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Résumé 
 

Etude thermodynamique et structurale des mécanismes de 

rétention compétitive des colorants azoïques et d'anions 

inorganiques à l’interface solide-liquide sur des matériaux 

modèles de type oxydes, lamellaires et échangeurs 

organiques 

 

La présence combinée de différents types de polluants dans les effluents industriels est une 

problématique assez complexe à résoudre pour les chercheurs dans le domaine de la protection de 

l'environnement. Dans ce contexte, le principal objectif de ce travail de thèse a été d’améliorer la 

compréhension des mécanismes de sorption à l’interface solide liquide, processus impliqués dans 

la rétention compétitive pour une sélection de colorants organiques et d’espèces inorganiques sur 

des matériaux adsorbants modèles.  

Ce manuscrit comprend une étude détaillée de l’adsorption combinant différentes 

approches et techniques expérimentales complémentaires, principalement à partir de mesures de 

cinétiques et d’isothermes d’adsorption, une étude structurale par diffraction des rayons X, et une 

approche thermodynamique par calorimétrie isotherme de titrage. Trois colorants azoïques: 

Méthyl Orange (MO), Orange II (OII) et Orange G (OG) ont été retenus pour ce travail. Ils ont la 

particularité de présenter différentes tailles de molécules, différentes charges et caractères 

hydrophile/ hydrophobe, … D’autre part, deux types de matériaux chargés positivement et 

considérés comme échangeurs anioniques ont été choisis comme solides adsorbants modèles : Mg-

Al Hydroxyde Double Lamellaire (HDL) contenant dans son espace interfoliaire soit des contre-

ions nitrate (Mg-Al-HDL-NO3) soit des chlorures (Mg-Al-HDL-Cl) et une résine échangeuses 

d’ions Amberlite® IRN-78. Enfin, l’impact des oxoanions comme les carbonates (IV), les sulfates 

(VI), les chromates (VI) et phosphates (V) sur les propriétés de rétention des colorants sur ces 

adsorbants a été évalué.  

Dans un premier temps, l’adsorption des colorants a été réalisée sur ces trois matériaux 

dans des systèmes mono-composant afin d’étudier en détail les mécanismes de rétention. L’étude 
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des Mg-Al-HDL échangés par diffraction des rayons X a permis de montrer que l’échange d’anions 

est accompagné de l’intercalation dans l’espèce interfoliaire de la nouvelle espèce sorbée, générant 

des modifications structurales. En systèmes mono- et multi-composant, la rétention des MO 

semble supérieure à la capacité d’échange anionique (CEA) théorique des HDL. Ce comportement 

a été attribué à l’adsorption du colorant sur les surfaces externes, ainsi qu’à la co-adsorption des 

cations sodium, contre-ions du colorant. Il a aussi été montré que la capacité d'adsorption dépend 

fortement du caractère hydrophile-hydrophobe des colorants et de leur capacité à établir des 

interactions latérales (de p-stacking) avec les autres espèces voisines directement au sein de 

l’espace interfoliaire. La calorimétrie de titrage isotherme a mis en évidence des comportements 

inhabituels dans les thermogrammes décrivant l’évolution de l’enthalpie cumulative de 

déplacement, en lien avec la formation d’agrégats fibrillaires provenant de l’interaction entre l’OII 

et les espèces Mg(II), issues de la dissolution partielle des HDL au contact du colorant. 

Dans un second temps, l’étude de la compétition entre les colorants organiques et des 

anions inorganiques sur ces matériaux a démontré que l'élimination de colorant est fortement 

influencée par la présence d'anions phosphate ainsi que d’anions carbonate. L'analyse détaillée des 

différentes espèces compétitives a permis de proposer une classification sur la base de trois types 

de schémas de compétitions, en lien avec la forme des isothermes individuelles et les données 

calorimétriques, comme l’enthalpie cumulative en système mono-composant.  

L’ensemble de cette description des mécanismes de rétention dans des systèmes mono- ou 

multi-composants a été complété par des études plus applicatives comme les phénomènes de 

cinétiques de sorption, de réversibilité.  

 

 

Mots-clés: Hydroxydes double lamellaires, résines échangeuses d’ions, Méthyl Orange, 

Orange II, Orange G, Cr(VI), anions inorganiques, adsorption en système mono- ou multi-

composant, étude structurale par DRX, calorimétrie isotherme de titrage. 
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Thermodynamic and structural study of the mechanism of 

competitive retention of azo dyes and inorganic anions at the 

solid-liquid interface with the use of such model sorbents as 

mineral oxides, anionic clays, and organic exchangers 

 

The co-occurrence of various pollutants in industrial effluents is one of the most difficult 

problems the researchers have to face in the field of Environmental Remediation. In this context, 

the main objective of the present Ph.D. thesis has been to improve the comprehension of the 

sorption mechanisms involved in the competitive retention of selected organic dyes and inorganic 

species at the Solid-Liquid interface by using some model sorbents. 

The manuscript reports the results of advanced sorption studies made by combining several 

experimental techniques, mainly including kinetic and equilibrium adsorption measurements, 

XRD diffraction, as well as isothermal titration calorimetry. Three Orange-type dyes differing in 

the molecular size, electric charge, and hydrophobic/hydrophilic character, i.e., Methyl Orange 

(MO), Orange II (OII), and Orange G (OG), were selected for the purpose of this work. Two types 

of solid materials possessing positively charged surface sites were considered as model sorbents: 

layered double hydroxide structures based on Mg and Al (molar Mg:Al ratio of 2) with either 

nitrate (Mg-Al-LDH-NO3) or chloride counter-ions (Mg-Al-LDH-Cl) localized in the interlayer 

space, on the one hand, and strongly basic anion-exchange resin, Amberlite® IRN-78, on the other 

hand. The impact of carbonate(IV), sulfate(VI), chromate(VI), and hydrogen phosphate(V) 

oxyanions on the retention capacity of model sorbents towards the three dyes was also investigated 

thoroughly. 

In the first step, the single-component adsorption onto three sorbents was analyzed in 

regards with the detailed mechanism of retention. In all cases, an ion-exchange pathway between 

the pristine compensating anions (NO3
-, Cl-, OH-) or anions coming from the ambient atmosphere 

(e.g., carbonates) and the oncoming anionic species was identified as the principal retention 

mechanism. In the case of LDH sorbents, this anion exchange was accompanied by the 
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intercalation of the adsorbing species within the interlayer space with the concomitant changes in 

the layered structure, as inferred from the XRD study of the LDH samples loaded with the 

appropriate solute species. The retention of monovalent MO anions, both from the single-solute 

and bi-solute solutions, was found to exceed the anionic exchange capacity (AEC) of the LDH 

samples, which was ascribed to the dye adsorption on the external surface paralleled by the co-

adsorption of sodium cations. The adsorption capacity was demonstrated to depend strongly on 

the hydrophilic-hydrophilic character of the dye units and their capacity of generating lateral 

interactions (e.g., p-stacking) with other adsorbed species within the LDH structure. The use of 

isothermal calorimetry allowed the unusual shape of the curve representing the cumulative 

enthalpy of displacement to be attributed to the formation of OII aggregates/fibers induced by the 

presence of Mg and Al cations originating from the partial dissolution of the LDH sample. 

Competitive adsorption of dye and selected inorganic anions on the three model sorbents was 

studied in the second step in view of increasing the efficiency of dyes removal by optimizing 

experimental conditions. One of the main achievements was to categorize the dye uptake schemes 

in the presence of inorganic anions in regards with the shape of the experimental adsorption 

isotherms and to correlate them with the individual adsorbate affinities for the LDH sample, as 

inferred from the calorimetry measurements of the cumulative enthalpy of displacement in single-

solute systems. 

The discussion on the mechanisms of dye retention in the single- and multi-component 

systems was supplemented by experimental studies of such applicative aspects of sorption 

phenomena as kinetics, reversibility, and selectivity. 

 

 

Keywords:  

Layered double hydroxides, anion-exchange resin, Methyl Orange, Orange II, Orange G, 

Cr(VI), inorganic anions, single-solute and multi-solute adsorption, XRD study, isotherm titration 

calorimetry 
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1. Environmental impact of textile industry 

 

Nowadays, environmental issues, especially those concerning chemical water pollution, 

have become a major concern for the whole population. Textile industries are the main 

contributors of water contamination worldwide. They consume large volumes of water through 

different processes. For example a traditional textile finishing industry consumes around 100 

liters of water to process 1 kg of material [1]. Therefore, numerous suggestions have been made 

to reduce the water use by improving the production methods [2]. The following processes could 

be found in the next textile producing steps: scouring, bleaching, dyeing, printing, washing-off, 

etc., and each of these wet processes gives its own contribution to effluent’s pollution.  

The wastewater varies extensively in terms of composition due to the impurity in fibers 

and the chemical compounds used in different processes. Nevertheless, the main problem in 

water pollution from textile industry concerns mainly dye, which is used to impart color to the 

matter of which it becomes an integral part. The estimated annual production of  dye is more 

than 7•103 metric tons [3], in which 2% are directly discharged in aqueous effluents and about 

10% are lost during the coloration process [4]. The release of the dyes into water is undesirable 

for different reasons: it colors the water, changes the pH or the salinity of the wastewater media 

as well as leaves residual pigment intermediates. Consequently, it has a harmful impact on the 

photosynthesis of aquatic plants and brings changes to aquatic systems. Moreover, many of the 

used dyes and their breakdown products present a potentially toxic hazard. Indeed, more than 

90% of over 4000 dyes tested in survey have median lethal dose (LD50) values greater than 0.002 

mg kg-1.  

To evaluate the degree of pollution of wastewaters streams, many parameters should be 

compared. Among the most important ones are [2]: Chemical and Biological Oxygen Demands 

(COD and BOD), Dissolved Organic Carbon (DOC) and Total Organic Carbon (TOC). It should 

be noted that DOC and TOC values contain all the organic pollutants rejected from textile 

industry, including dye contents. All the above-mentioned parameters are independent, i.e. the 

knowledge of one of them cannot be used to identify the others. Besides, other parameters may 
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also be taken into account such as color, temperature, pH of discharged water or contents of 

inorganic additives. 

The accurate determination of the chemical composition of wastewater is important since 

this allows better understanding of the reactions and interactions between organic and inorganic 

compounds. Wastewater can be described as a complex mixture of many polluting substances 

ranging from organic chlorine-based pesticides to heavy metals associated with dyes [5]. To have 

an idea about the multiplicity of the component from the textile effluents, Table 1 gathers a 

classification of the main pollutants.     

Table 1. Classification of pollutants in textile effluents [2] 
 

Inorganic contaminants 
Neutral salts (chlorides, sulfates, phosphates, etc.), alkalis, 
mineral acids, oxidizing agents 

BOD easily biodegradable  
Vegetable oils, biodegradable surfactants, organic acids 
(formic, acetic, oxalic)  

Dyes and polymers difficult to 

biodegrade 
Dyes, polymeric impurities, most fibers, silicones 

BOD difficult to biodegrade 
Mineral oils, surfactants resistant to biodegradation, anionic 
or non-ionic softeners 

BOD unsuitable for conventional 

biological treatment 

Heavy-metal salts (Cr(VI), Cu(II), Hg(II), Cd(II), Sb(III), 
As(III,V), Zn(II)), formaldehyde reactant, chlorinated 
solvents, cationic retarders and softeners  

 

Therefore identifying pollutants in wastewaters is not trivial as the latter can contain 

highly variable distinct components. Indeed, heavy metals such as chromium, copper, zinc and 

mercury can be found in many textile processing waters, especially those from wool and 

synthetic finishing processes [3]. The presence of salts like sodium chloride and sodium sulfate 

salts are used to assist in exhaustion of anionic dyes [6, 7]. They are not toxic for the plants and 

animals in normal concentrations but it becomes dangerous at very high doses [8].  

Researchers from different continent have evaluated the samples from several textile 

industries [9, 10] as well as from different processes occurring in a textile mill [11] in order to 

measure the composition and amount of discharged contaminants, as well as different physico-
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chemical parameters such as the pH, the total dissolved of solids (TDS), the conductivity and so 

on. This information are important in order to improve the purification procedure of the water.  

Due to the complexity of mills effluents, the purification process have to be divided in 

two main steps : the first step is to separate all the solid particles or suspended matter which can 

be present in water followed by the second treatment, which is to mineralize or decompose 

completely all organic pollutants. The separation process is mainly physical (screening, 

sedimentation, flotation and flocculation) or chemical (neutralization, extraction, oxidation, 

precipitation or coagulation) [12]. Thus, solid - free wastewater can either be divided into 

biodegradable or non-biodegradable parts and these following treatments such as biological, 

chemical or physical methods can be used to eliminate the rest of the polluting residues.  

In this line, adsorption  is rapidly gaining prominence as an effective means for lowering 

pollutants in effluent at a relatively low cost [13]. The key point of adsorption process is in the 

choice of adsorbent material. The latter has to follow next requirements:  

- Low cost (the cheapest adsorbents are often produced from locally, abundantly and 

easily available materials). 

- Regenerative (reuse of the adsorbent after easy regeneration method)  

- Competitive performance (adsorption properties of adsorbent in multi-component 

wastewater conditions). 

One of the most popular adsorbent nowadays is activated carbon. This material is used  as 

the main adsorbent in pre-treatment stage for adsorption treatment methodology [12, 14]. 

Activated carbon is highly efficient for large, negatively charged or polar molecules of the dyes 

and even more, for anionic mordant and acid dyes [9] (see classification of dyes in Chapter I). 

But the main disadvantage of this adsorbent is its’ high cost. Therefore, a large variety of low-

cost adsorbents, named non-conventional, is presented in the literature (ex.: anion-exchange 

resins, zeolites, silica, chitosane, clays, etc.). 

Despite the numerous peer-reviewed papers found in the literature on the adsorption of 

contaminants using activated carbon, anion exchange resins, zeolites and activated alumina, not a 

lot of them give a comprehensive and deep understanding of the mechanisms occurring during 

the adsorption process. Few information on the selectivity of the adsorbent for the dye removal 

from a real industrial effluent is given in the literature. 
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2. Aims and objectives 

There is a real necessity to estimate the selectivity of the sorbent under competing 

conditions among the variety of organic and inorganic solutes, which are currently present in 

wastewaters during the sorption processes [9, 10]. In order to have an insight on selectivity, it is 

vital to understand the nature of the interactions (competitive or synergic) between the organic 

dyes and the inorganic species during the adsorption at the solid/liquid interface as well as the 

possible interactions of the adsorbates with the adsorbent.  

Therefore, the first objective of this thesis was to choose an adsorbent material, which 

potentially exhibit a good adsorbing properties for organic dyes. The chosen adsorbent was then 

characterized using different characterization techniques, followed by the study of the sorption of 

the organic dye. 

Titanium dioxide (TiO2) famously known for its photocatalytic properties was studied 

during the first year. The adsorption properties of this synthetic mineral with the Rhodamine 6G 

dye were investigated as a photocatalyst for the degradation of organic dye impurities in 

wastewater. Initially, further objective was to evidence the effect of adsorption (dye, 

intermediate and other organic or inorganic species in solution) on photocatalytic performance. 

Nevertheless, the study demonstrates that Rhodamine 6G adsorbs to a very small extent on TiO2. 

The adsorption of this dye onto TiO2 was so insignificant that the investigation of the multi-

component adsorption was not possible. However, it was possible to show the competition 

between the Rhodamine 6G and inorganic ions (provided from phosphate buffer which was 

added for pH stabilization) that was quite unexpected. This work is presented in more details in 

Appendix I.  

This thesis deals mainly with the investigation of mono- and multi-component adsorption 

on the two solids, chosen as adsorbents-references for this work. The first is an anionic clay 

known as Layered Double Hydroxide (LDH). It has excellent exchange properties for polluting 

dyes, therefore is a good candidate for this study. The second adsorbent is a synthetic anion 

exchanger – commercially available resin Amberlite® IRN-78. For both solids, the same dye 
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systems were used in order to compare their sorption properties. The following approaches were 

used:  

- adsorption of the organic dyes from a single-solute system on the adsorbents; 

- isothermal study of the competitive adsorption between organic and inorganic 

anions from the multi-component solutions; 

- XRD, ITC and NMR measurements were performed to investigate the single- and 

multi- component sorption. 

The primary target of this work was to elucidate the sorption process of three dyes: 

Methyl Orange, Orange II and Orange G onto Layered Double Hydroxide. Different parameters 

such as the amount adsorbed, energy of the interactions, kinetic, possible sorption mechanisms 

were evaluated. It was possible to use the LDH system to study the competition without adding 

any supplementary anionic species in the bulk. The aim was to investigate whether the intrinsic 

anion present in the LDH system, that could be exchanged by the dye molecules as well as 

carbonate ions that are naturally present in the bulk solution as we were working in an open air 

system.  

The second objective was to investigate the competitive adsorption between the dyes and 

inorganic anions (discharged with dyes in wastewaters) onto the LDH. Different dye:inorganic 

anion molar ratios were tested, with analysis of two competing species i.e. the dye and inorganic 

ion removal. XRD studies were performed for different competitive systems with the aim to 

determine from the d-spacing of the LDH's interlayer the different steps of the exchange. In order 

to investigate the energetic aspects of adsorption in the competitive systems, as well as influence 

of pH on adsorption, bi-solute adsorption was also performed onto strongly basic anion-

exchange resins between the dyes and Cr (VI).  
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3. Structure of the thesis  

This thesis reports the study of dyes adsorption mechanisms from the aqueous solution 

towards simple- and multi-component systems onto different sorbent particles. Chapter I 

summarized the theory of adsorption and ion-exchange mechanisms, with a literature review 

concerning dyes, used in textile industries and adsorbent used as effective exchangers for 

pollutant removal. Moreover, the literature review concerning competitive adsorption studies 

was summarized to better understand the system investigated in this work. The results obtained 

during this thesis are presented in four chapters in the form of articles.  

Chapter II focus primarily on the comprehension of the mechanisms of orange-type dyes 

adsorption onto the Mg-Al-LDH containing nitrate as interlayer anions. This chapter is divided 

into two articles where the mechanisms of adsorption of dyes onto the LDH are described based 

on experimental studies. In the first article, named "Study of Adsorption and Intercalation of 

Orange-type Dyes into Mg-Al Layered Double Hydroxide" the sorption of Orange-type dyes 

onto Mg-Al-NO3 is explained. Different analysis such as: kinetic of sorption, global energetic 

effect of sorption, expansion of the LDH's layers after the dye sorption and finally competitive 

adsorption between the dyes and carbonates provided from air as well as the co-adsorption of the 

sodium - counter-ion were performed and reported in this article. The second article "On the 

origin of anomalous enthalpy effects accompanying the adsorption of Orange II onto Mg-Al 

Layered Double Hydroxide from aqueous solutions" described the sorption of Orange II dye 

adsorption only using ITC analysis in order to shed some more light on the different phenomena 

involved during this dye uptake. 

Chapter III is dedicated to the competitive adsorption of the Orange-type dyes and 

inorganic anions onto Mg-Al-LDH-NO3. This chapter contains one article and deals with the 

competitive adsorption from the bi-solute systems. Three different molar ratios of the dye and 

the inorganic ions (sulfates, phosphates, carbonates or chromates) were investigated in order to 

comprehend the competitive adsorption of these compounds onto the LDH. This study allows the 

classification of the three schemas of species adsorption from the bi-component systems, based 

on the shape of the individual adsorption isotherms of the dye and inorganic anion.  

Chapter IV is also devoted to the Mg2Al Layered Double Hydroxide, however in this 

chapter the interlayer anions are the chloride ions. The same type of studies were performed. In 
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analogy with Mg-Al-LDH-NO3, mechanism of the Orange-type dyes adsorption was established. 

The competitive adsorption was investigated for dye from bi-solute and tri-solute component 

systems. Phosphates and carbonates were presented as the main competing species in this 

chapter. Analysis of the difference in adsorption properties between the two LDH solids (Mg-Al-

NO3 and Mg-Al-Cl) is also reported. 

Last Chapter V is dedicated to dye adsorption from mono- and bi-solute solutions onto 

anion exchange resins Amberlite® IRN-78. The analysis of all the main parameters (e.g. pH) 

influencing the adsorption of dyes on this sorbent was performed and confirmed by 13C CP/MAS 

NMR. This adsorbent permits us to perform some complementary studies of the competitive 

adsorption, as reversibility and selectivity tests of solute retention by the resin. 
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INTRODUCTION 

Many industrial wastewaters contain pollutants that are difficult to remove via 

conventional treatment, some contaminants are present in very small concentration, and therefore 

the removal of these impurities is quite difficult using the conventional methods. Hence, sorption 

processes are very efficient techniques for the decontamination of wastewaters. Adsorption 

processes are not only limited to the removal of pollutants but also widely used in the 

pharmaceutical industries, chemical and biological processes to name a few.  

This thesis focuses on the competitive interactions between solid and pollutants of 

wastewaters system at the solid-solution interface. Organic and inorganic compound will be use 

to mimic the wastewater systems. The sorption processes on different systems were studied by 

mean of adsorption isotherm. The aims of this chapter is first to give a brief description on the 

basic aspects of the theory of adsorption. The emphasis will be mainly on the solid-liquid interface, 

where both adsorption and ion-exchange processes occur. Adsorption isotherms are classified 

according to the nature of the sorbate-sorbent interactions. The classification can be used to 

correlate macroscopic observations with microscopic phenomena occurring at the solid-liquid 

interface.  

The systems used in this study are then described. Dyes, frequently used in textile industry, 

are persistent pollutants and to our knowledge, only few low-cost adsorbents have been proposed 

so far to treat such species. In order to illustrate why dyes are persistent pollutants, a detailed 

description of different type of dyes commonly used in industry is given. More attention has been 

paid to azo dyes, one of the most used type of dyes in numerous different industrial processes. In 

order to address the specific challenge of low-cost and effective sorbents, we have chosen to focus 

on Layered Double Hydroxide and ion-exchange resins whose structural features and reactivity 

are described. 

The originality of our approach is to consider the competition of different species for 

adsorbent’s surface, these competing species being important for real wastewater application. The 

use of multi-component adsorption processes is not straightforward since species can interact in 

different ways (cooperate, compete and do not have any interaction). Therefore, a comprehensive 
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literature review in this specific field is proposed, taking into account organic-organic, inorganic-

inorganic and organic-inorganic types of interaction.  

 

1. Theory of adsorption  

1.1. Adsorption 

The term "sorption" is used to describe the attachment of a substance to a surface with the 

creation of an interaction. Depending on the type of interactions occurring between the sorbate and 

the sorbent, sorption can be divided into  physical, chemical or electrostatic terms [1].  

Physical sorption or physisorption involves the formation of weak physical interactions, 

where no exchange of electrons is observed. Moreover, only relatively weak long-range van der 

Waals forces can be formed between the surface and the adsorbate, as well as among adsorbates. 

Because the adsorbate - surface interactions are weak, this type of adsorption can be easily reversed 

by heating.  Physisorption usually has a low heat of adsorption ranging from 20 to 40 kJ mol-1, 

hence this type of adsorption is stable only to temperatures below 150oC. Because of the weak Van 

der Waals forces between the adsorbate and adsorbent, lateral interactions are very important for 

sorbed molecules [2].  

Chemical sorption or chemisorption involves the formation of new chemical bonds 

between the adsorbate and the surface site. In chemical sorption an exchange of electrons takes 

place between the adsorbed molecule and the surface site. This sorption mechanism is 

characterized by higher energies of interactions, equivalent to strong chemical bonds (≥ 100 kJ 

mol-1) and therefore can be more stable at high temperatures.  

Electrostatic sorption involves the formation of Coulomb attractions between adsorbed 

ions and charged functional groups. The term “electrostatic sorption” is used specifically to ion 

exchange.  

The term "adsorption" is used to describe the uptake of the components (gaseous, liquid or 

solids) on external or internal surfaces of the solids. According to the second law of 

thermodynamics, adsorption of substances on solids takes place to reduce the surface tension, so 

free surface energy of the solids.  
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The energy of formation of a chemical bond on the surface on a solid can be depicted by 

means of Lennard-Jones potential energy curve [3]. Therefore, Lennard Jones potential can be 

used to explain the energetic phenomenon occurring during an adsorption or desorption process. 

Figure 1 represents the energy of the molecule as a function of the distance (z) from the mass 

center of the molecule to the surface. The well is the result of the balance of two forces: van der 

Waals attraction and repulsion present between the clouds of electrons in the atoms, from the 

surface and those of the sorbed molecule. When a molecule reaches the well, it is trapped or 

another term “adsorbed” by this potential energy until the molecule has sufficient energy to be 

desorbed. Thus, the lower the energy of the molecule, the easier it is for the molecule to fall in the 

well and stick in the chemisorption well. As shown, there are two types of wells presented on the 

curve, chemisorption and physisorption wells. The physisorption well is located further than the 

chemisorption one (i.e when the distance is large), because the bonds formed are short-ranged and 

stronger in the case of chemisorption.  

 

Figure 1. Lennard - Jones type diagrams (non-activated adsorption): potential energy versus 
distance.  

  

From the thermodynamic point of view, any systems will try to reduce its energy to reach 

the lowest values of Gibbs energy G. Adsorption is the process that occurs in the isolated system 
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with a constant temperature. Therefore, for such system Gibbs free energy describes by the 

following relation:  

  

where, ΔH and ΔS are respectively, the changes in enthalpy and entropy during the process.   

A spontaneous process is always accompanied by a decrease in the Gibbs energy, leading 

to ΔG < 0, this implies the increase in the disorder of the system or entropy changes during the 

process ΔS > 0. 

 

1.2. Solid-liquid interface 

The solid-liquid interface is the common boundary surface formed by two different phases 

of matter (e.g., solid and liquid), where many important chemical, physical and biological 

processes occur. The solid – liquid interface formed during the sorption process will be discussed 

in this section. Adsorption at the solid-liquid interface is of a very complex nature compared to 

solid-gaseous interface. As adsorption takes place at an interface covered by the solvent molecules, 

which can potentially be strongly adsorbed must be displaced from the surface to make way for 

the adsorbent.   

The distributions or accumulation of ions in the vicinity of the solid surface can be 

described using different model based on the double layer structure. One of the oldest model of 

such electrolyte-solid system was developed by Helmholtz in 1874 [4]. This model states that two 

layers of opposite charge form at the surface/electrolyte interface and are separated by an atomic 

distance. The Helmholtz model was modified by Gouy and Chapman, where the latter introduced 

the creation of a diffuse layer. Later Stern combined the two previous models. Thus, in Stern’s 

model it is possible to recognize two regions of ion distribution - the inner region (compact or 

Stern layer) and the diffuse layer. Stern layer consists of inner (IHP) and outer (OHP) Helmholtz 

planes. The graphical representation of hydration shell in double layer is represented in Figure 2.  

All ions in solution bear around them a shell from the solvent molecules and interact 

strongly with the solvent as well as with the solid. The ionic compound can be sorbed on the 

surface of the solid in well-defined adsorbate geometry and this type of chemisorption is called 

specific adsorption. The ion exists with a hydration shell in the solution but if it is specifically 
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adsorbed, it must discard this shell, at least partially, when it attaches to the surface. This will 

happen only if the formation of the bond between the ion and the surface can overcome that part 

of energy of solvation between the solvent and the ion that is lost owing to specific adsorption. 

Specifically sorbed ions do not lose all their interactions with the solvent but there are no solvent 

molecules between ions and the solid surface. If the solvent-ion interactions are stronger than ion-

surface interactions, ions preserve their hydration shell. In this case, adsorption is non-specific. 

Specifically adsorbed ions are principally bound by chemical interactions (covalent or coordinate 

bound), but non-specifically sorbed ions are principally bound by electrostatic attraction.  

 
 

Figure 2. Model of double layer structure of the solid-liquid interface with examples of specific 
and non-specific ion adsorption [5], together with their hydration shell. 

 

Specifically adsorbed ions form Inner Helmholtz plane, while the outer Helmholtz plane is 

formed by non-specifically sorbed ions.  

Different sorption mechanisms can be found at the solid-liquid interface: co-precipitation 

or dissolution (when solid is partially dissolute in suspension with an ion liberation, that can 

precipitate on the surface with species presented in solution); surface complexation (sorption of 

reactive solute occurs on the specific sites of adsorbent); surface precipitation (at variance with 
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latter, this sorption mechanism is independent from the number of sorption sites) and ion exchange 

that will be described in the following part. 

1.3. Ion exchange 

 

The notion of ion exchangers comes from the property of insoluble solid materials to 

contain exchangeable ions (named, counter-ions). These charged ions can be replaced or 

exchanged in stoichiometric amount with other anions in contact with the surrounding solution. 

For example, Na+ neutralizes negative charges of clay platelets (of cationic clays). If the clays 

particles are placed in CaCl2 electrolyte solution, the Ca2+ ions present in the solution displace Na+ 

from clay interlayer to take up its place [6] based on an exchange mechanism as demonstrated in 

Figure 3. The ability to exchange ions is due to the properties of the structure of the materials. 

 

 
 

Figure 3. Schematic representation of Na+ - Ca2+ exchange [6]. 

 

If a solid contains exchangeable anions, it is called anion exchanger. In contrast, if the 

sorbent contains cations, this is a cation exchanger. The name amphoteric ion exchanger is used 

when exchanger contains both anions and cations. 

Ion exchange is similar to the adsorption process, as both process described the uptake of 

substances by a solid in solution. However, there is a specific difference between these two 

processes. Ion exchange is only a stoichiometric process in contrast to adsorption, which can be 

also nonstoichiometric. It means that in the ion exchange process for every charged specie removed 

from solution another charge compensator of the equal charge is released from the solid. However, 

the aim is to neutralize the structure’s charge of exchanger that is why if one di-charged ion is 

released from the structure it will be replaced by another di-charged or two mono-charged ions. 

Both ions, exchanged and removed must have the same, positive or negative charge [7]. Secondly, 

in ion exchange only ions are sorbed, whereas in adsorption processes, electrically neutral species 

+ 4 Ca2+ + 8 Na+

Na+ Na+ Na+ Na+

Na+ Na+ Na+ Na+

Ca2+ Ca2+

Ca2+ Ca2+
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can also be removed [8]. However, it is difficult to differentiate them practically, because 

sometimes common sorbent material can be adsorbent and exchanger at the same time (ex: 

activated alumina, with its exchangeable hydroxide ions [7]).  

A water-swollen ion exchange material surrounded by an aqueous solution can be used as 

an example to demonstrate what is a complex ion exchange system [9]. The exchanger is composed 

of a dimensional framework with either positive or negative electric charges, compensated by the 

counter-ions, as mentioned above. Counter-ions are free to move within the framework and can 

diffuse in the pores. In contact with the electrolyte solution, the exchanger takes up the solvent 

with additional mobile ions. This term includes the counter-ions, different from those in the 

structure and co-ions with charge of the same sign as the framework charge. Hence, counter-ion 

can leave the framework, simultaneously with the incorporation of another counter-ion in the 

framework to compensate the charge of the system. The ion exchange process has been established 

as diffusion controlled, with the rate determining mechanism being the inter-diffusion of the two 

counter-ions [10]. The counter-ion content of the ion exchanger is a specific property of the 

material, named – ion-exchange capacity. It depends on the framework charge and it is 

independent from the nature and the charge of the counter-ions. For cationic exchangers, the 

constant is named cation-exchange capacity (CEC) and for anionic anion-exchange capacity 

(AEC).  

Ionic exchanger is sometimes able to preferentially select some ions. This preference can 

be caused by different factors:   

- the nature of the interactions between the solid and the counter-ions 

- the size and the valence of the counter-ions 

- other interactions than electrostatic (London forces between the counter-ion and the 

matrix, as well as interactions of the solvent molecules with one another) 

- the steric exclusion of large ions from the framework.  

This ability to choose between the counter-ions is called the selectivity of exchanger.   

Many different natural and synthetic solids possessed exchange properties. But the main 

ones are: natural and synthetic inorganic ion exchangers (MOFs), ion exchange resins and ion 

exchange coals [7]. 
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2. Study of adsorption  

2.1. Isotherm  

The amount of solute species (q) adsorbed per gram of adsorbent can be expressed in terms 

of the mole fraction of the solute on the surface N and the number of moles of adsorption sites per 

gram m according to: 

 

q is a function of equilibrium concentration Ceq and the temperature T. At constant 

temperature q = fT(Ceq), and this is called the adsorption isotherm function [11].  

To evaluate the adsorption from solution, the amount of adsorbed species can be obtained 

by measuring the decrease in its concentration after its uptake by the solid. The adsorption 

isotherm is then plotted with amount adsorbed q against the equilibrium concentration Ceq. The 

adsorption isotherm represents the main property of the adsorbent, i.e., its ability to remove the 

species from the solution. Moreover, each part of the adsorption curve can give us information 

about the potential sorption mechanisms. The real value of amount adsorbed can be evaluated only 

when equilibrium is reached, that is why it is necessary to measure the kinetic of adsorption, to 

know the necessary time to reach equilibrium.  

 

2.2. Classification of liquid-solid adsorption isotherms  

For the sorption onto liquid-solid interface, according to the nature of the initial portion of 

the curve and its slope, Giles et al. proposed a classification of adsorption isotherms [12]. This 

classification divides the various types of isotherms onto four main groups: S, L (Langmuir type), 

H (high affinity) and C (constant partition), see Figure 4. The isotherm of L type is the most 

classical and widespread form among the sorption curves. For L type, species adsorption is favored 

in the beginning of the process, when all adsorption sites are vacant. It is usually indicative of 

molecules adsorbed flat on the surface. S curve arises due to the vertical orientation of the adsorbed 

molecules at the surface during the adsorption process. The S curve isotherm occurs as a result of 

the interactions among the adsorbed molecules. H type curve is characterized by a sharply vertical 



 Chapter I: Background 
 

21 
 

part of the initial slope, indicating highly strong interactions between the adsorbate and the 

adsorbent. All the molecules in the solute are adsorbed onto the solid. H curves arise in special 

cases where the adsorbate has a high affinity with the substrate.  

 
 

Figure 4. Classification of solution adsorption isotherms according to Giles et al. [12]. 
 

The last group of the isotherm curves is the C type and this can only be found in special 

cases. In the latter, the solutes penetrate into the solid more readily than the solvent.  

 

3. Dyes  

3.1. Definition and structure  

Organic colored compounds could be named dyes in the case if they can share their color 

with other materials. Thus, the color of the dye becomes an integral part of these materials. Not all 
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organic compound could be dyes, because of the existence of different characteristics. They 

should:  

ü have at least one chromophore group, which is the color-bearing group (acceptor of 

electrons); 

ü absorb light in the visible spectrum (400-750 nm); 

ü have conjugated system with alternating single and double bonds (π bonds); 

ü have auxochrome groups (donor of electrons). These groups can be ionizable, and they 

confer to dyes the binding capacity onto the textile material (color helpers).  

  
 

Figure 5. Example of chromophores related with non-conjugated (left) and conjugated (right) 
systems [13]. 

 

It is very important to have chromophore as part of a conjugated system. On the contrary, 

the production of colorless substances occurs by the placement of chromophoric, azo-group 

between methyl groups, as it is illustrated in Figure 5. However, if the azo-group is placed between 

conjugated systems – benzene aromatic rings, the organic substances give the color. Some 

examples of chromophoric and auxochrome groups are presented in Table 1. 

Table 1. Examples of chromophoric groups presented in organic dyes. 
 

Chromophoric groups [14] Auxochrome groups [15] 
Azo (-N=N-) Amino (-NH2) 

Sulfur (=C=S) Chlorine (-Cl) 
Nitroso (-N=O, -N-OH) Hydroxyl (-OH) 

Carbonyl (=C=O) Methyl (-CH3) 
Vinyl or methane (-C=CH2, =C=) Sulphonic acid and sodium salts (-SO3H) 

 

3.2.  Classification of the dyes 

Dyes can be classified in several ways: according to their chemical structure [14, 16], their 

method of applications onto substrate [17] or fibers type, i.e. for nylon, cotton, polyester,... Here, 
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two different classifications will be presented: the classification of the dyes by their chemical 

structure, which is the most appropriate system as it is based on chromogenic moieties. The second 

classification based on auxochromes groups, can help to understand the nature of the dye and 

substrate interactions (ionic, hydrogen, Van der Waals or covalent bonding).   

 

3.2.1.  Chemical classification based on chromogen [14] 

§ Azo dyes. The compounds of this class are characterized by the presence of one or more 

azo groups (-N=N-). The most used dyes in textile industry.  

§ Anthraquinone dyes. The general formula of these dyes is based on anthraquinone 

molecules, which contain chromophoric carbonyles. It is the most important class of dyes after azo 

dyes (Figure 6 (a)).  

§ Indigoid dyes. The name of this class comes from the main representative member –

indigo dye. These dyes give large range of colors, from orange to turquoise (Figure 6 (b)). 

§ Xanthene dyes. The compounds of this class provide intensive fluorescence, and can be 

used as markers for underground rivers. The most representative member is fluorescein (Figure 6 

(d)).  

§ Phthalocyanine dyes. It is a class of synthetic dyes based on complex structures with a 

central atom of metal (ex: Cu, Co, Pb, Fe, Mg) (Figure 6 (c)). These dyes are often used for painting 

of trains, and for organic photoconductors of electrophotography. 

§ Nitro and nitroso dyes. These dyes have the sample structure composed of a nitro group 

(-NO2) bonded with group, donor of electrons (amine or hydroxyl group) (Figure 6 (e)).  
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Figure 6. Examples of molecules that represent different chemical classes: anthraquinone (a), 
indigoid (b), phthalocyanine (c), xanthene (d) and nitroso (e) dyes.  

 

3.2.2.  Chemical classification based on auxochrome [15] 

§ Acid dyes. Acid or anionic dyes contain sulfonic or carboxylic acid groups in their 

structure, they are therefore soluble in water.  Moreover, such functional groups help to create 

ionic bonds with amino groups for textile fibers [14]. These dyes are used for coloring animal 

fibers, nylon, silk, modified acrylic, wool, paper, food and even cosmetic. 

§ Basic dyes. Basic or cationic dyes mainly consist of big soluble molecules. These dyes 

have a high affinity for wool, silk, acrylic, paper and polyesters. Some of these dyes are used in 

medicine, because of their biological activity.    

§ Direct dyes. These dyes are mainly used for dyeing cotton, cellulose, or even cotton-

wool or cotton-silk. They are water-soluble anionic dyes and have high affinity for fibers. Most of 

the dyes in this particular class are constituted of azo compounds, along with some triazoles, 

phtalocyanines and oxazines.  

§ Reactive dyes. These dyes are chemically constituted from azo compounds, 

anthraquinones and phtalocyanines, with high fixing properties. The presence of reactive chemical 

functions like triazinic or vinylsulfone, reactive dyes allow to create covalent bonds with the fibers 

(cotton, wool or nylon). 

§ Sulfurous dyes. It is a small group of dyes, insoluble in water but applied in form of 

soluble derivative. A next re-oxidation to their insoluble form occurs directly on the fibers. 

(a) (b)

(c)

(d)

(e) NO2
(d)

(c)
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Sulphurous dyes are low cost and process good fixing properties. But they are sensitive to chlorine 

and light. However, they are often applied to cotton.  

§ Vat dyes. The dyes of this class are insoluble in water (anthraquinones and indigo) that 

is why they are impregnated into fibers under reducting conditions and then they are reoxidized to 

an insoluble form directly on fiber.  

§ Dispersive dyes. They are almost insoluble in water and applied in the form of dispersive 

powder in suspension, preferentially onto hydrophobic fibers. The dyeing process occurs in the 

presence of dispersing agents of long chains which stabilize the dyes suspension and facilitate the 

contact with the hydrophobic fibers. They are applied to cellulose acetate, nylon, polyester and 

polyamide.  

§ Mordant dyes generally contain a functional ligand able to strongly react with aluminum, 

chromium, cobalt, nickel and copper salts to form different colored metal complexes with textile 

materials. They are formed directly on the fibers by in situ precipitation.  

These classifications show us the huge diversity of the dyes existing and used in textile 

industries. Adsorption of azo dyes will be investigated in this work that is why they are described 

in the following part.  

3.3. Azo dyes  

Almost two-third of all organic dyes are azo dyes (R1-N=N-R2) used in numerous different 

industrial processes such as textile dyeing and printing, color photography, finishing process of 

leather, pharmaceutical, cosmetics, etc.  

The reactivity of azo dyes depends on different parameters. The first factor is the nature of 

the substituent in the molecular structure. Thus, the azo dyes can be found in different forms: acid 

(if the functional groups are in protonated form), basic (deprotonated with free electron pair on 

nitrogen) or non-ionic depending on the pH values. The basicity of dyes is influenced by additional 

factors. For example, the presence of acceptors substituents in aromatic rings such as –Cl or –NO2 

groups decreases the basicity of the amino groups. The basicity is also decreased by the donor 

substituents in the ortho position, which sterically impedes the protonation [18]. However, the 

basicity is increased by the presence of donor groups (-CH3 or –OR) in meta and para positions. 

The azo dyes also have amphoteric properties if they contain additional acidic groups (hydroxyl, 
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carboxyl or sulfoxyl groups). The chromophore distribution in reactive dyes indicates that a great 

majority of unmetallised (do not contain a chelated metal on negative ion group) azo dyes have a 

range of colors from yellow to red.  

 

 
 

Figure 7. Tautomeric forms of Orange II molecules depending from pH [19].  
 

Other structural particularities of the azo dyes like the position of the substituent compared 

to azo groups or electronic repetition can have an influence on the reactivity. For example, many 

azo molecules have two isomeric forms – cis and trans, where the cis form is unstable and can be 

obtained by photoisomerization method of the trans form (Figure 7). Thus, the transition between 

these two forms can change the absorption wavelength (λ) of the molecule and consequently the 

color of the dye [16]. Some dyes have different tautomeric forms, (for example Orange II molecule 

(see the Figure 7)). As a result, the different tautomers usually have different molecular 

fingerprints, hydrophobicity and pKa’s values as well as different structural and electrostatic 

properties [20]. 

Azo dyes are widely used for coloring mostly because of their affordable cost and their 

good fixation properties [21]. However, the high values of acute toxicity are found among these 

dyes as well as their intermediates therefore a very high potential risk to human health (toxicity, 

carcinogenicity and allergic sensation) and aquatic life [22]. That is why, it is very important to 

remove completely or to reduce the level of these species in aqueous effluents.  



 Chapter I: Background 
 

27 
 

 

4. Adsorbent used for multi-component adsorption 

In this work, two different materials are chosen as the adsorbent for the study of simple 

and multi-component adsorption: the layered double hydroxides and the anion exchange resins. 

Thus, this section describes the main structural features of these two materials.  

4.1. Layered Double Hydroxides (LDHs) 

One of the potential adsorbent for anionic pollutant removal is the Layered Double 

Hydroxides (LDHs), which belongs to the anionic (anion exchanger) clays class. Hydrotalcite-like 

compounds (HTlc) are another name currently used in the literature for this kind of materials, since 

the first natural mineral found was the hydrotalcite [23] and therefore becomes the most 

representative mineral of the group. LDHs are not as prevalent in the nature as cationic clays, 

however, they have both natural and synthetic origins. The synthesis of such material is easy and 

non-expensive.  

4.1.1. Structure of the layer 

The structure of LDHs is related to the mineral brucite (Mg(OH)2), where, the Mg2+ cations 

is surrounded by six hydroxide ions to make up octahedral units. These units share their edges to 

organize an infinite two-dimensional layer (see Figure 8 (A)). Then, the layers are stacked to form 

a three-dimensional structure with electrostatic interactions and hydrogen bonds between the 

layers [24, 25]. The brucite-like layer can be stacked on top of one another by forming 

rhombohedral (3R) or hexagonal (2H) sequences.  

 

Figure 8. Schematic representation of brucite layer (A) and that of LDHs (B) [26]. 
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Layered double hydroxides are formed by substitution of a fraction of divalent Mg2+ 

cations from the brucite layers by trivalent ones (i.e. Al3+). As a result, the layers acquire a positive 

charge, which is compensated by negative interlayer anions (Figure 8 (B)). The composition of 

LDHs is generally written as [M2+
1-xM3+

x(OH)2]x+[(Xn)-
x/n • mH2O]x-, where M2+ and M3+ are 

divalent and trivalent cations and (Xn)-
x/n is the interlayer anion, with different nature (organic or 

inorganic) (see Figure 8 (B)). Cations that can be incorporated into the brucite-like layers are: M2+ 

= Ca2+, Mg2+, Zn2+, Ni2+, Mn2+, Co2+ or Fe2+ and M3+ = Al3+, Cr3+, Mn3+, Fe3+, Ga3+, Co3+, Ni3+, 

etc [27]. Tetravalent anions based LDH was also reported (Zr4+,Ti4+, Sn4+) [28-30]. The molar ratio 

of trivalent cations (x = M3+/( (M2+) + (M3+)) determines the charge density, and thus the number 

of potential sites occupied by the compensating anions. Although, some authors claim that the x 

value could be situated in the range of 0.1 - 0.5, the limit of composition generally admitted is 0.2 

– 0.33 [31].  

4.1.2. Interlamellar anions  

The compensating interlayer anions are part of complex network of hydrogen bonding 

between the hydroxyl groups of the layer and the water molecules. They also dictate the 

interlamellar spacing. The water molecules, situated in the interlayer are not fixed in one position 

but rotate freely and move around the hydroxide oxygen sites [32].  

 

  

Figure 9. Different kinds of anions, which could be intercalated in the LDHs. 

 

The most important feature of the LDHs material is the nature of the interlamellar anions. 

There are no limitations, as long as the anions have sufficient charge density (around 3.0 e/nm2) 

[31] and are stable in the operating conditions. Figure 9 presents the possible species that can be 

accommodated in the interlayer of the LDHs structure. The intercalation of organic anions 

LDHs Common inorganic anions
Organic anions

Polymers

Complex anions

Polyoxometalates

Biochemical anions
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(carboxylates, alkylsulfates, alkanesulfonates, dyes, etc.), common inorganic anions (halides, 

oxoanions), biochemical anions (amino acids, DNA,etc), polymeric anions (poly(vinylsulfonate), 

polyanilin, etc.), complex anions (CoCl4
2-, Fe(CN)6

4-, Mo(CN)8
4-, etc.), iso- and 

heteropolyoxometalates (Mo4O24
6-, W7O24

6-, etc.) are often reported in the literature [31]. The 

intercalation of these different anions can potentially modify the interlayer distance i.e. causing an 

expansion or a reduction of the separation between the two layers, depending on the nature of the 

species involved. This variety of cations in the layers and of anions in the interlayer offers to LDHs 

numerous different potential structure, reactivity, etc.  

4.1.3. Anion intercalation into the layers  

Compositional diversity in the layers and in the interlayer anions of LDH leads to the 

formation of divers compounds that allowed such material to be used for a variety of material 

science applications. The main examples are presented in Figure 10 [33].  

 
 

Figure 10. Schema of the possible applications of LDHs [33]. 

 

One of the most interesting applications of LDHs is their use as adsorbent or ion exchanger, 

as these two mechanisms can take place. Moreover, the main advantage of the LDHs compounds 

over traditional cationic clays is their higher AEC values. For example, the CEC values for cationic 

clays, like montmorillonites and bentonite are 0.7 and 1.2 meq/g, respectively [34]. While for 

LDHs the AEC value can reach 4.2 meq/g [35]. Different methods exist to incorporate the anion 

into the layer:  
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ü by co-precipitation method of LDH structure; 

ü by ion exchange, usually performed onto pristine LDHs without any previous 

treatments; 

ü  by “reconstruction” method, which requires the heat treatment of LDHs. 

 

Co-precipitation method is one of the most common ways for the preparation of LDHs 

solid. It suggests the simultaneous precipitation of cations at a fixed ratio, determined by the initial 

salt solutions This method consists of continuous addition of a solution of anions and a basic 

solution under vigorous stirring, with the relative rates of addition regulated so that the overall pH 

is maintain constant [31]. The use of different salts can vary the metal cations in the layers, as well 

as the compensating anions. However, if the preparation is performed at very high pH values, the 

interlamellar anion can be hydroxyl anion, coming from the alkaline solution, as well as carbonate 

species, coming from atmospheric CO2. That is why LDHs prepared by co-precipitation method 

could often contain the carbonates contamination if no care was taken.  

Many other various methods have been developed for LDHs compounds: hydrothermal 

synthesis, salt-oxide method, sol-gel process, etc [36-38]. However, they are rarely used and only 

in the special cases.  

Ion exchange method is based on exchange properties of LDHs. In order to use LDH 

materials as anion-exchanger, the affinity of the intercalated anions of the pristine phases must be 

lower than the affinity of the anion in the solution to be treated. Miyata [39] gave a comparative 

list of the ion selectivity for monovalent anions: OH- > F- > Cl- > Br- > NO3
- > I-. The affinity for 

divalent anions is also presented: CO3
2- > CrO4

2- > SO4
2-. They demonstrated that the monovalent 

anions have lower affinity for the LDHs than divalent ones. Hence, LDHs containing nitrates and 

chloride anions in the interlayer are preferred as starting materials for exchange processes.  

Reconstruction method is based on the unique property of the LDHs structure, named 

“memory effect” [40, 41]. After calcination of the solid (around 500°C), the reconstruction of the 

parent structure can spontaneously occur within the solution, incorporating any anions that are 

present in the solution where the reconstruction is performed. The anion intercalation using this 

method should be held in an inert N2 atmosphere, to prevent the intercalation of the carbonate 

species.  
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It should be mentioned that the anion intercalation can be influenced by different factors: 

the charge, nature, size and orientation of the anion (important in the case of large molecule 

intercalation), as well as the interactions between the negatively charged guest and the positively 

charged layer (affinity of the anions onto LDHs).  

 

4.2. Synthetic organic ion exchanger 

The synthetic organic resin is one of the most common ion exchangers. They exist in 

powder (5-150 µm) or bed (0.5-2 mm diameter) form [42]. The introduction of synthetic organic 

ion exchange resins in 1935 [43] resulted from the synthesis of phenolic condensation products, 

containing either sulfonic or amine groups, which could be used for the reversible exchange of 

cations or anions. Later, a variety of different functional groups has been added as well as polymer 

serving as a base of the resin structure. Conventional ion exchange resin consists of a cross-linked 

polymer matrix with a relatively uniform distribution of fixed ions (ion-active sites) throughout 

the structure. To preserve the neutrality of the resins, each ion contains a counter-ion, which is 

mobile and can be exchanged by other positively or negatively charged species (depending on the 

ionic nature of the resins). Figure 11 shows a schematic representation of two structures, i.e. a 

cationic and anionic resin.  

 
 

Figure 11. Cation (left) and anion (right) exchange resins, with schematic representation of 
negatively charged matrix and positively charged functional groups [44]. 

 

The widely used form of ion exchange resins is based on the copolymer of styrene and 

divinylbenzene. The degree of cross-linking is adjusted by varying the divinylbenzene content and 
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is expressed as the percentage of divinylbenzene in the matrix (for example, 5% cross-linking 

means 5 mol % divinylbenzene in the matrix) [42]. If the divinylbenzene content in the resins is 

low, they are soft, gelatinous and swell strongly in solvents. Fixed ionic groups are introduced into 

resin matrices to enable the ion exchange process. In the case of cation exchange resins, it can be 

sulphonate (–SO3
-) groups, with the mobile counter ions – H+ or Na+. The anion exchangers can 

be produced by creating –NH3
+ or –N2

+ functional groups on the matrix with OH–, Cl– or other 

anions as the counter-ions. Figure 12 shows two types of anionic resins, containing the styrene 

divinylbenzene copolymer matrix with trimethylammonium functional groups attached.  

 

 
 

Figure 12. Structure of the anionic resin, which contains styrene divinylbenzene copolymer 
matrix with trimethylammonium functional groups. 

 

Thanks to the difference of affinity for the different ions, the ion exchange resins can be 

used to remove selectively ions from water. Thus, the company Rohm & Haas [44] reports, that 

sulphates and nitrates have more affinity for anionic resins:  

SO4
2- > NO3

- > Cl- > HCO3
- > OH- > F- 

The trend of affinity onto cationic resins was also established: 
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Pb2+ > Ca2+ > Mg2+ > Na+ > H+ 

 Kim et al. reviewed that synthetic resins could be also used to remove the different kind 

of organic substances from water [45]. The adsorption of such organic contaminants like: phenols 

[46, 47], alkylbenzene sulphonate [48] as well as carboxylic acids were investigated. Dye 

adsorption onto resin was also studied and reported in the literature [49-53]. From this, it can be 

concluded that the same resins are able to remove different anions available in solution. They can 

be considered as good potential adsorbent for multi-component adsorption.  

Moreover, the main advantages of the synthetic organic ion exchange resins are their high 

capacity, wide versatility and low cost relative compared to some synthetic inorganic media. There 

are many types of anionic resins, which are commercially available nowadays. Amberlite® IRN-

78 is an example of such type of resins. It is usually supplied in the hydroxide form, and will be 

the solid-reference used in this work. 

 

5. Literature review on competitive adsorption 

The wastewater systems are a complex multi-compositional system [54]. Table 2 shows an 

example of the main physico-chemical characterization of textile mills effluence as well as the 

analysis of mills on heavy metal concentrations [55]. Some authors in addition report the salts 

composition of industrials wastewaters [56]. However, the main conclusion is the same: a real 

aqueous system usually contain numerous different species, which can interact and compete 

between each other on adsorption sites of the solid. Therefore, talking about competitive 

adsorption, solid-adsorbate interactions can be highly influenced by the presence of other species 

in the complex solute or by the adsorbate-adsorbate interactions. Therefore, it is very important to 

understand the nature of these interactions, which can change the result of the pollutants uptake 

from multi-component systems.  
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Table 2. Physico-chemical characterization and heavy metals concentrations in textile mills 
effluents [57]. 

 
NEQS- National Environmental Quality Standards; TSS- Total Suspended Solids; TDS- Total Dissolved Solid; Mill № - samples collected from 

different textile factories.  

 

Generally, different factors can influence sorption of the adsorbates onto solid surface. At 

first, it depends on the solid properties: specific surface area, porosity (macro-, micro- or 

mesoporosity), nature of the solid (functional groups) as well as the charge of the surface (PZC, 

IEP), etc. The second parameter that influences the sorption is the adsorbate properties, such as 

polarity, chemical structure, molecular size and charge of the adsorbate species, etc. However, the 

main factor governing the species uptake is the nature of the interaction between the solid and the 

adsorbate. Such parameter as pH of the working solution is another important factor influencing 

adsorption properties. Firstly, because the charge of the adsorbent’s surface can be dependent of 

pH (ex: natural or synthetic oxides). Thus, adsorption of the positively charged species can be 

higher at high pH, where charge of the adsorbent surface is more negative (depending on the PZC). 

Secondly, information about pKa of adsorbed species, diagrams of speciation and pH measured in 

the beginning of adsorption process as well as at equilibrium can give us valuable data about the 

charge of potential adsorbates. Therefore, this parameter should be always taken into account 

during the study of adsorption processes. 
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Studies on multi-component adsorption from gaseous and liquid media hold a great 

importance since the separating properties of adsorbents affect the pollutant removal in different 

industrial processes [58]. Many studies, reviews [6, 11, 50, 54, 55, 59-111] and dissertations [112-

114] have been devoted to this topic. In multi-component adsorption process two competing 

species can react with each other in three different ways, they can cooperate, compete or do not 

interact between them. In the first case, the sum of the two adsorbed species will be higher than in 

the individual system, in the second one, the competition will decrease the sum of the adsorbed 

species. Finally, the third possibility describes the independent adsorption between the species, 

where the mixture has no effect on the adsorption of each sorbate from the mixture.  

From the sorption points of view, during adsorption from multi-component systems, the 

interactions can be formed between different species. They can be divided in three main groups: 

Organic – Organic; Inorganic – Inorganic and Organic - Inorganic interactions (Figure 13).   

 

 

 
 

Figure 13. Schema of different competing species presented in solutes. 
 

 

5.1. Competitive adsorption between organic species.  

In order to investigate multi-component adsorption between organic species, authors often 

use a variety of dyes to mimic the effluents that are released in rivers and oceans by mainly the 

textiles industries [54]. The first investigation of competitive adsorption between organic 

compounds were performed onto activated carbon [65-70, 113]. At first, the authors mainly 



 Chapter I: Background 
 

36 
 

focused their studies on the use of empirical models to simulate aqueous multi-solute adsorption 

equilibria [65-67]. Noroozi et al. summarized all the theories applied for the adsorption of multi-

component systems for dyes (among them widespread Langmuir, Redlich–Peterson, and 

Freundlich models, as well as Ideal adsorbed solution theory (IAST) [62]). However, today more 

and more authors investigate the experimental study of adsorption from multi-dye solution.  

Multi-component adsorption of a range of dyes has been investigated on various adsorbents 

such as: peat [71], bentonite [63, 72, 73], chitosan [115], melon husk [74], fly ash [75] and LDHs 

[76]. On the other hand, the use of different binary and ternary dye systems like: Remazol reactive 

Yellow, Black and Red [70]; Astrazon Blue BG, Yellow 7 GL and Maxilon Red BL-N [71]; Basic 

Yellow 28 and Red 46 [63]; Acid Scarlet GR, Acid Turquoise Blue 2G and Indigo Carmine [72]; 

Methylene blue, Congo Red and Methyl Orange [74]; as well as  Basic Blue BG, Red, Violet and 

Yellow [73] allowed to analyze dyes behavior in competitive conditions. Moreover, research 

groups work with dyes of different classes [75, 115]. For example, they investigate the competition 

between an acid (metanil yellow) and reactive (reactive blue 15) dyes on cross-linked chitosan. 

They showed that for an equimolar dye concentrations adsorption is favored for the reactive dye 

[115]. Nevertheless, when the acid dye concentration is increased, the opposite trend is observed. 

They explained this phenomenon by measuring the kinetic behavior of each dye in single and 

multi-component systems and they concluded that the initial adsorption rate of the acid dye onto 

chitosan is faster. Hence, the time to reach the adsorption equilibrium for the acid dye is shorter 

than for the reactive dye. Another study investigated the competitive adsorption of dispersive and 

anionic dyes (see classification of the dyes in section 3.2.) on fly ash (FA). They showed that the 

anionic dye adsorbed preferentially on FA can compared to than dispersive dye [75]. In addition, 

they demonstrate that the adsorption rate of dispersive dye was affected apparently by the existence 

of the anionic compounds during the competitive adsorption, while the rate of anionic dyes was 

almost unaffected at all.  

Based on the above studies and considering the empirical models (mentioned earlier) the 

following conclusions can be drawn from these studies:  

- The adsorption rate of one dye is reduced in the presence of other competing dyes in 

solution. Thus, the presence of competing dyes has an influence on the desired dye uptake [71]. 
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- The competitive adsorption between dyes in solution depends on the dye properties 

(structure and functional group) and the interactions between each other [75].  

- The dye properties like molecular weight and size also have an influence on the 

competitive adsorption.  

- The nature of the adsorbent - dye interactions are predominant on the molecular weight 

of the dye. Thus, large chemisorbed molecules will be adsorbed faster than small physisorbed dyes 

[62].  

 

5.2.  Competitive adsorption between inorganic species.  

To study the inorganic-inorganic interactions in adsorption process, several authors 

preferred to deal with heavy metal ions (Cd(II), Hg(II), Pb(II), Zn(II), Ni(II), Cu(II)) [77-86] or 

toxic oxyanions (AsO4
3+, CrO4

2-, VO4
3-, MoO4

2-, BrO3
-) [87-90], because of the abundant presence 

of these species in wastewaters. However, the competitive adsorption of radioisotopes: Sr(II), Cs(I) 

and Co(II) was also investigated [91]. Some common anions like nitrates, phosphates or fluorides 

are present in nature with higher concentration than the standards allowed. Hence, it is important 

to remove this species in water according to the treatment policy of wastewater [92-94, 116, 117]. 

The investigation of adsorption of these common anions was also studied using the competitive 

adsorption process. But there is no limit for the competition between inorganic substances and 

scientists begin to study the influence of common anions on heavy metal together with oxyanions 

[89, 95-98].  

Oxy- and common anions can compete with each other for the same adsorptive sites onto 

ferrihydrite or LDHs solids [87, 89] with the preference for oxyanion adsorption onto ferrihydrite 

[87]. The authors explained this behavior with the presence of some surface sites that exhibited 

much higher affinity for oxyanions than for common ones. Another study on competition between 

phosphate, arsenate and molybdate shows that the presence of phosphate reduces As(V) uptake 

onto oxide minerals. However, molybdate partly decreases the As(V) removal below pH 6 [88]. 

Therefore, Mohan concluded in his review on As(V) removal that the interpretation of multi-

component systems is complex and depends on different factors such as oxyanions ionic radii, 

electronegativity, pH and availability of the active sites [99]. Other example of the decrease in 
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species uptake from competitive system was described by Mien et al. [100]. In multi-component 

sorption between Pb(II), Cd(II) cations and Cr(VI) anions onto clinoptilolite, which is natural 

zeolite, the presence of Cr(VI) diminishes the cations removal efficiencies because of the ionic 

compex formation between Cr(VI) anions and the two other cations.  

According to Ghorbel-Abid, the removal of Cr(III) was strongly influenced by the presence 

of Cd(II) into smectic clays. The Cr uptake was increased to 70 % while the Cd uptake decreased 

to 67 % in comparison with simple systems of Cr and Cd [77]. This is a good example of 

cooperative adsorption of Cr(III) species onto clays. The work on competitive adsorption between 

halide ions (BF4
-, ClO4

-, BrO3
-, IO3

-) and common anions shows low affinity of LDHs for 

oxyanions of halogen in comparison with common anions. It is concluded that anionic clays prefer 

anions with multiple charges instead of monocharged species [98]. However, opposite results 

could be found on activated carbon, where sulfates discharged species cannot compete with 

monocharged nitrates and perchlorates [101]. Because of the stronger affinity of nitrate and 

perchlorate toward the activated carbon surface, than those of sulfate.  

 

5.3. Competitive adsorption between organic and inorganic species. 

Complex organic - organic and inorganic - inorganic interactions can change the results of 

removal of desired pollutant. However, organic-inorganic interactions could induce new 

competitive mechanisms and they may change our vision about adsorption from multi-component 

system. Several works present different complex organic-inorganic systems combined with solid 

adsorbents.  

The bi-solute systems: phenol or humic acid with Cd(II) or Cr(VI) onto activated carbon 

was reported by Jiang et al [102]. The uptake of organic species is hardly affected by the presence 

of metals, while organic molecules negatively influence the sorption of heavy metals. However, it 

was concluded that organic species were physisorbed onto carbon while inorganic species are 

chemisorbed. Another work on activated carbon cloth describes the relation between organic and 

inorganic substances as dependent of the pH of the media. Hence, the deprotonated form of benzoic 

acid can form ligands with Cu(II) and Pb(II) cations and increase the total amount adsorbed of 

these inorganic species [103]. Abdel-Ghani et al. worked with multiwalled carbon nanotubes and 

performed multi-component adsorption between phenol and Ni(II) ions. They reported that the 
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competitive adsorption results with a decrease of species uptake of up to 70% and 60%, 

respectively for organic and inorganic substances [55]. It was also mentioned that two species 

compete for the same adsorptive sites. Mier et al. [100] also worked on similar organic-inorganic 

system: phenol with Pb(II) and Cd(II) ions but on clinoptilolite. The authors concluded that the 

formed organic-inorganic complexes were too bulky to enter in the sorbent pores. Thus, the heavy 

metals uptake was hindered by the presence of organic matter.  

Another study was performed on the same zeolite by Wang and co-workers [104]. Wang 

and Ariyano worked on multi-component sorption between malachite green and Pb(II) onto 

clinoptilolite. They concluded that the inorganic ions have higher affinity for zeolite than organic 

ions in the binary systems. In spite of the presence of competing species, the total amount adsorbed 

(sum of two species) is higher than that of malachite green and Pb(II) amount adsorbed in 

individual system. The same conclusion concerning the competition of another organic dyes and 

inorganic ions onto zeolitic structures was reached by Hernandez-Montoya et al. [105]. However, 

it was demonstrated that using two zeolites with different textural properties, the opposite outcome 

is found. Therefore a zeolite having an acidic nature and a high specific surface area prefers the 

adsorption of organic species from binary solutions, where as a zeolite with low specific surface 

prefers inorganic compounds [105].  

Other interesting works based on competition were also investigated onto montmorillonite-

based adsorbents [106, 107]. Margulies et al. reported competitive adsorption of Thioflavin (TFT) 

and Cs. They concluded that Cs did not change the uptake of TFT and could not compete with 

organic species during sorption on clays [106]. In the case of competitive adsorption between 

Pb(II), Cd(II) with Methyl Orange (MO) onto composites of lignocellulose - montmorillonite, 

sorption was found to be synergic. MO uptake was greater in the presence of metals. A different 

range of dye:metal concentrations were tested and it was found that the amount of MO adsorbed 

increased with the metal ion concentration in solution. Indeed, adsorbed heavy metals can act like 

adsorption sites for MO adsorption, through electrostatic interactions [107]. Other example of 

synergic co-adsorption was found for the adsorption between Methylene Blue (MB) and Cu(II) 

onto fly ash [108]. Here, the mechanism of sorption of the organic-inorganic complex plays a 

major role. It could be divided into two steps. MB has the highest affinity to sorbent, therefore dye 

is firstly adsorbed on the substrate and then copper is adsorbed on this new layer with good 

efficiency.  
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Co-adsorption of dyes and common anions was also investigated onto anion exchange 

resins, MgAl - mixed metal oxides with magnetic iron oxide, and LDHs [50, 109, 111]. These 

results showed that competing anions strongly affect the dye adsorption process. Moreover, 

carbonates and phosphates have the highest influence on dye uptake, because of the high affinity 

of this anions onto LDHs layers.  

 All these works invite us to draw the following conclusions about synergy, competition 

and no-interactions for adsorption in multi-component system:   

 - The synergic organic-inorganic interaction can be judiciously used for treating 

wastewaters. Indeed, in most cases, the addition of inorganic or organic species can greatly 

improve the adsorbed quantities of the target species. However, the synergic behavior between 

organic and inorganic substances can be negative as there is also a possibility for undesired species 

to be adsorbed during the sorption process. This illustrates well the importance of knowing the 

synergic mechanisms.  

 - The competitive adsorption can also be positively useful and efficient. If one wants to 

adsorb one species (A) and not another (B), both present in solution, a third species (C) can be 

added to compete with the undesirable one (B). A good example to explain such system was 

described by Ali et al [110]. They studied competitive sorption of organic acids (phtalic and 

chelidamic) with sulfate onto goethite. As a result, sulfate can effectively compete with organic 

acids for surface sites of goethite. Therefore, sulfate ion can significantly influence the sorption of 

organic acids in natural aquatic system. It was also claimed that the humic substances influence 

the sorption of trace of metal ions. Therefore, sulfate could influence the metal ion uptake by 

reducing the adsorption of humic compounds. The negative point of such interactions is that in 

some cases the presence of organic/inorganic ions can completely inhibit or suppress the sorption 

of the desirable species.   

- No-interaction or independent adsorption also occurs between organic-inorganic species 

[106]. In reality, only few systems present this type of interactions.  

Most literature review based on multi-component sorption deal mainly with the 

investigation of quantity adsorbed of only one species in this type of system. However, it is very 

important to measure the equilibrium concentration of all possible compound that is susceptible to 

be adsorbed in such complex system. Complementary information about quantitative co-
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adsorption of competing ions can give valuable information about the real adsorption capacity and 

selectivity of the adsorbent (sum of two or more species absorbed).  

Thermodynamic contributions of the mono-component and multi-component adsorption 

should be compared to obtain a better understanding of the nature of interactions during adsorption 

process. Thus, isothermal titration calorimetry could be a powerful tool for the measurement of 

heat changes involved in the mono and multi-component system during the adsorption process.  
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INTRODUCTION 

 

This chapter summarizes the investigation of the adsorption mechanisms of three 

pollutants, which are the Azo dyes (Methyl Orange, Orange II and Orange G) from a single-solute 

component solution onto Mg-Al Layered Double Hydroxide (LDH). The structure of the LDH was 

previously described in Chapter I section 4.1. The results presented here concern the LDH, 

containing the nitrate anions as the interlayer charge compensator. Nitrates are known as anions 

having the lowest affinity with the interlayer, therefore the latter can be exchanged easily. This 

adsorbent was characterized using standard methods such as elemental analysis (for chemical 

composition), SEM imaging and XRD before using it for any adsorption experiments. All the main 

parameters of adsorption (kinetic of adsorption, adsorption isotherms, thermal effect of process, 

and expansion of the layers) were studied and then reported in the first article “Study of Adsorption 

and Intercalation of Orange-Type Dyes into Mg-Al Layered Double Hydroxide”.  

The competition between the interlayer anion and the adsorbing species, which is in this 

case the dyes, were investigated in an open system i.e. the systems were exposed to ambient 

atmosphere. Hence, the second competitive species is the carbonate anions that are formed during 

exposure to air. The latter has a very good affinity with the LDH. X-ray diffraction measurements 

were performed to inform on the nature of the interlayer anions after exchange. 

Information about energetic aspects of adsorption processes will be evaluated using 

Isothermal Titration Calorimetry. This method will help in the understanding of the mechanism 

of dye adsorption on the LDH.  Moreover, the complexity of the sorption mechanism of Orange II 

dye will be explained in detail in the second article, named “On the origin of anomalous enthalpy 

effects accompanying the adsorption of Orange II onto Mg-Al Layered Double Hydroxide from 

aqueous solutions”.  
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ABSTRACT: 

In the context of depollution and textile wastewater treatment, the sorption-based processes 

are good candidates to achieve the efficient removal of such toxics substances as dyes. In the 

present study, the exchange – adsorption from aqueous solutions of three azoic dyes, methyl 

orange (MO), orange II (OII), and orange G (OG), onto Mg-Al-LDH-NO3 layered double 

hydroxides (LDH, molar Mg:Al ratio of 2) was investigated through monitoring all retained and 

removed species in combination with direct calorimetry and X-ray diffraction measurements. 

Kinetic curves, determined for several initial concentrations of the three dyes, indicated that the 

process was fast (between 60 and 100 min) and followed the pseudo-second order model in line 

with the passage of the removed dye through a chemisorption stage, thus constituting the rate-

limiting step. Dye adsorption isotherms (H2-type) showed some differences in the maximum 

adsorption quantity (5.5 mmol g-1, MO; 2.7 mmol g-1, OII; 1.7 mmol g-1, OG), consistent with 

anionic exchange capacity and adsorption on the external surface, depending on the cross-sectional 

area of the dye species and with their hydrophobic-hydrophilic character. The uptake of sodium 

cations as a function of the dye type and the surface coverage ratio pointed that the counter-ions 

can either stay in solution or be adsorbed to neutralize the free –SO3
-
 moieties or other anionic 

species in the interlayer space. The cumulative enthalpy of displacement was negative in 

conformity with the exothermic character of the overall process. The intercalation of dye anions 

into the interlayer space of LDH materials led to its expansion with various distances being 

dependent both on the dye type and on the overall exchange balance. The latter included also the 

desorption of nitrates as well as the presence of carbonate species within the interlayer space, due 

to exchange in open systems exposed to the ambient atmosphere. 

 

Keywords :  

Layered double hydroxides, Methyl Orange, Orange II, Orange G, adsorption, 

intercalation, expansion of the layers, XRD study, calorimetry, co-adsorption, counter-ion. 
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1. Introduction  

  

The release of textile wastewater to the aquatic environment is known to cause many 

detrimental effects [1]. Among a wide variety of toxic substances present in the effluents generated 

by textile industry, dyes have the mostly diversified harmful impact on aquatic and terrestrial 

ecosystems, as well as on human health. Tackling and achieving the goal of ‘zero discharge’ is a 

complex challenge, especially in economically weaker regions where textile is one of the most 

important sectors of the local economy. Chemical coagulation and flocculation is by far the mostly 

used technology for dyes removal, though its implementation requires significant quantities of 

inorganic polymers or chemical coagulants that generally involve higher cost and it results in a 

high sludge production, thereby posing further handling and disposal problems. Sorption-based 

processes with the use of solid sorbents are good candidates for the economically and technically 

viable method to achieve adequate level of dyes removal at low operating cost [2]. However, the 

necessity of ensuring good binding affinity between the adsorbent and the adsorbing species is the 

principal limitation to the effectiveness of treatment technologies. The development of a new 

adsorbent material for efficient and economic removal of dyes from textile wastewater should be 

always followed by a detailed study on its working mechanism under given conditions. 

The removal of anionic azo dyes from aqueous streams by layered double hydroxides 

(LDHs) or modified layered materials such as pillared clays is a good example of sorption-based 

processes proposed in the literature based on a partial comprehension of the removal mechanism 

and the physical factors governing it [3-22]. It is worth mentioning here that two types of 

adsorption systems may be considered for the study of dye retention mechanism by LDHs and it 

is really crucial to be sure to which system a given study is related. In a more classical case, the 

uptake of dye species is studied from dye-containing aqueous solutions directly by a pristine LDH 

sample, which includes a specific anion (e.g., NO3
-, CO3

2-, OH-, Cl-) compensating the positive 

charge of the LDH layers. In the other case referred to as ‘reconstruction procedure’ [23], the 

starting LDH structure is calcined to obtain a mixed oxide intermediate and the latter, in turn, is 

immersed in an aqueous solution containing a dye solute at a given concentration. It is usually 

claimed that, in the presence of water and dye anionic species, the mixed oxide intermediate is 
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reversibly transformed back into the LDH structure, in line with the so-called ‘memory effect’. 

Therefore, further description of the state-of-the-art is made by referring either to ‘uncalcined’ 

(i.e., pristine) or ‘calcined’ (i.e., reconstructed) LDH samples.   

Among various reports dealing with uncalcined samples, Costantino et al. considered the 

intercalation of methyl orange (MO-) anions into the hydrotalcite-like compound 

Zn0.67Al0.33(OH)2Cl0.33·0.6H2O via ion exchange with the pristine chloride ions up to the saturation 

state corresponding to 94% of the overall anionic exchange capacity (AEC) of the host [3]. X-ray 

diffraction (XRD) patterns recorded on uncalcined LDH samples with increasing dye uptake 

evidenced a step-wise increment of the interlayer spacing from 0.774 nm (the pure Cl- phase) to 

2.42 nm (the pure MO- phase). For MO- uptake quantities smaller than 4% of AEC, the ion 

exchange pathway was restricted only to the external surface of the microcrystals. The two 

containing phases Cl- and MO- were postulated to coexist in the intermediate samples up to 70% 

of AEC, where the Cl- phase was completely transformed into the pure MO- one. Further retention 

was regarded as solubilization of MO- ion in the already formed phase. The computer-aided 

molecular modeling of the Zn-Al hydrotalcite-like layered structure with some intercalated MO 

anions, undertaken on the basis of the chemical composition and interlayer distance of the 

composite, indicated the monolayer packing of dye anions in perpendicular orientation with 

respect to the layer plane (their charged SO3
- moieties in a ‘flip-flop’ arrangement interacting with 

the positively charged sites). In another paper [10], the distance of interlayer spacing in Ca-Al-

LDH was shown to increase to 2.45 nm upon MO intercalation by exchange, which was regarded 

as reflecting a tilted orientation of the intercalated MO- species with an angle of 49°. The 

intercalation of MO- species via anionic exchange with NO3
- counter-ions among the layers of the 

host Mg-, Ni-, and Zn-containing LDHs was monitored by UV-Vis absorption spectroscopy and 

XRD [6]. The interlayer spacing was proven to be expanded following a two-phase transition 

mechanism. The maximum exchange ratio equal to 100% of the AEC was obtained only for Mg-

Al-LDH, whereas it was limited to about 90% in the case of Ni- and Zn-Al-LDH. This discrepancy 

was rationalized by referring to a limited diffusion of MO due to a larger crystalline size of the last 

two LDH particles. Besides the chemisorbed MO- ions, the compensating interlayer anions were 

represented mostly by OH- and by CO3
2- coming from air. Several authors applied Langmuir, 

Freundlich, Temkin, or Redlich-Peterson equations to fit the experimental adsorption isotherms of 

MO retained by various LDHs containing either nitrate or carbonate counter-ions [12-14]. The 
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kinetics of MO- retention by LDH materials was intensely studied and often analyzed by using 

pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, and Boyd models [5, 12-

14]. The pseudo-second-order model provided the best fit of kinetic data in most cases and the 

adsorption equilibrium, at different initial concentrations of MO, was obtained after 2 h at the 

most. 

In the second group of papers focusing on the reconstruction and ‘memory effect’ 

procedures, Zhang et al. demonstrated, on the basis of XRD and FT-IR studies, the successful 

intercalation of MO- anions into calcined calcium-aluminium layered double hydroxides (Ca-Al-

LDHs) in the form of interpenetrating bilayer, paralleled by the expansion of the basal spacing of 

Ca-Al-LDH to 2.48 nm [8]. The results of powder XRD, FTIR, UV–Vis, as well as 27Al and 13C 

CP/MAS NMR studies were also exploited by Laguna et al. to show that MO species adsorbed 

onto calcined Mg-Al-LDH (with a Mg:Al atomic ratio of 3) to achieve a MO content of c.a. 6 

wt.% could not be incorporated in the interlayer space, but rather on the external surface of the 

LDH crystals [19]. The interlayer space was postulated to be occupied by hydroxyl and carbonate 

anions not eliminated in the calcinations stage. The possibility of intercalation of MO- ions in flat 

configuration within the interlayer space of Zn-Al-LDH (with a Zn:Al molar ratio of 3) was 

inferred from XRD, Inductively Coupled Plasma (ICP) emission spectroscopy, and TG-DTA 

measurements [4]. Taking advantage of such fitting procedures, the MO adsorption was regarded 

as a spontaneous (negative Gibbs free energy) and endothermic (positive enthalpy of adsorption) 

phenomenon.  

Contrary to numerous papers dealing with the removal of methyl orange from aqueous 

solutions by LDH materials, only a few reports were published on the mechanism of adsorption of 

orange II (OII) and orange G (OG) [16-18]. Bouhent et al. carried out an extended study on the 

adsorption of OII onto Mg-Al-LDH with the aid of powder XRD, FT-IR, UV-Vis, TGA-DTA 

techniques [16]. They showed that OII- anions were first adsorbed on the external surface and then 

intercalated within the interlayer space via ion exchange with the pristine NO3
- counter-ions. The 

endothermic character of the adsorption phenomenon was deduced when fitting the experimental 

adsorption isotherms with the Langmuir model. The adsorption of OG onto Mg-Fe-LDH and Mg-

Al-LDH was also investigated with the use of similar characterization methods [17, 18]. The 

kinetic data fitted well the pseudo-second-order model and the thermodynamic consideration based 

on the Langmuir isotherm equation indicated that the sorption process was endothermic in nature 
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[17]. The intercalation of OG anions into the Mg-Al-LDH interlayer space, initially containing 

CO3
2- ions, was demonstrated to induce an increase in the basal spacing from 0.77 nm to 1.77 nm 

[18]. There are also previous studies reporting exothermic effects of sorption of dyes onto lamellar 

materials [24]. However they do not describe the exchange of ionized species in pure intercalated 

layered anionic clays, but rather sorption on clay materials, sometimes as mixtures with other 

inorganic compounds. 

 The objective of this study was to shed more light on the mechanism of individual 

adsorption of three azo dyes, i.e., methyl orange, orange II, and orange G, from aqueous solutions 

onto the same pristine Mg-Al-LDH-NO3 (molar Mg:Al ratio of 2). The equilibrium and kinetic 

aspects of the phenomenon in open systems exposed to the ambient atmosphere were examined in 

view of its potential uses in Environmental Remediation. Unlike previous papers reported on the 

subject, special attention was paid to the balance of various species involved in the ion exchange. 

The intercalation of dye anions was followed by XRD in a large 2θ range from 2° to 30°, which 

allowed a correct assignment of diffraction peaks. Direct calorimetry measurements of the 

enthalpy change accompanying the dye retention by LDH were carried out to demonstrate the 

exothermic character of the overall mechanism, at variance with the current state-of-the-art.  

 

2. Experimental 

2.1. Materials and synthesis  

 

The Mg-Al LDH was prepared by co-precipitation method at constant pH (≈ 10). 300 mL 

of aqueous solution containing 30.76 g of Mg(NO3)2•6H2O (Sigma Aldrich), and 22.5 g of 

Al(NO3)3•9H2O (Sigma Aldrich) was delivered by peristaltic pump into a beaker and the pH was 

maintained constant at pH = 10 by addition of NaOH (2 mol L-1) with pH-STAT Titrino 

(Metrohm). After complete precipitation, the suspension was refluxed at 80 °C for 17 h, and then 

the gel was separated by centrifugation, thoroughly washed three times with deonized water (Na 

< 100 ppm). Finally, the product was dried overnight at 80 °C.  
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According to Table 1, the molar Mg:Al ratio was equal to 2 and the material achieved 

contained nitrate anions as the main interlayer compensator of the positive layer charge. Therefore, 

this sample was further referred to as Mg-Al-LDH-NO3. 

 

Table 1. Chemical composition and proposed formula of Mg-Al-LDH-NO3 as inferred from the 
elemental analysis (the element contents are given in wt %). 

 

Mg Al N C                              Chemical formula 
AEC 

(meq g-1) 

15.85 8.78 3.81 0.32 [Mg0.67Al0.33(OH)2](CO3)0.027•(NO3)0.276•1.32H2O 3.25 

 

The SEM micrographs (see Supporting Information) evidenced well-defined layered 

platelets. The appearance below 35° 2θ of three symmetric and intense peaks in the XRD pattern 

(see Figure S1 in Supporting Information) corresponding to the (003), (006) and (009) harmonic 

reflections and above 35° 2θ of broad and asymmetric (012), (015), (110) peaks were in agreement 

with a well crystallized LDH exhibiting an hexagonal lattice with R-3m rhombohedral symmetry. 

The values of the lattice parameter c = 2.67 nm and the basal spacing d003= 0.89 nm agreed well 

with those previously reported in literature for Mg-Al-LDH-NO3 [16, 25, 26]. The interlayer 

spacing of 0.41 nm was found to be consistent with the diameter of nitrate anion (i.e., 0.40 nm 

[27]). 

Methyl Orange, Orange II (Acid Orange 7) and Orange G (Acid Orange 10), purchased 

from Sigma-Aldrich, were designated MO, OII and OG, respectively. All dyes had high purity > 

99% and they were used without any further purification. The maximum absorption (λmax) in the 

UV-Vis spectra was obtained at a wavelength of 466 nm, MO; 483 nm, OII; and 480 nm, OG. The 

structural formulas of the three dye anions together with their 2D molecular sizes are given in 

Figure 1. The estimated molecular sizes in two dimensions of the dyes were calculated with 

ChemDraw 3D 5.0 software package.   
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Figure 1. Structural formulas of MO (a), OII (b), OG (c), and their 2D molecular sizes, as 
estimated with the aid of ChemDraw 3D 5.0 software package. 

 

2.2. Characterization 

The LDH morphology was observed by using a scanning electron microscope (SEM) 

Hitachi S-4800. The percentages of Mg and Al in the as-synthesized LDH sample were determined 

using Energy-Dispersive X-ray analysis with Quanta 200 FEG Electron Microscopy spectrometer. 

The C, N and O contents were obtained by means of CHNS-O elemental analysis (Flash EA 1112). 

X-ray diffraction patterns of the pristine sample were recorded with a X’Pert diffractometer over 

the 2θ range from 3° to 70° under the Cu Kα radiation (λ = 1.5418 Å) and nickel filter. In the case 

of LDH samples containing different amounts of retained dye species, the XRD patterns were 

collected at a scan rate of 0.003 deg mn-1 in the 2θ range from 2° to 30° at 30 mA, 45 kV, using 

incident beam mask 10 mm, and zero background sample holder.  

 

2.3. Adsorption experiments 

Classical batch adsorption studies were carried out to evaluate the retention properties of 

Mg-Al-LDH-NO3. For this purpose, a LDH sample (2.5 mg) was poured into a 30 ml Nalgene™ 
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tube containing 10 mL of dye solution at a given concentration. The initial concentration of dyes 

varied from 0.02 to 5 mmol L-1 for MO and OII; from 0.02 to 3 mmol L-1 for OG molecule. The 

pH of each suspension was carefully checked before and after the attainment of adsorption 

equilibrium. The tubes were stirred overnight at 298 K. The separation of solid phase from the 

supernatant liquid was achieved by centrifugating at 10 000 rpm for 12 min. The supernatant was 

then analyzed by using V-670 UV-Vis Spectrophotometer (wavelength range 350 – 550 nm) to 

determine the equilibrium concentration of dye, Ceq. The amount adsorbed, Qads, is calculated as 

follows, 

 

Ci is the initial dye concentration in the tube, V0 is the initial solution volume, and ms 

denotes the mass of the adsorbent. The supernatant was also analyzed with the aid of ionic 

chromatography analyzer (Shimadzu HPLC) equipped with a CDD-6A conductivity detector 

operating at 313 K (Shim-pack IC-A1 column, 2 mmol L-1 potassium hydrogen phthalate at pH 

4.2 as the mobile phase) so as to study the amount of nitrate anions released from the LDH sample 

during dye adsorption. The presence of sodium counter-ions in the supernatant was also evaluated 

by the same technique (Shim-pack IC-C1 column, 5 mmol L-1 nitric acid as the mobile phase). The 

HPLC operating conditions were kept the same in both cases: flow rate of 1.5 mL min−1, injection 

volume of 45 μL, column temperature of 40 °C. The repeatability and experimental uncertainties 

of the adsorption measurements were carefully evaluated, and results were detailed in SI-S2. 

 

2.4. Kinetic study  

Sorption kinetics was studied by using experimental procedures similar to those described 

in the previous paragraph. The quantities of dye adsorption were determined at different time 

intervals. Three common kinetics models were subsequently applied to fit the experimental data: 

Lagergren-pseudo-first order [28], pseudo-second order [29], and Weber's intraparticle diffusion 

[30] one. The related analytical expressions are reported in Supporting Information. 

 

Qads =  
V0 (Ci – Ceq)

mS
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2.5. Calorimetry measurements 

A differential TAM III microcalorimeter was used to measure the enthalpy changes 

accompanying the removal of dye species from aqueous solutions by Mg-Al-LDH-NO3. To 

achieve a higher sensitivity on longer time scale, the calorimeter was run in a heat flow mode. The 

operating procedures and data processing are detailed elsewhere [31]. Taking advantage of the oil 

bath system, the temperature was kept constant within ± 0.0001 °C and the isothermal heat flow 

was measured at 25 °C. Prior to each calorimetric run, a sample of about 1-2 mg of LDH powder 

was introduced into the calorimetric cell initially containing 0.8 mL of deionized water. Only the 

same volume of deionized water was put in the reference cell. Then, both cells were placed inside 

the microcalorimeter and the thermal equilibrium was reached after 2 h. The injection system was 

equipped with a syringe filled with the appropriate stock solution of a given dye: 8.5 mmol L-1, 

MO; 14 mmol L-1, OII; 12 mmol L-1, OG. Successive injections of the 10 µL aliquots of a given 

stock solution during 10 sec resulted in an electric signal directly fed into a computer; the digitized 

signal representing the related thermal peaks was recorded with an equilibration time of 90 min 

applied between 2 injections. Integration of the areas under the thermal peaks was performed and 

the resulting enthalpy values were related to the mass of LDH in the cell. Similar procedures were 

applied to evaluate the effects of dilution and to correct the enthalpy values accordingly [31]. The 

repeatability of the enthalpy measurement, including the data processing step to determine the 

cumulative enthalpy of displacement, was within 6%, MO; 17%, OII; 4%, OG, respectively, 

nevertheless, the same trends in the enthalpy of displacement with the amount of dye uptaken were 

recorded in two separate runs. 

 

2.6. XRD study of the dye-loaded LDH samples   

Several LDH samples loaded with increasing amounts of dye were analyzed by XRD. For 

this purpose, 5 mg of LDH were dispersed in 20 mL of dye solution at known initial concentration. 

The supernatant solution was analyzed after having attained the sorption equilibrium and the 

corresponding dye equilibrium concentration and amount adsorbed were determined. The dye-

loaded solid samples were dried at 100 °C for 1-2 h and then analyzed with the previously 

described XRD equipment.  
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3.  Results and discussion 

The evolution of the dye adsorption phenomenon as a function of the equilibration time for 

the three dye species are shown in Figure S2 in Supporting Information. In the case of MO and 

OG, the kinetic curves were measured for three dye initial concentrations, chosen in a way to 

represent the following physical situations: (i) total dye adsorption leaving a negligible quantity of 

the solute in the supernatant solution, (ii) adsorption system in the intermediate adsorption range, 

(iii) adsorption system corresponding to the plateau saturation region. It can be clearly seen that 

the initial rates of MO adsorption are relatively rapid and the states near to equilibrium are reached 

within 60 min. It should be noted that all nitrate counter-ions have been already displaced from 

the LDH interlayer space at the end of this stage (HPLC results not shown here). Then the 

adsorption phenomenon proceeds at a slower rate and the final equilibrium is totally attained after 

200 min. The main hypothesis at this stage is to ascribe this decrease in the MO adsorption kinetics 

to the removal of carbonates from LDH; the dye species need more time to replace the carbonate 

anions which originate from strong interactions between CO2 molecules and the strongest basic 

sites in the LDHs structure, and thus it takes more time to attain the adsorption equilibrium. For 

OG, the adsorption equilibrium is reached after 100 min and only one step can be observed in the 

kinetic behavior. In the case of OII, the adsorption equilibrium is reached within the first 60 min. 

Three kinetic models were used to fit the kinetic data reported in Figure S3-S4. The 

resulting best-fit values of kinetic parameters have been collected in Table S1 in Supporting 

Information.  
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Figure 2. Pseudo-second order kinetics model of MO (a), OII (b) and OG (c) adsorption onto 
Mg-Al-LDH-NO3 for different initial concentrations. 

 

The highest goodness-of-fit is obtained with the pseudo-second order model (see Figure 

2) in accordance with the literature of the subject [13, 14]. This means that the dye removal passes 

through a chemisorption stage, which constitutes the rate-limiting process. For the sorption of MO, 
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the rate constant k2 obtained for the pseudo-second order kinetic model (see kinetic equations in 

Supporting Information) decreases from 0.035 to 0.008 mmol g-1 min-1 with increasing the initial 

dye concentration. 

This effect can be attributed to the increased competition for the surface active sites at 

higher MO concentrations [32]. It is interesting to notice that the kinetic plots following the 

Weber's intraparticle diffusion model do not pass through the origin. This means that the 

interparticule diffusion is the rate-controlling step [33, 34].  

The equilibrium isotherms for the three dye molecules adsorbed onto Mg-Al-LDH-NO3 

are presented in Figure 3. For all orange-type dyes, the amount adsorbed increases with increasing 

the equilibrium dye concentration. The quasi-vertical portions at very low initial concentrations 

revealed the high affinity of the LDH host towards the three dye species. The adsorption isotherms 

correspond to the H2-type according to the Giles classification [35]. The amount adsorbed levels 

off in the plateau region and it is approximately equal to 5.5 mmol g-1, MO; 2.7 mmol g-1, OII; 1.7 

mmol g-1, OG. The modification of pH during sorption is rather small. For OG and OII, the pH of 

the suspension does not vary a lot (0.1-0.2 pH unit, OG; 0.2 to 0.4 pH unit, OII). In the case of 

MO, the pH change is somewhat higher, with an increase of pH around 1 unit (between 0.6 and 

1.3). The observed differences in the maximum adsorption quantities can be obviously correlated 

with the cross-sectional area of the dye species which increases in the order: MO < OII < OG (see 

Figure 1). Furthermore, since one OG anion bears two negative charges, the quantity adsorbed of 

this molecule should be smaller than those of the two others. The hydrophobic-hydrophilic 

character of each dye unit is another parameter to be considered when explaining the observed 

trends in the maximum amounts adsorbed. The MO moiety is more hydrophobic than the OII one 

since it contains additional terminal methyl groups, whereas the hydrophobic character of the latter 

is diminished by addition of a hydrophilic OH group [36]. In the case of OG, the presence of two 

SO3
- groups, together with the hydrophilic OH substituent, renders this anion the less hydrophobic 

among the three dyes [37]. 

It is worth underlying that the MO amount adsorbed is almost twice that of theoretical AEC 

as inferred from the chemical formula of the pristine LDH sample (see Table 1). Such an LDH 

performance has never been shown in the literature. Two hypotheses taken from the previous 

studies can be considered to rationalize this effect. MO anions may adsorb on the external surface 
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of LDH [25, 38]. Another possibility corresponds to the formation of some aggregates inside the 

LDH interlayer space due to the hydrophobic interactions of chromonic MO species between 

themselves [39]. In both cases, the excess of negative charge relatively to the AEC has to be 

neutralized by the uptake of some positively charged species.   

The uptake of sodium cations during the adsorption of dye anions is illustrated in Figure 

3. Sodium is the counter-ion with respect to the dye sulfonate moiety –SO3
-. It is clear that Na+ 

ions are co-adsorbed, especially for high dye uptakes. In the case of MO, the sodium uptake curve 

may be divided into 2 parts. In the first part, no adsorption of Na+ can be observed. It corresponds 

to the vertical part of the MO adsorption isotherm, where the interaction between MO- anions and 

LDH is strong and the formers exchange with the pristine NO3
- counter-ions. Since the sulfonate 

moieties of MO anions compensate successively the positive charge of the brucite-like layer, the 

sodium co-ions cannot enter the inter-lamellar domain of the LDH host. The co-adsorption of Na+ 

ions begins at Qads > 4 mmol g-1, where the amount of MO exceeds the AEC of the pristine LDH 

sample (3.25 meq g-1). The excess of adsorbed MO anions is likely due to hydrophobic interactions 

resulting in the formation of surface-bound aggregates groups [36]. The free –SO3
-
 moieties are 

thus neutralized by the co-adsorbed Na+ ions. 

In contrast, co-adsorption of sodium cations parallels the adsorption of OII anions at a 

constant proportion of 1:3. Therefore, there are some negative species (e.g., carbonate impurities 

from air and also hydroxyl groups) in the interlayer space of LDH whose charge could be partially 

neutralized by the co-adsorption of Na+ ions. 
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Figure 3. Left panels: adsorption isotherms for MO (a), OII (b), and OG (c) anions and sodium 
cations from aqueous solutions onto Mg-Al-LDH-NO3 at 25 °C; Right panels: variations of the 

cumulative enthalpy of displacement as a function of the amount of dye adsorbed. 
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The isotherm of sodium uptake accompanying the adsorption of OG anions can be divided 

into 3 parts, corresponding, respectively, to zero Na+ adsorption, partial Na+ co-adsorption, and 

high Na+ retention. As in the case of MO adsorption, the first part matches the vertical part of the 

OG adsorption isotherm. The second part falls in line with the beginning of the saturation plateau 

region. A plausible explanation is that some OG anions are retained only with one negatively 

charged center, the second one being neutralized with one sodium counter-ion. When the dye 

adsorption reaches its maximum value, one Na+ ion adsorbs, on average, for one retained OG 

anion. 

The above discussion indicates that the mechanism of dye removal from the aqueous phase 

by Mg-Al-LDH-NO3 sample is a complex process passing through various stages involving a 

variety of species retained at the solid-liquid interface or released to the supernatant solution. The 

displacement is a commonly used term to designate such a process. Direct calorimetry 

measurements of the enthalpy changes accompanying the displacement process can shed some 

light on the interactions involved. The variations of the cumulative enthalpy of displacement are 

plotted against the amount of dye adsorbed in Figure 3. 

Despite some marked differences between the three enthalpy curves, the general 

conclusion drawn from the calorimetric measurements is that the overall process of displacement 

has an exothermic character. This observation is at variance with the endothermicity of dye 

adsorption postulated in the previously published papers [14, 15, 17] describing the sorption of 

anionic dyes onto LDHs. It should be emphasized that, contrary to the enthalpy quantities 

determined previously, the direct calorimetry measurement and further data processing employed 

here provide estimate of the global heat effect accompanying the sorption process. Indeed, the 

cumulative enthalpy represents a global effect combining such contributions involved in the 

sorption phenomenon as the intercalation of the adsorbed species, interlayer anion displacement, 

swelling of the layers, hydration/dehydration effects and also the displacement of other species 

(such as Na+ and OH-). In the case of MO and OG, the exothermic displacement continues up to 

the end of the vertical portion of the dye adsorption isotherm; then it levels off quite quickly and 

the displacement becomes almost athermal. The exothermic effect of displacement accompanying 

the retention of MO species is much more marked than that of OG adsorption. It decreases to about 

-90 J g-1 in the enthalpy plateau region, contrary to the enthalpy change during OG adsorption, 

which diminishes only to about -10 J g-1. The enthalpy variations for OII do not follow the same 
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trend. The initial decrease to about -10 J g-1 at the end of the vertical portion of the OII adsorption 

isotherms is consistent with the enthalpy curve for OG. After a short ‘hesitation’ interval, a new 

strongly exothermic contribution to the total enthalpy of displacement becomes noticeable. This 

trend is difficult to be explained on the basis of the results reported here.  

According to the well-documented literature [3, 4, 8, 10, 16-18, 26], the intercalation of 

dye anions into the interlayer space of LDH materials may lead to an expansion of the interlayer 

distance. The results of similar XRD study made on the selected LDH samples loaded with 

different amounts of dye anions are reported below. For each type of dye, the quantities adsorbed 

are marked with red points directly on the related adsorption isotherms in Figure 3. 

X-ray diffraction patterns of Mg-Al-LDH with increasing MO content are shown in Figure 

4. They are compared with XRD patterns of the pristine samples containing carbonate and nitrate 

anions. For the first point in the adsorption isotherm (system MO-1), where there are 0.2 mmol of 

MO retained per gram of the pristine LDH sample, a displacement of the (003) peak from a 2θ 

position of 10° to 11.5° can be seen. The interlayer distance thus decreases from 0.89 to 0.77 nm. 

The latter value is consistent with the Mg-Al-LDH-CO3 system in which the (003) peak is located 

at 11.6° with a d003 value of 0.765 nm. This means that there is no more NO3 anions within the 

interlayer space of LDH even for very small MO adsorption quantities. The pristine nitrate anions 

are thus easily replaced by the carbonate ones, provided by dissolution of CO2 in water from open 

system. Moreover, pristine LDHs contain already carbonate species in the structure. The latter 

phase cannot be observed in the XRD pattern of the pristine material because of the too small 

carbonate content (Table 1) and because it is masked by the presence of the nitrate phase. However, 

the displacement of nitrate anions by the incoming MO species makes the CO3 phase 

distinguishable in the XRD pattern of the MO-1 system, thought with a very low intensity. It is 

worth mentioning that there is no important narrowing of the basal spacing in the system with MO- 

intercalation, because of the very small quantity adsorbed 0.2 mmol g-1. 
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Figure 4. X-ray diffraction patterns in the 2θ range from 2° to 30° for the intercalation of MO in 
the Mg-Al-LDH-NO3 structure corresponding to 5 points in the MO adsorption isotherm (as 

marked by crosses in Figure 3). 

 

In the case of the MO-2 system (Qads = 1.2 mmol g-1), two new harmonic peaks appear at 

2θ positions of 3.6° and 7.4° corresponding to d-values of 2.42 and 1.2 nm. These new peaks are 

ascribed to the (003) and (006) reflections due to MO- species intercalated in the LDH host. The 

third (009) harmonic peak should have appeared at 11.1° but it is not clearly distinguishable in 

Figure 4. Nevertheless, the broadening of the carbonate peak (between 2θ positions from 11.1 to 

11.5°) may evidence for the existence of the (009) peak of MO-. These features in the XRD pattern 

indicate that MO and CO3 containing interlayers are present in the LDH. 

Further MO uptake (from MO-3 to MO-5) induces an increase of intensity of the (009) 

reflection with a d value of 0.8 nm. The MO phase becomes predominant already in the MO-3 

system. The presence of three (00l) harmonic reflections corresponding to d-values of 2.42, 1.2 

and 0.8 nm is in good agreement with the previous papers reporting the intercalation patterns in 

Mg-Al-LDHs [7, 26] Zn-Al-LDHs [3, 13, 40], and Ca-Al-LDHs [13]. The expansion of the basal 

interlayer distance (d003) of the host LDH lattice from 0.89 to 2.42 nm, which parallels the MO 

intercalation, points toward the successful exchange with NO3
- anions. Furthermore, three new 
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sharp peaks are visible in the XRD patterns of the MO-4 and MO-5 systems (*). According to the 

previous discussion, the amounts of MO retained by the LDH host (3.3 and 5.5 mmol g-1, 

respectively) exceed the AEC of LDH (3.25 meq g-1). The possibility of MO sorption or 

crystallization on the external surface was checked thoroughly by washing, prior to XRD analysis, 

a LDH sample previously loaded with 3.7 mmol g-1 of MO. The resulting diffractogram (not shown 

here) exhibited only 3 harmonic peaks at 2θ positions of 3.6°, 7.4°, and 11.1°. This corroborated 

the starting hypothesis of interaction between dye and external surface. 

 

 

Figure 5. X-ray diffraction patterns in the 2θ range from 2° to 30° for the intercalation of OII in 
the Mg-Al-LDH-NO3 structure corresponding to 4 points in the OII adsorption isotherm (as 

marked by crosses in Figure 3). 

 

Four different points have been selected in the OII adsorption isotherm (Figure 3 (b)) to 

perform XRD study on the Mg-Al-LDH-OII systems. The resulting XRD patterns are given in 

Figure 5. The diffractograms recorded on the pristine LDH-NO3 and LDH-CO3 samples are also 

included for the comparison purpose. The XRD pattern of the OII-1 system (Qads = 0.14 mmol g-

1) exhibits two harmonic peaks at 2θ positions of 11.6° and 23.4°, providing interlayer space 
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distances of 0.76 nm and 0.38 nm. These (003) and (006) peaks indicate the presence of CO3
2- 

species in the interlayer space. Moreover, small peaks of the nitrate phase are still present. On the 

contrary, there are not enough OII units for the peaks of the intercalated species to be 

distinguishable. With the increased amount of adsorbed OII- units in the OII-2 system (Qads = 0.41 

mmol g-1), two harmonic (003) and (006) peaks become visible at 2θ positions of 3.9° and 7.9°. 

These peaks corresponded to interlayer space distances of 2.22 nm and 1.11 nm and thus indicate 

the intercalation of OII- anions within the LDH structure. The (009) harmonic peak of OII has 

almost the same position as the (003) peak of the intercalated carbonate anions and, therefore, it is 

difficult to deduce the role of carbonate species during dye intercalation. It is useful to compare 

the harmonic (006) peak of carbonates with the (0018) peak of OII- so as to notice the increasing 

predominance of the OII- phase when passing from OII-2 to OII-4 system; the (0018) reflection 

becomes sharper than the (006) peak of carbonates already in the XRD pattern of the OII-3 system. 

The existence of the CO3
2- phase even in the OII plateau adsorption region confirms the previous 

hypothesis explaining the co-adsorption of sodium cations and OII- anions at a constant proportion 

of 1:3. XRD results are in agreement with those reported for OII- adsorption onto LDH [16, 41-

43] and LDH-PVA [40] structures. The last unattributed peak could be explained by specific 

interaction of OII and LDH as observed from calorimetric results. This mechanism deserves to be 

studied more in details to check the hypothesis. 

Figure 6 shows XRD patterns recorded on LDH samples loaded with increasing amounts 

of OG units. For the OG-1 system, the corresponding diffractogram clearly indicates the presence 

of nitrates and carbonates ions in the interlayer space with the related (003) and (003) reflections 

at 2θ positions of 10° and 11.6°, respectively. The OG phase is not clearly visible probably because 

of the very small amount adsorbed (about 0.11 mmol g-1). The orientation of the intercalated dye 

units is likely parallel to the layers and the corresponding peak is hidden by the peaks of CO3 and 

NO3 phases. When one passes to the OG-2 system, a new peak appears at a 2θ position of 5.2°. It 

can be assigned to the (003) reflection of the OG phase in relation with the interlayer distance of 

1.68 nm. Broadening the peaks corresponding, to the (003), (003), and (006) reflections of the 

NO3, CO3
 and OG phases respectively can be interpreted as the result of increased adsorption of 

OG units (Qads = 0.48 mmol g-1). The NO3 phase disappears in the XRD pattern recorded on the 

OG-3 system (Qads = 1.04 mmol g-1. Simultaneously, the OG phase becomes predominant over the 

carbonates species, as inferred from the (006) reflection by OG species and the (003) by the CO3
2- 
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ones. Two new harmonic reflections of OG at 2θ positions of 15.8° and 21.1° can be found in the 

XRD pattern. They may be assigned as the (009) and (0012) reflections of OG species. For the last 

OG-5 system, no peaks characteristic of the CO3
 phase are visible and the intercalated OG2- species 

constitute the only phase present in the interlayer space. The expansion of the LDH structure by 

intercalation of the OG units results in an increase in the interlayer space distance from 0.89 nm 

to 1.68 nm. The latter is not far from the 1.77 nm [18]  and 1.78 Å [40, 44] values reported 

previously in the literature. Furthermore, this expansion is in a good agreement with the co-

adsorption of sodium cations and in line with the vertical orientation of the intercalated OG units 

interacting through only one –SO3 moiety with the positively charged LDH layers. 

 

 

Figure 6. X-ray diffraction patterns in the 2θ range from 2° to 30° for the intercalation of OG in 
the Mg-Al-LDH-NO3 structure corresponding to 5 points in the OG adsorption isotherm (as 

marked by crosses in Figure 3). 
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4. Conclusions 

The combination of various experimental techniques has been applied to study some 

important aspects of the adsorption of azo anionic dyes from aqueous solutions onto Mg-Al-LDH 

sample containing nitrate anions in the interlayer space. Despite certain differences in the kinetic 

behavior among Methyl Orange, Orange II, and Orange G, the adsorption equilibrium is attained 

after 200 min at the last; the kinetic rate is the highest for OII and the lowest for MO. The dye 

retention kinetics obeys the pseudo-second order kinetic model, thereby indicating a strong 

interaction between the dye units and the LDH host structure. The maximum amount of dye 

retained in the adsorption plateau region increases in the order: MO >> OII > OG. This trend can 

be first rationalized when taking into account the differences in the molecular sizes, electrical 

charges and hydrophobic character of the molecules. In the case of MO, the maximum dye 

adsorption exceeds the anionic exchange capacity of the pristine LDH material. The retention of 

the MO units on the external surface and their aggregation inside the interlayer space may be 

considered to explain this result, which has never been obtained before. The uptake of dye anions 

by the LDH material can be accompanied by the co-adsorption of Na+ cations and this is a second 

original contribution of the present study to improve the understanding of the adsorption 

mechanism. For OII, the Na+ co-adsorption is observed for all points in the adsorption isotherm 

and, on average, one sodium cation is retained per 3 OII units. In the case of the two other dyes, 

the co-adsorption of sodium becomes noticeable only for higher dye uptakes. The detailed analysis 

of XRD patterns recorded on different LDH samples loaded with varying amounts of dye species 

showed that MO, OII, and OG anions are intercalated into the interlayer space of the Mg-Al-LDH-

NO3 structure, thereby displacing nitrate anions to the supernatant aqueous phase. This 

intercalation step is paralleled by the expansion of the basal interlayer distance (d003) of the host 

LDH lattice from 0.89 nm to 2.42 nm, MO; 2.22 nm, OII; 1.68 nm, OG. 

In summary, Mg-Al-LDH has been proven to be a good adsorbent for the three Orange-

like dyes molecules. The results reported in the present paper indicate the complex mechanism of 

the adsorption phenomenon involving several species which can either compete against one 

another for the active sites at the LDH surface or they can give rise to a co-operative adsorption. 

The overall mechanism is exothermic, especially in the case of MO. This result is at variance with 

the endothermic character previously reported in the literature on the basis of the modeling studies. 
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Further study on the OII adsorption is necessary to explain the variations of the enthalpy of 

displacement at higher adsorbed amounts. 
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SUPPORTING INFORMATION I 

 

S1. Characteristics of Mg-Al-LDH-NO3 solid and dye molecules  
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Figure S 1.  SEM image (upper panel) and X-ray powder diffraction pattern (lower panel) of Mg-
Al-LDH-NO3 

 



 Chapter II: Mechanism of Dye uptake onto Mg-Al-NO3 Layered Double Hydroxide 
 

79 
 

The morphology of adsorbent was observed by scanning electron microscopy (SEM). 

Figure S 1(upper panel) shows the typical SEM images of the Mg-Al-LDH-NO3 with well defined 

layered platelets. The structure of layered double hydroxide was inferred from the XRD analysis 

Figure S 1 (lower panel). This type of material crystallizes in hexagonal lattice with R-3m 

rhombohedral symmetry [45, 46]. The diffractogram exhibits the structure with a series of 00l 

peaks, such as (003), (006) and (009) which contains information about the cell parameters. The 

parameters c and a can be estimated from the (003) (c = 3d003) and (011) (a = 2d110) positions, 

respectively [26]. The c value of 2.6 nm agrees with those previously reported in literature for 

Mg/Al LDH [16, 25, 26]. It was used to calculate basal spacing [47] of the layered material, d003= 

0.89 nm. The layer thickness of brucite-like minerals is 0.48 nm [46] and the interlayer spacing is 

therefore 0.41 nm. This is in agreement with the diameter of the nitrate anion (0.4 nm) [48].  

 

S2. Repeatability and experimental uncertainties 

 The repeatability and experimental uncertainties of the adsorption measurements 

were tested in the following manner: (1) the measurements were carried out twice by adding new 

points to the sorption curve obtained in a previous experiment under the same experimental 

conditions (such points had been selected to represent low, medium, and high concentrations and 

they were subsequently integrated into the sorption curves reported in the manuscript); (2) the 

sorption experiments were repeated independently by following the same measurement 

procedures. In the pre-plateau region, the greatest deviations between the corresponding adsorption 

curves were: 10%, MO; 17%, OII; 7%, OG. In the plateau region, these deviations were: 4%, MO; 

23%, OII; 3%, OG. 
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S3. Kinetic Models 

For the various models, the kinetic constants of adsorption were calculated and the linear 

regression correlation coefficient (R2) values were compared to evaluate the best fit model. 

The Lagergren-pseudo-first order model can be described by the following linear form: 

                  (S1) 

where ql and qt are the amounts of the dye adsorbed at equilibrium and at time t, 

respectively; k1 is the equilibrium rate constant in the pseudo-first order model. Values of k1 and 

R2 were found from the linear plots of log (ql - qt) vs. time. 

The pseudo-second order kinetic model is expressed as follow:  

                       (S2) 

                                (S3) 

where: 

 h is the initial sorption rate; qe is the amount of the dye adsorbed at equilibrium and k2 is 

the equilibrium rate constant in the pseudo-second order model. They can be calculated from the 

slope of the plot of t/qt as a function of time. 

The Weber's interparticule diffusion model equation may written as follows:  

                                  (S4) 

where: 

 kid is the equilibrium rate constant of the interparticule diffusion model. The plots of qt as 

a function of t0.5 should represent straight lines and were used to obtain the rate constants.  
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Figure S 2. Amount of MO (a), OII (b) and OG (c) adsorbed onto Mg-Al-LDH-NO3 as a 
function of the contact time for different initial concentrations. 

 



 Chapter II: Mechanism of Dye uptake onto Mg-Al-NO3 Layered Double Hydroxide 
 

82 
 

Table S 1. Kinetic parameters of Orange dyes adsorption onto Mg-Al LDHs for different initial 
dye concentrations. 

 
 

Co 

(mM) 

qexp 

(mmol/g) 

Lagergren-first-order Pseudo-second order 
Intra-particle mass 

transfer diffusion 

ql. cal  

(mmol g-1) 
k1 (min-1) R2 

qe. cal 

(mmol g-1)  

k2 (mmol 

g-1min-1) 
R2 

kid (mmol g1 

min-1/2) 
R2 

0.4 1.64 0.66 0.005583 0.9227 1.61 0.035011 0.9916 0.05353 0.7918 

0.9 3.25 1.17 0.015304 0.6689 3.08 0.020739 0.9935 0.10371 0.6862 

1.8 4.47 2.34 0.008041 0.9204 4.64 0.008066 0.995 0.17724 0.8841 

Orange 0.1 0.39 0.15 0.00674 0.8689 0.38 0.190567 0.9964 0.01091 0.7877 

1.1 1.55 0.94 0.00492 0.6274 1.48 0.457593 0.97 0.05369 0.9592 

0.17 0.74 0.32 0.00919 0.9293 0.71 0.118396 0.9849 0.0185 0.6359 

0.45 1.42 0.62 0.00467 0.7353 1.41 0.02727 0.9891 0.03598 0.7358 

1 1.76 0.34 0.00306 0.3532 1.70 0.079305 0.996 0.02745 0.4127 
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Figure S 3.  First order sorption kinetics of MO (a), OII (b) and OG (c) adsorption onto Mg-Al-
NO3 LDH for different initial concentrations. 
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Figure S 4. Intra-particle mass transfer diffusion model for MO (a), OII (b) and OG (c) 
adsorption onto Mg-Al-NO3 LDH for different initial dye concentrations. 
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1. Introduction 

Understanding of the sorption mechanism is essential to improve suitable procedure for 

contaminant removal. Layered Double Hydroxides (LDHs) systems are well-known layered 

materials able to remove anionic pollutants [1-3]. Different experimental approaches are used to 

gain clear view on the mechanism of pollutant uptake onto various types of sorbents, together with 

all the related hidden contribution to the overall process. Equilibrium sorption isotherms, together 

with X-ray diffraction and Fourier Transform Infrared (FTIR) spectroscopy are the most widely 

reported techniques in the literature for the adsorption of hazardous species onto layered materials 

[4-6]. Effects of pHs, of temperature, of adsorbent dosage, sorption kinetics, … are also parameters 

regularly used to understand the removal mechanisms from the solvent environment [7-11]. Some 

of these authors occasionally calculate thermodynamic parameters such as, the standard Gibbs free 

energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) to evaluate the thermodynamics of the pollutant 

uptake [9, 10, 12]. Their thermodynamic description is based on modelled isotherm, and the 

temperature dependence of the constants giving access to the enthalpy and entropy terms (the so-

called Van’t Hoff approach to evaluate ∆H and ∆S). However, it is shown from previous study 

that estimation of the endo- or exothermicity of removal process based on simulated isotherm 

could give contradictory results compared to the direct experimental achievement [13]. Indeed, 

there are several contributions to the overall enthalpy change upon displacement. The cumulative 

enthalpy represents a global effect combining all various contributions involved in the sorption 

process. This includes such different contributions as, the intercalation of the adsorbed species, 

interlayer anion displacement, swelling (expansion or compression) of the layers, hydration / 

dehydration of the exchanged species, the displacement of other species (e.g. uptake of Na, 

uptake/release of protons) and the dewetting of the solid surface (sorption on external surface, etc). 

All these contribution are not always taken into account in the simulation of modeled isotherm. 

That is why ITC was used to assess the global heat effect accompanying the sorption process. The 

key point of this work is the use of calorimetry to measure directly the overall heat effect of 

displacement, combined with other experimental techniques, and to decompose the overall heat 

effect of sorption so as to identify these various contributions. The literature on the thermodynamic 

of sorption onto LDHs is not abundant. Due to the complexity of these systems, very few works 



 Chapter II: Mechanism of Dye uptake onto Mg-Al-NO3 Layered Double Hydroxide 
 

88 
 

based on ITC report the pollutants uptake [14-16]. Israëli et al. were the first to report the enthalpies 

of anion exchange on Zn-Al-LDH-Cl using microcalorimeter titration [15]. The heats effect 

associated with the exchange of Cl- for F-, Br-, I-, OH-, NO3
- and SO4

2- anions were measured as 

well as the standard molar enthalpies of these exchange reactions. The variation of the standard 

molar enthalpy was found to be dependent of the nature of the anions. They demonstrate that the 

anions can be either weakly or strongly hydrated upon intercalation. Hence, they concluded that 

anion selectivity on LDHs is mainly governed by enthalpic aspect, while the exchange processes 

appear to be more entropy - driven. Later on, the same research group presented thermodynamic 

study of dicarboxylate anions exchange onto the same LDHs [14]. Four different organics anions 

were tested: oxalate, succinate, adipate and tartrate. Interestingly that almost for all organics 

moieties exchange with Cl- was endothermic process contrary to exothermic exchange of the 

common anions. The only exception was tartrate, bearing an -OH groups in its structure, which 

exhibited an exothermic behavior. This could be due to the partial dehydration of -OH upon 

intercalation during the uptake process as well as to the formation of hydrogen bonding between 

the -OH group of the tartrate anions and the CH2 groups.  

In our previous study [17], the exchange – adsorption from aqueous solutions of three azo 

dyes, Methyl Orange (MO), Orange II (OII), and Orange G (OG), onto Mg-Al-LDH-NO3 Layered 

Double Hydroxides (LDH, molar Mg:Al ratio of 2) was investigated through monitoring all 

retained and removed species in combination with direct calorimetry and X-ray diffraction 

measurements. Despite some marked differences between the three enthalpy curves, the general 

conclusion drawn from the calorimetric measurements is that the overall process of displacement 

has an exothermic character. However, in the particular case of the OII sorption onto LDH at high 

surface coverage, a new strongly exothermic contribution to the total enthalpy of displacement 

became noticeable, whose trend was difficult to explain on the basis of the obtained results. The 

objective of the present work is to describe in details the anomalous enthalpy effects accompanying 

the adsorption of Orange II onto Mg-Al Layered Double Hydroxide from aqueous solutions using 

mainly Isotherm Titration Calorimetry (ITC). 
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2. Materials and methods 

All experiments were performed on the as-prepared Mg-Al-LDH-NO3. The synthesis and 

characterization of adsorbent were described previously [17]. Except for titration calorimetry, the 

detailed descriptions of the experimental procedure are given in the Supporting Information. A 

differential TAM III microcalorimeter combined with titration cell was used to measure the 

enthalpy changes accompanying the removal of dye species from aqueous solutions Mg-Al-LDH-

NO3 materials or their interaction with species in solution. Prior to each calorimetric run, for the 

experiment in suspension with the presence of LDH particles, a sample of about 1-2 mg of LDH 

powder was suspended in 0.8 mL of distillated water in the calorimetric cell. For experiments in 

solution, 0.8 mL of Mg(NO3)2 or Al(NO3)3 (7 mmol L-1) was placed in the measuring cell. A 

second cell containing only the solvent is used as a reference. Then, both cells were placed inside 

the microcalorimeter and the thermal equilibrium was reached after 2-4 h. The injection system 

was equipped with a syringe filled with the appropriate stock solution of 14 mmol L-1 OII dye. For 

the interaction of OII with Mg(II) or Al(III), syringe was filled with 5 mmol L-1 OII solution. 

Successive injections of the 10 µL aliquots of a given stock solution during 10 sec resulted in an 

electric signal directly fed into a computer; the digitized signal representing the related thermal 

peaks was recorded with an equilibration time of 45 min applied between 2 injections. Integration 

of the areas under the thermal peaks was performed and the resulting enthalpy values were related 

to the mass of LDH in the cell or the molar ratio. For the sorption experiments, similar procedures 

were applied to evaluate the effects of dilution and to correct the enthalpy values accordingly [13]. 

The same type of procedure was used for the experiment in solution. Agitation in the cell was 

ensured using home-made Teflon or commercial gold stirrer, with 120 or 90 tpm for suspension 

or solution measurements respectively. Heat flow measured at 25 ◦C.  
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3. Results and Discussion 

The capacity of Mg-Al-LDH-NO3 to remove the dyes from aqueous solutions was followed 

by sorption isotherms. In the previous work [17] we reported that dye adsorption isotherms (H2-

type) showed some differences in the maximum adsorption quantity (5.5 mmol g-1, MO; 2.7 mmol 

g-1, OII; 1.7 mmol g-1, OG), consistent with anionic exchange capacity and sorption on the external 

surface, depending on the cross-sectional area of the dye species and with their hydrophobic-

hydrophilic character. MO and OG sorption isotherms exhibit higher affinity, with sharp slope at 

low initial concentrations. For OII, there is also high interaction for amount adsorbed lower that 1 

meq g-1, and then the slope decreases, meaning lower interactions and modifications of the sorption 

process before complete exchange (AEC). Further XRD analysis has shown the presence of one 

unattributed peak that was probably related to specific interactions between OII and LDH. The 

cumulative enthalpy of displacement was negative in conformity with the exothermic character of 

the overall process. The exothermic effect of displacement accompanying the retention of MO 

species is much more marked than that of OG adsorption, with decrease and stabilization after 

completing the exchange to about -90 J g-1 and -10 J g-1 respectively. This is correlated with the 

less hydrophobic nature of OG in comparison to MO [18, 19]. However, the enthalpy variations 

for OII do not follow the same trend.  

As observed on the Figure 7, for OII sorption, after a short ‘hesitation’ interval, a new 

strongly exothermic contribution to the total enthalpy of displacement becomes significant. This 

modification of the enthalpy curve is consistent with the change of the shape of the sorption 

isotherm. In order to compare two analysis, isothermal and enthalpy plots were divided on the 

zones. Zone I is attributed to the low values of OII amount adsorbed (<1 meq g-1), while Zone II 

for higher values of amount adsorbed (>1 meq g-1). In Zone I, the sharp slope, which indicates the 

high affinity between OII and LDH (upper panel), characterizes adsorption phenomenon and this 

adsorbent-adsorbate interactions are described by exothermic effect (lower panel). In addition, the 

end of the sharp slope occurs when the cumulative enthalpy curve reaches its pseudo-plateau. 

 In Zone II the sorption isotherm exhibits an inflexion, however OII continue to adsorbs 

‘slowly’ with the increase in its equilibrium concentration. Moreover, the enthalpy curve is no 

more stable in this zone, and can be characterized by the monotonous decrease in the values of 
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cumulative enthalpy from -10 to -25 J g-1. The results obtained in the first Zone I for both plots are 

consistent with the enthalpy curve for two another dyes (i.e. MO and OG) [17]. However, the 

results reported in the second Zone II, are unusual because of the two main reasons: no stabilization 

of isothermal plateau and no level off of the thermal effect of OII displacement are observed. 

 

 

Figure 7. Sorption isotherm of OII on Mg-Al-LDH-NO3 from aqueous solution (upper panel) and 
calculated cumulative enthalpies of displacement as a function of the OII amount adsorbed 

(lower panel). 

 

Additional information have been obtained from the macroscopic observation of OII-LDH 

suspensions at bottom of the tubes. Hence, they exhibit cloudy supernatant, together with mixture 

of well-defined particles and sticky fibers (Figure S5 in Supporting Information). To have a 

Zone I 

Zone I 

Zone II 

Zone II 
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microscopic view of these newly formed aggregates, the LDH sample after adsorption of OII at 

high equilibrium concentration has been analyzed with TEM microscopy. To that purpose, small 

amount of particles have been removed from the bottom of the tube. Figure 8 (A, B) displays the 

fibers with 2D structure, formed during OII retention onto LDHs, together with LDHs particles 

beaded on the OII-fibers. 

 

Figure 8. TEM images of fibers formed during adsorption onto LDHs (A, B) and by direct 
contact between OII Mg(NO3)2 solution (C, D). In the presence of LDH (A, B), only a small part 
of the LDH solid particles was taken from in the base of the tube, with the aim to avoid too high 

number of particles and keep better image quality.  

 

To have a further insight in this unexpected behavior, the supernatants after OII sorption 

onto LDH are carefully studied. Taking into account the composition of Mg-Al-LDH sorbent, free 

Mg(II) in the supernatant have been analyzed using Ionic chromatography (See Supporting 

Information). Points with different OII equilibrium concentrations between 1.4 to 2 mM have 

shown free Mg(II), with 0.09 mM, i.e. about 0.35 mmol released per gram of LDH. In addition, 

the same analysis was performed for MO dye and no free Mg(II) was observed after this dye uptake 

(results are not reported here). This indicates that in the presence of OII species Mg-Al-LDH 

adsorbent is partially dissolved. This is in contrast with MO, for which no dissolution occurs. This 
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could be explained by the ability of OII to interact strongly with Mg(II) cations, even with those 

presented inside the LDHs, leading to the partial dissolution of LDH, and the interaction between 

Mg(II) and OII.  

 

Figure 9. Thermograms for OII adsorption onto Mg-Al-LDH-NO3 (a), OII dilution in water 
(under the same conditions as for sorption onto Mg-Al-LDH-NO3) (b), OII interaction with 

Mg(NO3)2 (c) and with Al(NO3)3 (d) solutions.  

 

To have the information about thermal effect of the implying interaction between OII with 

Mg(II) as well as Al(III) to compare with those of OII adsorption onto LDH, calorimetric 

measurements were investigated and reported in Figure 9. In addition, thermal effect of OII 

dilution in ultrapure water was also reported in this figure. As observed, all the thermograms inhibit 

similar parts of the thermal effect curves. 

For sorption experiments, the shape of thermograms is considered as conventional if the 

signal observed is due to the solute dilution, after the end of the sorption process and the saturation 
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plateau is reached. However, the profile of enthalpy curve is different for OII retention by LDH 

Figure 9 (a). For the first ten injections (OII amount adsorbed is around 1 meq g-1) performed 

during first 15 hours, two contributions are distinguished for each injection. The first one is the 

sharp endothermic effect that was correlated with OII dilution in water (see Figure 9 (b)). The 

second contribution is an exothermic broad signal that is probably the heat effect due to OII 

sorption onto LDH.  

The global heat effect tends to zero when the sorption reaches 1 meq g-1, that is the part 

where the cumulative enthalpy of displacement is stabilized around -10 J g-1, i.e. Zone I, mentioned 

above. However, for the following injections the heat effect continues to grow, with the only 

visible exothermic contribution. Moreover, it becomes greater than expected heat effect due to OII 

dilution (endothermic effect). The profile of the thermogram obtained for OII in the presence of 

Mg(II) in solution Figure 9 (c) seems to be similar to that obtained for the complexation between 

organic molecules and cations. Hereafter, two different mechanisms were revealed for OII retained 

by LDH. Thus, the first exchange mechanism is followed by the aggregation of the molecules with 

the Mg(II) release during the LDH dissolution. From the ITC raw data obtained on OII dilution in 

Mg(II) solution, the following thermodynamic parameters have been calculated: n= 0,037, ΔH = 

23,17 kJ mol-1.  

To confirm the particular behavior of Mg(II) with OII, this newly formed phase has been 

visually observed in solution containing both Mg(II) and OII. Furthermore, their shapes were 

compared with particles and fibers obtained with LDHs contacted with OII with TEM (Figure 8 

(C, D). The observed particles formed during OII dilution in Mg(II) (Mg(NO3)2) solution presents 

the same shape and seems to have the same 2D dimensional structure. Their structural 

characterization has been performed using XRD analysis.  

Figure 10 shows the XRD patterns of the LDH samples loaded with OII (1), fibers collected 

around the LDHs after sorption (2) together with the fibers / particles formed after during OII 

dilution in Mg(NO3)2 solution (3). For Mg-Al-LDH-OII powder, the XRD patterns shows a typical 

character of OII dye intercalated in LDH structure with three harmonic peaks at (003), (006) and 

(009) corresponding to distances of 22.2, 11.1 and 7.4 Å [17]. The broad peak observed at 13° 2θ 

position appears at similar position compared to the one observed one pure fibers (see curve (3) 

on Figure 10). The diffractogram (2) presents the fibers, cautiously taken after the adsorption 
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experiment in order to avoid the presence of LDH, but a small quantity of LDHs particles are 

present in the OII aggregates and visible on the diffraction patterns (presence of harmonic peaks). 

At the same time, it can be observed that a highly pronounced sharp peak of OII aggregates at the 

same 13° 2θ position. This peak, together with those observed at 7, 9.8 and 14.5 ° 2θ positions are 

characteristic and are attributed to the formation of the fibers (see curve (3) on Figure 10).  

 
Figure 10. XRD patterns of Mg-Al-LDH-OII (1), fibers OII-LDH (2) and of fibers / particles 

formed during OII dilution in Mg(NO3)2 (3). 

 

5. Conclusion 

Various contributions of the interactions between azo dyes OII in suspension with Mg-Al-

LDH-NO3 particles have been analyzed using Isothermal Titration Calorimetry. Adsorption 

exhibits an ionic exchange below 1 meq g-1, with cumulative enthalpy of displacement about -10 

J g-1. For high OII equilibrium concentration, the reaction is still under process, and Mg(II) released 

from the LDHs have been evidenced. The free ions exhibit strong interactions with OII, which 

were characterized in solution to determine their thermodynamic parameters. The presence of the 
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aggregated OII fibers in solution or around the LDHs was confirmed by XRD and TEM 

microscopy.  
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SUPPORTING INFORMATION II 

Experimental  

1.1. Materials 

All experiments were performed on the as-prepared Mg-Al-LDH-NO3. The synthesis and 

characterization of adsorbent were described previously1. Methyl Orange, Orange II (Acid Orange 

7) and Orange G (Acid Orange 10) were supplied by Sigma-Aldrich, and labelled MO, OII and 

OG, respectively. All the dyes have high purity > 99% and were used as received. The maximum 

adsorption (λ) is 466 nm for MO, 483 nm for OII and 480 nm for OG. All aqueous solutions were 

prepared in distilled MQ-water from integral water purification system PURELAB Classic. 

1.2. Adsorption studies 

Classical batch adsorption studies were carried out to evaluate retention properties. Series 

of 30 ml Nalgene™ tubes were prepared. In each tube, a solid sample of LDH (2.5 mg) was 

dispersed in 10 ml of dye solution of known initial concentration. Concentration of OII in the tubes 

was varied from 0.02 – 5 mmol L-1. The pHs of the suspensions were carefully checked before and 

after adsorption experiment. The tubes were stirred overnight at 298 K. The separation of solid 

phase from the liquid was achieved by centrifugation at 10 000 rpm for 12 min. The supernatant 

was then analyzed by using V-670 UV-Vis Spectrophotometer (interval of wavelength 350 – 550 

nm) to determine the equilibrium concentration of dye. The adsorption capacity (Qads, meq g-1) 

was calculated as followed in equation 1, and displayed as function of equilibrium concentration.  

 

                                                 
1 G. Darmograi, B. Prelot, G. Layrac, D. Tichit, G. Martin-Gassin, F. Salles, J. Zajac, Study of Adsorption 

and Intercalation of Orange-Type Dyes into Mg-Al Layered Double Hydroxide, Journal of Physical Chemistry C, Just 
Accepted September 22, doi : 10.1021/acs.jpcc.5b05510. 

Qads =  
V0 (Ci – Ceq)

mS
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Ci and Ceq are respectively the initial and final (equilibrium) concentration of Orange dyes 

expressed in mmol L-1, Vo (L) is the initial volume of the sample solution, and ms are the weight 

(in g) of the adsorbent.  

 

2.3. Ionic chromatography of the supernatant 

Mg(II) were analyzed using ion chromatography (HPLC Shimadzu HPLC) apparatus. A 

Shim-Pack IC-C1 column (with an IC-GC1 precolumn) and a conductivity detector were 

employed and the mobile phase was a mixture of 4 mmol L-1 tartaric acid and 1.4 mmol L-1 

ethylenediamine. The following parameters were used: a flow rate of 1.5 mL min−1, an injection 

volume of 45 μL, a column temperature of 40 °C.  

 

2.4. XRD and TEM analysis 

Adsorption experiment of OII was performed with 5 mg of LDH dispersed in 20 ml of dye 

solution at known initial concentration. The analysis of supernatant was performed to find out the 

equilibrium concentration and adsorbed quantity. The solid samples after adsorption were dried at 

80 °C during 1-2h and then analyzed with XRD equipment. For fibers, solid dye aggregates were 

removed from the supernatant after adsorption or calorimetric experience and placed on sample 

holder to dry at the same condition described above. Zero background sample holder was used for 

XRD study. Powder pattern where recorded on a PHILIPS X’Pert MPD θ-θ diffractometer 

equipped with the X’Celerator detector with Cu Kα radiation and nickel filter. Data were collected 

over the 2θ range from 2° to 30° at 30 mA, 45 kV, with scan speed 0.003°/min and using incident 

beam mask 10 mm. 

To characterize the OII fibers, transmission electron microscopy (TEM) was performed 

with a JEOL 1200 EXII (operated at 120 kV) microscope. The fibers were pipetted onto 200 square 

mesh copper grids and dried at room temperature under protection.  
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Figure S 5. The following tubes contain the solid particles removed from supernatant after 
sorption process for HPLC analysis. The tube (a) contains 0.35 mmol g-1 released Mg and 2.78 

mmol g-1 adsorbed OII; (b) contains 0.36 mmol g-1 of Mg and 2.38 mmol g-1 OII.  
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CONCLUSIONS 

  

Mg-Al-NO3 showed good adsorbing properties for Orange-type dyes Methyl Orange 

(MO), Orange II (OII) and Orange G (OG). Nitrates anions, which are present in the interlayers of 

the LDH, were easily replaced by the dyes molecules. The kinetic of adsorption was shown to be 

fast for all three dyes and can be modeled by the pseudo-second order kinetic model. The 

maximum amount of dye retained in the adsorption plateau region increases in the order: MO >> 

OII > OG. This trend can be rationalized to the differences in molecular sizes, electrical charges 

and hydrophobic character of the molecules.  

Analysis of all the species present in the system showed simultaneous adsorption of the 

dyes’ counter-ion sodium. XRD analysis of the dye-loaded samples confirmed the co-adsorption 

of carbonates ions, which intercalate at the same time with the dyes. All these important 

contributions were helpful to understand the mechanism of dye adsorption. For example, MO 

uptake from the bulk occurs by exchange into the layer i.e. with expansion of the layers and by 

sorption onto LDH’s external surface. These results were confirmed by XRD patterns and co-

adsorption of Sodium (neutralization of the MO molecules on the surface). The mechanism of OG 

uptake onto the LDH is an anion exchange process. In addition, co-adsorption of counter-ions 

signified that OG uses only one negative charge for the exchange.   

The mechanisms of MO and OG dyes retention were in good agreement with the results 

obtained by ITC analysis. The signal of the thermic effect was further attenuated at the end of the 

dye exchange into LDH. While the adsorption of OII molecule has two combined sorption 

mechanisms: the first one is the exchange in the interlayer followed by the complexation of Orange 

II on the interface of the LDH structure.  
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INTRODUCTION 

 

This Chapter summarizes the investigation of multi-component adsorption of Orange type 

dyes onto Mg-Al-LDH-NO3. The results obtained using the single component system will be used 

to evaluate either the positive influence in case of synergy or negative in the case of competition 

in the presence of the negatively charged inorganic ions. Multi-component adsorption will also be 

presented for the three dyes with the inorganic anions for different molar ratios so as to have an 

idea about the influence of this parameter on the competing species uptake.  

 As main competing species these inorganic anions will be used: sulfates, phosphates and 

chromates (Cr(VI)). These ions were selected because of the abundant presence of these species 

in the wastewaters from the textile industries. During the adsorption from the bi-solute component 

systems, the amount adsorbed will be evaluated for both competing species i.e. the dye and 

oxyanion. This will permit the understanding of the nature of interactions between adsorbing 

species.  

The competitive adsorption will be also investigated for these dyes in the presence of 

carbonate ions because the results in Chapter II showed that these anions, which are present, even 

in small contents (provided from atmosphere) are able to occupy the interlayer space of the LDH. 

Therefore, the influence of the specially added carbonates will be studied on the dye uptake.   

 During the multi-component adsorption complementary analysis such as XRD and ITC 

were used. Thus, XRD patterns of the adsorbent loaded with the competitive mixture will give 

information about which anions occupied the interlayer spacing.  The comparison of the 

cumulative enthalpies of displacement of these species from the single-solute solutions would help 

to understand the behavior of the competing anions during multi-component adsorption. 
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1. Introduction 

The co-occurrence of various contaminants and pollutants in industrial effluents is one of 

the most difficult problems the researchers have to face in the field of Environmental Remediation. 

Textile industry is a very good illustration of this problem since the various stages of textile 

processing generate wastewater of a complex composition, thereby leading to a potentially 

disastrous contamination of drinking water. If the sorption-based process is to be used in dye 

wastewater treatment [1-5], there is a need for fundamental studies of the competition between the 

dyes and other dissolved species for binding at the Solid-Liquid interface, phenomenon that may 

constitute the principal limitation to the effectiveness of the dyes removal technology. In such 

fundamental studies, the choice of co-existing substances to compete with the dye components 

should be decided on the basis of surface properties of the adsorbent and molecular structure of 

the dye studied. 

In several papers that have been published up to nowadays regarding the retention of acid 

or basic dyes by various inorganic or carbonaceous solid substrates from multi-solute solutions [6-

15], the competition is chiefly viewed between the negatively or positively charged dye and 

inorganic species. The retention performance towards a given dye in the mixed dye solutions was 

generally found to be decreased as compared to the single-solute systems [6-9]. Furthermore, the 

impact of competition on individual sorption quantities was demonstrated to depend on both the 

individual affinity of each dye for the solid surface and the composition of the aqueous phase. 

Similar conclusions were drawn by Wang et al. [10] from their study of the competitive adsorption 

of Malachite green and Pb2+ onto natural zeolite: in the binary system, the individual amounts 

adsorbed of the dye and heavy metal cation were depressed, respectively, to about 80 and 90% of 

the single-solute adsorption values. It is worth noting that the overall adsorption (i.e., the sum of 

the individual adsorption quantities) was greatly increased. The adsorption of acid and basic dyes 

(Blue 25, Blue 9, and Violet 3), as well as heavy metal cations (Pb2+, Ni2+, Zn2+, and Cd2+) was 

investigated making use of two zeolite samples: Erionite with a higher specific surface area and 

an acidic surface character and a low-surface and basic Clinoptilolite [11]. No fundamental 

differences in the dye removal performance as a function of the surface properties of the two 
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zeolites were observed, always with the preferential retention of the basic dyes. Erionite was more 

selective towards the heavy metal cations, thus showing a selectivity order as follows: Pb2+ > Ni2+ 

> Zn2+ > Cd2+. In the dye-metal binary solutions, an antagonistic effect was observed in the 

removal of basic dyes and heavy metals. Visa et al. [12] monitored the impact of the addition of 

Methylene blue (at a fixed concentration) to equimolar multi-cation solutions of Cd2+, Cu2+, and 

Ni2+ on the adsorption efficiency and kinetics onto fly ash representing a complex mixture of silica,  

alumina,  iron  oxide  and  un-burned  carbon. The observed enhancement in the retention of metal 

cations was ascribed to the formation of new surface sites as a result of the dye pre-adsorption; 

copper showed higher affinity for such sites, as compared to cadmium and nickel. The use of a 

composite material based on lignocellulose and montmorillonite clay was also considered for the 

removal of Methyl Orange, Pb2+, and Cd2+ from binary aqueous solutions [13]. Firstly, the 

composite substrate showed increased adsorption of Methyl Orange in comparison with those 

obtained when using the two constituents separately. Secondly, this retention performance towards 

the dye species was further increased upon addition of heavy metal cations to the aqueous phase. 

The effect of different inorganic anions on the adsorption of acid Flavine 2G was studied using a 

composite material made from Mg-Al Layered Double Hydroxide (LDH) and magnetic iron oxide 

[14]. The X-ray Diffraction (XRD) patterns of the dye-loaded samples indicated that the dye anions 

were unable to compete with pristine carbonates and thus difficult to intercalate within the 

interlayer LDH space. The order of effectiveness in decreasing the dye adsorption by the co-

existing inorganic anions was as follows: CO3
2- > SO4

2- > HPO4
2- > Cl- > NO3

-. The uptake of 

Methyl Orange by a calcined Zn-Al LDH was postulated to follow the structural reconstruction 

pathway after rehydration and intercalation of the dye and carbonate anions within the interlayer 

space, as evidenced by XRD and inductively coupled plasma (ICP) emission spectroscopy [15]. 

In the equimolar dye-anion solutions, phosphate (PO4
3−) and carbonate ions were demonstrated to 

depress the dye retention by the sorbent to a much greater extent than sulfates, chlorides and 

nitrates did, in accordance with a greater affinity of the LDH surface for multivalent anions. Since 

no clear trends with respect to the general impact of competition emerge from these studies, it is 

clear that the problem should be investigated in reference to the retention mechanism involved in 

a particular sorption system. 
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In the previous paper [16], the mechanism of individual sorption of three azo dyes with 

varying anionic charge and hydrophobic-hydrophilic character (Methyl Orange, Orange II, and 

Orange G) from single-component solutions onto non-calcined Mg-Al-LDH-NO3 (molar Mg:Al 

ratio of 2) was elucidated in open systems exposed to the ambient atmosphere (without pH re-

adjustment and in the presence of carbonates coming from air). The exchange of anionic dye 

species, pristine NO3
- anions, carbonates, and sodium counter-ions between the LDH structure and 

the aqueous solution was monitored through the determination of equilibrium adsorption 

isotherms, kinetic curves, or the analysis of XRD patterns recorded on the dye-loaded samples. 

The dye uptake by the LDH sample was accompanied by the intercalation of the organic species 

into the interlayer space as well as their adsorption on the external surface, with the global effect 

being dependent on the dye type and overall exchange balance in relation with the anionic 

exchange capacity (AEC) of the solid material. The cumulative enthalpy of displacement, as 

measured directly by Isothermal Titration Calorimetry (ITC), pointed out the exothermic character 

of the complex exchange process. 

The objective of the present work was to quantify the mutual effect of the three anionic 

dye species and inorganic divalent HPO4
2-, SO4

2-, CrO4
2-, and carbonate anions, coexisting in bi-

solute dye-inorganic anion solutions, on their individual retention propensities by the same pristine 

LDH sample. The previously established research strategy based on the combined adsorption 

isotherm and XRD studies on the well-defined sorption systems was employed here. Three 

different values for the molar ratio between the dye and inorganic anion (i.e., 2:1, 1:1, and 1:2) 

were considered in view of increasing the efficiency of dyes removal by optimizing experimental 

conditions. The dye uptake schemes in the presence of inorganic anions were categorized in 

regards with the shape of the experimental adsorption isotherms and correlated with the individual 

adsorbate affinities for the LDH sample, as inferred from the calorimetry measurements of the 

cumulative enthalpy of displacement in single-solute systems.  
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2. Experimental 

2.1. Materials 

The preparation and structural properties of the non-calcined Mg-Al-LDH-NO3 used in the 

present study was detailed previously [16]. The solid substrate, represented by an empirical 

formula of Mg0.67Al0.33(OH)2](CO3)0.027•(NO3)0.276•1.32H2O, had an anionic exchange capacity 

(AEC) of 3.2 meq g-1. The three Orange-type dyes of high purity (dye content > 99%) were 

purchased from Sigma-Aldrich and used without further purification. They are further designated 

as follows: MO = Methyl Orange, OII = Orange II or Acid Orange 7, OG = Orange G or Acid 

Orange 10. The maximum absorbance in the ultraviolet (UV) spectra was observed at a wavelength 

of 466 nm, MO; 483 nm, OII; and 480 nm, OG. The co-existing inorganic anions were provided 

with aqueous solutions of potassium chromate (K2CrO4, Sigma-Aldrich), sodium carbonate 

(Na2CO3, Sigma-Aldrich), sodium sulfate (Na2SO4, Merck), and sodium hydrogen phosphate 

(Na2HPO4, Sigma-Aldrich). These salts were employed as received. The 18.2 MW cm water used 

in all experiments was obtained with the aid of a combined Purite Select Analyst (France Eau) and 

PURELAB® Classic (ELGA LabWater, France) water purification system. 

 

2.2. Measurements of the cumulative enthalpy of displacement in single-solute systems 

by isothermal titration calorimetry (ITC) 

The overall enthalpy change upon the displacement process accompanying the retention of 

dye or inorganic anions from single-solute solutions onto Mg-Al-LDH-NO3 at 298 K was 

measured using a differential TAM III microcalorimeter operating in a heat flow mode. A high 

precision liquid thermostat (oil heat exchanger with Peltier coolers) maintained the temperature 

constant within ± 0.0001 deg. The experimental setup was equipped with a computer-controlled 

micro-syringe injection device allowing small aliquots of a stock solution at a given molality to be 

injected into a 1 mL glass ampoule. More details about the operating procedures and data 

processing can be found elsewhere [16]. Prior to measurements, about 1-2 mg of the LDH powder 

was suspended in 0.8 mL of ultrapure water in the measuring ampoule. The same amount of water 

was introduced into another 1 mL glass ampoule placed on the reference side. The two ampoules 
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were subsequently returned to the microcalorimeter and equilibrated thermally during 2 h. The 

homogeneity of the solid suspension was maintained by means of an agitation system equipped 

with a Teflon paddle stirrer. The concentration of the stock solution injected into the measuring 

ampoule was optimized to make the resulting plot of the heat flow, W, against time, τ, easier to be 

recorded and further processed: 8.5 mmol L-1, MO and SO4
2-; 14 mmol L-1, OII and HPO4

2-; 12 

mmol L-1, OG; 9 mmol L-1, CrO4
2-; 8.5 mmol L-1. Other experimental parameters (i.e., number of 

injections, injection volume and speed, agitation speed and equilibration time applied between two 

successive injections) have been collected in Table S1 in Supporting Information. Integration of 

the thermal peaks appearing in the thermogram recorded for each series of successive injections 

resulted in discrete DinjHi enthalpy values related to the mass of solid in the measuring ampoule 

and expressed in J g-1. The thermal effects of injections were corrected for dilution effects. For this 

purpose, analogous dilution experiments were carried out under exactly the same experimental 

conditions but without introducing a solid sample into the measuring ampoule. The resulting 

enthalpy values were summed up to obtain the cumulative enthalpy of displacement, DdplHcum, per 

unit mass of the LDH sample. The DdplHcum values were plotted as a function of the amount of a 

given species retained by LDH over an adsorption range matching with the quasi-vertical portion 

on the adsorption isotherm. The repeatability of the calorimetry measurements was assessed by 

carrying out two simultaneous experiments with the use of two microcalorimeters working under 

the same conditions; it was within 6%, MO; 17%, OII; 4%, OG; 23%, CrO4
2-; 20%, HPO4

2-; 7%, 

SO4
2-. Nevertheless, the same trends in DdplHcum with the quantity of adsorption were recorded in 

in the two calorimetric runs. 

 

   2.3. Measurements of the adsorption isotherms in single-solute and bi-solute systems  

The solution depletion method was used to determine the individual adsorption isotherms 

of the adsorbing organic and inorganic anions. The individual points on the adsorption isotherms 

were obtained by equilibrating about 2.5 mg of the solid sample with 10 ml of solution at a given 

concentration in 30 ml Nalgene® reactors. In the single-solute systems, the solute concentrations 

were varied within the following range: 0.02 – 5 mmol L-1, MO and OII; 0.02 – 3 mmol L-1, OG, 

0.03 – 1.2 mmol L-1, HPO4
2-; 0.03 – 0.7 mmol L-1, SO4

2- and CrO4
2-. Note that the three adsorption 
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isotherms for dyes had been reported previously [16]. To determine the individual adsorption 

isotherms of the two anionic species from bi-solute solutions, mixed stock solutions were prepared 

at three molar ratios between the dye and inorganic anion of (2:1), (1:1), (1:2) and each stock 

solution was used to obtain appropriate diluted solutions to be poured into Nalgene® tubes. In the 

equimolar dye-inorganic anion solutions, the dye concentration was as follows: 4 mmol L-1, MO; 

1.2 mmol L-1, OII and OG. For comparison purposes, the dilution schemes were designed to 

generate the individual adsorption isotherms for the dye species covering ranges of the equilibrium 

dye concentration similar to those obtained in the single-solute systems. The pH of the solid 

suspension in single-solute and bi-solute solutions was carefully checked before and after the 

attainment of the adsorption equilibrium. From the point of view of methodology, no effort was 

made to re-adjust this parameter to its initial value or minimize contact with atmospheric air during 

solution preparation. The initial pH of the solid suspension was around 7.5-8, owing to the intrinsic 

basic character of the Mg-Al-LDH-NO3 sample. Then, some increase in the pH was observed with 

the progress of adsorption depending on the system components and the composition of the 

aqueous phase. The equilibrium pH value also increased along the adsorption isotherm and was 

greatest in the case of Methyl Orange but always within 1.5 pH unit.  

Taking into account the fast kinetics of dye sorption demonstrated previously [16], the 

Nalgene® reactors were shaken overnight in a thermostated cage (±0.1 deg) at 298 K. Then the 

solid phase was separated from the supernatant solution by centrifugation at 10 000 rpm for 10 

min and the equilibrium concentration of a selected species in the bulk phase was determined either 

by UV-Vis spectroscopy (Jasco V-670 UV-Vis Spectrophotometer operating in the wavelength 

range from 350 to 550 nm) or by ion chromatography (Shimadzu HPLC apparatus equipped with 

a Shim-pack IC-A1 column and a conductivity detector; a flow rate of 1.5 mL min−1, an injection 

volume of 45 μL, a column temperature of 40 °C; with the mobile phase depending on the nature 

of inorganic anion: 2 mmol L-1 potassium hydrogen phthalate (pH 4.2), NO3
- and SO4

2-; 4 mmol 

L-1 sodium carbonate, CrO4
2-; a mixture of 1.5 mmol L-1 phthalic acid and 0.7 mmol L-1 

diethylenetriamine, HPO4
2-. The amount adsorbed of a selected species was calculated from the 

following formula: 
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where Ci and Ceq represent, respectively, the initial and final (after attaining the 

equilibrium) concentrations of the adsorbed species, Vo is the initial volume of the aqueous 

solution, and ms is the mass of the adsorbent. The methodology applied to evaluate the repeatability 

and experimental uncertainties of the adsorption experiments was described previously [16]. 

   2.4. X-ray diffraction (XRD) study of the LDH samples loaded with the adsorbate 

Some solid samples collected after their separation from the supernatant solution in the 

adsorption experiments were subsequently analyzed by X-ray diffraction so as to monitor changes 

in the layered structure induced by the incorporation of the adsorbed species. The choice of the 

samples for such studies was made i∆ way to represent 2-3 points on the adsorption isotherms 

localized within characteristic adsorption regions. Prior to XRD experiment, the powdered solid 

sample was dried at 373 K during 1-2 h. The XRD patterns were collected on a PHILIPS X’Pert 

MPD θ-θ diffractometer (X’Celerator detector, Cu Kα radiation λ = 1.5418 Å, nickel filter) over 

the 2θ range from 2° to 30° at 30 mA, 45 kV, with a scan speed of 0.003° min-1 and using an 

incident beam mask of 10 mm. 

 

3. Results and discussion 

The actual pH of the aqueous suspension of LDH particles is of crucial importance to 

decide the chemical form of the adsorbing species, especially when this physical factor changes 

upon adsorption. In the single-solute solutions of inorganic anions, the pH of the solid suspension 

changed only a little along the adsorption isotherms and was always between 8 and 9. The SO4
2-, 

CrO4
2- , and HPO4

2- anions were the predominant species in the aqueous phase before and after the 

attainment of the adsorption equilibrium. In the systems containing dyes, the minimum pH value 

was about 8, whereas the maximum value was as follows: 10.0, MO; 8.6, OII; 8.8, OG. Under 

such conditions, the sulfonate groups of the dye units should be deprotonated [17] but the pH of 

the suspension was too low for the R-N-NH-R group to be additionally ionized [18, 19]. Therefore, 

only the following anionic species were present in the single-solute or bi-solute solutions: MO-, 

OII-, OG2-, SO4
2-, CrO4

2- , and HPO4
2-. 
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In the first stage of the present study, it was necessary to shed more light on the individual 

affinity of each anionic species for the Mg-Al-LDH-NO3 surface under conditions of exposure to 

the ambient atmosphere. One should be aware that the retention of dye or inorganic anions in such 

‘open’ systems may be a complex outcome of several ‘primary’ processes involving ion exchange 

with the pristine compensating anions (i.e., NO3
- or OH-) or secondary species coming from 

ambient air (e.g., carbonates), intercalation of the adsorbed species within the interlayer space or 

their localization on the external surface, co-adsorption of counter-ions, surface dewetting, partial 

dehydration of the retained and re-hydration of the released substances, as well as mutual 

interactions among all solution components (especially those operating in the interfacial region) 

[16]. On the other hand, such conditions are close to those encountered in real applications for 

Environmental Remediation. Therefore, this has been the main motivation for the choice of the 

working system in the present study. 

Considering the probability of ion exchange as the main mechanism for anion retention by 

LDH and given the differences in the number of charges among the anions studied, the amount 

adsorbed and concentration will be further expressed in milliequivalents instead of millimoles for 

comparative purposes. The individual adsorption isotherms for the three dyes (as determined 

previously [16]) and three inorganic anions from single-solute solutions are reported in Figures S1 

and S2 in Supporting Information. All adsorption curves have a characteristic shape representing 

a very steep initial portion at low equilibrium concentrations and an adsorption plateau at higher 

values. In general, the inorganic anions adsorb onto Mg-Al-LDH-NO3 to a lower extent than the 

three dyes do, with the maximum adsorption capacity, , being always smaller than the AEC 

of the adsorbent (see Table 1). It worth noting that the present results are in good agreement with 

those reported on the retention of SO4
2-and CrO4

2- anions by Mg-Al-LDH-CO3 [17], Mg-Al-LDH-

Cl [18, 19]. On the contrary, maximum retention capacities of various Mg-Al-LDHs containing 

CO3
2- and Cl- as interlayer anions towards HPO4

2- ranging between 0.6 and 3.7 meq g-1 were 

published in literature [20-26].  

Since the quasi-vertical portion on the adsorption isotherm corresponds to an adsorption 

range of the strongest affinity between the adsorbed species and the LDH structure under given 

experimental conditions, estimates of the retention performance in terms of quantity and energetics 

are further analyzed only within this particular  -interval (i.e., up to an amount adsorbed of  
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. Variations of the cumulative enthalpy of displacement as a function of the amount adsorbed 

onto Mg-Al-LDH-NO3 are illustrated in Fig. S3 in Supporting Information. Generally speaking, 

the overall displacement process is exothermic for all organic and inorganic species, thereby 

indicating that the anion retention by Mg-Al-LDH-NO3 under the experimental conditions 

employed is at least enthalpy-driven. For Methyl Orange, sulfates, and chromates, the quasi-

linearity of the DdplHcum vs.  plot indicates that the enthalpy balance for displacement does 

not change as the sorption progresses. Therefore, the molar enthalpy effect, , is a constant 

function of the amount adsorbed and a unique mechanism of displacement may be postulated on 

this basis. If the displacement process yields concave enthalpy curves, like those obtained for OII, 

OG, and hydrogen phosphates, the decreasing exothermicity evidences potential changes in the 

mechanism; this effect is particularly marked near the end of  the vertical portion of the adsorption 

isotherm, where the displacement becomes athermal and thus entropy-driven. In this case, the 

average value of the molar enthalpy of displacement over this vertical isotherm portion, , 

will be taken as an estimate of the surface affinity of the adsorbing anion. The enthalpy parameters 

inferred from this analysis are given in Table 1. The values of  in Table 1 have been obtained 

from a simultaneous analysis of the corresponding adsorption isotherms and enthalpy curves for 

each anion. 

Table 1. Maximum retention capacity, , and average affinity,  , of Mg-Al-LDH-
NO3 toward various dye and inorganic anions when adsorbed from single-solute solutions under 
conditions of exposure to the ambient atmosphere employed in the present study; the  
represents the value of the cumulative enthalpy of displacement at the end of the initial vertical 

portion on the adsorption isotherm (i.e., at). 
 

Adsorbing 

anionic species 

 

(meq g-1) 

vertical portion of the isotherm 
   

(kJ eq-1) 
 (J g-1)    (meq g-1) 

Methyl Orange 5.5±0.3 -93±6 2.6±0.3 -35.8±6.4 

Orange II 2.7±0.6 -8.6±1.5 1.0±0.2 -8.6±3.2 

Orange G 3.2±0.3 -10.2±0.4 2.1±0.2 -4.9±0.7 

HPO4
2-  2.7±0.7 -7.4±1.5 1.4±0.3 -5.3±2.2 

SO4
2- 2.5±0.2 -0.27±0.01 2.1±0.2 0.13±0.01 
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CrO4
2- 2.1±0.2 -0.31±0.02 1.7±0.2 0.18±0.01 

 

The results from Table 1 allow the adsorbing anions to be ranked in increasing affinity 

order with regard to their capacity of interacting with Mg-Al-LDH-NO3 under the experimental 

conditions employed in the present work: CrO4
2- ≈ SO4

2- < OG2- ≈ HPO4
2- < OII- < MO-. This 

affinity order, on a per-equivalent basis, clearly indicates that the charge number is not the only 

parameter on which to judge the retention performance of the LDH sample toward various anionic 

species; the hydrophobic-hydrophilic character of the anion, its size, hydration parameters, and 

capacity of generating lateral interactions with the other adsorbed species within the LDH structure 

should be also taken into account. With the use of a chloride-intercalated Zn-Al LDH, Israëli et al. 

studied thermodynamics of anion exchange between the pristine Cl- counter-ions and a series of 

anions [27]. Negative values of standard molar enthalpy ranging between -7.3±0.2 and -0.44±0.02 

kJ mol-1 were measured by isothermal titration calorimetry for each anion-exchange process and 

the order of increasing enthalpy was as follows: SO4
2- < OH- < F- < NO3

- < Br- < I-. These trends 

were correlated with the enthalpy effects related to dehydration-rehydration phenomena 

accompanying ion exchange, in line with the strength and specificity of interactions between the 

intercalated anion and water molecules present in large quantities within the interlayer domain of 

LDH. Afterwards, Morel-Desrosiers and collaborators reported endothermic ion exchange 

between Cl- and divalent oxalate, succinate or adipate anions intercalated perpendicularly within 

the layers of a similar LDH sample [28]. This was considered to be consistent with partial 

dehydration of the methylene groups upon intercalation. On the contrary, the exothermic exchange 

of chloride for L(1)-tartrate anion was interpreted as a result of hydrogen bonding between the 

neighboring organic species within the interlayer domain, due to the presence of OH groups in 

tartrate units. 

In the present work, monovalent Methyl Orange is the most hydrophobic and the smallest 

anion (1.5 nm × 0.55 nm), as compared with monovalent Orange II (1.33 nm × 0.68 nm) or divalent 

Orange G (1.34 nm × 0.83 nm) [16]. Hydrophobic interactions between the aromatic rings of the 

adsorbed dye units may lead to a p-p stacking phenomenon, thereby reinforcing their propensity 

to adsorb beyond the ion-exchange pathway due to their electric charge. Divalent inorganic anions 

are much smaller and more hydrated than the dye ones, with the radius, r, of the bare anion, average 
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number, n, of water molecules in the hydration shell, and enthalpy of hydration, DhydH, being as 

follows: r = 0.238 nm, n = 3, HPO4
2-; r = 0.240 nm, n = 3, DhydH = -1035 kJ mol-1, SO4

2-; r = 0.255 

nm, n = 2.8, DhydH = -1010 kJ mol-1, CrO4
2- [29]. Hydrogen phosphate anion can additionally act 

as a hydrogen bonding donor [30], which likely contributes to its stronger interaction within the 

LDH structure. 

The adequacy of the above anion ranking to explain the sorption behavior in bi-solute 

solution systems will be checked in the next paragraphs. The individual adsorption isotherms for 

all systems studied in the present work are given in Figures S4-S12 in Supporting Information. 

Moreover, variations of the total amount of adsorption are illustrated by the sum of the individual 

quantities of adsorption and plotted as a function of the equilibrium concentration of the dye 

component in the bulk solution, thereby producing the so-called composite isotherms. 

 

    3.1. Competitive adsorption of dye and inorganic anions from equimolar bi-solute 

solutions 

In the adsorption systems containing equimolar bi-solute solutions of organic and inorganic 

anions, the driving force for adsorption should depend chiefly on the difference of surface affinities 

between the two adsorbing species. For monovalent dye anions, i.e., Methyl Orange and Orange 

II, this driving force will be additionally influenced by the unequal equivalent concentrations of 

both anions in the initial bulk phase. The detailed analysis of the corresponding experimental 

curves in Figures S4-S12, as well as their comparison with those obtained in the single-solute 

systems, has led to the identification of three different competition schemes, which are exemplified 

in Fig. 1. For comparative purposes, the individual and composite adsorption isotherms for the bi-

solute systems have been plotted against the concentration of the dye component in the equilibrium 

bulk solution. To further assist the analysis of these cases, X-ray diffraction patterns of the LDH 

sample equilibrated with various single-solute and bi-solute solutions are given in Figures 2-4. 

The competition scheme of Type I is encountered in the bi-solute systems where the surface 

affinities of the two components differ by roughly two orders of magnitude, i.e., in equimolar 

mixtures of Methyl Orange and sulfates or chromates (Fig. 1a). Only a small decrease in the 

amount of dye retained by the LDH sample is observed, whereas the adsorption of the competing 
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inorganic anion is depressed to a very great extent. As a result, the sum of the individual amounts 

adsorbed is close to the quantity of dye adsorbed from the single-solute solutions, especially at 

higher dye concentrations. When adsorption is performed from very dilute solutions, the two 

anionic species seem retained strongly by LDH and these effects manifest themselves through 

steep initial portions on the individual adsorption isotherms. The adsorption quantity of SO4
2- 

attains its maximum value of about 1.3 meq g-1 and then it decreases monotonously. In the 

adsorption range up to 1.3 meq   g-1, the adsorption of the inorganic anion is twice that of the dye 

one. Here the competition seems to be also affected by the equivalent concentrations of both anions 

in addition to their individual affinities (Table 1). In the analogous adsorption range of the 

MO+CrO4
2- system, this proportion is reversed – there are more dye units (1.4 meq g-1) than 

chromate anions (1 meq g-1) retained by Mg-Al-LDH-NO3. This means that there are some 

quantitative differences between two systems belonging to the same category. It is very important 

to emphasize that the composite adsorption in the MO+SO4 and MO+CrO4 systems exceeds the 

AEC of the LDH sample. 
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Figure 1. Three different competition schemes exemplified by the individual adsorption 
isotherms for dye anions (big orange symbols) and inorganic anions (big violet symbols), as well 
as the composite adsorption isotherm (red stars) plotted as a function of the concentration of the 

dye component in the equilibrium bulk solution: (a) MO + SO4
2- system (Type I), (b) OG + 

CrO4
2- system (Type II), (c) OII + HPO4

2- system (Type III). The solid (with small orange 
symbols) and dashed lines (with small violet symbols) represent the adsorption isotherms of the 

dye and inorganic ion, respectively, as determined in the separate single-solute systems (as a 
function of the equilibrium concentration of the corresponding solute). The vertical dotted line is 

used to indicate the theoretical anion exchange capacity (AEC) of LDH. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

5

 A
m

o
u

n
t 

a
d

s
o
r
b

e
d

 (
m

e
q

 g
-1

)
(b)(a)

Type I

AEC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

3

A
m

o
u

n
t 

a
d

s
o
r
b

e
d

 (
m

e
q

 g
-1

)

Type III

AEC

(c)

 

0.0 0.2 0.4 0.6 0.8

0

1

2

3

Equilibrium concentration (meq L
-1

)

AEC

Type II

Equilibrium concentration (meq L
-1

)

 A
m

o
u

n
t 

a
d

s
o
r
b

e
d

 (
m

e
q

 g
-1

)



 Chapter III: Competitive adsorption of Dyes and Inorganic anions onto 
Mg-Al-NO3 Layered Double Hydroxide 

 
 

120 
 

The corresponding XRD patterns evidence the intercalation of dye and inorganic anions 

within the interlayer space of LDH (Fig. 2 and Fig. S13 in Supporting Information).  

 

 

 

Figure 2. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the three 

mixtures of MO and sulfate anions, the amounts adsorbed are as follows: (1) 0.65 meq g-1, MO; 
1.29 meq g-1, SO4

2-; (2) 2.69 meq g-1, MO; 0.96 meq g-1, SO4
2-; (3) 3.93 meq g-1, MO;  

0.68 meq g-1, SO4
2-. 

 

In Fig. 2, the XRD pattern recorded on the MO+SO4(1) sample shows three harmonic 

reflections at 2θ positions of 3.6°, 7.4° and 11.1°, which correspond to interlayer distances, d, 2.42, 

1.2 and 0.8 nm of the intercalated MO phase. The third broad asymmetric peak is attributable to 

the presence of a mixture of dye, sulfate, and carbonate species within the LDH structure. For the 

second and third points analyzed on the adsorption isotherm, the absence of the carbonate phase 

can be noticed. Large amounts of MO adsorbed mask the SO4
2-

 peaks in the diffraction pattern and 

only the asymmetric shape of the third peak provides some indication of the presence of 
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intercalated sulfate species. Peaks marked with asterisks (*) can be ascribed to the dye crystallized 

on the surface of LDH when its adsorption quantity goes beyond the AEC of LDH. 

Similar conclusions can be drawn from the analysis of the XRD patterns recorded on the 

MO+CrO4
2- system (see Fig. S13 in Supporting Information). Again, the (009) MO peak is broad 

and includes the contribution of the intercalated CrO4
2- species. It becomes narrower with 

increasing the amount of MO intercalated, thus indicating a marked decrease in the chromate phase 

(the isotherm of chromate adsorption in Fig. S6b goes down to zero at higher equilibrium 

concentrations). The rest of the initial nitrate phase can be found at a 2θ position of 10° still for 

the MO+CrO4(1) sample, whereas it disappears completely from the diffraction patterns of the two 

other samples. This points to the composition of the intercalated phase being very complex in the 

systems studied in the present work: it can also contain pristine nitrates or carbonates coming from 

air. 

Chromate or sulfate anions compete with Orange II or Orange G in a somewhat different 

manner, following the competition scheme of Type II (Fig. 1b). Although the difference between 

the component affinities (Table 1) diminishes in comparison with those characterizing the previous 

category, the dye still interacts more strongly with the LDH structure. The individual adsorption 

isotherm of each anion resembles that determined from the corresponding single-solute solution: 

it has a very steep initial portion and an adsorption plateau. The only difference is that the ‘height’ 

of the vertical portion and the plateau value are decreased in the bi-solute system. The ratio 

between the two amounts adsorbed in the initial range depends on the proportion between the 

equivalent concentrations in the initial solution. The composite adsorption isotherm rests always 

below the AEC value. 



 Chapter III: Competitive adsorption of Dyes and Inorganic anions onto 
Mg-Al-NO3 Layered Double Hydroxide 

 
 

122 
 

 

Figure 3. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the two mixtures 

of OG and chromate anions, the amounts adsorbed are as follows: (1) 1.01 meq g-1, OG;  
0.99 meq g-1, CrO4

2-; (2) 1.57 meq g-1, OG; 1.42 meq g-1, CrO4
2-. 

 

The XRD patterns for the OG+CrO4
2- mixture are shown in Fig. 3. For the first point 

localized on the vertical portion of the adsorption isotherm, i.e., OG+CrO4(1) sample, the broad 

peak between 8 and 13° 2θ position contains contributions from the (003) CO3, (003) CrO4, (006) 

OG, and (003) NO3 reflections. When the system composition passes to the adsorption plateau 

regions, i.e., OG+CrO4(2) sample, the intercalated carbonates disappear but the three other phases 

still remain within the interlayer space of LDH. The analysis of Figures S14, S15, and S16 in 

Supporting Information also indicates simultaneous intercalation of carbonates coming from air, 

OII or OG, and sulfonates or chromates for OG+SO4(1), OII+SO4(1), and OII+CrO4(1) samples. 

In the case of OII+CrO4(2) sample, some re-adsorption of nitrate species is to be noticed (Fig. 

S15). 
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The competition between hydrogen phosphate anion and Methyl Orange may be reckoned 

to the same category (Type II), although the isotherm of dye adsorption contains a very short 

vertical portion and that of inorganic anion is only to a small extent affected by the presence of 

dye species. From the diffraction patterns in Fig. S17 in Supporting Information, it can be 

concluded that the interlayer space is mainly occupied by HPO4
2- anions and a small amount of 

intercalated MO species. The intercalated carbonates are detectable already for the first analyzed 

adsorption point, i.e., MO+HPO4(1) sample. When the composite adsorption exceeds the AEC 

value, small peaks marked with asterisks (*) appear in the diffraction patterns of MO+HPO4(2) 

and MO+HPO4(3) samples. 

 

 

 

Figure 4. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the two mixtures 

of OII and hydrogen phosphate anions, the amounts adsorbed are as follows:  
(1) 0.27 meq g-1, OII; 0.83 meq g-1, HPO4

2-; (2) 0.20 meq g-1, OII; 2.56 meq g-1, HPO4
2-. 
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The competition scheme of Type III has been observed for inorganic anions and dye 

species with comparable affinities for LDH, namely HPO4
2- in competition with OII or OG (see 

Fig. 1c). The adsorption of the inorganic anion is depressed in the vertical part of the isotherm and 

over the interval of moderate dye concentrations in the equilibrium bulk solution. In the case of 

dye, the extent of adsorption is reduced to a large extent; it can even decrease monotonously after 

having reached a maximum value at very low concentrations. The XRD diffraction patterns of 

OII+HPO4(1) and OG+HPO4(1) samples reported, respectively, in Fig. 4 and Fig. S18 in 

Supporting Information reveal the presence of intercalated carbonates within the LDH structure. 

It should be underlined that no expansion of the interlayer space is detected in the XRD diffraction 

patterns OII+HPO4(2) and OG+HPO4(2) samples. This means that such dyes do not form the 

intercalated species and their adsorption probably occurs on the external surface of LDH. 

 

3.2. Effects of the molar ratio between the dye and inorganic anion on their competitive 

adsorption from bi-solute solutions 

When the molar ratio of dye to inorganic anion in the adsorption system is modified, the 

driving force for adsorption will undergo changes depending on the proportion between the 

equivalent concentrations of the two solutes in the aqueous phase and their evolution with time. 

Three molar ratios chosen for the purpose of the present work are as follows (dye : inorganic 

anion): 2:1, 1:1, and 1:2. The question arises as to whether the competition scheme remains the 

same when this ratio changes. A careful review of the adsorption isotherms reported in Figures 

S4-S12 in Supporting Information has resulted in Table 2, which shows the affiliation of all 

systems studied to one of the three types defined in Fig. 1. 

It is worth noting that, with a few notable exceptions, modifying the molar ratio makes the 

quantitative differences to be amplified in one direction or another, though the general competition 

scheme does not change. The behavior of the MO+HPO4
2-(2:1), OII+CrO4

2-(2:1), OG+CrO4
2-(2:1) 

systems represents an exception to this rule: when the greater surface affinity of dye (as compared 

to that of inorganic anion) is reinforced by the increased dye content in the system, the competition 

scheme shifts to Type I. Here the individual adsorption of the inorganic anion from bi-solute 

solutions is greatly depressed and it decreases constantly as the dye adsorption progresses. With 
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the systems belonging to Type I, the composite adsorption isotherms either are similar to or lie 

below the corresponding isotherm of dye adsorption from the single-solute solution. In conclusion, 

the retention of inorganic anion by Mg-Al-LDH-NO3 does not always compensate for the decrease 

in the dye uptake. Within Type III, the composite adsorption of both solutes may exceeds the 

amount of dye adsorbed in the single-solute system. This is possible because the OII and OG units 

are adsorbed mostly on the external surface and HPO4
2- anions with a smaller molecular size are 

intercalated within the interlayer space. No such steady trends in the composite isotherms are 

observed for systems belonging to Type II. 

 
Table 2. Affiliation of the bi-solute systems studied in the present work to one of the four types 

of the competition scheme, as defined in Fig. 2 (the molar ratio of dye to inorganic anion is 
specified in the brackets) 

 

Competition scheme Affiliated systems 

Type I MO+CrO4
2-(all ratios); MO+SO4

2-(all ratios); OG+HPO4
2-(all ratios) 

 

Type II OII+CrO4
2-(1:1,1:2); OG+CrO4

2- (1:1,1:2); OII+SO4
2-(1:1, 2:1);  

OG+SO4
2-(all ratios); MO+HPO4

2-(1:1) 
 

Type III OII+CrO4
2-(2:1); OG+CrO4

2-(2:1); OII+HPO4
2-(all ratios); 

MO+HPO4
2-(2:1,1:2); OII+SO4

2-(1:2);  

 

To better illustrate the quantitative effects of the addition of inorganic anion on the 

individual adsorption of the dye component, the maximum amount of dye adsorbed from a given 

bi-solute solution onto Mg-Al-LDH-NO3 was compared to the AEC of LDH and plotted in form 

of histograms as a function of the type of inorganic anion and molar ratio between the two 

components. In the case of systems following the Type III competition scheme, the maximum 

adsorption value was not taken from the adsorption plateau region but from the initial ascending 

part of the individual adsorption isotherm of this component. These general trends are presented 

in Fig. 5.  
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Figure 5.  Effect of the addition of inorganic anions on the retention capacity of Mg-Al-LDH-
NO3 towards Methyl Orange (panel a), Orange II (panel b), and Orange G (panel c) from bi-

solute solutions at different molar ratios between dye and inorganic anion. 
 

For a given mixture of anions, the maximum quantity of dye adsorption decreases upon 

increasing the content of inorganic anion in the system; the addition of hydrogen phosphate anions 

to the aqueous phase causes a marked depression, whereas the presence of chromate or sulfate 

anions has little influence. As mentioned in the previous Section, the retention capacity of Mg-Al-

LDH-NO3 towards MO exceeds the AEC value both in single- and bi-solute systems, which means 

that the adsorption mechanism is not limited only to the ion-exchange pathway. The value of 

MO:AEC ratio corresponding to a MO:HPO4
2- proportion of 1:2 is halved in comparison with its 

value attained in the single-component system. The HPO4
2- anion is demonstrated to have the 
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biggest impact on the adsorption of OII: the maximum amount of dye adsorbed from such bi-solute 

solutions is always below 15% of AEC.  

 
 

 

 
 

 
Figure 6. Effect of the addition of dye anions on the retention capacity of Mg-Al-LDH-NO3 

towards divalent hydrogen phosphate (panel a), sulfate (panel b), and chromate (panel c) anions 
from bi-solute solutions at different molar ratios between inorganic anion and dye. 

 

The retention capacity of Mg-Al-LDH-NO3 towards OG is affected also by the presence 

of CrO4
2- and SO4

2-: the greatest dye contribution to the anion exchange process is only 30% of 

AEC in the presence of chromates and around 20 % in the presence of phosphate and sulfate 

anions. 
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Similar histograms showing a mirror effect of the dye addition on the retention capacity of 

Mg-Al-LDH-NO3 towards divalent inorganic anions from bi-solute solutions are presented in Fig. 

6. For the systems within Type I, the maximum uptake of an inorganic anion was taken from the 

initial ascending part of the individual adsorption isotherm of this component. It is interesting to 

notice that the maximum amount of HPO4
2- adsorbed in the presence of MO or OG may be even 

increased in comparison with that attained in the single-solute systems. On the contrary, the 

retention capacity towards SO4
2- and CrO4

2- anions is always depressed upon dye addition. The 

biggest depression by 70% has been observed for the 2:1 OII+ CrO4
2- system. 

 

3.3. Effects of the controlled carbonate addition to the aqueous phase on the dye 

adsorption from bi-solute carbonate-dye solutions 

 

The XRD diffraction patterns recorded on LDH samples loaded with various dye and 

inorganic anions in open systems evidence the complex composition of the intercalated phase 

which can contain carbonate species present in the initial LDH structure or coming from air [16]. 

Since carbonate anions are known to have a strong affinity for LDH materials [31-33], they 

represent additional competitors in the bi-solute systems studied here. Given the diversity of 

carbonate sources, the quantification of carbonates retained by the LDH sample is not very easy. 

To overcome this difficulty, the presence of carbonates should be controlled. For the purpose of 

the present work, carbonate ions have been added to the aqueous phase so as to obtain molar ratios 

between a given dye and carbonate species similar to those used for other inorganic anions. 

The individual adsorption isotherms for Methyl Orange, Orange II, and Orange G in the 

presence of carbonates are given in Fig. S19 in Supporting Information. Carbonate anions clearly 

have a downward effect on dye adsorption from bi-solute solutions, especially for higher carbonate 

contents (i.e., molar dye : carbonate ratio of 1:2).  
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Figure 7. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the three 

mixtures of MO and carbonate anions, the amounts of dye adsorbed are as follows:  
(1) 0.48 meq g-1, (2) 0.97 meq g-1, (3) 1.2 meq g-1. 

 

The intercalation of MO and OII units within the interlayer space of Mg-Al-LDH-NO3 is 

confirmed in Fig. 7 and Fig. S20 (Supporting Information), where the XRD patterns of few LDH 

samples loaded with dye and carbonate anions from equimolar bi-solute solutions are reported. 

The co-insertion of organic and inorganic phases into the LDH structure is accompanied by a 

visible expansion of the interlayer distance from 0.88 to 2.42 nm, MO; or 2.22 nm, OII. In addition, 

the adsorption of MO species on the external surface leads to the formation of a new phase which 

is identified by small peaks marked with asterisks (*) in the XRD pattern of the MO+CO3(3) 

sample (Fig. 7). 

The adsorption behavior of the OG+CO3
2- system is somewhat different, as exemplified by 

the XRD patterns in Fig. 8. For the first point analyzed on the adsorption isotherm, i.e., 
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OG+CO3(1) sample, some expansion of the interlayer distance to 1.68 nm can be inferred from 

the small peak localized at a 2θ position of 5.2°. However, such an expansion is no more observed 

for the OG+CO3(2) sample. In both cases, the appearance of a broad peak between 10 and 13° 

indicates possible co-occurrence of the OG and carbonate phases. 

 

 

 

Figure 8. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the two mixtures 

of OG and carbonate anions, the amounts of dye adsorbed are as follows: (1)1.12 meq g-1,  
(2) 1.17 meq g-1. 

 

The effects of the controlled carbonate addition to the aqueous phase on the retention 

capacity of Mg-Al-LDH-NO3 towards the three dyes are illustrated in Figure 9. As in Figures 5 

and 6, this retention capacity is compared with the AEC of LDH. For each type of dye, its 

maximum amount adsorbed is diminished more when more carbonate ions are introduced to the 
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bi-solute system. CO3
2- is the smallest and the most hydrated among the inorganic anions used in 

the present study (i.e.,  r = 0.178 nm,  n = 4, DhydH = -1395 kJ mol-1, [29]). It will be probably 

retained by the LDH structure preferentially over HCO3
-, which is a little greater and particularly 

less hydrated (r = 0.185 nm,  n = 2, DhydH = -380 kJ mol-1 [29]). When the most hydrophobic 

among the three dyes (i.e., Methyl Orange) is mixed with carbonate species to obtain molar ratios 

of 2.1, 1:1, and 1:2, the maximum dye adsorption is decreased by about 50%, 75%, and 85%, 

respectively.  

 

 

Figure 9.  Effect of the addition of carbonate anions to the aqueous phase on the retention 
capacity of Mg-Al-LDH-NO3 towards Methyl Orange (MO), Orange II (OII), and Orange G 

(OG) from bi-solute solutions at different molar ratios between dye and carbonate species. AEC 
refers to the anion exchange capacity of the LDH sample. 

 
 

With less hydrophobic and divalent OG anions, carbonates become less efficient in 

reducing the maximum quantity of dye adsorption since the corresponding reduction rates are 48%, 

58%, and 70%. When the molar ratio between OII and carbonates is equal to 2:1 (the same 

equivalent concentrations of both solutes), the retention capacity of the LDH sample towards OII 

is lowered by 77%. Further carbonate addition has less influence on the OII retention performance: 

the reduction rate increases to 83% and 87 % when the dye : carbonate ratio passes to 1:1 and 1:2, 

respectively. 
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When confronted with the results reported in Fig. 5, the classification of inorganic anions 

in order of their ability to decrease the retention capacity of Mg-Al-LDH-NO3 towards the three 

dyes depends not only on the type of dye but also on the molar ratio between dye and inorganic 

anion. For comparative purposes, the equivalent concentration of inorganic anion being twice that 

of dye is taken as reference: the monovalent MO and OII anions are thus analyzed for a dye : An 

ratio of 1:1, whereas the maximum adsorption of divalent OG is provided for a dye : An ratio of 

1:2. On this basis, the order of decreasing effectiveness of the inorganic anion in depressing the 

maximum quantity of dye adsorption is:  CO3
2- >> HPO4

2- > SO4
2- ≈ CrO4

2-, Methyl Orange; 

HPO4
2- ≈ CO3

2- > CrO4
2- > SO4

2-, Orange II; HPO4
2- ≈ SO4

2- > CO3
2- ≈ CrO4

2-, Orange G. 

 

4. Conclusion 

The competitive adsorption of anionic Orange-type dyes and inorganic divalent anions onto 

Mg-Al Layered Double Hydroxide from bi-solute aqueous solutions in open systems was 

demonstrated to follow a complex mechanism involving an ion exchange with the pristine nitrates 

and carbonates coming from air, which led to the intercalation of various adsorbed species within 

the interlayer space of LDH or their adsorption on the external surface. Based on the shape of the 

individual adsorption isotherms for a dye and inorganic anion, it was possible to distinguish three 

different competition schemes: when the reduction in adsorption extent concerns mainly one of 

the solutes (Type I and Type III) or when this reduction applies to both solutes (Type II). The bi-

solute systems studied in the present work were ascribed to one of these categories depending on 

the individual solute affinities for the LDH sample, as inferred from the calorimetry measurements 

of the cumulative enthalpy of displacement in single-solute systems, and their overall contents in 

the system, as expressed by the molar ratio between dye and inorganic anion. The order of 

decreasing effectiveness of the inorganic anion in depressing the retention capacity of Mg-Al-

LDH-NO3 towards a given dye, on a per-equivalent basis, was as follows: CO3
2- >> HPO4

2- > 

SO4
2- ≈ CrO4

2-, Methyl Orange; HPO4
2- ≈ CO3

2- > CrO4
2- > SO4

2-, Orange II; HPO4
2- ≈ SO4

2- > 

CO3
2- ≈ CrO4

2-, Orange G.  
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SUPPORTING INFORMATION 

 

I. Adsorption isotherms for dye or inorganic anions from single-solute solutions onto 

Mg-Al-LDH-NO 

Dye anions: 

MO = Methyl Orange [C14H14N3SO3]-  

OII = Orange II (Acid orange 7) [C16H11N2SO4]- 

OG = Orange G [C16H10N2S2O7]2- 

 

Figure S 1. Isotherms of dye adsorption from single-solute solutions onto Mg-Al-LDH-NO3 at 
298 K. The solid lines represent the smoothed isotherms constructed on the basis of the results of 
repeated adsorption experiments. The vertical dotted line is used to indicate the theoretical anion 
exchange capacity (AEC) of LDH. Adapted from G. Darmograi et al., Study of Adsorption and 
Intercalation of Orange-Type Dyes into Mg-Al Layered Double Hydroxide, Journal of Physical 

Chemistry, DOI: 10.1021/acs.jpcc.5b05510 
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Figure S 2. Adsorption isotherms for inorganic anions from single-solute solutions onto Mg-Al-
LDH-NO3 at 298 K. The solid lines represent the smoothed isotherms constructed on the basis of 

the results of repeated adsorption experiments. The vertical dotted line is used to indicate the 
theoretical anion exchange capacity (AEC) of LDH.  

 
 

III. Calorimetry measurements of the enthalpy of displacement accompanying the 

adsorption of dye or inorganic anions from single-solute solutions onto Mg-Al-LDH-NO3 at 

298 K 

 
Table S 1. Operating parameters used in the adsorption experiments carried out with the aid of 

isothermal titration calorimeter TAM III 
 

Adsorbed species 
Number of 
injections 

Injection 
volume 

(µL) 

Injection 
speed (sec) 

Agitation 
speed 
(tpm) 

Equilibration time 
between two successive 

injections  (min) 
Methyl Orange 33 30 30 120 90 
Orange II 25 10 10 90 90 
Orange G 25 10 10 120 180 
Sulfates 25 10 10 90 90 
Chromates 25 10 10 90 90 
Hydrogen phosphates 25 10 10 90 90 
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Figure S 3. Variations of the cumulative enthalpy of displacement accompanying adsorption of 
dye and inorganic anions from single-solute solutions onto Mg-Al-LDH-NO3 at 298 K as a 

function of the amount of a given species retained by the solid sample, as plotted in an 
adsorption range corresponding to the initial quasi-vertical portion on the adsorption 
isotherm, i.e., up to ;  represents the enthalpy value at the end of this 

interval: (a) Methyl Orange, (b) SO4
2-, (c) Orange II, (d) CrO4

2-, (e) Orange G, (f) HPO4
2-. 
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IV. Results of adsorption studies on systems containing bi-solute solutions of dye and 

inorganic anions 

The results of adsorption studies made on systems containing bi-solute solutions have been 

collected below. Each figure shows a set of adsorption isotherms obtained for a given solute 

mixture and three molar ratios between dye and inorganic anion: (2:1), (1:1), (1:2). To construct 

the composite adsorption isotherm, the sum of the two amounts adsorbed has been plotted as a 

function of the dye concentration in the equilibrium bulk solution. 

 

 

 

Figure S 4. Individual (panels a and b) and composite (panel c) adsorption isotherms for Methyl 
Orange and hydrogen phosphate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute 
solutions at different molar ratios between dye and inorganic anion under conditions of exposure 
to the ambient atmosphere employed in the present study. The dotted lines are used to indicate 

the anion exchange capacity (AEC) of the LDH sample. 
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Figure S 5. Individual (panels a and b) and composite (panel c) adsorption isotherms for Methyl 

Orange and sulfate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute solutions at 

different molar ratios between dye and inorganic anion under conditions of exposure to the 

ambient atmosphere employed in the present study. The dotted lines are used to indicate the 

anion exchange capacity (AEC) of the LDH sample. 
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Figure S 6. Individual (panels a and b) and composite (panel c) adsorption isotherms for Methyl 
Orange and chromate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute solutions 

at different molar ratios between dye and inorganic anion under conditions of exposure to the 
ambient atmosphere employed in the present study. The dotted lines are used to indicate the 

anion exchange capacity (AEC) of the LDH sample. 
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Figure S 7. Individual (panels a and b) and composite (panel c) adsorption isotherms for Orange 
II and hydrogen phosphate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute 

solutions at different molar ratios between dye and inorganic anion under conditions of exposure 
to the ambient atmosphere employed in the present study. The dotted lines are used to indicate 

the anion exchange capacity (AEC) of the LDH sample. 
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Figure S 8. Individual (panels a and b) and composite (panel c) adsorption isotherms for Orange 
II and sulfate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute solutions at 
different molar ratios between dye and inorganic anion under conditions of exposure to the 
ambient atmosphere employed in the present study. The dotted lines are used to indicate the 

anion exchange capacity (AEC) of the LDH sample. 
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Figure S 9. Individual (panels a and b) and composite (panel c) adsorption isotherms for Orange 
II and chromate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute solutions at 
different molar ratios between dye and inorganic anion under conditions of exposure to the 
ambient atmosphere employed in the present study. The dotted lines are used to indicate the 

anion exchange capacity (AEC) of the LDH sample. 
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Figure S 10. Individual (panels a and b) and composite (panel c) adsorption isotherms for Orange 
G and hydrogen phosphate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute 

solutions at different molar ratios between dye and inorganic anion under conditions of exposure 
to the ambient atmosphere employed in the present study. The dotted lines are used to indicate 

the anion exchange capacity (AEC) of the LDH sample. 
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Figure S 11. Individual (panels a and b) and composite (panel c) adsorption isotherms for Orange 

G and sulfate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute solutions at 
different molar ratios between dye and inorganic anion under conditions of exposure to the 
ambient atmosphere employed in the present study. The dotted lines are used to indicate the 

anion exchange capacity (AEC) of the LDH sample. 
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Figure S 12. Individual (panels a and b) and composite (panel c) adsorption isotherms for Orange 

G and chromate anions adsorbed at 298 K onto Mg-Al-LDH-NO3 from bi-solute solutions at 
different molar ratios between dye and inorganic anion under conditions of exposure to the 
ambient atmosphere employed in the present study. The dotted lines are used to indicate the 

anion exchange capacity (AEC) of the LDH sample. 
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V. XRD diffraction patterns recorded on Mg-Al-LDH-NO3 loaded with different 

species adsorbed from equimolar bi-solute solutions of dye and inorganic anions 

The LDH samples loaded with different anions for XRD studies have been chosen such 

that they represent some specific portions of the corresponding adsorption isotherms. For example, 

the first sample denoted by ‘dye+inorganic anion (1)’ corresponds to the quasi-vertical portions of 

the adsorption curves, whereas the last one usually refers to the plateau adsorption regions. 

 

Figure S 13. X-ray diffraction patterns in a 2q range from 2° to 18° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the three 

mixtures of MO and chromate anions, the amounts adsorbed are as follows: 
 (1) 0.99 meq g-1, MO; 1.86 meq g-1, CrO4

2-; (2) 2.95 meq g-1, MO; 1.53 meq g-1, CrO4
2-;  

(3) 5.72 meq g-1, MO; 0 meq g-1, CrO4
2-. 
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Figure S 14. X-ray diffraction patterns in a 2q range from 2° to 18° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the three 

mixtures of OII and sulfate anions, the amounts adsorbed are as follows: (1) 0.25 meq g-1, OII; 
0.52 meq g-1, SO4

2-; (2) 0.70 meq g-1, OII; 1.41 meq g-1, SO4
2-; (3) 0.94 meq g-1, OII; 

 1.61 meq g-1, SO4
2-. 
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Figure S 15. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the two mixtures 

of OII and chromate anions, the amounts adsorbed are as follows: (1) 0.58 meq g-1, OII; 
 1.14 meq g-1, CrO4

2-;   (2) 1.15 meq g-1, OII; 1.34 meq g-1, CrO4
2-.  
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Figure S 16. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the three 

mixtures of OG and sulfate anions, the amounts adsorbed are as follows: (1) 0.93 meq g-1, OG; 
0.95 meq g-1, SO4

2-; (2) 1.05 meq g-1, OG; 1.18 meq g-1, SO4
2-; (3) 0.92 meq g-1, OG;  

1.46 meq g-1, SO4
2-. 
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Figure S 17. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the three 

mixtures of MO and hydrogen phosphate anions, the amounts adsorbed are as follows:  
(1) 0.40 meq g-1, MO; 0.81 meq g-1, HPO4

2-; (2) 1.33 meq g-1, MO; 2.54 meq g-1, HPO4
2-;  

(3) 2.6 meq g-1, MO; 2.11 meq g-1, HPO4
2-. 
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Figure S 18. X-ray diffraction patterns in a 2q range from 2° to 30° for Mg-Al-LDH-NO3 loaded 
with various anionic species from single- and bi-solute equimolar solutions. For the two mixtures 

of OG and hydrogen phosphate anions, the amounts adsorbed are as follows:  
(1) 0.70 meq g-1, OG; 2.01 meq g-1, HPO4

2-; (2) 0.28 meq g-1, OG; 2.95 meq g-1, HPO4
2-. 
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VI. Results of adsorption and XRD studies on systems containing bi-solute solutions 

of dye and carbonate anions 

 

 

  

Figure S 19. Effect of the addition of carbonate anions to the aqueous phase on the adsorption of 
Methyl Orange (panel a), Orange II (panel b), and Orange G (panel c) at 298 K onto Mg-Al-

LDH-NO3 from bi-solute solutions at different molar ratios between dye and carbonate species. 
The dotted lines are used to indicate the anion exchange capacity (AEC) of the LDH sample. 
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Figure S 20. X-ray diffraction patterns in a 2q range from 2° to 18° for Mg-Al-LDH-NO3 

loaded with various anionic species from single- and bi-solute equimolar solutions. For the two 
mixtures of OII and carbonate anions, the amounts of dye adsorbed are as follows:  

(1) 0.23 meq g-1, (2) 0.49 meq g-1. 
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CONCLUSIONS 

 

In this chapter the results for the multi-component adsorption of Orange-type dyes and 

inorganic oxyanions (sulfates, chromates, phosphates) from the bi-solute component solutions 

onto the Mg-Al-LDH-NO3 are presented.  

From the results obtained for equimolar concentrations it can be concluded that Methyl 

Orange, the most hydrophobic molecule has the least influence in the presence of the competing 

species. No influence was observed in the presence of sulfates and chromates ion and a small and 

insignificant effect was observed for the phosphates ions. This can be explained by the MO 

sorption onto the external surface of the LDH. In the case of Orange II and Orange G, both dyes 

have similar adsorbing properties in the presence of the inorganic anions. The amounts of dyes 

adsorbed are decreased in the presence of the competing inorganic ions. Moreover, these dyes are 

highly influenced by the presence of phosphates (OII) and sulfates (OG) ions. Multi-component 

adsorption measurement performed for the different organic and inorganic anions ratios showed 

that the removal of the dye and that of the inorganic anion is affected by both the type and the 

concentration of the co-existing competing species. 

The multi-component adsorption in the presence of specially added carbonates showed a 

negative impact on the dye adsorption onto the LDH. This is due to the fact that the carbonates 

ions occupied all the interlayer space of the LDH as shown on the XRD pattern.  

To conclude, Mg-Al-LDH-NO3 can be a very good potential adsorbent for Orange - type 

dye adsorption. However, in the presence of competing inorganic anions, special care should be 

taken into consideration as possible inhibition of dye amount adsorbed in the presence of 

carbonates and phosphates for MO and OII and the presence of carbonates and sulfates for OG can 

occurred. Only chromate anions do not significantly decrease the retention of the dyes, thus 

potentially not dangerous for adsorption results.   
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1. INTRODUCTION 

 

Layered Double Hydroxide (LDH) or anionic clays possess very good adsorptive 

properties mainly because of their high density of layer charge, which can accommodate various 

negatively charged organic and inorganic contaminants [1].  

In the previous chapters, we reported the adsorption of Orange-type dyes (Methyl Orange, 

Orange II and Orange G) and different divalent inorganic anions from mono- and bi-solute 

solutions. An uncalcined LDH sample containing nitrate species as the pristine compensating 

anions was used there as the adsorbent material. The first objective of these chapters was to 

evaluate the mechanism of azo-dye intercalation into the LDH structure. Secondly, our intention 

was to understand the action of more complex systems by studying the competitive adsorption of 

these dyes from bi-component dye-inorganic ion systems. The pristine LDH sample containing 

nitrate interlayer anions was the best candidate to perform such studies, because nitrates may be 

very easily exchanged by other species [2]. Since the sorption of pollutants by LDH materials is 

based on anion exchange [3], the toxicity of the initial interlayer anion should be also taken into 

account. Even if nitrate is considered to be relatively non-toxic to adults, concentrations greater 

than 50 ppm can be fatal to infants under six months of age [4]. Therefore, in the present chapter 

an investigation of the single-component and competitive adsorption of the same dyes has been 

described onto LDH sample containing another interlayer anion, which has no deleterious impact 

on nature and human health. For this purpose, Mg-Al-LDH sample with interlayer chloride anions 

was selected.  

This contribution to the understanding of adsorption mechanism onto LDH materials gave 

new results to compare the dye removal process as a function of the compensating anion. The 

adsorption of MO, OII and OG onto Mg-Al-LDH-Cl has never been reported earlier in the 

literature. The competitive adsorption was studied from bi- and tri- component systems. The bi- 

component systems contained azo dye with one inorganic ion (phosphate or carbonate), whereas 

the tri-component one was composed of one dye and two inorganic ions. As in the previous cases 

the Isotherm Titration Calorimetry was additionally used to date in the case of single-solute 
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systems and the XRD analysis of samples exchanged with dye gave indication for the dye 

intercalation in the LDH interlayer.  

 

2.  Characterization of uncalcined Mg-Al-LDH-Cl adsorbent  

 

Thermogravimetric analysis of the Mg-Al-LDH-Cl material synthetized by co-

precipitation method is shown in Figure 1. As can be seen in the TG - DTA plot, three regions of 

the weight loss can be distinguished in the temperature ranges: 25 - 220, 220 – 470 and 470 - 

700°C. The weight loss in the first region (25 - 220°C) is about 14.5%, which is characteristic of 

the removal of physisorbed and interlayer water molecules from layered materials [5]. The 57% 

weight loss in the temperature range of 220 - 470°C corresponds to the release of the hydroxyl 

groups from brucite layers [6]. The last region represents the continuous dehydroxylation and 

formation of metal oxides. The conclusion regarding the water content in the LDH is inferred from 

the number of molecules based on the theoretical formula of the layered material: Mg0.67Al0.33 

(OH)2 Cl0.33 • 0.67 H2O (the details of the calculations are included in Appendix II, section II). 

The X-ray Diffraction analysis was performed to confirm the layered structure of Mg-Al-

LDH-Cl material with chloride anions in the interlayer gallery (Figure 2). The diffraction pattern 

shows a series of peaks corresponding to rhombohedral symmetry of the layered material. Two 

harmonic peaks, (003) and (006), which are located respectively at 11.5 and 23° 2q positions give 

information about the interlayer dimensions (parameter c) and confirm the presence of the desired 

interlayer anion. Thus, the positions at 7.724 and 3.854 Å are attributed to harmonic reflections of 

chloride anions in the layer of LDH. The value of parameter c is found to be 23.172 Å. The 

parameter a is found from (110) reflection and is equal to 3.048 Å. These values are in good 

agreement with those reported in the literature for MgII/AlIII layered structures, containing chloride 

anions [7-9].  
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Figure 1. TG - DTA plots of uncalcined Mg-Al-LDH-Cl. 
 

 

Figure 2. XRD pattern of Mg-Al-LDH-Cl adsorbent. 
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3. Adsorption of dyes from single-component aqueous solutions 

In the first section of this chapter, we shall investigate the adsorption of the three azo dyes 

MO, OII and OG onto Mg-Al-LDH-Cl from single-component solutions. Sorption experiments 

are performed by following a procedure described in Appendix II, section I. The adsorption 

isotherms for all dyes are presented in Figure 3. For MO and OG, the amounts adsorbed attained 

in the plateau region are approximately equal to 4.7 mmol g-1 and 0.6 mmol g-1, respectively. OII 

reaches a pseudo-plateau value of 2.7 mmol g-1.  

 

 

Figure 3. Isotherms of dye adsorption from single-component solutions onto Mg-Al-LDH-Cl at 
298 K. The solid lines represent the smoothed isotherms constructed on the basis of the results of 

repeated adsorption experiments. Red points represent the dye loaded LDH samples taken for 
XRD.  

 

The results obtained for LDH-Cl can be compared with those previously reported in 

Chapter II for LDH-NO3. The amount of MO adsorbed onto the Mg-Al-LDH-NO3 (5.5 mmol g-1) 
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contrary, the quantity of OG adsorption onto Mg-Al-NO3 (1.7 mmol g-1) is at least three times 

higher than that obtained with Mg-Al-Cl. This difference could be ascribed to the affinity of the 

interlayer anions towards LDH material and their ability to be exchanged. According to Miyata 

[2], the selectivity of inorganic monovalent anion increases in the order: OH- > F- > Cl- > Br- > 

NO3
-  onto hydrotalcite-like materials. It can be considered that it is easier for NO3

- to leave the 

interlayer structure in comparison with Cl- anions, which have higher affinity for the LDH 

material. According to the literature [10], divalent inorganic species should have much more 

affinity towards LDH structure than monovalent ions have. On the contrary, our results indicate 

that OG2- anion is not able to replace all Cl- anion from the interlayer region. To confirm the 

exchange balance between the adsorbing and desorbing species, the supernatant was also analyzed 

by HPLC to quantify the amount of chloride anions removed from the solid. Figure 4 shows the 

resulting plots of dye retention as a function of the amount of Cl- released from the interlayer 

during the sorption experiment.  

Generally, the amount of interlayer released ions in the ion exchange process should be 

equal to the amount of the equivalent species adsorbed from solution. However, as observed, 

already for the first points on the sorption isotherms an excess of chloride interlayer anions is 

removed from the solid into solution, at variance with straight lines, which have been expected to 

characterize quantitatively the phenomenon (representation of equivalent exchange). The effect is 

similar for the three dyes. However, with the increased amount of dye adsorbed, only MO is able 

to displace the equivalent amount of chloride ion.  

During the OII sorption, the amount of chloride displaced from the interlayer progressively 

increases and the proportion between the dye and chloride in the supernatant remains the same 

when increasing the amount of dye adsorbed. This information points to the 1:2 stoichiometry of 

the OII:Cl exchange, which suggests that there is another anionic species entering the interlayer 

simultaneously with OII to preserve the electroneutrality of the layer. These anionic species may 

correspond to carbonates, coming from ambient air (see Chapter II) or hydroxide anions present 

in the aqueous solutions. However, the increase in the pH from the values measured in the 

beginning of adsorption experiment and those recorded at equilibrium indicates the release of -

OH- species into the solution during adsorption (an increase of around 1.4 pH unit for MO; 2-3 pH 
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units for OII; 3 units for OG; see Figure AII-1 in Appendix II).  This argues against the -OH- ions 

co-adsorption together with the dye species. 

 

Figure 4. Dye adsorbed onto LDH as a function of chloride leached during exchange. Straight 
lines represent an expected equivalent exchange. 

 

As for as OG is concerned, the amount of chloride removed from the adsorbent is about 

five times greater than the amount of OG removed from the solution. This could be ascribed to the 

greater charge of OG molecules since each OG molecule is bi-valent. However, the difference still 

remains great, i.e. for 0.57 mmol g-1 of OG adsorbed 3.04 mmol g-1 of Cl ions are released. 

Moreover, the analysis of sodium co-adsorption during the OG uptake (Figure AII-2 (c) and Figure 
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AII-3 in Appendix II) indicates that, after the third point on the adsorption curve, OG probably 

uses only one charge to neutralize the interlayer charge. Therefore, a great part of the interlayer 

charge freed from the released chloride ions (around 5.6) is compensated by another species 

present in the solution (see Table AII-1 in Appendix II).  

It has been already mentioned in the previous chapters, that XRD analysis can give us 

valuable information about the interlayer spacing of layered double hydroxides. The same 

experimental analysis was performed for the present Mg-Al-LDH-Cl system. The XRD patterns 

shown on Figures 5-7 were recorded on the samples loaded with dyes for various points located 

on the adsorption curves (see Figure 3).  

 

 

Figure 5. X-ray diffraction patterns in the 2q range from 2° to 30° for the intercalation of MO in 
the Mg-Al-LDH-Cl structure corresponding to 2 selected points at Qads = 1.9 and 4.0 mmol g-1 

on the MO adsorption isotherm (as marked by crosses in Figure 3). 
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Two different points were chosen for MO and one for OII and OG samples. In the case of 

the first point at Qads =1.93 mmol g-1 where the sample is referred to as and labeled LDH-MO(1), 

three harmonic reflections are observed at 3.6°, 7.4° and 11.5° 2q positions. The first two peaks 

are attributed to the MO intercalated into LDH accompanied by an increase of the interlayer 

distance up to 2.42 nm (assigned a MO(003) and MO(006)). The last broad peak is ascribed to the 

mixture of phases: MO and chlorides or carbonates. The (003) reflections of both CO3 and Cl 

phases are too close to each other to decide which of these anions really co-exist with MO within 

the layer. In consequence, the (006) reflections of these two inorganic ions can be compared. The 

carbonate anions appear to constitute the predominant co-adsorbed species within the increased 

amount of MO in the solid. For the second sample loaded with MO, i.e. LDH-MO(2) a decrease 

of the carbonate phase can be noted (i.e. (003) CO3); the broad peak at 11.5° 2q position is 

attributed to the mixture of two almost equal reflections of the (009) MO and (003) CO3. In analogy 

with the results obtained for LDH containing nitrates, the sorption of MO on the external surface 

of Mg-Al-LDH-Cl takes place, giving arise to small sharp peaks, marked with asterisks [11].   

One point was selected for LDH loaded with OII (see Figure 3), localized in the beginning 

of the saturation plateau (Qads = 2.14 mmol g-1). Two harmonic peak (003) and (006) can be visible 

at 3.9° and 7.9° 2q positions, corresponding to d-values of 2.22 nm and 1.11 nm of OII dye in the 

layered structure (Figure 6). As in the previous case of MO, the third broad peak at 11.5° 

2q position is difficult to be assigned. Therefore, the detection of the (006) CO3 and (006) Cl 

reflections allows the presence of carbonate phase to be confirmed in addition to OII species within 

the interlayer. The broad reflection was assigned to the mixture of two (009) OII and (003) CO3 

peaks. The presence of carbonate phase is in line with the results of the chloride release from the 

LDH structure.  
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Figure 6. X-ray diffraction patterns in the 2q range from 2° to 30° for the intercalation of OII in 
the Mg-Al-LDH-Cl structure corresponding to the selected point on the OII adsorption isotherm 

(as marked by crosses in Figure 3). 
 

Figure 7 shows the XRD patterns of Mg-Al-LDH-Cl saturated with the OG units (Qads = 

0.58 mmol g-1). Very weak reflections of OG adsorbed in the interlayer at 5.2°, 15.8° and 21.1° 2q 

positions can be assigned to the (003), (009) an (0012) harmonic peaks. However, broadening of 

the peak from 10° to 11.5°  corresponds to the presence of three different phases in the adsorbent, 

namely the (006) OG, (003) CO3 and (003) Cl. Moreover, the intensity of carbonate and chloride 

reflections in comparison with those of OG indicates that the two inorganic phases are predominant 

within the layer compared to the organic ion. The presence of the initial chloride phase is in good 

agreement with the results shown in Figure 4. The uncompensated layer charge during the release 

of chloride ions (around 5.6 µmol) is neutralized by the carbonate species dissolved in aqueous 

solution.  
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Figure 7. X-ray diffraction patterns in the 2q range from 2° to 30° for the intercalation of OG in 
the Mg-Al-LDH-Cl structure corresponding to the selected point on the OG adsorption isotherm 

(as marked by crosses in Figure 3). 
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Figure 8. Variations of the cumulative enthalpy of displacement as a function of the amount of 
dye adsorbed. 
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over vertical part of the adsorption curve (Qads< 1 mmol g-1), 2) the monotonous decrease from the 

beginning of the saturation plateau (Qads> 1 mmol g-1). As it was explained in Chapter II, this 

phenomenon is due to the formation of OII complexes or aggregates with the Mg(II) ions, obtained 

by partial dissolution of the LDH.  

To conclude, the exothermic effect of displacement accompanying the retention of OG is 

the lowest in comparison with other dyes (especially with those of MO). This value is even lower 

than those obtained for Mg-Al-LDH-NO3 (-10 J g-1) [11]. It was already mentioned earlier that 

cumulative enthalpy of displacement represents the global heat effect accompanying the 

adsorption processes. Hence, low value of ∆dplHcum for OG is in good agreement with lower 

amount of dye adsorbed, consequently the weak expansion of the layer, low interlayer anion 

displacement, etc. Thus, the affinity of the dye anions can be ordered as follows: MO- > OII- > Cl- 

> OG2- > NO3
-. 

In the next section of this chapter, we check whether adsorptive capacities of the three dyes 

onto Mg-Al-LDH-Cl are changed in the presence of equimolar proportions of the competing 

inorganic anions in solution, during adsorption. 

 

4. Competitive adsorption of dye and inorganic anions from equimolar bi-

solute and tri-solute solutions 

The analysis of results obtained in Chapter III on the competitive adsorption between 

inorganic anions (sulfates, chromates, carbonates and hydrogen phosphates) and dyes onto Mg-

Al-LDH-NO3 has demonstrated that carbonates and hydrogen phosphates have significant 

negative impact on the dye adsorption. In the present chapter the emphasis is mainly on the 

competitive adsorption of the dyes in the presence of inorganic ions. In addition, tri-component 

systems containing both inorganic anions and the dye in solution are tested. A comparison with 

the dye removal from mono-component solutions without competing species is also done. 
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Figure 9. Isotherm of competitive adsorption between Methyl Orange (MO) and carbonate and 
hydrogen phosphate onto Mg-Al-LDH-Cl from equimolar bi-solute and tri-solute solutions, 

containing MO, hydrogen phosphates (P) or carbonates (C) anions.  

 

 Figure 9 shows the adsorption results of the MO in competition with inorganic ions 

(carbonates and hydrogen phosphates). The presence of both inorganic ions have the negative 

influence on the amount of dye adsorbed. The decrease in the MO adsorption is equal to 35% 

overall adsorption isotherm in the presence of HPO4
2- species. In the presence of carbonates 

adsorption of MO decreases up by 83% from 4.7 mmol g-1 to 0.8 mmol g-1. Thus, at equilibrium 

carbonate ions have higher influence on the dye adsorption than hydrogen phosphates have. 

However, at small MO equilibrium concentrations < 0.2 mmol L-1, the same MO adsorption 

behavior can be observed in the presence of both inorganic ions (see Figure 9). The initial portion 

of the dye adsorption isotherm in the presence of inorganic ions (0.3 mmol g-1) can be related with 

the MO exchange onto LDH, indicating strong interactions between dye and solid in the range of 

small equilibrium concentrations (i.e. the vertical part of the isotherm). The subsequent increase 

in the MO retention can be related to the sorption on the external surface of the LDHs (see XRD 

analysis of the LDH loaded with mixture dye and inorganic ions in Chapter III).  
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In the presence of two inorganic competing species (tri-solute composition), MO exhibit 

different adsorption behavior, with rather small amounts adsorbed (Qads ≈ 0.3 mmol g-1) in the 

range of very dilute solutions < 0.5 mmol L-1. However, with the further increase in the dye 

equilibrium concentration, the steady increase in the MO amount adsorbed occurs. The global 

effect due to the presence of inorganic ions on the MO exchange capacity onto Mg-Al-LDH-Cl 

follows the next trend: P < C ≈ C + P. Similar adsorption properties of MO in the bi-component 

mixture with carbonates and in the tri-component one (P+C) indicate that the carbonate is the main 

inhibitor of the adsorption of dye and phosphate ions.  

 

 
 

Figure 10. Isotherm of competitive adsorption between Orange II (OII) and carbonate and 
hydrogen phosphate onto Mg-Al-LDH-Cl from equimolar bi-solute and tri-solute solutions, 

containing OII, hydrogen phosphates (P) or carbonates (C) anions. 
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presence of carbonate, the OII adsorption is decreased by 81% to 0.5 mmol g-1. The latter value is 

in  good agreement with those reported in the literature for OII adsorbed onto Mg2Al-CO3 [12]. In 

the adsorption plateau region the dye adsorption from tri-solute solutions is equal to that obtained 

from bi-solute solutions with carbonate species. However, in the range of small equilibrium 

concentration, the adsorption of OII is more influenced by the mixture (P+C) than by the presence 

of carbonates or HPO4
2-. It is interesting to notice that during the adsorption onto Mg-Al-LDH-

NO3, the presence of phosphate or carbonate units have the same influence on the OII adsorption 

from bi-solute solutions as when adsorbed onto Mg-Al-LDH-Cl. This can be related to the similar 

adsorption of hydrogen phosphate onto Mg-Al-LDH-NO3 (i.e., 2.7 meq g-1 as reported in Chapter 

III) and onto Mg-Al- LDH-Cl (i.e., 2.6 meq g-1, as can be seen in Figure AII-4 in Appendix II 

section V).  

 

 
 

Figure 11. Isotherm of competitive adsorption between Orange G (OG) and carbonate and 
hydrogen phosphate onto Mg-Al-LDH-Cl from equimolar bi-solute and tri-solute solutions, 

containing OG, hydrogen phosphates (P) or carbonates (C) anions. 
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Figure 11 shows the results of competitive adsorption between OG and inorganic ions onto 

Mg-Al-LDH-Cl. Carbonates and phosphates have almost the same influence on the OG adsorption. 

Only the vertical parts of the adsorption curves in the presence of inorganic anions own somewhat 

different, with higher affinity of OG in the presence of hydrogen phosphate than that in the 

presence of carbonate ions. Then, the amount of dye adsorbed attains a value of 0.25 mmol g-1 in 

the presence of either (C or P) competing species at a low OG equilibrium concentrations (< 0.4 

mmol L-1). However, at higher concentrations of dye in the solution, the amount of dye adsorbed 

decreases monotonously. This depression of the OG uptake at higher concentration could be 

explained on the basis of pH measurements in aqueous suspensions, as reported at Figures AII-6 

(a, b) in Appendix II in relation with the diagrams of speciation (Figures AII-5). The initial pH 

values measured at the beginning of the sorption process can give us information about the species 

initially present in the solution. The decrease in the dye adsorption is enhanced by increasing the 

concentration of dihydrogen phosphate in the solution and the same observation has been done for 

carbonate. For the first points on the adsorption plot where dye adsorbs progressively, bicarbonate 

is either the only or predominant phase in the solution. However, the depression of OG occurs 

when the percentage of carbonate is superior to the bicarbonate phase in solution (pH > 10.3 

pKa2=10.3). At the maximum adsorption, the OG is decreased by 58% during the adsorption 

process in comparison with single-component adsorption. The uptake of OG in competition with 

carbonates and hydrogen phosphate corresponds to Type I according to the classification proposed 

in Chapter III. 

A different shape of the adsorption isotherm is observed for OG adsorption from tri-solute 

solutions. At small equilibrium concentrations, the OG adsorption is decreased down to 0.1 mmol 

g-1. Further increase in the dye concentration (above 0.2 mmol L-1) results in an increase in the dye 

adsorption up to 0.2 mmol g-1 and then it remains the same. To rationalize this observation, the 

competition between the two inorganic ions in the tri-solute solution for adsorption sites can be 

forwarded (Figure AII-6 (c)). Thus, for the first points, a competition can occurs between OG, 

dihydrogen phosphate and bicarbonate. As the overall concentration of all adsorbed species in the 

solution is small, there are enough available sites for the adsorption of all competing species: in 

consequence, the dye units adsorbs. In adsorption plateau of 0.2 mmol g-1 the presence of the 

mixed carbonate phase is postulated (at pH=9.3, 91% HCO3
-, 9% CO3

2-). This mixture of  
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bicarbonate and carbonate anions can potentially compete with hydrogen phosphate for LDH 

surface sites, as reported by Shin et al. [13]. The explanation of the competitive results with pH 

measurement is just a hypothesis, as the charge of adsorbed species inside the layer should be 

better studied. 

 

 

5. CONCLUSIONS 

 

In this Chapter, we described the adsorption experiments performed on the Mg-Al-LDH-

Cl sample, with the aim to establish the difference between the adsorption properties of the two 

LDH solids, containing various interlayer anions: nitrates (Chapters II and III) and chlorides (this 

chapter). At first, the structural properties of adsorbent were characterized by TGA and XRD 

analysis. Single-solute adsorption experiment was then performed for three azo dyes (MO, OII and 

OG). The adsorption of MO and OG onto Mg-Al-LDH-Cl was smaller (4.7 mmol g-1 MO, 0.6 

mmol g-1 OG) than that onto Mg-Al-LDH-NO3 (5.5 mmol g-1 MO and 1.7 mmol g-1 OG). On the 

contrary, no influence of the interlayer anion was observed on the adsorption of OII. This 

difference was ascribed to the affinity of the pristine interlayer anion towards the layered double 

hydroxide (Cl > NO3). Moreover, the ITC measurements gave the same trend in the enthalpy of 

displacement during adsorption. The XRD patterns of the solid samples loaded with dye anions 

confirmed the presence of the chloride phase in the case of OG. In addition, the presence of the 

carbonate phase was noted for all dyes.  

The multi-solute sorption study was then performed in the presence of bivalent inorganic 

anions. Hydrogen phosphates and carbonates were tested for their impact on the dye uptake when 

adsorbed from bi- and tri-solute solutions. For MO and OII, hydrogen phosphate ions had less 

influence (a decrease down to 35 and 50 %, respectively) on the retention uptake of such dyes, in 

comparison with that of carbonate ions (83% MO, 81% OII). During the dye adsorption from bi-

solute solutions containing carbonates, MO and OII are influenced to the same extent as if they 

were adsorbed from tri-solute solutions (Dye+P+C). In the case of OG, the presence of both 

phosphate and carbonate ions had the same influence on the dye sorption capacity. During the 

adsorption from very diluted solution OG adsorbs to the great extent. With the increase in the 
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equilibrium dye concentration, the quantity adsorption of dye decreases. However, when the 

adsorption of OG is performed from tri-solute solutions in the presence of both carbonate and 

phosphate ions, the amount of dye adsorbed onto LDH sample remained the same after having 

reached the plateau value. The hypothesis about possible competition between carbonate and 

hydrogen phosphate ions present in the solution for the LDH adsorption sites was postulated.   

In summary, Mg-Al-LDH-Cl is a good adsorbent material for MO and OII dyes, but its 

adsorption capacity towards OG is smaller, because of the lower surface affinity of the latter dye 

against chloride interlayer anions: MO- > OII- > Cl- > OG2- > NO3
-. However, if the wastewater 

contains carbonate ions, there will be significant decrease in the retention performance of the LDH 

sample.  
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INTRODUCTION 

 

The mechanism of the three chosen Orange type dyes, Methyl Orange, Orange II and 

Orange G was discussed in details in Chapter II-IV using adsorbent-reference Layered Double 

Hydroxide. Hence, it was found that adsorption of these dyes on the anionic clay is a complex 

mechanism and it is greatly depends on several factors such as, concentration of anions in solution, 

work on the open air, properties of used adsorbing species, and interactions between solid and 

adsorbates. However, it will be interesting to find out if the same adsorbing system (Orange-type 

dyes) but this time either without the addition of any other competing organic anions or in the 

presence of competing inorganic anions such as chromium for instance will have similar effects 

during adsorption onto another anion exchanger.  

Therefore, in this chapter the discussion will focus on the adsorption of Orange-type dyes 

but on another adsorbent-reference, organic anion exchanger, known as Amberlite® IRN-78. This 

adsorbent is a strongly basic anion-exchanger resin. That is why it is important to measure the 

initial as well as the equilibrium pHs in the working media, since the change in pH can give 

valuable information about the charge of adsorbing species initially present in the bulk.    

Two contributions were investigated in this chapter. The first is the study of the mechanism 

of dye and Cr uptake from a single solute solution. 13C CP/MAS NMR was used to confirm the 

mechanism of dye uptake on the resins. Regeneration test was performed for all investigated 

organic and inorganic species.  

The second contribution was to study the retention of the dye and the oxyanion Cr (VI) 

from the multi-component system. The same methods as described in the previous chapters were 

used to investigate this competition. The selectivity of adsorbent for organic and inorganic species 

is an important parameter capable of influencing the adsorption of such system was also 

investigated in view of contributing to the understanding of different factors that can affect the 

adsorption of impurities in real wastewater systems. 
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1. Introduction 

The sorption-based technology for in situ treatment of polluted streams usually combines 

an easy handling, fast operational readiness, low operational costs, low-level discharge generation 

with significant reversibility of the removal process thus allowing the raw materials to be 

preserved. Given the sorption mechanism underling a particular pollutant removal technology, the 

efficiency and selectivity of sorption material may be largely affected by certain substances, which 

are present in the aqueous stream and enter into competition with the main pollutant component. 

Within the framework of recovery of various ionic substances, ion-exchange resins are important 

examples of synthetic sorbents for wastewater treatment since they can be easily tailored to specific 

applications [1]. For example, the use of such ion exchangers has been considered for removal of 

heavy metals [2-5], common inorganic ions [6], precious metals and rare elements [7-9], as well 

as dyes, acids, insecticides, or phenols [10-20]. In view of understanding the selectivity of the 

resins employed, the sorption process was studied in multi-component systems containing a 

mixture of heavy metals [2, 5, 21, 22], rare metals [23] or inorganic anions [24, 25]. Only a few 

papers have reported the results of competitive adsorption between some organic and inorganic 

anions onto anion-exchange resins [19, 26, 27].  

Deng et al. investigated the impact of sulfate and chromate anions on the retention of 

perfluorooctane sulfonate (PFOS) by polyacrylic IRA67 and IRA958 resins [19]. They 

demonstrated that the presence of SO4
2- had little effect on the PFOS sorption, whereas Cr(VI) 

oxoanions caused a very significant decrease in the PFOS uptake. Wang and co-workers reported 

the effects of competition between nitrates and such organic acids as gallic (GA), tannic (TA) and 

humic (HA), making use of an anion-exchange resin containing amine groups [26]. The order of 

decreasing effectiveness of the acid in depressing the nitrate uptake was HA > GA > TA and this 

was correlated with the electronegativity of these acids. It was postulated that the electrostatic 

interactions between the exchangeable sites in the resin and charged organic acids were mainly 

responsible for the acid effect on the removal of nitrate anions. Karcher et al. considered the use 

of strongly basic S6328a and weakly basic MP62 resins to remove the Reactive Black 5 dye from 

aqueous solutions containing also SO4
2-, CO3

2-, or HPO4
2- [27]. The dye retention by both resins 
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appeared little influenced by inorganic anions. MP62 was efficient only up to pH 8 and showed 

good propensity for alkaline regeneration. 

The objective of the present work was to test the efficiency and selectivity of strongly basic 

anion-exchange resin, Amberlite® IRN-78, in the removal of anionic Orange-type dyes and 

chromate anion from aqueous solutions. The study has been motivated by environmental issues 

since the textile industry can discharge various dyes and Cr(VI) oxoanions into aqueous streams, 

thereby causing severe impact to the environment [28]. The selected dyes included Methyl Orange, 

Orange II, and Orange G differing from one another by hydrophobic-hydrophilic character, 

molecular size, and electric charge. The competitive adsorption of three dye-chromate pairs from 

bi-solute equimolar solutions was compared with the corresponding single-component adsorption 

phenomena to monitor the mutual impact of the co-occurring compounds. Besides the equilibrium 

adsorption isotherms and selected desorption cycles, the nature of the dye species retained on the 

resin surface was studied with the aid of cross-polarization magic angle spinning 13C NMR and 

the enthalpy change upon anion-exchange was quantified using isothermal titration calorimetry.  

 

2. Experimental 

2.1. Materials 

Amberlite® IRN-78, Nuclear Grade resin, was purchased from Rohm and Haas (France) as 

yellow spherical beads in the 0.580–0.680 mm size range. This strongly basic gel-type anion 

exchange resin was supplied in the hydroxide form (at least 95% of the available exchange sites). 

It had a styrene divinylbenzene copolymer matrix with trimethylammonium functional groups. Its 

total exchange capacity, as specified by the manufacturer, was ≥ 1.7 meq L-1. 

The three Orange-type dyes of high purity (dye content > 99%) were purchased from 

Sigma-Aldrich and used without further purification. They are further designated as follows: MO 

= Methyl Orange, OII = Orange II or Acid Orange 7, OG = Orange G or Acid Orange 10. The 

maximum absorbance in the ultraviolet (UV) spectra was observed at a wavelength of 466 nm, 

MO; 483 nm, OII; and 480 nm, OG. Potassium chromate (K2CrO4) was also a from Sigma-Aldrich 

product (purity > 99%). These solutes were employed as received. The 18.2 MW cm water used to 
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prepare aqueous solutions was obtained with the aid of a combined Purite Select Analyst (France 

Eau) and PURELAB® Classic (ELGA LabWater, France) water purification system. 

 

2.2. Measurements of the adsorption isotherms in single-solute and bi-solute systems 

The individual isotherms of adsorption onto Amberlite® IRN-78 from single- and bi-solute 

solutions were determined by equilibrating about 50 mg of the resin beads with 20 ml of aqueous 

solution at a given composition in 30 ml Nalgene® reactors. In the single-component adsorption 

experiments, the initial solute concentrations were varied within the following range: 0.02 – 2 

mmol L-1, MO and OII; 0.03 – 3 mmol L-1, OG; 0.04 – 5 mmol L-1, CrO4
2-. To determine the 

individual adsorption isotherms of the two anionic species from bi-solute equimolar solutions, a 

mixed stock solution containing 2.5 mmol L-1 of each solute was used to obtain appropriate diluted 

solutions to be poured into Nalgene® tubes. For comparison purposes, the dilution schemes were 

designed to generate the individual adsorption isotherms for the dye species covering ranges of the 

equilibrium dye concentration similar to those obtained in the single-solute systems. The pH of 

resin suspensions was checked before and after the attainment of adsorption equilibrium. 

Wawrzkiewicz and Hubicki reported the results of kinetic studies on the adsorption of sulphonated 

azo dyes onto strongly basic anion-exchange resins (macroporous polystyrene Amberlite® IRA-

900 and IRA-910), thereby giving strong indications for the fast sorption kinetics [20]. Taking into 

account this conclusion, the Nalgene® reactors in the present work were slowly shaken overnight 

in a thermostated cage (±0.1 deg) at 298 K. The separation of solid phase from the supernatant 

liquid was achieved by centrifugation at 10 000 rpm for 10 min. The equilibrium concentration of 

a selected anion in the bulk phase was determined by UV-Vis spectroscopy (Jasco V-670 UV-Vis 

Spectrophotometer operating in the wavelength range from 350 to 550 nm). The corresponding 

amount adsorbed was calculated as follows: 

               (1) 

   where Ci and Ceq represent, respectively, the initial and final (after attaining the 

equilibrium) concentrations of the adsorbed species, Vo is the initial volume of the aqueous 

solution, and ms is the mass of the resin. All adsorption experiments were repeated at least twice 
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to test and verify the results. The worst repeatability was observed in the plateau adsorption region 

where it was within: 4%, MO; 2%, OII; 4%, OG; 6% CrO4
2-. 

 

2.3. Reversibility and selectivity tests of solute retention by the resin 

The resin was tested for one sorption-washing-elution cycle based on the same solution 

depletion method. Each solid sample, separated from the supernatant solution at the end of the first 

single-component adsorption step, was repeatedly washed with ultrapure water inside the 

Nalgene® tube. After each washing cycle, the resulting aqueous phase was collected and analyzed 

by UV-Vis spectroscopy to ensure that there were neither dye nor chromate units reversibly 

removable from the neighborhood of resin particles. Then the tube containing only the washed 

resin sample without the supernatant liquid was filled with 20 mL of a 0.02 or 1 mol L-1 NaOH 

solution and slowly shaken at 298 K. In the meantime, 5 mL aliquots of the supernatant solution 

were collected at fixed time intervals of 2, 3, 4, and 20h and analyzed for the concentration of dye 

or chromate anion, . The collected samples were subsequently returned to the Nalgene® tube 

in order to keep the same composition of the system. The quantity of dye desorbed from the resin 

was calculated from the following equation: 

             (2)      

   where V is the volume of the NaOH solution in the tube. 

The solute desorption was also presented as a percentage of the total amount adsorbed in 

the first adsorption cycle, i.e.,  %.  

The selectivity tests were carried out by starting with Amberlite® IRN-78 saturated with a 

selected component from a single-solute solution (the corresponding points located in the plateau 

region of the adsorption isotherms). The resin samples loaded with the maximum quantity of 

chromate anions were first washed with ultrapure water by following the procedure established for 

desorption tests. Then, they were equilibrated in the same Nalgene® tubes with 20 mL of dye 

solution having a concentration of 2 mmol L-1, MO and OII;  3 mmol L-1, OG. By analogy, the 

samples previously saturated with a given dye were put into contact with 20 mL of a 5 mmol L-1 
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K2CrO4 solution. The tubes were slowly shaken overnight at 298 K and the corresponding amount 

adsorbed at equilibrium determined by using Eq.1. 

 

2.3. Calorimetry measurements of the enthalpy changes accompanying single-

component and competitive adsorption of dye and chromate anions 

A TAM III differential microcalorimeter operating in a heat flow mode was used to 

measure the enthalpy of displacement accompanying both single-component and competitive 

adsorption of dye and chromate anions onto Amberlite® IRN-78 from aqueous solutions at 298 K. 

The experimental setup and operating procedures were detailed previously [2]. The 1 mL 

measuring ampoule containing about 2.5-4 mg of resin beads suspended in 0.8 mL of ultrapure 

water was placed in the microcalorimeter. The homogeneity of the solid suspension was 

maintained by means of an agitation system equipped with a Teflon paddle stirrer. The whole 

system including also a reference ampoule filled with the same amount of ultrapure water was 

equilibrated during 2h. Pulse injections of an appropriate stock solution were performed making 

use of a computer-controlled microsyringe injection device. In the single-component adsorption 

experiment, the concentration of stock solution was as follows: 7.5 mmol L-1, MO; 8 mmol L-1, 

OII; 10 mmol L-1, OG; 20 mmol L-1, CrO4
2-. When the competitive adsorption of dye and chromate 

anions was studied, the microsyringe was filled with an equimolar mixture of two components, 

each of which had the following concentration: 8 mmol L-1, MO + CrO4
2-; 7 mmol L-1, OII + 

CrO4
2- and OG + CrO4

2-. The operational parameters were kept the same for all calorimetry 

experiments, namely: 25 injections of 10 µL during 10 s, a stirring speed of 90 tpm, time of 

equilibration between two successive injections equal to 90 min. Further procedures for data 

processing were described previously [2]. The experimental enthalpy changes were subsequently 

corrected for dilution effects (see Supplementary Information for more details). The dilution 

experiments were carried out under the same experimental conditions but without a resin sample 

in the measuring ampoule. The enthalpy changes corresponding to the successive injection steps 

were finally summed up to obtain the cumulative enthalpy of displacement, , per unit 

mass of the solid material. The repeatability of the enthalpy measurement including the data 
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processing procedures was within: 10%, MO; 5%, OII, OG, and CrO4
2- anions. Nevertheless, the 

trends in  with the quantity of adsorption were the same in two calorimetric runs. 

 

2.4. 13C CP/MAS NMR study of the resin samples loaded with dye anions 

The cross-polarization magic angle spinning (CP/MAS) 13C NMR was employed to get 

more insight into the nature of adsorbed dye species. Prior to NMR measurements, the resin sample 

loaded with dye anions were prepared by dispersing 75 mg of resin in 30 ml of a concentrated dye 

solution. The initial concentrations were chosen to produce samples saturated with the adsorbed 

dye species (i.e., in the adsorption plateau region). After the attainment of adsorption equilibrium, 

samples of the supernatant solution were collected to check the amount of dye adsorbed and its 

concentration in the equilibrium bulk phase. The dye-loaded solid sample was washed with 

ultrapure water, dried at 333 K for 2-3 h, and transferred to the NMR equipment. The NMR spectra 

were collected at 300 K using an ASX-300 Bruker spectrometer at 75.47 MHz with a contact time 

of 4 ms, 12 kHz spinning rate and 13 000 accumulations at 5 s intervals. Chemical shifts were 

referenced to the CH2 groups of solid adamantane at 38.5 ppm relative to the 1H resonance of 

TMS. For the purpose of comparison, the NMR spectra were also recorded on the Amberlite® IRN-

78 degassed overnight at 303 K and untreated powdered dye samples. 

 

3. Results and discussion 

In the present work, the results of adsorption measurements with azo dyes in basic aqueous 

solutions should be treated with caution since such dyes may exist in different anionic forms due 

to the azo-hydrazone tautomerism [29-31]. Methyl Orange possessing a sulfonic group has only 

one pKa in the acidic region (i.e., pKa = 3.46 [32]), so the MO units will be deprotonated in the 

present systems to form monovalent anions, MO-. It was reported that the hydrazone form with a 

-N-H•••O= moiety was the most stable tautomer for Orange II and Orange G in the aqueous phase 

[29, 31, 33, 34]. Consequently, the R-N-NH-R group may be also deprotonated in the basic region 

(i.e., pKa = 10.6, OII [35]; 11.5, OG [36]). In strongly basic solutions, Orange II may exist as 
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divalent OII2- anions, whereas the charge number of Orange G anions may be even equal to -3, 

i.e., OG3-. All these forms are depicted in Fig. S1 in Supporting Information. 

 

3.1. Single-component adsorption of dye and chromate anions from single-solute 

solutions  

 

Figure 1. Single-component adsorption isotherms for Methyl Orange (orange diamonds), Orange 
II (blue squares), Orange G (green circles), and chromate anions (yellow triangles) retained on 

Amberlite® IRN-78 from single-solute aqueous solutions at 298 K.  

 

Figure 1 presents the adsorption isotherms for the four solutes studied; the amount adsorbed 

is plotted against the solute concentration in the equilibrium bulk solution. The retention of dye 

species changes the color of the resin beads, as can be seen in Fig. S2 in Supporting Information. 

All solutes have high affinity towards the resin exchangeable sites especially for very low 

concentrations. Most of the solute species are adsorbed within this concentration range, thereby 

resulting in a quasi-vertical portion on the adsorption curve. Then, the amount adsorbed increases 
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a little and it levels off above 0.25 mmol L-1 at the very most. The maximum solute uptake in the 

adsorption plateau region decreases in the following order: CrO4
2- > OG > OII ≈ MO. 

In order to rationalize the above observation, changes in the pH of resin suspensions 

monitored upon adsorption measurements should be taken into account. In the beginning, the 

dispersion of resin beads in ultrapure water did not modify the pH of the solvent. When some 

volume of the stock solution was put into the Nalgene® reactor to obtain the initial solution of a 

given composition, the pH of the resin suspension rose, after a few minutes of contact, to a new 

value between 9 and 10, depending on the solute nature and its concentration. In accordance with 

the fast kinetics of anion exchange onto strongly basic resins demonstrated previously for azo dyes 

[20] and chromate anions in alkaline solutions [37], an initial increase by a few pH units may be 

considered as a result of anion exchange with the pristine OH- anions. For points localized in the 

plateau region of the adsorption isotherms, the equilibrium pH value after the attainment of 

adsorption equilibrium was as follows: about 11, MO, OII, and CrO4
2-; 11.5, OG. 

The apparent capacity of strongly basic anion-exchange resins for various anions may be 

affected, on the one hand, by the charge number of the anion, size of the hydrated anion, and its 

degree of hydration, but on the other hand, by the extent of hydration of the resin, its porosity, or 

degree of crosslinking in the matrix of the resin phase [37, 38]. As a polystyrene gel-type resin, 

Amberlite® IRN-78 is relatively hydrophobic (a moisture holding capacity of 54-60%) and, as 

such, it should prefer less hydrated anions. It is known that CrO4
2- is practically the only chromate 

species present in alkaline solutions at pH > 7 [37]. Therefore, this is that Cr(VI) species that 

adsorbs onto Amberlite® IRN-78 in the present chromate system. The hydrated CrO4
2- ion has a 

radius of 0.288 nm and it contains, on average, 2.8 water molecules in its hydration shell [39]. This 

is the smallest anion used in the present work. When expressed in equivalents per gram, the 

maximum amount of twofold negatively charged chromate ion (i.e., 1.8 meq g-1) is close to the 

minimum value (1.7 meq g-1) for anion exchange capacity (AEC) of Amberlite® IRN-78. The 

hydrated monovalent OH- has a radius of 0.212 nm and its hydration number is 2.7 [39]. OH- and 

CrO4
2- are characterized by similar hydration numbers, but they differ in size and, especially, in 

charge number. Chromate anion seems to be capable of displacing not only two hydroxides but 

also other divalent anions present in the resin, e.g., more hydrated CO3
2- or SO4

2- (according to the 

manufacturer’s specification). The three dye anions are more hydrophobic than CrO4
2-, as 
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evidenced by their endothermic dilution (see Fig. S3 in Supporting Information). At the same time, 

they have greater molecular sizes; the monovalent MO- is the smallest among the three dye anions 

[40]. The maximum quantity of MO adsorption (i.e., 0.5 meq g-1) is much lower than the minimum 

AEC of the resin, which may be ascribed to its great size. If the two other organic solutes were 

fully ionized (i.e., OII2- and OG3-), their maximum adsorption values, on a per-equivalent basis, 

would be 0.9 and 1.9 meq g-1, respectively. This difference is not fully justified by the charge 

numbers of the two anions and it is at variance with the greater size of OG [40]. One explanation 

is that they adsorb as a mixture of anions of different valences. The results of 13C CP/MAS NMR 

study may shed more light on the nature of the adsorbing dye anions. 

Figure 2 shows NMR spectra recorded on resin samples saturated with MO, OII, and OG 

in comparison with those obtained with degassed Amberlite® IRN-78 and powdered dye samples. 

The complete assignments of the 13C NMR spectra is out of the scope of the present analysis, 

particularly since the existence of significant overlap of numerous peaks specific to the dye with 

those specific to the resin. For example, the peak centered at d 39.9 ppm in the NMR spectrum of 

MO (the carbon atoms of the terminal methylene groups [41]) overlaps with the corresponding 

peaks in the NMR spectrum of the resin (aliphatic carbons in the polystyrene-divinylbenzene 

backbone [42]), thereby changing its shape in the case of resin + MO system. Shoulders in some 

peaks characteristic of the resin point towards a partial overlap effect and suggest that the resin is 

the predominant component of the mixed system. In Fig. 2b, this case is exemplified by a small 

shoulder of the peak at d 126.6 ppm (aromatic carbons in the resin backbone [42]) generated 

through interference with the OII signal centered at d 120.6 ppm (carbon N°9 in the 2-

oxonaphthalene moiety [33]). Outside the overlap domains, the peaks specific to a given dye are 

small in line with the low dye content in the mixed system (below 15 wt%). Within the above-

mentioned interpretation limits, it can be concluded that no new dye-specific 13C signals appear in 

the NMR spectrum recorded on Amberlite® IRN-78 saturated with Methyl Orange. This means 

that the dye units preserve their molecular structure upon adsorption (see Fig. S1a in Supporting 

Information). On the contrary, the 13C signal centered at d 177.9 in the NMR spectrum recorded 

on the OII-resin sample disappears and a new signal appears at d 157.2 ppm. The former can be 

assigned to the carbon N°2 in the 2-oxonaphthalene moiety of Orange II [33] (marked with the red 

asterisk in Fig. S1b in Supporting Information). 
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Figure 2. 13C CP/MAS NMR spectra for washed and dried Amberlite® IRN-78 previously 
saturated with Methyl Orange (a), Orange II (b), or Orange G (c) from concentrated single-solute 

aqueous solutions at 298 K. The NMR spectra recorded on pure Amberlite® IRN-78 degassed 
overnight at 303 K and those obtained from untreated powdered dye samples are reported for 

comparison purposes. In the case of OII and OG, a horizontal arrow has been added to 
emphasize a partial transformation of the R-N-NH-R group into a negatively charged center 

upon adsorption (the asterisks refer to the red and green marks in Fig. S1). 
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It is the most deshielded nucleus mainly because of the existence of intramolecular 

hydrogen bond between the oxygen and hydrogen linked to the azo-nitrogen. When the hydrogen 

bond is broken due to the deprotonation of R-NH-N-R group in alkaline medium, the 13C signal of 

this carbon (marked with the green asterisk in Fig. S1b) should be shifted upfield. By analogy with 

the shielding of the 13C nucleus in nitromethane adsorbed on different oxide surfaces [43], the 

surprising intensity of the present effect (about 20 ppm) may be explained by the strength of acid-

base interactions underlying the adsorption of OII ions. Therefore, the appearance of the new 

resonance in the NMR spectrum of the resin + OII system provides a strong indication that the dye 

units are adsorbed onto Amberlite® IRN-78 as divalent anion, OII2-. Similar conclusions can be 

drawn from the transformation of the d 175.7 ppm signal into a new one centered at d 155.2 ppm 

in the solid-state CP/MAS 13C NMR spectrum of the resin + Orange G system: Orange G is 

adsorbed onto Amberlite® IRN-78 as trivalent anion, OG3-. However, a careful analysis of the 

NMR spectrum reveals that the signal at d 175.7 ppm does not disappear completely. Some 

residual peak still remains at this location indicating the simultaneous adsorption of OG2- anions. 

Finally, the trimethylammonium —CH2—N+(CH3)3 functional groups on the polystyrene-

divinylbenzene backbone of the resin likely interact with a mixture of OG3- and OG2- ions from 

aqueous solutions. This is because the equilibrium pH value of the resin suspension is too close to 

the second pKa (11.5) of OG in alkaline solutions to produce only OG3- species. 
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Figure 3. Cumulative enthalpy of displacement accompanying the adsorption of Methyl Orange 
(orange diamonds), Orange II (blue squares), Orange G (green circles), and chromate anions 
(yellow triangles) onto Amberlite® IRN-78 from single-solute aqueous solutions at 298 K. 

 

The analysis of Figure 3 allows gaining insight into the energy balance upon single-

component adsorption of three dye and chromate anions onto Amberlite® IRN-78 from single-

solute solutions. It is important to emphasize here that the enthalpy of displacement, , 

includes all thermal effects recorded upon ion exchange between the pristine OH- counter-ions and 

adsorbing anionic species: desorption and re-hydration of OH-, adsorption and partial dehydration 

of CrO4
2- and dye anions, changes in the hydration shell around the ionogenic groups in the resin 

structure, as well as thermodynamic consequences of constantly varying composition of the liquid 

phase as a function of the pH (e.g., shifts in OII-/OII2- and OG2-/OG3- equilibria). The last 

contribution is because the correction terms for dilution have been determined by diluting 

appropriate stock solutions in ultrapure water (see Fig. S3 in Supporting Information). 

In the case of Orange II, the displacement process is endothermic and, as such, entropy-

driven up to the adsorption plateau. On a qualitative level, this result obtained by direct calorimetry 
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is in accordance with the endothermic character of dye adsorption onto various anion-exchange 

resins, as inferred from the temperature dependence of the experimental adsorption isotherms [10-

14]. Nevertheless, the adsorption of two other dyes, as well as that of CrO4
2-, is systematically 

exothermic. 

It is difficult to explain such a fundamental difference in the displacement energetics 

between the two types of systems, since the adsorption isotherm for OII exhibits no particular 

behavior compared to the other solutes. To rule out an explanation based on the wrong estimation 

of the enthalpy correction term for dilution, a new dilution experiment was carried out by 

increasing the pH of both the OII stock solution in the syringe and the solution inside the measuring 

ampoule of the calorimeter (see Fig. S4 in Supporting Information). At pH 12, the OII2- anions 

should be the predominant species. Their dilution appears much less endothermic than that of OII- 

ions. Nevertheless, the enthalpy of dilution contributes to a disproportionately small extent by 

comparison with the enthalpy of displacement and the correction term for dilution is negligible in 

all cases (cf. Fig. S4 in Supporting Information). Another hypothesis can be forwarded on the basis 

of the endothermicity of OII-water interactions. If one considers that the presence of water 

molecules is limited chiefly to the vicinity of ionogenic sites (i.e., trimethylammonium groups) in 

the resin structure, the dye anionic species adsorbed on such positively charged centers are pushed 

to interact with the surface-bound water. This probably gives rise to an endothermic contribution 

to , which could be the greatest for OII. 

Since the enthalpy of displacement measured for the OII + Amberlite® IRN-78 system 

increases almost linearly with the amount adsorbed, the mechanism of dye retention by the resin 

likely follows only one pathway characterized by a constant molar enthalpy of 7.3 kJ mol-1. In the 

case of MO, OG, and chromate, the retention mechanism undergoes some changes because the 

enthalpy of displacement is a convex (downward) function of the quantity of solute adsorption. 

The initial slope of the plot of  vs. amount adsorbed corresponds to the following value 

of molar enthalpy: -16.0 kJ mol-1, MO; -29.7 kJ mol-1, OG; -16.4 kJ mol-1, CrO4
2-. On the other 

side, the ‘average’ mechanism may be described by the average value of molar enthalpy, which is 

as follows: -10.3 kJ mol-1, MO; -15.8 kJ mol-1, OG; -9.2 kJ mol-1, CrO4
2-. In both cases, the 

multivalent OG anions appear to have the highest binding affinity, on a per-mole basis, for the 

positively charged trimethylammonium centers in the resin structure. 
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Table 1. Results of desorption tests carried out with Amberlite® IRN-78 previously saturated 
with Orange-type dye or chromate anions from single-solute solutions at 298 K and put into 

contact with a 0.02 mol L-1 or 1 mol L-1 NaOH solution at different time intervals. The extent of 
desorption is presented as a percentage of the total amount adsorbed in the first adsorption cycle. 

 

Solute 0.02 mol L-1 NaOH 1 mol L-1 NaOH 

Time (h) 2 3 4 20 2 3 4 20 

MO 0.6% 0.7% 0.7% 0.5% 0.8% 0.8% 0.8% 0.8% 

OII 0.2% 0.1% < 0.1% 0% 0.1% 0.1% 0.1% 0.1% 

OG 0.7% 0.5% 0.4% ~ 0% 0.1% 0.1% 0.2% 0.2% 

Cr(VI) 5.4% 5.6% 5.9% 6.1% 100% 100% 100% 100% 

 

A subsequent desorption study was planned to verify the above findings through testing 

the thermodynamic reversibility of the anion exchange process. Changes in the UV-Vis absorbance 

of the supernatant solutions within the UV-Vis spectral range (examples corresponding to 

desorption by 0.02 mol L-1 NaOH solution are given in Fig. S5 in Supporting Information) 

illustrate the extent of solute desorption. The resulting percentages of desorption at different time 

intervals have been collected in Table 1. 

The efficiency of desorption by both NaOH solutions in removing dye species from the 

resin is very low because the percentage of dye removal is always below 1%. This points to the 

irreversible dye retention by Amberlite® IRN-78. Methyl Orange adsorbs irreversibly from single-

solute solutions to a smaller extent than the two other dyes do, especially in strongly alkaline 

solutions. It is worth noting here that, contrary to MO, the UV-Vis absorption spectra of OII and 

OG in the supernatant solutions (after desorption) change their shape compared to the 

corresponding spectra in ultrapure water. They resemble those recorded with alkaline solutions of 

OG and OII, as can be seen in Fig. 4. Since the pH of these supernatant solutions ranges between 

11 and 12, the comparison of UV-Vis spectra in Fig. 4 corroborates the conclusions drawn from 

the NMR studies of the resin samples saturated with the dyes. Depending on the actual pH value, 



  Chapter V: Single-component and competitive adsorption of Dyes and Cr(VI) onto strongly 
basic anion-exchange resin 

 

197 
 

Orange II and Orange G occur in alkaline solutions in the form of multivalent anions or as a 

mixture containing anions of different valences. Following the results in Table 1, the irreversibility 

of dye retention somewhat increases at more alkaline pH values. In conclusion, the sorption 

irreversibility concerns rather dye anions with an ionized R-NH-N-R group. When they become 

the only species present in strongly alkaline solutions (e.g., 1 mol L-1 NaOH), they compete 

efficiently against OH- for positively charged sites in the resin structure.  

About 6% of chromate anions are desorbed during the first 2 h of equilibration with the 

0.02 mol L-1 NaOH solution. Further prolonged contact appears rather inefficient. When the 

desorption is performed by using 1 mol L-1 NaOH solution, the removal of CrO4
2- from the resin 

is complete even after 15 min of equilibration. This indicates that hydroxide is a stronger 

competitor against chromate anion in highly concentrated OH- solutions. 
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Figure 4. Room temperature UV-Vis absorption spectra of MO(a), OII (b), and OG (c) in various 
aqueous solutions: single-solute solution in ultrapure water (dotted blue lines), NaOH alkaline 

solution (dashed rose lines), supernatant solution collected after desorption study of Amberlite® 
IRN-78 previously saturated with dye species and put into contact with a 0.02 mol L-1 NaOH 

solution during 2h (solid green lines). 
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3.2. Competitive adsorption of dye and chromate anions from bi-solute equimolar 

solutions 

When dye anions and CrO4
2- co-exist in multi-component solutions, the difference between 

their affinities for positively charged centers in the resin structure will certainly contribute to the 

complexity of anion exchange at the Solid-Liquid interface. For the purpose of the present work, 

the selective retention of organic and inorganic anions was studied from bi-solute solutions 

containing a given dye and CrO4
2-. The results of equilibrium adsorption and calorimetry 

measurements performed with such systems have been collected in Figures 5 and 6. In the case of 

MO and OII, the individual adsorption isotherms in the bi-solute systems do not differ greatly from 

the corresponding curves obtained with the single-component systems, which means that the 

presence of CrO4
2- in the aqueous phase does not have much impact on the adsorption of the dye 

component. On the contrary, the retention of CrO4
2- is decreased largely, especially for higher 

equilibrium concentrations. At low concentrations of the dye component in the equilibrium bulk 

solution, the two components strongly adsorb in equivalent amounts and this results in the vertical 

segments on both individual adsorption isotherms. Beyond this initial adsorption range, the 

quantity of dye adsorption reaches its equilibrium with the value of 0.5 mmol g-1. The amount of 

chromate becomes to decrease and it subsequently decays either to zero (MO + chromate) or to a 

very small value (OII + chromate). Therefore, the composite isotherms, obtained by adding the 

individual component contributions, also attain a maximum value close to 0.8 mmol g-1 at the end 

of the initial vertical portions.  
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Figure 5. Results of equilibrium adsorption measurements of the competitive adsorption between 
MO (a), OII (b), or OG (c) and CrO4

2- onto Amberlite® IRN-78 from bi-solute equimolar 
solutions at 298 K. The individual adsorption isotherms of the dye (orange (MO); blue (OII); 
green (OG) symbols) and chromate (yellow triangles), as well as the composite adsorption 

isotherms (crosses), are plotted against the equilibrium concentration of dye component. The 
dashed and solid lines represent the adsorption isotherms of the dye and inorganic ion, 

respectively, as determined in the separate single-solute systems (as a function of the equilibrium 
concentration of the corresponding solute). 
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In the OG + chromate system, the individual adsorption curves still possess initial vertical 

portions, where the adsorption of both solute occurs in equimolar proportion. Then, the isotherms 

undergo some changes in comparison with those determined for the other dyes. The quantity of 

OG adsorption increases to a plateau adsorption value of about 0.5 mmol g-1, which is smaller than 

the ‘saturation’ value (i.e., 0.63 mmol g-1) obtained in the single-solute system. The amount of 

CrO4
2- retained by Amberlite® IRN-78 from bi-solute solutions firstly increases to 0.45 mmol g-1 

and then it decreases to about 0.34 mmol g-1, which represents 38% of its maximum adsorption in 

the single-solute system. Finally, the maximum composite adsorption oscillates around 0.9 mmol 

g-1 over the interval of moderate and high equilibrium concentrations. 

In order to confirm the mechanism of anion exchange between hydroxides and the 

adsorbing species of both types, it is important to mention that the pH of the resin suspension for 

points in the adsorption plateau region increases from about 10 (after the first few minutes of solid-

liquid contact) to an equilibrium value depending on the dye type: pH 11, MO; pH 11.2, OII; pH 

11.4, OG. By analogy with the case of single-component adsorption, this indicates the possibility 

of OII2- formation, though the existence of OG3- anions is rather to be excluded. All this points to 

the conclusion that the competitive adsorption of dye and inorganic anions is again limited by the 

anion exchange capacity of Amberlite® IRN-78. 

The energetic aspects of the anion exchange process in the bi-solute systems may be 

quantified by monitoring variations of the cumulative enthalpy of displacement. In Figure 6, the 

 values are plotted as a function of the composite dye + chromate adsorption only 

throughout the vertical portion of the adsorption isotherm. The processing of the calorimetric data 

obtained with the bi-solute systems is quite straightforward in this particular adsorption range. 

Since the two solutes seem to be retained in equimolar amounts, their proportion in the equilibrium 

bulk solution within the calorimetric ampoule remains unchanged. Therefore, the results of 

dilution experiments carried out with the bi-solute equimolar solutions can be directly used to 

evaluate the dilution correction term. The thermal effects of dilution are presented in Fig. S6 in 

Supporting Information. The dilution of bi-solute equimolar solutions in ultrapure water is much 

less endothermic in comparison with that of single-solute dye solutions (see Fig. S3 in Supporting 

Information) because of the exothermic contribution provided by CrO4
2-.  
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Figure 6. Cumulative enthalpy of displacement accompanying the competitive adsorption of MO 
(orange diamonds), OII (blue squares), OG (green circles) and, CrO4

2- anions, onto Amberlite® 
IRN-78 from equimolar bi-solute aqueous solutions at 298 K. 

 

The displacement process in the bi-solute systems is exothermic, even in the case of Orange 

II. For MO and OII, the enthalpy curves look very similar to each other. They represent convex 

(downward) functions of the quantity of composite adsorption: in the second half of the adsorption 

range, the overall process becomes almost athermal. In the OG + chromate system, the  

values decrease monotonously up to the end. The initial slopes of the plots of  vs. amount 

adsorbed are as follows: -15.4 kJ mol-1, MO; -17.6 kJ mol-1, OII; -23.1 kJ mol-1, OG. With the only 

exception of the OG + chromate system, these molar enthalpies correspond well to the arithmetic 

mean of the individual solute contributions as measured in appropriate single-solute systems. 

Firstly, this means that the two components are retained in a quite independent manner. Secondly, 

this is an extra argument for dominance of the OG2- species within this initial adsorption range, as 

the pH of the resin suspension is probably not sufficiently alkaline to generate OG3- anions. From 

the viewpoint of enthalpy, the displacement process accompanying the competitive interactions 

between Orange II and CrO4
2- is dominated by the exothermic contribution made by the inorganic 

anion. 
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The comparison of apparent affinities between dye and inorganic anions for positively 

charged centers in the resin structure may be also based on the selectivity tests in which the resin 

samples pre-saturated with one component have been equilibrated with a concentrated solution of 

the other. It is important to note that the selected solute concentrations are capable of saturating 

the resin sites with the oncoming solute in the appropriate single-solute system. Table 2 shows the 

results, which include the amount of the oncoming species retained by the resin, the quantity of 

the initially retained solute remaining in the resin after the attainment of a new sorption equilibrium 

(compared to the saturation value), and the sum of individual component contributions. When the 

resin is pre-saturated with a given dye (Table A), the oncoming CrO4
2- may be still adsorbed 

without displacing many dye units. In consequence, the maximum quantity of adsorption being a 

sum of individual solute contributions can be even doubled like in the case of Methyl Orange. This 

means that the dye retention by Amberlite® IRN-78 does not saturate all available positive centers 

in the resin structure. 

 

Table 2. Results of selectivity tests of solute retention by Amberlite® IRN-78: (A) the resin 
sample pre-saturated with a dye and subsequently equilibrated with a concentrated CrO4

2- 
solution, (B) the resin sample pre-saturated with CrO4

2- and subsequently equilibrated with a 
concentrated dye solution. The values are reported in mmol g-1 

 
Table A 

Dye used to pre-recover MO OII OG 
Reference value: initial individual adsorption i.e. saturation plateau 
reached during the pre-recovering process of dye (MO, OII or OG) 

0.47 0.47 0.63 

Cr amount adsorbed onto recovered with dye resin 0.59 0.38 0.15 
Dye amount remaining in the dye-resin after dye adsorption 0.49 0.46 0.63 

Sum of the two species contained in the resin after the second adsorption 
step (Cr secondary adsorbed together with not removed dye) 

1.04 0.84 0.77 

 
Table B 

Dye to be adsorbed MO OII OG 
Reference value: initial individual adsorption i.e. saturation plateau 

reached during the pre-recovering process with Cr 
0.82  

Dye amount adsorbed onto recovered with Cr resin 0.28 0.19 0.36 
Cr amount remaining in the Cr-resin after dye adsorption 0.79 0.79 0.61 

Sum of the two species contained in the resin after the second adsorption 
step (dye secondary adsorbed together not removed Cr) 

1.07 0.98 0.96 
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Simultaneously, the conclusion of irreversible dye uptake, forwarded in the previous 

paragraph, finds again its confirmation. The capacity of individual chromate adsorption onto 

Amberlite® IRN-78 pre-saturated with a dye increases in the order: resin + MO > resin + OII > 

resin + OG. 

When the resin sample is pre-saturated with CrO4
2- and subsequently equilibrated with a 

concentrated solution of MO or OII, about 2% of the initial adsorbate (chromate anion) is desorbed 

from the interfacial region (Table B). In the case of oncoming OG species, the chromate desorption 

attains 25% of its initial adsorption value. The amount of dye retained by the resin is as follows: 

0.2 mmol g-1, OII; 0.3 mmol g-1, MO; 0.4 mmol g-1, OG. This is consistent with the high affinity 

of OG anions for the exchangeable resin sites. Surprisingly, the OII adsorption is smaller than that 

of MO. Nevertheless, it should be noted that the pH of the resin suspension is rather close to neutral 

because the alkaline supernatant solution in equilibrium with the chromate-resin sample is replaced 

by a new dye-solution in ultrapure water. Therefore, the divalent OII2- ion cannot be formed in the 

aqueous phase. At equal charges, the more hydrophobic and smallest MO- anion is preferentially 

adsorbed against OII- by Amberlite® IRN-78 which likely explains the above results. Again, the 

sum of the individual solute contributions is greater than the initial CrO4
2- adsorption. 

 

 

4. Conclusions 

Strongly basic anion-exchange resin Amberlite® IRN-78 has proven its usefulness in 

removing Orange-type anionic dyes from aqueous streams. The overall performance of the 

removal process depends on the composition of the aqueous phase and it is guided by the anion 

exchange capacity (AEC) of the resin. When the resin is in the hydroxide ion form, the adsorption 

follows the pathway of anion exchange between the pristine OH- ions and the oncoming anionic 

species. This anion exchange makes the supernatant solution more alkaline, which, in some cases, 

may give rise to new dye species with an additionally ionized R-N-NH-R moiety, e.g., OII2- or 

even OG3-. From the viewpoint of thermodynamics, the constantly changing composition of the 

aqueous phase and the diversity of dye anionic forms co-existing in the supernatant present a 

challenge for simultaneous adsorption and calorimetry studies. 
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In the single-solute systems, the retention capacity of the resin towards various anionic 

solutes, on a per-mole basis, decreased in the following order: CrO4
2- > OG > OII ≈ MO. The 

overall enthalpy effect of displacement was either exothermic (CrO4
2-, OG, MO) or endothermic 

(OII). The retention of dyes was irreversible even in strongly alkaline media contrary to CrO4
2-, 

which was completely desorbed from the resin by a 1 mol L-1 NaOH solution. The competition 

between dye and chromate anions from their equimolar solutions mainly caused a marked decrease 

in the uptake of CrO4
2-, thereby pointing to preferential dye retention by Amberlite® IRN-78. 

Similar conclusion was drawn from the selectivity tests in which the resin samples pre-saturated 

with a dye or CrO4
2- were equilibrated with a concentrated solution of the other solute. Orange G 

had the highest interaction affinity for positively charged trimethylammonium centers in the resin 

structure, irrespective of the composition of aqueous solution. 
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SUPPORTING INFORMATION 

 

Figure S1. Orange-type dyestuff structures studied in the present work, represented in partially 
dehydrated (sulfonic group) hydrazone form: (a) Methyl Orange, (b) Orange II, (c) Orange G. 
The deprotonation pathway for R-N-NH-R group in the hydrazone structures of Orange II and 
Orange G leading to an additional negatively charged center in alkaline solutions is also shown 
schematically. The carbon atom within the 2-oxonaphthalene moiety bonded with oxygen has 
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been labelled with red (in the protonated forms) or green (in the deprotonated forms) asterisks to 
further assist the analysis of 13C CP/MAS NMR spectra in Fig. 2.  

 

 

Figure S 2. Images of Amberlite® IRN-78 beads saturated with Methyl Orange, Orange II, and 
Orange G dyes from concentrated single-solute solutions. The resin beads have collected after 

wash at the bottom of Nalgene® tubes. 
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Figure S 3. Variations of the cumulative enthalpy of dilution at 298 K for single-solute solutions 
in ultrapure water containing: Methyl Orange (gray diamonds), Orange II (black stars), Orange G 

(gray triangles), or chromate anions (black circles) as a function of the equilibrium solute 
concentration (inside the calorimetric ampoule). The dilution experiments were carried out under 
the same experimental conditions as those employed in the adsorption runs but without putting a 
resin sample into the measuring ampoule. The scale of the vertical (enthalpy) axis is different in 

the upper and lower panel.  
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Figure S 4. Effect of pH on the cumulative enthalpy of dilution (upper panel) and cumulative 
enthalpy of displacement (lower panel) for Orange II dissolved in ultrapure water (solid stars) 
and an aqueous NaOH solution (pH 12) at 298 K. The dilution experiments were carried out 
under the same experimental conditions as those employed in the adsorption runs but without 

putting a resin sample into the measuring ampoule (injection volume: 10 µL, injection speed: 10 
s, agitation speed: 90 tpm, equilibration time between two successive injections: 30 min). In all 

cases, the dye concentration was 8 mmol L-1. 
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Figure S 5. Room temperature UV-Vis absorption spectra recorded in supernatant solutions 
collected after desorption study of Amberlite® IRN-78 previously saturated with CrO4

2- (a), 
Methyl Orange (b), Orange II (c), or Orange G (d) and put into contact with a 0.02 mol L-1 

NaOH solution at different time intervals (2, 3, 4, and 20 h). 
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Figure S 6. Variations of the cumulative enthalpy of dilution at 298 K for two-solute equimolar 
solutions in ultrapure water containing: Methyl Orange + CrO4

2- (gray diamonds), Orange II + 
CrO4

2- (black stars), or Orange G + CrO4
2- (gray triangles), as a function of the equilibrium dye 

concentration (inside the calorimetric ampoule). 
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CONCLUSIONS 

 

In this chapter, we discussed the results obtained for the adsorption of Orange-type dyes 

and oxyanion Cr(VI) onto anion-exchange resin - Amberlite® IRN-78 from single-component as 

well as multi-component systems. This study has enabled not only the understanding but also has 

emphasized the importance of pH on the sorption processes. Adsorbed dyes can be easily 

deprotonated at higher pH with the formation of new species with higher charges.  

Detail mechanisms of Methyl Orange, Orange II and Orange G removal on Amberlite® 

were discussed and we demonstrated that the 13C CP/MAS NMR analysis has enabled the 

understanding of the nature of the charged species adsorbed in the resins matrix. The retention 

capacity of the resin towards various anionic solutes, decreased in the following order: CrO4
2- > 

OG > OII ≈ OM. Desorption studies using both 0.02 and 1M NaOH demonstrated the low 

desorption properties of these dyes from the solid.  

The second study was based on the multi-component adsorption from bi-solute solutions 

of dye and inorganic competing species – chromates. It was quiet interesting to find out that the 

amount adsorbed of MO and OII is not influenced by the presence of chromate ions. However, the 

amount of OG adsorbed was decreased to some extent in presence of Cr(VI). Concerning the 

adsorption of the inorganic anion, its adsorption was negatively influenced by the presence of the 

dyes to a higher extent in presence of MO and OII and to a lower extent in presence of OG. The 

selectivity tests confirm the higher affinity of the organic dyes with the anion-exchange resins than 

those of inorganic ion.  Therefore, the resin was firstly saturated with one of the adsorbing species 

and the later was put in contact with another competing specie. Hence, chromate ions were able to 

desorb from the resins by the presence of the dye. On the contrary, the dyes cannot be desorbed in 

the presence of chromate ions. These results confirm the higher affinity of the resins for the dyes 

and not for chromates. 
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CONCLUSIONS AND PERSPECTIVES 

 

The nature of the interactions between competing species within the bulk of the solution as 

well as at the solid-liquid interface during the adsorption process from the multi-component 

solutions are the two main factors governing the sorption selectivity of the sorbent material. The 

understanding of the nature of these interactions is primordial. Therefore, the aim of the present 

work was to investigate such interactions together with the sorption properties of various model 

materials. A few reference materials with good adsorption properties in regarding the removal of 

some selected pollutants were chosen for the study of the mechanism of sorption of organic dyes 

as well as the nature of interactions involved in the sorption process. Multi-component adsorption 

between organic and inorganic species onto the selected adsorbent was subsequently investigated 

in new of potential applications in the solid structure in the Environmental Remediation.  

First year of this thesis was devoted to the work with the famous photocatalysis - titanium 

oxide nanoparticles. The aim was to approve the photocatalytic performance of this material 

towards degradation of organic dye Rhodamine 6G. The results of this dye adsorption from 

phosphates buffer solution showed that phosphates have the high affinity to TiO2 surface, therefore 

inhibit the dye adsorption. Even if we could not investigated more studies on this solid-reference, 

however, it shows the importance of adsorbent-adsorbate interactions imply during sorption 

process. 

Second investigated model is the anionic clay also known as Layered Double Hydroxide 

(LDH) was chosen due to its interesting chemical and physical properties. The principal advantage 

of such type of material is that it can attract various negatively charged organic and inorganic 

contaminants, which makes it a perfect candidate for the study of the competitive adsorption. The 

first parts of the present study was made on an Mg-Al-LDH sample containing nitrate species as 

the pristine compensating anions (Chapters II-III). Nitrates ions as compensating anions were 

chosen due to its good exchange property. The X-ray diffraction technique was used to monitor 

the changes in the solid structure upon adsorption of pollutants shed more light on the mechanism 

of adsorption. Three Orange-type dyes, Methyl Orange, Orange II and Orange G, were chosen to 
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investigate the adsorption mechanism onto Mg-Al-LDH-NO3. For the three dyes, the kinetics of 

adsorption was fast, between 60 and 100 min, and the process followed a pseudo-second order 

model. It should be mentioned here that the three chosen dyes differ in terms of molecular sizes, 

electrical charges and hydrophobic/hydrophilic properties. Hence, it was interesting to observe the 

hydrophobicity of the molecules was the principal factor governing the dye adsorption onto LDH 

against electric charge of the anion. This conclusion was at variance with the importance of the 

charge effect in the adsorption of inorganic anions. Such a conclusion was drawn up from the 

comparison of the results obtained with Methyl Orange and Orange G. Here MO anions, was being 

more hydrophobic was adsorbed to a greater extent onto LDH. The adsorption mechanism for MO 

occurred via two processes, an anion exchange and an adsorption on the external surface of the 

LDH. Subsequently, MO adsorbed in quantities greater that the AEC of adsorbent. On the contrary, 

the less hydrophobic and bi-charged OG was adsorbed to a much lower extent onto the same 

adsorbent. In addition, the analysis of co-adsorption of Na+ counter-ion showed that, in the region 

of small adsorption quantities OG used its two negative charges; in the range of higher adsorption 

values co-adsorption of sodium occured in order to neutralize one of the negatives charges bearing 

by dye anion. However, the third dye molecule (Orange II) had also its particularity in regard with 

the retention mechanism. Isothermal Titration Calorimetry was a very powerful tool in elucidating 

this complex mechanism and understanding the specific interactions between OII and Mg-Al-

LDH, as well as the nature of the OII sorption mechanism on this solid. It was found that OII was 

partially intercalated into the LDH interlayer space, followed by the complexation or aggregation 

of OII units by Mg and Al ions, present in the supernatant due to the partial dissolution of the 

LDH. In addition, X-ray diffraction patterns of the dye-loaded samples showed that co-adsorption 

of carbonates, provided from air occurred simultaneously with the dye adsorption. In consequence, 

the complexity of adsorption mechanisms, which involved several species that could compete with 

one another for the active sites present in the LDH, was elucidated in Chapter II.  

Chapter III reports the multi-component adsorption between the Orange-type dyes and 

some inorganic anions onto Mg-Al-LDH. The bi-solute component systems were investigated for 

the three dyes already mentioned earlier and various inorganic anions (sulfates, chromates, 

phosphates and carbonates) presented in different molar ratios. Moreover, the quantity of 

adsorption was calculated for the dyes and such inorganic ions as sulfates, chromates and 

phosphates. Therefore, it was possible to evaluate the influence of the presence of both competing 
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anions on each other. The variations of the total amount of adsorption were evaluated by the sum 

of the individual quantities of adsorption, thereby producing the so-called composite isotherms. 

This complex study allowed the classification systems studied with respect to the shape of their 

adsorption curves determined in the multi-component systems. Three main types were described. 

When the reduction in the adsorption extent concerned mainly only the one of solutes, Type 1 and 

Type 3 isotherms were obtained. When this reduction observed for the both solutes, a Type 2 

isotherm was recorded. For inorganic anions, the order of decreasing effectiveness of the inorganic 

anion in reducing the retention capacity of Mg-Al-LDH-NO3 towards a given dye, on a per-

equivalent basis, was as follows: CO3
2- >> HPO4

2- > SO4
2- ≈ CrO4

2-, Methyl Orange; HPO4
2- ≈ 

CO3
2- > CrO4

2- > SO4
2-, Orange II; HPO4

2- ≈ SO4
2- > CO3

2-- ≈ CrO4
2-, Orange G. The presence of 

phosphates and carbonates had a negative impact on the dye adsorption. These inorganic ions 

decreased the adsorption of MO and OII onto LDH. In the case of OG, only the presence of sulfates 

had also a negative impact. The presence of sulfates and chromates did not affected the MO 

adsorption. This could be assigned to the highly hydrophobic nature of the dye. Indeed, the latter 

was able to exceed the AEC value of LDH both in the single- and bi-solute systems. Concerning 

the two other dyes, i.e., OII and OG, it was surprising to learn that the phosphate ions had a more 

negative impact on the dye uptake against carbonates. The plausible explanation was that the effect 

was due to the change in pH and the charge of the competing inorganic species in the bulk solution.  

Chapter IV was dedicated to the study of the single-solute and the multi-solute adsorption 

onto Mg-Al LDH containing chloride anions compensate for the positive interlayer charge. It was 

demonstrated that, for the three dyes studied, the mechanism of uptake was analogous to the Mg-

Al-LDH-NO3. The same trend in dye adsorption was observed, concerning the quantity of 

adsorption decreasing in the order: MO > OII > OG. This was in good agreement with what has 

been observed in the literature concerning the affinity of the interlayer anion. It was found that the 

interlayer chloride anions were strongly bound to the layers, more than the nitrate anions were. 

Hence, the amounts of MO and OG were smaller than those obtained onto Mg-Al-LDH-NO3, at 

variance with the result obtained with OII, whose amount adsorbed had not changed. Moreover, 

the amount of OG adsorbed was too small. Thus was confirmed, by using HPLC and XRD 

techniques, that this dye was not capable for replacing the chloride anions within the LDH 

structure. Subsequently, this study allowed of decreasing a new order of adsorption capacity to be 

established as follows: MO > OII > Cl > OG > NO3.  
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The last Chapter V of the present manuscript was devoted to the single-component and the 

competitive adsorption of dyes and Cr(VI) anions onto last solid-reference used in this work, 

synthetic organic exchanger Amberlite® IRN-78. This adsorbent is interesting, because of the 

different factors: it is commercially available, often uses as synthetic organic model for anion 

exchange and because it can adsorb different organic and inorganic ions. 

 In this part, the importance of the pH of solid suspension was underlined, because of the 

strongly basic character of Amberlite® IRN-78. The pH was measured before the adsorption 

process and at equilibrium in order to obtain valuable information regarding the charge of the 

species adsorbing initially present in the solution at the solid-liquid interface as function of time. 

We demonstrated therein that the adsorption of dyes could depend on the nature of the adsorbent. 

Dye adsorption onto a strongly basic resin such as Amberlite® IRN-78 followed the pathway of an 

anion exchange between the pristine OH- ions and the oncoming anionic species. Consequently, 

the exchanged OH- ions increased the pH of the bulk solution and could therefore additionally 

deprotonate the dye species into anions with a higher valency. The retention capacity of the resin 

from the single-solute solution towards various anionic solutes, on a per-mole basis, decreased in 

the following order: CrO4
2- > OG > OII ≈ OM. The appropriate ITC experiments showed that the 

overall enthalpy effect of displacement was either exothermic (CrO4
2-, OG, OM) or endothermic 

(OII). The competition between dye and chromate anions from their equimolar bi-solute solutions 

mainly caused a marked decrease in the uptake of CrO4
2-, thereby pointing to the preferential dye 

retention by Amberlite® IRN-78. Moreover, higher affinity of the dye units towards the anion-

exchange resin was confirmed by the reversibility and selectivity tests. The bi-solute MO + Cr(VI) 

and OII + Cr(VI) systems could be ascribed to the Type I isotherm, that containing OG + Cr(VI) 

to the Type II isotherm. According to the classification established and discussed previously in 

Chapter II.  

Another intention of the present work was to propose the procedures for sorbent materials 

efficient in retaining pollutant compounds from the multi-component aqueous streams. Such 

studies will provide important information about the use of the selected sorbents in real wastewater 

systems. In this context, the following perspectives can be envisaged: 

- It is necessary to determine the charge of the inorganic and even organic species inside the 

LDH interlayer. The combination of such techniques as IR, NMR, and Raman spectroscopy 

can potentially provide answers to the questions.  
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- There is a large variety of competing species in the wastewater system, which can compete 

with each another for the interlayer space and thus may be tested in regards with the 

competitive adsorption. These compounds include such toxic oxyanions as arsenate, vanadate, 

bromate, etc.  

 
- The study of the co-adsorption of sodium accompanying MO and OG has opened a new 

perspective leading to establish the total balance of exchanging species other positively charges 

compounds uptake, e.g., heavy metals potentially presented in the mills.  
 

- Some complementary information about the kinetics of adsorption for each of the competing 

species in the multi-component systems can be useful to explain the mechanism of competitive 

adsorption. 

 
- The recently reported information about the temperature of wastewater streams coming from 

the textile industry (i.e., around 40° C) the necessity indicates the importance of carrying out 

the adsorption studies at different temperatures. The competitive adsorption of pollutants onto 

LDH may follow a somewhat different mechanism at higher temperature. 

 
- Another important perspective will be to investigate new adsorbents, new dye-containing 

systems, other inorganic species, which will contribute to better understand the competitive 
interaction involved in interfacial phenomena. 
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APPENDIX I 

 

This Appendix presents the work investigated onto TiO2 nanoparticles, which was chosen 

as potential adsorbent for the study of the simple as well as the multi-component adsorption in the 

beginning of this thesis. Titanium oxide is a material of paramount technological importance that 

have shown great potential as ideal and powerful photocatalysts for water decontamination. In 

numerous studies of photocatalytic degradation of organic pollutants, the main emphasis is usually 

placed on the modification and fine-tuning of the catalyst surface properties to improve their 

photocatalytic efficiency under UV or Visible radiation. Much less attention is paid to the pollutant 

adsorption stage, which is a pre-requisite for the ultimate photocatalytic reactions. Such 

characteristics of the adsorbed pollutant species as the strength and reversibility of their adsorption 

on the catalyst surface or their orientation and concentration within the interfacial region may 

certainly affect the performance of the photocatalytic process. Moreover, the use of this 

photocatalysis in the polluted water streams implies the knowledge of an adsorbent’s behaviour in 

the real wastewaters conditions. There is thus an urgent need for systematic studies of the 

underlying adsorption mechanisms and the test of this material for performance in the multi-

component solutions. 

Adsorption of dye reference – Rhodamine 6G was investigated onto different 

nanomorphologies: nanotubes, nanofibers and nanopowders of TiO2 with aim to study the 

influence of structure on the adsorbing properties. Even if this adsorbent could not be used for the 

investigation of the multi-component adsorption (Rhodamine 6G dye adsorbs to a very small 

extent) however it was possible to evidence a competition between the organic dyes and inorganic 

ions (phosphate buffer, added for pH stabilization). Hence, phosphate buffer was considered as 

important competing species, because of their good affinity onto TiO2. This study demonstrate the 

importance of the competitive adsorption study with aim to better understand adsorbing properties 

of used adsorbent especially in the real wastewater systems.  

 



 Appendices 
 

243 
 

 

Adsorption process of Rhodamine 6G on 

TiO2 particles and the influence of competitive 

species from buffer solutions 

 
Ganna DARMOGRAI1, Monika KUS2, Vera MEYNEN2, Sara CAVALIERE1, Gaelle 

MARTIN-GASSIN1, Jerzy ZAJAC1, Benedicte PRELOT*1 

 
1Institut Charles Gerhardt, UMR-5253 CNRS-UM-ENSCM, C.C. 1502, 

 Place Eugène Bataillon, F-34095 Montpellier cedex 5, FRANCE 

 Phone: +33 4 67 14 33 05; E-mail : benedicte.prelot@um2.fr  
2Laboratory of Adsorption and Catalysis, Department of Chemistry, University of 

Antwerpen, Campus Drie Eiken, Universiteitsplein 1, B-2610 Wilrijk, BELGIUM 

 

Keywords: titanium oxides, titanate, Rhodamine 6G, adsorption, competition, phosphate 

buffer. 

 

ABSTRACT:  

Because of their numerous applications, mainly in the field of photocatalysis, the surface 

behaviour of titanium dioxides is an important issue to be addressed in order to better understand 

the mechanisms and optimize their performance in specific applications. Various materials were 

chosen from commercial suppliers, or synthesized specially for this study, to obtain series of solids 

with various properties (structure, texture, morphology, surface reactivity…): nanopowder P25 

Degussa and commercial anatase; nanofibers, synthesized by using electrospinning technique; 

trititanate nanotubes and mixed-phase anatase/trititanate, which were prepared using a 

hydrothermal approach. The adsorption of Rhodamine 6G onto these materials was studied from 

aqueous solution in different conditions, at natural pH and from phosphate buffer 0.1M at two 

different pHs: 6 and 8. The adsorption capacities were obviously dependent of the type of particles 

and the nature and pH of the solutions. In all conditions, the anatase and the ES nanofibers had the 

lowest and the highest adsorption capacity respectively. In phosphate buffers at pH 8, the 
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adsorption capacity was higher than at pH 6, due to the negative surface charge. This influence 

was rather small in the case of anatase, which exhibits huge phosphate adsorption. This 

demonstrates the competition between anionic species, and its consequence on the affinity for 

Rhodamine 6G in the presence of phosphates. At pH6 in water and in phosphate buffer, the 

adsorption capacity was also reduced, due to a combined effect of surface charge increase, in 

addition with the adsorption of competing ions.  

 

 

INTRODUCTION 

In recent years, titanium dioxide has attracted much attention for the treatment of dye-

containing wastewater. Because of their powerful oxidation strength, high chemical and photo-

stability in water, nontoxicity, low cost, and insolubility in water under most environmental 

conditions, they have shown great potential as ideal and powerful photocatalysts [1, 2]. The 

optimization of catalysts performance is based on the understanding of the main driving forces and 

mechanisms for their oxidative removal [3], and especially the selectivity of adsorbent that can be 

affected by many factors such as properties of the reactant (size, polarity, structure, etc.), surface 

charging, solvent, surface atomic structure. Numerous studies have been carried out to better 

explain TiO2 surface chemistry and especially at the solid-liquid interface [4]. Because most 

organic pollutants have weak adsorption on the TiO2 particles, surface treatment or textural 

modification could enhance the adsorption capacity and potentially their photocatalytic properties 

when they are used in degradation process [5-8]. In various shapes/morphologies, such as 

nanoparticles, tubes, wires, fibres etc…, nanomaterials show a better performance in 

environmental remediation than other conventional techniques because of their high surface-to-

volume ratio [9] especially when using innovative synthesis for original one-dimensional (1D) 

electrospun nanostructured materials [10, 11] or tubes such as titanate nanotubes [12].  

The best approach to express adsorption performance of materials does not reach a 

consensus, since for some photocatalytic studies, the sorption properties can be expressed %, 

mol/g, and then correlated with particle size [13] or directly to specific surface area [5]. It is 

obvious that accurate information are obtained when working in mol m-2, and taking into account 

the detailed analysis of the isotherm, its shape, including the idea of considering the possible 
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multilayer adsorption or the strength of the adsorption [14]. In addition, the morphology and the 

crystallinity of particles play crucial roles on surface reactivity. Indeed, various acidic character 

and location of polar sites on the TiO2 surface [15] or differences in proton affinity distributions 

(PADs) and the strength (pK position) of various local domains of proton adsorption [16] have 

been observed on anatase with various shapes and exposed surfaces. The complexity of the liquid-

solid interface implies to consider more variables in comparison to the gas-solid system, with 

parameters such as the surface site, preparation procedures, and concentration of the particles, the 

pH of the solution and its effect on the surface structure, the concentration of the reactants, … [1]. 

These include also the control of the surface charge by adjusting the pH, anchoring specific 

molecules to the surface for the selective adsorption of reactants [6, 17] and even some times the 

idea of the competitive solute solvent adsorption [18].  

Competitive adsorption onto TiO2 surfaces is studied in different manners. Yang and Davis 

[19] reported Cu(II) and EDTA adsorption from single and bi-component systems onto P25 TiO2 

sample. They have shown that the behaviour in single component system was strongly modified 

when ionic and cationic species were mixed, with the occurrence of ligand bridged ternary 

complexes. In the case of glutamate and lysine molecules in the presence of Ca2+, Lee et al. [20] 

have evidenced cooperative, or competitive, effects, depending on the modification of surface 

charge after adsorption of Ca2+, inducing attraction or repulsion of the organic species to be the 

adsorbed. Weng et al [21] have shown that in the presence of humic (HA) or fulvic (FA) acids 

together with phosphate, the sorption on goethite FeOOH exhibits much stronger competition 

effects of FA in comparison with HA, in relation with the difference in the spatial distribution 

more or less clos to the oxide surface. In some cases, when the sorption is performed in buffers 

[22], the sorption of humic acids (HA) in phosphate buffer may be reduced, not only due to the 

effect of pH or ionic strength, but phosphate might compete with HA on the surface of adsorbent, 

or may interact with the HA in the solution and affecting HA adsorption. 

To evidence the influence of competitive effect in particular in presence of phosphate, 

adsorption of Rhodamine 6G, a cationic orange-fluorescent dye often used in degradation tests 

was extensively studied in different conditions (in water or in buffer, at various pHs), in order to 

establish the influence of physicochemical conditions. Different types of Titanium based 

nanomaterials, nanopowder (P25, Anatase Commercial), nanofibres and nanotubes in two forms 

calcined and not calcined, denoted TNT-C and TNT-NC, respectively, were chosen as adsorbent 
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for the organic dye Rhodamine 6G. Nanotubes and nanofibers samples were prepared using a 

hydrothermal chemical route and electrospinning method, respectively. As reference, commercial 

P25 and Anatase commercial Nanopowder were used. In the end, the sorption properties were 

correlated with the competitive character of the mechanism on the surface active sites. 

 

 

1. EXPERIMENTAL SECTION 

1.1 Materials and syntheses of adsorbents / photocatalysts 

The dye Rhodamine 6G was purchased from E. Merck India. The formula is shown on the 

Figure 1 and was labelled Rh6G. Commercial TiO2 nanopowder P25 was obtained from Degussa 

AG and Titanium (IV) oxide, Anatase from Aldrich. They were used as received. The phosphate 

buffers and all solutions of Rh6G were prepared in ultrapure water (resistivity of 18.2 MW) 

produced by using an Elga LabWater Model PL 5241 system. Nanofibers and nanotubes were 

prepared using the conditions described in the following.  

 

Figure 1 Molecular structure of Rhodamine 6G 

 

Electro-spun ES nanofibers 

For the synthesis of TiO2 ES nanofibers, a procedure similar to that in [23] was followed. 

A carrier polymer solution made of 230 mg of polyvinyl pyrrolidone (PVP, Mw ~1,300,000, 

Aldrich) in 3.3 mL of absolute ethanol (puriss., Sigma-Aldrich) was added to a precursor solution 

made of 0.52 mL of titanium(IV) isopropoxide (97 %, Aldrich, stored in a glove box) and 1 mL of 

acetic acid (Sigma-Aldrich). The solutions were degassed by ultrasonication for 15 min, mixed 

together, stirred for 1 hour and loaded into the syringe. Electrospinning of the final solution was 
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carried out in air at room temperature with a standard syringe and a grounded collector plate 

configuration with the following conditions: distance between the needle tip and the collector plate 

of 10 cm, applied voltage of 15 kV and flow rate of 0.5 mL h-1. The as-prepared fibres were 

calcined in air at 500 °C at a heating rate of 5 °C min-1 for 6 hours in order to decompose and 

remove PVP and obtain pure inorganic fibres. 

 

Nanotubes 

For preparation of tubes 4.5 g of TiO2 (Sigma Aldrich) was dispersed into 80 ml of 10 M 

NaOH (Acros Organics) and stirred for 1 hour. Further, the mixture was transferred to an autoclave 

and kept in an oven at 150˚C for 48 hours. The obtained solid was recovered by centrifugation and 

further washed with distilled water, which resulted in sodium trititanate nanotubes. Afterwards, 

the sample was ion-exchanged by stirring the obtained material for 30 min in 480 ml of 0.1 M 

solution of HCl at room temperature. The sample was recovered by centrifugation and further 

washed three times with water and two times with ethanol. Finally, the washed sample was dried 

at 100˚C for 3 days. The as-obtained samples are denoted as TNT NC. Some of the material was 

calcined in order to change the content of anatase in the sample (re-crystallization while 

maintaining morphology) according to the following procedure 1 °C min-1 to 350°C for a duration 

of 6 hours in ambient atmosphere followed by stepwise cooling. The obtained calcined material is 

denoted as TNT C. 

1.2  Characterization of the solid materials  

The specific surface areas SBET (m2 g-1) were deduced from nitrogen adsorption at -196°C 

using a Micromeritics ASAP2020 and calculated with the Brunauer-Emmet-Teller BET method. 

The samples were previously outgassed at 200°C for 16 h under a residual pressure of 10-2 Pa. The 

crystal phase of the titanium nanoparticles was determined by X-ray diffraction (XRD) on a 

PANAlytical X’pert powder diffractometer equipped with CuKα radiation (λ = 1.542 Å) and by 

FT-Raman spectroscopy [24, 25]. The morphology of all samples was analysed by using a Hitachi 

S-4800 scanning electron microscope (SEM).  



 Appendices 
 

248 
 

1.3 Isotherms of Rhodamine 6G adsorption  

Adsorption of Rh6G was carried out using a batch process, in pure water or in buffer. 

Phosphate buffer solutions (0.1 mol L-1) were used throughout the experiment to maintain a pH 

value of 6.0 or 8.0. They were prepared by mixing various amounts of two stock solutions, 0.2 mol 

L-1 monobasic and 0.2 mol L-1 dibasic sodium phosphate. For pH 6, the volumes are 87.7 ml and 

12.3 ml of NaH2PO4•H2O and Na2HPO4 respectively, with ultrapure water to 200 ml. For pH 8, 

the volumes are 5.3 ml and 94.7 ml with ultrapure water to 200 ml. The same buffer solution was 

used to prepare Rh6G stock solution with concentration 10 μmol L-1. It was then diluted to prepare 

the solutions at various initial concentrations (0.25 - 10 μmol L-1) for the various experimental 

points on the adsorption isotherm. In each tube, a solid sample of titanium oxide (5 mg) was 

dispersed in 10 ml Rh6G solution of already known initial concentration. Then, the tubes were 

stirred overnight at 25°C by using a rotary shaker at 10 rpm to obtain adsorption equilibrium. The 

pH of the suspension was then carefully checked. The separation of the solid phase from the liquid 

was achieved by centrifugation at 10 000 rpm for 12 min. The supernatant was then analysed by 

using V-670 UV-Vis Spectrophotometer (interval of wavelength 400-600 nm) to determine the 

equilibrium concentration. The adsorption capacity (Qads, μmol m-2) is the calculated as follows 

and displayed as function of equilibrium concentration. 

               

Ci and Ceq are the initial and final (equilibrium) concentration of Rh6G respectively 

expressed in μmol L-1, Vo  (L) is the initial volume of the sample solution, and ms and SBET are the 

weight (in g) and the specific surface area (in m2 g-1) of the adsorbent, respectively. 

1.4  Zeta potential measurements 

The dependence of ζ potential on pH was studied in aqueous suspension with a 

concentration of 1 mg L-1 for all investigated samples, by using the Malvern instrument Zetasizer 

3000HSa. The pH values of the aqueous mixtures were adjusted, adding 1 mol L-1 HCl and 1 mol 

L-1 NaOH, respectively. Zeta potentials for different solids were measured in phosphate buffer 

solutions at pH 8. 
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2. RESULTS AND DISCUSSION 

The Figure 2 shows the Scanning Electron Microscopy (SEM) images of the various TiO2 

samples. The P25 material is known to exhibit spherical primary particles with 21 nm, with 

significant aggregation of the elementary particles. The Anatase is also composed of agglomerated 

nanoparticles (10-20 nm). The ES nanofibers are very long filaments, with 100- 200 nm diameter 

and several mm in length. TNT (NC or C) display needles or flakes with 10 nm thickness and 1 

mm length. 

 

 

Figure 2. SEM images of Anatase (a), nanofibers (b) and nanotubes calcined (c) and not calcined 
(d). 

 

 

Table 1 summarizes the characteristic of all commercial and synthesized materials used in 

this study. Concerning the textural parameters, two classes of materials could be distinguished, 

a b

c d
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each of them with similar specific surface area. The first set of materials, with nanotubes TNT, 

exhibits high SBET, 342 and 340 m2 g-1 for not calcined and calcined samples respectively. Their 

specific surface areas are approximately seven times higher than the three other samples, which 

possess SBET between 46 and 57 m2 g-1. On the other hand, XRD analysis (data not shown) 

confirmed that the commercial Anatase sample is pure anatase phase. Besides, P25 and ES 

nanofibers contain the mixture of rutile and anatase phases, with mainly anatase in both cases [26]. 

For nanotubes, the not calcined sample contain only TNT phase, whereas a small percentage of 

anatase appears after calcination. 

 

Table 1. Specific surface area and crystal phase of the various titanium oxide samples. 

Sample name Crystal phase a SBET (m2 g-1) 

Anatase Commercial 100% anatase 57 

P25 81% anatase  19% rutile 49 

ES nanofibers 68% anatase  32% rutile 46 

TNT-NC TNT 342 

TNT-C TNT + Anatase 340 

a Crystal phase determined  with XRD or FT-Raman Spectroscopy [25] 

 

In order to evaluate the influence of surface charge and pH, the dye adsorption was 

performed at natural pH (pH 5.2-5.7) and in phosphate buffer at two different pHs, pH 6 and pH 

8. The adsorption isotherms of Rh6G on the spherical nanoparticles P25 are presented on Figure 

3. The values of maximum amount of dye adsorbed on all titanium oxide samples from H2O at 

natural pH and from phosphate buffer solution at pH 8 and pH 6 are reported in Table 2.  
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Figure 3. Adsorption isotherms for Rhodamine 6G onto P25 nanoparticles at 25°C from H2O at 
natural pH (◊), from phosphate buffer at pH 6 (◊) and at pH 8 (u) 

 

Table 2. Maximum amounts of dye adsorbed onto titanium oxide samples from H2O at natural 
(nat.) pH and from phosphate buffer solutions at pH 8 and pH 6. (nd = not determined) 

 
 

 
Qads max. 

(10-2 µmol m-2) 

 
Buffer 

pH=6 

Buffer 

pH=8 

H2O 

nat. pH 

P25 0.8 1.6 5.9 

TNT-NC nd  0.9 4.8 

TNT-C   nd  1.1 2.7 

ES fibers 4.7 8-10 10-14 

Anatase  0.5 0.5 2.5 

 

In buffered solutions, it can be noticed that for P25 adsorption capacity increases from 0.8 

x 10-2 µmol m-2 to 1.5 x 10-2 µmol m-2 with increasing pH from 6 to 8, respectively. These amounts 

are very low, especially when compared with those obtained on modified solid. For example Tada 

et al. [6]  reported in his work that experimental conditions or surface treatment could increase 

2.6-fold the saturated adsorption amount. It is well known that the adsorption onto oxides with 

variable surface charge is strongly pH dependent. Since the point of zero charge (PZC) of P25 is 
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evaluated at pH ≈ 6 [27], adsorption of cationic molecule Rh6G is favoured under basic conditions 

compared to acidic conditions in similar ionic strength or without competing species and specific 

interactions [28]. When pH increases from 6 to 8, Rh6G is more easily attracted by the P25 surface, 

and the adsorption is more favourable as observed on Figure 3. This results point to importance of 

electrostatic interaction between Rh6G and the surface of the adsorbent.  

For commercial Anatase nanoparticles (Figure 4), the difference between the maximum 

adsorbed at pH=6 and pH=8 is not significant (0.48 x 10-2 and 0.51 x 10-2 µmol m-2, respectively 

within the experimental error range). It can be explained by the limited affinity of the Anatase 

sample for the dye adsorption from the buffer solutions. The maximum of adsorption capacity was 

already achieved at pH = 6. In contrast to the P25 for which adsorption is pH dependent, the 

increase of pH has no influence on the amount adsorbed onto Anatase.  

 

Figure 4. Adsorption isotherms for Rhodamine 6G onto Anatase Commercial nanoparticles at 

25°C from water at natural pH (∆), from phosphate buffer at pH 6 (∆) and at pH 8 (p). 
 

In both cases for P25 and Anatase, the adsorption capacity in pure water, at natural pH (5.2-5.7 for 

P25, 4.7-5.3 for Anatase), is 4 or 5 times higher than in buffer solution. This cannot be explained 

by the simple influence of pH, since adsorption should be lower at acid pH when the surface 

decreases. Similar conclusions were also drawn for nanotubes. The obtained results are shown on 
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Figure 5 and in Table 2 Adsorbed quantities for not calcined and calcined samples are lower in the 

buffer solution (0.9 x 10-2 µmol m-2 and 1 x 10-2 µmol m-2, respectively), than those in water (4.8 

x 10-2 µmol m-2 and 2.7 x 10-2 µmol m-2). The same influence of buffer could be observed for ES 

nanofibers (see Figure 1 in ESI and Table 2). Maximum adsorbed amount from buffer at pH=6 is 

4.7 x 10-2 µmol m-2 while it increases in the range 8 to 10 x 10-2 µmol m-2 at pH=8, whereas it 

reaches 12 or 14 in water 10-2 µmol m-2. 

 

 

Figure 5. Adsorption isotherms for Rhodamine 6G onto nanotubes H TNT-C at 25°C from water 
at natural pH (p) and from phosphate buffer at pH 8 (n) and onto nanotubes H TNT-NC at 25°C 

from water at natural pH (Û) and from phosphate buffer at pH 8 (Û).   
 
 

For all samples, there is an increase of the amount adsorbed in the pure water (see Table 

2), in comparison with experiments in the buffer solution. In order to clarify these differences in 

adsorption, zeta-potential measurement were carried out. Figure 6 shows the results obtained for 

all titanium oxide particles at pH 8 in water (pH adjusted with NaOH) and pH 8 in buffer solution.  
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Figure 6. Zeta-potential measurements in water with pH=8 (full symbols), and in phosphate 
buffer at pH=8 (empty symbols). 

 

Except for calcined nanotubes in water, the values of zeta potential are negative for all 

samples. This result was expected since IEP of rutile and anatase are evaluated at pH 5.8-6, 

whereas it is evaluated at 3 or 4 for TNT depending on their synthesis conditions [12]. As it can 

be observed, zeta potential values measured in buffer are higher than the values obtained in water 

(except for not calcined nanotubes). It shows clearly the influence of the buffer on the surface 

properties of adsorbents. Theoretically, because of the higher zeta potential of the surfaces in buffer 

solution, Rh6G should be more attracted and adsorbed in buffer surroundings. Nevertheless, Rh6G 

is more adsorbed in water, with lower values of zeta potential.  

In order to explain the difference between Rh6G adsorption on Anatase and P25 from the 

buffer solutions at different pHs, adsorption of phosphates on these two solids was performed. 

Results of the adsorption isotherms of HPO4
2- are shown on Figure 7. It can be observed that 

Anatase exhibits completely different behaviour compared to P25. Phosphate adsorption onto P25 

is insignificant (1.5 10-2 µmol m-2), whereas Anatase displays high adsorption capacity (Q max = 

0.9 µmol m-2 = 90 10-2 µmol m-2), and higher affinity to phosphate species. From these data, it is 

obvious that for Anatase particle, phosphates are highly adsorbed. This firstly explains the decrease 

of adsorption capacity in buffer solution compared to measurements in pure water. Moreover, this 
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is the evidence of the presence of the competitive adsorption between the Rh6G molecules and the 

phosphates on the titanium oxide surfaces. Similar competition behaviour was already reported for 

humic or fulvic acids onto titanium dioxide nanoparticles from phosphate buffer solutions [22] or 

goethite in the presence of phosphate [21]. 

 

Figure 7. Adsorption isotherms for HPO4
2- onto P25 and Commercial Anatase nanoparticles at 

25°C from water at natural pH. 

 

When adsorption of the dye is performed in buffer solution, the competitive adsorption 

between phosphate and dye take place. Surface sites are strongly hindered by phosphate species, 

which are adsorbed on it. They are thus not available for dye adsorption. Finally, the influence of 

pH is negligible, since, even if the surface charge is higher at pH 8, all the new ionized sites are 

occupied by phosphate. Anatase is more affected by adsorption of phosphates, and that is why 

there is no difference in adsorption capacity at pH 6 or 8 for this sample. In the case of P25, the 

sites are less sensitive to phosphate sorption. However, in the buffer solution, there is still slight 

effect of pH, with 0.8 and 1.6 10-2 µmol m-2 for pH 6 and pH 8 respectively. The strength of the 

interaction between TiO2 and phosphate species was also evidenced by Connor et McQuillan. 

From phosphate absorbance collected with internal reflection spectroscopy they obtained isotherm 

typical of a strongly binding adsorbate, with adsorption increasing to saturation coverage at 
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relatively low concentrations. They observed that phosphate binds strongly to TiO2 surface through 

surface complexes and influences the interfacial and surface chemistry of TiO2 [29]. 

Furthermore, for the TNT, maximum adsorbed amounts were influenced by calcination 

treatment, with higher adsorption for NC samples 4.8 x 10-2 µmol m-2 compared to calcined solids 

(2.7 x 10-2 µmol m-2). This can be attributed to the slightly positive value of zeta potential (Figure 

6), leading to repulsion, and lower adsorption on calcined samples. Even though the change in 

properties of TNT materials in case of calcination was mainly appointed to a partial change in 

crystal phase (formation of anatase), it is clear from the results that strongly altered surface 

properties have been generated compared to the not calcined materials but also in comparison to 

Anatase, which has a clearly negative zeta potential. 

To conclude, for all tested nanomorphologies adsorption is higher in the water media with 

natural pH. Moreover, the tendency of Rh6G adsorption onto various solids is observed as follows: 

nanofibers ES >> nanopowder P25 > nanotubes TNT > nanopowder Anatase. This result can be 

related with structural properties of each solid. From Table 1, it can be noted that the nanotubes 

TNT have the highest specific surface areas, nerveless, the amount adsorbed is not the highest on 

these type of adsorbents. It is also interesting to observe that the percentage of rutile phase is 

increased in the materials with the higher adsorption properties (i.e. ES and P25). While percentage 

of anatase phase is decreased in these two samples.  

 

CONCLUSION   

Titanium oxide nanoparticles with different morphologies have been employed for the 

removal of organic Rhodamine 6G dye. Nanotubes and ES nanofibers were synthesized by 

hydrothermal and electrospinning methods. Commercial nanopowder P25, as best photocatalytic 

material, was used as reference solid together with commercial Anatase. At first, structural 

characterization of these adsorbents was performed before adsorption study investigation.   

Adsorption isotherms were carried out with batch-mode experiments from the water at the 

natural pH and from phosphate buffer at pH 6 and pH 8. The results have shown that increasing 

the buffer pH from 6 to 8 give rise to the increase of adsorption capacity for P25 and ES nanofibers, 

due to the negative surface charge. That is in a good agreement with the results of zeta potential 
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measurements. Nevertheless, this influence of pH is rather small, especially in the case of Anatase. 

Indeed, Anatase exhibits great adsorption capacity for phosphate. Hence, this explains the low 

affinity for Rh6G in the presence of phosphate buffer, because of the competition between anionic 

species. At pH 6 in water and in phosphate buffer, the adsorption capacity is also reduced, due to 

a combined effect of surface charge increase, in addition with the adsorption of competing ions. 

This could explain the modification of the catalytic performances. Adsorption from water at 

natural pH compared to adsorption in buffer has shown the presence of competitive adsorption 

between Rh6G and phosphates species on the surface of the TiO2. The best adsorption capacity 

was achieved by ES nanofibers. 
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SUPPORTING INFORMATION  

 

Figure 8.  Adsorption isotherms for Rhodamine 6G onto Nanofibres SC at 298 K from water at 
natural pH (¢), from phosphate buffer at pH 6 (¢) and at pH 8 (n) 
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APPENDIX II: 

Complement for Chapter IV 

 

I. Experimental description 

 

1. Materials 

Mg-Al-Cl LDH was prepared by co-precipitation method as described in Chapter II using 

Mg(Cl)2•6H2O and Al(Cl)3•6H2O provided by Sigma - Aldrich. All chemicals used for adsorption 

experiments were the same as those described in Chapters II and III.  

 

2. Characterization 

X-ray diffraction patterns of the pristine sample were recorded on X’Pert diffractometer 

over the 2θ range from 3° to 70° using Cu Kα radiation (λ = 1.5418 Å) and a nickel filter. The time 

of acquisition was fixed at 440 seconds with a 2q step of 0.0334°. In the case of LDH samples 

containing different amounts of retained dye species, the XRD patterns were collected at a scan 

rate of 0.003 deg mn-1 in the 2q range from 2° to 30° at 30 mA, 45 kV, using an incident beam 

mask of 10 mm and a zero background sample holder. 

The amount of interlayer water was determined from the analysis of TG-curve recorded on 

a NETZSCH STA409PC LUXX® apparatus. Experiment was performed under nitrogen 

atmosphere at a heating rate of 2 °C min-1 in the temperature range from 298 to 1073K with a 

50cm3 min-1 N2 flow. 
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3. Adsorption experiments 

Adsorption study from single-solute or multi-solute solutions was made using the 

procedure described in Chapters II and III. Adsorption from bi- and tri- solute solutions was 

investigated when mixing up the various solutes in equimolar proportions. Thus, the concentration 

of inorganic anion was the same as that of the dye component: 5 mM MO; 4 mM OII; 3 mM OG.  

The supernatant was also analyzed with the aid of ionic chromatography analyzer 

(Shimadzu HPLC) equipped with a CDD-6A conductivity detector operating at 313 K (Shim-pack 

IC-A1 column, 2 mmol L-1 potassium hydrogen phthalate at pH 4.2 as the mobile phase) so as to 

study the amount of chloride anions released from the LDH sample during dye adsorption. The 

detection analysis was repeated twice with aim to evaluate the repeatability which was as follows: 

21%, MO; 18%, OII; 20% OG. 

 

4. Titration microcalorimetry and XRD study  

The calorimetric and XRD procedures were detailed in Chapters II and III. 

 

II. Determination of the number of H2O molecules in the LDH 

 

The theoretical formula of LDH without water molecules is Mg0.67Al0.33 (OH)2 Cl0.33 and 

this corresponds to a molar mass to 70.88 g·mol-1. This chemical formula represents 85.5 % of the 

total mass of the LDH sample. The water contents is equal to 14.5%. The number of H2O 

molecules, n, can be calculated as follows: 

n =  =  = 0.67 

Therefore, the final formula of the present LDH sample as:  Mg0.67Al0.33 (OH)2 Cl0.33 • 0.67 

H2O. 
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The anion exchange capacity (AEC) is inferred from the amount of MIII per gram of the 

sample. AEC = AlIII/ M (Mg0.67Al0.33 (OH)2 Cl0.33 • 0.67 H2O) = 0.33 / 82.94 or around 4 mmol·g-

1. 

 

III. pH measurement during adsorption experiment  
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Figure AII- 1. Evolution of the initial and final pH during adsorption of Methyl Orange (a), 
Orange II (b) and Orange G (c) as a function of the dye concentration.   

 
 

IV. Measurements of the sodium counter-ions co-adsorption accompanying dye 

retention onto LDH   

 

 

5

6

7

8

9

10

11

12

0 1 2 3

p
H

OG equilibrium concentration (mM)

(c)Initial pH

Equilibrium pH

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

6

 Adsorption isotherm 

 Na
+

 

 A
m

o
u

n
t 

a
d

s
o

r
b

e
d

 (
m

m
o

l 
g

-1
)

MO equilibrium concentration (mmol L
-1

)

(a)



 Appendices 
 

265 
 

 

 

Figure AII- 2. Adsorption isotherms for MO (a), OII (b) and OG (c) with simultaneous co-
adsorption of sodium (green triangles).  
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Figure AII- 3. Amount of chloride released from LDH and the sodium uptake as a function of the 
amount of OG adsorbed.  

 
 

Table AII- 1. Calculations of uncompensated charge on the basis of OG adsorbed, Na co-
adsorbed and Cl released from the structure during adsorption.  
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equal to 1. The number of uncompensated charges was calculated by comparing the amount of OG 

adsorbed onto LDH and chloride ions released from the structure. For the first four points, it is 

considered that OG have two free charges and can neutralized 2 cationic charges. For the last two 

points, OG probably have only one free charge because another one is compensated by the co-

adsorption of sodium. The mean value of uncompensated charges is equal to 5.6. Therefore it can 

be concluded that some another anionic species enter together with the adsorbing OG units. 

 

V. Competitive adsorption between the dye and the inorganic species  

 

 

Figure AII- 4. Individual adsorption isotherm for hydrogen phosphate anions adsorbed at 298 K 
onto Mg2Al-LDH-Cl from bi-solute solution with dye. 
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Figure AII- 5. Diagrams of the speciation for the phosphates (a) and carbonates (b) ions. 
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Figure AII- 6. Isotherms of competitive adsorption between OG dye with values of initial pH, 
measured at the first contact of the solid with solutes for some points on adsorption isotherm: bi-

component systems OG+P (a) and OG+C (b); tri-component system OG+P+C (c).  
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