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Titre: Apprentissage d’atlas fonctionnels du cerveau modélisant la variabilité inter-individuelle
Mots-clés: IRMf au repos, apprentissage de dictionnaire, connectivité fonctionnelle, biomarqueurs

Résumé : L’Imagerie par Résonance Magnétique fonction-
nelle (IRMf) est une source prometteuse de biomarqueurs per-
mettant le diagnostic de troubles neuropsychiatriques sur des
sujets non coopératifs. Un connectome est communément es-
timé en établissant un atlas de régions cérébrales représentatif
de l’organisation fonctionnelle puis en étudiants la corrélation
entre leurs signaux.

La première étape, la définition de régions, est réalisée à
l’aide d’une analyse statistique de l’activité cérébrale spon-
tanée au repos. Pour les extraire, nous utilisons une approche
d’apprentissage de dictionnaire multi-sujets intégrant une pé-
nalité imposant compacité spatiale et parcimonie. Nous ex-
trayons les unités fonctionnelles de base des réseaux fonction-
nels extraits à l’aide de techniques de segmentation inspirées
du domaine de la vision. Nous montons à l’échelle sur de
gros jeux de données en utilisant une stratégie d’optimisation
stochastique.

L’absence de vérité de terrain est un frein à l’évaluation de
la pertinence de nos modèles. Pour pallier ce problème, nous
introduisons des métriques évalouant la stabilité et la fidélité
des modèles générés. Appliquées à plusieurs sous-ensembles

d’un grand jeu de données, nous montrons que nos méthodes
de définition de régions expliquent mieux les données et sont
plus stables à travers les sujets que les méthodes de référence.

Nous intégrons ensuite notre méthode de définition de ré-
gions dans un pipeline entièrement automatisé afin d’estimer
un connectome et de l’utiliser dans des tâches de prédiction.
Nous étudions sa pertinence empirique sur une tâche clinique
de diagnostic des troubles autistiques et montrons la première
prédiction de trouble psychiatrique à travers différents sites
d’acquisition et sur des sous-ensembles d’homogénéité vari-
able. Nos résultats de prédiction sont supérieurs à l’état de l’art.
Nous démontrons que la prédiction sur des sites inconnus est
aussi efficace que la prédictions sur site connus à condition
d’avoir suffisamment de sujets. Les neurophénotypes extraits
sont compatibles avec la littérature.

Enfin, par une analyse post-hoc des résultats, nous mon-
trons que la définition de région est l’étape la plus importante
du pipeline et que l’approche que nous proposons obtient les
meilleurs résultats. Nous fournissons également des recom-
mandations sur les méthodes les plus performantes pour les
autres étapes du pipeline.

Title: Learning functional brain atlases modeling inter-subject variability
Keywords: resting state fMRI, dictionary learning, functional connectivity, biomarkers

Abstract: Resting-state functional Magnetic Resonance
Imaging (fMRI) holds the promises to reveal functional bio-
markers for neuropsychiatric disorders applicable to non-
cooperative patients. To extract such biomarkers, the standard
approach is, first, to establish an atlas of the cerebral areas
defining the functional organization of the brain, and then to
study the correlation of their brain signals. They form the
functional connectome.

The first step of building a connectome requires defining
the regions that constitute brain functional units. This is done
by performing a statistical analysis of the dynamics of spon-
taneous brain activity during resting-state. We introduce a
method combining spatially-structured and sparsity-inducing
penalties in a multi-subject dictionary learning approach to au-
tomatically extract brain networks from rest-fMRI. A stochatis-
tic optimization strategy enables scaling to big datasets. We
then show how computer vision inspired segmentation tech-
niques can be used to threshold automatically and break down
these networks into connected functional units.

To compensate for the lack of ground truth, we introduce

twometrics that aim at scoring the stability and the data fidelity
of the generated models. Using these metrics, we show that
our methods better explain the data and are more stable across
subjects than reference decomposition or clustering methods.

We then integrate this region-definition method in a fully-
automatic prediction pipeline, to build connectomes from the
data and use them in classification tasks. We study its empirical
relevance on the clinical task of predicting autism spectrum
disorders. We demonstrate the first prediction of pyschiatric
condition across different scanning sites and apply it on subsets
of participants of variable homogeneity. We exhibit prediction
scores higher than state of the art and show that, given a suf-
ficient number of individuals in the training set, prediction
across sites is as efficient as traditional prediction. We also ex-
tract autism neurophenotypes compatible with the litterature.

Finally, we show that region definition is the most impor-
tant step of the pipeline and that our approach is the best
performer. We also explore the other steps of the pipeline and
give recommandations on how to choose a prediction pipeline.
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Résumé : Apprentissage d’atlas fonctionnels du cerveau modélisant la
variabilité inter-individuelle

L’Imagerie par Résonance Magnétique fonctionnelle (IRMf) capture le fonctionnement du cerveau et enregistre
donc des données précieuses pour étudier les troubles neuro-psychiatriques. Mesuré au repos (sans tâche partic-
ulière à effectuer), ce signal renseigne sur l’activité de fond du cerveau et permet l’estimation d’un connectome : une
représentation des intéractions fonctionnelles entre régions cérébrales (aussi appelée connectivité fonctionnelle). La
mesure de repos est particulièrement adaptée à l’études des neuropathologies, car elle s’applique aux sujets handi-
capés, non-coopératifs ou sédatés. Il a d’ailleurs été prouvé que certaines pathologies modifient cette connectivité.
Malheureusement, la plupart des études neuro-psychiatriques se cantonnent à quelques dizaines de sujets en raison du
coût d’acquisition et de limitations logicielles. Pour pallier ce problème, de récentes initiatives ont permis la diffusion
de jeux de données de neuroimagerie de grande taille (plus de 1000 sujets) en regroupant des données provenant
de nombreux sites cliniques. Ces gros volumes de données sont une opportunité fantastique pour les études neuro-
psychiatriques, dont les conclusions obtenues sur quelques dizaines de sujets peuvent être soumises à caution. Toutefois,
une telle aggrégation n’est pas sans conséquence puisqu’elle ajoute une variaibilité propre à chaque site dans les données.

A la croisée des mathématiques, de l’informatique et des neurosciences, j’ai contribué par mon travail de thèse à des
innovations sur 3 aspects différents: i) au niveau algorithmique, j’ai proposé une nouvelle méthode pour extraire des
régions cérébrales à partir de données d’imagerie fonctionnelle prenant en compte la variabilité inter-individuelle, ii) dans
le domaine applicatif, j’ai utilisé ces régions cérébrales avec des modèles de machine learning pour améliorer sensiblement
l’état de l’art sur le diagnostic d’autisme et j’ai réalisé une analyse statistique complète de ces résultats afin de trouver
la chaîne de traitement optimale, et iii) dans le domaine informatique, j’ai développé un logiciel Python open-source
permettant une collaboration plus aisée entre neuro-scientifiques et informaticiens proposant des implémentations
performantes d’algorithmes propres au domaine et capable de traiter de grands jeux de données.

Apprentissage de dictionnaire avec régularisation par variation totale parcimonieuse

Les performances des méthodes demachine learning dépendent grandement de la dimension des données d’apprentissage.
Les données IRMf étant composées d’une succession de 150 à 1000 images 3D comptant 100 000 voxels cérébraux, il est
impossible de les analyser directement en raison du fléau de la dimension. Pour s’affranchir de cet effet, nous réduisons
la dimension du problème en segmentant le cerveau en sous-unité fonctionnelles, les régions cérébrales.La méthode
de référence utilisée pour cette tâche est l’ICA, qui extrait des composantes temporellement indépendantes. Toutefois,
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l’ICA extrait des composantes couvrant tout le cerveau et doit donc être suivie d’un seuillage et d’une extraction de
composantes connexes pour obtenir des régions. C’est pourquoi l’indépendance temporelle imposée par l’ICA a été
remise en question au profit de la parcimonie spatiale, généralement appliquée à l’aide de méthode d’apprentissage
de dictionnaire. Toutefois, la parcimonie imposée seule ne donne pas des cartes cérébrales satisfaisantes : les voxels
sélectionnés dans les composantes sont disséminés à travers le cerveau. j’ai donc ajouté donc à la parcimonie une
régularisation structurée basée sur un a priori neuroscientifique. En effet, de précédentes études sur l’anatomie et les
protocoles de tâches nous informent que les régions cérébrales sont formées de neurones connexes et sont en général
petites (entre 0.5% et 1% du cerveau sur les atlas de référence).

Contribution

Dans la continuité du développement d’une méthode d’apprentissage de dictionnaire multi-sujet au sein de mon
laboratoire, j’ai ajouté à cette méthode un a priori neuroscientifique structuré : la variation totale. Couplée à la
parcimonie, elle promeut atlas composés de petites régions compactes [1]. L’application d’une telle contrainte, très
coûteuse, est rendue possible par la structure multi-sujet de la méthode qui applique la contrainte au niveau du
groupe et non de chaque sujet individuellement, ainsi que par une optimisation algorithmique. Enfin, j’ai proposé une
méthode d’extraction de régions à partir de cartes cérébrales, pouvant autant fonctionner à partir de composantes
d’ICA que d’apprentissage de dictionnaire, afin de segmenter les régions proches, cas fréquent au niveau de la jointure
inter-hémisphérique [2].

Résultats

L’absence de vérité de terrain est un frein à l’évaluation de la pertinence de nos modèles. Pour pallier ce problème, j’ai
introduit des métriques quantitatives évaluant la stabilité et la fidélité des modèles générés [5]. Appliquées à plusieurs
sous-ensembles d’un grand jeu de données, nos méthodes de définition de régions expliquent mieux les données et
sont plus stables à travers les sujets que les méthodes de référence. Nous avons également demandé à des psychiatres
spécialistes d’apporter une évalutation qualitative subjective des atlas générés par notre méthode. Ceux-ci ont été
systématiquement privilégiés aux autres méthodes.

Diagnostic des troubles du spectre autistique

L’autisme est un spectre de troubles recouvrant plusieurs aspects de la vie quotidienne particulièrement difficile à
diagnostiquer : sa définition même évolue avec le temps au fil des découvertes réalisées par les psychiatres. Récemment,
des études provenant de 17 sites ont été agrégées en un jeu de données de plus de 1000 sujets appelé ABIDE. J’ai donc
entrepris une expérience de diagnostic en collaboration avec Adriana Di Martino, en charge du projet ABIDE pour
l’université de New York ainsi que Michael Milham et Cameron Craddock du Child Mind Institute. La procédure standard
de diagnostic à partir de données IRMf commence par l’estimation des régions fonctionnelles (1) pour lesquelles on
estime une activité moyenne en corrigeant d’éventuelles sources de bruit comme les mouvements (2), puis on estime un
connectome cérébral (3) qui sert de base à la classification (4). Plusieurs méthodes existent pour chacune de ces étapes
et aucun consensus n’a été trouvé sur le pipeline optimal. L’état de l’art en matière de diagnostic sur ABIDE est de 63%.

Contribution

Mon premier travail sur le pipeline de prédiction a été de le rendre complètement automatique en utilisant une validation
croisée imbriquée. Cela permet d’obtenir des résultats optimaux de façon complètement automatique. J’ai étudié sa
pertinence empirique sur une tâche clinique de diagnostic des troubles autistiques et montré la première prédiction de
trouble psychiatrique à travers différents sites d’acquisition et sur des sous-ensembles d’homogénéité variable. Afin
de rechercher le pipeline de prédiction optimal, j’ai exploré pour chaque étape plusieurs des méthodes couramment
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utilisées. Les tester toutes conduit à une explosion combinatoire : c’est pourquoi les études précédentes se focalisent sur
une seule étape mais obtiennent donc des résultats qui ne se généralisent pas. Afin d’être capable de supporter cette
explosion, j’ai utilisé un cluster de calcul et ai ainsi pu traiter plus de 100 000 pipelines, soit plus de 10 ans d’études
sur un ordinateur standard (8 coeurs, 32Gb RAM). J’ai ensuite réalisé une étude post-hoc des résultats qui ont mené à
plusieurs conclusions importantes [4].

Résultats

Les résultats de prédiction (68%) sont supérieurs à l’état de l’art sur ce jeu de données. L’analyse post-hoc révèle que la
prédiction en condition clinique est aussi efficace que la prédiction sur des sites connus à condition d’avoir suffisamment
de sujets. J’ai également déterminé que l’étape la plus importante du pipeline est le choix de l’atlas et que l’atlas
extrait par l’approche que j’ai proposé améliore significativement les résultats de prédiction par rapport aux méthodes
d’extraction de référence et aux atlas existants. J’ai également pu fournir des recommandations sur les méthodes les
plus performantes pour les autres étapes du pipeline. Les neurophénotypes propres à l’autisme extraits par mon modèle
sont cohérents avec les hypothèses psychiatriques sur l’autisme et avec les résultats présents dans la littérature. Nous
avons ensemble soumis une publication au journal NeuroImage [4].

Développement logiciel

En parallèle de mon travail de thèse, j’ai été le developpeur principal de nilearn, un package Python destiné à faciliter
l’application de méthode de machine-learning sur des données de neuroimagerie et ainsi permettre une collaboration
plus efficace entre experts en machine learning et neuroscientifiques. En effet, les logiciels existants sont spécifiques à
certaines applications et leur interface est particulièrement adapté aux neuroscientifiques. En se basant sur le célèbre
package scikit-learn, nilearn rend possible l’intégration directe d’algorithmes conçus par des experts techniques pour
des applications neuroscientifiques. De plus, nilearn fournit des implémentations de plusieurs algorithmes de référence
du domaines (ICA, Searchlight) rapides et optimisées pour un grand volume de données. Nilearn participe aussi à rendre
la science plus reproductible puisque qu’une analyse entière peut-être retranscrite dans un unique script et mise à la
disposition de la communauté. A ce jour, nilearn est adopté par une quantité croissante de laboratoire de recherche
incluant par exemple le célèbre Montreal Neurological Institute. Certains de mes travaux de thèse ont déjà été intégrés
dans nilearn et le reste le sera bientôt. Une introduction aux concepts sous-jacents de nilearn a déjà fait l’object d’un
article de journal [3].

[1] Extracting brain regions from rest fMRI with Total-Variation constrained dictionary learning, Alexandre
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Abraham, Elvis Dohmatob, Bertrand Thirion, Dimitris Samaras, Gaël Varoquaux, Sparsity Techniques in Medical Imaging,
Sep 2014, Boston, United States. pp.8

[3] Machine Learning for Neuroimaging with Scikit-Learn, Alexandre Abraham, Fabian Pedregosa, Michael Eick-
enberg, Philippe Gervais, Andreas Muller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, Gaël Varoquaux, Frontiers
in Neuroscience, 8, 2014.

[4] Toward Robust Functional-Connectivity Biomarkers of Autism, Alexandre Abraham, Michael Milham, Adri-
ana Di Martino, Cameron Craddock, Dimitris Samaras, Bertrand Thirion and Gaël Varoquaux, Neuroimage, submitted

[5] Total-VariationRegularizedMulti-subjectDictionary Learning,Alexandre Abraham, Dimitris Samaras, Bertrand
Thirion and Gaël Varoquaux, Transactions on Medical Imaging - IEEE
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1 | Introduction

1 Context of this thesis

The overarching goal of functional neuroimaging is the understanding of the
cognitive organization of the brain and of its dynamics, in typical condition and
when affected by a disease or a mental disorder. Studying the neural activity
during various tasks or during rest allows us to segment the brain into several
brain functional units. Besides understanding the brain, a clinical application
is the extraction of biomarkers and the establishment of neurophenotypes
– such as functional connectivity patterns – characterizing perturbations of
brain function in brain diseases and mental disorders.

Functional connectivity between brain networks observed during resting
state functional Magnetic Resonance Imaging (fMRI) is a promising modality
to retrieve the underlying organization of the brain as it can be measured on
several impaired subjects, as opposite to task-driven experiments. However, it
suffers from several practical problems.

First, because of the prohibitive cost of image acquisition, most of the
functional MRI studies so far are based on small datasets and may suffer of
biases in subject selection and lack of generalization power. Recently released
datasets, such as ABIDE that contains more than 1000 subjects, solved this
problem by aggregating heterogeneous datasets acquired across several sites.
But the methods developed to process a small number of individuals do not
always scale to big datasets. Moreover, the results obtained on these datasets
do not always transfer to bigger ones.

Then, resting-state functional MRI data suffers from low signal-to-noise
ratio. The number of scans (usually between 100 and 1000) is also much smaller
than the number of voxels in the brain (around 100000). This is a burden for
the unsupervised learning approaches commonly used to segment the brain,
that must rely on dimensionality reduction or on a strong prior on the data.

Finally, scaling up to large datasets and using sophisticated methods also
raises problems of reproducibility of the experiments. Despite the numerous
standard software available in this field, each study uses its own methods and
prediction pipeline for clinical diagnosis, different cross-validation schemes
to measure the generalization performance or select the parameters involved,
and different metrics to evaluate the performance of the models. This wide
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variability in experimental design makes it hard to confront the results from
one study to another.

In this thesis, we propose to tackle all these challenges to reliably extract
biomarkers and neurophenotypes. We take advantage of the recently released
big datasets to enhance the results obtained by our unsupervised learning
approach. We propose a new method to uncover the functional organization of
the brain on large datasets while taking inter-subject variability into account.
We demonstrate its efficiency on a dataset of more than 800 subjects. We also
show that extracting connected brain regions from atlases is beneficial to both
model evaluation and prediction.

By establishing a standard pipeline with no free parameter and diffusing
its implementation, we promote the reproducibility of the experiments. In
addition, a post-hoc analysis of the results allows one to easily evaluate the
impact of a given method on a prediction task.

2 Layout of the manuscript

Chapter 2 introduces the functional magnetic resonance modality and the
required background knowledge to study it in the case of resting-state
studies. We highlight the characteristics of the extracted signals and
the challenges faced when working on them. It is also the occasion
to introduce autism spectrum disorders, the disease we study in this
thesis and the dataset on which our experiments are based. We show
that this particular disorder is not well understood and can benefit from
the insight provided by functional neuroimaging. All the following
chapters are contributions.

Chapter 3 proposes a new method to extract brain functional units from
resting-state fMRI. Built upon the Multi-Subject Dictionary Learning
approach, we introduce a new structure inducing regularization to
extract neurologically plausible brain atlases. We go through the op-
timizations performed to make it scale to big datasets and show that
the extracted atlas competes with the reference method for this task
– spatial group independent component analysis (ICA). In particular,
this method manages to extract components matching neuroanatomy
in highly noisy areas of the brain.

Chapter 4 introduces region extraction methods. Matrix decomposition
methods – TV-MSDL or ICA for example – sometimes fail at separating
brain functional units, especially when they are close. Using component
extraction methods coming from the computer vision domain – but
adapted to our problem –, we show that a post-processing of brain
maps increases the visual quality of extracted brain atlases.
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Chapter 5 introduces metrics aimed at ranking brain atlases. As of today,
no ground truth exists regarding the brain functional organization. As
such, evaluating the performance of brain atlas extraction methods is
hard and rely on prior knowledge. Here, we propose two complemen-
tary metrics to evaluate different aspects of brain atlases. We use them
to draw conclusions about atlas estimation and region extraction meth-
ods. Finally, we validate them by using a prediction task as surrogate
criterion.

Chapter 6 tackles the problem of prediction on unknown sites or, as we call
it, inter-site prediction. Large datasets composed of an aggregation
of smaller studies brings up the problem of site-specific confounds.
In particular, in a clinical setting, a diagnosis tool must be able to
process patients coming from sites not known at training time. Here,
we propose a fully-automatic pipeline for prediction from resting-state
fMRI. We evaluate ot on the classical intra-site setting and on inter-site
prediction. We show that our pipeline gives comparable results for
both tasks if given enough subjects during training.

We also address the problem of experiment reproducibility. In fact, our
versatile pipeline allows one to replace any step by a custom algorithm.
It solves the problem of parameter selection by setting them using
an internal cross-validation. Combined with the nilearn1 package, it 1 http://nilearn.github.io

allows one to reproduce an experiment using a single Python script.

Chapter 7 presents a post-hoc statistical analysis of the results obtain in
chapter 5. Through this analysis, we are able to evaluate the importance
of each step in the pipeline, and, for each step, we are able to select
the best method. By observing these results on different levels of
stratification, we are able to determine the strengths and weaknesses
of the different approaches. Finally, we dig inside the predictor to find
the neurophenotype of autism spectrum disorders.





2 | Background: functional magnetic reso-
nance imaging to study the brain

1 Understanding brain diseases and mental disorders

Numerous conditions are affecting the brain. Brain diseases can be caused by
biological causes: viruses, bacteria, trauma, stroke, etc. They can be explored
using neuroimaging techniques such as X-rays or by medical examination.
Mental disorders are cognitive disorders that can be caused by a brain disease.
Their diagnosis may be difficult when it relies on the subjective perspective of
the patient.

Diagnosing mental disorder is the role of psychiatry and psychology. In
particular, the diagnostic and statistical manual of mental disorders (DSM)
describes the symptoms and criteria for each of these disorders (more than 80
in the last edition).

In order to understand a disorder, one must build a model of how the human
mind reacts in front of some stimuli. For example, depressed people tend to
ruminate, i. e. remember bad experiences of the past, instead of focusing on
possible solutions. An hypothesis can be that depressed people tend to focus on
bad feelings. Joormann and Gotlib (2008) proved it using a simple experiment.
Two lists of words were shown to individuals. They were then asked to forget
one of the lists. After that, they were given a word and they had to tell if the
word was present in the remaining list. Researchers observed that depressed
people tended to remember the words of the second list if it conveyed bad
feelings.

A model proposes a potential process but it needs to be tested and validated,
for example using functional neuroimaging to pinpoint brain processes.

2 Functional magnetic resonance imaging

Several types of functional imaging techniques have been developed. Electro-
encephalography and magneto-encephalography measure the superficial cor-
tical neural activity of the brain with a high temporal resolution. Functional
magnetic resonance imaging (fMRI) uses strong magnetic fields to measure
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oxygen flow in the brain that correlates with its activity. Finally, invasive
techniques have been developed such as positron emission tomography that
relies on a radioactive tracer to track glucose consumption.

2.1 Blood-oxygen-level dependent (BOLD) contrast imaging

When a brain area is solicited, the brain fires chemical signals to provide it
with oxygen and sugar. Nearby blood capillaries dilate to increase the quantity
of flowing blood and provide these resources. This phenomenon is called the
haemodynamic response.

As a result, we expect a higher concentration of oxygenated hemoglobin
in a given brain area soon after its activation. Using NMR, it is possible to
differentiate oxygenated hemoglobin from desoxygenated hemoglobin and
to measure their concentration: this is called the BOLD signal. By studying
this signal, we are able to determine which brain areas are activated at a given
time.

This method is subject to several physical and physiological noises. First,
some artifacts may be induced by radio transmitters or other equipments. Then,
spurious activations are naturally introduced by the blood vessels present in
the brain, heart beats and breathing movements. Finally, the brain can be
shifted if the subject makes large movements in the scanner.

2.2 Preparation and analysis of fMRI data

Raw fMRI images are not interpretable with bare eyes. In particular because
we are interested in small signal co-variation between voxels and not by the
values themselves. Human eye, however, is good at perceiving global artifacts
in the data such as movements, ghost or scanner coils. Quality assessment of
preprocessed fMRI data is done by eye and by relying on dedicated medical
imaging software.. In order to prepare the data for further statistical analysis,
some preprocessing steps are required.

Data acquisition The resolution of fMRI is usually between 1mm3 and
3mm3. In a single 3D scan, the brain represents 50 000 to 300 000 voxels1. 1 Voxel stands for volume element. It refers

to a point in a 3D image, just as pixel refers
to a point in a 2D image.

A run contains usually from 100 to 1000 scans. Functional MRI scans are
acquired by slices, usually in the axial direction. The time required to acquire
one slice is called echo time (TE) and is in the order of tens of milliseconds.
The time required to acquire a whole 3D volume is called repetition time (TR)
and is in the order of seconds. Typical values for a 3D volume of 60 slices are
TE=33ms and TR=2s for a 3 Tesla scanner.

Motion correction. Headmovement has a big impact on fMRI. Amovement
with an amplitude higher than the voxel resolution (i. e. 2 to 3 millimeters) can
shift the signal of the entire brain. Moreover, the worst impract of motion is
inflow effects, i. e. artefactual signals. In the scanner, the head of the subject is
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fixed using cushion pads to avoid movements and the subject is asked to stay
as still as possible. Yet, it is impossible to completely avoid head movement.
In order to remove the effect of movement, the 3D scans are realigned on a
reference scan – usually the one in the middle of the sequence – using rigid
body transformation (translation and rotation, without change of scale).

Slice timing correction As stated before, brain slices are not acquired
at the same time. This introduces a shift in the haemodynamic response
associated to each of them. This problem can be solved by interpolating the
signal of each slice so that all of them can be considered as acquired at the
same time. This step is optional as, in practice, it does not bring significant
improvement. In a preliminary experiment performed on 50 individuals, we
did not observe differences in term of prediction score with or without slice
timing correction.

Normalization to a reference template. Each brain is of different size
and shape. In order to compare brain activations across several individuals, we
need to normalize them by registration to a common template. This template
can be a reference template used in the community (MNI2 for example). It is 2 MNI stands for Montreal Neurological Insti-

tute. It is also the name of a reference anatom-
ical template used for fMRI registration

also possible to compute a template directly from the data. Once a template
is chosen, for each subject, we perform two successive normalizations. First,
the anatomical scan acquired in the subject is registered to the MNI template.
Then, the fMRI data are registered to the anatomical scan. After that, the two
transformation matrices are combined in order to normalize the fMRI data to
the template.

Analysis Forward inference made on fMRI data (e.g. prediction of brain
activation from the stimuli) can be conceptualized as the encoding of percep-
tual, motor or cognitive parameters into brain signals. The inverse model, that
predicts behavioral data from brain activation is called decoding. This thesis
focusses on the decoding of brain signals. Two paradigms allow to study brain
signals. Either we study them in controlled condition on a particular task,
this is the task paradigm, or we study the spontaneous activity of the brain in
order to uncover its organization, this is the resting-state paradigm.

2.3 The task paradigm

Using an experimental design, it is possible to relate the BOLD signal with
specific tasks performed by the subject. For example, a sound can be played in
the left or the right ear of the subject. By comparing brain activation between
resting state and when the sound is playing, we can isolate the auditory cortex
of the brain.

Statistically, we do that by crafting a design matrix corresponding to the
experiment: one column of the matrix represents one particular activation.
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Columns corresponding to known artifacts of the BOLD signal, such as heart
beats or movements, can be added in the design matrix in order to regress out
the part of the signal related to them. We then use a general linear model to
recover the brain maps corresponding to each of the columns in the design
matrix. These are called β-maps:

y = Xβ + ε

with y the BOLD signal, X the design matrix, β the activation maps and ε

the noise of the model.
However, task-based paradigms require both a careful experimental setup

to control for psychological confounds in the fulfillment of the task, and the
active and focused participation of the subject. In clinical settings, when
working with impaired patients, these constraints have limited the usefulness
of these tools.

For example, stroke patients suffer from a wide range of symptoms depend-
ing on the brain region affected by stroke. This disorder is hard to study in a
task-based paradigm since the patient’s problem is not to be able to perform
some tasks. However, detecting an abnormal brain connectivity pattern is
possible using resting-state fMRI (Varoquaux et al., 2010a).

2.4 Resting-state fMRI

Resting state fMRI (or rest fMRI) uses the same acquisitionmethod as task fMRI.
However, instead of giving a particular task to the subject, he or she is asked to
let his mind wander without sleeping. By studying this background activity of
the brain, it is possible to uncover its underlying organization (Raichle, 2010).
Depending on the protocol, the subject can be asked to keep his eyes closed or
to look at a fixation cross. The fixation cross prevents random eye movements
and helps the subject not to sleep.

In resting-state fMRI, we do not study the signal of each voxel itself but the
interactions between the brain voxels. In particular, we study the functional
connectivity of the brain, i. e. the similarity of activation patterns between
brain regions that share a common functional role. Since there is no design
matrix in rest fMRI, one must be careful to properly regress out physiological
noises or spurious correlations may appear between brain regions, in particular
longitudinally (Power et al., 2012; Van Dijk et al., 2012).

A first approach of functional connectivity is the voxel to voxel approach in
which the similarity is measured between each pair of voxels. This method is
not only computationally expensive, given the number of voxels in the brain,
but it is also unfounded from the statistical standpoint: it requires the estima-
tion of millions of parameters, much more than the number of observations
supports. As a consequence, some form of dimensionality reduction – a feature
selection or extraction – is necessary to study connectivity.
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Measure of symmetry. One way to simplify the problem of functional
connectivity is to focus on one particular aspect of brain connectivity. An
hypothesis commonly made on brain organization is its symmetry. In fact,
several brain networks extracted from the brain using a task-driven approach
are symmetric (auditory cortex, motor cortex, etc.). Voxel-Mirrored Homotopic
Connectivity (VMHC, (Zuo et al., 2010)) is a measure of the symmetry of brain
activation. It consists in measuring the similarity between each voxel in the
left hemisphere and its counterpart in the right hemisphere. It has been proven
to decrease in cocaine addicted individuals (Kelly et al., 2011). This feature
selection approach is one way to make the functional connectivity problem
tractable.

Nearest neighbors. A simple dimensionality reduction approach consists
in considering the connectivity between one voxel and its nearest neighbors.
The common approach is to consider a sphere of a given radius around the
voxel. Region homogeneity (ReHo, (Zang et al., 2004)) measures the homogene-
ity of brain regions by measuring the similarity of activation patterns between
one voxel and its neighbors. Originally applied in a task paradigm, it has also
been applied to resting state fMRI to extract biomarkers for schizophrenia (Liu
et al., 2006), ADHD (Cao et al., 2006), Alzheimer’s disease (Liu et al., 2008),
depression (Yao et al., 2009), and ASD (Paakki et al., 2010). A similar approach
is used in the Searchlight approach (Kriegeskorte et al., 2006) where each
voxels receive a score corresponding to the prediction accuracy obtained by
the voxels and its neighbors for a given problem.

Voxels aggregation. A common dimensionality reduction approach used
in machine learning consists in reducing the dimensionality of the data by
aggregating similar features. Assuming that voxels with similar activation pat-
terns share the same functional role, we group similar voxels into components
called brain networks. The most popular method for this task is spatial group
independent component analysis (ICA). After dimensionality reduction, one
time series is computed for each region and the correlation inside or between
brain networks is used to build neurophenotypes.

3 Brain atlas extraction

Here, we describe brain atlases that are considered as reference atlases in
the community. The first anatomical atlases were established long before the
discovery of functional neuroimaging. However, they are still widely used
in the functional connectivity community as we expect the brain functional
organization to follow anatomical features. Some functional atlases have also
become references in the domain. Finally, several data-driven approaches exist
to estimate an atlas direclty from the data.
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Anatomical atlases. Brodmann (1909) established the oldest brain atlas
still used today (See Figure 2.1 left). By using a dye that colors cells’ RNA,
he colored several brains (human and animal) and reported the observed
segmentation of the cortex. The functional role of some of these areas was
discovered and this atlas remains a reference today. The automated anatomical
labeling (AAL, Tzourio-Mazoyer et al. (2002), Figure 2.1 middle) is the name
of a procedure in the SPM software to automatically label brain regions. It is
based on a brain segmentation performed on the T1 image of a single subject
coming from the Montreal Neurological Institute. The sulci of the brain have
been delineated manually and then closed to form brain regions.

Figure 2.1: Reference anatomical
atlases. Left:The Brodmann atlas
(Brodmann, 1909). Middle: The au-
tomated anatomical labeling atlas.
Right: The Harvard-Oxford atlas.

Finally, Harvard-Oxford (HO, Desikan et al. (2006), Figure 2.1 right) is an
atlas obtained using a semi-automated tool on 37 subjects T1 scans and based
on brain gyri. It is composed of 69 regions and is also aligned on MNI space.

Functional atlases. Smith et al. (2009) (Figure 2.2 left) uses BrainMap task
data and an independent component analysis run on resting-state data to
provide three atlases of different size for each paradigm (10, 20 and 70 brain
networks). Yeo et al. (2011) (Figure 2.2 middle) uses a clustering approach to
segment the brain cortical surface of more than 1000 subjects. The cortical
surface is divided into 1175 regions of interest and each voxel is then added
to the closest region as stated in Lashkari et al. (2010). The data are then
aggregated into two atlases: one having 7 brain networks and one having 17.
Craddock et al. (2012) (Figure 2.2 right) uses a spectral clustering approach
on the voxel-to-voxel affinity matrices of 41 subjects to extract brain regions.
Atlases of increasing sizes, from 10 to 400 clusters, are available.

Figure 2.2: Reference functional
atlases. Left:The Smith 2009
resting-state network atlas. Middle:
Yeo 2011 atlas. Right: Craddock
2012 atlas.
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4 TheAutismBrain ImagingData Exchange (ABIDE) dataset

4.1 Understanding autism spectrum disorders

Autism in society. According to the centers for disease control and preven-
tion (CDC), autism spectrum disorders (ASD) are the fastest-growing devel-
opmental disorder3. Prevalence increased from 6.7%�to 14.7%�between 2000 3 http://www.cdc.gov/ncbddd/autism/data.html

and 2010. It affects boys five times more than girls. Diagnosis has a great
impact on the patient’s life and society. In fact, special education and behav-
ioral therapies are provided to autistic children along with residential care
during adulthood. The cost of these services is estimated to $2.4 million per
patient (Buescher et al., 2014), most of it during adulthood ($0.6 million during
childhood, $1.8 million during adulthood). Autism services cost $236 to $262
billion annually to US government. Diagnosis is decisive since early diagnosis
can reduce lifelong cost of about two third (Järbrink, 2007).

Symptoms and Diagnosis Discovered in 1943 (Kanner et al., 1943), autism
spectrum disorders (ASD) were originally defined by symptoms affecting three
cognitive aspects: i) impairment in language learning ii) impairment in social
interactions and/or iii) repetitive behaviors, as stated in the Diagnostic and Sta-
tistical Manual of Mental Disorders, fourth edition (DSM-IV-TR, see Figure 2.3)
(Association et al., 2000). Constant efforts were put into understanding this
spectrum of disorders (Wing and Gould, 1979; Baron-Cohen et al., 1985; Lord
et al., 2000), but the limit between healthy and autistic individuals remains
fuzzy and controversial. If standard tests (such as ADOS, ADI or SRS) have
been developed to quantify the severity of each symptom, in the end, the
diagnosis is left to the psychiatrist or psychologist.

Figure 2.3: Autism spectrum
disorders symptoms as defined
in the diagnostic and statisti-
cal manual of mental disorders.
Left: fourth edition. Right: fifth
edition. Figure from (Lord, 2011).

Recent findings dissociated language disorders of ASD. For example, using
diffusion tensor imaging, (Verhoeven et al., 2012) showed abnormal microstruc-
tural organization in Broca’s and Wernicke’s area in both ASD and healthy
participants. This led to a new definition of ASD as presented in new DSM-V
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(Association et al., 2013) (see Figure 2.3) which removed the language aspect
from ASD and conserved only two symptoms (social interaction and behav-
ioral problems). As a consequence, subtypes of ASD (like Asperger’s syndrom
that does not imply language problems) have been merged in the global no-
tion of autism spectrum disorders. In its current definition, Autism Spectrum
Disorder is characterized by early emerging persistent social communication
and interaction deficits alongside restricted and repetitive behaviour and/or
interests

Standard tests. Standardized tests are used both to diagnose autism and
to follow the progress of a subject during therapy. The autism diagnostic
observation schedule (ADOS, (Lord et al., 1989)) is the gold standard in term
of ASD. It consists of a semi-structured assessment of communication, social
interaction, and play (or imaginative use of materials) for individuals sus-
pected of having autism or other pervasive developmental disorders. Based on
these interactions, scores are attributed for social and language skills of the
patient. However, ADOS is not well suited for children that cannot speak, this
is why it is usually coupled with autism diagnostic interview (ADI, (Le Cou-
teur et al., 1989)) that consists of a structured interview with the parents of
the patients. Unlike ADOS, ADI (or ADI revised) takes the patient’s history
into account. The social responsiveness scale (SRS, (Constantino and Gruber,
2002)) measures social skills of the patient through an interview given to the
child’s parents and teachers. Other general tests can also be used to quan-
tify ASD symptoms: Vineland adaptive behavior scale (Sparrow et al., 1989)
measures the ability of individuals with developmental disorders to handle
everyday tasks, and the Wechsler intelligence scale for children (Wechsler,
1949) measures the cognitive abilites of an individual. Regular IQ tests can
also be used.

Why is diagnosing ASD difficult? Early diagnostic of ASD is crucial.
Studies have shown that they can be reliably diagnosed at the age of 2 (Lord,
1995). However, diagnostic must be made by a trained psychiatrist with
experience in this kind of diagnosis (Stone et al., 1999). Autism tests based on
the observed behavior of the child by his parents (such as ADI) are less reliable
since parents may not be qualified to spot specific behaviors proper to this
disease and shouldn’t be used alone. The main difficulty in diagnosing ASD
is that it covers a wide range of symptoms as depicted by DSM classification
and by the variety of tests used to measure its severity.

Reliable diagnosis of autism is a first step towards its comprehension. The
hope is that neuroimaging may help us understand this disease and its mul-
tifactorial causes. A possible application could be to find the treatment best
suited for each individual (Howard et al., 2005).
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4.2 Using neuroimaging to diagnose ASD

The neuroanatomy of autism. The neuroanatomy of ASD has already
been studied at different levels, usually on small single-site datasets. However
no consensus has been reached yet. At the brain level, an abnormal growth of
the brain in early childhood has been observed (Courchesne et al., 2001; Amaral
et al., 2008) but not for all children (Hazlett et al., 2012). However, whether
this effect concerns all tissues is still subject to debate as (Herbert et al., 2003)
locates this growth in the white matter exclusively while (Lotspeich et al.,
2004; Palmen et al., 2005) locate it in the grey matter. Several studies reports
a reduced size of corpus callosum, along with structural hypoconnectivity,
in small ASD studies (Egaas et al., 1995; Piven et al., 1997; Just et al., 2007;
Alexander et al., 2007). If a recent study confirms these findings in ABIDE
(Di Martino et al., 2014), another one claims that these differences are not
significant (Lefebvre et al., 2015). Cortical density differences are also subject
to debate. For example, (Boddaert et al., 2004) observed a lower cortical density
in posterior superior temporal sulcus (pSTS) on 21 individuals, while (Haar
et al., 2014) reports a higher density in the same area on the ABIDE dataset.

Finally, at neuron level, Boddaert et al.(Boddaert et al., 2009) suggested
that ASD may be caused by a problem in myelination of axons caused by the
abnormal growth of the brain while Casanova et al.(Casanova et al., 2006)
explains ASD by perturbations in the columnar structure of neocortex. If the
community is slowly converging, a lot of conclusions are still subject to debate
which shows how hard it is to understand ASD.

Resting-state functional connectivity. Rest fMRI applied to autism is
still at an early stage due to the lack of large datasets. Dysfunctions in the
Default Mode Network and regions linked to language and emotions have
been reported as well as non-focal effects such as increased lateralization and
global hypoconnectivity. ASD are particularly challenging disorders to study,
as they encompass a whole spectrum of disorders with various causes. As
such it can really benefit from multi-site studies.

Using the ABIDE dataset, Di Martino et al. (Di Martino et al., 2014) exhibit
significant functional-connectivity differences between ASD and typical con-
trols. A global hypoconnectivity is observed, particularly in the temporal lobe,
while hyperconnectivity is only observed between subcortical and primary
parietal sensorimotor areas. In a first predictive-modeling study on the ABIDE
dataset, Nielsen et al. (2013) obtained a 60% classification accuracy on a subset
of 964 individuals. Brain regions giving best accuracy were related to language
or attention: parahippocampal and fusiform gyri, insula, medial prefrontal
cortex, posterior cingulate cortex, and Wernicke Area. The implication of
the default mode network, but also language related ROIs (such as Broca’s
area and superior temporal sulcus) along with attentional network have been
confirmed in several other studies listed in figure 6.1.
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The ABIDE dataset. ABIDE is a dataset composed of 539 patients suffering
from Autism Spectrum Disorders (ASD) and 573 typical controls gathered from
16 international sites. It features one rest fMRI session per subject, acquired on
different 3T scanners with TR ranging from 1500ms to 3000ms. Subjects were
asked to let their mind wander without falling asleep, eyes-closed or with a
fixation cross, depending on the acquisition site.

We use the ABIDE dataset preprocessed by Preprocessed Connectomes
Project4 based on the CPAC pipeline. Preprocessing includes slice timing 4 http://

preprocessed-connectomes-project.
github.io/abide/

correction, motion correction and intensity normalization. Preprocessed data
were validated using normative metrics on anatomical and functional scans
such as entropy focus criterion, smoothness of voxels, measure of fractional
displacement, etc. Four human experts also performed visual inspection of the
data and excluded any acquisition with missing part of brain, high movement
peaks, ghosting artifacts or scanner coils (see Figure 2.4). From the 1112 initial
participants, 871 were kept after quality checking (QC). We also performed
detrending and standardization of the time series before running the analysis.

Ghost artifact (Caltech 51480): at the
top and the bottom of the brain, a pale

replication of the brain is visible, introducing
artifacts in the signal of some voxels.

Contrast has been increased for this example.

Scanner coil (UCLA 51294): stripes
caused by acquisition process are visible.

Contrast has been increased for this example.

Brain cut (Leuven 50727): A part of the
brain is missing.

Figure 2.4: Artifacts encountered in
ABIDE dataset

Prediction task on ABIDE. In this manuscript, we present a new brain
atlas extraction method – chapters 3, 4 and 5 – along with a new pipeline
to predict the condition of individuals in the ABIDE dataset – chapters 6
and 7. ABIDE is a post-hoc aggregation of data from different sites. As such,
the assessments used to measure autism severity vary across sites. As a
consequence, autism severity scores are not directly quantitatively comparable
between sites. The diagnostic of ASD, on the other, is reliable. This is why we
chose it as prediction task.

The data-processing pipeline used for prediction is described in chapter 6.
In addition to the classical task of diagnosing individuals coming from a known
site, we perform the task of diagnosing individuals coming from an unknown
site, i. e. an unknown environment. For this purpose, we leave a whole site
out as testing set. We call it inter-site prediction.

We take advantage of the number of acquisition sites in ABIDE by introduc-
ing a new cross-validation scheme, leave-one-site-out, that is closer to clinical
setting.

http://preprocessed-connectomes-project.github.io/abide/
http://preprocessed-connectomes-project.github.io/abide/
http://preprocessed-connectomes-project.github.io/abide/


3 | Total-VariationMulti-SubjectDictionary
Learning

In this section, we present a new method to extract functional atlases.
It uses a multi-subject dictionary learning approach to scale to large
datasets and integrate a structured regularization to improve the esti-
mation the brain components. We combine total variation and sparse
regularization, and show that it extracts spatially connected blobs that
are plausible regarding to prior knowledge in the neuroscientific field. To
validate our method, we compare the extracted atlases to the reference
method used for this task, group ICA, and show that our approach is
better at recovering anaomical structures in brain areas highly affected
by noise.

The work presented in this chapter has been published in:

Extracting brain regions from rest fMRI with Total-Variation con-
strained dictionary learning, Alexandre Abraham, Elvis Dohmatob, Bertrand
Thirion, Dimitris Samaras, Gaël Varoquaux, MICCAI - 16th International Con-
ference on Medical Image Computing and Computer Assisted Intervention -
2013, Sep 2013, Nagoya, Japan. Springer, 2013

1 Introduction – atlas estimation methods

The covariance structure of functional networks, observed at rest using func-
tional Magnetic Resonance Imaging (fMRI) signals, is a promising source of
diagnostic or prognostic biomarkers, as it can be measured on impaired sub-
jects, such as stroke patients (Varoquaux et al., 2010a). However, as stated in
section 2.4 of chapter 2, the statistical analysis of this structure requires the
choice of a reduced set of brain regions (Varoquaux and Thirion, 2014). These
should i) cover the main resting-state networks (Beckmann and Smith, 2004;
Yeo et al., 2011); ii) give a faithful representation of the original signal, e.g. in
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the sense of compression or explained variance; iii) be defined in a way that is
resilient to inter-subject variability.

References atlases, such as AAL (Tzourio-Mazoyer et al., 2002) or Harvard-
Oxford (Desikan et al., 2006), are composed of brain regions extracted from
anatomical features of the brain. But brain regions can also be learned on rest
fMRI data. In particular, unsupervised learning methods can decompose a 4d
signal, such as rest fMRI, into a set of spatial structures and their corresponding
time series. These spatial structures are spatial brain maps composed of brain
functional units.

Independent Component Analysis (ICA) is the reference method to extract
spatial maps from rest fMRI (Beckmann and Smith, 2004) but the temporal inde-
pendence imposed on the timeseries has been recently questioned (Daubechies
et al., 2009). Promising developments rely on penalized dictionary learning
to output more contrasted maps (Varoquaux et al., 2011). However, while the
maps highlight salient localized features, post-processing is required to extract
connected regions. (Kiviniemi et al., 2009) use ICA maps to manually define
this parcellation from resting-state networks. A complementary approach is to
rely on voxel clustering that creates hard assignments rather than continuous
maps (Yeo et al., 2011; Blumensath et al., 2012; Thirion et al., 2014).

Here we bridge the gap between the two strategies by introducing a struc-
tured penalization, common to clustering approaches, to the dictionary learn-
ing. The main contributions are i) the adaptation of dictionary learning to
produce well-formed brain regions and ii) the computational improvement to
the corresponding estimation procedures.

2 A dictionary learning approach to segment regions

Dictionary learning belongs to the family of matrix factorization methods,
along with independent component analysis (ICA). These unsupervised meth-
ods rely on the same principle of matrix decomposition but apply different
contraints on the estimated matrices.

Matrix factorization methods are routinely used to extract structured spatial
patterns from resting-state fMRI data. These patterns are then interpreted in
terms of functional networks or regions. Spatial Group Independent Component
Analysis (Group ICA) is the most popular method to process resting-state fMRI.
It is based on a linear mixing model to separate different signals preceded by
a principal component analysis (PCA) to reject noise (Beckmann and Smith,
2004). In the following section, we describe how dictionary learning can be
used for the same purpose and extended to multi-subject problems.

2.1 Preliminary: Dictionary Learning

A dictionary is a set of k basis functions, called dictionary elements, that can
be used to decompose a signal. A typical example is wavelets. In the following
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work, we see how to build a dictionary V of spatial components that can be
used to decompose resting-state brain signals. This approach tends to be robust
to noise because white noise cannot be represented by a sparse combination
of elements of the dictionary.

We first formalize the problem of matrix decomposition. The decomposition
of Y ∈ Rn×p in k components is written:

Y = UVT + E, E ∼ N (0, σI)

withV ∈ Rp×k being the dictionary, U ∈ Rn×k the associated components
and E the residuals of the model which are modeled as white Gaussian noise.

The dictionary learning approach can be used to solve this problem and
relies on the alternated minimization of U, in a data fitting step, and V, in a
sparse dictionary update step1. 1 Note that this formulation of the dictionary

learning problem is different from the tradi-
tional one encountered in computer vision.
In our setting, we want to impose sparsity
directly on the dictionary and not on the load-
ings of the model

Data fit:

Û = arg min
U

∥Y−UVT∥2, s.t.∥us
l∥

2
2 = 1

Sparse dictionary update:

V̂ = arg min
V

∥Y−UVT∥2 + αΩ(V)

with Ω a sparsity-inducing regularization and α its associated weight.

2.2 Multi-Subject Dictionary Learning (MSDL)

(Varoquaux et al., 2011) proposed an extension of the dictionary learning
approach to several subjects by introducing a hierarchical probabilistic model.
Following the standard dictionary learning model, the n-long time series
observed on p voxels for subject s Ys ∈ Rn×p are written as the linear
combination of k subject-specific dictionary elements, that are spatial maps
Vs ∈ Rp×k. For resting-state brain activity, wemodel the loadings Us ∈ Rn×k

by specifying their covariance.

∀s ∈ 1...S, Ys = UsVsT + Es, Es ∼ N (0, σI), Us ∼ N (0, I) (3.1)

In addition, the subject-specific maps Vs are generated from population-
level latent factors, the spatial patterns written as brain maps V:

∀s ∈ 1...S, Vs = V + Fs, Fs ∼ N (0, ζI) (3.2)

Finally, we specify the prior distribution on V: P(V) ∝ exp(−ξΩ(V)),
where Ω is typically a norm or a quasi-norm2 We estimate the models pre- 2 A quasi-norm is a norm for which the trian-

gle inequality is defined as

∥x + y∥ ≤ k(∥x∥+ ∥y∥)

for a given k > 1.

sented in Equations 3.1 and 3.2 in a maximum a posteriori framework. The cor-
responding learning strategy is a minimization problem comprising a subject-
level data-fit term, a term controlling subject-to-group differences, and a
group-level penalization:



learning functional brain atlases modeling inter-subject variability 30

arg min
Us ,VsT,V

1
S ∑

s∈S

1
2

Ys −UsVs2
Fro + µ

Vs −V
2
Fro


+ µ α Ω(V),

s.t.∥us
l∥

2
2 = 1 (3.3)

where V ∈ Rp×k is the set of group-level maps and Ω is a convex regularizer.
µ = σ/ζ is a parameter that controls the similarity between subject-level and
group-level maps while α sets the amount of regularization enforced on the
group-level maps. Note that µ weights the last two terms, this is used further
to simplify the resolution of the problem.

This problem is not jointly convex with respect to {Us}, {Vs} and V,
but it is separately convex and (Varoquaux et al., 2011) relies on an alternate
minimization strategy, optimizing separately (3.3) with regards to {Us}, {Vs}
and V while keeping the other variables fixed.

Minimization with respect to U:

Ûs = arg min
Us

Ys −UsVs2
Fro, s.t.∥us∥2

2 = 1 (3.4)

If we assume that Vs and V are fixed, we end up solving (3.4). This problem is
solved by an ordinary least squares. To optimize memory usage, we implement
it using a block coordinate descent (Jenatton et al., 2010). While optimize the
lth line of matrix U, we assume the rest of the matrix fixed:

∀l ∈ 1...n, ûl = ul + ∥vl∥−2
2 (Y−UVT)vl (3.5)

Minimization with respect to Vs:

V̂s = arg min
Vs

Ys −UsV
2
Fro + µ

Vs −V
2
Fro (3.6)

If Us and V are fixed, we end up solving (3.6). This problem is solved by
applying a ridge regression on the variable Vs −V.

V̂s = V + (Ys −UsVsT)TUs(UsTUs + µI)−1 (3.7)

Minimization with respect to V:

V̂ = arg min
V

1
2

Vs −V
2
Fro+α Ω(V) (3.8)

If Us and Vs are fixed, we end up solving (3.8). Note that µ is absent in this
optimization problem since it weights both terms. This amounts to computing
a proximal operator, which can be seen as a denoising operator, or an implicit
gradient step in Ω of length α:

∀l ∈ 1...p, prox
αΩ

(vl)
def
= arg min

v̂l

1
2

vl − v̂l
2

2+α Ω(v̂l) (3.9)



learning functional brain atlases modeling inter-subject variability 31

The implementation of TV-MSDL provided in (Varoquaux et al., 2011) is
shown in listing 3.1.

Input:
•{Ys ∈ Rn×p, s = 1, ..., S}, the n-long time series observed on p voxels for

subject s
•Vinit, an initial guess for group maps V

Output:
•V ∈ Rp×k , the set of group-level maps
•{Vs ∈ Rp×k}, the subject-specific spatial maps
•{Us ∈ Rn×k}, the k associated time series

1 E0 ← inf, E1 ← inf, i← 1
2 while Ei − Ei−1 > ϵEi−1 do
3 for all s in S do
4 Update Us (block coordinate descent (Jenatton et al., 2010)):
5 for l = 1 to k:
6 us

l ← us
l + ∥v

s
l ∥
−2
2 (Ys −UsVsT)vs

l
7 us

l ← us
l /max(∥us

l ∥2, 1)
8 end for
9 Update Vs (ridge regression):
10 Vs ← V + (Ys −UsVT)TUs(UsTUs + µI)−1

11 end for
12 Update V (proximal operator):

13 V← prox
λ
S Ω

( 1
S

S
∑

s=1
Vs)

14 Compute new value of energy:
15 Ei ← ε(Us, Vs, V)

16 i← i + 1
17 end while

Listing 3.1: Simple implementation
of Multi Subject Dictionary Learn-
ing presented in (Varoquaux et al.,
2011)

3 Sparse TV penalization to enforce compact regions

We want to define a small set of regions that represent well brain-activity
signals. Dictionary learning does not produce in itself regions, but continuous
maps. Enforcing sparsity, e.g. via an ℓ1 penalty (Ω(v) = ∥v∥1) on these maps,
implies that they display only a few salient features that may not be grouped
spatially. (Varoquaux et al., 2011) use a spatial smoothness prior (ℓ2 norm of
the image gradient) in addition to the sparsity prior to impose spatial structure
on the extracted maps. However, while smoothness is beneficial to rejecting
very small structures and high-frequency noise, it also smears edges and does
not constrain the long-distance organization of the maps.
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Figure 3.1: Precuneus in different
atlases. Left: precuneus region in
AAL (Automated Anatomical Label-
ing). Right: precuneus regions in
Harvard Oxford probabilistic atlas.

3.1 Spatial properties of functional units

Anatomical atlases, such as AAL (Tzourio-Mazoyer et al., 2002) and Harvard-
Oxford (Desikan et al., 2006) are considered as references for neuroimaging
studies. This success may be due to some geometrical traits shared by their
ROIs: They are small and consist of neighbouring voxels.

Functional units are small. In these atlases, the average number of nonzero
voxels in each region is less than 1% of the whole brain volume (AAL: 0.86%,
Harvard Oxford: 0.63%). The small size of the components can be enforced
by using sparse regularization, usually the ℓ1 norm. Figure 3.1 shows the
precuneus in AAL and Harvard-Oxford, the region is small compared to the
rest of the brain.

Functional units are connected. In these atlases, units are represented as
connected regions, i. e. sets of neighboring voxels. Agglomerative clustering
methods, such as Ward’s clustering, enforce cluster voxels to be neighbors.
The precuneus shown in Figure 3.1, we can see that the voxels composing the
precuneus region are all connected.

In conclusion, a good atlas extraction method will promote these traits
when extracting brain regions.

3.2 Total Variation

A simple formulation of the segmentation in an energy minimization problem
is to penalize total variation (TV) (Rudin et al., 1992; Chambolle et al., 2010)
that tends to produce plateaus, i.e. regions of perfectly flat activation. Briefly,
the total variation is defined as the norm of the gradient of the image:

TV(v) = ∑
i


(∇xv)2

i + (∇yv)2
i + (∇zv)2

i

Considering the image gradient as a linear operator ∇:

v ∈ Rp → (∇xv,∇yv,∇zv) ∈ R3p, TV(v) = ∥∇ v∥2,1

where the ℓ2,1-norm groups (Kowalski, 2009) are the x, y, z gradient compo-
nents at one voxel position.
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Original
picture

Ward’s
clustering

Total-Variation
denoising

Figure 3.2: Effect of Total-
Variation denoising on natural
image. Left: Original image of Lena.
Middle: Ward’s clustering applied
on Lena. Right: Total-Variation
denoising applied on Lena. A
blurring effect is applied on the
image but the strong edges are not
affected. The picture exhibits large
colored blobs as a clustering, but
the values and edges are smoother.

3.3 Sparse TV

Going beyond TV regularization, we want to promote regions comprising
many voxels, but occupying only a fraction of the full brain volume. For
this we combine ℓ1 regularization with TV (Baldassarre et al., 2012; Gramfort
et al., 2013). We define ∇̃ρ as the augmented gradient operator Rp → R4p,
consisting of a concatenation of the operator∇ and the scaled identity operator
ρ I:

v ∈ Rp → ∇̃ρv = ((1− ρ)∇xv, (1− ρ)∇yv, (1− ρ)∇zv, ρv)

along with its augmented divergence operator ∇̃T
ρ :

Z ∈ R4 p→ ∇̃T
ρ Z = (1− ρ)(∇T

x z1 +∇T
y z2 +∇T

z z3)− ρz4

The proximal operator corresponding to the sparse TV is

prox(w, v) = arg min
v

1
2

w− v
2

2+α

∥∇ v∥2,1 + ρ∥v∥1


= arg min

v

1
2

w− v
2

2+α
∇̃ρ v


2,1

(3.10)

where , and the ℓ2,1 norm uses an additional set of groups on the new variables.

Figure 3.3: Maps of a toy dataset
extracted using MSDL. The noise
composed of negative values is high-
lighted in blue. Figures from (Varo-
quaux et al., 2011).

Note that the structure of the resulting problem is exactly the same as for
TV, thus we can rely on the same efficient algorithms (Beck and Teboulle, 2009)
to compute the proximal operator. Finally, in an effort to separate as much as
possible different features on different components, we impose positivity on
the maps. This constraint is reminiscent of non-negative matrix factorization
(Lee and Seung, 1999) but also helps removing background noise formed of
small but negative coefficients (as in Figure 3.3 extracted from (Varoquaux
et al., 2011)). It is enforced using an algorithm for constrained TV (Beck and
Teboulle, 2009). The optimality of the solution can be controlled using the dual
gap (Boyd and Vandenberghe) defined by the difference between the primal, i.
e. the proximal operator in our case, and the dual problem. We define the dual
problem of the proximal (see (Michel et al., 2011) for the proof):

prox ∗(w, v) = arg max
v

1
2


∥w∥2

2 − ∥v∥2
2


(3.11)
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We use it to compute the dual gap:

δgap(v, w) = prox(w, v)− prox ∗(w, v)

=
1
2
∥w− v∥2

2 + α
∇̃ρ v


2,1 −

1
2


∥w∥2

2 − ∥v∥2
2

 (3.12)

The implementation of the method solving the Sparse TV problem is pre-
sented in listing 3.2.

Input:
•V ∈ Rp×k , the set of group-level maps
•{Vs ∈ Rp×k}, the average spatial maps over all subjects
•α, the regularization weight
•ρ, the ratio of ℓ1 norm
•L, a Lipschitz constant of ∆ f
•δgaptol, optional, stopping criterion on dual gap

Output:
•V ∈ Rp×k , the set of group-level maps

1 V0 ← 1
S

S
∑

s=1
Vs, Z0 ← 0, t0 ← 1, i← 1, i← 1

2

3 while δgap(V0, Vi) > δgaptol:
4 Z← Zi−1 +

1
Lα ∇̃ρ (Wi)

5 (z1, z2, z3, z4)← Z
6 Dual projection:
7 Zi ← (Projℓ2,∞

(z1, z2, z3), Projℓ∞
(z4))

8 ti ←
ti−1+
√

1+4t2
i−1

2
9 Accelerated proximal gradient:
10 Zi ← Zi +

ti−1−1
ti

(Zi − Zi−1)

11 Vi ← V− α∇̃T
ρ Zi

12 i← i + 1
13 end while

Listing 3.2: Algorithm solving the
Sparse TV proximal problem.

4 Computational optimization

The naive implementation presented above requires loading the whole dataset
into memory. With the advent of bigger and bigger datasets in neuroimaging,
atlas extraction methods must be able to process datasets containing more
than 1000 subjects, i. e. several hundreds of gigabytes. In this section, we
present several improvements in order to make MSDL scale to big data.

4.1 Stochastic coordinate descent

The algorithm outlined in (Varoquaux et al., 2011) to minimize (3.3) is an
alternate minimization using a cyclic block coordinate descent. The time



learning functional brain atlases modeling inter-subject variability 35

required to update the {Us, Vs} parameters grows linearly with the number of
subjects, and becomes prohibitive for large populations. For this reason, rather
than a cyclic choice of coordinates to update, we alternate between selecting a
random subset of subjects to update {Us, Vs} and updating V. This stochastic
coordinate descent (SCD) strategy draws from the hypothesis that subjects
are similar and a subset brings enough representative information to improve
the group-level maps V while bringing the computational cost of an iteration
of the outer loop of the algorithm down. More formally, the justification of
this strategy is similar to the stochastic gradient descent approaches: the loss
term in (3.3) is a mean of subject-level term (Bottou, 2004) over the group; we
are interested in minimizing the expectation of this term over the population
and, for this purpose, we can replace the mean by another unbiased estimator
quicker to compute, the subsampled mean.

In order to start the optimization with reasonable values, we do the first
iteration on all the subjects. Similarly, to obtain a result optimized with respect
to all the training set in the end, the last iteration is run on all the subjects. In
order to avoid optimizing relatively to the same subjects at each iteration, one
subject cannot be selected for two consecutive iterations 3. 3 The importance of this precaution depends

on the setting of the experiment. In a setting
where half of the dataset is selected at each
iteration, some subjects may be selected at ev-
ery iteration while other others may never be.
We can also imagine the worst case where the
same subjects are selected at every iterations:
We end up fitting the model on a subsample
of our dataset, which is not acceptable.

4.2 Optimization of the proximal problem

Masking. The computation of spatial regularization, whether it be with
Smooth- Lasso4 or TV penalization, implies computing spatial gradients of the

4 As a reminder, Smooth-Lasso is the Lasso
term with an ℓ2 penalty on the gradient:

ΩSL = ∥v∥1 +
1
2

vTLv

with L the Laplacian operator defined on the
3D grid of voxels as defined in (Varoquaux
et al., 2011)

images. However, in fMRI, it is most often necessary to restrict the analysis to
a mask of the brain: out-of-brain volumes contain structured noise due e.g. to
scanner artifacts. This masking imposes to work with an operator ∇ that has
no simple expression. This is detrimental to computational efficiency because
i) the computation of the proximal operator has to cater for border effects
with the gradient for voxels on the edge of the mask –see e.g. (Michel et al.,
2011) for more details– ii) applying ∇ and ∇T imposes inefficient random
access to the memory while computing gradients on rectangular image-shaped
data can be done very efficiently. For these reasons, we embed the masked
maps v into “unmasked” rectangular maps, on which the computation of the
proximal term is fast: M−1(v), where M is the masking operator. In practice,
this amounts to using M(z) with z = proxΩ(M−1(w))) when computing
proxΩ(w), and correcting the energy with the norm of z outside of the mask.
Indeed, in the expression of the proximal operator (3.9), ∥M−1(w)− z∥2 =

∥w−M(z)∥2 + ∥M−1(M(z))− z∥2 where the first term is the term in the
energy (3.3) and the second term is the correction factor that does not affect
the remainder of the optimization problem (3.3).

Adaptive dual gap. We use the fact that in an alternate optimization it is
not always necessary to optimize to a very small tolerance all the terms for
each execution of the outer loop. In particular, the final steps of convergence of
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TV-based problems can be very slow. The dual-gap (3.12) gives an upper bound
of the distance of the objective to the optimal. We introduce an adaptive dual
gap (ADG) strategy: at each iteration of the alternate optimization algorithm,
we record how much the energy was decreased by optimizing on {Us, Vs}
and stop the optimization of the proximal operator when the dual gap reaches
a third of this value. As shown in Figure 3.4, we found this to be much faster
than fixing an accuracy from the beginning.

4.3 Implementation optimization

Parallelization. Since subject data Us and Vs are optimized independently
in each subject, it is possible to run the for loop of the procedure in par-
allel.Subject wise optimization being the most time-consuming step of the
algorithm (see Figure 3.4), parallelization can speed up the computation by sev-
eral orders of magnitude. We also parallelize the optimization of the proximal
operator on each map of the group atlas V independantly.

Out-of-core computation. When a dataset does not fit in memory, we
have to store it in an external memory (typically the hard drive) and load
chunks of data when we need them. In the particular setting of multi-subject
experiments, the data is naturally chunked by subjects in the external memory.
Since we process subjects iteratively in MSDL, this storage is ideal. For this
purpose, we introduce two functions that will be used to perform out-of-core
computation: load takes a subject id as argument and load its data from the
external memory and dispose discards the data from memory. The drawback
of this method is that it increases I/O consumption since the whole dataset
must be read from the external memory at each iteration.

0 25 50
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Time per iteration
Update {Us, Vs} V

Cyclic 37.3s 7.6s
SCD 11.7s 8.4s

SCD + ADG 11.3s 4.0s
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Figure 3.4: Comparing different op-
timization strategies: cyclic block
coordinate descent, as proposed by
(Varoquaux et al., 2011), stochastic
coordinate descent (SCD), and SCD
with adaptive dual gap (ADG) on the
proximal term. (a) distance to the
optimal V (in log scale) as a function
of the number of iterations, (b) dis-
tance to the optimal V (in log scale)
as a function of time, (c) time spent
per iteration to update {Us, Vs} or
V.

4.4 Optimized algorithm

The drawback of out-of-core computation is that I/O operations can be costly
in terms of time. By combining it with stochastic coordinate descent, we
drastically reduce this overhead and are still able to process big data. The
combination of these two techniques is the key to process big datasets in
reasonable time. For the stochastic coordinate descent, we choose to load
approximately 20%5 of the dataset at each iteration, based on preliminary 5 This value has been set by preliminary stud-

ies on convergence times.experiments. Since subject optimization is realized in parallel, it is best to
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choose a number of subjects that is a multiple of the number of CPU cores.
An optimized version of the algorithm is presented in Listing 3.3.
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Input:
•{Ys ∈ Rn×p, s = 1, ..., S}, the n-long time series observed on p voxels for

subject s
•Vinit, an initial guess for group maps V

Output:
•V ∈ Rp×k , the set of group-level maps
•{Vs ∈ Rp×k}, the subject-specific spatial maps
•{Us ∈ Rn×k}, the k associated time series

1 E0 ← inf, E1 ← inf, i← 1, S0 ← ∅
2 while Ei Ei−1 > ϵEi−1 do
3 if i = 1 or last_iteration then
4 Si = S
5 else
6 Si ← pick random subjects in S \ Si−1
7 end if
8

9 parallel for all s in Si do
10 Load subject data from external memory:
11 Ys ← load(s)
12 Update Us (Block coordinate descent):
13 parallel for l = 1 to k:
14 us

l ← us
l + ∥v

s
l ∥
−2
2 (Ys −UsVsT)vs

l
15 us

l ← us
l /max(∥us

l ∥2, 1)
16 end for
17 Update Vs (ridge regression):
18 Vs ← V + (Ys −UsVT)TUs(UsTUs + µI)−1

19 ∆VS ←
S
∑

s=1


Vs−Vs−1

2|S|µ

2

20 Remove subject s data from memory:
21 dispose(Ys)
22 end for
23 Update V (proximal operator):

24 Vs ← 1
S

S
∑

s=1
Vs

25 parallel for l = 1 to k:
26 vl ←
27 prox

λ
Sµ Ω

(vs
l , tolerance = ∆VS

3 )

28 end for
29 Compute new value of energy:
30 Ei ← ε(Us, Vs, V)

31 i← i + 1
32 end while

Listing 3.3: Optimized TV-MSDL al-
gorithm.
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4.5 Experimental results

Fig. 3.4 shows speed benchmarks realized on 48 subjects, parallelizing the
computation of {Us, Vs} on 16 cores. Profiling results (Fig 3.4c) show that the
update {Us, Vs} is the bottleneck. Using SCD with a stochastic subset of a
fourth of the dataset proportionaly decreases the time of this step and only has a
little impact on convergence rate per iteration (Fig 3.4a). However, the iteration
time speedup brought by SCD dramatically increases overall convergence
speed (Fig 3.4b). ADG yields an additional speed up, and altogether, we
observe a speedup of a factor 2, but we expect it to increase with the group
size. SCD combined with ADG enable tackling large groups.

5 Effects of parameters on atlas extraction

The TV-MSDL algorithm has 3 parameters. Each of them having an impact on
the aspect of the generated maps. In this section, we build an intuition of this
effect by taking a look at generated maps.

5.1 µ: global amount of penalty

µ is the weight attributed to the whole penalty term including subject-to-group
map similarity and the TV-ℓ1 regularization. As a result, increasing µ increases
the constraints applied on the subject maps resulting in the loss of voxels not
shared by all the subjects. This effect is shown in 3.5: Sparsity penalty is
increased with µ resulting in sparsier maps when its value increases.

Global amount of penalty z=36mm

Figure 3.5: Effect of the variation
of TV-MSDL global amount of
penalty µ on the default mode
network extraction.

5.2 Regularization parameters α and ρ

α is the weight of the regularization on the group maps. In our problem, it
is only involved in the estimation of group maps V. A low regularization
promotes maps that explain the original signal better but may overfit if it is
too low.

Since our regularization is composed of TV and ℓ1, we can see both aspects
reinforced when we increase it in Figure 3.6: the brain components get sparser
but the aura around the blobs is also reduced. ρ defines the balance between
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ℓ1-norm and TV inside the regularization. As such, it is tightly linked to the α

parameter.

Overall regularization
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Figure 3.6: Effect of the variation
of TV-MSDL regularization pa-
rameters α and ρ on the default
mode network extraction. α is
the parameter that controls the over-
all regularization. ρ controls the ra-
tio of ℓ1 norm in the TV-ℓ1 regu-
larization. Together, they control
the expansion of brain areas across
the brain. In this particular com-
ponent, there is no ideal value that
separate all the components of the
default mode network. It is neces-
sary to apply a post-hoc step, such as
region extraction, described in the
next chapter.

6 Results – Extracted brain atlases

6.1 Experiments

We run TV-MSDL on the ABIDE dataset presented in section 4. Following
(Varoquaux et al., 2011), we use a dimensionality k = 42 that maximizes
likelihood of left-out data. We consider each map as a region. Parameter µ

controls the overall penalization. It has only a small impact on the resulting
group-level maps and we set it to 2. ρ and α control the overall aspect of the
maps. Maximizing explained variance on test data leads to setting ρ = 2.0
and α = 0.02.

We compare TV-MSDL to Group independent component analysis (ICA),
which is the reference method to extract brain maps from rest fMRI data
(Beckmann and Smith, 2004). It extracts several components while enforcing
the non gaussianity of their spatial maps. We use the implementation proposed
in (Varoquaux et al., 2010c).

We also compare TV-MSDL to two clustering methods. K-Means is the
historical technique used for fMRI time series clustering (Goutte et al., 1999;
Thirion et al., 2014). It minimizes the ℓ2 reconstruction error by learning a
hard assignment for optimal compression. Ward’s clustering also seeks to
minimize the ℓ2 error using agglomerative hierarchical clustering: Imposing
a spatial constraint comes at no cost and it has been extensively used more
recently to learn brain parcellations (Blumensath et al., 2012). As Ward’s
clustering directly extract blobs, we use it directly to extract 84 ROIs.
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6.2 Brain atlases

Figure 3.7: Regions extracted with
the different strategies (colors are
random). The representation for
clustering methods K-Means and
Ward is exact since each voxel be-
longs to a single region. For over-
lapping atlases such as ICA and TV-
MSDL, we affected each voxel to the
region of higher weight.

A flattened representation of the atlases is presented in Figure 3.7. First,
we note that, unsurprisingly, algorithms with spatial constraints give more
structured parcellations. This behavior is visible in the TV-MSDL regions.
Regions extracted by TV-MSDL segment best well-known structures, such as
the ventricles or gray nuclei. Finally, their strong symmetry matches neurosci-
entific knowledge on brain networks, even though it was not imposed by the
model.

TV-MSDL ICA

K-Means Ward

Figure 3.8: Ventricular system ex-
tracted by different atlas extraction
methods.

Ventricular system Figure 3.8 shows the ventricular system extracted with
different methods. ICA and TV-MSDL extractions follow closely the brain
anatomy although TV-MSDL is better for extracting finer details. For example,
in the coronal view, we see clearly the three ventricles while they seem to be
merged in the ICA. This is probably due to the smoothing applied to the data
which improves the overall structure of the atlas but blurs the small details.
Clustering methods also manage to extract the ventricular system but it is
divided in several regions.

Default Mode Network Figure 3.10 shows the default mode network ex-
tracted with different methods. Again, ICA and TV-MSDL are close to the
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TV-MSDL ICA

K-Means Ward

Figure 3.9: Default mode network
extracted by different atlas extrac-
tion methods.

common definition of Default Mode Network. In the K-Means atlas, the PCC
is a bit bigger than the other atlases but the DMN is still divided in 4 regions.
In the Ward atlas, it oversegmented.

TV-MSDL ICA

K-Means Ward

Figure 3.10: Basal nuclei extracted
by different atlas extraction meth-
ods.

Basal nuclei Basal nuclei are ganglia located in the forebrain and are subject
to high noise in the fMRI modality. ICA and TV-MSDL are again better at
extracting these structures than clustering methods. In particular, we can see
the anatomy in the weights of the maps. Again, TV-MSDL is more contrasted
than ICA. K-Means and Ward are also able to retrieve the ganglia but, since
they are hard assignments, they can’t retrieve the underlying anatomy.

6.3 Anatomical validation

In the previous section, we assessed qualitatively that data-driven methods
are better at extracting anatomical features. Here we propose a quantitative
approach to measure the similarity of extracted atlases to reference atlases. We
use a jackknifing approach to compute a high number of atlases and measure
their Spearman correlation to reference atlases for basal ganglia. The results
are reported in Figure 3.11.
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We observe that TV-MSDL is the best at retrieving anatomical features in
the brain. This confirms the results observed in the previous sections.
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Figure 3.11: Similarity scores of
repeated atlas extraction com-
pared to Harvard-Oxford basal
ganglia reference. The variance of
the values accounts for the stability
of the extracted atlas using differ-
ent methods. The values themselves
indicates how close the extracted
basal ganglia are from the Harvard-
Oxford atlas reference. SPCA is an
ℓ1-regularized decomposition me-
thod corresponding to our method
with ρ = 1.

7 Conclusion

In this chapter, we introduced a new method to extract function brain maps
from resting-state functional MRI dynamics. More precisely, we introduced
a new regularization for the multi-subject dictionary learning approach that
reveals neurologically plausible partition of the brain.

We use a sparse total-variation penalty with dictionary learning to combine
the tendency of total-variation to create discrete spatial patches with the ability
of linear decomposition models to unmix different effects. Careful choices of
optimization strategy let our method scale to very large groups of subjects.
Compared to reference methods, it improves the visual aspect of the functional
networks.

Yet, our goal is to analyze the functional connectivity inside networks,
between the different brain functional units that form them. In order to break
down to this level, we need to extract the brain regions from these networks.
Region extraction from continuous maps is discussed in the next chapter.





4 | Extracting brain regions fromnetworks
maps

Brain map
The previous chapters have introduced a new brain network extrac-

tion method. Using a carefully crafted regularization, we enforce these
networks to be composed of well delineated blobs. In order to study the
connectivity inside the network, we need to segment these blobs. This
task is trivial in the case of clustering, which generates binary maps,
but not in the case of matrix decomposition methods, such as ICA or
dictionary learning, that generate full brain continuous maps.

In this chapter, we present several strategies to extract these blobs.
They consist in two successive steps: First we extract the foreground
voxels of the brain maps, and then we extract connected components
from these foreground voxels. We propose a qualitative assessment of
the extracted region by visual inspection. The next chapter introduces a
quantitative validation using model selection metrics.

The work presented in this chapter has been published in:

Region segmentation for sparse decompositions: better brain parcella-
tions from rest fMRI, Alexandre Abraham, Elvis Dohmatob, Bertrand Thirion,
Dimitris Samaras, Gaël Varoquaux, Sparsity Techniques in Medical Imaging,
Sep 2014, Boston, United States. pp.8

1 Introduction – Region extraction as a post-processing
on brain atlas

Networks extracted by ICA are full-brain and require a post-processing step
to extract the salient features, i.e., brain regions, which is often done manually
(Kiviniemi et al., 2009) (see Figure 4.4). To avoid post-processing and directly



learning functional brain atlases modeling inter-subject variability 46

extract regions, more sophisticated approaches rely on sparse, spatially struc-
tured priors (see chapter 3). Indeed, maps of functional networks display a
small number of non-zero voxels, and thus are well characterized through a
sparsity criterion, even in the case of ICA (Varoquaux et al., 2010b; Daubechies
et al., 2009). However, sophisticated priors such as structured sparsity do
not separate some networks into regions. Altogether, region extraction is un-
avoidable to go from brain image decompositions to Regions-of-Interest-based
analysis (Nieto-Castanon et al., 2003).

A simple approach to obtain sharpermaps is to use hard thresholding, which
is a good sparse, albeit non convex, recovery method (Blumensath and Davies,
2009). We improve upon it by introducing richer post-processing strategies
with spatial models, to avoid small spurious regions and isolate each salient
feature in a dedicated region. Based on purely geometric properties, these
strategies take advantage of the spatially-structured and sparsity-inducing
penalties of recent dictionary learning methods to isolate regions. They can
also be used in the framework of computationally cheaper ICA.

2 Region extraction methods

Clustering methods do a hard segmentation of the brain: each voxel belongs to
one and only one region. Decomposition methods, such as ICA and dictionary
learning do soft assignment: a voxel can belong to several functional regions.
In fact, multivariate decomposition techniques most often decompose the
signal of one voxel as a linear mixture of several signal components, which
matches better the physical generating process. In practice, these overlapping
regions are small and located in areas of low confidence. Voxels that belong to
no component are left unlabeled.

Extracting regions to outline objects is a well-known problem in computer
vision. For the particular problem of extracting regions of interest (ROIs) out
of brain maps, we want a method that i) handles 3D images ii) processes
one image while taking into account the remainder of the atlas (e.g., region
extraction for a given image may be different depending on the number of
other regions) and iii) isolates each salient feature from a smooth image in an
individual ROI without strong edges or structure (see Figure 4.1). Here, we
assume that a given set of brain maps has been obtained by a multivariate
decomposition technique.

Depending on the regularization of the matrix decomposition method,
extracted brain networks can be more or less sparse. For example, TV-MSDL
extracts sparse components while ICA extracts full brain components (see
Figure 3.8). For this reason, we perform a foreground extraction step before
extracting brain blobs. An example of region extraction is shown in Figure 4.1.
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a. Original b. Foreground extraction c1. Connected components c2. Random Walker

Figure 4.1: Example of region ex-
traction. Foreground pixels (b) are
extracted from the original image
(a). Regions are extracted using con-
nected component extraction (c1) or
random walker (c2).

2.1 Notations

This section describes region extraction techniques. In order to define them,
we represent a brain image as a graph: each voxel being a vertex of the graph.
One voxel is linked to its neighbors by edges. We use the 6-neighborhood
relationship as depicted in Figure 4.2).

Let V = {V1, ..., Vk} be the set of brain maps (3D images), or atlas1. An 1 We keep the same formalism as the previous
chapter.image Vi is seen as a 3-dimensional graph with 6-connected vertices. For each

image Vi, we consider Gi, its associated undirected graph composed of a set
of p vertices Vi and a set of q edges Ei (represented as a list of triplets of 2
vertices and the weight of the edge):

Gi = (Vi, Ei), Vi ∈ Rp, Ei ∈ (N×N×R)q

Gi is constructed so that the vertices are ordered across all the graphs: For
all graphs, the vertices of index x correspond to the points p in the original
image with the same 3D coordinates.

Figure 4.2: 3-dimensional 6-
neighborhood: the neigbors of
the considered red voxel are shown
in blue. 6-neighborhood implies
that only immediate neighbors are
considered neighbors. Diagonal
voxels are not.

The region extraction process is divided in two steps. The first step consists
in extracting relevant voxels using a foreground extraction procedure. We
define it as an extraction of subgraph in the graph formalism. The second step
consists in extracting regions of interest from the foreground voxels, which is
equivalent to a clustering in graph formalism.

Given a subset of vertices V′ ⊆ V, we denote by ⟨V′⟩ the subgraph V′

containing all vertices of V′ and the subset of edges E′ ⊆ E connecting
vertices in V′:

⟨V′⟩ = G′ = (V′, {(vi, vj, eij) ∈ E, (vi, vj) ∈ V′ ×V′})

In the following, we assume all vertices positive. In the case of negative
components in an atlas, we split the brain map in two: its positive part and its
negative counterpart, before extracting regions.

2.2 Foreground extraction

In this section, we restrain the number of voxels per map by selecting the most
meaningful ones. In graph formalism, this boils down to selecting a subset of
meaningful vertices in a graph. Computationally, we select foreground voxels
by setting background voxels to zero.
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1
2

Figure 4.3: Example of hard as-
signment. An atlas of 2 images is
presented on the left. The hard-
assignment (or maximum a poste-
riori labeling) is presented on the
right and results in the fusion of the
two images. We can see that voxels
are attributed to only one region.Normalization Multivariate decomposition techniques – such as dictionary

learning or ICA – assign a weight to each voxel. This weight accounts for the
quantity of the component signal present in the voxel’s signal. This value has
a meaning inside the component but cannot be interpreted relatively to the
rest of the atlas.

In a preliminary study, we experimented with normalization regarding to
maximum value and to unit variance. In the particular case of brain maps,
with small overlaps in low confidence values, we observed that the choice
of normalization method has no significant impact on the results. In the
following, the normalization to unit variance (without substracting the mean)
is used.

Hard assignment. Hard assignment transforms a set of overlapping maps
into a brain segmentation with no overlap between regions. In the end, each
voxel will be represented by a unique brain map from the atlas. This map is
the one that has the highest value for this voxel. This procedure is also called
maximum a posteriori labeling. The result is a segmentation from which we
can extract connected components, as shown in Figure 4.3.

In graph formalism, this corresponds to keeping vertices that have the
maximum values across all images:

HARD(Gi) = ⟨{Vi
x, ∀j ̸= i ∈ 1...k, Vi

x > V j
x}⟩

Mathematically, these voxels can be selected using an argmax operation. We
implement it by setting to zero all the non-foreground voxels (i. e. background).
A naive implementation is proposed in listing 4.1.

Input:
•V ∈ Rp×k , the set of group-level maps: k maps with p voxels

1 for x ∈ 1...p do
2 maxp ← arg max((V1)x, ..., (Vk)x)

3 (Vi ̸=maxp )x ← 0
4 end for
5 return \B{V}

Listing 4.1: Implementation of hard
assignment on group maps V ex-
tracted using TV-MSDL.



learning functional brain atlases modeling inter-subject variability 49

Automatic thresholding. Thresholding is the common approach used to
extract ROIs from ICA. However, the threshold is usually set manually and
is different for each map. In order to propose an automatic threshold choice,
we consider that, on average, an atlas assigns each voxel to one region. For
this purpose, we set the threshold tk(G) so that the number of nonzero voxels
– across all the maps – corresponds to the number of voxels in the brain. This
boils down to considering the threshold tk(G) as the (k−1)th k-quantile across
all voxels:

AUTO(Gi) = ⟨{Vi
x, Vi

x > tk(G)}⟩

However, since we are working with overlapping regions, this threshold
tends to leave toomuch brain voxels aside. In practical, the (k−1.5)th k-quantile
gives good results.

On Figure 5.9b, we can see that the region contours are much smoother
than regions extracted using hard assignment. However, the segmentation is
not still not perfect: the two blobs on the left are considered as one.

2.3 Component extraction

Our graphs are now composed of a reduced set of voxels. A simple way to
extract components is to extract the connected components (or subgraphs)
from the graph. This method is presented first. However, in some cases, the
components have not been properly separated by the foreground extraction.
In order to properly separate them, we use hysteresis thresholding and random
walker.

Connected components. In graph formalism, a connected component is
a subgraph where all vertices are connected. We say that two vertices are
connected if there exists a path, i. e. a succession of edges, from one to the
other:

connected(u, v)⇔ ∃(x1, ..., xn) ∈ Vi, (u, x1), (x1, x2), ...(xn, v) ∈ Ei

We denote by CC(V) the connected components of graph V.

Hysteresis thresholding. Hysteresis thresholding is a two-threshold me-
thod where all connected components with value higher than a given threshold
thigh are used as seeds for the regions. Neighboring voxels with values between
the high threshold thigh and the low threshold tlow are added to these seed
regions. In our setting, the high threshold can be seen as a minimal activation
value over the regions in order to sort out regions of marginal importance.
Each brain map has its own optimal value but, in practice, cross validation has
shown that keeping the 10% highest foreground voxels as seeds gives the best
results2. The automatic thresholding strategy described above is used to set 2 In terms of stability and explained variance.

Thesemetrics are introduced in the next chap-
ter.

the low threshold tlow.
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In graph formalism, this is equivalent to keeping only the connected com-
ponents which have at least one vertex with a value over thigh. We define this
operation as HYST(G):

HYST(G) = {(V′, E′) ∈ CC(AUTO(G)), ∃v′ ∈ V, v′ > ttexthigh}

It can also be defined generatively: for each connected component, we use
the seeds as starting set and add make it grow by adding neighbors which
value is higher than tlow.

RandomWalker. Random Walker is a seed-based segmentation algorithm
similar to watershed. It calculates, for each point v, the probabilities to end
up in each of the r seeds s1, ..., sr by doing a random walk across the image
starting from v. The original version of the algorithm (Grady, 2006) was of
probabilistic nature, whereby the probability to jump to a neighboring point is
driven by the gradient magnitude between them. After convergence the point
is attached to the seed with the highest probability.

Random Walker can also be seen as a diffusion process. It is equivalent
to hysteresis thresholding where regions that have grown enough to share a
boundary are not allowed to be merged. In graph formalism, this would be
equivalent as making sub-components grow by adding edges but never let
an edge connect two connected components, as it may happen in hysteresis
thresholding. The definition of Random Walker as a diffusion process is
formalized in (Grady, 2006). The probabilities to reach each of the seeds can be
computed using the Laplacian matrix L of the graph associated with the map.

The classical randomwalker approach uses the gradient between two voxels
(or vertices) to determine the weight of the edge between them. In our setting,
a high value in the map means a high confidence. So, instead of using the finite
difference gradient, we consider the max of the image minus the lowest voxel.
Therefore, diffusion is facilitated in areas of high confidence and more difficult
elsewhere. Following (Grady, 2006), we use a Gaussian weighting function:

eij = exp(−β(max(V)−min(vi, vj)))

We refer the reader to (Grady, 2006) for the complete description of the
algorithm. In the following, we denote by Ps(v), the probability of point v to
end up in seed s through a random walk.

RW =


⟨vi ∈ V s.t. arg max

s
Ps(vi) = s, ∀s ∈ 1, ..., r⟩


If we consider the set of probability maps given for each seed, extracting

the connected components can also be seen as a hard assignment on them.
We tested two strategies to select the seeds: taking the local maxima of the

smoothed image (this method is called automatic Random Walker in the rest
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Visual cortex

     
Original Manual Hard Automatic Hysteresis Random Walker

Default mode network

     
Original Hard Automatic Hysteresis Random Walker

Figure 4.4: Example of region extrac-
tion in maps obtained by ICA.of the manuscript) or taking the hard assignment of the images (denoted as

hard Random Walker in the rest of the manuscript). We choose the latter as it
gives significantly better results.

3 Results – Extracted brain regions

This section presents a qualitative assessment of the maps extracted with each
region extraction method. A quantitative approach is used in the next chapter.

Figure 4.4 shows 2 networks out of 42 extracted thanks to spatial group
ICA. The first one, the visual cortex, is located in the occipital part of the brain.
It is composed of two regions located in each hemisphere, as shown in the
example of manual segmentation. Because these regions tend to be linked by
relatively high values, it is hard to segment them properly. Region extractions
based on thresholding fail at separating them properly. The Random Walker
(both approaches) is the only approach able to separate them.

The default mode network (DMN) is composed of four regions. In our
experiment, no region extraction method is able to recover them all, the
best being Random Walker with three regions recovered. We clearly see the
weakness of hysteresis thresholding in this figure: the threshold is too high to
recover the temporo-parietal junctions3 but too low to properly seperate the 3 These regions are the smallest ones located

at the extreme right and left of the brainposterior cingulate cortex (PCC) and the frontal component of the DMN.

4 Conclusion

Functional atlases extracted using ICA or sparse decomposition methods are
composed of continuous maps and sometimes fail to separate symmetric
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functional regions.
Starting from hard thresholding (Blumensath and Davies, 2009), we in-

troduce richer strategies integrating spatial models, to avoid small spurious
regions and isolate each salient feature in a dedicated region. Indeed, the
notion of regions is hard to express with convex penalties. Relaxations such
as total-variation used in previous chapter only captures it partially, while a
non-convex segmentation step easily enforces regions. We find that a Random-
Walker based strategy manages to recover regions better than strategies based
on thresholding operations. However, those are qualitative results and proper
metrics are required to do a quantitative study of these approaches. Such
metrics are presented in the next chapter.



5 | Selecting the best atlas: metrics for sta-
bility and data faithfulness

Previous chapters introduce parametrized atlas extraction methods
along with post-hoc region extraction. Qualitative assessments have
been made to pick a best perfomer among all. However, a quantitative
approach is necessary, in particular in the context of automated atlas
validation. A quantitative assessment yields an objective way to select
the best model among a large number of candidate solutions. Qualitative
inspection by humans are biased or not clearly guided by criteria and
cannot be done when the number of assessments becomes large.

For that purpose, we introduce twometrics based on prior assumptions
on the ideal qualities a brain atlas should exhibit. Unlike next chapters,
we are interested in judging the quality of an atlas in terms of describing
the brain, and not for a specific pathology. We use these metrics to find
the best parameters in our models, select the best atlas extraction model
and finally select the best region extraction method.

As it turns out, these properties can become contradictory in certain
situations and it is important to evaluate the possible tradeoffs. We
will introduce a formalism by which we can easily chose the best set of
parameters if there is one, and otherwise report the frontier of the best
possible tradeoffs.

Part of the work presented in this chapter has been published in:

Region segmentation for sparse decompositions: better brain parcella-
tions from rest fMRI, Alexandre Abraham, Elvis Dohmatob, Bertrand Thirion,
Dimitris Samaras, Gaël Varoquaux, Sparsity Techniques in Medical Imaging,
Sep 2014, Boston, United States. pp.8
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1 Introduction – Interesting properties of brain atlases

Gauging the success of an atlas extraction method is challenging because
it is not meant to be taylored to specific needs, such as the diagnosis of a
given pathology. In addition, in terms of basic functional organization of the
brain, no ground truth is available to which our results could be compared.
However, we can formulate hypotheses on the qualities a brain atlas should
have. A brain atlas must i) represent the common functional organization
existing across individuals and ii) provide an adequate basis to explain the
brain activation for each individual. Based on these assumptions, we can state
that a tool is suitable to represent brain function if the extracted atlases are
stable with regards to which subjects we choose to extract the atlas, and if
they can faithfully model the original signal.

What is stability? Extracted atlases must be similar when varying the
set of subjects chosen in an homogeneous population. In fact, one of our
hypotheses is that all individuals share the same brain functional organization.
Based on this assumption, functional atlases estimated on different groups of
individuals should be similar: This is what we call stability. In order to measure
the similarity between several brain atlases, we rely on metrics designed to
measure the similarity of clusterings developed in the field of computer vision.
However, stability itself is not enough to characterize a good atlas. In fact, a
method can extract the same atlas independently of the subjects used, and
maximize stability, but badly represent the brain functional organization.

What is data fidelity? Extracted atlases must model accurately the under-
lying organization of the brain. As there is no ground truth, in the previous
chapter, we relied on visual appreciation and correlation with a reference atlas.
In order to measure data fidelity quantitatively, we rely on explained variance.
Explained variance (also called R2 or R squared) is used routinely to measure
how well a model fits the data. In our case, we also want to measure how well
the atlas is able to generalize to new subjects. For this purpose, we measure
explained variance on the testing set of our experiment.

In this chapter, we introduce metrics for these two aspects and show how
to use them to compare brain atlas extraction methods.

2 Stability with regards to training sets

In order to measure the stability of an atlas extraction method, we must
compare atlases estimated from different groups of individuals. As we expect
the underlying functional brain organization to be similar across individuals,
the extracted atlases must be similar. However, similarity is not a well defined
concept and each scientific field has its own metrics to measure it. We first
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define the problem and build an intuition about what a good metric is. Then,
we present the metrics that we used to measure similarity on atlases.

2.1 Problem statement

Our goal is to obtain a measure of similarity between different brain parcella-
tions. Such parcellations can be obtained using several methods: i) anatomical
properties, as seen before with AAL and Harvard-Oxford ii) clustering meth-
ods, such as K-Means which produce segmentations of the brain (i. e. each
voxel belongs to one and only one brain region) iii) matrix decomposition
methods, such as ICA, which extract full brain components where each voxel
has a particular weight.

This problem has been widely explored in computer vision and a lot of
similarity metrics exist (Pfitzner et al., 2009). In order to chose one suitable for
our problem, we study specific cases, define the wanted behavior in that case,
and finally select the metrics that follow this behavior.

For example, in Figure 5.1, top right, we see an example of oversegmentation:
a single region in atlas A corresponds to two regions in atlas B. This case is
not handled properly by similarity metrics that do pairing of regions: the big
region in A will be paired to one of the regions is B, ignoring completely the
second one.

In a first step, we consider a similarity measure on the hard assignment
of atlases, for the sake of simplicity. In a second step, we try to extend this
metric to overlapping fuzzy maps, in order capture finer details.

2.2 Measuring the similarity of brain segmentations

In order to measure similarity between brain clusterings, we rely on reference
metrics used in the domain of computer vision. The three reference metrics
are the DICE coefficient, the Normalized Mutual Information (Vinh et al., 2010)
and the Rand Index. These measures present properties more fitted to sparse
atlases than spatial correlation.

In order to chose the metrics most adapted to brain segmentations, we take
a look at common cases. First, in Figure 5.1, we see in the top right corner two
highlighted examples. In these cases, one region extracted in a clustering is
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splitted in two in another one. These examples are paramount for the choice of
the metric: NMI and RandIndex, that rely on co-occurence matrices, give them
different scores while the DICE similarity coefficient, that relies on pairing of
regions, will not. This is why we do not use the latter. As NMI and Rand Index
are very similar in other interesting cases, we chose the NMI since computing
it is less memory, CPU and time consuming.

Normalized mutal information (NMI) measures the statistical independance
of two clusterings. Given two hard assignments A and B with marginal
entropy H(A) and H(B) respectively,

NMI(A, B) =
H(A) + H(B)− H(A, B)

H(A) ∗ H(B)
(5.1)

with entropy defined as H(A) = −
n

∑
i=1

p(ai) log p(ai)

and joint entropy defined as H(A, B) = −
n

∑
i=1

m

∑
j=1

p(ai, bj) log p(ai, bj)

Several ways to normalize the mutual information exists. We use a normal-
ization that behaves well even in corner cases as described in (Pfitzner et al.,
2009)1. We use the implementation of the scikit-learn (Pedregosa et al., 2011) 1 The formulation given in equation 5.1 is la-

belled NMI 5 in the paperthat uses this normalization too.

2.3 Extension to fuzzy maps

Since the original definition of NMI only processes hard segmentation, we
look for extension of this metric to sets of fuzzy maps. Such extensions exists
for Normalized Mutual Information, Rand Index and DICE coefficient.

A big drawback of NMI and Rand Index is that their fuzzy extensions
only works for probabilistic clusterings where i) each map has a maximum
of 1, ii) and the sum of the values of each voxel weights across maps is 1. In
addition, these two metrics require to compare all pairs of voxels. This yields
computational problems because calculating full similarity matrices is slow
and CPU expensive. Finally, these measures yield over-optimistic scores as
background voxels (which cover more than 98% of each map) are taken into
account, reducing the size of the effect of interest, i. e. region differences.

On the other hand, a fuzzy approach of the Tanimoto coefficient (or Jaccard
Index, a measure very close to Dice similarity coefficient) is easy to compute
and it does not have the drawbacks observed for its non-fuzzy counterpart. It
has been already used in the context of neuroimaging in (Crum et al., 2006).

TC(A, B) =
∑
i,j

min(ai ,bj)

max(ai ,bj)

card(A) ∗ card(B)
Other metrics have been considered such as Earth Moving Distance or

metrics proper to graph thory of fuzzy set theory. However, they were either
too complicated computationally or not adapted to our problem.
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2.4 Chosing a model selection metric.

We presented two metrics for measuring similarity of brain atlases. However,
for the sake of simplicity, we will present the results using only one of them.
Tanimoto coefficient takes more information into account than NMI since it is
computed on the fuzzy maps. We see it in the distribution of the metric values
across all experiments in Figure 5.2: for NMI, most scores are concentrated
in high values whereas the scores of Tanimoto coefficient are more spread.
For this reason, we continue with Tanimoto coefficient for the rest of the
study. However, conclusions regarding best models are identical for NMI and
Tanimoto coefficient.
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Figure 5.2: Distribution of stabil-
ity metric values on all experi-
ments. Top: Normalized Mutual
Information. Bottom: Tanimoto co-
efficent

3 Measuring data faithfulness

3.1 Problem statement

Using an atlas to represent brain signals can be seen as a compression of these
signals. In fact, instead of expressing a brain signal by the signal measure un
each voxel, we aggregate voxels that share same activation signals together
and use a single time series to represent them.

The goodness of fit of such method can then be quantified by measuring
how far the reconstructed signal is from the original one. In the decomposition
models, this quantity is called "residuals" because it represents the residual
data that could not be explained by the model. In Figure 5.3, we show an
exemple of such reconstruction. The goal in this figure is to have the green
line as close to zero as possible. A widely used metric for this problem is the
explained variance.

Principal component analysis (PCA) maximizes the explained variance on
the training set. However, in the context of brain atlas extraction, we want the
atlas to generalize to unknown individuals – individuals not present in the
training set – as much as possible. For this purpose, we measure the explained
variance on the testing set instead of the training set.

0

Original
Reconstructed
Residuals

Figure 5.3: Explained variance.



learning functional brain atlases modeling inter-subject variability 58

3.2 Explained variance

The explained variance measures how much a model accounts for the variance
of the original data. The more variance is explained, the better the model
explains the original data.

In our problem, we want to know how much an atlas V ∈ Rp×k accounts
for the variance of the original signal Y ∈ Rp×n. For this we define the linear
regression model:

Y = Vβ + E

with β ∈ Rk×n the regression coefficients and E the error term. We use an
ordinary least square to estimate the regression coefficients:

β̂ = (VTV)−1VTY

For convenience, we will write the signals reconstructed by the model as
Ŷ = Vβ̂. The percentage of variance explained by the model is then computed
using the variance of the error term: Explained variance of these signals is
then computed over the original ones.

EV(Ŷ) = 1− Var(E)
Var(Y) = 1− Var(Y− Ŷ)

Var(Y)

Going further, we can expand the definition of Ŷ:

Var(Y− Ŷ) = Var(Y−Vβ̂)

= Var(Y−V(VTV)−1VTY)

= Var(Y− PV(Y))

= ∥Y− PV(Y)∥2

where PV is the projector onto V. In the end, the explained variance is the
norm of the projection of the data Y onto the components V that we have
learnt.

4 Model selection plots: exploring the trade-off

Both metrics have values ranging from 0 to 1, 1 being the best value. These
metrics can be used to compare brain atlases between them. In particular, we
can use them to determine the optimal parameters of a parametrized model
by comparing the resulting atlas with other models. It is possible that no
best model stands out from the other because of a trade-off between the two
metrics. In that case, the set of models that exhibit the best value for one
metric w.r.t. the other is called Pareto efficiency frontier.

In the NPAIRS framework (Strother et al., 2002; LaConte et al., 2003), models
are plotted in a two-dimensional plot with one stability as x-axis and predic-
tion accuracy as y-axis. In a similar manner,we compare atlases in a two
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Pareto efficiency frontier
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Figure 5.4: Examples of model se-
lection plots. Left: a plot where
several models belong to the Pareto
efficiency frontier. There is no clear
winner, we cannot conclude on the
best value for parameter a. Right:
a plot where only one optimum be-
long to the Pareto efficiency frontier.
We can state that the best value for
parameter a is 0.02.dimensional plot with stability as x-axis and data faithfulness as y-axis. Each

point is an atlas and any other feature can be associated with the colors of
the point. Best models are at the top right of the plot. Example of such plots
are shown in Figure 5.4. We observe two kinds of trend. The plot on the left
exhibits a Pareto efficiency frontier with several points where an optimum
cannot be determined. On the right, there is a top performer among all models
and we can determine the optimal value for a.

5 Results – Best atlas estimation and region extraction
methods

5.1 Finding the best TV-MSDL parametrization

We extract atlases following the protocol described in section 4. The global
stability score is obtained by averaging the similarity scores computed on all
pairs of atlases. The data faithfulness score of a fold is the metric applied on
the concatenation of the time series of the testing set. The global score is the
average of the metric across all folds.

In chapter 3, we showed the effect of the TV-MSDL parameters on the visual
aspect of the maps. In this section, we study quantitatively this effect on our
selection metrics and use them to find the optimal value for each parameter.

A first observation is that region extraction increases explained variance a
little. Stability is not comparable since it is sensible to the number of compo-
nents that is different between raw maps (42 maps) and extracted regions (84
regions).

Raw maps Automatic thresholding Random Walker

Figure 5.5: Model selection plots
for parameter µ. Best performers
are in top right corner.
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Global regularization µ µ weights the entire regularization term of the
TV-MSDL including the attach to group maps and the TV-ℓ1. In Figure 5.5, we
observe a common trend in our plot. We start from µ = 0.5 that gives average
results. Increasing to µ = 2.0 improves the metrics scores. When going above
2.0, we observe that the metrics scores decrease. From these plots, we can
locate the optimal value for µ between 1.5 and 2.0 Full plots (Figure 7) at the
end of this chapter support this conclusion.

Raw maps Automatic thresholding Random Walker

Figure 5.6: Model selection plots
for parameter α. Best performers
are in top right corner.

Maps regularization α Model selection plots for the parameter α are pre-
sented in Figure 5.6). We observe the same trend as for the global regularization
parameter µ. We can locate the optimal value between 0.01 and 0.04.

Raw maps Automatic thresholding Random Walker

Figure 5.7: Model selection plots
for parameter ρ. Best performers
are in top right corner.

Ratio of sparsity ρ Probably because of its dependency on other parameters,
it is hard to see a clear trend for this parameter (Figure 5.7). For the worst
models in term of metric, we see that a higher value of ρ yields better results.
But for the best models, it is unclear. In our experiences, we have seen that a
lower sparsity is globally better if regions are meant to be extracted from the
atlases afterward. Full plots (Figure 7) at the end of this chapter support this
conclusion.

Conclusion Measuring the quality of an atlas is hard. In the case of raw
atlases, NMI exhibits a Pareto efficency frontier and Tanimoto coefficient
exhibits results in disagreement with NMI. However, after region extraction,
a shift occurs in the model selection plots: The Pareto efficiency frontier
observed in the raw maps disappears and an optimal model emerges. Our
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Figure 5.8: Model selection plots
for several methods. Left: Nor-
malized mutual information. Right:
Tanimoto coefficient.

two metrics also designate the same model as best performer for each region
extraction method. We are able to determine the optimal TV-MSDL parameters
from these optimal models. Interestingly, the optimal parameterizations are
the same across all region extraction methods. This result does not only allow
us to determine the effect of each parameter on TV-MSDL and determine the
optimal settings, it also enlightens the fact that region extraction is beneficial
for comparing continuous atlases.

5.2 Finding the best model

We have shown in the previous section that our metrics matched experimental
results and can be used to find the best parametrization for TV-MSDL. We
apply the same metrics to other atlas extraction approaches, namely ICA and
K-Means to determine which one is the best. For this task, we show both NMI
and Tanimoto coefficient metrics for stability as they give different results.

Metrics validation. In the previous section, we stated that NMI and Tani-
moto coefficient agree to designate the best performing parametrization. In
Figure 5.8, we first see that all methods have metric scores in a similar range,
which is encouraging. NMI exhibits a Pareto efficiency front while Tanimoto
coefficient designates a best performer. In particular, we observe two clusters
of TV-MSDL values in the NMI plot that corresponds to different region ex-
traction methods. The most stable ones, with K-Means correspond to hard
assignment and are a degenerated case of atlas extraction. For these reasons,
we prefer Tanimoto coefficient to study similarity across atlas estimation
methods.

Selecting the bestmodel. In Figure 5.8, we see a trade-off between stability
and data faithfulness with the NMI metrics. Each methods dominates a part
of this trade-off. Interestingly, ICA is considered as less stable than K-Means
for NMI but, when fuzziness and overlapping maps are taken into account, it
is more stable in the Tanimoto coefficient plot. It is still a good compromise
between the two metrics. TV-MSDL, depending on the region extraction
method used, can be either unstable but with high explained variance, or
stable with less explained variance. K-Means clustering is the most stable
method and is on par with MSDL. Ward’s clustering is suprisingly not stable
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which contradicts our first experiments.

Conclusion. Explained variance is clearly dominated by matrix decompo-
sition methods. Their overlapping weighted maps give them a significant
advantage over the clustering methods.

However, clustering methods are stable models. According to NMI, K-
Means is the most stable, and, according to Tanimoto coefficient, Ward is the
best model behind TV-MSDL. Our metrics does not allow us to pick a clear
winner.

5.3 Finding the best region extraction method

Effect on brain maps In a first preliminary experiment, we experimented
the effect of region extraction on a specific brain map. Experiments were
made on the ABIDE dataset. We selected 101 subjects suffering from autism
spectrum disorders and 93 typical controls from 4 sites and computed brain
atlases on 10 cross-validation iterations by taking a random half of the dataset
as the train set. We extract regions from these atlases and quantify their
performance on the other half of the dataset with two metrics. We investigate
the two decomposition methods ICA and MSDL. Our goal is to compare the
effects of region extraction on sparse and non-sparse sets of maps.

Figure 5.9 presents region extraction results using each method on the same
map. In all figures, the threshold applied during region extraction is shown in a
given slice to help understanding. Results for each metric are displayed on the
right. We vary parameters for each model (smoothing for ICA, 3 parameters
of MSDL) and, for each region extraction method, display the best 10% results
across parametrization.

The regions extracted by hard assignment (Figure 5.9.a) present salient
angles and their limits do not follow a contour line of the original map. The
straight lines are the results of two maps in competition with each other. The
1D cut shows that the threshold applied when using hard thresholding is not
uniform on the whole image. The other methods look smoother and follow
actual contour lines of the original map. On this particular example, automatic
thresholding (Figure 5.9.b) extracts 2 regions: a large one on the left and a
very small one on the right. This is one of the drawbacks of thresholding:
small regions can appear when their highest value is right above the threshold.
Thanks to its high threshold, hysteresis thresholding (Figure 5.9.c) gets rid
of the spurious regions but still fails to separate the large region on the left.
Random Walker (Figure 5.9.d) manages to split the large region into two
subregions.

Model selection plots The trends observed in Figure 5.12 are similar to
the selection plots of the methods: NMI exhibits a Pareto efficiency front while
Tanimoto coefficient exhibits a clear winner. In both plots, hard assignment
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Figure 5.9: Comparison of region ex-
traction methods (after selection of
2k regions). Brain maps obtained
with MSDL are located on the left.
The activated regions are symboli-
cally represented below in a height
map. The bars on the right of each
image represent the Normalized Mu-
tual Information and Explained vari-
ance obtained on dense maps (ICA)
and sparse maps (MSDL). Random
walker is the most stable method.

Figure 5.10: Model selection plots
for region extraction. Left: Nor-
malized mutual information. Right:
Tanimoto coefficient.

gives poor results: it is clearly behind the other for Tanimoto coefficient.
Automatic thresholding and Random Walkers cover approximately the same
areas in the plot. However, hard Random Walker has a higher density in the
area of high scores.

6 Validation for a prediction purpose

We use model selection metrics as heuristics to find the best model among
several. In most cases, an optimal model can be determined from the values
of the metrics. However, since our metrics are only heuristics, we have no
guarantee that they actually select the best model.

In chapter 6, we present a prediction task we performed on the ABIDE
dataset. We propose to use the classification results of this task as an exoge-
neous variable to validate our metrics.

Using model selection plots, we have seen that NMI and Tanimoto coef-
ficient were in disagreement regarding the best parametrization to extract
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raw maps. Figure 5.11 shows the model selection plot but adds the prediction
accuracy as a third variable. While the best model is located on the Pareto
efficiency frontier of NMI, Tanimoto coefficient completely fails at selecting
the best model. This shows that measuring stability on raw maps is a hard
problem and that in this situation, NMI is more reliable because it relies on
co-occurences matrices. Please refer to Figure 7 at the end of this chapter for
the full plots.

Figure 5.11: Accuracy score of
atlases depending on metrics
scores. Left: Normalized Mutual
Information Right: Tanimoto coef-
ficient

In the two other cases, namely atlas estimation method selection and region
extraction selection, both metrics give satisfying results. As seen in Figure 5.12,
both NMI and Tanimoto coefficient exhibit a gradient of increasing prediction
accuracy. For Tanimoto coefficient, the gradient follows the metric scores: the
best model according to our metrics is also the best predictor. For NMI, the
gradient seems to be oriented toward the top left instead of top right. This
confirms that NMI is not good at selecting models when they are of different
nature.

7 Conclusion

Here, we looked for model-selection metrics to select the best brain atlas. This
is paramount for resting-state fMRI analysis since no ground truth is available
to validate the results.

We proposed metrics to measure the data faithfulness of a brain atlas,
the Explained Variance, and two metrics to measure stability, based on the
similarity metrics Normalized Mutual Information and Tanimoto Coefficient.
We use them on atlases extracted using different methods and were able to
use them to select the best model among several.

We validated our metrics using a prediction experiment. We found all
these metrics to be useful to compare models of the same nature. When
mixing models of different natures (different atlas extraction methods, or
region extraction methods), the results obtained using Tanimoto Coefficient
are more reliable (i. e. they are concordant with prediction scores and exhibit a
clear trend instead of a Pareto efficiency frontier). The only exception are the
raw maps: NMI still shows a Pareto efficiency front while Tanimoto coefficient
gives bad scores to top performing models. It is worth noticing that, for both
metrics, region extraction is beneficient to the measure of brain maps stability.
This result may extend to other metrics and be valuable to measure the stability
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Prediction scores with respect to atlas estimation methods

Prediction scores with respect to region extraction methods

Figure 5.12: Model selection plots
for region extraction. Left: Nor-
malized mutual information. Right:
Tanimoto coefficient.

of brain atlases out of our context.
Thanks to the model selection metrics, we were able to find a best pa-

rametrization for TV-MSDL. From our results, these metrics can be use to
converge toward the best parametrization. We were also able to rank the
different models and find out that matrix decomposition methods outperform
clustering methods, TV-MSDL being the best one. We also ranked region
extraction methods and determined that Random Walker maximized both
stability (according to Tanimoto coefficient) and explained variance.

These metrics can be used for parameter selection but the best indicator
in our case is experimental validation. In the following chapter, we present
our prediction pipeline and apply it on ABIDE using a carefully designed
cross-validation scheme to avoid overfitting. We will use the experimental
results to revisit the results obtained using our metrics.
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Raw maps

Automatic thresholding

Random Walker with peak seeds

Random Walker with region seeds

Figure 5.13: Accuracy score of atlases depending on metrics scores. Left: Normalized mutual information. Right: Tanimoto
coefficient.
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Raw maps

Automatic thresholding

Random Walker with peak seeds

Random Walker with region seeds

Figure 5.14: Effects of parameter µ on model selection metrics. Left: Normalized mutual information. Right: Tanimoto
coefficient.
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Raw maps

Automatic thresholding

Random Walker with peak seeds

Random Walker with region seeds

Figure 5.15: Effects of parameter α on model selection metrics. Left: Normalized mutual information. Right: Tanimoto
coefficient.



learning functional brain atlases modeling inter-subject variability 69

Raw maps

Automatic thresholding

Random Walker with peak seeds

Random Walker with region seeds

Figure 5.16: Effects of parameter ρ on model selection metrics. Left: Normalized mutual information. Right: Tanimoto
coefficient.
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6 | Learning predictive biomarkers of a psy-
chiatric disease from resting state fMRI

In the previous chapters, we introduced a method to extract functional
brain atlases from rest fMRI and applied it to an autism spectrum dis-
order (ASD) dataset, ABIDE. In this chapter, we use atlas estimation to
learn predictive neurophenotypes –imaging biomarkers– from resting
state fMRI data for ASD diagnosis. Such a neurophenotype is a partic-
ular connectivity pattern specific to subjects which exhibits behavioral
differences of interest (Seeley et al., 2009).

We achieve prediction from fMRI data with a succession of steps. The
first is the unsupervised altas extraction, followed by estimation of a
functional connectome, which is then fed to a supervised predictor for
diagnosis.

All the steps of this pipeline are fully automated: Model parameters
are set by cross-validation. We introduce a new cross-validation scheme,
closer to clinical settings, leaving a whole site out as testing set. In
this chapter, we present the pipeline along with the classication results
obtained on the ABIDE dataset. We achieve prediction accuracy on ASD
beyond the state of the art. An extensive statistical analysis of each step
of the pipeline is presented in the next chapter.

A short version of this chapter, along with the next one, has been submitted
to the journal NeuroImage.

1 Introduction – Prediction from resting state functional
MRI

Rest fMRI biomarkers have already been proven efficient for the diagnosis of
Alzheimer disease (Greicius et al., 2004; Chen et al., 2011). For the Alzheimer
disease, (Damoiseaux et al., 2012) even proposes an indicator for the progres-
sion of the disease. Likewise, the limbic system has been found impacted in
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Figure 6.1: Simple representation
of the resting-state fMRI analy-
sis pipeline. Step 1 is the estima-
tion of the atlas. Step 2 is the time
series extraction. Step 3 is the es-
timation of the covariance matrix.
Step 4 is the prediction of behavioral
variable using the functional connec-
tivity matrices computed in step 3.

depression (Craddock et al., 2009; Hamilton et al., 2011), functional hypercon-
nectivity has been observed in schizophrenic patients (Garrity et al., 2007;
Zhou et al., 2007; Jafri et al., 2008; Calhoun et al., 2011), and more complex pat-
terns in attention deficit hyperactivity disorder, autism and Down syndrome
(Anderson et al., 2013).

Imaging neurophenotypes would help grounding psychiatric disease defini-
tion on brain traits rather than observed behavior. As mentioned in chapter 1,
extracting such phenotypes is a challenging task because of the variability of
scanning protocol and target population in the field work. In the particular
case of ASD, it is even harder because the disease covers a wide variety of
different symptoms.

The textbook approach to account for such inhomogeneities to use cross-
validation, measuring how much models are able to generalize to unseen data.
In this chapter, we propose a fully-automatic and parameter-free pipeline that
relies internally on cross-validation to set its own parameters and perform a
prediction task on large datasets.

Beyond the challenges associated with aggregated data, resting-state data
comeswith its own challenges, the largest being the lack of standard processing
framework. As raw rest fMRI signals do not exhibit salient features, extracting a
functional connectome requires multiple operations, as described in (Craddock
et al., 2009; Richiardi et al., 2010; Shirer et al., 2012). The Conn toolbox 1 1 Susan Whitfield-Gabrieli and Alfonso Nieto-

Castanon. Conn: a functional connectiv-
ity toolbox for correlated and anticorrelated
brain networks. Brain connectivity, 2(3):125–
141, 2012

proposes an analysis pipeline for functional connectivity. Details of the data-
processing pipelines vary widely in the literature (Carp, 2012), and impact
strongly the resulting connectomes (Yan et al., 2013; Shirer et al., 2015). In our
approach, we propose to integrate directly the atlas estimation as part of our
pipeline.

To measure the generalization power of our approach, common practice
relies on leave-out cross-validation strategies that remove single individuals
(or random subsets), but this does not address the problem of site-specific
artifacts. We also introduce a new cross-validation strategy, leaving sites
out, where entire sites are used as test sets to measure the performance for
sites not previously encountered in the training set. On the 871 subjects from
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Ref. Subjects Atlas Results
(Nielsen et al., 2013) 964 7266 ROI Leave one out classification

60%
(Alaerts et al., 2013) 584 pSTS ABIDE used as validation set

for task protocol
(Nebel et al., 2014) 868 Precentral

gyrus
Signficant functional con-
nectivity difference

(Plitt et al., 2014) 178 Power, De-
strieux and Di
Martino

75% classification accuracy

(Ray et al., 2014) 189 219 ROIs ex-
tracted from
T1

Measures of graph proper-
ties

(Chen et al., 2015) 252 Power et al.
(Power et al.,
2011)

66% classification accuracy

(Glerean et al., 2015) 27 Voxel to voxel
correlation

ABIDE used for repro-
ducibility of results

Table 6.1: Summary of studies us-
ingABIDEdataset. For each study,
the number of individuals, regions
and validation considered are listed
along with the extracted biomark-
ers.

ABIDE dataset, this pipeline demonstrates the first inter-site prediction of
neuropsychiatric disease.

As explained in section 4, we apply our pipeline to the classification between
autistic and healthy individuals. Such task has already been explored in
(Nielsen et al., 2013; Plitt et al., 2014; Chen et al., 2015). Nielsen et al.(Nielsen
et al., 2013) presents classification results on most of ABIDE (964 participants)
reaching 60% accuracy with leave-one-out cross validation. However, leave-
one-out cross validation is overly optimistic on big datasets (Arlot et al., 2010).
Other studies report better results albeit on smaller subsets of ABIDE such
as (Plitt et al., 2014) that reaches 75% on 178 subjects or (Chen et al., 2015)
that reports 66% on 252 subjects. Several studies discuss the corresponding
neurophenotypes: impacted brain networks include default mode, language,
attentional, and motor networks (see table 6.1).

In our experiment, we vary the inclusion criteria to validate the robustness
of our approach on subsamples of different homogeneity. In the next chapter,
we perform a post-hoc statistical analysis to study the importance of the
modeling choices in the pipeline steps to guide future development.

2 Biomarkers extraction pipeline

Our approach –described in Figure 6.2– is composed of four steps for which we
use different methods, or options. A pipeline is an instance of this approachwith
a specific choice of options for each step. We consider functional-connectivity
maps (or components), composed of blob-shaped brain regions (or regions or
interests, ROIs). A set of ROIs, extracted from functional-connectivity maps
or not, form an atlas. Our approach extracts a functional connectome on a set
of regions and trains a classifier across individuals using the edge weights of
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this connectome (Varoquaux and Craddock, 2013). Unlike previous work, we
integrate region learning to the pipeline (Figure 6.2). We set all the parameters
using cross validation. For each step, several options are proposed. For the
sake of clarity, and to save computational time, some options were excluded
from the final study because of their poor results. Next chapter details the
performance scores that motivated our choice.

The pipeline has been optimized to handle both the big size of the dataset
(300GB) and the computational cost induced by the exploration of all the
pipeline options. On a standard desktop computer (8 cores, 32GB RAM),
computing one pipeline takes up to 4 hours and the whole computation of the
two next chapters would take more than 10 years.

Training set Testing set

A B C D E A B C D E

Training set Testing set

ROIs estimation

Harvard-Oxford Yeo

ICA MSDL

K-Means Ward

Time series
extraction

Matrix estimation

Correlation

Partial
correlation

Tangent embedding

Classification

Ridge classifier

SVC-

SVC-

Intra-site cross-validation
Subjects from each site are proportionnaly split

R-fMRIROIs

Time series

41 2 3

Site A Site B Site C Site D Site E Site A Site B Site C Site D Site E

A B C D E

Inter-site cross-validation
A site is left out for validation

Figure 6.2: Rest fMRI analysis
pipeline. Cross-validation schemes
used to validate the pipeline are
presented above. Intra-site cross-
validation consists in randomly split-
ting the participants into training
and testing sets while preserving
the ratio of samples for each site
and condition. Intra-site cross-
validation consists in leaving out
participants from an entire site as
testing set. In the first step of
the pipeline, ROIs are estimated
from the training set. The second
step consists in extracting signals
of interest from all the participants,
which are turned into connectivity
features via a covariance estimation
in the third step. These features are
used in the fourth step to perform a
supervised learning task and yield
an accuracy score. An example of
pipeline is highlighted in red. This
pipeline is the one that gives best
results for inter-site prediction.

2.1 Step 1: Regions definition

Regions of the functional atlas can either be based on existing atlases or learned
from the fMRI data. We investigate the state-of-the-art techniques to extract
brain regions from rest fMRI listed in chapter 4.

Namely, we explore two clustering methods. K-Means, the historical
technique in fMRI time series clustering (Goutte et al., 1999; Thirion et al., 2014),
is a top-down approach seeking cluster assignments to minimize a variation
dispersion criteria. Ward’s clustering also seeks to minimize this criterion
using agglomerative hierarchical clustering: Imposing a spatial constraint
comes at no cost and has been extensively used to learn brain parcellations
(Thirion et al., 2014). As Ward’s clustering directly extracts blobs, we use it
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directly to extract 84 ROIs. K-Means is used to extract 42 maps, from which 84
ROIs are extracted.

We also explore two decomposition methods. Independent component
analysis (ICA) is the reference method to extract brain maps from rest fMRI
data (Beckmann and Smith, 2004), seeking to maximize independence across
maps. We use the ICA proposed in (Varoquaux et al., 2010c). Multi-subject
dictionary learning (MSDL) is a decomposition method based on dictionary
learning and a multi-subject learning strategy to extract a group atlas. It uses
a spatial penalty to promote maps containing contiguous regions (Varoquaux
et al., 2011; Abraham et al., 2013).

Unlike MSDL and Ward’s clustering, ICA and K-Means do not enforce a
spatial structure on their components. Applying a Gaussian smoothing on the
data can inject such structure. We test a range of gaussian smoothing with
full-width-at-half-maximum going from 4mm to 12mm.

In addition, we study reference functional and anatomical atlases: Harvard
Oxford (Desikan et al., 2006), a structural atlas computed on T1 images from
36 individuals, Yeo (Yeo et al., 2011), a functional atlas computed using a
clustering approach on a thousand individuals, and Craddock (Craddock
et al., 2012), a functional atlas computed using constrained spectral clustering,
exclusively used to study the impact of the number of regions on prediction.

2.2 Step 2: Time-series extraction

We extract one representative time series per ROI. For non-overlapping ROIs,
we use the average signal of the voxels contained in each region. When
brain regions overlap, as in decomposition models, we rely on least-squares
regression that models the signal of one voxel as the mixture of signals from
several regions. Common practice does not rely on overlapping functional
maps because each region is believed to have a single functional role. However,
we do not use this representation as function sharing between brain regions
but as a way to compensate for normalization artifacts that grow with the
number of subjects.

We regress out nuisance time series created from signals summarizing high-
variance voxels (CompCor (Behzadi et al., 2007), with 5 principal components
of the 2% voxels with highest variance). In addition, we extract the signals of
the ROIs located in white matter and cerebrospinal fluid and regress them out
to reject non-neural information (Varoquaux and Craddock, 2013).

2.3 Step 3: Connectivity matrix estimation

The length of the time series available in fMRI is insufficient to reliably compute
the true covariance matrix for a given individual. We have to estimate it using
a regularized covariance estimator. ℓ2-regularized shrinkage covariance and
ℓ1-regularized graphical lasso are commonly used for this task and both have
a single paramater. For the shrinkage covariance, Ledoit-Wolf shrinkage
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estimator (Ledoit and Wolf, 2004) gives the parameter that optimizes the
bias-variance trade-off. Cross-validation is necessary for the computation
of graphical lasso parameter. In a preliminary study, all methods performed
equally well. However, Ledoit-Wolf shrinkage estimator is the fastest and
is parameter-free. To avoid a significant computational overhead, we have
chosen to select only one option for this step.

From the estimated correlations we derive various connectivity measures
to capture interactions between brain regions: i) the correlations matrix, ii)
partial correlations matrix from the inverse covariance matrix (Varoquaux
and Craddock, 2013; Smith et al., 2011), and iii) the tangent embedding
matrix parametrization of the covariance matrix (Varoquaux et al., 2010a; Ng
et al., 2014).

To compensate for additional variability, site, age and gender effects are
regressed out from these connectivity coefficients. We excluded covariances
matrix and precisions matrix (unnormalized counterparts of correlation
matrix and partial correlation matrix resp.) from the study because of
their insufficient performances.

2.4 Step 4: Supervised learning

We use the connectivity measures between all pairs of regions as features in
a supervised learning step: we train a classifier to discriminate autistic from
healthy patients. We explore support vector classification SVC, with an ℓ1

or ℓ2 penalization, logistic regression, with an ℓ1 or ℓ2 penalization, ridge
regression, which also uses an ℓ2 penalization and Gaussian Naive Bayes. We
use the implementation of the models in Scikit-Learn (Pedregosa et al., 2011).

Gaussian Naive Bayes were excluded form the study because of their
poor performance. We also removed logistic regression since its results
were similar (although a bit lower) to SVC.

3 Experiments – Predicting autism spectrum disorders

In this section, we detail the experimental set up of the prediction task. We
first detail the inclusion criteria of the different subsamples and also the cross-
validation strategies.

3.1 Exploring Variability

Most previous studies have used less than a quarter of the ABIDE dataset.
This is likely for computational reasons but also to reduce the variability due
to the number of sites. In order to explore the effect of such choice on the
results, we decided to apply our study not only on the whole ABIDE dataset but
also on subsets of decreasing variability (see table 6.2): all participants (871
individuals) is the full set of individuals that passed QC after preprocessing,
biggest sites (736 individuals) consists of the full dataset amputated from
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Set # Subj. Sites Selection criteria
All subjects 871 16 All subjects after QC
Biggest sites 736 11 Remove 6 smallest sites
Right handed males 639 14 All subjects without left handed and

women
Right handed males, 9-
18 yo

420 14 Right handed males between 9 and 18
years old

Right handed males, 9-
18 yo, 3 sites

226 3 Young right handed males from 3
biggest sites

Table 6.2: Subsets of ABIDE con-
sidered. We explore several subsets
of ABIDE with different homogene-
ity. Card. stands for the cardinality
of the dataset, i.e. the number of
subjects.

its 6 smallest sites, right handed males (639 individuals) consists of the full
dataset with females, left handed participants, and small sites excluded (as
in (Di Martino et al., 2014)), right handed males, 9-18 yo (420 individuals)
is the previous group restricted to participants between 9 and 18 years old
to reduce age-related variation, right handed males, 9-18 yo, 3 sites (226
individuals) are the individuals from the previous set belonging to the 3 biggest
sites.

3.2 Cross Validation

Cross-validating an analysis consists in running it on a split of the dataset in
two non-overlapping subsets: the training and the testing set. It is called a fold.
The model to evaluate is then trained on then training set and is evaluated
depending on its prediction score on the left out testing set. This procedure
is repeated several times. Cross-validation serves two purposes: i) to find
the best parameters of models and ii) to measure prediction performance, e.g.
predicting labels on seen or unseen sites. The two cross-validation schemes
used in this study are illustrated in Figure 6.2.

The first scheme, intra-site prediction, aims at picking training and test-
ing sets as homogeneous as possible, in order to reduce the site variability. It is
based on a cross-validation procedure called stratified shuffle split where sub-
jects are split into training and test sets while preserving the ratio of samples
for each site and condition. In our study, this means that the percentage of
subjects from one site will always be the same in the training and the testing
sets. The percentage of healthy and autistic participants in each set will be
kept as well. In this study, we always use 80% of the dataset as training set
and the remaining 20% are used as tests set. An illustration of this procedure
can be found in Figure 6.2.

The second cross-validation scheme, inter-site prediction, reproduces
clinical settings by using whole sites as testing sets. No further stratification
is needed as the amount of autistic and healthy individuals in each site is
balanced. However, due to the heterogeneity of the size of sites, the size of
the testing set goes from 20% to 10% of the original dataset size. This cross-
validation is not applicable on the subset of young right handed males from 3
biggest sites since we can only do 3 folds.
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In each fold, region-extraction methods are used to learn maps indepen-
dently of the testing set. For data-driven models, this step entails feature
learning on up to 300GB of data, which does not fit in memory. We reduce
data size by applying a PCA dimensionality reduction for K-Means and ICA.
We use a randomized SVD for computational efficiency (Martinsson et al.,
2011). Using a stochastic coordinate descent approach (Abraham et al., 2013),
MSDL can extract maps on a large number of subjects in a reasonable time (2
hours for 871 subjects).

4 Prediction accuracy in intra-site and inter-site settings

As shown in table 6.3, maximal performance (across pipelines) for each, intra-
site and inter-site prediction approached 67.9% (p < 0.01, sensitivity 67%,
specificity 69%) when the most inclusive subsample was examined (ABIDE sub-
sample #1); this exceeds previously published findings with the ABIDE sample.
While this result is insufficient to use fMRI as a diagnosis tool, a low score was
expected since ASD cover a wide spectrum of phenotypes from fully functional
individuals to patients not able to talk. We notice that intra- and inter-site
prediction have similar scores. But, despite this apparent similarity of maximal
performance, there are a number of noteworthy distinctions. First, across
all training set sizes, the intra-site prediction strategy showed substantially
lower variation (p < 0.01). Then, regarding the usage of more heterogenous
subsamples, we did not find a significant effect of sample composition on
performance.

Cross
validation

Right handed
males 9-18 yo, 3

sites

Right handed
males 9-18 yo

Right handed
males

Biggest sites All subjects

Intra-
site

66.6%± 5.4% 65.8%± 5.9% 65.7%± 4.9% 67.9%± 1.9% 66.9%± 2.7%

Inter-
site

69.7%± 8.9% 65.1%± 5.8% 68.7%± 9.3% 66.8%± 5.4%

Table 6.3: Average accuracy
scores (and standard deviation)
for top performing pipelines.
This table summarizes the best
results obtained for classification
in for each atlas and subset using
intra-site or inter-site prediction.

In Figure 6.3, the learning curves show that comparable performance be-
tween intra- and inter-site prediction strategies emerges when using more
than 80% of the training set. Extended figures at the end of this chapter (see
Figure 6) shows that below 278 participants in the training, the intra-site
prediction is higher performing then inter-site (p < 0.01). Above, we don’t find
a statistical difference between the two.

It is worth noting, that regardless of which subsample was examined, we
never observed plateaus in performance as training set size was increased.
This implies that we do not reach optimal classification performance; our
pipeline could benefit of additional subjects. Given a large enough training
set, inter-site prediction competes with intra-site, albeit with higher variance.
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Figure 6.3: Learning curves. Clas-
sification results obtained by vary-
ing the number of subjects in the
training set while keeping a fixed
testing set. The colored band repre-
sent the standard error of the pre-
diction. A score increasing with the
number of subjects, ie an increasing
curve, indicates that the addition of
new subjects brings information.

5 Functional biomarkers

The wide exploration of the multiple options of the pipeline provides a large
set of results that are analyzed in the next chapter. In this section, we analyze
the observed differences of functional connectivity between ASD patients and
controls.

5.1 Understanding the discriminant connections

Among all brain connections considered to diagnose subjects, some are more
important than others. In order to find out which are the most important,
it is common to consider the mean of correlation matrices or the weights
of the classifier. In this study, we have decided to assess the importance of
biomarkers using the statistical power induced by the high numbers of subjects
and iterations. In particular, we run an identical pipeline on 10 different subsets
of the same dataset and consider reliable the results that are repeated several
times on different folds. Given its optimal results, we focused on the pipeline
MSDL + tangent space embedding + SVC-ℓ2.

Across the 10 folds, 37 ROIs are reproducible (DICE similarity score above
0.9). They cover all the gray matter at the exception of sensorimotor area and
premotor cortex that does not satisfy our stability criterion. Since we use a
linear classifier for the diagnosis, we are able to analyze the weights of the
classifiers obtained across folds. We apply a statistical t-test on each of the
weights and keep the significant ones.
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5.2 Head motion

Efforts have been made to regress out the effect of movements in the data
(regression of movement parameters, elimination of scan sessions when move-
ments are too wide). It is however important to take into account that recent
findings attribute differences of connectivity in longitudinal connections to
head motion (Van Dijk et al., 2012). In fact, movements patterns are different
between healthy and autistic patients given that the latter suffers from behav-
ioral problems. In order to measure the size of this effect, we trained a classifier
on the Fourier transform of the movement estimations made during prepro-
cessing for all subjects in ABIDE and tried to discriminate autistic patients
from healthy ones, following the same cross-validation pattern as our study.
We reach the score of 62%, which is higher than state of the art results for
connectivity studies, but lower than our highest scores. If movement patterns
may be learned, they cannot explain all the results by themselves. However,
it is likely that the difference of connectivity observed between frontal and
parietal parts of the DMN is due to the effect of movements.

5.3 Autism spectrum disorders neurophenotypes

Default Mode Network

L R
L R

a

Self-awareness ROIs

L R
L R

b

Semantic ROIs

L R
L R

c

Broca’s area and DMN

L R
L R

d

Primary Motor Cortex and DMN

L R
L R

e

Atlas

f

Figure 6.4: Connections signifi-
cantly non zero in the predictive
biomarkers distinguishing con-
trols from ASD patients Red con-
nections are stronger in controls
and blue connections are stronger in
ASD patients. Subfigures a, b, and
c report intra-network differences
and d and e inter-network differ-
ences. Below is the consensus atlas
extracted by selecting regions con-
sistently extracted on 10 subsets of
ABIDE. Colors are random.
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Default Mode Network (DMN) (Figure 6.4.a) Connectivity in the DMN
has been reported as different for several pathologies (Greicius, 2008) includ-
ing ASD. Studies on adolescent or adult patients report an hypoconnectivity
between regions of the DMN (Cherkassky et al., 2006; Kennedy et al., 2006)
but also more complicated patterns with lower connectivity between distant
regions of the DMN and stronger connectivity with close ones (Monk et al.,
2009). A recent study on children (from 7 to 13 year old) reported an hyper-
connectivity of the DMN (Supekar et al., 2013). Our results show a significant
hyperconnectivity in the DMN, in particular between both temporoparietal
junctions and PCC.

Self-awareness ROIs (Figure 6.4.b) We observe an interhemispheric hy-
poconnectivity between insulae and inferior parietal lobes. Those regions are
part of the frontoparietal control network that is implicated in cognitive func-
tions such as learning and memory (Iidaka et al., 2006). This hypoconnectivity
has already been widely evoked in ASD (Anderson et al., 2010; Di Martino
et al., 2011) and already found in the ABIDE dataset (Plitt et al., 2014; Ray et al.,
2014). These ROIs also match anatomical regions of increased cortical density
in ASD (Haar et al., 2014).

Semantic ROIs (Figure 6.4.c) Differences of laterality in language net-
works implying middle temporal gyrii have already been observed (Kleinhans
et al., 2008). Although this symptom is often considered as decorrelated from
ASD, we find that these regions are relevant for diagnosis.

Broca’s area (Figure 6.4.d) Known for its role in language comprehension,
Broca’s area is implied is several other functions like action recognition and
gestures. In our experiment a higher connectivity has been observed between
this region and temporoparietal ROIs of DMN network in ASD patients.

PrimaryMotor Cortex (Figure 6.4.e) PMC has been suspected in the case
of ASD because of the behavioral symptoms of the patients. As for Broca’s ar-
eas, we observe that the connectivity between ROIs of the cortex is not directly
disturbed. Their relationship with regions of the DMN is impacted. Right
PMC’s connectivities with temporoparietal junctions are disturbed: higher
in the ROI of the same hemisphere and lower with the one in the opposite
hemisphere. With a lower effect size, we also observe that the connectivity
between left PMD and PCC is higher in ASD patients.

6 Conclusion

We have shown how to perform a prediction task using brain atlas estimation
method, broached in the previous chapters, as first step. It is followed by the
definition of a functional connectome upon the brain atlas and a prediction
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using a discriminant model built on the corresponding connection values. Our
pipeline is fully-automatic and parameter-free as it automatically sets the
parameters of the models by using an internal cross-validation. By Applying
it on the ABIDE multi-site autism dataset, we were able to perform a classifica-
tion of autistic patients versus healthy ones and extract plausible biomarkers
regarding literature on ASD. Our top prediction accuracy of 68%, which is not
enough to use our pipeline for prediction, but was expected since ASD covers
a wide range of symptoms which makes classification hard.

These functional results need to be validated by the classification scores
obtained on ABIDE. An extensive analysis of these results is presented in the
following chapter.
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Figure 6.5: Learning curves. Classification results obtained by varying the number of subjects in the training set while keeping a
fixed testing set. The colored band represent the standard error of the prediction. A score increasing with the number of subjects, ie
an increasing curve, indicates that the addition of new subjects brings information.





7 | What’s in a pipeline? Important choices
for prediction

The pipeline presented in the previous chapter is composed of four
steps. For each of these steps, several options are available. In this chapter,
we answer two questions. Which step has the greatest impact on the
prediction accuracy? For each step, which of the methods leads to the best
accuracy? To answer these questions, we explored all the combinations
of possible pipelines and ran a statistical analysis on the results.

This analysis shows that atlas estimation is the most important step
of the pipeline, while the other steps are on par. We determine that the
best pipeline is composed of TV-MSDL, tangent embedding covariance
matrix estimation and SVC-ℓ2.

The content of this chapter, along with the previous one, has been submitted
to the journal NeuroImage. We present a deeper insight into partial results in
this manuscript.

1 Post-hoc analysis of classification results

For statistical analysis purposes, we ran all possible pipelines and obtained a
total of 1939400 pipelines. By performing a statistical analysis on these results,
we determine the optimal settings for our prediction problem.

1.1 Full factorial analysis of variance

Our pipeline is composed of several steps for which several options are avail-
able. For each pipeline, we have the score of prediction on 10 folds for both
cross-validation schemes and all subsamples.

Since pipeline step values are categorical and not quantitative, we use an
analysis of variance (ANOVA) to determine if any option brings a statistically
signficant improvement in the scores compared to the others. ANOVA com-
pares the differences to the mean inside the groups to the difference between
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the groups and gives a p-value for rejection of the null hypothesis that the
results of the 2 groups are drawn from the same distribution.

Since we have several factors, we use the n-way ANOVA. This ANOVA is
called full factorial because we explore all the combinations of all options for
all the factors.

1.2 Optimal number of regions

In order to compare models of similar complexity, we restricted our study to
84 regions as in (Abraham et al., 2013). As this choice may not be optimal, we
validate it with atlases from (Craddock et al., 2012), varying the number of
regions (Figure 7.1).

For this aspect, we do an ANOVA with the following factors: the atlas
used (Ward and Craddock atlases are used for this study to save computation
time), the number of regions (10, 20, 40, 60, 80, 100, 140, 200), the matrix type
(correlation, partial correlation, tangent embedding) and the predictor (SVC-ℓ2,
SVC-ℓ1 and ridge classifier). We are interested only in region number.

The best performing models are located between 40 and 100 ROIs, with no
clear winner. The score for 140 ROIs is very low. This is due to the instability of
the results obtained on inter-site prediction above 100 regions. This trend can
be observed when plotting this analysis for each subsample in the extended
figure at the end of this chapter (Figure 7.8).

1.3 Impact of pipeline step choices

For this study, the ANOVA is realized by considering as factors the steps
1, 3, and 4 of the pipeline: i) the atlas extraction method (TV-MSDL, ICA,
K-Means, Ward’s clustering, Harvard-Oxford, and Yeo), ii) the covariance
matrix type (correlation, partial correlation, and tangent embedding), iii) the
predictor (SVC-ℓ2, SVC-ℓ1, and ridge classifier) In the ANOVA, we take as
representative accuracy score the average of the 10% best performing models
when varying model parameters for a pipeline. This yields scores stable and
robust to potential outliers.

Figure 7.2 shows that the atlas estimation step is the most important of
the pipeline and that MSDL dominates it clearly. Other data-driven methods
are globally below average. Tangent embedding is overall the best covariance
matrix type while correlation matrices dominate partial correlation in intra-
site prediction only. Finally, we observe that ℓ2-regularized classifiers (namely
SVC-ℓ2 and ridge classifier) outperform SVC-ℓ1. An extended study of these
effect for each subset is available at the end of this chapter(Figure 7.9). An
interesting trend visible in these plots is that, when using inter-site cross-
validation on a small set of subjects, data-driven methods generalize less well
and reference atlases become top atlases for prediction.

Detailed pairwise comparisons (Figures 7.3, 7.5, and 7.7) confirm these
trends. Results of intra-site prediction are more packed, confirming the higher
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variability of inter-site prediction results (supplementary table 6.3).

2 Best atlas extraction method

Cross
validation

Atlas estimator Right handed
males 9-18 yo, 3

sites

Right handed
males 9-18 yo

Right handed
males

Biggest sites All subjects

MSDL 66.6%± 5.4% 65.8%± 5.9% 65.7%± 4.9% 67.9%± 1.9% 66.9%± 2.7%
Yeo 60.9%± 7.5% 62.3%± 3.6% 64.7%± 3.1% 64.7%± 2.9% 66.9%± 3.0%

Harvard Oxford 63.6%± 2.7% 62.1%± 4.6% 64.8%± 5.1% 64.8%± 2.5% 66.4%± 2.7%
ICA 61.3%± 8.7% 62.3%± 3.0% 61.6%± 4.3% 65.2%± 3.1% 62.0%± 3.4%

K-Means 62.6%± 5.9% 61.4%± 5.4% 61.5%± 3.0% 61.3%± 3.4% 65.1%± 1.8%

Intra-site

Ward 63.2%± 6.3% 60.1%± 6.0% 62.2%± 4.9% 64.6%± 2.7% 63.7%± 3.4%
MSDL 68.3%± 7.6% 63.4%± 6.3% 68.7%± 9.3% 66.8%± 5.4%
Yeo 69.7%± 8.9% 64.5%± 10.3% 61.4%± 7.9% 61.3%± 7.2%

Harvard Oxford 68.1%± 9.0% 65.1%± 5.8% 62.4%± 5.4% 63.6%± 6.2%
ICA 63.1%± 9.9% 62.5%± 7.8% 65.0%± 4.8% 60.9%± 5.2%

K-Means 62.8%± 13.9% 61.5%± 8.1% 61.9%± 10.1% 60.3%± 4.8%

Inter-site

Ward 62.4%± 11.7% 59.8%± 6.9% 63.4%± 5.4% 63.1%± 4.0%

Table 7.1: Average accuracy
scores (and standard deviation)
for top performing pipelines
depending on atlas estimation.
This table summarizes the best
results obtained for classification
in for each atlas and subset using
intra-site or inter-site prediction.
Pipelines are sorted according to
the atlas used. Best results are
shown in bold.

A clear trend is that data-driven methods give best performers for high
number of subjects, in particular for models with imposed spatial structure.
The high performance of MSDL is probably due to its strong structured regular-
ization. Its robustness to noise makes it a top performer even in the particular
context of inter-site prediction on small datasets where other data-driven
methods do not generalize well and thus reference atlases dominate.

We observe that the ranking of the methods observe in the best results
matches the model selection plots: TV-MSDL is, by far, the best atlas and
K-Means and ICA have close scores even if the latter is slightly better. The
parameterization of TV-MSDL that yields the best result also matches the best
values selected by our metrics: µ = 2, α = 0.02, ρ = 0.6.

Remaining site-specific artifacts cause instabilities that can be remedied
by adding more subjects and sites. This means that inter-site analysis could
become competitive with intra-site prediction given enough subjects and an
optimal allocation of subjects across sites.

2.1 Overlapping regions predicts better

In section 2.2, we put forward the hypothesis that overlapping atlases are
better at representing the signal, in particular for heterogeneous data. Based
on our experiment, we compare predictions results obtained with overlapping
atlases and their non overlapping counterpart (voxels belonging to several
regions are assigned to the one with highest value).

Figure 7.4 shows that our hypothesis is confirmed. Overlapping atlases
prediction results are higher (p < 0.01) than their non-overlapping counterpart.
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Cross
validation

Matrix type Right handed
males 9-18 yo, 3

sites

Right handed
males 9-18 yo

Right handed
males

Biggest sites All subjects

Correlation 64.9%± 7.6% 64.0%± 3.0% 64.1%± 3.7% 67.4%± 3.6% 66.2%± 3.8%
Partial correlation 63.4%± 7.3% 64.5%± 4.0% 64.3%± 3.4% 66.3%± 2.3% 65.5%± 2.2%
Tangent embedding 66.6%± 5.4% 65.8%± 5.9% 65.7%± 4.9% 67.9%± 1.9% 66.9%± 2.7%

Covariance 64.9%± 7.6% 62.9%± 4.0% 63.3%± 2.1% 65.0%± 2.8%
Intra-site

Precision 63.8%± 5.8% 63.8%± 5.7% 64.3%± 4.1% 64.3%± 1.5%
Correlation 68.3%± 7.6% 64.2%± 7.6% 68.0%± 7.1% 65.2%± 10.1%

Partial correlation 65.7%± 5.9% 63.6%± 6.1% 66.1%± 4.8% 65.6%± 5.7%
Tangent embedding 69.7%± 8.9% 65.1%± 5.8% 68.7%± 9.3% 66.8%± 5.4%

Covariance 68.3%± 7.6% 64.7%± 9.4% 64.7%± 9.9%
Inter-site

Precision 64.4%± 5.6% 64.8%± 6.1% 65.2%± 7.1%

Table 7.2: Average accuracy
scores (and standard deviation)
for top performing pipelines
depending on matrix type.
This table summarizes the best
results obtained for classification
in for each atlas and subset using
intra-site or inter-site prediction.
Pipelines are sorted according to
the matrix estimation step. Best
results are shown in bold.

3 Best covariance matrix estimation

Tangent-space projection for correlation matrices gives significant better re-
sults. This enhancement comes at the cost of readability, because thesematrices
cannot be read as correlation matrices. Their results can however be directly
interpreted (Varoquaux et al., 2010a). Correlation matrix performs better than
partial correlation matrix in intra-site prediction, which may be due to the
shortness of ABIDE time series.

3.1 Regression of behavioral confounds

Cross
validation

Behavioral confounds Right handed
males 9-18 yo, 3

sites

Right handed
males 9-18 yo

Right handed
males

Biggest sites All subjects

No confounds 66.0%± 5.8% 65.8%± 5.9% 65.7%± 4.9% 67.9%± 1.9% 66.9%± 2.7%Intra-site Site, age, gender 66.6%± 5.4% 65.3%± 5.8% 65.3%± 3.8% 67.2%± 3.1% 66.3%± 2.3%
No confounds 67.9%± 8.4% 65.1%± 5.8% 68.7%± 9.3% 66.7%± 7.2%Inter-site Site, age, gender 69.7%± 8.9% 64.5%± 10.3% 67.2%± 6.4% 66.8%± 5.4%

Table 7.3: Average accuracy
scores (and standard deviation)
for top performing pipelines
depending on confounds regres-
sion. This table summarizes the
best results obtained for classifica-
tion in for each atlas and subset
using intra-site or inter-site predic-
tion. Pipelines are sorted depending
on the confound regression done
on the functional connectivity
matrices. Best results are shown in
bold.

In pipeline step 3 (section 2.3), we indicate that we regress out age, site and
gender from functional connectivity matrices. Removing site effect is logical
as we know that the scanner and protocol used in the sites has an influence on
the data. Age and gender regression is related to ASD: it affects mostly males
and, because it is a developmental disorder, some patients tend to compensate
for the symptoms above 18 years old.

Classification results (table 7.3) show no significant improvement of the
confounds regression on the results. A closer look at several experiments
(Figure 7.6) shows that confounds regression lowers slightly intra-site classifi-
cation but increases the results of inter-site classification (probably because of
site effect regression). As this is considered good practice in the litterature,
we decided to apply confound regression systematically in our study.
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Cross
validation

Predictor Right handed
males 9-18 yo, 3

sites

Right handed
males 9-18 yo

Right handed
males

Biggest sites All subjects

SVC-ℓ1 61.1%± 8.4% 61.8%± 5.3% 62.1%± 4.3% 64.3%± 4.3% 63.1%± 3.9%
SVC-ℓ2 66.0%± 5.8% 65.6%± 2.7% 65.7%± 4.9% 67.9%± 1.9% 66.9%± 2.7%

Ridge classifier 66.6%± 5.4% 65.8%± 5.9% 65.7%± 4.2% 67.5%± 3.0% 66.2%± 3.8%
LR-ℓ1 63.0%± 7.9% 59.4%± 5.5% 61.4%± 3.2% 63.7%± 2.7%
LR-ℓ2 62.3%± 5.8% 62.9%± 4.5% 63.6%± 3.3% 65.9%± 2.8%

Intra-site

Gaussian Naive Bayes 62.3%± 4.8% 60.1%± 4.4% 64.2%± 4.6% 61.1%± 4.4%
SVC-ℓ1 67.6%± 9.1% 64.4%± 10.7% 66.4%± 5.5% 63.0%± 8.2%
SVC-ℓ2 69.7%± 8.9% 64.5%± 10.3% 68.7%± 9.3% 66.8%± 5.4%

Ridge classifier 67.9%± 8.4% 64.8%± 6.1% 68.5%± 9.0% 66.6%± 5.6%
LR-ℓ1 68.1%± 9.0% 64.2%± 8.0% 62.4%± 4.1%
LR-ℓ2 65.2%± 6.3% 63.3%± 5.6% 64.1%± 6.9%

Inter-site

Gaussian Naive Bayes 62.3%± 8.9% 61.7%± 9.0% 60.3%± 9.1%

Table 7.4: Average accuracy
scores (and standard deviation)
for top performing pipelines
depending on predictor. This
table summarizes the best results ob-
tained for classification in for each
atlas and subset using intra-site or
inter-site prediction. Pipelines are
sorted according to the predictor
used in the last step of the pipeline.
Best results are shown in bold.

4 Best predictor

When predicting on covariance matrices, ℓ2-regularized classifiers are the
top performers in all settings. This may be due to global effects in the con-
nectivity: A global hypoconnectivity, as already observed in ASD patients,
cannot be captured by ℓ1-regularized classifiers. In addition ℓ2 penalization is
rotationally-invariant, which means that it is not sensitive to arbitrary mixing
of features. For instance, in our pipeline, imperfect choice of regions leads to a
functional brain module being covered by several regions, which corresponds
to such a mixing. Thus, a possible explanation for the good performance of
ℓ2-penalization is that it is less sensitive to the choice of regions.

5 Conclusion

In chapter 5, we proposed metrics to evaluate the quality of brain atlases. Using
a prediction task, we propose here to evaluate any method of the pipeline by
measuring its effect on the prediction scores.

We performed a statistical analysis on our results and drew several conclu-
sions from that. First, we have seen the atlas extraction is the most important
step of the pipeline and it is the step we should concentrate our efforts on.
Then, across all pipelines, tangent embedding of covariance matrices and
ℓ2-regularized predictor were clear winners.

Finer trends also emerge from our results. In most settings, reference atlases
estimated on other datasets perfoms as well or even better than data-driven
methods. In particular, on datasets with a small number of subjects and high
heterogeneity (right handed males subsample in inter-site prediction settings),
reference atlas completely outperforms the best data-driven method. Finally,
we have confirmed the trend observed in the previous chapter: inter-site
prediction scores are on par with intra-site ones but with higher variance.
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ABIDE
subsample

Cross
validation
scheme

Number of
regions

Figure 7.1: Impact of the region
number on prediction: This plot
represents the impact of the number
of regions in the atlas on prediction
accuracy for every subset of ABIDE
and cross-validation schemes. The
blocks of bars represent the cross-
validation scheme, the subsets of
ABIDE and the number of regions.
Each bar represents the impact of
the corresponding option on the pre-
diction accuracy, relatively to the
mean prediction. This effect is mea-
sured via a full-factorial ANOVA,
analyzing the contribution of each
step in a linear model. Each step of
the pipeline is considered as a cate-
gorical variable. Error bars give the
95% confidence interval. We observe
that the best number of regions is be-
tween 40 and 100 regions. The con-
trast between the scores obtained at
140 and 200 ROIs is due to an insta-
bility in the results.
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Cross
validation
scheme

ABIDE
subsample

Step 1:
Atlas extraction

Step 3:
Covariance

matrix

Step 4:
Predictor

Figure 7.2: Impact of pipeline
steps on prediction. This plot rep-
resents the impact of each step of the
pipeline for every subset of ABIDE
and cross-validation schemes. The
blocks of bars represent the cross-
validation scheme, the subsets of
ABIDE and the different steps of the
pipeline (namely step 1, 3 and 4).
Each bar represents the impact of
the corresponding option on the pre-
diction accuracy, relatively to the
mean prediction. This effect is mea-
sured via a full-factorial ANOVA, an-
alyzing the contribution of each step
in a linear model. Each step of the
pipeline is considered as a categori-
cal variable. Error bars give the 95%
confidence interval. MSDL atlas ex-
traction method gives significantly
better results while reference atlases
are slightly better than the mean.
Among all matrix types, tangent em-
bedding is the best on all ABIDE sub-
sets. Finally, ℓ2 regularized classi-
fiers are better than ℓ1 regularized.
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Intra-site
Inter-site

Figure 7.3: Effect of atlas estimation on pre-
diction accuracy. Points above the line indi-
cates runs where choosing TV-MSDL gives bet-
ter accuracy than any another atlas estimation
method. The 2 cross validation schemes are
represented by stars and circles.

Intra-site
Inter-site

Figure 7.4: Classification accuracy scores
using overlapping atlases and their non
overlapping counterpart. Point above the
identity line support the idea that fuzzy over-
lapping maps are better at predicting behav-
ioral variable than non-overlapping.

Intra-site
Inter-site

Figure 7.5: Effect of covariancematrix type
on prediction accuracy. Points above the
line indicates runs where choosing tangent em-
bedding gives better accuracy than any other
matrix types. The 2 cross validation schemes
are represented by stars and circles.

Intra-site
Inter-site

Figure 7.6: Effect of confound regression
on prediction accuracy. Points above the
line indicates runs where regressing confounds
increases the prediction accuracy. The 2 cross
validation schemes are represented by stars and
circles.

Intra-site
Inter-site

Figure 7.7: Effect of predictor type on pre-
diction accuracy. Points above the line in-
dicates runs where choosing a ℓ2-regularized
predictor outperforms SVC-ℓ1. The 2 cross val-
idation schemes are represented by stars and
circles.



learning functional brain atlases modeling inter-subject variability 93

10 20 40 60 80 10
0

14
0

20
0

-6%

-4%

-2%

+0%

+2%

+4%

+6% Right handed males
9-18 yo, 3 sites

10 20 40 60 80 10
0

14
0

20
0

Right handed males
9-18 yo

10 20 40 60 80 10
0

14
0

20
0

Right handed males

10 20 40 60 80 10
0

14
0

20
0

Biggest sites

10 20 40 60 80 10
0

14
0

20
0

All subjects
Im

pa
ct

 o
f r

eg
io

n 
co

un
t o

n
In

tra
-s

ite
 p

re
di

ct
io

n 
ac

cu
ra

cy

10 20 40 60 80 10
0

14
0

20
0

-6%

-4%

-2%

+0%

+2%

+4%

+6% Right handed males
9-18 yo

10 20 40 60 80 10
0

14
0

20
0

Right handed males

10 20 40 60 80 10
0

14
0

20
0

Biggest sites

10 20 40 60 80 10
0

14
0

20
0

All subjects

Im
pa

ct
 o

f r
eg

io
n 

co
un

t o
n

In
te

r-s
ite

 p
re

di
ct

io
n 

ac
cu

ra
cy

Figure 7.8: Impact of the region number on prediction: each bar indicates the impact of the number of regions on the prediction
accuracy relatively to the mean of the prediction. These values are coefficients in a linear model explaining the best classification
scores as function of the number of regions. Error bars give the 95% confidence interval, computed by a full factorial ANOVA. Atlases
containing more than 40 ROIs give better results in all settings.

Figure 7.9: Impact of pipeline steps on prediction. Each plot represents the impact of each step of the pipeline for every subset
of ABIDE. In each figure, a block of bars represents a step of the pipeline (namely step 1, 3 and 4). Each bar represents the impact of
the corresponding option on the prediction accuracy, relatively to the mean prediction. This effect is measured via a full-factorial
ANOVA, analyzing the contribution of each step in a linear model. Each step of the pipeline is considered as a categorical variable.
Error bars give the 95% confidence interval. MSDL atlas extraction method gives significantly better results while reference atlases
are slightly better than the mean. Among all matrix types, tangent embedding is the best on all ABIDE subsets. Finally, ℓ2 regularized
classifiers are better than ℓ1 regularized.
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8 | Conclusion

1 Contributions

Throughout this thesis, we worked on scaling up the classic rest fMRI pipeline
to process big datasets. We proposed enhancements for the different steps of
this procedure and proposed the tools required to evaluate them.

Structure imposing regularization for atlas extraction. We introduced
a new atlas extraction approach that uses a sparse total-variation penalty
with dictionary learning to combine the tendency of total-variation to create
discrete spatial patches with the ability of linear decomposition models to
unmix different effects. Careful choices of optimization strategy let our method
scale to very large groups of subjects. The resulting regions are stable with
respect to the subjects used for training, reveal a neurologically-plausible
partition of the brain, and can give a synthetic representation of the resting-
state correlation structure in a population.

Region extraction. Brain maps extracted using linear decomposition meth-
ods may cover the whole brain and contain uninformative voxels. We proposed
an automatic thresholding strategy as an alternative to manual segmentation
of the maps. We compared it to the automatic hard assignment. Because
both strategies fail at splitting symmetric regions located on either side of
the inter-hemispheric fissure, we used the random walker segmentation and
showed that it outputs more stable atlases.

Model selection. We proposed to use similarity measures from the cluster-
ing field, namely Normalized Mutual Information and Tanimoto Coefficient,
to evaluate the stability of atlas extraction methods. We also proposed to use
explained variance to measure the ability of an atlas to account for the original
variance of the signal. Using prediction score on a diagnosis task as target
criterion, we validated these metrics as accurate to rank models depending on
their prediction performance. In particular, we observed that region extraction
improved the ability of stability metrics to rank atlases, and that Tanimoto
coefficient was best to compare models of different nature.



learning functional brain atlases modeling inter-subject variability 96

Prediction pipeline. Based on the classical rest fMRI prediction procedure,
we proposed a fully-automatic pipeline to predict behavioral data from rest
fMRI. This pipeline integrates atlas extraction as a first step and sets its pa-
rameters using cross-validation. We performed autism spectrum disorders
prediction on different subsets of the ABIDE dataset using all possible pipelines.
In addition to the classical stratified cross-validation scheme (intra-site), we
also predicted ASD on a completely left-over site to be closer to the clinical
settings (inter-site).

A post-hoc analysis of prediction scores revealed that scores obtained in
inter-site prediction are similar to intra-site but with higher variance, which
is an encouraging step toward using rest fMRI in a clinical setting. We also
established that region extraction is the most important step of the prediction
pipeline and found out best choices for all the steps. Finally, our best pipeline
obtains a prediction score above the state of the art.

Experiment reproducibility. We believe that reproducibility of experi-
ments is important. As such, all the algorithms developed in this study are
available on demand. Moreover, all the developped code is based on and will
be released in the nilearn1 (Abraham et al., 2014) Python package. Nilearn 1 http://nilearn.github.io – This package is

part of the contributions of my thesis. I am
one of the main developpers and contributed
524 commits (23350 lines of code).

provides several tools for functional neuroimaging analysis. It features ro-
bust dataset downloading, fMRI data pre-treatment (smoothing, frequency
filtering, etc.), specific fMRI approaches (Searchlight (Kriegeskorte et al., 2006),
dictionary learning, group spatial ICA, etc.) and plotting of brain images.

2 Perspectives

Cross-dataset reference atlas. In this study, we have shown that increas-
ing the number of subjects in the training set was beneficial to the prediction
accuracy. We have also stated that the optimal performance of the predic-
tion pipeline was not reached and that it could benefit from more subjects,
for example from the ABIDE 2 initiative. We have also shown that the addi-
tional variability induced by multi-site acquisition was not a show-stopper for
prediction.

In continuation of the presents study, we should extend our analysis to
multiple datasets. Big data initiative are rising in fMRI: ABIDE 2, Human
Connectome Project, CORR dataset, Rockland sample, etc. In a first step, I
would reproduce out experiment and statistical analysis on several datasets,
on autism spectrum disorders but also on diseases more assessed than ASD. I
think that we should also take advantage of the huge pool of healthy brains
from typical controls to try and extract a universal atlas and test it on all
possible studies.

New technical challenges may arise from the additional subjects and make
TV-MSDL longer to converge. In order to keep atlas extraction doable in a rea-
sonable time, algorithmic ways to optimize TV-MSDL are under consideration
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such as random projections – to reduce the dimensionality of the subject-level
problem – or bilateral filtering that could impose a regularization close to
total-variation while being less computationally costly.

Refining atlas extraction. Despite its good performances, the TV-MSDL
model can still be refined. Its multi-level approach allows one to impose
sophisticated constraints while keeping a reasonable computation time.

Recent studies highlighted the hierarchical organization of the brain. This
hypothesis is consistent with our study in the sense that regions can be seen
as sub-divisions of a brain network. I think that enforcing a hierarchical
organization in the dictionary learning could be beneficial for some problems.

Finer constraints could also be applied for specific problems. For example,
studies of the basal ganglia are based on historical anatomical segmentations.
Functional segmentation of this area is difficult because it is very noisy and
the basal ganglia are small. A solution could be to rely on the fact that basal
ganglia are supposed to be correlated to the activity of the cortex. Using a
hierarchical approach, it would be possible to force the coupling of a cortical
region with one located in the basal ganglia.

Multiple modalities. Our study only uses rest fMRI as modality. However,
structural and functional connectivity are correlated (Honey et al., 2009) and
could be used together to get better results. The versatility of our method
(MSDL) makes it a good candidate for integration of other modalities – struc-
tural connectivity during subject maps estimation for example. We could
also use modalities in other steps of the pipelines. Region extraction could
also benefit from structural connectivity to delimit the regions. We could
also take it into account in the connectome estimation. We did not explore
this track because the ABIDE dataset does not offer diffusion tensor imaging
modality from which structural connectivity is computed. Also, integrating a
new modality may be the subject of a whole thesis.

Statistical validation. As stated in the introduction, validation is hard in
rest fMRI. In this study, we propose two validation metrics to evaluate the
stability and the ability to model fMRI data of extracted atlases. We validated
them using prediction scores of a diagnosis task as surrogate criterion.

Exploration of autism spectrumdisorders or other brain disorder. Our
study is limited to one dataset and study ASD, a brain disorder that is hard to
diagnose. Even though our prediction score (68%) is higher than state of the
art results, it is still not enough to use functional connectivity as a diagnosis
tool for this task. I think that exploring other prediction tasks on ABIDE, such
as trying to find subtypes of patients (functional vs. non-functional patients)
or finding neurophenotypes of people responding to a particular treatment,
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could be useful. Predicting the severity of the symptoms is also an interesting
prediction task.

Finally, to assess the validation of our process, reproducing this study on
other diseases would be valuable.

Closing remarks. The capacity of rest fMRI as a diagnosis tool has remained
questioned, in particular because of the small size of the datasets. This thesis
opens the door of rest fMRI analysis on large heterogeneous datasets. We
show that prediction is possible in a clinical setting and provide a pipeline to
perform it. Although the prediction accuracy (65%-68%) is not sufficient to
perform individual diagnosis, we have shown that our pipeline has not yet
reached its maximum accuracy and can be improve by the addition of subjects
in the training set. These results open a wide perspective for the future: with
the technological breakthrough in acquisition methods and the acquisition of
datasets of growing size, rest fMRI may become useful for clinical use.
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Résumé : L’Imagerie par Résonance Magnétique fonction-
nelle (IRMf) est une source prometteuse de biomarqueurs per-
mettant le diagnostic de troubles neuropsychiatriques sur des
sujets non coopératifs. Un connectome est communément es-
timé en établissant un atlas de régions cérébrales représentatif
de l’organisation fonctionnelle puis en étudiants la corrélation
entre leurs signaux.

La première étape, la définition de régions, est réalisée à
l’aide d’une analyse statistique de l’activité cérébrale spon-
tanée au repos. Pour les extraire, nous utilisons une approche
d’apprentissage de dictionnaire multi-sujets intégrant une pé-
nalité imposant compacité spatiale et parcimonie. Nous ex-
trayons les unités fonctionnelles de base des réseaux fonction-
nels extraits à l’aide de techniques de segmentation inspirées
du domaine de la vision. Nous montons à l’échelle sur de
gros jeux de données en utilisant une stratégie d’optimisation
stochastique.

L’absence de vérité de terrain est un frein à l’évaluation de
la pertinence de nos modèles. Pour pallier ce problème, nous
introduisons des métriques évalouant la stabilité et la fidélité
des modèles générés. Appliquées à plusieurs sous-ensembles

d’un grand jeu de données, nous montrons que nos méthodes
de définition de régions expliquent mieux les données et sont
plus stables à travers les sujets que les méthodes de référence.

Nous intégrons ensuite notre méthode de définition de ré-
gions dans un pipeline entièrement automatisé afin d’estimer
un connectome et de l’utiliser dans des tâches de prédiction.
Nous étudions sa pertinence empirique sur une tâche clinique
de diagnostic des troubles autistiques et montrons la première
prédiction de trouble psychiatrique à travers différents sites
d’acquisition et sur des sous-ensembles d’homogénéité vari-
able. Nos résultats de prédiction sont supérieurs à l’état de l’art.
Nous démontrons que la prédiction sur des sites inconnus est
aussi efficace que la prédictions sur site connus à condition
d’avoir suffisamment de sujets. Les neurophénotypes extraits
sont compatibles avec la littérature.

Enfin, par une analyse post-hoc des résultats, nous mon-
trons que la définition de région est l’étape la plus importante
du pipeline et que l’approche que nous proposons obtient les
meilleurs résultats. Nous fournissons également des recom-
mandations sur les méthodes les plus performantes pour les
autres étapes du pipeline.

Title: Learning functional brain atlases modeling inter-subject variability
Keywords: resting state fMRI, dictionary learning, functional connectivity, biomarkers

Abstract: Resting-state functional Magnetic Resonance
Imaging (fMRI) holds the promises to reveal functional bio-
markers for neuropsychiatric disorders applicable to non-
cooperative patients. To extract such biomarkers, the standard
approach is, first, to establish an atlas of the cerebral areas
defining the functional organization of the brain, and then to
study the correlation of their brain signals. They form the
functional connectome.

The first step of building a connectome requires defining
the regions that constitute brain functional units. This is done
by performing a statistical analysis of the dynamics of spon-
taneous brain activity during resting-state. We introduce a
method combining spatially-structured and sparsity-inducing
penalties in a multi-subject dictionary learning approach to au-
tomatically extract brain networks from rest-fMRI. A stochatis-
tic optimization strategy enables scaling to big datasets. We
then show how computer vision inspired segmentation tech-
niques can be used to threshold automatically and break down
these networks into connected functional units.

To compensate for the lack of ground truth, we introduce

twometrics that aim at scoring the stability and the data fidelity
of the generated models. Using these metrics, we show that
our methods better explain the data and are more stable across
subjects than reference decomposition or clustering methods.

We then integrate this region-definition method in a fully-
automatic prediction pipeline, to build connectomes from the
data and use them in classification tasks. We study its empirical
relevance on the clinical task of predicting autism spectrum
disorders. We demonstrate the first prediction of pyschiatric
condition across different scanning sites and apply it on subsets
of participants of variable homogeneity. We exhibit prediction
scores higher than state of the art and show that, given a suf-
ficient number of individuals in the training set, prediction
across sites is as efficient as traditional prediction. We also ex-
tract autism neurophenotypes compatible with the litterature.

Finally, we show that region definition is the most impor-
tant step of the pipeline and that our approach is the best
performer. We also explore the other steps of the pipeline and
give recommandations on how to choose a prediction pipeline.
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