
�>���G �A�/�, �i�2�H�@�y�R�j�j�k�k�3�N

�?�i�i�T�b�,�f�f�i�?�2�b�2�b�X�?���H�X�b�+�B�2�M�+�2�f�i�2�H�@�y�R�j�j�k�k�3�N�p�R

�a�m�#�K�B�i�i�2�/ �Q�M �R�8 �C�m�M �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�1�p�Q�H�m�i�B�Q�M �Q�7 �/�B�z�2�`�2�M�i�B���H �K�Q�/�2�H�b �7�Q�` �+�Q�M�+�`�2�i�2 �+�Q�K�T�H�2�t
�b�v�b�i�2�K�b �i�?�`�Q�m�;�? �;�2�M�2�i�B�+ �T�`�Q�;�`���K�K�B�M�;

�A�;�Q�` �a���M�i�Q�b �S�2�`�2�i�i��

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�A�;�Q�` �a���M�i�Q�b �S�2�`�2�i�i���X �1�p�Q�H�m�i�B�Q�M �Q�7 �/�B�z�2�`�2�M�i�B���H �K�Q�/�2�H�b �7�Q�` �+�Q�M�+�`�2�i�2 �+�Q�K�T�H�2�t �b�v�b�i�2�K�b �i�?�`�Q�m�;�? �;�2�M�2�i�B�+
�T�`�Q�;�`���K�K�B�M�;�X ���m�i�Q�K���i�B�+�X �l�M�B�p�2�`�b�B�i�û �/�2 �a�i�`���b�#�Q�m�`�;�c �l�M�B�p�2�`�b�B�/���/�2 �6�2�/�2�`���H �/�2 �l�#�2�`�H�•�M�/�B���- �k�y�R�8�X
�1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�8�a�h�_���.�y�j�R���X ���i�2�H�@�y�R�j�j�k�k�3�N��

UNIVERSIDADE FEDERAL DE UBERLÂNDIA
PÓS-GRADUAÇÃO FEELT

Faculdade de Engenharia Elétrica
Laboratório de Inteligência Computacional

UNIVERSITÉ DE STRASBOURG
ÉCOLE DOCTORALE 269

Mathématiques, Sciences de l'Information et de l'Ingénieur
Laboratoire ICUBE

TESE EM COTUTELA � THÈSE EN CO-TUTELLE
apresentada por� présentée par :

Igor Santos Peretta
defesa em� soutenue le :21/09/2015

para obtenção do título de :Doutor em Ciências
Área de concentração : Processamento da Informação, Inteligência Arti�cial

pour obtenir le grade de :Docteur de l'Université de Strasbourg
Discipline/ Spécialité : Informatique

Evolution of di�erential models for concrete
complex systems through Genetic

Programming
�

Evolução de modelos diferenciais para sistemas
complexos concretos por Programação Genética

�

Évolution de modèles di�érentiels de systèmes
complexes concrets par Programmation

Génétique

TESE orientada por Prof. Dr. Keiji Yamanaka UFU
� THÈSE dirigée par : Prof. Dr. Pierre Collet, UNISTRA

REVISORES Prof. Dr. Domingos Alves Rade, ITA
� RAPPORTEURS : Prof. Dr. Gilberto Arantes Carrijo, UFU

OUTROS MEMBROS DA BANCA Dr. Frederico Gadelha Guimarães, UMFG
� AUTRES MEMBRES DU JURY : Dr. Welsey Pacheco Calixto, IFG

Prof. Dr. José Roberto Camacho, UFU

Dados Internacionais de Catalogação na Publicação (CIP)
Sistema de Bibliotecas da UFU, MG, Brasil.

P437e
2015

Peretta, Igor Santos, 1974-
Evolution of differential models for con

through genetic programming / Igor Santos Peretta. - 2015.
104 f. : il.

Orientadores: Keiji Yamanaka e Pierre Collet.
Tese (doutorado) - Universidade Federal de Uberlândia, Programa

de Pós-Graduação em Engenharia Elétrica e Université de Strasborg,
École Doctorale 269.

Inclui bibliografia.

1. Engenharia elétrica - Teses. 2. Análise de sistemas - Teses. 3.
Equações diferenciais ordinárias - Teses. 4. Equacões diferenciais
parciais - Teses. I. Yamanaka, Keiji. II. Collet, Pierre. III. Universidade
Federal de Uberlândia, Programa de Pós-Graduação em Engenharia
Elétrica. IV. Université de Strasborg, École Doctorale 269. V. Título.

CDU: 621.3

x

Abstract

A system is de�ned by its entities and their interrelations in an environment
which is determined by an arbitrary boundary. Complex systemsexhibit emer-
gent behaviour without a central controller. Concrete systems designate the
ones observable in reality. A model allows us to understand, to control and to
predict behaviour of the system. A di�erential model from a system could be
understood as some sort of underlying physical law depictedby either one or
a set of di�erential equations. This work aims to investigate and implement
methods to perform computer-automated system modelling. This thesis could
be divided into three main stages: (1) developments of a computer-automated
numerical solver for linear di�erential equations, partialor ordinary, based on
the matrix formulation for an own customization of the Ritz-Galerkin method;
(2) proposition of a �tness evaluation scheme which bene�ts from the devel-
oped numerical solver to guide evolution of di�erential models for concrete
complex systems; (3) preliminary implementations of a genetic programming
application to perform computer-automated system modelling. In the �rst
stage, it is shown how the proposed solver uses Jacobi orthogonal polynomials
as a complete basis for the Galerkin method and how the solverdeals with
auxiliary conditions of several types. Polynomial approximate solutions are
achieved for several types of linear partial di�erential equations, including hy-
perbolic, parabolic and elliptic problems. In the second stage, the proposed
�tness evaluation scheme is developed to exploit some characteristics from the
proposed solver and to perform piecewise polynomial approximations in or-
der to evaluate di�erential individuals from a given evolutionary algorithm
population. Finally, a preliminary implementation of a genetic programming
application is presented and some issues are discussed to enable a better un-
derstanding of computer-automated system modelling. Indications for some
promising subjects for future continuation researches arealso addressed here,
as how to expand this work to some classes of non-linear partial di�erential
equations.

Keywords: Computer-Automated System Modelling; Di�erential Models;
Linear Ordinary Di�erential Equations; Linear Partial Di�ere ntial Equations;
Fitness Evaluation; Genetic Programming.

v

Resumo

Um sistema é de�nido por suas entidades e respectivas interrelações em um
ambiente que é determinado por uma fronteira arbitrária. Sistemas complexos
exibem comportamento sem um controlador central. Sistemasconcretos é
como são designados aqueles que são observáveis nesta realidade. Um modelo
permite com que possamos compreender, controlar e predizero comporta-
mento de um sistema. Um modelo diferencial de um sistema podeser com-
preendido como sendo uma lei física subjacente descrita poruma ou mais
equações diferenciais. O objetivo desse trabalho é investigar e implementar
métodos para possibilitar modelamento de sistemas automatizado por com-
putador. Esta tese é dividida em três etapas principais: (1) odesenvolvimento
de um solucionador automatizado para equações diferenciais lineares, parci-
ais ou ordinárias, baseado na formulação de matriz de uma customização do
método de Ritz-Galerkin; (2) a proposição de um esquema de avaliação de
aptidão que se bene�cie do solucionador numérico desenvolvido para guiar a
evolução de modelos diferenciais para sistemas complexos concretos; (3) inves-
tigações preliminares de uma aplicação de programação genética para atuar em
modelamento de sistemas automatizado por computador. Na primeira etapa,
é demonstrado como o solucionador proposto utiza polinômios ortogonais de
Jacobi como uma base completa para o método de Galerkin e comoo solu-
cionador trata condições auxiliares de diversos tipos. Soluções polinomiais
aproximadas são obtidas para diversos tipos de equações diferenciais parciais
lineares, incluindo problemas hiperbólicos, parabólicose elípticos. Na segunda
etapa, o esquema proposto para avaliação de aptidão é desenvolvido para ex-
plorar algumas características do solucionador proposto epara obter aproxi-
mações polinomiais por partes a �m de avaliar indivíduos diferenciais de uma
população de dado algoritmo evolucionário. Finalmente, uma implementação
preliminar de uma aplicação de programação genética é apresentada e algu-
mas questões são discutidas para uma melhor compreensão de modelamento de
sistemas automatizado por computador. Indicações de assuntos promissores
para continuação de futuras pesquisas também são abordadas, bem como a
expansão deste trabalho para algumas classes de equações diferenciais parciais
não-lineares.

Palavras-chave: Modelamento de Sistemas Automatizado por Computa-
dor; Modelos Diferenciais; Equações Diferenciais Ordinárias Lineares; Equações
Diferenciais Parciais Lineares; Avaliação de Aptidão; Programação Genética.

vi

Résumé

Un système est dé�ni par les entités et leurs interrelationsdans un environ-
nement qui est déterminé par une limite arbitraire. Les systèmes complexes
présentent un comportement émergent sans un contrôleur central. Les sys-
tèmes concrets désignent ceux qui sont observables dans la réalité. Un modèle
nous permet de comprendre, de contrôler et de prédire le comportement du
système. Un modèle di�érentiel à partir d'un système pourrait être compris
comme une sorte de loi physique sous-jacent représenté par l'un ou d'un en-
semble d'équations di�érentielles. Ce travail vise à étudieret mettre en ÷u-
vre des méthodes pour e�ectuer la modélisation des systèmes automatisée par
l'ordinateur. Cette thèse pourrait être divisée en trois étapes principales, ainsi:
(1) le développement d'un solveur numérique automatisé parl'ordinateur pour
les équations di�érentielles linéaires, partielles ou ordinaires, sur la base de la
formulation de matrice pour une personnalisation propre dela méthode Ritz-
Galerkin; (2) la proposition d'un schème de score d'adaptation qui béné�cie du
solveur numérique développé pour guider l'évolution des modèles di�érentiels
pour les systèmes complexes concrets; (3) une implémentation préliminaire
d'une application de programmation génétique pour e�ectuerla modélisation
des systèmes automatisée par l'ordinateur. Dans la première étape, il est mon-
tré comment le solveur proposé utilise les polynômes de Jacobi orthogonaux
comme base complète pour la méthode de Galerkin et comment lesolveur traite
des conditions auxiliaires de plusieurs types. Solutions àapproximations poly-
nomiales sont ensuite réalisés pour plusieurs types des équations di�érentielles
partielles linéaires, y compris les problèmes hyperboliques, paraboliques et el-
liptiques. Dans la deuxième étape, le schème de score d'adaptation proposé est
conçu pour exploiter certaines caractéristiques du solveur proposé et d'e�ectuer
l'approximation polynômiale par morceaux a�n d'évaluer les individus di�éren-
tiels à partir d'une population fournie par l'algorithme évolutionnaire. En�n,
une mise en ÷uvre préliminaire d'une application GP est présentée et certaines
questions sont discutées a�n de permettre une meilleure compréhension de
la modélisation des systèmes automatisée par l'ordinateur. Indications pour
certains sujets prometteurs pour la continuation de futures recherches sont
également abordées dans ce travail, y compris la façon d'étendre ce travail à
certaines classes d'équations di�érentielles partielles non-linéaires.

Mots-clés: Modélisation des Systèmes Automatisée par l'Ordinateur; Mod-
èles Di�érentiels; Équations Di�érentielles Ordinaires Linéaires; Équations
Di�érentielles Partielles Linéaires; Score d'Adaptation;Programmation Géné-
tique.

vii

Para Anabela & Isis,
com todo o meu amor

Agradecimentos

O processo intenso de realizar uma pesquisa e a posterior redação de uma tese
não é um processo individual, mas sim conta com um grande número de pes-
soas ligadas direta ou indiretamente. Nessas páginas, gostaria de agradecer a
todos aqueles com que me relacionei na minha vida de doutorando no Brasil e
os quais, próximos ou distantes, contribuiram para a �nalização dos meus tra-
balhos de pesquisa. Infelizmente, esta lista não é conclusiva e não foi possível
incluir a todos. Assim, gostaria de exprimir meus agradecimentos ...

À minha esposa Anabela, pela cumplicidade e paciência, e à minha �lha
Isis, pela sua subjetiva compreensão, e à ambas pelo amor, apoio em momentos
tão difíceis e por estarem sempre ao meu lado me acompanhandoem todos
os destinos necessários para a conclusão deste trabalho. À minha família,
em especial meu pai Vitor, minha mãe Miriam, meus irmãos Érico eÉden,
sempre referências em tempos de desorientação, pelo amor, suporte e incentivo
incondicionais. À Priscilla, por ajudar a catalizar re�exões de doutorado, e à
Jussara, pelas conversas sobre rumos de vida. Ao meu sobrinho Iuri, por ter
chegado a tempo.

Ao Professor Keiji Yamanaka, meu orientador no Brasil, pela con�ança em
mim depositada, pela presteza em vir ao auxílio, pelas conversas e divisão de
angústias, além da grande oportunidade de trabalharmos mais uma vez juntos.

Aos Professores Domingos Alves Rade e Gilberto Arantes Carrijo, pela
presteza e pontualidade apresentadas para a árdua tarefa deserem pareceristas
preliminares desta tese. Ao Professor José Roberto Camacho, pela contagiante
paixão, pelo incentivo e pelas muitas discussões. Aos Professores Frederico
Guadelha Guimarães e Wesley Pacheco Calixto, pelo entusiasmo e pelo inter-
esse demonstrado neste trabalho. A todos esses, obrigado pelas considerações
discutidas em tempos de quali�cação e também por aceitarem oconvite para
participar da banca de defesa.

Ao grande Júlio Cesar Ferreira, por compartilhar angústias,receios e con-
hecimentos, além de ter sido um porto seguro em tempos de aventuras além-
mar.

Aos meus digníssimos companheiros em armas: Hugo Xavier Rocha, Gerson
Flávio Mendes de Lima, Ricardo Boaventura do Amaral, Monica Sakurai Pais
e Josimeire Tavares, pelas conversas, discussões, incentivos e pela amizade
duradoura. Aos amigos e preciosos interlocutores LeonardoGarcia Marques
e Guilherme Ayres Tolentino, pelas altas discussões sobre otema desta tese e
por ajudarem a organizar ideias e dar um pouco de ordem ao caosde meus
pensamentos.

ix

Aos companheiros de laboratório: Juliana Malagoli, Cássio Xavier Rocha,
Walter Ragnev, Adelício Maximiano Sobrinho, pelas amizadese pela divisão de
saberes e angústias. Aos amigos de UFU, Fábio Henrique �Corleone� Oliveira
e Daniel Stefany, pelo suporte e incentivo nas horas mais inusitadas.

Aos técnicos da CAPES: Valdete Lopes e Mailson Gomes de Sousa, que
com presteza me auxiliaram no processo de ida e volta da França.

Ao programa de pós-graduação da Faculdade de Engenharia Elétrica, em
especial à Cinara Mattos, pela simpatia, presteza e solidariedade mesmo nas
situações mais difíceis. Aos professores Alexandre Cardoso, Edgard Afonso
Lamounier Júnior, Darizon Alves de Andrade, cada qual ao seutempo, pela
atenção necessária a �m de realizar esta pesquisa.

Aos professores Alfredo Júlio Fernandes Neto e Elmiro SantosResende,
cada qual em seu tempo de Reitor da Universidade Federal de Uberlândia,
pela atenção necessária para a realização deste doutorado em cotutela.

Ao casal Fábio Leite e Silvia Maria Cintra da Silva e à Carmen Reis,
pela grande amizade e pelo apoio familiar tão importante nesses tempos de
doutorado.

Aos amigos da DGA na UNICAMP, pelo importante apoio no começo de
minha jornada: Maria Estela Gomes, Pedro Emiliano Paro, Edna Coloma,
Lúcia Mansur, Elsa Bifon, Soninha e Pedro Henrique Oliveira.

Aos amigos de Campinas: Carlos Augusto Fernandes Dagnone, Marco
Antônio Zanon Prince Rodrigues, Bruno Mascia Daltrini, Daniel Granado,
Alexandre Martins, Sérgio Pegado, Alexandre Loregian, JoãoMarcos Dadico
e Rodrigo Lício Ortolan. pela longa amizade e pela caminhadaque trilhamos
juntos. Estaremos sempre próximos, mesmo que distantes.

x

Remerciements

Le processus intensif de poursuivre la recherche et la rédaction d'une thèse n'est
pas un processus individuel, mais on peut impliquer des nombreuses person-
nes, directement ou indirectement. Dans ces pages, je tiensà remercier toutes
celles et ceux que j'ai rencontré durant ma vie de doctorant en France et qui, de
près ou de loin, ont contribué à la réussite de mes travaux de recherche. Mal-
heureusement, cette liste n'est pas exhaustive et ce n'est pas possible d'inclure
tout le monde. C'est pourquoi je voudrais exprimer mes remerciements ...

Au Professeur Pierre COLLET, mon directeur de thèse en France, pour
avoir établi une con�ance en moi, les discussions sur le sujet de cette recherche
et les indications a�n de consulter divers experts. Aussi, pour le soutien continu
au niveau académique et personnel. C'était une opportunité exceptionnelle de
pouvoir travailler avec vous.

Au Professeur Paul BOURGINE, pour l'intérêt, le soutien, l'attention, mais
surtout pour l'accueil et la générosité de partager des enseignements et des
idées essentielles à cette recherche.

Au Professeur Jan DUSEK, à bien des discussions sur le sujet de cette
thèse, et à Professeure Myriam MAUMY-BERTRAN, tous les deux pour faire
partie du comité de suivi de thèse.

Au Professeur Thomas NOËL, en acceptant d'être le rapporteur français
de cette thèse.

A mes compagnons � d'armes �: Andrés TROYA-GALVIS, Bruno BE-
LARTE, Carlos CATANIA, Clément CHARNAY, Karim EL SOUFI, Manuela
YAPOMO, Joseph PALLAMIDESSI, Wei YAN, Chowdhury FARHAN AHMED
et tous les stagiaires qui ont été proche de moi pendant cetteannée en France.
Merci pour l'accueil chaleureux, pour les enseignements et pour l'amitié qui
restera, bien j'espère longtemps.

À Julie THOMPSON et au Olivier POCH, pour l'accueil sympathique et
l'amitié manifestée.

A l'équipe BFO, les MCF Nicholas LACHICHE, Cecilia ZANNI-MERK,
Stella MARC-ZWECKER, Pierre PARREND, François de Bertrand DE BEU-
VRON et Agnès BRAUD. Aussi, à les Professeurs Pierre GANÇARSKI et
Christian MICHEL. C'était un honneur de travailler avec vous.

Aux anciens doctorants Frédéric KRÜGER et OGIER MAITRE, et l'ancienne
post-doc Lidia YAMAMOTO, pour le guidage, même que nous ne nous ren-
contrâmes pas en personne.

À Professeure Evelyne LUTTON et au Alberto Paolo TONDA, pour l'intérêt
manifesté sur le sujet de cette thèse.

xi

À Laboratoire ICUBE, je voudrais spécialement remercieer Mme Christelle
CHARLES, Mme Anne-Sophie PIMMEL, Mme Anne MULLER, Mme Fabi-
enne VIDAL et le directeur Professeur Michel DE MATHELIN, pour l'accueil
sympathique et l'attention particulière.

À École Doctorale MSII, en particulier à Mme Nathalie BOSSE, pourle
soutien et l'attention toujours manifestés.

À UFR Mathématique-Informatique, je tiens en particulier à remercier
Mme Marie Claire HANTSCH, pour l'accueil sympathique et chaleureux.

À Université de Strasbourg, je remercie Mme Isabelle LAPIERRE, pour le
soutien et l'attention particulière.

Aux Professeurs Yves REMOND, directeur de l'École Doctorale, etAlain
BERETZ, le président de l'Université de Strasbourg, pour l'attention néces-
saire à la réalisation de ce doctorat en co-tutelle.

Aux amis en France: Laurent, Anna Lucas et famille KONDRATUK; Caro-
line et famille VIRIOT-GOELDEL; Ignacio, Sara et famille GOMEZ MIGUEL;
Franck, Karine et famille HAGGIAG GLASSER, pour tous les moments passés
ensemble et l'amitié éternelle.

En�n, à Mme Marie Louise KOESSLER, en raison des cours de français
donnés et des révisions éventuelles, mes très chaleureux remerciements.

xii

Acknowledgements

This research was funded by the following Brazilian agencies:

� Conselho Nacional de Desenvolvimento Cientí�co e Tecnológico (CNPq),
full PhD scholarship category GD, while in Brazil;

� Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES),
PDSE scholarship #18386-12-1, while in France.

xiii

A journey of a thousand miles
starts beneath one's feet.

Lao-Tzu in Tao Te Ching

Contents

List of Figures xviii

List of Tables xxi

List of Algorithms xxii

List of Acronyms xxiii

I Background 1

1 Introduction 2
1.1 Overview . 2
1.2 Motivation . 3
1.3 Thesis Statement . 7
1.4 Contributions . 8
1.5 Research tools . 9
1.6 Outline of the text . 11

2 Related Works 12
2.1 A brief history of the �eld . 12
2.2 Early papers . 13
2.3 Contemporary papers, 2010+ 14
2.4 Discussion . 15

3 Theory 16
3.1 Linear di�erential equations . 16
3.2 Hilbert inner product and basis for function space 17
3.3 Galerkin method . 18
3.4 Well-posed problems . 20
3.5 Jacobi polynomials . 22
3.6 Mappings and change of variables 24
3.7 Monte Carlo integration . 24
3.8 Genetic Programming . 26
3.9 Precision on measurements . 32
3.10 Discussion . 32

xv

Contents

II Proposed Method 34

4 Ordinary Di�erential Equations 35
4.1 Proposed method . 35
4.2 The unidimensional case . 36
4.3 Developments . 36
4.4 Solving ODEs . 39
4.5 Discussion . 47

5 Partial Di�erential Equations 48
5.1 Proposed method . 48
5.2 Classi�cation of PDEs . 48
5.3 Powers matrix . 48
5.4 Multivariate adjustments . 51
5.5 Solving PDEs . 55
5.6 Discussion . 64

III System Modelling 65

6 Evaluating model candidates 66
6.1 A brief introduction . 66
6.2 A brief description . 66
6.3 Method, step by step . 67
6.4 Examples . 71
6.5 Discussion . 75

7 System Modelling program 76
7.1 Background . 76
7.2 GP preparation step . 80
7.3 GP run . 81
7.4 C++ supporting classes . 82
7.5 Discussion . 83

8 Results and Discussion 84
8.1 Outline . 84
8.2 GP for system modelling . 84
8.3 Noise added data . 88
8.4 Repository . 89
8.5 Discussion on contributions . 90
8.6 Indications for future works . 91

A Publications 93

B Massively Parallel Programming 94
B.1 GPGPU . 94
B.2 CUDA platform . 95

xvi

Contents

C EASEA Platform 96

Bibliography 98

xvii

List of Figures

1.1 A situational example where di�erent methods for conventional re-
gression (linear, piece-wise 5th degree polynomial, spline) fail to
�nd a known solution from a not so well behaved randomly sam-
pled points. 5

1.2 Hypothetical situation, two points sampled from each concrete sys-
tem. (left) Known describing function is f (x) = 1 � e� x ; (right)
Known describing function isg(x) = e� x � 1. 6

3.1 Monte Carlo integration performance onf (x; y) = exp(� x) cos(y)
de�ned in f 0 � x � 1; 0 � y � �

2 g (100 runs). 26
3.2 EA �owchart: each loop iteration is a generation; adaptedfrom [75] 29
3.3 Example of an abstract syntax tree for the computation �min(

p
9 + x; x �

2y)�, or, in RPN, (min (sqrt (+ 9 x)) (- x (* 2 y))) 30
3.4 Summary of this simple run (see Table 3.2); darker elements were

randomly generated; dashed arrows indicates cut points to mix
genes in related crossovers; adapted from [13]. 31

4.1 Solution to an under-damped oscillator problem, polynomial ap-
proximation of degree 12. 42

4.2 Solution to a Poisson equation for electrostatic subject to a static
spherically symmetric Gaussian charge density, polynomial approx-
imation of degree 12. 45

4.3 Approximation by the proposed method to the ODE that generated
Figure 1.2, left plot; same di�erential as in Figure 4.4, di�erent
boundary conditions. Solutiony(x) = 1 � exp(� x) approximated
to: ŷ(x) = 5 :15 10� 3 x5 � 3:86 10� 2 x4 +1:65 10� 1 x3 � 5:00 10� 1 x2 +
1:00x. 46

4.4 Approximation by the proposed method to the ODE that generated
Figure 1.2, right plot; same di�erential as in Figure 4.3, di�erent
boundary conditions. Solutiony(x) = exp(� x) � 1 approximated
to: ŷ(x) = � 5:15 10� 3 x5+3:86 10� 2 x4� 1:65 10� 1 x3+5:00 10� 1 x2�
1:00x. 46

5.1 Solution to a dynamic one-dimensional wave problem; approximate
solution adopts a degree 8 bivariate polynomial. 58

5.2 Solution to a homogeneous heat conduction equation with insu-
lated boundary; approximate solution adopts a degree 11 bivariate
polynomial. 60

xviii

List of Figures

5.3 Solution to a steady-state temperature in a thin plate (Laplace
equation); approximate solution adopts a degree 9 bivariate poly-
nomial. 63

6.1 Preparation steps for the proposed �tness evaluation method; dashed
border nodes can bene�t from parallelism. 67

6.2 Flowchart for the proposed �tness evaluation method; dashed bor-
der nodes can bene�t from parallelism. 68

6.3 Overlap of solution plot and piecewise approximations for the under-
damped oscillator problem; overall �tness evaluated as4 10� 4. (top)
All 13 piecewise domains and approximations. (low left) Approxi-
mation over the 2nd considered domain. (low center) Approxima-
tion over the 7th considered domain. (low right) Approximation
over the 11th considered domain. 72

6.4 Overlap of solution plot and piecewise approximations for the Pois-
son electrostatics problem, overall �tness evaluated as7:44 10� 6.
(top) All 13 piecewise domains and approximations. (low left) Ap-
proximation over the 2nd considered domain. (low center) Approxi-
mation over the 7th considered domain. (low right) Approximation
over the 11th considered domain. 75

7.1 An example of model candidate representation, a vector of AAST's.
This example represents the LPDE[5 cos (�x)] � @2

@y2 u(x; y)+[� 2:5]�
@

@x
@

@yu(x; y)+
�
exp

�
� y

2

�
+ x

�
� @

@yu(x; y)+[1] �u(x; y) = sin (�x) cos (�y)
and each coe�cient (an AAST) is supposed to be built at random
for a deterministic vector which length and element meaningsare
based on user's de�nition of order2 for di�erentials regarding a
system whose measurements covers2 independent variables (x; y). . 77

7.2 Types of binary operators. Shaded elements represent random cho-
sen points for operations. (left) Type-I recombination. (center)
Type-II recombination. (right) Type-III recombination. 78

7.3 Types of unary operations. Shaded elements represent random cho-
sen points for operations. (left) Classic-like mutation. (center) Mu-
tation by pruning. (right) Mutation by permutation. 79

8.1 Plot for the best individual �tness through generations.Note that,
in this very example, the convergence to the solution is already
stabilized by the 25th generation. 86

8.2 Overlap of solution plot and piecewise approximations for the con-
centration problem. (top) All 9 piecewise domains and approxima-
tions. (low left) Approximation over the 2nd considered domain.
(low center) Approximation over the 5th considered domain.(low
right) Approximation over the 8th considered domain. 86

xix

List of Figures

8.3 White Gaussian noise (WGN) added to signal. (a) Half-period
sine signal, no noise added. (b) WGN 100dB added to signal;
error distribution with mean �e = 4:25 10� 7 and standard devia-
tion s = 4:25 10� 7. (c) WGN 50dB; �e = 8:08 10� 5, s = 2:24 10� 3.
(d) WGN 40dB; �e = 1:58 10� 3, s = 7:33 10� 3. (e) WGN 25dB;
�e = � 9:21 10� 4, s = 3:81 10� 2. (f) WGN 10dB; �e = � 3:34 10� 2,
s = 2:05 10� 1. 88

B.1 Example on CUDA C. (left) Standard C Code; (right) Parallel C
Code; adapted from websitehttp://www.nvidia.com 95

C.1 Example of EASEA syntax for speci�cation of a Genome Evaluator 97

xx

List of Tables

3.1 Monte Carlo integration applied to f (x; y) = exp(� x) cos(y) de-
�ned in f 0 � x � 1; 0 � y � �

2 g (100 runs). 25
3.2 Preparation step for function approximation; adapted from [13]. . . 30
3.3 Summary of this simple run (see Figure 3.4); note that there is a

match (found solution) in generation 1; adapted from [13] 31

5.1 Types of PDE, adapted from [81]. 49
5.2 Examples of integer partition of numbers0 upto 3 with 2 parts

maximum (Algorithm 2) and 3rd degree polynomials or3rd order
derivatives with 2 variables (Algorithm 3); this should be called the
powers matrix. 52

6.1 Example of a data �le with3 independent variables and1 dependent
variable (quantity of interest representing a scalar �eld). 69

6.2 TGE coe�cients retrieved for the under-damped oscillator example,
each set related to one of 13 groups of points. 73

6.3 TGE coe�cients retrieved for the Poisson electrostaticsexample,
each set related to one of 13 groups of points. 74

8.1 TGE coe�cients retrieved for the concentration bi-dimensional ex-
ample, each set related to one of 9 groups of points. 87

8.2 Preliminary results for noise added data. 89

xxi

List of Algorithms

1 Practical condition test ; test if a coe�cient matrix is well-
conditioned or not. 21

2 Integer Partition ; enlisted inout are all unique possibilities of
v summands for the integern, regardless order; adapted from [82] 50

3 Powers Matrix , enlisted in powsare the multivariate (v vari-
ables) polynomialn-degrees or di�erentialn-orders. 51

xxii

List of Acronyms

CASM Computer-Automated System Modelling

EA Evolutionary Algorithm

EC Evolutionary Computation

FEM Finite Element Method

GP Genetic Programming

GSE Galerkin System of Equations

LDE Linear Di�erential Equation

LODE Linear Ordinary Di�erential Equation

LPDE Linear Partial Di�erential Equation

ODE Ordinary Di�erential Equation

PDE Partial Di�erential Equation

SNR Signal-to-Noise Ratio

TGE Truncate Galerkin Expansion

WGN White Gaussian Noise

xxiii

Part I

Background

1

Chapter 1

Introduction

1.1 Overview

A system is de�ned by its interrelated parts, also known as entities, surrounded
by an environment which is determined by an arbitrary boundary. More in-
sights on the de�nition of a system could be achieved by accessing the work
of [1]. This present work considers a system of interest as being concrete (in
contrast to abstract) and possibly closed, even when it couldbe classi�ed as
open. The former classi�cation means that the system can exist in this reality.
The latter means that every entity has some relations with others, i.e., if an
entity is part of a system, that means it can a�ect and be a�ectedby others,
directly or indirectly, and is also responsible in some degree for the overall
behaviour that the system presents.

A concrete system could be object of a simpli�ed representation, known as
a model, in order to be understood, to explain its behaviour with respect to
its entities and to enable simulations and predictions of its behaviour accord-
ing to an arbitrary initial state. In reality, it is usual to n ot totally represent
a concrete system due to the great number of constituent entities involved
together with a large set of complex interrelations. Normally, to build such
representation (known as a model) is to optimize the compromise between sim-
pli�cation and accuracy. This work is interested aboutin silico models which
refers to �simulations using mathematical models in computers, thus relying
on silicon chips� [2]. The process of building such model to a system, approxi-
mately and adequately, needs to rely on its most relevant entities (independent
variables) that have in�uence on the overall system behaviour (represented by
one or more dependent variables). This process is widely known as System
Modelling. Note that, as stated by [1], the number of signi�cant entities and
relations could change depending on the arbitrary determination of a bound-
ary.

A representative model could be understood as some sort of underlying
physical law [3, 4], or even a descriptor which could ful�l thevariational prin-
ciple of least action1 [5, 6]. As stated by [7], �many physical processes in nature
[...] are described by equations that involve physical quantities together with

1Also known as principle of stationary action.

2

1.2. Motivation

their spatial and temporal rates of change�. Actually, observations of natu-
ral phenomena were responsible to the early developments ofthe in�nitesimal
calculus discipline [8]. In other words, due to its properties of establishing
connections and interactions between independent and dependent entities (e.g.
physical, geometrical, relational), models to systems areexpected to be one
or a set of di�erential equations [9]. An ordinary di�erential equation (ODE),
if only one entity is considered responsible for the behaviour of a system, or
more commonly a partial di�erential equation (PDE) can describe how some
observable quantities change with respect to others, tracking those changes
throughout in�nitesimal intervals.

Presenting as a simple example, the vertical trajectory of a cannonball
when shot in an ideal scenario could be modelled by the ODEg+ d2

dt2 y(t) = 0 .
This equation presents the relation between the unknown function y(t) �
the instantaneous height of the cannonball relative to an inertial frame of
reference with respect to a relative measure of timet � and the acceleration
of gravity g. Initial state conditions such as d

dt y(t)
�
�
t=0

= V0 and y(0) = H0

e�ectively lead to the following well known solution:y(t) = H0+ V0 t � g t2

2 . This
solution to that di�erential model describes with ideal precision the cannonball
vertical trajectory. If this system can be kept closed to outer entities (e.g., air
friction, strong winds), the mentioned di�erential model would still be the
same, no matter the fact that di�erent initial states could lead to di�erent
vertical trajectory solutions.

From the point of view of engineering, this work is interested in concrete
systems whose entities enable some kind of quantitative measurements for
related quantities2. If those measurements are taken from the main entities
responsible for the behaviour of the system, then it is fair to suppose that an
accurate enough model could be built.

Nowadays, the necessity for models is increasing, once science is dealing
with concrete systems that could display a huge dataset of observations (Big
Data researches) or even present chaotic behaviour (dynamic or complex sys-
tems). This work goes further into this idea and investigateshow system
modelling could be automated. This thesis is part of a research aimed to miti-
gate di�culties and propose methods to enable a computer-automated system
modelling (CASM) tool to construct models from observed data.

1.2 Motivation

When de�ning a system of interest, researches intent to describe a great vari-
ety of phenomena, from Physics and Chemistry to Biology and Social sciences.
Systems modelling have applications to problems of engineering, economics,
population growth, the propagation of genes, the physiologyof nerves, the
regulation of heart-beats, chemical reactions, phase transitions, elastic buck-
ling, the onset of turbulence, celestial mechanics, electronic circuits [10], ex-
tragalactic pulsation of quasars, �uctuations in sunspot activity on our sun,

2Qualitative measurements are not object of this thesis. More information on this subject
could be found on �Fuzzy Modelling�.

3

1. Introduction

changing outdoor temperatures associated with the four seasons, daily temper-
ature �uctuations in our bodies, incidence of infectious diseases, measles to the
tumultuous trend of stock price [11], among many others examples. Models
are essential to correctly understand, to predict and to control their respective
systems. An inaccurate model will fail to do so.

The classic approach for system modelling is to apply regressions techniques
of some kind on a set of measurements in order to retrieve a mathematical
function that could explain that dataset.

Regression techniques involve developing causal relations (functions) of one
or more entities (independent variables) to a sensible e�ector behaviour (de-
pendent variable of interest). Historically, those techniques have being used to
system modelling starting from observed data. There are two main approaches
to regression: classic (or conventional) regression and symbolic regression.

Conventional regression starts from a particular model form(a mathemat-
ical expression with a known structure) and follows by using some metrics to
optimize parameters for a pre-speci�ed model structure supposed to best �t
the observed data. A clear disadvantage is that, after parametrized by using
ill-behaved data, the chosen model could not be useful at all, or even work
just within a limited region of the domain, failing in other regions. A speci�c
di�cult dataset example is shown in Figure 1.1. There, di�erent conventional
regression techniques fail to rediscover a known function from its randomly
sampled sparse points. Note that, to achieve the full potential of those tech-
niques, data must be well behaved (e.g., equidistant points) and be available
in a su�cient amount.

While conventional regression techniques seek to optimizethe parameters
for a pre-speci�ed model structure, symbolic regression avoids imposing prior
assumptions, and, instead, infers the model from the data.

Symbolic regression, in the other hand, searches for an appropriate model
structure rather than imposing some prior assumptions. Genetic Program-
ming (GP) is widely used for this purpose [12, 13]. GP is based onGenetic
Algorithms (GA) and belongs to a class of Evolutionary Algorithms (EA) in
which ideas from the Darwinian evolution and survival of the �ttest are roughly
translated into algorithms. Therefore, GP is known to evolve amodel struc-
ture side-by-side with the respective necessary parameters. Also, there is the
theoretical guarantee (in in�nite time) that GP will converge to an optimum
model3 able to �t the observed data. As an example, if trigonometricfunctions
are available as building blocks, Genetic Programming is capable of converging
to the function

y(x) = 3 sin(� x) cos(16� x)

which is the correct function subjected to the sampling of points at random
back in Figure 1.1.

To understand why this work does not simply use symbolic regression, take
a close look at Figure 1.2. Both left and right plots show onlytwo sampled
points. Lets imagine this hypothetical situation where there are concrete sys-
tems, the �left� one and the �right� one, and from both there are only two

3In practice, researches expect a near-optimum solution only.

4

1.2. Motivation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

3

2

1

0

1

2

3

4
Solution
Sampled points
Linear
Piecewise 5th degree polynomial
Spline

Figure 1.1: A situational example where di�erent methods for conventional
regression (linear, piece-wise 5th degree polynomial, spline) fail to �nd a known
solution from a not so well behaved randomly sampled points.

measurements available for each one. The known behaviour of those systems
are respectively described by

f (x) = 1 � e� x and g(x) = e� x � 1:

The left plot also presents among other in�nite possibilities the following func-
tions that pass through the same two sampled points:

(sine) f s(x) = 0 :6321 sin(�2 x)
(polynomial) f p(x) = 0 :4773x2 + 0:1548x
(linear) f l (x) = 0 :6321x:

The right plot also presents the functions:

(sine) gs(x) = � 0:6321 sin(�2 x)
(polynomial) gp(x) = � 0:4773x2 � 0:1548x
(linear) gl (x) = � 0:6321x:

Note that they are one the mirror image of the other (related to the horizontal
axis through f (x) = g(x) = 0), but lets move this information aside for a
moment.

Actually, both plots refer to solutions for the same ODE:

d2

dx2
y(x) +

d
dx

y(x) = 0

with di�erent initial values, for the plot on the left:

d
dx

y(x)

�
�
�
�
x=0

= 1 and y(0) = 0;

5

1. Introduction

� 0.5 0 0.5 1 1.5
� 1

� 0.5

0

0.5

1

1.5
Sampled points
Solution
Sine
2nd degree Polynomial
Linear

� 0.5 0 0.5 1 1.5
� 1.5

� 1

� 0.5

0

0.5

1
Sampled points
Solution
Sine
2nd degree Polynomial
Linear

Figure 1.2: Hypothetical situation, two points sampled from each concrete
system. (left) Known describing function isf (x) = 1 � e� x ; (right) Known
describing function isg(x) = e� x � 1.

and, for the plot on the right:

d
dx

y(x)

�
�
�
�
x=0

= � 1 and y(0) = 0 :

Assuming the di�erential model for those systems is known, thesolution of
this ODE not only supplies a reliableinterpolation function between those two
points, but a reliable extrapolation function as well. The process of solving
a di�erential model could bene�t from measurements to infer initial states or
boundaries and the solution would be valid as long as neitherinvolved entities
(tracked by independent variables) vanish nor others appear.

This hypothetical situation shows the possibility of the samemodel rep-
resenting either two separate systems or the same system presented in two
di�erent states. As could be inferred, awareness of the initial state leads the
model to present itself as having a unique solution. A purelysymbolic regres-
sion approach would have two major di�culties when considering this very
situation here4: (a) all enlisted functions � f s(x), f p(x), f l (x), gs(x), gp(x),
gl (x) � would be considered valid solutions, as the same for any of the in�-
nite possible functions that pass exactly through those twopoints; (b) each
situation represented by both left and right systems have a high probability of
having a di�erent function model and, in this case, no relation between them
would be uncovered. In other words, symbolic regressionper sewould not have
enough information to even start to raise questions about similarities between
those two systems. One could state that symbolic regressionis directed to

4The intention of this elaborated example is just to exploit a line of thinking. Symbolic
regression would have tools to support global-optimum solutions instead of local ones if more
data is presented.

6

1.3. Thesis Statement

model only one �instantiation� of the system (a single possible initial state or
adopted boundary) at a time.

Another argument, as known to those dealing with physics and calculus
of variations, the action functional (a path integration) is an attribute of a
system related to a path, i.e., a trajectory that a system presents between two
boundary points in space-time. The principle of least action(also known as
the principle of stationary action) states that such systemwill always present
a path over which this action is stationary (an extreme, usually minimal and
unique) [6]. This path of least action (the integrand of the action) is often
described by a di�erential equation and describes the intrinsic relations of a
system, the very type of di�erential model this work is aimed to look for.

Following this path, it is pretty straightforward to reach the conclusion that
a CASM tool should search for di�erentials whose solutions could explain the
observed data. Also, this tool should not keep the search within the domain of
mathematical expressions, as done by classic symbolic regression. The domain
of search becomes the space of di�erential equations. In thatway, discussions
about a possible uni�cation for both left and right aforementioned systems
would be possible. Such approach would be concerned about the model of
the system itself, whichever �instantiation� (possible initial states or adopted
boundary) it has been presented.

Given the domain of search for a model as the space of possibledi�er-
ential equations and concepts behind the principle of leastaction, this work
starts from the idea that every observable concrete system from which some
quantitative measurements could be taken is a valid candidate to construct a
model. As stated in [14], �the idea of automating aspects of scienti�c activity
dates back to the roots of computer science� and this research is no di�erent.
This work intends to investigate a possible way to enable CASM. Looking for-
ward, as that work concluded, �human-machine partnering systems [...] can
potentially increase the rate of scienti�c progress dramatically� [14].

1.3 Thesis Statement

One of the essential objectives of this work is to develop a computer-automated
numerical solver for linear partial di�erential equations in order to assist a
Genetic Programming application to evaluate �tness of modelcandidates. The
provided input for the Genetic Programming application should be a dataset
containing measurements taken from observations of the system of interest.

Research questions

Some questions have been guiding this research:

� Given a database which contains measurements from an observable con-
crete system, is there a more robust way to verify how �t is a theoretical
model to this system, relying on those available data?

� As modelling presupposes observation, creativity and speci�c knowledge,
is it feasible to achieve a CASM tool?

7

1. Introduction

� Would such CASM tool be able to rediscover known models, propose
modi�cations to them, or even reveal previously unknown models?

This thesis presents answers to the �rst two questions. The third one is
partially answered, though. This is an open work in the sense that it points
to several branches of possible research to be carried on.

Objectives

In this section, the general and speci�c objectives are presented.

General

Achieve a linear di�erential equation numerical solver to support a concrete
system modelling tool which uses Genetic Programming to evolve sets of partial
di�erential equations. A dataset of observations must be available.

Speci�c

� Develop a computer-automated numerical solver for linear partial di�er-
ential equations with no restrictions besides linearity. Thesolver must
assist the evolutionary search of the Genetic Programming application
by enabling �tness evaluation of individuals constituted by linear partial
di�erential equations.

� Develop a syntax tree representation for a candidate solution and a
proper module for �tness evaluation in consonance with the proposed
solver.

� Run some case studies where the observations dataset is generated through
simulation of a known model; provide those simulated data as inputs to
the Genetic Programming application with the intention of evolving the
model to the known solution, turning this exercise into an inverse prob-
lem resolution.

� Evaluate the impact of adding noise to input data regarding the evolu-
tion of a previous known model. This should enable discussionsabout
tolerance for measurements related to the system of interest.

� Identify and propose derived branches for future works.

1.4 Contributions

The present work brings the following contributions:

� A novel approach to the Ritz-Galerkin method to approximately solve
linear di�erential equations: static choice of Jacobi-Legendre polyno-
mials as basis functions; �nite di�erence method inspired treatment of
auxiliary conditions; use of linear algebra discipline to enable solution

8

1.5. Research tools

of systems of linear equations (e.g. using metrics and procedures as
rank, condition, pseudoinverse). The achieved solution is apolynomial
approximation of the di�erential solution.

� A generic scheme to a computer-automated numerical solver for linear
partial di�erential equations (ordinary ones included) using polynomial
approximations for the di�erential solution. Also, the knowledge to ex-
pand this solver to some non-linear di�erential equations isalready gath-
ered and it is planned for the near future.

� A dynamic �tness evaluation scheme to be plugged into evolutionary al-
gorithms to automatically solve linear di�erential equations and evaluate
model candidates.

This work had to restrict itself to linear di�erential equations, though,
but those models could present any structure inside the linearity restriction.
Besides, the same method is used to both ODEs and PDEs. Indeed, the
search for di�erential models has been tried before. Even so, authors have
no knowledge of works which could deal with systems in general but the ones
where further speci�cations on the form of the model is required.

1.5 Research tools

Numerical methods

As stated by [7], one of the �most general and e�cient tool forthe numerical
solution of PDEs is the Finite element method (FEM)�. Some limitations do
not allow this work to follow this suggested path, though. FEM[15, 16, 17, 7]
starts from solving a di�erential equation (or a set of) in order to present
results over a mesh of points throughout the domain. The type of modelling
this work is interest on implies in having the actual resultsof some system on
some points over the domain and trying to recover the di�erential which could
explain the behaviour of the system. This is an inverse problem and FEM
could not help but to inspire some solutions here presented.

As could be imagined, the method of searching for di�erentialequations
must solve at some point those di�erentials in order to verifythe quality of
a model candidate. Moreover, integrals should also be useful. The classical
and widely used numerical tools to do the job are: (a) using thetechnique
of separating variables to partial di�erential equations and applying Runge-
Kutta methods to approximate solutions for the achieved ordinary di�erential
equations; and (b) Gauss Quadrature methods to perform numerical integra-
tions for arbitrary functions [18, 19], multidimensional cases covered by tensor
products or sparse grids [20, 21]. Numerical methods designed to directly solve
partial di�erential equations are seldom explored in the literature, due to the
success of the aforementioned methods, and the growing need for multidimen-
sional integration (cubature) methods keeps it as an open research topic.

Diverging from the common sense, this work tries to generalize the process
of modelling of multivariate systems. In order to do so, robust multivariate

9

1. Introduction

operations are necessary, especially when dealing with partial di�erential equa-
tions. Parallelism is also desirable, once the entire process has the potential
to be an eager customer of computational power. The possibility of trans-
forming it into a Linear Algebra problem, as could be seen whendealing with
FEM, is also very tempting. After a long period of experimentations and aim-
ing for those purposes, this work has �nally adopted the following numerical
methods: (a) the Ritz-Galerkin method [22], speci�cally anown customiza-
tion of the method, to build a system of equations from di�erential equations
(ordinary or partial); (b) Monte Carlo integration [23] to perform multivari-
ate integrals; and (c) matrix formulations with related operations to evaluate
candidate models.

Evolving models

The GP technique is classi�ed under the Evolutionary Computation (EC) re-
search area in which, as suggested by its name, covers di�erentalgorithms that
draw inspiration from the process of natural evolution [24]. GP is, at the most
abstract level, a �systematic, domain-independent methodfor getting comput-
ers to solve problems automatically starting from a high-level statement of
what needs to be done� [13]. That is an expected quality for evolving models
by GP which is known to to �nd previous unthoughtful solutions for unsolved
problems so far [25]. This feature could only be accessed if GPis allowed to
build random individuals from a unconstrained search space.

Implementing CASM through GP have been proven the right choice in the
literature, specially when modelling functions from data [26, 4, 27, 28]. For
a system of interest with available measurements, this worksinstead aims to
evolve a functional (partial di�erential equation) whose solution is a function
that could explain the available data. Classic GP symbolic regression needs
some adjustments to be able to do so.

Computer programming language

The chosen language for programming is C++. Besides high speedperfor-
mances [29], C++ language has been listed on the top 5 programming lan-
guages rank [30], has support for several programming paradigms (e.g., im-
perative, structured, procedural and object-oriented), has a large active com-
munity, could bene�t from 300+ open source libraries [31] (including 100+ of
boost set of libraries only) and several others freely distributed (e.g. BLAS
and LAPACK 5 for linear algebra purposes; MPICH2, CUDA and OpenCL for
parallel/concurrency programming), and allows the programmer to take con-
trol of every aspect of programming. In the other hand, C++ is strongly plat-
form based (code has to be compiled in whatever operational system and/or
hardware the executable is needed to run on) and the programmer has to be
aware of every aspect of programming (depending on the aimedapplication,
programmer also needs to know about the hardware involved).Those pros
and cons were evaluated before this choice, including the need this project has
for high performance computation.

5LAPACKE library for C++.

10

1.6. Outline of the text

1.6 Outline of the text

This thesis is divided into three parts. The �rst one, Background, covers this
introduction in Chapter 1. A non comprehensive list of related works that deal
with system modelling through Genetic Programming is presented in Chap-
ter 2. Related theory in Chapter 3 are addressed in order to understand the
method proposed here: linear di�erential equations, Hilbert inner product and
basis for function spaces, Ritz-Galerkin method, well-possessedness of a di�er-
ential problem, Jacobi polynomials, linear mappings and change of variables,
Monte Carlo integration and Genetic Programming.

The second part refers to the proposed method itself. It starts by explain-
ing how the proposed method could be applied to linear ordinary di�erential
equations in Chapter 4. The extension of those results when applying the
method to linear partial di�erential equations is shown in Chapter 5.

The third and last part is about system modelling. A �tness scheme is pro-
posed in Chapter 6 in order to evaluate di�erential model candidates. Chap-
ter 7 brings a preliminary implementation of a Genetic Programming applica-
tion to perform system modelling. Finally, some results, discussions and other
extensions to this work as future research topics could be found in Chapter 8.

Appendices are presented addressing publications achieved during the time
of this doctoral studies (Appendix A), as well as future topics in need to be
addressed, as the massively parallel paradigm of GPGPUs (Appendix B) and
a more robust parallel platform for GP known as EASEA (Appendix C).

11

Chapter 2

Related Works

2.1 A brief history of the �eld

Since decades ago, scientists have been trying to build models from observable
data. Once datasets of interest starts to increase and underlying model struc-
tures became complicated to infer, scientists start thinking about automating
the modelling process.

One of the �rst works that authors could �nd, the work of Crutch�eld and
McNamara [32] in 1987 shows the development of a numerical method based
on statistics to reconstruct motion equations from dynamic/chaotic time-series
data. In a subsequent work, Crutch�eld joined Young [33] to address updates
to that approach while introducing a metric of complexity fornon-linear dy-
namic systems.

Still in the 1980's, some researchers had developed techniques capable
of evolving computer programs, like the works of Cramer, Hicklin and Fu-
jiko [34, 35, 36], respectively, as an attempt to inspire �creativity� into com-
puter machines. These e�orts culminate with the advent of Genetic Program-
ming with the works of Koza [37, 12] to enable science in the 1990's to start
experiencing computer-automated symbolic regression in the form of mathe-
matical expressions constructed from data. In general, allfamily of Evolution-
ary Algorithms [38, 39, 40, 24] could be easily related with system modelling,
but GP brought a lot of facilities and powerful tools into thesubject [13].

Nevertheless, the work of Schmidt and Lipson [4] published in 2009 is
often seen by the scienti�c community as a great landmark forcomputer-
automated system modelling due to the broad impact it had on the media at
the time it was published (e.g., articles in [41, 42, 43]). Even considering that
some relevant issues were raised by Hillar [44], Schmidt andLipson provided
observations from basic lab experiments to a computer and this computer was
able, using GP-like techniques, to evolve some underlying physical laws in the
form of mathematical expressions with respect to the phenomena addressed in
the experiments, using 40 minutes to a few hours to do so, depending on the
problem.

In the same issue of the journal Science that the paper of Schmidt and
Lipson was published, Waltz and Buchanan [14] defended the need for an
automation of science, without debunking the role of the researcher. They

12

2.2. Early papers

pointed out that �computers with intelligence can design andrun experiments,
but learning from the results to generate subsequent experiments requires even
more intelligence�. This work has the perspective that computer-automated
system modelling must be aimed to help scientists to understand, predict and
control their object of study.

Therefore, this section is aimed to cover works that are relate to this thesis
within the subject of computer-automated system modelling from observable
data. Only works that also make use of GP or some other EA are addressed
here. Note that the following list is not intent to be comprehensive, but should
re�ect the state of art in this �eld. The list is sorted from the early years to
nowadays. When two or more works are from the same year, sort criteria turns
to be lexicographic.

2.2 Early papers

before 2000

Gray et al. [26] uses GP to identify numerical parameters within parts of
the non-linear di�erential equations that describes a dynamic system, starting
from measured input-output response data. The proposed method is applied
to model the �uid �ow through pipes in a coupled water tank system.

2000 up to 2004

Caoet al. [45] describes an approach to the evolutionary modelling problem of
ordinary di�erential equations including systems of ordinary di�erential equa-
tions and higher-order di�erential equations. They propose some hybrid evo-
lutionary modelling algorithms (genetic algorithm embed in genetic program-
ming) to implement the automatic modelling of one and multi-dimensional
dynamic systems respectively. GP is employed to discover and optimize the
structure of a model, while GA is employed to optimize its parameters.

Kumon et al. [46] present an evolutionary system identi�cation method
based on genetic algorithms for mechatronics systems which include various
non-linearities. The proposed method can determine the structure of linear
and non-linear elements of the system simultaneously, enabling combinatorial
optimization of those variables.

Chen and Ely [47] compare the use of arti�cial neural networks (ANN), ge-
netic programming, and mechanistic modelling of complex biological processes.
They found these techniques to be e�ective means of simulation. They used
Monte Carlo simulation to generate su�cient volumes of datasets. ANN and
GP models provided predictions without prior knowledge of theunderlying
phenomenological physical properties of the system.

Banks [48] presents a prior approach to model Lyapunov functions. He has
implemented a GP, in MathematicaR
 , which searches for a Lyapunov function
of a given system. The project was successful in �nding Lypunov functions for
simple, two-dimensional systems.

13

2. Related Works

Leung and Varadan [49] propose a variant to GP in order to demonstrate its
ability to design complex systems that attempts to reconstruct the functional
form of a non-linear dynamical system from its noisy time series measurements.
They did di�erent tests on chaotic systems and real-life radarsea scattered
signals. Then they apply GP to the reverse problem of constructing optimal
systems for generating speci�c sequences called spreadingcodes in CDMA
communications. Based on computer simulations, they have shown improved
performance of the GP-generated maps.

Hinchli�e and Willis [50] uses multi-objective GP to evolve dynamic process
models. He uses GP ability to automatically discover the appropriate time
history of model terms required to build an accurate model.

Xiong and Wang [51] propose both a new GP representation and algorithm
that can be applied to both continuous and discontinuous functions regression
applied to complex systems modelling. Their approach is ableto identify both
structure and discontinuity points of functions.

2005 up to 2009

Beligiannis et al. [52] adopts a GP-based technique to model the non-linear
system identi�cation problem of complex biomedical data. Simulation results
show that the proposed algorithm identi�es the true model and the true values
of the unknown parameters for each di�erent model structure, assisting the GP
technique to converge more quickly to the (near) optimal model structure.

Bongard and Lipson [53], states that uncovering the underlying di�erential
equations directly from observations poses a challenging task when dealing
with complex non-linear dynamics. Aiming to symbolically model complex
networked systems, they introduce a method that can automatically generate
symbolic equations for a non-linear coupled dynamical system directly from
time series data. They state that their method is applicable to any system
that can be described using sets of ordinary non-linear di�erential equations
and have an observable time series of all independent variables.

Iba [54] presents an evolutionary method for identifying models from time
series data, adopting a model as a system of ordinary di�erential equations.
Genetic programming and the least mean square were used to infer the systems
of ODEs.

2.3 Contemporary papers, 2010+

McGoughet al. [55] represent a line of research on GP-based generation of Lya-
punov functions. As stated: �one of the fundamental questions that arises in
nonlinear dynamical systems analysis is concerned with the stability properties
of a rest point of the system�. The theory of Lyapunov is used tounderstand
the qualitative behaviour of the rest point. Their work uses avariant of GP
to evolve Lyapunov functions for a given dynamic systems, aiming to explore
their stability.

14

2.4. Discussion

Gandomi and Alavi [56], propose a new multi-stage GP strategy for mod-
elling non-linear systems. Based on both incorporation of each predictor vari-
able individual e�ect and the interactions among them, theirstrategy was able
to provide more accurate simulations.

Edited by Soto [27], a book about GP that has several chapters dedicated
to examples of GP usage in system modelling.

Stanislawskaet al.[28] use genetic programming to build interpretable mod-
els of global mean temperature as a function of natural and anthropogenic
forcings. Each model de�ned is a multiple input, single output arithmetic
expression built of a prede�ned set of elementary components.

Finally, Gaucelet al. [57] propose a new approach using symbolic regression
to obtain a set of �rst-order Eulerian approximations of di�erential equations,
and mathematical properties of the approximation are then exploited to recon-
struct the original di�erential equations. Some highlighted advantages include
the decoupling of systems of di�erential equations to be learned independently
and the possibility of exploiting widely known techniques forstandard sym-
bolic regression.

2.4 Discussion

In general, a model is referred as a mathematical expressionthat translate
abstract functions supposed to generate experimental observed data. Besides
discussion in Section 1.2, this widely adopted point of view is of greater use
in science. Nevertheless, this work aims to built �di�erential models� from
observable data,i.e., a di�erential equation with the potential of unveiling
interrelations, physical quantities and energy transformations that could be
obscure due to the complexity of available data.

In this section some related works are enlisted, related mainly to system
modelling from data. From those, there are some who favoured the discussion
similarly to this present thesis,e.g., Gray [26], Cao [45], Bongard [53], Iba [54],
and Gaucel [57],i.e., they are also dealing with di�erential models within their
works. While the work of Gray deals with structured non-linear di�erential
equations, the others attacked the problem by assuming models as systems
of ordinary equations. Both [53] and [57] stand out for givencontributions.
Bongard achieved symbolic equations as models, and Gaucel realizes some
mathematical identities that are really relevant for the overall performance of
CASM.

Even so, those works adopt di�erent paradigms. This present work aims
to evolve partial di�erential models from observable data. To accomplish this,
an elaborated novel method is presented in order to be applied to any linear
di�erential equation (ordinary or partial) to obtain unique projections for the
solution. This proposed method acts the same, no matter the dimensionality
of the problem. Authors have no knowledge about other works within CASM
that uses something similar to the proposed approach present in this thesis.

15

Chapter 3

Theory

In this Section, some key subjects to understand contributions from this work
are presented, as linear di�erential equations, Hilbert inner product space,
Galerkin's method, well posed problems, Jacobi polynomials, linear mappings,
change of variables, Monte Carlo integration, and Genetic Programming.

3.1 Linear di�erential equations

Linear di�erential equations (LDE) could be described basically by a linear
operator L which operates a functionu(~x) � the unknown or the solution �
and results in a source functions(~x). LDEs are in the formL [u(~x)] = s(~x). A
simple de�nition of a linear di�erential operator L of order Q with respect to
each ofD variables is shown in Equation (3.1).

L [u(~x)] =
Q? � 1X

q=0

kq(~x)

"
D � 1Y

i =0

@
 q;i

@x
 q;i
i

#

u(~x): (3.1)

where ~x = (x0; x1; : : : xD � 1)T ;
 q;i is the order of the partial derivative with
respect toi th variable designed by theqth case from theQ? possible combina-
torial orders (see Chapter 5 for details);kq(~x) refers to each term coe�cient
and could be a function itself, including constant, linear and even non-linear
ones; andu(~x) is the multivariate function operand to the functionalL . Note
that the de�nition @0

@x0i
u(~x) � u(~x) has been adopted here.

Using de�nition of L , multivariate LDEs could be written in the form of
Equation (3.2):

L [u (~x)] = s (~x)
Q? � 1X

q=0

kq(~x)

"
D � 1Y

i =0

@
 q;i

@x
 q;i
i

#

u(~x) = s(~x) (3.2)

whereu (~x) is the unknown function (dependent variable) which is the solution
to the di�erential equation; and s (~x) is the source function, sometimes referred
to as the source term. Note that bothkq (~x) and s (~x) could be constant, linear

16

3.2. Hilbert inner product and basis for function space

or even non-linear functions with respect to independent variables addressed
by ~x.

Related to this de�nition, this work considers that: (a) kq(~x) coe�cients
are real functions (constant, linear or non-linear),i.e., 8x; kq(~x) 2 R; (b)
the unknown function u(~x) refers to a scalar �eld; (c) the source function
re�ects either homogeneous � s(~x) = 0 � or inhomogeneous � s(~x) 6= 0 �
di�erential equations.

An univariate L , also known as a linear ordinary di�erential operator, could
be de�ned as in Equation (3.3):

L [u(x)] =
QX

q=0

kq(x)
dq

dxq
f (x) (3.3)

whereQ is the order of the linear di�erential operator L ; kq(x) are the Q + 1
coe�cients from respective terms, with the restriction that kQ(x) 6= 0; u(x)
is the operand forL and is assumed to be a function of the only independent
variable x. Note that L contains a dependent variableu(x) and its derivatives
with respect to the independentx.

Using de�nition of L , univariate LDEs could be written in the form of
Equation (3.4):

L [u(x)] = s(x)
QX

q=0

kq(x)
dq

dxq
u(x) = s(x) (3.4)

whereu(x) is the unknown function (dependent variable) which is the solution
to the di�erential equation; and s(x) is the source function, sometimes referred
to as the source term. Note that bothkq(x) and s(x) could be constants,
linear functions themselves or even non-linear functions with respect to the
independent variablex.

Distinct from LDEs, non-linear di�erential equations have at least one
term which is a power of the dependent variable and/or a product of its
derivatives. An example for the former is the inviscid Burgers equation:
@
@tu(x; t) = � u(x; t) @

@xu(x; t). Other example for the latter could be formu-

late by any di�erential equation which has term with
�

@
@xu(x; t)

� k
or even�

@
@xu(x; t)

�
�

�
@
@tu(x; t)

�
. Note that terms as @

@x
@
@tu(x; t) are still linear. For

now, non-linear di�erential equations are not object of this thesis.

3.2 Hilbert inner product and basis for
function space

An inner product for functions can be de�ned as in Equation (3.5):

hf (x); g(x) i =

bZ

a

f (x)g(x)w(x) dx (3.5)

17

3. Theory

where f (x) and g(x) are operands;a and b the domain interval for the inde-
pendent variablex; and w(x) is known as the weight function.

A Hilbert inner product space is then de�ned when choosing theinterval
[a; b] and weight functionw(x), in order to satisfy the properties of conjugate
symmetry, linearity in the �rst operand, and positive-de�niteness [58, pp.203].
Note that, when in R, the inner product is symmetric and also linear with
respect to both operands.

Two functions f n (x) and f m (x) are then considered orthogonal to each
other in respect to a Hilbert space by the de�nition present in Equation (3.6):

hf n (x); f m (x) i = hn � nm =

(
0 if n 6= m

hn if n = m
(3.6)

wherehn is a constant dependent onhf n (x); f n (x) i ; and � nm is the Kronecker
delta.

Following Equations(3.5) and (3.6), implication in Equation (3.7) is then
valid:

8w(x); hw(x); f (x)i = 0 =) f (x) � 0: (3.7)

A complete basis for a function spaceF is a set of linear independent
functions B = f � n (x)g1

n=0 , i.e., a set of orthogonal basis functions. An arbi-
trary function f (x) could then be projected into this function space as a linear
combination of those basis functions, as shown in Equation (3.8):

8f (x) 2 F =) f (x) =
1X

n=0

cn � n (x) (3.8)

As an example, ifF is de�ned as the set of all polynomials functions and
power series, a complete basis should beB = f x i g1

i =0 , where it comes that

f (x) =
1P

j =0
cj x j .

Finally, from Equations (3.7) and (3.8), the implication in Equation (3.9)
follows:

8� (x) 2 B ; 8f (x) 2 F ; h� (x); f (x)i = 0 =) f (x) � 0: (3.9)

3.3 Galerkin method

The Ritz-Galerkin method, widely known as the Galerkin method [22], is one
of the most fundamental tools of modern computing. Russian mathematician
Boris G. Galerkin generalised the method whose authorship heassigned to
Walther Ritz and showed that it could be used to approximate solve many
interesting and di�cult elliptic problems arising from app lications [59]. The
method is also a powerful tool in the solution of di�erential equations and
function approximations when dealing with elliptic problems[7, 60].

Also, Galerkin method is considered to be a spectral method from the fam-
ily of weighted residual methods. Traditionally, those methods are regarded as

18

3.3. Galerkin method

the foundation of many numerical methods such as FEM, spectralmethods,
�nite volume method, and boundary element method [61]. A non-exhaustive
and interesting historical perspective for the development of the method can
be found in [59].

As a class of spectral methods from the family of weighted residual meth-
ods, Galerkin method could be de�ned as a numerical scheme toapproximate
solve di�erential equations. Weighted residual methods in general are approx-
imation techniques in which a functional named residualR[u(x)], also known
as the approximation error and de�ned in Equation (3.10), is supposed to be
minimized [61].

R[u(x)] = L [u(x)] � s(x) � 0 (3.10)

Note that R[u(x)] is also known as the residual form of the di�erential
equation. The idea is to have a feasible approximation̂u(x) to the solution
u(x) in order to forceR[u(x)] � 0. This approximation is built as a projection
on the space de�ned by a proper chosen �nite basisB = f � n (x)gN

n=0 with a
span of N + 1 functions. The approximation û(x) has the form present in
Equation (3.11):

û(x) =
NX

n=0

~un � n (x); (3.11)

where ~un are the unknown coe�cients of this weighted sum. The approxi-
mation û(x) is also known as the truncated Galerkin expansion (TGE) for a
�nite N . In the literature, the form û(x) = ~u0 +

P N
n=1 ~un � n (x) is also found.

However, this thesis adopts the requirement that� 0(x) � 1 instead.
Galerkin's approach states that when the residualR[u(x)] operates the ap-

proximation û(x) instead of the solutionu(x), this residual is required to be
orthogonal to each one of the chosen basis functions inB. This is accom-
plish by starting from both Equations (3.9) and (3.10) and canbe seen in
Equation (3.12):

8� (x) 2 B ; h� n (x); R[û(x)] i = 0; n = 0 : : : N (3.12)

Then, the method requires to solve thoseN +1 equations in order to �nd an
unique approximate solution of the di�erential equation described by R[u(x)]
with respect to the chosen basisB. Note that all basis functions� (x) 2 B must
satisfy some auxiliary conditions knowna priori (usually linear homogeneous
boundary conditions) to enable a well posed problem.

Finally, after plugging the approximation in Equation (3.11) to the resid-
ual in Equation (3.10) and following Equation (3.12), the Galerkin System of
Equations (GSE) is then built, as shown in Equation (3.13):

19

3. Theory

h� n (x); R[û(x)] ij N
n=0 = 0

) h � n (x); L [û(x)] � s(x)ij N
n=0 = 0

)

"*

� n (x); L [
NX

m=0

~um � m (x)]

+

� h � n (x); s(x)i

#N

n=0

= 0

)

"
NX

m=0

~um h� n (x); L [� m (x)] i = h� n (x); s(x)i

#N

n=0

(3.13)

Solving the system of equations in Equation (3.13) forN + 1 unknown
coe�cients ~um and afterwards substituting them into Equation (3.11), an ap-
proximate solution to the di�erential equation is �nally ach ieved.

According to [62], Galerkin's method �is not just a numerical scheme for
approximating solutions to a di�erential or integral equations. By passing to
the limit, we can even prove some existence results�. More information on
proofs to the bounded error and convergence of Galerkin method for elliptic
problems could be found in [7, pg. 46�51]. Note the importance of choosing
the right basis for the approximating �nite dimensional subspaces. The work
of [62] also emphasises the utilization of Galerkin methodswith orthogonal or
orthonormal basis functions,i.e., a complete basis.

Note that using the identity in Equation (3.14), it is pretty straightforward
to convert summations to a matrix form.

MX

j =0

(aj � f i;j)

�
�
�
�
�

N

i =0

=

0

B
@

f 0;0 : : : f 0;M
...

. . .
...

f N;0 : : : f N;M

1

C
A �

0

B
@

a0
...

aM

1

C
A (3.14)

Therefore, a GSE could be written in matrix formulation. From Equa-
tions (3.13) and (3.14), follows Equation (3.15) in the form:

G � ~u = s)
0

B
@

h� 0(x); L [� 0(x)] i � � � h � 0(x); L [� N (x)] i
...

. . .
...

h� N (x); L [� 0(x)] i � � � h � N (x); L [� N (x)] i

1

C
A �

0

B
@

~u0
...

~uN

1

C
A =

0

B
@

h� 0(x); s(x)i
...

h� N (x); s(x)i

1

C
A

(3.15)

whereG is known as the coe�cient (sti�ness and mass) square matrix;~u is the
unknown (displacements) column vector; ands is the source (forces) column
vector. Names inside parenthesis are used by FEM.

3.4 Well-posed problems

French mathematician Jacques Salomon Hadamard, among other contribu-
tions, coined the widely used notion of well-posed problems for partial di�er-
ential equations [63, 7]. Hadamard de�ned a problem to be well-posed only
if:
20

3.4. Well-posed problems

1. A solution exists and is unique;

2. This solution depends continuously on the given data,i.e. solution is
not unstable.

Therefore, if a problem does not meet all these criteria, it issaid to be ill-
posed. Note that, even if a problem is well-posed, it may still be ill-conditioned,
which means that small numerical variations in elements fromthe coe�cient
matrix or the source vector implies in large di�erences between evaluations of
unknowns. According to [7], from a point of view of numerical methods, there
are several possible error sources when calculating PDE solutions (e.g., compu-
tational domain, boundary and initial conditions, method related parameters,
�nite computer arithmetic). If a problem is ill-posed, or if it is ill-conditioned,
no con�dence in the numerical solution is then possible.

Using Equation (3.15) as reference of PDE problem, to test if a di�erential
problem is well-posed, it is su�cient to verify if the coe�ci ent matrix G has full
rank. If it is rank de�cient, an ill-posed problem is presented. Ill-conditioned
problems could be tested if the coe�cient matrix, even full rank, has a large
condition number.

Both rank and condition number could be calculated from the singular
value decomposition (SVD) of the matrix [19].

The rank of a matrix could then be de�ned as the number of singular
values di�erent from zero. Numerically speaking, a tolerance must be de�ned
in order to test if a singular value is close to zero or not. It is common sense to
use a tolerance with respect to the number of elements of the matrix and the
machine epsilon [64] of the standard hardware �oating-point data type that
has been used.

The condition number could be de�ned as the ratio of the largest to small-
est singular value of a matrix. A practical way to test conditioning of the
coe�cient matrix is to evaluate the unknowns using any methodavailable and
to try to recover the source vector. Large di�erences betweenthe original
source vector and the new evaluated one indicates an ill-conditioned coe�-
cient matrix. Algorithm 1 presents this practical test if a more robust test is
desired. Authors suggest to use the Moore-Penrose pseudo-inverse [65] instead
of inverting the coe�cient matrix.

Algorithm 1 Practical condition test ; test if a coe�cient matrix is well-
conditioned or not.
Require: System of equations in the formG � ~u = s

~u (G� 1 � s)
s? (G � ~u)
if ks? � sk < tolerancethen

Matrix G is well-conditioned
else

Matrix G is ill-conditioned
end if

21

3. Theory

3.5 Jacobi polynomials

The classical option for Galerkin basis functions in FEM are Lagrange inter-
polating polynomials. Besides the fact they are extremely useful when dealing
with piecewise approximations, the restriction on using themin this work came
from the fact that they are not orthogonal. The main idea of using polynomi-
als for function approximations is that, given a subspace and an orthonormal1

basis ofn polynomial functions (up to n ! 1), any function can described
onto that subspace [66], as seen in Section 3.2.

In that sense, orthogonal polynomials have been widely used with spec-
tral methods as an attractive framework [67]. Using orthogonal polynomials
with Galerkin method ensures a Hilbert function space where any desirable
smooth function could be projected,i.e., an unique approximation could be
built by TGEs. Jacobi polynomials is an interesting choice dueto some of
their properties, as to be shown.

Jacobi polynomials have the hypergeometric de�nition present in Equa-
tion (3.16), as shown by [68] and [67]:

P (�;�)
n (x) =

�(n + � + 1)
�(n + 1)�(� + 1) 2F1

�
� n; n + � + � + 1; � + 1;

1
2

(1 � x)
�

(3.16)
where�(�) is the gamma function;2F1(p; q; r ; z) is the Gauss's hypergeometric
function with respect to constantsp, q, r , and the independent variablez;
� � � 1; � � � 1; and n � 0.

Note that this work uses de�nitions 8�; �

(
n < 0 =) P (�;�)

n � 0;
P (�;�)

0 � 1
The use of Pochhammer symbol2 and factorials allow the following de�ni-

tion to Jacobi polynomials:

P (�;�)
n (x) =

�(n + � + 1)
n! �(� + 1)

nX

k=0

(� n)k (n + � + � + 1) k

(� + 1) k

�
1 � x

2

� k 1
k!

(3.17)

From [69], also shown by [67], an important identity for derivatives of Jacobi
polynomials is presented in Equation (3.18):

dk

dxk
P (�;�)

n (x) =
�(n + � + � + k + 1)
2k �(n + � + � + 1)

P (� + k;� + k)
n� k (x) (3.18)

Regarding Hilbert inner product space, Jacobi polynomialsare orthogo-
nal on the interval [� 1; +1] and have the weight functionw(x) presented in
Equation (3.19):

w(x) = (1 � x)� (1 + x)� (3.19)
1Orthogonality restriction is usually enough.
2The Pochhammer symbol stands for(x)n = �(x + n)

�(x) , besides some special cases.

22

3.5. Jacobi polynomials

Therefore, inner products for Jacobi polynomial are de�ned in Equation (3.20):

P (�;�)

n (x); P (�;�)
m (x)

�
=

1Z

� 1

P (�;�)
n (x)P (�;�)

m (x) (1 � x)� (1 + x)� dx (3.20)

where� � � 1 and � � � 1 ensures the integrability ofw(x) [68].
The work of [68, pp.58] also presented mapped Jacobi polynomials, de�ned

in Equation (3.21), which are orthogonal on the arbitrary interval a � x � b:

P (�;�)
n (� (x)) =

�(n + � + 1)
�(n + 1)�(� + 1) 2F1

�
� n; n + � + � + 1; � + 1;

b� x
b� a

�

(3.21)
where� (x) = 2 x� a

b� a � 1 and [a; b] is the arbitrary interval on which the inner
product is taken.

The associated error is asymptotically minimized in anLp(�)-norm, as
stated by [67], given the appropriate choice of� = � . Special cases of Jacobi
polynomials could be found choosing appropriate� and � . Basis functions
could be generated to be asymptotically similar to Chebyshevpolynomials of
the �rst kind, Tn (z), choosing� = � = � 1=2; Chebyshev polynomials of the
second kind,Un (z), choosing� = � = 1=2; and Legendre polynomials,Pn (z),
choosing� = � = 0. Also, the same work states that the asymptotic error
between a given solution function for a di�erential equationand its TGE is
minimized in the L1 , L1 and L2-norms, respectively.

Therefore, with the support of mapped Jacobi polynomials and choosing
for the sake of simplicity � = � = 0 (Legendre polynomials), the univariate
inner product operator could then be de�ned as in Equation (3.22):

P (0;0)

n (� (x)) ; P (0;0)
m (� (x))

�
=

bZ

a

P (0;0)
n (� (x)) P (0;0)

m (� (x)) dx (3.22)

By following the development of Equation (3.18), authors could achieve
the derivative identity from Equation (3.23) which refers to mapped Jacobi
polynomials on the �nite interval [a; b]:

dk

dxk
P (�;�)

n (� (x)) =
�(n + � + � + k + 1)

(b� a)k �(n + � + � + 1)
P (� + k;� + k)

n� k (� (x)) (3.23)

Note that identities in Equations (3.18) and (3.23) exchanges a derivative
operation on a polynomial by another polynomial, a very useful treat.

23

3. Theory

3.6 Mappings and change of variables

In order to generalise the method of Galerkin, some mappingsare required.
Considering an arbitrary interval domain, the inner productimplies the use
of either the mapped Jacobi polynomials from Equation (3.21)or a mapped
version of the di�erential equation under investigation to the interval [� 1; +1] ,
the very interval where Jacobi polynomials are orthogonal. The underlying
de�nite integral must be evaluated on the same interval for both multiplying
functions. The change of variables for di�erentiation and integration then
become very useful.

First, the interval of orthogonality for Jacobi polynomials should be hereby
identi�ed by the variable � 2 [� 1; +1] . In the other hand, arbitrary intervals
should be represented byx 2 [a; b]. Linear mappings in Equations (3.24)
and (3.25) then become straightforward to understand.

x 7! � : � (x) = 2
x � a
b� a

� 1 (3.24)

� 7! x : x(�) =
b� a

2
� +

b+ a
2

(3.25)

A change of variables for di�erentiations, asd
dx f (x) 7! d

d� f (�), is presented
in Equation (3.26).

d
dx

f (x) =
d�
dx

d
d�

f (� 7! x) =
2

b� a
d
d�

f (x(�)) (3.26)

Therefore, a change of variables for higher order derivatives is shown in
Equation (3.27).

dk

dxk
f (x) =

�
2

b� a

� k dk

d� k
f (x(�)) (3.27)

Finally, the change of variables for integrations, as
Rb

a f (x) dx 7!
R1

� 1 f (�) d� ,
known as integration by substitution in unidimensional cases, is presented in
Equation (3.28).

bZ

a

f (x) dx =

1Z

� 1

f (� 7! x) J d� =

1Z

� 1

f (x(�))
dx
d�

d� =
b� a

2

1Z

� 1

f (x(�)) d�

(3.28)
where J is the determinant of the Jacobian matrix. In this unidimensional
case and because of linear mapping shown in Equation (3.25), this determinant
J = dx

d� = b� a
2 is a constant.

3.7 Monte Carlo integration

In order to integrate an arbitrary function, Monte Carlo integration picks ran-
dom points over a certain domain (a multidimensional volume) and calculate

24

3.7. Monte Carlo integration

Table 3.1: Monte Carlo integration applied tof (x; y) = exp(� x) cos(y) de-
�ned in f 0 � x � 1; 0 � y � �

2 g (100 runs).

N points

1R

0

�
2R

0
exp(� x) cos(y) dx dy order of

min max mean
standard execution
deviation time

29(512) 0:59363 0:66306 0:63085 0:014666 1� (ref)
210 0:60741 0:65514 0:63246 0:010593 1:75�
212 0:62093 0:64844 0:63104 0:005892 4:25�
214 0:62634 0:63793 0:63202 0:002552 17�
216 0:62918 0:63574 0:63231 0:001411 66�
218 0:63003 0:63454 0:63219 0:000752 249�
220 0:63117 0:63293 0:63216 0:000352 965�
221 0:63133 0:63279 0:63210 0:000292 1 905�

222(4 194 304) 0:63163 0:63263 0:63213 0:000175 3 786�

the mean value of the function taken on those random points [23], as presented
in Equation (3.29).

Z

V

f (~x) d~x �

V � 1Y

i =0

bi � ai

!
1
N

N � 1X

j =0

f (~X j) (3.29)

where V is the hyper-volume which represents the number of dimensions; N
is the number of random ~X j points to be taken; ai and bi are the limits of
integration for the i th dimension.

For example, the functionf (x; y) = exp(� x) cos(y) has, for the domain
f 0 � x � 1; 0 � y � �

2 g, a multidimensional de�nite integral � 0:6321when
analytically evaluated. Table 3.1 presents results from Monte Carlo integration
with respect to the number of random points taken.

The great advantage of Monte Carlo integration is that multivariate in-
tegrals are straightforward to evaluate. This very scheme is�exible and ad-
justable on the �y. The disadvantage is that, to get reliable results, the number
of random picked points must be large. Example in Table 3.1, for instance,
needs something around220 (� 106, 1 million) points to drop standard devia-
tion bellow 10� 3. For this quantity of random points, execution time is almost
1000� the time necessary when choosing29 (� 500) points3. Execution time
almost doubles each new increment on the power of 2 after that. Figure 3.1
shows how on average Monte Carlo integration performs very well, but indi-
vidually its reliability is proportional to the number of pi cked random points.
Also, depending on the function to be integrated, those numbers and analyses
could change. A workaround is to �t the �nal modelling tool with some par-
allel paradigm to allow the use of a large set of points withoutcompromising
execution time.

3In this case, less than10� 3 sec.

25

3. Theory

10

12

14

16

18

20

22

0.590.60.610.620.630.640.650.660.67

P
ow

er
s

of
 2

; l
og

2(

ra
nd

om
 p

oi
nt

s)

Definite integration result

Analytical solution
min/max Monte Carlo (100 runs)
mean/std Monte Carlo (100 runs)

Figure 3.1: Monte Carlo integration performance onf (x; y) = exp(� x) cos(y)
de�ned in f 0 � x � 1; 0 � y � �

2 g (100 runs).

3.8 Genetic Programming

Koza [70] has de�ned GP as �an automatic technique for producing a computer
program that solves, or approximately solves, a problem�. He follows by stating
that GP �addresses the challenge of getting a computer to solve a problem
without explicitly programming it�. GP is widely de�ned as an extension of
the Genetic Algorithm from [71] which, in turn, is preceded bynotions and
concepts presented by [72].

John R. Koza is the reference when the subject is GP because of his mile-
stone work [37]. He has written several books on this subject and helped to
popularize GP across the world. Today GP is extensively described in books,
in edited collections of papers, in conference proceedings, in journals (e.g. Ge-
netic Programming and Evolvable Machines journal4), and at web sites such as
www.genetic-programming.org . Interesting to mention, before Koza, other
researches had built models capable of evolving computer programs also based
on Genetic Algorithms, e.g. [34], [35], [36]. This could be seen as the re�ex of
humanity trying to inspire �creativity� into computer mach ines.

The main idea behind GP is that it is intended to work as �an automatic sys-
tem whose input is a high-level statement of requirements� for a given problem
and �whose output is a working program� that actually solves the problem [70].
As a recognized part of the EC �eld family, GP also arti�cially evolves indi-
viduals to �t a near-optimum solution for a predetermined problem. In the
case of GP, those individuals are computer programs and/or instructions.

Since many problems can be easily recast as a search for a computer pro-
gram, Koza states that GP �can potentially solve a wide range of types of
problems, including problems of control, classi�cation, system identi�cation,
and design� [70]. Design, specially, is �usually viewed as requiring creativity
and human intelligence�.

4http://www.springer.com/computer/ai/journal/10710

26

3.8. Genetic Programming

Glossary of Evolutionary Algorithm terms

Collet [73], based on Fogel [74], brought some historical details about EC: in
early 1950s, when the �rst computers came out of research labs5, EC had about
ten independent beginnings in Australia, United States andEurope; however,
Arti�cial Life and Arti�cial Evolution only came of age in the 1990s, when
computers were �nally powerful enough to �nd interesting results.

From EC �eld area, all EAs share the same evolutionary steps. Each one
will progressively breed a population typically of thousands of randomly cre-
ated candidate solutions over a series of generations. Using the Darwinian
principle of natural selection, recombination (crossover), mutation, gene du-
plication, gene deletion, certain mechanisms of developmental biology, and
�rmly based on stochastic decisions, all EAs will eventually breed a most �t
individual to be called the solution of the problem.

Because of their analogy with living beings, there are several terms in
EC that are not proper of Computer Science. With the help of the work of
[75], [13], among others, we can detach some important concepts for any EA,
including GP, to end up with a mini glossary of terms borrowed from Biology
and Genetics:

Individual � a candidate or potential solution to the problem being opti-
mized.

Chromosome, genome, genotype � the representation or encoding for an
individual within the search space of a solution, speci�c to the problem to
be solved. Commonly, it is a vector which contains data that is supposed
to be enough to understand the solution if you know the phenotype.
Typically is a vector of numbers (binaries or real numbers),but its form
is a key point in classifying historical EAs. All genetic operators will be
performed onto this encoded form.

Gene � Each element that, when combined with others, arises the chromo-
some (aka genome).

Phenotype � The practical meaning of a chromosome. Used as a key to un-
derstand information from the genotype (chromosome). Whena geno-
type is turned into a phenotype, the candidate solution acquires its full
meaning.

Population � the set of all individuals. Typically, it does not change its size
from one generations into another. Within the lifetime of a generation
it could grow up, though, to be reduced in the end of the cycle.

Landscape or environment � the �location� where individuals survive; it
represents the problem to be solved. Typically, it is the surface of some
evaluation function. It is also described as the search space.

5IBM 650 in 1953.

27

3. Theory

Fitness � a characteristic of any individual that is a measure of how adapted
each one is to survive in a predetermined environment. More speci�cally,
it is the measure of quality of a given candidate solution regarding the
problem to be solved, allowing comparisons between di�erent individuals.
Note that this is a crucial characteristic: the best �t individual within
the population when generation cycles come to an end is the evolved
near-optimum solution.

Evaluation or �tness function � this is a key part of an EA. It allows to
rate an individual (determining its �tness) and is speci�c to the prob-
lem to be solved. The genotype representation of an individual must be
turned into a phenotype representation in order to be evaluated. Typi-
cally, it determines the landscape (search space) of the problem.

Generation or evolutionary loop � a loop iteration executed by the EA.
Figure 3.2 allows the visualization of a generation. It typically includes
the following stages: selection of individuals to generate new ones (known
as parents), performance of proper genetic operators to generate new
individuals, evaluation of new individuals (akao�spring or children),
and reduction of population to its original size.

Selection � typically based on �tness (there are some cases where it is ran-
dom), it menas the mechanism to select individuals to generate new
ones. Several strategies exist to select individuals to generate new ones.
Those parent individuals in general are among the best �t individuals
from its generation. Another use of a selection strategy is when it is time
to reduce population; individuals that are departing from existence are
commonly among the worst �t individuals from its generation.

Crossover or recombination � genetic or variation operator. If this ran-
dom operator is enrolled to be performed, it will mix one or more genes
from some selectedparent individuals (typically two) to generate com-
monly up to two o�spring individuals. There are several strategies to do
so.

Mutation � genetic or variation operator. If this random operator is enrolled
to be performed, it will change one or more genes (altering storage data)
from an unique selected individual to generate an unique o�spring. There
are several strategies to do so.

Reproduction or elitism � simply the copy of an individual from a gen-
eration into another. In some cases, the individual is reproduced into
the o�spring, without warranty if it is going to survive the population
reduction stage.

Reduction or replacement � intending for imitating the way of predators,
natural disasters, diseases, and other catastrophes, population is reduced
at the end of a generation lifetime. This reduction, however,is always
bounded to keep population at its original size. This limitation arise
from some issues on computational implementations for EAs and is never
thought as a drawback. There are also several strategies to do so.

28

3.8. Genetic Programming

Figure 3.2: EA �owchart: each loop iteration is a generation;adapted from [75]

De Jong [40] shows in his work several discussions on how to parametrize
EAs. We should not enter in details here, but there are lots of implications
on each decision to be taken and on each regularization of a parameter to be
done, e.g. size of a population, number of generations, termination criteria,
probabilities for performing genetic operators, the chosen reduction strategy.
De Jong presents some analysis that are worthy to understandwhen one is in
the process of specialisation about EAs.

A brief �eld guide to Genetic Programming

Besides all potentialities from GP, a brief discussion is presented in this section
about what distinguishes GP from other EAs and why is feasible tothink about
CASM through it. Perhaps, the most distinguish feature, and the one which
gives more potential to GP, is the classic representation ofan individual: the
genome is represented by an abstract syntax tree (see Figure3.3). Every time
it is said that GP evolves computer programs, one must think of those trees
instead of lines of code. This kind of malleable-arrangementand variable-
length structure made GP a really versatile technique.

In order to clarify the necessary terminology when addressing GP, an ar-
bitrary syntax tree has the structure of a special case of graph known simply
as �trees�. When representing algebraic expressions, trees are graphical repre-
sentations of the pre�x notation, also known as the Reverse Polish Notation
(RPN). All entities in a tree is de�ned as a �node�. The �rst entity of a tree
is identi�ed by being at the top � and, most important, without connections
coming to it � is known as the �root�. All terminations, i.e., the ones with-
out connections coming out of them, are named �leaves�. Entities that have
connections coming in and out are named �internal nodes�.

Symbolic regression, also known as data modelling, is the main concern
of this work. Based on [13], lets take a simple example about GP executions.

29

3. Theory

Figure 3.3: Example of an abstract syntax tree for the computation
� min(

p
9 + x; x � 2y)�, or, in RPN, (min (sqrt (+ 9 x)) (- x (* 2 y)))

Table 3.2: Preparation step for function approximation; adapted from [13].

Objective: Find program whose output matchesx2 + x + 1
within � 1 � x � +1 (data modelling)

Function Set (nodes): + , � , % (protected division), �
Terminal Set (leafs): x and random integer constants within [� 5; 5]
Fitness: sum of absolute errors forx 2 f� 1:0; � 0:9; : : : 0:9; 1:0g

(�area� between discretized curves)
Selection: Must de�ne strategy before run, but it is regardless now
Initial population strategy: Must de�ne strategy before run, but it is regardless now
Parameters: Population size 4; no tree size limits;probabilities for

crossover, mutation, and reproduction must be de�ned
before run, but they are regardless now

Termination criterion: Must de�ne strategy before run, but it is regardless now

Table 3.2 is the preparatory step where is given to GP �a high-level statement of
requirements� [70], including theset of primitives (function and terminal sets)
that will constrain the search space. Figure 3.4 summarizes the evolutionary
loop that took place, and Table 3.3 shows the �tness of every individual from
each generation. Note that this is a minimization problem, so the lower is the
�tness, the better is the individual as a candidate solution.

As one can note from this simple run, GP can take measured points from
some observed phenomena (here the functionx2 + x + 1 was sampled at
x 2 f� 1:0; � 0:9; : : : 0:9; 1:0g to evaluate candidate solutions) and search for
a function that could explain them within some sort of interval (here, the do-
main is limited to � 1 � x � +1). From a random initial population and using
genetic operators, GP was able to search for a solution inside that landscape,
starting from some high-level directives (Table 3.2). To work e�ectively, GP
must have function sets with the closure property [12], which means that func-
tions must exhibit type consistency and evaluation safety (e.g. the operator
%, protected division, typically forcesx � 0 = 1, for any x). Also, the prim-
itive set (functions and terminals) must be su�cient, which means that �the
set of all the possible recursive compositions of primitives includes at least one
solution� [13].

30

3.8. Genetic Programming

Figure 3.4: Summary of this simple run (see Table 3.2); darker elements were
randomly generated; dashed arrows indicates cut points to mix genes in related
crossovers; adapted from [13].

Table 3.3: Summary of this simple run (see Figure 3.4); note that there is a
match (found solution) in generation 1; adapted from [13]

Generation Individual Function represented Fitness Note

0 1 x + 1 7.7

0 2 x2 + 1 11.0

0 3 2 18.0

0 4 x 28.7

1 5 x + 1 7.7

1 6 � x
3 + 2 20.6

1 7 x 28.7

1 8 x2 + x + 1 0.0 (match!

31

3. Theory

There are several other issues that are not discussed here. Theaim of this
section is to present some potentialities of GP, even with theuse of a mostly
graphical example.

3.9 Precision on measurements

One of the main concerns to engineers is about the robustnessof a method
when the input measurements are taken with not ideal level of precision. This
situation is very common in reality, as one could suppose, because measure-
ments are taken with sensors and devices which are bounded to acceptable
tolerances.

By the de�nition of a well-posed problem, a minor variation on input data
will result in minor variations of output data. This re�ects a natural robustness
against low order errors. As a stochastic process, a measurement is subject up
to several random independent variables with possible di�erent distributions
which will likely present a mean described by a normal distribution (see central
limit theorem [76]). In order to simulate those lacks of absoluteness,i.e., to
presuppose data would contain tolerated noise, it is feasible to assume that
noise would mostly present itself by being normally distributed (a Gaussian
distribution).

The proper procedure to add noise to data which is intended to re�ect
reality is somehow tricky. Parametrization for noise distributions is both com-
plicated and dependent of experiments, once researches could not tell without
prior extended tests how �t are their measurement processesand that infor-
mation can change from one experiment to another.

As a possible solution to the noise dilemma, signal processing are has the
signal-to-noise ratio (SNR) metric which could be de�ned as the dimensionless
ratio of the signal power to the noise power contained in a recording and is
usually measured in decibels (dB). Engineers and scientistswould use this
ratio to parametrise performances of signal processing systems when the noise
is normally distributed [77].

Therefore, this work adopts white Gaussian noise (WGN), de�ned by its
SNR, to be added to all mathematical generated data when tolerance to errors
is needed to be explored. White noise is an abstraction that is not feasible
to exist, �but engineers frequently use it to describe noisethat has a power
spectrum that extends well beyond the signal's bandwidth� [77]. Here, WGN
is used to simulate possible measurement errors. After bothcoordinates are
taken randomly and the known function is used to generate the simulated data,
noise is added to all of them in order to respect mathematicalrelationships
and re�ect measurement errors.

3.10 Discussion

The knowledge on subjects shown in this chapter is necessary to follow the de-
veloped method. The use of the Ritz-Galerkin method to project the solution
of a linear di�erential equation onto a Jabobi polynomial orthogonal basis

32

3.10. Discussion

is the core to the following chapters. With the exception of GP, the other
aforementioned subjects are needed to complete mathematical derivations.

The proposed method takes into account that a desired GP application
could evolve di�erent types of linear di�erential equations. For that reason,
the method itself should be obliged to handle generic lineardi�erential forms.

Note that all mathematical developments to be presented do not consider
existing tolerances on measurements. Discussions on such measurement errors
are only presented in Section 8.3, part of the last chapter ofthis thesis.

33

Part II

Proposed Method

34

Chapter 4

Ordinary Di�erential Equations

4.1 Proposed method

In this chapter, the proposed method to solve linear ordinary di�erential equa-
tions (LODE) as de�ned in Equation (3.4) is presented. As couldbe inferred
and for the sake of clari�cation, by using Jacobi polynomials as basis func-
tions, the proposed method solves di�erential equations building a polynomial
approximation for the di�erential solution. The option here is to use Jacobi
polynomials parametrized with� = � = 0 in order to be asymptotically simi-
lar to Legendre polynomials. This option is due to some properties presented
by those polynomials, as (a) orthogonality to achieve a �nite span of a com-
plete basis for a function space � Section 3.2 �; (b) derivati ves identity as
other Jacobi polynomials � Equations (3.18) and (3.23) �; (c) and the fact
that Jacobi-Legendre polynomials have weight function forinner products as
w(x) = (1 � x)0 (1 + x)0 = 1 � Equation (3.19) �. Those properties are
essential to favour envisioned computational implementations. As can be seen
throughout this chapter, basis functions are not bounded torespect auxil-
iary conditions (initial or boundary) as in classical Galerkin-based methods.
Instead, auxiliary conditions have a customized own treatment inspired by
concepts of ordinary system of equations and the way �nite di�erence meth-
ods [78] deals with them,i.e., to include information about conditions into the
matrix formulation of the problem.

An important subject to keep in mind is that, as stated by [17,pp.453],
in order to implement a true Galerkin process, it is necessary to carry out
integrations over domains. In other words, even if the problem refers to itself
as an initial value problem (conditions known at one point only), it is necessary
to de�ne a full interval for the domain of calculation in order to use Galerkin
method. This fact could lead to piecewise approximate solutions, as for FEM.
Note that functions which result in improper integrals shallbe avoided [17, p.
43]. However, depending on integration method, points of singularity could be
avoided and a feasible approximation achieved.

35

4. Ordinary Differential Equations

4.2 The unidimensional case

Developments start from the unidimensional (univariate) case, a linear ordi-
nary di�erential equation in the form of Equation (3.3). Assuming mapped
Jacobi polynomials as functions to build an orthogonal basis B and using
Equation (3.3), then Equation (3.13) is developed to achieve Equation (4.1).

NX

m=0

~um h� n (x); L [� m (x)]i = h� n (x); s(x)i ,

NX

m=0

~um

P (�;�)

n (�); L [P (�;�)
m (�)]

�
=

P (�;�)

n (�); s (x)
�

,

NX

m=0

~um

P (�;�)

n (�); L [P (�;�)
m (�)]

�
=

P (�;�)

n (�); s(x)
�

,

NX

m=0

~um

*

P (�;�)
n (�);

QX

q=0

kq (x)
dq

dxq
P (�;�)

m (�)

+

=

P (�;�)

n (�); s(x)
�

(4.1)

where the indexn = 0 : : : N identi�es the nth equation from this system ofN +1
equations; andN is the polynomial degree intended for the approximation by
the TGE.

4.3 Developments

In this section, two possibilities are derived here. The �rstone stands for inner
products over the intervala � x � b, as could be followed in Equation (4.2).

NX

m=0

~um

bZ

a

P (0;0)
n (� (x)) �

QX

q=0

kq(x)
dq

dxq
P (0;0)

m (� (x)) dx

=

bZ

a

P (0;0)
n (� (x)) � s(x) dx ,

NX

m=0

~um

bZ

a

P (0;0)
n (� (x)) �

QX

q=0

kq(x)
�(m + q+ 1)

(b� a)q�(m + 1)
P (q;q)

m� q(� (x)) dx

=

bZ

a

P (0;0)
n (� (x)) � s(x) dx ,

36

4.3. Developments

NX

m=0

~um

QX

q=0

bZ

a

P (0;0)
n (� (x)) � kq(x)

�(m + q+ 1)
(b� a)q�(m + 1)

P (q;q)
m� q(� (x)) dx

=

bZ

a

P (0;0)
n (� (x)) � s(x) dx (4.2)

The second possibility is a variation achieved by exploitingchange of vari-
ables (Section 3.6) to enable inner products over the interval � 1 � � � +1, as
could be followed in Equation (4.3).

NX

m=0

~um

+1Z

� 1

P (0;0)
n (�) �

QX

q=0

kq(x(�))
�

2
b� a

� q dq

d� q
P (0;0)

m (�)
b� a

2
d�

=

+1Z

� 1

P (0;0)
n (�) � s(x(�))

b� a
2

d� ,

b� a
2

NX

m=0

~um

QX

q=0

�
2

b� a

� q +1Z

� 1

P (0;0)
n (�) � kq(x(�))

�(m + q+ 1)
2q�(m + 1)

P (q;q)
m� q(�) d�

=
b� a

2

+1Z

� 1

P (0;0)
n (�) � s(x(�)) d� ,

b� a
2

NX

m=0

~um

QX

q=0

�
2

b� a

� q 1
2q

+1Z

� 1

P (0;0)
n (�)�kq(x(�))

�(m + q+ 1)
�(m + 1)

P (q;q)
m� q(�) d�

=
b� a

2

+1Z

� 1

P (0;0)
n (�) � s(x(�)) d� ,

NX

m=0

~um

QX

q=0

�
1

b� a

� q +1Z

� 1

P (0;0)
n (�) � kq(x(�))

�(m + q+ 1)
�(m + 1)

P (q;q)
m� q(�) d�

=

+1Z

� 1

P (0;0)
n (�) � s(x(�)) d� (4.3)

From both options, Equations (4.2) and (4.3), the latter is preferred to the
former. This decision has to do with strategies of implementation to improve
�nal execution time performances. Note that Monte Carlo scheme is here
adopted to handle those integrations, therefore integrands would have to be

37

4. Ordinary Differential Equations

evaluated for a large set of points. The former option means that for every
domain inside every cycle of execution, the full integrand must be evaluated
that large number of times. Instead, the latter option requiresP (0;0)

n (�) P (q;q)
m� q(�)

to be evaluated a large number of times only once per execution, and every
domain inside every cycle of execution has to handle justkq(x(�)) coe�cients.

Thence, Equation (4.3) could be converted to a �A x = b�-like matrix equa-
tion using identity in Equation (3.14), as seen in Equation (4.4):

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1� Q+ �
R

P0 Q+ � N +

1� Q+ �
R

P1 Q+ � N +

...

1� Q+ �
R

PN Q+ � N +

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

N + � N +

�

0

B
B
B
B
@

~u0

~u1
...

~uN

1

C
C
C
C
A

=

0

B
B
B
B
@

R+1
� 1 P (0;0)

0 (�) � s(x(�)) d�
R+1

� 1 P (0;0)
1 (�) � s(x(�)) d�

...
R+1

� 1 P (0;0)
N (�) � s(x(�)) d�

1

C
C
C
C
A

(4.4)
whereQ+ = Q + 1 and N + = N + 1; and the N + � N + coe�cient matrix is
detailed by Equation (4.5).

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�
1 1

b� a : : : 1
(b� a)Q

�
2

6
4

+1R

� 1
P (0;0)

0 (�) �

0

B
@

D0;0(�) � � � D0;N (�)
...

. . .
...

DQ;0(�) � � � DQ;N (�)

1

C
A d�

3

7
5

�
1 1

b� a : : : 1
(b� a)Q

�
2

6
4

+1R

� 1
P (0;0)

1 (�) �

0

B
@

D0;0(�) � � � D0;N (�)
...

. . .
...

DQ;0(�) � � � DQ;N (�)

1

C
A d�

3

7
5

...

�
1 1

b� a : : : 1
(b� a)Q

�
2

6
4

+1R

� 1
P (0;0)

N (�) �

0

B
@

D0;0(�) � � � D0;N (�)
...

. . .
...

DQ;0(�) � � � DQ;N (�)

1

C
A d�

3

7
5

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(4.5)
whereDq;m = kq

�
x(�)

� �(m+ q+1)
�(m+1) P (q;q)

m� q(�), for the sake of readability.
Note that when using Monte Carlo integration to build the coe�cient ma-

trix, the identity
R+1

� 1 f (�) d� = 2
H

P H
h=0 f (� h) is valid for a large set of� h

random points.

38

4.4. Solving ODEs

4.4 Solving ODEs

In order to solve di�erential problems, there is need for prior knowledge on the
unknown solution in the form of complimentary equations, known generally as
auxiliary conditions. In the literature, those conditionsare known as initial
value conditions or boundary conditions, depending on how they are presented
for the respective problem.

The way to build or choose basis functions is implicit to Galerkin method.
All functions in the basis span must satisfy some auxiliary conditions, usually
linear homogeneous boundary conditions [67]. Using Jacobipolynomials as
basis functions does not always respect this requirement. When using Jacobi
polynomials as basis, some di�erential problems present themselves with their
initial or boundary conditions neglected, leading to ill-posed problems (the
coe�cient matrix could be either rank de�cient or ill-condi tioned). Actually,
this is the case for the vast majority of real world related problems.

Auxiliary conditions

Conditions refers to known values assumed by the unknown solution of a di�er-
ential equation taken over a predetermined boundary or fromthe initial state
related to the problem itself. Literature classi�es them within some types of so
called boundary conditions (BC):Dirichlet BC (1st-type, function values on
the boundary), Neumann BC (2nd-type, derivative values for the function on
the boundary), Cauchy BC(same as imposing both a Dirichlet and a Neumann
boundary condition at the same point on boundary, sometimescalled initial
value conditions), Robin BC (3rd -type, linear combination of function values
and derivative values for the function on the boundary),mixed BC (di�erent
conditions on disjoint parts of the boundary).

Those are conditions that augment their respective di�erential equation
and that the solution must satisfy on the boundary (ideally to ensure the
existence of an unique solution). Also, they all could be described as a lesser
order di�erential equations themselves, as in Equation (4.6):

H c [u(x)]x= X c
� H c [û(x)]x= X c

= Vc
(

WX

w=0

hw;c(x)
dw

dxw
û(x)

)

x= X c

= Vc (4.6)

wherec is a subscript that refers to thecth known condition of the di�erential
problem;H c is a linear di�erential operator of lesser order thanL ; W is de�ned
here as the maximum order of all known conditions (normally, the order of the
related di�erential problem minus one);X c is the point within the domain of
calculation at which we can determine the value ofH c[u(x)] = Vc; and hw;c(x)
is the wth coe�cient for the �nite sum of H c terms.

Equation (4.6) means that, at x = X c, u(x) subject to H c has a known
value Vc. Regarding boundary of the domain, note that if an order0 is de�ned
for a given condition, that could de�ne a Dirichlet boundarycondition. If the

39

4. Ordinary Differential Equations

order is a natural number greater than0, then a Neumann boundary condition
could be de�ned. More than onehw;c(x) 6= 0 in eachH c can be used to de�ne
Robin boundary conditions. If all xc are at the same point within the domain
and all H c have distinct orders (as in initial value problems), those conditions
could be Cauchy-like conditions.

Expanding the left hand side of Equation (4.6) and substituting u(x) by
the trial function û(x) in Equation (3.11), then Equation (4.7) is derived:

H c [û(x)]x= X c
= Vc ,

H c

"
NX

m=0

~um P (0;0)
m (� (x))

#

x= X c

= Vc ,

(
WX

w=0

hw;c(x)
dw

dxw

NX

m=0

~um P (0;0)
m (� (x))

!)

x= X c

= Vc ,

(
WX

w=0

hw;c(x)
NX

m=0

~um

�
dw

dxw
P (0;0)

m (� (x))
�)

x= X c

= Vc ,

WX

w=0

hw;c(X c)
NX

m=0

~um

�
dw

dxw
P (0;0)

m (� (x))

�
�
�
�
x= X c

�
= Vc ,

WX

w=0

hw;c(X c)
NX

m=0

~um
�(m + w + 1)

(b� a)w �(m + 1)
P (w;w)

m� w (� (X c)) = Vc ,

NX

m=0

~um

WX

w=0

1
(b� a)w

hw;c(X c)
�(m + w + 1)

�(m + 1)
P (w;w)

m� w (� (X c)) = Vc (4.7)

where � (X c) = 2 X c � a
b� a � 1. Note that the identity in Equation (3.23) should

be used to achieve this result.
The matrix formulation for the Equation (4.7) is given in Equation (4.8).

0

B
B
B
B
B
B
B
B
B
B
B
B
@

�
1 1

b� a : : :
�

1
b� a

� W
�

0

B
@

H (1)
0;0 (X 1) � � � H (1)

W;0(X 1)
...

. . .
...

H (1)
0;N (X 1) � � � H (1)

W;N (X 1)

1

C
A

...

�
1 1

b� a : : :
�

1
b� a

� W
�

0

B
@

H (C)
0;0 (X C) � � � H (C)

0;N (X C)
...

. . .
...

H (C)
W;0(X C) � � � H (C)

W;N (X C)

1

C
A

1

C
C
C
C
C
C
C
C
C
C
C
C
A

�

0

B
B
B
B
@

~u0

~u1
...

~uN

1

C
C
C
C
A

=

0

B
B
B
B
@

V1

V2
...

VC

1

C
C
C
C
A

(4.8)

40

4.4. Solving ODEs

whereH (c)
w;m (X c) = hw;c(X c)

�(m+ w+1)
�(m+1) P (w;w)

m� w (� (X c)) , for the sake of readability;
and the coe�cient matrix here is of order C � N + (registering C conditions).

Using the fact that when well-conditioned, a system of equations is formed
by coupled equations which refer to the same solution, this work proposes an
approach to deal with auxiliary conditions: to substitute equations from the
GSE (bottom rows in its matrix formulation, in Equations (4.4) and (4.5)),
by equations derived from those conditions, those rows builtas presented in
Equation (4.8).

The �nal Galerkin-like system is presented in Equation (4.9).

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1� Q+ �
R

P0 Q+ � N +

1� Q+ �
R

P1 Q+ � N +

...

1� Q+ �
R

PN � C Q+ � N +

1 � W + � W + � N + (#1)

...

1 � W + � W + � N + (# C)

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

N + � N +

�

0

B
B
B
B
@

~u0

~u1
...

~uN

1

C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
@

R+1
� 1 P (0;0)

0 (�) � s(x(�)) d�
R+1

� 1 P (0;0)
1 (�) � s(x(�)) d�

...
R+1

� 1 P (0;0)
N � C (�) � s(x(�)) d�

V1
...

VC

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(4.9)

Example

Two examples are presented in this section, one from an under-damped oscil-
lator problem and the other from a Poisson equation for electrostatics.

Under-damped oscillator An oscillator problem is identi�ed by the di�er-
ential equation for a mass-spring-damper system:

m
d2

dt2
u(t) + b

d
dt

u(t) + k u(t) = 0

whereu(t) is the displacement of the mass in function of time;m is the mass;
b is the damping coe�cient; and k is the spring constant. Quantities known as

the undamped angular frequency! 0 =
q

k
m and the damping ratio � = b

2
p

m k
are also useful to classify this system. The oscillator becomes under-damped

41

4. Ordinary Differential Equations

0 5 10 15
� 0.6

� 0.4

�
0.2

0

0.2

0.4

0.6

0.8

1
Using degree 12 for polynomial approximation; and 262144 points for Monte Carlo integration

0 5 10 15
� 1

0

1
x 10

� 3 Error [max abs / mean / std]: 8.463453e � 04 / � 1.794721e� 06 / 4.060386e� 04

Known solution
Approximation

Figure 4.1: Solution to an under-damped oscillator problem, polynomial
approximation of degree 12.

when 0 � � < 1. In this very case, the di�erential equation has the following
known solution:

u(t) = e� � ! 0 t

"

u(0) cos
�

t ! 0

p
1 � � 2

�
+

� ! 0 u(0) + ut (0)

! 0

p
1 � � 2

sin
�

t ! 0

p
1 � � 2

�
#

;

whereut (0) stands for d
dt u(t)

�
�
t=0

.
As a numerical example, considerm = 2 kg, b= 1 kg s� 1 and k = 2 kg s� 2.

Also consider initial valuesu(0) = 1 and ut (0) = 0 . The known solution to
this numerical example is shown in Equation (4.10):

u(t) =

"

cos

x

p
15
4

!

+

p
15

15
sin

x

p
15
4

!#

exp
�

�
x
4

�
: (4.10)

Even that this is considered an initial value problem, the proposed method
requires the de�nition of a domain. In this case,0 � t � 15 was adopted. The
system of equations built by the proposed method choosing degree 12 for the
polynomial approximation is shown in Equation (4.11). Figure4.1 shows on
top a joint plot of both the TGE polynomial approximation and the known
solution, and on bottom the error in function oft is found by subtracting one
from the other.

42

4.4. Solving ODEs

0

B
B
B
B
@

~u0

~u1

...
~u12

1

C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

4:00 2:67 10� 1 2:13 10� 1 2:67 10� 1 7:11 10� 1 2:67 10� 1 1:49
1:46 10� 12 1:33 2:67 10� 1 3:56 10� 1 2:67 10� 1 9:96 10� 1 2:67 10� 1

1:53 10� 5 1:02 10� 6 8:00 10� 1 2:67 10� 1 4:98 10� 1 2:67 10� 1 1:28
� 1:53 10� 15 1:53 10� 5 3:05 10� 6 5:71 10� 1 2:67 10� 1 6:40 10� 1 2:67 10� 1

1:53 10� 5 1:02 10� 6 1:61 10� 5 6:10 10� 6 4:44 10� 1 2:67 10� 1 7:82 10� 1

0:00 1:53 10� 5 3:05 10� 6 1:93 10� 5 1:02 10� 5 3:64 10� 1 2:67 10� 1

1:53 10� 5 1:02 10� 6 1:61 10� 5 6:10 10� 6 2:75 10� 5 1:53 10� 5 3:08 10� 1

3:14 10� 15 1:53 10� 5 3:05 10� 6 1:93 10� 5 1:02 10� 5 4:37 10� 5 2:14 10� 5

1:53 10� 5 1:02 10� 6 1:61 10� 5 6:10 10� 6 2:75 10� 5 1:53 10� 5 7:22 10� 5

1:28 10� 13 1:53 10� 5 3:05 10� 6 1:93 10� 5 1:02 10� 5 4:37 10� 5 2:14 10� 5

1:53 10� 5 1:02 10� 6 1:61 10� 5 6:10 10� 6 2:75 10� 5 1:53 10� 5 7:22 10� 5

1:00 � 1:00 1:00 � 1:00 1:00 � 1:00 1:00
0:00 1:33 10� 1 � 4:00 10� 1 8:00 10� 1 � 1:33 2:00 � 2:80

2:67 10� 1 2:56 2:67 10� 1 3:91 2:67 10� 1 5:55
1:92 2:67 10� 1 3:13 2:67 10� 1 4:62 2:67 10� 1

2:67 10� 1 2:35 2:67 10� 1 3:70 2:67 10� 1 5:33
1:56 2:67 10� 1 2:77 2:67 10� 1 4:27 2:67 10� 1

2:67 10� 1 1:85 2:67 10� 1 3:20 2:67 10� 1 4:84
9:25 10� 1 2:67 10� 1 2:13 2:67 10� 1 3:63 2:67 10� 1

2:67 10� 1 1:07 2:67 10� 1 2:42 2:67 10� 1 4:05
2:67 10� 1 2:67 10� 1 1:21 2:67 10� 1 2:70 2:67 10� 1

2:85 10� 5 2:35 10� 1 2:67 10� 1 1:35 2:67 10� 1 2:99
1:18 10� 4 3:66 10� 5 2:11 10� 1 2:67 10� 1 1:49 2:67 10� 1

2:85 10� 5 1:86 10� 4 4:58 10� 5 1:91 10� 1 2:67 10� 1 1:64
� 1:00 1:00 � 1:00 1:00 � 1:00 1:00
3:73 � 4:80 6:00 � 7:33 8:80 � 10:40

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

� 1

�

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0
0
0
0
0
0
0
0
0
0
0
1
0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(4.11)

Finally, Equation (4.12) presents the coe�cients of the TGE which is the
approximate solution to this under-damped oscillator problem. Sub-indices
relate each coe�cient to a Jacobi polynomial, asP (0;0)

0 (� (x)) , P (0;0)
1 (� (x)) , and

so on, up toP (0;0)
12 (� (x)) .

�
u0 u1 � � � u12

� T
=

�
3:49 10� 2 � 1:15 10� 1 2:60 10� 1 � 3:87 10� 1 4:63 10� 1 � 2:68 10� 1 � 2:23 10� 1

3:42 10� 1 � 6:98 10� 2 � 7:91 10� 2 3:85 10� 2 5:23 10� 3 � 5:34 10� 3
� T

(4.12)

Simplifying the expanded equation with the aid of Maxima CAS soft-
ware [79], the polynomial approximation solution is shown inEquation (4.13):

û(t) = � 1:11 10� 10 x12 + 1:05 10� 8 x11 � 4:18 10� 7 x10 + 9:22 10� 6 x9

� 1:19 10� 4 x8 + 8:80 10� 4 x7 � 2:95 10� 3 x6 � 1:49 10� 3 x5

+ 2:35 10� 2 x4 + 8:84 10� 2 x3 � 5:01 10� 1 x2 + 3:47 10� 9 x + 1 (4.13)

43

4. Ordinary Differential Equations

Poisson electrostatic Adapted from [80, pp.210], consider the following
spherical problem in Equation (4.14):

r 2' (r) = � 4� � (r); (4.14)

where ' is the electrostatic potential in function of radiusr ; and

� (r) = Q

r � �
�

� 3
exp

�
� � r 2

�

is a static spherically symmetric Gaussian charge density,centred at the origin
in real space.

Note that the di�erential equation now is ordinary with respect to radius,
once both the Laplace operator in spherical coordinates andthe spherical
symmetry rede�nes the problem to be solved, as shown in Equation (4.15):

d2

dr2
' (r) +

2
r

d
dr

' (r) = � 4� Q

r � �
�

� 3
exp

�
� � r 2

�
: (4.15)

When considering the initial value' (0) = 2 Q
p �

� , the known solution [80]
for this problem is

' (r) =
1
r

Q erf (
p

� r) :

As a numerical example, consider the electric chargeQ = 1 and the Gaus-
sian parameter� = 0:5. The known solution is shown in Equation (4.16):

' (r) =
1
r

erf

 p
2

2
r

!

(4.16)

Also, this example is considered an initial value problem. The proposed
method requires the de�nition of a domain, therefore0 � r � 10 was adopted.
The system of equations built by the proposed method choosingdegree 12 for
the polynomial approximation. Figure 4.2 shows on top a jointplot of both
the TGE polynomial approximation and the known solution, and on bottom
the error in function of r is found by subtracting one from the other.

Equation (4.17) presents the coe�cients of the TGE which is the approx-
imate solution to this Poisson equation for electrostatics. Sub-indices relate
each coe�cient to a Jacobi polynomial, asP (0;0)

0 (� (x)) , P (0;0)
1 (� (x)) , and so on,

up to P (0;0)
12 (� (x)) .

�
' 0 ' 1 � � � ' 12

� T
=

�
2:88 10� 1 � 3:21 10� 11:90 10� 1 � 6:58 10� 2 � 6:21 10� 32:92 10� 1 � 2:43 10� 2

1:14 10� 2 � 1:80 10� 3 � 2:08 10� 32:01 10� 3 � 7:56 10� 48:93 10� 5
� T

(4.17)

Simplifying the expanded equation, the polynomial approximation solution
is shown in Equation (4.18):

44

4.4. Solving ODEs

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Using degree 12 for polynomial approximation; and 262144 points for Monte Carlo integration

Known solution
Approximation

0 1 2 3 4 5 6 7 8 9 10
� 1.4

� 1.2

� 1

� 0.8

� 0.6
x 10

� 3 Error [max abs / mean / std]: 1.201764e � 03 / � 1.056926e� 03 / 8.018708e� 05

Figure 4.2: Solution to a Poisson equation for electrostatic subject to a static
spherically symmetric Gaussian charge density, polynomial approximation of
degree 12.

'̂ (r) = 0 :059r 12 � 0:260r 11 + 0:194r 10 + 0:485r 9 � 0:768r 8

+ 0:077r 7 + 0:437r 6 � 0:291r 5 + 0:137r 4 � 0:165r 3 + 0:192r 2

� 0:195r + 0:197 (4.18)

Extra bits

Lets remember the example in Figure 1.2 from Chapter 1. This section is aimed
to present results from the proposed method applied to that same speci�c
ODE:

d2

dx2
y(x) +

d
dx

y(x) = 0

with respect to di�erent set of initial conditions, one for the �left� system:

d
dx

y(x)

�
�
�
�
x=0

= 1 and y(0) = 0;

and other for the �right� system:

d
dx

y(x)

�
�
�
�
x=0

= � 1 and y(0) = 0 :

From the same di�erential model, two di�erent conditions achieve two dif-
ferent solutions, one related to the �left� system (see Figure 4.3):

ŷ(x) = 5 :15 10� 3 x5 � 3:86 10� 2 x4 + 1:65 10� 1 x3 � 5:00 10� 1 x2 + 1:00x

45

4. Ordinary Differential Equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
� 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Using degree 5 for polynomial approximation; and 32 points for Monte Carlo integration

Known solution
Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
� 6

�
4

�
2

0

x 10
� 6 Error [max abs / mean / std]: 4.386501e � 06 / � 2.005248e� 06 / 1.611367e� 06

Figure 4.3: Approximation by the proposed method to the ODE that
generated Figure 1.2, left plot; same di�erential as in Figure 4.4, di�er-
ent boundary conditions. Solutiony(x) = 1 � exp(� x) approximated to:
ŷ(x) = 5 :15 10� 3 x5 � 3:86 10� 2 x4 + 1:65 10� 1 x3 � 5:00 10� 1 x2 + 1:00x.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
� 0.7

� 0.6

�
0.5

� 0.4

� 0.3

�
0.2

� 0.1

0

0.1
Using degree 5 for polynomial approximation; and 1024 points for Monte Carlo integration

Known solution
Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
� 2

0

2
x 10

� 6 Error [max abs / mean / std]: 1.957917e � 06 / 5.091257e� 08 / 1.058080e� 06

Figure 4.4: Approximation by the proposed method to the ODE that
generated Figure 1.2, right plot; same di�erential as in Figure 4.3, di�er-
ent boundary conditions. Solutiony(x) = exp(� x) � 1 approximated to:
ŷ(x) = � 5:15 10� 3 x5 + 3:86 10� 2 x4 � 1:65 10� 1 x3 + 5:00 10� 1 x2 � 1:00x.

and the other to the �right� system (see Figure 4.4):

ŷ(x) = � 5:15 10� 3 x5 + 3:86 10� 2 x4 � 1:65 10� 1 x3 + 5:00 10� 1 x2 � 1:00x:

In this simple example, as both data has the same di�erential model, a
possible discussion to be attended would be if they represent the same system
in di�erent states or not.

46

4.5. Discussion

4.5 Discussion

This method is a customization of Ritz-Galerkin method adopting Jacobi poly-
nomials as orthogonal basis functions. The customization lies on the use of
extra equations which re�ect boundary conditions to cover the absence of those
when dealing with the adopted polynomial basis.

Decisions taken during mathematical derivations are due toenable a low
computational e�ort for the method, e.g., a truncate polynomial basis, Legendre-
like polynomials, change of variables to source function.

As seen by results, the method is robust and can present fair approxima-
tions to di�erential solutions. Note that di�erent function b asis could result in
di�erent approximations. In the next chapter, the expansionof this method
to multivariate domains is shown.

47

Chapter 5

Partial Di�erential Equations

5.1 Proposed method

This chapter presents the proposed method to solve linear partial di�erential
equations (LPDE) de�ned in Equation (3.2). Same assumptions from Sec-
tion 4.1 are taken. Basically, developments addressed hereare due to exten-
sions for the method proposed from LODEs to LPDEs. By using combinations
of Jacobi polynomials as basis functions, the achieved solution is a multivariate
polynomial approximation.

5.2 Classi�cation of PDEs

When addressing to PDEs of the form in Equation (5.1), as well as PDEs in
more than two variables, there are three main types of PDE depending on the
discriminant AC � B 2 [81], as shown in Table 5.1.

A
@2

@x2
u(x; y) + 2 B

@2

@x @y
u(xy) + C

@2

@y2
u(x; y) =

F
�

x; y; u(x; y);
@
@x

u(x; y);
@
@x

u(x; y)
�

(5.1)

whereA, B , and C are the coe�cients of the second order derivative terms.
From the point of view of engineering, this classi�cation isimportant be-

cause if a type of PDE is identi�ed for a problem that could leadto known
solutions. For the proposed method, the solver scheme used does not make
di�erences between any of those types.

5.3 Powers matrix

The proposed method is supposed to be generic. Also, the number of inde-
pendent variables, the desired polynomial degree for the approximate solution
and the di�erential order, those all are known only at execution time. Hence,
a supporting scheme needed to be developed to handle combinatorial degrees

48

5.3. Powers matrix

Table 5.1: Types of PDE, adapted from [81].

Type De�ning Condition Example

Hyperbolic AC � B 2 < 0 Wave equation

Parabolic AC � B 2 = 0 Di�usion or heat equation

Elliptic AC � B 2 > 0 Laplace equation

and orders to be used in function of the number of variables. As an example,
an arbitrary three-variate di�erential equation such as:

@3

@x3
u(x; y; z) �

@ @
@x @y

u(x; y; z) + u(x; y; z) = 0

has the �rst derivative term is of order 3 (3 with respect to x, and order0 for
y and z), the second term of order2 (1 with respect to x and y, and order 0
for z), and a third term of order 0 (for x, y and z).

This generic scheme was developed using the idea of integer partition, a
form of representing positive integer numbers as a sum of positive integer
numbers. For example, a full partitioning of the number5 results in the set:

5;

4 + 1;

3 + 2;

3 + 1 + 1 ;

2 + 2 + 1 ;

2 + 1 + 1 + 1 ;

1 + 1 + 1 + 1 + 1

Algorithm 2 (adapted from integer partition algorithm ZS1 [82]) presents
a partitioning scheme capable of limiting the number of summands (parts) an
integer could be represented by.

Algorithm 3 uses Algorithm 2 to prepare a list with permutation sequences
from all zeros up to a predetermined degree, respecting the number of con-
sidered variables. Each sequence from that list represents the distribution of
either degrees to polynomials or orders to di�erentials.

Therefore, multivariate cases could bene�t from this limited partitioning
scheme in order to keep track of both degrees in multivariatepolynomials and
orders in partial derivatives. Table 5.2 presents an example where there is need
to enlist degrees up to the3rd with respect to a bivariate domain. The output
of Algorithm 3, those powers (degrees or orders) listed, should be known as
the powers matrix. Note that hereby the powers matrix when identi�ed by
� n;i keeps track of polynomial degrees and when identi�ed by
 q;i keeps track
of di�erential orders.

The formula to learn about the number of all possibilities (lines of the
powers matrix) is given in Equation (5.2).

49

5. Partial Differential Equations

Algorithm 2 Integer Partition ; enlisted in out are all unique possibilities
of v summands for the integern, regardless order; adapted from [82]
Require: n > 0 ^ v > 0

x (f n; 1; : : : 1g (ensure length:n)
m (1
h (1
q (0
aux (f x[0: : : m � 1]; 0; : : : 0g (ensure length:v)
out[q][: : :] (aux
while x[0] 6= 1 do

if x[h � 1] = 2 then
m (m + 1
x[h � 1] (1
h (h � 1

else
r (x[h � 1] � 1
t (m � h + 1
x[h � 1] (r
while t � r do

h (h + 1
x[h � 1] (r
t (t � r

end while
if t = 0 then

m (h
else

m (h + 1
if t > 1 then

h (h + 1
x[h � 1] (t

end if
end if

end if
aux (f x[0: : : m � 1]; 0; : : : 0g (ensure length:v)
q (q+ 1
out[q][: : :] (aux

end while

50

5.4. Multivariate adjustments

Algorithm 3 Powers Matrix , enlisted in powsare the multivariate (v vari-
ables) polynomialn-degrees or di�erentialn-orders.
Require: n > 0 ^ v > 0

q (0
ipow (f 0; 0; : : : 0g (ensure length:v)
pows[q][: : :] (ipow
q (q+ 1
for p (1 to n do

ipow (integer_partition(p; v) /* Algorithm 2 */
r (0
for i (0 to ipow:size() � 1 do

aux (ipow[i][: : :]
pwall[r][: : :] (aux
r (r + 1
while there is still a valid permutation of aux do

pwall[r][: : :] (next permutation(aux)
r (r + 1

end while
end for
sort(pwall, reverse_lexicographic)
for i (0 to r � 1 do

pows[q+ i][: : :] (pwall[i][: : :]
end for
q (q+ r

end for

N ? =
(n + v)!

n! v!
(5.2)

where n is the maximum degree or order desired; andv is the number of
variables.

Regarding Table 5.2, this formula could predict the examplepowers matrix
number of rows: (3+2)!

3! 2! = 10.

5.4 Multivariate adjustments

In order to expand this work from ordinary to partial LDEs, some concepts
must be revisited. First, a multivariate set of basis functions and a de�nition
for a proper inner product must be built. Equation (5.3) refers to the inner
product de�nition which is extended to support multiple integrations. Note
that the use of Legendre polynomials (� = � = 0) simpli�es this e�ort, once
w(x) = 1 whatever the adopted number of variables:

hf (~x); g(~x) i =

b0Z

a0

b1Z

a1

: : :

bD � 1Z

aD � 1

D times

f (~x) g(~x) d~x (5.3)

51

5. Partial Differential Equations

Table 5.2: Examples of integer partition of numbers0 upto 3 with 2 parts
maximum (Algorithm 2) and 3rd degree polynomials or3rd order derivatives
with 2 variables (Algorithm 3); this should be called the powers matrix.

Integer Partition Powers of

i [0] i [1] x0 x1

0 0 0 0

1 0 1 0

2 0 0 1

1 1 2 0

3 0 1 1

2 1 0 2

3 0

2 1

1 2

0 3

whereD is the number of independent variables (dimension) from thedomain
of the problem.

In order to be solved for the unknown coe�cients of the expansion, the
GSE is built as shown in Equation (5.4):

h� n (~x); R [û(~x)] ij N ? � 1
n=0 =

b0R

a0

b1R

a1

� � �
bD � 1R

aD � 1

� n (~x) � fL [û(~x)] � s(~x)g dx0 dx1 : : : dxD � 1

�
�
�
�
�

N ? � 1

n=0

= 0
(5.4)

where this system hasN ? equations (see Equation (5.2), forn = N andv = D);
~x is the vector ofD variables(x0; x1; : : : xD � 1)T ; and ai and bi are thei -th lower
and upper limits of integration, respectively, fori = 0; : : : D � 1.

The TGE must be adjusted as in (5.5):

û(~x) =
N ? � 1X

i =0

~ui � i (~x) (5.5)

where� i (~x) is a multivariate basis function from a �nite basis set with a span
of N ? functions.

Multivariate mappings follow Equations (3.24) and (3.25) foreach dimen-
sion. In other words, linear maps likex i 7! � i and � i 7! x i are de�ned in the
same way for each dimensioni with respect to their respective inferior and
superior limits ai and bi .

A proper basis set is built based on those linear mappings andon combi-
nations of univariate polynomials, supported by the powersmatrix from Al-
gorithm 3. Each one of those mappings and Jacobi-Legendre polynomials are

52

5.4. Multivariate adjustments

with respect to each variable that constitutes the domain. This multivariate
basis set is shown in Equation (5.6):

B = f � n (~x)gjN
? � 1

n=0 =

(
D � 1Y

i =0

P (0;0)
� n;i

(� i (x i))

) �
�
�
�
�

N ? � 1

n=0

(5.6)

where � n;i is the element� located at the nth row and the i th column in the
powers matrix (like the one presented in Table 5.2) evaluated case by case.

As an example, ifN = 3 and D = 2, the 8th basis function with reference
to Table 5.2 would be:

� 7(x0; x1) = P (0;0)
2 (� 0(x0)) � P (0;0)

1 (� 1(x1)) :

Each basis function is essentially the product ofD univariate polynomials
with degrees that sum up toN . This is very handful when analysing multi-
variate derivatives with the product rule. In this way, the multivariate context
could help to de�ne derivatives for those basis functions, as in Equation (5.7):

"
D � 1Y

j =0

@
 q;j

@x
 q;j
j

#
D � 1Y

i =0

P (0;0)
� n;i

(� i (x i)) =
D � 1Y

i =0

@
 q;i

@x
 q;i
i

P (0;0)
� n;i

(� i (x i)) =

D � 1Y

i =0

�(� n;i +
 q;i + 1)
(bi � ai)
 q;i �(� n;i + 1)

P (
 q;i ;
 q;i)
� n;i �
 q;i

(� i (x i)) (5.7)

where � n;i is the element� located at the nth row and the i th column in the
respective powers matrix; and
 q;i is the element
 located at the qth row and
the i th column in the respective powers matrix resulted from Algorithm 3 with
n = Q and v = D. Note that identity in Equation (3.23) is still useful here.

As another example, ifN = 3, Q = 3 and D = 2 are adopted, the7th

multivariate derivative taken over the 8th derivative of the 8th basis function
would be:

@3

@x20 @x1
� 7(x0; x1) =

@2

@x20
P (0;0)

2 (� 0(x0)) �
@

@x1
P (0;0)

1 (� 1(x1)) :

Multidimensional change of variables should also be considered when ex-
panding the �ndings from ODEs to PDEs. The multidimensional derivative is
then shown in Equation (5.8):

"
D � 1Y

i =0

@
 q;i

@x
 q;i
j

#

f (x0; x1; : : : xD � 1) =

"
D � 1Y

i =0

�
2

bi � ai

�
 q;i @
 q;i

@�
 q;i

#

f (x0(� 0); x1(� 1); : : : xD � 1(� D � 1)) (5.8)

as well as the multidimensional integration is presented inEquation (5.9).
Note that both of those have a role in the new multivariate approach.

53

5. Partial Differential Equations

b0Z

a0

b1Z

a1

� � �

bD � 1Z

aD � 1

f (x0; x1; : : : xD � 1) dx0 dx1 � � � dxD � 1 =

D � 1Y

i =0

bi � ai

2

1Z

� 1

1Z

� 1

� � �

1Z

� 1

f (x0(� 0); x1(� 1); : : : xD � 1(� D � 1)) d� 0 d� 1 � � � d� D � 1

(5.9)

where the determinant of the Jacobian matrixJ =
Q D � 1

i =0
@xi
@�i

=
Q D � 1

i =0
bi � ai

2 is
both constant and the result of the product on the main diagonal of the Jaco-
bian matrix, due to the linear nature of each respective dimensional mapping
� i 7! x i .

Updated coe�cient matrix

To update the coe�cient matrix is the same as to augment its univariate
version. Starting point is the following unidimensional expression excerpt from
Equation 4.3:

NX

m=0

~um

QX

q=0

1
(b� a)q

1Z

� 1

kq(x(�)) � P (0;0)
n (�) �

�(m + q+ 1)
�(m + 1)

P (q;q)
m� q(�) d�

where each line with respect ton = 0 : : : N contributes to the �nal matrix
representation.

The new expression to build the multivariate coe�cient matrix is presented
in Equation (5.10), each row with respect ton = 0 : : : N ? � 1.

N ? � 1X

m=0

~um

Q? � 1X

q=0

"
D � 1Y

i =0

1
(bi � ai)

 q;i

1Z

� 1

1Z

� 1

� � �

1Z

� 1

kq(x0(� 0); : : : xD � 1(� D � 1)) �

"
D � 1Y

i =0

P (0;0)
� n;i

(� i)

#

�

"
D � 1Y

i =0

�(� m;i +
 q;i + 1)
�(� m;i + 1)

P (
 q;i ;
 q;i)
� m;i �
 q;i

(� i)

#

d� 0 : : : d�D � 1 (5.10)

The multivariate coe�cient matrix is then built as shown by Equation (5.11).

G1� Q? =

1
D � 1Y

i =0

1
(bi � ai)

 1;i
: : :

D � 1Y

i =0

1
(bi � ai)

 Q ? � 1;i

!

Dq;m(~�) = kq(x0(� 0); : : : xD � 1(� D � 1)) �

"
D � 1Y

i =0

�(� m;i +
 q;i + 1)
�(� m;i + 1)

P (
 q;i ;
 q;i)
� m;i �
 q;i

(� i)

#

54

5.5. Solving PDEs

DQ? � N ? =

0

B
@

D0;0(~�) � � � D0;N ? � 1(~�)
...

. . .
...

DQ? � 1;0(~�) � � � DQ? � 1;N ? � 1(~�)

1

C
A

G(n)
Q? � N ? =

2

4
1Z

� 1

1Z

� 1

� � �

1Z

� 1

"
D � 1Y

i =0

P (0;0)
� n;i

(� i)

#

�
�

DQ? � N ?

�
d� 0 d� 1 : : : dxD � 1

3

5

S(n)
1� 1 =

1Z

� 1

1Z

� 1

� � �

1Z

� 1

D � 1Y

i =0

P (0;0)
� n;i

(� i) � s(x0(� 0); : : : xD � 1(� D � 1)) d� 0 d� 1 : : : dxD � 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

G1� Q? � G(0)
Q? � N ?

G1� Q? � G(1)
Q? � N ?

...

G1� Q? � G(N ? � 1)
Q? � N ?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

N ? � N ?

�

0

B
B
B
B
@

~u0

~u1
...

~uN ? � 1

1

C
C
C
C
A

=

0

B
B
B
B
@

S(0)
1� 1

S(1)
1� 1
...

S(N ? � 1)
1� 1

1

C
C
C
C
A

(5.11)

5.5 Solving PDEs

As discussed before, when solving di�erential equations, theuse of Jacobi poly-
nomials as basis functions almost ever fails to respect auxiliary conditions. It
is very unusual to the coe�cient matrix of the GSE not being rank de�cient
or even ill-conditioned. In the rare cases where the existence of a solution is
veri�ed without further data, specially when dealing with homogeneous di�er-
entials, such solution is trivial (all coe�cients of the TGE are zero), hence not
of interest. The desired solution must be non-trivial and unique, both by the
necessity of a model and by the fact that, if a real system is modelled by a
di�erential equation, the solution is observable in reality.

As normally found in the literature about PDEs, auxiliary conditions are
functions by themselves. Even based on Galerkin method, the here proposed
method cannot deal with the existence of unde�ned independent variables
within boundary conditions respective equations. The proposed method re-
quires scalars evaluated on some points over the domain. The implication
is that all auxiliary conditions need to be discretized overvariables they are
functions of.

55

5. Partial Differential Equations

So, instead of using function-like auxiliary conditions, the proposed method
requires a set of known values from those conditions over their respective origi-
nal domains. The here proposed workaround is to de�ne representative points
on the boundary and to evaluate the original conditions there, as if those
conditions were sampled. The required exact number of pointsis strongly
dependent on the coe�cient matrix either rank or condition number. As an
initial guess, an empirical recommendation is to choose2D points per condi-
tion, where D is the total number of variables, and after start to iteratively
increase that number until the coe�cient matrix become full rank. Note that,
if the coe�cient matrix is already full ranked and well-conditioned, a minimal
number of points must be chosen anyway to avoid raising a trivial solution.

Keep in mind that this method is supposed to support computer-automated
system modelling for real systems, so the solution is supposed to be observable
in reality. The feasible expectation is that at some step of the iterative aggre-
gation of those points as conditions, solution becomes possible to be found.

Updated auxiliary conditions

Starting from the following excerpt from Equation (4.7):

NX

m=0

~um

WX

w=0

1
(b� a)w

hw;c(X c)
�(m + w + 1)

�(m + 1)
P (w;w)

m� w (� (X c)) ;

the multivariate version could be derived, as shown in Equation (5.12):

N ? � 1X

m=0

~um

W ? � 1X

w=0

"
D � 1Y

i =0

1
(bi � ai)

 w;i

#

hw;c

�
X (c)

0 ; : : : X (c)
D � 1

�
�

"
D � 1Y

i =0

�(� m;i +
 w;i + 1)
�(� m;i + 1)

P (
 w;i ;
 w;i)
� m;i �
 w;i

�
� i

�
X (c)

i

��
#

(5.12)

Finally, from Equations (5.11) and (5.12), the proposed method achieves
the �nal multidimensional Galerkin-like system as presented in Equation (5.13):

B1� W ? =

1
D � 1Y

i =0

1
(bi � ai)

 1;i
: : :

D � 1Y

i =0

1
(bi � ai)

 W ? � 1;i

!

B (c)
w;m

�
~X (c)

�
= hw;c

�
~X (c)

�
�

D � 1Y

i =0

�(� m;i +
 w;i + 1)
�(� m;i + 1)

P (
 w;i ;
 w;i)
� m;i �
 w;i

�
� i

�
X (c)

i

��

B (c)
W ? � N ? =

0

B
B
B
@

B0;0

�
~X (c)

�
� � � B0;N ? � 1

�
~X (c)

�

...
. . .

...

BW ? � 1;0

�
~X (c)

�
� � � BW ? � 1;N ? � 1

�
~X (c)

�

1

C
C
C
A

56

5.5. Solving PDEs

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

G1� Q? � G(0)
Q? � N ?

...

G1� Q? � G(N ? � 1� C)
Q? � N ?

B1� W ? � B (1)
W ? � N ?

...

B1� W ? � B (C)
W ? � N ?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

N ? � N ?

�

0

B
B
B
B
@

~u0

~u1
...

~uN ? � 1

1

C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
@

S(0)
1� 1
...

S(N ? � 1� C)
1� 1

V1
...

VC

1

C
C
C
C
C
C
C
C
C
A

(5.13)

Examples

In this section, three examples are shown, each one from a di�erent PDE type
as classi�ed in Table 5.1. As can be seen, the same proposed method is applied
to all of those problems.

Hyperbolic equation Starting with a simple dynamic one-dimensional wave
PDE problem:

@2

@x2
u(x; t) �

@2

@t2
u(x; t) = 0

whereu(x; t) is the height of the wave in function of lengthx and time t. The
domain of calculation is0 < x < 1; t > 0. Boundary conditions that augment
this PDE are:

[BC]

(
u(0; t) = 0

u(1; t) = 0

[initial value]

(
u(x; 0) = sin(� x)

ut (x; 0) = 0

whereut (x; t) is another way of representing@
@tu(x; t), utt (x; t) would represent

@2

@t2 u(x; t), and so on.
The known solution to this example is:

u(x; t) = sin(� x) cos(� t)

57

5. Partial Differential Equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

� 1

�
0.5

0

0.5

1

Using degree 8 for polynomial approximation; and 1024 points for Monte Carlo integration

Known solution
Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.5

1
� 5

0

5

x 10
� 3

Error [max abs / mean / std]: 3.530050e � 03 / � 1.990212e� 04 / 7.412901e� 04

Figure 5.1: Solution to a dynamic one-dimensional wave problem; approxi-
mate solution adopts a degree 8 bivariate polynomial.

As aforementioned, the proposed method cannot deal with the existence
of unde�ned independent variables within boundary conditions. Also, due to
characteristics of the proposed method, the initial value problem needs to be
con�ned in time. To achieve that, the new adopted domain for this example is
0 < x < 1; 0 < t < 1. Also, following the proposed workaround, the boundary
conditions to be considered in this numerical example are:

[BC]

8
>>>><

>>>>:

u(0; 0) = 0; u(0; 1
3) = 0

u(0; 2
3) = 0; u(0; 1) = 0

u(1; 0) = 0; u(1; 1
3) = 0

u(1; 2
3) = 0; u(1; 1) = 0

[IC]

8
>>>>>><

>>>>>>:

u(0:2; 0) = sin(0:2�); u(0:4; 0) = sin(0:4�)

u(0:5; 0) = sin(0:5�); u(0:6; 0) = sin(0:6�)

u(0:8; 0) = sin(0:8�)

ut (0; 0) = 0; ut (1
3 ; 0) = 0

ut (2
3 ; 0) = 0; ut (1; 0) = 0

Note that the option for equidistant points from domain limits was taken,
with variation of t in boundary conditions (wherex = 0) and of x in initial
conditions (wheret = 0). Also that to evaluate values at boundary, functions
from original conditions were used. Observe that two pointsthat would appear
derived from latter initial conditions � (0; 0) and (1; 0) � could not be used
due to previous appearance in former boundary conditions.

Figure 5.1 shows on top a joint plot of the TGE polynomial approximation
and the known solution, and on bottom the error as the di�erencefrom the
approximation to the known solution. Note that error has a mean value of
� 2 10� 4 and a standard deviation of7 10� 4.

Finally, Equation (5.14) presents the coe�cients of the TGE which are re-
sponsible for the approximate solution to this dynamic one-dimensional wave

58

5.5. Solving PDEs

problem. Sub-indices relates each coe�cient to a product ofJacobi polyno-
mials whose degrees are tracked by the proper row in the respective powers
matrix, as in P (0;0)

0 (x 7! � 0) � P (0;0)
0 (t 7! � 1), P (0;0)

1 (x 7! � 0) � P (0;0)
0 (t 7! � 1), and

so on, up toP (0;0)
0 (x 7! � 0) � P (0;0)

8 (t 7! � 1).

�
u0 u1 � � � u44

� T
=

�
� 1:615 10� 4 0 � 0:774 � 4:018 10� 4 0

� 4:018 10� 4 0 0:834 0 0:143 � 1:489 10� 4 0 � 1:640 10� 3

0 � 1:489 10� 4 0 � 6:315 10� 2 0 � 0:156 0 � 5:750 10� 3

1:212 10� 4 0 2:115 10� 4 0 2:115 10� 4 0 1:212 10� 4 0 1:929 10� 3

0 1:273 10� 2 0 7:072 10� 3 0 1:484 10� 4 7:083 10� 6 0 4:604 10� 4

0 1:302 10� 3 0 4:604 10� 4 0 7:083 10� 6
�

(5.14)

Simplifying the expanded equation also with the aid of Maxima CAS soft-
ware [79], the polynomial approximation solution is shown inEquation (5.15).

û(x; t) = 9 :116 10� 2 t8+0:145t7+2:552x2 t6 � 2:552x t 6 � 0:649t6+3:035x2 t5

� 3:035x t 5 + 0:678t5 + 6:381x4 t4 � 12:762x3 t4 � 9:737x2 t4 + 16:118x t 4

� 0:373t4 + 5:059x4 t3 � 10:118x3 t3 + 6:779x2 t3 � 1:720x t 3 + 0:128t3

+ 2:552x6 t2 � 7:657x5 t2 � 9:737x4 t2 + 32:236x3 t2 � 2:239x2 t2 � 15:155x t 2

� 1:888 10� 2 t2 + 1:012x6 t � 3:035x5 t + 3:389x4 t � 1:720x3 t + 0:383x2 t

� 2:872 10� 2 x t+9:116 10� 2 x8� 0:365x7� 0:649x6+3:224x5� 0:373x4� 5:052x3

� 1:888 10� 2 x2 + 3:143x (5.15)

Parabolic equation Here is a di�usion problem, the homogeneous heat con-
duction equation with insulated boundary conditions:

� 2 @2

@x2
u(x; t) �

@
@t

u(x; t) = 0

where u(x; t) is the temperature distribution function of a wire (with length
L); and the positive constant� 2 is the thermo di�usivity constant of the wire.
The domain of calculation is0 < x < L; t > 0. Boundary conditions that
augment this partial di�erential equation are:

[BC]

(
ux (0; t) = 0

ux (1; t) = 0

[IC] u(x; 0) = f (x)

A numerical example is presented, with� = 1; L = 1; and f (x) = 1 +
cos(� x) + 0 :5 cos(3� x). The known solution to this example is:

u(x; t) = 1 + e� � 2 t cos(� x) + 0 :5e� (3 �)2 t cos(3� x)

59

5. Partial Differential Equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

� 0.5

0

0.5

1

1.5

2

2.5

Using degree 11 for polynomial approximation; and 1024 points for Monte Carlo integration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.005

0.01
� 0.02

0

0.02

Error [max abs / mean / std]: 1.166107e � 02 / 3.820021e � 14 / 5.111351e � 03

Known solution
Approximation

Figure 5.2: Solution to a homogeneous heat conduction equation with insu-
lated boundary; approximate solution adopts a degree 11 bivariate polynomial.

Therefore, following the proposed workaround, the adopted domain for this
example is0 < x < 1; 0 < t < 0:01 and boundary conditions to be considered
in this numerical example are:

[BC]

8
>>>><

>>>>:

ux (0; 0) = 0; ux (0; 1
300) = 0

ux (0; 2
300) = 0; ux (0; 0:01) = 0

ux (1; 0) = 0; ux (1; 1
300) = 0

ux (1; 2
300) = 0; ux (1; 0:01) = 0

[IC]

8
>>><

>>>:

u(0; 0) = 1 + cos(� 0) + 0:5 cos(3� 0) = 2:5

u(1
3 ; 0) = 1 + cos(� 1

3) + 0 :5 cos(3� 1
3) = 1

u(2
3 ; 0) = 1 + cos(� 2

3) + 0 :5 cos(3� 2
3) = 1

u(1; 0) = 1 + cos(� 1) + 0:5 cos(3� 1) = � 0:5

Note that the option for equidistant points from domain limits was taken,
with variation of t in insulated boundary conditions and ofx in the initial con-
dition. Also, to evaluate values at boundary, functions from original conditions
were used.

Figure 5.2 shows on top a joint plot of the TGE polynomial approximation
and the known solution, and on bottom the error as the di�erencefrom the
approximation to the known solution. Note that error has a mean value of� 0
and a standard deviation of5 10� 3.

Finally, Equation (5.16) presents the coe�cients of the TGE which are
responsible for the approximate solution to this homogeneous heat conduction
equation with insulated boundary. Sub-indices relates eachcoe�cient to a
product of Jacobi polynomials whose degrees are tracked by the proper row
in the respective powers matrix, asP (0;0)

0 (x 7! � 0) � P (0;0)
0 (t 7! � 1), P (0;0)

1 (x 7!
� 0) � P (0;0)

0 (t 7! � 1), and so on, up toP (0;0)
0 (x 7! � 0) � P11(0;0)(t 7! � 1)

60

5.5. Solving PDEs

�
u0 u1 � � � u77

� T
=

�
1 � 1:195 0 7:649 10� 2 0 � 3:449 10� 1

0 � 3:875 10� 3 0 0 2:351 10� 1 0 3:015 10� 4 0 3:153 10� 1

0 � 3:644 10� 2 0 � 1:993 10� 5 0 0 � 1:390 10� 1 0

3:405 10� 3 0 � 8:293 10� 6 0 � 6:001 10� 2 0 1:942 10� 2

0 � 2:488 10� 4 0 0 0 0 2:365 10� 2 0 � 1:382 10� 3 0

0 0 0 0 5:036 10� 3 0 � 2:416 10� 3 0 0 0 0 0 0

0 0 � 1:421 10� 3 0 0 0 0 0 0 0 0 0 � 1:781 10� 4

0 0 0 0 0 0 0 0 0 0 0) (5.16)

Simplifying the expanded equation, the polynomial approximation solution
is shown in Equation (5.17).

û(x; t) = � 4:180 107 x t 5 + 2:090 107 t5 � 3:483 107 x3 t4 + 5:225 107 x2 t4

� 2:013 107 x t 4 + 1358587:9t4 � 6966366:3x5 t3 + 1:742 107 x4 t3

� 1:342 107 x3 t3 + 2717175:8x2 t3 + 414272:4x t 3 � 79468:3t3

� 497597:6x7 t2 + 1741591:6x6 t2 � 2013309:2x5 t2 + 679294:0x4 t2

+ 207136:2x3 t2 � 119202:5x2 t2 � 2553:6x t 2 + 2320:6t2

� 13822:2x9 t + 62199:7x8 t � 95871:9x7 t + 45286:3x6 t + 20713:6x5 t

� 19867:1x4 t � 851:2x3 t + 2320:6x2 t + 4:660x t � 56:245t

� 125:656x11 + 691:11x10 � 1331:6x9 + 808:68x8 + 493:18x7

� 662:24x6 � 42:560x5 + 193:38x4 + 0:777x3 � 28:122x2 + 2:5 (5.17)

Elliptic equation Here is a problem regarding the steady-state temperature
distribution of a thin plate in the form of Laplace equation:

r 2u(x; y) =
@2

@x2
u(x; y) +

@2

@y2
u(x; y) = 0

whereu(x; y) is the temperature distribution function over the surface of a thin
plate (with width L and height H); The domain of calculation is0 < x < L
and 0 < y < H . Dirichlet boundary conditions that augment this partial
di�erential equation are:

[BC]

8
>>><

>>>:

u(0; y) = 0

u(L; y) = 0

u(x; 0) = 0

u(x; H) = f (x)

The known solution to this example is:

61

5. Partial Differential Equations

u(x; y) =
1X

n=1

Bn sin (� n x) sinh (� n y)

whereBn = 2
L sinh(n�H

L)
RL

0 f (x) sin(n�x
L) dx; and � n = n�

L .

As a numerical example, an instance of this problem is achieved when
assumingL = H = 1, turning the domain into 0 < x < 1; 0 < y < 1, and
assumingu(x; 1) = f (x) = sin (�x). Now this very problem has a known
solution, and it is:

u(x; y) =
sin(�x) sinh(�y)

sinh(�)

Following the proposed workaround, the adopted domain for this example
is 0 < x < 1; 0 < t < 1 and the boundary conditions to be considered in this
numerical example are:

[BC]

8
>>>>>>>>>>><

>>>>>>>>>>>:

u(0; 0) = 0; u(0; 0:2) = 0; u(0; 0:4) = 0

u(0; 0:6) = 0; u(0; 0:8) = 0; u(0; 1) = 0

u(0:2; 0) = 0; u(0:4; 0) = 0; u(0:6; 0) = 0

u(0:8; 0) = 0; u(1; 0) = 0; u(1; 0:2) = 0

u(1; 0:4) = 0; u(1; 0:6) = 0; u(1; 0:8) = 0

u(1; 1) = 0; u(0:2; 1) = sin(0 :2�); u(0:4; 1) = sin(0 :4�)

u(0:6; 1) = sin(0 :6�); u(0:8; 1) = sin(0 :8�)

Note that due to the rank de�ciency of the original coe�cient matrix, the
number of points to represent Dirichlet conditions needed to be raised in order
to properly de�ne the boundary.

Figure 5.3 shows on top a joint plot of the TGE polynomial approximation
and the known solution, and on bottom the error as the di�erencefrom the
approximation to the known solution. Note that error has a mean value of
� 8 10� 4 and a standard deviation of3 10� 4.

Finally, Equation (5.18) presents the coe�cients of the TGE which are
responsible for the approximate solution to this steady-state temperature in a
thin plate problem. Sub-indices relates each coe�cient to aproduct of Jacobi
polynomials whose degrees are tracked by the proper row in therespective
powers matrix, asP (0;0)

0 (x 7! � 0) � P (0;0)
0 (t 7! � 1), P (0;0)

1 (x 7! � 0) � P (0;0)
0 (t 7! � 1),

and so on, up toP (0;0)
0 (x 7! � 0) � P (0;0)

9 (t 7! � 1)

62

5.5. Solving PDEs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

Using degree 9 for polynomial approximation; and 1024 points for Monte Carlo integration

Known solution
Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.5

1
� 1

0

1

x 10
� 3

Error [max abs / mean / std]: 9.887249e � 04 / � 8.347757e� 08 / 2.796803e� 04

Figure 5.3: Solution to a steady-state temperature in a thinplate (Laplace
equation); approximate solution adopts a degree 9 bivariate polynomial.

�
u0 u1 � � � u54

� T
= (0 :186 0 0:276 � 0:201 0 0:124 0

� 0:298 0 4:095 10� 2 1:512 10� 2 0 � 0:134 0 8:218 10� 3

0 2:259 10� 2 0 � 4:405 10� 2 0 1:855 10� 3 � 3:821 10� 4

0 1:010 10� 2 0 � 8:882 10� 3 0 1:930 10� 4 0 � 3:950 10� 4

0 3:498 10� 3 0 � 2:320 10� 3 0 � 7:386 10� 4 3:636 10� 6

0 � 2:363 10� 4 0 6:685 10� 4 0 � 2:363 10� 4 0 3:636 10� 6

0 � 1:224 10� 5 0 1:591 10� 4 0 � 2:500 10� 4 0 6:120 10� 5

0 2:868 10� 4
�

(5.18)

Simplifying the expanded equation, the polynomial approximation solution
is shown in Equation (5.19).

û(x; y) = 4 :679 10� 2 y8 � 2:722y7 � 1:310x2 y6 + 1:310x y6 + 9:138y6

+ 0:423x2 y5 � 0:423x y5 � 12:544y5 + 3:276x4 y4 � 6:551x3 y4

+ 4:785x2 y4 � 1:509x y4 + 8:814y4 � 1:654x4 y3 + 3:308x3 y3

� 5:365x2 y3 + 3:711x y3 � 3:316y3 � 1:310x6 y2 + 3:931x5 y2

� 3:360x4 y2 + 0:169x3 y2 + 1:468x2 y2 � 0:897x y2 + 0:631y2

+ 0:580x6 y � 1:741x5 y + 2:903x4 y � 2:904x3 y + 0:238x2 y

+ 0:924x y � 0:0481y + 4:679 10� 2 x8 � 0:187x7 + 9:926 10� 2 x6

+ 0:357x5 � 0:592x4 + 0:371x3 � 0:106x2 + 1:136 10� 2 x

+ 2:449 10� 4 (5.19)

63

5. Partial Differential Equations

5.6 Discussion

As a �nal discussion in this chapter, there are some issues ofthe proposed
method to point out. One important issue is the workaround made for con-
ditions that are functions themselves. Polynomials are bounded to in�ections
which, in turn, are strongly dependent on their polynomial degrees. Because
of that, when sampling boundary conditions, some �ripples� on boundary are
perceived, specially when analysing error plots. This is the case that could in-
validate dealing with piecewise sub-domains, where values over borders could
be of low con�dence. One workaround could be to do overlap sub-domains, but
this is an entire discussion by itself. Though, if the purposeof such polynomial
approximation is to interpolate the solution within boundary, the proposed
method is extremely useful.

Because the use of polynomial approximations for di�erential solutions, the
considered domain of calculation must be relatively small in order to minimize
the polynomial degree required for a feasible approximation. When dealing
with periodic or trigonometric solutions, the problem worsens. Each point of
in�ection of such solutions re�ects as an increment to the required polynomial
degree. High polynomial degrees lead to possible �oating-point calculation
errors and that should be avoid. A workaround is to consider piecewise sub-
domains. Unfortunately, there are a lot of situations where this is not possible.
In the case of system modelling from data, however, this is a characteristic that
must be exploit, as can be seen in next chapters.

Finally, the rank of coe�cient matrix also depends on the chosen polyno-
mial degree for the approximation. The higher it is, the more likely that the
matrix starts to have increased its rank de�ciency. The number of sampled
points from boundary conditions needs to compensate this e�ect. Note that,
specially on homogeneous di�erential equations, conditions that have non-zero
values are the most useful ones.

64

Part III

System Modelling

65

Chapter 6

Evaluating model candidates

6.1 A brief introduction

The main objective of this work is to take the proposed method and exploit it
to support CASM. The decision of using GP to model systems from data has
guided the following developments. To accomplish that intention, the proposed
method needs to be part of a �tness evaluation scheme to support evolution
of models, by solving any LPDE that could be randomly generated by GP
and evaluating how �t its respective approximate solution is to the system
observed data.

In Section 5.6, some issues for the proposed method are addressed. In
special, the ones stating that both small domains of calculation are required to
decrease the required polynomial degree for approximations and the limitation
about the small number of known conditions the PDE has to enableperforming
piecewise calculations throughout the desired domain. Thoseare not concerns
hereby and were exploited to bring up a way to evaluate di�erential models.

It is a requirement that measurements from the system taken over some
points are saved in a data �le containing the observed quantities values (up
to this far, this work considers scalar �elds only) and the coordinates where
the quantity to be modelled assumes those values. It is pretty straightforward
to assume that every point in the database is a possible Dirichlet boundary
condition.

By taking groups of closer points within the database, the proposed method
could perform piecewise approximations with a great degree ofcon�dence with
a relative low polynomial degree. If other points are also taken just to enable
comparisons between the approximate solution and their respective database
values, then a metric can be developed to evaluate how close amodel is from
the observed data. From these ideas, the derived �tness evaluation scheme is
presented in this chapter.

6.2 A brief description

A brief description presented here about the numerical scheme to compare a
LPDE candidate with observed measurements from a dataset.

66

	List of Figures

