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Abstract

A system is de ned by its entities and their interrelations h an environment
which is determined by an arbitrary boundary. Complex systemesxhibit emer-
gent behaviour without a central controller. Concrete systesidesignate the
ones observable in reality. A model allows us to understandy tontrol and to
predict behaviour of the system. A di erential model from a sgtem could be
understood as some sort of underlying physical law depictdéy either one or
a set of di erential equations. This work aims to investigate ad implement
methods to perform computer-automated system modelling. Ththesis could
be divided into three main stages: (1) developments of a contpr-automated
numerical solver for linear di erential equations, partialor ordinary, based on
the matrix formulation for an own customization of the Ritz-Galerkin method;
(2) proposition of a tness evaluation scheme which bene tsréom the devel-
oped numerical solver to guide evolution of di erential mods for concrete
complex systems; (3) preliminary implementations of a getie programming
application to perform computer-automated system modefig. In the rst
stage, it is shown how the proposed solver uses Jacobi orthogbpolynomials
as a complete basis for the Galerkin method and how the solvdeals with
auxiliary conditions of several types. Polynomial approxnate solutions are
achieved for several types of linear partial di erential eqgations, including hy-
perbolic, parabolic and elliptic problems. In the second age, the proposed
tness evaluation scheme is developed to exploit some chateristics from the
proposed solver and to perform piecewise polynomial approxations in or-
der to evaluate di erential individuals from a given evolutbnary algorithm
population. Finally, a preliminary implementation of a gertic programming
application is presented and some issues are discussed tabdm a better un-
derstanding of computer-automated system modelling. Indations for some
promising subjects for future continuation researches aadso addressed here,
as how to expand this work to some classes of non-linear pattidi erential
equations.

Keywords: Computer-Automated System Modelling; Di erential Models;
Linear Ordinary Di erential Equations; Linear Partial Di ere ntial Equations;
Fitness Evaluation; Genetic Programming.



Resumo

Um sistema é de nido por suas entidades e respectivas intelacdes em um
ambiente que é determinado por uma fronteira arbitraria. Siemas complexos
exibem comportamento sem um controlador central. Sistema®ncretos €
como sao designados aqueles que sdo observaveis nestaladali Um modelo
permite com que possamos compreender, controlar e predizecomporta-

mento de um sistema. Um modelo diferencial de um sistema poskr com-

preendido como sendo uma lei fisica subjacente descrita pona ou mais

equacdes diferenciais. O objetivo desse trabalho é invgati e implementar

métodos para possibilitar modelamento de sistemas autorimdo por com-

putador. Esta tese é dividida em trés etapas principais: (1)@esenvolvimento

de um solucionador automatizado para equacdes diferensidéineares, parci-
ais ou ordinarias, baseado na formulacdo de matriz de uma wmmizacdo do

método de Ritz-Galerkin; (2) a proposicdo de um esquema deab&cdo de

aptiddo que se bene cie do solucionador numérico desenvdty para guiar a

evolucdo de modelos diferenciais para sistemas complexasceetos; (3) inves-
tigacdes preliminares de uma aplicagdo de programacao dgeaépara atuar em

modelamento de sistemas automatizado por computador. Naieira etapa,

€ demonstrado como o solucionador proposto utiza polinéreiortogonais de
Jacobi como uma base completa para o método de Galerkin e comsolu-

cionador trata condi¢cdes auxiliares de diversos tipos. 8gbes polinomiais
aproximadas séo obtidas para diversos tipos de equacdegrmihciais parciais
lineares, incluindo problemas hiperbdlicos, parabdliceselipticos. Na segunda
etapa, o esquema proposto para avaliacdo de aptiddo é deséndo para ex-

plorar algumas caracteristicas do solucionador propostopara obter aproxi-

macdes polinomiais por partes a m de avaliar individuos difenciais de uma
populacdo de dado algoritmo evolucionario. Finalmente, uanimplementagéo
preliminar de uma aplicacdo de programacdo genética € amesda e algu-

mas questdes sao discutidas para uma melhor compreensdo ddetamento de
sistemas automatizado por computador. Indicacdes de aswmsipromissores
para continuagdo de futuras pesquisas também séo abordgdbem como a
expansao deste trabalho para algumas classes de equacdesetiiciais parciais
nao-lineares.

Palavras-chave: Modelamento de Sistemas Automatizado por Computa-
dor; Modelos Diferenciais; Equac¢des Diferenciais Ordindsihineares; Equacoes
Diferenciais Parciais Lineares; Avaliacdo de Aptiddo; Progmacdo Genética.
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Réesumeé

Un systeme est dé ni par les entités et leurs interrelationdans un environ-
nement qui est déterminé par une limite arbitraire. Les syéimes complexes
présentent un comportement émergent sans un controleur ¢exh. Les sys-
témes concrets désignent ceux qui sont observables dansdalité. Un modele
nous permet de comprendre, de contrbler et de prédire le coomfgment du
systeme. Un modéle di érentiel a partir d'un systeme pourr&iétre compris
comme une sorte de loi physique sous-jacent représenté pan lou d'un en-
semble d'équations di érentielles. Ce travail vise a étudieet mettre en +u-
vre des méthodes pour e ectuer la modélisation des systemeganatisée par
l'ordinateur. Cette thése pourrait étre divisée en trois étaes principales, ainsi:
(1) le développement d'un solveur numérique automatisé péordinateur pour
les équations di érentielles linéaires, partielles ou ondaires, sur la base de la
formulation de matrice pour une personnalisation propre da méthode Ritz-
Galerkin; (2) la proposition d'un schéme de score d'adaptain qui béné cie du
solveur numérique développé pour guider I'évolution des meles di érentiels
pour les systemes complexes concrets; (3) une implémerdatipréliminaire
d'une application de programmation génétique pour e ectuela modélisation
des systemes automatisée par l'ordinateur. Dans la prengegtape, il est mon-
tré comment le solveur proposé utilise les polynédmes de Jacorthogonaux
comme base compléete pour la méthode de Galerkin et commenstdveur traite
des conditions auxiliaires de plusieurs types. Solutionsa@pproximations poly-
nomiales sont ensuite réalisés pour plusieurs types des a@pns di érentielles
partielles linéaires, y compris les probléemes hyperboligs, paraboliques et el-
liptigues. Dans la deuxiéme étape, le schéme de score d'ad#ipn proposé est
congu pour exploiter certaines caractéristiques du solugeroposeé et d'e ectuer
I'approximation polynémiale par morceaux a n d'évaluer ls individus di éren-
tiels a partir d'une population fournie par I'algorithme éwlutionnaire. Enn,
une mise en +uvre préliminaire d'une application GP est pré&ntée et certaines
guestions sont discutées an de permettre une meilleure cpnéhension de
la modélisation des systemes automatisée par l'ordinateutndications pour
certains sujets prometteurs pour la continuation de future recherches sont
egalement abordées dans ce travail, y compris la fagon diétiee ce travail a
certaines classes d'équations di érentielles partiellen-linéaires.

Mots-clés: Modélisation des Systemes Automatisée par I'Ordinateur; Med
eéles Di érentiels; Equations Di érentielles Ordinaires Lindires; Equations
Di érentielles Partielles Linéaires; Score d'Adaptation;Programmation Géné-
tique.
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Chapter 1

Introduction

1.1 Overview

A system is de ned by its interrelated parts, also known as eittes, surrounded
by an environment which is determined by an arbitrary boundar. More in-
sights on the de nition of a system could be achieved by acsasg the work
of [1]. This present work considers a system of interest as bgiconcrete (in
contrast to abstract) and possibly closed, even when it coulde classi ed as
open. The former classi cation means that the system can exiis this reality.
The latter means that every entity has some relations with oths, i.e., if an
entity is part of a system, that means it can a ect and be a ectedby others,
directly or indirectly, and is also responsible in some degg for the overall
behaviour that the system presents.

A concrete system could be object of a simpli ed represeniah, known as
a model, in order to be understood, to explain its behaviour Wi respect to
its entities and to enable simulations and predictions of & behaviour accord-
ing to an arbitrary initial state. In reality, it is usual to n ot totally represent
a concrete system due to the great number of constituent etiés involved
together with a large set of complex interrelations. Normaj] to build such
representation (known as a model) is to optimize the comprosg between sim-
pli cation and accuracy. This work is interested aboutin silico models which
refers to simulations using mathematical models in compets, thus relying
on silicon chips [2]. The process of building such model to gstem, approxi-
mately and adequately, needs to rely on its most relevant dties (independent
variables) that have in uence on the overall system behavio (represented by
one or more dependent variables). This process is widely knowa 8ystem
Modelling. Note that, as stated by [1], the number of signi cat entities and
relations could change depending on the arbitrary determation of a bound-
ary.

A representative model could be understood as some sort ofdanlying
physical law [3,[4], or even a descriptor which could ful | thevariational prin-
ciple of least actiof [5, B]. As stated by [7], many physical processes in nature
[...] are described by equations that involve physical quéhes together with

1Also known as principle of stationary action.
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their spatial and temporal rates of change . Actually, obsgations of natu-
ral phenomena were responsible to the early developmentstloé in nitesimal
calculus discipline [[8]. In other words, due to its propentis of establishing
connections and interactions between independent and deywent entities (e.qg.
physical, geometrical, relational), models to systems aexpected to be one
or a set of di erential equations [9]. An ordinary di erential equation (ODE),
if only one entity is considered responsible for the behawupof a system, or
more commonly a partial di erential equation (PDE) can descrile how some
observable quantities change with respect to others, traglg those changes
throughout in nitesimal intervals.

Presenting as a simple example, the vertical trajectory of aannonball
when shot in an ideal scenario could be modelled by the ODOJ= gt—zzy(t) =0.
This equation presents the relation between the unknown funon y(t)
the instantaneous height of the cannonball relative to an &rtial frame of
reference with respect to a relative measure of tinte and the acceleration
of gravity g. Initial state conditions such as %y(t) =0 = Vo and y(0) = Ho
e ectively lead to the following well known solution:y(t) = Ho+ V't % This
solution to that di erential model describes with ideal precsion the cannonball
vertical trajectory. If this system can be kept closed to owdr entities (e.g, air
friction, strong winds), the mentioned di erential model woud still be the
same, no matter the fact that di erent initial states could lead to di erent
vertical trajectory solutions.

From the point of view of engineering, this work is interesttin concrete
systems whose entities enable some kind of quantitative measments for
related quantitied. If those measurements are taken from the main entities
responsible for the behaviour of the system, then it is fairotsuppose that an
accurate enough model could be built.

Nowadays, the necessity for models is increasing, once sceeis dealing
with concrete systems that could display a huge dataset of adysations (Big
Data researches) or even present chaotic behaviour (dynanar complex sys-
tems). This work goes further into this idea and investigatefiow system
modelling could be automated. This thesis is part of a rese&raimed to miti-
gate di culties and propose methods to enable a computer-aamated system
modelling (CASM) tool to construct models from observed data.

1.2 Motivation

When de ning a system of interest, researches intent to dasice a great vari-
ety of phenomena, from Physics and Chemistry to Biology and Satsciences.
Systems modelling have applications to problems of engimieg, economics,
population growth, the propagation of genes, the physiologgf nerves, the
regulation of heart-beats, chemical reactions, phase trsitions, elastic buck-
ling, the onset of turbulence, celestial mechanics, elechic circuits [10], ex-
tragalactic pulsation of quasars, uctuations in sunspot ativity on our sun,

2Qualitative measurements are not object of this thesis. Moe information on this subject
could be found on Fuzzy Modelling .
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changing outdoor temperatures associated with the four seas, daily temper-
ature uctuations in our bodies, incidence of infectious dieases, measles to the
tumultuous trend of stock price [11], among many others exgrtes. Models
are essential to correctly understand, to predict and to carol their respective
systems. An inaccurate model will fail to do so.

The classic approach for system modelling is to apply regresss techniques
of some kind on a set of measurements in order to retrieve a rhatmatical
function that could explain that dataset.

Regression techniques involve developing causal relatqffiunctions) of one
or more entities (independent variables) to a sensible e edr behaviour (de-
pendent variable of interest). Historically, those techmjues have being used to
system modelling starting from observed data. There are twoam approaches
to regression: classic (or conventional) regression andgyolic regression.

Conventional regression starts from a particular model forrta mathemat-
ical expression with a known structure) and follows by using sa@mmetrics to
optimize parameters for a pre-speci ed model structure sposed to best t
the observed data. A clear disadvantage is that, after paragtrized by using
ill-behaved data, the chosen model could not be useful at athr even work
just within a limited region of the domain, failing in other regions. A specic
di cult dataset example is shown in Figure L. There, di erent conventional
regression techniques fail to rediscover a known functionom its randomly
sampled sparse points. Note that, to achieve the full poteiat of those tech-
niques, data must be well behavede(g., equidistant points) and be available
in a su cient amount.

While conventional regression techniques seek to optimidee parameters
for a pre-speci ed model structure, symbolic regression @is imposing prior
assumptions, and, instead, infers the model from the data.

Symbolic regression, in the other hand, searches for an appriate model
structure rather than imposing some prior assumptions. Getic Program-
ming (GP) is widely used for this purpose12,713]. GP is based @enetic
Algorithms (GA) and belongs to a class of Evolutionary Algothms (EA) in
which ideas from the Darwinian evolution and survival of the test are roughly
translated into algorithms. Therefore, GP is known to evolve anodel struc-
ture side-by-side with the respective necessary parameteiiso, there is the
theoretical guarantee (in in nite time) that GP will converge to an optimum
modeF able to tthe observed data. As an example, if trigonometridunctions
are available as building blocks, Genetic Programming is caple of converging
to the function

y(x) =3 sin( x )coq16 x)

which is the correct function subjected to the sampling of pois at random
back in FigureT1.

To understand why this work does not simply use symbolic regsion, take
a close look at Figurec1d2. Both left and right plots show onlywo sampled
points. Lets imagine this hypothetical situation where thee are concrete sys-
tems, the left one and the right one, and from both there & only two

3In practice, researches expect a near-optimum solution only
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Figure 1.1: A situational example where di erent methods for @enventional
regression (linear, piece-wise 5th degree polynomial, gl fail to nd a known
solution from a not so well behaved randomly sampled points.

measurements available for each one. The known behaviour ob#e systems
are respectively described by

f(x)=1 e*andg(x)=e”* L

The left plot also presents among other in nite possibilitis the following func-
tions that pass through the same two sampled points:

(sine) fs(x) = 0:6321 singx)
(polynomial)  f,(x) = 0:4773x? + 0:1548x
(linear) f1(x) =0:6321x:

The right plot also presents the functions:

(sine) gs(x) = 0:6321 singx)
(polynomial) gy(x) = 0:4773x* 0:1548x
(linear) g(x)= 0:6321x:

Note that they are one the mirror image of the other (relatedd the horizontal
axis through f (x) = g(x) = 0), but lets move this information aside for a
moment.

Actually, both plots refer to solutions for the same ODE:

d? d
wY(X) + &Y(X) =0

with di erent initial values, for the plot on the left:

d
d—Xy(X) =1 and y(0) =0;

x=0



1. Introduction

15, 1r

e Sampled points e Sampled points
' Solution , ' Solution
—Sine 4 —Sine
- - 2nd degree Polynomial // I — = 2nd degree Polynomial
1r - - -Linear L 3 0.5¢ - - -Linear

0.5r

1 . . . ) 15 . . . )
0.5 0 0.5 1 1.5 0.5 0 0.5 1 15

Figure 1.2: Hypothetical situation, two points sampled frsm each concrete
system. (left) Known describing function isf (x) =1 e *; (right) Known
describing function isg(x) = e * 1

and, for the plot on the right:

d
dXy(x) . = 1landy(0)=0:

Assuming the di erential model for those systems is known, theolution of
this ODE not only supplies a reliableinterpolation function between those two
points, but a reliable extrapolation function as well. The process of solving
a di erential model could bene t from measurements to infernitial states or
boundaries and the solution would be valid as long as neithewolved entities
(tracked by independent variables) vanish nor others appea

This hypothetical situation shows the possibility of the samenodel rep-
resenting either two separate systems or the same system g@eted in two
di erent states. As could be inferred, awareness of the indl state leads the
model to present itself as having a unique solution. A purelgymbolic regres-
sion approach would have two major di culties when consideng this very
situation hereé”: (a) all enlisted functions  f(x), fp(x), fi(X), gs(X), Go(X),
a(x) would be considered valid solutions, as the same for any oftte in -
nite possible functions that pass exactly through those twpoints; (b) each
situation represented by both left and right systems have aigh probability of
having a di erent function model and, in this case, no relatio between them
would be uncovered. In other words, symbolic regressipar sewould not have
enough information to even start to raise questions aboutrailarities between
those two systems. One could state that symbolic regressia directed to

4The intention of this elaborated example is just to exploit a line of thinking. Symbolic
regression would have tools to support global-optimum soltions instead of local ones if more
data is presented.
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model only one instantiation of the system (a single podsle initial state or
adopted boundary) at a time.

Another argument, as known to those dealing with physics and kkalus
of variations, the action functional (a path integration) is an attribute of a
system related to a path, i.e., a trajectory that a system pigents between two
boundary points in space-time. The principle of least actioffalso known as
the principle of stationary action) states that such systenwill always present
a path over which this action is stationary (an extreme, ususf minimal and
unique) [6]. This path of least action (the integrand of the aton) is often
described by a di erential equation and describes the intrisic relations of a
system, the very type of di erential model this work is aimed ¢ look for.

Following this path, it is pretty straightforward to reach the conclusion that
a CASM tool should search for di erentials whose solutions cadilexplain the
observed data. Also, this tool should not keep the search withthe domain of
mathematical expressions, as done by classic symbolic eggion. The domain
of search becomes the space of di erential equations. In thatay, discussions
about a possible uni cation for both left and right aforemetioned systems
would be possible. Such approach would be concerned aboue ttmodel of
the system itself, whichever instantiation (possible irtial states or adopted
boundary) it has been presented.

Given the domain of search for a model as the space of possidier-
ential equations and concepts behind the principle of leasiction, this work
starts from the idea that every observable concrete systemom which some
guantitative measurements could be taken is a valid candit&ato construct a
model. As stated in [14], the idea of automating aspects o€ienti ¢ activity
dates back to the roots of computer science and this reselans no di erent.
This work intends to investigate a possible way to enable CASM.doking for-
ward, as that work concluded, human-machine partnering sgems [...] can
potentially increase the rate of scienti ¢ progress dramatally [14].

1.3 Thesis Statement

One of the essential objectives of this work is to develop amputer-automated
numerical solver for linear partial di erential equations n order to assist a
Genetic Programming application to evaluate tness of modetandidates. The
provided input for the Genetic Programming application shold be a dataset
containing measurements taken from observations of the $gm of interest.

Research questions

Some questions have been guiding this research:

Given a database which contains measurements from an obsdaeacon-
crete system, is there a more robust way to verify how tis a thoretical
model to this system, relying on those available data?

As modelling presupposes observation, creativity and spedknowledge,
is it feasible to achieve a CASM tool?



1.

Introduction

Would such CASM tool be able to rediscover known models, propos
modi cations to them, or even reveal previously unknown modg?

This thesis presents answers to the rst two questions. The thd one is

partially answered, though. This is an open work in the sensdat it points
to several branches of possible research to be carried on.

Objectives

In this section, the general and speci c objectives are prested.

General

Achieve a linear di erential equation numerical solver to spport a concrete
system modelling tool which uses Genetic Programming to evelgets of partial
di erential equations. A dataset of observations must be aviable.

Specic

Develop a computer-automated numerical solver for linearaptial di er-
ential equations with no restrictions besides linearity. Thesolver must
assist the evolutionary search of the Genetic Programming plication
by enabling tness evaluation of individuals constituted ly linear partial
di erential equations.

Develop a syntax tree representation for a candidate solon and a
proper module for tness evaluation in consonance with the pposed
solver.

Run some case studies where the observations dataset is gatest through
simulation of a known model; provide those simulated data asputs to
the Genetic Programming application with the intention of evtving the
model to the known solution, turning this exercise into an inerse prob-
lem resolution.

Evaluate the impact of adding noise to input data regarding th evolu-
tion of a previous known model. This should enable discussioabout
tolerance for measurements related to the system of intetes

Identify and propose derived branches for future works.

1.4 Contributions

The present work brings the following contributions:

A novel approach to the Ritz-Galerkin method to approximaté/ solve
linear dierential equations: static choice of Jacobi-Legare polyno-
mials as basis functions; nite di erence method inspired ®atment of
auxiliary conditions; use of linear algebra discipline toreable solution
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of systems of linear equations (e.g. using metrics and procees as
rank, condition, pseudoinverse). The achieved solution is @olynomial
approximation of the di erential solution.

A generic scheme to a computer-automated numerical solver flinear
partial di erential equations (ordinary ones included) usng polynomial
approximations for the di erential solution. Also, the knowledge to ex-
pand this solver to some non-linear di erential equations ialready gath-
ered and it is planned for the near future.

A dynamic tness evaluation scheme to be plugged into evolignary al-
gorithms to automatically solve linear di erential equations and evaluate
model candidates.

This work had to restrict itself to linear di erential equations, though,
but those models could present any structure inside the linety restriction.
Besides, the same method is used to both ODEs and PDEs. Indeedgeth
search for di erential models has been tried before. Even soutaors have
no knowledge of works which could deal with systems in generaltlibe ones
where further speci cations on the form of the model is requed.

1.5 Research tools

Numerical methods

As stated by [7], one of the most general and e cient tool fothe numerical
solution of PDEs is the Finite element method (FEM) . Some limitéons do
not allow this work to follow this suggested path, though. FEMI5, (16,17 [17]
starts from solving a di erential equation (or a set of) in orcer to present
results over a mesh of points throughout the domain. The typefanodelling
this work is interest on implies in having the actual result®f some system on
some points over the domain and trying to recover the di eremal which could
explain the behaviour of the system. This is an inverse prolteand FEM
could not help but to inspire some solutions here presented.

As could be imagined, the method of searching for di erentiaéquations
must solve at some point those di erentials in order to verifythe quality of
a model candidate. Moreover, integrals should also be usefulhe classical
and widely used numerical tools to do the job are: (a) using theechnique
of separating variables to partial di erential equations and applying Runge-
Kutta methods to approximate solutions for the achieved ordiary di erential
equations; and (b) Gauss Quadrature methods to perform numeal integra-
tions for arbitrary functions [18,19], multidimensional ases covered by tensor
products or sparse grids’ {20, 21]. Numerical methods deségirto directly solve
partial di erential equations are seldom explored in the lierature, due to the
success of the aforementioned methods, and the growing neadrultidimen-
sional integration (cubature) methods keeps it as an opengsearch topic.

Diverging from the common sense, this work tries to generaéi the process
of modelling of multivariate systems. In order to do so, rolst multivariate

9
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operations are necessary, especially when dealing with pattdi erential equa-
tions. Parallelism is also desirable, once the entire praa®has the potential
to be an eager customer of computational power. The possibjliof trans-
forming it into a Linear Algebra problem, as could be seen whedealing with
FEM, is also very tempting. After a long period of experimentabns and aim-
ing for those purposes, this work has nally adopted the fadwing numerical
methods: (a) the Ritz-Galerkin method [?2], speci cally anown customiza-
tion of the method, to build a system of equations from di eretial equations
(ordinary or partial); (b) Monte Carlo integration [23] to perform multivari-

ate integrals; and (c) matrix formulations with related opeations to evaluate
candidate models.

Evolving models

The GP technique is classi ed under the Evolutionary Computatin (EC) re-
search area in which, as suggested by its name, covers di eratgorithms that
draw inspiration from the process of natural evolution’[24]GP is, at the most
abstract level, a systematic, domain-independent methofdr getting comput-
ers to solve problems automatically starting from a high-iesl statement of
what needs to be done [113]. That is an expected quality for ewhg models
by GP which is known to to nd previous unthoughtful solutions for unsolved
problems so far(i25]. This feature could only be accessed if @&Pallowed to
build random individuals from a unconstrained search space

Implementing CASM through GP have been proven the right choein the
literature, specially when modelling functions from datacj@, 4, 27,(28]. For
a system of interest with available measurements, this workestead aims to
evolve a functional (partial di erential equation) whose saltion is a function
that could explain the available data. Classic GP symbolic gression needs
some adjustments to be able to do so.

Computer programming language

The chosen language for programming is C++. Besides high spepérfor-
mances [[29], C++ language has been listed on the top 5 prograrmg lan-
guages rank[[30], has support for several programming paigas (e.g, im-
perative, structured, procedural and object-oriented), &s a large active com-
munity, could bene t from 300+ open source librariesi31] (icluding 100+ of
boost set of libraries only) and several others freely distribute (e.g. BLAS
and LAPACK ® for linear algebra purposes; MPICH2, CUDA and OpenCL for
parallel/concurrency programming), and allows the programer to take con-
trol of every aspect of programming. In the other hand, C++ is songly plat-
form based (code has to be compiled in whatever operationalssgm and/or
hardware the executable is needed to run on) and the progranemhas to be
aware of every aspect of programming (depending on the aimagplication,
programmer also needs to know about the hardware involved)Those pros
and cons were evaluated before this choice, including theemkthis project has
for high performance computation.

SLAPACKE library for C++.
10
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1.6 Outline of the text

This thesis is divided into three parts. The rst one, Backgroad, covers this
introduction in Chapter M. A non comprehensive list of relateé works that deal
with system modelling through Genetic Programming is preseatl in Chap-
ter . Related theory in ChapterB are addressed in order to uadstand the
method proposed here: linear di erential equations, Hilbéinner product and
basis for function spaces, Ritz-Galerkin method, well-psessedness of a di er-
ential problem, Jacobi polynomials, linear mappings and eimge of variables,
Monte Carlo integration and Genetic Programming.

The second part refers to the proposed method itself. It stastby explain-
ing how the proposed method could be applied to linear ordinadi erential
equations in Chapter. The extension of those results when applg the
method to linear partial di erential equations is shown in Chaper B.

The third and last part is about system modelling. A tness scbkme is pro-
posed in Chapter6 in order to evaluate di erential model candiates. Chap-
ter [@ brings a preliminary implementation of a Genetic Prognaming applica-
tion to perform system modelling. Finally, some results, dcussions and other
extensions to this work as future research topics could beufad in Chapter B.

Appendices are presented addressing publications achigwkiring the time
of this doctoral studies (Appendix[A), as well as future topis in need to be
addressed, as the massively parallel paradigm of GPGPUs (Appkx B) and
a more robust parallel platform for GP known as EASEA (AppendipL

11



Chapter 2
Related Works

2.1 A brief history of the eld

Since decades ago, scientists have been trying to build mtsditom observable
data. Once datasets of interest starts to increase and undigng model struc-
tures became complicated to infer, scientists start thinkig about automating
the modelling process.

One of the rst works that authors could nd, the work of Crutch eld and
McNamara [32] in 1987 shows the development of a numerical methbased
on statistics to reconstruct motion equations from dynamichaotic time-series
data. In a subsequent work, Crutch eld joined Youngi33] to adress updates
to that approach while introducing a metric of complexity fornon-linear dy-
namic systems.

Still in the 1980's, some researchers had developed techugg capable
of evolving computer programs, like the works of Cramer, Hitk and Fu-
jiko [B4, 35,[36], respectively, as an attempt to inspire eativity into com-
puter machines. These e orts culminate with the advent of Genet Program-
ming with the works of Koza [37,12] to enable science in the 188 to start
experiencing computer-automated symbolic regression ihd form of mathe-
matical expressions constructed from data. In general, ddmily of Evolution-
ary Algorithms [38, [39,[40,24] could be easily related with siem modelling,
but GP brought a lot of facilities and powerful tools into thesubject [13].

Nevertheless, the work of Schmidt and Lipsoni[4] publishedh i2009 is
often seen by the scientic community as a great landmark focomputer-
automated system modelling due to the broad impact it had onhie media at
the time it was published €.g, articles in [47,[42[43]). Even considering that
some relevant issues were raised by Hillar]44], Schmidt ahgbson provided
observations from basic lab experiments to a computer andithcomputer was
able, using GP-like techniques, to evolve some underlying yshcal laws in the
form of mathematical expressions with respect to the phenome addressed in
the experiments, using 40 minutes to a few hours to do so, deykéng on the
problem.

In the same issue of the journal Science that the paper of Schitnand
Lipson was published, Waltz and Buchanan[[14] defended thesed for an
automation of science, without debunking the role of the reaecher. They
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pointed out that computers with intelligence can design andun experiments,
but learning from the results to generate subsequent experents requires even
more intelligence . This work has the perspective that comper-automated
system modelling must be aimed to help scientists to undesstd, predict and
control their object of study.

Therefore, this section is aimed to cover works that are relatto this thesis
within the subject of computer-automated system modellingrém observable
data. Only works that also make use of GP or some other EA are adsgsed
here. Note that the following list is not intent to be comprehasive, but should
re ect the state of art in this eld. The list is sorted from the early years to
nowadays. When two or more works are from the same year, soriteria turns
to be lexicographic.

2.2 Early papers

before 2000

Gray et al. [26] uses GP to identify numerical parameters within parts of
the non-linear di erential equations that describes a dyname system, starting
from measured input-output response data. The proposed metth is applied
to model the uid ow through pipes in a coupled water tank sysem.

2000 up to 2004

Caoet al. [45] describes an approach to the evolutionary modellinggislem of
ordinary di erential equations including systems of ordinay di erential equa-
tions and higher-order di erential equations. They proposeane hybrid evo-
lutionary modelling algorithms (genetic algorithm embedn genetic program-
ming) to implement the automatic modelling of one and multdimensional
dynamic systems respectively. GP is employed to discoverdaoptimize the
structure of a model, while GA is employed to optimize its pamaeters.

Kumon et al. [46] present an evolutionary system identi cation method
based on genetic algorithms for mechatronics systems whiciclude various
non-linearities. The proposed method can determine the sttture of linear
and non-linear elements of the system simultaneously, enaly combinatorial
optimization of those variables.

Chen and Ely [47] compare the use of arti cial neural networksANN), ge-
netic programming, and mechanistic modelling of complexdlogical processes.
They found these techniques to be e ective means of simulatiorThey used
Monte Carlo simulation to generate su cient volumes of datases. ANN and
GP models provided predictions without prior knowledge of theinderlying
phenomenological physical properties of the system.

Banks [48] presents a prior approach to model Lyapunov funohs. He has
implemented a GP, in Mathematic& , which searches for a Lyapunov function
of a given system. The project was successful in nding Lypumdunctions for
simple, two-dimensional systems.

13
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Leung and Varadan [49] propose a variant to GP in order to demetrate its
ability to design complex systems that attempts to reconstrct the functional
form of a non-linear dynamical system from its noisy time s&s measurements.
They did di erent tests on chaotic systems and real-life radasea scattered
signals. Then they apply GP to the reverse problem of constrticg optimal
systems for generating speci ¢ sequences called spreadeuyles in CDMA
communications. Based on computer simulations, they havé@vn improved
performance of the GP-generated maps.

Hinchli e and Willis [50] uses multi-objective GP to evolve ¢gnamic process
models. He uses GP ability to automatically discover the apppriate time
history of model terms required to build an accurate model.

Xiong and Wang [51] propose both a new GP representation antharithm
that can be applied to both continuous and discontinuous fwtions regression
applied to complex systems modelling. Their approach is aktie identify both
structure and discontinuity points of functions.

2005 up to 2009

Beligiannis et al. [52] adopts a GP-based technique to model the non-linear
system identi cation problem of complex biomedical data. i&ulation results
show that the proposed algorithm identi es the true model ad the true values
of the unknown parameters for each di erent model structure, ssisting the GP
technigue to converge more quickly to the (near) optimal maal structure.

Bongard and Lipson [53], states that uncovering the undeiilyg di erential
equations directly from observations poses a challengingsk when dealing
with complex non-linear dynamics. Aiming to symbolically mdel complex
networked systems, they introduce a method that can autometally generate
symbolic equations for a non-linear coupled dynamical sysh directly from
time series data. They state that their method is applicabled any system
that can be described using sets of ordinary non-linear di ential equations
and have an observable time series of all independent varies.

Iba [54] presents an evolutionary method for identifying maels from time
series data, adopting a model as a system of ordinary di eréat equations.
Genetic programming and the least mean square were used téeinthe systems
of ODEs.

2.3 Contemporary papers, 2010+

McGoughet al. [55] represent a line of research on GP-based generation oLy
punov functions. As stated: one of the fundamental questis that arises in
nonlinear dynamical systems analysis is concerned with thibility properties
of a rest point of the system . The theory of Lyapunov is used tanderstand
the qualitative behaviour of the rest point. Their work uses avariant of GP
to evolve Lyapunov functions for a given dynamic systems,ming to explore
their stability.
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Gandomi and Alavi [56], propose a new multi-stage GP stratggor mod-
elling non-linear systems. Based on both incorporation oaeh predictor vari-
able individual e ect and the interactions among them, theirstrategy was able
to provide more accurate simulations.

Edited by Soto [27], a book about GP that has several chapteredicated
to examples of GP usage in system modelling.

Stanislawskaet al.[?8] use genetic programming to build interpretable mod-
els of global mean temperature as a function of natural and #mopogenic
forcings. Each model de ned is a multiple input, single outpuarithmetic
expression built of a prede ned set of elementary component

Finally, Gaucelet al. [57] propose a new approach using symbolic regression
to obtain a set of rst-order Eulerian approximations of di erential equations,
and mathematical properties of the approximation are thenxgloited to recon-
struct the original di erential equations. Some highlightel advantages include
the decoupling of systems of di erential equations to be leaed independently
and the possibility of exploiting widely known techniques fostandard sym-
bolic regression.

2.4 Discussion

In general, a model is referred as a mathematical expressithat translate
abstract functions supposed to generate experimental olpged data. Besides
discussion in Sectiorni—1.2, this widely adopted point of vievs iof greater use
in science. Nevertheless, this work aims to built di erenill models from
observable data,i.e., a di erential equation with the potential of unveiling
interrelations, physical quantities and energy transfor@tions that could be
obscure due to the complexity of available data.

In this section some related works are enlisted, related nmdy to system
modelling from data. From those, there are some who favourelle discussion
similarly to this present thesis,e.g, Gray [26], Cao [45], Bongard 53], Iba54],
and Gaucel [57]].e., they are also dealing with di erential models within their
works. While the work of Gray deals with structured non-lineadi erential
equations, the others attacked the problem by assuming mddeas systems
of ordinary equations. Both [58] and({57] stand out for givewontributions.
Bongard achieved symbolic equations as models, and Gaucedlizes some
mathematical identities that are really relevant for the oerall performance of
CASM.

Even so, those works adopt di erent paradigms. This present wikraims
to evolve partial di erential models from observable data. © accomplish this,
an elaborated novel method is presented in order to be apmli¢o any linear
di erential equation (ordinary or partial) to obtain unique projections for the
solution. This proposed method acts the same, no matter therdensionality
of the problem. Authors have no knowledge about other works viiin CASM
that uses something similar to the proposed approach presen this thesis.
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Chapter 3

Theory

In this Section, some key subjects to understand contribuins from this work
are presented, as linear dierential equations, Hilbert inar product space,
Galerkin's method, well posed problems, Jacobi polynomsllinear mappings,
change of variables, Monte Carlo integration, and Genetic Progmming.

3.1 Linear di erential equations

Linear di erential equations (LDE) could be described basidly by a linear
operator L which operates a functionu(x) the unknown or the solution
and results in a source functiors(x). LDEs are in the formL [u(%)] = s(%). A
simple de nition of a linear di erential operator L of order Q with respect to
each ofD variables is shown in Equation [(311).
" #
o= ko 2
Lu(»)] = q(% -
=0 i=0 @?(q

where x = ( Xo; X1;:::Xp 1)T; qi 1S the order of the partial derivative with
respect toi" variable designed by they" case from theQ? possible combina-
torial orders (see Chapteil5 for details)k,(%) refers to each term coe cient
and could be a function itself, including constant, linear md even non-linear
ones; andu(x) is the multivariate function operand to the functionalL. Note
that the de nition @%u(x) u(x%) has been adopted here.

Using de nition of L, multivariate LDEs could be written in the form of
Equation (322):

u(x): (3.1)

L] = sfx)
QZ 1 D(l @q;i

k(%) :
g=0 ; i=0 @?(q

whereu (%) is the unknown function (dependent variable) which is the sotion
to the di erential equation; and s (%) is the source function, sometimes referred
to as the source term. Note that bottk, (%) ands (%) could be constant, linear

u(x) = s(x) (3.2)
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3.2. Hilbert inner product and basis for function space

or even non-linear functions with respect to independent vables addressed
by x.

Related to this de nition, this work considers that: (a) kq(%) coe cients
are real functions (constant, linear or non-linear);.e., 8x; kq(%) 2 R; (b)
the unknown function u(x) refers to a scalar eld; (c) the source function
re ects either homogeneous s(%) =0 or inhomogeneous  s(%) 6 0
di erential equations.

An univariate L, also known as a linear ordinary di erential operator, could
be de ned as in Equation (3B):

x dd
LIUGAI = ke(x) 4 qf (X) (3.3)
=0
whereQ is the order of the linear di erential operatorL; kq(x) are theQ + 1
coe cients from respective terms, with the restriction that ko(x) 6 0; u(x)
is the operand forL and is assumed to be a function of the only independent
variable x. Note that L contains a dependent variablei(x) and its derivatives
with respect to the independentx.
Using de nition of L, univariate LDEs could be written in the form of
Equation (33):

L[u(x)] = s(x)
x qo
Ka(X) greqgu¥) = (%) (3.4)
0

q:

whereu(x) is the unknown function (dependent variable) which is the sotion
to the di erential equation; and s(x) is the source function, sometimes referred
to as the source term. Note that bothk,(x) and s(x) could be constants,
linear functions themselves or even non-linear functions thirespect to the
independent variablex.

Distinct from LDEs, non-linear di erential equations have at least one
term which is a power of the dependent variable and/or a producof its
derivatives. An example for the former is the inviscid Burgs equation:
Su(x;t) = u(xt) 2u(x;t). Other example for the latter could be formu-

late by any di erential equation which has term with @@Xu(x;t) “ or even

Su(x;t)  u(x;t) . Note that terms as £2u(x;t) are still linear. For

now, non-linear di erential equations are not object of this hesis.

3.2 Hilbert inner product and basis for
function space

An inner product for functions can be de ned as in Equation(3):

Zb
hf(x); g(x)i = f(x)g(x)w(x) dx (3.5)
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3. Theory

wheref (x) and g(x) are operands;a and b the domain interval for the inde-
pendent variablex; and w(x) is known as the weight function.

A Hilbert inner product space is then de ned when choosing thaterval
[a; b] and weight functionw(x), in order to satisfy the properties of conjugate
symmetry, linearity in the rst operand, and positive-de niteness [58, pp.203].
Note that, when in R, the inner product is symmetric and also linear with
respect to both operands.

Two functions f,(x) and f,(x) are then considered orthogonal to each
other in respect to a Hilbert space by the de nition presentn Equation (38):

: 0O fném
hfa(X); fm(X)i = hy om = . _ (3.6)
h, fn=m
whereh, is a constant dependent omnf ,(x); fn(x)1; and ., is the Kronecker
delta.
Following Equations(35) and [356), implication in Equation B17) is then
valid:

8w(x); hw(x);f(x)i=0 =) f(x) O (3.7)

A complete basis for a function spacé& is a set of linear independent
functions B = f ,(x)gl,, i.e., a set of orthogonal basis functions. An arbi-
trary function f (x) could then be projected into this function space as a linear
combination of those basis functions, as shown in Equation3:

b3
Bf(x)2F =) f(x)= & n(x) (3.8)
n=0
As an example, ifF is de ned as the set of all polynomials functions and
power sllt)-:‘ries, a complete basis should B = fx'gL,, where it comes that
f(x)= ¢ x.
j=0
Finally, from Equations (827) and (Z38), the implication in Equation (89)
follows:

8 x)2B; 8 (X)2F; h (x);f(x)i=0=) f(x) O (3.9)

3.3 Galerkin method

The Ritz-Galerkin method, widely known as the Galerkin method42], is one
of the most fundamental tools of modern computing. Russian athematician
Boris G. Galerkin generalised the method whose authorship lessigned to
Walther Ritz and showed that it could be used to approximate alve many
interesting and di cult elliptic problems arising from app lications [59]. The
method is also a powerful tool in the solution of di erential guations and
function approximations when dealing with elliptic problemd(Z, 60].

Also, Galerkin method is considered to be a spectral methow the fam-
ily of weighted residual methods. Traditionally, those métods are regarded as
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3.3. Galerkin method

the foundation of many numerical methods such as FEM, spectratethods,
nite volume method, and boundary element method(i61]. A nomxhaustive
and interesting historical perspective for the developmemf the method can
be found in [59].

As a class of spectral methods from the family of weighted rdsal meth-
ods, Galerkin method could be de ned as a numerical schemedpproximate
solve di erential equations. Weighted residual methods ineneral are approx-
imation techniques in which a functional named residuaR[u(x)], also known
as the approximation error and de ned in Equation [{3710), is @posed to be
minimized [61].

Ru(x)] = L[u(x)] s(x) O (3.10)

Note that R[u(x)] is also known as the residual form of the di erential
equation. The idea is to have a feasible approximatiofi(x) to the solution
u(x) in order to forceR[u(x)] 0. This approximation is built as a projection
on the space de ned by a proper chosen nite basiB = f n(x)g?=0 with a
span of N + 1 functions. The approximation a(x) has the form present in
Equation (3ZI1):

X
a(x)= thn n(X); (3.11)
n=0
where &, are the unknown coe cients of this weighted sum. The approxi-
mation ((x) is also known as the truncated Galgrkin expansion (TGE) for a
nite N. In the literature, the form 0(x) = tg + Ezl th n(X) is also found.
However, this thesis adopts the requirement thato(x) 1 instead.
Galerkin's approach states that when the residudR[u(x)] operates the ap-
proximation 0(x) instead of the solutionu(x), this residual is required to be
orthogonal to each one of the chosen basis functions B1 This is accom-
plish by starting from both Equations (39) and (37I0) and carbe seen in
Equation (312):

8 (X)2B; h ,(X); Rl[d(x)]i =0; n=0:::N (3.12)

Then, the method requires to solve thosH +1 equations in order to nd an
unique approximate solution of the di erential equation desribed by R[u(x)]
with respect to the chosen basiB. Note that all basis functions (x) 2 B must
satisfy some auxiliary conditions knowra priori (usually linear homogeneous
boundary conditions) to enable a well posed problem.

Finally, after plugging the approximation in Equation (3~I) to the resid-
ual in Equation (8Z10) and following Equation [(3712), the Galédin System of
Equations (GSE) is then built, as shown in Equation (3713):
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h 2 (x); RIGO] ] g = O
), 2005 LIO0A] s =0

X iy
) DX L[ tm o m(X)] h o a(X): s(X)i =0
" m=0 n=0
X i
) tm N n(X); LI m(X)]i = h n(X); S(X)i (3.13)
m=0 n=0

Solving the system of equations in Equation{313) foN + 1 unknown
coe cients d, and afterwards substituting them into Equation (3Z11), an ap
proximate solution to the di erential equation is nally achieved.

According to [62], Galerkin's method is not just a numerichscheme for
approximating solutions to a di erential or integral equations. By passing to
the limit, we can even prove some existence results. More anfmation on
proofs to the bounded error and convergence of Galerkin meith for elliptic
problems could be found inf7, pg. 46 51]. Note the importamcof choosing
the right basis for the approximating nite dimensional sulspaces. The work
of [62] also emphasises the utilization of Galerkin methodgth orthogonal or
orthonormal basis functions,i.e., a complete basis.

Note that using the identity in Equation (BZ12), it is pretty straightforward
to convert summations to a matrix form.

1 0 1

0
W N foo M Ao
& fy) =@ : . KBk (319
j=0 i=0 fN;O L fN;M am
Therefore, a GSE could be written in matrix formulation. From Ega-
tions (373) and (3714), follows Equation(3715) in the form:

G u=15)

. 10 1 0 1
h o(x); L[ o(X)]i h o(x); L[ n(X)]i to h o(x); s(x)i
hnGOiLL o0l h NOiLI NGOl o h  (X); SO0

(3.15)

whereG is known as the coe cient (sti ness and mass) square matrixg is the
unknown (displacements) column vector; ang is the source (forces) column
vector. Names inside parenthesis are used by FEM.

3.4 Well-posed problems

French mathematician Jacques Salomon Hadamard, among otheontribu-
tions, coined the widely used notion of well-posed problemarfpartial di er-

ential equations [63,77]. Hadamard de ned a problem to be wglosed only
if:
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3.4. Well-posed problems

1. A solution exists and is unique;

2. This solution depends continuously on the given datd,e. solution is
not unstable.

Therefore, if a problem does not meet all these criteria, it isaid to be ill-
posed. Note that, even if a problem is well-posed, it may dtbhe ill-conditioned,
which means that small numerical variations in elements frorthe coe cient
matrix or the source vector implies in large di erences betvem evaluations of
unknowns. According to [7], from a point of view of nhumerical ethods, there
are several possible error sources when calculating PDE saus (e.g, compu-
tational domain, boundary and initial conditions, method elated parameters,
nite computer arithmetic). If a problem is ill-posed, or if it is ill-conditioned,
no con dence in the numerical solution is then possible.

Using Equation (3ZI5) as reference of PDE problem, to test if d drential
problem is well-posed, it is su cient to verify if the coe ci ent matrix G has full
rank. If it is rank de cient, an ill-posed problem is presentd. Ill-conditioned
problems could be tested if the coe cient matrix, even full ank, has a large
condition number.

Both rank and condition number could be calculated from theisgular
value decomposition (SVD) of the matrix [19].

The rank of a matrix could then be de ned as the number of singal
values di erent from zero. Numerically speaking, a toleraremust be de ned
in order to test if a singular value is close to zero or not. Iisicommon sense to
use a tolerance with respect to the number of elements of the tria and the
machine epsilon64] of the standard hardware oating-poirdata type that
has been used.

The condition number could be de ned as the ratio of the largé$o small-
est singular value of a matrix. A practical way to test condibning of the
coe cient matrix is to evaluate the unknowns using any methodavailable and
to try to recover the source vector. Large dierences betweethe original
source vector and the new evaluated one indicates an ill-abtioned coe -
cient matrix. Algorithm T presents this practical test if a more robust test is
desired. Authors suggest to use the Moore-Penrose pseudeense [65] instead
of inverting the coe cient matrix.

Algorithm 1 Practical condition test ; test if a coe cient matrix is well-

conditioned or not.
Require: System of equations in the fornG v = s

g (G 1 s)
s’ (G )
if ks’ sk < tolerancethen
Matrix G is well-conditioned
else
Matrix G is ill-conditioned
end if
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3. Theory

3.5 Jacobi polynomials

The classical option for Galerkin basis functions in FEM are lgrange inter-
polating polynomials. Besides the fact they are extremelyseful when dealing
with piecewise approximations, the restriction on using thenm this work came
from the fact that they are not orthogonal. The main idea of usig polynomi-

als for function approximations is that, given a subspace @nan orthonormaf*

basis ofn polynomial functions (up ton ! 1 ), any function can described
onto that subspace(j66], as seen in Sectiani3.2.

In that sense, orthogonal polynomials have been widely usedthvispec-
tral methods as an attractive framework [67]. Using orthogwl polynomials
with Galerkin method ensures a Hilbert function space where wrdesirable
smooth function could be projectedj.e., an unique approximation could be
built by TGEs. Jacobi polynomials is an interesting choice du¢éo some of
their properties, as to be shown.

Jacobi polynomials have the hypergeometric de nition prest in Equa-
tion (8Z18), as shown by [68] and[67]:

(n+ +1)
(n+1)( +1)

: 1
Pl )(x) = i omn+ + 41 4151 X)

3.16
where ( ) is the gamma function;;F.(p; G r; z) is the Gauss's hypergef)metzic
function with respect to constantsp, g, r, and the independent variablez;

1 1,andn O. (
n<0=) P{) o
P ) 1
The use of Pochhammer symb®land factorials allow the following de ni-
tion to Jacobi polynomials:

Note that this work uses de nitions 8 ;

s (N DXy (ne 4 1) 1ox “1
Prg )(X)_ nl( +1) k=0 ( +1)k 2 E (317)

From [69], also shown byi[67], an important identity for deriatives of Jacobi
polynomials is presented in Equation{3~18):
s NI (n+ + +k+1) :
M BG) — ( +k; +k)
ka Pn (X) 2k ( n+ + + 1) Pn k
Regarding Hilbert inner product space, Jacobi polynomialare orthogo-
nal on the interval [ 1; +1] and have the weight functionw(x) presented in
Equation (3Z19):

(x) (3.18)

wix)=(1 x) (1+x) (3.19)

1Orthogonality restriction is usually enough.
2The Pochhammer symbol stands for(x), =

( x+n)

(x)

, besides some special cases.
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3.5. Jacobi polynomials

Therefore, inner products for Jacobi polynomial are de nediEquation (3220):

71
PU I PL I(x) = PUIIXPL (X)L x) (1+x) dx  (3.20)
1
where 1and 1 ensures the integrability ofw(x) [63].

The work of [68, pp.58] also presented mapped Jacobi polynatsi de ned
in Equation (8221), which are orthogonal on the arbitrary inteval a x b

(op

(n+ +1)
(n+1)( +1)

X

Pé;)((X))= oFi nmn+ +  +1; +1;

(op

a
(3.21)
where (x) =2 f—= 1land[a; b]is the arbitrary interval on which the inner
product is taken.

The associated error is asymptotically minimized in arlL.P( )-norm, as
stated by [67], given the appropriate choice of = . Special cases of Jacobi
polynomials could be found choosing appropriate and . Basis functions
could be generated to be asymptotically similar to Chebyshegwlynomials of

the rst kind, T,(z), choosing = = 1=2; Chebyshev polynomials of the
second kind,U,(z), choosing = =1=2; and Legendre polynomialsP,(z),
choosing = = 0. Also, the same work states that the asymptotic error

between a given solution function for a di erential equationand its TGE is
minimized in the L , L! and L?-norms, respectively.

Therefore, with the support of mapped Jacobi polynomials andhoosing
for the sake of simplicity = = 0 (Legendre polynomials), the univariate
inner product operator could then be de ned as in Equation{22):

7b
PEOC O PR = PEPCO) PRI dx (3.22)

a

By following the development of Equation [318), authors codl achieve
the derivative identity from Equation (8223) which refers to napped Jacobi
polynomials on the nite interval [a; b]:

TPl (o0 =

(n+ + +k+1) p( ki +K)
dxk

(b ak(n+ + +1) "k ( (X)) (3.23)

Note that identities in Equations (3ZI8) and (3=28) exchangea derivative
operation on a polynomial by another polynomial, a very usef treat.
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3.6 Mappings and change of variables

In order to generalise the method of Galerkin, some mappingse required.
Considering an arbitrary interval domain, the inner productimplies the use
of either the mapped Jacobi polynomials from Equationf(3219r a mapped
version of the di erential equation under investigation to beinterval[ 1; +1],
the very interval where Jacobi polynomials are orthogonal. Té underlying
de nite integral must be evaluated on the same interval for bth multiplying
functions. The change of variables for di erentiation and ineégration then
become very useful.

First, the interval of orthogonality for Jacobi polynomials should be hereby
identi ed by the variable 2 [ 1; +1]. In the other hand, arbitrary intervals
should be represented by 2 [a; b]. Linear mappings in Equations [324)
and (3225%) then become straightforward to understand.

X a
— 1 (3.24)

"x: x()= b2a +b-;a

x7 o (xX)=2

(3.25)

A change of variables for di erentiations, asdd—xf (x) 7! dif (), is presented
in Equation (B226).
d d

%f(x): (7= b—zadﬂf (x()) (3.26)

Therefore, a change of variables for higher order derivatsds shown in
Equation (3227).

dk 2 K
Wf (x) = b a ﬂf (x()) (3.27)
R R
Finally, the change of variables for integrations, asab f(x) dx 7! 11 f()d,
known as integration by substitution in unidimensional casg is presented in
Equation (3228).

Zb /1 71 Z1
fo)dx=  f( 71x)Jd = f(x())ﬂ—xd:Ta f(x()) d

a 1 1 1

(3.28)
where J is the determinant of the Jacobian matrix. In this unidimensnal
case and because of linear mapping shown in Equatian{3.25)istdeterminant
J = &= b2js 3 constant.

3.7 Monte Carlo integration

In order to integrate an arbitrary function, Monte Carlo integration picks ran-
dom points over a certain domain (a multidimensional volumeand calculate
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3.7. Monte Carlo integration

Table 3.1: Monte Carlo integration applied tof (x;y) = exp( x) cosfy) de-
nedinfO x 1,0 y 59 (100 runs).

R
exp( X) cosfy) dxdy order of
N points 00

) standard execution
min max mean

deviation time
2°(512) 0:59363 066306 063085 0014666 1 (ref)

210 0:60741 065514 063246 0010593 175
212 0:62093 064844 063104 0005892 L5
214 0:62634 063793 063202 0002552 17
216 0:62918 063574 063231 0001411 66
218 0:63003 063454 063219 0000752 249
220 0:63117 063293 063216 0000352 965
221 0:63133 063279 063210 0000292 1905

222(4194 304)| 0:63163 063263 063213 0000175 3786

the mean value of the function taken on those random points3p, as presented
in Equation (B229).
Z w1 ! K 1
f (%) dx h & — f (Xj) (3.29)

v i=0 j=0

whereV is the hyper-volume which represents the number of dimensigrN
is the number of randomX; points to be taken; & and b are the limits of
integration for the i™ dimension.

For example, the functionf (x;y) = exp( x) cosfy) has, for the domain
fO x 1,0 y 59, amultidimensional de nite integral  0:6321when
analytically evaluated. Tablef3Tl presents results from Maa Carlo integration
with respect to the number of random points taken.

The great advantage of Monte Carlo integration is that multivarate in-
tegrals are straightforward to evaluate. This very scheme igxible and ad-
justable on the y. The disadvantage is that, to get reliable esults, the number
of random picked points must be large. Example in Table=3.1, fanstance,
needs something aroun@?° (1P, 1 million) points to drop standard devia-
tion bellow 10 3. For this quantity of random points, execution time is almos
1000 the time necessary when choosirgf (500 points®. Execution time
almost doubles each new increment on the power of 2 after thaFigure 371
shows how on average Monte Carlo integration performs very weliut indi-
vidually its reliability is proportional to the number of picked random points.
Also, depending on the function to be integrated, those nundss and analyses
could change. A workaround is to t the nal modelling tool with some par-
allel paradigm to allow the use of a large set of points withoutompromising
execution time.

3|n this case, less than10 3 sec.
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N
N
1

-+ Analytical solution
—-— min/max Monte Carlo (100 runs)
—— mean/std Monte Carlo (100 runs)

N I I~ n
N 1 © o
T T T T

Powers of 2; log2(# random points)

i
N
T

[N
o
T

0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.6 0.59
Definite integration result

Figure 3.1: Monte Carlo integration performance oh(x;y) = exp( Xx) cosfy)
denedinfO x 1;0 y 5g(100 runs).

3.8 Genetic Programming

Koza [70] has de ned GP as an automatic technique for proding a computer
program that solves, or approximately solves, a problem . éfollows by stating
that GP addresses the challenge of getting a computer to sel a problem
without explicitly programming it. GP is widely de ned as an extension of
the Genetic Algorithm from [71] which, in turn, is preceded bynotions and
concepts presented by [72].

John R. Koza is the reference when the subject is GP because ©f imile-
stone work [37]. He has written several books on this subjeabéh helped to
popularize GP across the world. Today GP is extensively defiwed in books,
in edited collections of papers, in conference proceedingsjournals (e.g. Ge-
netic Programming and Evolvable Machines journ3), and at web sites such as
WWW.genetic-programming.org|. Interesting to mention, before Koza, other
researches had built models capable of evolving computeiograms also based
on Genetic Algorithms, e.g. [34],[I35]/[36]. This could beea®as the re ex of
humanity trying to inspire creativity into computer machines.

The main idea behind GP is that it is intended to work as an autmatic sys-
tem whose input is a high-level statement of requirements rfa given problem
and whose output is a working program that actually solveshe problem [70].
As a recognized part of the EC eld family, GP also arti cially evolves indi-
viduals to t a near-optimum solution for a predetermined poblem. In the
case of GP, those individuals are computer programs and/amstructions.

Since many problems can be easily recast as a search for a cateppro-
gram, Koza states that GP can potentially solve a wide rangefdypes of
problems, including problems of control, classi cation, ystem identi cation,
and design [70]. Design, specially, is usually viewed asquiring creativity
and human intelligence .

4http://Www.springer.com/computer/ai/journai/107/10
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3.8. Genetic Programming

Glossary of Evolutionary Algorithm terms

Collet [73], based on Fogel[74], brought some historical @ds about EC: in
early 1950s, when the rst computers came out of research I&b&C had about
ten independent beginnings in Australia, United States an&urope; however,
Arti cial Life and Arti cial Evolution only came of age in the 1990s, when
computers were nally powerful enough to nd interesting reults.

From EC eld area, all EAs share the same evolutionary steps. Elamne
will progressively breed a population typically of thousansl of randomly cre-
ated candidate solutions over a series of generations. Usithe Darwinian
principle of natural selection, recombination (crossovgr mutation, gene du-
plication, gene deletion, certain mechanisms of developmal biology, and
rmly based on stochastic decisions, all EAs will eventually ieed a most t
individual to be called the solution of the problem.

Because of their analogy with living beings, there are sevérgerms in
EC that are not proper of Computer Science. With the help of the ark of
[75], [1B], among others, we can detach some important coptefor any EA,
including GP, to end up with a mini glossary of terms borrowedrbm Biology
and Genetics:

Individual a candidate or potential solution to the problem being opti
mized.

Chromosome, genome, genotype the representation or encoding for an
individual within the search space of a solution, speci c tolte problem to
be solved. Commonly, it is a vector which contains data that isupposed
to be enough to understand the solution if you know the phengpe.
Typically is a vector of numbers (binaries or real numbershut its form
is a key point in classifying historical EAs. All genetic opeators will be
performed onto this encoded form.

Gene Each element that, when combined with others, arises the chrooa
some (aka genome).

Phenotype  The practical meaning of a chromosome. Used as a key to un-
derstand information from the genotype (chromosome). Whea geno-
type is turned into a phenotype, the candidate solution acqtes its full
meaning.

Population  the set of all individuals. Typically, it does not change i size
from one generations into another. Within the lifetime of a gneration
it could grow up, though, to be reduced in the end of the cycle.

Landscape or environment the location where individuals survive; it
represents the problem to be solved. Typically, it is the stace of some
evaluation function. It is also described as the search spac

5IBM 650 in 1953.
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3. Theory

Fitness a characteristic of any individual that is a measure of how dapted
each one is to survive in a predetermined environment. Moreesg cally,
it is the measure of quality of a given candidate solution regding the
problem to be solved, allowing comparisons between di eremidividuals.
Note that this is a crucial characteristic: the best t individual within
the population when generation cycles come to an end is the éxed
near-optimum solution.

Evaluation or tness function this is a key part of an EA. It allows to
rate an individual (determining its tness) and is specic to the prob-
lem to be solved. The genotype representation of an individumust be
turned into a phenotype representation in order to be evalded. Typi-
cally, it determines the landscape (search space) of the ptem.

Generation or evolutionary loop a loop iteration executed by the EA.
Figure 32 allows the visualization of a generation. It typially includes
the following stages: selection of individuals to generatew ones (known
as parents), performance of proper genetic operators to generate new
individuals, evaluation of new individuals (akao spring or children),
and reduction of population to its original size.

Selection typically based on tness (there are some cases where it isma
dom), it menas the mechanism to select individuals to gendeanew
ones. Several strategies exist to select individuals to ggate new ones.
Those parent individuals in general are among the best t individuals
from its generation. Another use of a selection strategy is &h it is time
to reduce population; individuals that are departing from gistence are
commonly among the worst t individuals from its generation

Crossover or recombination genetic or variation operator If this ran-
dom operator is enrolled to be performed, it will mix one or mer genes
from some selectegbarent individuals (typically two) to generate com-
monly up to two o spring individuals. There are several strategies to do
SO.

Mutation genetic or variation operator If this random operator is enrolled
to be performed, it will change one or more genes (altering sage data)
from an unique selected individual to generate an unique o simg. There
are several strategies to do so.

Reproduction or elitism simply the copy of an individual from a gen-
eration into another. In some cases, the individual is repduced into
the o spring, without warranty if it is going to survive the population
reduction stage.

Reduction or replacement intending for imitating the way of predators,
natural disasters, diseases, and other catastrophes, pdgtion is reduced
at the end of a generation lifetime. This reduction, howevels always
bounded to keep population at its original size. This limitaibn arise
from some issues on computational implementations for EAs @is never
thought as a drawback. There are also several strategies to dm s
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Initial Population,
Randomized

Population
Reduction

Parents
Evaluation

Parents +
Offspring

Offspring
Evaluation

Best Fit

Individual,
.:: Solution ::.

Operators

Select
Parents
Apply Genetic

Figure 3.2: EA owchart: each loop iteration is a generationadapted from [75]

De Jong [40] shows in his work several discussions on how togmaetrize
EAs. We should not enter in details here, but there are lots ofriplications
on each decision to be taken and on each regularization of argaeter to be
done, e.g. size of a population, number of generations, tamation criteria,
probabilities for performing genetic operators, the choeereduction strategy.
De Jong presents some analysis that are worthy to understamghen one is in
the process of specialisation about EAs.

A brief eld guide to Genetic Programming

Besides all potentialities from GP, a brief discussion is psented in this section
about what distinguishes GP from other EAs and why is feasible think about
CASM through it. Perhaps, the most distinguish feature, andhe one which
gives more potential to GP, is the classic representation ah individual: the
genome is represented by an abstract syntax tree (see Figi®E8). Every time
it is said that GP evolves computer programs, one must thinkfahose trees
instead of lines of code. This kind of malleable-arrangemeand variable-
length structure made GP a really versatile technique.

In order to clarify the necessary terminology when addresginGP, an ar-
bitrary syntax tree has the structure of a special case of gva known simply
as trees. When representing algebraic expressions, tsegre graphical repre-
sentations of the pre x notation, also known as the Reverse Rsh Notation
(RPN). All entities in a tree is de ned as a node. The rst entity of a tree
is identi ed by being at the top and, most important, without connections
coming to it is known as the root. All terminations, i.e., the ones with-
out connections coming out of them, are named leaves . Entis that have
connections coming in and out are named internal nodes .

Symbolic regression, also known as data modelling, is the matoncern
of this work. Based on[[13], lets take a simple example aboutPGexecutions.
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3. Theory

Figure 3.3: Example of an abstract syntax tree for the computen
min(C 9+ x; x 2y), or, in RPN, (min (sqrt (+ 9 X)) (- X (* 2 y)))

Table 3.2: Preparation step for function approximation; adpted from [13].

Objective: Find program whose output matchesx? + x + 1
within 1 x +1 (data modelling)
Function Set (nodes): +, , % (protected division),
Terminal Set (leafs): x and random integer constants within[ 5; 5]
Fitness: sum of absolute errors forx 2 f  1:0; 0:9;:::0:9; 1:0g
(area between discretized curves)
Selection: Must de ne strategy before run, but it is regardless now
Initial population strategy:  Must de ne strategy before run, but it is regardless now
Parameters: Population size 4; no tree size limitsprobabilities for

crossover, mutation, and reproduction must be de ned
before run, but they are regardless now
Termination criterion: Must de ne strategy before run, but it is regardless now

Table 32 is the preparatory step where is given to GP a higlevel statement of
requirements [70], including theset of primitives (function and terminal sets)
that will constrain the search space. Figuré=3.4 summarizebd evolutionary
loop that took place, and TableC313 shows the tness of every dgividual from
each generation. Note that this is a minimization problem,sthe lower is the
tness, the better is the individual as a candidate solution

As one can note from this simple run, GP can take measured ptarfrom
some observed phenomena (here the functiotf + x + 1 was sampled at
x2f 10; 0:9:::0:9 109 to evaluate candidate solutions) and search for
a function that could explain them within some sort of interva (here, the do-
mainislimitedto 1 x +1). From arandom initial population and using
genetic operators, GP was able to search for a solution insithat landscape,
starting from some high-level directives (Tableé=3.2). To wé& e ectively, GP
must have function sets with the closure property{12], which eans that func-
tions must exhibit type consistency and evaluation safetye(g. the operator
%, protected division, typically forcesx 0 = 1, for any x). Also, the prim-
itive set (functions and terminals) must be su cient, which means that the
set of all the possible recursive compositions of primitigancludes at least one
solution [13].
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Parent: Random Initial Population

#1 #2 #3 #4
| 4
()} 1% 0 2 x
/
| 4
1 X x x 1 0
Offspring: Generation #1
#5 #6 #7 #8

Reproduction #1 Mutation on #3 Crossover #(1,4) Crossover #(1,2)

‘ ) @
@ (1) @
o ° 2 x 0 1 @
/ @

1 X X -3 (1) x

Figure 3.4. Summary of this simple run (see Table=3.2); dankelements were
randomly generated; dashed arrows indicates cut points to mgenes in related
crossovers; adapted from[13].

Table 3.3: Summary of this simple run (see Figure—3.4); notdat there is a
match (found solution) in generation 1; adapted from{13]

Generation Individual Function represented Fitness Note
0 1 Xx+1 7.7
0 2 X2 +1 11.0
0 3 2 18.0
0 4 X 28.7
1 5 x+1 7.7
1 6 $+2 20.6
1 7 X 28.7
1 8 X2+ x+1 0.0 ( match!
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There are several other issues that are not discussed here. Hm@ of this
section is to present some potentialities of GP, even with these of a mostly
graphical example.

3.9 Precision on measurements

One of the main concerns to engineers is about the robustnesfsa method
when the input measurements are taken with not ideal level of gcision. This
situation is very common in reality, as one could suppose, teise measure-
ments are taken with sensors and devices which are bounded taeutable
tolerances.

By the de nition of a well-posed problem, a minor variation @ input data
will result in minor variations of output data. This re ects a natural robustness
against low order errors. As a stochastic process, a measuest is subject up
to several random independent variables with possible di ent distributions
which will likely present a mean described by a normal distriltion (see central
limit theorem [76]). In order to simulate those lacks of absateness,i.e., to
presuppose data would contain tolerated noise, it is feabto assume that
noise would mostly present itself by being normally distribted (a Gaussian
distribution).

The proper procedure to add noise to data which is intended to ext
reality is somehow tricky. Parametrization for noise disibutions is both com-
plicated and dependent of experiments, once researchesldaot tell without
prior extended tests how t are their measurement processesd that infor-
mation can change from one experiment to another.

As a possible solution to the noise dilemma, signal procaesgiare has the
signal-to-noise ratio (SNR) metric which could be de ned ase dimensionless
ratio of the signal power to the noise power contained in a rexing and is
usually measured in decibels (dB). Engineers and scientist®uld use this
ratio to parametrise performances of signal processing sms when the noise
is normally distributed [77].

Therefore, this work adopts white Gaussian noise (WGN), de re by its
SNR, to be added to all mathematical generated data when tokemce to errors
is needed to be explored. White noise is an abstraction thas inot feasible
to exist, but engineers frequently use it to describe noisthat has a power
spectrum that extends well beyond the signal's bandwidth [[#]. Here, WGN
is used to simulate possible measurement errors. After botmordinates are
taken randomly and the known function is used to generate thésulated data,
noise is added to all of them in order to respect mathematicaélationships
and re ect measurement errors.

3.10 Discussion

The knowledge on subjects shown in this chapter is necessary etidw the de-
veloped method. The use of the Ritz-Galerkin method to projéthe solution
of a linear di erential equation onto a Jabobi polynomial orhogonal basis
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is the core to the following chapters. With the exception of GPthe other
aforementioned subjects are needed to complete mathematiderivations.

The proposed method takes into account that a desired GP appdtion
could evolve di erent types of linear di erential equations. For that reason,
the method itself should be obliged to handle generic linedr erential forms.

Note that all mathematical developments to be presented dooh consider
existing tolerances on measurements. Discussions on suaeasurement errors
are only presented in Section 8.3, part of the last chapter dfis thesis.
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Chapter 4

Ordinary Di erential Equations

4.1 Proposed method

In this chapter, the proposed method to solve linear ordingrdi erential equa-
tions (LODE) as de ned in Equation (34) is presented. As coulde inferred
and for the sake of clari cation, by using Jacobi polynomia as basis func-
tions, the proposed method solves di erential equations bidiing a polynomial
approximation for the di erential solution. The option here is to use Jacobi
polynomials parametrized with = =0 in order to be asymptotically simi-
lar to Legendre polynomials. This option is due to some propegs presented
by those polynomials, as (a) orthogonality to achieve a ni span of a com-
plete basis for a function space SectionC32 ; (b) derivati ves identity as
other Jacobi polynomials Equations (87I8) and (83223) ; (c) and the fact
that Jacobi-Legendre polynomials have weight function foinner products as
w(x) = (1 x)°@+ x)°=1 Equation (3[IT9) . Those properties are
essential to favour envisioned computational implementains. As can be seen
throughout this chapter, basis functions are not bounded toespect auxil-
iary conditions (initial or boundary) as in classical Galekin-based methods.
Instead, auxiliary conditions have a customized own treatnm¢ inspired by
concepts of ordinary system of equations and the way nite dirence meth-
ods [78] deals with themj.e., to include information about conditions into the
matrix formulation of the problem.

An important subject to keep in mind is that, as stated by [17,pp.453],
in order to implement a true Galerkin process, it is necessato carry out
integrations over domains. In other words, even if the probim refers to itself
as an initial value problem (conditions known at one point o), it is necessary
to de ne a full interval for the domain of calculation in orde to use Galerkin
method. This fact could lead to piecewise approximate solutis, as for FEM.
Note that functions which result in improper integrals shalbe avoided [17, p.
43]. However, depending on integration method, points ofrgjularity could be
avoided and a feasible approximation achieved.
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4. Ordinary Differential Equations

4.2 The unidimensional case

Developments start from the unidimensional (univariate) ase, a linear ordi-
nary di erential equation in the form of Equation (8=3). Assuning mapped
Jacobi polynomials as functions to build an orthogonal basiB and using
Equation (333), then Equation (37IB) is developed to achieve Eeqtion (Z71).

%

thn b n(X); LT m (O] = hon(X); s(x)i
0

3
I

PG () s(x)

tm P$O(); LIPS ()]

tm PUO() LIPS Y] = P ()is(x)

* +
X | R d .
bt PSO() Kq(X) ﬁpé{ "() = PU ()80 (4.1)
m=0 =0
where the indexn = 0 ::: N identi es the n'" equation from this system oN +1
equations; andN is the polynomial degree intended for the approximation by
the TGE.

4.3 Developments

In this section, two possibilities are derived here. The rsbne stands for inner
products over the intervala x b, as could be followed in Equation{212).

>(\l 2 0;0 )@ dq 0;0
tm PO (X)) Kq(X) ﬁpé{ '((x)) dx
m=0 g=0
Zb
= POY( (X)) s(x)dx

X\l Z° )@ ( m + +1
- (0:0) K q+1)

P2 ( (x)) dx

Zb
= POI((x) s(x)dx
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nooRe ?
b PrSO,O)( (X)) kq(X) (b( r;):(qr: -]':)1)

PO ( (x)) dx

Zb
- PrgO;O)( (x)) s(x)dx (4.2)

a

The second possibility is a variation achieved by exploitinghange of vari-
ables (Sectiori=316) to enable inner products over the intalv 1 +1, as
could be followed in Equation [(413).

oo x 2 9 b a
tn POOC) k() s PEO() S0 d
m=0 1 " g=0 b a dq " 2
21 b
= PPO() () od

1

/1
b aX X 2 . (m+qg+1)
= pa PO kO) gy Pra() d
m=0 =0 1
71
a .
=~ POO() s(x()d
1
/1
b aX X o ag . (m+q+1) o
- - - = (0;0) AT p(aa)
5 i b5 21 oo () ke(x() (m+1) Pm q( ) d
m=0 g=0 1
/1
a .
=5 POO() s(x()d

. 1 :
e g PETO) K ) D R ¢
m= g=0 1
1

= PYO() s(x()d (4.3

1
From both options, Equations (Z2) and [413), the latter is peferred to the
former. This decision has to do with strategies of implementain to improve

nal execution time performances. Note that Monte Carlo schemis here
adopted to handle those integrations, therefore integrasdwould have to be
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4. Ordinary Differential Equations

evaluated for a large set of points. The former option means dh for every
domain inside every cycle of execution, the full integrand ust be evaluated
that large number of times. Instead, the latter option requiesPn0 0)( ) P(q q)( )
to be evaluated a large number of times only once per executjoand every
domain inside every cycle of execution has to handle julsf(x( )) coe cients.

Thence, Equation (43B) could be converted to aAx = b-like matrix equa-
tion using identity in Equation (814), as seen in Equation{4l):

0 1
R
1 Q+ PO Q+ N+ g
0 1 0 1
R*i Py () s(x())d
g E@ % TR0 st @
E o ‘°°’(> s(x()) d
R
1 Qf Pv QF N°
L e e |

(4.4)
whereQ* = Q+1 andN* = N +1;andtheN* N* coe cient matrix is

detailed by Equation (4-5).

0 2 0 1 31

Doo( ) Don ()

154 ighe 4 PO() @ . K dd

] Dol ) Don()

LR - Doo( ) Don( ) T

154 gl 4 PO . K db
' Dool)  Daon()

R ~ Doo()  Den()

155 ke 4 PYO() @ . K dk
' Dool)  Dan()

(4.5)
((m+g+1)

whereDgm = Kq X( )

m+1)

Pl ( '), for the sake of readability.

Note that Wheg{usmg Monte Caﬁ,o integration to build the coe cient ma-

trix, the identity
random points.
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4.4. Solving ODEs

4.4 Solving ODEs

In order to solve di erential problems, there is need for prioknowledge on the
unknown solution in the form of complimentary equations, knen generally as
auxiliary conditions. In the literature, those conditionsare known as initial
value conditions or boundary conditions, depending on hov¢y are presented
for the respective problem.

The way to build or choose basis functions is implicit to Gal&n method.
All functions in the basis span must satisfy some auxiliaryanditions, usually
linear homogeneous boundary conditions{67]. Using Jacgiolynomials as
basis functions does not always respect this requirement. N&h using Jacobi
polynomials as basis, some di erential problems present theselves with their
initial or boundary conditions neglected, leading to ill-psed problems (the
coe cient matrix could be either rank de cient or ill-condi tioned). Actually,
this is the case for the vast majority of real world related pblems.

Auxiliary conditions

Conditions refers to known values assumed by the unknown solori of a di er-
ential equation taken over a predetermined boundary or frorthe initial state
related to the problem itself. Literature classi es them wihin some types of so
called boundary conditions (BC):Dirichlet BC (1%-type, function values on
the boundary), Neumann BC (2"-type, derivative values for the function on
the boundary), Cauchy BC (same as imposing both a Dirichlet and a Neumann
boundary condition at the same point on boundary, sometimesalled initial
value conditions), Robin BC (3"-type, linear combination of function values
and derivative values for the function on the boundary)mixed BC (di erent
conditions on disjoint parts of the boundary).

Those are conditions that augment their respective di erentil equation
and that the solution must satisfy on the boundary (ideally 6 ensure the
existence of an unique solution). Also, they all could be dagbed as a lesser
order di erential equations themselves, as in Equation{4.6)

He[u(X)]ox, H [0X)]=x, = Ve
o i
hw;c(X) dWO(X) = Ve (4.6)

w=0 Xx=X¢

wherec is a subscript that refers to thec” known condition of the di erential
problem; H is a linear di erential operator of lesser order tharL.; W is de ned
here as the maximum order of all known conditions (normallyhe order of the
related di erential problem minus one); X is the point within the domain of
calculation at which we can determine the value dfl ;[u(x)] = V.; and hy.c(X)
is the w" coe cient for the nite sum of H. terms.

Equation (28) means that, atx = X, u(x) subject to H, has a known
value ;. Regarding boundary of the domain, note that if an orde0 is de ned
for a given condition, that could de ne a Dirichlet boundarycondition. If the
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4. Ordinary Differential Equations

order is a natural number greater tharD, then a Neumann boundary condition
could be de ned. More than oneh,,..(x) 6 0 in eachH. can be used to de ne
Robin boundary conditions. If allx. are at the same point within the domain
and all H. have distinct orders (as in initial value problems), thoseanditions
could be Cauchy-like conditions.

Expanding the left hand side of Equation [416) and substitutig u(x) by
the trial function 0(x) in Equation (8-I1), then Equation (Z7) is derived:

HC[O(X)]szc =V

#
X .
He  tm PYO( (%) =V
m=0 x=X¢ |
. (x)—W * b P00 ( (x)).) =V,
) w;C dXW . m m C 1]
( w=0 m=0 ) x=X¢
X X av
e (X) tn =P ( (X)) =V
’ dxw
w=0 m=0 x=Xe¢
e w000y =,
w=0 Y m=0 dx" X=Xe ’
X ( m+ w+ 1) (w w)
o hw;c(xc)m (b a)w ( m + 1) ( (xc)) -
X X 1 ( m+ w+ 1) (w;w)
. tm . W hw;c(X¢) W Pmw ( (X¢)= Ve 4.7)

where (X.) =2 % 1. Note that the identity in Equation (3223) should
be used to achieve this result.
The matrix formulation for the Equation (4-2) is given in Equation (4-3).

0 1 1
Ha(X1) HW (X 1)
w . . .
1 VB E§0&1
HS&(XD Hin(X) & °
g}
. =~
9 <C) © ¢ ;
Ho, (Xc) Ho (Xc) g o
W .
15k Y B K
Héﬁé(xc) HG (Xe)

[

0
Vi

= % \{2 g (4.8)
Ve
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whereH i (Xc) = hue(X o) Pt PYYD ((X,)), for the sake of readability;
and the coe cient matrix here is of orderC N7 (registering C conditions).

Using the fact that when well-conditioned, a system of equatns is formed
by coupled equations which refer to the same solution, this woproposes an
approach to deal with auxiliary conditions: to substitute egations from the
GSE (bottom rows in its matrix formulation, in Equations (4d4) and (4-5)),
by equations derived from those conditions, those rows buiits presented in
Equation (28).

The nal Galerkin-like system is presented in Equation [419).

0 1
1 Q+ PO Q+ N+ é
1 N RP * NT 0 R
= T ROO() sx( ) d
: 0o 1 TPIC) sx( ) d
. o :
R . )
1 Q Pyc Q N %m §= 1RO () six( ) d
. V1 §
tN .
1 Wt W' Nt @ :
Ve

1 w* W* N* ®#o)

N+ N*
(4.9)

Example

Two examples are presented in this section, one from an unedlmped oscil-
lator problem and the other from a Poisson equation for elewistatics.

Under-damped oscillator An oscillator problem is identi ed by the di er-
ential equation for a mass-spring-damper system:

m d—Zu(t) + bgu(t) + ku(t)=0
dt2 dt -
whereu(t) is the displacement of the mass in function of timen is the mass;

bis the damping coe cient; and k is the;qsgring constant. Quantities known as

the undamped angular frequency o = % and the damping ratio = prm—T

are also useful to classify this system. The oscillator becesmmunder-damped
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4. Ordinary Differential Equations

Using degree 12 for polynomial approximation; and 262144 points for Monte Carlo integration

Known solution

0.8 \\ = = = Approximation
0.6~
04—

A
02 o e
- -~

02
\ /
0.4 N

0.6 1 1 |
[

Figure 4.1:  Solution to an under-damped oscillator problempolynomial
approximation of degree 12.

when 0 < 1. In this very case, the di erential equation has the following
known solution:
n #

P—s !
ut)= e '°' u)costly, 1 2 + 0“60)+Ut2(0)

Mo

P
sin tlg 1 2

whereu;(0) stands for Su(t) ._, .

As a numerical example, considem =2 kg, b=1kgs *andk =2kgs 2.
Also consider initial valuesu(0) = 1 and u;(0) = 0. The known solution to
this numerical example is shown in Equationd{4-10):

" ! I#
u(t)= cos xp_ +p1_53in xlol_5 ex X
- 4 15 4 P

(4.10)

Even that this is considered an initial value problem, the prposed method
requires the de nition of a domain. In thiscasep t 15was adopted. The
system of equations built by the proposed method choosinggtee 12 for the
polynomial approximation is shown in Equation {4-11). Figured_l shows on
top a joint plot of both the TGE polynomial approximation and the known
solution, and on bottom the error in function oft is found by subtracting one
from the other.
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4.4. Solving ODEs

0 1
to
-
t12
0 4:00 26710 1 2:1310 ' 26710 ! 71110 ' 2:6710 1 1:49
1:4610 12 1:33 26710 1 35610 1 26710 1 99610 ! 2:6710 1
1:5310 ° 1:0210 ¢ 80010 ! 26710 1 49810 1 26710 1 1:28
1:5310 % 1:5310 5 30510 ¢ 571101 2:6710 1! 614010 ' 2:6710 1
1:5310 ® 1:0210 ¢ 1:6110 5 61010 © 44410 ! 267101 7:8210 1
0:00 1:5310 5 3:0510 & 1:9310 ® 1:0210 5 36410 ! 2:6710 1
1:5310 ° 1:0210 ¢ 1:6110 ® 6:1010 ® 2:7510 ® 1:5310 ° 3:0810 !
3:1410 5 1:5310 5 3:0510 © 1:9310 5 1:0210 5 4:3710 5 2:1410 5
1:5310 ° 1:0210 ® 1:6110 > 6:1010 ® 2:7510 ® 1:5310 > 7:2210 °
1:2810 ¥ 1:5310 ® 3:0510 © 1:9310 > 1:0210 ® 4:3710 ° 2:1410 5
1:5310 ° 1:0210 ¢ 1:6110 ® 61010 © 2:7510 ® 1:5310 > 7:2210 5
1:00 1:00 1:00 1:00 1:00 1:00 1:00
0:00 1:3310 1 4:0010 1 80010 ! 1:33 2:00 2:80
2:6710 ! 2:56 26710 1! 391 26710 1! 555 10 gl
1:92 26710 1 3:13 26710 1 4:62 26710 1 0
2:6710 1 2:35 26710 1 3:70 26710 1 5:33 0
1:56 26710 1 2:77 26710 1 4:27 26710 1 0
2:6710 1 1:85 26710 1 3:20 26710 1 4:84 0
92510 1 26710 1 2:13 26710 1! 3:63 26710 1 0
2:6710 1 1:.07 26710 1 2:42 26710 1 4:05 0 (4.11)
2:6710 1 26710 1 1:21 26710 1 2:70 26710 1 0
2:8510 5 2:3510 ! 2:6710 ! 1:35 26710 1 2:99 0
1:1810 4 36610 ® 2:1110 ! 2:6710 1 1:49 26710 1 0
2:8510 ® 1:8610 4 4:5810 5 19110 ' 2:6710 1 1:64 0
1:00 1:00 1:00 1:00 1:00 1:00 1
3:73 4:80 6:00 7:33 8:80 10:40 0

Finally, Equation (412) presents the coe cients of the TGE whth is the
approximate solution to this under-damped oscillator prolem. Sub-indices
relate each coe cient to a Jacobi polynomial, asPéO;O)( (X)), Pl(o;o)( (x)), and
so on, up toP9?( (x)).

Up Uz Ui2 =
3:4910 2 1:15101 260101 387101 463101 2:68101 223101

;
34210! 698102 791102 385102 523103 53410 3 (4.12)

Simplifying the expanded equation with the aid of Maxima CAS sof
ware [79], the polynomial approximation solution is shown iEquation (2-I3):

o(t) = 1:1110°x*2+1:05108x* 41810 "x'°+9:2210 ®x°
1:19104x®+8:8010 “x” 2:9510°3x® 1:49103x°
+2:3510°x*+8:8410%x® 50110*'x>+3:4710°x+1 (4.13)
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4. Ordinary Differential Equations

Poisson electrostatic Adapted from [80, pp.210], consider the following
spherical problem in Equation {(4-14):
r2()= 4 (r); (4.14)

where' is the electrostatic potential in function of radiusr; and
r

3
N=Q - exp r

is a static spherically symmetric Gaussian charge densitgentred at the origin
in real space.

Note that the di erential equation now is ordinary with resped to radius,
once both the Laplace operator in spherical coordinates arttie spherical
symmetry rede nes the problem to be solved, as shown in Equatiq4d-15):

r
(r)+ rgd_dr nNn= 4Q - ’ exp r?: (4.15)

d2
dr2
When considering the initial value' (0) =2 Qp —, the known solution [80]
for this problem is

"(r)= FlQ erf(p_r):

As a numerical example, consider the electric chargg= 1 and the Gaus-
sian parameter = 0:5. The known solution is shown in Equation [Z-16):

p_ !
o1 2
(r)= ;erf - T (4.16)

Also, this example is considered an initial value problem. Tehproposed
method requires the de nition of a domain, therefor®d r 10was adopted.
The system of equations built by the proposed method choosinggree 12 for
the polynomial approximation. FigureX2 shows on top a joinplot of both
the TGE polynomial approximation and the known solution, and a bottom
the error in function of r is found by subtracting one from the other.

Equation (EZ17) presents the coe cients of the TGE which is the pprox-
imate solution to this Poisson equation for electrostatics Sub-indices relate
each coe cient to a Jacobi polynomial, asP?( (x)), PL%?( (x)), and so on,
up to P5”( (x).

T

"o "1 "12 =
2:88101 3211011:9010! 658102 6:2110°2:92101 2:4310°2

T
1:14102 1:8010 % 2:0810 32:0110 3 7:5610 “8:9310 5 (4.17)

Simplifying the expanded equation, the polynomial apprornation solution
is shown in Equation (4-18):
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4.4. Solving ODEs

Using degree 12 for polynomial approximation; and 262144 points for Monte Carlo integration
0.8=x .

. Known solution
N - = — Approximation
0.7 N
N
0.6
05
<
04— S
~
0.3 Tl
02 T m——
L S e
0 | | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

x10 Error [ max abs / mean/std]: 1.201764e 03/ 1.056926e 03/8.018708e 05
06 T T T T T T T
0‘8 \/\A/ ]

o T~ — e g

12— —
14 | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

Figure 4.2: Solution to a Poisson equation for electrostatisubject to a static
spherically symmetric Gaussian charge density, polynontiapproximation of
degree 12.

"“(r)=0:059r*? 0:260r'' +0:194r'°+0:485r° 0:768r®
+0:077r" +0:437r®  0:291r°+0:137r* 0:165r° +0:192r2
0:195r +0:197 (4.18)

Extra bits

Lets remember the example in FigureTl.2 from Chaptér 1. This g&m is aimed
to present results from the proposed method applied to thatasne specic
ODE: @ g
N + — =
dx2y(x) OIXy(X) 0
with respect to di erent set of initial conditions, one for the left system:
d (%) =1 and y(0) =0;
dxy x=0 B Y o
and other for the right system:
d (X) = landy(0)=0:
dxy x=0 B Y o
From the same di erential model, two di erent conditions acheve two dif-
ferent solutions, one related to the left system (see Fige 2-3):
P(x) =5:15103x> 3:86102x*+1:65101x® 5:0010 *x?+ 1:00x
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4. Ordinary Differential Equations

Using degree 5 for polynomial approximation; and 32 points for Monte Carlo integration

0.7~
Knownsolution| - e
06~ - Approximation | e
T T
0.4~ s
0.3 ___—"—
0.2 __,—"
01f =T
-
o*"’
01 i i i i i i i i i i
o 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
x10° Error [ max abs / mean /std]: 4.38650le 06/ 2.005248e 06/1.611367e 06
T T T T T T T T T
0 _
ok _
a4k !
6 i i i i i i i i i
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 4.3: Approximation by the proposed method to the ODE hat
generated Figure112, left plot; same dierential as in Figue @4, dier-
ent boundary conditions. Solutiony(x) = 1  exp( x) approximated to:
P(x)=5:15103x> 3:86102x*+1:65101x® 5:0010 1x2+1:00x.

Using degree 5 for polynomial approximation; and 1024 points for Monte Carlo integration

01
Known solution
O -~ = = = Approximation
01l Tl
021 T
03F Tl
04 el
05 Tmm——ll
LT L L R ESTTIIE THTRTR OIS SRS S I e  i
07 i i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x10° Error [ max abs / mean /std ]: 1.957917e  06/5.091257e 08/1.058080e 06
2 T T T T T T T
0 \/
2 i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.4: Approximation by the proposed method to the ODE hat
generated Figure 112, right plot; same dierential as in Figee 223, dier-
ent boundary conditions. Solutiony(x) = exp( Xx) 1 approximated to:
Y(x)= 5:15103x°>+3:86102x* 1:6510'x3>+5:0010*x?> 1:00x.

and the other to the right system (see Figure—414):
P(X)= 51510°x°+3:8610°2x* 1.6510x3*+5:0010 x> 1:00x:

In this simple example, as both data has the same di erential odel, a
possible discussion to be attended would be if they represéime same system
in di erent states or not.
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4 5. Discussion

4.5 Discussion

This method is a customization of Ritz-Galerkin method adophg Jacobi poly-
nomials as orthogonal basis functions. The customizationeB on the use of
extra equations which re ect boundary conditions to cover th absence of those
when dealing with the adopted polynomial basis.

Decisions taken during mathematical derivations are due tenable a low
computational e ort for the method, e.g, a truncate polynomial basis, Legendre-
like polynomials, change of variables to source function.

As seen by results, the method is robust and can present faip@oxima-
tions to di erential solutions. Note that di erent function b asis could result in
di erent approximations. In the next chapter, the expansionof this method
to multivariate domains is shown.
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Chapter 5

Partial Di erential Equations

5.1 Proposed method

This chapter presents the proposed method to solve linear pal di erential
equations (LPDE) de ned in Equation (322). Same assumptions &m Sec-
tion &1 are taken. Basically, developments addressed heree due to exten-
sions for the method proposed from LODESs to LPDEs. By using comiations
of Jacobi polynomials as basis functions, the achieved sidm is a multivariate
polynomial approximation.

5.2 Classi cation of PDEs

When addressing to PDEs of the form in Equation{5.1), as well as F3 in
more than two variables, there are three main types of PDE depding on the
discriminant AC B2 [81], as shown in Table5l1.

@ @ @ o
A @u(x,y)+2 B @X@u§xy)+ C @—glu(x,y) =

F Xy u(xy); @@)g(x; y); @@;(J(x; y) (5.1)

whereA, B, and C are the coe cients of the second order derivative terms.

From the point of view of engineering, this classi cation ismportant be-
cause if a type of PDE is identi ed for a problem that could leado known
solutions. For the proposed method, the solver scheme useded not make
di erences between any of those types.

5.3 Powers matrix

The proposed method is supposed to be generic. Also, the numioé inde-
pendent variables, the desired polynomial degree for the @oximate solution
and the di erential order, those all are known only at executia time. Hence,
a supporting scheme needed to be developed to handle combonial degrees
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5.3. Powers matrix

Table 5.1: Types of PDE, adapted from[{81].

Type De ning Condition Example

Hyperbolic AC B?<0 Wave equation

Parabolic AC B?=0 Di usion or heat equation
Elliptic AC B?>0 Laplace equation

and orders to be used in function of the number of variables.sfan example,
an arbitrary three-variate di erential equation such as:

e . ee, o
@u(x,y,z) @X@u)gx,y,z)+ u(x;y;2) =0

has the rst derivative term is of order 3 (3 with respect to x, and orderO for
y and z), the second term of order2 (1 with respect to x and y, and order0O
for z), and a third term of order O (for x, y and z).

This generic scheme was developed using the idea of integertifan, a
form of representing positive integer numbers as a sum of [oge integer
numbers. For example, a full partitioning of the numbel5 results in the set:

S5

4+1,

3+2;
3+1+1;
2+2+1;
2+1+1+1;
1+1+1+1+1

Algorithm 21 (adapted from integer partition algorithm ZS1 B2]) presents
a partitioning scheme capable of limiting the number of sumands (parts) an
integer could be represented by.

Algorithm Bluses Algorithm 2 to prepare a list with permutation sequences
from all zeros up to a predetermined degree, respecting thember of con-
sidered variables. Each sequence from that list representsetdistribution of
either degrees to polynomials or orders to di erentials.

Therefore, multivariate cases could bene t from this limitel partitioning
scheme in order to keep track of both degrees in multivariaggolynomials and
orders in partial derivatives. Table[52 presents an exanmglvhere there is need
to enlist degrees up to the8" with respect to a bivariate domain. The output
of Algorithm 8, those powers (degrees or orders) listed, aiid be known as
the powers matrix. Note that hereby the powers matrix when id#i ed by

ni keeps track of polynomial degrees and when identi ed by, keeps track
of di erential orders.

The formula to learn about the number of all possibilities (lhes of the
powers matrix) is given in Equation (52).
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5. Partial Differential Equations

Algorithm 2 Integer Partition ; enlisted in out are all unique possibilities
of v summands for the integem, regardless order; adapted fromi{32]
Require: n>0”2v>0
x (f n; 1 :::1g (ensure length:n)
m( 1
h( 1
q( O
aux (f x[0:::m 1];0; :::0g (ensure length:v)
out[g][:::] ( aux
while x[0]6 1 do
if x[h 1] =2 then
m( m+1
x[h  1]( 1
h( h 1
else
r( xh 1] 1
t( m h+1
x[h 1]1( r
while t r do
h( h+1
x[h  1]( r
t(t r
end while
if t=0 then
m( h
else
m( h+1
if t> 1then
h( h+1
x[h  1]( t
end if
end if
end if
aux (f x[0:::m 1];0; ::: 0g (ensure length:v)
q( gq+1
out[g][:::] ( aux
end while
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5.4. Multivariate adjustments

Algorithm 3 Powers Matrix , enlisted in powsare the multivariate (v vari-
ables) polynomialn-degrees or di erentialn-orders.
Require: n>0”2v>0
q( o
ipow (f 0; 0; ::: 0g (ensure length:v)
powdd][:::] ( ipow
q( gq+1
for p( 1to n do
ipow (integer_partition( p; v) /* Algorithm 2/
r( O
for i ( Oto ipow:size() 1 do
aux (- ipow[i][::]
pwall[r][:::] ( aux
r( r+1
while there is still a valid permutation of aux do
pwall[r][:::] ( next permutation(aux)
r( r+l
end while
end for
sort(pwall, reverse_lexicographic)
fori( Otor 1 do
powdq+ i][:::] ( pwall[i][:::]
end for

a( q+r
end for

5> (n+v)!

Y (5-2)
where n is the maximum degree or order desired; and is the number of
variables.

Regarding Tablel22, this formula could predict the examplpowers matrix

number of rows: &2 = 10.

5.4 Multivariate adjustments

In order to expand this work from ordinary to partial LDESs, sone concepts
must be revisited. First, a multivariate set of basis functins and a de nition
for a proper inner product must be built. Equation (53B) refes to the inner
product de nition which is extended to support multiple integrations. Note
that the use of Legendre polynomials (= = 0) simpli es this e ort, once

w(x) =1 whatever the adopted number of variables:

o B2
hf (%); g(>) i = e f (%) g(x) dx (5.3)

[
D times
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5. Partial Differential Equations

Table 5.2: Examples of integer partition of number® upto 3 with 2 parts
maximum (Algorithm 2) and 3 degree polynomials 08 order derivatives
with 2 variables (Algorithm B); this should be called the powers niax.

Integer Partition Powers of
i[0] i[1] Xo X1
0 0 0 0
1 0 1 0
2 0 0 1
1 1 2 0
3 0 1 1
2 1 0 2
3 0
2 1
1 2
0 3

whereD is the number of independent variables (dimension) from théomain
of the problem.

In order to be solved for the unknown coe cients of the expansn, the
GSE is built as shown in Equation [(514):

h n(3); RIOGATT Mo * =
RR bR: (5.4)
n(%) L [0(%)] s(x*)g dxodx;:::dxp 1 =0

ap a a
0 a1 D 1 n=0

where this system ha$l * equations (see Equation{5.2), fon = N andv = D);
x is the vector ofD variables(Xo; X1;::: Xp 1)T; and a; and by are thei-th lower
and upper limits of integration, respectively, fori =0;:::D 1.

The TGE must be adjusted as in [(B15):

N 1
a(x) = b i (%) (5.5)
i=0
where (%) is a multivariate basis function from a nite basis set with a pan
of N? functions.

Multivariate mappings follow Equations (3=24) and [(3225) foreach dimen-
sion. In other words, linear maps likex; 7! ; and ; 7! x; are de ned in the
same way for each dimension with respect to their respective inferior and
superior limits a; and b.

A proper basis set is built based on those linear mappings awth combi-
nations of univariate polynomials, supported by the powermatrix from Al-
gorithm B. Each one of those mappings and Jacobi-Legendre yy@mials are
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5.4. Multivariate adjustments

with respect to each variable that constitutes the domain. TH multivariate
basis set is shown in Equationd5.6):

) ( 1 | ) N7 1
B=1f n(®0iy, = PO (1 x)) (5.6)
i=0 n=0
where ;i is the element located at the n™ row and the i" column in the
powers matrix (like the one presented in Tabl€5.2) evaluadecase by case.

As an example, ifN =3 and D = 2, the 8" basis function with reference
to Table 522 would be:

7(0;x1) = PV (o(x0)) PO (4(xa):

Each basis function is essentially the product dD univariate polynomials
with degrees that sum up toN. This is very handful when analysing multi-
variate derivatives with the product rule. In this way, the mutivariate context
could help to de ne derivatives for those basis functions,sain Equation (57):

' #
by 1 @vi ! . y 1 @-i .

o POPGI) = PR () =
j=0 @x" L, " o @ "

y 1 ) ) o
(b ( anil) -::i (q,l +]:21) P(n;iq”’ Z:) (ix)) (.7
i=0 n;i

where ; is the element located at the n™ row and thei™ column in the
respective powers matrix; and 4; is the element located at the " row and
the it" column in the respective powers matrix resulted from Algattim 8 with
n= Q andv = D. Note that identity in Equation (3223) is still useful here.

As another example, ifN = 3, Q = 3 and D = 2 are adopted, the7™"
multivariate derivative taken over the 8" derivative of the 8" basis function
would be:

@ @ (0;0) @ (0;0)
——— 7(Xo;X1) = == Py X — P X1)) :
@3 @x 7(Xo0; X1) @3’ ( o(X0)) @x 1 (1(x1))
Multidimensional change of variables should also be considd when ex-
panding the ndings from ODEs to PDEs. The multidimensional dewative is
then shown in Equation (58):

" #
D( 1 @q;i

=0 @X

f (Xo; X1; 11:Xp 1) =
#

¥ 1 ol q;i
b Zai gq;i f (Xo( 0); Xa( 1); :::Xp 1( b 1)) (5.8)

i=0

as well as the multidimensional integration is presented iEquation (59).
Note that both of those have a role in the new multivariate apmach.
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5. Partial Differential Equations

2o 2o B 1
f (Xo; X1; :::Xp 1) OXodXxy dxp 1=
ap ai ap 1
D(lb a{_2121 Z1
o f (Xo( 0); X2( 1);:i:Xp 1(p 1)) dod1 dp 1
i=0 11 1

(5.9)
where the determinant of the Jacobian matrix) = Q,Dol Gx - QPol b3 s
both constant and the result of the product on the main dlagomi of the Jaco-
bian matrix, due to the linear nature of each respective dinmsional mapping
i 7! Xj.

Updated coe cient matrix

To update the coe cient matrix is the same as to augment its uivariate
version. Starting point is the following unidimensional exgession excerpt from
Equation 4-3:

SR S (m+q+1)

; (a;9)
B KO PPPO) Ry P d

m=0 1
where each line with respect t;mm = 0:::N contributes to the nal matrix
representation.

The new expression to build the multivariate coe cient matrix is presented
in Equation (6-10), each row with respect tan =0:::N? 1.

N 1 g{lum(l 1 #lel Z1
tim o a) " Ka(Xo( 0);:::%p 1( b 1))
m=0 =0 i=0 101 1
¥ 0:0 ! D(1( mit it 1) S ) ’
POY () 1w 2T plaia) () doiiidp 5 (5.10)

i-0 i=0 ( m;i +1)

The multivariate coe cient matrix is then built as shown by Equation (5-11).
!

— Y 1 .__Dfl 1
Gi o= 1 . W ...izo W
" #
Y1 it _
Dq;m("): kq(xo( 0);:::XD 1( D 1)) ( mil + q||+1) (mCIJIv ql)( )

( m;i +1)

i=0
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5.5. Solving PDEs

Doo(") Done 1(7)
DQ? N? —
Dq- 10(") Do? 1n2 1(7)
2 nt y 1 # 3
G =4 POY (1) Do w2 dodiiizdxp 45
101 1 1=0
1 Z1 y 1
S(n) - P(O;O) . dadq:::d
11 (1) s(xo( 0);iiixp 1(p 1)) dod 1iiidXp 1
11 1 =0
0 1
G1 o ng N? g
0 1 0 1
&) o S
G Q? GQ? N? by Sgl)l
o k= _ (5.11)
: E tne 1 S£N1 b
G o2 Gg\lo Nl?)
L N? N? ]

5.5 Solving PDEs

As discussed before, when solving di erential equations, these of Jacobi poly-
nomials as basis functions almost ever fails to respect alixiy conditions. It
is very unusual to the coe cient matrix of the GSE not being rank de cient
or even ill-conditioned. In the rare cases where the existenof a solution is
veri ed without further data, specially when dealing with homaeneous di er-
entials, such solution is trivial (all coe cients of the TGE are zero), hence not
of interest. The desired solution must be non-trivial and umjue, both by the
necessity of a model and by the fact that, if a real system is rdelled by a
di erential equation, the solution is observable in reality

As normally found in the literature about PDEs, auxiliary condtions are
functions by themselves. Even based on Galerkin method, thete proposed
method cannot deal with the existence of unde ned independewariables
within boundary conditions respective equations. The propesl method re-
quires scalars evaluated on some points over the domain. Thaplication
is that all auxiliary conditions need to be discretized ovevariables they are
functions of.
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5. Partial Differential Equations

So, instead of using function-like auxiliary conditions,le proposed method
requires a set of known values from those conditions over theespective origi-
nal domains. The here proposed workaround is to de ne repregative points
on the boundary and to evaluate the original conditions thex, as if those
conditions were sampled. The required exact number of points strongly
dependent on the coe cient matrix either rank or condition rumber. As an
initial guess, an empirical recommendation is to choos® points per condi-
tion, where D is the total number of variables, and after start to iteratively
increase that number until the coe cient matrix become fullrank. Note that,
if the coe cient matrix is already full ranked and well-conditioned, a minimal
number of points must be chosen anyway to avoid raising a tisd solution.

Keep in mind that this method is supposed to support computeautomated
system modelling for real systems, so the solution is supgdsto be observable
in reality. The feasible expectation is that at some step of #iterative aggre-
gation of those points as conditions, solution becomes pitds to be found.

Updated auxiliary conditions

Starting from the following excerpt from Equation (47):

X X (m+w+1)

I TR S N

(W w)
(X))
NG

m=0

the multivariate version could be derived, as shown in Equatio(b=12):

N¢ 1 wé 1 "D( 1 #
" b &)™ We o fnia
m=0 w=0 =0 (II #
Y10 i+ witld) :
m;i w;i P( wisowi) X (9 512
(m+l o D o1

i=0

Finally, from Equations (6&I1) and (571IR), the proposed methd achieves
the nal multidimensional Galerkin-like system as presergd in Equation (5-IB):
!

Y 1 1 Y 1

Biwr= 1 ———— —
s G R CEIEY

! ( mi t w;i+l)P(w;i;w;i)

Bé\f)m X(C) = hW;C X(C) ( -+ l) mi wi
mjl

0
(C) %
Bw> n2 =

; X i(C)

i=0
1
Boo X(© Bon? 1 X©

B> 1:0 )‘(‘(C) Bw> IN? 1 X ()
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5.5. Solving PDEs

0 1
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Examples

In this section, three examples are shown, each one from a diestt PDE type
as classi ed in Table[51l. As can be seen, the same proposedhud is applied
to all of those problems.

Hyperbolic equation Starting with a simple dynamic one-dimensional wave
PDE problem:

@ —u(x;t) @

@% @
whereu(x;t) is the height of the wave in function of lengthx and time t. The
domain of calculation isO<x < 1; t> 0. Boundary conditions that augment
this PDE are:

—u(x;t) =

(
(BC] u©;t) =0
( uL;t)=0
finitial value] 106 0) =sin( x)
u(x;0)=0

whereut(x t) is another way of representm%tu(x t), ug (x;t) would represent

u(x t), and so on.
The known solution to this example is:

ot

u(x;t) =sin( x) cos(t)
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5. Partial Differential Equations

Using degree 8 for polynomial approximation; and 1024 points for Monte Carlo integration

Known solution
Approximation

0 . 0.2 0.3 0.4

0.5

0.6 0.7 0.8 0.9 1 0

Error [ max abs / mean /std ]: 3.530050e 03/ 1.990212e 04/7.412901e 04

01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

Figure 5.1: Solution to a dynamic one-dimensional wave prigm; approxi-
mate solution adopts a degree 8 bivariate polynomial.

As aforementioned, the proposed method cannot deal with theistence
of unde ned independent variables within boundary conditios. Also, due to
characteristics of the proposed method, the initial valuerpblem needs to be
con ned in time. To achieve that, the new adopted domain forhis example is
O0<x< 1; 0<t< 1 Also, following the proposed workaround, the boundary
conditions to be considered in this numerical example are:

u@; 0)= 0; u(0;3)= 0

u(0; 2)= 0; u(;1)= 0

u@; 0)= 0; u(; 3= 0

u®; 2= 0; u(l;1)= 0

u(0:2; 0) = sin(0:2 ); u(0:4; 0)= sin(0:4 )

u(0:5; 0) = sin(0:5 ); u(0:6; 0)= sin(0:6 )

[IC] u(0:8; 0) = sin(0:8 )

u(0; 0) = O; u(3;0)= 0
u(3;0)= 0; u (1,0 = 0

Note that the option for equidistant points from domain limits was taken,
with variation of t in boundary conditions (wherex = 0) and of x in initial
conditions (wheret = 0). Also that to evaluate values at boundary, functions
from original conditions were used. Observe that two pointhat would appear
derived from latter initial conditions  (0;0) and (1;0) could not be used
due to previous appearance in former boundary conditions.

Figure BZ1 shows on top a joint plot of the TGE polynomial approxnation
and the known solution, and on bottom the error as the di erencérom the
approximation to the known solution. Note that error has a mea value of

210 # and a standard deviation of7 10 *.

Finally, Equation (5-12) presents the coe cients of the TGE whth are re-
sponsible for the approximate solution to this dynamic ondimensional wave
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5.5. Solving PDEs

problem. Sub-indices relates each coe cient to a product odacobi polyno-
mials whose degrees are tracked by the proper row in the resipee powers
matrix, as in POO(x 71 o) POt 71 1), POOx 71 o) POt 7 ), and
so on, up toPV(x 71 o) PV 71 ).

;
Up U Uy, = 1:61510* 0 0:774 4:01810% 0

4:01810% 0 (0834 0 0143  1:48910* O 1:64010°

0 1:48910% 0 6:315102 0 0:156 0 5:75010°
1:21210% 0 211510* 0 2115104 0 121210% 0 192910°
0 1273102 0 707210°% 0 148410* 7:08310° 0O 4604104
0 130210%° 0 460410* 0 7:08310° (5.14)

Simplifying the expanded equation also with the aid of Maxima CA soft-
ware [79], the polynomial approximation solution is shown iEquation (6-15).

0(x;t) = 9:116 10 2t8+0:145t"+2:552x%t® 2:552xt® 0:649t°+3:035x%t°
3:035xt° +0:678t° +6:381x*t*  12762x3t* 9:737x*t* +16:118xt*
0:373t* +5:059x*t3  10:118x3t3 +6:779x%t>  1:720xt> + 0:128t3
+2:552x%t2  7:657x°t? 9:737x*t?+32:236x°t2 2:239x*t?> 15155xt?
1:888102t2+1:012x%t 3:035x°t +3:389x*t 1:720x3t + 0:383x°t
2:87210%xt+9:11610%x® 0:365x’" 0:649x°+3:224x> 0:373x* 5:052x°
1:888102x2 +3:143x (5.15)

Parabolic equation Here is a di usion problem, the homogeneous heat con-
duction equation with insulated boundary conditions:

@
2 . . —
@?(u(x,t) @ltJ(X,'[) =0
where u(x;t) is the temperature distribution function of a wire (with length
L); and the positive constant 2 is the thermo di usivity constant of the wire.
The domain of calculation isO < x < L; t> 0. Boundary conditions that

augment this partial di erential equation are:

U(0;t) =0
U(1;t) =0
[IC] u(x;0)=f(x)

A numerical example is presented, with = 1; L =1;andf(x) =1+
cos(x )+ 0:5 cos(3 x ). The known solution to this example is:

[BC]

u(x;t)=1+ e “tcos(x)+0:5e @ )t cos(3 x)
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5. Partial Differential Equations

Using degree 11 for polynomial approximation; and 1024 points for Monte Carlo integration

05 06 07 08 0.9 o

Error [ max abs / mean/std ]: 1.166107e  02/3.820021e 14/5.11135le 03

0.01

0.005

Figure 5.2: Solution to a homogeneous heat conduction eqigat with insu-
lated boundary; approximate solution adopts a degree 11 lainate polynomial.

Therefore, following the proposed workaround, the adopted dwin for this

example isO<x< 1; 0<t< 0:01and boundary conditions to be considered
in this numerical example are:

8

% U(0; 0)= 0;  ux(0; 555) = O
U(0; 555) = 0; ux(0; 0:01)= 0

E u(1;0)= 0; ux(l;55)= O

8

3

2

[BC]

Uc(1; 555) = 0; ux(1;0:01)= 0

u(0; 0)= 1+cos( 0)+0:5cos(3 0)=2:5
u(3; 0)= 1+cos( 2)+0:5cos(3 3)=1
u(3;0)= 1+cos( %)+0:5cos(3 2)=1
u@;0)= 1+cos( 1)+0:5cos(3 1)= 05

Note that the option for equidistant points from domain limits was taken,
with variation of t in insulated boundary conditions and ok in the initial con-
dition. Also, to evaluate values at boundary, functions fro original conditions
were used.

Figure 52 shows on top a joint plot of the TGE polynomial approxnation
and the known solution, and on bottom the error as the di erencérom the
approximation to the known solution. Note that error has a meavalue of 0
and a standard deviation of5 10 3.

Finally, Equation (5-18) presents the coe cients of the TGE whth are
responsible for the approximate solution to this homogenes heat conduction
equation with insulated boundary. Sub-indices relates eaatpe cient to a
product of Jacobi polynomials whose degrees are tracked byetlproper row
in the respective powers matrix, aP?(x 70 o) POt 71 1), PO (x 71
o) P9t 71 1), and soon, up toPP(x 71 o) P10t 71 )

[IC]
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5.5. Solving PDEs

;
Up U ur; = 1 1:195 0 7649102 0 3:449101

0 387510 0 0 235110' 0 3015104 0 3153101
0 3:644102% 0 1:99310° 0 O 1:39010' 0
3:40510° 0 829310° 0 6:001102 0 1:94210°%
0 2:48810% 0 0 0 0 2365102 O 1:38210° 0
0 0 0 0 503610° 0O 241610 0 0 0 0 0 O
00 1:42110° 0 0 0 O O O O O O 178110%
0 0O0OO0OO0OOO OGO OO0 0 0)5.16)

Simplifying the expanded equation, the polynomial apprornation solution
is shown in Equation (5117).

0(x;t) = 4:18010 xt®+2:09010t> 3:48310x3t*+5:22510 x2t*
2:01310 xt* + 13585879t* 696636&x°t3 +1:74210 x*t3
1:342 10 x3t3 + 27171758x2t> + 4142724xt>  794683t3
4975976’ t? + 17415916x°t2 2013302 x°t? + 6792940 x* t?
+2071362x3t?  1192025x%t? 25536xt? + 2320:6t2
138222x%t +621997x8t 958719x’t +452863x°t + 207136x°t
198671x*t 8512x3t +2320:6x2t + 4:660xt 56:245t
125656x! + 691:11x'° 13316x° + 808:68x° + 493:18x”’
66224x°® 42560x° +193:38x* +0:777x® 28122x%>+2:5 (5.17)

Elliptic equation Here is a problem regarding the steady-state temperature
distribution of a thin plate in the form of Laplace equation:

r 2u(x;y) = %U(x; y) + @%/”(X; y)=0

whereu(x;y) is the temperature distribution function over the surface ba thin
plate (with width L and height H); The domain of calculation isO < x < L
and 0 <y < H . Dirichlet boundary conditions that augment this partial
di erential equation are:

u@©;y)=0
ulLy)=0
u(x;0)=0
ux;H) = f(x)

The known solution to this example is:

[BC]

W AW
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5. Partial Differential Equations

X
uxx;y)=  Bnsin( nx)sinh( ny)

n=1
2 __ RLf(x) sin(®*-) dx; and ,= ™
L sinh(2f-) © L ! n— L=
As a numerical example, an instance of this problem is achex when
assumingL = H =1, turning the domain into 0 <x< 1, 0<y < 1, and
assumingu(x; 1) = f(x) = sin( x ). Now this very problem has a known

solution, and it is:

whereB, =

sin(x ) sinh(y)
sinh( )
Following the proposed workaround, the adopted domain for th example

iIsO0<x< 1, 0<t< 1and the boundary conditions to be considered in this
numerical example are:

u(x;y) =

S u(0; 0)= 0; u(0; 0:2) = 0; u@0; 04)= 0
% u(0; 0:6) = O0; u(o; 0:8) = 0; u©;1)= 0
u(0:2; 0)= 0; u(0:4; 0)= O; u(0:6;,0)= 0
[BC] u(0:8; 0) = 0; u(d; 0)= 0; ud; 0:2)= 0
u(l; 0:4)= 0; u(l; 0:6) = 0; u1;08)= 0

ud; 1) = 0; u(0:2; 1) = sin(0:2 ); u(0:4;1)= sin(0:4 )

u(0:6; 1) = sin(0:6 ); u(0:8;1)= sin(0:8 )

Note that due to the rank de ciency of the original coe cient matrix, the
number of points to represent Dirichlet conditions neededtbe raised in order
to properly de ne the boundary.

Figure B-3 shows on top a joint plot of the TGE polynomial approxnation
and the known solution, and on bottom the error as the di erencérom the
approximation to the known solution. Note that error has a mea value of

810 4 and a standard deviation of310 4.

Finally, Equation (B-I8) presents the coe cients of the TGE whth are
responsible for the approximate solution to this steady-ate temperature in a
thin plate problem. Sub-indices relates each coe cient to g@roduct of Jacobi
polynomials whose degrees are tracked by the proper row in thespective
powers matrix, asP?(x 71 o) POt 71 1), POOx 71 o) POVt T ),
and so on, up toP?(x 7! ) POV 71 )
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5.5. Solving PDEs

Using degree 9 for polynomial approximation; and 1024 points for Monte Carlo integration

Known solution
Approximation

0

0.5 0.6 0.7 0.8 0.9 1

Error [max abs / mean /std]: 9.887249e 04/ 8.347757e 08/2.796803e 04
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Figure 5.3: Solution to a steady-state temperature in a thirplate (Laplace
equation); approximate solution adopts a degree 9 bivariatpolynomial.

.
Up Ug Usa =(0:186 0 0276 0:201 0 0124 O

0:298 0 4095102 1:512102% 0 0:134 0 821810°3

0 2259102 0 4:40510%2 0 185510° 382110

0 1010102 0 8:88210° 0 193010% O 3:95010*4

0 3498103 0 2:32010% 0 7:38610% 3:63610°

0 2:36310% 0 668510* 0 2:36310% 0 363610°

0 1:22410° 0 1591104 O 250010% 0 612010°
0 286810“% (5.18)

Simplifying the expanded equation, the polynomial apprornation solution
is shown in Equation (5719).

0(x;y) =4:679102y®  2:722y"  1:310x?y°® + 1:310xy® + 9:138y°
+0:423x%y°>  0:423xy°  12544y° +3:276x*y*  6:551x3y*
+4:785x%y*  1:509xy* + 8:814y* 1:654x*y> + 3:308x3y3
5:365x2y% + 3:711xy®  3:316y% 1:310x°y? + 3:931x°y?
3:360x*y? + 0:169x°y? + 1:468x%y?>  0:897xy? + 0:631y?
+0:580x%y 1:741x°y +2:903x*y  2:904x3y + 0:238x?%y

+0:924xy 0:0481y +4:67910%x® 0:187x’ +9:926102x°

+0:357x°>  0:592x* +0:371x® 0:106x%+1:1361072x
+2:44910% (5.19)
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5. Partial Differential Equations

5.6 Discussion

As a nal discussion in this chapter, there are some issues thfe proposed
method to point out. One important issue is the workaround made for con-
ditions that are functions themselves. Polynomials are bowled to in ections
which, in turn, are strongly dependent on their polynomial dgrees. Because
of that, when sampling boundary conditions, some ripples roboundary are
perceived, specially when analysing error plots. This is thase that could in-
validate dealing with piecewise sub-domains, where values ow®rders could
be of low con dence. One workaround could be to do overlap sulomains, but
this is an entire discussion by itself. Though, if the purposef such polynomial
approximation is to interpolate the solution within boundar, the proposed
method is extremely useful.

Because the use of polynomial approximations for di erentiaolutions, the
considered domain of calculation must be relatively smalhiorder to minimize
the polynomial degree required for a feasible approximatio When dealing
with periodic or trigonometric solutions, the problem worses. Each point of
in ection of such solutions re ects as an increment to the rguired polynomial
degree. High polynomial degrees lead to possible oatingint calculation
errors and that should be avoid. A workaround is to considerigcewise sub-
domains. Unfortunately, there are a lot of situations whereftis is not possible.
In the case of system modelling from data, however, this is haracteristic that
must be exploit, as can be seen in next chapters.

Finally, the rank of coe cient matrix also depends on the chgen polyno-
mial degree for the approximation. The higher it is, the moreikely that the
matrix starts to have increased its rank de ciency. The numbreof sampled
points from boundary conditions needs to compensate this e Note that,
specially on homogeneous di erential equations, conditisrthat have non-zero
values are the most useful ones.
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Chapter 6

Evaluating model candidates

6.1 A brief introduction

The main objective of this work is to take the proposed methodral exploit it

to support CASM. The decision of using GP to model systems from tdahas
guided the following developments. To accomplish that intéion, the proposed
method needs to be part of a tness evaluation scheme to supp@volution

of models, by solving any LPDE that could be randomly generateby GP

and evaluating how t its respective approximate solution $ to the system
observed data.

In Section 56, some issues for the proposed method are addezl. In
special, the ones stating that both small domains of calculan are required to
decrease the required polynomial degree for approximat®and the limitation
about the small number of known conditions the PDE has to enabfgerforming
piecewise calculations throughout the desired domain. Thoaee not concerns
hereby and were exploited to bring up a way to evaluate di erdral models.

It is a requirement that measurements from the system takenver some
points are saved in a data le containing the observed quaries values (up
to this far, this work considers scalar elds only) and the cordinates where
the quantity to be modelled assumes those values. It is prgtstraightforward
to assume that every point in the database is a possible Dihiet boundary
condition.

By taking groups of closer points within the database, the pposed method
could perform piecewise approximations with a great degreeadn dence with
a relative low polynomial degree. If other points are also kan just to enable
comparisons between the approximate solution and their ngsctive database
values, then a metric can be developed to evaluate how closenadel is from
the observed data. From these ideas, the derived tness eualion scheme is
presented in this chapter.

6.2 A brief description

A brief description presented here about the numerical some to compare a
LPDE candidate with observed measurements from a dataset.
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