specifications of other HSystems in Figure 56 were given, then we would have M.z =
Senderpgys, Muckchamer = CommLine[ Z] ppys and  Mysgchanmer = CommLine[Message] peys.

From Figure 56, the DEVS coupling relations can be derived from the coupling predicates
specified in the Init schema as follows:

The RHS of a coupling predicate translate to the influencer system and port of the DEVS
coupling predicate while the LHS translate to the influenced system and port. We provide a
comprehensive guide in Figure 64 to remind the reader of how to identify to which of the
three coupling relations it belongs. For example, considering the first coupling predicate.

LHS (Left Hand RHS (Right Hand .
. . Coupling
Side) Side relation
System port System port
deD input self input EIC
deDbD input deD ?utpu IC
Self output | d €D (t’“’p u EOC

Figure 64. couplings mapping

sender.msgin = self.input; LHS = sender.msgln and RHS = self.input (self = coupled model
in context), the system reference of the LHS belongs to the group d € D (i.e., a component)
and its port reference refers to an input port. The system reference of the RHS is self and its
port reference is also an input port; therefore, this coupling predicate translates to an element
of EIC as shown below. The remaining five coupling predicates can be translated in the same
manner to derive the elements of EOC and IC below.

EIC = { ((self,input), (sender,msgin))}
EOC = {((receiver,msgOut), (self, output))}
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IC = {((sender, msgIn), (msgChannel, input)),
((msgChannel, output), (receiver,msgin)),
((receiver, ack), (ackChannel, input)),
((ackChannel, output), (sender, ack))}

Suppose we have an experimental frame comprising a message generator and a message
acceptor representing the source and destination of messages respectively, we can couple the
two to the input and output respectively of the ABProtocol to simulate the behavior of the
protocol. We may couple these components with the protocol to obtain a closed system
described as:

ABPeprrame =<X,Y,D, {Md}dep, EIC,IC,EOC >

X =Y = {} because it is a closed system.
D = {generator, abp, accumulator}
{M;}aep: Mgenerator = Generator, Mgy, = ABProtocol and Myccymuiator =

Accumulator

EIC = EOC = { } because it is a closed system.
IC = {((generator, output), (abp, input)),
((abp, output), (accumulator, input))}.

V.2.3 Z specification and Analysis of the ABP

Each unitary model is translated in Z notation in Z/EVES theorem prover. Operations pre and
post conditions are verified. The composite model of the protocol is a CSP process.

The Message class is translated to a state schema Message and operation schemas (Figures
65-67): Init, getHeader, setHeader, getContent and setContent;

T LIV - LA T Dokt L Aapb i e )

¥ |¥ Aessage

header: £
content: £
header= {0, 1]
¥o|& Tt
Adetvape

header' =10

cortet' =10

Figure 65. Message and Init
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content’ = content

L TR
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atil?! = content
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hewider' = Turcid

content' = ind?

Figure 66.getHeader and setHeader

Figure 67. getContent and setContent

The receiver specification in Z consist of the state schema Receiver, ReceiverStatus

enumeration

(Figure

68)

and

operation

schemas:

InitReceiver

(Figure

72),

waiting2senting TransitionExt (Figure 72), senting2waitingTransitionINT1 (Figure 74), and
sending2waiting TransitionINT2 (Figure 75).

Y | ¥ | RecelverSiatus
Y| N Recetver
fag: &

flag & [0, 1]
i Eagffer < 1
configuration
configurarion

bufler: veq Mexsage

wafting | vending

confignration: RecelverStatus

waiting & buffor

i

sending < hyfler & ()

Figure 68. Receiver in Z
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Z/EVES tool offer an automatic support for checking for errors (syntax and type checking,
domain checking, consistency checking) and exploring a specification (schema expansion,
preconditions, invariants, refinement, test cases, test theorems). The specification can be
checked incrementally and user can solve errors accordingly.

Domain checking is a strongly recommended verification to do with Z specifications. When
we checked the Receiver schemas, its status in the left of the tool shows that it is syntactically
and type correct, but that it has an unproved goal. Selecting “show proof” shows the following
predicate (Figure 69):

i LEES - U i Tooumerinidop L i" .l =1

e | Wb ] |

P Frad 50 b Fve s brsad Tesl

weeee (ACTOD point) ——-—
prove by reduce
* | prove by reduce

Fohamins | Canes | Dossutioms | Warsmiierins | Foscie |

Fuowby

flage

~ buffer e seq Message

~ configuration £ Receiver Statis
s flage {0]w{l]

Figure 69. Show proof of Receiver State schema

There is one conjunct to prove in the conclusion. To prove it, some simplifications are
necessary. We can do this by using a rewrite or reduce command. The rewrite command
produces the following result (the predicate is proven to be true) (Figure 70):

a1 DPRES - il T Cooumerin gLl I“ 'I =1 i

| Wt =il

e Frad 50 b P b brswd Tesl

¥ | rewrile

e (ACTION pOiNL) e
prove by reduce

2 | prove by reduce

* | prove by reduce

Pakatiny | Canis | (isntioms | WarmplFoid ru_-‘p-!

e

rue

Figure 70. Proof of Reciver state schema

161




The proof by reduce command produce the same result (Figure 71).

T LEES - S e Cooumerinilop il = | 7
£ | | == 4] ] n ] o
Ran Frad 720 ki S bbireniTel

¥ | prove by reduce
----- {action point) ———-
prove by reduce
2 | prove by reduce

Prehaters | Dot | Dmiimns | MormidForms | Fipsolre |
Fupindi

frue

Figure 71. proof by reduce of Receiver state schema

The waiting2sendingTransitionEXT operation schema corresponds to the mapping to Z of the
external Transition going from waiting configuration to sending configuration in HiLLS
specification of the Receiver.

Y| ¥ | __InitReceiver
AReceihver

fag'=0
huiffer® = 0

¥ | N | waitingZrendingTransinonEXT

ARecenver

mseln?: Message

confighvalion = wailing
biyffer’ = buffer {msgin?y
configuration” = sending

|

Figure 72. Init and waiting2sendingTransition
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Figure 73. show Proof on waiting2sendingTransitionExt

The senting2waiting TransitionINT1 and senting2waitingTransitionINT2 operations schemas
are the mapping to Z of the conditional internal transition from sending configuration to
waiting configuration.

il B senelimg 2watting TransitionINT
Aflvceiver

ack!; &

canfigiation = sending » checkiHeaderd
ack! = flag

Buffer' = pall byyffer

conflguration’ = waliing

Figure 74. sendint2waintingTransitionINT1

* || —sending 2waiting TransitfonINT2
AReceiver

msgCnt!: Message

ack!: 2

configuration = sending » —checkfHeader()
ack! = flag
misgC! = head buffer
buffer' = tatl bufler
configuration’ = waiting

Figure 75. sending2waitingTransitionINT2

163



By checking the specification of  senting2waitingTransitionINT1 and
senting2waiting TransitionINT2, Z/EVES shows that the syntaxes are not correct (Figure 76)
and the schemas are not proved to be consistent.

NN sending 2watting TransitfondNT2
AReceiver
msgCnt!: Message

u'n:'-‘. !\ -'"

configiration = sending » —checkHeader()
ack! = flag

msgeCs! = hoad biffo

bugffer' = rall buffer

configriration” = waiting

Figure 76. syntax error in sending2waitingTransitionINT2

In Z/EVES, one can also check if initialization of the system is possible, i.e. initial state exist
with respect to the constraints of the initialization schema. For the Receiver we have to prove
the following theorem (Figure 77) in order to show that initial state exists and the state
schemas Receiver is consistent:

I | N | theorem CanfnitRecetver

::RI:I diver’s ﬁ Recever

Figure 77. Existence of initial state

The Rewrite command has failed to prove the theorem (Figure 78).
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Figure 78. unsuccessful proof of the theorem

The prove by reduce command has succeeded to prove the theorem (Figure 79).

Rttt . . T - E =0 -]
< | M l_.' T o
e Swad 5 18 i sttt

¥ | prove by reduce
~—— {action point) ——
2 | prove by reduce

Pockanr | Conas | Doty | WarmsiToms | Fnacke
Fussnds

AReceiver|buffer = (), configurationconfiguration, flag = 0] il
- flage 2
~ buffer € seq Message

~ configuration € ReceiverStatus

A brfler < 1

~ Leonfiguration = walting <> hiffer = ()
Alflag =0 flag = 1)

a Lbuffer = { v canfiguration = sending)

|
Figure 79. proof of the theorem

It is also possible to check for local inconsistency by using similar theorems.
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More verification can be done by using the history of the model (example for Sender) (Figure

80).

Figure 80. Trajectories in Z

The schemas trajSender allow one to express complex properties on trace of the model such
as safety and liveness properties and fairness constraints. These properties can be written in
temporal logic formulas and translated into Z theorem because Z/EVES does not support
directly temporal logic formulas.

V.3 Automated Teller Machine (ATM)

We present a model of the mechanical processes of the Cash Deposit Module (CDM) of an
Automated Teller Machine (ATM) to illustrate dynamic structure system modelling and
analysis with HiLLS.

The Cash Deposit Module (Figure 81) allows a customer to deposit a bundle of currency notes
into an account. It composes six components that collaborate to process the bills. It first
checks the genuineness of the bills presented by checking for some security properties, any
unrecognized bill is returned to the customer. The accepted bills are temporarily held in the
machine to request for a confirmation of the transaction from the customer. If the transaction
is confirmed, the bills are permanently stored in the machine while the transaction runs to
completion. Otherwise, the bills are returned to the customer while the transaction is being
cancelled. The following are the components and their respective roles in processing the bills.

I.

Bundle Accepter (BA): It receives a bundle of currency notes (maximum of 50 per
transaction) from the input slot and sends one bill at a time for processing. After
sending the last bill, it notifies the controller. It also receives returned bills from the
machine and present them in a bundle to the customer in the event of unrecognized
currencies or cancellation of transaction. It is guarded by a shutter that opens only at
the beginning of a transaction and when returning notes (in the case of rejection or
cancellation of transaction)

Bill checker (BC): It receives a bill at a time from the BA and investigates its
genuineness. Accepted and rejected notes are passed on to the to the escrow and reject
box respectively.

Escrow (ES): A temporary stack area for validated bills until the transaction is
confirmed or cancelled. In the event of confirmation, the bills are sent to the cassette
for permanent storage. If the transaction is cancelled, the bills are sent to the reject
box. The ES has only one output slot that may be linked to either the reject or the
cassette depending on the situation. ES has a maximum capacity of 50 bills per
transaction

Reject box (REJ): stacks rejected notes and returns them in bundle. A temporary stack
area for rejected and returned bills. Upon receiving the appropriate control instruction,
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the stack is transferred to the BA for onward delivery to the customer. REJ has a
maximum capacity of 50 bills per transaction

5. Cassette (CAS): A permanent stack area for deposited bills. It has the capacity to
accommodate 3000 bills. The bills are manually evacuated by the custodian of the
machine

6. Control Board (CON): A micro-electronic board that coordinates the activities by
maintaining the flow of communication signals to activate some components when

necessary.
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Figure 81. Domain Model of the CDM

V.3.1 HiL.LS specification of ATM

We present the HILLS model of each of the six components followed by the specification of
the assembly of those components to make up the CDM. Each component is an autonomous
system with its own behaviour; they interact with one another by exchanging bills and low
voltage signals.

V.3.1.1 Bill

Recall that the HiLLS' syntax supports the specification of objects and systems through the
instantiations of HClass and HSystem respectively (see abstract and concrete sysntaxes in
Figure 30 and Figure 32 respectively). Since it has no autonomic behavior, input and/or
output ports to influence or be influenced, the bank note (Bill) is modelled as an object (i.e.,
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an instance of HClass). The Bill (Figure 83 with the Cassette) class has four parameters d, ¢, /
and w representing the denomination, thickness, length and width repectively of the bank
note. The first line in the second compartment is a list of public operations that can be invcked
on an object of the class. The state schema declares the state variables and constraints that
define the features of the bill. The Init operation initializes the class' attributes with the values
of the parameters. Lastly, the third and last compartment houses the declaration and definition
of the class' operations.

V.3.1.2 The Cassette

The Cassette is shown in Figure 82.

It has only one port in its input interface. It has no output interface since it needs not produce
any output. It has two parameters; volume and period representing its capacity and time taken
to stack a bill respectively. We define three variables in the state schema: (i) stack, a list of
bills, is an abstraction of the stack of bills in the cassette. The length of stack cannot exceed
the volume of the cassette as specified by the constraint, (ii) current holds the currency bill
received at the input of the cassette, and (iii) f'is used to store the duration of the reigning
configuration at any instant.

Three configurations are specified in the last compartment; The available and full
configurations are specified as passive configurations with infinite duration because external
influences are required in both cases to change its status. The third configuration, acquisition
is a finite configuration with duration equal to the time taken to put a received bill in the
stack.

We define three operations (store(),resetCurrent()) in the operation compartment. The
operations are called during configuration transitions to effect the reconfiguration of state
variables.

It waits in the available configuration when the number of bills is less than its capacity. Once

the cassette is filled to its capacity, it assumes the ful/l configuration until its contents are
manually evacuated.

168



CAS

R

len(stack) = volume
fz 0.0

i1:Bil

volume:Z
period:[
volume > 0
period > 0.0

>

S ——
current

stack

~store[in:Bill]|[ ]|——

~setCurrentfin:Bill]|[ |-

—resetCurrent] ||[ |-

len(stack )<valume

; nt' =i
slack’ = <in?>"slack S =

current’ =null

0..limit

0.1
Billld:£, t:R, I:Z£, w:Z ]

denomination:{10, 20, 50, 100}
thickness:i
length:#

acquisition

current =null A

resetCurrent()
len{stack)svolume

duration=period

available

len{stack}<volume
A current = null

lenistack<volumes

width 7

thickness =0.0 A thickness 2.0
length =100 A length €120
width = 46 & width £ 50

it 1]

Henomination = d; thickness=t; length=1; width =w;

~[*lgetWidth] J[[Z -

store{current)

full

len(stack)=volume

ritlgetlenght{]|[£]—

out! = width;

[‘aut! = length;

-+]getThickness[ ]|[Z ]—

H+lgetValue] ]|[£]—

out! = tichkness;

iout =denomination;

Figure 82. HiLLS specification of the Cassette

V.3.1.3 The Bundle Acceptor

The BundleAcceptor is described by the HSystem in Figure 83.

The BundleAccepter has two input ports (i;: PBill and i,: PBill) and three output ports
(01: Bill, 0,: PBill and 05:{0,1}). It accept a set of Bills through i; and send them one by one
through o; to the BillChecker for processing. After sending the last Bill, it notifys the
Controller through o;. Returned Bills from the machine in case of error or cancellation of the
transaction are received through i,. These returned Bills are presented to the customer
through o,.

It has three state variables (stack:PBill, status:Z and f:R*) and three parameters
(limit: Z,pickTime: R* and returnTime: R™). If a set of Bills is received its content is
stored in the stack variable. limit is the parameter that defines the maximum number of Bills
that the BundleAcceptor can store. pickTime and returnTime are timing parameters for
picking a Bill from the stack and returning a Bill.

It has three configurations: idle, picking and returning. The idle configuration correponds
to the situation where the stack is empty and the status is equal to zero (stack =<> and
status = 0). In picking configuration the stack contains at least one Bill and the status is
equal to 1 (stack #<> and status = 1). The predicates stack =<> and status = 2 define
the returning configuration.

We have three operations:ReturnBundle(),notify() and postBill(). They specify
respectively how a bundle is returned, a notification is sent and a Bill is posted.

Initially the Bundle Accepter is in the idle passive configuration. From idle, two external
transitions are possible. If Bills are received through i; (i;? b) one of the external transition
lead to the picking configuration. The other external transition targets the returning
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configuration when Bills are received through i, (i,? b). The received Bills are stored in the
stack (stack = b). In returning configuration, we have only one internal transition to idle
during which it return the bundle (o,!returnBundle()) and notify (o3!notify(1)) the
Bontrol Board. From picking we have a conditional internal transition target idle (if the
stack is empty) or picking (if the stack is not empty) after posting a Bill (04! postBill()).
The internal transition to idle include sending a notification (03! notify(0)).

BA
limit:Z >
™ -lgBiII status: 7 pickTime:R 01 :;’rill
IZ:BB'II [FR returnTime:R 02:PBill
L f20.0 limit > 0 b
pickTime > 0.0 R
returnTime > 0.0
—init[ J|[ |——— —notify[in:Z]|[ |— preturnBundle( |[ I"_—postBill[]l[]
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Figure 83. HiLLS specification of the Bundle Acceptor

V.3.1.4 The Bill Checker

The BillChecker is described by the HSystem in Figure 84.

It has one input port (i;: Bill) and two output ports (0;: Bill and o0,: Bill). It receive a Bill for
validation through i;. Validated Bills and non-validated Bills are respectively sent to Escrow
(through o0;) and the Reject Box (0,). The Bill Checker has two state variables:
specimen: Bill and genuine: true|false. The specimen variable store the actual Bill being
checked for validation. genuine is the genuineness of the specimen. An additional timing
parameter vTime: R is used as the duration of the validation process.

We defined two configurations for the Bill Checker: waiting and validating. In the
waiting there no Bill for validation (specimen = @). The validating configuration is
defined the condition that there is a Bill for validation (specimen = Q).

It has one operation validate () for checking the genuineness of a given Bill.
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The behaviour of the Bill Checker is defined by three transitions. In waiting, the reception of
a Bill i;? b provoque an external transition to validating for validation of the received Bill
which is stored in the specimen variable (specimen = b). We have an internal transition
from validating to waiting after the validation process. The last transition is a confluent
one from validating to validating.

BC
specimen: Bill — )
b genuine: true|false |""'T'mE~lF‘)- ot Bill
i1:Bill £z = == -
> .
= I vTime > 0.
—Init[J[——— acceptAndReset[J[]— —accepl ][] —
vTime = 2.5 o1! = specimen o1! = specimen
specimen' = null
—rejectAndReset [ ]|[ |— validatefin Bill]| [Bool]—
02! = specimen out!: Bool —reject[ ]| [1—
specimen' = null out = genuinety 02! = spacimen

({genuine A gaccept()) v (Tgenuine Argject())) » speciment’ =y

| [117y];
. i validating
specment =x _ -~ -3 specimen = oul
3 g : |
! !'1 x] duration =vTime
. waiting genuine=validate{specim
= specimen = null en)

(genuine A acceptAndResat()) v (~genuine A rejectandReasat())

Figure 84. HIiLLS specification of the Bill Checker

V.3.1.5 The Escrow

The HSystem in Figure 85 gives the formal description of the Escrow.

The Escrow possesses two input ports (i1: PBill and i,:{0,1}) and two output ports (0;: Bill
and 0,:{0,1}). It receives through i;the validated Bills during the process or the set of Bills in
case of cancelled operation. The stored Bills are sent to the Reject Box (in case of
cancellation) or the Cassette (in case of confirmation) through o;.It receives confirmation
information about the transaction through i,. The reception of 0 is synonym of cancellation
and reception of 1 means confirmation.

The Escrow has four state variables (stack: PBill, current: Bill, flag:Z and interrupt:Z)
and two parameters (limit:Z and period: R). stack is used to store the received Bills.
current represent the current Bill that must be sent. flag and interrupt are control
variables. limit is the parameter that represents the maximum number of Bills that can be
stored in the stack. period is a timing parameter that represents the duration of processing a
Bill.
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The state space of the Escrow is partitioned to four configurations: waiting, loading,
of floading and response. The waiting configuration is a passive configuration defined by
the situation where there is no current Bill (current = @) for processing and interrupt is
equal to 0 (interrupt = 0). In loading configuration there is a current Bill (current # 0)
and interrupt = 0. The offloading configuration is characterized by the fact that
interrupt = 1. The response configuration is transient configuration where interrupt =

2.

The Escrow has the following operations: dispense(), load(), report() and
resetCurrent(). dispense() return the first element (head (stack)) of the stack if there at
least one Bill in it (len(stack) > 0) and remove it (stack’ = tail(stack)). The load()
operation consist of adding a Bill to the stack (stack’' = stack N< in? >) if the number of
Bills in the stack is less than the limit (len(stack) < limit). resetCurrent() is used reset
the current variable (cuurent’ = Q).
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Figure 85. HiLLS specification of the Escrow

Initially the Escrow is waiting. The reception of a Bill b on i; (i;?b) leads to external
transition which target is the loading configuration with an associated computation that set
the value of current to be the received Bill (current’ = b). From waiting, the reception of
a confirmation leads to a conditional external transition which target is response if flag =
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0.If flag # 0 the of floading configuration is assumed. The value of flag is defined by the
received confirmation. In response we have an istantaneous internal transition to the
waiting configuration with the following associated computation: o0,!report(). From
of floading we have conditional internal transition that can lead to waiting and sending 0 as
output on 0, (0,!0) if len(stack) = 0 or of floading if len(stack) > 0. We hase also an
internal transition from loading to waiting witch effect is the reset of current (current’ =

?).
V.3.1.6 The Reject Box

The reject box (Figure 86), being an entity that influences and is influenced through the
exchange of bills with other components and which responds to and produses low voltatge
signals i1s modeled as an HSystem. The input interface has two ports i/ and i2 for receiving
bills and digital signals respectively. Simlarly, the output interface has two ports o/ and o2 for
sending bundles of blls and digital signals respecively.

The reject box has four state variables three of which are explicit and the remaining one
implicit. The explicitly declare state variables as shown in Figure 5 are interrupt of type
positive integer; current of type Bill and stack, a list of Bills. Since every instantiation of
HSystem must have at least one specified configuration, it declares an implicit variable
duration which may be of type positive real number or positive infinity to hold the
instantaneous values of the sojourn times of active configurations. Simlar to the Bill class,
RejectBox defines a list of public elements comprising all input and output ports, the Init
operation and two other operations; for every instantiation of RejectBox, these elements are
visible to its environment. The axiomatic schema in the second compartment defines two
constants: /imits and period representing the component's capacity and time required to
exchange bills respectively as specified in the system's requirement. Note that /imit is used as
the cardinaity of the variable stack (see the composition relationship from RejectBox to Bill)
indicating the maximum nuber of bills that can be stacked in the reject box at any instant and
for any transacton. The Init operation defines the initial configuration by setting the state
variables to the appropriate values or ranges of values. According to the assigned values, the
initial configuration of Reject Box is waiting.

The third compartment holds the definitions of three operations; getStackLenght, getPeriod
and /oad meant to read the length of variable stack, value of constant period, and add current
bill to the stack respectively. The first two operations do not require input parameters, hence
the empty brackets following the operation names but each returns an integer value as output
as indicate in the #ype bracket. In HILLS, any operation with type different from void has an
intrinsic variable, out, of the same type as the operation's type; this variable must be assigned
the computed value of the output of the operation. /oad has a type void denoted by the empty
type bracket but it declares an input parameter of type Bill.

The fourth and last compartment contains the specification of the behavior of the reject box in
the form of configurations and configuration transitions. The state space is partitioned into
four configurations waiting, loading, offloading and reporting with their respective properties
indicated in their second compartments. As stated previously, the computed sojourn time for
each configuration is assigned to the implicit variable duration.
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Figure 86. HILLS' specification of Bill and Reject box

Configurations loading and offloading, being finite configurations have their sojourn times
explicitly defined in the third compartments while waiting and reporting have implicit sojourn
times of positive infinty and zero respectively.

The behaviour of the component is described by the configurations and transitions between
them. Like the state space, the set of state transitions is partitioned into seven configuration
transitions as depicted by the three different kinds of arrow lines entering the four
configurations from their left sides. The sequence of computations accompanying each
transition reconfigures the state variables to satisfy the properties of the target configuration.
For the sake of clarity, let us discuss the transitions by considering one source configuration at
a time.

Being a passive configuration, only external influences at the input ports (i.e., causing
external transition) can force the system out of the waiting configuration once it is assumed.
There are three external transitions emanating from waiting, each targeting one of the three
other configurations. The waiting2loading transition is triggered when a bill is received at the
input port i/. Just before the transition, the bill received at i/ is assigned to the state variable
current and the port is reset to null, making the state space configuration satisfy the properties
of loading. The other two transitions with waiting as the source, waiting2offloading and
waiting2reporting are both triggered by the reception of a non-zero value (high voltage
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signal) at the port i2. In either case, the state variable interrupt is assigned the value received
at the port before resetting it (the port) to zero. The target configuration offloading is assumed
if the variable stack is not empty; otherwise, configuration reporting is assumed as the target.

There are two transitions in this category, i.e., one internal and one confluent transition. The
internal transition loading2waiting is triggered when the reign of awaiting configuration
expires without interruption. The value of variable current is reset to null in the computations
accompanying the transition. If just upon the expiration of the sojourn time of waiting, a bill
is received at i/, a confluent transition loading?loading is triggered during which the bill
received at i/ is assigned to current and the configuration loading is re-assumed.

An internal transition, offloading2reporting, is specified with configuration offloading as its
source. It is triggered at the expiration of the sojourn time of offloading. The sequence of
computations accompanying the transition includes an output on the port 02, the list of bills
stored in the stack is assigned to the output port 02 and stack is set to empty.

The last in the list of transitions is the internal transition reporting2waiting which is triggered
immediately the system assumes the transient configuration reporting. It is also accompanied
by an output of zero on the output port 02 followed by the assignment of the value zero to the
variable interrupt, a computation that leads to the reconfiguration of the state variables to
satisfy the properties of waiting.

V.3.1.7 The Control board

The HSystem in Figure 87 represents the Control Board. Its role is to coordinate the activities
of the different components to realize a transaction.

Ports, variables and parameters

For the coordination purpose it maintains four input (i,i,,iz and i,) and three output ports
(01, 0, and 03) with {0,1} as common domain.The input ports are used to receive confirmation
information from other components and the output ports are used to send control information
to the components. It has four state variables (sign:{0,1}, stage:Z,ecount:Z and
confirm:{0,1}) and one parameter (delay: Z).

We have two configurations: idle and busy. idle is a passive configuration that correspond to

the beginning of the transaction process (stage = 0). busy is a composite configuration that
have five other subconfigurations: waiting, active2, active3, active4 and delaying.
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Figure 87. HiLLS specification of the Control board

V.3.1.8 The cash deposit Module

The CDM (Figure 88) is an HSystem comprising six components; ba, bc, es, rej, cas and con
which are instantiations of BundleAcceptor, BillChecker, Escrow, RejectBox, Cassette and
ControlBoard respectively. Normally, the full model of every component should appear at the
other end of the relationship; however, space would not allow us to show legible models of all
components and the relationships on the same page. Therefore, we designate dashed boxes to
represent each component in Figure6 to enable us show the relationships between them and
the parent system. The full specification of the RejectBox has been presented previously
(Figure 5) to give the reader a perception of what the dashed boxes represent. The CDM has
three input ports i/, i2 and i3. While each of the first two ports takes inputs of 0 and 1, the last
takes stacks of bills as input. It also has two output ports o/ and 02; while the former sends
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stacks of bills as outputs, the later sends 0 and 1. In addition to the components, the CDM
specification declares two state variables, transaction and shutter that keep information about
the presence of an active transaction and the status of the shutter respectively. The shutter is
the opening through which the user presents stacks of bills to the machine or receives rejected
and/or returned stacks from the machine. The last line of invariants in the state schema
specifies the static couplings between components of the system. The full model of each
component specifies input ports iy,..,i, and output ports o, ..,0, such that n > 0 and all ports
are included in the visible list as shown in RejectBox ( Figure 86). Therefore, a coupling
specification A.port, = B.port; implies that port; of system B influences port, of system A. In
addition to initializing the state variables to a starting configuration, the /nit operation of
CDM also invokes the Init of each of its components to initialize them as well and establishes
the static couplings between the ports of components. Note that the CDM does not specify a
visible list.

The CDM defines three operations as shown in the third compartment of Figure 88. The same
explanations for the operations defined in RejectBox can be used to understand them.

The CDM's behavioural specification defines two major configurations, idle and busy with the
state variable transaction as the main distinguishing property between the duo. The value of
the variable is set to "1" once a user initiates a request to make deposit indicating the busy
configuration. Once the transaction is completed, it returns to the idle state by setting the
transaction variable to "0". The second distinguishing property is that the shutter is always in
the closed state when the machine is idle. The busy configuration is further refined into sub-
configurations exchange and processing which are themselves further decomposed as shown
in the model. Among the unique features of HiILLS demonstrated in this example is the way
structural dynamics is specified graphically. Couplings are used extensively to specify the
properties of many of the configurations of the CDM especially the sub-configurations of
busy. For example, when the validation configuration is assumed, the port 02 of bc (i.e.,
bc.02) is coupled to port i/ of rej (i.e., rej.il) so that the former can influence the later.

In the rejecting configuration, rej.il is coupled to another component, es.o/ to be influenced
by it while es.ol influences yet a different port, cas.i/ when the system assumes completing
configuration.

In addition to the explicit and implicit specifications of sojourn times for configurations
demonstrated in the RejectBox specification, the CDM presents two special functions, 1 and
m, to specify the sojourn times in some specific cases. 77 is used in cases where a configuration
has some sub-configurations where its own sojourn time cannot be precisely specified. Hence,
the function indicates that the sojourn time at any instant is equal to that of its active sub-
configuration at that time. For example, the sojourn time of processing at any instant is equal
to that of whichever is active among validation, confirmation and escrow_dispense. T on the
other hand is used when all sub-configurations under the same parent have identical sojourn
time; the sojourn time may be specified once on the parent configuration while all its children
inherit this property from it. For instance, configurations completing and rejecting have
identical sojourn time which specified once on escrow dispense from which all its sub-
configurations inherit the property. Configuration transitions of the CDM can be read just the
same way those of RejectBox were presented previously.
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Figure 88. HiLLS specification of the Cash Deposit Machine (CDM)

The block diagram in Figure 89 is to further give the reader a perception of the assembly of
the system's components as presented in Figure 81. The eight static couplings, specified as
invariants in the state schema of the HiLLS specification are represented as solid arrow lines
connecting the source and target ports while the dynamic couplings that are specified in the
configurations and configuration transitions are represented as dashed arrow lines in this
block diagram.

It is important to note that we only intend to take advantage of the cognitive property of the
formalism of this block diagram to give further explanation (at least for the first time) of the
CDM model in Figure 88 , it does not serve as a replacement to the HiLLS specification.
Though it offers a quick grasp of the physical structure of the assembly specifically the static
couplings, it cannot effectively describe the conditions under which the dynamic couplings
are established and/or broken. Moreover, representing all components inside the whole is
highly cognizable but it is highly deficient in terms of reusability of specification. i.e., the
Object-Oriented approach adopted in the HiLLS representation allows one specification of a
component to be reused by many assemblies through references.
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Figure 89. Block diagram illustrating the structure of the CDM
V.3.2 DSDEVS specification of ATM
We present here the equivalent DEVS models of the Reject Box and the CDM.
V.3.2.1 DSDEV'S model of the Reject Box

Since the Reject Box is an unitary, the equivalent DSDEVS model of it is also the equivalent
DEVS atomic model.

RejectBox =< X,Y,S, 8ints Oexts Oconsr A ta >

X = {(iy, BilD), (i, {0,1})}

Y = {(oy, Bill®), (05, {0,1})}

S = {(stime, R"), (interrup, Z*), (stack, Bill?), (current, Bill), (limit, Z*), (priod, R*),
(conf,{waiting, loading, of floading, reporting})}

External transition function §,,,:Q X X2 > S

Oyt (+00,0,<>,50,1.5, 9, waiting, e, i;) (period, 0, stack. add (cur),50, 1.5, i1, loading)
Ve > 0 A i, € Bill

Oext(+0,0,<>,50,1.5, @, waiting, e, i,)
= (period, 1, stack.add(cur),50,1.5,@, of floading) if length(stack) = 0
= (0,2,<>,50,1.5, 0, reporting) if length(stack) =0

Internal transition function :§;,;: S = S
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Sint(period, 2,<>,50,1.5, @, reporting) = (+00,0,<>, 50,1.5, @, waiting)
dint(period, 0, stack, 50,1.5, @, loading) = (40,0, stack, 50,1.5, @, waiting)
Sint(period, 1, stack #<>,50,1.5,0, of floading) = (+0,0, stack, 50,1.5, @, waiting)
Confluent transition function 8., S X XP — S

6conf (period, 0, stack, 50,1.5, cur, loading, i)

= (period, 0, stack.load(cur), 50,1.5,i;, loading)

Output function 1: S - Y?

A(stime, inter, stack, limit, period, cur, conf = loading) = @

A(stime, inter, stack, limit, period, cur,conf = of floading) = {(o4, stack), (0,,0)}
A(stime, inter, stack, limit, period, cur, conf = reporting) = {(0,,0)}

Time advance function ta: S - R* U {+o0}

ta(s) = s.stimeVs € S

V.3.2.2 DSDEV'S model of the CDM

DSDNcpy = (x, My, =< X,,5y, S0 Yy y,Z%, 8y dy Ty > ) where y = CDM

Xy ={001,{0,1}), (i2,{0,1}), (i3, IPBill)}

Y, = {(04,IPBill), (0,,{0,1})}

S, = {(transaction, Z*), (shutter, string), (stime, R* U {+0}), (conf, CONF)} where
CONF = {idle,ready, cancelling, validating, confirmation, completing, rejecting}
So,y = (transaction = 0, shutter = "closed", stime = +, conf = idle)

= {Mconf}confECONF with Meong =< Deongs {Mi}ien onpr Uitiencons (Zitiencons >

Let Dy = {M.name}yeccomps Where Comps = {ba, bc, es, rej, cas, con }

YMcong € X, Deong = Do AM{Mi}iep,,,, = Comps

Vs, = (transaction, shutter, stime, conf) € S,,y(sx) = Mcons

Let slcpy ={  }, slpq = {rej}, slye = {ba},sl,s = {bc,con}, sly.j = {con},sl.qs = { }
sl.on = {ba,rej,es}

Migie =< Diare, Compsiaie ligte) Ziate >

Ligie = {Slcoms SIbas Slper Slesy Shrejy Slcas Sleon}
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Zidle,ba: Yrej - Xba
Zigie,pct Yoa = Xpe
Zidle,es: ch - Xes
Zidle,rej: Ycon - Xrej

Zidle,con: Yrej X Yba X Yes - Xcon

Mready =< Dready: Compsready,lreadyizready >

Iready = {SICDM: SIba U {CDM}' SIbc'SIes: SIrej' SIcas SIcon}
Zready,ba:XCDM X Yrej - Xba

Zready,bc: Ypa = Xbe

Zready,es: Ype = Xes

Zready,rej: Yeon = Xrej

Zready,con: Yrej X Ypa X Yes = Xcon

Mcancelling =< Dcancelling' Compscancelling,Icancellingranncelling >
Icancelling = {SICDM U {ba}; Slba U {CDM}r Slbc' Sles: SIrej' SIcas SIcon}
cancelling,CDM* Yoa = Yepm

cancelling,ba:XCDM X Yrej - Xba

cancelling,bc: Yba - Xbc

cancelling,es* Ype = Xes

cancelling,rej: Ycon - Xrej

N N N N N N

cancelling,con: Yrej X Yba X Yes - Xcon

Mvalidating =< Dvalidating' Compsvalidating,IvalidatingrZvalidating >
lyatidating = {slcpm U {ba}, sl U {CDM}, sy, s, Skye; U {bc}, sleas Sleon}
Zvalidating,CDM: Ypa = Yeom

Zvalidating,ba:XCDM X Yrej = Xpa
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Zvalidating,bc: Yba - Xbc
Zvalidating,es: Yy = Xog
Zvalidating,rej: ch X Ycon - Xrej

Zvalidating,con: Yrej X Yba X Yes - Xcon

Mawaiting =< Dawaiting: Compsawaiting,lawaiting:Zawaiting >

Iawaiting = {SICDM U {ba}' SIba U {CDM}' SIbc'SIes' SIrej U {bc}' SIcas SIcon U {CDM}}
awaiting,CDM* Ypa = Yeom

awaiting,ba:XCDM X Yrej = Xpa

awaiting,bc: Yba - Xbc

awaiting,es* Ype = Xes

awaiting,rej* Ype X Yeon = Xrej

N N N N N N

awaiting,con:XCDM X Yrej X Ypa X Yes = Xcon

Mcompleting =< Dcompleting' Compscompleting,lcompleting:Zcompleting >

Icompleting = {SICDM U {ba}' SIba U {CDM}' SIbCJ SIesr SIrej U {bC}, SIcas U {es}, SIcon U
{cDM}

completing,CDM* Ypa = Yeom
completing,ba:XCDM X Yrej = Xpa
completing,bc: Yba - Xbc
completing,es* Ype = Xes
completing,rej* ch X Ycon - Xrej

completing,cas* Yos = Xecas

N N N N N N N

completing,con:XCDM X Yrej X Yba X Yes - Xcon

Mrejecting =< Drejecting' Compsrejecting,IrejectingJZrejecting >

Icompleting = {SICDM U {ba}r SIba U {CDM}» SIbCJ Sles' SIrej U {bC, es}, SIcas U {es}, SIcon U

{CDM}}
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completing,CDM* Yba - YCDM
completing,ba:XCDM X Yrej = Xpa
completing,bc* Yba - Xbc

completing,es: ch - Xes

completing,rej* Yes X ch X Ycon - Xrej

completing,cas* Yes - Xcas

N N N N N N N

completing,con:XCDM X Yrej X Yba X Yes - Xcon

8,:Q, % (X, u{0}) > S,

6)(((0, closed, +,idle), e, i) = (1, opened, con. getDelay(),ready), Ve > 0. This
transition corresponds to the external transition between the idle configuration and the ready
configuration when an event is received on the port i;. This transition creates also a new input
coupling between the input port i; of the cash deposit machine CDM and the input port i; of
its bundle acceptor ba. The coupling creation is part of changes specified in the set of
different possible structures.

8,((1, opened, delay,ready), e, i) = (1, closed, t, validation)V i € {0,1} AVe =0
where t = ba. getPictTime() * (len(ba. getStackLength() + 1) , this transition takes into
account the two transitions (the external one and the confluent one) from the ready
configuration to validation configuration. This transition specifies a new internal coupling
between the output port 0, of the bill checker bc and the input port i; of the reject box rej.

5)(((1' closed, +, confirmation),e,i) = (1, closed, t,completing), ifi=1 where
t = es.getPeriod() * (es.getStackLength() + 1) Is the external transition between
confirmation and completing configurations when the value of the input received from
port i, is equal to 1. It establish an internal coupling between the cassette cas and the escrow
esby connecting the input port cas. i; and the output port es. 0,.

SX((l, closed, +oo, confirmation), e, i) = (1, closed, t,rejecting), ifi=0 where
t = es.getPeriod() * (es. getStackLength() + 1) Is the external transition between
confirmation and rejecting configurations when the value of the input received from port
i, is equal to 0. In this case a connection is established between the reject box and the escrow.
This connection is done by a new internal coupling between linking the output porto, of es
and the input port i; of rej.

8,((1, closed, t, completing), 0,0) = (0, closed, +, idle), where t = es. getPeriod() *
(es. getStackLength() + 1). This represents the internal transition from the completing
configuration to the idle configuration.

6)(((1, closed, t,rejecting), 0, (D) = (0, closed, +oo, idle) , where t = es. getPeriod() *
(es.getStackLength() + 1).
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6)(((1, closed, t,rejecting),0, (Z)) = (1,opened, t', cancelling) t = es.getPeriod( )=
(es. getStackLength() + 1) and t' = ba. getPictTime() * (len(ba. getStackLength() +
1) This transition represents the rejecting and the canceling phase of an operation. It creates a
new output coupling which links the output port o, of the bundle acceptor ba and the output
port 0, of the cash deposit machine itself.

é‘X((l, opened, con. getDelay(),ready),0, (D) = (0, closed, + o, idle).

6)(((1, opened, con. getDelay(), cancelling), 0, (Z)) = (0, closed, +, idle)

T,: S, = R* U {+00}

Vs, € Sx' TX(SX) = stime

AyiSy oY,

vtr € {0,1}, shut € String, st € Rt U {+x}, we have
A, (tr, shut, st, cancelling) = {0}

AX(tr, shut, st,completing) = {1}

A, (tr,shut, f,rejecting) = Bill

V.4 Conclusion

We have presented in this chapter the HiLLS modeling of the Alternating Bit Protocol (ABP)
and the Cash Deposit Machine (CDM) of an ATM. The ABP is a static structure system
which equivalent models in DEVS and Z have been presented. Some basic verification of its
properties with Z/EVES has been shown. The CDM is an illustration of the modeling of
dynamic structure systems with HiLLS. We have presented its equivalent DSDEVS model
that captures its essential dynamic structure properties for simulation. These case studies
intuitively show the expressiveness and usability of HiLLS. They can serve as a basis for
thorough evaluation of HiLLS by potential users. They show the expressive power of HiLLS
to model and analyze complex dynamic systems with discrete event perspective.

184



V1. General conclusion
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This thesis proposed an integrated approach for systems modeling and analysis that uses
metamodel integration techniques to define a unified formalism with multiple semantic
domains for different system analysis methodologies like simulation, formal methods and
enactment. Precisely we integrated DEVS, Object-Z and MOF to consistently define the
abstract syntax of HILLS. We adopted similar representation to UML diagrams to define the
concrete of the language in order to facilitate the specification of systems. Illustrative
examples have provided to show the expressiveness and usability of HiLLS.

We provided a set-theoretic semantics for HILLS to make the language amenable to rigorous
symbolic reasoning. This semantics based on standard mathematics provides a basis for
common understanding among all the semantic domains by providing clarifications to the
definition of the concepts presented in the abstract syntax to ensure their consistent
interpretations. It also clarifies the rules and constraints of the syntax

We selected DEVS, DSDEVS, UML, Z and CSP as semantic domains for HiLLS to benefit
from the capability of these domains for the analysis of different aspects of a system. We have
presented the different semantic mappings to these semantics domains:

e Operational semantics for simulation: the mappings of HiLLS to DEVS and DSDEVS
represent the operational semantics for simulation of HiLLS models. The consequence
of these semantic mappings is that one can use existing DEVS simulator
implementations to simulate HiLLS static structure systems and use DSDEVS
simulators to simulate HILLS dynamic structure systems.

e Operational semantics for enactment: is defined by an Object-Oriented Framework
using UML design patterns. We used the Object-Oriented Observer design pattern to
express HiLLS system constructs by mapping the system's structural and behavioral
properties to the structure and semantics respectively of the observer pattern. The
subject-observer relations are used to establish couplings between ports of the
components of a system while the notification mechanisms are used to trigger state
transitions. We provided a Java implementation of the framework and a case study to
illustrate its use to specify and enact discrete events systems.

e Logical semantics: is defined by establishing semantics mappings between HiLLS
unitary level and Z and HiLLS composite level and CSP to capture respectively state-
based properties and process-based properties of a HSystem.

We have illustrated these semantic mappings by examples.

HiLLS is suitable for modeling a broad range of systems including those with variable
structure [Maiga et al. 2015] for simulation, formal analysis and prototyping. However, the
current specification of the language does not provide support for variable interface structure
and behavior. The dynamic structure modeling capability of HiLLS is illustrated by the study
of the Cash Deposit Machine of an ATM. The modeling of static structure systems is also
illustrated by the study of the alternating Bit Protocol.

HiLLS provide the following advantages:
e HiLLS models are communicable because of its intuitive graphical concrete
similar to UML diagrams.

e HiLLS is highly expressive because of the expresivness of its base languages:
DEVS and Object-Z
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HiLLS models can be analyzed by simulation using DEVS and DSDEVS existing
simulators.

HiLLS models are amenable to formal analysis using Z and CSP associated tools.
HiLLS allows modular and hierarchical construction of models because it adopts
modular and hierarchical structuring concepts from the DEVS formalism and
object oriented structuring concepts from Object-Z and MOF (Meta Object
Facility).

Simulation and enactment codes can be generated from HiLLS models. See [Aliyu
et al. 2015b] for more information about our enactment template of discrete event
systems.

HiLLS specifications can be used as front-ends from witch other views are
generated to maintain consistency between the different views and reduce the task
of updating them.

The definition of HiLLS is in the starting phase of a larger project to integrate proven
scientific techniques and methodologies employed in the exhaustive investigation of the
dependability attributes of systems. Further works are in pipeline towards the integration of
the supporting tools in a common framework namely SimStudio. Future works will also
consider the link between HiLLS and CTL for the formalization of system traces.

HiLLS is in use as modeling language in some projects in the following domains:

Business Process Management (PhD thesis of Shaowei Wang)
Military operations (PhD thesis of Hawa Bado)

Healthcare systems (PhD thesis of Ignace Djitog)

Urban Traffic systems (PhD thesis of Youssouf Koné)

Network Security (PhD thesis of Moussa Koita)

Collaborative framework for simulation (PhD thesis of Hamzat Aliyu)
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