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Résumé:

Bien que la consommation énergétique des processeurs a considérablement

diminué, la demande pour des techniques visant à la réduire n’a jamais été aussi

forte. En effet, la consommation énergétique des machines haute performance a crû

proportionnellement à leurs accroissements en taille. Elle a atteint un tel niveau

qu’elle doit être minimisée par tous les moyens.

Les processeurs actuels peuvent changer au vol leurs fréquences d’exécution.

Utiliser une fréquence plus faible peut mener à une réduction de leurs consomma-

tions énergétiques. Cette thèse recherche jusqu’à quel point cette fonctionnalité,

appelé DVFS, peut favoriser cette réduction. Dans un premier temps, une analyse

d’une machine simple est effectuée pour une meilleure compréhension des différents

éléments consommateurs afin de focaliser les optimisations sur ces derniers.

La consommation d’un processeur dépend de l’application qui est exécutée. Une

analyse des applications est donc effectuée pour mieux comprendre leurs impacts

sur cette dernière. Basés sur cette étude, plusieurs outils visant à réduire cette

consommation ont été créés. REST, adapte la fréquence d’exécution au regard du

comportement de l’application. Le second, UtoPeak, calcule la réduction maximum

que l’on peut attendre grâce au DVFS. Le dernier, FoREST, est créé pour cor-

riger les défauts de REST et obtenir cette réduction maximum de la consommation

énergétique.

Enfin, les applications scientifiques actuelles utilisent généralement plus d’un

processeur pour leurs exécutions. Cette thèse présente aussi une première tentative

de découverte de la borne inférieure sur la consommation énergétique dans ce nouvel

environnement d’exécution.

Mots cléfs:

Caractérisation de puissance, Caractérisation d’énergie, Contrôle des ventilateurs,

Contrôle dynamique de fréquences, Profilage dynamique, Applications parallèles,

Consommation énergétique minimale
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Abstract:

Over the past decade, processors have drastically reduced their power con-

sumption. With each new processor generation, new features enhancing the

processor energy efficiency are added. However, the demand for energy reduction

techniques has never been so high. Indeed, with the increasing size of high per-

formance machines, their power and energy consumptions have grown accordingly.

They have reached a point where they have to be reduced by all possible means.

Current processors allow an interesting feature, they can change their operating

frequency at run-time. As granted by transistor physics, lower frequency means

lower power consumption and hopefully, lower energy consumption. This thesis

investigates to which extent this processor feature, called DVFS, can be used to

save energy.

First, a simple machine is analyzed to have a complete understanding of the dif-

ferent power consumers and where optimizations can be focused. It will be demon-

strated that only fans and processors allow run-time energy optimizations. Between

the two, the processor shows the highest consumption, therefore potentially exposing

the higher potential for energy savings.

Second, the power consumption of a processor depends on the applications being

executed. However, there are as many applications as problems to solve. The focus

is then put on applications to understand their impacts on energy consumption.

Based on the gathered insights, multiple tools targeting energy savings on a single

processor are created. REST, the most naive, tries to adapt the processor state to

the stress generated by the application, hoping for energy reduction. The second,

UtoPeak, computes the maximum energy reduction one can expect for any tool using

DVFS. It allows to evaluate the efficiency of such systems. The last one, FoREST,

was created in order to correct all the flaws of REST and target maximum energy

reduction.

Last, scientific applications generally need more than one processor to be exe-

cuted in a decent time. The thesis also presents a first attempt to compute a lower

bound in energy reduction when considering this new execution context.

Keywords:

Power characterization, Energy characterization, Fan control, Dynamic frequency

scaling, Dynamic profiling, Parallel applications, Lowest energy consumption
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Chapter 1

Introduction

The concerns on energy consumption and its ecological impacts did not rose

overnight. Some people say that there always was a sub-part of the society to

worry about the ecological impacts of the skyrocketing needs in energy worldwide.

Others would tell that no one really care about such concerns as long as there is

profit. And more dramatically,a few rave that unless an imminent huge disaster hap-

pens, every thing will remain unchanged because those who are wasting the most

energy refuse to see its long term impacts. What is known, is that these concerns

on energy consumption were publicly acknowledged during the first Earth Summit

in 1972 along with many other ecological concerns. Following this Earth Summit,

several treaties were issued to unit all the countries towards the same goal. During

the second edition of the Earth summit, the United Nations Framework Convention

on Climate Change (UNFCCC) was given birth. Signed by 165 countries, it is a

framework for negotiating specific international treaties that may set binding limits

on greenhouse gas. It helped designing the Kyoto protocol signed on December 11th

1997. From then, the interest in tackling the energy consumption issues as well as

other ecological matters went snowballing.

In the world of High Performance Computing (HPC), the term "Performance"

was until recently the preponderant criteria to evaluate how well an application is

executed. However, with the ever growing demand for performance associated with

a higher and higher complexity of the problems to be tackled, the size of HPC sys-

tems dramatically increased along with their power consumption. As an example,

the first machine on november top500 list, Tianhe-2 consumes 17 Mw. To power

such a machine is not the sole problem, the machine has to be cooled down to pre-

vent overheating. For example, 0.7W of cooling is needed to dissipate every 1W

of power consumed by one HPC system at Lawrence Livermore National Labora-

tory [131]. The data is a bit old, and the ratio surely has been enhanced, but still

the amount of power to operate such gigantic machine is tremendous. And when

looking at the overall picture, the growth will not stop. In 2013, U.S. data centers

consumed an estimated 91 billion kilowatt-hours of electricity. This is the equivalent

annual output of 34 large (500-megawatt) coal-fired power plants, enough electricity

to power all the households in New York City twice over. Data center electricity con-

sumption is projected to increase to roughly 140 billion kilowatt-hours annually by

2020, the equivalent annual output of 50 power plants, costing American businesses

$13 billion per year in electricity bills and causing a yearly emission of nearly 150

million metric tons of carbon pollution [6]. Power and energy consumption can no

longer be ignored and the energy consumption may replace the performance criteria

to evaluate how well an application is executed.

Power and energy consumption have then to be optimized by any possible means.

Dynamic Voltage Frequency Scaling (DVFS) was then selected as the flagship of

that new crusade. As it will be seen later on, processors power scales quadratically

to the voltage and linearly to the operating frequency. Moreover, coming from the

transistor physics, the frequency and voltage are linked to eachother. Higher voltage
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allows to operate faster, and slower operations allow lower voltage. Then by lowering

the operating frequency, tremendous energy consumption can be saved, roughly

cubic to the processor frequency. By using that interesting property, a wide range of

tools and techniques were built and all of them reported energy reductions. However,

Le Sueur et. al. [100] well expose the problematic brought with the tremendous

decrease in transistor miniaturization. With smaller transistors, the core voltage

was drastically reduced, from 5V with 0.8µm transistor feature size to 1.1-1.4V when

considering 32nm transistor size. After that assessment, the authors pretend that

the potential to save energy via DVFS is dramatically reduced. However, processors

efficiency was enhanced with each new generation. Current processors expose a wide

range of frequencies, fifteen for the SandyBridge and IvyBridge processors used

during this thesis compared to ten for an older Westmere architecture. A wider

range of frequencies, allows a better control over the application execution, thus

better tuning for energy reduction. Deeper sleep state also are exposed with each

new processor generation. As an example on the fourth generation of Intel processors

[79], the deepest sleep state allows entire cores to shut down. Moreover, the new

Haswell architecture now embarks the voltage regulator on the die, allowing a more

efficient power management [64]. A legitimate question then arise when facing all

these processor energy efficiency enhancements : is DVFS still a legitimate technique

to reduce processors energy consumption while being used ?

This thesis will bring an answer to this question. It will be shown that DVFS

techniques, even though they have a limited impact on sequential application, have

a huge potential for energy saving for parallel applications.

The first part presents a vulgarization on energy and power consumption. In

order to demytify what power and energy consumption mean, different power con-

sumers of a simple machine are analyzed. For each of them, possible optimization

mechanics are presented. For the processor power consumption, a more in-depth

study is performed to understand how it consumes power under different kind of

pressure and what are the means to reduce to consume less.

The second part provides an in depth analysis of applications energy consump-

tions. Even though the amount of energy is partially dictated by the hardware, the

pressure the application puts on the processor and the time it takes to be executed

also plays an important part. It will be demonstrated that an application can be

seen as a sequence of different phases with different purposes and resource needs. By

identifying each application phase, and adapting the processor operating frequency

to each of them, the overall application energy consumption is reduced. One could

see the application phases identification as the major challenge, however this thesis is

not about finding the best phase identification algorithm but to match the processor

speed to each application phase at best. Nevertheless, two different phase identifi-

cation techniques are presented, either static or dynamic. It is demonstrated that

the dynamic phase identification allows more flexibility and has less overhead than

the static method for the purpose of the DVFS techniques presented thereafter. In

total three different techniques are presented: REST, UtoPeak and FoREST. The

first one, REST, is a first naive attempt to acknowledge if DVFS techniques are

worth the effort. It shows that on various application execution set-ups more than

25% of their energy consumption can be saved. However, as for all the other DVFS

based tool there is no clear view on which maximum level of improvement can be

expected. To solve that, UtoPeak is created. It is a static tool accurately predicting

for one application execution, the maximum energy reduction one can expect from
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DVFS based tools. Though the impact of DVFS is limited on sequential applica-

tions, it shows that, for parallel applications, at most 45% of the application energy

can be saved. Though UtoPeak is able to grant maximum energy reduction, it is

static and needs multiple runs of the same application to gather enough informa-

tion to produce a realistic prediction. FoREST, is created to dynamically achieve

the maximum energy saving uncovered by UtoPeak in one application execution.

Since it is a dynamic tool, and HPC people are not yet ready to sacrifice too much

performances on the altar of energy reduction, FoREST also takes into account a

performance degradation limit. FoREST performs the maximum energy reduction

regarding that limit. Finally, FoREST adaptivity was further extended to take into

account the overall machine energy consumption, and adapt the processor frequency

to minimize the overall consumption. It demonstrates that DVFS is good to reduce

processor energy consumption, but it cannot be used alone to achieve full machine

energy savings.

The previous part demonstrates that DVFS is legitimate when considering paral-

lel applications on a single processor. However does this transpose to multi-processor

environments? The last part expose the first elements of an answer. It presents a

static tool that predicts the maximum energy saving one can expect for one appli-

cation regarding its execution set-up and confirms also that DVFS is still legitimate

even when considering multiple processors environment.

Finally a conclusion and perspectives are presented.





Part I

Power and Energy Popularization





Chapter 2

Introduction

As introduced previously, it is costly to operate data centers and any energy con-

sumption reduction can be translated in significant money saving. It explains the

existence of various energy reduction mechanisms seen in the next Parts. However

before designing systems that grant energy reduction, the energy consumption has

to be understood by itself.

The term Energy can be found in multiple domains, like mechanics, nuclear

power, or electricity and is always used as a rate of performing work over time. The

energy is generally computed as : P × T where P is the rate of activity, and T the

time slice on which the work is done. In electricity the power P , is generated by

an electric current passing through an electric potential. As an analogy consider a

watermill being the electric potential and the flow of water being the electric current.

The higher the flow of water on the water wheel the higher the grind force. The

watermill energy quantifies the grind force over the period of use. When considering

a computer, electrical power is what is needed to operate it and energy is used to

quantify the consumed power until it is shutdown. Though, the watermill or the

computer have just been considered as a unique entities, it is their composing parts

that define the overall needed power to activate them. For the watermill a certain

level of power is required to rotate the water wheel and additional power to rotate

the grind wheel. It is the same for a computer with the motherboard, memory dims,

disks, fans and the processors each need a fraction of the overall computer power.

As an example, Table 2.1 shows the power needs of the different computer parts.

Each stated value are coming from components data sheet that can be found in any

computer hardware resellers.

The values showed in Table 2.1 are the worst case power consumption. Depend-

ing on the situation, each part can draw more or less power. Back to the watermill,

the grind power will variate regarding meteorological factors. If huge waterfall hap-

pened upstream, the water’s flow will grant more grind force. At the opposite, if a

drought occur, the water’s flow will decrease, decreasing the grind force. It is the

same for a computer, depending on the usage scenario each computer part will draw

more or less power as shown in Figure 2.1.

Figure 2.1 extracted from [44] shows different usage scenario measured on a Be-

Computer’s Parts Power Consumption Ratio in Percentage

Processor 80W 57.7 %

Mother Board 35W 25.1 %

Ram modules 6W 4.3 %

HDD 6W 4.3 %

Fans 12W 8.6 %

Table 2.1: Computer Power Consumption Break-Down.
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owulf node machine. It can be seen that each component consumes a part of the

overall machine power. They can drastically change their needs regarding the com-

puter usage scenario. It can be acknowledged that in most scenarios the processor

is the part with the highest consumption. However, disks and memory are not to

be neglected since they can consume more than 50% of the overall power in the cp

scenario.

In the end, the energy consumption can vary regarding the duration and re-

garding different usage scenarios. Therefore it is essential to fully understand how

each computer component consumes power. Relying on these insight, it is possible

to determine the means to reduce these consumptions and design energy reduc-

tion techniques. However, before jumping into further details, it is as important to

understand why the energy criteria is only used in this thesis and not for example

energy-delay or other metrics derived from it. Once it is clear that the energy is con-

sidered as the baseline metric, the focus is put on each machine power consumer.

Ram dimms and disk power consumption and optimization will be first studied.

They do not represent a significant part of a single machine power consumption,

however data centers do not use only a single disk and two ram dims, but many

thousands, making them a non-negligible power consumer. The RAM dims and

HDD study will be followed by the study of fans power consumptions and how these

elements can prevent the processor from consuming more. It will also be seen in

Chapter 5 that the fans are always operated at their maximum speed even when un-

necessary , making them wasting power. Finally, in Chapter 6 the processor power

consumption and the means to reduce it are presented. Unlike for RAM dims, HDD

and fans, techniques to reduce the processor power consumption and energy are not

presented in the chapter since they are the purpose of the thesis.
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Metrics

Metrics are essential to quantify, measure, and evaluate a system energy consump-

tion. They form the basis of any optimization mechanism. Many metrics have been

proposed and used to rate power or energy efficiency and can be classified into two

types : metrics for single machine or processors, and those for parallel systems and

clusters.

3.1 Single Machine

The most basic metric used in this thesis is purely the energy consumption, com-

puted as P × T with P the power consumption of the studied systems and T a

time period. However other metrics can be found. The most common is called

energy-delay [23, 55, 69, 74, 118], computed as the E×T and sometimes called PT 2

[118]. It is intended to characterize the trade off between the energy and the delay.

Pursued into that direction ED2P = E × T 2 was created by Bose et. al. [23] to

be used when considering Dynamic Voltage Frequency Scaling. It is supposed to

cancel the influence of frequency scaling since E roughly scales with the square of

the frequency and T with the inverse of the square of the frequency. Ge et. al. [51],

based on the ED2P metric, propose a weighted version of it, called weighted-ED2P .

It is assumed to allow the user to influence the metric to decide which is the most

important between the performance or energy.

Lastly, based on the assumption that the energy usually is not a linear function

of the performance, Choi et. al. [28] proposed a relative performance slowdown δ.

Based on that metric, power efficiency gain can be more accurately calculated in

power management techniques [52, 73].

3.2 Parallel Systems And Clusters

Some other metrics were designed specifically for parallel systems. In [74], Hsu

et. al. proposed the reciprocal variant of the energy delay product : 1/EDP . In

fact it rates the FLOPS/W that can be delivered by the parallel system. It allows

to rate if adding more hardware for an application execution is efficient regarding

power consumption.

With ever growing parallel systems, two metrics were designed to quantify the

cost of owning an HPC system, TCO, and a metric to rate the energy efficiency

of the overall facilities needed to operate such machines, PUE. The Total Cost of

Ownership consists of two parts: cost of acquisition and cost of operation. TCO

is often quite difficult to calculate, and Feng et. al. [43, 74] proposed a way to

approximate it with an already seen metric, the performance/power. The Power

Usage Efficiency [18], PUE, metric is the ratio between the power drawn by the

facility and the power that is actually used by the machine. If it is 1 then all the
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power consumed by the facility is used to perform computations. If it is equal to

two then half of the power drawn is lost to leak, heat, power converter....

In the end, a wide range of metrics exists to measure the energy and quantify

its efficiency. However, PUE or TCO are too coarse a grain for the purpose of the

current thesis. All the metrics as EDP , ED2P or the weighted EDP put too much

importance on the execution time. By artificially increasing the importance of the

speed-up impact, it can obfuscate an actual increase on the energy consumption.

As an example, suppose that an application is consuming E0 = P0 × T0. For

some reason, the execution frequency has changed, the power factor is increased

by a factor of 2 and the execution time is decreased by a factor of 1.5, the new

application energy consumption is then: E1 = P0 × T0 × (2/1.5) = 1.33 × E0. An

increase in energy consumption happened. However, when considering EDP , it will

state EDP1 = P0 × (T0)
2 × (2/2.25) = 0.88× EDP0, showing an improvement on

the metric when there is actually an increased energy consumption.

Having the power and the execution time equally weighted allows a better un-

derstanding of what is at stake. Both power and execution time are orthogonal, and

finding a sweet spot satisfying both criteria is complex. It is the whole underlying

story of this thesis. This is why only the energy metric is considered, it allows all

the presented systems to really acknowledge when there is an actual improvement.



Chapter 4

Hard Drive and Memory Energy

Consumption

It has been seen previously in Table 2.1 that RAM dims and Hard-Drive Disks

(HDD) do not account for a significant part of the overall power consumption of

a computer. Yet, when considering a high performance computing machine, RAM

dims and HDD are counted by thousands. As an example, consider the TITAN

[99] which is ranked second in the top500 [161], it uses 584 Tera-bytes of RAM and

40 Peta-bytes of disk space. By doing a naive calculus, considering 16 Giga-byte

RAM dims and 4 Tera-byte disks, it gives 36, 500 RAM dims and 10, 000 HDD.

In addition, when considering 4W and 10W as power consumption for RAM dims

and hard drives, 246 Kilo-Watt are consumed for just maintaining them powered.

When considering the power cost of 6.65 Cents per Kilowatt-hour [7], the yearly cost

for the operator to just provide power for the disks and the ram dims is 143, 304.

It is less negligible than one could think when only considering a single computer.

Reducing the power cost of RAM dims or hard drives can translate into significant

money savings.

To perform global power reduction, the power consumption of each device has to

be fully understood. Any electrical device consumes power in the same way. There

is a part of the power consumption dedicated to perform work and another part

dedicated to keep the device powered and ready to work. Later in this text, the

first power section will be referred to as dynamic power, the second one as static

power. It will be seen that reducing dynamic and static powers means modulating

the state of the devices to best fit the actual workload. On the one hand, reducing

static power generally translates into shutting down some piece of hardware because

it reduces the amount of power needed to keep the devices on. On the other hand,

reducing dynamic power, means decreasing the operating frequency of the device.

Unfortunately, as it will be seen in Sections 4.1 and 4.2, the techniques that could

be designed to reduce power consumption either only rely on simulations or are

already implemented in current hardware. It was then decided not to push forward

on the design of optimizations for RAM and HDD. However, knowing how they are

consuming power is important to have a general overview.

4.1 RAM

RAM dims are essential to any computer system. It acts as a buffer, between CPU

caches and hard disks, to reduce performances breakdown if a wanted data is not

in the last level of CPU cache. Actual system heavily relies on RAM. As show

previously with TITAN, 32GB of RAM are dedicated to a single CPU. Memory

systems also draw a disproportionate share of power regarding their load [35, 117]

because they are usually run at their highest speed to avoid any performance loss.

However, it exists various range of workload that do need intensive RAM access.
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Figure 4.1: General overview of DRAM device structure, extracted from [35]

That gives RAM dims some opportunity to modulate their state and fit the workload

needs, reducing their power consumption. Yet, to reduce dynamic or static power,

all RAM consuming actors have to be identified.

4.1.1 Power Consumers

Figure 4.1 extracted from [35] shows a general overview of DRAM device structure.

Each identified DRAM component consumes power. Based on [35] DRAM Array,

power consumption scales accordingly to the memory bandwidth utilization. The

larger the amount of accessed data, the higher the power consumption. The power

consumption of I/O circuitry, is sensitive to both memory frequency and utilization.

Indeed, as it is an interface between the DRAM array and the bus, it is also stressed

when a large amount of data is requested. Finally, termination power, is adjusted

to the bus electrical characteristics, and depends on its utilization. The sum of each

power consumer defines the overall RAM dimm power consumption.

Basically, the overall RAM dimm power consumption scales with the bandwidth,

since most of the components are bound to the bus utilization [35]. However, chang-

ing the memory operating frequency can reduce the overall power consumption. In

electricity, based on Ohm’s law, P = U × I, where P is the power, U is the volt-

age supply and I the current intensity. Lowering U means reducing P . As it is

explained later in Chapter 6, the voltage is modified by changing the operating

frequency. It is then interesting to modify the operating frequency to reduce the

overall power consumption of the main memory. In addition, some RAM elements

scale in U and others in U2 [93] when the frequency is changed. For the elements

scaling in U2, significant power saving can then be obtained when lowering the op-

erating frequency. Though reducing the RAM operating frequency lowers the power

consumption, it can impact the performances of an application that requests data

into RAM. Consequently, lower performances, means increased application execu-

tion time, increasing the system energy consumption. The whole game is then to

reduce RAM operating frequency regarding bus utilization to reduce RAM energy

consumption [35, 38, 108].

4.1.2 Possible Optimizations

DRAM exposes different operating frequencies. One can change the RAM dims

operating frequencies, however the frequency shift has to be performed inside the
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BIOS [35]. A machine reboot is then needed. For people looking for power savings

on their laptops, no significant impact is observed on their working process. However

in an HPC environment, rebooting a set of machine to achieve power reduction is

not affordable. That is why most of existing optimization mechanisms [101, 35, 38,

108] rely on power models simulations and are not usable in the practical world.

Nevertheless, Malladi et. al. [117] states that many datacenter applications stress

memory capacity and latency but not memory bandwidth, therefore by replacing

the high speed DDR3 with mobile DDR3, they demonstrate a 3-5 reduction factor

on memory power with negligible penalties. However, the cost in infrastructure to

operate such optimization is not affordable. Still, it enforce the need of being able

to reduce the frequency at run-time. David et. al. [35] details the different steps and

their complexity to allow RAM dynamic frequency scaling. As all manufacturers

and HPC machine operators seek a maximum energy efficiency, it may happen in

the future.

As explained in the introduction, RAM is not the only device that can be inter-

esting to optimize because of its usage quantity. Disks also consume an important

amount of power. Similarly to RAM dims they are permanently operated at their

highest performance state, to prevent any performance loss. However, when a purely

CPU bound application are run, disks never are on the critical path. They can be

put into an idle state or even shut down to reduce the application power footprint.

4.2 Disk

As for RAM, scientific applications more and more rely on disks. The applications

tackle ever bigger problems increasing their time to solution. The probability for a

hardware failure during the computation can no longer be ignored. Then to prevent

the application from losing all the performed computations in case of an hardware

failure, check-pointing is performed [12]. In addition, a data protection mechanism

is needed to protect the already stored data from any disk failures. Additional disks

are then required. As shown in the small example above, for the TITAN machine

10000 disks are used if the considered size is 4TB. It can be more dramatic for data

centers which are purely storage oriented. Being able to optimize the energy needed

to write or read data or even shutdown unused disk can save a significant portion

of the overall system energy consumption.

4.2.1 Power Consumers

Basically a non solid-state hard-drive is composed of multiple actors: spinning mag-

netic platters, an arm moving the read/write head across the platters tracks and

finally some electronic that hosts some buffers and the disk scheduler. Basically

the power consumption can be divided into two parts. The power consumed in

the mechanical parts and the power consumed in the electronic of control. When

performing write or read operations the mechanical parts are the preponderant con-

sumers. Then, the main idea to save energy is to prevent the mechanical parts to be

permanently powered. In [77], the author shows that even at rest, i.e. not servicing

requests, the mechanical parts still are the major consumer. Indeed, the magnetic

platters always are rotating in order to grant the best response time then they are

always consuming power. In [77], it is also shown that even when the magnetic

platters are down the disk still consumes power. Indeed the electronic part is still
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powered to acknowledge incoming requests in order to spin-up the magnetic platters

back to their nominal speed. Multiple optimization scenarios can be derived from

the different disk states and generally target the unnecessary power consumption

generated by the mechanical part.

4.2.2 Possible Optimizations

Multiple optimization strategies [66, 134, 167] rely on the fact that in standby mode,

all the mechanical components are shutdown. Once a disk is recognized as unused,

it is put in standby mode. Though it cuts off almost the entire disk consumption,

the cost to spin up the magnetic platters at its full speed is not negligible. It can be

up to 4 times the average disk power consumption [77]. Moreover, as the rotation

speed is a controlled system it takes some time to reach the nominal rotation speed.

It has to be ensured that the disk will be powered long enough to counter that 4

times disk power pick. If not, the optimized disks will artificially consume more

power. Others designed disks with dynamic speed control [61]. Instead of purely

stopping the platters from spinning, different speed settings are used. The spin

speed is then adapted to the request rate [108]. Some others would also consider data

placement algorithms. As an example, putting the frequent data at a low Logical

Block Number, i.e. the beginning of the disk, where more data can be fetched in one

platter rotation [77]. Even though, it exists various ways to optimize Hard Drive

energy consumption, all those optimizations are now embedded in current Hard

Drives [40]. As for the previous section, it was also decided not to put additional

efforts in designing power and energy optimization for Hard Drive Disks.

In the end, in the actual technology state the described optimization scenar-

ios either are unusable in the practical world or are already embedded in current

hardware. However, the increasing demand for checkpointing will increase the ap-

plication dependency to disks. One way to leverage that is burst buffers [126, 163].

Data written by an application to a burst buffer is stored in a significant ram pool

until they are stored on disks generally with a redundancy mechanism. The rising

interests in burst buffers will further increase the demand for RAM dims or disks,

certainly forcing manufacturers to provide more practical ways to optimize energy

consumption.

However, for fans one practical way to modify their power consumption is by

modulating their rotation speed. Though they are widely used to cool HPC com-

puters or data centers, they are always used at their maximum speed. Therefore,

the hardware is always kept at a cool temperature preventing failures due to over-

heating. However, there is no need to use fans at their full speed since the hardware

will operate the same way if the sustained temperature is 20 ◦C or 50 ◦C. Moreover,

higher speeds mean higher power consumption. The next chapter presents a fan

speed optimization technique to lower their energy consumption while preventing

the processor to overheat.
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Fans

5.1 State Of The Art

Cooling systems are as important as the machine itself since they keep the hardware

in a safe range of temperature and prevent failure due to overheating. Multiple ways

to look at cooling systems exit. Two distinct approaches are generally considered

to reduce cooling-related energy consumption in a data center or a supercomputer.

The first is the general approach where the solutions make large-scale decisions. For

instance, energy-centric job allocation [8, 13, 16] or task migration [53, 146, 147, 148]

are typical systems helping to reduce energy dissipation. The second approach

directly targets the air cooling and tries to reduce its consumption through precise

tuning [76, 128]. The tool presented in this chapter, DFaCE considers a narrow scale:

instead of considering the supercomputer as a whole, it considers nodes, enabling

finer grain tuning.

At the server level, there are two different approaches of the cooling. Either by

building theoretical models or by building dynamic systems to react according to

what is observed on the system. The first category is about designing theoretical

models to estimate the temperature induced by a given load or the best air cooling

setting for a given temperature [67, 112, 138]. Rao et. al. [138] use such a theoretical

model to determine the best CPU frequency according to the chip temperature.

However, the model does not take into account the fan power consumption as DFaCE

does. Moreover, even though DFaCE does not take into account processor frequency

scaling to optimize the overall processor power consumption and not just its leakage,

it can be transparently run concurrently to any Dynamic Voltage Frequency Scaling

(DVFS) techniques to achieve the same purpose. Heo et. al. [67] and Liu et. al. [112]

both propose models to quantify processor power leakage, however they are not used

to control the fan speed.

At the opposite, other researchers propose using theoretical models with the

goal of optimizing fan settings [155, 166]. Shin et. al. [155] theoretically model the

effects of the temperature to simultaneously set the optimal fan speed and proces-

sor frequency. Their system could lead to performance degradation since DVFS is

considered as an option for cooling the CPU down. DFaCE only considers fans and

therefore cannot degrade the programs performance. Similarly, Zhikui et. al. [166]

propose a Fan Controller (FC) based on a theoretical model that sets the best fan

speed for several fans as soon as the CPU load changes. FC, unlike DFaCE, does not

consider power leakage: FC minimizes the fan power consumption while maintaining

the system temperature at an arbitrary temperature threshold. The presented sys-

tems consider theoretical analysis and models to determine an efficient fan setting.

Therefore, the solutions suffer from bias induced by the approximations needed to

model the complex temperature-related physics.

Theoretical models are built for a specific system or context and external events,

such as fan failures or local hot-spots, cause them to be temporarily inaccurate as
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the models parameters may change without being reevaluated. DFaCE is not based

on theoretical representations of the problem and does not have to approximate the

problem because the effects of fan settings are directly evaluated on the computer it-

self. Dynamic systems react according to what they observe on the system they run

on; they do not suffer from the flaws of theoretical models. One such dynamic sys-

tem, Thermal-Aware Power Optimization for servers (TAPO-server), was proposed

by Wei et. al. [76]. TAPO-server regularly switches the fan speed to determine if

the fan speed has to be increased or decreased in order to reach the minimal power

consumption. The authors present convincing results, but TAPO-server does not

take into consideration the quick variations of the heat generated by the device. It

also restarts the learning process at every major system load change. Moreover, it

is unable to handle more than one single fan; whereas, DFaCE is dedicated to mul-

tiple fan control, allowing it to efficiently optimize the cooling power consumption.

DFaCE also works in two distinct sequences: once the best setting is learned for a

given load, it is immediately applied as soon as the load is observed again. Such

knowledge capitalization and the ability to reuse the optimal learned fan settings is

a key advantage over existing dynamic systems, which are currently unable to react

as quickly as DFaCE.

Additionally, several mechanisms were described in the patent literature al-

though they often are similar to the system presented before. For instance, many

patents [41, 54, 91, 98] perform simple fan control close to what is achieved by

thermal-directed fan control. The work described in [130, 58] is close to TACO-

server and suffers from the same flaws.

5.2 Motivations

Although the CPU and the memory are often identified as the major consumers,

the cooling system accounts for a non-negligible part of the overall energy consump-

tion [57]. Except for some uncommon configurations [37, 29, 94], fans are still often

in charge of cooling a computer. It is common for a PC to be cooled by several fans,

each potentially consuming as much as 10W at full speed. As the fan power con-

sumption can account for a large part of the total energy consumption, depending

on the number used, fans are a good target for energy optimization.

In general, the temperature of the main computer components impact the speed

of the fans. A common for controlling system is thermal-directed [41, 54, 91, 98]:

fans accelerate when the temperature increases in order to maintain the system tem-

perature below an arbitrary threshold, which is often set to a conservative value.

Thermal-directed fan control focuses only on temperature management, trying to

avoid hardware failures due to overheating, and ignoring energy consumption. Typ-

ically, it results in fans unnecessarily rotating at high speeds and consuming too

much energy.

Moreover, slowing fans down increases the temperature and, apart from the

increasing risk of hardware failures, it increases the power leakage of several compo-

nents including the CPU. Leakage power is consumed due to transistor imperfection.

Power leakage can represent up to 40% of current processor power consumption

[112, 123]. Thus, efficiently managing fan speed consists in determining the opti-

mal fan setting, which simultaneously minimizes the processor power leakage and

fan power consumption, oversimplifying it would be "cooling enough but not too

much". Figure 5.1 illustrates the impact of fan speed where the optimal fan setting
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Figure 5.1: Illustrating the balance between fan power consumption and power

leakage.

is the one leading to minimal power consumption from both CPU power leakage

and fan power consumption. The optimal fan controller has to be able to perform a

subtle fan control: it must optimize the power consumption of a computer by using

fan speeds that simultaneously minimize fan consumption and power leakage. The

fan controller, in this chapter only takes into account fan speed. It does not aim to

optimize the airflow either, since it will add a non negligent overhead to an already

long converging technique.

Finally, to be able to determine the optimum fan setting as shown in Figure

5.2, it requires a precise knowledge of the fans consumption and of the controlled

processor power leakage.

5.3 Power Characterization

5.3.1 Fan Power

The fan power consumption is exponential to its speed. It is common behavior

for fans [76, 166] and is shown in Figure 5.2. Different techniques can be used to

measure the fan power consumption at different speeds. A straight forward approach

consists in plugging a power meter directly onto the fan while controlling its power

supply to vary its speed. Such an approach avoids any potential noise as only the

fan power is measured, but it requires the fan to be extracted from the computer

and to be independently controlled, which often is troublesome.

The actual method employed is based on a power meter, plugged to the com-

puter, which measures the overall system power consumption. As the power meter

measures the consumption on the wall as opposed to using probes, the method is

non-invasive and more easily achieved. While maintaining the node in an idle state,

a dedicated software controls the fan speed while the power meter measures the
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Figure 5.2: Power consumed by a standard 120mm CPU fan at different speeds.

node consumption for different fan speeds. The power consumption is not exact if

the fan is not completely shut down at the minimal speed setting. However, the

relative power consumptions at different speeds are correct enough to determine the

setting for minimal power consumption. This gives the system a lightweight tech-

nique to compare power consumptions. Accepting the minimal setting as being a

non-optimal consumption, the fan consumption can be considered null at its lower

setting. The fan’s consumption for every speed is computed by a simple difference

between the present and the minimal speed. Let pwfan(fs) be the whole system

power consumption for a fan speed fs. The fan power consumption when the fan

runs at speed fs is then computed as pwfan(fs)−pwfan(0). The power consumption

measured with the current method is not exact if the fan under evaluation is not

completely shut down at the minimal speed setting. However, the relative power

consumptions at different speeds are correct, which is sufficient to build a power

profile of each fan speed. The higher the speed, the higher the power consumption.

When considering Figure 5.2, high fan speeds must indeed be avoided. However,

small speed variations at the highest fan speed provides significant power savings.

Power consumption profiles depend on the fan model, so different fans may lead to

different potential gains. The profile presented in Figure 5.2 is representative of the

general case.

The fan used for Figure 5.2 is a large fan, similar to the ones usually found in

desktop computers. However, fans used to cool down cluster nodes are, in general,

smaller fans, operating at higher speeds, consuming more than 10W at full speed.

In some cases, they even account for up to 20% of the total node power consump-

tion [166]. As a result, greater power savings may then be expected when optimizing

a cluster node compared to the desktop computer.
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By using the presented methodology, a power consumption profile is built for

every connected fan. Such characterization is performed only once, to limit the on-

line overhead. By using the power profiles, the optimization mechanism presented

later will choose among the fan speeds the best one regarding the processor leak-

age and fan power consumptions. However, to grant the system the possibility to

also acknowledge the impact of different fan speeds on processor power leakage, an

accurate leakage profile has to be built.

5.3.2 Power Leakage

As a reminder to find the optimal fan setting, the processor leakage is also needed.

The power leakage is specific to CPU model since it mainly comes from imperfections

within the fabric. The CPU leakage is consumed in three areas [129]. The leakage

current is the current either going through the substrate or through a not fully

closed transistor. The recharge current is due to parasitic capacitance of wires and

inputs. Finally, the shoot-through current happens during the CMOS transistor

commutation. Equation 5.1 summarizes the three leakage composing the leakage

power.

Pleak = Pcurrent + Pcapacitance + Pcommutation

Pcurrent = IL × U =
U2

RL

Pcapacitance = U2 × CP × f

Pcommutation =
U2 × f

RS
(5.1)

With Pleak as the total leakage power, Pcurrent the loss due to leakage current,

Pcapacitance the loss in parasitic wires capacitance, and finally Pcommutation lost tran-

sistors commutation. U is the CPU supply voltage, IL and RL characterize the

inductance and resistance of the substrate. CP is the wire capacitance, the longer

the wire, the higher the capacitance is. RS represents the resistance of all the com-

ponents on the path from the voltage supply and the ground. Finally, f is the

CPU’s working frequency. Each one of them is squared proportionals to the supply

voltage and/or linear proportional to CPU frequency. Moreover, the leakage power

Pleak is also linear proportional to the die temperature [112]. As fan settings impact

the processor temperature, by substitution it also impacts the CPU power leakage,

then to correctly measure the power leakage the fan must be stopped. Moreover, as

shown in Chapter 6, the processor have the ability to change on the fly its operating

frequency and thus its voltage supply level. If the voltage varies, the power leakage

will also vary as shown in Equation 5.1. Then by forcing the hardware to use only

one frequency, the supply voltage remains constant, allowing to measure the leakage

power evolution regarding the die temperature.

Algorithm 1 CPU intensive kernel used to generate CPU heat.

num = srandom(42)

while true do
res += sqrt(num)

end while
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To measure the leakage, the fans are stopped and a single frequency level is set.

An artificial compute intensive task, presented in Algorithm 1, is then launched.

The chosen load forces the CPU to increase its temperature. To ensure that a wide

range of temperatures are reached, the multiple instances of the same benchmark

are launched in parallel on the different processor cores.

A wide range of temperatures is obtained, from the ambient temperature when

the processor is idle, to the critical temperature when the processor is heavily loaded

as shown in Figure 5.3. To achieve such range of temperatures, the fans are also

shut down to allow the CPU to heat up. Algorithm 2 shows the used methodology

to achieve different CPU temperatures.

Algorithm 2 CPU heat generation and measurements

CPU_Freq = max

for Core=0 to maxNbCore do
kill all kernel instance

repeat
fans_speed = max

until system is cooled down

/* stop all the fans */

fans_speed = 0

/* launch one instance per Core */

CPU-kernel(Core)

for sample=0 to 400 do
measure power and temperature

sleep 1 second

end for
end for

Firstly, the CPU is cooled down as much as possible to allow all the CPU cores

to start at the same temperature. All the fans are then shut down to allow the

processor to get beyond 60 degrees Celsius. After that, the stress is started while

periodically measuring the power consumption and the temperature. When the

current CPU load is fully sampled the next load level is started. At the end, a

temperature and power consumption profile is available for each stress level. Figure

5.3 displays the available data. The y-axis displays each sample power consumption

regarding the load level and the x-axis displays the range of reached temperatures.

Each floor is obtained by increasing the number of concurrent benchmark execution.

Due to the leakage power a slight increase on the power consumption can be observed

for each load level while the temperature increases.

Due to the increased CPU activity a huge gap between each load level can

be seen in figure 5.3. Generally, the consumed power is approximated as follows

[27, 42, 50, 165, 162]:

P = Pdynamic + Pstatic

Pstatic ≃ cst

Pdynamic ≃ A× C × V 2 × f (5.2)

As shown in Equation 5.2 the full CPU power consumption P is function of the

power consumed while performing operations Pdynamic and of Pstatic. The leakage
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power presented in Equation 5.1 is considered constant for a fixed frequency and

temperature. The gaps between the different processor loads are due to the increased

Pdynamic. The dynamic power is a function of A the percentage of active gates, C

the total capacitance load, V the supply voltage, and f the processor frequency. As

the experiment is run on the same processor with a fixed frequency and voltage,

C, V and f remains unchanged between two different load executions. However, as

more cores are used, the percentage of active gates raises, increasing A. The activity

factor is then solely responsible for the gaps between consecutive load executions.

It can also be noticed on Figure 5.3 that for some temperature ranges, such as

[48-50], [57-59], and [63-73], two power consumptions are available. As explained

above, the difference between them comes from an increased number of used gates

and can be expressed as follows. P2, and P1 are the two power consumptions

obtained for the same temperature and P2 > P1.

P2− P1 = (PNBcore+1 + Pleak)(PNBcore + Pleak)

P2− P1 = PNBcore+1 − PNBcore

P2− P1 = C ××V 2 × f × (A2 −A1)

P2− P1 ∝ A2 −A1 (5.3)

As told above the power leak is considered as constant for a fixed temperature

and frequency, Pleak can dropped from the equation. Only the dynamic powers

PNBcore+1 and PNBcore remain. As the same processor, frequency and voltage are

used for the two executions, the difference P2−P1 is proportional to the difference

of activity factors.
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Figure 5.3: Power consumption of a Intel Core i5 2380P processor at different tem-

peratures.
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For each point belonging to the same overlapping temperature range, the differ-

ence between the two activity factors remain the same since the hardware has not

changed. Then by subtracting the increased activity factor to all the points belong-

ing to the same overlapped ranged, its impact on the measured power consumption

is nullified. The leakage power then is the only factor responsible for power increase

regarding temperature as shown in Figure 5.4.

Number of load’s thread Power difference (W) Standard deviation

One vs Two 9.98 4.82%

Two vs Three 10.52 4.62%

Three vs Four 11.92 4.26%

Table 5.1: Power cost of using an extra processor core

The difference between each consecutive thread load seems to be 10W when

considering the overlapping temperature ranges on Figure 5.3. Table 5.1 shows

the exact extra cost for each number of used cores. The column power difference

shows the constant value subtracted to each point of consecutive higher load. For

example, 9.98 W were subtracted to each power setting measured while using a two

thread load. The column standard deviation shows the variation noticed for each

overlapped point. As all standard deviations are lower than 5% the cost of using an

extra core is considered as constant. The result of the normalization is displayed in

Figure 5.4.
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Figure 5.4: Normalized Power consumption of a Intel Core i5 2380P processor at

different temperatures.

In Figure 5.4 it can now be clearly see the power increase due to the temperature.

Similar to the method employed to deduce fan power consumption, power leakage

is calculated by a simple difference based on the data displayed in Figure 5.4. Let
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pwHEAT (t) be the CPU power consumption when operating at the temperature t.

The power leakage induced by the temperature t, pwleak(t), is then pwHEAT (t) −

pwHEAT (tidle), with tidle being the temperature reached when the processor is idle.

The measurement procedure does not take into account the power leakage of the

idle CPU. However, it correctly evaluates the relative power leakage for two different

temperatures. The relative power leakage is sufficient for determining the fan setting

leading to the minimal power consumption. The power leakage evolution regarding

CPU temperature is displayed in Figure 5.5. It can be noticed that the power

leakage is linear proportional to the temperature as already proven in previous work

[68, 112, 139].

The way of measuring the leakage can lead to missing values for some tempera-

tures. For example, when the processor temperature evolves quickly, the time spent

at a particular temperature state is insufficient to measure relevant power consump-

tions. This is clearly noticeable for the one thread load in Figure 5.4. Such missing

values are linearly interpolated from the closest values. As a result, the method

provides a full characterization of the power leakage at different temperatures.

Similarly to fan power consumption, leakage information only has to be measured

once for each CPU model under its control. It was decided to focus solely on CPUs,

as processors are the devices most impacted by temperature variations and power

leakage [68, 112, 139].

Finally, the result of the characterization consists in two datasets acquired offline:

the fan consumption and power leakage profiles. The full characterization is auto-

matically performed and only once with a power meter plugged into the computer.

Once the characterization ends, the optimization process starts without requiring a

power meter to be plugged in. The power profiles are used to determine the effects

of the evaluated fan settings on the power consumption. How such data inputs are

used to evaluate and optimize the processor power leakage and fan consumption is

the goal of the next section.

5.4 DFaCE

5.4.1 Overview

Fans are generally used to cool down any critical part within a computer. To do

that more and more efficiently, they have become more and more complex. Current

fans generally have an embedded temperature probes and are powered by a Pule

Width Modulation (PWM) motor. Both features allow an external resource to con-

trol the rotation speed regarding the measured temperature or any other conditions.

Generally PWM signals are coded as binary values, allowing a fine grain control on

fan speed. For example, our experimental platform allows 256 speed steps for every

connected fan. If several fans are available, the number of different settings quickly

increases. For example, the experimental platform has three fans, leading to nearly

17 million different possible settings. Considering all the possible fan settings, the

objective is to determine which one leads to minimal energy consumption. Depend-

ing on the processor usage, the temperature may evolves, forcing the fans speeds

to change. DFaCE aims at finding the optimal fan setting leading to the minimal

energy consumption, for the current workload. To avoid hardware failures, it has to

ensure that extreme temperatures cannot be reached.

The impact of a fan on the temperature can be determined as some simple rules
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Figure 5.5: Power leakage of a Intel Core i5 2380P processor at different tempera-

tures.

govern the relationship between fan speed, power consumption, and temperature.

First, fan power consumption monotonically increases with its speed as shown in

Figure 5.2. A fan cannot run faster with less energy. Second, for a fixed workload,

the temperature decreases as the fan speed increases. Finally, power leakage de-

creases as temperature decreases. Provided the three rules are respected, the space

of the possible solutions is convex and contains only one minimum. The optimal

fan setting is when the total system power consumption is minimal.

To achieve its objective, DFaCE is composed of two phases. During the first one,

the training phase, DFaCE learns the optimal fan setting according to processor

load. The different steps within the training phase are shown in Figure 5.6. First

DFaCE observes the processor load level and measures the die temperature. Once

DFaCE has acknowledged the load level, it searches within its known load level and

temperature which fan speed setting is the optimum. If known, it applies it. If

not or if the load level is new, DFaCE will search for the best solution using the

hill climbing technique detailed in the next Section 5.4.2. Some cases can be found

where the load level does not last long enough, preventing DFaCE from finding the

best solution, and forcing it to stop the optimization process and resume the load

level measurements. However, DFaCE stores the preempted load level convergence

state, and when acknowledged again, the hill-climbing procedure is restarted where

it was stopped and not from the beginning.

The second phase is the fans setting monitoring; it consists in verifying that, at

any time, the fan setting remains at its best. Once the best setting is found and

applied, DFaCE has to ensure that it is the best. The system load can vary, or

fan failure can happen, inducing a change in processor temperature. DFaCE must

acknowledge such external event, and resume the training phase to find the best

new fan speed. The interaction between the two phases is illustrated in Figure 5.6.
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Figure 5.6: Overview of the general system’s algorithm.

Though DFaCE adaptivity is important to face external event, the Hill-Climbing

algorithm is DFaCE cornerstone. Its ability to quickly converge to a solution defines

DFaCE reactivity.

5.4.2 Hill-Climbing

Hill-climbing is an algorithm for determining the global maximum, and conversely

minimum, in a convex space. Hill-climbing optimizers first chooses an arbitrary

solution then evaluates the surrounding ones. As soon as the algorithm detects a

better solution, it uses the new one as the reference point. If none of the surrounding

solutions are better, the evaluation restarts on closer points. Hill-climbing allows a

fast convergence towards the optimal solution in a convex space.

DFaCE has to find the best fan speed while minimizing the sum of the proces-

sor leakage and fan power consumptions. As a reminder, both power consumption

were measured beforehand as described in Section 5.3.1 and Section 5.3.2. Based

on measurements, DFaCE builds a table associating a power leakage to each ob-

served temperature. Both power leakage and fan consumption are then added when

a given temperature is reached during the hill-climbing to estimate the power con-

sumption of evaluated fan settings. The estimated power consumption drives the

evolution and hill climbing ultimately determines the setting leading to minimal es-

timated power. Figure 5.7 exposes the shape of the total power consumption which

includes the CPU leakage and the fan power consumption. It also shows how the

hill-climbing algorithm described above, and illustrated in Figure 5.8, will converge

to the minimum power consumption, thus the best fan speed.
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Figure 5.7: The optimizer evaluates several solutions while always progressing to-

ward the optimum.

Figures 5.7 and 5.8 describe in details all the steps needed to find the best fan

speed. First DFaCE picks up an initial setting, here the highest fan speed. However,

the space is convex and choosing an initial point different from the extrema allows

a faster convergence. Still, DFaCE is conservative and prevents the processor from

reaching its critical temperature, explaining why the highest fan setting is chosen

to start the hill climbing algorithm. Once the initial setting is picked up, DFaCE

evaluates the power consumption of its adjacent fans speeds. To do so, the hill

climbing has to wait for temperature stabilization to retrieve the corresponding

power leakage from the associated table and adds it to the fan power consumption. If

one of them grants a better power consumption, it is considered as the new reference

point here designated as ref . If none of them grants power consumption reduction,

a new set of neighbors is computed while using the same ref . The algorithm iterates

likewise until it does not find any new ref points within all its adjacent fan speed.

The last one is then considered as the global minimum.

Pick an initial

setting
Center evolution

on the best setting

Evaluate nearby

settings

Better setting found

Restrict

neighborhood
Optimal solution

found

Minimal

neighborhood

Figure 5.8: Overview of the learning strategy.

The adjacent fan speeds are called neighbors. The considered neighbors are a

pair of fan speeds. Each neighbor is step distant from their ref point. The neighbors

are computed as Fsref(+/−)step. As an example, consider REF3 in Figure 5.7,
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its first neighbors REF3N1 and REF3N2 are evaluated. However, either of them

do not give a better power consumption. The distance step is then divided by

two, and a new pair of neighbors is considered. If the new neighbors do not give

better solution than the one achieved in REF3, step/4 neighbors are considered. It

continues until a better new neighbor is found. If none, then REF3 is acknowledged

as the best solution.

Figure 5.7 displays the convergence mechanism when only one fan is considered.

But DFaCE was designed to handle numerous fans. Let n be the number of fans,

fsi be a specific speed of the fan i with 1 ≤ i ≤ n and ref be a fan setting

such that ref = (fs1, ..., fsn). Every neighbor of the setting ref is defined as

(fs1 + α1 × step, ..., fsn + αn × step) with αi ∈ [−1, 1], 1 ≤ i ≤ n and step being a

distance between ref and its neighbors. Every time DFaCE finds a better setting,

it evaluates the power consumption of each neighbor. The value step is divided

by 2 when closer settings have to be evaluated. Though more complex with a

multidimensional space, the convergence technique remains the same as the one

exposed in Figure 5.7.

Nonetheless, the Hill climbing algorithm relies on temperature measurements

to find the corresponding power leakage measured at DFaCE first start previously

presented. The temperature evolves slowly when a new fan setting is applied. If

the load level too quickly shifts or ends, DFaCE will always try to find the best fan

setting. This potentially results in applying none. DFaCE must then be resistant

to fast CPU load transition. A fastest way to extract the processor power leakage

from the known profile has to be designed. It is shown before, in Figure 5.4, that

there is a link between the processor load and the temperature. The next section

shows how it can be used to approximate the processor temperature.

5.4.3 System Load

As a reminder, each actor: the processor temperature, the processor power, the

fan speed, and the fan power are linked together. If the processor temperature

changes, its power leakage changes, the fan speed is then adapted changing its

power consumption. Even though theses four actors are linked together, it is the

processor temperature that forces the others to adapt. Then, a fan setting can only

be optimal for a given amount of heat generated by the CPU.

That is why DFaCE learns a different fan setting depending on the amount of

heat generated by the CPU. As shown in Figure 5.3, different CPU loads are used to

traverse the temperature spectrum. Here, the same relationship between the CPU

load and reachable temperature is used to allow DFaCE to approximate the pro-

cessor temperature. One could argue that, only one CPU load could reach multiple

temperatures, making such a criterion not suitable for temperature estimation. As

a reminder, for Figure 5.3 ,the fans were shut down. The heat calories were not re-

moved from the processor die, making the heat necessarily increasing. It permitted

a single processor load to reach multiple temperatures. In the current setup, the

fans are powered, preventing the heat calories to stack up, allowing a specific CPU

load to reach a single temperature point. Obviously, the CPU load metric does not

reflect the exact stress applied on hardware but is sufficient to roughly distinguish

various heat generation levels. DFaCE, then, uses the processor activity to estimate

the amount of heat it generated and learns different fan settings depending on it.

When considering single CPU load values, the scope of possibilities that must be
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tested by DFaCE can be significant. To accelerate the time to solution, it was de-

cided to consider a range of processor loads. The best fan setting is then determined

for a given load range. Considering load ranges instead of exact load values leads

to a slightly sub-optimal result as the amount of heat generated is not constant for

all the possible activities in the same range. In the current implementation, DFaCE

considers load ranges of 10%, meaning that it learns 10 different settings to cover

all the possible cases.

To measure the impact of one of the 10 different fan settings on the power con-

sumption, DFaCE must wait for the temperature to be stable. If not, DFaCE only

has a biased vision of the real impact of the fans speed on both processor leakage and

fan power consumptions. The temperature stabilization can take several minutes.

Meanwhile, the system load must remain steady. However, a scientific application

rarely produces a constant load state. Therefore, if the CPU load changes before

temperature stabilizes, the measurement is paused. Though a scientific application

does not produce a constant load level, it generally cycles on a fixed range of dif-

ferent load levels. DFaCE resumes the power evaluation, i.e. the learning phase, as

soon as an already known load level is noticed and from that setting. In the presence

of variable system loads, the learning process could be longer. Nonetheless, as it

can resume the evaluation from where it paused, DFaCE still limits the effects of

variable workloads on hill climbing convergence time.

The result of the learning phase is then a set of optimal fan settings for different

workload level ranges. Once DFaCE has determined the optimal fan setting for

one workload level, it immediately applies it once the workload level is observed.

However, the link between the load level and the temperature is valid provided that

no external factor occurs and changes that relation. As a matter of fact, if a fan fails,

the processor generates more heat. Then all previously computed couple CPU load

and temperature are not valid anymore. Thus, DFaCE has to be also resistant to

any external factor changing the processor temperature to prevent it from reaching

its critical temperature as explained in the next Section.

5.4.4 Temperature Stability And Critical Heat

Unexpected external events impact the system temperature and therefore the op-

timal fan setting. Two major events lead to such a situation. First, the external

temperature of the computer might vary, due to local hotspots appearing in the clus-

ter or to a weakness of the air cooling system. Second, one of the fans under control

might fail and slow down, or even stop. In both cases, the system temperature is

different from the one measured during the evaluation phase. As the temperature

is not the expected one, power consumption is sub-optimal: either the system is

colder than expected and the fans should be slowed down, or the temperature is

higher than what the optimizer learned and the fan speed may have to be increased.

Considering the consequences on energy consumption, such external events have to

be considered.

In DFaCE, the memorized fan settings are not permanently fixed. Instead, when

a previously learned fan setting is applied, DFaCE waits for the temperature to sta-

bilize and compares it to the temperature observed when learning the fan setting

during the evaluation phase. If the difference is greater than 3 ◦C, the fan setting is

not considered as optimal anymore and a new learning phase is started, using the

previous optimal setting as the starting point for hill-climbing. The 3 ◦C difference
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was arbitrary set, based on real temperature evolution through an application exe-

cution. The ability to restart the hill climbing algorithm ensures system reactivity

to unexpected events such as a fan failure or a local hotspot.

Temperature instability is also used to the advantage of DFaCE. When a previ-

ously learned fan setting is applied, it takes several minutes before the temperature

settles. As long as the temperature is below the one observed during the learning

phase, all fans are shut down to decrease power consumption. Once temperature

reaches the expected value, DFaCE starts the fans and sets them to the learned

optimal speed minimizing the power consumption and maintaining temperature sta-

bility.

Although DFaCE estimates the generated heat based on system activity, the

processor temperature cannot be totally ignored: any cooling system has to ensure

no hardware failure occurs due to overheating. Most of the components have critical

temperatures above which the hardware lifetime is greatly shortened. The critical

temperature is generally given on processors data sheet. It is essential for any cool-

ing system to prevent the hardware from reaching its critical temperature. DFaCE

is then designed to react quickly when a setting provokes overheating. Notice that

CPU lifetime can also be impacted by DFaCE if it increases the operating temper-

ature [159]. During the evaluation phase, a fan setting is immediately rejected if

it leads to a temperature just below the critical threshold. Additionally, if a pre-

viously learned setting leads to near overheating situations, DFaCE considers the

setting as invalid and starts new Hill climbing iterations using higher fan speeds.

Thus, DFaCE never sets the fans to speeds that cause overheating. It has been seen

how DFaCE converges to a solution, approximates the processor temperature with

the system load, ensures the temperature stability and avoids critical temperatures.

However, one last question remains: How fast DFaCE converge to a solution.

5.4.5 Convergence Speed And Optimal Temperature

DFaCE was implemented and tested on an experimental desktop in order to evaluate

its accuracy and convergence time. Yet, the transposition to server blades is purely

transparent provided it is equipped with compatible hardware: RPM controlled

fans. The experimental platform is made of a desktop computer with three different

controllable fans: a Scythe Mugen 3 CPU fan and two Alpenföhn Wing Boost 120

chassis fans. One of the chassis fans is located in front of the box, while the other

one extracts air at the rear, near the CPU. The CPU is an Intel Core i5 2380P

quad-core processor with one thread per core. The running operating system is

Linux 3.4, using an experimental driver for the Nuvoton NCT 6775 fan controller

chip [142] embedded on the ASUS P8Z77V PRO motherboard.

As a reminder, DFaCE controls the CPU heat through fan speed adaptation

regarding each workload. The experimental computer executes synthetic micro

benchmarks performing CPU intensive operations such as square root operations

or random number generations, and uses an increasing number of processes. The

same execution setup used for processor leakage and fan power study. It gener-

ates various load levels that last long enough to let DFaCE determine the ideal fan

setting for every generated load level.

The experimental platform is made of three fans, implying a three-dimensional

domain space. Before starting, the optimizer was set to its initial default state and,

using the artificial workloads, it automatically learned the best fan settings. During
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Figure 5.9: DFaCE evaluates only a subset of the fan settings before converging on

the optimum.

the experiment, DFaCE converged towards the optimum solution and a large amount

of the evaluated settings were close to optimal, which leads to an already lower power

consumption during a major part of the execution, illustrated in Figure 5.9. The

figure represents the evaluated fan speed solutions by DFaCE during the learning

phase for a given workload. The rightmost point in the figure is the first evaluated

setting. It corresponds to the full speed setting on the three fans. It is clear the

initial default setting is too aggressive, hence the optimizer quickly considers lower

fan speeds. The concentration of the evaluated points shows the ability of DFaCE

to convergence towards a solution.

The settings closest to the optimum solution were all evaluated in the last phase

of the hill-climbing algorithm where the optimizer searched for the optimum solution.

The density of the cloud of points shows a large amount of the evolution time is

spent near to the optimum setting. If Figures 5.10 and 5.11 are considered, the

power consumption after 1, 200 minutes is close to the power consumption induced

by the optimum setting. Meaning that respectively 30% and 52% of the total hill-

climbing evolution time is spent in evaluating setting close to the optimal one.

Figure 5.9 illustrates the efficiency of the hill climbing optimization as only a few

settings far from the optimum are evaluated. In fact, most of the hill-climbing time

is spent near the optimum setting. DFaCE quickly converges towards the lowest

power consumption during the evolution. Moreover, one can notice on Figures 5.10

and 5.11 that power consumption is close to minimal long before the optimization

ends, especially in Figure 5.11. Even if DFaCE needs a long time before determining

the optimal fan setting because of the slow temperature stabilization, it can achieve

near-optimal fan control long before the learning process finishes.

To understand fan and power leakage, and the corresponding CPU temperature

DFaCE observed during the optimization procedure, consider two different artificial

loads presented with Figures 5.10 and 5.11. The convergence of the optimizer is

observed on both the power and temperature curves, although the duration to con-

vergence depends on the initial setting. When only a single core is loaded, the initial

default fan setting is close to optimum, leading to less evaluations before converging
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Figure 5.10: Fan power consumption plus power leakage, and CPU temperature

converge towards the optimal solution with a 25% load level.
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converge towards the optimal solution with an half-loaded CPU.
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then in the second presented case. Compared to Figure 5.10, the evolution time

nearly doubles in Figure 5.11. In case of two loaded cores illustrated with Figure

5.11, the default setting is far from the optimum solution, forcing the optimizer to

evaluate more settings before converging. The two presented evolutions illustrate

the importance of the initial setting to accelerate the evolution; enhancing the ini-

tial fan setting is future work. For clarity purpose, the cases with 75% and 100%

processor usage are not presented. They expose the same behavior as Figures 5.10

and 5.11. However, the temperature acknowledged as optimal by DFaCE for such

configuration are presented in Table 5.2. One can have concerns about the cred-

ibility of such system taking more than 20h to converge. As said above, the first

fan setting is far from optimal, and choosing more wisely the Hill-climbing starting

point could greatly reduce the convergence time. However, it is left for future work.

Furthermore, it has to be kept in mind that the search for optimal temperature

regarding different processor loads is performed to build a knowledge base to be

used by DFaCE. For different range of loads it knows the optimal temperature and

the corresponding fan settings. Therefore when DFaCE is running, it can use that

knowledge base to instantly set the optimal fans settings to match a specific load

and temperature.

Load level (%) 0 25 50 75 100

Optimal temperature (◦C) 36 54 56 64 65

Table 5.2: Optimal CPU temperature for different workload levels.

Table 5.2 shows the temperature found as optimal by DFaCE regarding a specific

CPU load. It can be seen that there is at least three temperature modes. One when

the machine is idle, one when the processor is partially loaded, and another one

when it is heavily stressed. However, the usual method for managing fans consists in

defining a single temperature threshold and adapting a fan speed to remain as close

as possible to the threshold. When the temperature increases, the fan speed is also

increased, when the temperature is below the threshold, the fans are stopped. The

temperature threshold has to be low enough to prevent the processor from leaking

too much power. It also has to be high enough for fans to operate at a low speed

for any temperature, preventing them from over consuming power. In any ways a

single threshold cannot efficiently satisfy theses constraints. Thus, thermal-directed

fan controllers cannot reach optimal power consumption because they consider a

single temperature threshold for every system load where DFaCE shows there is

at least three. DFaCE is then superior to classical thermal-directed controllers.

Nonetheless, its superiority compared to thermal-directed controllers does not state

its real ability to reduce processor power leakage and fan consumption.

5.5 Power Savings

Once DFaCE discovers the best fan setting for all possible load levels, it immediately

applies it as soon as a new load level is observed. Load level variations are detected

thanks to periodic checks that do not induce any measurable CPU overhead. As

explained before, to accelerate the hill climbing convergence, DFaCE only learned

the optimal fan settings for ten different load level. However such partial knowledge
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is still sufficient to evaluate the power savings achieved at the learned load levels.

An arbitrary sequence of programs, built from the NAS-OMP 3.0 benchmarks,

was run using a different number of threads for each program using DFaCE and

thermal-directed fan control. The experimental procedure executes a realistic sce-

nario made of existing programs, while the variable number of threads provokes

variable load levels, trying to fool the optimizer. The load level seen by DFaCE

roughly corresponds to a fourth of the number of threads as the tasks are compute

intensive and as there are four cores on the processor. The programs and correspond-

ing number of threads used for each program are presented in Table 5.3. The optimal

fan setting discovered by DFaCE was compared to the default thermal-directed fan

controller targeting 50 ◦C, the factory setting, or 60 ◦C, arbitrarily determined as a

relevant value. Such thermal-directed temperature is provided by the experimental

motherboard, an ASUS P8Z77V PRO, and consists, as any thermal-directed con-

trollers, in increasing fan speeds, when the temperature exceed the threshold, in

order to maintain the system as much as possible below the threshold temperature.

Program BT CG EP FT

# threads used 1 2 4 2

Savings over 50 ◦C (fan + leakage) 17% 40% 46% 33%

Savings over 60 ◦C (fan + leakage) 29% 28% 34% 31%

Program IS LU MG SP

# threads used 1 4 4 4

Savings over 50 ◦C (fan + leakage) 16% 0% 9% 3%

Savings over 60 ◦C (fan + leakage) 32% 31% 0% 30%

Table 5.3: Power savings achieved by DFaCE compared to thermal-directed cooling

with a target temperature of 50 ◦C or 60 ◦C.

During the experiments, the power saved by DFaCE at the overall system scale

were measured by using a Yokogawa WT-210 power meter plugged to it. In order

to determine how significant are the power savings compared to existing mecha-

nisms, the power savings are expressed as a percentage of the maximal fan power

consumption and power leakage induced by the default thermal-directed cooling

system targeting 50 ◦C or 60 ◦C. They are displayed in Table 5.3. The maximal fan

power consumption is the value induced by the maximal fan speed and the consid-

ered power leakage is the one observed at the temperature targeted by the cooling

system, i.e. 50 ◦C or 60 ◦C. As the maximal power consumption is considered, the

savings expressed as percentage of the fan consumption and power leakage are in

fact a pessimistic lower bound. Additionally, power savings can be expressed rela-

tively to the overall system consumption. Table 5.3 shows two distinct cases. Either

the saving obtained by DFaCE versus the thermal-directed system targeting 50 ◦C

are higher than the saving obtained when the thermal-direct target 60 ◦C or the

contrary.

In the first case, the temperature generated by the application is greater than

60 ◦C. It forces the thermal-directed to maintain the fan at full speed longer than if

the target was 60 ◦C. It explains why DFaCE achieves more power savings against
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the 50 ◦C target than against the 60 ◦C one.

In the second case, the temperatures generated by the applications are comprised

between 50 ◦C and 60 ◦C. DFaCE achieves almost no power saving on LU or SP

when considering 50 ◦C thermal-directed target. It is because DFaCE learned fan

speed are almost the same as the average fan speed obtained by the thermal-directed

system. However, DFaCE still is able, to obtain power savings when considering the

60 ◦C target, mainly because it can save more power leakage than the 50 ◦C target.

Indeed, if the application generated temperature is comprised between 50 ◦C and

60 ◦C there is no need for the thermal-directed policy to speed the fans more often

than with the 50 ◦C target. The savings are then not obtained on the fan speed

slowing down but rather on the lowered power leakage since a lower temperature is

maintained by DFaCE.

The presented numbers show that DFaCE is able to significantly improve the

power consumption of the fans and power leakage. However, because the cooling

sub-system does not represent a major part of the overall system power consumption,

the achieved savings only represents an average of 3% of the full system consump-

tion. It is reasonable to expect more gains in computers where the fans account

for a larger part of the total power consumption, such as the ones used by [166].

Even though the power savings regarding a single machine are marginal, the fans

are able to limit the processor power leakage. On the used hardware it can repre-

sent at most 23% of the total CPU power consumption, purely wasted. It is why

manufacturers designed multiple states where some processor parts are shutdown

to limit the leakage. Shutdown electronic does not draw power, thus do not leak.

The different states, presented in the next chapter, are either idle states or different

performance states. The idle states aim to shutdown unused or non mandatory

elements, regarding the current processor usage. This allows to reduce the leakage.

The performance states, by lowering the stress put on the processor, reduce the

heat generation thus the leakage. Even though, performance states are mainly used

to adapt the processor running frequencies, as shown in Part II and Part III, they

transparently reduce the impact of leakage on the overall processor power consump-

tion. The current chapter introduced the knowledge of processor power leakage and

hints on processor dynamic power. The next chapter pursue in that direction. It

exposes the most common model for processor power consumption, as well as all

the different CPU state and how they impact the processor power model. Finally,

small assembly instructions benchmarks are executed to acknowledge how processors

actually consume power.
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CPU And Its Environment

Until 2006, manufacturers doubled each eighteen months the transistor density on

their processor families. The increase reached a point where any standard cooling

system, like fans presented above, were not able to keep the CPU in an accept-

able temperature range. As an example, Pentium D 960 had a 130W TDP alone.

After three generations of hardware design, P5, P6 and Netburst, Intel decided to

re-design the Pentium M family for multi-core. It gave birth to the Core family

processors. The new family was offering a Thermal Design Power (TDP) ranging

between 10 to 150W. The 150W was obtained on the extreme editions of the family

which were quad-core processors and no longer single core as the Pentium D. Among

the enhancement and addition done to the Core processor family, power manage-

ment features were added. Under the name of Intel SpeedStep [4] and TurboBoost

[1], leverages were offered to the operating system to manage the CPU operat-

ing frequency and efficiently encounter a wide range of situations regarding power

consumption. All the means offered to the OS to manage the CPU power con-

sumption are presented below. Though a lot of enhancements were performed on

CPU thermal dissipation and power consumption, it still is acknowledged as a the

main consumer [44, 50] in most configurations. Therefore a thorough study on how

the CPU consumes power and energy is conducted. Such an insight will help de-

signing techniques, presented in Part II and Part III, using the means exposed to

the OS to efficiently manage energy consumption regarding the CPU activity.

6.1 Processor Power Model

Before presenting the means exposed to the Operating System to regulate power

consumption, the CPU power consumption has to be understood. According to,

[27, 42, 50, 69, 73, 162, 165], the most common model for CPU power consumption

is as follows :

P = Pdynamic + Pstatic (6.1)

Where Pdynamic is mainly induced by the use of the CPU, the higher the usage

the higher the consumption is. On the other hand Pstatic comes from hardware

imperfections such as leakage, shoot through current or parasitic wire capacitance.

Generally the Pstatic is considered static and invariant whereas the Pdynamic varies

regarding the CPU activity as shown in Equation 6.2.

Pdynamic = A× C × V 2 × f (6.2)

The activity variation is expressed by A which is the activity factor, quantified

as the percentage of active gates. For example if a parallel application is using all

the cores, the resulting activity factor will be higher than a sequential application

using a sole core. V and f are respectively the voltage supply and the operating
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frequency. Finally C is the total capacitance. C can be expressed as the sum of all

the gates capacitance. It can be seen in Equation 6.2 that Pdynamic is quadratic to

the voltage. Lower the voltage means important power saving. It will be seen in

the next section that the OS sees the operating frequency and voltage as a couple

called P-state. Therefore changing the P-state changes the frequency and voltage,

impacting the overall power consumption P because Pdynamic is strongly impacted.

Yet the dynamic power is not the sole actor in the overall processor power con-

sumption. It has been shown in Chapter 5 that the static power is linear to the

temperature. Breaking down the overall CPU power consumption means leverag-

ing significant savings on the dynamic power to compensate the static impact on

energy. That is why reducing the static power consumption is also important when

seeking processor power reduction. As it will be explained in the next section, as

P-state above, processors expose additional states, where sub-parts of the fabric are

shutdown. Parts that are not powered cannot leak, inducing power saving on Pstatic.

As hinted above, the Operating System has a set of leverage, which are pre-

sented in the next section, to control either the dynamic power or the static power

consumption. By taking advantage on both, the OS is able to control the overall

power consumption regarding different usage scenario.

6.2 Advanced Configuration and Power Interface

(ACPI)

The ACPI [5] provides an open standard for devices configurations and power man-

agement by the operating system. Initiated by Intel, Microsoft and Toshiba, it

defines platform independent interface for hardware discovery, configuration and

power monitoring and management. It gives end users the ability to control, for

example CPU operating frequency, fan speed or to monitor CPU or GPU temper-

atures. In addition to expose hardware feature through dedicate API, the ACPI

allows Operating System directed Power Management (OSPM).

6.2.1 OSPM States

OSPM allows the operating system to manage its power consumption regarding the

state it is in. For example, if the user is not using its computer for a long period

of time, there is no need to operate at full speed. The OS can decide to put itself

in a transient state allowing him to consumes less power by shutting down non

mandatory features and let it decides to resume the full speed state or go deeper in

features deactivation. To do so, a tree of different states is exposed to the OS as

shown in Figure 6.1.

The global states describe the whole system power modes. G0 corresponds to the

working state and G1 corresponds to sleep states when no one is using the system.

While being used, the CPU faces different utilization. C0 corresponds to the state

where the processor is executing instructions. The other states C1 to C7 correspond

to idle states.

Idle states must not be mistaken with the Sleep states. Idle states only concern

the processor whereas Sleep states impact the global machines.

As an example, for Intel Core i7 family [81], in C1, the processor cores are halted

and processor cache coherence is maintained. In C3, each core flushes the contents

of their first level of instruction and data cache, along with the second level of cache
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Figure 6.1: ACPI state tree.

Frequency Voltage P-State

1.6 GHz 1.484 V P0

1.4 GHz 1.420 V P1

1.2 GHz 1.276 V P2

1.0 GHz 1.164 V P3

800 MHz 1.036 V P4

600 MHz 0.956 V P5

Table 6.1: Intel Pentium M at 1.6GHz P-state detail.

into the shared last level of cache. The cores maintain their architectural states. All

core clocks are stopped. Finally, in C6, the cores architectural states are saved in

a dedicated SRAM on the chip. Once it is completed, the cores power supplies are

shutdown. One can notice that the Intel Core i7 family does not implement each

C-state, each manufacturer decide whether or not they implement each state or only

a subset. But the deeper the C-state, the longer the latency is to put the processor

back in C0.

If the processor is executing instructions, different performance states can be

used. Generally called P-states, they correspond to a CPU operating point. A

P-state is a pair of an operating frequency and a voltage. The frequency-voltage

matching pair comes from transistor physics. Lower voltage implies slower transistor

commutation speed leading to an increased latency of CPU operations, inducing

lower operating frequency. Generally each P-state associates a unique frequency

and a unique voltage as shown in Table 6.1 for an Intel Pentium M at 1.6GHz [83].

However a unique voltage can enable several operating frequencies, for example,

in Table 6.1, 1.420V is the efficient lower bound needed to sustain the 1.4GHz

operating frequency. The CPU could also be powered with 1.484V and still use the

1.4GHz CPU frequency. To shift between P-states, the processor asks the voltage

regulator to scale to the correct voltage according to the selected frequency. If it is

an ascending shift, meaning switching to higher frequencies, the voltage has to scale

up to meet the requirements as shown in Figure 6.2. If it is a descending shift, the

frequency can be immediately switched without waiting for the voltage to reach the

correct level as shown in Figure 6.2. However, as power consumption efficiency is

sought by manufacturers, the voltage scales down to the matching voltage defined by

the P-state. Each voltage transitions are not instantaneous since voltage regulators

are controlled systems. A finer study on commutations times between frequencies

is conducted in Section 8.3. It shows that the commutation time must not be

neglected. The frequency cannot be switched too frequently otherwise the toll on
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(0.956V ; 600 MHz)

(1.164V ; 1.0 GHz) 

(1.420V ; 1.4 GHz)

Voltage Frequency

Figure 6.2: Voltage and Frequency up-scaling/down-scaling behavior.

processor power consumption is huge. In addition, the study also shows that the

execution pipeline has to be stopped to take the new frequency into account. It

enforces that frequency shifts have to be carefully performed.

Figure 6.2 displays voltage-frequency theoretical scaling during an application

execution. A more realistic voltage and frequency scaling can be found in [96].

As for Idle states and Sleep states, P-states must not be confused with T-states.

The T-state, called throttling state, is the first attempt to let the hardware modulate

its operating frequency. Originally designed to prevent the processor from reaching

critical temperatures, the T-state allowed a logical division of the base clock. For

example, if the base clock is divided by two, only half of the clock ticks will trig the

processor logic. It insures lower levels of stress, making it dissipates less energy and

reducing the die temperature. Though efficient to manage processor temperature, it

was not intended to modulate the processor power consumptions, as it can be done

with the P-state and Dynamic voltage Frequency Scaling drivers in Part II.

The operating system has several ways to tweak on the fly the processor energy

consumption. It can even decide to shutdown the whole system. Processor states

(C-state) and performance states (P-state) can be set regarding the processor/core

usage. To illustrate how both P-state and C-state are linked, PowerTop [82] was

used to monitor the processor activity while literally writing this thesis for 20s.

The PowerTop report is displayed in Table 6.2. The processor was an Intel Core i3-

3227U. During PowerTop monitoring, several applications were running. The set-up

induced an overall processor usage of 15%.

The tested processor exposes fourteen different P-states and three processor

family specific C-states, in addition to C0 and C1. The usage of the different P-

states and C-states are exposed per core. There is only two columns Core 0 and 1

since the studied processor only has two physical cores. It will be seen below how

P-states and C-state are handled in multi-core chip environment. As only thesis

writing was performed, the processor was not put in huge stress explaining why

only the lower frequency was used. Even though the processor was used at 15% in

average, processor cores were in idle state most of the time. And while the cores were

idle, the deepest idle state was used most of the time, meaning core consumption

shutdown [79]. By using the means to lower power consumption the Operating

system was able to, transparently, limit the battery draining to 10W. If applications

more CPU demanding are run, like one of the arithmetic benchmark used later in

Section 6.5, the operating system is forced to put each core in C0 using the highest

frequency for 98.2% and 99% of the profiling period respectively for Core 0 and 1.
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P-state C-state

Name Core 0 Core 1 Name Core 0 Core 1

Turbo Mode 2,5% 1,7%

C3 (cc3) 0,7% 0,9%

1,91 GHz 0,0% 0,0%

1,80 GHz 0,0% 0,0%

1,71 GHz 0,1% 0,1%

1,60 GHz 0,0% 0,0%

1500 MHz 0,0% 0,0%

C6 (cc6) 0,0% 0,0%

1400 MHz 0,0% 0,0%

1300 MHz 0,0% 0,0%

1200 MHz 0,0% 0,0%

1100 MHz 0,0% 0,0%

1000 MHz 0,0% 0,0%

C7 (cc7) 74.8% 72.6%

900 MHz 0,0% 0,0%

800 MHz 0,0% 0,0%

779 MHz 22,3% 11,4%

Idle 75,0% 86,7%

Table 6.2: P-state and C-state usage while writing this PhD thesis.

The intense need of computation prevents the OS from using idle states, making the

processor drains 18W from the battery.

In Table 6.2 both processor cores spent a different amount of time in the different

states. There is only one voltage line managed by the voltage regulator for the entire

processor. A unique voltage supplies then the different processor cores. It means

that only one P-state can be used at a time for all processor core. One question

arises: How does the operating system manage different P-states for the different

cores. The same question can be translated to C-states, how does the OS decide

to shutdown cores shared resources?. Decision mechanism are implemented in the

frequency driver to answer those questions. They are presented in the next section.

6.2.2 P-state, C-state and Multi-core Chip

After 2006 to stop the frequency race and break down the unsustainable proces-

sor Thermal Design Power (TDP), manufacturers shifted from a unique complex

execution pipeline to multiple cores. By compensating the frequency drop with par-

allelism, the trend shows that manufacturers produce processors with an increasing

number of cores, even maximizing the parallelism by using multiple physical thread

per processor cores. Yet only one voltage regulator remains, allowing only one volt-

age and frequency operating point for the overall processor.

P-states Previously in PowerTop report, showed in Table 6.2, Core 0 and Core

1 have a different usage of the Turbo Mode and the 779 Mhz frequencies. It is

possible for PowerTop to expose different usage per core for one frequency because

the ACPI-cpufreq driver sysfs interface, exposes means to manage the frequency per

cores. As said above, only one voltage regulator feeds a single voltage level to the

processor. It implies a single frequency common to all processor cores at a time.

That is why the ACPI-cpufreq driver have the final word. It selects the maximum
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between the requested frequency shift and the one already used. Regarding the P-

state, it is the lowest P-state which will be selected. For example, if a CPU has four

cores and each are requesting respectively 1.2GHz - P2, 0.9GHz - P4, 0.9GHz -

P4, 1.0GHz - P3, the frequency which will be set will be 1.2GHz - P2. Therefore,

if a system wants to modulate the frequency per processor core, it must be aware

that the applied frequency is not the pure reflection of the asked ones.

Machines or processors where multiple frequency domains coexist, can be cre-

ated. The best examples are machines with multiple processors or many-core ar-

chitectures like the Intel SCC platform [71, 119]. A frequency domain is composed

by the cores bearing the same voltage/frequency operating points. In the multipro-

cessor case, each core belonging to the same processor are in the same frequency

domain. On the Intel SCC, 48 cores are on the same die, but the on-chip regula-

tor allows the user to independently control the frequency of 8 cores clusters [136].

However, within each frequency domain, the frequency is chosen as described above.

C-states Contrary to P-states, each core can have a different C-state. However,

there is a restriction with hyper-threaded processors. An hyper-threaded processor

implies two hardware threads per core. Though each thread can choose the best C-

state regarding its state, only one C-state can be used for both threads. Halting the

execution, flushing caches or even power off cores are actions that can be performed

as a result of choosing a C-state. De facto, one thread cannot ask to power off its

execution core while the other thread is still computing instructions. Hence, both

threads C-states are compared and only the minimum is applied to the core, which

is the least aggressive in terms of feature shutdown.

The operating system and the user, with the ACPI, have a wide range of means

to optimize the CPU power consumption. However, the different means have to

be separated in two categories. The ones directly usable by the users and the ones

transparent to him. On the one hand, a user can force a specific P-state through

the frequency driver. Part II shows how it can be efficiently used through the

presentation of several systems. With a different degree of intelligence, they try to

adapt the processor P-state through time regarding processor load to lower processor

energy consumption. On the other hand, the OS decides which C-state to use for

each processor core without notifying it to the user. Though a user can find a way

to modify the different C-states, he must have a complete view of the processor state

and what is to come to prevent his choices from strongly impacting the processor

execution flow.

Modulating processor P-states regarding computation needs is only meaningful

if the processors cores are not in idle state. Indeed, writing this thesis does not put

enough stress on the CPU to force most of the cores out of C7, where the cores are

powered off [79]. That is why optimization solutions presented in Part II and Part

III are performed during application executions.

In a nutshell, P-state modulation is used when the processor is in C0 state, i.e

while performing work. It will then directly impact Pdynamic. The C-states aim

to shutdown processor part that are not needed regarding its state. Parts that are

shutdown cannot leak, it then directly impact Pstatic.

The processor power model, exposed in equations 6.1 and 6.2, helped understand

why utilizing the different P-states or C-state will help reducing the CPU power con-

sumption. However, they do not state how the processor consumes power and energy
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when executing applications. Moreover, having a complete understanding of appli-

cation power and energy consumption is complex due to the obfuscation brought by

different level of abstractions inherent to scientific applications. Consequently, to

focus on processor consumption, a fine grain power and energy consumption study

is conducted in the next Sections 6.4 and 6.5. It will give an insight on how the

processor consumes power regarding different types of instructions. Such insight can

be later used to better understand application energy footprint as show in Sections

8.1 and 8.2.

However, to produce the different measurements a robust evaluation method-

ology is needed. Therefore, before jumping to the insight on power and energy

consumption of multiple instructions, the next section presents the methodology

used to achieve precise power and energy characterization.

6.3 Micro-benchmarking Characterization

Application performance or energy optimizations are complex processes that can

take multiple forms. By fully understanding the application, and then perform-

ing optimizations to ease the computational process. For example, designing good

heuristics is a solution. Another technique starts by characterizing in detail the

hardware used to execute the application. Then, the next step is to tweak the

existing application by taking full advantage of features offered by the underlying

architecture. Micro-benchmarking characterizations are used in such a way.

Micro-benchmarking systems [122, 125] intend to test and analyze very spe-

cific features offered by the hardware. For example, measuring the impact of data

prefetchers or the power cost of an addition instruction. Gathering such insights

on the hardware can help developers optimize applications or predict code snip-

pets performances [124]. However, achieving fine grain measurement needs a robust

methodology as the one presented in 6.3.1 to ensure the data quality.

As a recall, Section 6.1 exposed the processor power consumption model. How-

ever, the model does not clearly state how a CPU will consume power and energy

regarding a real application execution. The power model also does not show how

P-state can impact the overall CPU power and energy consumption. The goal of the

benchmarking study is to gather such an insight. An application generally oscillate

between data movements and computations. It was then natural to focus the micro-

benchmarking study upon memory instructions, as well as arithmetic instructions.

Results and observation are presented in Sections 6.4 and 6.5.

6.3.1 Measurement Methodology

Micro-benchmarking uses the same process as any measurement method. For ex-

ample, when a function execution time has to be known, one puts a probing system

at function start-up and exit and by subtraction obtains the function execution

time. However, micro-benchmarking is targeting very specific hardware features,

any outside noise or poor conception in the test environment system can lead to

huge variation on the measured data. To prevent that it exists several ways to

ensure measured information sanity by stabilizing the measurement environment.

The first thing to do is to repeat multiple times the benchmark as shown in

Algorithm 3. Gathering measurement on several executions easily exposes any in-

stability. Table 6.3 shows different executions of an synthetic benchmark build with
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Algorithm 3 Several function execution timing procedure

for meta = 1→ nb_meta do
start← probe()

run_function()

stop← probe()

function_exectime[meta]← stop− start

end for

ADDPS instructions as the one shown in Figure 6.3 or 6.6. The first row exposes

ten repetitions of the benchmark as described in Algorithm 3. It can be clearly seen

that it is not stable since each measurements is very different from the other. There

is no way to know whether 6.35 or 9.2 seconds is the real benchmark execution time.

Using statistical tools such as the standard deviation, solves that uncertainty. The

standard variation roughly represents 20% of variation on the data set which is not

good, a mean to stabilize each execution is then needed. The multiple iterations for

gathering measurements are called meta-iterations in the remainder of the section.

ADDPS benchmark execution time in seconds
Standard

Deviation

With Algorithm 3

6.35 7.12 7.69 8.05 8.69 9.05 9.2 6.49 8.92 6.35 1.15

With Algorithm 4

6.31 6.32 6.33 6.31 6.34 6.36 6.32 6.32 6.35 6.31 0.02

Table 6.3: ADDPS benchmark execution time for several consecutive executions.

Algorithm 4 Noise reduction

for meta = 1→ nb_meta do
start← probe()

for repeat = 1→ nb_repeat do
run_function()

end for
stop← probe()

function_exectime[meta]← (stop−start)
nb_repeat

end for

There is no way to perfectly control the test environment, therefore outside

events can disrupt the function execution. For example, the Operating System can

move the function execution from one core to another, forcing cache misses, or

provoke context switches. If variations exist, as in Table 6.3 first row, increasing the

number of benchmark repetitions between the measurements point is a good way to

solve the problem. It will make that potential additional time tend to zero. Provided

that the number of repetitions is high enough, the new Algorithm 4 ensures that

outside noises have limited impact on the measurements. Algorithm 4 was then used

to re-evaluate the ADDPS benchmark execution time and the results are displayed

in Table 6.3 second row. The associated standard deviation represents around 1% of

variation on the data set which gives confidence on the quality of the measurements.

Performing good measurements is a complex and a long process to ensure mea-
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sured data quality. Algorithm 4 presents the generic method to ensure that. It is im-

plemented in MicroTools [20]. MicroTools is used for the micro-benchmarking stud-

ies presented in Sections 6.4 and 6.5. MicroTools compiles, executes, and monitors

functions written in assembly code or binaries. As said above micro-benchmarking

is used to test specific features which need very fine grain measurements. There-

fore, MicroTools was chosen to execute designed functions because its capacity to

launch assembly codes. It ensures that each wanted hardware features are triggered

independently one at a time.

6.3.2 Test Environment

Model Number X5650 E3-1240 D510

Architecture Whestmere SandyBridge Bonnel

Processors 2 1 1

Cores/Proc. 6 4 2

Memory 8 Gb 4 Gb 2Gb

Measurement Granularity
Entire CPU & Entire Entire

Machine Machine Machine

Use case
Memory Arithmetic Arithmetic

Benchmarks Benchmarks Benchmarks

Table 6.4: Experimental Testbed.

As presented above, it was decided to focus the micro-benchmarking study upon

memory instructions and arithmetic instructions since an application generally os-

cillates between data movements and computations.

Generally, accessing memory is considered as a common bottleneck. If huge

amounts of data are fetched from the different level of caches or from the RAM,

the memory bandwidth can be saturated. Consequently, the throughput is strongly

impacted forcing the application to wait longer for its data. Therefore, the execu-

tion time and energy consumption regarding data movements from any level of the

memory hierarchy, whether its bandwidth is saturated or not, is measured. The

gathered insights are presented in Section 6.4.

On some configurations, saturating memory bandwidth was not possible. Table

6.4 shows the different configurations used for the micro-benchmarking study. The

first configuration used was the single SandyBridge E3-1240 processor machine.

However, the memory bandwidth was over-sized and even by executing up to four

micro-benchmark in parallel the memory could not be saturated. The dual Westmere

X5650 processors was then considered. By executing one micro-benchmark instance

per CPU core bandwidth saturation was achieved.

After the memory study, the focus was put on arithmetic instructions, and how

they consume power and energy regarding two different granularities. The measure-

ments were performed at the processor and the entire machine scale as shown in

Table 6.4. It will be seen in Section 6.5 that each granularity drastically reports

different energy behaviors. Energy optimization decisions can then be different de-

pending on the considered granularity. The focus was also put on potential difference

between energy behaviors from the HPC and the embedded worlds. As they share

the same desire, to reach the maximum computation capability within their con-
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straints, it was then interesting to compare how both trends of processors consume

power. The arithmetic instructions power consumption of the SandyBridge E3-1240

was compared to the low power Atom D510 and their differences are presented in

Section 6.5.

6.4 Memory

The goal of the section is to present the energy consumption of the memory sub-

system. It helps gathering insight on how memory intensive kernels scale regarding

frequency and how they are consuming energy. In the past decades, CPU speed grew

faster than the memory, that is why, in general, accessing the memory is considered

as a bottleneck.

To test the memory energy consumption, the methodology previously presented

in Section 6.3.1 was used. It was decided to directly use assembly code in order

to have a complete control over the execution. The idea behind the benchmark

is to test read-and-write energy cost when targeting different levels of the memory

hierarchy. The benchmark iterates on multiple consecutive elements in a vector, and

when all vector elements are either read or stored back in the vector the benchmark

ends.

.L6:

movaps 0(%rsi), %xmm0 #Load

movaps 16(%rsi), %xmm1 #Load

movaps %xmm2, 32(%rsi) #Store

movaps 48(%rsi), %xmm3 #Load

movaps 64(%rsi), %xmm4 #Load

# 20 elments of 4 bit are consumed,

# jump to the next unread elements

add $80, %rsi

# remove 20 elemts from the iterator

sub $20, %rdi

# if the iterator > 0 continue,

# otherwise exit

jge .L6

Figure 6.3: Kernel Assembly instructions

Each instruction within the benchmark presented in Figure 6.3 was carefully se-

lected. The movaps instructions are vectorized memory operations. As they put the

maximum stress upon the memory subsystem, they were selected in order to allow

the measurement procedure to saturate the memory bandwidth. The combination

of load and store operations was done to represent a general program behavior.

Generally, programs perform more reads than writes. As an example, a program

performing a map-reduce, will perform more reads than writes. Finally the last

three instructions, add, sub and jge are needed to iterate on vector elements. Their

impact is measured before launching the real benchmark and subtracted to the full

benchmark measurement. To do so, the benchmark is run without the movaps in-

structions and measured. The time and the energy obtained are then subtracted

from the ones obtained when running the entire benchmark.

As a reminder, the goal of the section is to display the energy consumption
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behavior of the memory hierarchy. Therefore, two cases have to be considered.

Either the memory bandwidth is saturated or not. Each Figure 6.4 or 6.5 shows the

energy cost per memory instruction for the different level of cache and the RAM. It

was insured that the accessed vector only fit in the considered level of the memory

hierarchy.
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Figure 6.4: Energy consumption per memory instruction depending on the data

location when the memory is saturated
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Figure 6.5: Energy consumption per memory instruction depending on the data

location when the memory is not saturated

Figure 6.4 and 6.5 display the energy consumption while executing the micro-

benchmark. The energy measurements were performed on the entire machine. For

both figures, the x-axis represents processor frequencies and the y-axis the energy

per instruction. Both figures convey two information. Firstly, the evolution of the

energy cost across the processor frequency spectrum. Secondly, the instant energy

cost.
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It can be noticed in Figure 6.4 that accessing L3 and RAM consumes more en-

ergy when using high CPU frequencies than lower ones. It comes from the fact that

the overall power consumption is linked to the P-states. Increasing the P-states,

increases the voltage and the frequency, inducing a higher power consumption. Fi-

nally, as E = P × T , if P increases the energy may also raise. When the memory is

saturated, the data fetching latency for L3 and RAM remains constant across the

processor frequencies, validating the energy increase. However, it is not the case

for L1 and L2, the energy cost decreases with high frequencies. The decrease on

the execution time counters the increasing power cost, explaining why the overall

energy consumption decreases. Other observations are noticeable when the memory

bandwidth is not saturated. The RAM energy cost still follows the same trend as

the one seen in Figure 6.4. However, L3, L2 and L1 energy costs decrease with the

increased frequencies. The root of that behavior is the same as the one explained

above, the performance speed-up counters the increased power cost. When look-

ing at instant energy cost, it cost almost twice the energy to access data when the

memory is saturated.

In the end, when creating an application, developers must carefully design mem-

ory access phases because if the memory hierarchy is saturated, the overall applica-

tion energy cost can be dramatically increased. Furthermore, the application energy

cost can be also lowered by selecting a frequency best matching the memory access

scenario as shown in Figure 6.4 and 6.5. For example, if the application is accessing

high level of the memory, like L3 or RAM, the lowest frequency should be targeted

whether it is saturated or not. Based on the current observations, the lowest fre-

quency selection will be the default energy optimization when facing an application

strongly dependent on the memory hierarchy as shown later in Section 8.1.

6.5 Arithmetic

.L6:

mulpd %xmm0, %xmm0

mulpd %xmm1, %xmm1

mulpd %xmm2, %xmm2

mulpd %xmm3, %xmm3

mulpd %xmm4, %xmm4

mulpd %xmm5, %xmm5

mulpd %xmm6, %xmm6

mulpd %xmm7, %xmm7

# remove 8 iteration from the iterator

sub $8, %rdi

# if the iterator > 0 continue,

# otherwise exit

jge .L6

Figure 6.6: Micro-benchmark for arithmetic intensive execution

As said previously, scientific applications usually, load data, perform computa-

tions and store the computation results. They oscillate then between data move-

ments and pure computation. It was previously shown how data movements can

impact the machine energy consumption and how features along the data path can
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help to reduce or worsen it. The focus is then put on the arithmetic instructions.

Testing all possible arithmetic instructions to have a complete view is not the goal

of the study, it rather is to test most common instructions that can be found in any

applications. It was then decided to pick instructions from each category and mea-

sure their power and energy consumption. In total twelve instructions were chosen.

Integer operations as add,imul,idiv, packed single precision operations as addps and

mulps, packed double precision like addpd or mulpd, bitwise logic as and or or and

finally jump operations jmp, jnz, and ja. The same micro-benchmarking methodol-

ogy used in the two previous sections is applied for each selected instruction. Figure

6.6 shows the benchmark kernel for the instruction mulpd.

6.5.1 Instruction Clustering
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Figure 6.7: Arithmetic instruction energy consumption on E3-1240 at 3.3GHz

Contrary to the memory study, the measurements are performed at the scale of

the processor using the SandyBridge dedicated power monitoring. It means that the

power measured is only consumed by the processor and not by the entire machine.

Figure 6.7 shows the energy consumption of the selected instruction set at the high-

est processor frequency. The x-axis represents the arithmetic instructions and the

y-axis displays the energy per instruction. Indubitably the div operation is the one

that costs the most energy. It is common knowledge that the div operation takes

a very long time to be processed then costing to the CPU an important amount

of energy. Apart from that outlier, three groups can be determined. One group

comprised of the operations consuming the lowest amount of energy: add, and, or.

Another, with the packed operations: mulps, mulpd, addps and addpd. Finally, a last

one with the jump operations : ja, jmp, jnz. As a reminder, the energy consumption

is the product of power and time. The root of that possible clustering comes either

from the power consumptions or instructions execution times. However, the mea-

sured power consumption for each instruction on the same SandyBridge machine,

displayed in table 6.6, is the same, even for the division instruction. The instruction

execution time is then the root of the clustering. In [45], the author presents the
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reciprocal throughput of the entire x86 instructions set measured on a wide range of

architectures. The reciprocal throughput is defined as the average number of core

clock per instruction for a series of independent instructions of the same kind in

the same thread. The same procedure is performed during the micro-benchmarks

execution. Achieved reciprocal throughputs are then computed for the twelve in-

structions and compared with Agner Fog’s measurements [45]. Both throughputs

are displayed in Table 6.5. The comparison with Agner Fog’s measurements vali-

dates the evaluation method. It also shows that the energy clustering was only due

to the different cycles per instruction.

Unit: cycle per instruction

Instructions add and or imul addps addpd

Micro-benchmarking 0.49 0.49 0.49 1.01 1.02 1.01

From Agner Foh 0.5 0.5 0.5 1 1 1

Instructions mulps mulpd ja jmp jnz idiv

Micro-benchmarking 1.01 1.02 2 1.99 2 15.42

From Agner Foh 1 1 2 2 2 11-18

Table 6.5: Arithmetic instructions reciprocal throughput.

Unit: nJ per cycle

Instructions add and or imul addps addpd

SandyBridge E3-1240 21.83 21.85 21.25 21.02 21.82 21.79

Atom D510 18.29 18.42 18.61 18.46 18.15 18.31

Instructions mulps mulpd ja jmp jnz idiv

SandyBridge E3-1240 21.56 21.60 22.04 22.42 22.44 21.34

Atom D510 18.11 18.59 18.17 18.14 18.21 18.11

Table 6.6: Arithmetic instructions power consumption

Though the instruction execution time explains the presented clustering, it is

surprising that the power consumption is constant disregarding the instructions

used. It means that when executing an addition or a jump at each processor cycle,

all the CPU features are powered on, even though both instructions use drastically

different paths. During instruction execution some processors use clock gating to

switch off untriggered processor parts. Different instructions have then different

power costs and by taking advantage of that, application can be build in a power

efficient way. Such feature seems not to be available on the SandyBridge since the

power cost of the different instruction is almost constant. It can be understandble

since the processor is intended for the HPC world, and performances must not be

impacted in any way. However, even with a low power processor, as shown in Table

6.6, seems not to use clock gating. The conditional tense was used in the previous

sentences, because the power probe resolution can be the reason to the lack of power

difference between each instruction. Nonetheless, energy optimization regarding

arithmetic instruction selection can be performed. Using an integer instead of a

float cost, less energy since only integer operation will be used. By Limiting the

number of conditions, apart from potential branching error, the impact of jump
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operation on energy costs is lowered.

Finally, Figure 6.7 helps understanding why it exists disparities in term of energy

consumption among computational intensive applications.

In the end, power consumptions for different arithmetic instructions are constant

for a fixed frequency. If the frequency is increased, the various instructions power

consumptions increase at the same rate. Then, if energy has to be saved, and based

on the trends exposed in Figure 6.8, people would tend to target low frequency.

However, the energy is a tradeoff between time and power. If the speed-up on time

is able to counter the power increase, then high frequencies has to be targeted.

However, if the power decreases is able to counter the time increase, then, low

frequencies have to be used. A crucial question remains: race to finish or not ?
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Figure 6.8: Arithmetic instruction power consumption evolution on SandyBridge

E3-1240

6.5.2 To Speed Or Not To Speed ?

Starting with the SandyBridge architecture, new registers were added allowing

CPU power consumption monitoring. For anterior architectures, as Westmere, us-

ing an external digital power meter is the only way to measure power and energy

consumption. However, it measures the entire machine power and energy consump-

tion. Yet, using both at the same time allows to acknowledge the real impact of the

processor consumption on the full machine. Figure 6.8 was generated while using

both granularity. The different instruction power costs rather stay similar across the

different frequencies and the same behavior can be noticed with the different probes.

The higher the frequency, the higher the power cost. Figure 6.8 also shows that the

processor consumption directly influences the overall machine power consumption.

It confirms that the CPU is determinant when targeting application power or energy

optimizations.

According also to Figure 6.8 high frequency should never be selected when aiming

for power reduction. However it is not always the case for energy optimization. The

power is not the sole actor in energy consumption. As previously hinted, if the

execution time speed-up, when selecting a higher frequency, is able to counter the

power increase, then energy savings are possible. It can be clearly seen in Figure
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Figure 6.9: Energy consumption of one instruction per class.

6.9 where the machine energy consumptions decrease with higher frequencies. Three

different instructions, one from each cluster defined above, were chosen to show that

such behavior is the general behavior of heavy computational applications. It will

be used later in Section 8.1 to classify applications and used in Chapters 9, 10 and

11 to design energy optimization mechanism.

However, targeting higher processor speed does not always translate in energy

consumption as shown by the processor energy trend for the three instructions as

displayed in 6.9. Indeed, the speed-ups obtained by switching from the lowest to the

highest frequency are 2.06, 2.06, and 2.07 respectively for add, mulps, and jmp and

the power consumptions scaling are 2.38,2.44, and 2.43. The speed ups are not high

enough to counter the power increase forcing the energy consumption to scale up

over the frequencies. That behavior can also be demonstrated as follows. First, as

a remainder, Equation 6.3 shows the processor’s dynamic power model. Changing

the processor frequency is obtained when the P-state changes. A P-state is a couple

of a frequency and a voltage. Increasing the frequency increases the voltage.

Pdynamic = A× C × V 2 × f (6.3)

If two P-states are considered, P1 and P2 with P1 > P2, it means that the

voltages and frequencies follow the relation: V 1 > V 2 and f1 > f2 with V 1, F1 ∈

P1 and V 2, F2 ∈ P2. Using these relation, Equation 6.4 represents the power

scaling factor.

P2

P1
=

A× C × V 22 × f2

A× C × V 12 × f1
(6.4)

As the same benchmark is executed on the same processor, triggering the same

arithmetic units, the activity factor A and the capacitance C can be considered

equal for different executions of the same benchmark. The power scaling factor can

be reduced to Equation 6.5.
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P2

P1
=

V 22 × f2

V 12 × f1
(6.5)

The micro-benchmarks were designed not to have external dependencies, their

execution times are fully bounded to the CPU operating frequency. It means, the

micro-benchmark execution time speed-up can be at most equal to the frequency

ratio, as shown in Equation 6.6

speedup =
ExecT ime2
ExecT ime1

≈
f2

f1
(6.6)

If, Equation eq:SpeedUPvsPowerRatio is created by injecting 6.6 into 6.5, it

can be seen that the power scaling factor is greater than the speed-up factor, since
V 22

V 12
> 1.

P2

P1
=

V 22

V 12
∗ speedup (6.7)

However the demonstration is only true if processor static power is negligible

compared to the dynamic power. To produce Figure 6.9, one instance of micro-

benchmark per processor core were executed, putting the CPU under a significant

stress to remove the static power from the equation. However if it is not possible,

the energy consumption will behave like the overall machine trend shows in Figure

6.9. Such a behavior validates the conclusion of Yuki et. al. [169] where the authors

state that compiling for speed is compiling for energy. However, it only validates

if the considered application is purely cpu-bound, as shown in Figure 6.9, and if

the power static is not negligible. Compiling for speed on a memory bound ap-

plications will not drastically change their energy consumption as discussed in the

previous section, then questioning the validity of the race to finish policy advocated

by Yuki et. al. [169].

Though the processor consumes the same amount of power disregarding the

arithmetic instruction type, the energy clustering can still be used to bring hints to

the developer to create energy efficient application. Like for memory instruction,

where the lowest frequency offers energy saving, for arithmetic instruction it is the

highest one that grants energy savings in most cases. More over the impact of the

processor power on the overall machine power, confirms that the CPU is a strong

actor in power and energy consumption but trying to optimize its consumption is

not always a matter of racing the application to finish, or slowing the processor as

much as possible.
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Conclusion

This thesis started with a simple assessment, each piece of hardware consumes power

and energy. Depending on the usage scenario, one piece of hardware can be subject

to more pressure than the others. For example, for a data copy, only the disk will be

used, then its energy consumption can be greater than what the other components

consume, when in another case scenario it would be the element with the lowest

energy consumption. An analysis of different hardware power consumers within a

simple machine was then presented and, for each of them, possible energy opti-

mization scenarios were described. It was demonstrated for RAM dimms and HDD,

either the technology state does not allow to design practical optimization or all pos-

sible optimizations already are embedded in the hardware. Nevertheless, the fast

growing need for check-pointing, data redundancy or burst buffers will dramatically

increase the RAM and disk space. It will force manufacturers, in the future, to re-

consider the optimization opportunities for RAM dimms and Hard drives. Contrary

to RAM dimms and HDD, for the fan, opportunities for energy reduction exist.

Though the system takes a long time to converge to the optimal fan settings, it en-

lightens an important fact: the leakage power must not be neglected. It represents

23% of the overall processor consumption at high temperature. By reducing the

temperature power leakage is reduced, lowering the processor energy consumption

which is the main interest of the presented fan speeds modulation technique. The

last but not least, the processor is acknowledged to be the main power consumer

explaining why multiple possibilities to optimize its power consumption exist. Orig-

inally these opportunities were designed to reduce the die temperature since the fans

could not cool enough the processor to prevent it from hardware failure due to the

heat. Nowadays, processors expose a range of possible operating points to allow the

Operating System or any user to adapt them regarding the processor usage. De-

pending on the scenario, the processor does not have the same energy consumption,

as it was shown with the micro-benchmarking study. Memory oriented instructions

tend to consume less energy at lower frequencies. The study showed that the energy

behaviors of arithmetic instructions under the frequency spectrum strongly change

depending on the measure granularity. At the processor scale, it can be seen that the

highest frequency induces the highest energy consumption, when at machine scale

it induces the lowest. A question naturally arises: should an application always be

run at the highest frequency to reduce its energy consumption or not ? That ques-

tion cannot be answered with only assembly instructions, the overall application

has to be studied and depending on its resources usage scenario, dedicated energy

optimization can be designed. This is why the next part starts by studying the ap-

plication types and tries to derive a classification to better understand their energy

behavior. Based on these observations multiple systems are designed to reduce any

application energy consumption.
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Chapter 8

Introduction

Each piece of hardware consumes a certain amount of energy. Unfortunately, the

majority does not expose leverage in order to optimize their energy consumption.

For example, RAM dims do not support run-time frequency changes. They have

to be changed during the boot phase of the machine, which is not feasible for huge

HPC systems. For other components, such as fans or hard drives, complex systems

must be created, when sometimes better hardware solutions already exist. Indeed,

finding the sweet spot for fans is time consuming since the configuration time raises

exponentially with the number of fans. For hard-drives, hardware optimization are

already proposed by all manufacturers, such as lower platter ration speed coupled

with optimized transfer rates and placing algorithms [40] or the Solid State Disk

technology which has the best throughput per watt ratio [152]. Hence, further

energy optimization study for these pieces of hardware is not automatically the

priority.

As seen before, the energy used by the CPU is accounted for almost half of the

machine energy consumption. Moreover, for the current processor generation, many

tools and measuring probes are available, as presented in Chapter 6, to develop

energy reduction methods. It was natural to first focus on energy optimizations for

the CPU.

Even though the study of energy consumption of a single instruction gives a

good idea on how the energy is consumed, there is a major difference with a full ap-

plication. It misses the instruction execution density. In Figure 6.8, the instructions

are believed to be executed alone in the pipeline, but recent architectures decode

and push in the execution pipeline up to four different instructions simultaneously.

Such parallelism drastically changes an application energy footprint.

Instruction level parallelism is not the only factor that impacts the energy con-

sumption. It is also important to consider what the application is performing.

Generally an application intends to produce results based on a data set. The classic

operation is to first load the data set, then perform all the needed computation,

and finally store the results. An application can thus be divided roughly into two

aspects: one related to computation and one to data movement. These states are

respectively called CPU-bound and memory-bound phases.

To get a better idea on how a complete application behaves in terms of energy

consumption, two benchmark programs from the SPEC2006 benchmark suite [157]

were executed. The selected benchmarks Libquantum and Gromacs respectively are

memory-bound and CPU-bound. The results on the different frequencies are sum-

marized in Figures 8.2 and 8.3. Both figures show the execution time and energy

consumption obtained by each application on different frequencies. By looking at

both Figures 8.2 and 8.3, one can easily find a way to optimize the energy consump-

tion of each application. For Libquantum, a 26% saving of the energy consumption

is obtained by running the application at the lowest frequency. For Gromacs, it is

a 20% reduction when selecting the frequency 2.66Ghz.
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As an example, measurements were performed on each frequency. In general, the

information is not available before hand and the best frequency has to be computed

during the execution of the application. Finding the lowest energy consumption is

here straightforward, but later in the document, additional constraints has to be

considered to get a realistic decision as exposed in Chapters 9, 10, and 11. The

selected frequency is not always the highest or the lowest frequency.

A wide range of possibilities to perform energy and power reductions at the scale

of a single processor exists. Application source code energy predictions [103, 34],

code optimizing during the compilation [75, 32, 88], or optimization at run-time us-

ing DVFS [65, 28, 168, 70, 33, 116, 95]. Run-time optimizations are the most widely

used, since it allows the optimization process to access actual power and energy

consumption and react accordingly. That is why all the presented work within this

section: REST, UtoPeak and FoREST are dynamic optimizations. Indeed, it is very

difficult to perform optimization or prediction without accurate information on how

an application execution consumes power and energy. Furthermore, as hinted in the

previous chapter, optimizing the energy consumption is not only a matter of race

to finish or not, depending on the application behavior different decisions can be

made. This is why the application energy consumption has to be understood either

by trying to find similarities between their energy consumption, or by finding inside

their source code what is the reason behind their energy consumption.

8.1 Application Trends

Scientific applications as a whole try to tackle defined problems, which generally

are composed of smaller issues. Some are common to several big applications. To

prevent developers from writing different algorithms to solve the same problem,

sometimes not in the optimal manner, a collection of the most frequent problems

has been constituted: the numerical recipes [156]. It also provides the most efficient

algorithms to solve them.

Even if a scientific application is solved in an efficient way by taking advantage

of all the possible numerical recipes, it still has to be adapted to the hardware to

leverage the maximum performance and provide the fastest time to solution. The

adaptation can be time consuming and in some cases not affordable. To break down

the study time, applications with similar execution flows may be compared. To

take advantage of the similarities, developers can then apply the previously used

optimizations for their own applications. By organizing applications by particular

trend, developers have a better understanding of their programs and hardware.

But application classifications usually are intended to increase performance and

not to optimize energy consumption. The goal of this section is to find common

trends in application execution time as well as in energy consumption. Classifica-

tion can strongly help in the quest of finding the sweet spot combining the best

execution time and the lowest energy consumption. By executing the whole sequen-

tial benchmark suite SPEC2006 [157] and an industrial code [11, 17], three kinds of

trends are found: external resources boundness, compute boundness, and balanced

boundness.
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Figure 8.1: Data fetching latency from each cache level.

8.1.1 External Resources Boundness

External resource boundness characterizes applications using data stored in any

place out of the processor caches. For example the RAM, hard-drives or the net-

work are external resources. As the stored data locations are not controlled by the

processor clock, any change on it will not impact the fetching latency.

A good example was shown in Chapter 6 with Figure 8.1. The data fetching

latencies from the first two cache levels scale with the processor frequency whereas

the last level of cache does not. When facing such a behavior, the pipeline stalls,

basically doing nothing, waiting for the data, so there is no need for the processor to

be idling fast. Lowering the frequency will not impact the pipeline throughput. In

Figure 8.2, lowering the frequency results in the same execution time. Moreover, as

a reminder, a power setting is associated to a frequency, so the power consumption

is lowered when reducing frequency. As the execution time remains constant and

E = P × T , lowering the operating frequency also means lowering the energy con-

sumption. At the end, when considering such an application, it is easy to find the

best frequency setting to get the lowest energy consumption: always use the lowest

possible frequency.

This is only true in environments where the external data fetching frequency is

lower than the lowest processor frequency. If it is not the case, the execution time

will be affected since the external resource no longer is the bottleneck. An example

is shown in Figure 8.5a. The considered function, full_verify, can be considered as

memory-bounded, since, when looking at the source code, it only performs vector

traversal. Though full_verify is acknowledged as a memory-bounded function, it

does not saturate the memory subsystem, as in the different execution time trends

in Figures 8.5a and 8.2. The full_verify execution time scales down with increasing

frequencies instead of remaining constant.

Memory-bound applications have a very specific trend, making them easily

noticeable and easy to optimize regarding energy consumption. As shown with

full_verify, the source code alone is not sufficient to prove that a specific code re-

gion belongs to a specific trend. It can, still be used to corroborate with the trend

obtained when this code region was executed over the different CPU frequencies.
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8.1.2 Compute Boundness

CPU-bound applications are generally characterized by a high computation instruc-

tion throughput. They also have very low dependency to the memory sub-system,

since in CPU-bound applications, all the needed data are fetched from the lowest

level of cache. The modification of the frequency will strongly impact the applica-

tion execution time as shown in Figure 8.3. If the 1.596GHz frequency is chosen

instead of the 2.66GHz frequency, the application execution time is multiplied by a

factor 1.64 this is almost equal to the frequency ratio: 2.66
1.596 = 1.66. This connection

between the frequency ratio and the execution time is the unique characteristic of

a CPU-bound application.

It can be noticed that the energy consumption trend and execution time one

follow each other. It is mainly because the decrease in time overcomes the increase

in power consumption. Sometimes, the power consumptions overcomes the speedup.

This can be observed in figure 8.3 when using the frequency tagged as Turbo Boost.

Turbo Boost [1] is a technology allowing Intel CPUs to overclock themselves

under strict conditions. By using Turbo Boost, an application execution can benefit

from even higher frequencies. For example, the CPU, used to run Gromacs in Figure

8.3, is allowed to increase its operating frequency up to 3067MHz and 2933MHz

respectively when 1 or 2 and 3 or 4 cores are used. Using Turbo Boost means

increasing the power consumption. In the case of Gromacs, the increased Turbo

Boost power consumption overcomes the speedup on execution time, resulting in

the noticeably huge increase on energy usage.

The behavior of Gromacs on the Turbo Boost frequency suggests that the rise

in execution time could overcome the power increase because of the characteristics

of the underlying hardware. One can argue that such trend is noticeable only on

most recent hardware and cannot be used as a determinant factor for the application

trend classification.

Previously to P-state as exposed in Chapter 6, manufacturers implemented T-

state in order to deal with CPU overheat. T-state provided a logical division of

the base clock. The frequency was divided without regulating the power supply
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Figure 8.2: Wall energy consumption and time execution for the SPEC program

libquantum depending on frequencies.
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Figure 8.3: Wall energy consumption and time execution for the SPEC program

gromacs depending on frequencies.

as performed by the P-state. In such a configuration, a CPU-bound application

execution time will scale up according to the clock division ratio. As the power

supply remains constant, and E = P × T , the energy consumption will scale down

as the frequency increase, inducing the same trend as the one shown in Figure 8.3.

Decreasing energy consumption and execution time generally are the character-

istics of a CPU-bound applicaiton.

8.1.3 Balanced Boundness

As suggested by the name of this last category, targeted applications are neither

purely CPU-bound nor memory bound, they are constructed with some specificity of

each world. As observed in Figure 8.4. From 1.596GHz to 1.995GHz the application

behaves as if it was CPU-bound. Starting from 1.995GHz, it behaves as a memory

bound code which is not saturating the memory subsystem.

Understanding the behavior of the balanced bounded applications in terms of

energy is more tricky since they interleave CPU oriented and memory oriented codes.

It is very difficult to know before running an application which boundness will dom-

inate and if a frequency setting can alter the domination. To properly understand

the situation, both phases have to be extracted and studied to get a good grasp of

the energy trend. The next section explains how to detect each phase.

8.2 Phase Detection

This thesis is about finding frequency configurations where the CPU power con-

sumption and the application execution time give the lowest energy consumption.

Even though, application energy trends are summarized into only three categories,

each application presents a unique trend actually making the choice of the adequate

frequency to obtain the lowest energy consumption a very difficult prediction.

The applications trends showed in Figure 8.3 or Figure 8.4 are influenced by

how the applications were developed. In general, each application needs to load
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Figure 8.4: Wall energy consumption and time execution for the RTM program

depending on frequencies

some data, perform computations, and store the results. Any application is com-

posed of the same three phases. The difference between applications is the ratio

of time spent in each phase. Being able to identify which phases are preponderant

in terms of energy consumption will help finding the best frequency for the full

application. As in any optimization process, it is better to optimize hotspots or

resolve huge bottlenecks to obtain a maximum speedup. There are multiple ways to

identify hotspots or bottlenecks: statically extracting important code blocks from

the source code, or dynamically profiling the application to identify application ex-

ecution phase. Application phase identification is complex and different methods

were proposed [10, 39, 85, 87] but unfortunately none of them take the energy into

account as a discriminant factor. Therefore the goal of this section is to show how

the energy consumption can be used to identify application phase as well as explain

the overall application energy trend.

8.2.1 Static Phase Detection

Static phase detection and analysis can take many forms [9, 19, 26, 36]. As an

example, Akel et. al. [9] and De Oliveira Castro et. al. [36] propose solutions that

statically slice an application in multiple regions and them as small benchmarks

for performance analysis optimizations. This section use the result of the proposed

slicing method. However, when executing the extracted code regions, energy con-

sumption is considered instead of performance.

Static phase detection extracts code snippets from the application source code.

To ease the extraction process, the Codelet Tunning Infrastructure (CTI) [160] is

used. It is generally used to ease application profiling processes. By relying on a

set of automated tools, an application can be decomposed into unique segments of

code, called codelets. Each codelet can be run on various architectures and the

results can be shared with other users through CTI’s sharing system. For example,

users can use data mining techniques, provided by CTI, to search through codelet

information and find optimization hints that have previously provided a benefit for

another similar application.
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In the static phase detection, only CTI’s ability to automatically decompose

a set of application in unique segment of code is used. The specification of each

codelet extracted from two NAS benchmarks [14] is displayed in Table 8.1. Each

codelet displayed in Table 8.1 corresponds to a certain amount of the original ap-

plication source code. The codelet selection is based on the amount of execution

time they capture, which is expressed as a percentage of the full application execu-

tion. The remaining application source code, not comprised in the code coverage is

mainly transitions between the selected codelets, or not significant enough in terms

of execution time.

Application name Codelet name Coverage in percentage

BT

x_solve_ 27.32%

y_solve_ 29.36%

z_solve_ 30.1%

Total 86.78%

IS
create_seq 65.19%

full_verify 32.30%

Total 97.49%

Table 8.1: BT and IS codelets overview

When an application is studied in order to understand its performance, the study

generally focuses on the hot-spot or subsection of the application source code that

captures most of the execution time. The same approach applies here: to under-

stand the energy trend of each application it is necessary to capture the most of

the application execution time. For both applications BT and IS, the execution

time coverage of the extracted function respectively represents 86.78% and 97.49%

of the total execution time. Once there is a high confidence on the codelet applica-

tion coverage, running each codelet while measuring the execution time and energy

consumption will help understand what their trend is and how they influence the

overall application behavior in terms of energy consumption.

The source code of each codelet represents only one call to the extracted function

or loop-nest. To have consistent measures to later compare the measured informa-

tion with those of the full application, the number of calls to each codelet has to be

found. It was done by inserting probes at the start and end of each extracted code

segment within the original application. The coverage numbers presented above in

Table 8.1 were measured during this step aside to the number of calls. The number

displayed in Table 8.1 were obtained while the full application were executed.

Once the number of repetitions of each codelet is known, they are run separately

while measuring their execution time and energy consumption. Figures 8.5 and

8.6 show each codelet execution time for the different considered application, the

corresponding energy consumption is shown in Figure 8.7 and 8.8

Figure 8.5 displays IS codelet and the full application execution times. The

x-axis shows the different CPU frequencies and the y-axis represents the execution

time in seconds.

Figure 8.5a only displays IS codelets execution time. As presented in Table

8.1, the function create_seq indeed captures the most execution time. It also lasts

roughly twice the time of the full_verify method on each frequency. The measure-

ments obtained while executing each standalone codelet matches the one performed



64 Chapter 8. Introduction

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 1.6  1.7  1.8  1.9  2  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9  3  3.1

T
im

e
 i
n

 s
e

c
o

n
d

s

Frequency in GHz

full_verify create_seq

(a) IS’ predominant codelets execution time

 6

678

 7

978

 8

:78

 9

;78

 10

<=78

 11

<76 <79 <7: <7;  2 >7< >7> >7? >7@ >78 >76 >79 >7: >7;  3 ?7<

T
BC
D
BE
F
D
G
H
E
I

Frequency in GHz

JKLNOPK Reconstruction

(b) IS recalculated and real execution time

Figure 8.5: Execution time of each codelet of IS and the difference between the

re-calculated and the measured ones.

while the full application is executed. It confirms that the codelet extraction is

correctly and accurately performed. Another way to check the sanity of the static

code extraction is to compare the total execution time covered by the extracted

codelet and by the real one. Figure 8.5b shows such a comparison. As stated in

Table 8.1 create_seq and full_verify captures 97% of the application time almost

matching the full application one. The fact that the reconstruction curve is above

the actual application execution time curve on the five last frequencies comes from

the small overhead obtained by separately running both codelets. In addition, the

codelet with the highest code coverage, truly edicts the trend of the application.

Indeed, create_seq edicts the tendency, and full_verify acts almost as an offset as

the reconstructed tendency almost perfectly matches the measure. In the case of

IS, there is no need to track with precision every application phases to get the gen-

eral behavior of the application across the frequency spectrum. With nearly only

half of the application coverage, via the create_seq function, a good estimation is

produced.

Figure 8.6 displays BT codelets and the full application execution times. The

x-axis shows the different CPU frequencies, the y-axis represents the execution times

in seconds.

As opposed to IS where one codelet is the trend driver of the application, each
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Figure 8.6: Execution time of each codelet of BT and the difference between the

re-calculated and the measured ones.

BT standalone codelet captures the same amount of execution time as is seen in

Table 8.1. The reconstructed execution time based on the extracted codelet shown

in Figure 8.6b also validates the total coverage from Table 8.1. In the case of BT,

each codelet is roughly equally weighted, making them all important when studying

the general application tendency. This is the major difference with IS. Since all

BT codelets are almost equally weighted and have the same trend, only one can be

considered to determine the overall application tendency.

In the end, there is no need to precisely track all the application phases. With

only the major application phase a good estimation can be produced. However,

every codelet among the major application’s phases has its importance, because

each has an real impact on the energy consumption.

Figure 8.7 displays IS codelets and the full application from an energy consump-

tion point of view. The x-axis shows the different CPU frequencies and the y-axis

represents the consumed energy in Joule.

It can be noticed that both extracted functions, create_seq and full_verify have

opposite behaviors that are not noticeable when only looking at their execution time.

Indeed, both functions execution times scale with the frequency, even if create_seq

scales more than full_verify. The difference comes from the fact that create_seq
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uses a vector traversal, additions, and multiplications whereas full_verify only does

a vector traversal and comparisons. So full_verify is more memory bounded than

create_seq. Both functions have the energy behavior corresponding to their respec-

tive trends as explained in Section 8.1. One could object that full_verify does not

have the typical memory bound behavior as displayed in Figure 8.2. It is mainly

due to the fact that the memory subsystem does not saturate, because the selected

codelets are sequential. It allows the execution time to scale with frequencies, but

the energy trend remains the same.

By summing both codelet energy trends, the reconstruction curves presented

in 8.7b are built. It represents 97.19% of the total measured energy consumption.

The noticeable gap in Figure 8.7b is mainly due to the scaling, they should be very

close to one another as in Figure 8.5b. It can be noticed that both curves have the

same bowl shape. The bowl shape is derived from the sum of two opposed trends.

The create_seq function imprints its decreasing trend from 1.6GHz to 2.2GHz.

full_verify is the one influencing the general behavior from 2.2GHz to 3.1GHz.

Lastly, picking the frequency inducing the lowest energy for each codelet should

imply the lowest energy consumption for the overall application. As create_seq

is CPU-bound, the race to finish policy exposed in Section 8.1 to get the lowest
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Figure 8.7: Energy consumption of each IS codelet and the difference between the

re-calculated and the measured ones.
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energy consumption can be used. For full_verify, on the other hand, the lowest

frequency has to be used to achieve the lowest energy. With both selected frequen-

cies, the energy consumption obtained is equal to 91.28 Joule which is the lowest

energy achieved on frequency 2.2GHz for the full application. One can object that,

in the case of IS, designing a specific optimization for each codelet to achieve min-

imal energy it not necessary. When looking at Figure 8.7, the trend of full_verify

and create_seq are respectively flat from 1.6GHz to 2.2GHz and from 2.2GHz to

3.1GHz. Picking any couple of frequency ([1.6 − 2.2], [2.2 − 3.1]), will result in the

same solution as the one stated above. For example by selecting 2.2GHz frequency

for both functions, the recalculated energy consumption is equal to 92.23 Joules

which is close to the solution obtain with dedicated optimization. Still, such obser-

vation was only possible since all the data were measured and could not certainly

be computed while dynamically discovering the application.
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Figure 8.8: Energy consumption of each codelet of BT and the difference between

the re-calculated one and the measured one.

Figure 8.8 displays BT’s codelets and the full application energy consumption.

The x-axis shows the different CPU frequencies and the y-axis represents the con-

sumed energy in Joule.

As for the execution time, all three BT codelets have the same energy consump-

tion trend. It is understandable since all three codelets do basically the same things.
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Each one uses a 3D matrix and performs computation on it. The only difference

seems to be the number of accessed matrix cells, which also drive the number of

performed computations. Each codelet is not purely CPU-bound since it has to load

each matrix cell prior to the computation. Further more the codelets are not fully

memory bound, as was the case for IS, because the memory subsystem is not fully

saturated. It corresponds to the balanced behavior explained in Section 8.1.

Like IS, by summing all the codelet energy trends, the reconstruction curves

from 8.8b is built. It represents 84.38% of the total measured energy consumption,

therefore, the noticeable gap in Figure 8.8b is mainly due to the scaling. A zoom is

needed, otherwise the classic bowl shape would not be visible.

The full BT trend is easier to understand than the IS one, because all the major

codelets have the same energy trend. Searching for the frequency giving the lowest

energy for the entire application is also more straightforward than for IS, after all

the same frequency gives the lowest energy consumption for all three codelets.

Static codelet extraction is a good way to study an overall application behavior.

By only studying the predominant application phase and picking the best frequency

for each of them, the best frequency setting can be derived for the entire application.

But in some cases the codelet extraction either fails or the code coverage is poor.

In addition for applications where the coverage is good, the number of calls to the

codelet is still needed to get consistent insight on its behavior. Unfortunately to

retrieve that call number, code instrumentation is often needed. If the source code

is not available, complex binary manipulation [25] are needed which is not always

affordable. To bypass these difficulties, application behavior can be dynamically

studied by using profiling along with being executed.

8.2.2 Dynamic Phase Detection

In the previous section, functions or loop nests were statically extracted. The gen-

erally is no way to know whether or not they represent a significant part of the

application execution. A process is then needed to isolate the predominant loop be-

fore going any further in the analysis. Dynamic phase detection requires the same

process: profiling. Profiling systems use information collected during the actual

execution of the program. It allows to discover which part of the program is time

consuming. It is important in this case where predominant functions or loops have

to be isolated. For example Jimborean et. al. [89] designed a framework that allows

any user to perform code analysis at different granularity. It can for example trace

all the memory addresses that are accessed during the execution of a loop nest.

Barthou et. al. [15] uses MAQAO to perform performance analysis of openMP ap-

plications. However, the simplest way to identify where the code spends time is Gnu

gprof. Table 8.2 shows the information retrieved by using the Gnu gprof profiler

on the full benchmark BT from the NAS benchmarks. Only the data regarding the

three predominant phases identified in the previous subsections are shown for clarity

purpose.

Compared to static code extraction, the dynamic profiling only needs one appli-

cation execution to get the same amount of information as the used in the previous

section. In addition, profiling systems usually use sampling method to measure the

needed information, for example the information displayed in Table 8.2 were mea-

sured by using a 10ms sampling period. Profiling technique indeed allows smaller

granularity to be targeted. Also, making the phase detection no longer bound to
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%time #called name

29.6 201 z_solve_

29.2 201 y_solve_

26.2 201 x_solve_

Table 8.2: BT Gprof condensed summary.

function or loop-nest level.

In the previous subsection, the source code was used to explain the behavior

of the energy consumption trend of IS or BT. It was assumed that, because IS’

function create_seq was using additions and multiplications, it was CPU-bound.

With a profiling system, the whole application workflow is studied and the profiler

determines whether create_seq really is CPU-bound. To achieve that, the profil-

ing system can rely on hardware counters. They are registers that show the user

what the hardware is really doing. Using such insight on the execution flow allows

anyone to understand the stress of the computational units as well as the stress on

the memory sub-system. In a nutshell, a profiling method identifies CPU-bound,

memory-bound, or balanced application’s phases. In Section 8.2.1 the characteri-

zation was done by looking at the execution times or at the energy consumption

trends in Figures 8.6, 8.8, 8.5, 8.7, but profiling enable a much finer grain.

Hardware counter profiling is a common technique for phase detection [10, 86,

154]. But as the profiling measures the application execution, it must have the

smallest possible impact on the execution flow. If not, the profiling system will

measure its own impact. Further details can be found in Chapter 9. The imple-

mented profiler uses the smallest number of hardware counters to limit the impact

of the dynamic phase detection.
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Figure 8.9: Data fetching latency from each cache level.

The profiling system tries to find all the application phases and classify them

as CPU-bound, memory-bound or balanced. The set of hardware counters has to

allow the phase discovery and classification in addition to be as small as possible.

To get a good idea of the CPU stress intensity, the quantity of executed instruc-
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tions per sampling period could be measured. It quantifies the density of executed

instructions and the higher the metric, the faster the instruction execution. However

a lower value does not necessarily mean that the program is making more memory

accesses. It can be due to bad branching predictions, or to numerous execution of

division instructions which have to be emulated on certain processors, and imply

thousands of cycles to be completed. Although the quantity of executed instruction

is necessary, it is not sufficient, since its variation can be either due to memory

access or just slow pipeline execution.

To solve the previously described uncertainty, monitoring the memory sub-

system is necessary. Consider Figure 8.9, it shows that the data access latency

strongly depends on the level where the data have to be fetched from. On most

architectures, the Last Level of Cache (LLC) is usually shared by all the CPU cores,

and is located on the "off-core" CPU region [104]. The LLC has its own indepen-

dent working frequency leading to a slower data access latency as shown in Figure

8.9. The figure also shows the different latencies for each level of the memory sub-

system. The first two levels have the smallest latency and the LLC and RAM have

the highest ones. To see if the application will be penalized by memory operations,

accesses to the LLC and upper have to be monitored.

To determine if the CPU is intensively computing or waiting for the memory

sub-system, a metric is needed to determine how many instruction are executed

and how many data accesses are performed in the LLC and higher. However, the

selection of good hardware counters strongly relies on the architecture used and can

change from one to another. In the study case, a Nehalem architecture was used.

Figure 8.10 shows how the set of chosen hardware counters behave when executing a

synthetic benchmark. The synthetic benchmark was created to alternate memory

bound phases and CPU-bound ones. The memory phase randomly accesses elements

in a vector dimensioned to not to fit in any level of cache except the RAM. The

CPU-bound phase is designed intensively perform additions. To ensure that the

memory subsystem is saturated, several instances of the benchmark are launched at

the same time. The phase alternation is easily noticeable in Figure 8.10.

The figure displays a lot of information. The x-axis represents the application

execution flow expressed as a number of samples. Each sample represents one hun-

dred milliseconds of the application execution time. The right y-axis displays the

instant values read in the hardware counters per one hundred milliseconds. The

left y-axis represents a finer sampling, it counts the number of milliseconds spent

in any function executed on one hundred millisecond of the application execution,

that is to say one x-axis sample. As the synthetic benchmark alternates between

a CPU and a memory phase, it is then logical that the memory function capture

all the 100ms samples for the five first second. The same happens for the next five

second with the CPU function and so on. It allows anyone to clearly acknowledge

the benchmark workflow and its impact on the underlying hardware. They are mea-

sured through three different hardware counters: UNALTED_CORE_CY CLES,

L2_RQST_MISS and SQ_FULL_STALL_CY CLES. For clarity purpose,

each hardware counter will respectively be given an alias: CORECY CLES, L2MISS ,

SQCY CLES .

The CORECY CLES counts the number of cycles spent by the CPU cores in

issuing micro-op into the execution pipeline. The variation of this counter clearly

states the degree of activity of the execution pipeline. There is no drastic drop,

apart from the beginning of the application, which means that the cores are always
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Figure 8.10: Hardware counters during the execution of a synthetic benchmark:

showing how the counters evolve between a memory bound and a compute bound

execution

working. As stated before, only looking at this counter will not be sufficient to

identify the alternation between the phases. There is no drastic change either when

the application shifts from a CPU phase to a memory phase.

The L2MISS measures the number of data requests higher than the L2 cache

level. A high value means a lot of miss in the L2, implying an increased number of

accesses in the LLC.

The SQCY CLES quantifies the number of cycles spent by a new request before

being served when arriving in the already full queue of the LLC. As said above in

the synthetic benchmark, the memory phase consists in randomly accessing data

out of any level of cache. This roughly implies that any request has to wait for all

the previously buffered requests to be handled. It explains why a data request has

to spend so many cycles in the queue.

Since the memory related counters drop to zero when the memory hierarchy is

not stressed, the selected hardware counters clearly show, on the synthetic bench-

mark, the alternating phases. Either SQCY CLES or L2MISS alone, coupled with

UNALTEDCY CLES could do the job of noticing the different phases. The use of

both at the same time is useful when considering real world applications. In addi-

tion, notice the drop/increase in both SQCY CLES and L2MISS just before changing

from MEM to CPU. It is due to the decrease in the number of memory accesses to

handle, freeing up some space in the buffer of the LLC. This leads to lower servicing

time, and allows an increase in the density of requests going outside of the L2 cache.



72 Chapter 8. Introduction

However, a synthetic benchmark is not representative of real-world applications.

Generally they do not have such discrete phases but instead have continuous phase

transition. The set of counter values is closer to the ones in Figure 8.11.

The considered program is part of a larger application called RTM, Reverse

Time Migration [11, 17]. RTM is an high-end two-way wave-equation migration for

accurate geological imaging. Here the kernel is extracted from the full application

belonging to Total, but other corporation as cggveritas [24] or Schlumberger [149]

have their own implementations.

Figure 8.11 shows more subtle variations but they still are noticeable between

processing and memory oriented phases, especially in the zoomed box on the top

right.
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Figure 8.11: Hardware counters during the execution of a real world application

(RTM)

In both worlds, static or dynamic, the used techniques are able to identify the

application phases and their boundness with a different degree of granularity. Based

on this observation, tools can be built to take advantage of each application trend

and phase to predict the best frequency to execute a specific phase. But the fre-

quency selection for each phase strongly depends on the capacity to quickly switch

the frequencies between two phases. Consider that a memory phase is being exe-

cuted, and a more CPU intensive phase is going to be executed next. A different

operating frequency will then be needed and the latency of switching to the best

frequency for the next phase must be greatly shorter than the next phase.
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8.3 Dynamic Voltage Frequency Scaling Latency

As a reminder from the first part, the idea behind DVFS is to dynamically adapt the

P-state to reduce power consumption and hopefully energy. On one hand it was seen

in Section 8.1 that programs intensively using memory can be run at a low frequency

as it will not impact their execution time. They provide significant energy savings as

shown in Figure 8.2 . On the other hand, CPU intensive programs are very sensitive

to frequency as their execution time is heavily impacted by any frequency switch.

It induces a negative impact on energy consumption as shown in Figure 8.3 from

Section 8.1. At the end of Section 8.2 it was concluded that DVFS controllers should

be able to set the best P-state for each application phase to minimize their energy

consumption. However, changing a P-state is not a free process, it takes time as

introduced in Figure 6.2 from Chapter 6. Currently, the frequency transition latency

is hard to obtain as processor manufacturers often do not provide the information

in the product documentation or only provide approximate values [84]. On the

operating system side, Linux provides an estimated transition latency in a file named

cpuinfo_transition_latency. However, the provided latency is a unique estimated

value whereas, as shown in Figure 8.14, 8.15, 8.16, the transition latency depends

on the current and desired frequencies. Hence, neither the operating system nor the

manufacturers provide reliable transition latencies.
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Figure 8.12: Step before actual frequency switch

For their defense, trying to estimate it from the operating system side is a

complex operation since there is a lot of abstraction between the frequency switch

asked by the DVFS controller and the actual frequency switch on the hardware side.

The figure 8.12 shows the different step from the operating system to the hardware.

Each step in the kernel space and in the voltage regulator is done asynchronously

to the user space. There is no easy way to acknowledge when the actual frequency

shift is performed.

In order to get a good estimation of frequency switch latencies a tool was de-

veloped : FTaLaT (Frequency Transition Latency) [120]. For each pair of CPU

frequencies, it measures the transition latency, or switch delay. In fact, it aims at

measuring the time between the request for a new frequency and the actual frequency

transition. FTaLat’s approach relies on the measurement of a micro-benchmark ker-

nel made of a set of assembly instructions. The kernel has to be CPU bound in order

to be as much as possible affected by the frequency change. The kernel consists in a

set of consecutive add assembly instructions resembling the one displayed in Figure

6.6 .

The experimental methodology, used by the authors, consists of two main steps:

initialization and frequency transition latency measurement. In the initialization

phase, FTaLaT measures the execution time of the kernel when it runs using the
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Algorithm 5 FTaLat’s Frequency latency measure procedure

Init
set start frequency

startTime ← kernel exec time

set target frequency

targetTime ← kernel exec time

Latency measure
set start frequency

latency ← 0

set target frequency

while PeriodMeasure ! = targetTime do
increase latency

PeriodMeasure ← kernel exec time

end while

target and the start CPU frequency. In the second phase, FTaLaT sets the CPU

frequency to the target one and waits for the kernel execution time to match with

the one measured in the initialization phase. The frequency switch delay is then the

number of cycles elapsed between the frequency shift order and the kernel execution

time change. To be more reliable, FTaLaT uses a statistical approach to estimate

when CPU frequency transitions truly occur.

In order to have a better view of the transition latency, Figure 8.13 extracted

from [120], represents the measured kernel execution times on an IvyBridge machine

when switching the CPU frequency from 1.6GHz to 3.4GHz. While the vertical

axis reports the execution time of the kernel, the horizontal axis represents different

kernel execution. Figure 8.13 visually displays the moment when the new frequency

is actually changed. The new frequency shift order was issued at iteration 1 and is

effective at iteration 50. The delay between the order and the actual shift represents

in the example 45 us. Additionally to the delay, the execution pipeline seems to

be paused and flushed to take into account the new operating frequency as shown

by the dramatic increase on the benchmark iteration 49. Hence, too frequent fre-

quency shifts can have a huge impact on the execution pipeline and strongly impact

the overall application execution. However, that specific problem was acknowledged

using as much CPU bound benchmark as possible with very precise measurement

set-up. Unless the application to be optimized is perfectly CPU bound, other bottle-

necks will prevent that pipeline pause to be the major limiting factor. Moreover, if

the application is perfectly CPU bound, any DVFS system will recommend to only

use the highest frequency, as shown later on, hence preventing the pipeline pause

from occurring.

Though the mechanism to change the operating frequency is identical, as shown

in Figure 8.12, each architecture exposes different behaviors. Figures 8.14, 8.15 and

8.16 show the latency of the frequency switches exposed by FTaLaT on three dif-

ferent Intel architectures. For each figure, the x-axis shows the frequency spectrum

available on each architecture. It can be noticed that the Ivybridge and SandyBridge

architecture have fifteen different frequency settings. The Westmere, which is the

oldest architecture, has only ten. In addition the frequency padding between each

architecture is different. The SandyBridge has a strict padding of 0.1Ghz between
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each frequency whereas on the Westmere and the IvyBridge the padding varies

between 0.1Ghz and 0.2Ghz. The y-axis on each figure represents the frequency

switching latency needed to change the frequency setting.
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Figure 8.13: Observed execution times of the assembly kernel for the pair (1.6 GHz,

3.4 GHz) of CPU frequencies on the IvyBridge machine

On the three machines, the transition delay is not constant. The transition

latency is observed between 22 µs and 45 µs on IvyBridge, between 20 µs and 70 µs

on SandyBridge, and between 10 µs and 70 µs on Westmere. It can also be noticed

that newer processor generations have smaller latency ranges. The transition latency

increases whenever the target frequency is higher than the start frequency. For

each start frequency higher than the target, the transition latency falls in very tight

range of latency values: between 20 µs and 25 µs on the SandyBridge and IvyBridge

machines, and almost 10 µs on the Westmere machine. These observations shows

that changing frequency upwards is much more costly than changing it downward,

validating the suggestion made in Chapter 6 with Figure 6.2. The transition latency

increase does not follow a similar trend on all machines. Indeed, while the transition

latency increases linearly when CPU frequency is increased on the SandyBridge

machine, at least three levels of transition latency increase on the IvyBridge and

the Westmere machines can be identified. However the voltage regulator is located

outside the processor die, on the mother board [96]. It is then difficult to say if

the different behavior comes from optimizations inside the processor die, or on the

voltage regulators.

In order to set the correct frequency for each application phase, several param-

eters have then to be taken into account. Each application phase has to last a

sufficient amount of time to benefit from the best frequency. For example, consider

a theoretical frequency latency of 22µs and an application phase durations of 11µs

and 440µs. The new frequency is asked at the beginning of the phase. When con-

sidering 11µs duration, the phase end before the new frequency is applied. It will

not benefit from that frequency as illustrated in Figure 8.17a. When considering

440µs the frequency transition latency will only represents 5% of the phase duration,
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Frequency transition latency estimation
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Figure 8.14: Latency to change frequency on an Westmere architecture

Frequency transition latency estimation
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Figure 8.15: Latency to change frequency on an SandyBridge architecture
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Figure 8.16: Latency to change frequency on an IvyBridge architecture

allowing the phase to benefit from the use of that specific frequency. Figure 8.17

summarizes both cases.

Finally, only three different categories summarize the various applications execu-

tion trend: CPU-bound, memory bound, and balanced. On the one hand, it was easy

to find optimization policy to reduce the energy consumption of CPU-bound and

memory bound application by either race to finish or lowering at maximum the oper-

ating frequency. On the other hand, the balanced application interleaves phases with

different behaviors, resulting in non predictable energy trends. Still it was shown

that an energy optimization process could be done by extracting and individually

studying the behavior of each unique application phase. Finding a frequency setting

for each individual phase allowed to guess the full application optimized energy con-

sumption. It was also shown, that static phase extraction from application source

code has huge limitation. Therefore, another way to identify phases is necessary,

making the scope of study shifts from static world to a more dynamic one. Applica-

tion phases are then identified during the application execution. With a small set of

metrics, the boundness of each application can be easily diagnosed. That helps to
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Figure 8.17: Frequency transition latency versus phase duration
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understand application trend and derive a strategy to reduce energy consumption,

which is the goal of the next three chapters.

The following three chapters present three different DVFS mechanisms relying

on the previous observation. Chapter 9 presents the Runtime Energy Saving Tech-

nology (REST), which is a purely on-the-fly DVFS system. For example, REST

uses the boundness evaluation presented in Section 8.2.2 to determine the overall

application boundness and converge to the frequency granting the lowest energy con-

sumption . However, though Chapter 9 shows good gains in energy consumption,

one question still arises: is REST doing good enough?

The quality of any optimization technique is always an important question to

answer and Chapter 10 tries to answer it. The chapter presents a second tool called

Utopeak, which is a static profiling tool. Utopeak analyzes the application and

determines the best frequency sequence a dynamic system such as REST should

choose to achieve optimal energy consumption.

Utopeak’s analysis shows that there is more to do in the DVFS domain. REST,

though a good first tool, is a bit naive in its decision making and requires hardware

counters specific to the Nehalem architecture. Both issues led to the creation of

Forest presented in Chapter 11. Forest presents a mean to handle the CPU DVFS

issue in a more interactive way. Instead of trying to create a function that calcu-

lates the best frequency depending on current hardware counter values, Forest uses

an iterative approach to adjust on the fly the frequency and obtain better energy

consumption. Additionally, Forest has the big advantage of being able to offer the

user a predetermined acceptable slow-down.

All three techniques help in understanding the advantages but also limitations of

Dynamic Voltage and Frequency Scaling related tools. Finally, the three tools only

consider a uni-node configuration. It makes sense to start to crawl before attempting

to run and, as a proof, Part III considers the more complex DVFS in a multi-node

configuration problems.



Chapter 9

Runtime Energy Saving

Technology (REST)

In the previous sections it was shown that applications have different trends, mean-

ing different ways to optimize the energy consumption. Moreover, though an applica-

tion belongs to a specific trend, each application phase can have a different behavior.

Therefore, the use of different frequencies through the execution is needed to opti-

mize the overall application energy consumption. It was also shown that application

phase identification could be efficiently performed at run-time. Therefore, selecting

the optimal frequency regarding the application phase trend can be performed while

the application is running.

By compiling all the previous insights, a first attempt to create a dynamic system

that dynamically changes the frequency while applications are running was made

with REST. The motivation of REST, is to make energy consumption reduce by

selecting frequencies that best fit applications phases trend.

9.1 State of The Art

DVFS techniques are definitely not new [72, 85, 96, 114]. Dynamic systems [73, 86]

profile the code at runtime using low overhead techniques. Some require modifica-

tions to the code base [50, 70], to the hardware [96, 114], use tools such as VTune

[10], or use a simulator [113, 115]. REST, implemented on modern systems, pro-

vides a software layer that utilizes hardware performance counters and gives users

a plausible energy consumption improvement with their current hardware set-up.

Isci et. al. [86] provide a similar hardware counter-based system to REST. The

authors propose a phase prediction system using a Global Phase History Table,

which produces next-phase behavior deductions based on previous samples. Once a

prediction is performed, the framework is linked to a DVFS method, which reduces

the frequency if memory-bound and raises it if cpu-bound. REST is similar in the

concepts of frequency decision making but differs from their approach by handling

multi-process applications. Also showing, in the DVFS scenario, predictions are not

required; a simple naïve decision maker suffices and reduces the incurred decision

making overhead. REST was evaluated using the energy consumption from the wall

and not from the CPU, a methodology more widely used.

Hsu et Feng et. al. [73] created a power-aware runtime system taking into account

the maximum slow-down the user may desire. The authors use a system to detect

the global number of executed instructions per second. Therefore, if the system is

executing multiple applications, specific per core information is lost in the global

tracking. REST considers the application alone and the user can attach REST to

the most important application. Also, Hsu and Feng’s algorithm provides a means

to reduce the maximum slowdown obtained, REST’s goal is to always maintain as

much the performance as possible while hopping to lower the energy consumption.
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Gotz et. al. [56] has the same vision of an application energy consumption as

REST. They also validate the presence of a sweet spot frequency allowing the lowest

energy consumption. Their study is only performed on three different sort algo-

rithms, but they show that for each sort, a single frequency grants the minimum

energy consumption disregarding the data set size. It could be interesting to inves-

tigate that further as future works.

9.2 General Presentation

In the simplest explanation, REST selects a frequency regarding an application

phase behavior. Therefore, REST first need is a way to measure the application

activity. Then based on the activity, a trend has to be selected, either CPU-bound,

balanced or memory-bound. Based on the trend a frequency is selected. Finally,

once the frequency is chosen, it has to be applied. In a nutshell, REST is composed

of three steps. The link between each of them is shown in Figure 9.1.

Figure 9.1 shows how REST’s steps are linked and how they are implemented.

The activity monitoring was performed via sampling based profiling as shown in

Section 8.2. In REST overseeing the application activity relies on hardware counters

monitoring. At each profiler wake up, the hardware counters evolution are sent to

the application phase trend selection. Based on the gathered information, a trend

is selected. REST uses different methods to achieve that. Called Naïve, Branch-

predict or Markov, each of them relies on different level of complexity to produce

the solution. Finally, a frequency is deduced from the selected trend, and sent to

the frequency changer to be the new CPU operating frequency.

REST is started when launching an application to be optimized. The different

steps are repeated at each profiler wake-up. Once the application is finished, REST

stops.

REST impact on energy consumption relies on the efficiency of the first two

steps. The profiling system must accurately grasp the application activity; this

is far from simple as show in Section 9.2.1. The trend selection has to correctly
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Figure 9.1: REST system overview
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interpret the measured activity to select the best frequency. That is why different

levels of complexity are tested to see if more intelligent system can produce better

solution as presented in Sections 9.2.2.1,9.2.2.2, and 9.2.2.3.

9.2.1 Dynamic Profiler

A way to accurately identify the different applications phase through their activ-

ity on the processor was shown in Section 8.2. It was decided to implement the

same hardware counters interrupt-based sampling in REST. As a recall, the Figures

8.10 and 8.11 demonstrate the system ability to detect changes in the application

execution flow.

REST profiler periodically wakes up to measure the activity of the application

via selected hardware counters from Section 8.2. As a reminder, the CORECYCLES

measures the CPU activity, L2MISS and SQCY CLES capture the level of memory

saturation. At each wake up, the profiler measures the instant value of each counter,

and passes them down to the decision makers. As for each profiling technique

[46, 144], correctly designing the sampling period ensures the sanity of the measured

information. If the sampling period is too small, the profiler wakes up too ofter; this

might forces frequent context switches. It could slow down the studied application’s

execution and increase the energy consumption. The too frequent profiler wake-up

will also tamper with the hardware counters values since the profiler also measures

its activity. At the opposite, a too low sampling frequency makes the profiler miss

application phase shifting, feeding biased information to the decision units. Figure

9.2 shows the impact of too small and too long sampling period on the measured

activity. The following example, shown in Figure 9.2, displays the impact of bad

sampling period on the CPU activty as the number of executed instructions are

monitored. It was decided to choose such counter, because there is a direct relation

between its evolution and the fact that more computation has to be handled by the

processor. If the profiler wakes too much, it generates additional work for the CPU,

therefore, increasing the number of instruction to be executed. The same study

could be performed with the hardware counters used by REST but the difference

would not be as clear as shown in Figure 9.2.

Figure 9.2 shows the impact of different sampling periods on the measurement

done by a profiling technique while executing the benchmark program BT from

the NAS benchmarks suite [14]. All three figures display the evolution through

time of the number of executed instructions, consequently the x-axis represents the

execution time in seconds and the y-axis the number of executed instructions.

Figure 9.2b is used as a reference point for the two others. It clearly appears in

Figure 9.2a that too frequent wake-ups generate a huge number of context switches,

therefore additional instructions are executed. Figure 9.2a displays the case where

the measuring tool identifies its own impact on the system in addition to the studied

application behavior. The difference between both case is 4.58% in average. The

profiler is minimalistic, it only polls the hardware counters and store its readings. If

heavier computation were performed during the waking period, the impact on the

number of executed instructions would have been more dramatic. At the opposite

side of the spectrum, slow wakes up, misses too much information. In the case

displayed in Figure 9.2c, the profiler misses all application phases, making the user

believe the application only has one phase, which is far from true when comparing

it to the reference case.
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Figure 9.2: Different profiler waking period
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The sampling period used as a reference in 9.2b is the one used in REST. It is

based on a set of reference benchmarks, chosen in each category of trends (CPU,

memory, balanced) shown in Section 8.1. It is used to evaluate the accuracy of

different sampling period. The period giving the lowest overhead while correctly

capturing all the application phase shifts is used as default sampling period. Con-

versely for the next chapters, REST does not use energy probes, so the sampling

period sizing is purely based on application phases and not on the best tradeoff

between the application’s phase duration and energy probes resolution.

In the end, the REST sampling period is dimensioned to correctly profile any

kind of application. It ensures that the read information shipped to the decision

makers at each profiler wake up is correctly capturing the application execution.

Finally, as there is strong confidence on the application activity monitoring, the

decision makers can then fully dedicate themselves to finding the best frequency

regarding the measured information.

9.2.2 Decision Makers

REST implements several decision makers. The first and the most naive, considers

only the present and makes his decisions only on the current sample. The second

makes its decisions on passed and current samples. The last one, does not make

decisions, but predictions. It tries to predict the application future activity and

anticipates the frequency setting. Each version has advantages and drawbacks,

addressing different needs.

The role of each decision maker, is to find a frequency regarding the trend

of each application phase. Or more precisely, the trend of the slice of activity

measured during one profiler sample. The application trend classification performed

in Section 8.1 is based on the application activity on each processors’ frequency. In

the case of REST, there is no possible way to stop the execution, run the piece of

code that was monitored during one profiler sample on each frequency and then

derive its trend. A ratio based on the measured information can the be created.

The ratio, called boundness evaluation, expresses whether the current application

activity is more CPU-bound, balanced or memory-bound. It is comprised between

0 and 1. If the ratio is equal to 0 the current sample acknowledged a purely CPU-

bound behavior. At the opposite, if the ratio is equal to 1, the measurement is

performed during an intensive memory bound application phase. Any value between

the two extremities represents a more balance trend. Depending on the complexity

of the desired decision makers, different decisions are taken on the basis of on the

boundness ratio value.

9.2.2.1 Naïve Decisions

The naïve decision maker was developed in order to check the viability of the bound-

ness ratio to correctly express what is being executed. Therefore, the naïve decision

maker simply accepts all ratios as correct.

As the ratio expresses the application trend, it is natural to map a certain value

range to a specific frequency. Indeed, as explained in Section 8.2.1, when facing a

fully CPU-bound phase or memory bound phase, the best way to reduce the energy

consumption is respectively select the highest and the lowest speed. So in the case

of the naïve decision maker, the highest frequency is mapped to the ratio value

1 and the lowest frequency to 0. For the other frequencies in-between, a simple
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interpolation is performed. The ratio value segment is divided by the total number

of frequencies as shown in Figure 9.3.

0 0.1 1

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

Ratio

Frequencies

Figure 9.3: Naïve frequency mapping

So the frequency selection based on the boundness ratio is straightforward. Af-

ter the ratio is computed, the proper range and the corresponding frequency are

selected.

Not keeping passed samples, is the major drawback of the method. To illustrate

the problem, consider the profiled execution displayed in Figure 9.4. The profiling

samples labeled 1 and 2 expose the same quantity of executed memory and pro-

cessing oriented phases, but have slightly different boundness ratios. The computed

boundness are respectively 0.50 and 0.503. By construction, as shown in Figure 9.3,

the boundness ratio interval for the frequency F4 is ]0.4; 0.5] and for F5 is ]0.5; 0.6].

Therefore, though samples are equivalent, two different frequencies are selected. The

slight variation of the boundness ratio around any frequency frontier forces different

consecutive frequencies to be selected. Such a variation is called constant-shift in

the remainder of the section. One can easily suppose that constant-shift can tamper

with the execution time and energy consumption. Building a decision maker able to

detect small variations of the bounding ratio around a frequency frontier prevents

the system from undesired frequency shifts. It is the purpose of the next presented

decision maker: the branch-predictor decider.

9.2.2.2 Branch-predict Decisions

Branch predict mechanism, tries to predict which branch of a future branching is

likely to be taken. The prediction mechanism is based upon an history table to track

past events to help future decision. Using such history tracking can strongly help

detecting constant-shift and preventing them. Based on an history table the branch-

predict decider builds a confidence level for each frequency, helping it choosing the

correct frequency for the current application phase.

The confidence level is based on two observations. The first is the number of

calls to a specific frequency. If a frequency is selected more often than others, it

should be applied. The second is the distance between two frequency selections. A

valid frequency shift occurs when the distance between the newly selected frequency

and the current one is more than one. For example if the current applied frequency

is F1, and the newly desired frequency is F3, the shift would be considered as valid.

Adding both constraints solve the constant-shift described in Section 9.2.2.1 for the

naïve decider.

To illustrate the need to have both constraints to solve the constant-shift, con-

sider Figure 9.5. It shows the frequency selection tracking, i.e. the chosen frequency

at profiling samples. From iteration 1 to 5, it can be see that the frequencies F1

and F2 are alternatively selected, then from iteration 6 to 9 only F3 is selected. If

only the most selected frequency is chosen to be applied, the constant-shift remains

present from iteration 1 to 5. F1 is applied at iteration 1, then at iteration 3 F2



9.2. General Presentation 85

Memory oriented phase

Processing phase

U TED C E C C S

STS SS

S U ST C C S

a
lu

e
 o

 h
a
rd

a
re

 c
o
u
n
te

rs

e
e

e
e

e
e

E ecution lo   sample   ms

u
m

b
e
r 
o

 
u
n
c
ti
o
n
 s

a
m

p
le

s
p
e
r 

 m
s

Figure 9.4: Hardware counters during the execution of a real world application

(RTM)

is selected and finally F0 is resumed at iteration 5. In the current example the

frequency alternation sequence is stopped at iteration 5. However, one could find

an application where the pattern is repeated during the entire application, letting

the constant-shift happening even though the decision are based upon past events.

Adding the constraint distance solve the problem, letting frequency F1 applied from

iteration 0 to 9 until F3 is illegible to be applied as the new processor operating

frequency.

Composing both observations solve, constant-shift. Once a frequency shift is

decided to be valid, the frequency usage history is cleared in order to detect a new

phase and when to apply a different frequency.

The disadvantage of the prediction system is twofold. First, even though it

solves the major disadvantage of the naïve decision maker, it forces the branch-

predict decision maker to be over conservative. It must wait for a few samples to

confirm the change and finally modify the frequency. As shown in Figure 9.5, the

system waits for three iterations, from iteration 6 to 9, to be sure that F3 is the

new frequency to apply. In addition, the overhead of calculating and maintaining

a history is not free. Second, the slow change in frequencies requires larger phases,

since the system needs several samples within the same phase to acknowledge it as

legitimate. By construction it will skip small phase shifts. As an example, consider

the synthetic benchmark used in Figure 8.10, with a ratio of 10:1 for the CPU phase.

The over-conservative frequency switch will only authorize frequencies regarding the

CPU boundness ratio for the entire application execution. It will neglect all the

memory phases since REST will not be confident about them, leading to a non

optimal energy reduction.
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Figure 9.5: Frequency confidence level evolution

To conclude, the Branch-predict decision maker solves the constant-shift at the

cost of lower reactivity. The frequency is only changed when the system is con-

fident about the current executed phase, that also solves the problem of different

frequencies for the same phase. But during the time needed by the decision maker to

evaluate the executed phase, a non optimal frequency is applied. It is the same for

not long enough phases. Though the system has a strong confidence on the applied

frequencies, it leads to a sub-optimal energy consumption. But one can consider

that the small phase or the time needed to evaluate the frequency confidence is

negligible and does not impact much the energy consumption. As the system has

no idea of the energy consumption, the impact of a skipped phase or the evaluation

time on the energy consumption cannot easily be known.

9.2.2.3 Markovian Prediction

Scientific applications are usually iterative applications, meaning that the same

phase sequence is repeated several time. So instead of re-learning the frequency

settings for each phase, a decision maker can try to predict at each sampling step,

which will be the next frequency to apply and when it will occur. In order to achieve

that, a markov predictor based on Esodyp [21] is used. It takes as input the phase

boundness ratio and it tries to predict the next ones. The presented algorithm is

the same as used for Esodyp but instead of predicting memory strides, it predicts

the next frequency to apply based on the boundness ratio.

To illustrate the used algorithm, consider the following example which represents

phase boundness ratio sequence that a running program could have given:

0, 0.3, 0.7, 0.3, 1, 0.3, 0.7, 0.3, 1

.

Markov model uses the past to predict the future. In the example, if the ratio

0 is followed by 0.3, the next phase ratio that will be measured is 0.7 with the as-

sumption that what occurred previously is likely to be repeated. The used algorithm

implements the backward dependencies as a graph as shown in Figure 9.6.
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Figure 9.6: The Markovian Graph construction evolution

To explain how the graph works, Figure 9.6a shows what happens as the two

first phases boundness ratio are caught. The markovian decision maker uses that

algorithm with a depth of two as shown in Figure 9.6. The meaning of the single

edge is that after a phase boundness of 0, a boundness of 0.3 will occur. In the case

of nodes without successor, it is not known what could happen next. For example,

the connex group (0, 0.3) is not attached to anything since information is missing

on the next phase. The node 0.3 alone symbolizes that, if the only information at

hand is a stride of 0.3, nothing can be predicted since it can lead to anything. The

edge label 1 means that this edge has been followed once. Such labels are used to

select the most followed edges.

It can be seen how the graph construction evolves while another ratio is added

on Figure 9.6b. Two more nodes have been added to the graph. The first node 0.7

is attached to both nodes 0.3. This symbolizes that after a 0.3 ratio as well as after

the sequence (0,0.3) a 0.7 occurs. This value only indicates that the last phase ratio

is 0.7 What happens next is not known.

Eight nodes are used in the graph when the whole sequence has been processed

as shown in Figure 9.6c. Now some edge labels present a value at 2 meaning that

those edges were followed twice.

The graph construction process stops after the graph starts to be used in the pre-

diction phase. For REST markovian prediction, the graph construction is stopped

after the addition of 100 nodes. As the construction is stopped, the optimizer points

to the last created node and starts prediction. When receiving a new boundness

ratio, it checks whether there is an edge from the current node leading to that ra-

tio. If so, a prediction can be produced. On some nodes several paths have to be

considered, and can lead to miss-prediction. A huge amount of miss-prediction can
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state that the graph is not representing the reality. The used algorithm defines a

threshold of miss-prediction before flushing the graph and starting over. For REST,

the limit is fixed to 100 errors before starting over.

Benchmark
Valid Undesired phase shift Percentage

phase shift phase shift of valid shift

Astar 20 3573 0.56%

Cactus 8 18788 0.042%

Calculx 6 11714 0.051%

gmss 8 2639 0.30%

gcc 47 764 6.15%

gobmk 7 964 0.72%

gromacs 2 7692 0.020%

h264ref 1 1156 0.086%

hmmer 2 2094 0.095%

lbm 2 24119 0.0082%

ls3D 18172 49957 36.37%

libquantum 12348 53478 23.09%

namd 4 6436 0.0621%

omntpp 1 7854 0.012%

povray 28 3112 0.89%

sjeng 4 7749 0.051%

soplex 419 6103 6.86%

sphinx3 2 16848 0.011%

tonto 2 9292 0.021%

xlcbmk 4 5849 0.068%

zsmp 72 8752 0.82%

Table 9.1: Valid frequency shift versus non valid ones

However, the overhead of the Markovian decision maker is high. The system has

to wait until the prediction graph is built, and if facing unpredictable behavior, the

graph can be flushed and rebuilt during the entire application execution not giving

frequencies to apply. In addition, in the case of predictable behavior, boundness

ratio has to be the same each time each the same single phase is executed. This is

generally not the case. As presented in the naïve decision maker the same phase

can be characterized by a range a value. Each value within that range leads to a

different node in the prediction graph. Making impossible the prediction mechanism

since multiple path in the graph could be walked. A mean is needed to prevent the

undesired node from being added in the prediction graph. One way to perform that is

using the mechanism presented in Section 9.2.2.2, therefore only nodes representing

valid phase shifts will be added into the prediction graph. Table 9.1 shows the

number of valid phase shift against the undesired ones identified when using the

branch-predict phase identification procedure. It can be seen that the number of

valid phase shift is rather small. Even though the markovian system is able to

correctly predict the frequency shift and set the best frequency at the start of each

new phase, on average the energy reduction granted by this system would have

been identical to the branch-predict one. The period of time between the actual
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phase shift and the correct frequency application is the major difference between

the markovian and branch prediction decision maker. During that time slice, the

markovian will prevent the system in wasting energy while using a non optimal

frequency, leading to a more efficient energy reduction. But one can object that the

difference in energy consumption from two consecutive frequencies is not significant.

Therefore, the overall energy consumption obtained from the use of the markovian

prediction will not be drastically better than the one obtained from the use of the

branch-predictor. That is why in the next section, only the energy reduction and

the impact on application performance of the naïve and branch-prediction decision

maker will be discussed.

Finally, each decision maker had a common point, if the same frequency were

chosen across several profiling samples, the sampling frequency was decreased. As

the decider is selecting the same frequency, it means that the application is still

executing the same phase. There is no need to stills rapidly wake up REST, but as

soon as a new phase is spotted the original sampling period is resumed. By doing so,

REST’s activity has a very small impact on the application’s execution. Of course

small phases can be missed, but they are not the source of great energy consumption

reduction. And if the application is only composed of small phases, the feed back

mechanism for the sampling period will not be triggered.

Once the decider mechanism has selected the new frequency to apply, it is sent

to REST’s frequency driver which is in charge to ask the hardware to change the

operating frequency.

9.2.2.4 Frequency Driver

The last component needed by REST to apply the selected frequency is a frequency

driver. As presented in Chapter 6, the Linux operating system uses the cpufreq

module to provide an interface for managing CPU frequencies. REST frequency

driver is on top of cpufreq and uses the sysfs interface to change the frequency.

REST assumes that each core has an independent voltage supply, making a

frequency decision for each available core. The used architecture does not have an

independent voltage supply per core, it is only available at the processor scale. When

facing several requests to frequency switch, the cpufreq module applies the highest

frequency among those of the requests. For example, if a processor has 4 cores,

and each one respectively asks for 2.1GHz,2.0GHz,2.0GHz and 1.9GHz, only the

2.1GHz will be applied. Another behavior must also be considered. If the number

of requests is lower than the number of available cores, the frequency used on the

core not requesting a new frequency is considered when determining the highest.

In this case, if three cores upon the four ask for the lowest frequency whereas the

last core uses a higher frequency, the requests won’t be taken into account and the

higher frequency will be used.

The energy savings presented in Section 9.3 are achieved while using all the

cores. The applied frequency indeed reflect REST’s frequency selections and not a

undefined behavior.

9.3 The Cost of Energy Savings

REST was developed to be application independent. It has to start when the appli-

cation starts. REST transparently initializes itself by the use of the LD_PRELOAD
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environment variable at the start of a program and configures all necessary decision

makers through REST specific environment variables.

Two benchmark suites were used to show REST’s energy saving capability. First

the sequential SPEC2006 benchmark suite [157] was used. The application, though

sequential, was executed on each core simultaneously to simulate a full workload.

An internally developed tool, MicroLauncher [20], ensured all processes were pinned,

synchronized, and uninterrupted to attain the most stable results. The SPEC pro-

grams are relatively complex and complete programs, and for some of them, the

simulation required more memory than was physically available and forced paging

to occur. Such cases were dropped from the study because correctly tuned programs

should always fit into the available physical memory. Second, to prove that even with

real parallel applications REST can perform energy savings the NAS benchmarks

suite [14] was used.

Finally, to prove REST is fully capable to adapt to different architecture and

software environment, two experimental platforms with different tool chains were

selected as summarized in Table 9.2.

Model Number X5650 E3-1240

Cores 2 x 6 4

Memory 8 Gb 4 Gb

PowerMeter Yokogawa Hardware

WT210 counters

Operating System Linux 2.6.38 Linux 2.6.38

Compilers Gcc 4.6 - Ifort 12.1 Gcc 4.6

Table 9.2: Experimental Testbed

Table 9.2 shows that the Westmere X5650 architecture uses two processors.

REST is able to transparently perform energy savings either with one or more

physical CPU within the same machine as it only considers cores. REST sends its

decision to the cpufreq module to be transparently condensed into one frequency

shift per processor as explained above. REST also adapts itself to different energy

probing systems. For the Westmere X5650 architecture, a digital power meter was

used to measure the full machine energy consumption. For the SandyBridge E3-

1240 machine, the CPU’s dedicated hardware counter was used. The modularity

makes REST able to provide frequency decisions for energy reduction, whether its

is measured on a full system or only on a CPU.

The choice of both architectures was also driven by the fact that some NAS

benchmarks needed either a power of two or a quadratic number of cores. So it would

have led to parasitic frequency selection since less than the twelve cores would have

been used. The parallel execution of the SPEC2006 was performed on the twelve

core machine whereas the NAS was executed on the four core machine.

Figure 9.7 shows how REST is able to reduce the energy consumption for the

SPEC2006 benchmark suite executed on the dual processor setup with the digital

power meter. As explained above, all the benchmarks within the suite are not

displayed in the figure, since the parallel execution forcing paging to occur.

Each bar represents energy savings or performance degradation. Energy saving

is obtained with almost no performance slowdown, for sphinx3, lbm, or libquan-

tum(libq). REST is achieving energy reduction without degrading the performance
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Figure 9.7: REST energy savings and performance degradation on the SPEC 2006

benchmark suite, with the most naïve decision maker

since their execution behavior is equivalent to the external boundness trend as di-

agnosed in Section 8.1. As a recall, external resource boundness, exposes a constant

execution time over the different frequencies whereas the energy consumption de-

crease when selecting lower frequencies. Therefore, selecting the lowest frequencies

exposes significant energy reduction without arming performances.

In the majority of cases, the energy saving are greater than the performance

degradation, which validates the fact that even by blindly slowing down the execu-

tion, energy reduction can be performed. Note that in some cases like libquantum

(libq), throttling the frequencies actually increases performance, likely due to re-

duced conflicts in buffers and coherence buses. It can also be due to a borderline

effect, since it is within the error margin.

It can also be seen that aside the assumed memory bound applications all other

energy optimization were obtained with performance degradation. Indeed, in Sec-

tion 8.1, for CPU-bound and balanced applications, lowering the frequencies means

degrading the application’s execution time. As REST achieves energy reduction

on each application, they are not CPU-bound. Indeed, if one was purely CPU-

bound REST could have done nothing, which implies letting the higher frequency

for the entire application execution. The benchmarks were executed in parallel to

completely occupy the system. Therefore, some bottlenecks happen, lowering the

application CPU stress making them shift from CPU-bound trend to a more bal-

anced one.

One feature, which has not been mentioned yet, is the case when REST only

selects fixed frequencies, i.e. it does not select the Turbo Boost frequency. Had the

system allowed Turbo Boost frequencies, the results would have varied slightly. For

memory bound programs, the results are identical because REST never selects the
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Figure 9.8: REST energy savings and performance degradation on the parallel NAS

benchmarks using the naïve decision maker

upper frequencies. However, for compute bound frequencies, the results would have

been close to 0% for both energy savings and performance degradation. Indeed, for

such programs, the decision makers select the highest frequencies and maintain them

for the rest of the execution. Since the OnDemand Linux governor would also go

into Turbo Boost mode, both REST and OnDemand would have identical behavior

therefore, identical results. The reason REST restricted itself to static frequencies

was to provide insight on the cost effectiveness of the Turbo Boost mode. If a user

considers energy savings though, it is moot to select Turbo Boost since, according

to the results, it gains in performance but actually reduces the power/performance

ratio. On the dual processor platform, using Turbo Boost means dramatic increase

in power consumption. Overclocking the execution frequency, apart from increasing

the operating voltage accordingly, increases the die temperature. As explained in

Chapter 5, the increase in temperature leads to higher power leakage and fans con-

sumptions. This power consumption increase cannot be countered by the speedup of

the overclocked frequency. The dramatic power increase can be noticed on Figures

8.2, 8.3, 8.4.

In addition to SPEC results, Figure 9.8 presents the results obtained on the

parallel NAS benchmark suite. The runs are performed using Class C benchmark

sizes. As BT, CG, MG, and SP in Figure 9.8 show, there is an opportunity for

large energy savings at minimal performance degradation when MPI communica-

tions overlap the slower processing. However, LU, which is highly coupled to its

messaging and scheduling suffers from skew introduced by the REST runtime. As

REST independently slows down each processing phase between communications

without taking into account their overall impact on the application, it generates

a significant amount of slack time. Slack time, is a time slice where a process is

waiting for a message to arrive. If the sending process is slowed down by REST

before sending the needed message, the receiving process will have to wait for it
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longer. That unbalance can take dramatic proportion as almost all processes are

interlinked. LU is the best example of what happens when skew are introduced in

a distributed application.

9.4 The More The Better ?

As exposed previously, REST implements several decision makers, each one of them

using an increased level of complexity. Therefore, any one can expect that the

more intelligent decider exposes better energy savings. But sometime the difference

between the solution given by the moire complex system is not worth the cost when

compared with a simpler system. It is the case for REST.

The previously presented results are obtained by running REST with the naïve

decision maker. Figure 9.9 presents the results obtained by the predictive decision

maker, and one could notice that there is no drastic change between them. The

variations on energy savings and performance slow-down are within 2% as shown in

Figure 9.10 and 9.11.

Figures 9.10 and 9.11 present a percentage point comparison in energy savings

and performance degradation between the naïve and the branch-predictor decision

makers. The values are obtained by calculating the difference between percentage

gains or losses between each predictor. The difference between the two is limited.

Though the branch predictor may achieve better results in certain cases, the effort

required is not automatically worth the complexity.

Branch prediction on the majority of the tested benchmarks does not signifi-

cantly exhibit more energy reduction than the naïve version. It has less impact

on the application execution time, since the branch-predictor decision prevents the
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Figure 9.9: REST energy savings and performance degradation on the SPEC bench-

marks using branch prediction decision maker
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Figure 9.10: Naïve decisions lead to better energy saving and lower performance

slowdown on a subset of tested applications

frequency selection from constant-shifts. In the end, to invest in complex decision

system, does not always mean better solution. In REST case, using the naïve version

gives a good approximation on energy savings.

REST can perform good energy saving with decent performance degradation.

Unfortunately as there is no way to be sure that all the energy saving can be

achieved, one can legitimately question REST efficiency or potential. The next

chapter answers the question. One can also wonder about performance degrada-

tion. Indeed, REST cannot estimate the real impact of each frequency selection on

energy consumption and execution time. Such trade offs are discussed in Chapter 11

where a study is performed to enhance the energy reduction while strictly limiting

the performance degradation.
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Figure 9.11: Branch prediction decisions lead to better energy saving and lower

performance slowdown on a subset of tested applications



Chapter 10

UtoPeak

The previous chapter described a dynamic tool intending to reduce the energy con-

sumption of an application execution. While the application is running, REST

determines the trend of each application phase in order to select the best frequency.

REST achieves a significant amount of energy reduction even with the naive control

over the frequency. Therefore one can question the efficiency of such a tool re-

garding energy consumption reduction. Moreover, multiple DVFS controllers exist

[86, 47, 143, 145] with various levels of complexity leveraging different amounts of

energy consumption reduction, but none of them evaluate the real efficiency of their

solution.

UtoPeak was designed in order to primarily evaluate the efficiency of REST.

The goal is to compute the maximum reduction of energy consumption that one

can expect from the use of any DVFS controller. If the higher bound on energy

reduction is known, it gives other DVFS solutions a reference point to compare

their own reduction with the maximum. It gives the users a mean to compare all

the DVFS systems at hand and then to select the most appropriate regarding their

constraints.

10.1 State of The Art

Even though UtoPeak shares common characteristics with run-time DVFS system

like REST, [86, 87, 158], such as the frequency selection regarding the program

phases, or the use of different frequencies during application execution, UtoPeak is

a static method using an offline energy study to build a frequency sequence as it is

presented below.

Hotta et. al. [70] present a system close to UtoPeak. A frequency sequence is

build based on information gathered during an application profiling step. The evalu-

ated application is then run while using the sequence of frequency. Unlike UtoPeak,

the application execution performed during the profiling step contains instrumenta-

tion code in order to help application phases identification. The granularity of such

instrumentation is function based because finer grain could induce perturbation on

the profiling information. Utopeak uses a helper thread to track application phases,

thus no modification to the original application binary is needed and the overhead

remains limited. In addition, as the helper thread measurement sampling rate of-

ten represents hundreds of milliseconds, UtoPeak can track program phases at finer

grain such as loops.

Freeh et. al. [46] also describe a system strongly related to UtoPeak. It splits

the evaluated application in different phases, and for each one, a frequency setting

is chosen in order to satisfy a constraint. The major difference with UtoPeak comes

from the number of profiling runs involved during the profiling step. Indeed, to

achieve the optimal heuristic, the evaluated application is run n× f times, where n

is the number of phases and f is the number of frequencies. UtoPeak only needs n
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runs to compute the optimal frequency sequence. Moreover, in the parallel context

n ≫ f , therefore UtoPeak has a lower overhead when producing the frequency

sequence.

Ge et. al. propose in [50] several techniques to optimize energy consumption.

Two of them are related to UtoPeak as they involve prior application energy con-

sumption study. The first one requires application profiling over different frequencies

and sets the best static frequency for the entire application execution, unlike Uto-

Peak which uses a sequence. The second approach identifies application phases

through instrumentation in addition to energy consumption measurements. As for

Hotta et. al.’s system, API function calls are injected around identified code blocks

to set the correct frequency setting. The evaluated application is then recompiled.

However, too many API function calls injection can greatly modify the application

behavior by preventing the compiler from performing some optimizations, poten-

tially adding significant overhead on the energy consumption. UtoPeak, by using

an helper thread, operates the needed frequency switch outside of the application

binary, thus has a lower impact on the overall application energy consumption.

Kolpe et. al. [97] propose a system also very close to UtoPeak. It slice the

application into multiple step of fixed durations. Unlike UtoPeak, for a time step the

Kolpe et. al.’s approach considers all the combination of frequency. For example, at

step N , if only two frequencies are available, 2N combination are evaluated, inducing

an combinatorial explosion.

10.2 Under the Hood
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Figure 10.1: UtoPeak’s general overview.

As said previously, UtoPeak intends to compute the maximum energy reduction

possible for one application’s execution. UtoPeak takes advantage of the boundness

of each application’s phase to select the frequency giving the lowest energy consump-

tion disregarding the execution time’s degradation. To do so, it has to identify each

application phase and record the impact of each frequency on their energy needs.

The recording is achieved through application profiling of each CPU frequency. Once

all the application phases are identified, UtoPeak searches for the best frequency for

each one and predicts their impact on the overall application’s energy consumption.

Once it is done, all the frequencies are gathered as a sequence and used while the

application is run one last time to identify the energy savings. Figure 10.1 shows

the interaction between the three described steps. How and why profiling is per-
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formed, how the application phase identification and frequency matching is done

are explained in the next subsections.

10.2.1 The Necessity of Profiling

It has been shown in Section 8.2 how application phase identification can be per-

formed. Either via static code analysis or via dynamic code instrumentation. The

static code analysis is generally limited to functions or loops whereas dynamic code

instrumentation is not as limited. It can target basic blocks or even smaller code

blocks provided that probes resolution is precise enough. UtoPeak phase energy

study could have been performed with both solutions but the dynamic profiling has

two major advantages.

First, performing the full application phase study via static phase extraction

needs N×F execution. All N phases have to be executed on the F CPU frequencies,

which can be time consuming. Even more in a parallel context with N ≫ F it can

lead to a combinatorial explosion as discussed in Part III.

Secondly, once phases are extracted, the application has to be run to retrieve

the phase execution sequence as well as the number of calls for each one of them.

Retrieving the sequence of phase execution is important in order to correctly sched-

ule the frequency shifts for the frequency sequence evaluation. The number of calls

is also important to evaluate the weight of the application phases and accurately

predict its influence on the overall optimized energy consumption.

In addition to the complexity of phase extraction, numerous application exe-

cutions are required to retrieve all the needed information while dynamic profiling

only needs F application executions without prior application knowledge.
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Figure 10.2: UtoPeak profiling information during IS execution at 1.6GHz.

Figure 10.2 shows all the information needed by UtoPeak. The IS benchmark

program was run on all the CPU frequencies while periodically monitoring the num-

ber of executed instructions and the CPU energy consumption. Figure 10.2 shows

the profiling information for only one frequency. As said above, there is no need to

have prior knowledge to identify different application phases. Here, in the case of IS,

four distinct phases are identified as the CPU undergoes different levels of stress. It
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starts by intensively executing instructions. It is then followed by ten alternations

of higher and lower CPU stress, and finally finishes by the highest CPU stress.

The explanation of the varying CPU stress can be found in the IS source code.

As for the sequential version, there are three main functions : create_seq, rank and,

full_verify. However, there is a major difference between the execution exposed in

Figure 10.2 and the one studied in the Section 8.2. The version here is the paral-

lel version of IS using openMP. The injection of openMP pragma for transparent

parallelism is the only difference with the sequential source code. The function cre-

ate_seq is called at the beginning of the application, followed by 11 calls to rank,

and ended by a call to full_verify. The eleven calls to rank are due to the selected

size problem.

One can see that the execution sequence found by looking in the source code

almost matches the evolution displayed in Figure 10.2. By looking deeper in the IS

source code, it can be seen that rank is not fully parallel, a sub part of the function

remains sequential. It explains why during the eleven calls to rank, there is a spike

followed by a lower amount of executed instructions. In the case of the static phase

extraction explained in Section 8.2, only the openMP region is considered.

Without prior knowledge of the application, dynamic profiling is a good way to

catch important application phases.
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Figure 10.3: Difference between time-based and instruction-based sampling.

The dynamic profiling, as shown in Figure 10.2 is performed by sampling execu-

tion time. As said above, the profiling has to be performed on each CPU frequency.

Unfortunately, as exposed in Section 8.1, each application has a different sensitivity

to frequency. Indeed, the execution time generally varies with the frequency. With

constant time sampling, a shorter execution time implies fewer samples.

Figure 14.6a shows differences in the number of time samples for a theoretical

application execution. The gray area represents one application phase. When using

different frequencies, the application phase is executed on a different number of

time samples. Moreover, the fifth time sample in Figure 14.6a does not represent

the same grey area segment under the different frequencies. It is impossible to
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directly compare time samples energy consumption under different frequencies.

To solve the problem, one could dump the dynamic profiling to get back to

static phase extraction and comparison. Comparing the same phase under different

frequency executions, means comparing the same code section, in other words, the

same number of instructions. Though one application phase has different execution

times under different frequencies, the number of executed instructions remains the

same. To solve the problem illustrated in Figure 14.6a, the application profiling has

then to be performed on the number of executed instructions as shown in Figure

14.6b.

Unfortunately, instruction-based sampling is not easily done out of the box.

Instead of a fixed period of time, a fixed number of instructions has to be chosen to

trigger the probe reading. Each application phase puts the CPU in a different level of

stress, meaning a varying number of executed instructions per cycle (IPC) while the

application is executed. A varying IPC implies a varying execution time for each

instruction sample. Yet, each probe has a specific resolution which is expressed

as a period of time, therefore the execution time of each instruction sample has

to be at least equal to each probe time resolution. The IPC evolution through

the application execution has then to be known. Since UtoPeak has a significant

profiling overhead, adding further profiling is not affordable. Application sampling

is performed based on time and UtoPeak performs a conversion from time-based

measurements to instruction-based ones. The conversion is detailed in the next

subsection and corresponds to the normalization step in Figure 10.1.

10.2.2 Normalization and Prediction

The normalization step is needed because the instruction based sampling is not

possible out of the box. As the number of samples is linked to the application

execution time, the longer the application lasts, the larger the sample vector is. The

normalization process has to be kept simple to be fast and lightweight. The gathered

data inputs correspond to the the first three columns from Table 10.1. Here only

two time samples are used to demonstrate how the normalization process is done.

The Inst. column and e(TS) represent the number of executed instructions and

their corresponding energy consumption measured on a time sample TS.

Based on the available information, the following equation shows how to compute

the average energy consumption eTS(i) per single instruction i for a time sample TS:

eTS(i) =
e(TS)

#Instruction(TS)
(10.1)

TS Inst. e(TS) eTS(i) IS Inst. e(IS)

1 6 3 0.5 1 5 5× 0.5

2 4 1 0.25 2 5 0.5 + 4× 0.25

Table 10.1: Theoretical program sampling and normalization results

e(TS) represents the energy consumed during a time sample and

#Instruction(TS) is the number of instructions executed on the same time sample.

The eTS(i) column of Table 10.1 shows the average energy per instruction com-

puted by using the Equation 10.1 on each time sample. The same process is repeated
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for every frequency. By comparing each executed instruction under the frequencies

based on their average energy consumption, a frequency sequence can be built.

However changing frequencies takes time, as shown in Subsection 8.3, and the

delay to set a new frequency is longer than executing a single instruction. To

ensure that the delay for changing frequencies will be negligible, the normalization

process is done for several instructions, defining an instruction sample. By summing

the energy consumption per instruction e(i), for each instruction belonging to an

instruction sample IS, one can compute its energy consumption e(IS):

e(IS) =
∑

i∈IS

e(i) (10.2)

By using Equation 10.2 and considering the instruction sample size is five instruc-

tions in our example, the time samples are now converted into instruction samples

as shown in the last column of Table 10.1. Notice that, in many cases, instructions

belonging to an instruction sample do not come from a unique time sample, thus

e(IS) is computed from several time samples involved in the instruction sample

composition.

One can object, as for time-based sampling, that deterioration on the normal-

ization process can be induced by not correctly sizing the instruction sample. If the

instruction samples are too small or too huge the normalized energy consumption

will no longer reflect the consumption evolution noticed during the profiling step.

Therefore, it was decided to select for each benchmark, the smallest amount of in-

structions executed on a time sample. It ensures that even a small phase or a CPU

not intensive phase is taken into account. One could have used an arbitrary instruc-

tion sample size for all the benchmarks, but each one of them differently interacts

with the hardware, and using different sizes help UtoPeak to grasp the uniqueness

of each application and hardware.

After the normalization process, UtoPeak knows, for every frequency, the energy

consumption per instruction sample. By comparing all the samples over the differ-

ent frequencies, the tool selects the one granting the lowest energy consumption.

Utopeak repeats the process for each instruction sample and builds a sequence of

frequencies. Table 10.2 shows an example. The predicted energy consumption is

obtained by summing e(IS) for every selected instruction sample.

IS 1 2 3 4 5 6 7 8

Frequency F1 F1 F2 F3 F2 F1 F3 F3

Table 10.2: Theroritical application’s frequency sequence.

Once the frequency sequence and the best theoretical energy consumption for

the evaluated application are computed, the sequence is used in the last step to

evaluate the energy prediction precision.

In order to evaluate precision, the frequency sequence player starts as a new

thread at the beginning of the application. The goal of this new thread is to poten-

tially change the frequency every time a full instruction sample has been executed.

As instruction-based profiling is not possible on our testbed, the watcher thread pe-

riodically wakes up to retrieve the number of executed instructions and determines

if the current instruction sample has been fully executed. It then sets the next fre-
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quency if needed. It repeats the process for each instruction sample until the end

of the application execution.

At the end of the evaluation, the overall application execution is measured and

compared to the prediction to ascertain the precision of the prediction. The final

step is only done to prove the accuracy of UtoPeak and to demonstrate to users that

they can positively rely on its predictions to evaluate the best energy consumption

they can expect when using any DVFS controller.

10.3 UtoPeak Assumptions

The following section presents the different assumptions made by UtoPeak. First,

the section shows the variations in the number of executed instructions over different

runs and how to maintain it as low as possible. Then, the section presents how the

frequency transition latency can impact the sequence evaluation.

10.3.1 Constant Number of Executed Instructions

In order to compare the energy consumption of the same program phase under differ-

ent frequencies, UtoPeak assumes the number of instructions to be executed remains

constant across runs. Furthermore, UtoPeak supposes the application execution to

be fully reproducible.

The variation in number of executed instructions between runs is in average

0.05% and 0.16%, respectively for SPEC2006 [157] and NAS-OMP [14]. Therefore,

for the considered benchmark suites, there is little or no variation between runs,

validating the assumption.

As a caveat, to achieve such a low variation, even in the parallel context, the

execution environment is controlled in order to get the most deterministic execution

as possible. To prevent the operating system from moving the different processes or

threads around available cores, each one is pinned on distinct cores. Moreover, in

the case of parallel benchmarks, barriers can induce variable number of instructions

to be executed due to the active polling. Thus, for OpenMP applications, a passive

barrier implementation is used.

All the previously performed optimizations can have an impact on the execution

time and on energy consumption. However, the variation between the application

execution time between all optimizations or without them is measured to be 0.06%

and 0.16%, respectively on SPEC2006 and NAS-OMP. One can indeed question the

chosen optimizations since they have so little impact on the environment. However,

drawing that conclusion has only been possible after hand. Preventing potential

alteration of the measurements, insures a stable test environment.

Application executions can then be considered as fully reproducible.

10.3.2 Frequency Switch Latency

The second issue to consider is the time taken to switch frequencies. As explained

in Section 8.3, it is expressed as the number of micro-seconds between the request

of a new frequency and its actual setting. The latency on the experimental platform

used to evaluate UtoPeak as described in Section 10.4 is comprised between 20 µs

and 70 µs.

The time sampling, as explained above, is sized regarding probe resolution. To

be able to use UtoPeak even on hardware architecture prior to SandyBridge, a
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digital power metter is used, forcing UtoPeak’s sampling period to be 300ms. The

frequency latency then represents at most 0.7% of the instruction sample execution

time. As the impact of the frequency shift on each instruction sample is negligible,

UtoPeak does not implement a specific mechanism to take that latency into account.

One can find or design an architecture where the frequency latency is huge

enough not to be neglected. UtoPeak can solve that issue by simply prefetching

the frequency in this way ensuring the switch is effective for the next instruction

sample.

10.4 Prediction Versus Real World

The experiments are run on an Intel Core i5 2380P quad-core processor, running

Linux 3.5.3. The sixteen processor frequencies range between 1.6 GHz and 3.1

GHz, plus a turbo mode. The benchmark programs consist in the NAS OpenMP

parallel programs 3.0 running the C class datasets [14] and the sequential benchmark

programs SPEC2006. All sequential and OpenMP programs are compiled using the

GNU compiler (version 4.7) and O3 optimization flags. Energy measurements are

performed using energy probes embedded in the processor [80].

For REST, each SPEC2006 benchmark program are executed in order to simulate

parallel execution running one instance per CPU core. However it as been seen

after REST that simulating parallel executions in such a way generates an artificial

stress on the memory or other resources. It changes the real application trend. In

UtoPeak’s case, only one instance of each SPEC2006 benchmark program are run

to prevent artificial bottlenecks from helping the tool in its energy saving effort.

For example, the ray-tracer Povray from the SPEC2006 benchmark suite, is known

to be CPU bounded. However, when looking at REST energy savings, it exposes

almost 13% of energy savings where UtoPeak only reach 2.58%.

Before comparing the maximum energy reduction to any other DVFS driver,

the precision of UtoPeak prediction has to be evaluated. Table 10.3 shows UtoPeak

predictions for different benchmarks programs. The Prediction column corresponds

to the energy consumption predicted when building the frequency sequence for the

evaluated application. The Measured column shows the energy consumption when

applying the frequency sequence on the evaluated application. The last column

presents the prediction precision as the difference in percentage between the two

previous columns. In our test environment, UtoPeak reaches a prediction precision of

96.15% in average on the sequential benchmarks. UtoPeak obtains similar precisions

on parallel benchmarks with 96.43% for NAS-OMP. The high percentages show

UtoPeak accuracy. This means it is able to correctly predict the expected energy

consumption when using the computed frequency sequence.

UtoPeak is able to accurately predict the application optimized energy con-

sumption because it is the only one executed on the experimental setup. Though

the measured hardware counters reflect only the execution of the profiled application

and are not impacted by potential application run aside, the energy measurement is

accounted for the entire CPU. So if any other application is run it will greatly skew

the energy reading, tempering the energy normalization resulting in false predic-

tions. The best example can be found for very short benchmarks as IS.C or 403.gcc.

Any stress variation on the CPU in addition to the profiled application, for example

the operating system, can induce sufficient variation on the energy probe readings to

modify the energy normalization leading to the selection of non optimal frequency.
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SPEC2006

Benchmark
Prediction Measured Precision

(Joule) (Joule)

453.povray 3 146 3 150 99.87%

464.h264ref 1 151 1 158 99.36%

456.hmmer 2 540 2 559 99.26%

471.omnetpp 4 219 4 258 99.07%

458.sjeng 8 702 8 805 98.82%

437.leslie3d 11 817 11 978 98.64%

470.lbm 5 619 5 713 98.32%

444.namd 7 097 7 223 98.23%

435.gromacs 8 081 8 276 97.59%

450.soplex 2 312 2 370 97.48%

482.sphinx3 10 349 10 613 97.45%

416.gamess 2 911 3 001 96.91%

483.xalancbmk 3 725 3 841 96.86%

436.cactusADM 11 302 11 668 96.76%

433.milc 5 428 5 616 96.54%

401.bzip2 1 594 1 652 96.42%

429.mcf 4 411 4 573 96.32%

447.dealII 5 343 5 540 96.31%

462.libquantum 6 543 6 800 96.06%

454.calculix 13 703 14 269 95.87%

445.gobmk 1 093 1 140 95.72%

410.bwaves 9 960 10 391 95.67%

400.perlbench 3 180 3 341 95.2%

465.tonto 8 446 8 946 94.08%

434.zeusmp 6 739 7 161 93.74%

459.GemsFDTD 9039 9 690 92.80%

473.astar 2 331 2 507 92.42%

481.wrf 10 801 11 827 90.86%

403.gcc 336 381 86.72%

Average Precision 96.15%

NAS-OMP

EP.C 2 394 2 397 99.87%

CG.C 2 341 2 350 99.64%

BT.C 11 463 11 768 97.34%

MG.B 862 891 96.60%

LU.C 9 857 10 293 95.58%

SP.C 7 267 7 619 95.16%

FT.B 2 671 2 820 94.42%

IS.C 363 398 90.36%

Average Precision 96.12%

Table 10.3: UtoPeak energy guessing precision for SPEC2006 and NAS-OMP sorted

by decreasing precision
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Figure 10.4: Normalized energy per instruction samples for GCC and POVRAY.

Therefore any external effects, can impact UtoPeak precision.

The difference between GCC and POVRAY prediction’s accuracy finds its root

in their application trend. POVRAY is a ray tracer, highly demanding for comput-

ing resources. GCC, on the other hand, is closer to the memory bound trend since

it has to access files on disk. As shown in Section 8.1, a CPU-bound application,

is extremely sensitive to frequency whether considering execution time or energy

consumption. Hence its execution on the spectrum of frequency generates a wide

range of energy levels, explaining the clear difference between the three frequencies

displayed in Figure 10.4b. On the other hand, memory bound applications exe-

cutions generate constant energy over the frequency space, explaining why GCC ’s

different energy levels are overlapping for the entire execution as shown in Figure

10.4a. However GCC is not fully memory bound, since the energy per instruction

sample is not constant for the entire program.

If UtoPeak has to produce its prediction based on the information displayed in

Figure 10.4, it chooses 2.3GHz for the entire execution of POVRAY, except for the

different energy picks, where 3.1GHz is chosen. The resulting frequency sequence

reflects the actual reality where 2.3GHz grants for each instruction sample the best

energy consumption. It explains the 0.13% prediction error reported in Table 10.3.

For GCC, the choice is more complex since there are no visible differences between

the different frequencies’ energy consumption. A different frequency can be chosen

for each instruction sample inducing a more biased vision of the reality as shown in
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Figure 10.5: Energy consumption prediction error on GCC benchmark

Figure 10.5.

Figure 10.5 shows, the difference between the computed energy consumption per

instruction samples, and the one actually monitored during the frequency sequence

evaluation. In a nutshell, Figure 10.5 displays how well UtoPeak grasps the reality

of energy consumption tendency of the predicted frequency sequence. Though Uto-

Peak masters the overall trend, it lacks in precision, explaining the 13.28% of error

reported in Table 10.3.

The root of UtoPeak’s lack in precision on GCC is twofold: the profiling period

and its application type. For Table 10.3 the used period was 300ms for reasons

exposed in Section 10.3. However it is too coarse a grain for GCC ’s energy moni-

toring. It leads to the too overlapping energy per instruction sample displayed in

Figure 10.4a. Lowering UtoPeak’s profiling period to 50ms, allows a finer energy

monitoring reducing in the end the prediction error from 13.28% down to 7.90%.

The remaining prediction error comes from the fact that the GCC benchmark pro-

gram is sequential. Unlike POVRAY it does not put the processor under enough

stress to allow UtoPeak to precisely distinguish each frequency’s energy consump-

tion trend. One theoretical solution can be to launch one instance of the program

per processor core. It magnifies the CPU stress as well as the energy consump-

tion. However, as exposed above, it creates a congestion on some shared resources,

modifying the benchmark program execution. A more practical solution would be

to adapt the profiling period to the application behavior. At that point UtoPeak

needs additional runs to acknowledge the application behavior before computing the

best profiling period. For some applications, it dramatically increases the time to

solution which is not affordable.

This shows that UtoPeak has a good prediction precision in average on all tested

benchmark programs. Therefore, in the experimental environment used, UtoPeak

produces realistic DVFS energy consumption predictions, that can be later used

with a high degree of confidence.

10.5 UtoPeak DVFS Potential

The DVFS potential is the maximum amount of energy that can be saved while

using DVFS controllers. It is a key feature to decide whether to apply a DVFS

mechanism.
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SPEC2006

Benchmark
DVFS

Benchmark
DVFS

potential potential

445.gobmk 0.40% 447.dealII 2.98%

435.gromacs 1.25% 470.lbm 3.39%

401.bzip2 1.35% 434.zeusmp 3.50%

400.perlbech 1.43% 481.wrf 5.20%

416.gamess 1.48% 473.astar 6.11%

456.hmmer 1.97% 403.gcc 6.76%

437.leslie3d 2.06% 459.GemsFDTD 7.47%

454.calculix 2.23% 462.libquantum 8.62%

465.tonto 2.27% 436.cactusADM 8.79%

444.namd 2.38% 483.xalancbmk 8.80%

458.sjeng 2.47% 450.soplex 9.92%

464.h264ref 2.57% 433.milc 14.24%

482.sphinx3 2.67% 429.mcf 14.47%

453.povray 2.69% 471.omnetpp 16.07%

410.bwaves 2.72%

average energy
5.04%

reduction potential

NAS-OMP

Benchmark DVFS potential

EP.C 15.29%

BT.C 25.19%

FT.C 26.45%

CG.C 27.46%

SP.C 38.70%

IS.C 41.34%

MG.C 44.28%

LU.C 45.29%

average energy
33%

reduction potential

Table 10.4: DVFS energy reduction potential for SPEC2006 and NAS-OMP sorted

by increasing DVFS potential

Tables 10.4 shows the energy reduction potential on sequential and parallel ap-

plications. UtoPeak energy reduction potential is computed as the difference, in

percentage, between the highest frequency energy consumption and UtoPeak’s one.

The comparison is performed with the highest frequency, because on standard clus-

ters, the Linux Ondemand frequency governor [129] is used by default and once it

spots intense CPU activity, it applies the highest frequency including TurboBoost

if activated. Here, the energy consumption induced by UtoPeak is compared to the

one induces by highest frequency non TurboBoost. If it was compared with Turbo-

Boost, the DVFS potential would only be greater, since the frequency is overclocked

consuming more energy as shown in Figures 8.2,8.3,8.4 from Section 8.1.

Both tables show large differences between energy reduction potential one can
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expect from sequential and parallel programs. On sequential application, UtoPeak

average energy reduction is never greater than 10% whereas on parallel application

it is never below 15%. The major difference between both kinds of application is

the slack time [144]. In parallel application, slack time is a period during which a

process is doing nothing else than waiting for other processes in barriers or com-

munications. Lowering frequency during these phases provides significant energy

reduction. Therefore, parallel applications have phases with higher potential of

energy reduction.

Furthermore, DVFS potential of energy reduction, is linked to the used hardware.

Even when processing the same application on a CPU with different voltages or

various frequencies, one can note different potential of energy reduction.

Even if DVFS techniques do not grant significant energy savings on sequential

applications, the potential of reduction is not negligible for parallel benchmarks. On

some benchmarks, almost half of the CPU energy consumption can be saved thanks

to DVFS.

It has been clearly stated that UtoPeak can accurately quantify energy reduction

potential of any DVFS solutions. The previous section was dedicated to a naive

DVFS mechanism only relying on CPU boundness to reduce energy consumption.

Now that the user knows the lower bound on energy consumption, it can use it to

verify REST efficiency.

10.6 UtoPeak Versus The World

The previous sections exposed how UtoPeak is able to accurately predict the lower

bound in energy consumption for a various range of applications. The previous

Chapter described REST, a naive attempt to optimize application energy consump-

tion through dynamic voltage frequency scaling. Though it suffers from several

flaws, the system was able to perform energy consumption reductions. But as there

is no point of comparison no one could evaluate REST efficiency. UtoPeak was de-

signed to give that reference point. Therefore REST energy savings are compared

to the maximum possible ones as shown in Figure 10.6. It can clearly be seen that

REST is far from optimal and still offers many opportunities for optimization.

Both UtoPeak and REST do not set limitations on the execution time degrada-

tion. But, REST tends to select frequency regarding the trend of the application. If

an application is CPU-bound, high frequencies are selected, and for more memory

bound applications, lower frequencies are more likely to be selected as explained

in Section 8.1. It will indirectly be more conservative on performance degradation

than UtoPeak. Therefore, REST is less aggressive on power consumption reduction,

leading to lower energy reduction as it is shown in Figure 10.6. REST conservatism

regarding application performance is clearly stated by the huge difference in energy

reduction between both system on the LU benchmark. As said previously, letting

REST evaluate the energy gain offered by each frequency as well as the boundness

ratio, is one possible optimization to enhance its energy optimization.

UtoPeak is able to accurately predict the lowest energy consumption one can

expect from the use of any DVFS system. By doing so, it gives users the possibility

to evaluate the efficiency of such systems regarding energy reduction. REST with

its naive frequency management was only able to optimize, on each benchmark

program, a small portion of the full potential of energy reduction leveraged by

UtoPeak. However, some control is better than no control at all. By acknowledging
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Figure 10.6: REST compared to UtoPeak

the room for optimization, up to 40% on LU, it allows the user to evaluates the

interest in further optimizing the current solution. In the light of Figure 10.6,

REST was reworked and the new system is presented in the next chapter.
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FoREST

11.1 State of The Art

As it was shown previously, many DVFS controllers were proposed in the past.

Some of them focus on reducing energy consumption of a specific program during

its execution while others consider the processor workload and do not require any

program-specific knowledge. The latter predict the impact of frequency transition to

decide on the frequency to apply. They exploit models correlating hardware counters

to CPUboundness, and then CPUboundness to the sensitivity of the workload to

frequency transitions.

Closer to FoREST work, Semeraro et. al. [153] proposed to periodically reduce

CPU frequency until an impact on execution time is suspected from hardware ob-

servation. The proposed mechanism is not able to control its impact on slowdown

as opposed to more recent solutions line in [52, 73].

Hsu et. al. [73] proposed beta-adaptive, a runtime DVFS controller that peri-

odically evaluates the impact of frequencies on performance to deduce the best

frequency to use under performance constraints. It shares several features with

FoREST as it directly evaluates the impact of a frequency transition on Instruction

Per Seconds (IPS) and reacts accordingly. In general, the existing dynamic DVFS

controllers suffer from several limitations. First, several existing controllers exploit

a complex model to estimate the impact of a frequency transition on energy. Such

models heavily depends on the target hardware and may be quickly outdated. For

instance, a recent study shows that memory bandwidth is now impacted by fre-

quency transitions since the SandyBridge generation of Intel x86 CPUs [151]. Such

subtle evolution, even within a micro-architecture, leads most of the existing mod-

els to fail. Moreover, all the presented systems are ignoring energy when selecting

the frequency to apply. Indeed, most of them assume energy gains when reducing

frequency while ensuring a relatively small slowdown. Such hypothesis is wrong

on modern processors where energy consumption may increase when decreasing the

frequency, depending on programs CPU usage. When FoREST chooses which fre-

quency to apply, it considers impacts on both power and execution time. While

other systems try to reach as much as possible the user requested slowdown, FoR-

EST estimates what slowdown allows maximal energy gains at the system scale.

Finally, multicore support is unclear for several systems and, in some cases, the

method cannot fit current multicore processors where frequency has to be applied

simultaneously to several cores. Thus, compared to existing DVFS controllers, FoR-

EST is more suited to modern processors and, beyond compatibility, FoREST also

takes advantage of recent hardware evolutions such as processors energy probes to

effectively reduce the system energy consumption.

Rong et. al.[52] extend the beta-adaptive and various strategies are employed

to predict the performance of the next time step. However, the presented method

suffers from the same flaws presented above.
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11.2 Motivation

Chapter 9 presented a DVFS controller, named REST, relying on application re-

source saturation monitoring. Depending on the boundedness criterion, a frequency

was applied. REST demonstrated that even with a low intelligence some significant

reduction of energy consumption could be achieved with an execution time degrada-

tion between zero and ten percent. Chapter 10, described UtoPeak. It was designed

to produce the optimal frequency sequence in order to expose the maximum energy

reduction one can expect for a given application execution. Using its ability to find

the lower energy consumption bound, one could find that REST reduction of energy

consumption was far from optimum, leaving opportunities for optimizations. The

following chapter exposes the next version of REST, named FoREST, which intends

to enhance energy optimization while fixing all REST’s drawbacks.

Adding a strict limit on performance degradation is the first enhancement that

could be done to REST. The advantages of such a limit is twofold. First, it will give

users the control of the performance degradation. Second, in some cases, it will give

the system more room to potentially do more aggressive energy optimizations. For

example, take Astar or Soplex from Figure 9.7, displaying REST energy optimization

on SPEC2006, both of them respectively have a 5% and 7% penalty on execution

time. In the case where the user specify a strict limit of 10%, the system will be

granted an additional 5% and 3% on the performance degradation. It will allow

FoREST to target a wider range of frequency to potentially achieve more energy

reduction. However, slowing down the application, does not automatically imply

energy saving. For many programs, the highest frequency provides the largest energy

savings and any slowdown actually leads to increase the energy consumption.

The ability to detect an efficient frequency is a significant improvement over

REST. Indeed, existing run-time controllers usually do not consider power when

predicting the frequency to use. It is then impossible to determine if a slowdown

is profitable for energy or not. To be able to target the correct frequency, the

system will need a feedback loop in order to evaluate the efficiency of each fre-

quency. Because each frequency does not give the same power consumption and

performance degradation, the feed-back loop is decomposed into two components:

relative slowdown and power consumption estimation. The frequencies power con-

sumption evaluation is explained in Subsection 11.2.1. The slowdown computation

of each frequency is described in Subsection 11.2.2.

11.2.1 Power Ratio

The previous system applied a frequency for a phase only based on the bounded-

ness criteria. Without feedback regarding the impact of the selected frequency on

the power consumption, REST was not capable to say if the chosen frequency was

the best to use. In order to correct that, and help FoREST selecting the best fre-

quency, relative power consumption are computed. The relative power consumption

will show which frequency offers the greater reduction of power consumption. The

relative comparison is called power ratio. The power consumption is linked to the

hardware and the application. The power ratios will then have to be computed

prior to each application’s execution, based on the application’s thorough power

consumption characterization, which is not affordable. To have a better idea on ap-

plication power consumption, both the NAS Parallel Benchmarks 3.0 suite and the
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SPEC CPU 2006 are run on the same hardware, resulting in power consumptions

per frequency displayed in Figure 11.1. Though NAS benchmark programs power

needs are higher than the SPEC ones, the evolution across the different frequencies

for each application is identical. So the evolution the power consumption seems to

be primarily influenced by the hardware and not by the application.

1

10

100

1,6 1,7 1,8 2 2,1 2,2 2,5 2,6 2,7 2,8

Figure 11.1: Power consumption evolution for SPEC and NAS benchmarks program

As presented in Chapter 6, the power consumption can be expressed as:

P = Pstatic + Pdynamic (11.1)

Also, the dynamic power is expressed as:

Pdynamic ≃ A× C × V 2 × f (11.2)

where A is the percentage of active gates, C is the total capacitance load, V is the

supply voltage, and f is the processor frequency. Note that the power depends on

the machine characteristics (V , f , and C) and the program (A).

Many studies assume that Pdynamic is proportional to Pstatic, [106, 133, 165] ,in

other words:

Pdynamic = k × Pstatic (11.3)

By injecting Equations 11.2 and 11.3 into Equation 11.1 the total power is then

proportional to the dynamic power:

P ≃ (k + 1)× Pdynamic (11.4)

Based on the total power formulation, let P1 and P2 be the power induced after

executing the same program at two different frequencies f1 and f2 provided the two

executions were done on the same hardware. It is possible to compute the power

ratio between P1 and P2 as follows:
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P1 = (k1 + 1)× (A× C1 × V 2
1 × f1)

P2 = (k2 + 1)× (A× C2 × V 2
2 × f2)

P1

P2
=

k1 + 1

k2 + 1
×

C1 × V 2
1 × f1

C2 × V 2
2 × f2

(11.5)

Formula 11.5 shows that the power ratio of two executions at different frequencies

is independent from A, hence independent from the program. Besides, in [133], the

authors showed that k does not depend on the program either, meaning that the ratio

remains unchanged for all programs at frequencies f1 and f2. Therefore, it is possible

to evaluate the power gain of all possible frequencies, over a reference frequency

and reuse the information for any program. However, A is not really independent

from the frequency. It is in fact an approximation as subtle variations can appear

depending on the frequency. For instance, a memory-intensive program can saturate

some resources such as store queues at high frequencies, leading different activities

to occur on the processor depending on the frequency. Such variations were assumed

to be negligible and consider the average number of active gates to be stable for a

given program, independently from the frequency.

In order to verify the program independence of power consumption ratios, the

NAS Parallel Benchmarks 3.0 suite and SPEC CPU 2006 were run using every pro-

cessor frequency while measuring power consumption. It resulted in 688 different

runs. Then, for any pair of frequencies, the power ratio induced by each program

is computed. Finally, the standard deviation of the power ratios involving the same

frequencies were computed while different programs were running on the same num-

ber of cores. The standard deviation expresses the average error of the theoretical

calculation for the evaluated programs. Table 11.1 shows the power evolution of a

subset of the run benchmark programs. It can be noticed that the evolutions of each

program power needs are indeed equivalent.

Table 11.1 shows a subset of all the power ratio space. Like the difference

noticed in power consumption in Figure 11.1, the parallel benchmark programs

consume more power. But that difference does not impact power ratios, since the

focus is only put on relative increase or decrease in power consumption. Here, if

the frequency 1.7GHz is chosen to replace 1.6GHz, the new setup will consume 4%

more power. However, if the frequency 1.6GHz is chosen to replace 1.7GHz, the

frequency shift will reduce the power consumption by 4%.

Results showed a maximal standard deviation of 0.66% for power ratios whereas

power itself has a standard deviation of more than 5.1W for different programs

using the same frequency. Thus, even if power consumption obviously depends on

the program itself, considering ratios of power consumption for different frequencies

as being program-independent is a realistic hypothesis.

FoREST exploits power ratios to estimate the power gains achieved by any

frequency. As the ratios are proven to be program-independent, the measurements

can be transposed to any program. Alike insight in the power scaling implied by

each frequency will help FoREST correctly select a frequency granting the highest

energy optimization for each application phase.
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Benchmark

Power at Power at Power Ratio Power Ratio

1,6GHz 1,7GHz 1,7GHz
1,6GHz

1,6GHz
1,7GHz(W) (W)

400.perlbench 9,87 10,23 1,04 0,96

401.bzip2 9,69 10,12 1,04 0,96

403.gcc 10,06 10,48 1,04 0,96

410.bwaves 10,97 11,45 1,04 0,96

416.gamess 10,35 10,76 1,04 0,96

429.mcf 9,86 10,28 1,04 0,96

433.milc 10,77 11,27 1,05 0,96

434.zeusmp 9,94 10,39 1,05 0,96

435.gromacs 9,62 9,97 1,04 0,97

436.cactusADM 10,26 10,69 1,04 0,96

437.leslie3d 10,25 10,77 1,05 0,95

444.namd 9,81 10,17 1,04 0,96

445.gobmk 9,94 10,32 1,04 0,96

447.dealII 10,16 10,59 1,04 0,96

450.soplex 10,31 10,72 1,04 0,96

453.povray 10,23 10,71 1,05 0,96

454.calculix 10,21 10,60 1,04 0,96

456.hmmer 10,13 10,54 1,04 0,96

458.sjeng 9,89 10,27 1,04 0,96

459.GemsFDTD 10,64 11,05 1,04 0,96

462.libquantum 11,47 11,97 1,04 0,96

464.h264ref 10,23 10,61 1,04 0,96

465.tonto 10,06 10,48 1,04 0,96

470.lbm 11,39 11,90 1,04 0,96

471.omnetpp 9,84 10,20 1,04 0,97

473.astar 9,90 10,33 1,04 0,96

481.wrf 10,09 10,51 1,04 0,96

bt.C 23,64 25,02 1,06 0,94

cg.C 19,10 20,13 1,05 0,95

ep.C 18,84 19,93 1,06 0,95

sp.C 22,44 23,68 1,06 0,95

mg.C 25,56 26,81 1,05 0,95

lu.C 23,49 24,65 1,05 0,95

is.C 18,07 19,06 1,05 0,95

ft.C 24,45 25,86 1,06 0,95

Standard deviation 5,18 5,51 0,65% 0,65%

Table 11.1: Example of power ratios for two frequencies across all SPEC and NAS

benchmark programs



114 Chapter 11. FoREST

0.4 IPS 0.5 IPS

100% F1 100% F2

0.46 IPS

60%40%

Figure 11.2: An example of a frequency pair and the associated IPS.

11.2.2 Continuous Frequency

As explained above, FoREST implements a slowdown limit. The system insures that

the overall application performance will not be impacted beyond the desired slow-

down limitation. However, applying a unique frequency, may not provide enough

flexibility to meet the performance constraint while performing energy savings. In-

deed, in some cases, all the frequencies lead to a slowdown greater than what the

user tolerates. As an example, consider consider a theoretical application composed

of only one task run on a processor using three frequencies, F0,F1, and F2. One

wants to reduce the application’s energy consumption without degrading its perfor-

mances more than 5%. F0 is the highest frequency and is used as the reference. To

achieve energy consumption reduction, the user will then choose a lower frequency

between F1 and F2. If, between the two, one frequency grants energy reduction

while degrading the application performances no more then 5% it will then be se-

lected. If not, no frequency can be chosen meaning no energy reduction. However, it

is possible to compose both F1 and F2 during the application execution to perform

energy reduction within the performance constraint.

To evaluate the slowdown applied at each program phase, FoREST uses the

Instruction Per Second (IPS) criterion to evaluate the speed of the computation.

The user slowdown limitation is then transposed as a lower limit on the IPS to

achieve at each program phase. Going under that limit means that the application

execution time will be degraded more than the user limit. So when none of discrete

frequencies can be used to ensure that IPS limitation, multiple frequencies can be

used at the same time to emulate in average the IPS limit . When two frequencies

are applied, the number of instruction achieved per second is proportional to the one

achieved by every frequency [52, 72]. For example, it is possible to achieve 0.46 IPS

using two frequencies able to perform respectively 0.4 IPS and 0.5 IPS, as illustrated

in Figure 11.2.

Consider again the example presented at the beginning of the section. Say

that the F0, F1, and F2 have respectively an IPS of 0.3,0.4 and 0.5 and the user

specifies a limit at 53% of the measured performance on the highest frequency F0.

The target IPS to achieve is then 0.46. F1 respect the performance constraint with

a limited energy reduction. F2 on the other hand, though it ensures maximum

energy reduction, cannot be selected as it will degrade the performance too much

to meet the constraint. The possible solution, as shown in Figure 11.2, consists in

Algorithm 6 Best frequency pair generation

1: Build all possible frequency pairs

2: Compute the associated durations

3: Pick the pair with maximal energy savings

return (bestPair, bestEGain)
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composing both F1 and F2 to ensure maximum energy reduction while meeting the

performance constraint.

FoREST exploits this property and actually selects a couple of frequencies for

every CPU’s core to achieve any desired IPS compliant with the user requirements.

For a specified slowdown, FoREST determines the best frequency couple to use in

three successive steps, as illustrated in Algorithm 6.

Table 11.2 shows the different variables, and definitions, used in each Algorithm

6 step presented in Algorithm 7, 8, and 9.

Variable Description

F List of evaluated frequencies

d Requested slowdown

totalPairT ime Duration of the overall pair execution

lowerF lower pair’s frequency

greaterF higher pair’s frequency

PGain(f) Power gain of the frequency f over maximal frequency

SPD(f, c) Speedup of frequency f on core c compared to the maximal frequency

IPS(f, c) IPS measured for frequency f on core c

maxIPS(c) Maximal IPS measured on core c for all frequencies

bestPair Frequency pair with minimal energy consumption

bestEGain Energy gain of the pair returned

Table 11.2: Best Frequency Pair Generation variable definition

First, as shown in Algorithm 7, all the frequencies pairs granting the desired

computation speed to meet user’s slowdown degradation have to be computed. The

computation speed for each processor core, a.k.a. target IPS, is computed as the max-

imal IPS observed on the core among the evaluated frequencies, minus the desired

slowdown. For example, consider a processor core with three different frequencies.

If the measured IPS are 0.4,0.5, and 0.55, and the slowdown allowed by the user is

10%, the target IPS will then be 0.55 − 10% × 0.55 = 0.495. The target IPS rep-

resents the objective IPS for a given processor core. To achieve such a target IPS,

as presented above, a couple of frequency is built. The couple is composed of two

frequencies lowerF and a higherF giving IPS surrounding the target, in Algorithm

7, it corresponds to lines 6 and 7. Multiple frequencies couples can produce IPS

surrounding the target, each of them are considered valid. However, the cores may

run various workloads that react differently to frequency transition. Every core then

has a different target IPS. As a remainder of the first part, each core has to share

the same frequency. Couples build for each core that do not share the same lowerF

Algorithm 7 All Possible Frequency Pairs Building

1: // 1: build all possible frequency pairs

2: lowerF ← F

3: greatrF ← F

4: for all c ∈ cores sharing the frequency setting do
5: target← d×maxIPS(c)

6: lowerF ← lowerF ∩ {∀f ∈ F, f | IPS(f, c) < target}

7: greatrF ← greatrF ∩ {∀f ∈ F, f | IPS(f, c) ≥ target}

8: end for
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and higherF are removed from the list. In a nutshell, the goal of the first step is

to eliminate frequency couples that cannot be used on every core sharing the same

frequency setting.

Algorithm 8 Pairs Durations Computation

1: allPairs← ∅

2: for all (f1, f2) ∈ lowerF × greatrF do
3: tmax

2 ← maximal duration among all cores for f2
4: t1 ← totalPairT ime− tmax

2

5: allPairs← allPairs ∪ (f1,f2, t1, t
max
2 )

6: end for

Second, as shown in Algorithm 8, FoREST computes the duration associated to

each frequency in couples obtained at the first step. As shown in Figure 11.2, to

emulate a specific IPS, both lowerF and higherF are run during a specific period of

time. The execution times depend on the target IPS to achieve on each core. Hence,

different cores associate different durations to the same frequencies in pairs. Finally,

within the frequency couples space, only the couples with the longest execution at

the highest frequency are kept. Indeed, FoREST is conservative in order to ensure

the slowdown limitation. At the end of the second step, couples that can be used

on each processor cores with the highest frequency executed the longest are passed

down to the last step.

Algorithm 9 Pair With Maximum Energy Savings

1: bestEGain←∞

2: for all (f1,f2, t1, t2) ∈ allPairs do
3: procEGain← 0

4: for all c ∈ cores sharing the frequency setting do
5: f1EGain← t1 × SPD(f1, c)× PGain(f1)

6: f2EGain← t2 × SPD(f2, c)× PGain(f2)

7: coreEGain ← (f1EGain + f2EGain)/2

8: procEGain← procEGain + coreEGain

9: end for
10: procEGain← procEGain/nbCores

11: if procEGain < bestEGain then
12: bestEGain← procEGain

13: bestPair ← (f1,f2, t1, t2)

14: end if
15: end for

Finally, FoREST has to choose one frequency pair among all the possible ones.

To do so, as shown in Algorithm 9, it computes the energy gain achieved by every

couple and only selects the one providing maximal energy savings. However, in

recent multicore processors, a frequency is necessarily set simultaneously on all the

cores. FoREST considers this limitation and computes the energy gains achieved by

the couples on each individual processor core. Then, the overall processor energy

gain for a given couple is computed as the average gain over all the cores sharing the

same frequency setting. By doing so, FoREST assumes that all the cores equally

participate to the total energy consumption. Then, once energy gains are known

for all the considered frequency couples, FoREST picks the one achieving maximal
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energy savings.

In conclusion, by composing discrete frequencies, continuous frequencies can be

emulated. As shown by the different steps of the algorithm 6, the emulated frequency

ensure energy savings within the user’s performance constraint.

11.2.3 Multicore Processors

Multicore processors have been introduced in the past few years and quickly became

a standard in computers. No DVFS controller can ignore anymore this fact and

has to be compatible with multicore processors, especially regarding the frequency

settings shared among several cores.

As a reminder, for REST in Chapter 9, two different processors were used in

order to ensure that all used applications where using all processors cores. Letting

some cores unused could strongly temper with REST computed frequency shift,

since they are taken into account by the Cpufreq module as explained in Chapter 6.

FoREST considers shared frequency domains of multicore processors at every

stage. First, FoREST is only replicated once per group of cores sharing the same

frequency transition. Then, during the frequency evaluation, IPS is measured syn-

chronously on all the cores of a group. Finally, the selected frequency couple is

specifically constructed to ensure the desired slowdown on every core. Thus, FoR-

EST is unique in its ability to work on the recent multicore processors.

In addition, by construction FoREST monitors activity of every core sharing the

same frequency domains, it cannot dissociate cores running the application to be

optimized and unused ones. Therefore, it ignores the cores whose activity is below

30% in order not to pollute IPS evaluation with non relevant data.

11.2.4 Frequency Transition Overhead

Finally, considering the frequency transition overhead is the last enhancement. In

order to achieve any desired slowdown, FoREST uses frequency pairs instead of

unique frequencies. Thus, at every time step, the number of frequency transitions

is at least doubled, potentially harming performance. In order to evaluate the over-

heads induced by frequency transitions, their effects on performance were measured

using micro-benchmarks while switching frequencies. As shown in Section 8.3, an

overhead of approximately 10 µs on execution time was measured on the experimen-

tal setup. During that time, the processor pauses the execution, slightly increasing

the workload runtime. Such impact on performance is negligible compared to the

time step durations considered by FoREST. An additional issue related to frequency

transition is the latency required to perform the transition. It will be seen in Sec-

tion 11.3.2, that the IPS evaluation is performed on 100 µs time period to have

the minimum impact on the application execution and to ensure the best reactivity

to application phase shifts. Alas, the measured frequency transition latency lies

between 10 µs and 80 µs. Hence, in order to increase the measurement precision,

FoREST starts measuring the IPS only after having waited for the frequency to

change. FoREST is then aware of the frequency transition overheads and takes

them into account.
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11.3 Overview

FoREST is a dynamic DVFS controller running as a deamon on the host operat-

ing system. The general strategy employed by FoREST is to periodically evaluate

the impact of a frequency transition on energy consumption. FoREST is then not

based on any cost-model but rather on run-time measurements to determine which

frequency to apply at any time. FoREST’s algorithm is made of two main phases,

Evaluation and Execution, in charge of the frequency evaluation and application, as

illustrated in Figure 11.3.

Frequenc ation

Sequence Computation

Sequenc ecution

P tios

Evaluation

ecution

ine Measurement
e 

equencies
For each

Figure 11.3: FoREST’s architecture overview.

The main phase is the evaluation phase. Its goals consist in evaluating fre-

quencies and providing a sequence of frequencies leading to the minimal energy

consumption for the next execution step. In the execution phase, the frequency

sequence is applied for a short period of time, before restarting the evaluation.

The evaluation segment consists in measuring the average number of executed

Instructions Per Second (IPS) for every frequency. The maximal IPS measured in

this phase is then used as a reference, defining the best performance that can be

achieved with the current workload. FoREST then determines couples of frequency

able to ensure the desired slowdown and selects the couple leading to the minimal

energy consumption. FoREST design allows an efficient frequency selection driven

by observations on energy consumption and allows users to define the maximal

tolerated slowdown.

11.3.1 Offline Power Measurement

The offline analysis aims to provide FoREST with the impact of frequencies on

power consumption. The impact is expressed as a power ratio between the power

consumption of all processor frequencies over a reference frequency. As power ratios

are program-independent, as explained in Section 11.2.1, one just needs to run one

program in the offline analysis and compute the ratios. Moreover, the analysis is

performed only once, before FoREST is launched.

In order to be compared, power ratios have to be computed over the same power:

the reference power. The reference is chosen to provide power gain. In FoREST, the

reference is the highest frequency power consumption since any other frequency will

provide lower power consumption as shown is Equation 11.2 from Section 11.2.1.

To obtain the different frequencies power, CPU intensive benchmark are run
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while measuring power consumption. The micro-benchmark used in this offline

phase consists of a sequence of add operations very similar to the micro-benchmarks

used in Section 6.5. Note that all runs are performed on the same number of cores

in order to guarantee that Pstatic remains unchanged.

11.3.2 Frequency Evaluation

In order to determine which frequency to use, FoREST evaluates the energy gains

achieved when choosing one frequency rather than the maximal one. To do so,

FoREST combines power and execution time gains. Power gains are computed for

every possible workload during the offline profiling. The impact of a frequency

transition on execution time still remains to be determined. As opposed to power,

the execution time gains heavily depend on the program itself, and more specifically

on its CPU boundness [125]. FoREST must then evaluate the speedups induced by

frequency transitions at runtime.

To measure the speedup achieved for the current workload depending on the

frequency, FoREST applies the frequencies during short periods of time while mea-

suring the number of Instructions executed Per Second (IPS). Although it is not

perfectly representative of execution time, IPS can be considered as a precise-enough

metric for evaluating speedups. Thus, FoREST measures the current workload IPS

during periods of 100 µs, using the maximal frequency plus a few others close to the

one previously chosen. The measurement is performed synchronously on all the cores

sharing the same frequency setting. Then, every measured IPS is divided by the one

achieved by the maximal frequency in order to deduce speedups of every frequency

compared to the highest frequency. FoREST assumes the IPS to remain constant

during the whole evaluation, which may not be correct, leading to potentially in-

correct frequency selection. As for many dynamic systems, such mispredictions are

tolerated, considering that a new evaluation will be performed soon after the incor-

rect one. Sample IPS measurements for one processor core are presented in Table

11.3, associated to the corresponding speedup over the highest frequency. Using the

IPS evaluation, FoREST is then able to determine the speedup required to compute

the energy gains of each frequency.

Using the information measured from both offline profiling and runtime IPS

evaluation, FoREST directly deduces the energy gain that can be achieved by any

frequency compared to the gain with the highest one. Indeed, as e = P × t, the

energy gain ei and eh achieved by any frequency fi relatively to the highest frequency

fh is the product of the speedup achieved by fh over fi and the power gain measured

for fi relatively to fh. The energy gains of the example are also presented in Table

11.3. Table 11.3 enlighten an important fact: lower frequency does not mean higher

Frequency f1 f2 f3 f4
IPS (×109) 1.7 2.0 2.5 3

Speedup of f4 (ti/t4) 1.8 1.5 1.2 1

Power gain vs. f4 (Pi/P4) 0.4 0.6 0.7 1

Energy gain vs. f4 (ei/e4) 0.72 0.9 0.84 1

Table 11.3: Sample measurement results from offline profiling and online evaluation

for one processor core
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energy savings. Here f2 offers less energy gain (10%), than f3 (16%) because the

ratio of speed-up and power gain are more in favor of f3 than f2. FoREST computes

the energy gain achieved by every evaluated frequency on each individual processor

core in order to decide later which frequency to use. Once energy gains are known for

all the cores sharing the same frequency setting, the overall energy gain for a given

frequency is computed as the average energy gain over all the cores. Since all the

cores are powered with the same voltage and are composed of the same hardware

units, hence when facing the same stress they will consume the same amount of

energy. At the scale of a scientific parallel application, each processor cores goes

on average through the same stress. Therefore, assuming that each core is equally

responsible for the overall energy consumption, is a good approximation. Of course,

if cores have individual voltage source, such approximation is no longer possible.

By doing so, FoREST assumes all cores equally participate to the total energy

consumption. Then, once energy gains are known for all the evaluated frequencies,

FoREST can simply pick the one achieving maximal energy savings, provided it

respects the user-defined performance constraint.

11.3.3 Sequence Execution

The sequence execution step consists in applying the frequency couple previously

built. In couples, every frequency is associated to a duration. Each frequency is then

applied sequentially with no specific order for the computed duration. FoREST is

a dynamic system that periodically evaluates which frequencies should be applied.

The main risk with such periodic behavior is to miss phase changes in programs. In

order to minimize the risk, the total frequency pair execution time changes depend-

ing on the workload stability. During the frequency pair construction described in

Algorithm 6 the main frequency mainFreq of a couple is defined as the one executed

for the longest duration. If mainFreq is the same as during the previous sequence

execution, the overall workload is assumed to be stable and FoREST doubles the

total couple execution time. As soon as mainFreq changes, the total execution time

is reset to an initial, arbitrary value of 1ms. Hence, when the workload behavior

changes, FoREST re-evaluates it more frequently, trying to keep up with workload

phases. If lower execution time was chosen to allow FoREST to faster adapt phase

shift, most of the time would have been spent in frequency shift. At the opposite, if

larger execution time were selected, FoREST would miss numerous program phases.

In conclusion, on one hand, such adaptive execution time reduces the number

of evaluations during stable phases while, on the the other hand, ensuring reactive

decisions when phase changes occur.

The main frequency is also used to limit the overheads of the evaluation process

performed by FoREST. Indeed, once the frequency couple is effectively applied,

FoREST goes back to the evaluation step as shown in Figure 11.3. The goal is

then to restrict the number of evaluated frequencies. Evaluating all the available

frequency is time consuming, even though if the evaluation period is set to 100

mus, it would take 1.6ms. If the application was composed of small programs, the

frequency couple execution time would remain at 1ms. It means, in such condition,

that the evaluation represents 60% of the application execution time.

By restricting the frequency range to those having a good chance of being ex-

ecuted afterward, the time spent in the evaluation process is drastically reduced

. The mainFreq is then considered as the center of a frequency subset made of
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all the frequencies near mainFreq. Only the frequencies in this subset are evalu-

ated in FoREST evaluation step. In FoREST implementation, only one higher and

one lower frequencies are considered. Reducing the range of evaluated frequencies

substantially reduces FoREST overheads, because low frequencies are not evaluated

when only high frequencies should be considered. However, it may take several steps

to reach the optimal frequency as not all of them are evaluated. In fact, as it is

combined with the adaptive execution time presented before, the limited number of

evaluated frequencies is much more beneficial than harmful. FoREST sequentially

applies the two frequencies previously chosen. It also adapts its behavior depending

on which frequency is executed for the longest duration, enabling it to adapt to

workload phase changes and reduce the evaluation overheads.

11.4 FoREST Versus the World

FoREST is implemented for x86_64 processors on Linux, in order to evaluate its

main features on a real environment. The energy savings achieved by FoREST and

the associated slowdowns are measured in order to check its ability to reduce energy

consumption and guarantee the requested maximal slowdown.

The experiments are run on an Intel Core i5 2380P quad-core processor, run-

ning Linux 3.5.3. The sixteen processor frequencies range between 1.6 GHz and 3.1

GHz, plus a turbo mode. The benchmark programs consist in the NAS OpenMP

parallel programs 3.0 running the C class datasets [14]. Additionally, two industrial

programs are considered: RTM [17, 11]. Only the forward kernel is extracted out

of TOTAL implementation used to perform reverse time migration, and Polaris, a

molecular dynamics program from CEA [140] . Measurements are performed using

energy probes embedded in the processor and using a Yokogawa WT210 power me-

ter plugged to the computer electrical socket in order to measure both processor and

overall system energy consumption. Results are the median value of 5 executions,

normalized relatively to ondemand. Existing DVFS controllers as Granola, a com-

mercial DVFS controller [78] and beta-adpative [73] are used in order to provide a

comparison with FoREST.

11.4.1 Energy Gains

The benchmark programs are run on the experimental platform using different

DVFS controllers. The first one is Granola, a commercial DVFS controller de-

signed by MiserWare Inc. [78]. The second one is beta-adaptive [73]. Finally, the

last one is FoREST. Granola uses its default configuration, while FoREST and beta-

adaptive are allowed at most a 5% slowdown. The beta-adaptive system described

by Hsu et. al. in[73], as for REST, is not designed to support multicore processors

where all the cores share the same frequency. Beta-adaptive sees each processor core

as an independent core, allowing it to compute a different frequency for each core,

event though it is not the case for all recent Intel x86 processors.

The energy consumption induced both at processor and at system levels for

every DVFS controller is presented in Figure 11.4. In the figure, positive values

are energy savings compared to an execution when using Ondemand. Conversely,

negative values represent additional energy consumption.

Some programs contain large memory intense phases. It is therefore possible to

decrease the CPU frequency without impacting the execution time. Such programs
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Figure 11.4: Energy consumption normalized to that achieved by ondemand. 5%

slowdown required for FoREST and beta-adaptive.

are perfect targets for DVFS controllers, achieving major energy savings. On the

other hand, some programs are CPU intense and reducing CPU frequency often

increases their energy consumption. Therefore, no significant energy savings can be

expected from such programs. Granola is able to achieve light energy savings in

many cases but did not significantly outperform ondemand. In fact, from the words

of Granola’s authors, Granola is not designed to outperform ondemand but rather

to save as much energy as possible without harming performance. Beta adaptive

is able to save more energy in general, at the cost of an increased execution time.

However, FoREST clearly outperforms both DVFS controllers with memory-bound

programs while maintaining a decent consumption with other programs. Indeed,

39%, 25%, 20%, and 16% of energy saving is achieved respectively for is.C, mg.C,

lu.C, and sp.C at the processor level. It illustrates the ability of FoREST to detect

even short memory phase in programs and to exploit them to save energy.

Even at the whole system scale, FoREST outperforms both DVFS driver. The

only difference between Figure 11.4a and 11.4b is the relative amount of energy

saved. It can be noticed that the energy savings exposed at the whole system

scale are lower than the one exposed at processor scale event if the instant energy

reduction remains the same. As a reminder from Section ??, the processor energy

consumption only account for a sub-part of the overall machine energy consumption.
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Figure 11.5: Execution time normalized to that achieved by ondemand. 5% slow-

down required for FoREST and beta-adaptive.

For example, in the case where an entire machine consumes 50J and the processor

23J , the processor is accounted for 46% of the overall energy consumption. So even

if a DVFS driver is capable to optimize 100% of the processor energy consumption

it will only represent 46% of the overall system. That is why huge energy saving

exposed at processor scale are less significant at machine scale.

For CPU intense programs, FoREST sometimes achieves slight energy over con-

sumption. One can notice a similar behavior for the beta-adaptive method. In

fact, it is mostly due to the adaptive method chosen by FoREST and beta-adaptive.

Both systems evaluate the impact of a frequency transition on performance and,

in the case of FoREST, on energy consumption. It implies periodic evaluation of

frequencies, including inefficient ones. Such evaluation on CPU intense program

immediately leads to an increased energy consumption, the importance of which

depends on how frequently and for how long the evaluations are performed. Addi-

tionally, dynamic systems may pick incorrect frequencies for short durations before

correcting their mistakes at the next evaluation, increasing in some rare cases their

overheads. Moreover, like energy saving is reduced when the scale is changed, the

energy overheads are increased. The impact of incorrect choices leading to small

energy overheads at processor scale are amplified at the overall machine scale as

seen in Figure 11.4b.

As suggested in Figure 11.4, the energy savings are achieved when allowing

5% of degradation of the overall applications performances. As presented above, a

specific mechanism is implemented to prevent FoREST from degrading more than

the specified limit. Section 11.4.2 shows how FoREST actually performs regarding

performance degradations.

11.4.2 Performance Degradation

FoREST directly measures the impact of frequency transitions on IPS to guarantee

a maximal slowdown afterwards. In order to determine if it actually enforces the

requested maximal slowdown, the execution time of all the benchmark programs

are measured when using ondemand, Granola, beta-adaptive, and FoREST. The

execution times are normalized regarding ondemand in Figure 11.5. FoREST is

able to enforce the maximal requested slowdown as it never provokes more than 5%

slowdown. Granola leads to execution times similar to what ondemand achieves.
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Compared to ondemand, beta adaptive and FoREST increases programs execution

time but the resulting slowdown is always in the range tolerated by the user. When

considering both slowdowns and energy savings, the presented results indicate that

FoREST takes relevant decisions as it can trade slowdown for energy all the while

not exceeding the requested slowdown threshold.

FoREST has the ability to automatically determine what slowdown must be

applied at anytime in order to save as much energy as possible. As opposed to many

other mechanisms, it does not systematically choose the maximal tolerated slowdown

if other slowdowns offer more energy reduction. It is ensured when selecting the best

frequency couple since the energy reduction is the decisive criterion in the third phase

from Algorithm 6. This ability is reflected in Figure 11.5 as the measured slowdown

is often much lower than what the user tolerates.

11.4.3 Frequency Sequence

In order to illustrate the decisions taken by FoREST, we present in Figure 11.6 the

frequencies chosen by FoREST during the execution of ic.C when 5% slowdown is

tolerated. Although FoREST generates frequency pairs, only the frequency set dur-

ing the maximal duration is represented in the figure. The program clearly exhibits

several phases and FoREST quickly adapts the frequency accordingly. Figure 11.6

can be compared to Figure 10.2 on page 97 to see that FoREST correctly reacts

to the application phase shift. FoREST chooses high frequencies during the initial-

ization and termination of the program, while low frequencies are preferred for the

main part of the execution. FoREST adapts it frequencies choices to the different

application phases. It is also able to maintain stable settings when the program be-

havior is constant. FoREST is then able to adapt to program phases and, as proven

by the energy savings achieved, the frequency transitions it applies are relevant.

Users are allowed to select any level of performance degradation. Specifying a

higher performance degradation allows FoREST to be more aggressive on its fre-

quency choices to leverage more energy savings. Section 11.4.4 shows how FoREST

performs when 100% of application’s performance degradation is allowed.
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Figure 11.7: Execution time normalized to that achieved by ondemand. 100% slow-

down allowed for Forest and beta-adaptive.

11.4.4 Energy saving mode

In some cases, energy consumption is a major concern for the user and execution time

does not count. For instance, when working on battery-powered devices, autonomy

becomes a critical criteria for the user. For that purpose, FoREST was configured to

ensure a maximal slowdown of 100% and the previous experiments were run again.

The resulting energy consumption and execution time are presented respectively in

Figure 11.8 and Figure 11.7. During the experiments, FoREST was compared to

the ondemand and powersave settings. Powersave is the Linux DVFS policy that

systematically sets the lowest frequency. In the experiment, Granola uses its low

power mode, beta-adaptive is also targeting a 100 % slowdown.

Figure 11.7 shows that, with extreme setting, FoREST is able to achieve proces-

sor energy savings while provoking slowdowns within the user requirements. One can

note by comparing Figure 11.5 and 11.7 that the performance degradation of FoR-

EST are similar. As explained above, FoREST does not always target the frequency

allowing the highest slowdown if others expose more energy savings. Therefore on

the tested benchmarks there is no real use to authorize such performance slowdown

if FoREST induces a slowdown equivalent to those observed when the limit is set

to 5%. It can be noticed on Figure 11.8a and Figure 11.8b, that FoREST is able

to reduce the whole system and the CPU energy consumption. However, if Figures

11.8 and 11.4 are compared, one can note that, as for performance slowdown, no

significant additional energy savings can be spotted apart for mg.C. One can note

that the relative reductions of energy consumption achieved on the CPU are reduced

when considering the whole system. As explained above the static power of the sys-

tem plays a crucial role into the energy consumption. If the application last too long

the energy savings at processor scale are not sufficient to counterbalance the static

energy, inducing over consumption as it can be seen for bt, cg, ep, ft, RTM, and

Polaris in Figure 11.8. The only way FoREST can limit the static power influence

is by limiting the application execution time degradation.

In conclusion, DVFS systems have to be carefully designed in order to leverage

energy reduction disregarding the granularity. The best example, FoREST, can

leverage significant energy savings both at processor scale and for the entire machine.

Therefore, targeting low frequencies to reduce energy is not always a good idea even
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Figure 11.8: Energy savings over what ondemand achieves. 100% slowdown allowed

for Forest and beta-adaptive.

if it helps the processor to reduce its energy consumption. As for REST, and despite

all the optimizations performed in FoREST, one can still question its efficiency.

Table 11.4 shows the difference in percentage between UtoPeak and FoREST for

the NAS benchmarks. FoREST with the 100% performance degradation constraint

was compared to UtoPeak in order to be consistent. As a reminder, UtoPeak seeks

for maximum energy savings without caring for application execution time. It can

be noticed that FoREST is very close to the maximum energy savings and has little

room of improvement. FoREST even exposes even more energy reduction than

UtoPeak on is.C. The comparisons only involves processor energy consumptions.

However FoREST might not be the most efficient DVFS controller when considering

the full machine, even though it outperforms the other tested DVFS drivers.

Benchmark bt.C cg.C ep.C ft.C is.C lu.C mg.C sp.C

Difference 1.78 3.42 6.23 5.87 -0.50 0.47 2.34 1.26

Table 11.4: FoREST energy savings compared to UtoPeak.
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Conclusion

At the beginning of this part, a classification of applications was presented to get a

better vision of the different applications types regarding energy consumption and

execution time behaviors. Though a wide applications range exists, they are clas-

sified in only three different categories. The first one, named external resources

bound or memory bound, exposes a specific behavior where the execution time re-

mains constant across the processor frequency spectrum. The energy consumption

is the lowest at the lowest frequency. Choosing the lowest frequency is then the

easiest way to reduce the energy consumption. At the opposite, the CPU-bound ap-

plications trend, exposes a decreasing energy and execution time tendency when

increasing the operating frequency. As for the memory bound trend, the energy

optimization is straightforward, the application has to be executed with the high-

est frequency. Finally, the balanced application trend comprise all the application

which are neither bound to memory nor CPU. Unlike, the two others trends, there

is no single optimization to apply on each application belonging to the balanced

trend.

A more precise study was then needed to understand the relationship between

the application and its execution time and energy. The focus was put on the dif-

ferent phases that can be found inside an application. It was shown that studying

all the application phases helps to understand the general energy behavior and to

derive potential energy optimizations. Selecting the frequency granting the lowest

energy for each application phase, helped to find the lowest energy for the overall

application. However, the major difficulty is to isolate each application’s phase and

derive its boundess.

Two systems are presented, REST and FoREST to propose a solution to the

application phase identification. REST as the first iteration, is based on the as-

sumption that if a frequency is chosen regarding the stress the application put on

the hardware, energy savings could be obtained. The results shows that it is not

a bad assumption though it lacks efficiency as demonstrated by UtoPeak. As for

any optimization procedure, if there is no way to quantify the optimization added

value, the optimization is hardly justifiable. Consequently, UtoPeak was created

to fulfill that purpose. By through-fully studding each application’s phases bound-

ness and choosing the best frequency to target their minimal energy consumption,

the application energy savings upper bound is computed. By comparing the upper

bound to the savings granted by either REST or FoREST, it gives an estimation of

their efficiency. As it is presented, FoREST is the next iteration of REST, granting

the tool the capacity to quantify the energy saving of every frequencies on every

phases, and always choosing the one granting the lowest energy consumption. That

feedback loop granted to FoREST the capacity of achieving almost the maximum

energy savings exposed by UtoPeak.

Unfortunately the previous studies only considered a single processor. Yet, sci-

entific application always tackles bigger problems and their needs for computational

power always are increasing. Currently, TITAN, one of the most powerful machines
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listed in the top500, uses more than sixteen thousand processors. The next big chal-

lenge is then to take all the knowledge presented in the current part and adapt it to

that multi-processor environment. Sadly, it will be seen in the next Part that the

presented optimization mechanisms cannot be applied out of the box, and a totally

new approach has to be considered.
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Chapter 13

Introduction

In the previous part, multiple solutions to reduce program energy consumption on

a single CPU were presented. Each of them exposed significant reductions in en-

ergy consumption. Thanks to UtoPeak, it was possible to evaluate their efficiency

and demonstrate that FoREST almost provides optimum energy consumption sav-

ings. Hence, the problem of energy consumption reduction on a single processor

is considered as solved. Nonetheless, scientific applications are not using only one

processor, and their constant needs of performance drive the top500 [161] machine

sizing. Therefore in the current Part, the search for optimal energy reduction will

move to multiple processors environments.

One could think of an easy way to solve the problem. If UtoPeak or FoREST is

used on each processor involved in an application execution, it will theoretically give

the best energy consumption on each CPU. When considering the entire set of pro-

cessors, if each CPU exposes the maximum possible energy consumption reduction,

the best solution is found. However, it is not fully true since additional application

constraints have to be taken into account as shown in Section 13.2 which presents the

execution context. The problematic derived from this execution context is expressed

in Section 13.3. Section 13.4 explains Utopeak incapacity to adapt to distributed

environments when Chapter 14 presents different solutions to the problematic.

13.1 State of The Art

During the previous Part, all the optimization mechanisms took place on a single

processor with the inherent constraint of one frequency for the total package at a

time. Here, multiple processors are considered meaning multiple frequencies regions.

One could associate that to chip-multiprocessor (CMP) which exposes multiple fre-

quency domains [30, 31, 135]. Though, the technique described in this chapter,

OUTREAch, targets applications using the Message Parsing Interface (MPI) and

traditional cluster set-up, it can be transparently transposed to CMPs since it does

not rely on any power model. The sole requirement is to have the possibility to

abstract the application using a task graph.

When considering multiprocessors and task graphs, a close domain is the en-

ergy efficient task scheduling [102, 105, 111, 132, 141]. They present similarities

with OUTREAch. They handle tasks graphs, each task having dependencies to

other tasks that must be taken into account. Moreover, as for OUTREAch, the

energy efficient schedule generally uses linear programming to minimize the energy

consumption of the schedule. However, OUTREAch performs its work after the

scheduling operation.

Rizvandi et. al. [141] show a classic energy optimization algorithm used to sched-

ule a bag of tasks on a set of processors. It is fully static algorithm which finally

relies on power models the authors considers as fit. On the opposite OUTREAch

bases each of its decisions on real power and energy measures. Furthermore, Riz-
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vandi et. al. consider variables difficult to be measured in the real world due to

their magnitude. For example, the power cost of a frequency switch: it can last at

most 100µs when the resolution of current processor energy probe generally is 1ms.

Finally, they only consider the processor as an entity when OUTREAch takes all

processor cores into account to perform frequency decisions.

Lui et. al. [111] propose, in addition to a scheduling technique, to perform DVFS

on the different processors used for the computed schedule. It first determines

the scheduling and the deadline to meet, and then performs DFVS technique to

reclaim potential slack or extend task execution to meet the deadline. However their

technique does not take into account parallel tasks execution per processors since

they only attribute one task to each processor. Furthermore they do not consider

the time needed to perform a frequency switch. Ignoring hardware constraints is a

major limitation, as presented below. OUTREAch takes them into account. Finally,

even though they were to take into account for example the frequency shift delay,

it will add additional binary variables. Having too many binary variables can be

troublesome for the solver to converge to a solution, as presented below.

Pierson et. al. [132], also use linear programing to schedule tasks on a set of

processors. Like Lui et. al., they rely on power models, therefore the systems are

bounded to a specific set of machines. This is not the case for OUTREAch but

they consider relative power consumption between the different CPU to handle non

homogeneous processors. However, in their study, the authors only considered a set

of homogeneous processors.

The common point of all the described scheduling methods is that they do not

state the actual convergence time of their linear problem. As they are all considering

linear programing or even mixed integer programming, the convergence time can

become huge when dealing with a significant number of tasks. It can be a downfall

for scheduling techniques, if they themselves, take more time to schedule than the

actual application execution time.

Li et. al. [105] present a solution closer to OUTREAch than the others because

they consider MPI applications and not just pure bag of tasks. They propose to

aggregate MPI processes as regards communications between them. Indeed, small

messages benefit from the latency of shared memory while huge messages benefit

from the high bandwidth of the network. However, they limit their level of tasks

to MPI processes as tasks, when OUTREAch considers tasks at a finer grain. Fur-

thermore, they compare their aggregation methodology to a case where one MPI

process is occupying one node, therefore necessarily exposing energy reductions since

less machines are used. They do not perform further energy optimization once the

processes are aggregated, contrary to OUTREAch. One could use OUTREAch in

addition to the aggregation system to perform additional energy consumption.

In addition to scheduling techniques, systems that try to reduce the energy

consumption of an MPI application while being executed, do exist. The simplest

form of DVFS controllers for parallel program are those reducing the frequency

during the communication phases [107, 109]. OUTREAch aims to find the lower

bound in energy consumption for an application execution. Therefore, it cannot

restrict itself to only target the communications. Even more complex systems exist

[63, 92, 145].

Kappiah et. al. [92] describe a system that reduces the frequency of nodes pro-

portionally to the time they spent executing tasks out of the critical path. However,

compared to OUTREAch, they do not consider the processor frequency limitation
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that forces all the cores to be run under the same frequency. Rountree et. al. [145]

propose a similar solution to Kappiah et. al., however they consider tasks instead

of CPU. Still, they also do not take into account the hardware limitations.

Halimi et. al. [63] present a method to optimize at run-time, the frequency for

each task to lower the energy consumption of the overall application across the

different processors. Similarly to OUTREAch, they take into account the hardware

limitations and the possibility to limit the application execution time degradation,

however their system does not search for a lower bound on the energy consumption

as OUTREAch does.

It exists systems that search for the lower bound on energy consumption con-

sidering a distributed environment. To the best of our knowledge, only Roun-

tree et. al. [143] expose a system using, as for OUTREAch, profiled information

and linear programing with the intent of finding the lower bound in energy con-

sumption for one application execution. However, unlike OUTREAch, they do not

consider hardware constraints and execution time limitation. A comparison between

the two system is proposed in Section 14.6.

13.2 Execution Context

Parallelism is one efficient way to reduce the time needed to solve a problem, that

is why scientific applications use it to its full extent. The scientific world appetite

for parallelism can be demonstrated by the always increasing number of cores in the

most powerful machines of the top500, or by the apparition of many cores processors

[119] or acceleration cards [137]. Other signs of this trend are the efforts of some

people to create tools in order to better use these massively parallel machines or

to simplify the development of parallel applications. Among them, it can be found

some means to allow communication between different application processes like

Message Passing Interface (MPI) [48], compilation framework for automatic code

parallelism like openMP [127] or PLUTO for polyhedral code [22], high-level parallel

abstraction like charm++ [90] and many others dedicated to many-core processors or

acceleration cards. Even though a wide range of solutions exists to develop parallel

applications, the most widely used still is the MPI. The search for the lower bound

lower bound of energy consumption will therefore be performed on applications using

the Message Passing Interface.

The execution context is then MPI applications running on a multi-node plat-

form. A node can be defined as a set of processors with a shared memory and a

network card for communication between the nodes. The application is seen as a

set of processes all concurrently running on the collection of available cores on the

different used nodes. Finally, an application process executes a set of tasks. Each

task is data dependent. Indeed, some tasks need previously computed results to

operate. Considered applications can be abstracted using Direct Acyclic Graph as

shown in Figure 13.1.

Each considered application has a beginning phase where the different applica-

tion processes are created, and an end where they are destroyed. Each application

tasks is then organized regarding their precedence constraints. For example, task

labeled 5 cannot start right after the initialization phase is finished, it has to wait

for task 1 to finish. Considering an MPI application, a task, denoted Ti, is defined

as the computation between two communications. The application execution is then

represented as task graph, like the one in Figure 13.1, where the tasks are vertices



134 Chapter 13. Introduction

source

1 2

5

6

3 4

end

Figure 13.1: Parallel Application Tasks Abstraction.

when the edges are the messages between the tasks. Figure 13.2 is an example of

the task graph running on two processes. Compared to Figure 13.1, Figure 13.2

is a two dimension representation of an application task dependencies. The x-axis

represents the different processes involved in the application execution. Here, one

process executes tasks T1 and T2 while the other one executes tasks T3 and T4. The

y-axis represents the execution time. Accordingly, the longer the task on the y-axis,

the longer its execution time. For example, in Figure 13.2, tasks T3 last longer than

T1,T2 and, T4.
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Figure 13.2: Task graph

The representation of the tasks duration and dependencies showed in Figure 13.2

will be the default task graph representation for the entire Part III.

Tasks within a core are totally ordered. If a task Ti ends with a send event, then

the following task Tj starts exactly at the end of Ti. On Figure 13.2, task T2 starts

exactly after T1 ends. Moreover, when a task is created by a message reception, T4

on Figure 13.2, it cannot start before all the tasks it depends on, finish. Fortunately

in Figure 13.2, task T3 ended right on time to receive the message. However, if

the message arrives after the end of the task which is supposed to receive it, the

receiving task will have to wait for the message to arrive as shown in Figure 13.3b.

The time between the end of the task and the actual reception is known as slack

time.

The considered applications executions contexts are seen as a group of tasks

scheduled on different processors that are organized regarding their precedence con-

straints. Each task is processing between communications and can include period of
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time spent doing nothing other than waiting for a communication to arrive. Regard-

ing the described execution context, reducing the global energy consumption means

reducing the energy consumption of each task regarding a set of constraints related

to the considered application architecture and hardware limitations as explained in

the next Section.

13.3 Problematic

The problematic to be solved is the search of the highest bound in energy saving

one can expect from using DVFS on the different processors used by a distributed

application.

A task energy consumption Ei is defined as the product of its execution time

execi and its power consumption Pi. Since the application is composed of several

tasks, its global energy consumption can be expressed as the sum of the energy

consumptions of all the tasks. Hence one can calculate the application energy con-

sumption as:

E =
∑

i

(Ei) =
∑

i

(execi × Pi) (13.1)

Minimizing the energy consumption of the application is equivalent to minimiz-

ing E in equation (13.1). It was seen in the previous parts that an application

execution and power consumption is relative to the used frequency. It was also

shown that application phases follow the same relation,consequently it is the same

for application tasks. For each task Ti, as both execi and Pi depend the frequency,

the problem shifts to finding, for each tasks, the frequency that best minimize the

overall application consumption. Consider the example provided in Figure 13.3. A

theoretical application is executed on two different processors. Each processor has

only one core. The example exposes two possible executions. Either the application

is perfectly optimized and the communication times are perfectly overlapped with

processing in Figure 13.3a or slack time exists in the application execution as shown

in Figure 13.3b. Slack time is the time spent in a communication event waiting for

the message to arrive. The execution is paused until the message arrives.

Suppose that in the ideal case, all the different tasks are performing memory

operations. As stressed in Section 8.2, significant energy consumption reductions

can be leverage without hurting the performances when lowering the operating fre-

quency. A lower frequency is then chosen for each task reducing the overall appli-

cation energy consumption without modifying the application execution as shown

in Figure 13.3c. Now consider the case where some slack time exists as shown in

Figure 13.3b. On the one hand, T1,T2, and T4 are CPU intensive tasks meaning that

choosing a lower frequency results in increasing their energy consumption. Hence

their frequency setting are not changed. On the other hand, T3 is less CPU intensive

than the others and exposes energy saving if the frequency is lowered. The frequency

setting of T3 is then lowered, reducing its energy consumption. Its execution time

also is impacted, forcing T3 to last longer, removing the slack time period as shown

in Figure 13.3d. The optimization of T3 allows two things. Firstly, it allows T3 to

reduce its energy footprint. Secondly, as it removes the slack period, it completely

subtracts its impact on the overall energy consumption. However, recall that, on

processors, only discrete frequencies are available and fine control over the execu-

tion degradation is not possible. The new selected frequency for T3 may degrade
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Figure 13.3: Different execution scenario and their potential optimization

too much the execution forcing T3 to delay the start of T4. T4 will then start latter,

forcing the application to last longer, to consume more energy. Selecting a frequency

for each task to reduce the overall application energy consumption, is in appearance

a simple optimization solution to the stated problem. However, constraints from

the application, like the impact of a single task modification on all the others, or

constraints from the hardware, as the discrete range of frequency, transform the

problem into a more complex one as explained below.

13.3.1 Application Constraint

As described previously the different tasks composing an application are linked to

eachother. So changing the execution time of one task can strongly impact all the

tasks that depend on it. It can totally unbalance the application and generate a lot

of slack time, inducing over consumption. As a matter of fact, energy savings can

be countered by the consumption of newly appeared slack and/or by the fact the

application last longer, increasing its energy consumption. As an example, Figure

13.4 shows the same execution scenario as the one exposed in Figure 13.3b. In this

case, only the energy optimization of T1 is considered. Suppose that the lowest

frequency offers the highest energy reduction for T1. It also forces task T1 execution

time to double, strongly delaying T4 message sending. As T4 has to wait for the

message, the task start will be delayed forcing the apparition of additional Slack

time. T2 is also dependent on T1 and cannot start before it finishes. This also

delays the application end. Even though only T1 execution time is modified, the

entire application is impacted. The question that arises is: was it worth the costs,

i.e, are the energy savings obtained on T1 high enough to overcome the energy

consumption of the new slack section? If the answer is yes, the optimization for

T1 can be considered as valid. However, recall that the goal is to minimize the

overall application energy consumption. Then suppose that another frequency for

T1 could have limited the slack time increase. Even though that specific frequency
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does not grant as much energy reduction as the lowest frequency, it could grant

greater overall energy savings since the toll for slack is reduced. As hinted in the

problematic section, global energy optimization cannot be performed independently

from other tasks since any change can strongly impact all successive tasks. Each

modification has to be taken into account to obtain the highest energy reduction.
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Figure 13.4: Task optimization impact on overall graph

Naively, in order to find the lowest energy consumption, each combination of fre-

quency per task can be tested to cover the entire scope of possibilities and choose the

combination that grant the highest overall energy saving. Suppose that for each task

in Figure 13.4, fifteen frequencies are available; it would need 50, 625 combination

in the worst case to find the optimal one. It can be easily understood, that it cannot

be performed for applications with thousands of tasks. Special mechanism are then

needed to prevent the optimization procedure to walk through the entire space of

solutions to find the best one. However, task dependency is not the sole constraint

to be taken into account. Architecture constraints can limit the use of frequencies

for certain tasks obfuscating the search for the optimal frequency combination as it

will be explained in the next section.

13.3.2 Hardware Constraints

In addition to the application constraints, numerous hardware constraints must also

be taken into account when optimizing the energy consumption. As stressed in pre-

vious parts, multiple limitations exist on the current hardwares: non instantaneous

frequency transition latency, discrete processor frequency, and, frequencies shared

by the entire set of processor cores. Each limitation drastically impacts the search

for the best frequency per task, which has to be performed to achieve optimal energy

savings for a whole application across the used processors.

As stressed in Part II Section 8.3, it takes time to shift frequencies. In the

previous part, for UtoPeak and FoREST, it was not a limiting factor since both had

the control over the granularity of the considered phase. A coarse enough phase

size was always chosen to mitigate the impact of frequency shift delay. However it

is no longer the case, tasks are now the base elements. There is no control on their

durations since they are defined by the application during its execution. It may then

exist tasks shorter than the time needed to shift frequencies. That possibility must

be taken into account when designing the optimization mechanism, otherwise, the

task optimal frequency will not be applied when the considered task is executed. It

will induce a difference between what is found to be optimal and what is actually
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Figure 13.5: Frequency shift constraint

measured to be optimal as it will be shown later in Chapter 14.

However, before having to consider frequency transition delay, the frequency for

each task on each involved processor has to be computed. Consider the example

provided in Figure 13.5. The application is executed on 3 cores, 2 in the same pro-

cessor and one in another processor. Tasks T1, T2, T3,T4 and T5 are executed on

processor 0 while tasks T65 and T7 are executed on processor 1. Consider that the

best frequencies to use in order to minimize the application energy consumption are

f1,f2,f3,f1,f1,f2,f3 respectively for T1,T2,T3,T4,T5,T6,T7 with f3 > f2 > f1. It

can be seen that T1 and T3 are running concurrently on the same CPU while re-

questing different frequencies. As described in Chapter 6, only the highest frequency

among the requested is applied, forcing T1 to run at a frequency non optimal re-

garding energy savings. It is the same scenario when considering T2 in parallel of

T3, T4 and T5. As T6 and T7 are on a different processor, their frequencies settings

do not directly impact those of processor 0.

In a nutshell, selecting a frequency for each task in order to target optimal

energy savings, is not the best strategy. As shown in Figure 13.5, within the set of

concurrent tasks run on the same processor, a task may ask for the highest frequency

while the others are benefiting from a lower one, forcing these latter to be run at the

highest frequency. If it is repeated for each set of concurrent tasks, no optimization

will be performed. This also induces a difference between what is found and what

is actually measured to be optimal.

Finally, as suggested previously with Figure 13.3d and 13.4 discrete frequencies

can imbalance the application or generate non wanted slack time. For example,

recovering slack time with task execution is a great opportunity for energy savings.

The goal is to select, for the task prior to a slack time section, a lower frequency

that reduces the task energy consumption and extends as well its execution time.

This should remove the slack time from the application execution. As a result, the

task energy consumption will be reduced, and the energy consumption induced by

the slack section will be saved. However, as frequencies are generally discreet the

execution time either cannot be extended enough to recover the entire slack time

section, or is extended too much, generating slack time elsewhere in the application

as illustrated in Figure13.3d. For that reason, couple of frequencies, as the one used

in FoREST, are used to have a fine control over the execution time degradation

to perfectly recover slack time sections and/or limit their generation during the

optimization procedure. .

Multiple constraints make the search of the best energy saving on a distributed

application very complex. Tasks are dependent on eachother. Some are run concur-



13.4. This is not UtoPeak you are looking for 139

rently on the same processor forcing them to share the same frequency setting. On

top of that, any change in tasks duration can impact the overall task graph forcing

slack time to appear and producing additional energy instead of saving it.

13.4 This is not UtoPeak you are looking for

As explained at the beginning of the chapter, UtoPeak can be naively used to opti-

mize the energy consumption of distributed applications. One instance of UtoPeak

can be spawned on each processor involved into the application execution. Each

UtoPeak instance will profile the execution on each processor and, based on that,

determine the best frequency sequence to achieve the lowest energy consumption

per processor. However, the UtoPeak does not take into account all the previous

quoted constraints. All the decisions taken by UotPeak on one processor are taken

without being aware of the decisions made by other UtoPeak instances on the other

processors. Communications will then be delayed, generating slack time, preventing

UtoPeak from inducing the lowest energy consumption as shown in Table 13.1.

Benchmarks UtoPeak vs

Best Static Frequency

IS.C.16 -20%

EP.C.16 -10%

FT.C.16 -28%

BT.C.16 -24%

CG.C.16 -27%

MG.C.16 -35%

SP.C.16 -40%

LU.C.16 -38%

Table 13.1: Energy consumption comparison between multiple UtoPeak and the

best static frequency

Table 13.1 was obtained by running the NAS-MPI benchmark suite on a dual

processor machine while monitoring the energy consumption at processor granular-

ity by using the embedded energy probe. One instance of UtoPeak was run per

processor, trying to optimize the energy consumption. The results given by each

UtoPeak instance were summed up and then compared to the lowest energy con-

sumption given by a static frequency. A static frequency, is a frequency used for

the entire application execution. The best static frequency corresponds to the static

frequency granting the lowest energy consumption. As UtoPeak seeks for the max-

imum energy reduction, it should at least grant the same energy consumption at

the best static frequency. However, in this case, UtoPeak is far from the optimum.

Then using UtoPeak out of the box is not the correct answer to compute the best

energy consumption when facing distributed applications. One naive solution to

solve that problem is to allow UtoPeak instances to synchronize their decisions,

therefore each instance will be aware of the potential impacts induced by the other

UtoPeak and react accordingly. However, that solution is similar to computing all

possible frequency combinations. Indeed, for each instruction sample, each UtoPeak

program has to send its choice to the other instances, and potentially updates its

choice regarding what was decided on the other processor. Then it has to iterate
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until a solution is found for each UtoPeak instance on the considered instruction

sample. At worse for each application sample, all the frequency combinations would

have to be tested which is not affordable. A much more complex solution has then

to be defined to tackle the problem of finding the lowest energy consumption for

a distributed application. The next Chapter presents the different heuristics built

to find an almost optimal solution in a decent period of time regarding the con-

straints presented above. The energy gain obtained while using this solution are

then presented and compared to a concurrent method.



Chapter 14

OUTREAch : One Utopeak To

Rule Them All

As explained above, OUTREAch is an attempt to transpose UtoPeak to multi-node

machines. It was clearly demonstrated that UtoPeak cannot be used out of the box

to obtain the minimum energy consumption for a distributed application. OUT-

REAch is based on UtoPeak and takes into account all the constraints described

previously to find the lowest energy consumption for one application execution.

OUTREAch follows the same three steps architecture as UtoPeak as shown in Fig-

ure 14.1. In step one, OUTREAch gathers all the needed information related to

related to the execution time, relations and energy consumption of the different

application tasks. The measurement mechanisms are inspired by UtoPeak. In step

two, like UtoPeak, OUTREAch builds an internal representation of the application

using the gathered data. By using that internal representation, OUTREAch builds

a linear programming problem and calls a state of the art solver to work out the

linear program. The solver, Gurobi [60], will then compute the theoretical energy

consumption lower bound and the related frequency sequence per processor. Lastly,

the solution is played to validate the theoretical lower bound and measure the preci-

sion of OUTREAch prediction. In a nutshell, OUTREAch performs the same steps

as UtoPeak, but adapts each of them to the new considered problem and constraints.

How the application profiling, how the linear programming problem are built and

how the solution is evaluated are explained in the next subsections.

14.1 Application Profiling

Figure 14.2 shows that numerous information on the application execution and struc-

ture are needed by OUTREAch. It was explained above that the targeted appli-

cations were MPI applications. It was also explained that MPI applications are

alternating between computations and communication phases. The profiling step

Application pro ling

Task pro ling

Energy pro ling

 pro ling

Phase 1

Prediction

 construction

oblem

construction

oblem

resolution

Phase 2

Evaluation

Frequenc ce

application
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Figure 14.1: OUTREAch’s steps overview
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then needs to gather information on the two phases. Moreover, OUTREAch needs

to acknowledge the different task dependencies to be able to build on internal repre-

sentation of the application execution. Without this internal representation OUT-

REAch would not be able to acknowledge the potential task modification impact

on the entire application as explained in Section 13.3.1. It was also the main draw-

back of the solution using multiple UtoPeak as explained in the previous chapter.

Finally, OUTREAch also measures the energy consumption during the application

execution. Without it, finding the lowest energy consumption for the considered

application would be hard. As for UtoPeak all the measurements are repeated on

the different processor frequencies expect for the task dependencies reconstruction.

Indeed, like UtoPeak the targeted applications have to be deterministic, the task

dependencies are then identical for each application execution, then only one profil-

ing pass is needed. Application that cannot ensure that are dropped from the scope

of the study. Figures 14.2 and 14.3 show the different information measured during

OUTREAch first step. For clarity purpose, all the explanation performed during

this section are based on a small theoretical application and not a real life example.

Indeed, the smallest real life application at hand is IS.A.2; it is composed of 77 tasks

and is therefore not practical for explanations purpose.

Figure 14.2 shows the information obtained after the Task profiling. OUTREAch

measures the start date and duration of each task and each communication. Both

information are required by the linear program as will be explained in Section 14.4.

For communications, the measured duration is broken down into two different peri-

ods. The full communication time, regarding Figure 14.2 is obtained by summing

up the yellow and red area. The red area stands for the actual time spent inside the

communication, the yellow area, is the slack time spent in waiting for other tasks to

handle their end of the communication. As an example, at the first communication

involving the four application processes, T5, T10 and T14 are waiting for T1 to fin-
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Figure 14.3: Task dependencies

ish its computation and reach the communication. Other communications are only

composed of slack time or communication time. As it will be explained in Section

14.2, for some communications like simple send operations, OUTREAch considers

that no slack time is possible. For other communication like receive operations,

OUTREAch considers that the communication is only composed of slack time. As

an example in Figure 14.2, task T7 waits for the message from T2 then only slack

time is measured between T6 and T7 when only communication time is measured

between T2 and T3 . It is the same for T12 waiting for a message from T7.

As said previously, OUTRAch needs to acknowledge the different relations be-

tween each task. When considering only Figure 14.2 it is hard to see that T1,T5,T10

and T14 are all linked together or that T2 is sending a message to the end of T6 as it

is shown in Figure 14.3. Having that information let OUTREAch understand how

each task is linked to one another. In a nutshell, OUTREAch gathers F time the

information displayed in Figure 14.2, F being the number of frequencies available on

each processor involved in the application execution. It only gathers one time the

information displayed in Figure 14.3 since the task dependencies should not change

from one application execution to another. Now that the information measured by

OUTREAch are presented, the next section focuses on how they are gathered.

Contrary to UtoPeak which uses only a sampling based profiling technique, OUT-

REAch uses MPI library instrumentation. Two different instrumentations were per-

formed, one for the tasks and communication timings and one to acknowledge tasks

dependencies which are detailed in Section 14.2.

14.2 Tasks And Communication Profiling

Multiple MPI libraries implementations exist [2, 3, 49]. MPI is a standard, therefore

each implementation has to be compliant to the standard. The instrumentation was

performed using the standard profiling interface primitives. Then if the MPI library

implementation changes, the profiling is still operational.
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Figure 14.4: OUTREAch Task profiling

To retrieve the timing information, as the ones displayed in Figure 14.2, a probe

is inserted at the entry and exit point of each MPI communication operation. At

the entry point, the previous task duration and the communication start date are

measured. At the exit, the new task start date, communication and slack dura-

tion are timed. As an example, consider Figure 14.4, T2 start date is retrieved

when the MPI_Alltoall communication is finished. The duration of T2 is measured

when starting the MPI_send following T2. Measuring communication information

is less straight forward. As hinted above, OUTREAch considers that there are three

trends of communications. The first type is communication where no slack can ever

exist. Only the point to point send operation MPI_send compose this category.

The second type, is communication where slack may exist. OUTREAch consid-

ers all the collective operations as MPI_Alltoall to be part of the second category.

Lastly, OUTREAch considers all the synchronization operations, as MPI_Barrier

or MPI_Wait as purely composed of slack time. Indeed, their role is purely to wait

for other tasks to reach the same point of the execution. The timing method of the

first and third category is straightforward, the start date and duration are measured

when getting in and out of the communication. According to the type of commu-

nication it is decided whether the duration is considered as slack or communication

time. For the second category, a more complex method is needed. Indeed, the basic

behavior of each function is slightly altered as shown in Algorithm 10. The algo-

rithm only shows the method to dissociate the slack from the communication time

for MPI_Alltoall. It is the same method for all the collective operations. One could

state that altering the default behavior of some communications can impact the

overall application execution times. However, it will be seen later that the overhead

of the measurement method is rather due to disk writes than to communication

function modifications. However, the overhead is kept low as will be presented later

in this section..

The presented instrumentation method allows OUTREach to measure the timing

information needed for OUTREAch second step. The next instrumentation method

to retrieve the task dependencies during the application execution is less straightfor-

ward. Indeed, during the instrumentation of the application, only the link between
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Algorithm 10 MPI_Alltoall communication instrumentation

1: MPI_Alltoall(...) instrumentation
2: com_Start← date

3: PMPIBarrier(...)

4: slack ← curDate− comStart

5: PMPIAlltoall(...)

6: com← curDate− comStart

MPI processes are available. This is why, as a first step and for all communications,

Outreach gathers the different link between the involved processes. It is performed

only once during an application execution since OUTREAch considers that the tar-

get applications are deterministic. The communication order and participants will

not change from one execution to another. As an example, in Figure 14.5, COM1

will always be executed before COM2 and COM3 and it will always involve P0, P1

and P2. One could still perform multiple runs, however no additional information

can be gathered after the first run. After that unique process dependencies profiling

run, OUTREAch only has information on processes relations during communication.

For each process, it knows to which processes information are sent and from which

they are received. Consider Step 1 from Figure 14.5. At the end of the instrumen-

tation run, OUTREAch knows that during COM1, each MPI process P0, P1 and

P2 are exchanging messages with all the other processes. It knows that P0 sends

a message to P1 during COM2, and during COM3, P1 sends a message to P2.

At this step, OUTREAch has no information on tasks. Recall that regarding the

execution model defined in Section 13.2 a communication ends a task and a new one
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Figure 14.5: Task Graph Reconstruction
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is started when it finishes. OUTREAch then assumes that for each process there is

a task before and after a communication. Since it also knows the link between the

processes during each communication OUTREAch can assume that each task before

a communication will have a link with the tasks after the communication. Consider

Step 2 from Figure 14.5, OUTREAch knows that T1 will have a link with T5 and

T9. By using the link between the processes PO,P1 and P2 the relation between

T1, T5, and T9 can be inferred as shown in Step 3 from Figure 14.5. One can note

that the relation between T1 and T2 is not mentioned in the previous example, be-

cause such precedence relation were already computed at Step 2. There is no need

for OUTREAch to look into the communication links information to know that T2

is executed after T1.

After both task and communication profilings, OUTREAch has all the informa-

tion needed to start and optimize the application energy consumption. It will be

able to select for a given task the frequency that reduces its energy consumption

and to propagate any task modification along the task dependency chain. However,

it will be seen in Section 14.4 that energy minimization is not as simple. Before

looking into energy optimization, one can wonder why the task information profil-

ing is only performed F times and not F × N , F being the number of frequencies

and N the number of tasks compsing the application. First, OUTREAch assumes

the set of processors to be homogeneous. For the results exposed in Section 14.5,

for each application execution either 2, 4 or 8 Xeon E5-2670 processors are used.

Each processor has then the same range of frequencies. Furthermore, what actually

matters are the task execution durations, thus the energy consumption. Testing all

the combinations of task and frequency during the profiling step will not change

the fact that a task is executed in t time at frequency f . Finally, even when only

performing F application executions if one still want to have all the combinations

of task and frequencies, it will have all the necessary information by composing all

the measurement per tasks.

Benchmarks Profiling impact Benchmarks Profiling impact

IS.C.16 0.18% SP.C.16 0.18%

IS.C.32 0.55% SP.C.64 5.45%

IS.C.64 4.2% CG.C.16 0.77%

EP.C.16 0.23% CG.C.32 0.70%

EP.C.32 0.43% CG.C.64 6.26%

EP.C.64 4.18% LU.C.16 1.59%

FT.C.16 0.49% LU.C.32 3.62%

FT.C.32 3.42% LU.C.64 9.77%

FT.C.64 5.10% MG.C.16 0.64%

BT.C.16 0.16% MG.C.32 1.47%

BT.C.64 5.24% MG.C.64 4.72%

Table 14.1: OUTREAch instrumentation impact

Having to perform F runs or F ×N runs will not change the potential overhead

of the technique. The task profiling need to gather information on the execution

and stores it on disks. Each process outputs information to disks, so the application

execution can be strongly impacted. Table 14.1 shows the impact of OUTREAch

on the full set of applications used to evaluate OUTRAch. It can be seen that
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OUTREAch does not degrade the application execution time by more than 5% in

most cases. OUTREAch overhead was kept low thank to the General Parallel File

System (GPFS) [150] installed on the test machine. GPFS is optimized for large

write sequence into different files. However raising the number of processes increases

the pressure on the file system, as well as the impact of OUTREAch instrumentation

as it is suggested by the degradation on 64 processes for each NAS benchmark

programs. If more than 64 processes were to be considered for OUTREAch then a

dedicated solution would be needed to keep that overhead acceptable. One of them

would be to use burst-buffers [110, 163]. All the data would be pushed into RAM

and a dedicated system would write the data back to disks. From OUTREAch

point of view the cost to output each task and communication information would be

drastically reduced limiting its influence on the application execution. However, the

topic of OUTREAch is not to design a burst buffer but to find a solution to compute

the minimum energy consumption regarding the application energetic behavior. In

the end, OUTREAch overhead is kept low, except for LU.C.64. One cause would

be the intensive usage of the GPFS since it is shared between all the machine users

and LU is the benchmark containing the most tasks and communications around 31

million against 3 million for BT, SP. However, for EP and IS the writes intensity is

not the reason for the degradation of the application execution time. They are the

benchmarks with the lowest amount of tasks, respectively 4928 and 960, and any

write to the backing file system is very costly as it can be seen in Table 14.1.

The energy measurement methodology is exactly the same as the one used in

UtoPeak. It is demonstrated in the chapter dedicated to UtoPeak that the overhead

of this method was almost null. Therefore the energy profiling does not generate

any additional overhead. In the end, the measured data give a fair report of the

application execution and energy consumption. Since the energy profiling is taken

from UtoPeak, a normalization step is needed to be able to compute the effective

energy costs of each task and each communication. It is the goal of the next Section.

14.3 Energy Normalization

As a reminder, UtoPeak could not use the profiled energy consumption directly for

the normalization process as shown in Figure 14.6.

In UtoPeak case, the use of the fixed time sampling provides no possibilities to

compute the energy consumption per phase without using the instruction sample.

However, there is no need for such a transformation with OUTREAch. Indeed,

it knows when all the phases, in the current case task or communication, start

and finish. Then if the task of communication last for multiple profiling sample

OUTREAch knows where to look. The normalization process is very similar to

the one UtoPeak used after the instruction sample transformation. If the task or

communication phase is comprised inside a profiled sample, a time ratio is computed

as ratio = Tduration/SMPLduration. With Tduration and SMPLduration respectively

being the task and the sample durations. The ratio quantifies the task impact on

the energy consumption inside the sample. Then to get the task/communication

energy consumption, the measured sample energy is multiplied by the ratio. Some

task or communication can be between two profile samples. As OUTREAch knows

when the task/communication and both profiling sample start and stop, it cuts the

task/communication duration into two portions. The portions are then compared

to their corresponding profile sample. For each portion the impact ratio is compared
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Figure 14.6: Difference between time-based and instruction-based sampling.

as described above. Both profile samples are multiplied by their respective ratio.

By summing the two obtained energies the the overall task/communication energy

is obtained.

The energy normalization process is repeated for each task and each communi-

cation under the different application processes. Once the normalization is done,

OUTREAch constructs an internal representation based on all the measured infor-

mation. The closest graphical representation of that internal structure can be found

in Figure 14.3. For each task it stores the start date, duration and energy con-

sumption under the different frequencies. For the communication, only the impact

on the different involved processes are used. As an example, if process P0 sends a

message to process P1, OUTREAch will know when the send operation started and

finished on P0 and when the receive operation started and finished. By using such

a representation, OUTREAch tries to find the maximum energy consumption for

an application execution. However, there is no easy solutions since a vast amount

of constraints has to be taken into account as explained in the previous chapter.

It was then decided to use linear programing in order to leverage the resolution

complexity by using tools that are meant for such a complex problem. By using a

state of the art solver [60] OUTREAch was able to give a practical answer to the

problem. Though it is an approximation coming from multiple problem refinements

presented in the next section, it is available fast and with good precision as it is

shown in Section 14.5.

14.4 Building The Linear Program

The following paragraphs describe how the energy minimization problem, described

in Section 13.3, can be translated into a linear program. First the precedence con-

straints are expressed, to allow the solver to correctly manage the application de-

pendency graph as described in Section 13.3.1. The major OUTREAch contestant
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[143] defines similar constraints, however OUTREAch contributions lies withing the

problems refinements presented thereafter. After the precedence constraints, archi-

tectural constraints are described, to help the solver producing a realistic solution.

Finally, based on these constraints three different formulations are presented. Sec-

tions 14.4.3, 14.4.4, and 14.4.6 discuss the feasibility of each solution.

14.4.1 Precedence Constraints

As explained in Section 13.3.1 all the task withing an MPI application are linked

to one another. The alteration of one task execution time can greatly imbalance

the overall application task graph. Unbalancing the application task graph can lead

to degraded application execution time and/or apparition of slack time, generating

more energy consumption. A special formulation is needed to allow the solver to

grasp these relations between tasks and prevent it from making wrong decisions

ending up in degrading the energy consumption instead of reducing it.

Before jumping into the linear programing constraint formulations, consider Ta-

ble 14.2 which exposes the different variables that will be used in the remainder of

the section. Each line explains the different task attributes that must be taken into

account to correctly teach the solver how to understand task precedence constraints.

bTi Beginning of a task Ti

eTi End of a task Ti

bTsi Beginning of a slack task Tsi
eTsi End of a slack task Tsi
execfi The execution time of a task Ti if executed completely at frequency f

tT f
i The time during which the task Ti is executed at frequency f

δfi The fraction of time a task Ti spends at frequency f

M i
j Message transmission time from task Tj to task Ti

Table 14.2: Task variables

Let Ti be a task defined by its start time bTi and its end time eTi. The beginning

of tasks is bounded by the precedence relation between them. As already stressed

out, a task cannot start before its direct predecessors complete their execution. As

explained in section 13.2, if Ti sends a message, its child task Tj starts exactly when

Ti ends since the end of the communication means the beginning of the next task.

It can be expressed as:

bTj = eTi (14.1)

Additionally, when the same task Ti ends with a message reception from another

task Tk, one has to make sure that its successor task Tj starts after both tasks end.

As an example, consider Figure 14.7 where T4 must wait for T1 and T3 to finish

before starting. Moreover, as pointed out in section 13.2 and shown in Figure 14.4,

when a task receives a message, some slack may be introduced before the reception.

Slack is handled the same way tasks are. It has a start and an end time. To ease

the presentation, it is assumed that each task Ti receiving a message, from a task

Tk, is followed by a slack task, denoted Tsi. The beginning of Tsi, denoted bTsi is

equal to the end of Ti:
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bTsi = eTi (14.2)

If Figure 14.7 is considered, that the slack task Ts3 starts when T3 is waiting

for the message to arrive, and the next task T4 starts just after Ts3 ends as enacted

by Equation 14.1.
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Figure 14.7: Slack time

The slack task end time, denoted eTsi, is at least equal to the arrival time of

the message from Tk. Let M i
k denote the transmission time from Tk to Ti. Thus:

eTsi ≥ eTk +M i
k (14.3)

If equation 14.3 is considered with Figure 14.7, it means that Ts3 will end after

the message is actually sent by T1 plus the transport duration. Note that a task

may receive messages from different processes, after a collective communication for

example, and equation 14.3 has to be valid for all of them.

Finally, since Tj , the successor task of Ti has to start after Ti and Tk finish, one

just needs to make sure that:

bTj = eTsi

For Figure 14.7, it means that the beginning of T4 happens at the end of Ts3. In

order to compute the end time of a task Ti, eTi, one has to evaluate the execution

time of Ti. As explained in Section 13.3, the search for the optimum energy will be

achieved by selecting the best frequency per task. This is why, during OUTREAch

profiling step, task information are gathered for different frequencies. The solver

must take that into account. Let execfi be the execution time of Ti if executed

completely at frequency f . However it was demonstrated in Section 13.3.2 that

using a single frequency is very limiting for slack recovery. Every frequency can

then be used to run a fraction δfi of the total execution of the task. Let tT f
i be the

fraction of time Ti spends at frequency f . It can be expressed as:

tT f
i = δfi × execfi (14.4)

For Figure 14.7, Equation 14.4 implies that the task T3 can be sliced into multiple

sections, and for each of them a different frequency can be used. It allows T3 for

example to perfectly recover Ts3, saving its energy consumption without modifying
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the application execution graph. By considering that multiple frequencies can be

used to execute a single tasks, it modifies the task end time formulation:

eTi = bTi +
∑

f

tT f
i

If a task can be sliced into multiple fractions, the solver must consider all of

them. Equation 14.5 ensures that a task is completely executed:

∑

f

δfi = 1 (14.5)

Changing the perception of the solver on how task is executed, also changes the

objective function as it was presented in Section 13.3. As a recall it was defined as

follows:

E =
∑

i

(Ei) =
∑

i

(T imefi × P f
i )

T imefi and P f
i were the execution time and the power consumption of a task i

at a frequency selected for the entire task execution. Since the execution is devised

into multiple part, the formulation of the objective function is changed to :

min(
∑

Ti

(
∑

f

(tT f
i × P f

i ))) (14.6)

Solving the new objective function showed in Equation 14.6, provides for each

task, the time to spent in the different frequencies tT f
i . With a dedicated system

that ensures that each task is run for the correct amount of time on the computed

frequencies, the application execution will theoretically generate the lowest amount

of energy. However, nothing constrains parallel tasks on one processor to run at

the same frequency, and the threshold of switching frequency is not considered

either. As explained in Section 13.3.2 considering theses architectural limitations

ensure a realistic solution. The closest solution to OUTREAch [143] did not take

that into account, and as it will be seen its prediction precision suffers from that.

Finally, OUTREAch add one constraints compared to [143]. That was not discussed

previously. Like FoREST, with OUTREAch the user has the possibility to select

the quantity of time degradation it allows. OUTREAch will then find the lowest

energy consumption regarding that new constraint. The next sections introduce the

additional constraints related to the architecture and the execution time limitation.

14.4.2 Execution Time Limitation

It was seen in Part II with FoREST that significant energy consumption reduction

could be achieved even by limiting the performance degradation. Moreover, whether

the energy consumption is considered or not, the performances of an application is

always a major concern. Constraints to control that performance degradation is

integrated in OUTREAch. The remainder of the Section describes how such a

constraint was translated into linear programming.

In MPI, all programs end with MPI_Finalize which is similar to a global barrier.

Let lT i be the last task on core i. Since the application ends with a global com-

munication, every task lT i is followed by a slack task lT si. The difference between
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the global communication slack and the other slack tasks lies in the end time: the

end times of all slack tasks of a global communication are the same as all processes

leave the barrier simultaneously. Hence, for every couple of cores (i, j):

elTsi = elTsj (14.7)

Let total_T ime be the application execution time. It is equal to the end time

of the last slack task.

total_T ime = elTsi (14.8)

However, in some cases, increasing an application execution time benefits to

energy consumption as it was shown during the entire Part II. In order to allow

this performance loss to a specified extent, the user controls this performance loss

by limiting the degradation to a factor x of the maximal performance, like the one

defined in FoREST. Let exec_T ime be the execution time when all tasks run at

the maximal frequency, and x the maximum percentage of loss allowed by the user.

The following constraint allows performance loss with respect to x:

total_T ime ≤ exec_T ime+
exec_T ime× x

100

As an example, it will be demonstrated, in Section 14.5, that for the NAS bench-

mark programs suite, more than 50 % of the maximum energy savings are already

achieved when only setting the execution time degradation limit at 10%. Then even

for users that fears dramatic performance loss, significant energy saving can be per-

formed. However, that performance limitation is not the sole OUTREAch contribu-

tion. To be able to realistically find the minimal energy consumption, OUTREAch

takes into account all possible task configuration, i.e. all possible combination of

tasks working in parallel on the same processor. It then chooses the one minimizing

the energy. That method is presented in the next Section.

14.4.3 Architecture Constraints: The Workload Approach

T1

Ts1

T2

T3

Ts3

T4

(a) f_max

T1

Ts1

T2

T3

T4

(b) f_min

Figure 14.8: Workloads

As stress out before, on current SandyBridge and IvyBridge architecture, all

processors cores share the same operating frequency. Therefore, when selecting a

frequency for a task, all other concurrent tasks on the same CPU also have to

be taken in account. It is the goal of the workload approach. It is achieved by

computing the complete list of tasks that are potentially run concurrently. However,

each task within the application task graph can be run at different frequencies,

potentially modifying its concurrent neighbors list. A neighbor is a task executed
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bWi Beginning of a workload Wi

eWi End of a workload Wi

tW f
i The time a workload Wi is executed at frequency f

dWi The duration of a workload

tW f
i A binary variable used to say if a workload is executed at a frequency f or not

Table 14.3: Workload formulation variables

at the same time and on the same processor as the considered task. For a single

task multiple possible neighbors can exist. The first step is then to compute the

full combination set of possible neighbors. One combination of possible neighbors

is called a workload. The full list of possible workloads is generated beforehand by

crawling into the data set measured during OUTREAch first step. As an example,

consider Figure 14.8, two different executions of the same application performed

at the maximal and minimal frequency. Only processes that belong to the same

processor are represented. In Figure 14.8a, when the processor runs at f_max,

the set of neighbors is: {(T1, T3), (T1, T s3), (Ts1, T s3), (T2, T4)}. The horizontal

dotted lines represents the separation of each neighbor. When the frequency is set

to f_min, shown in Figure 14.8b, the slack after T3 is completely covered and

the set of neighbors becomes: {(T1, T3), (Ts1, T3), (T2, T4)}. OUTREAch builds the

set of workloads based on the list obtained at each frequency . For the example,

OUTREAch builds five different workloads : W1 = (T1, T3),W2 = (T1, T s3),W3 =

(Ts1, T s3),W4 = (Ts1, T3),W5 = (T2, T4). Notice that there are no workloads with

the same set of tasks. By construction, a workload is intended to display the tasks

that are run concurrently, so that when a task is finished a new workload is started.

The process of workload building is repeated on each processor. Once the complete

list of possible workloads is computed, it is given to the solver, that will choose the

best ones to reach minimum energy consumption. The next section explains how

to describe the workloads to the solver and how to handle them in order to let the

solver choose the best set.

14.4.3.1 Shared Frequency Constraint

Before going into further details, Table 14.3 explains the different used variables

and their meanings. One can find the different variables very similar to the ones

used to describe tasks in Table 14.2. A workload will be seen by the solver as a

meta-task. It is the bridge between the tasks belonging to the same workload. It

helps the solver to understand the potential harm brought to other tasks within the

same workload when a frequency is chosen for one of them. Basically the workload

are here to force parallel tasks to run at the same frequency.

As defined previously for the tasks, a workload can be sliced into fractions tWi

and, for each fraction, a new frequency can be chosen. However the objective func-

tion defined in Equation 14.6 uses task slices tTi and not workload slice. The

following constrain define the relation between the workload and the tasks.

As an illustration consider Figure 14.8. On the left side of the figure there is

the list of frequency that was decided by the solver. The succession of workloads is

defined on the right side of the figure. As stated above, the challenge is to retrieve,

for each task, the portion executed at different frequencies. In the example the
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workload W1 = (T1, T3) is executed at frequency f1 then at frequency f2. However,

T1 also belongs to workload W2 which is executed at frequency f1 then at frequency

f2. The execution time of T1 at frequency f1 ,tT f1
1 , can be calculated by using the

fraction of time W1 and W2 spend at frequency f1. In other words, the execution

time of a task can be calculated according to the execution time of the workloads it

belongs to. Let tW f
i be the fraction of time the workload Wi spends at frequency

f . Thus:

tT f
i =

∑

Wj ,Ti∈Wj

tW f
j (14.9)

As explained above, the workload approach needs that all the possible workloads

are described to the solver. However, depending on the optimization performed by

the solver, some task combinations are no longer possible. A mechanism to remove

the invalid workloads has to be added.

14.4.3.2 Valid Workload Filtering

As explained above, the linear program is provided with all possible workloads.

However, all workloads cannot be present in one execution. In Figure 14.8, W1 =

(T1, T s3) and W2 = (Ts1, T3) are two possible workloads, but they cannot be active

in the same execution, because if W1 is being executed, it means that T3 is over,

since Ts3 comes after T3. Hence, W2 cannot appear later since Ts1 and T3 never are

parallel. Thus, in order to prevent W1 and W2 from both existing in one execution,

a check is needed to verify whether the tasks of the workload can be parallel or not,

depending on the execution context. Two tasks are not parallel if one ends before

the beginning of the second. Since workloads are only considered, the focus is put

only on the beginning and end time of the workload. Let bWi and eWi be the start

time and the end time of the workload Wj = (T1, . . . , Ti, . . . , Tn). They are such

that:

bWj >= bTi (14.10)

eWj <= eTi (14.11)

Note that although the beginning and the end of the workload are not exactly

defined, this definition makes sure that the beginning or the end of a task starts a

new workload. Moreover, the complete execution of a task is guaranteed thanks to

equations (14.5) and (14.9).

Figure 14.10 is an example of a workload that cannot exist. Consider the ex-

ecution represented in Figure 14.10, and focus on the workload W1 = (T1, T s3).

T1

T2

T3

Ts3

T4

f1

f2

f1

f2

W1

W2

W3

W4

Figure 14.9: Workloads and tasks execution



14.4. Building The Linear Program 155

Assume also that with other frequencies, a possible workload is W2 = (T3, T s1). As

explained above, W1 and W2 cannot both exist in the same execution because of

precedence constraints. It can be seen, from the example, that T3 and Ts1 are not

parallel, let see how it translates into workloads. Since W2 has to start after both

T3 and Ts1 begins, then it starts after Ts1 (since bTs1 ≥ bT3). In the same way it

ends before eT3. But since eT3 ≤ bTs1 then the duration of W2 would be negative

which is not possible.

T1

Ts1

T2

T3

Ts3 bTs1 bW2 ≥ bTs1 and bW2 ≥ bT3. Thus the workload must at least start here

eTs1

bT3

eT3 eW2 ≤ eTs1 and eW2 ≤ eT3. Thus the workload must at most end here

Figure 14.10: Negative workload duration for impossible workloads

Workloads filtering is then performed by identifying workloads which end before

they begin. In such a case the solver is instructed to set a null duration forcing it to

discard the erroneous workloads. Finally, the duration of a workload is such that:

dWi =

{

0 eWi < bWi

eWi − bWi otherwise
(14.12)

14.4.3.3 Handling Frequency Switch Delay

Recall that one of the problems when considering DVFS is the time required to

actually set a new frequency. In order to set a new frequency, one has to make sure

that the duration of the workload is long enough to tolerate the frequency change

since changing a frequency takes some time. In other words, if the frequency f is

set in a workload, Wi, tW
f
i must be larger than a user-defined threshold, denoted

Th :

∀Wi,∀f : tW f
i ≥ Th× tW f

i (14.13)

tW f
i is a binary variable used to guarantee that definition (14.13) remains true

when tW f
i = 0. The threshold, is not randomly defined, it is set as the worst fre-

quency transition delay noticed on the set of processors. The measurement method

was presented in Section 8.3.

tW f
i =

{

0 tW f
i = 0

1 otherwise
(14.14)

The expression of definition 14.14 as a linear programming formulation is ex-

pressed in the appendix in [59].
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14.4.3.4 Discussion

The appendix in [59] provides a detailed formulation of the energy minimization

problem using workloads. The formulation shows the use of two binary variables:

one to express the threshold constraint and one to calculate the duration of the

workload. With these two variables, the formulation is not linear anymore, which

requires more time to solve, especially when the number of workloads is important.

Moreover, the workload generation was tested on IS, one of the NAS parallel

benchmarks program on class C with 16 processes. The test machine was equipped

with 16 GB of memory. The application task graph is composed of 630 tasks. The

generated workloads could not fit in the memory of the machine. Thus, even with no

binary variables, providing all possible workloads is not possible when considering

real applications.

Though the workload approach could grant the maximum energy reduction, be-

cause it considers all possible task configurations, it is not a practical solution. Based

on the work presented above, a new formulation is needed to remove the workload

from the picture. The next section presents a refinement where no workloads but

only the task dependencies are needed.

14.4.4 Architecture Constraints: The Frequency Switch Date Ap-

proach

The workload approach, even though it would have given the optimum solution,

is not a practical solution since a machine with a tremendous amount of memory

would be needed even when considering small applications. A new approach is

then required. The previously presented workload constraints are then discarded,

however the objective function and all the precedence constraints remain the same.

In the next section a refinement of the workload approach is presented. The new

solution ask the solver to compute the dates to set a new frequency on the whole

processor. As all the task on the same processor share that shift dates, the frequency

selection, regarding the needs of the different tasks, will be automatically adjusted by

the solver. The hardware limitation about frequency domain is then transparently

taken into account. With the new solution, the solver will provide a list of dates

when a frequency shift must happen, and the list of frequencies to be set.

14.4.4.1 Frequency Switch Date

Let cfjp be the date when the frequency f is set on the processor p, j being the se-

quence number of the frequency switching. As an illustration, consider Figure 14.11

representing the execution of four tasks on two cores of the same processor p. In

the example, it is assumed that there are only 3 possible frequencies. After the first

switch date cf11p, the frequency f1 is set for both tasks T1 and T3. At the second

shift date cf22p, the frequency f2 is set for T1 and T3. And so on for the entire list of

switch dates. The solver must be thaught how to order the shift date, a date in the

future cannot happen before a date in the past. More precisely a shift date with an

sequence index j + 1 is happening after a shift date with the index j :

cf2{i+1}p ≥ cf1ip

Consequently the duration of a frequency application f between two consecutive

dates is computed as follows :



14.4. Building The Linear Program 157

durationf = cf
′

{i+1}p ≥ cfip

Contrary to the previous approach where the user solely had the control over

the execution time degradation, with the new solution, he can also set the number

of frequency shift dates the solver has to compute. The user will then be able to

go either for a fast solution or a very precise one. However, the solver still has the

final word, even though the user chooses to have a lot of shifts date, if the solver

considers that the optimum solution is achieved with less shift dates, it will discard

the leftovers. As an example, consider Figure 14.11. Five shift dates were allowed,

and the solver decided that one of them was not necessary. It is shown by the fact

that two shift dates are equal. In the example, the shift date cf331 is never used.

cfip Date of the ith frequency switch on processor p. The frequency f is the one set

dfij The amount of time a frequency f is set for the task i for the frequency switch j

Table 14.4: Frequency switch formulation variables

Table 14.4 shows the variable used by the solver for the current constraint for-

mulation, it can be seen that durationf is not directly used. Indeed, recall that

the objective function minimize the energy consumption of each task slice. So the

duration of a frequency set between two consecutive dates cannot be used out of

the box. From that duration, the different task slices tT f
i have to be computed.

As a clarification, consider Figure 14.11 it can be seen that T3 is executed at f1

and f2 and T1 is executed at f1 followed by f2 and finishes with f1. Then the

time T3 spends at frequency f1, is cf221 − cf111 whereas T1 is (cf221 − cf111) + (eT1 − cf141)

at frequency f1. Let dfij be the time the task Ti spends at frequency f after the

frequency switch j. Back to Figure 14.11, df111 = cf221−cf111 and df141 = eT1−cf141. Based

on both durations, tT f1
1 becomes tT f1

1 = df111 + df141. By generalizing, it translates

into:

tT f
i =

∑

j

dfji

Note that a task is not impacted by a frequency change if it ends before the

change or begins after the next change. In other words, df1ij = 0 if eTi ≤ cf1jp or

bTi ≥ cf2{j+1}p. Otherwise, df1ij can be calculated as min(eTi, c
f2
{j+1}p)−max(bTi, c

f1
jp).

dfji =

{

0 eTi ≤ cfjp or bTi ≥ cf
′

{i+1}p

min(eTi, c
f ′

{j+1}p)−max(bTi, c
f
jp) otherwise

(14.15)

With this list of constraints the solver will be able to compute the different

shift dates, and acknowledge their impact on the objective function. However, the

duration between two cut dates can be lower than the time needed to change a

frequency. To take that into account, the following set of constraints is added to

the solution.
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Figure 14.11: Frequency switches example

14.4.4.2 Handling Frequency Switch Delay

As explained earlier, changing frequency takes some time. Thus, for a change to

be applied, its duration has to be longer than the user-defined threshold Th. As

explained before, the threshold is measured to be the worse case frequency shift

duration. Let ζfip be a binary variable, that:

ζfip =

{

0 cf
′

{i+1}p − cfip = durationf = 0

1 otherwise
(14.16)

The threshold condition is then expressed as:

cf
′

{i+1}p − cfip ≥ Th× ζfip

The binary variable is used here to take out of the picture the shift dates that

start at the same time preventing the solver from spending time on on a meaningless

comparison. For example, based on Figure 14.11, the comparison cf331 − cf141 ≥ Th

has no meaning since cf331 − cf141 = 0, however it is discarded thanks to ζ.

The translation of each constraint into into their linear programming versions

is detailed in the appendix section of [59]. Unfortunately, that new refinement also

has drawbacks discussed in the next Section.

14.4.5 Discussion

The appendix in [59] provides the complete formulation of the problem using the

frequency switch time variables. In addition to the binary variable used to satisfy

the frequency switch delay, five additional binary variables are used for each task and

for each frequency switch. For n tasks and m frequencies switch, 5× n×m binary

variables are required. Mixed integer programming is NP-hard [121], therefore with

such a number of binary variables, no solution can be provided.

When comparing the workload approach and the frequency switch approach, it

can be noticed that the former needs less binary variables and should be able to

provide a result. However, because all possible workloads have to be provided to

the solver, it is as complex as the second approach because of the amount of memory

required. On the one hand, if a extremely large memory is available, the workload

solution is the one to be used. On the other hand, if new faster binary resolution

techniques are provided, then the frequency switch solution should be used.

Several heuristics can be assumed in order to reduce the time to solve the prob-

lem. First, iterative applications can be considered. By solving the problems for

only one iteration and then using the solution on the remaining ones, the amount

of tasks to be considered by OUTREAch can be drastically reduced. However, this
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solution strongly restricts the type of applications that can be optimized. In addi-

tion the solution still depends on the number of tasks per iterations: if the number

of binaries is too large the problem still remains. It was decided not to reduce the

scope of applications considered by OUTREAch but to apply a final refinement to

the problem formulation. This new approach can be seen as the fusion of both

previous attempts. Instead of finding all possible execution scenarios for a group of

concurrent tasks, it is decided to fix that set of tasks. Based on arbitrary decided

dates, the application will be divided in multiple sets of tasks. The solver will then

try to find the best frequency for each set of tasks, to solve the previously stated

objective function. That approach solves the main issues of both previous solutions;

No more combinatorial explosion for finding all the workloads, and fewer binary

variables. That last refinement is presented in the next section.

14.4.6 Super Tasks
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Figure 14.12: Task graph to super-task graph

The workload approach tried to consider all possible execution scenarios in order

the find the best energy consumption. Theoretically, it should have given the opti-

mum solution. However, generating all possible concurrent tasks execution scenarios

over the different frequencies ended up with a combinatorial explosion. However,

the workload was first thought to tackle the processor core shared frequency. It

was then decided to keep that notion of workload and eliminate the combinatorial

explosion. When considering a single frequency, it is straightforward to find if two

tasks are concurrently run. Then, instead of simultaneously considering all the fre-

quencies to determine if two tasks are run in parallel, only one is taken into account.

The questions that naturally arise are, how to choose the frequency? Is a frequency

better than another? To answer these questions, each frequency were tested for each

NAS benchmark program presented in Section 14.5. In the end, only an average

1.05% variation on the prediction is spotted. That approximation is considered as

valid.

To build the new generation of workloads, called super-task, a criterion to start or

finish a super-task had to be defined. Recall from the introduction, when UtoPeak

was tried on a two processors set-ups. The major drawback stated then was the

incapacity of UtoPeak to communicate its frequency choices to the other UtoPeak

instances running on the other processor. Its enlightens the importance of the

dependencies between the processors more than the dependencies between the tasks

on the same processor. Based on that observation, it was decided to start or finish a
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super-task when a dependency to another task belonging to another processor was

noticed. As an example consider Figure 14.12a displaying a simple task graph of

an application executed on a socket. The other application tasks are executed on

other sockets. COMM1 and COMM2 display the communications coming from

and going to other processors. Based on that execution scenario, three super-tasks

are built. The result of the construction is displayed in Figure 14.12b. By using

the link to other processors, as COMM1 and COMM2 a super-task graph can be

built upon the task graph. Each super-task is linked to one another thank to extra

socket communications.

On the solver side, that new abstraction does not change the set of constraints.

Indeed, a super-task is strictly identical to a workload, all the constraints described

in the Workload approach section are valid. Except the set of constraints for filtering

invalid workload since here, each super-task represents an actual execution scenario.

It will be seen in Section 14.5 that, for some NAS parallel benchmarks, the

solver needs up to 14 hours to find a solution. Even though the solver now is able

to converge unlike in the previous approaches, 14 hours is not affordable in an HPC

environment. It was therefore decided to builds groups of super-tasks. Merging

small super-tasks together reduces the scope of variables to be tested by the solver.

As an example, consider Figure 14.12b. If the super-task 2 is considered as too

small, it is merged to the super-task 1. However, the communication COMM1

cannot be dropped from the picture. To keep the fact that the super-task 3 can

be impacted by any delay on COMM1, the communication will then arrive at the

end of the super-stask 2. Super task compression though alter a bit the super-task

dependencies, this strongly helps to reduce the time to solution without hurting

much the prediction quality as will be shown in section 14.5. That approximation

is also considered as valid.

In the end, in addition to the application constraints, three different models

to take into account the architectural constraints were presented. Each of them

has advantages and drawbacks but only the super-task model was able to converge

to a solution. The accuracy of the produced predictions and the time needed to

achieve them are presented in the next section. As presented above, OUTREAch

has a major contestant [143]. As it only uses the same set of constraints defined

in the precedence constraint section, it was implemented in parallel to OUTREAch

to compare their predictions and times to solution. The comparison between both

system is presented in Section 14.6.

14.5 Experimental Results

In order to evaluate OUTREAch precision and potential for energy reduction, the

NAS parallel benchmark programs are selected. For each benchmark application the

class C is considered, and up to 64 processes are used to execute the different bench-

marks. OUTREach profiling step and frequency evaluation is performed on HPC

resources located at Strasbourg University. Depending on the execution scenario,

two to eight Xeon E5-2670 processors are used distributed into one to four machine

nodes. For the linear programing resolution, a desktop machine with an Intel Core

i7-3770 and 16 Go of RAM is used. Ideally every step of OUTREAch could have

been performed on Strasbourh HPC ressources, however the Gurobi[60] academic

license could only be attached to a single machine. The execution procedure then is

as follows. First OUTREAch profiling step is launched with the NAS benchmarks
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application programs on the HPC ressources. Once the profiling is finished, the

gathered information are sent to the desktop machine to normalize the energy over

the application tasks and communications. OUTREAch then builds the internal

representation of the application and outputs the linear problem to be solved. The

solver is started with the output linear problem, and once the energy consumption

and the frequency sequences are made available, they are sent back on the HPC

resources to be evaluated.

It can be noted that the used set of processors is homogeneous. It is chosen

in such a way that it insures the hardware characteristics and the set of processor

frequencies are equal. However, OUTREAch could handle non homogeneous proces-

sors set. The major requirement is to have the same application processes pined on

the same processor cores, for all the application execution needed by OUTREAch

profiling step and frequency sequence evaluation. If it is not the case, additional

constraints should be added to OUTREAch, but it is part of future work.

Finally the execution procedure, could not ensure that the nodes used for the

profiling step are the same as the ones used for the frequency evaluation. OUT-

REAch was not the only tool requesting access to Strasbourg HPC resources then

to hasten the experiments, it was decided to choose the first available nodes with

the same processors for the profiling and the frequency sequence. By doing so, the

frequency sequence evaluation can be altered since it was build regarding a deter-

mined execution set-up. It has to be taken into account when analyzing OUTREAch

accuracy.

Degradation Limit : 500% Degradation Limit : 10%

Evaluation Prediction Precision Evaluation Prediction Precision

IS.16 344.51 348.71 98.79% 387.88 391.62 99.04%

IS.32 487.18 488.53 99.72% 521.44 519.19 99.56%

IS.64 926.28 907.73 97.99% 950.13 916.25 96.43%

FT.16 3491.67 3273.08 93.74% 4202.07 4221.04 99.55%

FT.32 4132.56 4165.44 99.21% 4950.68 4967.63 99.65%

FT.64 4662.68 4659.48 99.93% 5346.53 5239.53 97.99%

EP.16 1169.63 1157.42 98.95% 1259.48 1246.77 98.99%

EP.32 1173.02 1116.46 95.17% 1281.82 1256.73 98.04%

EP.64 1214.17 1174.77 96.75% 1332.12 1271.93 95.48%

BT.16 13098.8 11355.81 86.69% 15534.51 14671.1 94.44%

CG.16 2299.93 2268.00 98.61% 3011.14 2765.59 91.84%

CG.32 2144.71 2033.18 94.79% 2513.31 2471.99 98.35%

MG.16 895.99 866.07 96.66% 1038.95 983.45 94.65%

MG.32 906.78 853.09 94.08% 1104.85 1019.64 92.28%

SP.16 11302.21 10123.62 89.572% 12099.70 11806.77 97.57%

LU.16 8718.75 7427.93 85.18% 10049.25 9399.52 93.53%

LU.32 9617.36 8359.36 86.91% 11157.36 10242.08 91.75%

Table 14.5: OUTREAch accuracy on NAS parallel benchmarks programs with two

limit on performance degradation.

As previously described, OUTREAch allows a limitation of the performance

degradation. For each benchmark execution, two different limits are then set. One

at 500%, it allows an infinite time degradation to allow OUTREAch to expose the
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maximum energy reduction. Another limit was set at 10% in order to see how

OUTREAch performs with less time degradation. It is interesting to see that with

the 10% limit, more than half of the energy reduction achieved with the 500%

already is optimized as it will later be seen in Table 14.6.

To evaluate the OUTREAch legitimacy, two important factors have to be taken

into account. First, OUTREAch energy prediction has to be determined. Also, the

time to reach a solution is as important as the prediction accuracy. Indeed, if the

solution is the most accurate but takes years to be computed, it is not a practical

solution. However, if the prediction is not very accurate, but if this solution is

quickly available, then it is a good practical solution. Therefore when analyzing the

next presented results, each prediction errors has to be put in perspective with the

time to solution in order to have a good evaluation of the OUTREAch results.

Table 14.5 shows the accuracy of OUTREAch on multiple NAS benchmark pro-

grams when considering two different performance degradation limitations. One can

notice that BT.64,CG.64,MG.64,SP.64 and LU.64 are not listed in the table. It is

because each application generated a huge amount of tasks and communications,

making the machine swap when the solver tried to perform its optimization. They

are not considered here, but having a machine with more memory would easily solves

that issue. In most cases OUTREAch prediction precision is above 90%. However,

for LU.16/32 and BT.16, the accuracy drops due to multiple factors. Identifying

them with accuracy is difficult since multiple sources of variations exist. The most

probable comes from how the applications are implemented and their impacts on the

super-tasks. Indeed, both BT and LU uses intensively point to point communica-

tions, then a huge number of super-tasks are built. As explained before, super-tasks

energy consumption are derived from the portion of tasks comprising them, magnify-

ing potential measurement errors. It forces the solver to produce an over optimistic

solution, like for GCC and UtoPeak, because it has difficulties grasping the exe-

cution reality. Furthermore, since they are both intensively sending messages, any

temporary congestion on the network can alter the frequency sequence evaluation,

increasing the application energy consumption since unexpected slack times appear.

Even though both application has lower prediction precision, they still offer decent

energy reductions as shown in Table 14.6.

The table shows the energy reduction granted by OUTREAch for the the dif-

ferent NAS benchmark applications per degradation limit. The third column shows

the portion of the maximum energy reduction achieved at the 10% limit. As for

UtoPeak, the potential for energy consumption is computed as the difference be-

tween what OUTREAch grants and what the highest frequency grants. The highest

frequency is chosen because it is the default frequency chosen by frequency governor

once it spots processor activity. It can be noted that the more processes the more

energy reduction potential is unveiled by OUTREAch. It can be explained by the

Amdahl Law [62]. The Amdahl law is used, in the parallel world, to quantify the

maximum speed-up one can expect by increasing the parallel resources in order to

accelerate the parallel section of an application. Here, in the case of the NAS paral-

lel benchmarks programs, the granted speed up is not high enough to overcome the

increase in power consumption by using more processors. Further more, Table 14.6

only focuses on the processor point of view. The increase in power consumption

can be more dramatic if all the other hardware parts are taken into account. One

has then to be very careful when adding processors to an application execution,

though it can gain in performances, it is not clear about the energy consumption.
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Gain Over The Maximum Frequency

Benchmark 500% Limit 10% Limit
Already Achieved

At 10%

IS.16 25.73% 16.38% 63.65%

IS.32 40.20% 35.99% 89.54%

IS.64 51.86% 50.62% 97.61%

FT.16 32.34% 18.58% 57.44%

FT.32 31.54% 17.99% 57.04%

FT.64 39.15% 30.23% 77.20%

EP.16 9.43% 2.47% 26.20%

EP.32 11.57% 3.37% 29.14%

EP.64 23.04% 15.56% 67.55%

BT.16 26.94% 13.35% 49.56%

CG.16 32.10% 11.10% 34.58%

CG.32 33.81% 22.44% 66.36%

MG.16 38.33% 28.49% 74.33%

MG.32 38.64% 25.24% 65.31%

SP.16 45.51% 41.67% 91.55%

LU.16 25.83% 14.51% 56.18%

LU.32 25.43% 13.49% 53.05%

Table 14.6: OUTREAch energy reduction potential

Finally, the last column of Table 14.6 shows the portion of the maximum energy

consumption achieved when the degradation is set to 10%. In the case of OUT-

REAch it was decided not to put a discrimination on the range of frequencies and

use what is allowed on the set-up. In the case of the machine in Strasbourg, the

turbo-boost frequency was activated. The fact that more than 50% of the energy

allowed with the 500% limit is already achieved at the 10% limit confirms the fact

that Tubo-Boost has to be deactivated by all means if any one cares about energy

consumption. However, it was not expected to be in such proportions. In the end,

Table 14.6 shows that adding resources of any kind to speed the execution is not

always transposed into energy savings. One has to be careful, because, in the future,

HPC centers may change their billing procedure to charge the energy consumed and

not just the usage time.

Having a tool that has a good precision and exposes good potential in energy

reduction, is of no use if it is not able to converge, or is taking an unrealistic amount

of time to produce a solution. Table 14.7 shows the time needed by the solver to

converge to a solution. It can be seen that on the short benchmarks that are mainly

using collective operations, the solver is fast to produce a solution. However, when

the number of tasks and communication drastically grows, the complexity of the

problem increases as well as the time to find a solution.

When seeing that more than two hours were needed for some benchmark the

compression optimization described in the last model refinement is also considered.

By simplifying the super-task graph, the space of possibilities considered by the

solver was drastically reduced, hastening the time to solution. By seeing the accel-

eration granted by the optimization, some could wonder how much accuracy of the

prediction and frequency evaluation was abandoned to get this reduction in conver-
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Time To Solution In Seconds

Benchmark
Without With

Compression Compression

IS.16 0.001 0.001

IS.32 0.01 0.001

IS.64 0.06 0.02

FT.16 0.01 0.001

FT.32 0.02 0.01

FT.64 0.06 0.02

EP.16 0.001 0.001

EP.32 0.001 0.001

EP.64 0.01 0.001

BT.16 6354 7.51

CG.16 176.05 3.15

CG.32 6174 13.29

MG.16 56.79 1.65

MG.32 6526.71 0.86

SP.16 56.79 1.65

LU.16 39532 3.14

LU.32 52364 20.54

Table 14.7: OUTREAch converging time with and without the super-task graph

compression

gence time. On average, on all the benchmarks in Table 14.7 a variation of 1.43%

and 0.29% are noticed for the evaluation and prediction with the 500% limit. For the

10% limit, a variation of 2.19% and 1.42% are respectively noticed for the evaluation

and the prediction. Then the compression optimization is able to grant a significant

time to solution reduction without hurting the predictions and the measurements

performed when replaying the frequency sequence. It will be seen later in Section

14.7 that the compression optimization was able to grant so much speed-up without

hurting the predictions only because the tested applications had a very homogenous

energy behavior across the different processors.

OUTREAch is able to predict with accuracy the lower bound of processor energy

consumption for distributed applications. It is also able to produce the prediction

in a reasonable amount of time. However, as said above, OUTREAch has a major

contestant [143] and the next section is dedicated to their comparison to validate

that OUTREAch better performs since it takes into account more constraints.

14.6 OUTREAch versus the world

As explained above, the authors in [143] only take into account the application

dependency constraints and not the hardware constraints. Only considering one side

of the token generally gives truncated solutions. As an example, recall REST, it was

only taking hardware performances into account to perform energy reduction. It was

demonstrated that its savings were far from the optimum. It is the same here, by

not taking into account the hardware frequency limitations, OUTREAch constestant

will make over-optimistic frequency selection. Then the frequency sequence that will
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Figure 14.13: Frequency shift constraint

be executed, will not be the real reflection of what was computed. As an illustration

consider Figure 14.13. In the figure f1 > f2 > f3. Each frequency displayed

shows the frequency computed to be optimal for each task. Recall that the cpufreq

driver when facing different frequency shift requests always choose the maximum

one. So instead of f3 for the task T3 the frequency f1 will be run, generating a

difference between what was computed to be optimal and the reality of the frequency

application.

For the purpose of the comparison, OUTREAch constestant will be called SC07

in the reminder of the section. The other difference between OUTREAch and SC07

is the granularity of the base element. On the one hand, OUTREAch considers

groups of tasks, reducing the number of variables to consider in the linear program,

thus its dependency to RAM. On the other hand SC07 considers the simple tasks as

the elementary element inducing a strong dependency to the RAM amount available

on the machine where the solver is run. For that reason, a solution could not be gen-

erated for LU.16/32 in addition to the application already dropped by OUTREAch

for the same reasons.

Table 14.8 shows the comparison between OUTREAch and SC07 on the energy

Benchmark OUTREAch vs SC07

IS.16 4.30%

IS.32 4.29%

IS.64 51.86%

FT.16 1.34%

FT.32 1.70%

FT.64 0.92%

EP.16 10.12%

EP.32 12.01%

EP.64 6.57%

BT.16 14.20%

CG.16 0.39%

CG.32 2.56%

MG.16 10.49%

MG.32 5.07%

SP.16 10.86%

Table 14.8: Energy reduction potential comparison between OUTREAch and SC07.
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reduction potential they provide. Apart from IS.64 or FT.16 and FT.32, OUT-

REAch in average grants 10% more energy reduction than SC07. To be consistent,

the comparison was performed with OUTREAch performance degradation limit set

to 500%. Indeed, SC07 does not have an explicit degradation factor and lets the

linear program decide to degrade the application performances as long as it trans-

lates into energy savings which is the default behavior of OUTREAch with the 500%

limit.

Speed Up Factor

Benchmarks
Without With

Compression Compression

IS.16 910 910

IS.32 337 3370

IS.64 90 270

FT.16 65 650

FT.32 112.50 225

FT.64 188.17 564.50

EP.16 110 110

EP.32 370 370

EP.64 170 1700

BT.16 3.78 3201.20

CG.16 140.02 7825.40

CG.32 5.91 2744.92

MG.16 15.35 528.21

MG.32 2.80 21259.30

SP.16 207.46 7140.45

Table 14.9: Time to solution comparison between OUTREAch and SC07.

One could think, that a lot of complex model were design to only get, in the end,

only 10% better energy savings. However, it has to be kept in mind that OUTREAch

is able to give a solution on LU.16 and LU.32 where SC07 could not. SC07 could

not produce a solution on LU.32 because the problem was exceeding the memory

size, the solver could not load the file and could not perform its first steps of test

space reduction without forcing the machine to swap. For LU.16, the convergence

algorithm was stopped at 53235 seconds because more than 14 hours to converge to

a solution is not realistic. The second interest of OUTREAch over SC07 is the fact

that it can accuratly predict the potential for energy reduction. In average for all

the considered benchmark programs, OUTREAch has an prediction error of 3.95%

where SC07 has 14.72%. The difference mainly comes from the fact, that SC07

does not take into account architecture constraints, ending up in producing over-

optimistic predictions. It considers that for each task, a sequence of frequency can

be set. However, it does not take into account the fact that the cpufreq driver always

chooses the highest frequency among the shift requests. Moreover, SC07 does not

take into account the time to switch frequencies. Some tasks are then executed at

sub-optimal frequencies, increasing the difference between the prediction and the

frequency sequence evaluation.

Finally, the last interest of OUTREAch over SC07 is the time it needs to pro-

duce a solution. To be fair, SC07 is compared to OUTREAch with and without the
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compression optimization. Table 14.9 displays the speed-up factor granted by OUT-

REAch when comparing it to SC07. The two columns show the speed-up factor on

the time needed to produce a solution granted by OUTREAch with and without

the compression optimization. For example on IS.16, OUTREAch produces a re-

sult in 0.001 seconds when SC07 takes 0.91 second. OUTREAch then offers a time

reduction factor of 910. For some benchmarks as IS.16 or EP.16 the acceleration

factor is identical between the two versions of OUTREAch. Indeed, the solver was

not giving an answer with a finer resolution that the millisecond. For both versions

on IS.16 or EP.16 the solver gave 0.001 second for the time to solution explaining

the identical speed-up factor. In the end, even without the compression mechanism,

OUTREAch is able to produce a solution way faster than SC07.

OUTREAch is faster, more accurate and exposes more energy savings than

SC07. For SC07 defense, it was the first attempt to estimate the lower bound

of energy consumption for distributed MPI applications. With OUTREAch contri-

butions, that lower bound was decreased by 10% in average in a decent amount of

time. However, as it was shown both solutions have a limitation, they are bound to

the amount of memory available on the resolution system. Bigger problems mean

bigger amount of memory to solve the problem. However, OUTREAch with the

super-task graph approach started to move from a task based view to a more task

group based view. The compression algorithm pursued in that direction, grouping

more tasks into super-tasks. The result was a faster solution without hurting the

prediction quality. Then, to break the dependency to the amount of RAM available

for the solver one possible way would be to consider processors in addition to tasks,

or group of tasks. The next section describes briefly the frame of future work.

14.7 What Next ?

The goal of that section is to think about potential improvements for the OUT-

REAch RAM dependency. When facing a huge amount of tasks and communica-

tions, around 33 million for LU.64, 5 million for CG.64, and 2 million for BT.64 and

SP.64, the solver has to deal with a vast space of variables. A huge space of RAM

is then required for the solver to load all the variables and to perform its work. The

time to solution is also bounded to the size of the variable space to explore. OUT-

REAch started an abstraction of the traditional single tasks model, to overcome

the RAM dependencies and long time to solution. What if that abstraction can be

taken to another level? Consider the Figure 14.14 displaying the energy behavior

over the different processors frequencies across the sockets used while executing LU,

BT or SP. It can be seen that each socket has the same energy behavior. Such a

behavior is easily explained because the NAS benchmark application programs are

very regular applications. Each processor is put under the same stress level.

If OUTREAch were to consider an entire socket, a mechanism to detect the

sockets energy tendency similarities can be created. Consequently, a very fast ap-

proximation could be produced, since the complexity of the potential detection

mechanisms is bound to the number of the processor frequencies. However, it can

exists applications exposing different energy behaviors for different processors. In

such a case, the previously proposed approximation is no longer valid and OUT-

REAch has to be used. However, clusters of energy behaviors can be created. On

each clusters an approximated best frequency can be selected as suggested above.

By feeding that hint to the solver OUTREAch can potentially reduce the test space
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Figure 14.14: Energy behavior across multiple processors
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to consider reducing its dependency to RAM.

In a nutshell, like with the applications trends classification performed in Sec-

tion 8.1 from Chapter 8.1 where optimizations techniques could be derived from the

different trends, OUTREAch could use new insights from such a classification ap-

plied to distributed applications to further reduce the space of variables to consider.

Every answers to the questions that arise then are part of future work.





Chapter 15

Conclusion

Moving from a single processor to a multi-processor problematic is not easy and

simply transposing UtoPeak to that new world appeared not to be the solution.

Indeed, a wide new set of constraints has the be taken into account. On the one

hand, the application constraints changed. Instead of an array of application phases

or tasks, a graph of tasks has to be considered. Changing the frequency of one

task can have harmful effects and ultimately force the application to consume more

energy. On the other hand, the hardware also exposes limitations that have to be

considered. Only one frequency can be applied within an entire processor, then

choosing one frequency for a specific task impacts all the others being executed. An

unwise choice of a frequency for this task also can force the application to consume

more energy. The solution is then simple, each frequency decision has to be validated

according to both types of constraints.

However it cannot be solved with brute force, too many cases have to be con-

sidered to reach the optimal solution. Furthermore, designing a system to obtain

the lower bound on energy consumption would probably cost more time than the

one actually needed to converge to a solution. To solve that issue, linear solver was

thought as the most appropriate solution. The only remaining problem was then to

formulate a linear problem representing the different stated constraints, and reach

the lowest energy consumption for one application execution.

To achieve that, three different models were designed but only one was able

to reach a solution. The first two models, though they should have granted the

optimum solution, were limited either by the computation power or by the RAM

space needed. The first model would have needed an infinite memory space, and the

second one would have needed an infinite computational power. The first model was

computing all the combinations of possible concurrent tasks over a processor cores

and frequencies. With the list of all possibilities, it should have been easy to identify

which tasks are run concurrently and to choose a frequency accordingly. However, it

ended with a combinatorial explosion. As an example for is.C.16 more than 16GB of

ram was needed to generate all the combinations of possible concurrent tasks. Based

on that teaching, the application execution was sliced in multiple sections, and for

each section, the solver had to find the best frequency. However, to specify if a task

was or was not inside a specific section, binary variables were needed. However,

Mixed Integer Programming is NP-hard. With the considered amount of binary

variables even is.C.16 could not converge. Facing that assessment, that new model

was also put aside in favor to a simpler refinement. The first model was reconsidered,

and instead of generating all possible execution set-ups for each concurrent tasks

regarding each processor frequency, only one set-up was taken into account. In a

nutshell, only the task schedule at a single frequency was considered to find the

different concurrent tasks. By aggregating them inside super tasks, the execution

was abstracted to a single process of super-tasks per processor. However, the solver

still has the knowledge of each task comprising a super-task in order to evaluate

the real impact of each frequency selection. The abstraction drastically reduced
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the scope of variables the solver had to consider, allowing it to converge to a good

solution. "Good" is used here because OUTREAch has the capacity to converge in

a decent period of time and reduce the lower bound in energy consumption by 10%

with 10% more accuracy and 3000 times faster than its major contestant.

Nonetheless, OUTREAch still is dependent to RAM space. It is its main limita-

tion for targeting bigger applications. A proposed solution to investigate as future

work, would be to consider the energetic behavior of the application at the level of

the entire socket, and give the solver more hints to reduce the number of possibilities

to test.

OUTREAch demonstrated that it is possible to predict energy consumption of

a parallel application in a distributed environment with decent convergence time.

It also demonstrated that the task model is too finely grained and a coarser grain

must be preferred since it allowed OUTREAch to further reduce its convergence

time without impacting the prediction quality.
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Conclusion

16.1 Contribution of This Thesis

This thesis presents some original approach to perform DVFS on single and multi

processors environment. It also presents new approach to evaluate the maximum

potential for energy savings. The interest of being able to obtain the maximum

energy reduction one can expect from the use of any DVFS mechanism is threefold.

First, it confirms that DVFS techniques still are valid to reduce any application

energy consumption on modern processors when considering either single or multiple

processors environment. Second, it shows that using DVFS techniques makes more

sense on parallel applications than on sequential applications. Finally, it allows to

actually measure the efficiency of any existing DVFS techniques. Combining these

three major benefits, implies that a DVFS mechanism can reach the optimal saving,

provided it can correctly grasp the architecture power consumption and limitation,

even with no prior knowledge of the application.

In the first part of this thesis, different power consumers within a simple machine

are analyzed. It appears that with the current state of technology very few hardware

components can be controlled from software space. On a simple machine only the

fans and the processor are exposing such capability. After that assessment, it was

decided to focus the efforts on processors. Indeed, even though fans greatly help

reducing the processor leakage, they have a limited impact on the overall system en-

ergy consumption. Moreover, processors are acknowledged as the major consumers

in a computer or sever blade, therefore, by optimizing its energy consumption, sav-

ings should be extended to the entire system. However processors are complex and

their energy consumptions have to be demytified. It was performed using simple

memory and compute operations. On the one hand, if an application is bounded to

the memory hierarchy then it is not required to wait at full speed and the frequency

could be decreased to lower the processor energy consumption. On the other hand,

if an application intensively performs arithmetic instructions, choosing any other

speed except the maximum one, generally translates to an over-consumption of en-

ergy. It is then easy to optimize any application energy consumption by choosing

either the highest frequency or the lowest one. However that binary vision of energy

optimization is not always true. Depending on the influence of the static power con-

sumption, the lowest frequency can be a good choice to reduce energy consumption

even for arithmetic instruction. Raising the legitimate question to speed or not to

speed ? In short, it depends on the application.

The second part, presents a detailed study of application energy consumption

performed. Indeed, it exists as many applications as there are problems to be solved.

To clarify and organize the field of research, a classification is performed, exposing

three categories. The first and second ones comprise compute intensive and memory

bounded applications. The third one is composed of applications that are neither

compute intensive nor memory bounded. They expose a complex alternation of com-
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pute and memory bounded phases. The focus was put on the different application

phases to understand how they influence the overall application energy footprint.

It was expected to see that a more preponderant phase was enforcing its behavior

to the overall application. However, it is the composition of each phase behavior

that decides the energy consumption of the entire application. Furthermore, it was

noticed that by choosing the frequency granting the lowest energy consumption for

each application phase, the minimum energy consumption at the entire application

could be reached. Based on that observation and a dynamic procedure to identify

the different application phases and their boundedness, three different tools were

built. The first one, was adapting the hardware performance to each application

phase boundedness. By reducing the frequency, it was hopped to perform energy

savings. Even with that naive use of DVFS, significant energy reduction could be

performed ranging from 4% to 27%. It demonstrated that DVFS still is valid to

operate significant energy reduction. As it was a naive first step, its efficacy was

questioned but no reference point was existing to evaluate it. The second tool

was created to fill that blank. It divides an application execution in small sets

of instructions and find for each of them the frequency giving the lowest energy

consumption. Based on information gathered during previous runs of the tested

application, it predicts the lowest energy consumption. It was able to accurately

demonstrate, less that 4% of error, that the previous attempt was far from optimal.

It also demonstrated that DVFS technique should target parallel applications rather

than sequential ones. On sequential applications, the potential for energy savings

ranges from 0.40% to 16.07% on the SPEC2006 sequential benchmark applications,

when for NAS-OMP benchmarks, it is between 15.29% and 45.29%. The last tool

presented in the second part, corrects all the flaws of the first attempt, and is then

able to reach the maximum energy consumptions. The question of DVFS legitimacy

on a single processor is then answered. Within that domain, it has a real impact

on parallel applications energy consumption. What about parallel applications on

multiple processors ?.

The last part, presented a first attempt to predict maximum energy reduction

of a parallel application executed on multiple processors. By taking into account

the constraints originated from the parallel applications and from the hardware, the

proposed solution tries to match a specific frequency to each application phase across

the processors in order to minimize the overall application energy consumption. It

cannot be solved with brute force because an unreasonable amount of combinations

has to be taken into account. A solution using linear programming was considered

to move the solving complexity to a state of the art solver. Regarding the problem

formulation, the solver perform an energy prediction. As for the same system on a

single processor, it is able to perform accurate predictions exposing 5% of error in

average. The energy saving granted by the system on the tested applications are

between 9.43% and 51.86%. The high capacity for energy reduction demonstrates,

even on multi-processor environment, that DVFS can still be used on modern pro-

cessors. The presented tool, OUTREAch has a major contestant. A comparison is

performed to demonstrate OUTREAch superiority. The obtained evidence is that it

decreases the lower bound on energy consumption by 10% with 10% more accuracy

and 3000 times faster in average.
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16.2 Future Works

Three major axes of future work can be identified. Firstly, pursue the energy char-

acterization of assembly instructions, secondly reduce the DFaCe convergence time

and plug it to REST or FoREST. Finally, reduce OUTREAch dependency to RAM

space.

During the first part of the thesis, power and energy characterization of multiple

memory and arithmetic instructions is performed. By extending that characteriza-

tion to a more complete set of arithmetic instructions and memory access patterns,

static code energy prediction could be performed. By analyzing the code given by

the compiler or by using a disassembly tool [164] an energy prediction could stat-

ically be performed for an application on a given architecture. It would grant the

possibility to point the best architecture for a given application in terms of energy

efficiency.

Still during the first part of the thesis, a fan speed regulation technique was

designed to regulate the processor power leakage. In addition to drastically enhance

the time to solution, it would be interesting to couple that method to the presented

DVFS techniques. Indeed, when REST or FoREST change the operating frequency

to a lower one, it induces lower stress on the processor. The temperature generated

by the application would be reduced. Reducing the fans speed accordingly could

save additional energy when looking at the entire machine.

Finally, the last one, is to further enhance OUTREAch. As explained above by

providing hints to the solver based on an analysis of the application energy trend

per processor, it could help to reduces the space of considered variables, time to

solution and RAM usage.
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