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Vesa Välimäki Aalto University, Espoo, Finland

Examiner Sylvain Marchand Université de La Rochelle, France
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Abstract

This thesis addresses imitative digital sound synthesis of acoustically viable in-
struments with support of expressive, high-level control parameters. A general
model is provided for quasi-harmonic instruments that reacts coherently with
its acoustical equivalent when control parameters are varied.

The approach builds upon recording-based methods and uses signal trans-
formation techniques to manipulate instrument sound signals in a manner that
resembles the behavior of their acoustical equivalents using the fundamental
control parameters intensity and pitch. The method preserves the inherent
quality of discretized recordings of a sound of acoustic instruments and in-
troduces a transformation method that retains the coherency with its timbral
variations when control parameters are modified. It is thus meant to introduce
parametric control for sampling sound synthesis.

The objective of this thesis is to introduce a new general model repre-
senting the timbre variations of quasi-harmonic music instruments regarding a
parameter space determined by the control parameters pitch as well as global
and instantaneous intensity. The model independently represents the deter-
ministic and non-deterministic components of an instrument’s signal and an
extended source-filter model will be introduced for the former to represent the
excitation and resonance characteristics of a music instrument by individual
parametric filter functions. The latter component will be represented using a
classic source-filter approach using filters with similar parameterization. All
filter functions are represented using tensor-product B-splines to support for
multivariate control variables.

An algorithm will be presented for the estimation of the model’s parameters
that allows for the joint estimation of the filter functions of either component in
a multivariate surface-fitting approach using a data-driven optimization strat-
egy. This procedure also includes smoothness constraints and solutions for
missing or sparse data and requires suitable data sets of single note recordings
of a particular musical instrument.

Another original contribution of the present thesis is an algorithm for the
calibration of a note’s intensity by means of an analysis of crescendo and de-
crescendo signals using the presented instrument model. The method enables
the adjustment of the note intensity of an instrument sound coherent with the
relative differences between varied values of its note intensity.

A subjective evaluation procedure is presented to assess the quality of the
transformations obtained using a calibrated instrument model and indepen-
dently varied control parameters pitch and note intensity. Several extends of
sound signal manipulations will be presented therein.

For the support of inharmonic sounds as present in signals produced by
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the piano, a new algorithm for the joint estimation of a signal’s fundamental
frequency and inharmonicity coefficient is presented to extend the range of
possible instruments to be manageable by the system.

The synthesis system will be evaluated in various ways for sound signals of
a trumpet, a clarinet, a violin and a piano.
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Preface

This thesis represents the results of a part of the multidisciplinary research
project Sample Orchestrator 2 conducted from november 2010 until may 2013
at the IRCAM in Paris under the direction of its scientific director Hugues
Vinet. The project involved the collaboration with the industrial partner
Univers Sons1, a Paris-based music software company.

The research project involved contributions from several research teams
across the IRCAM including the Analysis/Synthesis, the {Sound Music Move-
ment} Interaction, Acoustics and Cognitive Spaces as well as the Music Repre-
sentations team and additionally the Sound & Software department of Univers
Sons. Their respective responsible leads at IRCAM have been Axel Röbel,
Norbert Schnell, Markus Noisternig and Gerard Assayag as well as Alaine from
Univers Sons (US).

The research program has been setup as a multidisciplinary project for
the development of new techniques and algorithms to create a next generation
sample-based sound synthesizer.

The following main research directions have been targeted within the project:

• the creation of innovative, realistic sounding virtual solo instruments that
allow for expressively controlling its sound,

• the creation of realistic ensembles from individual instruments using a
parametric convolution engine for sound spatialization and

• the development of new techniques for a on-the-fly arrangement synthesis
of musical sequences for the augmentation of musical performances,

whereas the former research item eventually led to this thesis.
The goal for the creation of expressively controllable solo virtual instru-

ments was to design new sound transformation methods, which render actual
instrument characteristics of these instruments for phenomena such as trans-
position, intensity changes, note transitions and modulations with the target
of enhancing the quality/cost ratio of current state-of-the-art methods for in-
strument sound synthesis.

The Sample Orchestrator 2 project has been financed by the french research
agency Agence nationale de la recherche as part of the CONTINT (Digital
Content and Interactions) program.

1www.uvi.net, last accessed 2015-08-07
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timates â(k,s)(Ψh(n)) of the trumpet and clarinet model with the
alternating piecewise constant/linear interpolation method. . . . . 111

10.5 Flattened spectra of selected harmonic sounds of the trumpet, clar-
inet, violin and piano from their respective data sets obtained using
the harmonic whitening procedure. . . . . . . . . . . . . . . . . . . 113

10.6 Flattened spectra of selected residual sounds of the trumpet, clar-
inet, violin and piano from their respective data sets obtained using
the residual whitening procedure. . . . . . . . . . . . . . . . . . . . 115

10.7 Synthesis results for the Bb-Clarinet based on the same source sig-
nals created from the sound with P = A3, Ig = ff using unaltered
control parameters in the top graph but altered global intensity in
the center and transformed pitch in the lower graph. . . . . . . . . 117

11.1 4 Examples for the evolution of the local intensity Il,(n) of 4 record-
ings playing with dynamic intensity changes. . . . . . . . . . . . . 119

11.2 Error Surface and optimal path from pp to ff for a trumpet crescendo
(left) and a Bb-clarinet decrescendo signal (right). . . . . . . . . . 121

11.3 Tuples (Il,|Ig) of local intensity assignments for two selected record-
ings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.4 Three Models for the note intensity level as a function of pitch and
global intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

12.1 Subjective evaluation results for the transformation of the global
intensity value of the sound signals of the selected instrument sound
data sets. The amount of test subjects for each instruments is given
in brackets in the according subfigure caption. . . . . . . . . . . . 127



List of Figures xiii

12.2 Subjective evaluation results for pitch transformations of the sound
signals of the selected instrument sound data sets. The amount
of test subjects for each instruments is given in brackets in the
according subfigure caption. . . . . . . . . . . . . . . . . . . . . . . 129

A.1 General scheme of proposed iterative method. . . . . . . . . . . . . 164
A.2 The initial model βφ(m) (solid) and limits (dashed) for adaptation 168
A.3 Error in estimation of β given as percentage. . . . . . . . . . . . . 169
A.4 Estimated β̂ for the artificial data set. . . . . . . . . . . . . . . . . 169
A.5 Variance of measurements on artificial data. . . . . . . . . . . . . . 170
A.6 Estimated β̂ for RWC piano 1 . . . . . . . . . . . . . . . . . . . . . 170
A.7 Estimated β̂ for RWC piano 2 . . . . . . . . . . . . . . . . . . . . . 171
A.8 Estimated β̂ for RWC piano 3 . . . . . . . . . . . . . . . . . . . . . 171
A.9 Estimated β̂ for IRCAM Solo Instrument piano . . . . . . . . . . . 171
A.10 Averaged variance of measurements on real world data according

to the tessitura model. The error bars indicate the minimum and
maximum variance values among all data sets. . . . . . . . . . . . 172

A.11 Processing real-time factors for all 4 algorithms averaged for all data
sets with 95% confidence intervals. . . . . . . . . . . . . . . . . . . 172



List of Tables

8.1 Some general stats about the used sound data sets. . . . . . . . . . 80
8.2 The general statistics about the violin data set divided into subsets

for each string. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3 Specific values for the regularization parameter λI,0 and λII,0 used

for the harmonic models of all continuously excited instruments as
well as the polynomial coefficients for the local emphasis function
η in decreasing order from left to right. The last column shows the
amount of virtual data points used for the respective regularization. 88

8.4 Regularization weight values for the residual models of all contin-
uously excited instruments and polynomial coefficients for the ad-
ditional scaling function. The last column shows the amount of
virtual data points used for the respective regularization. . . . . . 88

8.5 Values for the regularization parameter λI,0 and λII,0 used for the
harmonic model of the piano sound set as well as their respective
polynomial coefficients for the local emphasis function η in decreas-
ing order from left to right. The last column shows the amount of
virtual data points used for the respective regularization. . . . . . 89

8.6 Regularization weight values for the residual model of the piano
sound set and the polynomial coefficients for the additional scaling
function all set to the identity function. The last column shows the
amount of virtual data points used for the respective regularization. 90

8.7 The amount of free model parameters for the excitation and reso-
nance component of each harmonic model as well as the amount of
partials contained within the respective data set and the resulting
amount of free parameters for the whole model additionally taking
the temporal segmentation into account. The last column shows the
amount of data used to estimate the parameters for the harmonic
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.8 The amount of free model parameters for the multivarate B-spline
representation for every single cepstral coefficient, the amount of
cepstral coefficients being modeled by the residual model and the
overall amount of free parameters additionally taking the temporal
segmentation into account. . . . . . . . . . . . . . . . . . . . . . . 91

xiv



Contents

Abstract ii

Preface v

Acknowledgements vii

Publications ix

List of Figures x

List of Tables xiv

Contents xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis’ Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis’ Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I State-of-the-art 10

2 Sampling-based Sound Synthesis 11

3 Signal Models for Sound Transformation 13
3.1 The Short-Time Fourier Transform . . . . . . . . . . . . . . . . 13
3.2 The Source-Filter Model . . . . . . . . . . . . . . . . . . . . . . 15
3.3 The Sines plus Noise Model . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Parameter Estimation Using Parabolic Interpolation . . 18
3.3.2 Parameter Estimation Using Weighted Least–Squares . 19
3.3.3 Partial Tracking . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4 The Fundamental Frequency . . . . . . . . . . . . . . . 22
3.3.5 Residual Modeling . . . . . . . . . . . . . . . . . . . . . 24

3.4 The Phase Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Extended Source-Filter Models . . . . . . . . . . . . . . . . . . 26

3.5.1 For Voice Signals . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 For Instrument Signals . . . . . . . . . . . . . . . . . . . 27

xv



CONTENTS xvi

II Expressive Sampling Synthesis 32

4 Arbitrary–Order Multivariate Regression Splines 33
4.1 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Direct Method . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Iterative Method . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 A Simple Example . . . . . . . . . . . . . . . . . . . . . 38

4.3 Multivariate Variables . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Signal Representation 50
5.1 Sound Signal Representation . . . . . . . . . . . . . . . . . . . 51

5.1.1 Harmonic Sound Signal Representation . . . . . . . . . 51
5.1.2 Residual Sound Signal Representation . . . . . . . . . . 52

5.2 Control Signal Representation . . . . . . . . . . . . . . . . . . . 53
5.2.1 The Musical Pitch as a Control Parameter . . . . . . . . 54
5.2.2 The Global Note Intensity as a Control Parameter . . . 54
5.2.3 The Instantaneous Energy as a Control Parameter . . . 54
5.2.4 The Idealized Partial Frequencies as Control Parameter 57
5.2.5 The Combined Sets of Control Parameters . . . . . . . . 58

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 The Instrument Model 60
6.1 Harmonic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Residual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Model Parameter Estimation 64
7.1 Harmonic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . 65
7.1.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . 69
7.1.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Residual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . 75
7.2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . 76
7.2.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Model Selection 79
8.1 Model Configurations . . . . . . . . . . . . . . . . . . . . . . . 81

8.1.1 A Model for Continuously Driven Instruments . . . . . 82
8.1.2 A Model for Impulsively Driven Instruments . . . . . . 85

8.2 Initial Regularization Weights . . . . . . . . . . . . . . . . . . . 87
8.2.1 Initial Weights for Continuously Excited Instruments . . 87
8.2.2 Initial Weights for Impulsively Excited Instruments . . . 89

8.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



CONTENTS xvii

9 Visual Evaluation 93
9.1 Harmonic Model Component . . . . . . . . . . . . . . . . . . . 94

9.1.1 Trumpet . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.1.2 Clarinet . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.1.3 Violin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.1.4 Piano . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.2 Residual Model Component . . . . . . . . . . . . . . . . . . . . 104
9.2.1 Clarinet . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.2.2 Piano . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10 Model–Based Sound Synthesis 107
10.1 Subtractive Harmonic Synthesis . . . . . . . . . . . . . . . . . . 107

10.1.1 Filter Envelope Generation . . . . . . . . . . . . . . . . 108
10.1.2 Harmonic Signal Whitening . . . . . . . . . . . . . . . . 112

10.2 Subtractive Residual Synthesis . . . . . . . . . . . . . . . . . . 114
10.2.1 Filter Envelope Generation . . . . . . . . . . . . . . . . 114
10.2.2 Residual Signal Whitening . . . . . . . . . . . . . . . . . 114

10.3 Dual Component Synthesis . . . . . . . . . . . . . . . . . . . . 116

11 Sound Intensity Estimation 118
11.1 Analysis of Crescendo/Decrescendo Signals . . . . . . . . . . . 119
11.2 Generation of Prototypical Partial Envelopes . . . . . . . . . . 120
11.3 Intensity Assignment using Dynamic Programming . . . . . . . 121
11.4 A Model for Global Note Intensity Levels . . . . . . . . . . . . 122

12 Subjective Evaluation 124
12.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

III Conclusion 131

13 General Conclusions 132

14 Future Work 134
14.1 Sound Signal Transitions and Modulations . . . . . . . . . . . . 134
14.2 Signal Model Enhancements . . . . . . . . . . . . . . . . . . . . 134
14.3 Expressive Control Enhancements . . . . . . . . . . . . . . . . 135
14.4 Regression Model Enhancements . . . . . . . . . . . . . . . . . 135
14.5 Adaptive Model Selection . . . . . . . . . . . . . . . . . . . . . 136
14.6 Data Selection Improvements . . . . . . . . . . . . . . . . . . . 136
14.7 Subjective Evaluation Improvements . . . . . . . . . . . . . . . 136
14.8 Improvements to the Global Intensity Model . . . . . . . . . . 136

15 Final Remarks 138

Bibliography 140



CONTENTS xviii

IV Appendix 163

A Inharmonicity Estimation 164
A.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



This page is intentionally left blank.



Chapter 1

Introduction

1.1 Background

The very beginnings of computer music and digital sound generation is often
closely recognized with the development of the computer program series MU-
SIC I-V developed by Max Mathews at Bell Labs [Mat69] and hence he is
perceived as being the first to realize digital sound synthesis [Ris07]. In his
highly acclaimed Science article The digital computer as a musical instrument
[Mat63], Max Mathews states that there are no theoretical limitations to the
performance of the computer as a source of musical sounds and any perceiv-
able sound can be produced using a digital computer. This insight follows the
band and dynamic range limitations of the human hearing [Moo12] and its
implications regarding the sampling theory introduced by Shannon, Nyquist,
Whittaker and Kotelnikov [Lue99]. Though, as he also portrays in [Mat69],
digital sound synthesis comes with two fundamental problems: First, the ne-
cessity of a very fast and efficient computer program and second, the need for
a simple and powerful language in which to describe a complex sequence of
sounds.

Smith [Smi91] as well as Serra [Ser97b] conclude, that the first problem has
largely being solved due to the progression in computer technology with the
advent of machines capable of solving highly complex computations in real-
time, whereas the second remains open and may potentially never been solved
in general. Both agree in that sound represented by digitized pressure waves
must be described with a heavily reduced amount of information, which implies
a great loss in generality. Fortunately, there is no need in describing all possible
waveforms as most are not of musical interest and the focus should be put on
a reduced set of synthesis and control mechanisms [Ser97b].

While considering the demands of artists and composers, Serra in [Ser97b]
introduces 2 main objectives for digital sound synthesis and transformation
methods: (1) The possibility to create any imaginable sound and (2) the ability
to manipulate any pre-existing sound in any conceivable way. However, these
objectives are very high-level and rather limited due to a humans restricted
ability to imagine the unknown or unheard. It hence seems reasonable to
narrow the scope to sounds that have a reference in the real-world. According
to Serra, for digital sound synthesis in the context of music this translates to
the imitation of natural music instruments that have evolved over centuries

1



CHAPTER 1. INTRODUCTION 2

and hence provide an interesting challenge for digital sound synthesis.
Since the appearance of the last iteration of the MUSIC program series

by Max Mathews [Mat69], tools for the generation of musical sounds using
signal processing techniques play an ever-growing role for composers, produc-
ers, sound artists and engineers. Much research has hence been devoted to
the development of concepts and algorithms for digital sound synthesis and
sound signal transformation since decades [Ris07] and dozens of algorithms
have been developed, all having their own unique strengths and weaknesses.
Many of these methods however share similar properties or paradigms and in
his ICMC keynote speech in 1991 [Smi91], Julius Smith introduced a taxonomy
for the categorization of the numerous sound synthesis techniques, which has
been revised by Curtis Roads for publication in the Cahier de l´IRCAM one
year later [Smi92b] and reissued online in late 2005 [Smi05].

In his article he introduces 4 categories each containing numerous synthesis
algorithms sharing similar concepts or paradigms:

• Abstract Algorithm

• Physical Model

• Processed Recording

• Spectral Model

Abstract algorithms may refer to digitized versions of voltage controlled oscil-
lators, amplifiers, filters and modifiers and can hence be regarded descendants
of analog additive and subtractive synthesis using electric sound synthesizers
[Roa96]. Frequency Modulation synthesis [Cho73] and Waveshaping Synthesis
[LB78] are also included in this class as well as the original Plucked-String Al-
gorithm by Karplus and Strong [KS83] 1 even though its name states otherwise
[KVT98].

An extended version of the Plucked-String Algorithm [JS83] however cre-
ated the relation to the physics of a plucked string and is hence already classified
an actual Physical Model [KVT98]. The relationship between these two algo-
rithms from two categories allows to consider Physical Models a descendant of
abstract algorithms [Bil09].

As of today, the paradigm of physical modeling of musical instruments
has brought up a variety of synthesis algorithms including Digital Waveg-
uides [Smi87, Smi92a, Smi10a] generalizing the extended KS-algorithm, Modal
Synthesis [Adr88, Adr91], Functional Transfer Method [TR03], Wave Digital
Filters [Fet86, SdP99], Finite-Difference Schemes [HR71a, HR71b, Bil09] and
Mass-Spring Networks [CLFC03].

These approaches typically allow an in-depth control of the sound creation
process at the expense of either a limited sound quality due to approximations
within the required analytical representations of musical instruments or high
computational complexity caused by massive numeric calculations. A thorough
and comprehensive introduction to physical modeling techniques available to-
day can be found in [VPEK06].

The use of recordings of musical instruments is mainly associated with
wavetable and sampling synthesis [Mas02, Smi05] as well as granular synthesis

1This algorithms is also known as Karplus–Strong (KS) Algorithm
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[Roa04] and can hence be considered to have its analog origins in the Musique
concrète [Roa96, Smi05] as well as in the Tape Music with their pioneering
researchers and composers Pierre Schaeffer and Pierre Henry in the former as
well as John Cage and his associates in the latter.

The composer and computer music researcher Jean-Claude Risset criticized
Musique concrète for favoring an: aesthetics of collage [Ris85], which according
to [Smi05] also applies to sampling synthesis. Even though, the use of instru-
ment recordings for digital sound synthesis is probably the most often applied
sound synthesis technique for the imitation of natural music instruments. This
may be derived from the popularity of commercial products as the Vienna Sym-
phonic Library [vie], Garritan Virtual Instruments [gar] or Native Instruments
Kontakt Instrument Library [kon].

The process of recording a musical instrument for the purpose of digital
sound synthesis refers to a sampling procedure in which the possible timbre
space of a music instrument gets being quantized. The granularity of this sam-
pled space therein determines the expressivity of the digital instrument as it
delimits the amount of possible performance actions. A loss in expressivity
is thus inevitable for sample-based instruments. Most industrial approaches
aiming to enhance the expressivity of their digital instruments increase the
amount of sampled data using a multi-sampling approach [Mas02], which even-
tually leads to vast instrument sample libraries exhibiting dozens to hundreds
of gigabytes of recorded instrument sound data.

Techniques that follow Serra`s second musical objective [Ser97b] of obtain-
ing the ability to manipulate a sound in any conceivable way could allow for the
interpolation of these quantized sound spaces, by using signal transformation
methods that deliver results that are coherent with the sound properties of the
respective music instruments. Such methods however need to manipulate the
time-varying spectral characteristics of the sounds and hence, the progression
of the sampling methods towards spectral modeling techniques appears to be
reasonable [Smi05].

Spectral Modeling techniques refer to methods which utilize representa-
tions of the time-varying spectral characteristics of sound signals for synthesis
and transformations. These can be either purely parametric as in additive
and VOSIM synthesis [KT78] or obtained through an analysis of a recorded
sound. The former hence requires massive manual adjustments to obtain rich
and interesting sounding timbres whereas the second suffers from the limited
parametric control.

For yielding persuasive results in the imitation of sounds of natural music
instruments only two categories of synthesis paradigms are considered prolific
[Smi91]: Physical Models and Spectral Models, whereas the former may be
considered as models of the sound source and Spectral Models on the other
hand may be regarded receiver models [Smi91, Ser97b]. The present thesis is
however only concerned with the spectral modeling paradigm using a sample-
and hence recording-based approach and the other paradigms will be neglected.
The required Spectral Models though will have to provide analysis support as
they need to operate on real-world data obtained via digitization of natural
instrument sounds specifying the approach even further.
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1.2 State-of-the-art

According to [Ser97b], sampling synthesis can be considered to exhibit a high
sound quality for the imitation of natural music instruments as the perfect re-
construction of the recorded timbral characteristics can be guaranteed by the
todays computing capabilities using high enough sampling rates and bit reso-
lutions. This however comes at the expense of a limited controllability, which
mainly results from the sampling process of an instruments sound continuum
leading to a quantized timbre space. Its granularity is thereby primarily con-
ditioned by the data storage requirements for all the instrument recordings.

In [Smi05], Julius O. Smith states, that: “a recorded sound can be trans-
formed into any other sound by a linear transformation” using some linear,
time-varying filter. We may hence derive that there is no inherent loss of
generality in the sample-based sound synthesis method and interpolation of
the quantized representation of an instrument’s timbre space is possible using
standard filtering techniques.

The original Phase Vocoder [FG66] can be regarded the earliest attempt of
a Spectral Model with analysis support [Smi05]. It has its origins in the Dud-
ley Vocoder [Dud39b] and extends the Vocoder analysis/synthesis technique
[Sch66, Rab68] by an explicit analysis of a signals amplitude and phase spec-
trum for an improved signal reconstruction. Though, it took until the develop-
ment of reasonably efficient representations of a signals time-frequency distri-
bution [Coh95] like the Short-Time-Fourier-Transform (STFT) [All77, AR77,
RS78] which employs the highly efficient Fast Fourier Transform [CT65] to
bring the Phase Vocoder to wider application [Por76, Por78, Por80]. Its early
use in computer music and sound synthesis has been described by Moorer
[Moo76] and two comprehensive introductions to the Phase Vocoder can be
found in [Dol86, Ser97a]

Signal modifications using the Phase Vocoder often rely on the source-
filter signal model also introduced by Dudley in 1939 [Dud39a]. The source-
filter model of a signal assumes the signal to be produced by an excitation
source signal with white spectral distribution and a coloring filter [RR05a,
AKZV11]. While the source is either being represented by a pulse train or
a white noise signal, the filter modulates the energy of the excitation signal
with respect to certain frequency bands [Roe10b]. Thanks to the FFT and
vastly raised computing power, the amount of frequency bands available for
sound processing within the Phase Vocoder has seen a dramatic increase from
30 bands with 100Hz bandwidth in the original approach [FG66] to several
thousand bands called bins in todays implementations. The band-wise filtering
procedure has therefore now being replaced by a continuous filter function, the
spectral envelope [Roe10b].

With the availability of the STFT as an efficient time-frequency represen-
tation, explicit sinusoidal signal representations originally developed for speech
processing [AT83, QM86] and low- to mid-bitrate coding for signal transmis-
sion [AT82, MQ85] have been introduced for music signal analysis and synthe-
sis with the PARSHL method [SS87]. This modeling approach estimates the
individual sinusoidal components of a signal and has shortly thereafter been
extended by a dedicated noise model [Ser89, SS90]. The method became known
as Spectral Modeling Synthesis (SMS) [Ser97c, ABLS11] and Smith denotes it
as sampling synthesis done right [Smi91]. It is now being used within successful
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commercial applications like Melodyne by Celemony and Vocaloid by Yamaha
Coorp., but also within free software as Loris [FHLO02] or Spear [Kli09].

An issue within the spectral modeling approach lies within the analysis
of the signals that is required to transform a spectral representation into the
sinusoidal domain. Most authors pursue signal analysis for purely harmonic
signals since signal analysis of inharmonic signals requires additional algorithms
to estimate the frequencies of the sinusoids. Especially for piano sound signals
inharmonicity is a decisive property and needs to be considered appropriately
[You52, FBS62, FR98]. Several authors proposed methods for the estimation of
the inharmonicity coefficient and fundamental frequency of inharmonic sounds,
though they all are not designed for sound synthesis but analysis only [GA99,
RLV07, RV07, HWTL09, RDD11, RDD13].

Although more advanced models with analysis support for the representa-
tion of audio signals [Mal09, Stu09, Bar13] have emerged recently and seem to
enable new possibilities for sound synthesis and signal transformations [KD11,
CS11, KP12], the Sinusoids plus Noise signal model can be regarded a standard
technique in the available repertoire for sound signal synthesis and transforma-
tion [Kli09, O’L09, Cae11, Glo12].

Proprietary approaches are the so called Authentic Expression Technology
by Native Instruments [Mag10], which allows non-parametric interpolation of
spectral envelopes to gradually interpolate the sound space of an instriument
between two recordings and the Synful Synthesizer [Lin07] which combines frag-
ments of recorded musical performances in a concatenative approach [Sch04]
using neural networks to predict likely sound sequences. Morphing techniques
[Cae11] have also been proposed to create more convincing intermediate sounds.
However, all these methods do not enable realistic sound transformations as
they do not account for actual instrument properties, but rely on spectral enve-
lope interpolation [Mag10, Cae11] or highly specialized and manually annotated
recording datasets [Lin07, Sch04].

Many of these methods perform high quality sound transformations with
computational costs that are sufficiently low to allow for real time processing
[LD99a, LD99b, Roe03b, Roe03a, ABLS11] to essentially interpolate the instru-
ments sampled timbre space. An important issue with these methods is the fact
that the signals with either modified pitch or intensity are not coercively acous-
tically coherent with the untransformed sounds of the same instrument with
that specific combination of pitch and intensity as the transformed ones. This
severely limits the use of state-of-the-art signal transformation methods for the
sample-based sound synthesis method and other sound signal manipulations.

We assume that an improved signal transformation method that is capa-
ble of interpolating the quantized timbre space perceptually coherent with
the according acoustic instrument needs to incorporate support for extended
source-filter models as those which have been introduced for speech processing
[FLL85] and since then widely being applied for voice synthesis and transfor-
mation [Chi95, DLRR13, CRYR14]. Extended source-filter models provide at
least two independent filter functions and hence allow for colored excitations
rather than single filter functions only as within the standard source-filter ap-
proach. Such models have recently also shown to give significant improvements
in several music information retrieval tasks [Kla07, HKV09, KVH10, MEKR11,
COVVC+11, CDM14], though they are much more an emerging topic for mu-
sical sound synthesis [O’L09, Car09, MV14a].



CHAPTER 1. INTRODUCTION 6

In [O’L09], a generalized source-filter model with distinct filters for a signals
excitation and resonance component has been introduced for signal modeling
suitable for sound transformations and in [Car09] an instrument model with
separate excitation and resonance filters has been applied to violin sound syn-
thesis using a dedicated gestural parameterization. In a very recent approach
an extended source-filter method has also been applied to subtractive syn-
thesis [MV14a]. All these approaches furthermore incorporate the independent
manipulation of the individual harmonic and residual components of an instru-
ment’s sound signal and hence use distinct component models and implement
parallel processing chains.

However, no general method with support for expressive control parameters
has yet been introduced to the repertoire of sound transformation techniques
that retains the inherent sound quality of the recordings in terms of their per-
ceptual coherence with their acoustic equivalents. Such a method requires
knowledge about the characteristics of the according music instrument regard-
ing the selected expressive control parameters.

1.3 Thesis’ Scope

Within this thesis an imitative sound synthesis system will be introduced that
is applicable to most quasi-harmonic instruments. The system bases upon
single-note recordings that represent a quantized version of an instrument’s
possible timbre space with respect to its pitch and intensity dimension. A
transformation method then allows to render sound signals with continuous
values of the expressive control parameters, which are perceptually coherent
with its acoustic equivalents.

Expressivity in these terms is hence incorporated as part of a general in-
strument model where sound signal parameters are represented as functions of
two manually adjustable control parameters: pitch and global note intensity.
The instantaneous intensity is used as a third control parameter to account for
time-varying signal variations according to a signal’s specific attack and release
phase characteristics. The system shall support expressive control parameters
by providing a model that is capable of representing smooth signal parameter
transitions regarding continuous-valued control parameters.

The parametric instrument model will furthermore provide separate filter
functions for the harmonic and residual signal components of an instrument’s
timbre space to allow processing them individually. The filter function for
the harmonic and hence deterministic component uses an extended source-
filter model to allow for non-white source excitation functions and separate
resonance filter modeling. Thus, the general instrument model is assumed to
allow modifications of a signal’s pitch or global note intensity in a manner that
resembles actual instrument characteristics and hence is supposed to enable
synthesis results that are perceptually more convincing than with state-of-the-
art methods.

Furthermore, a dedicated model of an instrument’s global note intensity
will be established to eventually calibrate the synthesis method such that the
relative signal level differences for varying values of the global note intensity
can be adjusted automatically. This shall be done likewise coherently to actual
instrument properties. The intensity model is created using a comparative
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analysis of available crescendo and decrescendo sound signals with instrument
model estimates of varying values of signal intensity. The intensity model is
then utilized to create calibrated instrument models such that level differences
for varying global note intensities are incorporated into the instrument model
additionally to the spectral characteristics. This allows to modify a signals
spectral characteristics and level simultaneously using a single model.

A subjective evaluation procedure will be introduced to assess a variety
of transformation results by a direct comparison with unmodified recordings
to determine how perceptually close the synthesis results are regarding their
respective original correlates.

A new method for the joint estimation of an instrument signal’s inharmonic-
ity coefficient and fundamental frequency is furthermore introduced to allow
the presented approach for imitative digital sound synthesis to be applicable
for piano sound signals as well. The algorithm is not a substantial part of the
instrument modeling approach, though required for a high-quality transforma-
tion of the spectral representation of piano sound signals into the sinusoidal
domain.

1.4 Thesis’ Structure

This thesis is constituted of 3 parts:
The first part of the thesis covers an analysis of the state-of-the-art ap-

proaches and methods. The part briefly introduces the concept of sample-based
sound synthesis since it focuses on a detailed analysis of spectral modeling
paradigms as well as thorough descriptions of the sound transformation algo-
rithms representing compulsory requirements for the subsequent part of the
thesis. The part will also give an analysis of the available literature on com-
petitive approaches and recent developments within the digital sound synthesis
research community.

The second part of the thesis covers its core contribution to the research
community and hence contains all necessary components to establish an in-
strument model that can be used to control a sample-based sound synthesizer
with expressive parameters. Within this part of the thesis, a parametric model
for the representation of the sounds of a quasi-harmonic instrument will hence
be presented together with required parameter estimation and model selection
strategies. A method for the application of the presented instrument model for
sound transformation using a standard signal processor will be described as well
as a method for level calibration of the instrument model. The part concludes
with a new subjective evaluation method which gets presented thoroughly and
applied to our synthesis method. Its results are given and summarized.

The last part of this thesis contains several conclusions and insights which
the author of this thesis has obtained throughout the respective research project
and from the prolific subjective evaluation procedure. The part eventually also
covers propositions for future improvements and possible research directions
for researcher who are deeply concerned about improving the expressiveness of
sample-based sound synthesis methods.

In the appendix a new method for the joint estimation of the fundamental
frequency and inharmonicity coefficient is presented which had been developed
as part of the research conducted for the present thesis. This new method has
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been required for the analysis and transformation of inharmonic instrument
sound signals to obtain the signal representations required for the instrument
model as well as for sound synthesis.
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State-of-the-art
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Chapter 2

Sampling-based Sound Synthesis

The sample-based sound synthesis method is sometimes also denoted Sampling
Wavetable Synthesis or just Sampling Synthesis [Mas02]. Within this method
recordings of entire musical notes of acoustic instruments are stored in some
memory and the basic operation of such a synthesizers involves the playback
of these digitized recordings according to a trigger event. A musical phrase or
performance is hence constructed by multiple note triggers which then create
sequences of notes which may be monophonic or polyphonic. In [Mas02] a
thorough introduction to Sampling Wavetable Synthesis is given.

Also in [Mas02], two metrics for the assessment of sound synthesis in gen-
eral and sampling synthesis in particular have been defined: expressivity and
accuracy.

Expressivity is defined as the variation of the spectrum and the time evo-
lution of a signal according to the some user input during a performance. This
includes that two notes played in succession are never identical regardless of
how strongly a musician attempts to create identical sound signals. The two
signals may however be identified as correct realizations of the same note event
with equal pitch and intensity, though their waveform details may be different
and these differences may also even be perceivable.

Accuracy of a synthesis scheme refers to the fidelity of reproduction of the
sound of a given musical instrument and may hence only be considered for
imitative synthesis. A good accuracy therefore can be seen as a benchmark
for the possible quality of a synthesis method and that if a synthesis method
achieves an acceptable level of quality could then enable unheard and new sonic
experiences using some sort of extrapolation.

As already discussed in sec. 1.1, accuracy of the sampling method can be
regarded as very high in comparison to other sound synthesis paradigms as
long as only simple playback of a note is required. In terms of expressivity
however, the sampling technique lacks the possibility of in-depth control of the
spectral content being played back and hence changing the spectral or temporal
structure of recordings requires filtering techniques [Mas02] and resampling
methods [SG84, FV13]. Several state-of-the-art signal representations that
may be used for sound signal transformations will be presented in the next
chapter.

The most trivial attempt in sampling synthesis for improving the expres-
sivity while retaining the inherent quality of the recordings consists in the

11
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addition of recordings in a multi-sample approach [Mas02]. Most sample li-
braries and according synthesizer algorithms have hence distinct recordings
available for various pitches playable by the respective instrument as well as
separate recordings for several levels of note intensity for every pitch. Such
sample libraries therefore ”sample” the timbre space of an instrument within
two dimensions spanned by a pitch and a note intensity axis eventually yield-
ing a discretized representation of an instrument’s sound continuum. However,
more control dimensions may be used for even more expressive control, though
this typically comes with a loss of generality as further controls may not be
available for all instruments. We may hence derive the pitch and the note in-
tensity as the least common set of control variables available for a majority of
quasi-harmonic instruments.

These two control parameters are also supported by most control interfaces
required to trigger note events in real-time performances and the restriction to
such a limited set of control variables may hence well-preserve the universality
of a transformation method aiming to increase the overall expressivity of the
sampling synthesis method.



Chapter 3

Signal Models for Sound
Transformation

Introduction

This chapter deals with spectral modeling techniques with analysis support
which are essentially based upon the source-filter model and the phase vocoder
method. We assume these signal models and their extensions to be suitable for
various spectral processing tasks and will therefore give a recapitulatory review
of the state of the art of their according models and methods.

We start with shortly revisiting the STFT signal representation, which rep-
resents the basis for most spectral modeling approaches and introduce some
important aspects regarding the Phase Vocoder and the sinusoidal modeling
approach. Certain facets of sinusoidal modeling which are important for this
work will be discussed. This includes a short review of 2 parameter estimation
methods for sinusoidal parameter estimation and further requirements for this
thesis.

3.1 The Short-Time Fourier Transform

When dealing with signals in a digital computer, we typically refer to them by
their time-discrete representations x(t) representing a sampled version of the
signal at a given constant sampling intervall 1/T . Furthermore, the respec-
tive amplitude values at each sampling position are discretized with a fixed
resolution to eventually obtain a digital signal.

The time-varying spectral properties of a signal can be represented using
the Short-Time Fourier-Transform [RS78, Coh95] (STFT) also denoted Short-
Term [All77, AR77] or Time-Dependent Fourier Transform in the literature
[OS10]. For discrete frequencies f the STFT may be written as follows:

X(f, n) =
L−1∑

m=0

wx(m)x(nR+m) e−j(2π/N)fm (3.1)

whereas wx(m) refers to a symmetric window sequence [Har78, Nut81] with
length L and the term within the sum represents the Discrete Fourier Transform
(DFT) of the windowed portion of the signal. The signal portion is being taken

13
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with respect to some hop size R and frame index n starting at 0. The time
and frequency discrete representation X(f, n) of the signal hence exhibits N
equidistant frequency values called bins at each time frame n while assuming
R < L ≤ N to ensure its reversibility.

In signal analysis, the windowing sequence typically refers to some raised
cosine function, whereas several types are being used. Window functions dif-
fer by their spectral main lobe width and side lobe attenuation and window
functions either exhibit wide main lobes with good side lobe attenuation or
the opposite and may therefore be denoted high dynamic range windows in the
former or high resolution windows in the latter. They should hence be chosen
with respect to the signal to be analyzed.

An important property of the STFT representation of a time-discrete signal
became known as the Uncertainty Principle of signal analysis [Coh95]. There
is however nothing uncertain, but a well-known mathematical fact and fun-
damental statement regarding joint time-frequency analysis, which essentially
states, that the time and frequency resolution of the analysis are mutually re-
ciprocal. This means, that by raising the frequency resolution of the analysis
one decreases the time resolution and vice versa.

Within the STFT, the frequency and time resolution is determined only
by the analysis block length and in harmonic signal analysis the minimum
analysis block length L for a meaningful STFT representation depends on the
lowest fundamental frequency contained in the signal to be analyzed and the
applied windowing sequence. The fundamental frequency is closely related to
the perceived pitch [Moo12] of a sound and hence a signal attribute of signif-
icant importance for many signal analysis and sound synthesis tasks. A more
thorough discussion on the fundamental frequency of quasi-harmonic signals
and their estimation will be given in sec. 3.3.4.

The Hann window function for example requires about 4 periods of the
lowest sinusoidal signal component representing its fundamental frequency to
obtain a reasonably good spectral separation of the main lobes of the har-
monic series of overtones, whereas a Blackman window function requires 5 to
6 fundamental periods for a similar separation of the spectral signal content
[Har78].

Taking the DFT of a signal segment includes the assumption about its
quasi-stationarity within this segment as its DFT yields complex values for each
spectral frequency bin averaged over the whole analysis block length L. When
assuming an analysis hop size R = L this would result in a single complex value
per spectral bin every 4 to 6 fundamental periods which can be a fairly poor
temporal resolution for harmonic signal analysis. To increase the amount of
temporal sampling positions for the spectral analysis R is typically set to some
value between 1/4− or 1/8−th of the analysis block length L. This method for
increasing the amount of temporal sampling positions can be denoted temporal
oversampling, though it is important to note, that this approach does not
increase the actual temporal resolution of the STFT.

Another method to enhance the analysis result of the STFT is called spec-
tral oversampling. Using a DFT length N greater than the analysis block
length L yields a time-varying spectral representation with an amount of spec-
tral sampling positions greater than the analysis block length. This increased
amount of values however does not refer to an increased spectral resolution,
but an interpolated version of the spectrum of the windowed sequence of the
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Figure 3.1: The classic source-filter model with an ideal pulse as source signal
shown in time (top) and frequency (bottom) domain and a time-variant filter.
The spectrum of the source signal exhibits a white distribution and hence all
spectral coloring is due to the filter.

signal with a resolution according to the used analysis block length L. Spectral
oversampling however can increase the accuracy of subsequent spectral analy-
sis methods and N is often set to some value between 2 to 8 times L. Due to
computational performance reasons when computing the DFT using an FFT
algorithm, the amount of spectral sampling positions N is often constrained to
powers of 2.

3.2 The Source-Filter Model

Within the source-filter model of speech production [Dud39a], a voiced speech
signal is assumed to be produced by a source emitting an ideal pulse and a
time-variant filter, which modifies the excitation signal by superimposing its
spectral envelope as shown in fig. 3.1. The time-varying spectral representation
of a signal x(t) is hence assumed to be produced as in eq. (3.2).

X(f, n) = S(f) · F (f, n) (3.2)

where S(f) refers to an excitation source signal and F (f, n) represents the
time-varying filter function.

Within the classic technique for source-filter modeling, the source is as-
sumed to exhibit a white spectral distribution and source-filter processing
then refers to the estimation of the time-varying spectral envelope of the fil-
ter F (f, n) to enable various kinds of sound manipulations [AKZV11]. In voice
processing, the spectral envelope is typically seen as the transfer function of the
vocal tract whereas more generally, the spectral envelope of a quasi-stationary
sound may be viewed as the acoustic representation of its timbre [MV13].

Estimation of the transfer function of the filter essentially means finding
a smooth curve which approximates the spectrum of a signal frame with an
envelope that passes through its prominent peaks. Within the source-filter
framework, the peaks are assumed to represent the sinusoids created by the
source with equal amplitude and hence their relative amplitude deviations refer
to the filter sampled at the peaks frequency locations.

A large variety of envelope estimation procedures have been proposed in the
literature. The Linear Predictive Coding technique (LPC) [Mak75] has been
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introduced for the estimation of the human vocal tract from voice recordings
but exhibits some quite undesirable strong peakiness. Other methods are the
Discrete All-pole Model (DAP) [EJM91] as well as the regularized discrete
cepstrum method [GR87, CLM95, CM96]. Both methods have been extended
with a penalized likelihood criterion in [OCM97, COCM01] for an improved
stability of the estimations.

The True Envelope method [RR05a] is an iterative method based upon the
signal’s real cepstrum whose properties have shown to be superior for arbitrary
envelopes when compared with the LPC and DAP method [RVR07]. Warped
frequency scales have also been studied [VRR08, MLV13] for perceptually more
meaningful estimates of the spectral envelope. The probably latest addition
to the family of spectral envelope estimation techniques is the True Discrete
Cepstrum [MV14d] which yields improved results for high model orders.

Within the paradigm of source-filter based sound processing, independent
manipulations of the source and filter are possible. This is particularly impor-
tant for pitch transformations of speech signals where formant locations and
hence the spectral envelope shall be preserved, but also allows for advanced and
complex signal manipulations like sound morphing [Cae11] or cross-synthesis
[Smi10b].

3.3 The Sines plus Noise Model

The sinusoidal model as used in the Sines plus Noise model has its origins in
the source-filter model of speech production [Roe10b] and has hence first been
developed for speech signals [MQ86]. There, an analysis/synthesis technique
has been proposed for the creation of a sinusoidal model that is characterized
by the amplitude, phase and frequency trajectories of a signals sine wave com-
ponents. This sinusoidal representation is considered to consist of a glottal
excitation that is represented by means of a sum of sine waves to which a
time-varying vocal tract filter has been applied.

This model has been applied for music and instrument sound signals for the
first time with the PARSHL method [SS87] and shortly thereafter extended by
an explicit model of a signals residual, non-deterministic component in [Ser89,
SS90]. The approach is denoted Spectral Modeling Synthesis and represents a
sound signal x(t) as a superposition of a deterministic, sinusoidal component
xh(t) and a residual xr(t) signal. It allows to link an instrument’s signal with
its physical source as the sinusoidal components can be considered the filtered
modes of a vibrating string or an air column, while the residual may refer to
wind or bow noise and a potentially transient signal component.

We may thus write the superposition of a deterministic xh(t) and a non-
deterministic component xr(t) as:

x(t) = xh(t) + xr(t) (3.3)

whereas the deterministic component refers to the linear combination of K
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time-varying sinusoids:

xh(t) =
K∑

k

a(k)(t) · cos(φ(k)(t))

=
K∑

k

a(k)(t) · cos(2πf(k)(t) t)

(3.4)

with its parameters:

φ(k)(t) : phase,
a(k)(t) : instantaneous amplitude and
f(k)(t) : instantaneous frequency

for a partial k at sampling position t.

Estimating such a representation from an audio signal requires an elaborate
analysis that decomposes the signal into such a linear combination of sinusoidal
components and a residual xr(t) signal, whereas the non-deterministic compo-
nent is typically obtained by inverse filtering of x(t) with the estimate of xh(t).

Decomposing a signal into atomic components like time-varying sine waves
is persistently driving parts of the signal processing research community since
many decades and a tremendous amount of methods and algorithms have been
proposed since then.

Methods that do not rely on a time-frequency representation like the STFT
and hence do not suffer from the Uncertainty Principle briefly discussed in sec.
3.1 are MUSIC [Sch86], ESPRIT [RK89] or HRHATRAC [DBR06, BDR06]
which are based on subspace exploration. Matching-[Mal93] or Basis Pursuit
[CDS01] based methods are using dictionaries of atomic prototypes with their
dictionary size being the main limiting factor. All these methods allow for a
simultaneous increase of the time and spectral resolution and are therefore also
called High-Resolution methods. However, this generally comes with either a
highly increased computational cost or a reduced signal to residuum ratio.

Approaches that work on the basis of overlapping signal frames typically
come with an inherent assumption about the quasi-stationarity of the signal
to analyze and require the discussed compromise on temporal and spectral
resolution, though they may however benefit from fast FFT implementations.
As in the original proposition for PARSHL and Spectral Modeling Synthesis,
the STFT X(f, n) of a signal x(t) can be used to estimate the instantaneous
parameters of the sinusoids, but also (Weighted) Least-Squares (LS) methods
[Lar89a, Lar89b, LSM93, Sty96, Oud98] have been proposed, which allow to
use shorter time frames for the estimation than STFT based methods [Sty96],
but otherwise do not allow for the estimation of all instantaneous parameters
simultaneously.

The reassignment [AF95] and the signal derivatives method [DCM98] as
well as their generalizations for non-stationary sinusoids [XS09, MB11] rep-
resent approaches that are also based on the STFT, but aim to increase the
precision of the instantaneous estimates of the sinusoidal parameters beyond
the limits drawn by the compromise of time and spectral resolution as well as by
the assumption of intra-frame stationarity by introducing linear or logarithmic
modulation parameters to the sinusoidal model from eq. (3.4).
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Review articles which study various parameter estimation techniques for
quasi-stationary sinusoids can be found in [KM02, HM03], whereas methods for
the estimation of the instantaneous parameters of non-stationary, modulated
sinusoids have been investigated recently in [MB10, HD12].

Within this thesis we particularly considered two approaches for parameter
estimation of quasi-stationary sinusoids as in conjunction they allow for rea-
sonable high quality results for our purpose of analyzing single-note recordings
of musical instrument sounds which can be assumed to exhibit fairly slow mod-
ulations if at all. We hence employ the parabolic interpolation of the peaks of a
zero-padded discrete Fourier transform as originally proposed for the PARSHL
method [SS87] extended by a bias correction as proposed in [AS04]. A subse-
quent LS method [Sty96] is used to increase the time resolution of the partial
estimates in critical regions for a subset of musical instruments.

3.3.1 Parameter Estimation Using Parabolic Interpolation

A time-continuous signal with a time-invariant sinusoidal component exhibits a
continuous spectrum with a single line at the sinusoids frequency. However, in
digital spectrum analysis, the windowing effect also known as spectral leakage
[Har78] and the discrete nature of the analysis lead to a sampled version of the
spectrum, which exhibits a main lobe and and an unlimited amount of sidelobes
(the effect of spectral aliasing may be ignored here). The frequency sampling
positions of the DFT hence do not necessarily lie at the exact frequency location
of the sinusoid and hence the analysis appears blurred and the exact location
of the sinusoid can only be measured approximately.

In [MQ86] sinusoidal components are detected by means of locating local
maxima within a signals DFT starting with the peak with the largest magni-
tude and iteratively selecting maxima with the next lower magnitude. This
procedure is being repeated until a fixed amount of spectral peaks has been
selected. This method however is rather inaccurate due to the reasons dis-
cussed above and hence the PARSHL [SS87] method proposes an interpolation
of the position of the spectral peak using a parabola fitted to a local maxima
and its direct neighbors to estimate the true frequency location of the sinusoid.
The second order polynomial has been chosen as it approximates the shape of
the main lobe of the window function efficiently. The use of a second order
polynomial gave this method its name: Quadratic Interpolated FFT (QIFFT)
[Smi10b].

Nonetheless, the approximation of the shape of the main lobe using a
parabola introduces a general bias which may result in audible artifacts when
resynthesizing the estimates [AS04]. In [AS04] a bias correction term has hence
been introduced, which efficiently corrects the frequency and amplitude esti-
mates by cubic and parabolic bias correction functions respectively. These
functions introduce heuristic knowledge about the shape of the main lobe as
window-dependent functions and the authors have shown the accuracy im-
provement of the parameter estimates while maintaining the overall efficiency
of the method.
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3.3.2 Parameter Estimation Using Weighted Least–Squares

As briefly discussed in sec. 3.1, the analysis of harmonic signals in a DFT
based approach requires analysis blocks with a length that is greater than or
equal to 4 to 6 times the period of the lowest fundamental frequency contained
in the signal depending on the window function being used. An estimation
based on such long analysis blocks may yield a fairly poor approximation of
the sinusoidal parameter trajectories when the parameters exhibit rapid fluctu-
ations. In the previous section we have mentioned various methods that target
for an improved analysis using different kinds of sinusoidal models that support
for local non-stationarity. The class of Least Squares methods though allow
for sinusoidal parameter estimation using the same quasi-stationary sinusoidal
model for parameter estimation as the parabolic interpolation method, though
they are not based on the DFT of a signal, but the signals time domain repre-
sentation and allow for shorter analysis frames [Sty96]. However, they require
to estimate the frequency and amplitude trajectories of the signals sinusoids in
separate steps.

The Harmonic plus Noise model in [LSM93, Sty96] has originally been pro-
posed for speech signals and assumes the signal segments of interest to exhibit
sinusoids in a harmonic relationship. They further assume the amplitudes and
frequencies of the sinusoidal components of the signal being nearly constant
within the frame to be analyzed. Their analysis of the deterministic signal
component of a harmonic signal segment then consists of a pitch estimation
technique from which the frequencies of sinusoids will be generated and a sub-
sequent estimation of the partials instantaneous amplitudes and phases is done
using a Weighted Least-Squares (WLS) approach.

We have adapted the WLS method in [Sty96] such that it allows to improve
the temporal resolution of a preceded analysis using parabolic interpolation
with bias correction. As the harmonic instrument model to be introduced in
sec. 6.1 only aims to represent partial amplitude trajectories, we target for an
improved analysis of the sinusoid’s amplitudes only and consider the estimates
of its phase and frequency trajectories obtained by the interpolation method
to be precise enough for our purpose.

We may hence reevaluate the real-valued amplitudes of the sinusoids of a
signal by use of the weighted least-squares method aiming at minimizing the
error criterion in eq. (3.5) with respect to a(k)(n

′) [Sty96].

ε(n′) =
L′−1∑

m=0

w2
ls(m)

∣∣x(n′R′ +m)− x̂h(n′R′ +m)
∣∣2 (3.5)

Variable n′ in eq. (3.5) denotes the new set of frame indices and L′ and
R′ refer to a new block length and hopsize respectively, which can be made
smaller than for the STFT analysis. The x(n′R′ + m) refers to an according
segment of the original signal and x̂h(n′R′+m) represents an estimated version
of the harmonic signal component of that segment which has been defined in eq.
(3.4). The weighting function w2

ls(m) is used to provide a better localization
of the signal towards the center of the frame to be analyzed. The use of a
non-rectangular weighting window is strongly recommended to avoid audible
artifacts in the residual signal [LSM93].
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The estimate of the harmonic signal component may now be rewritten in
matrix notation for a single frame n′:

x̂h = Ba (3.6)

with a = [a(1)(n
′), . . . , a(K)(n

′)]T being the vector of unknown partial ampli-
tudes. The symbol T denotes the transpose operator.

The matrix B can be established using knowledge about the sinusoidal
phase trajectories. Assuming a preceded analysis of the deterministic com-
ponent of a harmonic signal using the STFT-based parabolic interpolation
method, we are able to interpolate the frame-based phase estimates φ(k)(n) of
the K detected sinusoids at sample positions t by using the cubic phase inter-
polation method proposed in [MQ86] for maximum smoothness of the phase
functions φ(k)(t). These phase functions can be used directly to develop the
phase trajectories for the sinusoids K within a frame n′:

B =




cos(φ(1)(n
′R′)) · · · cos(φ(1)(n

′R′ + L′ − 1))
...

. . .
...

cos(φ(K)(n
′R′)) · · · cos(φ(K)(n

′R′ + L′ − 1))


 ∈ RK×L

′
(3.7)

The solution to the Weighted Least-Squares problem is then given by the
normal equations

(
BTWTW B

)
a = BTWTW x (3.8)

whereas W is a L′×L′ diagonal matrix with the values of the weighting function
wls(m) as diagonal elements. The vector x represents the frame of the original
signal to be analyzed and solving the equation for a yields the desired partial
amplitude values.

3.3.3 Partial Tracking

The parabolic interpolation method introduced in sec. 3.3.1 only yields in-
stantaneous parameter values and does not reveal any information about the
temporal connections of the estimated sinusoidal peaks within each frame. For
the estimation method using WLS though, we already need to know, which
spectral peaks in consecutive frames belong to the same sinusoid to interpo-
late the phase properly. An intermediate step is hence necessary to assign the
instantaneous parameter estimates of consecutive analysis frames to sinusoidal
trajectories. This procedure is typically called Partial Tracking.

In [MQ86], spectral peaks are matched recursively on a frame by frame basis
according to their frequency difference and a general concept of a sinusoids birth
and death is introduced. A more complex system has been proposed in [Ser89,
Ser97c] in which an algorithm has been developed that is motivated by line
detection methods in image processing. There, several additional constraints
are introduced extending the simple frequency difference condition for peak
matching by a minimum length for each trajectory, a sleeping or zombie time
for a trajectory as well as a maximum allowed frequency deviation among
others.
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Other strategies have been developed using for example Hidden Markov
Models [DGR93] or Linear Prediction techniques [LMR07] for creating trajec-
tories from the unconnected, frame-wise measurement data, which show su-
perior results for complex sounds with crossing partials or highly modulated
sinusoids as well as polyphonic signals.

However, in this thesis we will only analyze signals that are monophonic,
harmonic signals with constant pitch and therefore we use a partial tracking
approach which resembles the one proposed in [Ser89, Ser97c], though we are
using less constraints as we may make stronger assumptions about the content
of our signals to analyze. For all signals, we assume them to exhibit a recording
of a single note of a quasi-harmonic instrument only whereas its only slightly
time-varying fundamental frequency f0(n) is known a priori and hence express
our set of conditions for the partial continuation algorithm as follows:

1. Harmonicity is enforced. We only consider peaks for the analysis, which
satisfy the harmonic relationship within a tolerance level of µ = 0.2
around the hypothetically exact location of f(k) and we only consider
the strongest spectral peak within each band around f(k). This shall
ensure, that the resulting sinusoidal model represents actual harmonics
of the signal only. The peaks are sorted in such a way, that the partial
index k of the sinusoidal model equals the harmonic index which can be
done using:

f(k)(n) = arg max
f

{
X([k · f0(n)− µ, . . . , k · f0(n) + µ], n)

}
(3.9)

2. Partials at all harmonic indexes are only allowed to be born once through-
out the signal. Once they disappear in the spectrum, they will not get
reborn if a peak reappears later in time.

3. However, a maximum sleep time for about 100ms will be allowed. These
time gaps in a partial trajectory are being interpolated using the McAulay/
Quatieri method before resynthesis [MQ86].

4. Partial trajectories need to exhibit at minimum length of about 100ms,
otherwise they are being deleted from the model.

In our case of a uniform and predictable set of sound signals, these 4 simple
qualifiers yielded sufficient results for the partial tracking algorithm as long
as the fundamental frequency has been tracked previously with high accuracy
and that the analysis parameters for the STFT have been adjusted properly
such that all relevant harmonic sinusoids of the signal could be resolved. The
tracking of the fundamental frequency of monophonic harmonic as well as in-
harmonic sound signals will be discussed in the next section.

It is important to note, that the QIFFT as well as the WLS parameter
estimation method only yield values at a certain frame rate n or n′ respetively
whereas the partial tracking procedure establishes links between the frame-wise
partial data. To synthesize the partial trajectories from the frame-wise data at
a certain samplerate the data needs to be interpolated. A well-known method
for synthesizing partial data has been described in [MQ86] which uses linear
interpolation for amplitudes and third order interpolation for their respective
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phases. This method has shown to be sufficient for most cases [GMdM+03].
Though several approaches for approximate and faster interpolation using lin-
ear interpolation at reduced sampling rates have been proposed [HB96] as well.

3.3.4 The Fundamental Frequency

The fundamental frequency is an important feature for the harmonic analysis
of monophonic signals. As briefly discussed in sec. 3.1, the analysis window for
an STFT representation needs to account for the lowest fundamental frequency
contained within a signal to yield a frequency resolution that is precise enough
to resolve its harmonic partials. Hence, to estimate the instantaneous param-
eters of the sinusoids for the Sines plus Noise model as well as for tracking
the partials with respect to their harmonic index, the estimation of the signals
time-varying fundamental frequency is necessary.

Assuming a Sines plus Noise model specified by eq. (3.4) for a quasi-har-
monic signal, the partial index k typically refers to the harmonic index of the
overtone series of the signal, which is defined as the harmonic series shown in
eq. (3.10). One may note that the Sines plus Noise model is not restricted to a
certain order of its partials, though it is typically convenient to have an order
of increasing frequency value and therefore the partial with index k = 1 equals
the fundamental frequency f0.

f(k) = k · f0, k = 1 . . .K (3.10)

Various approaches and techniques for the estimation of the fundamental
frequency from quasi-harmonic signals can be found in the literature. Early
approaches have been based on the signals cepstrum [Nol67] or its spectrum
[Nol70], though the time-domain based YIN algorithm [dCK02] is perhaps the
most popular approach due to its computational efficiency and its robust es-
timations [KZ10]. More recently, fundamental frequency estimation methods
that extend the YIN algorithm by either a probabilistic framework [MD14] or
a normalization and windowing technique [MW05, McL08] have been proposed
for further improvements.

In [YRR10] a method has been proposed which ranked very high in several
succeeding MIREX evaluations [YR09, YR10, YR11] for tracking multiple fun-
damental frequencies in polyphonic sounds. The method however also supports
the analysis of the fundamental frequency within monophonic signals and will
hence be used for such within this thesis.

There are however quasi-harmonic instruments, whose sound signals do
not exhibit a harmonic series as shown in eq. (3.10) and hence require a
different model for the estimation of their fundamental frequency as shown in
the following.

3.3.4.1 Fundamental Frequency Estimation of Inharmonic Signals

Inharmonicity means that the frequencies of the partials are not exact integer
multiples of their fundamental frequency but located at increased frequencies.
This due to the stiffness of the strings which effects the frequencies of the modes
of vibration [You52] leading to a shift of the partial frequencies. This effect is
perceptually significant for the piano but also applies to all other percussively
excited string based instruments like guitars [JVK01]. The amount of increase
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of the partial frequencies is reflected by the inharmonicity coefficient β within
eq. (3.11) [FBS62], whereas this coefficient of inharmonicity is a characteristic
of the stiff string [You52].

f(k) = k · f0
√

1 + k2β, k = 1 . . .K (3.11)

This inharmonicity coefficient does not only depend on the diameter and
tension of the string, but also on its length, and hence its according value
varies with the signals fundamental frequency. The fundamental frequency
however, is then only a theoretical value, as there is no partial with that specific
frequency present in an inharmonic signal as can be seen in eq. (3.11). Both,
the inharmonicity coefficient β as well as the fundamental frequency f0 can
hence not easily be measured from an instruments signal.

Several approaches for the automatic estimation of the inharmonicity coef-
ficient β and fundamental frequency f0 of inharmonic signals have been pro-
posed in the literature. In [GA99] inharmonic comb filters have been proposed,
whereas the parameters for the filter have been found by an exploration of a
vast range of possible values within three consecutive steps, while the param-
eter search grid is refined in each iteration. The algorithm finally interpolates
the best parameter sets to obtain its f0 and β coefficient.

A partial frequencies deviations method has been proposed in [RLV07,
RV07] as well as a median-adjustive trajectories method in [HWTL09, Hod12].
Both methods are using an initial estimate for the fundamental frequency ob-
tained by either using an estimation method for harmonic signals or by some
user input. The algorithms then iteratively refine the estimates by either an-
alyzing the trend of deviation from the harmonic series and modifying β ac-
cordingly in the former or by solving an analytic expression for the mutual
relationship of two partials in the latter.

Another approach is based on non-negative matrix factorization (NMF)
which allows to jointly estimate the fundamental frequency f0 and the in-
harmonicity coefficient β for the whole pitch range of an instrument at once
[RDD12, RDD11].

All these methods are characterized by their target application of pitch es-
timation for piano recordings and for such, they typically consider only the
first 30 harmonic partials or even less and most use fixed amplitude thresholds.
This seems to be appropriate for most pitch estimation and music transcrip-
tion tasks, though to reliably estimate the frequency locations of all harmonic
partials of piano sounds, a much higher accuracy for the estimation of the
inharmonicity coefficient is required.

Piano recordings cover a wide dynamic range and a large spectral band-
width. The use of fixed amplitude thresholds apparently represents a major
limitation for an algorithm and so does the use of a fixed amount of partials.
In our publication [HR13] we have studied the effect of small deviations in the
estimation of the inharmonicity coefficient for the estimation of the frequencies
of upper partials which remain undetected or get even mismatched if only up
to 30 partials are considered for the estimation of the inharmonicity coefficient.
We have hence proposed a new technique for the joint estimation of the inhar-
monicity coefficient and fundamental frequency in [HR13] and a description
of the method will be given in the appendix A. Other recent approaches are
presented in [RDD13] or [KCOL14].
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3.3.5 Residual Modeling

Assuming a monophonic, quasi-harmonic signal xh(t) and a parameter estima-
tion technique that perfectly finds its harmonic partials, we may conclude that
the residual signal xr(t) obtained by inverse filtering of the input signal x(t)
with the synthesized harmonic signal will only contain noise. To allow for any
further processing of a residual signal as well as for any meaningful manipu-
lation we utilize the source-filter framework and hence its representation by
its time-varying spectral envelope. Within this thesis, spectral envelope esti-
mations techniques have been discussed briefly for processing of deterministic
signals and envelope estimators have hence been focusing on smooth envelopes
passing through the prominent spectral peaks refering to a signal’s sinusoidal
components.

For residual signals we may assume no deterministic components to be
present and hence require a spectral envelope that describes its statistical prop-
erties rather than instantaneous sinusoidal parameters. In [RS07] cepstrum
based methods are proposed for envelope estimation of residual signals that
are assumed to be random since cepstral coefficients are well suited for further
processing of such signals. The method of cepstral smoothing [Smi10b] may be
used to obtain a smooth envelope of the spectrum of a noise signal using its
real cepstrum [RS78, OS10]. This method is known to yield an envelope that
follows the mean of the spectrum [RR05b] rather than its heavy fluctuations
due to the lowpass filtering of the real cepstrum.

The signal’s time-varying real cepstrum is obtained by taking the inverse
Fourier Transform of the logarithm of the magnitude spectrum shown in eq.
(3.12) with l being the index for the cepstral coefficient.

C(l)(n) =
N∑

f=0

log(|Xr(f, n)|) ej(2π/N)fl (3.12)

The cepstral smoothing method then refers to filtering the cepstral coeffi-
cients with a lowpass filter function wc(f) in the cepstral domain and applying
the Fourier transformation as shown in eq. (3.13) followed by applying the exp
function on its real component.

F (f, n) = exp
(

Re

L∑

l=0

(
wc(l) C(l)(n)

)
e−j(2π/N)lf

)
(3.13)

The window function is defined as in eq. (3.14) using some value lc < L for
the cutoff of the lowpass filter.

wc(l) =

{
1, |l| < lc

0, else.
(3.14)

Using such a window function essentially refers to a truncation of the cep-
stral coefficients and as this operation yields an even function, eq. (3.13) may
also be expressed using only cosine terms [RS07]:

F (f, n) = exp
( lc∑

l=0

(
wc(l) C(l)(n)

)
cos(πlf/N)

)
(3.15)
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In [RS07] it has been shown, that the argument of the cosine term can be
precomputed and eq. (3.15) then simplifies to a single matrix-vector multipli-
cation to which the exp-function is applied.

3.4 The Phase Vocoder

The Phase Vocoder (PV), introduced in [FG66], extends the classic Dudley
Vocoder [Dud39b] with an explicit processing of a signals phase information
for an improved reconstruction accuracy when resynthesizing a signal from an
analysis. The PV gained much popularity with the availability of the STFT
[Por76] as a suitable signal transform which is using efficient FFT algorithms.
The analysis result of an STFT yields a series of complex spectra which contain
the signals phase and amplitude information at discrete time and frequency
locations. The PV algorithm then uses such a time-frequency representation
of a signal to apply modifications to its amplitude or phase information before
synthesizing a signal from this modified representation. Introductions to the
algorithm can be found in [Dol86, Ser97a].

Common applications for the PV are time-stretching and -compression or
transposition of a signals pitch [Por81] and their usage in computer music ap-
plications has already been studied in [Moo76]. These transformations can be
achieved by relocating the analysis frames of the STFT during synthesis or by
shifting operations of the spectra along the frequency axis. Such modifications
require according adjustments to the phase information of the short-time spec-
tra to ensure the horizontal phase coherence. Though, to properly adjust the
phases if sinusoids are contained within a signal, the effect of spectral leakage
needs to be taken into account by adjusting the phases of the spectral bins that
belong to the same sinusoid in an appropriate manner [Puc95, LD97, LD99a].

The separate treatment of the sinusoidal components of the short-term
spectra makes the PV an implicit Sines plus Noise model [LR13]. However,
to further preserve the shape of the waveform when transposing a signal in
the frequency domain it is necessary to account for what is called vertical
phase coherence, which means that the phase relations in-between the sinu-
soids need to be preserved and according methods have been proposed in
[LD99b, Roe10a, Roe10c].

Spectral modifications that effect the magnitudes of the STFT which are
essentially equivalent to time-domain filtering of a signal [All77] may also be
applied. These transformations may be interpreted as the application of the
source-filter model in the PV and an efficient method for preserving the spec-
tral envelope when pitch shifting has been introduced with the True Envelope
method in [RR05a].

However, most modifications to the STFT of a signal yield an inconsistent
STFT in the sense, that no signal has this modified STFT. The introduction
of a computationally efficient method for signal reconstruction from a modified
STFT of a signal is given in [GL84]. This method represents a significant
landmark in the development and applicability of the Phase Vocoder. A review
of more recent methods for signal reconstruction from modified STFTs is given
in [SD11].

Eventually, transient smearing due to the analysis window is a well-known
artifact within the PV and several methods have been proposed for its reduction
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Figure 3.2: An extended source-filter model with a band-limited pulse as
source signal shown in time (top) and frequency (bottom) domain and a time-
variant filter. The spectrum of the band-limited pulse exhibits lowpass char-
acteristic.

as well [DDS02, Roe03a, Roe03b].
A Phase Vocoder implementation that takes into account all mentioned

aspects is a powerful tool for many kinds of signal manipulations. It is com-
putationally efficient and introduces artifacts and signal distortions only on
extreme transformations. We will therefore utilize the PV in various ways for
our signal transformation strategies.

3.5 Extended Source-Filter Models

The source-filter model of speech production as introduced by Dudley [Dud39a]
is a well-known paradigm for many signal transformation and synthesis meth-
ods and is therefore being used in a large variety of music signal processing
applications [AKZV11]. In the original approach discussed in sec. 3.2, a speech
signal is assumed to be created by an ideal pulse source signal with a white
spectral distribution and a time-varying filter. This assumption however is
very approximate and has hence been revised for various kinds of applications
in voice and music signal processing respectively. Within this thesis, we de-
note models which enhance the classic notion of source-filter models by less
idealized and more realistic representations of the excitation component or by
introducing additional filter components as extended source-filter models.

3.5.1 For Voice Signals

Within voiced speech, the time-variable and non-linear glottal impedance is
responsible for shaping the waveform of the source signal, which is characterized
by a band-limited rather than an ideal pulse as within the classic source-filter
model. The spectral distribution of such a signal therefore does not exhibit a
white or uniform distribution, but shows lowpass characteristics, whereas its
frequency slope is determined by the shape of the pulse [Fan79a, Fan79b].

This notion of the excitation led to the introduction of a revised concept
of source-filter modeling of human speech with discrete models for the source
and filter and analytic models for each to accommodate for their separate
contributions to the spectral characteristics of the signal [Fan81]. A schematic
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representation of such an extended source-filter model is given fig. 3.2. In
contrast to the classic source-filter processing, using an extended approach
requires the creation of models for the source as well as the filter and parameter
estimation for both components from a signal. Models for the filter have already
been discussed in sec. 3.2 and such models are also used within an extended
source-filter paradigm.

Various models have been introduced in the literature for the excitation
source of voiced human speech and a review of several approaches is given
in [Deg10], whereas the Liljencrants-Fant model (LF) [FLL85] and its revised
version [FLL95] represent probably the most popular ones [Chi95, dP08, Deg10,
May12]. The original LF model is a time-domain, multi-parameter model,
whereas its revised version uses a single parameter only to characterize the
band-limited pulse of the human speech excitation signal in time-domain.

The usage of analytic models for a signals source and filter allow for sound
signal manipulations, which are coherent with the revised concept of human
speech production and are therefore assumed to produce synthesis results,
which are perceptually more convincing than those using the classic source-
filter paradigm. For voice signals, variations to the source allow for high-
quality transformations of the speaker or singers age and gender [FODR15]
or modifications into tense or breathy voice [DRR11b, DLRR13]. Likewise
popular applications are singing voice synthesis [RHRD12], voice conversion
[Chi95, dP08, May12] as well as prosodic modifications [May12].

To allow for signal manipulations using an extended source-filter model
in an analysis/synthesis framework, the parameters of the model need to be
estimated from a signal first. Depending on the selected analytic model descrip-
tions, various approaches and techniques have been proposed for parameter es-
timation in the literature. Methods based on either inverse filtering [WM07] or
minimum/maximum phase decomposition [DBD11] estimate the components
in consecutive steps. Other methods use the analytic descriptions of the source
and filter to formulate a convex optimization problem to jointly estimate the
models parameters from a signal [FM06, DRR10, DRR11a, HRD12, CRYR14,
DAAY14].

3.5.2 For Instrument Signals

For instrument sound signals however, no general, parametric model of the
excitation source is available due to their diverse range of mechanical designs
with substantially different sound generating setups [FR98]. Moreover, even
for a particular musical instrument it requires complex numerical solutions to
obtain an analytic description of an instruments source signal [VPEK06, Bil09].

To the authors knowledge, the first appearance of an extended source-model
for the purpose of representing instrumental sound signals has been published
by A. Klapuri [Kla07]. There, a source-filter-decay model has been introduced
to represent the sound of a quasi-harmonic musical instrument using three
individual filter functions: excitation, resonance and time-dependent loss.

In this approach, the author develops a generic and compact model to de-
scribe instrument sounds for the purpose of instrument recognition, coding or
sound synthesis. The model does neither represent an exact physical interpre-
tation of a musical instrument as with most physical modeling methods or with
voice signal processing nor does it represent only spectral energy distributions
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as within classic source-filter methods. The author hence argues for a struc-
tured approach that combines high frequency resolution and pitch invariance
using functions of harmonic index and frequency to account for specific aspects
of instrumental sounds jointly.

The distinction between these two functions is supported by the fact that in-
strument sounds exhibit some features that may be best described by harmonic
index while others are best described by frequency [MEKR11]. This principle
is for example supported by the well known property of clarinet sounds, which
exhibit strong odd and weak even partials due to its flaring bell construction,
promoting the use of harmonic index as an independent parameter. In con-
trast, the existence of pronounced resonances and formants within sounds of
the violin family due to the physical metrics of their corpora promotes the use
of additional frequency parameters.

Using the terminology for an extended source-filter model, functions of har-
monic index are hence best interpreted as excitation source, whereas functions
of frequency refer better to the filter. The source may therefore be interpreted
as some vibrating structure like a string or an air column and the filter would
refer to the resonating structure of the rest of a musical instrument. In [Kla07],
the author furthermore introduces a loss filter, that models some frequency-
varying decay for percussively excited instrument sounds.

The three components of that extended source-filter model in [Kla07] may
therefore be interpreted as parametric filters, whereas the source is parame-
terized using harmonic index and the two remaining functions depend on fre-
quency only. All components are further represented by linear models of basis
functions using decibel values to obtain a summation formula for the complete
model and the model parameters that need to be estimated are represented by
the weights of the basis functions.

To obtain the parameters of the model that represents the sound of a whole
instrument, the author estimates sinusoidal models from instrument recordings
that cover its complete pitch range. The sinusoidal models are setup using har-
monic indexes for its partial index up to a maximum of 32 harmonics and all
magnitudes are converted to decibel values, neglecting their phases. The pa-
rameter estimation is then carried out using a weighted least-squares approach
considering all pitches of an instrument and the remaining error will include
variations due to dynamic or due to plucking point differences among other
errors [Kla07].

A similar approach has been taken by the author of this thesis in [HRBW10]
in a pilot study, which preceded the research work of the present thesis. There,
an extended source-filter has been established using a source and a filter com-
ponent only, though the source component incorporated a dependency on the
amplitude envelope additionally to the harmonic index to account for temporal
energy variations due to an instrument sound signal’s attack and release seg-
ments. This addition essentially extends the notion of a loss filter by an explicit
representation of an instrument’s temporal sound characteristics. Both model
components have further been represented by B-spline basis functions [dB01]
and the basis function’s weight parameters have been estimated in a least-
squares approach for a single music instrument using a database of recordings
covering its complete pitch range.

Summarizing the paradigm of extended source-filter modeling for music
sound signal applications, is important to highlight that such extended source-
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filter models need to learn their parameters from a whole collection of sounds
of a particular instrument. Application of an extended source-filter model for
music sound signal applications is hence restricted to available, pre-trained in-
strument models. Parameter learning though, requires a preceding analysis of
a dataset of instrument recordings that cover a desired range of instrument
timbres and this analysis needs to yield a signal representation, which is suit-
able for learning the model’s parameters. As with all learning approaches, a
remaining modeling error will persist and that error will contain all intrinsic
variations of the sounds that are not captured by the model.

In the authors opinion, the two studies [Kla07, HRBW10] justified the
applicability of extended source-filter models for music instrument modeling
and hence represent the main motivation behind the selected paradigm of the
present work.

3.5.2.1 In Music Information Retrieval Applications

The extended source-filter model presented in [Kla07] has extensively been used
in various music information retrieval tasks. For the analysis of polyphonic au-
dio in a non-negative matrix factorization as well as deconvolution framework
[VK06], instrument recognition in polyphonic audio [HKV09], sound source
separation using an expectation-maximization algorithm [KVH10] and for mu-
sic transcription using again non-negative matrix factorization [KDK13].

Learned instrument models based on such a model within a non-negative
matrix factorization framework for source separation are also used successfully
in [COVVC+11, COCVCRS13, RSDVC+15] and promising results have also
been achieved by the authors of [DDR11, HDR11] in similar setups for obtain-
ing mid-level representations in the former and audio atom decompositions in
the latter.

A study comparing some of the approaches above that are using extended
source-filter models in non-negative matrix factorization frameworks has re-
cently been published in [CDM14].

3.5.2.2 For Sound Synthesis Applications

To the authors knowledge only two approaches have been published so far which
are using extended source-filter models for the purposes of sound synthesis of
acoustic music instruments.

In the first approach, the two student researchers E. Maestre and A. P.
Carillo together with their respective supervisors and mentors X. Serra and J.
Bonada among various others have developed an extended source-filter model
using the violin as a case study, which was hence be called the ”violin project”.
They estimated the model parameters in two separate steps starting with an
explicit measurement of the violin’s resonance characteristics [PCBPV11] and
subsequently learning the remaining excitation component using a neural net-
work [CBM+12]. The neural network had been presented Mel-scale based, sub-
sampled spectral data for the signals harmonic and residual component both
as functions of particular violin controls. These controls have been the bows
transversal position, the bows velocity, the bows acceleration, the bows force
and several other specific input parameters which had been measured during
dedicated recording sessions with specialized 3D motion-tracking equipment.
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These complex model control parameters have been further represented using
statistical modeling methods to enable rendering of the particular gestural con-
trols using high-level abstractions [MBB+10]. Sound synthesis using the violin
model may eventually be achieved using either original recordings of a violin or
by feeding artificially generated sinusoidal and noise signals into the estimated
spectral envelopes.

This joint research project eventually led to their respective doctoral thesis’
[Mae09, Car09].

In a more recent method, R. Mignot and V. Välimäki have taken a univer-
sal approach for an extended source-filter model in a way that their method is
applicable to all quasi-harmonic instruments using a unified synthesis scheme
[MV14a]. They denote their method ESUS which refers to ”Extended Sub-
tractive Synthesis”. The ESUS method uses an artificially generated saw tooth
signal for synthesis of the harmonic component and a dedicated noise generator
for the signals residual. All spectral variations from the generated signals need
hence to be applied using the filters of the extended source-filter model. Within
the ESUS method this is also done separately for the signals components using
independent filters. Therefore, the method identifies three independent filter
functions for each component using an instruments sound database that con-
tains all possible pitches of the respective instrument. One overall instrument
filter that covers sound features that are equal for all pitches, a tone filter
that represents the pitch-dependent variations of the spectral envelopes and a
modulation filter to emulate time-dependent variations.

The filters are established using a new spectral envelope estimation tech-
nique [MV14d] which they have shown to yield superior approximations than
previous methods [MLV13, MV13] and their parameters are estimated using a
single representative frame of each instrument recording. The method is even-
tually made-up for highly efficient sound synthesis and hence they introduced
a method for low-order ARMA approximations of the estimated filters to apply
sound synthesis in the time-domain only [MV14b, MV14c].

Both discussed approaches eventually prove the applicability of the ex-
tended source-filter model paradigm for sound synthesis of acoustic music in-
strument since either method has shown to yield promising results.
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Chapter 4

Arbitrary–Order Multivariate
Regression Splines

Introduction

For our purpose of expressively transforming instruments recordings, we are
seeking for a suitable model, which either describes the partial amplitude or
cepstral coefficient data measurements with respect to some control variables.
Such a model needs hence to be able to interpolate amplitude or cepstral values
measured at strongly sampled control signals to allow for a synthesis with
continuously valued control parameters.

Assuming that the sound signal data has been generated by a deterministic
source -the music instrument -and corrupted by additive noise, a model can be
constructed in terms of a curve-fitting approach, that approximately fits the
data using a smooth function of the control variables. Such a function may
be defined in terms of a finite number of unknown parameters that will be
estimated from the data [Bis06].

Since the true form of the data generating process is typically unknown, a
few assumptions about this process will have to be made in advance.

One reasonable assumption may be the non-linearity of the data with re-
spect to the independent variables. This may easily be justified by the non-lin-
ear spectro-temporal characteristics of music instruments playing with varying
intensity or pitch. Furthermore, we also aim for support of several independent
control parameters within one single model and hence demand a model with
multivariate characteristics.

For a possible parameter estimation technique we may shortly consider the
regression function to be estimated as the likelihood function of a statistical
model and for such, the Maximum Likelihood Estimation (MLE) method is a
well-known technique. Under the assumption of a Gaussian distribution for the
additive noise, the minimization of the mean of squares of the model with re-
spect to the data arises as a consequence of MLE [Bis06]. Using the method of
Least-Mean-Squares (LMS) for parameter estimation hence allows for a non-
probabilistic estimation technique, while ensuring statistical inference. The
assumption of Gaussian distribution for the additive noise is a standard ap-
proach in most data analysis techniques as long as no other knowledge about
its distribution is available.

33
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Therefore, we require a parametric, multivariate, non-linear regression model,
whose parameters can be estimated in a LMS approach using measured data.

With respect to these considerations, we employ piecewise polynomials in
B-form, better known as B-splines [dB01] to create a continuous, multivariate
regression model for partial amplitude values that have been measured at dis-
tinct, discrete control values. In the literature, B-splines may also be denoted
basis-splines [dB01].

B-splines are widely being used in the domain of computer aided design,
numerical data analysis and surface fitting [Chu91, Hoe03, Sed14], but have
also been used for modeling partial amplitude data trajectories [Roe06].

4.1 B-Splines

B-spline functions belong to the class of linear basis function models. Such
models can be considered linear combinations of fixed non-linear functions of
some input variables, whereas these non-linear functions are denoted basis func-
tions. A B-spline is hence a piecewise polynomial function and is defined by
its B-spline order o and knot sequence s. Every piecewise polynomial of the
function has compact support and their linear combination creates the spline.
Eq. (4.1) expresses a B-spline in mathematical terms, whereby the spline g(u)
is constructed by the sum of basis functions bp, weighted by some associated
factor wp. Note that within a complete formulation of the B-spline, its order
o and knot sequence s would have to appear next its parameter index p, but
those have been left our for readability and to avoid confusion.

g(u) =

P∑

p=1

bp(u) · wp (4.1)

A single basis function is defined to have only small compact support within
sp . . . sp+o in the sense that

bp(u) = 0 for u /∈ [sp . . . sp+o] (4.2)

whereas the basis functions bp(u) are normalized in such a way, that their
linear combination sums up to 1 as shown in:

υ∑

p=τ

bp(u) = 1 ∀ u ∈ [sτ+o−1, . . . , sυ−o+1] (4.3)

In fig. 4.1 two B-splines are shown using a B-spline order o = 2 in the left
4.1(a) and an order o = 3 in the right 4.1(b). In both figures a single basis-
function is accentuated using green color to illustrate their shape and compact
support spanning an amount of segments s equal to its respective B-spline
order o.

The two subfigures in 4.1 furthermore demonstrates the compact support of
every polynomial of the piecewise function as well as the specific property that
each polynomial has an order equal to o − 1. This follows from the fact, that
the B-spline order o refers to the amount of coefficients required to resemble
the polynomial rather than its highest degree.
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(a) Model using B-splines order o = 2
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(b) Model using B-splines order o = 3

Figure 4.1: Two B-splines with different orders illustrating their basis functions
bp with respect to their knot sequence s and its according linear combination
g using wp = 1,∀ p

A fundamental property which allows for modeling of its complete domain
u using the piecewise approach is denoted knot-multiplicity and is depicted in
fig. 4.2, whereas a knot multiplicity of 2 and 3 at the sequence boundaries are
shown. Multiplicity of knots hence allows for full domain modeling, whereas
its value is dependent on the B-spline order o.
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(a) 2nd order B-splines with multiplicity 2

  
 

 1

0
s0
s1
s2

s3 s4 s5 s6 s7
s8
s9

u

g(u) bp(u) s t

(b) 3rd order B-splines with multiplicity 3

Figure 4.2: Two B-splines with different B-spline orders and knot multiplicity
at the domains boundaries which equal their respective orders.

4.2 Parameter Estimation

The use of a linear combination of piecewise polynomials within a B-spline
allows for using a linear model to represent non-linear data properties since
the models only free parameters are given by their respective weights wp. In a
curve-fitting application, these weights need to be estimated from some given
data with respect to a certain criterion and for such, two approaches will be
discussed.

Doing curve-fitting using a linear basis function model refers to finding the
set of parameters w = [w1, . . . , wP ]T for which the linear combination of their
products with its basis functions fits best to a given set of input data. As is
common with most data analysis methods, the amount of input data needs to
exceed by far the amount of free parameters to obtain a good estimate for the
mean of the data, while assuming a Gaussian distribution for the additive noise.
If one considers a set of N univariate input variables ũ = [u1, . . . , uN ]T with
their corresponding values y = [y1, . . . , yN ]T with N � P , the transformation
matrix B of the linear system of equations becomes non–square as can be seen
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in eq. (4.4) and a solution using a simple matrix inversion technique can not
be expressed due to this overdetermination.

The tilde symbol for the vector of univariate input variables is used, because
in sec. 4.3 we will introduce a vector u to refer to multivariate input variables.

B =



b1(u1) · · · bP (u1)

...
. . .

...
b1(uN ) · · · bP (uN )


 ∈ RN×P (4.4)

Though, the technique for minimization of the least-mean-square error al-
lows for finding an approximate solution given the input data and can be
phrased as in eq. (4.5) using matrix notation.

E(w; y|ũ) =
1

2

∣∣∣∣y −Bw
∣∣∣∣2
2

(4.5)

The factor 1
2 is only used for convenience when processing the gradient and

will hence appear always throughout this thesis when gradients need to be
derived for parameter estimation.

Eventually, finding the weight vector w which minimizes E with respect to
the given input data (y|ũ) refers to solving the least-means-square criterion
and since Bw is linear, a global optimum for the minimization can be assured.

However, the estimation of the free parameters of a piecewise polynomial
in B-form using the least-means-squares error criterion can be done in various
different ways, though we only consider two.

4.2.1 Direct Method

The direct-form solution for linear systems of equations with non-square trans-
formation matrixes can be derived by using the gradient of eq. (4.5) with
respect to the weight vector w which is:

∂E(w; y|ũ)

∂w
= −

(
y −Bw

)
BT (4.6)

Since we assured a global minimum for the cost function, setting the gradi-
ent to zero as in eq. (4.7) and solving for w leads to the normal equations for
the least squares problem shown in eq. (4.8).

0 = BTy −BTBw (4.7)

w = B†y (4.8)

whereas B† represents the Moore-Penrose matrix, also known as pseudo
inverse of B which is defined to be:

B† = (BTB)−1BT (4.9)

The pseudo-inverse can be regarded a generalization of the notion of the
matrix inverse to non-square matrices [Bis06].



CHAPTER 4. ARBITRARY–ORDER MULTIVARIATE REGRESSION
SPLINES 37

4.2.2 Iterative Method

With increasing amounts of input data and model complexity represented by
an increased amount of free parameters, not only the size of the system of linear
equations may become unfeasible large for calculating the pseudo-inverse, but
it also turns out, that the transformation matrix B becomes increasingly sparse
with increasing P .

This property can be easily seen from eq. (4.2), as for a single datum ui
only an amount of B-splines equal to the B-spline order o will exhibit a value
that is not zero. The density of B can hence be expressed as the ratio between
the B-spline order o and the overall amount of free parameters P :

density
(
B
)

=
o

P
(4.10)

For solving large and sparse systems of linear equations, the method of Con-
jugate Gradients (CG) can be considered the most prominent one, since it does
not require to store the whole matrix at once and its algorithmic complexity is
linear with the amount of non-zero entries in the matrix B, both in terms of
memory and calculations [She94]. The method has originally been developed
by Hestenes and Stiefel [HS52] for linear systems with symmetric matrixes, but
can also be applied to non-symmetric as well as non-linear systems.

The CG method is typically applied in an iterative manner, which means
that, starting with some possibly random initial weight vector w0, the values
of the parameter vector get being updated in each iteration step until the
conditions of an abort criterium are fulfilled. A highly general update rule for
many iterative methods can be expressed as in eq. (4.11), where t denotes the
iteration index and ∆wt the search direction.

wt+1 ← wt + ∆wt (4.11)

Often applied abort criteria are either a minimum change of the parameter
vector in-between consecutive iterations assuming convergence of the algorithm
or until a maximum amount of iterations is reached, though a combination of
both also seems reasonable. When using a quadratic error function in con-
junction with the CG method, convergence is guaranteed when the number of
iterations equals the total number of free parameters [HS52, She94].

Within the CG method, the search direction in the parameter space is
calculated, such that it is mutually conjugate to all the previous directions
and a line-search technique estimates its optimal step size. The line-search
component of the CG method uses second order information without explicitly
calculating all second derivatives of the error function, which makes the CG
method belong to the class of second-order optimization methods. It can be
expressed as in eq. (4.12) [DHS00], whereas βt needs to be determined such
that ∆wt becomes conjugate to all previous directions.

∆wt = −∂E(wt; y|ũ)

∂w
+ βt∆wt−1 (4.12)

It can be seen from eq. (4.12), that the descent direction at iteration t
takes the negative gradient plus a component along the previous direction,
which makes it analogous to calculating a “smart“ momentum [DHS00]. This
momentum is proportional to βt for which several formulae have been proposed
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in the literature. Among others, the Hestenes–Stiefel [HS52], Fletcher–Reeves
[FR64] as well as the Polak–Ribiere [PR69] formulae belong to the most notable
ones.

There are however various other modifications to the basic algorithm for an
improved estimation of the search direction. The so called Scaled Conjugate
Gradient (SCG) [Mø93] substitutes the time-consuming line-search algorithm
by a scaling of the learning parameter, which solely depends on the success
of the previous learning iteration and makes the algorithm fully-automated
and independent of manual parameter adjustments. It eventually utilizes the
Hestenes–Stiefel equation for calculating the βt coefficient.

For these reasons we have decided to use the SCG method to estimate the
free parameters of all B-splines used throughout this thesis.

For clarity reasons and later use, we rewrite the cost function to be opti-
mized from (4.5) by the SCG learning strategy in non-matrix notation:

E(w; y|ũ) =
1

2

N∑

i=1

(
yi − g(ui)

)2
(4.13)

=
1

2

N∑

i=1

(
yi −

P∑

p

bp(ui) · wp
)2

(4.14)

Using this notation, the gradient for a single weight wp used by the SCG
method can hence be expressed as in eq. (4.15), which is mathematically
equivalent to eq. (4.6).

∂

∂wp
E(w; y|ũ) = −

N∑

i=1

(
yi −

P∑

p′=1

bp′(ui) · wp′
)
bp(ui) (4.15)

When using the SCG method for estimating the parameters w of a B-spline
function, we discovered, that using zero-valued initial weights wp for the itera-
tive learning process is advantageous for ensuring the convergence of the algo-
rithm. Using a random initialization even if bounded reasonably occasionally
led to numerical instabilities while performing the parameter estimation.

4.2.3 A Simple Example

For the purpose of demonstrating a curve-fitting application using B-spline
functions, fig. 4.3 shows two examples, whose parameters have been estimated
using the SCG technique, while utilizing the gradient given in eq. (4.15). In
both examples, input data values ui are drawn from a uniform distribution
bounded to [−π . . . π], whereas its target values yi are generated using the sine
function and additive noise with variance σ = .2. It can easily be observed that
the B-spline function g(u) using an order o = 2 allows for a piecewise linear
fit, whereas the B-spline function with an order o = 3 constitutes a piecewise
squared fit.

The major difficulty in this curve-fitting approach lies in determining the
B-spline order o as well as in the selection of an appropriate amount of knots
and their respective placement within the domain prior to the estimation of
the free parameters. Various approaches have been discussed in the literature,
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(a) Model using 2nd order B-splines

 

 

u

1

-1

g(u) bp(u) s t x

(b) Model using 3rd order B-splines

Figure 4.3: Two B-spline models

which either require a thorough statistical analysis of the input data or training
of several configurations for the piecewise function [dB01].

For large systems for which training of various models with different specifi-
cations may impractical and statistical analysis non-trivial, it seems reasonable
to consider the incorporation of a priori knowledge about the domain distri-
bution of the data as well as assumptions about the properties of the data
distribution to be fitted. Such pre-training analysis reflections will done in
place later in this thesis.

4.3 Multivariate Variables

The joint representation of data with several independent variables using B-
splines refers to the extension of the 1-dimensional curve-fitting problem to
the application of fitting surfaces to multi-dimensional data. Such surfaces
may also be called hyperplanes due to their possibly high-dimensional nature
and various approaches have been proposed in the literature to represent such
planes using B-splines.

De Boor introduced multivariate splines as a generalization of univariate
splines in many independent variables [dB76], which have been studied and
improved by several other authors [Dah80, Hoe82, DM83]. Multivariate splines
are very flexible and hence highly common in industrial surface design, though
their implementation is very difficult and to the authors knowledge, there exists
no free or open-source implementation. Alternatively, simple tensor-product
B-splines (TPB) are a natural and attractive choice for surface-fitting in two
or more dimensions [dB01], as they can easily be created by an expansion of
the univariate case and all univariate identities and algorithms generalize easily
[Hoe03].

Their most important difference can be seen in that the simple tensor-
product approach requires rectilinear knot distributions, while the multivariate
spline method supports non-uniform rectangular partitioning. Figure 4.4 shows
examples for knot distribution patterns of both approaches to emphasize the
potential drawback of the TPB method. Assuming a strongly localized feature
of the data in the lower left corner of the figures and a much smoother ap-
proximate in the upper right, the multivariate spline model is likely to obtain
a better fit in terms of its cost value and with less parameters than the TPB.
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(a) Rectilinear knot grid (b) Nonuniform knot grid

Figure 4.4: Possible knot distribution patterns in 2D space. Left figure shows
uniform partitioning as with tensor-product B-splines and figure to the right
shows a potential non-uniform grid as possible when using multivariate B-
splines. In the figures, each intersection refers to a B-spline parameter.

Some noteworthy extensions for an improved local refinement of the rec-
tilinear mesh of the standard TPB are T-Splines [Sed14] and Hierarchical
[FB88, Kra94, Kra97] or Truncated Hierarchical B-splines [GJS12, KGJ12].
These are however either protected by patents as with T-Splines [Sed07], miss
some reference implementation as for Hierarchical B-splines or have just been
introduced too recently for serious consideration within this research work.

However, in situations where it may not harm to have preferred directions
in the approximated surface parallel to its axes[dB01], using the fast and easy
to implement simple tensor-product solution is not severely limiting the ap-
proach for surface fitting. Therefore, as our measurement data comes with
discrete control parameters and hence presumably strong directional features
along its axes, we utilize the classic tensor-product approach for modeling the
multivariate data.

Therefore, we may now express the B-splines domain variable as the vector
u = [u1, . . . , uD]T with D dimensions, whereas each vector element refers to a
single axis of the multivariate data.

We can hence formulate the tensor-product B-spline for an arbitrary amount
of dimensions D with mutually independent B-spline configurations as in eq.
(4.16) again omitting the B-spline order o and knot sequence s for readability.

g(u) =

P1∑

p1=1

· · ·
PD∑

pD=1

(
D∏

d=1

bd,pd(ud)

)
wp1,...,pD (4.16)

Accessing the mutually independent, univariate B-spline configurations along
each dimension is achieved using d as a primary index for b, while the latter
index pd refers to a certain B-spline polynomial along dimension d. The weight
parameter in eq. (4.16) now has also changed appropriately to a coefficient ten-
sor with an amount of dimensions d equal to that of the independent variable
u.

Parameter estimation using gradient based approaches however, requires a
vector rather than a tensor for the weights as well as for its spline configuration.
For a multivariate B-spline model the weight tensor wp1,...,pD needs hence to
be reshaped to a vector to be usable by the SCG method. For this we redefine
the weight vector as follows:
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w := [w1,...,1, . . . , wP1,...,1 , . . . , w1,...,PD
, . . . , wP1,...,PD

]T (4.17)

while the tensor-product of the univariate B-spline functions
∏D
d=1 bd,pd(ud)

gets defined according to:

b := [b1,1(u1) · . . . · bD,1(uD), . . . , b1,P1
(u1) · . . . · bD,1(uD) , . . . ,

b1,1(u1) · . . . · bD,PD
(uD), . . . , b1,P1(u1) · . . . · bD,PD

(uD)]T
(4.18)

We reused the variable identifier w for the vector of the B-spline weight
parameters from the univariate case, because all the introduced equations re-
main valid also for multivariate variables after vectorization. Moreover, the
definitions above for w and b will reduce to the standard B-spline formula-
tions introduced in sec. 4.2 in the case of D = 1. This allows to vastly simplify
eq. (4.16) by using bp to refer to the p−th tensor-product within b and using
wp to refer to its respective tensor weight. The simplified equation for the
multivariate B-spline model using tensor-products can hence be written as in
eq. (4.19), whereas it only differs from the univariate formulation in eq. (4.1)
by the usage of a vector of independent variables instead of a one-dimensional
variable.

g(u) =
P∑

p=1

bp(u) · wp (4.19)

One may however note, that different orderings of the variables in eq. (4.17)
and eq. (4.18) may be chosen for the vectorization, though the weight tensor
and the tensor-product of B-spline function values need to be transformed in
an analogous manner to ensure their consistency.

It shall also be noted, that the lengths of the vectors b and w are equal
to the product of the lengths of all univariate parameter vectors used for the
tensor-product as shown in (4.20) hence yielding the new P .

dim
(
b
)

= dim
(
w
)

=
D∏

d=1

Pd = P (4.20)

Therefore, special caution is advised when adding new parameters or even
another dimension, as the actual parameter space increases exponentially with
each parameter of its univariate components.

It may also be noted, that the sparsity of the multivariate system using
tensor-products also increases substantially with its amount of dimensions, be-
cause every single data point will only yield non-zero B-spline values for each
univariate spline used to create the tensor-product equal to the respective B-
spline order. The amount of non-zero values hence increases linearly with the
amount of univariate B-splines, while the amount of the parameters of the TPB
increases exponentially. We may express the density of the vectorized tensor-
product B-spline b using od to refer to the B-spline order used along dimension
d.

density
(
b) =

∑D
d=1 od∏D
d=1 Pd

(4.21)
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For estimating surfaces from multivariate data we may now consider the
matrix U = [u1, . . . ,uN ] being the set of multivariate input variables .Their
corresponding values y are defined as in sec. 4.2 and we redefine the cost
function E for multivariate data similarly to the univariate case as follows:

E(w; y|U) =
1

2

N∑

i=1

(
yi − g(ui)

)2
(4.22)

and also its gradient shown in eq. (4.23) differs from the first derivative of
the univariate model in eq. (4.15) only in the use of the multivariate variable.

∂

∂wp
E(w; y|U) = −

N∑

i=1

(
yi −

P∑

p′=1

bp′(ui) · wp′
)
bp(ui) (4.23)

The equations (4.22) and (4.23) hence allow to perform surface fitting of
multivariate data in arbitrary dimensions using tensor-products of univariate
B-splines while considering the proposed vectorization of the respective weight
tensor and B-spline tensor-product shown in def. (4.17) and (4.18).

4.4 Regularization

One well–known problem in parameter learning, which arises in most machine
learning tasks and also when estimating parameters for B-splines is called over-
fitting. Generally spoken, overfitting occurs if the models complexity is rela-
tively high compared to the available amount of observational data. In such a
case, the model will instead of successfully generalizing the data, overly adapt
to its noisy fluctuations. As we will later see, overfitting represents a significant
issue, when representing the data using B-splines for the purpose of instrument
modeling as done in this thesis and hence will be discussed thoroughly here.

In terms of B-spline based regression modeling, overfitting occurs when the
the number of knots is relatively large, such that the estimated curve shows
more variation than can be justified by the data. For the purpose of demon-
strating the effect of overfitting occurring in data modeling using B-spline func-
tions, fig. 4.5 shows two examples similar to fig. 4.3, but with an increased
amount of knots and decreased amount of data used for the parameter estima-
tion. The data has been generated using the same procedure as above and it
can be observed from the figure, that the sine function is not well approximated
by the B-spline function, instead it overly follows the additive noise and hence
generalizes badly.

In the examples in fig. 4.5, the data is still drawn from a uniform distribu-
tion in the domain u whose limits equal the domain boundaries of the B-spline
function. As we will see later, this assumption will not hold true in our appli-
cation for partial data modeling, where data might be drawn from an interval
whose limits represent only a subspace of the B-splines domain. Similarly, the
distribution of the data might exhibit gaps or empty regions. Both cases will
eventually lead to little or no support for some of the free parameters of the
B-spline function and a singular or ill–conditioned system of normal equations
will result. The fitted curve will then show heavy fluctuations or oscillations.



CHAPTER 4. ARBITRARY–ORDER MULTIVARIATE REGRESSION
SPLINES 43

 

 

u

1

-1

g(u) bp(u) s t x

(a) Model using 2nd order B-splines
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(b) Model using 3rd order B-splines

Figure 4.5: Two B-spline models

In the literature, two approaches for smoothing the estimated curve fitted
by the B-spline function are proposed, whereas both techniques have been pro-
posed for univariate variables only. The methods can be regarded regularization
methods since as such they introduce a penalty term to the least-means-square
optimization shown in eq. (4.24) which extends the cost function E by an
additional term R to adjust for the smoothness of the fit. It hence requires the
models free parameters to penalize appropriately with respect to these param-
eters. Throughout this thesis, we will denote functions that optimize jointly
for data and additional constraints as objective functions O.

The scaling parameter λ represents a hyper parameter, which balances be-
tween smoothness and data fit and as such will not be estimated automatically
from the data, but needs to be adjusted prior to the parameter optimization.

O(w; y|U) = E(w; y|U) + λR(w) (4.24)

Both methods target for smoothing the interpolation of the data, rather
than allowing for extrapolation of the curve into domain ranges without any
data. However, we will analyze these methods briefly to introduce a new ap-
proach that incorporates ideas from both and proposes a solution to our specific
problem including support for multivariate variables.

The first method is known as Smoothing Spline [Rei67, dB01] and intro-
duces the regularization term (4.25) to the parameter estimation. It takes the
square of the second derivative of the B-spline function, integrated over all data
points N to penalize for curvature.

∫

ui

( P∑

p

b
′′

p (ui)wp

)2
du (4.25)

Applying this regularization scheme to any iterative method requires the
calculation of second derivative B-spline terms for all data points ui at each
iteration. Therefore, we can easily estimate that the smoothing spline adds
computational cost linear with the amount of data N and similar to the cost
of the unconstrained optimization.

The alternative method is denoted penalized B-splines also known as P–
splines [EM96] and utilizes the term shown in (4.26). It is using higher-order,
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finite differences of the coefficients of adjacent B-splines for measuring smooth-
ness.

P∑

p=z+1

(4zwp)2 (4.26)

The parameter z in eq. (4.26) refers to the order of the difference allowing
to constrain for slope, curvature or even higher orders. In [EM96], the author
states, that the difference penalty is a good discrete approximation to the
integrated square of the z–th derivative. The finite differences 4zwp for z = 1
and z = 2 can be derived from the formula for derivatives of B-splines [dB01]:

41wp = wp − wp−1 (4.27)

42wp = wp − 2wp−1 + wp−2 (4.28)

As can be seen from eq. (4.26) and (4.27), (4.28), this approach only
requires the B-spline coefficients itself for constraining the optimization, instead
of taking all observations N into account. Hence, while still assuming N � P ,
we may conclude that this method works much more efficiently than smoothing
splines.

There is however a significant drawback, as the finite differences shown in
eq. (4.27) and (4.28) have been derived for equidistant knot sequences [EM96].
In case of non-uniformly distributed knot sequences, the derivation looses much
of its beauty.

We will hence introduce a new scheme, which incorporates ideas from both
approaches and further extends them to multivariate variables. The term shall
be established generically in terms of the derivative order z to support for
slope or curvature penalties and arbitrary knot sequences. An explicit B-spline
formulation will be used as done for the smoothing spline, though we em-
ploy a multivariate mesh grid to sample the B-spline surface at J fixed posi-
tions which are defined in a similar manner to the multivariate input variables
V = [v1, . . . ,vJ ], whereas each column refers to a single multivariate sam-
pling position vj = [v1, . . . , vD]T to obtain a discrete approximation of the
surface. These positions can be also regarded virtual data points and they are
established using equidistant sampling positions along all univariate B-spline
domains, whereas P < J � N to ensure a similar computational efficiency
as with P-splines, but also a good approximation of the spline surface. A few
sampling points in-between two adjacent knots have shown to deliver a fairly
good approximation of the curve.

Eq. (4.29) shows the regularization as we define it. The term is established
with respect to a selected dimension d along which the z−derivative is being
taken from the surface. All other axes remain unaltered to allow for slope or
curvature penalties independent for each axis. The B-spline formulation uses
the simplified tensor-product expression introduced in sec. 4.3 and hence the
definition of the regularization is generic in terms of the amount of surface
dimensions and with respect to the desired penalty along a selected dimension.

R(z,d)(w) =
1

2

J∑

j=1

η(z,d)(vj)
∣∣∣
P∑

p=1

(
b(z,d)p (vj)wp

)∣∣∣
2

(4.29)
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We further introduce a multivariate scaling polynomial η(z,d)(vj) to locally
amplify the regularization term. The term therefore allows for an adjustment
of the strength of smoothness depending on the independent variable of the
B-spline function and therefore needs to be set separately for each selected
penalty hence its parameterization with respect to z and d. The local control
of the impact of the regularization can be a useful tool, if the data is not
distributed uniformly within its domain or if the variance of the additive noise
varies. In both cases, overfitting may occur locally, if the models complexity
is constant or can not be adapted as needed within its domain and hence a
locally amplified regularization can be reasonable. Note that the coefficients
of the polynomial need to be set manually and hence a priori knowledge about
the data distribution and/or noise properties is required. Using a first order
polynomial with its constant term being set to zero is therefore a good initial
strategy to keep the amounts of non-automatically adjusted parameters low.

Using the regularization term proposed in eq. (4.29) now makes it manda-
tory to adjust the λ parameter in such way, that it becomes easy to balance the
data fit and smoothness of the function. Recalling the notation of virtual data
points for the sampling positions of the regularization, we propose to use the
ratio of the l1−norm of the squared B-spline function values of the data points
and the l1−norm of the squared B-spline function values of the virtual data
points which has been derived along d according to z as shown in eq. (4.30).
We thus obtain a value which represents the ratio of the impact of the data
and of the regularization mesh grid for the optimization procedure.

λ(z,d) = λ
(z,d)
0

∣∣∣∣∑N
i

(∑P
p b

(z,d)
p (ui)

)2∣∣∣∣
1∣∣∣∣∑J

j

(∑P
p b

(z,d)
p (vj)

)2∣∣∣∣
1

(4.30)

The scaling parameter λ
(z,d)
0 now allows to balance between data fit and

smoothness of the surface mutually independent for each axes. Setting λ
(z,d)
0 =

0 refers to no smoothing, whereas λ
(z,d)
0 = 1 refers to smoothness being equally

important as the data. One may note, that the scaling parameter in eq. (4.30)
only depends on the data and the selected mesh grid and hence needs to be
processed only once before the actual parameter estimation unless both stay
unchanged. The regularization term however, requires the current B-spline
parameter vector and therefore needs to be calculated at every iteration of the
parameter estimation procedure.

We eventually introduce a new objective function in eq. (4.31) in extension
to the previously introduced eq. (4.24), which allows for multiple regulariza-
tions at the same time by using a simple linear combination of regularization
terms that are parameterized by z and d.

O(w; y|U) = E(w; y|U) +
∑

z,d

λ(z,d)R(z,d)(w) (4.31)

Using for example (z, d) = (1, 2) and (z, d) = (2, 2) simultaneously for the
parameter estimation allows to constrain slope and curvature along dimension 2
of the surface at the same time. Such a setting would allow extrapolations that
will fade smoothly to constant values and hence prevents possible overshooting
or oscillations, when free parameters of the B-spline functions are undetermined
given the data. Though, in order to optimize a B-spline surface with respect
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to some data and the just introduced regularization, its gradient needs still to
be determined. Therefore, the first derivative of the objective function in eq.
(4.31) is derived as follows:

∂

∂wp
O(w; y|U) =

∂

∂wp
E(w; y|U) +

∑

z

λ(z,d)
∂

∂wp
R(z,d)(w) (4.32)

The first term at the right hand side has already been solved in eq. (4.23)
and only the first derivative for the regularization term needs to be determined:

∂

∂wp
R(z,d)(w) =

J∑

j=1

η(z,d)(vj)b
(z,d)
p (vj)

( P∑

p′=1

b
(z,d)
p′ (vj)wp′

)
(4.33)
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Figure 4.6: Two adapted complex B-spline models using only few data with
applied regularization.

Using the objective function in eq. (4.31) and its first derivative in eq.
(4.32) can then be used to apply constrained optimization as described. Fig.
4.6 shows two adapted B-spline functions using the same B-spline configuration
and data as in fig. 4.5, but with additional regularization. Both models, the
second as well as the third order model have been constrained using jointly a
first and second order regularization with λ0 = .3.

4.5 Preconditioning

Assuming a large system y = Bw with thousands of free parameters, an iter-
ative method like SCG may still tend to be slow to converge, as convergence
for a quadratic function is guaranteed only for an amount of iterations equal
to the amount of free parameters. This is especially the case if the condition
number of the system is relatively high. One known method to improve the
efficiency in terms of the amount of iterations required for convergence is called
Preconditioning [BBC+94, She94] and it is said to be the determining ingredi-
ent for the success of an iterative method, as in many real–world problems, the
reliability of an iterative method for a linear system much more depends on the
quality of the preconditioner than that of the particular parameter estimation
technique [Saa03].
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Preconditioning refers to a technique for improving the condition number
of a matrix [She94] using any form of implicit or explicit transformation of
the original linear system into one, which has the same solution, though is
likely to require fewer steps to converge than with the original system using an
iterative method [Saa03]. It may be interpreted as an attempt to stretch the
quadratic form of the linear system, hence error function, to make it appear
more spherical. A perfect preconditioner would allow an iterative method to
converge within one iteration [She94]. However, preconditioning can be done
in various different ways [BBC+94, Saa03] and its computational complexity
may vary a lot, hence for yielding an effective improvement over the use of the
untransformed system, its operational cost needs to be considered wisely.

An explicit form of preconditioning can be considered any scaling of the
linear system [Saa03] with the mentioned aim for making it easier to solve.
We therefore apply a scaling to the Hessian matrix of the system, such that its
diagonal elements are all equal to 1. Though the actual value is fairly arbitrary,
scaling the diagonal entries of the Hessian matrix to make them all identical,
refers to the transformation of the surface spanned by the quadratic form from
an ellipsoid with possibly highly different properties along each axis to a rather
perfect sphere. Such a transformed error surface is then assumed to be a lot
easier to solve using any CG method [She94, Saa03].

To apply such a scaling, we substitute the B-spline weighting parameter wp
of the original system by 2 new parameters as in eq. (4.34), whereas the system
may already be a simplified tensor-product B-spline surface. The variable cp
refers to the preconditioner coefficient, which shall scale the error surface as
desired. The parameter w̃p then represents the B-spline weighting parameter
of the transformed system.

wp = w̃p · cp (4.34)

In case of the simplified tensor-product B-spline surface, cp as well as w̃p
essentially refer to the p−th value of their respective vectorized tensors shown
in eq. (7.19) and (7.20).

w̃ =[w̃1,...,1, . . . , w̃P1,...,1 , . . . , w̃1,...,PD
, . . . , w̃P1,...,PD

]T (4.35)

c =[c1,...,1, . . . , cP1,...,1 , . . . , c1,...,PD
, . . . , cP1,...,PD

]T (4.36)

The parameter vector of the original system w now represents the element–
wise product of w̃ and c.

Now, prior to the iterative estimation of the weighting parameters w̃p of
the transformed system, the preconditioner coefficients cp and new derivatives
for the transformed system need to be determined. We therefore write the
gradient of the objective functions with respect to the weighting parameter of
the transformed system as follows:

∂

∂w̃p
O(w; y|U) =

∂

∂w̃p
E(w; y|U) +

∑

z,d

λ(z,d)
∂

∂w̃p
R(z,d)(w) (4.37)

For the sake of completeness, the cost function E with the substituted
weight parameter is:
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E(w; y|U) =
1

2

N∑

i=1

(
yi −

P∑

p=1

bp(ui) w̃p cp

)2
(4.38)

and its first derivative as required for the parameter estimation procedure
of the transformed system hence yields:

∂

∂w̃p
E(w; y|U) = −

N∑

i=1

(
yi −

P∑

p′=1

bp′(ui) w̃p′ cp′
)
bp(ui) cp (4.39)

The regularization is of course also part of the linear system and hence
subject for preconditioning as well and the weight parameters get substituted
there as well. The penalty term therefore becomes:

R(z,d)(w) =
1

2

J∑

j=1

η(z,d)(vj)
∣∣∣
P∑

p=1

(
b(z,d)p (vj)w̃p cp

)∣∣∣
2

(4.40)

and its first derivative can hence be written as follows:

∂

∂w̃p
R(z,d)(w) =

J∑

j=1

η(z,d)(vj)
∣∣∣
P∑

p′=1

(
b
(z,d)
p′ (vj)w̃p′ cp′

)∣∣∣b(z,d)p (vj) cp (4.41)

To eventually perform parameter estimation of the constrained, precondi-
tioned and multivariate system, the coefficients c still need to be determined.
As we aim for scaling the diagonal entries of the Hessian matrix of the overall
system to reshape the error surface to become more sphere–like, the second
derivative of the objective function (4.42) will be set equal to 1 and solved for
all entries of c.

∂2

∂w̃2
p

O(w; y|U) =
∂2

∂w̃2
p

E(w; y|U) +
∑

z,d

λ(z,d)
∂2

∂w̃2
p

R(z,d)(w) = 1 (4.42)

The second derivative of the error function E with respect to the weighting
parameters of the transformed system w̃p yields:

∂2

∂w̃2
p

E(w; y|U) =
N∑

i

(
bp(ui) cp

)2
(4.43)

whereas the second derivative of the regularization term gives:

∂2

∂w̃2
p

R(z,d)(w) =
J∑

j=1

η(z,d)(vj)
∣∣∣
(
b(z,d)p (vj) cp

)∣∣∣
2

(4.44)

To determine the coefficients for preconditioning cp, the two derivations of
the center term within eq. (4.42) are substituted with eq. (4.43) and (4.44)
respectively and eq. (4.42) is subsequently solved for all cp, yielding:
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cp =
( N∑

i

(
bp(ui)

)2
+
∑

z,d

λ(z,d)
J∑

j=1

η(z,d)(vj)b
(z,d)
p (vj)

)− 1
2

(4.45)

As can be seen from eq. (4.45), the preconditioner coefficient cp only de-
pends on the values of the B-splines of the input data as well as the B-spline
values of the virtual data points used for regularization and will therefore be
constant for all iterations of the parameter estimation procedure. Its calcula-
tion hence needs only to be done once with a computational cost similar to a
single iteration of the algorithm. It is therefore very likely, that the use of the
preconditioner will facilitate a significant performance improvement over the
use of the original system.

4.6 Conclusion

In this chapter we have introduced a parametric, multivariate regression model
using B-splines with a parameter estimation technique based on least-squares-
optimization in a conjugate gradient framework. We have further proposed
a new regularization scheme to support variable order smoothing of the mul-
tivariate regression function leading to an objective function balancing data
fit and desired smoothness of the fit using hyper-parameters. Eventually, we
have developed a preconditioning method for an accelerated convergence of the
conjugate gradient parameter estimation algorithm.

Therefore, this multivariate regression model allows for non-linear model-
ing of possibly high-dimensional data with scalable model complexity while
preserving the advantageous properties of a linear model.

We may conclude that the model supports for partial amplitude and cep-
stral coefficient modeling with respect to several independent control variables
simultaneously, while allowing for instrument specific configurations to adjust
for their presumably varying data distribution properties.



Chapter 5

Signal Representation

Introduction

To eventually enable high-level control for sound transformations of recorded
instrument data, a link needs to be established to connect low-level signal prop-
erties with control parameters, that are perceptually relevant and appropriate
in terms of musical expression. This linkage will be established using a general
model for musical instruments that is capable of representing sound features
which are related to a set of selected controls. In the current chapter, we
hence introduce the signal models and control parameters that are required to
establish such general instrument models.

However, instrument sound signals whose sound features shall be captured
by the model and therefore available for synthesis need to be collected first. We
may call this part of our proposed technique for expressive sampling synthesis
the analysis stage, as the selected recordings of a musical instrument will be
transformed into a representation, which is suitable for learning a model and
certain control parameters will be either created or estimated from these signals
to represent the instrument sound’s features as functions of some meaningful
controls.

Within the work of this thesis, we have used sample libraries of musical
instrument recordings, which had been created for the purpose of digital sound
synthesizers. All libraries consisted of monophonic recordings of quasi-har-
monic music instruments. For all instruments, separate sound files had been
available for each pitch playable by that particular instrument. Each sound file
hence yields the recording of a single-note without vibrato, tremolo, glissando,
crescendo or alike. Furthermore, each pitch had been available at at least three
different intensity levels representing playing styles from pianissimo up to for-
tissimo with one or more intermediate steps, though all sound files have been
normalized with some headroom, leading to a general loss of information about
the physical signal intensity when recording as no reference levels were included
with the datasets.

Eventually, all sound files of the sound set libraries have been annotated
manually by their creators with their respective pitch and intensity information.

Within this chapter, we will describe the applied signal model and how
it gets transformed into a specific signal representation that is suitable for
modeling an instruments timbre regarding a certain set of control parameter

50
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also introduced in the present chapter.

5.1 Sound Signal Representation

As discussed in ch. 3, various spectral models with analysis support and ac-
cording techniques have been proposed in the literature for the representation
and transformation of recorded instrument sounds. Within this thesis, we uti-
lize the explicit Sines plus Residual signal model introduced with the Spectral
Modeling Synthesis technique to estimate the harmonic and residual compo-
nents from every single recording contained within a selected dataset. For the
purpose of describing the signal’s spectral properties, we represent the Sines
plus Residual model from eq. (3.3) using frequency domain variables without
loss of generality:

X(f, n) = Xh(f, n) + Xr(f, n) (5.1)

The estimation is preceded by a fundamental frequency estimation using the
monophonic version of algorithm [YRR10] or our new proposed fundamental
frequency estimator described in chapter A depending on the type of instru-
ment. As every single recording of the available datasets is accompanied by
its respective pitch information, the fundamental frequency estimation algo-
rithm is adjusted to search within a very limited range of possible values and a
pitch-adaptive analysis window length is used for optimal frequency resolution.
The precise determination of the fundamental frequency allows a much more
accurate estimation of a signal’s higher harmonics in the subsequent analysis,
as already small errors of the fundamental frequency may lead to mismatches
of partials at higher harmonic indexes.

The fundamental frequency trajectory f0(n) is hence used as an input pa-
rameter for the estimation of the harmonic sinusoids.

5.1.1 Harmonic Sound Signal Representation

Each sinusoid of the deterministic signal component Xh(f, n) can also be de-
scribed by its respective frequency domain variable X(k)(f, n), which with re-
spect to eq. (3.4) may be expressed as follows:

Xh(f, n) =

K∑

k

X(k)(f, n) (5.2)

However, to obtain the partials trajectories, we estimate the instantaneous
parameters of the harmonic sinusoids using the QIFFT procedure described
in sec. 3.3.1 and the according partial tracking method, which is utilizing
the previously estimated function of the fundamental frequency. The amount
of analyzed partials K per frame n is limited only by the signal’s sampler-
ate and some lower threshold. Eventually, this yields the trajectories of the
instantaneous parameters of the deterministic component a(k)(n), which will
furthermore be transformed to decibel values:

A(k)(n) = 20 · log10(a(k)(n)) (5.3)
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The harmonic component will also be resynthesized using the method de-
scribed in sec. 3.3.3 yielding the time-domain signal xh(t).

5.1.1.1 Special Case: Impulsively Excited Sounds

In the case of impulsively excited signals however, an additional procedure for
an improved estimation of the partial trajectories is performed using the WLS
approach introduced in sec. 3.3.2.

In the example of piano sounds, we observed for low pitches, that the har-
monic analysis using pitch-dependent analysis windows yields only a very lit-
tle amount of frames of data during the signal’s attack phase. This is due
to the percussive amplitude envelope with a steep attack slope and the very
low fundamental frequencies, which require very long analysis windows. This
leads to quite poor signal approximations and may eventually yield synthesis
results with audible artifacts or recognizable perceptual differences. It may
furthermore become difficult to estimate the signal’s attack properties for our
instrument model, if only little data is available.

We hence employ the WLS method succeeding the QIFFT method for a
signal segment, which comprises all frames from the onset until a few frames
behind the signals maximum amplitude. A more elaborate description of how
the signal’s temporal amplitude envelope is estimated and how a frame is de-
termined as being the starting point of the signal’s release segment, which
determines the end of the enhanced analysis is given sec. 5.2.3.1.

As the WLS method allows to reduce the length of the analysis window to
a minimum of 2 cycles of the fundamental period, it yields a much more precise
estimate of the temporal evolution of the partial’s amplitude trajectories. We
only assume the amplitude of the partial trajectories within the signal’s attack
phase to exhibit rapid changes and hence keep the interpolated phase trajecto-
ries from the QIFFT method and do not update their respective instantaneous
frequencies.

The release segment of sounds with a percussive amplitude envelope is how-
ever much smoother and therefore the WLS method is not applied to it.

5.1.2 Residual Sound Signal Representation

The residual component xr(t) of a sound signal x(t) is obtained by subtracting
the synthesized version of the estimated deterministic component xh(t) from
the original recording as proposed in [Ser89] and shown in eq. (5.4), yielding a
signal which could be described as filtered white noise plus transients.

xr(t) = x(t) − xh(t) (5.4)

To obtain a representation, which is suitable for modeling the residual char-
acteristics of a musical instrument, we utilize an envelope model that approxi-
mates the time-varying spectral distribution of the residual by a smooth time-
dependent function. This has already been proposed in [Ser89] and in [RS07], a
liftered version of the signal real cepstrum has been proposed for this purpose.
In sec. 3.3.5 we gave a description of how such an envelope can be obtained,
which essentially refers to the application of the source-filter model for noise
signals with an appropriate envelope model.
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The time-varying characteristics of the residual signal will hence be repre-
sented by a likewise time-varying envelope model using the bivariate cepstral
coefficients function C(l)(n) using eq. (3.12) with a fixed amount of coefficients
as well as fixed STFT parameters for all sounds. The analysis window length
is set to 23ms (1024 samples at a samplerate of 44.1kHz) and the amount of
cepstral coefficients L is set to 16.

For sound synthesis and transformation, the envelope model will be used
to apply transformations onto the residual signal obtained using eq. (5.4) and
hence the residual signal needs to be kept. This is due to the fact, that the
assumption of the residual being filtered white noise is too loose. In [CKD+13],
the authors have shown, that synthesis using filtered white noise yields audible
differences and hence keeping only the envelope for synthesis is not sufficient.

5.2 Control Signal Representation

The control parameters refer to the set of expressive control variables required
to enable sound signal transformations using the instrument model. Expres-
sivity within the sound synthesis approach presented in this thesis shall be
achievable by varying the expressive control parameters using standard digi-
tal control devices with support for the MIDI protocol and shall not require
additional models of expressive musical gesture parameters. Even though this
severely limits the possible amount of expressive control parameters, it guar-
antees its applicability of the model for most western acoustic instruments
without the need for further parameter modeling methods.

Therefore, the possible compromises between universality of the approach
and amount of expressive control as discussed in ch. 2 is bounded by the
available set of parameters within the MIDI protocol and control parameters
that can be estimated robustly from the audio signals [Wan01] or taken from
supplied meta information. We are hence using a simple and generic model of
musical gesture [CW00] and some derived variables to obtain a set of control
variables, which allow parametric sample-based sound synthesis while retaining
universality for most quasi-harmonic instruments.

The perhaps most decisive properties for the perception of acoustic musical
sounds are its pitch and loudness [Moo12] which is also why most digital sound
synthesizers implement these parameters for real-time control.

Using the pitch as a control parameter is reasonable as it is known from
instrument physics that many acoustic instruments exhibit strong spectral vari-
ations for varying pitch values which do not just result from frequency shifts
of the spectral content [FR98].

The loudness is typically denoted note intensity and is expressed in musical
terms ranging from pianissimo (pp) to fortissimo (ff ) and variations to this
control variable also reasonably effect the resulting sound of acoustic instru-
ments [FR98]. There are however variations to the signal intensity which may
refer to the signals attack or release phase which is not represented by the cat-
egorial variable of note intensity, though, especially the signal’s attack portion
is known to be a decisive feature of acoustic instruments [Hel70]. We therefore
also require a control parameter for a signal’s temporal energy fluctuations and
as we explain below use the instantaneous intensity as control variable as well.



CHAPTER 5. SIGNAL REPRESENTATION 54

Therefore, for the purpose of generality and to account for what we assume
to be the most prominent sound signal parameters we use the three control
parameters: pitch, global note intensity and instantaneous intensity.

5.2.1 The Musical Pitch as a Control Parameter

Within our method we make use of the musical pitch obtained from the manual
annotations of the instrument recordings encoded using the MIDI protocol.
There, a possible range of 127 discrete pitches can be represented using discrete
semitone steps implying a logarithmic fundamental frequency scale due to the
western equal temperament system. We will refer to a signal’s pitch by using
the time-dependent variable P (n) as in (5.5), though the pitch is assumed to be
constant for all sound files but shall allow for pitch variations during synthesis.

P (n) ∈ {1, . . . , 127} ∧ P (n) = const ∀n (5.5)

An additional index parameter to refer to a specific sound files is omitted
here for clarity and readability, as all variables in the current chapter refer to a
single sound file only if not stated otherwise. In later chapters we will be more
explicit if necessary.

5.2.2 The Global Note Intensity as a Control Parameter

Information about a signals musical intensity is typically lost in the digital
domain as soon as the signals get normalized to obtain a maximum of dynamic
range for storing the sound data using any quantized number format. There-
fore, we make use of the musical intensity delivered within the annotated meta
information that accompanies the sound data sets. The signal’s note intensity
will be denoted its global intensity throughout this thesis using the variable Ig
and likewise to the signals pitch be encoded using the MIDI protocol. Since
the global intensity is typically referred to by using musical terms like mezzo-
forte (mf ) which refers to an intensity in the center between the two already
introduced extreme values pp and ff . Representing these categories as MIDI
velocity values requires their association with respective values on the MIDI
scale. We assign the pp note intensity to the MIDI velocity value 1 and the
ff category to a respective maximum value of 127. Intermediate values are ob-
tained using linear interpolation and hence mf becomes 64 on the MIDI scale.
Other non-linear mappings could have been considered as well [Dan06], though
without proof of consistency with actual instrument characteristics.

Ig(n) ∈ {1, . . . , 127} ∧ Ig(n) = const ∀n (5.6)

5.2.3 The Instantaneous Energy as a Control Parameter

In the literature a large variety of methods for the estimation of a sound signal’s
temporal evolution have been proposed including segmentation strategies to
identify a sound signal’s characteristic temporal segments.

The perhaps most popular method for envelope estimation is represented by
the instantaneous intensity [CR11], which can be calculated using the frame-
wise root-mean-square (RMS) of the signal itself or within any invertible spec-
tral domain. The resulting envelope may though yield strong fluctuations de-
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pending on the used analysis frame size. Other methods use the low-pass
filtered and half-wave rectified version of the signal [BDA+05] or the energy
decay curve for temporal envelope estimation [Smi10a], while also linear pre-
dictive coding techniques have been proposed [AE03]. An amplitude-centroid
trajectory method has been proposed [Haj96, Haj98] as well as an approach
using the True-Envelope estimation method [CBR10, CR11]. Methods focusing
on the segmentation of the temporal envelope using any of the above methods
can be found in [Haj96, Haj98, Pee04, Jen99].

However, most methods are either computationally very demanding [CBR10,
CR11], not suitable for a subsequent temporal segmentation [Smi10a] or de-
signed for a specific kind or class of musical instruments [Jen99]. We have
therefore decided to utilize the instantaneous energy of the deterministic and
residual signal component respectively as control variable and utilize a sim-
ple though robust envelope segmentation scheme to identify three regions of
interest in a näıve approach.

We will first refer to the normalized and to decibel values transformed short-
time energy by harmonic local intensity Il,h and residual local intensity Il,r
respectively, assuming the signal components have previously been separated
successfully. The local intensities for both components are processed frame-
wise using the same analysis window length L and hopsize R from the analysis
described in sec. 5.1 as follows:

Eγ(n) =
∣∣∣
L−1∑

m=0

(
xγ(nR+m)

)2∣∣∣
1
2

(5.7)

Il,γ(n) = 20 · log10

( E(n)

max(E(n))

)
(5.8)

Using the same analysis window length L and hopsize R from the sinusoidal
and residual analysis serves two purposes: It first guarantees a fairly smooth
temporal envelope, as the window length has been set to cover at least 5 fun-
damental periods, which will yield an envelope that does not oscillate with the
signals fundamental frequency value but rather follows its mean energy over
several period and second, all control data will be time-aligned with the audio
data streams. Eventually, the variable γ ∈ {h, r} in eq. (5.7) and (5.8) is used
to refer to the respective signal components.

5.2.3.1 Segmentation Scheme for Discrete Modeling

Additionally to subtle changes within a signals sustain segment, the envelope
represented by the normalized level function Il,γ(n) of a signal will exhibit
increasing and decreasing slopes for a signals attack and release phase respec-
tively. Both segments are equally characterized by values below the functions
maximum which is set to 0dB due to the normalization, though music instru-
ment signals can be assumed to exhibit significantly different signal charac-
teristics for these segments. Especially the signals attack portion is known to
be decisive for instrument sound recognition [CLA+63] and hence promotes
to treat these signal segments separately with respect to their own distinctive
characteristics. We will therefore account for a signals temporal variations by a
segmentation of its respective temporal envelope Il,γ(n), which simultaneously
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allows to learn discrete models for separate instrument sound features, while
equally enabling smooth sound synthesis using these discrete models.

First, the temporal envelope function Il,γ(n) for the harmonic as well as
residual signal component of a continuously driven instrument like woodwinds,
brass or bowed strings is assumed to exhibit a raising part, referring to the
signals attack-phase, a fairly constant phase, which represents its sustained
segment and a decreasing slope, typically denoted as its release. This scheme
can be denoted attack-sustain-decay (ASR) model and is shown to the left of
fig 5.1. Music instruments which are impulsively or percussively excited exhibit
a different kind of temporal envelopes, which differs from the ASR model by
a missing sustain segment, hence denoted attack-release (AR). A schematic of
such an envelope is given to the right of 5.1.

Θ

Attack Sustain Release

I
l,
γ(
n
)
/
d
B

1 NnA nR

ξ1 ξ2
Time / n

Θ

Attack Release

I
l,
γ(
n
)
/
d
B

1 NnA nR

ξ1ξ2
Time / n

Figure 5.1: Temporal segmentation scheme for sustained (left) and impulsive
(right) instrument signals. Signal regions Attack, Sustain and Release are
indicated (top).

To enable distinct modeling of a signals attack and release properties, we
employ a simple, though robust threshold based segmentation scheme also de-
picted in fig. 5.1, yielding estimated positions for the end of the attack nA
and the begin of the release nR segment of either a continuously or impulsively
driven instrument signal using a threshold Θ. The threshold for continuously
driven instruments is calculated as in eq. (5.9) using the median of the tem-
poral envelope in the center of the recording to obtain a rough level estimate
of the signals sustain segment.

Θ = median(Il,γ(n′))− 6, n′ = [1 +
N

3
, . . . , N − N

3
] (5.9)

The threshold for impulsively excited signals is simply set to -6dB since
the envelope’s maximum is known to be at 0dB due to the normalization.
The first and last intersections of the envelope with the constant threshold Θ
are eventually interpreted as the end of the attack nA and the begin of the
release nR location respectively. It may be noted, that the estimated position
of the begin of the release phase of impulsively excited signals nR is used to
determine the range for improved sinusoidal analysis using the WLS technique,
which involves an update of Il,h(n) using the smaller analysis window lengths
for this signal segment.

These rough estimates are further being used in eq. (5.10) and (5.11) to
calculate the boundaries ξγ,1 and ξγ,2.
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ξγ,1 =
1

3

(
2 nA + nR

)
(5.10)

ξγ,2 =
1

3

(
nA + 2 nR

)
(5.11)

Two indicator functions τγ,s (5.12) and (5.13) are then created, representing
overlapping temporal segments, referring either to a signals attack-to-sustain
for s = 1 or its sustain-to-release region if s = 2 for each signal component γ.

τγ,1(n) =

{
1 , 1 ≤ n ≤ ξγ,2
0 , else

(5.12)

τγ,2(n) =

{
1 , ξγ,1 ≤ n ≤ N
0 , else

(5.13)

These indicator functions will be used to learn two discrete, but unified
models for a single instrument to represent its signal characteristics with respect
to the temporal differences of its respective sound properties.

5.2.3.2 Fusion Scheme for Continuous Sound Synthesis

However, for sound synthesis the discrete models for the signals attack-to-sus-
tain and the signals sustain-to-release need to be connected smoothly and we
will therefore create two fusion functions which will perform a linear interpo-
lation in-between the two segments with respect to the locations ξγ,1 and ξγ,2
at which we have divided the signal.

ϕγ,1(n) =





1 , 1 ≤ n < ξγ,1

(n− ξγ,2)(ξγ,1 − ξγ,2)−1 , ξγ,1 ≤ n ≤ ξγ,2
0 , ξγ,2 < n ≤ N

(5.14)

The second fusion function for the sustain-to-release segment then simply
becomes:

ϕγ,2(n) = 1− ϕγ,1(n) (5.15)

These two fusion functions will later simplify the synthesis method as they
control the linear cross-fade between the estimated attack-to-sustain charac-
teristics and the sustain-to-release.

5.2.4 The Idealized Partial Frequencies as Control
Parameter

Within our data sets of instrument recordings used within the work of this
thesis, we assume them to exhibit single-notes only without any significant
modulation of its fundamental frequency. Their partial frequency values can
hence be assumed to be rather precisely at their ideal locations with respect
to either eq. (3.10) or eq. (3.11) depending on the kind of musical instru-
ment. We hence assume that, without loss of generality and accuracy, we may
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approximate the time-dependent partials frequency trajectories by their non-
varying ideal frequency values for the purpose of model parameter estimation
as well as amplitude prediction. This approximation only limits the approach
of parameter estimation to instrument sounds with constant pitch only, but
not necessarily model predictions for sound synthesis, as we may easily switch
to time-varying values ones we created the model.

It is important to note that the partial frequency approximation is only
applied for the control parameters. Sound synthesis of the partials in general
always requires their actual frequency trajectories to retain the high-quality
of the sounds. To distinguish the approximated partial frequency values from
their values which have been estimated from the real signals we introduce the
vector f̂ as defined in eq. (5.16) to refer to their idealized values with respect
to their likewise ideal fundamental frequency obtained from the sounds MIDI
pitch value.

f̂ = [f̂(1), . . . , f̂(K)]
T ∈ RK×1 (5.16)

Eq. (5.16) uses either the harmonic series from eq. (3.10) or the series for
inharmonic sounds from eq. (3.11) using an inharmonicity coefficient, which
had been obtained using the proposed new method in chapter A.

5.2.5 The Combined Sets of Control Parameters

To eventually unify notations and simplify some of the math used within the
next chapters, we establish some a vector/matrix based notation system for the
introduced control variables. The time-dependent control parameters P (n),
Ig(n) as well as Il,(n) become collected into a single matrix as follows:

Θγ =



P (1) , . . . , P (N)
Ig(1) , . . . , Ig(N)
Il,γ(1) , . . . , Il,γ(N)


 ∈ R3×N (5.17)

When later referring to a vector containing pitch, global intensity and local
intensity information of a single frame n, we will make use of Θγ(n) which is
defined as:

Θγ(n) = [P (n), Ig(n), Il,γ(n)]T (5.18)

The two temporal segmentation functions for the attack-to-sustain and the
sustain-to-release segments respectively get also be combined into a single ma-
trix:

τ γ =

[
τγ,1(1) · · · τγ,1(N)
τγ,2(1) · · · τγ,2(N)

]
∈ R2×N (5.19)

The same is being done for two fusion functions:

ϕγ =

[
ϕγ,1(1) · · · ϕγ,1(N)
ϕγ,2(1) · · · ϕγ,2(N)

]
∈ R2×N (5.20)

This allows to establish our final control signal representations Ψγ for the
harmonic and residual signal components γ = h and γ = r respectively as:
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Ψh = {Θh , τh , ϕh , f̂ } (5.21)

Ψr = {Θr , τ r , ϕr } (5.22)

The control variables for the harmonic and residual component hence only
differ by the additional partial frequency vector f̂ for the latter.

When referring to control variables in a general way, we make use of Ψ,
representing the union of the two sets in eq. (5.21) and eq. (5.22) respectively,
whereas when using Ψγ(n) we will refer to all function values of Θγ , τ γ and
ϕγ at the specified analysis frame n.

5.3 Conclusion

This yields the time-domain signals xh(t) and xh(t) required for our proposed
expressive synthesis as well as the signal representations used by our instrument
modeling approach. These are the partial amplitude trajectories A(k)(n) and
the time–varying cepstral coefficients C(l)(n) and a well-defined set of control
variables required for the creation of the models as well as for performing
parametric sample-based sound synthesis.



Chapter 6

The Instrument Model

Introduction

For an intuitive control over expressive features of a musical instrument sound,
we initially establish individual source-filter models for the harmonic as well as
the residual signal component shown in eq. (6.1) and schematically in fig. 6.
The sources X̄γ(f, n) are assumed to be whitened versions of their respective
spectral signal components Xγ(f, n), whereas the filters Fγ

(
f,Ψh(n)

)
shall be

parametric with respect to their according control variables Ψ. The required
procedure to obtain the whitened source signals will be introduced in chapter.
10.

X(f, n) = X̄h(f, n) · Fh
(
f,Ψh(n)

)

+ X̄r(f, n) · Fr
(
f,Ψr(n)

) (6.1)

This approach allows to independently control the harmonic and resid-
ual contributions by individual filters with their particular parameterizations,
though to obtain sound transformations which are coherent with the instru-
ment’s sound characteristics, the filter functions then need to represent the
features of their respective components with respect to the their particular set
of control parameters Ψγ .

Xr

+

Xh Fh (Ψh)

Fr (Ψr)

X

Figure 6.1: The proposed Extended Source Filter model for the harmonic com-
ponent and an Envelope model based on a classic source filter. Frequency and
time variables have been excluded for clarity.

The two respective filter models will be developed in the next two sections,
whereas their internal representation will be presented in the next chapter in

60
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a generic manner. Model parameter estimation as well as model selection will
hence be presented thereafter.

6.1 Harmonic Model

As has been thoroughly described in sec. 3.5.2, the harmonic source of a mu-
sical instrument exhibits certain features which are best represented by their
harmonic index while others should be represented by their frequency value.
Therefore, for a model that shall describe those harmonic properties of a musi-
cal instrument we use two discrete components which are either parameterized
by partial index k or by partial frequency f(k).

We may thus express the function for single partial amplitude â(k) of a
quasi-harmonic instrument as the product of a function of harmonic index S(k)

and of a function of partial frequency R(f(k)):

â(k) = S(k) ·R(f̂(k)) (6.2)

From the assumptions introduced in sec. 3.5.2, the function of partial index
S(k) may refer to the modes of vibration of a particular instrument hence

its excitation source, while the latter R(f̂(k)) represents the contribution of
the whole rest of the instrument, which may be roughly approximated by the
resonating structure of its corpus.

It is however advantageous to represent the partial amplitude function in
the decibel domain, as the model may then be represented using a linear ba-
sis which will vastly simplify the optimization procedure later. Furthermore,
optimization in log-domain will also be perceptually more reasonable [Kla07].
Eq. (6.2) can hence be rewritten in decibel domain as in eq. (6.3) with Â(k)

representing the modeled partial amplitude in decibel.

Â(k) = S(k) +R(f̂(k)) (6.3)

We do not introduce new variables for the dB domain variables of the two
filter components as their linear counterparts from eq. (6.2) will not reappear
in this thesis.

While still assuming, that R(f̂(k)) may refer to the resonance characteristic
of an instrument, we may derive its independence of most expressive interac-
tions. Hence, for parametric control using the control variables Θh from eq.
(5.17), we may conclude, that only the excitation source is subject of performa-
tive control and hence S(k) needs to be established with respect to Θh, which
essentially makes it a tri-variate function, depending on the pitch P (n) as well
as global and local intensity Ig(n) and Il,h(n), respectively.

Furthermore, since Θh includes the local intensity Il,h as function of time
and as the signals attack and release segments are equally characterized by
intensity values below 0dB, we furthermore establish 2 mutually independent
partial amplitude functions for each harmonic index to represent their temporal
properties separately.

Hence, we formulate the parametric, extended source filter model for a
single partial amplitude with respect to the control variables Ψh:

Â(k,s)(Ψh) = S(k,s)(Θh) +R(f̂(k)) (6.4)



CHAPTER 6. THE INSTRUMENT MODEL 62

The temporal segmentation τh and fusion functions ϕh also contained
within Ψh are not yet used for the representation of the partial amplitudes,
but the former will be required for parameter estimation whereas the latter is
needed for sound synthesis.

6.2 Residual Model

The residual, non–deterministic component of quasi–harmonic instrument sounds
may be caused through fundamentally different physical mechanisms. Hence,
the noise signal may for example contain blowing or bowing noise in case of
wind or string instruments, respectively. Though, the residual signal may also
contain the impulsive sound of the striking hammer within piano sounds or the
sound of the plectrum which is exciting the string within guitar sounds.

Hence, to universally support a wide variety of musical instruments, we
assume all expressive manipulations to the residual sound component as being
best performed by transformations of its spectral envelope, which can efficiently
be represented by a limited amount of cepstral coefficients C(l)(n) as explained
in more in details in sec. 3.3.5 and 5.1.1.

We therefore establish Ĉ(l)(n) as presented in eq. (6.5) by mutually in-
dependent functions H for each single cepstral coefficient, whereas they are
due to the control signal Θr and similar to the harmonic model, separately
represented for the signal’s attack and release phase indicated using variable s.

Ĉ(l,s)(Ψr) = H(l,s)(Θr) (6.5)

The model Ĉ(l,s)(Ψr) for all l and both segments s may be regarded a classic
source-filter model as it represents a single spectral envelope only and is estab-
lished in an analogous manner to the excitation component of the harmonic
model.

6.3 Conclusion

The instrument model as presented in this chapter using discrete models for the
deterministic and residual signal components is depicted in fig. 6.3, whereas
an extended source-source filter model is used for the signal representation of
the harmonic component and a classic source-filter approach is employed for
the signal’s residual.

The source and resonance components of the harmonic model as well as
the envelope model for the residual component will be subject of modeling
the sound characteristics instrument according to its inherent possibilities and
limitations. All three components need to be represented using an internal
description capable of representing the intrinsic, multi-variate features of their
respective signal representation A(k)(n) and C(l)(n) as functions of their re-
spective controls Θh(n) and f(k) as well as Θr(n) respectively.

A general model for representing multi-variate trajectories has been pre-
sented in ch. 4 and its application to the specific case of the instrument model
is presented in the next chapter.

The two signal representations for the components however do neither yield
spectral filter envelopes or coefficients for time domain-based filters and hence,
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Xr

+

Xh Fh 

Fr 

X

S(k,s)(Θh) R(f(k))Ψh

H(l,s)(Θr)Ψr

Figure 6.2: The proposed extended-source-filter model for the harmonic com-
ponent and an envelope model based on a classic source filter approach.

their estimations according to some control parameters need to be transformed
into representation applicable to actual signal transformations. Two distinct
methods for the two signal model components will hence be presented in ch.
10.



Chapter 7

Model Parameter Estimation

Introduction

In ch. 6 we have introduced a parametric extended source-filter representation
for the partial amplitude trajectories of the deterministic part of an instrument
sound signal as well as a classic source-filter model for its residual using a
cepstral representation of its spectral envelope. All components of these models
have been established as functions of some control variables introduced in ch.
5.

The separate components of the source-filter models however require an
internal representation for which we propose to use B-splines which have been
thoroughly introduced in chapter 4. Therefore, in the current chapter a detailed
description will be given, showing the application of such B-spline models for
the representation of trajectories of sound signal data and how the model’s
parameters can be estimated in the least-mean-squares sense.

In this chapter we will hence present the parameter estimation techniques
for the harmonic and residual component separately and will give all required
equations to perform estimation using regularization and preconditioning in
their respective contexts.

7.1 Harmonic Model

The parametric model for the partial amplitude data shown in eq. (6.4) uses

a source excitation function S(k,s)(Θh) and a resonance component R(f̂(k))
to represent the sound signal contributions derived from the assumptions of
features best described by either harmonic index or frequency.

Both components will be established using B-splines yielding a linear com-
bination of such, though with different parameterizations:

S(k,s)(Θh) =
P∑

p=1

bp(Θh) · wp (7.1)

R(f) =
P∑

p=1

bp(f) · wp (7.2)

64



CHAPTER 7. MODEL PARAMETER ESTIMATION 65

The excitation function S(k,s)(Θh) for all partials k and both temporal
segments s will be established using identical multivariate B-splines as indicated
in eq. (7.1), though all having a unique weight vector. This weight vector for
an individual partial k and temporal segment s will be denoted w(k,s). The
approach follows from the assumption that the excitation of the amplitudes
of the partials are mutually independent. The excitation component of each
partial of a quasi-harmonic instrument is hence depicted separately for each
partial index, though they share the same control parameters to enable their
conjoint control.

The resonance component as shown in eq. (7.2) is also represented using
a B-spline basis, though with an univariate B-spline as a function of contin-
uous frequency values. This component shall cover the frequency dependent
features jointly for all partials within the harmonic model and we will refer to
its dedicated parameter vector by using w(R).

The use of B-splines for modeling the excitation source as well as the res-
onance component of all partials of a quasi-harmonic instrument allows for a
continuous-valued representation of the partial amplitudes with respect to the
control parameters.

S(K,2)(Θh)

S(1,1)(Θh)
R(f)

Figure 7.1: The internal representation of the extended source filter model for
the harmonic component using individual source functions for all harmonics
with identical parameters and a shared resonance component.

Fig. 7.1 shows a schematic overview of the proposed internal represen-
tation for the harmonic component of a quasi-harmonic instrument, showing
the mutually independent excitation source functions for all partial indexes K
and both temporal segments s = {1, 2} as well as the conjoint resonance filter
function R(f).

7.1.1 Parameter Estimation

For a reasonable separation of the contributions of the disjoint sound features
inherent within quasi-harmonic instruments represented by the individual mod-
els for a sound signals excitation and resonance, an overall system of linear
equations needs to be established to allow for their joint estimation. Such a
system of linear equations hence requires to include the weight parameters of
all B-splines models used by the harmonic model and we therefore establish
the coefficient vector for the harmonic model as:

w := [w(1,1), . . . ,w(K,1),w(1,2), . . . ,w(K,2),w(R)]
T (7.3)

The overall system’s weight vector w hence consist of the concatenation of
the vectorized weight parameters of the source’ tensor-product B-splines w(k,s)

for all K partials and both temporal segments s = {1, 2} as well as the vector
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of weight parameters w(R) of the univariate B-spline model used to represent
the resonance component.

Estimation of the values of the weight vector shall then be done using the
partial amplitude and control parameter data obtained from a database of
instrument recordings. However, the transformation matrix required for the
linear system of equation is not established explicitly as we can take advan-
tage of some matrix properties that allow for a much more efficient parameter
estimation using the iterative optimization strategy thoroughly discussed in
sec. 4.2.2. We will therefore analyze the linear system of the harmonic model
shown in eq. (7.4) represented by the overdetermined system A = Bw, where
A holds all partial amplitudes at all time frames from all analyzed recordings
and B refers to the transformation matrix of the system holding the B-spline
values of the excitation and resonance components regarding their respective
control parameter values without their weights.

The two advantageous properties of the transformation matrix are its re-
dundancy and its sparseness which can both be observed from the detailed
excerpt of the matrix B of the system in eq. (7.4). There, we are using 0 to
indicate a null vector, whose amount of dimensions is equal to the amount of
parameters w(k,s) of a single tensor-product B-spline.

A
︷ ︸︸ ︷
[
A(1)(n) A(2)(n) · · · A(K)(n) . . .

]

=




w(1,1)

w(2,1)

...

w(K,1)

...

w(K,2)

w(R)




︸ ︷︷ ︸

×




b(S)(Θh(n)) 0 · · · 0 . . .

0 b(S)(Θh(n)) · · · 0 . . .

...
...

. . .
...

0 0 · · · b(S)(Θh(n)) . . .

...
...

...

0 0 · · · 0 . . .

b(R)(f̂(1)) b(R)(f̂(2)) · · · b(R)(f̂(K)) . . .




︸ ︷︷ ︸
w B

(7.4)

In eq. (7.4), three measured partial amplitudes A(k)(n) for a specific time
frame n of one instrument sound are shown on top using partial indices k = 1,
2 and K. All partial amplitudes are represented within the system of equations
by the sum of its excitation and resonance component. It is easy to observe,
that the excitation component of all three partials are having unique weight
vectors w(k,1), though identical basis function values b(S)(Θh(n)) and due

to their different frequency locations f̂(k) they exhibit non-equal basis function

values b(R)(f̂(k)) for their resonance component. Please note, that we are using
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(S) and (R) to refer to the source’ B-spline and resonance B-spline functions
respectively.

We may hence derive the following properties from the transformation ma-
trix B:

• Sparsity: From eq. (4.21) we have already seen that b(Θh(n)) is highly
sparse. The matrix B in eq. (7.4) however is by far less dense as each col-
umn contains 2 ·K−1 nullvectors and only the two subvectors b(Θh(n))

and b(f̂(k)) hold some non-zero values.

• Redundancy: All partial amplitude values A(k)(n) at one time frame n
share an identical control parameter vector Θh(n). The overall system of
linear equations therefore contains a lot of redundant information as each
vectorized tensor-product B-spline is contained up to 2 ·K times within
the matrix. The factor 2 refers to the overlapping part of the temporal
segmentation scheme. For the non-overlapping time frames, only 1 · K
times the TPB is contained.

With respect to the analyzed properties of the transformation matrix of the
linear system of the harmonic model, we do neither establish the matrix ex-
plicitly nor using any sparse matrix representation to estimate the model’s free
parameters w using its direct-form solution. We rather establish an iterative
method that takes advantage of the redundancy and sparseness property and
allows to estimate the parameters using the SCG method introduced in sec.
4.2.2.

A cost function shall hence be defined as in eq. (7.5), using w to refer to
the model’s free parameters, A to denote all partial amplitudes at all frames of
all sounds of a database of recordings with their respective control parameter
sets Ψh. The sum on the right hand side of the equation then adds the cost
values for all single recordings i of the database to enable offline learning for
the SCG method.

Eh(w; A|Ψh) =
1

2

∑

i

Eih(w; Ai|Ψi
h) (7.5)

Eih(w; Ai|Ψi
h) =

1

νh

∑

s,n

τ ih,s(n)
K∑

k=1

∣∣∣Ai(k)(n)− Â(k,s)(Ψh(n)i
)∣∣∣

2

(7.6)

The error function for a single datum of the database represented by its
partial amplitudes Ai and control parameters Ψi

h is eventually expressed in
a least-mean-square manner as shown in eq. (7.6) using its distinct temporal
segmentation function τ ih,s(n).

The variable νh is used for normalization and is defined as in eq. (7.7),
whereas N refers to the amount of frames of the recording, K denotes the
amount of partials and the factor 2 is used due to the two temporal individual
segments.
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νh = 2NK (7.7)

The normalization is crucial for numerical reasons. As the amount of par-
tial data for a whole database of recordings may become tremendously large,
round-off errors may occur even with double precision number format due to
the extensive accumulation of small numerical errors. However, even though
the normalization is introduced in eq. (7.6) using a single factor to be applied
to the overall summation, this is not recommended for any real-world imple-
mentation. Normalization needs to be applied always next to its respective
sum and the notation used here, though being mathematically correct is only
used for convenience.

The temporal segmentation function τ ih,s(n) essentially applies a switch
between the attack-sustain and sustain-release components of the harmonic
model and therefore, the cost function needs to sum over the two temporal
segments and all time frames before taking the square error of all measured
partial data A(k) and the model’s accordingly estimated value Â(k,s) for the
respective temporal segment s and with respect to the control parameters Ψh.

The least-mean-square error criterion as defined in eq. (7.6) can be im-
plemented much more efficiently than the original linear system in terms of
memory usage. The frame-wise control parameters do not need to be stored
multiple times and all nullvectors of the transformation matrix of the linear
system can be omitted.

The required gradients for the optimization strategy need then to be de-
termined separately for the weights of the source excitation functions w(k,s)

and the weights of the resonance component w(R). We may therefore express
the gradient of the excitation component for a vectorized tensor-product of a
single partial k and temporal segment s as follows:

∂Eih
∂w(k,s)

= − 1

νh

∑

n

τh,s(n)
∣∣∣A(k)(n)− Â(k,s)(Ψh(n)

)∣∣∣b(S)(Θh(n)) (7.8)

and its derivative with respect to the weight parameters of the resonance
component then becomes:

∂Eih
∂w(R)

= − 1

νh

∑

s,n

τh,s(n)
K∑

k=1

∣∣∣A(k)(n)− Â(k,s)(Ψh(n)
)∣∣∣b(R)(f̂(k)) (7.9)

The parameters of the cost function Eih for a single sound of the database
(w; Ai|Ψi

h) on the left hand side have been omitted for improved readability.
Furthermore, the sound sample index i has also been omitted on the right hand
side, though it shall be noted that A(k)(n) as well as f̂(k) are specific variables
of their respective sound sample i.

Both derivatives of the cost function (7.6) refer to a whole vector of the
free parameters of the model which is also reflected by the use of the vector of
B-spline values b(S) and b(R) respectively. Performing optimization using the
conjugate gradient method SCG however, requires to take the cost and gradient
values of all model parameters and of all training examples i of the dataset into
account at once. To perform an iteration of the optimization procedure using
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the update rule from eq. (4.11), the gradients of all free model parameters need
hence to be determined to create the complete gradient vector.

7.1.2 Regularization

As thoroughly introduced in sec. 4.4, overfitting is an important issue with B-
spline based data representations. We have hence introduced a framework for
regularization to control the smoothness of the fit and we will employ several
smoothness penalties. The according values for the derivative orders, selected
dimensions for regularizing of the multi-variate source function as well as initial
regularization parameters will be given in ch. 8.

There is however another obstacle when learning the free parameters of the
harmonic model which can be subsumed as the model’s inherent ambiguities.

The 2 filter components S and R are established as discrete and indepen-
dent functions using a per partial source function and a resonance function
for all partials jointly. This however allows the source functions to exhibit an
additional arbitrary constant or offset, as long as the resonance function also
yields an additional offset with opposite value. The optimization procedure
will hence never converge as there is an infinite number of optimal solutions
due to the arbitrary value of the constant for both filter components, which
distorts the minimum peak of the cost function to an unbounded valley with
minimum value.

This fact may also be derived by assuming that such a constant can be an
additional gain factor, which gets added within one filter and subtracted within
the other.

We therefore propose to keep the average position of the resonance filter
fixed around some level value to solve the problem of the two filter functions
drifting in opposite directions without affecting the model error during opti-
mization. Thus, we will force the sum of the resonance function to be 0 using a
regularization term similarly to the one introduced for general B-spline models
in sec. 4.4. Note, that we could also regularize the source function for the same
reason using a similar approach.

Therefore, the first regularization of the harmonic model applies to the
resonance filter function only:

RI(w) = RI(w(R)) (7.10)

For constraining the resonance function represented by its weights w(R) to
be 0 in average, we thus employ the regularization term shown in eq. (7.11)
for a single B-spline parameter vector w to penalize the squared sum of the
resonance filter function. The function is evaluated at equidistant positions vj
with J sampling positions along its domain and its according weight parameter
λI.

RI(w) =
1

2
λI

∣∣∣
J∑

j

P∑

p=1

bp(vj)wp

∣∣∣
2

(7.11)

The regularization term in eq. (7.11) is introduced in a similar manner to
the regularization terms for slope or curvature penalty in sec. 4.4, though since
we are using the 0-derivative and the squared sum of the virtual data points
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vj we are penalizing for the functions offset or DC value, rather than its sum
of squared values.

In contrast to the initial location of the the regularization parameter λI,
it has now been included into the regularization term for convenience reasons
when writing the objective function later.

The regularization weight parameter λI may then be determined by apply-
ing eq. (4.30) for the resonance component of the harmonic model only and
the adapted equation hence becomes:

λI = λI,0

∣∣∣∣∑N
i

(∑P
p b(R)p

(f̂(k))
)2∣∣∣∣

1∣∣∣∣∑J
j

(∑P
p b(R)p

(vj)
)2∣∣∣∣

1

(7.12)

A possible value for the and data independent, initial coefficient λI,0 will
be given in sec. 8.2.

The use of a gradient method for parameter estimation makes it eventually
necessary to determine the first derivative of eq. (7.11) with respect to the
weight parameters of the resonance function only:

∂RI(w)

∂wp
= λI

∣∣∣
J∑

j

P∑

p=1

bp(vj)wp

∣∣∣
J∑

j

bp(vj) (7.13)

There is however another ambiguity, which arises from the use of the pitch
parameter for the source filter function and the frequency dependent resonance
filter, because the pitch parameter can be also regarded a log-frequency depen-
dency. This means, that frequency dependent features of the instrument can
either be represented by the source or the resonance, which is in fact a desired
property of the model, however, ambiguous solutions are not.

We address this ambiguity issue of double frequency-dependency in the
model by using the regularization term (4.29) introduced in sec. 4.4 for rea-
sonably penalizing for slope of all 2K source filter functions along the pitch
dimension using z = 1 and d = P . This shall enforce the source functions
to exhibit less radical variations along the pitch dimension assuming that an
excitation signal may be quite similar for nearby pitches. The resonance filter
function will not be constrained in such terms and may therefore be able to
represent resonances and anti-resonances in close proximity on the frequency
axis.

In sec. 4.4 the regularization function R(z,d)(w) has been introduced as a
function of the weights of the B-spline together with its according balancing
parameter λ(z,d) which depends on the data. To constrain the harmonic model
using this regularization, both need to be represented independently for every
partial k and temporal segment s to account for their independent weight
vectors w(k,s) and respective data.

To furthermore retain the possibility of adding regularization for other val-
ues of z or d, we thus write the second type of regularization RII as:

RII(w) =
1

2

∑

k,s

∑

z,d

λ
(z,d)
II,(k,s)R(z,d)(w(k,s)) (7.14)

The regularization parameter λ
(z,d)
II,(k,s) is then also determined as for RI

using an adaptation of eq. (4.30), which we write with an initial weighting
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parameter λ
(z,d)
II,0 that is equal for all partial indexes and the temporal seg-

ments but may vary according to a selected penalty specified by z and d. The
parameter may hence be determined individually for all its 4 parameters as
follows:

λ
(z,d)
II,(k,s) = λ

(z,d)
II,0

∣∣∣∣∑N
i

(∑P
p b

(z,d)
(S)p

(Θh(n))
)2∣∣∣∣

1∣∣∣∣∑J
j

(∑P
p b

(z,d)
(S)p

(vj)
)2∣∣∣∣

1

(7.15)

Values for the initial coefficient λ
(z,d)
II,0 for various z and d that have been

used for constraining the harmonic model while training will be presented in
sec. 8.2.

The first derivative of eq. (7.14) then needs to be taken individually for all
partial indexes k and both temporal segments s, yielding:

∂RII(w)

∂w(k,s)
=

1

2

∑

z,d

λ
(z,d)
II,(k,s)

∂R(z,d)
II (w(k,s))

∂w(k,s)
(7.16)

It may be derived that each individual derivative at the right hand side
essentially equals eq. (4.33), though we are using the weight vector as derivative
variable here rather than single vector entries.

The general objective function for estimating the free parameters of the
harmonic model with respect to all given sound examples i and all possible
regularizations using RI to refer to the above and RII to denote the multidi-
mensional slope or curvature penalties is thus:

Oh = Eh(w; A|Ψh) +RI(w) +RII(w) (7.17)

Minimization of Oh using the iterative offline procedure SCG therefore not
only estimates the parameter according to the given data, but also regarding
certain desired behaviors determined by the additional regularization terms.

The required values for the initial regularization parameters λI,0 and λ
(z,d)
II,0 will

be given in ch. 8.

7.1.3 Preconditioning

Preconditioning has been thoroughly introduced in sec. 4.5, however, as the
harmonic model is assembled using linear combinations of multiple source and
one single filter function, the according equations need to be updated accord-
ingly.

First of all, the weight vector w of the harmonic model needs to get replaced
by an element-wise product using notation ◦ of a new weight vector w̃ and their
respective scaling parameters c for the quadratic form:

w = w̃ ◦ c (7.18)

whereas:

w̃ := [w̃(1,1), . . . , w̃(K,1), w̃(1,2), . . . , w̃(K,2), w̃(R)]
T (7.19)

c := [c(1,1), . . . , c(K,1), c(1,2), . . . , c(K,2), c(R)]
T (7.20)
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The first derivatives of the objective function (7.17) with respect to either
w̃(k,s) or w̃(R) required for their estimation are thus:

∂Oh
∂w̃(k,s)

=
∂Eh

∂w̃(k,s)
+
∂RII(w)

∂w̃(k,s)
(7.21)

∂Oh
∂w̃(R)

=
∂Eh
∂w̃(R)

+
∂RI(w)

∂w̃(R)
(7.22)

because:

∂RI(w)

∂w̃(k,s)
= 0 (7.23)

∂RII(w)

∂w̃(R)
= 0 (7.24)

The derivatives of the cost function Eh can be processed individually for
every single recording i as follows:

∂Eh
∂w̃(k,s)

=
1

2

∑

i

∂Eih
∂w̃(k,s)

(7.25)

∂Eh
∂w̃(R)

=
1

2

∑

i

∂Eih
∂w̃(R)

(7.26)

(7.27)

whereas the individual derivatives of Eih then eventually yield:

∂Eih
∂w̃(k,s)

=

− 2

νh

∑

n

τh,s(n)
∣∣∣A(k)(n)− Â(k,s)(Ψh(n)

)∣∣∣b(S)(Θh(n)) ◦ c(k,s)

(7.28)

∂Eih
∂w̃(R)

=

− 2

νh

∑

s,n

τh,s(n)
K∑

k=1

∣∣∣A(k)(n)− Â(k,s)(Ψh(n)
)∣∣∣b(R)(f̂(k)) ◦ c(R)

(7.29)

using ◦ to denote the elemen-wise product.
The first derivatives of the regularization term RI with respect to w̃(R)

resolves to eq. (7.30) using the univariate virtual data points vj :

∂RI(w)

∂w̃(R)
= λI

∣∣∣
J∑

j

P∑

p=1

bp(vj)w̃pcp

∣∣∣
J∑

j

b(R)(vj) ◦ c(R) (7.30)

The first derivative of RII however needs to consider all directional deriva-
tives determined by z and d using the multivariate virtual data points vj :
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∂RII(w)

∂w̃(k,s)
=

∑

z,d

λ
(z,d)
II,(k,s)

J∑

j

η(z,d)(vj)
∣∣∣
P∑

p=1

(
b(z,d)p (vj)w̃p cp

)∣∣∣b(z,d)
(S) (vj) ◦ c(k,s)

(7.31)

One may note, that the B-spline expressions in straight brackets in eq.
(7.30) and (7.31) refer to the specific B-splines of the resonance and source
filter function respectively, though their only difference in notation here is by
using either univariate or multivariate parameters.

To determine the scaling parameters c(k,s) and cR the second derivatives
of the objective function (7.17) are required with respect to their according
weights:

∂2Oh
∂w̃2

(k,s)

=
∂2Eh
∂w̃2

(k,s)

+
∂2RII(w)

∂w̃2
(k,s)

(7.32)

∂2Oh
∂w̃2

(R)

=
∂2Eh
∂w̃2

(R)

+
∂2RI(w)

∂w̃2
(R)

(7.33)

The second derivatives of the cost function Eh can again be processed in-
dividually for every single recording i as follows:

∂2Eh
∂w̃2

(k,s)

=
1

2

∑

i

∂2Eih
∂w̃2

(k,s)

(7.34)

∂2Eh
∂w̃2

(R)

=
1

2

∑

i

∂2Eih
∂w̃2

(R)

(7.35)

(7.36)

whereas the individual second derivatives of Eih then resolve to:

∂2Eih
∂w̃2

(k,s)

=
1

νh

∑

n

τh,s(n)
∣∣∣
∣∣∣b(S)(Θh(n)) ◦ c(k,s)

∣∣∣
∣∣∣
2

(7.37)

∂2Eih
∂w̃2

(R)

=
1

νh

∑

s,n

τh,s(n)
K∑

k=1

∣∣∣
∣∣∣b(R)(f̂(k)) ◦ c(R)

∣∣∣
∣∣∣
2

(7.38)

using notation || · ||2 to denote the element-wise square operator.
The according second derivatives of the regularization terms yield:

∂2RI(w)

∂w̃2
(R)

= λI

∣∣∣
∣∣∣
J∑

j

b(R)(vj) ◦ c(R)

∣∣∣
∣∣∣
2

(7.39)

∂2RII(w)

∂w̃2
(k,s)

=
∑

z,d

λ
(z,d)
II,(k,s)

J∑

j

η(z,d)(vj)
∣∣∣
∣∣∣b(z,d)

(S) (vj) ◦ c(k,s)

∣∣∣
∣∣∣
2

(7.40)
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To eventually obtain the scaling parameter vectors c(k,s) for all k and both
s as well as c(R), the second derivatives of the objective function (7.32) and
(7.33) will be set equal to 1 and solved for c(k,s) and c(R) respectively. This
yields the following equations:

c(k,s) =

(∑

i

1

νh

∑

n

τh,s(n)
∣∣∣
∣∣∣b(S)(Θh(n))

∣∣∣
∣∣∣
2

+
∑

z,d

λ
(z,d)
II,(k,s)

J∑

j

η(z,d)(vj)
∣∣∣
∣∣∣b(z,d)

(S) (vj)
∣∣∣
∣∣∣
2
)− 1

2
(7.41)

c(R) =

(∑

i

1

νh

∑

s,n

τh,s(n)
K∑

k=1

∣∣∣
∣∣∣b(R)(f̂(k))

∣∣∣
∣∣∣
2

+ λI

∣∣∣
∣∣∣
J∑

j

b(R)(vj)
∣∣∣
∣∣∣
2
)− 1

2

(7.42)

All required equations to eventually estimate the free parameters of the
harmonic model of eq. (6.4) using the objective function (7.17) have been
presented in this section. However, establishing the B-splines for the model’s
source and resonance component still requires several hyperparameters which
are not part of the parameter estimation method, but need to be adjusted
manually. These will be covered in ch. 8.

7.2 Residual Model

The parametric model to represent the cepstral coefficients of an instrument’s
residual characteristics presented in eq. (5.1.1) uses individual functions of
the control parameters which do not exhibit any interdependency. The model
is hence composed of separate and mutually independent B-splines for every
cepstral coefficient l and temporal segment s:

H(l,s)(Θr) =
P∑

p=1

bp(Θr) · wp (7.43)

Similarly to the B-splines of the excitation source of the harmonic model,
the B-splines for the representation of the cepstral coefficients l and temporal
segments s are established using identical, multivariate B-splines but each with
its unique weight vector w(l,s).

Compared to the model of the partial amplitudes within the harmonic com-
ponent, the residual’s representation is substantially simpler. Fig. 7.2 depicts
the mutually independent multivariate B-splines used for representing the cep-
stral coefficients as functions of the gestural controls. Their parameters may
then be estimated using the technique proposed for multivariate B-splines in
ch. 4.
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7.2.1 Parameter Estimation

Considering the independence of the individual B-spline representations for
every cepstral coefficient and temporal segment, their estimation can also be
done mutually independent. For the reasons given in ch. 4, we have chosen to
estimate the free parameters of the model using the iterative method applying
the SCG method. We hence express a cost function for every single cepstral
coefficient and temporal segment similarly as in eq. (7.44) for all residual
sounds i of the database of recordings using C(l) to denote a data vector that
contains the l-th cepstral coefficient of all sounds at all frames and Ψr to refer
to their respective control parameters.

Er(w(l,s); C(l)|Ψr) =
1

2

∑

i

Eir(w(l,s); C
i
(l)|Ψi

r) (7.44)

Eir(w(l,s); C
i
(l)|Ψi

r) =
1

νr

∑

s,n

τ ir,s(n)
∣∣∣Ci(l)(n)− Ĉ(l,s)(Ψ

i
r(n))

∣∣∣
2

(7.45)

Eq. (7.45) then shows the cost function for a single sample in the least-
mean-square sense, taking also the temporal segmentation into account as for
within the harmonic model. An additional normalization factor νr has also been
introduced for the same reason as for the harmonic model which constitutes
itself as in eq. (7.46) using N to denote the amount of analysis frames within
the signal:

νr = 2N (7.46)

The gradient as required for the parameter estimation using the SCG method
then resolves to eq. (7.47) and (7.48) again omitting the parameter variables
of for Er and Eir for readability.

∂Er
∂w(l,s)

=
1

2

∑

i

∂Eir
∂w(l,s)

(7.47)

∂Eir
∂w(l,s)

= − 1

νr

∑

n

τr,s(n)
∣∣∣Ci(l)(n)− Ĉ(l,s)(Ψ

i
r(n))

∣∣∣b(Θr(n)) (7.48)

Since there is only one kind of a multivariate B-spline contained within
the model for the residual component, only one gradient function needs to

H(K,2)(Θr)

H(1,1)(Θr)
Figure 7.2: The internal representation of the residual component of the instru-
ment model uses independent representation for every single cepstral coefficient
and temporal segment as a function of the control parameters.
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be provided and the estimation of the individual weight vectors w(l,s) may
eventually be done individually for all l and both s.

7.2.2 Regularization

In contrast to the harmonic model, there are no ambiguities within the model
of the residual component, though overfitting might still occur. We therefore
apply regularization as introduced in ch. 4 with respect to the individual weight
vectors w(l,s).

The objective function for a single pair of l and s taking its according cost
value as well as some regularization into account may hence be written as:

Or = Er(w(l,s); C(l)|Ψr) +RII(w(l,s)) (7.49)

The regularization term RII is defined as for the harmonic model but for a
single cepstral coefficient and temporal segment. It reuses the definition of R
in eq. (4.29), but incorporates all values of z and d:

RII(w(l,s)) =
1

2

∑

z,d

λ
(z,d)
II,(l,s)R

(z,d)
II (w(l,s)) (7.50)

One may note, that we reuse II for the regularization to indicate the simi-
larity to the according regularization term for the harmonic model.

The regularization parameter λ
(z,d)
II,(l,s) is then also determined as for the

harmonic model using an adaptation of eq. (4.30). We thus write:

λ
(z,d)
II,(l,s) = λ

(z,d)
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(∑P
p b

(z,d)
p (Θr(n))

)2∣∣∣∣
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j

(∑P
p b

(z,d)
p (vj)

)2∣∣∣∣
1

(7.51)

Values for λ
(z,d)
II,0 that we have used for training the residual model for several

instruments will be shown in sec. 8.2.
The required gradient of the regularization term then resolves to:

∂RII(w(l,s))

∂w(l,s)
=

1

2

∑

z,d

λ
(z,d)
II,(l,s)

∂R(z,d)
II (w(l,s))

∂w(l,s)
(7.52)

The derivative within the sum on the right hand side then equals the first
derivative of the regularization term shown in eq. (4.33). As within the har-

monic model, the required initial regularization parameter values λ
(z,d)
II,0 will be

identical for all cepstral coefficients and temporal segments and its according
values used for the present thesis will be given in ch. 8.

7.2.3 Preconditioning

We also apply preconditioning for the estimation of the parameters of the
residual model component to substantially improve the convergence rate of the
algorithm using the same method as introduced in ch. 4 and as already applied
to the harmonic model. Therefore, we again substitute the weight vector w(l,s)

of the multivariate B-spline representation for every cepstral coefficient and
the temporal segments by the element-wise product of a new weight vector
and their according scaling coefficients:
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w(l,s) = w̃(l,s) ◦ c(l,s) (7.53)

The new derivative of the objective function (7.49) is thus:

∂Or
∂w̃(l,s)

=
∂Er
∂w̃(l,s)

+
∂RII(w(l,s))

∂w̃(l,s)
(7.54)

whereas their partial derivatives can be derived similarly to the harmonic
model for the data dependent cost function:
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∂w̃(l,s)
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(7.55)
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i
r(n))

∣∣∣b(Θr(n)) ◦ c(l,s) (7.56)

as well as for the regularization term which essentially equals the first deriva-
tive of the second regularization of the harmonic model apart from its param-
eterization using l instead of k :

∂RII(w(l,s))

∂w̃(l,s)
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(7.57)

The second derivative of the objective function is then required again to
eventually determine the scaling coefficients c(l,s):

∂2Or
∂w̃2

(l,s)

=
∂2Er
∂w̃2

(l,s)

+
∂2RII(w(l,s))

∂w̃2
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(7.58)

The second partial derivative for the cost function may then be expressed
as follows:
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whereas the second partial derivative of the regularization term becomes:
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(7.61)

Setting the second derivative of the objective function (7.58) to equal 1 and
solving for the scaling coefficients eventually yields:
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7.3 Conclusion

In this chapter we have thoroughly discussed the application of multivariate
B-splines for representing either harmonic partials of a musical instrument or
cepstral coefficients both as function of several control variables. These data
trajectories have been assumed to be decisive for an instrument sound and
the according control parameters have been selected assuming their substan-
tial influence on its inherent sound features and hence as being suitable for
transforming these.

The equations introduced in this chapter cover all required mathematical
expressions to create the harmonic as well as residual component for the instru-
ment model proposed within this thesis, whereas both are established to allow
for estimating certain instrument characteristics either referring to features re-
lated to partial index or partial frequency in case of the harmonic model or to
spectral envelope features represented by cepstral coefficients.

However, this chapter only covered the automatic estimation of the model’s
free parameters and left out the manual adjustment of the hyper parameters.
The selection of these requires some assumptions which need to be made a
priori to the automatic estimation and hence will be introduced in the next
chapter alongside a thorough description of the instrument sound databases
used for the application of the model.



Chapter 8

Model Selection

Introduction

Four different quasi-harmonic instruments have been chosen to apply and even-
tually evaluate the instrument model proposed in the previous chapters. These
four instruments have been selected with regard to their belonging family to
cover various types of sound production mechanisms and performer-instru-
ment interactions, though only their standard playing techniques without any
ornamentations are considered. The sound datasets hence exclude tremolo or
vibrato techniques as well as pizzicato or glissandi and only contain recordings
that are monophonic with constant pitch and global sound intensity. The sound
datasets needed to contain separate recordings for all possible pitches along its
respective pitch range and separate recordings for several levels of sound in-
tensity. All recordings are also required to entail a complete instrument sound
from its onset to some reasonable offset.

To further assure high-quality recordings with 24Bit resolution depth and
44.1kHz sample rate in a loss-less file format and without undocumented post-
processing modifications we have taken the sound datasets from either the
Ircam Solo Instruments library [uvib] or the Fazioli F278 Concert Grand piano
database [uvia]. The selected instruments then are:

• Trumpet [uvib]

• Bb Clarinet [uvib]

• Violin [uvib]

• Fazioli Grand Piano [uvia]

The trumpet, clarinet and violin have been chosen to have one representa-
tive of the brass, woodwind and violin instrument family respectively. Though,
as they all share a continuous excitation mechanism when played in a standard
manner, the grand piano library has been picked to study characteristics which
may be exclusive for impulsively excited instruments, but has also been selected
for its assumably strong timbre variability.

The following tab. 8.1 lists some general statistics about the four different
instruments used for the evaluation of the instrument model:

79
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instrument Num Files Num Pitches Num Intensity Levels

trumpet 92 33 3
clarinet 136 47 3
violin 279 see tab. 8.2 3
piano 535 88 ≤ 8

Table 8.1: Some general stats about the used sound data sets.

The second column of tab. 8.1 shows the amount of single recordings en-
tailed within the respective sound database, the third shows how many discrete
pitches are contained and the last column lists the amount of different intensity
levels available for each pitch. The overall amount of sound files of a database
should theoretically equal the product of the amount of available pitches and
intensity levels, however, a few files are missing in all datasets for unknown
reasons, though this does not effect the parameter estimation negatively since
only very few are missing.

In case of the violin, the sound data set has been divided into subsets for
every string whose statistics are shown in tab. 8.2.

String (Pitch) Num Files Num Pitches Num Intensity Levels

1 (E) 71 25 3
2 (A) 74 25 3
3 (D) 68 23 3
4 (G) 66 22 3

Table 8.2: The general statistics about the violin data set divided into subsets
for each string.

The division of the violin into subsets according to the string number is
important, because we will create instrument models for every single string
rather than for the whole instrument. This is due to the different spectral
characteristics caused by the positioning of the bow above the string which
effectuates a comb filter behavior that is specific for each string [JS83]. There-
fore, equal pitches being played on different strings sound differently and as
such a characteristic is not represented within our model, we need to establish
individual models for each string.

The means we will eventually establish individual models for the trumpet,
clarinet and piano as well as separate models for all four strings of the violin.

For each of the instrument models, a suitable configuration of the multi-
variate B-spline representations for the excitation and resonance component of
the harmonic model as well as for the B-splines used within the residual model
need to be set prior to the parameter estimation. Moreover, we have defined
several constraints using regularization terms which require initial weighting
parameters that also need to be set a priori. Both parts of the issue of finding
an appropriate model configuration with properly adjusted constraint weights
will be discussed in the next two sections.
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8.1 Model Configurations

As thoroughly introduced in ch. 4, B-splines are characterized by their belong-
ing knot sequence and B-spline order and both need to be adjusted manually.
Of course this remains true for multivariate B-splines, but since we are using
tensor-products of univariate B-splines their configuration may be done indi-
vidually for each dimension. Hence, for choosing an appropriate configuration
of a multivariate B-spline, their individual domain spaces Ig, P and Il,γ may
be studied separately and the according B-spline parameters can eventually be
adjusted individually. Moreover, certain assumptions and a priori knowledge
about the inherent data characteristics may also be applied when choosing a
knot sequence and B-spline order.

Prior to the selection of a suitable model configuration, a particular char-
acteristic shared among all instrument sound data sets needs to be considered
carefully: The discreteness of some of their control parameters, namely Ig, P
and the partial frequency parameter f(k), because the property of a discrete dis-
tribution of a variable may eventually yield an underdetermined system when
estimating the B-spline’s weight parameters. This will happen if the amount of
basis functions exceeds the available amount of discrete values of the variable
within their neighborhood and represents the very extreme case of overfitting
introduced in sec. 4.4.

However, an equal issue arises also with the non-discrete variable Il,γ if a
B-spline’s domain limits exceed the available values of Il,γ yielding one or more
basis functions for which there is no data.

The first and obvious solution to the above issues is to employ a B-spline
knot sequence and order which will always yield less basis functions when there
will be values of the control variable for its whole domain. Certainly, this re-
quires precise knowledge about the distribution of the variable and may hence
not always be available. Another method to solve the issue of extreme over-
fitting which does not require knowledge about the distribution of the domain
variable is to apply a smoothness constraint using the regularization presented
in sec. 4.4. Smoothness can be be achieved by penalizing for slope or curvature
of the B-spline. Both approaches will be applied for the model configurations
depending on the availability of data knowledge or simply according to its ease
of use.

We furthermore employ two distinct configurations of the B-spline parame-
ters to retain the generality of the approach but equally accounting for disparate
sound and signal characteristics. We hence establish a model configuration suit-
able for continuously driven sounds as within the trumpet and clarinet as well
as within the four violin data sets. The second model configuration aims for
impulsively excited sounds like within the piano sound set.

For the sake of simplicity of the approach and of the model description,
the configurations of the multivariate B-splines S(k,s)(Θh) shown in eq. (7.1)
and H(l,s)(Θr) depicted in eq. (7.43) will be equal for all partial and cepstral
coefficients as well as for both temporal segments. Moreover, we establish the
multivariate B-splines with equal knot sequences and orders for the harmonic
as well as residual model due to their similar control parameters.
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8.1.1 A Model for Continuously Driven Instruments

Since we may adjust the B-splines of all components of the instrument model
for every control parameter individually, we may analyze them separately and
deduce suitable B-splines configurations:

8.1.1.1 Configuring the B-spline for Parameter Ig

Within the trumpet, clarinet and all violin sound sets three different global in-
tensity categories are contained for all pitches, denoted pp, mf and ff as shown
in tab. 8.1. To represent these categorial values within our model representa-
tion we employ a linear mapping of these three categories to the MIDI velocity
values: 1, 64 and 127 respectively to obtain Ig. This will eventually map all
measured partial amplitudes and cepstral coefficients to either one out of 3
discrete positions along the global intensity dimension of the multivariate B-
spline, which yields enough understanding to adjust the B-spline with respect
to the distribution of the data along Ig.

A possible configuration using only 3 basis functions for the univariate B-
spline to represent the global intensity dimension is given in fig. 8.1(a). The
B-spline is set up using a sequence of knots which are placed at the exact
mapping positions for the three categories pp, mf and ff and the basis functions
are established using a B-spline order 2, enabling linear interpolation along the
global intensity dimension.

The total amount of free weight parameters for the univariate B-spline
representing the global intensity hence equal 3.

8.1.1.2 Configuring the B-spline for Parameter P

Like the categorial values of the global intensity, the pitch parameter for all
sounds becomes translated to its respective MIDI value yielding a discrete con-
trol parameter P which implies a log-frequency metric. In sec. 7.1.2 we have
then discussed the model’s inherent frequency ambiguity due to the simulta-
neous use of pitch and frequency parameters, though we have assumed the
data to exhibit only minor variations along the pitch dimension of the exci-
tation component of the harmonic model. A B-spline configuration for the
pitch parameter may hence be setup again in the MIDI domain and for gener-
ality with equal B-spline configurations for all 3 instruments as shown in fig.
8.1(b), though adaptively regarding the instrument’s actual pitch range using
Pmin and Pmax to refer to their min and max values. The B-spline eventually
exhibits an order of 3 to enable quadratic interpolation and consists of three
homogeneously partitioned segments.

All instrument sound data sets with continuous excitation exhibit similar
amounts of separately recorded pitches which will be translated to discrete po-
sitions in between Pmin and Pmax and hence underdetermination could happen
for B-spline configurations with an amount of parameters larger than discrete
pitches contained within the dataset. However, the B-spline configuration pro-
posed in fig. 8.1(b) exhibits 5 basis functions and all sound data sets contain at
least 25 pitches which we distributed at equi-distant positions. This eventually
yields an amount of 5 free weight parameters for the pitch parameter.
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Figure 8.1: The 3 univariate B-splines used to assemble the tensor-product
B-spline bp(Θγ) which is used within the harmonic and residual component of
all instrument models for continuously driven instrument sounds.

8.1.1.3 Configuring the B-spline for Parameter Il,γ

The values of the local intensities Il,γ are in contrast to all other control vari-
ables not sampled at just a few discrete locations, but exhibit real values rang-
ing from −∞ to 0dB due to its normalization. To bound them reasonably for
our internal representation we use a lower limit of -80dB for all instrument
data sets and employ a non-uniform knot sequence for the B-spline as shown
in fig. 8.1(c). It may be important to note, that the model’s limitation of a
maximum dynamic of 80dB does not necessarily delimit the dynamic range of
the sound synthesis, but only its capability of representing variations of the
sounds spectral characteristics for such a range. In the synthesis application,
signal level values below -80dB from its signal maximum may still be synthe-
sized, though their variations may not be considered different from the lower
limit of the instrument model.

Also, in contrast to Il,γ and P , the B-spline configuration facilitates a non-
uniform knot sequence to support more variations of the trajectories at higher
values of Il,γ and a reduced modeling accuracy in the lower range. This ac-
commodates the idea of having a lesser modeling error for signal segments in
the signals sustain region with assumably most important perceptual impact,
while keeping the model complexity reasonably low for signal segments of low
energy and less impact. The total amount of parameters for the local intensity
is hence 5 as can be seen from the amount of basis functions in the fig. 8.1(c)
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8.1.1.4 Configuring the B-spline for Parameter f̂(k)

The generic B-spline representation for the resonance filter module has been
introduced in eq. (7.2) where R(f) is established as a continuous function of
frequency, though the parameter estimation technique in eq. (7.6) uses discrete

partial frequencies f̂(k) to estimate a smooth filter envelope from which we infer
the following implications:

As R(f) represents sound features by partial frequency, we employ a Mel-
scale based partitioning to create a non-uniform knot sequence for the B-spline.
This shall allow resonances and formants at lower frequencies to be represented
with higher accuracy when high frequency content, roughly following the hu-
man perception of sound [Moo12].

0

1

f̂(k)min
f̂(k)max

1k 10k

f / Hz

Figure 8.2: The B-spline used for the resonance filter component R(f) within
all instrument models with continuously excited sound signals. The B-spline is
created using a non-uniform partitioning based on the Mel scale and a B-spline
order 3.

During the parameter estimation procedure, the discrete partial frequencies
f̂(k) are assumed to reveal a sampled version of the instrument’s resonance char-
acteristics ranging from the lowest to the highest partial frequency contained
within the dataset. We may therefore estimate the instrument’s resonance
characteristics only within these limits denoted f̂(k)min

and f̂(k)max
respectively

and hence establish the B-spline exactly within these limits.
In the first low octaves of the frequency function, the partial frequencies

will reveal a highly subsampled version of the resonance filter function and
underdetermination may occur. We have therefore used 26 distinct segments for
partitioning the frequency axis for all instruments obtaining B-spline segments
that are always determined for the used data sets.

Figure 8.2 depicts such a B-spline with increasing segment sizes and lower
and upper bounds to be determined by the frequency range of an instrument’s
harmonics. Its overall amount of free weight parameters eventually accumulates
to 28.

8.1.1.5 Parameter Space Analysis

In eq. (4.20) we have given a formula how the amount of free parameters for
a tensor-product B-spline can be determined given the amount of parameters
of its univariate components. The amount of free parameters for a single mul-
tivariate B-spline S(k,s)(Θh) or H(l,s)(Θr) used to represent one coefficient of
one temporal segment therefore becomes 3 · 5 · 5 = 75.
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8.1.2 A Model for Impulsively Driven Instruments

The piano sound database differs from the other data sets as it exhibits more
than twice the amount of global intensities and a substantially bigger pitch
range which also enlarges the frequency range of the quasi-harmonic partials.
The increased amount of data is assumed to be accompanied by an increased
amount of inherent sound features and also due to the specific characteristics
of impulsively excited instruments, we employ more complex B-spline repre-
sentations for the respective components of the instrument model.

8.1.2.1 Configuring the B-spline for Parameter Ig

The piano data set contains up to 8 levels of global intensity, whereas the
amount per pitch decreases with increasing pitch. The upmost pitches within
the data set contain only 3 intensities levels. As for the continuous model
above, the global intensity values have been linearly mapped onto MIDI vecoc-
ity scale, though depending on the available amount of levels per pitch. The
mapping has hence be made pitch dependent such that for every pitch the
lowest intensity got mapped to the minimum and the highest intensity to the
maximum velocity following the assumption, that the data set contained the
minimum and maximum playable intensity for every pitch but with different
amounts of gradual nuances.

We further assume the piano set to exhibit a higher variability for variations
of the global intensity of the excitation component and therefore create a B-
spline with an order 3 and 5 equal-sized segments shown in fig. 8.3(a) eventually
yielding 7 basis functions with their respective free parameters.

8.1.2.2 Configuring the B-spline for Parameter P

The pitch parameter for the piano sound data set is set up equal to the other
data sets but as the piano entails about twice as many pitches as the other
sets, we utilize a B-spline which allows for more complex data representations
to account for an assumably higher variability of piano sounds of different
pitches. The according B-spline with its underlying basis functions is shown in
fig. 8.3(b) using 10 basis function and hence free parameters.

8.1.2.3 Configuring the B-spline for Parameter Il,γ

The local intensity of impulsively excited instruments are characterized by an
attack-release characteristic with a short attack slope and a longer release tail
and in contrast to the continuously excited sounds, an impulsively excited
signal may have its significant timbral variations for a much wider range of
local intensities values. Therefore, we use a B-spline configuration for the local
intensity dimension which allows to represent more complex data trajectories
as for continuously excited sounds. The employed B-spline is shown in fig.
8.3(c) using again a non-uniform domain partitioning with a increasing density
of basis functions at the maximum of the local intensity to allow for higher
model precision at the signals amplitude peak.

The amount of free parameters for the local intensity hence increased to 8.



CHAPTER 8. MODEL SELECTION 86

0

1

pp f f

Ig/ MIDI

(a) 2nd order B-spline used for Ig
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Figure 8.3: The 3 univariate B-splines used to assemble the tensor-product
B-spline bp(Θγ) which is used within the harmonic and residual component of
the piano instrument model.

8.1.2.4 Configuring the B-spline for Parameter f̂(k)

Again, we denote the lowest fundamental frequency of the data set f̂(k)min
and

in case of the piano this frequency is much lower than for the other data sets.
Therefore, to cover the very low frequency content and to still obtain a similar
resolution across the whole frequency range as for the continuously excited
instruments, we employ a different scale for a non-uniform partitioning.

The different partitioning is based on octaves as it subdivides every octave
starting with f̂(k)min

into 5 subsegments which represent the knot sequence used
to create the B-spline. In comparison to the Mel scale while using an equal
amount of parameters, this partitioning of the frequency axis yields a more
dense segmentation for the lower octaves and larger segments for the very high
frequencies. This will allow are more precise representation of the resonance
characteristics of the piano without increasing the amount of parameters to
much.

Using 5 segments per octave, the B-spline eventually requires 80 basis func-
tions for the whole frequency axis with an according amount of free parameters.

8.1.2.5 Parameter Space Analysis

The amount of parameters for the multivariate B-spline S(k,s)(Θh) orH(l,s)(Θr)
for a single coefficient and for one temporal segment eventually equals 7·10·8 =
560.
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Figure 8.4: The B-spline used for the resonance filter component R(f) for the
piano sounds. The B-spline is created using a non-uniform partitioning based
on an octave scale and a B-spline order 3.

8.2 Initial Regularization Weights

As already pointed out in sec. 4.4, the initial regularization parameters λI,0

and λ
(z,d)
II,0 as well as the respective scaling polynomials η need to be adjusted

manually with respect to certain desired model characteristics. We have iden-
tified these desirable model properties to be smooth modeling trajectories even
in subspaces of the model where no data is available and hence overfitting an
apparent issue as well as the solution to the inherent ambiguities.

All values given below have been found by separately training instrument
models for a large variety of possible regularization parameter values until
a set of values had been found that yielded smooth surfaces for all partial
and cepstral coefficients. The smoothness of the surfaces had been evaluated
visually using figures as shown in ch. 9 and by that we were able to identify
two general sets of parameters that have shown to be suitable for the two used
classes of instrument sounds. Thus we present two distinct sets of parameter
values which represent possible configurations for either one class of sound
signals.

8.2.1 Initial Weights for Continuously Excited Instruments

For the harmonic model of the first type of instrument sounds we employ

the initial regularization parameters for λI,0 and λ
(z,d)
II,0 shown in tab. 8.3. The

regularization parameter λI,0 refers to the penalty of a potential DC offset of the
resonance curve while all other parameters constrain the excitation component.

The excitation component for the continuously excited sounds hence re-
ceive slope and curvature penalties for its pitch and local intensity dimension

indicated by λ
(P,1)
II,0 and λ

(P,2)
II,0 as well as λ

(Il,h,1)
II,0 and λ

(Il,h,2)
II,0 respectively. This

selection of regularization terms not only solves the ambiguity of frequency
and log-frequency dependency but also enforces smoothness of the estimated
surface along both variables. This is an important requirement due to the use
of equally constructed B-spline surfaces for all partials, though not all partials
will be available for all pitches or may not be present at low values of the local
intensity. The regularization using slope and curvature penalties will then en-
force the surface to extrapolate smoothly from regions with partial data into
regions without.

The polynomial η used to locally amplify a certain regularization is set to
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I/II λ0 η J

λI,0 .01 100

λ
(P,1)
II,0 .25 [1, 0] 25

λ
(P,2)
II,0 .01 [1, 0] 25

λ
(Il,h,1)
II,0 .01 [1, 0] 25

λ
(Il,h,2)
II,0 .001 [−2.5, 0] 25

Table 8.3: Specific values for the regularization parameter λI,0 and λII,0 used
for the harmonic models of all continuously excited instruments as well as the
polynomial coefficients for the local emphasis function η in decreasing order
from left to right. The last column shows the amount of virtual data points
used for the respective regularization.

the identity function for all but the last regularization nullifying its impact
except for the curvature penalty along the local intensity dimension. Its coeffi-
cients have been chosen with respect to the definition of its domain range and
hence accentuates the regularization parameter by a factor of 200 at -80dB to
enforce a smooth fade of the surface with constant slope if no data is avail-
able at such low signal levels. At 0dB however, η will make the regularization
become zero to enable the surface to only represent the data rather than the
constraints penalty for a signals maximum value.

I/II λ0 η() J

λ
(P,1)
II,0 .01 [10] 25

λ
(P,2)
II,0 .01 [10] 25

λ
(Il,r,1)
II,0 .01 [10] 25

λ
(Il,r,2)
II,0 .01 [10] 25

Table 8.4: Regularization weight values for the residual models of all continu-
ously excited instruments and polynomial coefficients for the additional scaling
function. The last column shows the amount of virtual data points used for
the respective regularization.

The initial weights for slope and curvature penalties along P and Il,r for the
residual model are presented in tab. 8.4. Their values are all set to .01 making
the regularization becoming as influential as a 100th of the data and hence only
effective in regions of very sparse data. Though, as the signal analysis yielded
15 cepstral coefficients from all recordings regardless of their pitch or global
intensity, their distribution within the model space will be uniformly across
these dimension and their distribution will only vary along the local intensity.
It may therefore be assumed that these regularization weights will only affect
the estimated surface at low values of the local intensity.
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8.2.2 Initial Weights for Impulsively Excited Instruments

For impulsively excited signals we only employ curvature penalties for the ex-
citation component as shown in tab. 8.5 to support the sloping character of
the partial trajectories of such sound signals. Therefore, slope penalties have
been removed and now all 3 dimensions of the excitation component got second
order penalties only. The global intensity has been added to the regulariza-
tions because the piano sound data set exhibits more possible global intensity
values as the data sets of continuously excited instrument sounds and we will
therefore desire some additional smoothing.

For the second order penalties of the pitch and local intensity dimensions a
third order polynomial has been introduced to emphasize the regularization us-
ing an S-shaped curve. Such a curve allows to emphasize the regularization in
the lower range with similar strength while simultaneously reducing the impact
of the regularization in the upper range or vice versa. The two polynomials
given in tab. 8.5 hence provide a similar emphasis of the regularization of the
local intensity in the lower half of the dynamic range while reducing its impact
in the whole upper half. The polynomial for the pitch dimension strengthens
the regularization in the region for the upper pitches where not always partial
data will be present and at the same time reduces the influence of the regular-
ization in the lower pitch range where partial data can be guaranteed for most
pitches.

I/II λ0 η() J

λI,0 .01 [1, 0] 200

λ
(P,2)
II,0 .1 [1, .7, .3, .1] 25

λ
(Ig,2)
II,0 .1 [1, 0] 25

λ
(Il,h,2)
II,0 .1 [1, .7, .3, .1] 25

Table 8.5: Values for the regularization parameter λI,0 and λII,0 used for the
harmonic model of the piano sound set as well as their respective polynomial
coefficients for the local emphasis function η in decreasing order from left to
right. The last column shows the amount of virtual data points used for the
respective regularization.

The residual component gets also constrained for curvature only to also
support the sloping characteristics of the cepstral trajectories, though we do
not require any additional scaling polynomial for some local emphasis of the
regularization.

8.3 Model Training

Training of the instrument model is carried out by means of applying the SCG
method introduced in ch. 4.2 to iteratively update the free model parameters
of the harmonic and residual component of the model respectively. The pa-
rameters of the model’s components are estimated independently since both
components are established independently.
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I/II λ0 η() J

λ
(P,2)
II,0 .1 [1, 0] 25

λ
(Ig,2)
II,0 .05 [1, 0] 25

λ
(Il,h,2)
II,0 .05 [1, 0] 25

Table 8.6: Regularization weight values for the residual model of the piano
sound set and the polynomial coefficients for the additional scaling function all
set to the identity function. The last column shows the amount of virtual data
points used for the respective regularization.

For an overview over the computational complexity of the parameter estima-
tion procedures, tab. 8.7 lists the amount of free parameters for the harmonic
model whereas tab. 8.8 shows the amounts for the residual models. The total
sum of free parameters in tab. 8.7 for each instrument is indicated by dim(w̃),
whereas it is mainly being determined by the size of the excitation component
dim(w̃(k,s)) which gets multiplied by the amount of partials K contained within
the dataset. The piano model hence exhibits by far the most free parameters.

instrument dim(w̃(k,s)) dim(w̃(R)) K dim(w̃) dim(A)

trumpet 75 28 109 16378 13011064
clarinet 75 28 144 21628 10795668

violin (str. 1) 75 28 33 4978 3674401
violin (str. 2) 75 28 49 7378 5588809
violin (str. 3) 75 28 73 10978 6786295
violin (str. 4) 75 28 109 16378 7337112

piano 560 80 230 257680 48237914

Table 8.7: The amount of free model parameters for the excitation and res-
onance component of each harmonic model as well as the amount of partials
contained within the respective data set and the resulting amount of free pa-
rameters for the whole model additionally taking the temporal segmentation
into account. The last column shows the amount of data used to estimate the
parameters for the harmonic model.

The last column in tab. 8.7 lists the overall amount of discrete partial
data values A(k)(n) of all recordings contained within the respective data set.
A hypothetical transformation matrix for the linear system of equations for a
single harmonic model would hence be as large as the product of the values of
its last two columns.

The amount of free parameters of the residual models only differs according
to their signal excitation model and hence tab. 8.8 only discriminates between
continuously and impulsively excited signals. Though their sizes of the mul-
tivariate B-spline are equal to the source component of the harmonic model,
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instrument class dim(w̃(l,s)) L dim(w̃)

continuously 75 16 1200
impulsively 560 16 8960

Table 8.8: The amount of free model parameters for the multivarate B-spline
representation for every single cepstral coefficient, the amount of cepstral co-
efficients being modeled by the residual model and the overall amount of free
parameters additionally taking the temporal segmentation into account.

their amounts of cepstral coefficients are much smaller and hence their overall
amounts.

Estimation of the free parameters starts with all free parameters set to zero
and iteratively updates their values using the SCG method. The figures in
8.5 display the convergence behavior while learning the free parameters of the
harmonic and residual models using either the trumpet or clarinet dataset. For
both model components convergence is reached already after about 10 to 20
iterations which is mainly due to the use of a preconditioning method as not
using such a strategy for scaling the error surface required up to 100 times the
amount of iterations for ensured convergence.
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Figure 8.5: Convergence property of the objective functions Oh and Or for the
two model components of the trumpet (top) and Bb-clarinet (bottom) sound
data set.
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8.4 Conclusion

The box below gives a short summary of the applied method for obtaining the
parameters of an instrument model given a certain data set of recordings.

• Analysis Phase

1. Get sound signal representations A(k)(n) and C(l)(n) for all
sounds using the methods explained in sec. 5.1.

2. Get control parameter signals Θh(n) and Θr(n) from all signals
following the procedure in sec. 5.2 and get its derived controls
τγ,s and ϕγ,s for γ ∈ {h, r} and s ∈ {1, 2} as well as f̂(k) to
eventually establish Ψh and Ψr for every available recording.

• Pre-Training Phase

4. Determine the B-spline values for the input control parameters
of the harmonic and residual sound representations b(S)(Θh(n)),

b(R)(f̂(k)) and b(Θr(n)) using either a multivariate or univariate
model as presented in ch. 4.

5. Determine λI, λ
(z,d)
II,(k,s) and λ

(z,d)
II,(l,s) for all k, l and s as well as

the selected values of z and d using eq. (7.12), (7.15) and (7.51)
respectivley.

6. Determine coefficients c(k,s), c(R) and c(l,s) for precondition-
ing the matrixes of the harmonic and residual model using eq.
(7.41), (7.42) or (7.62).

• Training Phase

7. Estimate the weights w̃(k,s) and w̃(R) using the objective func-
tion (7.17)

8. Estimate the weights w̃(l,s) using the objective function (7.49)



Chapter 9

Visual Evaluation

Introduction

To assess the selection of the initial constraint coefficients in terms for their im-
pact on the smoothness of the estimated surfaces and curves for the harmonic
as well as residual components of an instrument model we utilize visualizations
of the internal representations. These are hence established by means of re-
vealing the fit of the internal representation to its respective data. Therefore,
in all our visualizations of the model’s components we show the model as sur-
faces and its according data using point clouds such that the figures not only
allow to assess the smoothness of the fit but also allow to discuss the selected
B-spline configurations.

To visualize the threevariate B-splines S(k,s)(Θh) and H(l,s)(Θr) we make
cutouts and create 3D figures. This requires the selection of a single variable
to leave out for every figure and for the generation of the model’s surface
this variable needs to be set to a constant value. Though, for showing the
corresponding data values we will not only show data with that specific value
of the left out variable, as due to the use of a B-spline for all dimensions, not
only data values with that specific variable value will influence the current
model’s representation. Therefore, every 3D figure will exhibit an additional
graph on top to indicate the position of the left out variable within its domain
together with the basis functions of the B-spline used for its representation.

This graph also contains a color gradient used to refer to the data’s influ-
ence on the currently shown internal representation. In this scheme red color
refers to data that has a similar value for the left-out variable as the currently
shown surface. Purple and yellow colored point clouds are used to refer to data
whose value of the left-out variable is either below or above the value used to
generate the surface. The range of the color gradient depends on the B-spline
configuration of the left-out dimension and is determined by the range which
has some reasonable impact on the currently shown surface and therefore data
that does no influence on the current surface exhibits no color in the top graph
and is hence not shown in the figure. Though, there is one exception in the
figures with constant global intensity values for instrument sound sets which
only exhibit the 3 discrete global intensity values pp, mf and ff for which we
show neighboring variable values even though they to not have any impact on
the current surface. These subfigures are always located in the right column of

93
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the figures.
The model’s representation based on multivariate B-splines is shown as a

semi-transparent surface in the figures. It is created using a constant value
for the left-out variable which is always shown on top of the top graph where
also a rectangle with the color map of the surface is given at its position of the
left-out variable. The surface is created along the complete domain ranges of
the 2 remaining variables.

On top of each semi-transparent surface every figure depicts the knot grid
created by the tensor-product of univariate B-splines depicted as black lines
connecting the intersections of the segments of the univariate B-splines. The
black lines represent linearly interpolated intersection points, though the model’s
surface may exhibit non-linear characteristics between them.

9.1 Harmonic Model Component

The harmonic model represents partial amplitude data A(k)(n) separately by an

excitation S(k,s)(Θh) and a resonance component R(f̂(k)) each contributing to
the data by an estimated amount. To visualize either component individually
but jointly displaying the data it actually represents requires the contribution
of the other component to be subtracted from the data. This can be seen from
some simplified math neglecting the aspect of temporal segmentation:

Assuming the estimate of the partial data to be Â(k,s)(Ψh) representing an
instrument sounds datum A(k)(n) with some residual error ε:

A(k)(n) = Â(k,s)(Ψh(n)) + ε (9.1)

The estimate of the partial data is established by means of the harmonic
model which contains the excitation and resonance component as in:

A(k)(n) = S(k,s)(Θh) +R(f̂(k)) + ε (9.2)

To eventually visualize either one component and to display the data it
represents will hence require the other component to be subtracted from the
original data yielding the respective partial amplitude represented by the ex-
citation component:

A(k)(n)−R(f̂(k)) = S(k,s)(Θh) + ε (9.3)

and similarly for the resonance component:

A(k)(n)− S(k,s)(Θh) = R(f̂(k)) + ε (9.4)

This also infers that the same residual error from the estimation procedure
will be present in both visualizations of the harmonic model.

9.1.1 Trumpet

Six subfigures are shown in fig. 9.1 each depicting a part of the excitation
component of the harmonic model S(k,s)(Θh) learned from the trumpet data
set together with its respective data obtained using eq. (9.3). Subfigures 9.1(a)
and 9.1(b) display the models estimated surface for the trajectory of the first



CHAPTER 9. VISUAL EVALUATION 95

partial index hence fundamental and second temporal segment. In the left
subfigure the surface is plotted using a constant pitch MIDI of 75 (D#5) while
the right figure shows the surface for a constant global intensity MIDI value 64
referring to mf. In the subfigures 9.1(c) and 9.1(d) surfaces for partial index
k = 30 and s = 1 are shown while subfigures 9.1(e) and 9.1(f) show such for
k = 80 and s = 2.

(a) S(1,2)(Θh) with P = 75 (D#5) (b) S(1,2)(Θh) with Ig = mf

(c) S(30,1)(Θh) with P = 65 (F4) (d) S(30,1)(Θh) with Ig = ff

(e) S(80,2)(Θh) with P = 54 (F#3) (f) S(80,2)(Θh) with Ig = ff

Figure 9.1: Visualizations of the excitation component S(k,s)(Θh) of the har-
monic model for the trumpet data set together with its respective partial am-
plitude data.



CHAPTER 9. VISUAL EVALUATION 96

All figures reveal the discrete property of the used values for the signals
global intensity variable Ig as well as their pitch P by the strictly directional
arrangement of the partial amplitude data displayed as dots in the figures. The
partial amplitudes of a single recording hence align along a single global inten-
sity and pitch value and only exhibit varying real values for its local intensity
Il,h. For any non-redundant set of recordings like the trumpet database every
sound sample will hence have a trajectory within the model space at a location
which is non-overlapping with any other recording. But as we display data
for several values of the left-out dimension some trajectories may still overlap
though having unique colors to indicate their disparate position in the model’s
space.

From the figures one may also observe the absence of partials with index 30
and 80 at upper pitches and low intensity values indicating a similar behavior
for all other partial indexes which are not displayed. The absence of partials
with higher index at upper pitches is due to the Nyquist frequency as such
partials have not been present in the whole data set of recordings. The fact
why partials with high index are not present at low values of the global as well
as local intensity results from the signal analysis strategy, where spectral data
has been rejected from the sinusoidal model which exhibited very low energy
values or values that were too close to the residual noise.

Within all figures shown, the estimated multivariate trajectories of the exci-
tation source model of the harmonic component represented as semi-transparent
surfaces adapt to the given data as closely as possible regarding the chosen knot
grid. The surfaces also smoothly extrapolate into regions where no partial data
is present according to the chosen regularization using first and second order
derivative penalties along the pitch and local intensity dimension.

The estimated characteristics for the resonance component R(f) as well
as the according partial amplitude values of the trumpet data set are shown
jointly in fig. 9.2. As for the source component, the contribution of the not
displayed model component has been subtracted from the partial amplitude
values as in eq. (9.4) and the resulting partial amplitudes have been placed at

their ideal frequency values f̂(k) in the figure.

Figure 9.2: Visualization of the resonance component R(f) of the harmonic
model for the trumpet data set together with its respective partial amplitude
data located at their ideal frequency locations f̂(k).

It can be observed, that the partial frequency values in the low registers are
placed at discrete positions with uniform distances which is due to the use of
the ideal partial frequency values. The actual distance in the lowest 2 octaves
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between neighboring partial frequency values refers to the semitone distance
of the fundamental frequency of adjacent pitches. This becomes an important
issue when choosing a certain B-spline configuration with high fidelity in the
low register as it may result in overfitting and hence would require additional
regularization treatment.

From the figure we may further observe that the parameter estimation
procedure obtained a curve for the resonance characteristics that closely aligns
to the mean of the data and it may further be concluded, that the variance of
the data is increasing with increasing frequency.

Eventually, all figures for the source and resonance component reveal the
non-uniform data distribution within the generated model space and hence
prove the necessity for the various regularization strategies and also the use
of a preconditioning method for an acceleration of the parameter estimation
procedure.

It may also derived from the figures, that the used B-spline configuration
to setup the excitation component of the harmonic model represents a suitable
trade-off balancing data fit and computational efficiency.

9.1.2 Clarinet

To visualize the excitation component of the instrument model trained using
the clarinet data set, cutouts for partial indexes k = {1, 2} and k = 100 are
selected as shown in fig. 9.3. The figures exhibit a lot of features similar to the
ones of the model and data of the trumpet, but we may also derive a sound sig-
nal property specific for the clarinet instrument. The well-known characteristic
of the clarinet of exhibiting weak amplitudes for partials with an even index
can be observed by comparing the estimated excitation surfaces of the first
and second partial index. There, a level difference of about 40dB between the
first and second partial can be observed at low pitch and high global intensity
values. Interestingly, this characteristic property of clarinets diminishes with
increasing pitch and essentially disappears for its highest pitches.

Similarly to the trumpet data set, partial amplitude data with high index
is not present in subspaces of low local or global intensity as well as for high
pitch values.

The estimated resonance function of the clarinet set is shown in fig. 9.4
showing more variance in the mid range than for the trumpet set.
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(a) S(1,1)(Θh) with P = 50 (D3) (b) S(1,1)(Θh) with Ig = ff

(c) S(2,2)(Θh) with P = 50 (D3) (d) S(2,2)(Θh) with Ig = ff

(e) S(100,1)(Θh) with P = 65 (F4) (f) S(100,2)(Θh) with Ig = mf

Figure 9.3: Visualizations of the excitation component S(k,s)(Θh) of the har-
monic model for the clarinet data set together with its respective partial am-
plitude data.
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Figure 9.4: Visualization of the resonance component R(f) of the harmonic
model for the clarinet data set together with its respective data located at their
ideal frequency locations f̂(k).

9.1.3 Violin

The violin data set represents a special case since we have divided the database
into separate sets according to the string used to play the various pitches. In
the subfigures of fig. 9.5 we only show cutouts of the excitation module of
second lowest string denoted as the third.

Again the data and surface properties presented in fig. 9.5 are similar to
the previous models for continuously excited instruments, though the data set
for the third string of a violin exhibits some more variance for indexes above
10 qs may be observed in the subfigures 9.5(c) - 9.5(f).

The fig. 9.6 contains the estimated resonance functions R(f) for all 4 har-
monic models of the violin sound data set. The four estimated curves for R(f)
differ in their frequency range since the strings have different pitch ranges and
hence the lowest partial frequency contained within each subset is different.
Further differences in the curves may result from the different attachments of
the strings on its resonating body yielding different positions at which the vio-
lins corpus gets excited. However, certain features of the estimated resonance
characteristics appear in all curves making them looking fairly similar.
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(a) S(1,2)(Θh) with P = 62 (D4) (b) S(1,2)(Θh) with Ig = mf

(c) S(15,1)(Θh) with P = 69 (A4) (d) S(15,1)(Θh) with Ig = mf

(e) S(60,2)(Θh) with P = 69 (A4) (f) S(60,2)(Θh) with Ig = mf

Figure 9.5: Visualizations of the excitation component S(k,s)(Θh) of the har-
monic model for the third string subset of the violin data set together with its
respective partial amplitude data.
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(a) String 1 (E)

(b) String 2 (A)

(c) String 3 (D)

(d) String 4 (G)

Figure 9.6: Visualization of the resonance components R(f) together with its

respective data located at their ideal frequency locations f̂(k) of the harmonic
models of all 4 strings of the violin data set.
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9.1.4 Piano

The grand piano sound data set exhibits by far the most sound examples due
to its large pitch range and the fact that every pitch had been recorded at
up to 8 different velocities. This fact can be observed within all subfigures of
fig. 9.8 as the presented sound data exhibts up to 8 discrete trajectories along
its gobal intensity dimension best presented in the left column and hardly
distinguishable trajectories along its pitch despite their discreteness.

We may further observe that the partial amplitudes decay more rapidly with
increasing partial index and similar to the other sound data sets, partial data
is absent for higher indexes and upper pitches as well as for lower global and
local intensity values. Furthermore, the data appears to have more variability
especially for varying pitch values.

Due to the increased amount of segments to create the knot sequences for
the tensor-product B-spline for the piano model, the surface is capable to adapt
to the strong data variability and still extrapolates smoothly from subspaces
with data into areas without.

The resonance component of the harmonic model trained using the grand
piano data set is presented in fig. 9.7 representing the filter envelope with the
largest frequency range of all instruments and most complex B-spline configu-
ration.

Figure 9.7: Visualization of the resonance component R(f) of the harmonic
model for the Fazioli grand piano data set together with its respective data
located at their ideal frequency locations f̂(k).
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(a) S(1,2)(Θh) with P = 61 (C#5) (b) S(1,2)(Θh) with Ig = 64

(c) S(10,2)(Θh) with P = 26 (D2) (d) S(10,2)(Θh) with Ig = 111

(e) S(20,2)(Θh) with P = 26 (D2) (f) S(20,2)(Θh) with Ig = 127

Figure 9.8: Visualizations of the excitation component S(k,s)(Θh) of the har-
monic model for the Fazioli grand piano data set together with its respective
partial amplitude data.
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9.2 Residual Model Component

The residual component represents the cepstral coefficients of the residual sig-
nals as functions of the control variables using only a single three-variate ten-
sor-product B-spline for every cepstral coefficient. Therefore, to visually assess
the fit of the data we utilize similar 3D cutouts for some selected cepstral
coefficients as for the partial amplitude data and harmonic model surfaces.

The cepstral coefficients represented as functions of the control variables
do not necessarily resemble data trajectories similar to the partial amplitudes
since all coefficients with an index l > 1 refer to modulation amounts of the
spectral envelope rather than spectral sound features directly. The point clouds
obtained from the cepstral data of the residual signals are hence assumed to
exhibit raising and falling slopes along all axes.

Though, to keep the overall readability of the thesis only figures for the
residual models of the clarinet and piano data set are presented since they
refer to either one class of sound signal excitation and insights into the models
of the trumpet and violin sets do not yield significant additional information.

9.2.1 Clarinet

The visualizations of the residual model of the clarinet sound data set is pre-
sented in fig. 9.9 showing their respective cepstral data and adapted surfaces
for l = 1, 2 and 8 in its respective subfigures. The two top figures 9.9(a) and
9.9(b) present the data and model for the first cepstral coefficient representing
the overall offset of the spectral envelope of the residual signal as a function
of the control variables. Hence, a decreasing slope can be observed along the
axis of its local intensity Il,r referring to a continuously decaying residual level
with decreasing amplitude envelope.

The figures 9.9(c) to 9.9(f) depict model and data properties for the cepstral
coefficients l = 2 and 8 which are therefore referring to modulation amounts of
the spectral envelope and hence do not exhibit a clear tendency for a decaying
trajectory with decreasing local intensity.
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(a) H(1,2)(Θr) with P = 81 (A5) (b) H(1,2)(Θr) with Ig = pp

(c) H(2,2)(Θr) with P = 50 (D3) (d) H(2,2)(Θr) with Ig = mf

(e) H(8,2)(Θr) with P = 81 (A5) (f) H(8,2)(Θr) with Ig = mf

Figure 9.9: Selected visualizations for several tensor-product B-spline surfaces
of the trained residual model of the clarinet data set.

It may however be observed, that the variance in the data is quite high and
reasonable surface shapes are not always easy to derive.
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9.2.2 Piano

The residual model component for the Fazioli piano sound data set is also
visualized for l = 1, 2 and 8 whereas always the second temporal segment
s = 2 has been selected for display. As may be observed the distribution of
the cepstral data of the residual signals of the piano exhibits strong variance,
though the estimated surfaces represent this data follow their average as closely
as possible regarding the selected knot grid.

(a) H(1,2)(Θr) with P = 61 (C#4) (b) H(1,2)(Θr) with Ig = 64

(c) H(2,2)(Θr) with P = 44 (G#2) (d) H(2,2)(Θr) with Ig = 33

(e) H(8,2)(Θr) with P = 79 (G5) (f) H(8,2)(Θr) with Ig = 33

Figure 9.10: Selected visualizations for several tensor-product B-spline sur-
faces of the trained residual model of the Fazioli piano data set.



Chapter 10

Model–Based Sound Synthesis

Introduction

Expressive sound synthesis using the presented extended-source-filter model
and its respective control parameters needs to be done in parallel for the two
signal components whereas synthesis of the harmonic component can be done
in two ways: The component can be synthesized additively using the signals
partial representation while performing all transformations directly in the si-
nusoidal domain or it can be carried out in a subtractive manner as shown
in eq. (6.1) using the spectral representation of the whitened signal compo-
nents x̄h(t) and x̄r(t). The residual component however can only be processed
subtractively due the lack of a generative model for xr(t).

As already depicted in the schematic in fig. 6.3, we have chosen a sub-
tractive method for our synthesis system for both signal components and we
utilize a phase vocoder with support for implicit sinusoidal modeling as in-
troduced in sec. 3.4 to process all signal transformations in the frequency
domain. We hence still require a method to generate the time-varying filter
envelopes Fh

(
f,Ψh(n)

)
and Fr

(
f,Ψr(n)

)
to create the whitened source sig-

nals x̄h(t) and x̄r(t) and their spectral representations to eventually perform
sample-based sound synthesis using the control parameters P , Ig and Il,γ .

In the following two sections we will therefore introduce the synthesis meth-
ods for both signal components separately and explain the respective filter en-
velope generation methods and whitening procedures as well as recapitulate
the synthesis scheme for each component.

10.1 Subtractive Harmonic Synthesis

The application of subtractive synthesis essentially refers to filtering and as
we aim for spectral domain processing an appropriate filter refers to a quasi-
continuous function of frequency which gets multiplied with a spectral frame of
a signal. The harmonic model as proposed in sec. 6.1 however estimates partial
amplitude values only at their discrete frequency positions and for turning
amplitudes values at discrete frequency positions into a continuous function we
will apply an interpolation technique which takes the spectral leakage of the
Fourier transform into account.
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Though, prior to the interpolation method we first need to process all re-
quired estimates of the partial amplitudes using the harmonic model. Figures
10.1 and 10.2 depict the partial amplitude estimates separately for the excita-
tion and resonance component of the harmonic model for the selected instru-
ments indicating their independent contributions to the summed estimate.
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(b) Bb-Clarinet, P = A3, Ig = ff, Il,h = 0dB

Figure 10.1: Trumpet and clarinet examples for the extended-source-filter
model adapted to their respective sound data sets. The first 30 partial am-
plitude estimates for the S(k,1) and R(k) component are displayed w.r.t. the
specified control parameter values in dB values. The archetypical property
of the clarinet exhibiting weak amplitudes at even harmonic indexes can be
observed clearly.

Eventually, the model’s estimates Â(k,s)(Ψh(n)) shown by their individual
source and resonance contributions in fig. 10.1 and 10.2 need to be trans-
formed into continuous-valued functions of frequency. The filter generation
method then will be used to create the white source signals as well as for
sound synthesis.

10.1.1 Filter Envelope Generation

For the creation of a time-varying filter function to be used in the Phase
Vocoder filtering method, we employ an interpolation technique of the par-
tial amplitude estimates that alternates between constant and linear interpo-
lation. The constant segments for the interpolation are centered around each
frequency location with a certain bandwidth and linear interpolation in ampli-
tude domain is used to concatenate these segments to create the continuous
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(b) Grand Piano, P = A1, Ig = pp, Il,h = 0dB

Figure 10.2: Estimated partial amplitude values for the first 30 k of the
models for the piano and violin data set. The figures show the estimates for the
excitation source S(k,1) and resonance component R(f(k)) separately regarding
a certain set of control parameters. Several strong formant-like amplifications
may be observed in the resonance component of the violin as well as distinct
attenuations of partial amplitudes with index multiples of 8 within the piano
excitation component which is due to their excitation position.

filter envelope. The constant bands of the filter envelope surrounding each
partial are delimited by their according lower and upper limit using blk and
buk respectively. Their exact values are determined such that the main lobe
corresponding to that partial has dropped by 18dB from its peak. To ensure
sufficient separation of the individual main lobes of all partials of a harmonic
signal Xh(f, n) the analysis window size needs of course to be adjusted with
respect to the signals fundamental frequency as discussed in sec. 3.1.

The filter generation method Fh(f) may hence be summarized as in the
following equations using inequality (10.1) to emphasize the non-overlapping
property of the constant segments and definition (10.2) to obtain the abbre-
viated linear partial amplitude per temporal segment â(k,s) estimated using
the harmonic component of the instrument model with respect to its control
parameters.

buk−1 < blk ∀ k (10.1)

â(k) := 10

(
Â(k,s)(Ψh(n)

20

)
(10.2)
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Using the constraint and definition above we may derive the equation (10.3)
for obtaining the filter envelope Fh,s

(
f,Ψh(n)) to convert the partial amplitude

estimates at discrete frequency locations to an envelope which can be evaluated
at arbitrary frequencies.

Fh,s
(
f,Ψh(n)) =





â(1) f ≤ bl1
â(k) blk ≤ f ≤ buk
â(k) − â(k−1)
blk − buk−1

(
f − buk−1

)
+ â(k−1) buk−1 ≤ f ≤ blk

â(K) buK ≤ f

(10.3)

The first and last case of eq. (10.3) refer to boundary conditions at fre-
quencies below the lowest of above the highest partial amplitude while case
two defines the segment of constant interpolation and the third segment refers
to the linear interpolation of neighboring segments of constant interpolation.

Examples for filter envelopes generated using eq. (10.3) using the exact
partial amplitude estimates presented in fig. 10.1 and fig. 10.2 are shown in the
figures 10.3 and 10.3. Though the filter envelopes are established in amplitude
domain, the figures display them using decibel values for readability.
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Figure 10.3: Generated filter envelopes Ff
(
f,Ψh(n)

)
using partial amplitude

estimates â(k,s)(Ψh(n)) of the trumpet and clarinet model with the alternating
piecewise constant/linear interpolation method.
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Figure 10.4: Generated filter envelopes Ff
(
f,Ψh(n)

)
using partial amplitude

estimates â(k,s)(Ψh(n)) of the trumpet and clarinet model with the alternating
piecewise constant/linear interpolation method.

One may note the discontinuities of the first derivative of the filter envelopes
at to the joints of the linearly and constantly interpolated segments. In our
experiments these joints did not introduce any audible artifacts as the harmonic
signal component xh(t) does not contain signal data apart from sinusoids whose
frequencies are located at the center of the constant segments. We however
also applied a cepstral smoothing method to obtain filter envelope whose first
derivatives are smooth but due to their modulation property around the partials
exact frequencies they introduced audible artifacts. We concluded the artifacts
being caused by the non-constant attenuation of a partials main lobe which
introduced a distortion of its bell-shape and therefore led to audible artifacts
and we have hence not used cepstral smoothing for the work of this thesis.

For obtaining the final time-varying filter Fh
(
f,Ψh(n)

)
we need to account

for the individual signal’s attack-sustain and sustain-release phases and their
discrete representations within the instrument model using either s = 1 or
s = 2. Therefore, we utilize the fusion function ϕh,s(n) introduced in sec.
5.2.3.2 to linearly cross-fade 2 discretely generated filter envelopes Fh using eq.
(10.3) for s = 1 and s = 1 respectively as shown in eq. (10.4).
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Fh
(
f,Ψh(n)

)
=

2∑

s=1

ϕh,s(n) · Fh,s
(
f,Ψh(n)) (10.4)

The filter envelope generation technique as well as the linear cross-fade will
eventually be used to create all time-varying filter functions of the harmonic
signal component required by the whitening and all sound synthesis procedures.

10.1.2 Harmonic Signal Whitening

A whitening procedure refers to the removal of the spectral envelope from a
signal yielding a new signal that exhibits a uniform distribution of its spec-
tral content hence the term white. Such a whitened signal may then be used
as a source signal in a source-filter or extended source-filter model where an
arbitrary spectral envelope may be applied to obtain a target signal as repre-
sented by eq. (6.1). In the approach presented within this thesis the spectral
envelopes for whitening are obtained using the estimated instrument models
and the according filter generation procedure.

The whitening procedure to obtain the required source signal x̄h(t) and its
spectral representation for eq. (6.1) can be carried out by means of inverse
filtering its respective signal component xh(t) as shown in eq. (10.5) using the
estimated filter Fh

(
f,Ψh(n)

)
for its unaltered control variables Ψh(n).

X̄h(f, n) = Xh(f, n) · Fh
(
f,Ψh(n)

)−1
(10.5)

Several spectra of whitened harmonic signals are shown in fig. 10.5. It
can be observed that all spectra do not entail a perfectly flat spectral shape
which is due to the remaining model error which eventually retains as minor
variations within the source signals used for sound synthesis thereafter.
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Figure 10.5: Flattened spectra of selected harmonic sounds of the trumpet,
clarinet, violin and piano from their respective data sets obtained using the
harmonic whitening procedure.
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10.2 Subtractive Residual Synthesis

Synthesis of the residual component is setup similar to its harmonic counterpart
as shown in the overall synthesis equation (6.1) using the spectral representa-
tion X̄r(f, n) of a white source signal of the sound signals residual component
and a belonging parametric filter with time-varying parameters Fh

(
f,Ψh(n)

)
.

As for the harmonic component, the residual component of the instrument
model does not represent spectral envelopes and hence usable filter functions
directly but cepstral coefficients. Obtaining white source signals as well as
synthesis results henceforth requires a method to convert cepstral coefficients
back to spectral envelopes.

10.2.1 Filter Envelope Generation

The Conversion of the estimated cepstral coefficients Ĉ(l,s)(Ψr) of the residual
component of the instrument model to a spectral envelope is straightforward as
shown in sec. 3.3.5, though as windowing in cepstral domain has already been
applied and with using the parametric model of the cepstral coefficients, eq.
(3.15) needs to be adapted appropriately to yield a spectral envelope suitable
for filtering in the frequency domain:

Fr,s
(
f,Ψr(n)) = exp

(
L∑

l=0

Ĉ(l,s)(Ψr(n)) cos(πlf/N)

)
(10.6)

As for the harmonic component, linear cross-fades are applied to smoothly
perform the transition between the estimates for the spectral envelopes of the
attack-sustain and sustain-release segments using the respective fusion function
ϕr,n. Eq. (10.7) shows the fade between the different filter envelopes using Fr
to refer to the method expressed in eq. (10.6).

Fr
(
f,Ψr(n)

)
=

2∑

s=1

ϕr,s(n) · Fr,s
(
f,Ψr(n)) (10.7)

In contrast to the generation of the filter envelopes for the harmonic filter
envelope, envelopes generated using eq. (10.6) exhibit a continuous first deriva-
tive by definition of the windowed cepstrum used to represent the spectral en-
velope of the residual signal component. This does however not introduce any
artifacts since we assume the absence of sinusoidal components in the residual
signal whose main lobes could become distorted.

10.2.2 Residual Signal Whitening

Whitening of the residual component is eventually straightforward and done in
an equal manner as for the harmonic signal component as show in (10.8). The
residual component xr(t) of a signal gets filtered with the inverse of the filter
which has been generated using its unaltered control variables to remove the
spectral envelope which has been estimated by the instrument model according
to its parameters.

X̄r(f, n) = Xr(f, n) · Fr
(
f, f,Ψr(n)

)−1
(10.8)
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Whitening of the residual signal component may eventually yield a signal
with almost white spectral distribution and one could argue that such a source
signal could be generated using a white noise generator. This is however not
the case for two reasons: First, the spectral envelope estimated by the residual
component of the instrument model is not necessarily the same envelope of the
residual signal due to possible limitations of the modeling capabilities of the
internal representation. Therefore its removal may not yield a perfect uniform
distribution in the whitened signal. Second, the assumption of a residual signal
being only filtered white noise may be too approximate and as the authors of
[CKD+13] have shown, substituting the residual signal by filtered white noise
yielded perceptually recognizable differences.

Therefore, for our synthesis method we keep the whitened residual source
signals and use them rather than artificial white noise signals for the synthesis
method. Some example spectra are shown in fig. 10.6.
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Figure 10.6: Flattened spectra of selected residual sounds of the trumpet,
clarinet, violin and piano from their respective data sets obtained using the
residual whitening procedure.
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10.3 Dual Component Synthesis

Sound Synthesis is eventually done by altering the control variables Ψ to mod-
ify the resulting filter envelopes and hence create target sound signals using
the source signals that correspond to the adjusted rather than their original
variables. We may hence rewrite the synthesis eq. (6.1) to account for altering
its parameters as follows:

X((, f), n) = X̄h(f, n) · Fh
(
f, f,Ψ′h(n)

)

+ X̄r(f, n) · Fr
(
f, f,Ψ′r(n)

) (10.9)

In eq. (10.9) the variables Ψ′h and Ψ′r are used to refer to modified versions
of the control variables belonging to the selected source signals X̄h(f, n) and
X̄r(f, n). These modifications essentially refer to alterations of a signals global
intensity Ig or its pitch P in the first place. Modifications of the local intensity
Il,γ of either source signal is beyond the scope of this chapter.

Though, as the instrument model components allow for amplitude enve-
lope modifications only, modifications to the pitch control variable need to be
accompanied by an additional transposition step. The frequency shifting pro-
cedure in our approach is applied prior to filtering of the source signal onto
the harmonic signal only using its spectral representation. For transposition
we apply the advanced Phase Vocoder method taking into account transient
preservation as well as the partials vertical phase coherence as introduced in
sec. 3.4. However, for piano sound signals vertical phase coherence can not be
retained due to the inherent inharmonicity of its sound signals.

In fig. 10.7 three spectra are presented to illustrate some synthesis results
for the clarinet data set. All three examples are synthesized using the same
source signals which have been created from the clarinet sound signal which
exhibits pitch P = A3 and a global intensity value of Ig = ff. The top graph
10.7(a) shows a single spectrum from the resynthesis using unaltered control
variables and hence represents the original signal without any modifications,
though the signal has been filtered twice. The center graph 10.7(b) depicts the
synthesis result for applying the filter envelopes obtained using a modified value
of the signals global intensity. Both spectra for the harmonic as well as residual
signal have changed significantly whereas the harmonic component now exhibits
a much stronger narrow-band property and the residual component has been
significantly reduced in terms of its energy. Both signal components exhibit a
spectral shape following the estimated filter envelopes quite closely. This allows
to assume that the obtained synthesis results match the features learned by the
instrument model regarding the selected control parameters.

The result for a pitch transformation of 6 semitones is presented in 10.7(c)
showing that the property of weak even partials is retained during the trans-
position procedure.
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Figure 10.7: Synthesis results for the Bb-Clarinet based on the same source
signals created from the sound with P = A3, Ig = ff using unaltered control
parameters in the top graph but altered global intensity in the center and
transformed pitch in the lower graph.



Chapter 11

Sound Intensity Estimation

Introduction

So far the instrument model as well as the synthesis scheme do not account for
a signal’s actual note intensity level, though the instrument model learns the
timbral differences for the various different note intensity values. This is due
to the fact, that the sounds that were included in the sound data sets of the
continuously driven instruments have all been normalized to a maximum RMS
value and hence do not exhibit any level variations apart from side-effects which
we neglect here. The instrument model therefore only covers relative timbral
differences rather than RMS differences but for the target of imitating acoustic
instrument using a digital sound synthesis approach it appears to be a necessary
component to adjust the sound level according to actual level variations of the
respective instrument when playing with varying global intensity values. This
becomes even more evident for variations of the global intensity while a note
is being played to obtain dynamic variations like crescendo or decrescendo.

The sounds of the piano data set though have not been normalized and ex-
hibit their original level differences for the various values of global note inten-
sity. No further analysis and processing for the piano sounds is hence required
and the piano sound set will hence be neglected for the intensity modeling
technique.

In digital sound synthesizers the peak sound level for different global in-
tensity values needs to be adjusted manually in a dedicated instrument design
process using either a linear or non-linear scaling [Dan06]. Especially for syn-
thesizers that aim for imitating acoustic instruments, this is very likely to be not
coherent with actual characteristics of an instrument. Therefore, we present
a method to estimate RMS levels for varying values of global note intensity
utilizing specific recordings entailing crescendo and decrescendo variations and
an instrument model trained using recordings of the same instrument as intro-
duced in the previous chapters.

However, this requires some preliminary assumptions about the sound sig-
nals with dynamic variations:

For all recordings with dynamic changes we assume them to start with
the lowest possible note intensity and that they end with its highest or vice
versa and any normalization applied to the recording does not effect the relative
difference between the dynamic levels. We further assume that these recordings
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not only entail dynamic but also timbral variations, whereas these timbral
changes are assumed to be related to the dynamic changes and hence derive
that it is possible to establish a link between timbral variations and respective
RMS values.

As the instrument model presented in this thesis represents the timbral
properties of musical instruments as a function of the global intensity we de-
velop a method that allows to establish the link between global intensity values
represented as MIDI velocity to RMS signal values.

11.1 Analysis of Crescendo/Decrescendo Signals

To establish a link between timbral characteristics and RMS values we only use
the harmonic component of signals with dynamic variations whereas the signal’s
attack and release phases will be neglected. We assume that the variations of
the RMS value represented as local intensity throughout this thesis within that
portion of such a signal refer to the variations of the played global intensity.
The residual component is not considered for this procedure and therefore we
omit the h identifier in all equations since it is implied in all cases.

The signal segment which is assumed to exhibit the RMS changes due to
variations of global intensity value can however not easily be obtained with an
automatic method. We therefore annotated the end of the attack and the begin
of the release manually in the local intensity function Il,(n) of the harmonic
component of these signals. Fig. 11.1 shows four examples of the local intensity
Il,(n) for several instruments sounds with either a raising or decreasing intensity
slope together with the hand-picked inflection points. Note that the functions
have not been normalized to 0dB.
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Figure 11.1: 4 Examples for the evolution of the local intensity Il,(n) of 4
recordings playing with dynamic intensity changes.

The signal portion of the signal’s local intensity bounded by the chosen
delimiters nA and nR is hence specified as follows:
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A(k)(n) , nA ≤ n ≤ nR (11.1)

In a succeeding step the local intensity function Il,(n) gets sorted in an as-
cending order to obtain a function of monotonously increasing values. This uni-
fies the remaining procedure as it can then be carried out equally for crescendo
and decrescendo signals but also reduces complexity for the procedure of as-
signing global intensities to the signals RMS progression.

Il,(n
′) = sort(Il,(n)) (11.2)

The index n′ is used to refer to the new ordering and we will further utilize
that reordering for the partial amplitudes of the signal under consideration as
well using A(k)(n

′) which now exhibits N ′ frames in an order that refers to a
monotonously increasing local intensity value.

11.2 Generation of Prototypical Partial Envelopes

For an assignment of the values of the local intensity function to global intensity
values of a recording of an instrument we calculate the partial amplitude values
estimated by an accordingly trained instrument model using an artificial set of
control parameters. A reasonable amount of global intensity values numEnvs
is chosen and a control variable vector Ig(z) is created containing monotonously
increasing values covering the whole range of possible intensity values. Since
Ig(z) is represented on the MIDI scale a stepwidth of 1 is used yielding an
overall amount of numEnvs = 127:

Ig = [1, . . . , 127] ∈ R1×Z (11.3)

The pitch vector P (Z) is set to the respective MIDI pitch of the recording
for all z and the local intensity vector Il,(Z) is set to 0 following the assumption
about the bounded local intensity of the signal referring to its sustain phase
even though it exhibits changes of the RMS. The according control parameter
matrix Θ is hence expressed as in eq. (11.4). In the following we will use Θ(z)
to refer to a single column of Θ.

Θ =



P (1) , . . . , P (Z)
Ig(1) , . . . , Ig(Z)
Il,(1) , . . . , Il,(Z)


 ∈ R3×Z (11.4)

To eventually establish Ψh to generate partial amplitude estimates using
eq. (6.4) we furthermore require an idealized partial frequency vector f̂(k)
and a fusion scheme. The generation of the partial frequency vector does not
change in comparison to the classic analysis of instrument signals and is hence
established as in sec. 5.2.4.

The fusion scheme is created using eq. (11.5) and eq. (11.6) as inflection
points for the linear cross-fade between the partial amplitude estimates of the
instrument model.

ξ1 =
1

3
Z (11.5)

ξ2 =
2

3
Z (11.6)
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The fusion functions ϕ,1(z) and ϕ,2(z) are then created using the according
formulations from sec. 5.2.3.2. The partial amplitude estimates may eventually
be processed as in eq. (11.7) using eq. (6.4) to process the estimates of each
temporal segment.

Â(k)(z) =
2∑

s=1

ϕ,s(z)Â(k,s)(Θ(z)) (11.7)

11.3 Intensity Assignment using Dynamic Programming

Using the partial amplitude estimates Â(k)(z) of the instrument model and
the partial amplitudes of the signal A(k)(n

′) allows to create a partial ampli-

tude cost matrix CA ∈ RZ×N ′ using the summed squared-error of the partial
amplitudes for every frame n′ and prototypical envelope z:

cA(z, n′) =
K∑

k

∣∣∣A(k)(n
′)−

(
Â(k)(z)− µ(n′, z)

)∣∣∣
2

(11.8)

Within the cost function (11.8) we use µ(n′, z) to remove the mean dif-
ference between the two envelopes spanned by the discrete partial amplitudes
to account for the overall level offset of the envelopes and to ensure that the
cost function actually measures their relative difference rather than their offset.
The difference between the two partial envelopes is hence processed as follows:

µ(n′, z) =
1

K

K∑

k

(
A(k)(n

′)− Â(k)(z)
)

(11.9)

Using the dynamic programming approach from [SC78] allows to estimate
an optimal path with minimum cost which yields an assignment of local inten-
sity to global intensity values. Two examples for the paths finding algorithm
within such a cost matrix are shown in fig. 11.3, though the columns have been
reordered into their original sequence referred to by using n. Therefore, within
fig. 11.2(b), the decrescendo appears as a path from a global intensity value
127 referring to ff to a value of 1 referring to pp and within fig. 11.2(a) an
inverse path can be observed.
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(a) Trumpet, A#3 crescendo.
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(b) Bb-Clarinet, A3 decrescendo.

Figure 11.2: Error Surface and optimal path from pp to ff for a trumpet
crescendo (left) and a Bb-clarinet decrescendo signal (right).
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The estimated path can now be used to associate every frame n of the
signal with a value of the global intensity Ig and as such we may inversely
assign the according local intensity value Il,(n) to its respective global intensity.
The assignment hence yields a tuple (Il,|Ig) for every frame n′. Several local
intensity values may hence be assigned onto one value of the global intensity and
therefore the tuples appear as data clouds in fig. 11.3 for the two examples
above. The applied ordering of the local intensity function in eq. 11.2 now
effectuates the monotonous increase of the values of the tuples.
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(a) Trumpet, A#3 crescendo.
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(b) Bb-Clarinet, A3 decrescendo.

Figure 11.3: Tuples (Il,|Ig) of local intensity assignments for two selected
recordings .

This procedure is being repeated for all recordings with dynamic variations
i available within each dataset and we eventually transform the set of tuples of
every single recording into triplets (Il,|Ig, P ) by accounting for their respective
pitch value as well.

11.4 A Model for Global Note Intensity Levels

For every instrument such a set of data triplets will eventually be used to create
a model of note intensity which is specific for the instrument and represents the
estimated RMS values with respect to the timbral characteristics. The model
is created as a surface in the space spanned by the pitch and global intensity
variable using a Tensor-Product-B-Spline model as introduced in ch. 4 and
shall be denoted Ĩ(Ig, P ). It represents intensity values in dB as a function
of pitch and global intensity, both in MIDI scale. The model for the violin is
created in a unified manner taking recordings from all strings into account to
establish a single model.

These models are then used to normalize all original input signals x(t) of
the continuously excited instrument sounds using the RMS values estimated
by Ĩ(Ig, P ) and the complete procedure of estimating the deterministic and
residual component, transforming the signals into a representation suitable for
further processing and learning the parameters of the instrument models had
been done again. The instrument model then not only estimate the timbral
characteristics, but also their inherent sound level variations and therefore we
call the obtained instrument models calibrated. With rerunning the analysis
and instrument model parameter estimation methods anew, we circumvent the
use of the model of the sound intensity level explicitly in the synthesis phase as
we have shifted the additional processing into the offline analysis and modeling.
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(a) Intensity model for Trumpet

(b) Intensity model for Bb-Clarinet

(c) Intensity model for Violin

Figure 11.4: Three Models for the note intensity level as a function of pitch
and global intensity.



Chapter 12

Subjective Evaluation

Intro

To finally assess the synthesis quality of the proposed synthesis system using
the calibrated instrument model based on an extended source filter approach,
we conducted a subjective evaluation to eventually determine to what extend
instrument recordings may be transformed until audible artifacts or deviations
from the listeners aural expectations are introduced.

The MUSHRA [itu03] as well as the ABX method [Cla82] have been de-
veloped to assess the subjective quality of audio systems in broadcasting envi-
ronments and its design is thus meant for systems focusing on a perceptually
perfect reconstruction of a reference signal rather than perceptual coherence
according to the timbral variety of a musical instrument. Speaking in musical
terms, a musician that is playing a note with equal pitch and volume twice does
not necessarily create two indistinguishable sounds, but both will be perceived
as correct realizations of a listeners expectation according to the timbre of the
instrument. The MUSHRA as well as ABX method are hence not suitable for
the subjective evaluation of a signal processors that aims for musical coherence
rather than perfect reconstruction.

In [GSV11], Gabrielli et. al. also pointed out that ABX and MUSHRA
are not viable for this purpose and hence developed an evaluation method and
metric to assess the distinguishability between recordings of an acoustic or
electric instrument and an emulation algorithm. Their method however also
does not apply in the case of the expressive manipulation of the sound samples
of the dataset as presented in this thesis.

The R-S method presented by Gabrielli [GSV11] et. al. targets for instru-
ment emulation algorithms that do not exactly reproduce the timbral properties
of the instrument used for the analysis and parameter estimation procuedure.
This marks the main difference to the approach of this thesis where we are
aiming for a perceptual coherent reproduction of the timbre and performance
properties of a music instrument represented by a dataset of recordings. As
Gabrielli et. al. also developed their metrics according to this fundamental
assumption prohibits the use of their test mechanics as well as their measures.
The R-S method by Gabrielli et. al. furthermore utilizes an instrument emula-
tion algorithm that does not support the residual component of a sound signal
which requires particular addition of some recorded background noise in the

124



CHAPTER 12. SUBJECTIVE EVALUATION 125

R-S method.

12.1 Method

For our evaluation method to assess the perceptual coherence with an instru-
ment’s timbre variety, sound variations caused by slight modifications of the
playing style need to be tolerated as long as a listeners expectation with re-
spect to the sound of the overall instrument is fulfilled. We employ a similar
terminology as for the MUSHRA or ABX procedures to refer to the recordings
presented to the test subjects and hence all tests are constituted of 3 different
kinds of sound signals:

• Known Reference : An unmodified sound signal those position in

the presented sound samples is known to the

test subject

• Hidden Reference : An unmodified sound signal those position in

the presented sound samples is not known to

the test subject

• Probe : The modified sound signal those position in

the presented sound samples is not known to

the test subject

In the case of the MUSHRA and ABX method, the known as well as the
hidden reference signal refer to the exact same sound signal whereas the probe
refers to a processed version of that signal and their perceptual similarity gets
investigated. Such a setup is not suitable to assess a synthesis method that aims
for actual sound transformations. For an expressive sound synthesis method,
we therefore aim for an investigation that tests the coherence of the hidden
reference and the probe with the overall timbre of an instrument allowing
subtle variations and hence only requiring the control parameters to be equal.

Therefore within all tests, the probe will be generated using a source sig-
nal different from the hidden reference but transformed in such a way that it
exhibits the same pitch and global intensity value. This shall enable a compar-
ison of a listeners aural expectation for that specific set of control parameters
regarding the instrument.

In the optimal case, the known reference should also exhibit the same pitch
and global intensity as the hidden reference and the probe, though this requires
the sound data sets to entail redundant recordings to prevent the use of identical
signals for the hidden and known reference which would make the probe easily
identifiable. The sound data sets used within the work of this thesis however
do not contain multiple recordings for equal pitch and global intensity values
and hence a recording with either a different pitch or global intensity will have
to be picked for the known reference.

In the evaluation conducted for this thesis we have chosen the known ref-
erence to always exhibit an equal global intensity as the hidden reference and
probe and only differ in pitch. We have decided that way as we assume the task
of perceptual extrapolation along varying pitches to be an easier task for a test
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subject as of varying global intensity. The interval for the pitch difference has
chosen to be a major third for all tests of all instruments which is further as-
sumed to be a familiar interval to western listeners that exhibit similar timbres
for both pitches [HE01].

To further assist a listeners perception of an expected instrument timbre,
the known reference will always be played before the hidden reference and the
probe and therefore the listener will always make a judgement between two
samples each containing two notes differing by a major third. This requires
the test subject to perceptually extrapolate the sound of the known reference
to a major third above when listening to a single sample.

The piano however is assumed to exhibit more drastic changes of its timbre
for varying pitches due to its inherent inharmonicity among other reasons. We
will hence provide the test subject an additional known reference played after
the probe or hidden reference. This second known reference is always chosen
to be a minor third above the hidden reference or probe hence creating a major
chord for the whole sample. Using two known references is meant to support
the test subject by transforming the task of extrapolation to a task of aural
interpolation assuming it to be easier to accomplish.

For a single transformed sound, every test subject will hence be presented
two sound samples each containing either two or three notes played consecu-
tively. The subjects will then prompted to decide in which sound sample they
perceived the second note played to be synthetic sounding or modified in any
way and hence assess the interval or chord as not being natural sounding for
the according instrument.

For the statistical evaluation we employ a test of statistical significance
[BS10], for which we postulate the null hypothesis for each sound transfor-
mation in the way, that the listeners are not able to distinguish the hidden
reference and the probe reliably, whereas the directed alternative hypothesis
states, that the transformed sound is perceived as being artificial and not nat-
ural to the respective musical instrument.

We evaluate modifications of the control parameters Ig and P independently
to assess the transformation capabilities of our synthesis method separately for
the two control parameters and created sets of equal modifications extends of
either parameter to simplify and generalize the evaluation procedure. We hence
specified several modification amounts for each transformation and created 6
sound pairs for each amount to approximately cover the instruments pitch and
intensity range for each extend. The results for each extend of modification
has been summed to obtain the observations for a χ2 Goodness–of–fit test
which yields a p-value to allow a decision in accordance to a specified level of
significance α [BS10].

12.2 Results

The evaluation procedure had been setup as an online survey and the test
subjects had been invited to participate voluntarily without compensation.
The subjects have been asked to perform the test in a quiet environement
using headphones and the exact amount of participants is given in brackets for
each instrument in the respective captions of fig. 12.1 and fig. 12.2.
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Fig. 12.1 depicts the results for the subjective evaluation of transformations
of the signals global intensity values of the selected instrument sound data sets.
The top row indicates the amount of change with respect to the instruments
full range representing 100% is presented. For the trumpet, clarinet and violin,
shown in fig. 12.1(a), 12.1(b) and fig. 12.1(c) respectively only half range
changes have been made reflecting a transformation of Ig from either ff to
mf or mf to pp in case of -50% or vice versa for +50%. The limited amount
of discrete global intensity steps prevents a more granular analysis of global
intensity steps as only three levels of global intensity are available for the data
sets of continuously excited instrument signals. For the piano sound set up
to 8 levels are contained and hence 4 discrete transformation steps have been
selected as shown in the top graph of sub fig. 12.1(d).

The summed observations from all subjects are given as bar plots at the
bottom for each instrument showing the distribution of the listeners selections.
The blue bar refers to the amount of selections of the hidden reference for being
the less natural sounding example, while the yellow bar refers to selections of
our transformed sound for being artificial and incoherent with an expected
timbre. The χ2 test statistics had been used to calculate the p-value shown
in the center graph, whereas different colors are used to indicate if its value is
above (green) or below (red) the selected level of significance which has been
set to the standard value of α = .05.
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(d) Piano (17)

Figure 12.1: Subjective evaluation results for the transformation of the global
intensity value of the sound signals of the selected instrument sound data sets.
The amount of test subjects for each instruments is given in brackets in the
according subfigure caption.

As can be seen in fig. 12.1(b) and 12.1(c) an intensity reduction of half
the possible dynamic range of either the clarinet or violin can be made while
retaining the instruments sound characteristics, since the listeners were not
able to identify the transformed sound above random probability. Contrarily,
an increase of 50% dynamic range can be recognized much more likely by
the listeners. We identified this as being caused by the limited amount of
partials present within the signal of lower intensity in comparison to the upper.
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Hence, even though the modification for the limited set of partials may yield
an appropriate result, its narrower bandwidth makes the final transformation
result distinguishable from an expected instrument sound.

The same reason seems to account for the results of the trumpet data set.
There not only the increase of the signals global intensities has been identified
by the test subjects as less natural sounding but also its attenuation. We
assume this as being caused by a not sufficient attenuation of the trumpets
upper partials while decreasing its global intensity values which keeps them
audible even though their amplitudes are at about the same level as the residual
signal.

The evaluation results for intensity transformation for the grand piano in fig.
12.1(d) shows a less optimal performance. Apart from the well working inten-
sity attenuation of about -25% all the other modifications had been identified
by the test subjects. An analysis of the spectral components of piano signals
shows a particular difference to other instruments which consists of sympathetic
resonances. These are not treated by either the signal or the instrument model
and hence are not modified accordingly by the signal transformation method.
However, being able to perceptually reliable modify the global intensity of up
to -25% enables a possible synthesizer to rely on 4 discrete intensity recordings,
while retaining full expressivity throughout synthesis.

Transposition results, thus modifications of a signals pitch are shown in fig.
12.2 for all instruments, whereas in the top row of each subfigure, the amount
of transposition is given in semitones. Again, the results notably differ for im-
pulsively and continuously driven instruments. For the trumpet, clarinet and
violin sound data set, transpositions of up to a full octave yield results indistin-
guishable from their original equivalent, whereas for the piano this holds until
a pitch shift of +5 semitones, which we identified to be caused by its varying
inharmonicity and untreated sympathetic resonances. We did not conduct an
evaluation on negative pitch shift, since we expect this to suffer from the same
issue, which arises when increasing the global intensity.

Conclusion

We may derive from the evaluation results that the calibrated instrument model
allows to largely modify an instrument’s sound signal coherently with the over-
all timbre of that instrument while retaining the quality of the recordings.

Pitch transpositions of up to a full octave can be achieved which are indis-
tinguishable from their unmodified equivalents for the three presented contin-
uously excited instruments and even for the piano, pitch alterations of almost
half an octave are possible.

Modifications of the signals global intensity can also be achieved in a manner
coherent with the overall instrument timbre for attenuations of either 25 or 50%
regarding the instrument’s complete dynamic range.

We may however also identify some limitations of the approach: The method
is missing a strategy for adding partials not present in the harmonic source sig-
nal as well as for removing partials present in the source signal but not desired
within the target sound. Eventually for piano sound signals two further limi-
tations became apparent referring either to the limitations of the signal model
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Figure 12.2: Subjective evaluation results for pitch transformations of the
sound signals of the selected instrument sound data sets. The amount of test
subjects for each instruments is given in brackets in the according subfigure
caption.

not supporting sympathetic sinusoidal signal components as well as the missing
modifications of the signal’s inherent inharmonicity during the transposition.

A more detailed conclusion of the subjective evaluation will be discussed in
the overall discussion of the thesis.
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Chapter 13

General Conclusions

In this thesis, a parametric model suitable for the representation of the sounds
of quasi-harmonic instruments has been presented that can be used to modify
recordings of a particular instrument in a manner such that the synthesis result
is coherent with the spectral properties of the respective acoustic instrument.
The model uses general high-level control parameters which are available for
most quasi-harmonic instruments to perform signal modifications which refer
to standard control variables of sound synthesizers aiming for the imitation of
acoustic instruments in a sample-based approach.

The instrument model developed within this thesis represents the determin-
istic and residual components of the sounds of an instrument separately using
individual filter functions for each with suitable signal representation respec-
tively. The distinct signal representation have been chosen with respect to the
signal’s properties and a unified approach for their internal representation for
simplified modeling and parameter estimation has been presented.

A general and universally applicable arbitrary-order regression model using
B-splines had been introduced for the purpose of fitting of multi-dimensional
surfaces. The model utilizes Tensor-Product-B-splines to represent the multi-
variate data and a generic regularization scheme has been introduced to man-
ually control the smoothness of the fit. A preconditioning method has further
also been introduced for a significant acceleration of the iterative parameter
learning procedure.

For the harmonic component of the instrument model an extended source-
filter model has been employed referring to an individual excitation source and
a resonance filter function. It has been shown, that both filter functions can
be estimated jointly from an instrument’s sound database using a dedicated
parameterization of the filter functions. In the visualization of the estimated
filter functions of the extended source-filter model several distinctive instru-
ment features could be observed which lets us assume the successful separation
of their individual contributions to the analyzed sound signals.

A new technique for the estimation of relative level differences of global note
intensity values had been presented using dedicated recordings of crescendo
and decrescendo instrument sound signals for continuously excited instruments.
The estimated level values had further been used to calibrate the instrument
model to eventually obtain models that account for spectral variations as well
as level adaptations.
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A subjective evaluation has been conducted to asses the synthesis results
obtained by applying estimated filter functions generated using the calibrated
instrument model. Within the subjective evaluation we were able to identify
a range of possible parameter transformations which yielded results indistin-
guishable from their untransformed counterparts.

Pitch transpositions of up to an octave have shown to be possible using
the proposed instrument model while retaining the coherence with the spec-
tral properties of the respective instrument. To the authors knowledge, no
other method so far has proven such a result for a similar transposition range.
Changes to the note intensity have also been applied successfully with intensity
attenuations of about a quarter to a half of the whole instrument’s dynamic
range without yielding audible differences to original recordings. Such a result
has also not been proven by another method in the literature to our knowledge.

However, several insufficiencies and imperfections as well as aspects that
require refinement and further improvement became apparent while conducting
the research for this thesis which will be summarized in the next chapter.



Chapter 14

Future Work

This chapter lists some key points for revision and future development to fur-
ther enhance the presented approach for expressive transformations of instru-
ment recordings.

14.1 Sound Signal Transitions and Modulations

A topic of gaining interest in the domain of imitative sound synthesis of acoustic
instruments is the reproduction of note transitions and modulations. Such tran-
sitions may refer to pitch glides as well as to vibrato or tremolo playing styles
and such variations of the way acoustics instruments are being played may
entail sound properties that are not covered by an instrument model trained
using quasi-stationary instrument recordings.

Future version of an instrument model for imitative sound synthesis should
hence also incorporate features of instrument sounds that refer to changes of
expressive control parameters by taking their first or second order derivatives
into account, though this would require additional recordings of such an in-
strument with respective parameter changes.

In the original proposition of the Sample Orchestrator 2 project such pa-
rameter transitions have already been considered, though have been rejected
due to time and effort constraints. Future enhancements of the instrument
model should certainly consider the incorporation of such parameter transi-
tions as such are assumed to have a huge impact on the perceived naturalness
of a digital sound synthesis method.

14.2 Signal Model Enhancements

The signal model being used separates an instrument sound signal into a sinu-
soidal and residual component. It has however been shown that the transient
of the signals might be better represented using a dedicated model that empha-
sizes the temporal structure rather then its spectral envelope [Lev98, Ver99,
Tho05]. This becomes quite apparent for impulsively excited signals as for pi-
ano sounds, whose residual component in the current setup mainly contains the
signal being produced by the striking hammer. A parametric transient signal
model with a more compact representation of the temporal shape of the tran-
sient seems worth considering and the incorporation into the instrument model
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could be achieved by a third component using the same multivariate regression
model for its representation and the selected expressive control parameters.

14.3 Expressive Control Enhancements

The introduced instrument model supports two parameters for expressive con-
trol that are assumed to be provided by some other source. This might either
be a performer playing with some MIDI equipment or some sequencing device
sending MIDI control parameters automatically.

Dedicated control models for fully expressive performances could though
enhance the performative capabilities and expressiveness of the approach as
they could automatically generate complex sequences of control parameters to
transform and modify sound sources. The authors in [MBB+10] have created
a control model for violin bowing gestures which may also be applied to other
gestural music instrument interactions and could hence provide an expressive
control layer for the presented instrument model.

14.4 Regression Model Enhancements

The multivariate regression model using Tensor-Product-B-splines is a very
convenient methodology once all its components are in place. It is however by
far not the only option to represent the multivariate data in a surface-fitting
approach.

Within the current approach of using equally designed Tensor-Product-B-
splines for all partial indices we encountered serious overfitting issues due to
the resulting large regions of sparse data for high partial indexes. A better
localization of the data could be achieved using different knot sequences and
unequal control parameter boundaries for the various filter functions of the
source excitation of the harmonic model component. For example, it does not
seem to be an appropriate solution to represent a partial trajectory for all
values of the control parameter space if the partial had only been present at
very low pitches and high global intensity values.

Using models that are locally limited to the actual distribution of the data
could hence significantly reduce the amount of parameters needed for the whole
model while the local representation could even become more complex simul-
taneously without introducing more parameters for all partial indexes.

As discussed in sec. 4.3 the rectilinear knot grid may become inappropri-
ate once instrument sound signals exhibit a less directional orientation in the
parameter space. This may occur if recordings are used for the parameter esti-
mation method that contain pitch or global intensity variations. More suitable
models that also use linear superposition of basis function may be multivariate
B-splines [Dah80, Hoe82, DM83] but also T-Splines [Sed07, Sed14] or recent
advances in Truncated Hierarchical B-splines [GJS12, KGJ12] would allow for
non-rectilinear knot grids.

There are also other methods that are not based on basis functions that
allow for surface-fitting in arbitrary dimensions. Self-Organizing Maps [Hay09]
or Support Vector Regression [SS02] could be applied, though these methods
come with their own learning methods and regularization schemes and their



CHAPTER 14. FUTURE WORK 136

incorporation appears to be quite difficult even though there are various free
and open source implementations available.

Last but not least, recent advances in Deep Learning architectures [Ben09,
DD14] could enable the estimation of structural patterns rather than estimating
the parameters of a predefined structure determined by the extended source-
filter model. This could open a lot of possibilities as a model based on deep
learning machines could automatically adapt itself to the physical structure of
the instrument and learn their individual contributions.

14.5 Adaptive Model Selection

The current model selection strategy for choosing an appropriate configuration
of the knot sequences and B-spline orders does not incorporate any automatic
methods but solely manually adjustments. This might be improved by using
Multivariate Adaptive Regression Splines [Fri91]. This method allows to begin
parameter estimation with the simplest knot sequence and gradually improves
the model by incrementally increasing the model complexity with respect to
the local variance of the data regarding the model. We may assume that
this method could be adopted to the presented instrument model to achieve
significant improvements in terms of modeling accuracy as well as delimiting
the amount of parameters required for the model to be sufficient.

14.6 Data Selection Improvements

Currently the amount of training data for each instrument model is tremen-
dously large and even though nowadays computational capacity allows to work
with such large amounts of data it seems plausible to introduce a smart data
selection strategy to further accelerate the learning procedure. Such a data
selection procedure should incorporate knowledge about the distribution of the
data with respect to the control parameters. This could be done by using the
inverse of probability density function of the distribution of the data regard-
ing their parameters to increase the likelihood for choosing data from sparse
regions and decrease for dense regions.

14.7 Subjective Evaluation Improvements

The task of conducting subjective evaluations of the coherence of the sounds
of digital imitative synthesis methods with their acoustic equivalents has got
only little attention in the past. The proposed method can hence only be
regarded a starting point for the development of a general purpose subjective
assessment method to evaluate such sound synthesis approaches. We hope to
have raised interest into this general topic with the presented approach and
expect advances from other researchers and graduate students as more and
better imitative sound synthesis methods will be published in the future.

14.8 Improvements to the Global Intensity Model

The estimation of the level differences of instrument recordings with varying
global note intensity values is certainly an important topic for designers and



CHAPTER 14. FUTURE WORK 137

developers of various kinds of digital sound synthesizers as it allows to apply
attenuations and amplifications of the sound level that are coherent with actual
instrument characteristics. As has been shown in the presented figures 11.4 ,
these level variations are by far not linear and also exhibit different behaviors
for different pitches.

However, it can be derived from the figures 11.4 that the current approach
tends to be more flat than i may be justified by the data and hence the level dif-
ferences may tend to be too equalized. An improved method could for example
incorporate the Kullback-Leibler divergence as a spectral distance metric as it
has been shown to yield better performance for spectral distance measurements
in source-separation tasks in the non-negative-matrix factorization framework.



Chapter 15

Final Remarks

Imitative digital sound synthesis remains an intriguing topic of research as it
combines several academic disciplines including physics, music cognition, mu-
sicology, digital signal processing, computer science as well as machine learning
and statistics. We believe this thesis represents a step forward in the progres-
sion of sample-based sound synthesis methods making them perceptually closer
to their acoustic pendants.

We furthermore hope that topics covered within this thesis may reach out
into other research directions within the audio domain and possibly beyond
and that this thesis may help others developing better tools for people to make
and enjoy music in the future.

Henrik Hahn, Paris/Berlin, 07.08.2015
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[Mal93] Stéphane G. Mallat. Matching Pursuit With Time–Frequency
Dictionaries. IEEE Transactions on Signal Processing,
41(12):3397 – 3415, December 1993.



BIBLIOGRAPHY 153
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Appendix A

Inharmonicity Estimation

A.1 The Method

The method for the joint estimation of a signals fundamental frequency and in-
harmonicity coefficient has been presented in the conference proceeding [HR13].
This appendix contains a thorough summary of the method and lists all eval-
uation results.

Overview

The proposed method jointly estimates the inharmonicity coefficient β and
the fundamental frequency f0 in an iterative manner which can be used on
several frames at once and is illustrated in figure A.1. For the algorithm a
signal segment y(t) behind the signals attack frame is selected to ensure that
the algorithm analyses no transient components. A standard f0 estimation
[dCK02] is applied and this initial value of f0 is then being used to set the
analysis parameters for the STFT adaptively to guarantee a suitable analysis
window length according to the coarse estimate of the signal’s fundamental.
The STFT is taken for N overlapping frames n yielding Y (f, n) and all spectral
bins are classified into the 3 classes: main lobe, side lobe or noise component
using the peak classification method proposed by Zivanovic et al. [ZRR04].

fk(n)

f0(n) Y(f,n)

f0(n)
β

stop?

k+1

β
f0(n)

k=1 Parameter
estimation

y(t)

C(f,n)

Spectrum 
ClassificationSTFTPre-f0

Estimation

Peak 
selection

Figure A.1: General scheme of proposed iterative method.

The algorithms main loop identifies a valid peak for the current partial index
within each frame and estimates a new f0 for each frame n and a new β for all
frames within each iteration until some abort criterion has been reached. With
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increasing partial index the estimated parameters are assumed to converge and
to their optimal values.

Peak selection step

The selection of a valid peak within the spectrum is done in 4 steps:

1. Estimation the frequency of the current partial f̂k(n) by using eq. (3.11)
and using the initial f0(n) and β = 0 for the first iteration, and the
updated values in all later ones.

2. Selection of all spectral peaks classified as main lobe within a narrow band
fb around the estimated partials frequency f̂k(n): f̂k(n) − pf0(n) ≤
fb ≤ f̂k(n) + pf0(n), p = .25

3. If two or more peak candidates have been found within at least one
frame we apply a logarithmic amplitude weighting function using a Hann
window, centered at the estimated position f̂k(n) with window length fb
and the peak with the strongest logarithmic amplitude after weighting
gets selected.

4. Refinement of the frequency value of the selected peaks using the QIFFT
[Ser89] with additional bias correction [AS04].

Estimation step

With at least 3 partials within one frame, we can estimate the parameters β
and f0(n) for all frames n. As shown in eq. (A.1) we use the squared deviation
of our estimated values from the measured partial frequencies normalized with
the fundamental frequency to achieve equal error surface scalings for all possi-
ble fundamental frequencies. The final objective function with normalizations
according to the number of frames N and amount of partials per frame K(n)
is given in eq. (A.2).

R =
1

2

(
fk(n)− kf0(n)

√
1 + k2β

f0(n)

)2

(A.1)

O1 =
1

N

N∑

n=1

1

K(n)

K(n)∑

k=1

R (A.2)

Since the objective function (A.2) reflects the least-mean-squared (LMS)
error of all f0-normalized deviations of our partial frequency estimations with
their measured peak frequency counterparts, optimization reflects a fitting of
eq. (3.11) to the measured data in the LMS sense. The optimization is being
done by a gradient descent approach, whereas we utilize the method of the
scaled conjugate gradient [Mø93], denoted CG throughout this document, for
faster convergence compared with other methods. The gradient functions for
both parameters are shown in eq. (A.3) and eq. (A.4).
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∂R

∂β
= − k3

2
√

1 + k2β
(A.3)

∂R

∂f0(n)
= − fk(n)

f0(n)2
(A.4)

Stop criterion

We only use two disjunctive abort criteria: If the next partial f̂k(n) in the peak
selection process would raise above the Nyquist frequency within one frame n
or if no valid partial has been found for 3 consecutive iterations in at least one
frame of the main loop. This means, the algorithm tries to use as much partials
as possible of the signal, since it only stops, if the signals maximum bandwidth
or some supposed noise level has been reached.

A.2 Evaluation

For the evaluation we will compare the results of our proposed method with
the results of 3 methods briefly discussed in chapter 3.3.4.1: Inharmonic Comb
Filters (ICF), median-adjustive trajectories (MAT) and the on-negative matrix
factorization based method (NMF). Our proposed method will be denoted CG
in the following figures.

We will use an artificial data sound of inharmonic sounds, created using
an additive synthesis model and inharmonicity values taken from the tessitura
model for the β coefficient shown in [RDD11] as well as the 3 piano data sets
from the RWC library [GHNO03] and a piano sound set taken from the IRCAM
Solo Instruments library which had also been used for the instrument modeling
method.

The artificial data set will be used to compare all β coefficient estimation
algorithms with a given ground truth. For the general evaluation of all data
sets we will establish a tessitura model for the evolution of the coefficient for
all sound samples contained in each data set. The tessitura model for the
evolution of β over the MIDI index is derived from [RDD11] and will be used
to measure the variance of each estimation algorithm to quantify its accuracy.
Furthermore, we will compare the computational efficiency of all algorithms
by measuring their realtime factors. For each algorithm a MATLABTM imple-
mentation has been used therefore the realtime factors are more suitable for a
comparison in between the algorithms rather than to give an indication for the
performance of native implementations.

For all algorithms we used equal analysis parameters to ensure all algorithms
analyze exactly the same frames of the signals and as most other algorithms
also need a pre-f0 estimation, we used the same pre-f0 for all of them. The
window length for the STFT was set to 6 times the coarse estimation of the
signals fundamental period with 4 times spectral oversampling and a Blackman
window. As our algorithm works on several frames, we took 3 consecutive
frames with a hopsize of 1/8 of the analysis window length, whereas the other
algorithms analyzed the 3 frames independently.
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Tessitura model of the β coefficient

The tessitura model for the β coefficient introduced in [RDD11] is a function of
the MIDI value m representing its evolution for the whole keyboard of a piano.
It can be represented as the sum of two linear asymptotes in the logarithmic
scale, whereas these two asymptotes are being described as Treble (bT ) and
Bass bridge (bB) and are characterized as linear functions, parametrized by its
slope and constant value, such that the model βφ(m) can be described as:

βφ(m) = ebB(m) + ebT (m) (A.5)

= e(φ1m+φ2) + e(φ3m+φ4) (A.6)

with φ being a vector of four elements containing the slope and constant
parameters of the linear functions bB and bT respectively. All algorithms apart
from ours estimate 3 coefficients, denoted β̂, for each input sound file according
to the 3 signal frames which are being used by our algorithm to estimate a
single value. A curve fitting is done in a least-squares sense by minimizing
the variance of the model βφ(m) according to (A.7) with M∗ representing the
estimates of a single algorithm for one data set. We are using the logarithm of
β as well as β̂ for the objective function to account for the logarithmic behavior
of the β coefficient.

O2 =
1

2

M∗∑

m

| log(β̂(m))− log(βφ(m))|2 (A.7)

Again we are using the scaled Conjugate Gradient method [Mø93] to obtain
the tessitura model βφ(m) with minimum variance using the gradients (A.8)
and (A.9) for optimizing the parameters for the functions bB and bT with i
either being set to 1 or 3 for eq. (A.8) or set to 2 or 4 for eq. (A.9). The four
initial values for the vector φ are chosen as [−0.09,−6.87, 0.09,−13.70]T .

∂O2

∂φ1|3
=

M∗∑

m

| log(β̂(m))− log(βφ(m))|me
(φim+φ(i+1))

βφ(m)
(A.8)

∂O2

∂φ2|4
=

M∗∑

m

| log(β̂(m))− log(βφ(m))|e
(φ(i−1)m+φ(i))

βφ(m)
(A.9)

As the estimation algorithms may give fairly noisy results especially for
the upper pitch range we delimit the usage of β̂ values to a range which is
logarithmically close to the initial value by accepting only values which are
smaller than ten times the initial function value and bigger than one tenth
of it. This is demonstrated in fig. A.2, but to finally compute the variance
σ2 = 2N−1O2 we take all N estimations of β̂ into account.

The variance according to all estimations of β̂ of one algorithm on data set
can be used to determine its estimation accuracy, because we can assume the
inharmonicity coefficient of one piano to roughly follow our tessitura model for
β. We can further state, that the instruments original β coefficient is equal
for all recordings of the same note of this instrument and constant along time.
Therefore, each instrument exhibits a certain variance due to slight tuning



APPENDIX A. INHARMONICITY ESTIMATION 168
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Figure A.2: The initial model βφ(m) (solid) and limits (dashed) for adaptation

errors of its inharmonicity. This variance is unknown and reflects the lower
boundary for every estimation algorithm. As all our algorithms estimate either
a single inharmonicity value per frame of each sound sample (MAT, ICF, NMF)
or a single value per sound sample (CG), the more these values are varying,
the less accurate this algorithm has to be. Therefore, we can use the overall
variance of the inharmonicity estimations of one algorithm for one data set to
determine its accuracy performance.

Evaluation on artificial data

The sounds have been generated by additive synthesis using eq. (3.11) to
generate the partials frequencies with the β coefficients taken from the initial
tessitura model βφ(m) for each corresponding fundamental frequency, a decay-
ing spectral envelope as well as a simple Attack-Release temporal envelope.
The sounds do not contain additional noise.

We estimated the β values with all methods for all synthesized sounds and
measured their deviations from the original values used for synthesis. Fig. A.3
shows the resulting relative errors as percentage of the original β value denoted
β̄.

As can be seen in fig. A.3 the MAT, NMF and CG methods outperform
the ICF method with relative errors below 0.1% until MIDI index 86 (D6).
Above that index, only the NMF and CG method stay below 0.1% or even
drop further down.

The estimated tessitura models of all algorithms for the artificial set are
shown in fig. A.4 and their resulting overall variance of the estimated β̂ is
depicted in fig. A.5. The extremely high variance of the results for the MAT
and ICF is especially caused by the low estimation accuracy for high pitches
(MIDI index values above 85). The increased variance of the NMF method
is due to estimation errors around MIDI index 35 at which the inharmonicity
coefficient reaches its absolute minimum. Hence, our proposed CG outperforms
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Figure A.3: Error in estimation of β given as percentage.
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Figure A.4: Estimated β̂ for the artificial data set.

the MAT and ICF methods significantly in terms of overall variance as it almost
never shows an accuracy error of more than 0.1%.

Evaluation on recorded data

The RWC piano library contains recordings of 3 different grand pianos. Each
piano has been recorded for all pitches in 3 different intensity levels (pp, mf
and ff ). The piano set of the IRCAM Solo instruments library also contains
recordings for all pitches but with up to 8 intensity levels per pitch.

It can be seen in the figures A.6 to A.9, that the NMF as well as our
proposed CG method show especially in the upper pitch range significantly
less noise in the estimation of β̂ compared to the ICF and MAT methods. This
seems to be caused by the adaptive noise level used by the NMF method and
the peak classification used by CG for selecting reasonable partials.

Also, the use of a Kullback-Leibler-divergence with euclidean distance (NMF)
and a minimum variance method (CG) for estimating β shows to be clearly
superior to a heuristic grid search (ICF) or a median method (MAT). The CG
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Figure A.5: Variance of measurements on artificial data.
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Figure A.6: Estimated β̂ for RWC piano 1

method only shows a slightly higher variance for the RWC 2 data set, whereas
it outperforms NMF on all other data sets up to a factor of 20 for the RWC 3
data set.

The overall estimation performance is demonstrated in fig. A.10. Here, the
averaged variance values from all data sets are shown as bars, whereas their
minimum and maximum values are given as error bars. It can be observed, that
the CG method has the least variance closely followed by the NMF method.
The ICF method is far from being accurate, whereas the MAT method rates
third.

In terms of computational performance, as shown in A.11, the MAT method
is by far the fastest method, but it clearly lacks in estimation accuracy in the
upper pitch range, whereas our proposed method CG outperforms NMF which
showed similar estimation results as well as the ICF method.

As can be seen from the above given result, the proposed method for joint
inharmonicity estimation shows that a peak selection algorithm with adaptive
noise and sidelobe rejection paired with a minimum variance based parameter
estimation is a suitable strategy for a robust detection of the inharmonicity
coefficient and the signals fundamental frequency.
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Figure A.7: Estimated β̂ for RWC piano 2
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Figure A.8: Estimated β̂ for RWC piano 3
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Figure A.9: Estimated β̂ for IRCAM Solo Instrument piano
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Figure A.10: Averaged variance of measurements on real world data according
to the tessitura model. The error bars indicate the minimum and maximum
variance values among all data sets.
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Figure A.11: Processing real-time factors for all 4 algorithms averaged for all
data sets with 95% confidence intervals.
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