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Abstract

A system is defined by its entities and their interrelations in an environment
which is determined by an arbitrary boundary. Complex systems exhibit emer-
gent behaviour without a central controller. Concrete systems designate the
ones observable in reality. A model allows us to understand, to control and to
predict behaviour of the system. A differential model from a system could be
understood as some sort of underlying physical law depicted by either one or
a set of differential equations. This work aims to investigate and implement
methods to perform computer-automated system modelling. This thesis could
be divided into three main stages: (1) developments of a computer-automated
numerical solver for linear differential equations, partial or ordinary, based on
the matrix formulation for an own customization of the Ritz-Galerkin method;
(2) proposition of a fitness evaluation scheme which benefits from the devel-
oped numerical solver to guide evolution of differential models for concrete
complex systems; (3) preliminary implementations of a genetic programming
application to perform computer-automated system modelling. In the first
stage, it is shown how the proposed solver uses Jacobi orthogonal polynomials
as a complete basis for the Galerkin method and how the solver deals with
auxiliary conditions of several types. Polynomial approximate solutions are
achieved for several types of linear partial differential equations, including hy-
perbolic, parabolic and elliptic problems. In the second stage, the proposed
fitness evaluation scheme is developed to exploit some characteristics from the
proposed solver and to perform piecewise polynomial approximations in or-
der to evaluate differential individuals from a given evolutionary algorithm
population. Finally, a preliminary implementation of a genetic programming
application is presented and some issues are discussed to enable a better un-
derstanding of computer-automated system modelling. Indications for some
promising subjects for future continuation researches are also addressed here,
as how to expand this work to some classes of non-linear partial differential
equations.

Keywords: Computer-Automated System Modelling; Differential Models;
Linear Ordinary Differential Equations; Linear Partial Differential Equations;
Fitness Evaluation; Genetic Programming.
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Resumo

Um sistema é definido por suas entidades e respectivas interrelações em um
ambiente que é determinado por uma fronteira arbitrária. Sistemas complexos
exibem comportamento sem um controlador central. Sistemas concretos é
como são designados aqueles que são observáveis nesta realidade. Um modelo
permite com que possamos compreender, controlar e predizer o comporta-
mento de um sistema. Um modelo diferencial de um sistema pode ser com-
preendido como sendo uma lei física subjacente descrita por uma ou mais
equações diferenciais. O objetivo desse trabalho é investigar e implementar
métodos para possibilitar modelamento de sistemas automatizado por com-
putador. Esta tese é dividida em três etapas principais: (1) o desenvolvimento
de um solucionador automatizado para equações diferenciais lineares, parci-
ais ou ordinárias, baseado na formulação de matriz de uma customização do
método de Ritz-Galerkin; (2) a proposição de um esquema de avaliação de
aptidão que se beneficie do solucionador numérico desenvolvido para guiar a
evolução de modelos diferenciais para sistemas complexos concretos; (3) inves-
tigações preliminares de uma aplicação de programação genética para atuar em
modelamento de sistemas automatizado por computador. Na primeira etapa,
é demonstrado como o solucionador proposto utiza polinômios ortogonais de
Jacobi como uma base completa para o método de Galerkin e como o solu-
cionador trata condições auxiliares de diversos tipos. Soluções polinomiais
aproximadas são obtidas para diversos tipos de equações diferenciais parciais
lineares, incluindo problemas hiperbólicos, parabólicos e elípticos. Na segunda
etapa, o esquema proposto para avaliação de aptidão é desenvolvido para ex-
plorar algumas características do solucionador proposto e para obter aproxi-
mações polinomiais por partes a fim de avaliar indivíduos diferenciais de uma
população de dado algoritmo evolucionário. Finalmente, uma implementação
preliminar de uma aplicação de programação genética é apresentada e algu-
mas questões são discutidas para uma melhor compreensão de modelamento de
sistemas automatizado por computador. Indicações de assuntos promissores
para continuação de futuras pesquisas também são abordadas, bem como a
expansão deste trabalho para algumas classes de equações diferenciais parciais
não-lineares.

Palavras-chave: Modelamento de Sistemas Automatizado por Computa-
dor; Modelos Diferenciais; Equações Diferenciais Ordinárias Lineares; Equações
Diferenciais Parciais Lineares; Avaliação de Aptidão; Programação Genética.
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Résumé

Un système est défini par les entités et leurs interrelations dans un environ-
nement qui est déterminé par une limite arbitraire. Les systèmes complexes
présentent un comportement émergent sans un contrôleur central. Les sys-
tèmes concrets désignent ceux qui sont observables dans la réalité. Un modèle
nous permet de comprendre, de contrôler et de prédire le comportement du
système. Un modèle différentiel à partir d’un système pourrait être compris
comme une sorte de loi physique sous-jacent représenté par l’un ou d’un en-
semble d’équations différentielles. Ce travail vise à étudier et mettre en œu-
vre des méthodes pour effectuer la modélisation des systèmes automatisée par
l’ordinateur. Cette thèse pourrait être divisée en trois étapes principales, ainsi:
(1) le développement d’un solveur numérique automatisé par l’ordinateur pour
les équations différentielles linéaires, partielles ou ordinaires, sur la base de la
formulation de matrice pour une personnalisation propre de la méthode Ritz-
Galerkin; (2) la proposition d’un schème de score d’adaptation qui bénéficie du
solveur numérique développé pour guider l’évolution des modèles différentiels
pour les systèmes complexes concrets; (3) une implémentation préliminaire
d’une application de programmation génétique pour effectuer la modélisation
des systèmes automatisée par l’ordinateur. Dans la première étape, il est mon-
tré comment le solveur proposé utilise les polynômes de Jacobi orthogonaux
comme base complète pour la méthode de Galerkin et comment le solveur traite
des conditions auxiliaires de plusieurs types. Solutions à approximations poly-
nomiales sont ensuite réalisés pour plusieurs types des équations différentielles
partielles linéaires, y compris les problèmes hyperboliques, paraboliques et el-
liptiques. Dans la deuxième étape, le schème de score d’adaptation proposé est
conçu pour exploiter certaines caractéristiques du solveur proposé et d’effectuer
l’approximation polynômiale par morceaux afin d’évaluer les individus différen-
tiels à partir d’une population fournie par l’algorithme évolutionnaire. Enfin,
une mise en œuvre préliminaire d’une application GP est présentée et certaines
questions sont discutées afin de permettre une meilleure compréhension de
la modélisation des systèmes automatisée par l’ordinateur. Indications pour
certains sujets prometteurs pour la continuation de futures recherches sont
également abordées dans ce travail, y compris la façon d’étendre ce travail à
certaines classes d’équations différentielles partielles non-linéaires.

Mots-clés: Modélisation des Systèmes Automatisée par l’Ordinateur; Mod-
èles Différentiels; Équations Différentielles Ordinaires Linéaires; Équations
Différentielles Partielles Linéaires; Score d’Adaptation; Programmation Géné-
tique.
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ē = −9.21 10−4, s = 3.81 10−2. (f) WGN 10dB; ē = −3.34 10−2,
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Chapter 1

Introduction

1.1 Overview

A system is defined by its interrelated parts, also known as entities, surrounded
by an environment which is determined by an arbitrary boundary. More in-
sights on the definition of a system could be achieved by accessing the work
of [1]. This present work considers a system of interest as being concrete (in
contrast to abstract) and possibly closed, even when it could be classified as
open. The former classification means that the system can exist in this reality.
The latter means that every entity has some relations with others, i.e., if an
entity is part of a system, that means it can affect and be affected by others,
directly or indirectly, and is also responsible in some degree for the overall
behaviour that the system presents.

A concrete system could be object of a simplified representation, known as
a model, in order to be understood, to explain its behaviour with respect to
its entities and to enable simulations and predictions of its behaviour accord-
ing to an arbitrary initial state. In reality, it is usual to not totally represent
a concrete system due to the great number of constituent entities involved
together with a large set of complex interrelations. Normally, to build such
representation (known as a model) is to optimize the compromise between sim-
plification and accuracy. This work is interested about in silico models which
refers to “simulations using mathematical models in computers, thus relying
on silicon chips” [2]. The process of building such model to a system, approxi-
mately and adequately, needs to rely on its most relevant entities (independent
variables) that have influence on the overall system behaviour (represented by
one or more dependent variables). This process is widely known as System
Modelling. Note that, as stated by [1], the number of significant entities and
relations could change depending on the arbitrary determination of a bound-
ary.

A representative model could be understood as some sort of underlying
physical law [3, 4], or even a descriptor which could fulfil the variational prin-
ciple of least action1 [5, 6]. As stated by [7], “many physical processes in nature
[...] are described by equations that involve physical quantities together with

1Also known as principle of stationary action.
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their spatial and temporal rates of change”. Actually, observations of natu-
ral phenomena were responsible to the early developments of the infinitesimal
calculus discipline [8]. In other words, due to its properties of establishing
connections and interactions between independent and dependent entities (e.g.
physical, geometrical, relational), models to systems are expected to be one
or a set of differential equations [9]. An ordinary differential equation (ODE),
if only one entity is considered responsible for the behaviour of a system, or
more commonly a partial differential equation (PDE) can describe how some
observable quantities change with respect to others, tracking those changes
throughout infinitesimal intervals.

Presenting as a simple example, the vertical trajectory of a cannonball
when shot in an ideal scenario could be modelled by the ODE g+ d2

dt2
y(t) = 0.

This equation presents the relation between the unknown function y(t) —
the instantaneous height of the cannonball relative to an inertial frame of
reference with respect to a relative measure of time t — and the acceleration
of gravity g. Initial state conditions such as d

dt
y(t)

∣

∣

t=0
= V0 and y(0) = H0

effectively lead to the following well known solution: y(t) = H0+V0 t− g t2

2
. This

solution to that differential model describes with ideal precision the cannonball
vertical trajectory. If this system can be kept closed to outer entities (e.g., air
friction, strong winds), the mentioned differential model would still be the
same, no matter the fact that different initial states could lead to different
vertical trajectory solutions.

From the point of view of engineering, this work is interested in concrete
systems whose entities enable some kind of quantitative measurements for
related quantities2. If those measurements are taken from the main entities
responsible for the behaviour of the system, then it is fair to suppose that an
accurate enough model could be built.

Nowadays, the necessity for models is increasing, once science is dealing
with concrete systems that could display a huge dataset of observations (Big
Data researches) or even present chaotic behaviour (dynamic or complex sys-
tems). This work goes further into this idea and investigates how system
modelling could be automated. This thesis is part of a research aimed to miti-
gate difficulties and propose methods to enable a computer-automated system
modelling (CASM) tool to construct models from observed data.

1.2 Motivation

When defining a system of interest, researches intent to describe a great vari-
ety of phenomena, from Physics and Chemistry to Biology and Social sciences.
Systems modelling have applications to problems of engineering, economics,
population growth, the propagation of genes, the physiology of nerves, the
regulation of heart-beats, chemical reactions, phase transitions, elastic buck-
ling, the onset of turbulence, celestial mechanics, electronic circuits [10], ex-
tragalactic pulsation of quasars, fluctuations in sunspot activity on our sun,

2Qualitative measurements are not object of this thesis. More information on this subject
could be found on “Fuzzy Modelling”.
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changing outdoor temperatures associated with the four seasons, daily temper-
ature fluctuations in our bodies, incidence of infectious diseases, measles to the
tumultuous trend of stock price [11], among many others examples. Models
are essential to correctly understand, to predict and to control their respective
systems. An inaccurate model will fail to do so.

The classic approach for system modelling is to apply regressions techniques
of some kind on a set of measurements in order to retrieve a mathematical
function that could explain that dataset.

Regression techniques involve developing causal relations (functions) of one
or more entities (independent variables) to a sensible effect or behaviour (de-
pendent variable of interest). Historically, those techniques have being used to
system modelling starting from observed data. There are two main approaches
to regression: classic (or conventional) regression and symbolic regression.

Conventional regression starts from a particular model form (a mathemat-
ical expression with a known structure) and follows by using some metrics to
optimize parameters for a pre-specified model structure supposed to best fit
the observed data. A clear disadvantage is that, after parametrized by using
ill-behaved data, the chosen model could not be useful at all, or even work
just within a limited region of the domain, failing in other regions. A specific
difficult dataset example is shown in Figure 1.1. There, different conventional
regression techniques fail to rediscover a known function from its randomly
sampled sparse points. Note that, to achieve the full potential of those tech-
niques, data must be well behaved (e.g., equidistant points) and be available
in a sufficient amount.

While conventional regression techniques seek to optimize the parameters
for a pre-specified model structure, symbolic regression avoids imposing prior
assumptions, and, instead, infers the model from the data.

Symbolic regression, in the other hand, searches for an appropriate model
structure rather than imposing some prior assumptions. Genetic Program-
ming (GP) is widely used for this purpose [12, 13]. GP is based on Genetic
Algorithms (GA) and belongs to a class of Evolutionary Algorithms (EA) in
which ideas from the Darwinian evolution and survival of the fittest are roughly
translated into algorithms. Therefore, GP is known to evolve a model struc-
ture side-by-side with the respective necessary parameters. Also, there is the
theoretical guarantee (in infinite time) that GP will converge to an optimum
model3 able to fit the observed data. As an example, if trigonometric functions
are available as building blocks, Genetic Programming is capable of converging
to the function

y(x) = 3 sin(π x) cos(16 π x)

which is the correct function subjected to the sampling of points at random
back in Figure 1.1.

To understand why this work does not simply use symbolic regression, take
a close look at Figure 1.2. Both left and right plots show only two sampled
points. Lets imagine this hypothetical situation where there are concrete sys-
tems, the “left” one and the “right” one, and from both there are only two

3In practice, researches expect a near-optimum solution only.
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Figure 1.1: A situational example where different methods for conventional
regression (linear, piece-wise 5th degree polynomial, spline) fail to find a known
solution from a not so well behaved randomly sampled points.

measurements available for each one. The known behaviour of those systems
are respectively described by

f(x) = 1− e−x and g(x) = e−x − 1.

The left plot also presents among other infinite possibilities the following func-
tions that pass through the same two sampled points:

(sine) fs(x) = 0.6321 sin(π
2
x)

(polynomial) fp(x) = 0.4773 x2 + 0.1548 x
(linear) fl(x) = 0.6321 x.

The right plot also presents the functions:

(sine) gs(x) = −0.6321 sin(π
2
x)

(polynomial) gp(x) = −0.4773 x2 − 0.1548 x
(linear) gl(x) = −0.6321 x.

Note that they are one the mirror image of the other (related to the horizontal
axis through f(x) = g(x) = 0), but lets move this information aside for a
moment.

Actually, both plots refer to solutions for the same ODE:

d2

dx2
y(x) +

d

dx
y(x) = 0

with different initial values, for the plot on the left:

d

dx
y(x)

∣

∣

∣

∣

x=0

= 1 and y(0) = 0;
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Figure 1.2: Hypothetical situation, two points sampled from each concrete
system. (left) Known describing function is f(x) = 1 − e−x; (right) Known
describing function is g(x) = e−x − 1.

and, for the plot on the right:

d

dx
y(x)

∣

∣

∣

∣

x=0

= −1 and y(0) = 0.

Assuming the differential model for those systems is known, the solution of
this ODE not only supplies a reliable interpolation function between those two
points, but a reliable extrapolation function as well. The process of solving
a differential model could benefit from measurements to infer initial states or
boundaries and the solution would be valid as long as neither involved entities
(tracked by independent variables) vanish nor others appear.

This hypothetical situation shows the possibility of the same model rep-
resenting either two separate systems or the same system presented in two
different states. As could be inferred, awareness of the initial state leads the
model to present itself as having a unique solution. A purely symbolic regres-
sion approach would have two major difficulties when considering this very
situation here4: (a) all enlisted functions — fs(x), fp(x), fl(x), gs(x), gp(x),
gl(x) — would be considered valid solutions, as the same for any of the infi-
nite possible functions that pass exactly through those two points; (b) each
situation represented by both left and right systems have a high probability of
having a different function model and, in this case, no relation between them
would be uncovered. In other words, symbolic regression per se would not have
enough information to even start to raise questions about similarities between
those two systems. One could state that symbolic regression is directed to

4The intention of this elaborated example is just to exploit a line of thinking. Symbolic
regression would have tools to support global-optimum solutions instead of local ones if more
data is presented.
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model only one “instantiation” of the system (a single possible initial state or
adopted boundary) at a time.

Another argument, as known to those dealing with physics and calculus
of variations, the action functional (a path integration) is an attribute of a
system related to a path, i.e., a trajectory that a system presents between two
boundary points in space-time. The principle of least action (also known as
the principle of stationary action) states that such system will always present
a path over which this action is stationary (an extreme, usually minimal and
unique) [6]. This path of least action (the integrand of the action) is often
described by a differential equation and describes the intrinsic relations of a
system, the very type of differential model this work is aimed to look for.

Following this path, it is pretty straightforward to reach the conclusion that
a CASM tool should search for differentials whose solutions could explain the
observed data. Also, this tool should not keep the search within the domain of
mathematical expressions, as done by classic symbolic regression. The domain
of search becomes the space of differential equations. In that way, discussions
about a possible unification for both left and right aforementioned systems
would be possible. Such approach would be concerned about the model of
the system itself, whichever “instantiation” (possible initial states or adopted
boundary) it has been presented.

Given the domain of search for a model as the space of possible differ-
ential equations and concepts behind the principle of least action, this work
starts from the idea that every observable concrete system from which some
quantitative measurements could be taken is a valid candidate to construct a
model. As stated in [14], “the idea of automating aspects of scientific activity
dates back to the roots of computer science” and this research is no different.
This work intends to investigate a possible way to enable CASM. Looking for-
ward, as that work concluded, “human-machine partnering systems [...] can
potentially increase the rate of scientific progress dramatically” [14].

1.3 Thesis Statement

One of the essential objectives of this work is to develop a computer-automated
numerical solver for linear partial differential equations in order to assist a
Genetic Programming application to evaluate fitness of model candidates. The
provided input for the Genetic Programming application should be a dataset
containing measurements taken from observations of the system of interest.

Research questions

Some questions have been guiding this research:

• Given a database which contains measurements from an observable con-
crete system, is there a more robust way to verify how fit is a theoretical
model to this system, relying on those available data?

• As modelling presupposes observation, creativity and specific knowledge,
is it feasible to achieve a CASM tool?
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• Would such CASM tool be able to rediscover known models, propose
modifications to them, or even reveal previously unknown models?

This thesis presents answers to the first two questions. The third one is
partially answered, though. This is an open work in the sense that it points
to several branches of possible research to be carried on.

Objectives

In this section, the general and specific objectives are presented.

General

Achieve a linear differential equation numerical solver to support a concrete
system modelling tool which uses Genetic Programming to evolve sets of partial
differential equations. A dataset of observations must be available.

Specific

• Develop a computer-automated numerical solver for linear partial differ-
ential equations with no restrictions besides linearity. The solver must
assist the evolutionary search of the Genetic Programming application
by enabling fitness evaluation of individuals constituted by linear partial
differential equations.

• Develop a syntax tree representation for a candidate solution and a
proper module for fitness evaluation in consonance with the proposed
solver.

• Run some case studies where the observations dataset is generated through
simulation of a known model; provide those simulated data as inputs to
the Genetic Programming application with the intention of evolving the
model to the known solution, turning this exercise into an inverse prob-
lem resolution.

• Evaluate the impact of adding noise to input data regarding the evolu-
tion of a previous known model. This should enable discussions about
tolerance for measurements related to the system of interest.

• Identify and propose derived branches for future works.

1.4 Contributions

The present work brings the following contributions:

• A novel approach to the Ritz-Galerkin method to approximately solve
linear differential equations: static choice of Jacobi-Legendre polyno-
mials as basis functions; finite difference method inspired treatment of
auxiliary conditions; use of linear algebra discipline to enable solution
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of systems of linear equations (e.g. using metrics and procedures as
rank, condition, pseudoinverse). The achieved solution is a polynomial
approximation of the differential solution.

• A generic scheme to a computer-automated numerical solver for linear
partial differential equations (ordinary ones included) using polynomial
approximations for the differential solution. Also, the knowledge to ex-
pand this solver to some non-linear differential equations is already gath-
ered and it is planned for the near future.

• A dynamic fitness evaluation scheme to be plugged into evolutionary al-
gorithms to automatically solve linear differential equations and evaluate
model candidates.

This work had to restrict itself to linear differential equations, though,
but those models could present any structure inside the linearity restriction.
Besides, the same method is used to both ODEs and PDEs. Indeed, the
search for differential models has been tried before. Even so, authors have
no knowledge of works which could deal with systems in general but the ones
where further specifications on the form of the model is required.

1.5 Research tools

Numerical methods

As stated by [7], one of the “most general and efficient tool for the numerical
solution of PDEs is the Finite element method (FEM)”. Some limitations do
not allow this work to follow this suggested path, though. FEM[15, 16, 17, 7]
starts from solving a differential equation (or a set of) in order to present
results over a mesh of points throughout the domain. The type of modelling
this work is interest on implies in having the actual results of some system on
some points over the domain and trying to recover the differential which could
explain the behaviour of the system. This is an inverse problem and FEM
could not help but to inspire some solutions here presented.

As could be imagined, the method of searching for differential equations
must solve at some point those differentials in order to verify the quality of
a model candidate. Moreover, integrals should also be useful. The classical
and widely used numerical tools to do the job are: (a) using the technique
of separating variables to partial differential equations and applying Runge-
Kutta methods to approximate solutions for the achieved ordinary differential
equations; and (b) Gauss Quadrature methods to perform numerical integra-
tions for arbitrary functions [18, 19], multidimensional cases covered by tensor
products or sparse grids [20, 21]. Numerical methods designed to directly solve
partial differential equations are seldom explored in the literature, due to the
success of the aforementioned methods, and the growing need for multidimen-
sional integration (cubature) methods keeps it as an open research topic.

Diverging from the common sense, this work tries to generalize the process
of modelling of multivariate systems. In order to do so, robust multivariate
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operations are necessary, especially when dealing with partial differential equa-
tions. Parallelism is also desirable, once the entire process has the potential
to be an eager customer of computational power. The possibility of trans-
forming it into a Linear Algebra problem, as could be seen when dealing with
FEM, is also very tempting. After a long period of experimentations and aim-
ing for those purposes, this work has finally adopted the following numerical
methods: (a) the Ritz-Galerkin method [22], specifically an own customiza-
tion of the method, to build a system of equations from differential equations
(ordinary or partial); (b) Monte Carlo integration [23] to perform multivari-
ate integrals; and (c) matrix formulations with related operations to evaluate
candidate models.

Evolving models

The GP technique is classified under the Evolutionary Computation (EC) re-
search area in which, as suggested by its name, covers different algorithms that
draw inspiration from the process of natural evolution [24]. GP is, at the most
abstract level, a “systematic, domain-independent method for getting comput-
ers to solve problems automatically starting from a high-level statement of
what needs to be done” [13]. That is an expected quality for evolving models
by GP which is known to to find previous unthoughtful solutions for unsolved
problems so far [25]. This feature could only be accessed if GP is allowed to
build random individuals from a unconstrained search space.

Implementing CASM through GP have been proven the right choice in the
literature, specially when modelling functions from data [26, 4, 27, 28]. For
a system of interest with available measurements, this works instead aims to
evolve a functional (partial differential equation) whose solution is a function
that could explain the available data. Classic GP symbolic regression needs
some adjustments to be able to do so.

Computer programming language

The chosen language for programming is C++. Besides high speed perfor-
mances [29], C++ language has been listed on the top 5 programming lan-
guages rank [30], has support for several programming paradigms (e.g., im-
perative, structured, procedural and object-oriented), has a large active com-
munity, could benefit from 300+ open source libraries [31] (including 100+ of
boost set of libraries only) and several others freely distributed (e.g. BLAS
and LAPACK5 for linear algebra purposes; MPICH2, CUDA and OpenCL for
parallel/concurrency programming), and allows the programmer to take con-
trol of every aspect of programming. In the other hand, C++ is strongly plat-
form based (code has to be compiled in whatever operational system and/or
hardware the executable is needed to run on) and the programmer has to be
aware of every aspect of programming (depending on the aimed application,
programmer also needs to know about the hardware involved). Those pros
and cons were evaluated before this choice, including the need this project has
for high performance computation.

5LAPACKE library for C++.
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1.6 Outline of the text

This thesis is divided into three parts. The first one, Background, covers this
introduction in Chapter 1. A non comprehensive list of related works that deal
with system modelling through Genetic Programming is presented in Chap-
ter 2. Related theory in Chapter 3 are addressed in order to understand the
method proposed here: linear differential equations, Hilbert inner product and
basis for function spaces, Ritz-Galerkin method, well-possessedness of a differ-
ential problem, Jacobi polynomials, linear mappings and change of variables,
Monte Carlo integration and Genetic Programming.

The second part refers to the proposed method itself. It starts by explain-
ing how the proposed method could be applied to linear ordinary differential
equations in Chapter 4. The extension of those results when applying the
method to linear partial differential equations is shown in Chapter 5.

The third and last part is about system modelling. A fitness scheme is pro-
posed in Chapter 6 in order to evaluate differential model candidates. Chap-
ter 7 brings a preliminary implementation of a Genetic Programming applica-
tion to perform system modelling. Finally, some results, discussions and other
extensions to this work as future research topics could be found in Chapter 8.

Appendices are presented addressing publications achieved during the time
of this doctoral studies (Appendix A), as well as future topics in need to be
addressed, as the massively parallel paradigm of GPGPUs (Appendix B) and
a more robust parallel platform for GP known as EASEA (Appendix C).

11



Chapter 2

Related Works

2.1 A brief history of the field

Since decades ago, scientists have been trying to build models from observable
data. Once datasets of interest starts to increase and underlying model struc-
tures became complicated to infer, scientists start thinking about automating
the modelling process.

One of the first works that authors could find, the work of Crutchfield and
McNamara [32] in 1987 shows the development of a numerical method based
on statistics to reconstruct motion equations from dynamic/chaotic time-series
data. In a subsequent work, Crutchfield joined Young [33] to address updates
to that approach while introducing a metric of complexity for non-linear dy-
namic systems.

Still in the 1980’s, some researchers had developed techniques capable
of evolving computer programs, like the works of Cramer, Hicklin and Fu-
jiko [34, 35, 36], respectively, as an attempt to inspire “creativity” into com-
puter machines. These efforts culminate with the advent of Genetic Program-
ming with the works of Koza [37, 12] to enable science in the 1990’s to start
experiencing computer-automated symbolic regression in the form of mathe-
matical expressions constructed from data. In general, all family of Evolution-
ary Algorithms [38, 39, 40, 24] could be easily related with system modelling,
but GP brought a lot of facilities and powerful tools into the subject [13].

Nevertheless, the work of Schmidt and Lipson [4] published in 2009 is
often seen by the scientific community as a great landmark for computer-
automated system modelling due to the broad impact it had on the media at
the time it was published (e.g., articles in [41, 42, 43]). Even considering that
some relevant issues were raised by Hillar [44], Schmidt and Lipson provided
observations from basic lab experiments to a computer and this computer was
able, using GP-like techniques, to evolve some underlying physical laws in the
form of mathematical expressions with respect to the phenomena addressed in
the experiments, using 40 minutes to a few hours to do so, depending on the
problem.

In the same issue of the journal Science that the paper of Schmidt and
Lipson was published, Waltz and Buchanan [14] defended the need for an
automation of science, without debunking the role of the researcher. They
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pointed out that “computers with intelligence can design and run experiments,
but learning from the results to generate subsequent experiments requires even
more intelligence”. This work has the perspective that computer-automated
system modelling must be aimed to help scientists to understand, predict and
control their object of study.

Therefore, this section is aimed to cover works that are relate to this thesis
within the subject of computer-automated system modelling from observable
data. Only works that also make use of GP or some other EA are addressed
here. Note that the following list is not intent to be comprehensive, but should
reflect the state of art in this field. The list is sorted from the early years to
nowadays. When two or more works are from the same year, sort criteria turns
to be lexicographic.

2.2 Early papers

before 2000

Gray et al. [26] uses GP to identify numerical parameters within parts of
the non-linear differential equations that describes a dynamic system, starting
from measured input-output response data. The proposed method is applied
to model the fluid flow through pipes in a coupled water tank system.

2000 up to 2004

Cao et al. [45] describes an approach to the evolutionary modelling problem of
ordinary differential equations including systems of ordinary differential equa-
tions and higher-order differential equations. They propose some hybrid evo-
lutionary modelling algorithms (genetic algorithm embed in genetic program-
ming) to implement the automatic modelling of one and multi-dimensional
dynamic systems respectively. GP is employed to discover and optimize the
structure of a model, while GA is employed to optimize its parameters.

Kumon et al. [46] present an evolutionary system identification method
based on genetic algorithms for mechatronics systems which include various
non-linearities. The proposed method can determine the structure of linear
and non-linear elements of the system simultaneously, enabling combinatorial
optimization of those variables.

Chen and Ely [47] compare the use of artificial neural networks (ANN), ge-
netic programming, and mechanistic modelling of complex biological processes.
They found these techniques to be effective means of simulation. They used
Monte Carlo simulation to generate sufficient volumes of datasets. ANN and
GP models provided predictions without prior knowledge of the underlying
phenomenological physical properties of the system.

Banks [48] presents a prior approach to model Lyapunov functions. He has
implemented a GP, in Mathematica R⃝, which searches for a Lyapunov function
of a given system. The project was successful in finding Lypunov functions for
simple, two-dimensional systems.

13
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Leung and Varadan [49] propose a variant to GP in order to demonstrate its
ability to design complex systems that attempts to reconstruct the functional
form of a non-linear dynamical system from its noisy time series measurements.
They did different tests on chaotic systems and real-life radar sea scattered
signals. Then they apply GP to the reverse problem of constructing optimal
systems for generating specific sequences called spreading codes in CDMA
communications. Based on computer simulations, they have shown improved
performance of the GP-generated maps.

Hinchliffe and Willis [50] uses multi-objective GP to evolve dynamic process
models. He uses GP ability to automatically discover the appropriate time
history of model terms required to build an accurate model.

Xiong and Wang [51] propose both a new GP representation and algorithm
that can be applied to both continuous and discontinuous functions regression
applied to complex systems modelling. Their approach is able to identify both
structure and discontinuity points of functions.

2005 up to 2009

Beligiannis et al. [52] adopts a GP-based technique to model the non-linear
system identification problem of complex biomedical data. Simulation results
show that the proposed algorithm identifies the true model and the true values
of the unknown parameters for each different model structure, assisting the GP
technique to converge more quickly to the (near) optimal model structure.

Bongard and Lipson [53], states that uncovering the underlying differential
equations directly from observations poses a challenging task when dealing
with complex non-linear dynamics. Aiming to symbolically model complex
networked systems, they introduce a method that can automatically generate
symbolic equations for a non-linear coupled dynamical system directly from
time series data. They state that their method is applicable to any system
that can be described using sets of ordinary non-linear differential equations
and have an observable time series of all independent variables.

Iba [54] presents an evolutionary method for identifying models from time
series data, adopting a model as a system of ordinary differential equations.
Genetic programming and the least mean square were used to infer the systems
of ODEs.

2.3 Contemporary papers, 2010+

McGough et al. [55] represent a line of research on GP-based generation of Lya-
punov functions. As stated: “one of the fundamental questions that arises in
nonlinear dynamical systems analysis is concerned with the stability properties
of a rest point of the system”. The theory of Lyapunov is used to understand
the qualitative behaviour of the rest point. Their work uses a variant of GP
to evolve Lyapunov functions for a given dynamic systems, aiming to explore
their stability.
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Gandomi and Alavi [56], propose a new multi-stage GP strategy for mod-
elling non-linear systems. Based on both incorporation of each predictor vari-
able individual effect and the interactions among them, their strategy was able
to provide more accurate simulations.

Edited by Soto [27], a book about GP that has several chapters dedicated
to examples of GP usage in system modelling.

Stanislawska et al.[28] use genetic programming to build interpretable mod-
els of global mean temperature as a function of natural and anthropogenic
forcings. Each model defined is a multiple input, single output arithmetic
expression built of a predefined set of elementary components.

Finally, Gaucel et al. [57] propose a new approach using symbolic regression
to obtain a set of first-order Eulerian approximations of differential equations,
and mathematical properties of the approximation are then exploited to recon-
struct the original differential equations. Some highlighted advantages include
the decoupling of systems of differential equations to be learned independently
and the possibility of exploiting widely known techniques for standard sym-
bolic regression.

2.4 Discussion

In general, a model is referred as a mathematical expression that translate
abstract functions supposed to generate experimental observed data. Besides
discussion in Section 1.2, this widely adopted point of view is of greater use
in science. Nevertheless, this work aims to built “differential models” from
observable data, i.e., a differential equation with the potential of unveiling
interrelations, physical quantities and energy transformations that could be
obscure due to the complexity of available data.

In this section some related works are enlisted, related mainly to system
modelling from data. From those, there are some who favoured the discussion
similarly to this present thesis, e.g., Gray [26], Cao [45], Bongard [53], Iba [54],
and Gaucel [57], i.e., they are also dealing with differential models within their
works. While the work of Gray deals with structured non-linear differential
equations, the others attacked the problem by assuming models as systems
of ordinary equations. Both [53] and [57] stand out for given contributions.
Bongard achieved symbolic equations as models, and Gaucel realizes some
mathematical identities that are really relevant for the overall performance of
CASM.

Even so, those works adopt different paradigms. This present work aims
to evolve partial differential models from observable data. To accomplish this,
an elaborated novel method is presented in order to be applied to any linear
differential equation (ordinary or partial) to obtain unique projections for the
solution. This proposed method acts the same, no matter the dimensionality
of the problem. Authors have no knowledge about other works within CASM
that uses something similar to the proposed approach present in this thesis.
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Chapter 3

Theory

In this Section, some key subjects to understand contributions from this work
are presented, as linear differential equations, Hilbert inner product space,
Galerkin’s method, well posed problems, Jacobi polynomials, linear mappings,
change of variables, Monte Carlo integration, and Genetic Programming.

3.1 Linear differential equations

Linear differential equations (LDE) could be described basically by a linear
operator L which operates a function u(x⃗) — the unknown or the solution —
and results in a source function s(x⃗). LDEs are in the form L[u(x⃗)] = s(x⃗). A
simple definition of a linear differential operator L of order Q with respect to
each of D variables is shown in Equation (3.1).

L[u(x⃗)] =
Q⋆−1
∑

q=0

kq(x⃗)

[

D−1
∏

i=0

∂γq,i

∂x
γq,i
i

]

u(x⃗). (3.1)

where x⃗ = ( x0, x1, . . . xD−1 )
T ; γq,i is the order of the partial derivative with

respect to ith variable designed by the qth case from the Q⋆ possible combina-
torial orders (see Chapter 5 for details); kq(x⃗) refers to each term coefficient
and could be a function itself, including constant, linear and even non-linear
ones; and u(x⃗) is the multivariate function operand to the functional L. Note
that the definition ∂0

∂x0
i

u(x⃗) ≡ u(x⃗) has been adopted here.
Using definition of L, multivariate LDEs could be written in the form of

Equation (3.2):

L[u (x⃗)] = s (x⃗)

Q⋆−1
∑

q=0

kq(x⃗)

[

D−1
∏

i=0

∂γq,i

∂x
γq,i
i

]

u(x⃗) = s(x⃗) (3.2)

where u (x⃗) is the unknown function (dependent variable) which is the solution
to the differential equation; and s (x⃗) is the source function, sometimes referred
to as the source term. Note that both kq (x⃗) and s (x⃗) could be constant, linear

16



3.2. Hilbert inner product and basis for function space

or even non-linear functions with respect to independent variables addressed
by x⃗.

Related to this definition, this work considers that: (a) kq(x⃗) coefficients
are real functions (constant, linear or non-linear), i.e., ∀x, kq(x⃗) ∈ R; (b)
the unknown function u(x⃗) refers to a scalar field; (c) the source function
reflects either homogeneous — s(x⃗) = 0 — or inhomogeneous — s(x⃗) ̸= 0 —
differential equations.

An univariate L, also known as a linear ordinary differential operator, could
be defined as in Equation (3.3):

L[u(x)] =
Q
∑

q=0

kq(x)
dq

dxq
f(x) (3.3)

where Q is the order of the linear differential operator L; kq(x) are the Q+ 1
coefficients from respective terms, with the restriction that kQ(x) ̸= 0; u(x)
is the operand for L and is assumed to be a function of the only independent
variable x. Note that L contains a dependent variable u(x) and its derivatives
with respect to the independent x.

Using definition of L, univariate LDEs could be written in the form of
Equation (3.4):

L[u(x)] = s(x)

Q
∑

q=0

kq(x)
dq

dxq
u(x) = s(x) (3.4)

where u(x) is the unknown function (dependent variable) which is the solution
to the differential equation; and s(x) is the source function, sometimes referred
to as the source term. Note that both kq(x) and s(x) could be constants,
linear functions themselves or even non-linear functions with respect to the
independent variable x.

Distinct from LDEs, non-linear differential equations have at least one
term which is a power of the dependent variable and/or a product of its
derivatives. An example for the former is the inviscid Burgers equation:
∂
∂t
u(x, t) = −u(x, t) ∂

∂x
u(x, t). Other example for the latter could be formu-

late by any differential equation which has term with
(

∂
∂x
u(x, t)

)k or even
(

∂
∂x
u(x, t)

)

·
(

∂
∂t
u(x, t)

)

. Note that terms as ∂
∂x

∂
∂t
u(x, t) are still linear. For

now, non-linear differential equations are not object of this thesis.

3.2 Hilbert inner product and basis for
function space

An inner product for functions can be defined as in Equation (3.5):

⟨ f(x), g(x) ⟩ =
b
∫

a

f(x)g(x)w(x) dx (3.5)
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where f(x) and g(x) are operands; a and b the domain interval for the inde-
pendent variable x; and w(x) is known as the weight function.

A Hilbert inner product space is then defined when choosing the interval
[ a, b ] and weight function w(x), in order to satisfy the properties of conjugate
symmetry, linearity in the first operand, and positive-definiteness [58, pp.203].
Note that, when in R, the inner product is symmetric and also linear with
respect to both operands.

Two functions fn(x) and fm(x) are then considered orthogonal to each
other in respect to a Hilbert space by the definition present in Equation (3.6):

⟨ fn(x), fm(x) ⟩ = hn δnm =

{

0 if n ̸= m

hn if n = m
(3.6)

where hn is a constant dependent on ⟨ fn(x), fn(x) ⟩; and δnm is the Kronecker
delta.

Following Equations(3.5) and (3.6), implication in Equation (3.7) is then
valid:

∀w(x), ⟨w(x), f(x)⟩ = 0 =⇒ f(x) ≡ 0. (3.7)

A complete basis for a function space F is a set of linear independent
functions B = {ϕn(x)}∞n=0, i.e., a set of orthogonal basis functions. An arbi-
trary function f(x) could then be projected into this function space as a linear
combination of those basis functions, as shown in Equation (3.8):

∀f(x) ∈ F =⇒ f(x) =
∞
∑

n=0

cn ϕn(x) (3.8)

As an example, if F is defined as the set of all polynomials functions and
power series, a complete basis should be B = {xi}∞i=0, where it comes that

f(x) =
∞
∑

j=0

cj x
j.

Finally, from Equations (3.7) and (3.8), the implication in Equation (3.9)
follows:

∀ϕ(x) ∈ B, ∀f(x) ∈ F , ⟨ϕ(x), f(x)⟩ = 0 =⇒ f(x) ≡ 0. (3.9)

3.3 Galerkin method

The Ritz-Galerkin method, widely known as the Galerkin method [22], is one
of the most fundamental tools of modern computing. Russian mathematician
Boris G. Galerkin generalised the method whose authorship he assigned to
Walther Ritz and showed that it could be used to approximate solve many
interesting and difficult elliptic problems arising from applications [59]. The
method is also a powerful tool in the solution of differential equations and
function approximations when dealing with elliptic problems [7, 60].

Also, Galerkin method is considered to be a spectral method from the fam-
ily of weighted residual methods. Traditionally, those methods are regarded as
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the foundation of many numerical methods such as FEM, spectral methods,
finite volume method, and boundary element method [61]. A non-exhaustive
and interesting historical perspective for the development of the method can
be found in [59].

As a class of spectral methods from the family of weighted residual meth-
ods, Galerkin method could be defined as a numerical scheme to approximate
solve differential equations. Weighted residual methods in general are approx-
imation techniques in which a functional named residual R[u(x)], also known
as the approximation error and defined in Equation (3.10), is supposed to be
minimized [61].

R[u(x)] = L[u(x)]− s(x) ≈ 0 (3.10)

Note that R[u(x)] is also known as the residual form of the differential
equation. The idea is to have a feasible approximation û(x) to the solution
u(x) in order to force R[u(x)] ≈ 0. This approximation is built as a projection
on the space defined by a proper chosen finite basis B = {ϕn(x)}Nn=0 with a
span of N + 1 functions. The approximation û(x) has the form present in
Equation (3.11):

û(x) =
N
∑

n=0

ũnϕn(x), (3.11)

where ũn are the unknown coefficients of this weighted sum. The approxi-
mation û(x) is also known as the truncated Galerkin expansion (TGE) for a
finite N . In the literature, the form û(x) = ũ0 +

∑N

n=1 ũnϕn(x) is also found.
However, this thesis adopts the requirement that ϕ0(x) ≡ 1 instead.

Galerkin’s approach states that when the residual R[u(x)] operates the ap-
proximation û(x) instead of the solution u(x), this residual is required to be
orthogonal to each one of the chosen basis functions in B. This is accom-
plish by starting from both Equations (3.9) and (3.10) and can be seen in
Equation (3.12):

∀ϕ(x) ∈ B, ⟨ϕn(x), R[û(x)] ⟩ = 0, n = 0 . . . N (3.12)

Then, the method requires to solve those N+1 equations in order to find an
unique approximate solution of the differential equation described by R[u(x)]
with respect to the chosen basis B. Note that all basis functions ϕ(x) ∈ B must
satisfy some auxiliary conditions known a priori (usually linear homogeneous
boundary conditions) to enable a well posed problem.

Finally, after plugging the approximation in Equation (3.11) to the resid-
ual in Equation (3.10) and following Equation (3.12), the Galerkin System of
Equations (GSE) is then built, as shown in Equation (3.13):
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3. Theory

⟨ϕn(x), R[û(x)] ⟩|Nn=0 = 0

⇒ ⟨ϕn(x), L[û(x)]− s(x)⟩|Nn=0 = 0

⇒
[⟨

ϕn(x), L[
N
∑

m=0

ũmϕm(x)]

⟩

− ⟨ϕn(x), s(x)⟩
]N

n=0

= 0

⇒
[

N
∑

m=0

ũm ⟨ϕn(x), L[ϕm(x)] ⟩ = ⟨ϕn(x), s(x)⟩
]N

n=0

(3.13)

Solving the system of equations in Equation (3.13) for N + 1 unknown
coefficients ũm and afterwards substituting them into Equation (3.11), an ap-
proximate solution to the differential equation is finally achieved.

According to [62], Galerkin’s method “is not just a numerical scheme for
approximating solutions to a differential or integral equations. By passing to
the limit, we can even prove some existence results”. More information on
proofs to the bounded error and convergence of Galerkin method for elliptic
problems could be found in [7, pg. 46–51]. Note the importance of choosing
the right basis for the approximating finite dimensional subspaces. The work
of [62] also emphasises the utilization of Galerkin methods with orthogonal or
orthonormal basis functions, i.e., a complete basis.

Note that using the identity in Equation (3.14), it is pretty straightforward
to convert summations to a matrix form.

M
∑

j=0

(aj · fi,j)
∣

∣

∣

∣

∣

N

i=0

=







f0,0 . . . f0,M
... . . . ...

fN,0 . . . fN,M






·







a0
...

aM






(3.14)

Therefore, a GSE could be written in matrix formulation. From Equa-
tions (3.13) and (3.14), follows Equation (3.15) in the form:

G · ũ = s⇒






⟨φ0(x), L[φ0(x)] ⟩ · · · ⟨φ0(x), L[φN (x)] ⟩
...

. . .
...

⟨φN (x), L[φ0(x)] ⟩ · · · ⟨φN (x), L[φN (x)] ⟩






·







ũ0
...

ũN






=







⟨φ0(x), s(x)⟩
...

⟨φN (x), s(x)⟩







(3.15)

where G is known as the coefficient (stiffness and mass) square matrix; ũ is the
unknown (displacements) column vector; and s is the source (forces) column
vector. Names inside parenthesis are used by FEM.

3.4 Well-posed problems

French mathematician Jacques Salomon Hadamard, among other contribu-
tions, coined the widely used notion of well-posed problems for partial differ-
ential equations [63, 7]. Hadamard defined a problem to be well-posed only
if:
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3.4. Well-posed problems

1. A solution exists and is unique;

2. This solution depends continuously on the given data, i.e. solution is
not unstable.

Therefore, if a problem does not meet all these criteria, it is said to be ill-
posed. Note that, even if a problem is well-posed, it may still be ill-conditioned,
which means that small numerical variations in elements from the coefficient
matrix or the source vector implies in large differences between evaluations of
unknowns. According to [7], from a point of view of numerical methods, there
are several possible error sources when calculating PDE solutions (e.g., compu-
tational domain, boundary and initial conditions, method related parameters,
finite computer arithmetic). If a problem is ill-posed, or if it is ill-conditioned,
no confidence in the numerical solution is then possible.

Using Equation (3.15) as reference of PDE problem, to test if a differential
problem is well-posed, it is sufficient to verify if the coefficient matrix G has full
rank. If it is rank deficient, an ill-posed problem is presented. Ill-conditioned
problems could be tested if the coefficient matrix, even full rank, has a large
condition number.

Both rank and condition number could be calculated from the singular
value decomposition (SVD) of the matrix [19].

The rank of a matrix could then be defined as the number of singular
values different from zero. Numerically speaking, a tolerance must be defined
in order to test if a singular value is close to zero or not. It is common sense to
use a tolerance with respect to the number of elements of the matrix and the
machine epsilon [64] of the standard hardware floating-point data type that
has been used.

The condition number could be defined as the ratio of the largest to small-
est singular value of a matrix. A practical way to test conditioning of the
coefficient matrix is to evaluate the unknowns using any method available and
to try to recover the source vector. Large differences between the original
source vector and the new evaluated one indicates an ill-conditioned coeffi-
cient matrix. Algorithm 1 presents this practical test if a more robust test is
desired. Authors suggest to use the Moore-Penrose pseudo-inverse [65] instead
of inverting the coefficient matrix.

Algorithm 1 Practical condition test; test if a coefficient matrix is well-
conditioned or not.
Require: System of equations in the form G · ũ = s
ũ← (G−1 · s)
s⋆ ← (G · ũ)
if ∥s⋆ − s∥ < tolerance then

Matrix G is well-conditioned
else

Matrix G is ill-conditioned
end if
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3.5 Jacobi polynomials

The classical option for Galerkin basis functions in FEM are Lagrange inter-
polating polynomials. Besides the fact they are extremely useful when dealing
with piecewise approximations, the restriction on using them in this work came
from the fact that they are not orthogonal. The main idea of using polynomi-
als for function approximations is that, given a subspace and an orthonormal1

basis of n polynomial functions (up to n → ∞), any function can described
onto that subspace [66], as seen in Section 3.2.

In that sense, orthogonal polynomials have been widely used with spec-
tral methods as an attractive framework [67]. Using orthogonal polynomials
with Galerkin method ensures a Hilbert function space where any desirable
smooth function could be projected, i.e., an unique approximation could be
built by TGEs. Jacobi polynomials is an interesting choice due to some of
their properties, as to be shown.

Jacobi polynomials have the hypergeometric definition present in Equa-
tion (3.16), as shown by [68] and [67]:

P (α,β)
n (x) =

Γ(n+ α + 1)

Γ(n+ 1)Γ(α + 1)
2F1

(

−n, n+ α + β + 1;α + 1;
1

2
(1− x)

)

(3.16)
where Γ(·) is the gamma function; 2F1(p, q; r; z) is the Gauss’s hypergeometric
function with respect to constants p, q, r, and the independent variable z;
α ≥ −1; β ≥ −1; and n ≥ 0.

Note that this work uses definitions ∀α, β
{

n < 0 =⇒ P
(α,β)
n ≡ 0;

P
(α,β)
0 ≡ 1

The use of Pochhammer symbol2 and factorials allow the following defini-
tion to Jacobi polynomials:

P (α,β)
n (x) =

Γ(n+ α + 1)

n! Γ(α + 1)

n
∑

k=0

(−n)k (n+ α + β + 1)k
(α + 1)k

(

1− x

2

)k
1

k!
(3.17)

From [69], also shown by [67], an important identity for derivatives of Jacobi
polynomials is presented in Equation (3.18):

dk

dxk
P (α,β)
n (x) =

Γ(n+ α + β + k + 1)

2kΓ(n+ α + β + 1)
P

(α+k,β+k)
n−k (x) (3.18)

Regarding Hilbert inner product space, Jacobi polynomials are orthogo-
nal on the interval [−1, +1 ] and have the weight function w(x) presented in
Equation (3.19):

w(x) = (1− x)α (1 + x)β (3.19)
1Orthogonality restriction is usually enough.
2The Pochhammer symbol stands for (x)n = Γ(x+n)

Γ(x) , besides some special cases.
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3.5. Jacobi polynomials

Therefore, inner products for Jacobi polynomial are defined in Equation (3.20):

⟨

P (α,β)
n (x), P (α,β)

m (x)
⟩

=

1
∫

−1

P (α,β)
n (x)P (α,β)

m (x) (1− x)α(1 + x)β dx (3.20)

where α ≥ −1 and β ≥ −1 ensures the integrability of w(x) [68].
The work of [68, pp.58] also presented mapped Jacobi polynomials, defined

in Equation (3.21), which are orthogonal on the arbitrary interval a ≤ x ≤ b:

P (α,β)
n (ξ(x)) =

Γ(n+ α + 1)

Γ(n+ 1)Γ(α + 1)
2F1

(

−n, n+ α + β + 1;α + 1;
b− x

b− a

)

(3.21)
where ξ(x) = 2 x−a

b−a
− 1 and [ a, b ] is the arbitrary interval on which the inner

product is taken.
The associated error is asymptotically minimized in an Lp(α)-norm, as

stated by [67], given the appropriate choice of α = β. Special cases of Jacobi
polynomials could be found choosing appropriate α and β. Basis functions
could be generated to be asymptotically similar to Chebyshev polynomials of
the first kind, Tn(z), choosing α = β = −1/2; Chebyshev polynomials of the
second kind, Un(z), choosing α = β = 1/2; and Legendre polynomials, Pn(z),
choosing α = β = 0. Also, the same work states that the asymptotic error
between a given solution function for a differential equation and its TGE is
minimized in the L∞, L1 and L2-norms, respectively.

Therefore, with the support of mapped Jacobi polynomials and choosing
for the sake of simplicity α = β = 0 (Legendre polynomials), the univariate
inner product operator could then be defined as in Equation (3.22):

⟨

P (0,0)
n (ξ(x)), P (0,0)

m (ξ(x))
⟩

=

b
∫

a

P (0,0)
n (ξ(x))P (0,0)

m (ξ(x)) dx (3.22)

By following the development of Equation (3.18), authors could achieve
the derivative identity from Equation (3.23) which refers to mapped Jacobi
polynomials on the finite interval [ a, b ]:

dk

dxk
P (α,β)
n (ξ(x)) =

Γ(n+ α + β + k + 1)

(b− a)kΓ(n+ α + β + 1)
P

(α+k,β+k)
n−k (ξ(x)) (3.23)

Note that identities in Equations (3.18) and (3.23) exchanges a derivative
operation on a polynomial by another polynomial, a very useful treat.
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3.6 Mappings and change of variables

In order to generalise the method of Galerkin, some mappings are required.
Considering an arbitrary interval domain, the inner product implies the use
of either the mapped Jacobi polynomials from Equation (3.21) or a mapped
version of the differential equation under investigation to the interval [−1, +1 ],
the very interval where Jacobi polynomials are orthogonal. The underlying
definite integral must be evaluated on the same interval for both multiplying
functions. The change of variables for differentiation and integration then
become very useful.

First, the interval of orthogonality for Jacobi polynomials should be hereby
identified by the variable ξ ∈ [−1, +1 ]. In the other hand, arbitrary intervals
should be represented by x ∈ [ a, b ]. Linear mappings in Equations (3.24)
and (3.25) then become straightforward to understand.

x 7→ ξ : ξ(x) = 2
x− a

b− a
− 1 (3.24)

ξ 7→ x : x(ξ) =
b− a

2
ξ +

b+ a

2
(3.25)

A change of variables for differentiations, as d
dx

f(x) 7→ d
dξ
f(ξ), is presented

in Equation (3.26).

d

dx
f(x) =

dξ

dx

d

dξ
f(ξ 7→ x) =

2

b− a

d

dξ
f (x(ξ)) (3.26)

Therefore, a change of variables for higher order derivatives is shown in
Equation (3.27).

dk

dxk
f(x) =

(

2

b− a

)k
dk

dξk
f (x(ξ)) (3.27)

Finally, the change of variables for integrations, as
∫ b

a
f(x) dx 7→

∫ 1

−1
f(ξ) dξ,

known as integration by substitution in unidimensional cases, is presented in
Equation (3.28).

b
∫

a

f(x) dx =

1
∫

−1

f(ξ 7→ x) J dξ =

1
∫

−1

f (x(ξ))
dx

dξ
dξ =

b− a

2

1
∫

−1

f (x(ξ)) dξ

(3.28)
where J is the determinant of the Jacobian matrix. In this unidimensional
case and because of linear mapping shown in Equation (3.25), this determinant
J = dx

dξ
= b−a

2
is a constant.

3.7 Monte Carlo integration

In order to integrate an arbitrary function, Monte Carlo integration picks ran-
dom points over a certain domain (a multidimensional volume) and calculate
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3.7. Monte Carlo integration

Table 3.1: Monte Carlo integration applied to f(x, y) = exp(−x) cos(y) de-
fined in { 0 ≤ x ≤ 1; 0 ≤ y ≤ π

2
} (100 runs).

N points

1
∫

0

π
2
∫

0

exp(−x) cos(y) dx dy order of

min max mean
standard execution
deviation time

29(512) 0.59363 0.66306 0.63085 0.014666 1× (ref)
210 0.60741 0.65514 0.63246 0.010593 1.75×
212 0.62093 0.64844 0.63104 0.005892 4.25×
214 0.62634 0.63793 0.63202 0.002552 17×
216 0.62918 0.63574 0.63231 0.001411 66×
218 0.63003 0.63454 0.63219 0.000752 249×
220 0.63117 0.63293 0.63216 0.000352 965×
221 0.63133 0.63279 0.63210 0.000292 1 905×

222(4 194 304) 0.63163 0.63263 0.63213 0.000175 3 786×

the mean value of the function taken on those random points [23], as presented
in Equation (3.29).

∫

V

f(x⃗) dx⃗ ≈
(

V−1
∏

i=0

bi − ai

)

1

N

N−1
∑

j=0

f(X⃗j) (3.29)

where V is the hyper-volume which represents the number of dimensions; N
is the number of random X⃗j points to be taken; ai and bi are the limits of
integration for the ith dimension.

For example, the function f(x, y) = exp(−x) cos(y) has, for the domain
{ 0 ≤ x ≤ 1; 0 ≤ y ≤ π

2
}, a multidimensional definite integral ≈ 0.6321 when

analytically evaluated. Table 3.1 presents results from Monte Carlo integration
with respect to the number of random points taken.

The great advantage of Monte Carlo integration is that multivariate in-
tegrals are straightforward to evaluate. This very scheme is flexible and ad-
justable on the fly. The disadvantage is that, to get reliable results, the number
of random picked points must be large. Example in Table 3.1, for instance,
needs something around 220 (≈ 106, 1 million) points to drop standard devia-
tion bellow 10−3. For this quantity of random points, execution time is almost
1000× the time necessary when choosing 29 (≈ 500) points3. Execution time
almost doubles each new increment on the power of 2 after that. Figure 3.1
shows how on average Monte Carlo integration performs very well, but indi-
vidually its reliability is proportional to the number of picked random points.
Also, depending on the function to be integrated, those numbers and analyses
could change. A workaround is to fit the final modelling tool with some par-
allel paradigm to allow the use of a large set of points without compromising
execution time.

3In this case, less than 10−3 sec.
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Figure 3.1: Monte Carlo integration performance on f(x, y) = exp(−x) cos(y)
defined in { 0 ≤ x ≤ 1; 0 ≤ y ≤ π

2
} (100 runs).

3.8 Genetic Programming

Koza [70] has defined GP as “an automatic technique for producing a computer
program that solves, or approximately solves, a problem”. He follows by stating
that GP “addresses the challenge of getting a computer to solve a problem
without explicitly programming it”. GP is widely defined as an extension of
the Genetic Algorithm from [71] which, in turn, is preceded by notions and
concepts presented by [72].

John R. Koza is the reference when the subject is GP because of his mile-
stone work [37]. He has written several books on this subject and helped to
popularize GP across the world. Today GP is extensively described in books,
in edited collections of papers, in conference proceedings, in journals (e.g. Ge-
netic Programming and Evolvable Machines journal4), and at web sites such as
www.genetic-programming.org. Interesting to mention, before Koza, other
researches had built models capable of evolving computer programs also based
on Genetic Algorithms, e.g. [34], [35], [36]. This could be seen as the reflex of
humanity trying to inspire “creativity” into computer machines.

The main idea behind GP is that it is intended to work as “an automatic sys-
tem whose input is a high-level statement of requirements” for a given problem
and “whose output is a working program” that actually solves the problem [70].
As a recognized part of the EC field family, GP also artificially evolves indi-
viduals to fit a near-optimum solution for a predetermined problem. In the
case of GP, those individuals are computer programs and/or instructions.

Since many problems can be easily recast as a search for a computer pro-
gram, Koza states that GP “can potentially solve a wide range of types of
problems, including problems of control, classification, system identification,
and design” [70]. Design, specially, is “usually viewed as requiring creativity
and human intelligence”.

4http://www.springer.com/computer/ai/journal/10710
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3.8. Genetic Programming

Glossary of Evolutionary Algorithm terms

Collet [73], based on Fogel [74], brought some historical details about EC: in
early 1950s, when the first computers came out of research labs5, EC had about
ten independent beginnings in Australia, United States and Europe; however,
Artificial Life and Artificial Evolution only came of age in the 1990s, when
computers were finally powerful enough to find interesting results.

From EC field area, all EAs share the same evolutionary steps. Each one
will progressively breed a population typically of thousands of randomly cre-
ated candidate solutions over a series of generations. Using the Darwinian
principle of natural selection, recombination (crossover), mutation, gene du-
plication, gene deletion, certain mechanisms of developmental biology, and
firmly based on stochastic decisions, all EAs will eventually breed a most fit
individual to be called the solution of the problem.

Because of their analogy with living beings, there are several terms in
EC that are not proper of Computer Science. With the help of the work of
[75], [13], among others, we can detach some important concepts for any EA,
including GP, to end up with a mini glossary of terms borrowed from Biology
and Genetics:

Individual – a candidate or potential solution to the problem being opti-
mized.

Chromosome, genome, genotype – the representation or encoding for an
individual within the search space of a solution, specific to the problem to
be solved. Commonly, it is a vector which contains data that is supposed
to be enough to understand the solution if you know the phenotype.
Typically is a vector of numbers (binaries or real numbers), but its form
is a key point in classifying historical EAs. All genetic operators will be
performed onto this encoded form.

Gene – Each element that, when combined with others, arises the chromo-
some (aka genome).

Phenotype – The practical meaning of a chromosome. Used as a key to un-
derstand information from the genotype (chromosome). When a geno-
type is turned into a phenotype, the candidate solution acquires its full
meaning.

Population – the set of all individuals. Typically, it does not change its size
from one generations into another. Within the lifetime of a generation
it could grow up, though, to be reduced in the end of the cycle.

Landscape or environment – the “location” where individuals survive; it
represents the problem to be solved. Typically, it is the surface of some
evaluation function. It is also described as the search space.

5IBM 650 in 1953.
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Fitness – a characteristic of any individual that is a measure of how adapted
each one is to survive in a predetermined environment. More specifically,
it is the measure of quality of a given candidate solution regarding the
problem to be solved, allowing comparisons between different individuals.
Note that this is a crucial characteristic: the best fit individual within
the population when generation cycles come to an end is the evolved
near-optimum solution.

Evaluation or fitness function – this is a key part of an EA. It allows to
rate an individual (determining its fitness) and is specific to the prob-
lem to be solved. The genotype representation of an individual must be
turned into a phenotype representation in order to be evaluated. Typi-
cally, it determines the landscape (search space) of the problem.

Generation or evolutionary loop – a loop iteration executed by the EA.
Figure 3.2 allows the visualization of a generation. It typically includes
the following stages: selection of individuals to generate new ones (known
as parents), performance of proper genetic operators to generate new
individuals, evaluation of new individuals (aka offspring or children),
and reduction of population to its original size.

Selection – typically based on fitness (there are some cases where it is ran-
dom), it menas the mechanism to select individuals to generate new
ones. Several strategies exist to select individuals to generate new ones.
Those parent individuals in general are among the best fit individuals
from its generation. Another use of a selection strategy is when it is time
to reduce population; individuals that are departing from existence are
commonly among the worst fit individuals from its generation.

Crossover or recombination – genetic or variation operator. If this ran-
dom operator is enrolled to be performed, it will mix one or more genes
from some selected parent individuals (typically two) to generate com-
monly up to two offspring individuals. There are several strategies to do
so.

Mutation – genetic or variation operator. If this random operator is enrolled
to be performed, it will change one or more genes (altering storage data)
from an unique selected individual to generate an unique offspring. There
are several strategies to do so.

Reproduction or elitism – simply the copy of an individual from a gen-
eration into another. In some cases, the individual is reproduced into
the offspring, without warranty if it is going to survive the population
reduction stage.

Reduction or replacement – intending for imitating the way of predators,
natural disasters, diseases, and other catastrophes, population is reduced
at the end of a generation lifetime. This reduction, however, is always
bounded to keep population at its original size. This limitation arise
from some issues on computational implementations for EAs and is never
thought as a drawback. There are also several strategies to do so.
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3.8. Genetic Programming

Figure 3.2: EA flowchart: each loop iteration is a generation; adapted from [75]

De Jong [40] shows in his work several discussions on how to parametrize
EAs. We should not enter in details here, but there are lots of implications
on each decision to be taken and on each regularization of a parameter to be
done, e.g. size of a population, number of generations, termination criteria,
probabilities for performing genetic operators, the chosen reduction strategy.
De Jong presents some analysis that are worthy to understand when one is in
the process of specialisation about EAs.

A brief field guide to Genetic Programming

Besides all potentialities from GP, a brief discussion is presented in this section
about what distinguishes GP from other EAs and why is feasible to think about
CASM through it. Perhaps, the most distinguish feature, and the one which
gives more potential to GP, is the classic representation of an individual: the
genome is represented by an abstract syntax tree (see Figure 3.3). Every time
it is said that GP evolves computer programs, one must think of those trees
instead of lines of code. This kind of malleable-arrangement and variable-
length structure made GP a really versatile technique.

In order to clarify the necessary terminology when addressing GP, an ar-
bitrary syntax tree has the structure of a special case of graph known simply
as “trees”. When representing algebraic expressions, trees are graphical repre-
sentations of the prefix notation, also known as the Reverse Polish Notation
(RPN). All entities in a tree is defined as a “node”. The first entity of a tree
is identified by being at the top — and, most important, without connections
coming to it — is known as the “root”. All terminations, i.e., the ones with-
out connections coming out of them, are named “leaves”. Entities that have
connections coming in and out are named “internal nodes”.

Symbolic regression, also known as data modelling, is the main concern
of this work. Based on [13], lets take a simple example about GP executions.
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Figure 3.3: Example of an abstract syntax tree for the computation
“min(

√
9 + x, x− 2 y)”, or, in RPN, (min (sqrt (+ 9 x)) (- x (* 2 y)))

Table 3.2: Preparation step for function approximation; adapted from [13].

Objective: Find program whose output matches x2 + x+ 1

within −1 ≤ x ≤ +1 (data modelling)

Function Set (nodes): +, −, % (protected division), ∗
Terminal Set (leafs): x and random integer constants within [−5, 5]
Fitness: sum of absolute errors for x ∈ {−1.0,−0.9, . . . 0.9, 1.0}

(“area” between discretized curves)

Selection: Must define strategy before run, but it is regardless now

Initial population strategy: Must define strategy before run, but it is regardless now

Parameters: Population size 4; no tree size limits; probabilities for

crossover, mutation, and reproduction must be defined

before run, but they are regardless now

Termination criterion: Must define strategy before run, but it is regardless now

Table 3.2 is the preparatory step where is given to GP “a high-level statement of
requirements” [70], including the set of primitives (function and terminal sets)
that will constrain the search space. Figure 3.4 summarizes the evolutionary
loop that took place, and Table 3.3 shows the fitness of every individual from
each generation. Note that this is a minimization problem, so the lower is the
fitness, the better is the individual as a candidate solution.

As one can note from this simple run, GP can take measured points from
some observed phenomena (here the function x2 + x + 1 was sampled at
x ∈ {−1.0,−0.9, . . . 0.9, 1.0} to evaluate candidate solutions) and search for
a function that could explain them within some sort of interval (here, the do-
main is limited to −1 ≤ x ≤ +1). From a random initial population and using
genetic operators, GP was able to search for a solution inside that landscape,
starting from some high-level directives (Table 3.2). To work effectively, GP
must have function sets with the closure property [12], which means that func-
tions must exhibit type consistency and evaluation safety (e.g. the operator
%, protected division, typically forces x ÷ 0 = 1, for any x). Also, the prim-
itive set (functions and terminals) must be sufficient, which means that “the
set of all the possible recursive compositions of primitives includes at least one
solution” [13].
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3.8. Genetic Programming

Figure 3.4: Summary of this simple run (see Table 3.2); darker elements were
randomly generated; dashed arrows indicates cut points to mix genes in related
crossovers; adapted from [13].

Table 3.3: Summary of this simple run (see Figure 3.4); note that there is a
match (found solution) in generation 1; adapted from [13]

Generation Individual Function represented Fitness Note

0 1 x+ 1 7.7
0 2 x2 + 1 11.0
0 3 2 18.0
0 4 x 28.7
1 5 x+ 1 7.7
1 6 −x

3
+ 2 20.6

1 7 x 28.7
1 8 x2 + x+ 1 0.0 ⇐ match!
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There are several other issues that are not discussed here. The aim of this
section is to present some potentialities of GP, even with the use of a mostly
graphical example.

3.9 Precision on measurements

One of the main concerns to engineers is about the robustness of a method
when the input measurements are taken with not ideal level of precision. This
situation is very common in reality, as one could suppose, because measure-
ments are taken with sensors and devices which are bounded to acceptable
tolerances.

By the definition of a well-posed problem, a minor variation on input data
will result in minor variations of output data. This reflects a natural robustness
against low order errors. As a stochastic process, a measurement is subject up
to several random independent variables with possible different distributions
which will likely present a mean described by a normal distribution (see central
limit theorem [76]). In order to simulate those lacks of absoluteness, i.e., to
presuppose data would contain tolerated noise, it is feasible to assume that
noise would mostly present itself by being normally distributed (a Gaussian
distribution).

The proper procedure to add noise to data which is intended to reflect
reality is somehow tricky. Parametrization for noise distributions is both com-
plicated and dependent of experiments, once researches could not tell without
prior extended tests how fit are their measurement processes and that infor-
mation can change from one experiment to another.

As a possible solution to the noise dilemma, signal processing are has the
signal-to-noise ratio (SNR) metric which could be defined as the dimensionless
ratio of the signal power to the noise power contained in a recording and is
usually measured in decibels (dB). Engineers and scientists would use this
ratio to parametrise performances of signal processing systems when the noise
is normally distributed [77].

Therefore, this work adopts white Gaussian noise (WGN), defined by its
SNR, to be added to all mathematical generated data when tolerance to errors
is needed to be explored. White noise is an abstraction that is not feasible
to exist, “but engineers frequently use it to describe noise that has a power
spectrum that extends well beyond the signal’s bandwidth” [77]. Here, WGN
is used to simulate possible measurement errors. After both coordinates are
taken randomly and the known function is used to generate the simulated data,
noise is added to all of them in order to respect mathematical relationships
and reflect measurement errors.

3.10 Discussion

The knowledge on subjects shown in this chapter is necessary to follow the de-
veloped method. The use of the Ritz-Galerkin method to project the solution
of a linear differential equation onto a Jabobi polynomial orthogonal basis
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is the core to the following chapters. With the exception of GP, the other
aforementioned subjects are needed to complete mathematical derivations.

The proposed method takes into account that a desired GP application
could evolve different types of linear differential equations. For that reason,
the method itself should be obliged to handle generic linear differential forms.

Note that all mathematical developments to be presented do not consider
existing tolerances on measurements. Discussions on such measurement errors
are only presented in Section 8.3, part of the last chapter of this thesis.
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Proposed Method
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Chapter 4

Ordinary Differential Equations

4.1 Proposed method

In this chapter, the proposed method to solve linear ordinary differential equa-
tions (LODE) as defined in Equation (3.4) is presented. As could be inferred
and for the sake of clarification, by using Jacobi polynomials as basis func-
tions, the proposed method solves differential equations building a polynomial
approximation for the differential solution. The option here is to use Jacobi
polynomials parametrized with α = β = 0 in order to be asymptotically simi-
lar to Legendre polynomials. This option is due to some properties presented
by those polynomials, as (a) orthogonality to achieve a finite span of a com-
plete basis for a function space — Section 3.2 —; (b) derivatives identity as
other Jacobi polynomials — Equations (3.18) and (3.23) —; (c) and the fact
that Jacobi-Legendre polynomials have weight function for inner products as
w(x) = (1 − x)0 (1 + x)0 = 1 — Equation (3.19) —. Those properties are
essential to favour envisioned computational implementations. As can be seen
throughout this chapter, basis functions are not bounded to respect auxil-
iary conditions (initial or boundary) as in classical Galerkin-based methods.
Instead, auxiliary conditions have a customized own treatment inspired by
concepts of ordinary system of equations and the way finite difference meth-
ods [78] deals with them, i.e., to include information about conditions into the
matrix formulation of the problem.

An important subject to keep in mind is that, as stated by [17, pp.453],
in order to implement a true Galerkin process, it is necessary to carry out
integrations over domains. In other words, even if the problem refers to itself
as an initial value problem (conditions known at one point only), it is necessary
to define a full interval for the domain of calculation in order to use Galerkin
method. This fact could lead to piecewise approximate solutions, as for FEM.
Note that functions which result in improper integrals shall be avoided [17, p.
43]. However, depending on integration method, points of singularity could be
avoided and a feasible approximation achieved.
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4.2 The unidimensional case

Developments start from the unidimensional (univariate) case, a linear ordi-
nary differential equation in the form of Equation (3.3). Assuming mapped
Jacobi polynomials as functions to build an orthogonal basis B and using
Equation (3.3), then Equation (3.13) is developed to achieve Equation (4.1).

N
∑

m=0

ũm ⟨ϕn(x), L[ϕm(x)]⟩ = ⟨ϕn(x), s(x)⟩ ⇔

N
∑

m=0

ũm

⟨

P (α,β)
n (ξ), L[P (α,β)

m (ξ)]
⟩

=
⟨

P (α,β)
n (ξ), s (x)

⟩

⇔

N
∑

m=0

ũm

⟨

P (α,β)
n (ξ), L[P (α,β)

m (ξ)]
⟩

=
⟨

P (α,β)
n (ξ), s(x)

⟩

⇔

N
∑

m=0

ũm

⟨

P (α,β)
n (ξ),

Q
∑

q=0

kq (x)
dq

dxq
P (α,β)
m (ξ)

⟩

=
⟨

P (α,β)
n (ξ), s(x)

⟩

(4.1)

where the index n = 0 . . . N identifies the nth equation from this system of N+1
equations; and N is the polynomial degree intended for the approximation by
the TGE.

4.3 Developments

In this section, two possibilities are derived here. The first one stands for inner
products over the interval a ≤ x ≤ b, as could be followed in Equation (4.2).

N
∑

m=0

ũm

b
∫

a

P (0,0)
n (ξ(x)) ·

Q
∑

q=0

kq(x)
dq

dxq
P (0,0)
m (ξ(x)) dx

=

b
∫

a

P (0,0)
n (ξ(x)) · s(x) dx ⇔

N
∑

m=0

ũm

b
∫

a

P (0,0)
n (ξ(x)) ·

Q
∑

q=0

kq(x)
Γ(m+ q + 1)

(b− a)qΓ(m+ 1)
P

(q,q)
m−q(ξ(x)) dx

=

b
∫

a

P (0,0)
n (ξ(x)) · s(x) dx ⇔
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N
∑

m=0

ũm

Q
∑

q=0

b
∫

a

P (0,0)
n (ξ(x)) · kq(x)

Γ(m+ q + 1)

(b− a)qΓ(m+ 1)
P

(q,q)
m−q(ξ(x)) dx

=

b
∫

a

P (0,0)
n (ξ(x)) · s(x) dx (4.2)

The second possibility is a variation achieved by exploiting change of vari-
ables (Section 3.6) to enable inner products over the interval −1 ≤ ξ ≤ +1, as
could be followed in Equation (4.3).

N
∑

m=0

ũm

+1
∫

−1

P (0,0)
n (ξ) ·

Q
∑

q=0

kq(x(ξ))

(

2

b− a

)q
dq

dξq
P (0,0)
m (ξ)

b− a

2
dξ

=

+1
∫

−1

P (0,0)
n (ξ) · s(x(ξ)) b− a

2
dξ ⇔

b− a

2

N
∑

m=0

ũm

Q
∑

q=0

(

2

b− a

)q
+1
∫

−1

P (0,0)
n (ξ) · kq(x(ξ))

Γ(m+ q + 1)

2qΓ(m+ 1)
P

(q,q)
m−q(ξ) dξ

=
b− a

2

+1
∫

−1

P (0,0)
n (ξ) · s(x(ξ)) dξ ⇔

b− a

2

N
∑

m=0

ũm

Q
∑

q=0

(

2

b− a

)q
1

2q

+1
∫

−1

P (0,0)
n (ξ)·kq(x(ξ))

Γ(m+ q + 1)

Γ(m+ 1)
P

(q,q)
m−q(ξ) dξ

=
b− a

2

+1
∫

−1

P (0,0)
n (ξ) · s(x(ξ)) dξ ⇔

N
∑

m=0

ũm

Q
∑

q=0

(

1

b− a

)q
+1
∫

−1

P (0,0)
n (ξ) · kq(x(ξ))

Γ(m+ q + 1)

Γ(m+ 1)
P

(q,q)
m−q(ξ) dξ

=

+1
∫

−1

P (0,0)
n (ξ) · s(x(ξ)) dξ (4.3)

From both options, Equations (4.2) and (4.3), the latter is preferred to the
former. This decision has to do with strategies of implementation to improve
final execution time performances. Note that Monte Carlo scheme is here
adopted to handle those integrations, therefore integrands would have to be
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evaluated for a large set of points. The former option means that for every
domain inside every cycle of execution, the full integrand must be evaluated
that large number of times. Instead, the latter option requires P (0,0)

n (ξ)P
(q,q)
m−q(ξ)

to be evaluated a large number of times only once per execution, and every
domain inside every cycle of execution has to handle just kq(x(ξ)) coefficients.

Thence, Equation (4.3) could be converted to a “Ax = b”-like matrix equa-
tion using identity in Equation (3.14), as seen in Equation (4.4):





































1×Q+ ·
∫

P0 Q+ ×N+

1×Q+ ·
∫

P1 Q+ ×N+

...

1×Q+ ·
∫

PN Q+ ×N+





































N+×N+

·













ũ0

ũ1

...
ũN













=













∫ +1

−1
P

(0,0)
0 (ξ) · s(x(ξ)) dξ

∫ +1

−1
P

(0,0)
1 (ξ) · s(x(ξ)) dξ

...
∫ +1

−1
P

(0,0)
N (ξ) · s(x(ξ)) dξ













(4.4)
where Q+ = Q + 1 and N+ = N + 1; and the N+ × N+ coefficient matrix is
detailed by Equation (4.5).



















































(

1 1
b−a

. . . 1
(b−a)Q

)







+1
∫

−1

P
(0,0)
0 (ξ) ·







D0,0(ξ) · · · D0,N(ξ)
... . . . ...

DQ,0(ξ) · · · DQ,N(ξ)






dξ







(

1 1
b−a

. . . 1
(b−a)Q

)







+1
∫

−1

P
(0,0)
1 (ξ) ·







D0,0(ξ) · · · D0,N(ξ)
... . . . ...

DQ,0(ξ) · · · DQ,N(ξ)






dξ







...

(

1 1
b−a

. . . 1
(b−a)Q

)







+1
∫

−1

P
(0,0)
N (ξ) ·







D0,0(ξ) · · · D0,N(ξ)
... . . . ...

DQ,0(ξ) · · · DQ,N(ξ)






dξ

























































(4.5)
where Dq,m = kq

(

x(ξ)
) Γ(m+q+1)

Γ(m+1)
P

(q,q)
m−q(ξ), for the sake of readability.

Note that when using Monte Carlo integration to build the coefficient ma-
trix, the identity

∫ +1

−1
f(ξ) dξ = 2

H

∑H

h=0 f(ξh) is valid for a large set of ξh
random points.
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4.4 Solving ODEs

In order to solve differential problems, there is need for prior knowledge on the
unknown solution in the form of complimentary equations, known generally as
auxiliary conditions. In the literature, those conditions are known as initial
value conditions or boundary conditions, depending on how they are presented
for the respective problem.

The way to build or choose basis functions is implicit to Galerkin method.
All functions in the basis span must satisfy some auxiliary conditions, usually
linear homogeneous boundary conditions [67]. Using Jacobi polynomials as
basis functions does not always respect this requirement. When using Jacobi
polynomials as basis, some differential problems present themselves with their
initial or boundary conditions neglected, leading to ill-posed problems (the
coefficient matrix could be either rank deficient or ill-conditioned). Actually,
this is the case for the vast majority of real world related problems.

Auxiliary conditions

Conditions refers to known values assumed by the unknown solution of a differ-
ential equation taken over a predetermined boundary or from the initial state
related to the problem itself. Literature classifies them within some types of so
called boundary conditions (BC): Dirichlet BC (1st-type, function values on
the boundary), Neumann BC (2nd-type, derivative values for the function on
the boundary), Cauchy BC (same as imposing both a Dirichlet and a Neumann
boundary condition at the same point on boundary, sometimes called initial
value conditions), Robin BC (3rd-type, linear combination of function values
and derivative values for the function on the boundary), mixed BC (different
conditions on disjoint parts of the boundary).

Those are conditions that augment their respective differential equation
and that the solution must satisfy on the boundary (ideally to ensure the
existence of an unique solution). Also, they all could be described as a lesser
order differential equations themselves, as in Equation (4.6):

Hc [u(x)]x=Xc
≈ Hc [û(x)]x=Xc

= Vc
{

W
∑

w=0

hw,c(x)
dw

dxw
û(x)

}

x=Xc

= Vc (4.6)

where c is a subscript that refers to the cth known condition of the differential
problem; Hc is a linear differential operator of lesser order than L; W is defined
here as the maximum order of all known conditions (normally, the order of the
related differential problem minus one); Xc is the point within the domain of
calculation at which we can determine the value of Hc[u(x)] = Vc; and hw,c(x)
is the wth coefficient for the finite sum of Hc terms.

Equation (4.6) means that, at x = Xc, u(x) subject to Hc has a known
value Vc. Regarding boundary of the domain, note that if an order 0 is defined
for a given condition, that could define a Dirichlet boundary condition. If the

39



4. Ordinary Differential Equations

order is a natural number greater than 0, then a Neumann boundary condition
could be defined. More than one hw,c(x) ̸= 0 in each Hc can be used to define
Robin boundary conditions. If all xc are at the same point within the domain
and all Hc have distinct orders (as in initial value problems), those conditions
could be Cauchy-like conditions.

Expanding the left hand side of Equation (4.6) and substituting u(x) by
the trial function û(x) in Equation (3.11), then Equation (4.7) is derived:

Hc [û(x)]x=Xc
= Vc ⇔

Hc

[

N
∑

m=0

ũm P (0,0)
m (ξ(x))

]

x=Xc

= Vc ⇔
{

W
∑

w=0

hw,c(x)
dw

dxw

(

N
∑

m=0

ũm P (0,0)
m (ξ(x))

)}

x=Xc

= Vc ⇔
{

W
∑

w=0

hw,c(x)
N
∑

m=0

ũm

(

dw

dxw
P (0,0)
m (ξ(x))

)

}

x=Xc

= Vc ⇔

W
∑

w=0

hw,c(Xc)
N
∑

m=0

ũm

(

dw

dxw
P (0,0)
m (ξ(x))

∣

∣

∣

∣

x=Xc

)

= Vc ⇔

W
∑

w=0

hw,c(Xc)
N
∑

m=0

ũm

Γ(m+ w + 1)

(b− a)wΓ(m+ 1)
P

(w,w)
m−w (ξ(Xc)) = Vc ⇔

N
∑

m=0

ũm

W
∑

w=0

1

(b− a)w
hw,c(Xc)

Γ(m+ w + 1)

Γ(m+ 1)
P

(w,w)
m−w (ξ(Xc)) = Vc (4.7)

where ξ(Xc) = 2 Xc−a
b−a
− 1. Note that the identity in Equation (3.23) should

be used to achieve this result.
The matrix formulation for the Equation (4.7) is given in Equation (4.8).





























(

1 1
b−a

. . .
(

1
b−a

)W
)







H
(1)
0,0 (X1) · · · H

(1)
W,0(X1)

... . . . ...
H

(1)
0,N(X1) · · · H

(1)
W,N(X1)







...

(

1 1
b−a

. . .
(

1
b−a

)W
)







H
(C)
0,0 (XC) · · · H

(C)
0,N(XC)

... . . . ...
H

(C)
W,0(XC) · · · H

(C)
W,N(XC)



































·













ũ0

ũ1

...
ũN













=













V1

V2

...
VC













(4.8)
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where H(c)
w,m(Xc) = hw,c(Xc)

Γ(m+w+1)
Γ(m+1)

P
(w,w)
m−w (ξ(Xc)), for the sake of readability;

and the coefficient matrix here is of order C ×N+ (registering C conditions).
Using the fact that when well-conditioned, a system of equations is formed

by coupled equations which refer to the same solution, this work proposes an
approach to deal with auxiliary conditions: to substitute equations from the
GSE (bottom rows in its matrix formulation, in Equations (4.4) and (4.5)),
by equations derived from those conditions, those rows built as presented in
Equation (4.8).

The final Galerkin-like system is presented in Equation (4.9).

































































1×Q+ ·
∫

P0 Q+ ×N+

1×Q+ ·
∫

P1 Q+ ×N+

...

1×Q+ ·
∫

PN−C Q+ ×N+

1×W+ · W+ ×N+ (#1)

...

1×W+ · W+ ×N+ (#C)

































































N+×N+

·













ũ0

ũ1
...

ũN













=





























∫ +1
−1 P

(0,0)
0 (ξ) · s(x(ξ)) dξ

∫ +1
−1 P

(0,0)
1 (ξ) · s(x(ξ)) dξ

...
∫ +1
−1 P

(0,0)
N−C(ξ) · s(x(ξ)) dξ

V1

...

VC





























(4.9)

Example

Two examples are presented in this section, one from an under-damped oscil-
lator problem and the other from a Poisson equation for electrostatics.

Under-damped oscillator An oscillator problem is identified by the differ-
ential equation for a mass-spring-damper system:

m
d2

dt2
u(t) + b

d

dt
u(t) + k u(t) = 0

where u(t) is the displacement of the mass in function of time; m is the mass;
b is the damping coefficient; and k is the spring constant. Quantities known as

the undamped angular frequency ω0 =
√

k
m

and the damping ratio ζ = b

2
√
mk

are also useful to classify this system. The oscillator becomes under-damped
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Known solution

Approximation

Figure 4.1: Solution to an under-damped oscillator problem, polynomial
approximation of degree 12.

when 0 ≤ ζ < 1. In this very case, the differential equation has the following
known solution:

u(t) = e−ζ ω0 t

[

u(0) cos
(

t ω0

√

1− ζ2
)

+
ζ ω0 u(0) + ut(0)

ω0

√

1− ζ2
sin
(

t ω0

√

1− ζ2
)

]

,

where ut(0) stands for d
dt
u(t)

∣

∣

t=0
.

As a numerical example, consider m = 2 kg, b = 1 kg s−1 and k = 2 kg s−2.
Also consider initial values u(0) = 1 and ut(0) = 0. The known solution to
this numerical example is shown in Equation (4.10):

u(t) =

[

cos

(

x

√
15

4

)

+

√
15

15
sin

(

x

√
15

4

)]

exp
(

−x

4

)

. (4.10)

Even that this is considered an initial value problem, the proposed method
requires the definition of a domain. In this case, 0 ≤ t ≤ 15 was adopted. The
system of equations built by the proposed method choosing degree 12 for the
polynomial approximation is shown in Equation (4.11). Figure 4.1 shows on
top a joint plot of both the TGE polynomial approximation and the known
solution, and on bottom the error in function of t is found by subtracting one
from the other.
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ũ0

ũ1

..

.

ũ12













=





















































4.00 2.67 10−1 2.13 10−1 2.67 10−1 7.11 10−1 2.67 10−1 1.49

1.46 10−12 1.33 2.67 10−1 3.56 10−1 2.67 10−1 9.96 10−1 2.67 10−1

1.53 10−5 1.02 10−6 8.00 10−1 2.67 10−1 4.98 10−1 2.67 10−1 1.28

−1.53 10−15 1.53 10−5 3.05 10−6 5.71 10−1 2.67 10−1 6.40 10−1 2.67 10−1

1.53 10−5 1.02 10−6 1.61 10−5 6.10 10−6 4.44 10−1 2.67 10−1 7.82 10−1

0.00 1.53 10−5 3.05 10−6 1.93 10−5 1.02 10−5 3.64 10−1 2.67 10−1

1.53 10−5 1.02 10−6 1.61 10−5 6.10 10−6 2.75 10−5 1.53 10−5 3.08 10−1

3.14 10−15 1.53 10−5 3.05 10−6 1.93 10−5 1.02 10−5 4.37 10−5 2.14 10−5

1.53 10−5 1.02 10−6 1.61 10−5 6.10 10−6 2.75 10−5 1.53 10−5 7.22 10−5

1.28 10−13 1.53 10−5 3.05 10−6 1.93 10−5 1.02 10−5 4.37 10−5 2.14 10−5

1.53 10−5 1.02 10−6 1.61 10−5 6.10 10−6 2.75 10−5 1.53 10−5 7.22 10−5

1.00 −1.00 1.00 −1.00 1.00 −1.00 1.00

0.00 1.33 10−1 −4.00 10−1 8.00 10−1 −1.33 2.00 −2.80

2.67 10−1 2.56 2.67 10−1 3.91 2.67 10−1 5.55

1.92 2.67 10−1 3.13 2.67 10−1 4.62 2.67 10−1

2.67 10−1 2.35 2.67 10−1 3.70 2.67 10−1 5.33

1.56 2.67 10−1 2.77 2.67 10−1 4.27 2.67 10−1

2.67 10−1 1.85 2.67 10−1 3.20 2.67 10−1 4.84

9.25 10−1 2.67 10−1 2.13 2.67 10−1 3.63 2.67 10−1

2.67 10−1 1.07 2.67 10−1 2.42 2.67 10−1 4.05

2.67 10−1 2.67 10−1 1.21 2.67 10−1 2.70 2.67 10−1

2.85 10−5 2.35 10−1 2.67 10−1 1.35 2.67 10−1 2.99

1.18 10−4 3.66 10−5 2.11 10−1 2.67 10−1 1.49 2.67 10−1

2.85 10−5 1.86 10−4 4.58 10−5 1.91 10−1 2.67 10−1 1.64

−1.00 1.00 −1.00 1.00 −1.00 1.00

3.73 −4.80 6.00 −7.33 8.80 −10.40





















































−1

·





















































0

0

0

0

0

0

0

0

0

0

0

1

0





















































(4.11)

Finally, Equation (4.12) presents the coefficients of the TGE which is the
approximate solution to this under-damped oscillator problem. Sub-indices
relate each coefficient to a Jacobi polynomial, as P (0,0)

0 (ξ(x)), P (0,0)
1 (ξ(x)), and

so on, up to P
(0,0)
12 (ξ(x)).

(

u0 u1 · · · u12

)T

=
(

3.49 10−2 −1.15 10−1 2.60 10−1 −3.87 10−1 4.63 10−1 −2.68 10−1 −2.23 10−1

3.42 10−1 −6.98 10−2 −7.91 10−2 3.85 10−2 5.23 10−3 −5.34 10−3
)T

(4.12)

Simplifying the expanded equation with the aid of Maxima CAS soft-
ware [79], the polynomial approximation solution is shown in Equation (4.13):

û(t) = −1.11 10−10 x12 + 1.05 10−8 x11 − 4.18 10−7 x10 + 9.22 10−6 x9

− 1.19 10−4 x8 + 8.80 10−4 x7 − 2.95 10−3 x6 − 1.49 10−3 x5

+ 2.35 10−2 x4 + 8.84 10−2 x3 − 5.01 10−1 x2 + 3.47 10−9 x+ 1 (4.13)
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Poisson electrostatic Adapted from [80, pp.210], consider the following
spherical problem in Equation (4.14):

∇2φ(r) = −4π ρ(r), (4.14)

where φ is the electrostatic potential in function of radius r; and

ρ(r) = Q

√

(η

π

)3

exp
(

−η r2
)

is a static spherically symmetric Gaussian charge density, centred at the origin
in real space.

Note that the differential equation now is ordinary with respect to radius,
once both the Laplace operator in spherical coordinates and the spherical
symmetry redefines the problem to be solved, as shown in Equation (4.15):

d2

dr2
φ(r) +

2

r

d

dr
φ(r) = −4π Q

√

(η

π

)3

exp
(

−η r2
)

. (4.15)

When considering the initial value φ(0) = 2Q
√

η

π
, the known solution [80]

for this problem is

φ(r) =
1

r
Q erf (

√
η r) .

As a numerical example, consider the electric charge Q = 1 and the Gaus-
sian parameter η = 0.5. The known solution is shown in Equation (4.16):

φ(r) =
1

r
erf

(√
2

2
r

)

(4.16)

Also, this example is considered an initial value problem. The proposed
method requires the definition of a domain, therefore 0 ≤ r ≤ 10 was adopted.
The system of equations built by the proposed method choosing degree 12 for
the polynomial approximation. Figure 4.2 shows on top a joint plot of both
the TGE polynomial approximation and the known solution, and on bottom
the error in function of r is found by subtracting one from the other.

Equation (4.17) presents the coefficients of the TGE which is the approx-
imate solution to this Poisson equation for electrostatics. Sub-indices relate
each coefficient to a Jacobi polynomial, as P (0,0)

0 (ξ(x)), P (0,0)
1 (ξ(x)), and so on,

up to P
(0,0)
12 (ξ(x)).

(

ϕ0 ϕ1 · · · ϕ12

)T

=
(

2.88 10−1 − 3.21 10−11.90 10−1 − 6.58 10−2 − 6.21 10−32.92 10−1 − 2.43 10−2

1.14 10−2 − 1.80 10−3 − 2.08 10−32.01 10−3 − 7.56 10−48.93 10−5
)T

(4.17)

Simplifying the expanded equation, the polynomial approximation solution
is shown in Equation (4.18):
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Figure 4.2: Solution to a Poisson equation for electrostatic subject to a static
spherically symmetric Gaussian charge density, polynomial approximation of
degree 12.

φ̂(r) = 0.059 r12 − 0.260 r11 + 0.194 r10 + 0.485 r9 − 0.768 r8

+ 0.077 r7 + 0.437 r6 − 0.291 r5 + 0.137 r4 − 0.165 r3 + 0.192 r2

− 0.195 r + 0.197 (4.18)

Extra bits

Lets remember the example in Figure 1.2 from Chapter 1. This section is aimed
to present results from the proposed method applied to that same specific
ODE:

d2

dx2
y(x) +

d

dx
y(x) = 0

with respect to different set of initial conditions, one for the “left” system:

d

dx
y(x)

∣

∣

∣

∣

x=0

= 1 and y(0) = 0;

and other for the “right” system:

d

dx
y(x)

∣

∣

∣

∣

x=0

= −1 and y(0) = 0.

From the same differential model, two different conditions achieve two dif-
ferent solutions, one related to the “left” system (see Figure 4.3):

ŷ(x) = 5.15 10−3 x5 − 3.86 10−2 x4 + 1.65 10−1 x3 − 5.00 10−1 x2 + 1.00 x
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Figure 4.3: Approximation by the proposed method to the ODE that
generated Figure 1.2, left plot; same differential as in Figure 4.4, differ-
ent boundary conditions. Solution y(x) = 1 − exp(−x) approximated to:
ŷ(x) = 5.15 10−3 x5 − 3.86 10−2 x4 + 1.65 10−1 x3 − 5.00 10−1 x2 + 1.00 x.
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Figure 4.4: Approximation by the proposed method to the ODE that
generated Figure 1.2, right plot; same differential as in Figure 4.3, differ-
ent boundary conditions. Solution y(x) = exp(−x) − 1 approximated to:
ŷ(x) = −5.15 10−3 x5 + 3.86 10−2 x4 − 1.65 10−1 x3 + 5.00 10−1 x2 − 1.00 x.

and the other to the “right” system (see Figure 4.4):

ŷ(x) = −5.15 10−3 x5 + 3.86 10−2 x4 − 1.65 10−1 x3 + 5.00 10−1 x2 − 1.00x.

In this simple example, as both data has the same differential model, a
possible discussion to be attended would be if they represent the same system
in different states or not.
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4.5 Discussion

This method is a customization of Ritz-Galerkin method adopting Jacobi poly-
nomials as orthogonal basis functions. The customization lies on the use of
extra equations which reflect boundary conditions to cover the absence of those
when dealing with the adopted polynomial basis.

Decisions taken during mathematical derivations are due to enable a low
computational effort for the method, e.g., a truncate polynomial basis, Legendre-
like polynomials, change of variables to source function.

As seen by results, the method is robust and can present fair approxima-
tions to differential solutions. Note that different function basis could result in
different approximations. In the next chapter, the expansion of this method
to multivariate domains is shown.
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Chapter 5

Partial Differential Equations

5.1 Proposed method

This chapter presents the proposed method to solve linear partial differential
equations (LPDE) defined in Equation (3.2). Same assumptions from Sec-
tion 4.1 are taken. Basically, developments addressed here are due to exten-
sions for the method proposed from LODEs to LPDEs. By using combinations
of Jacobi polynomials as basis functions, the achieved solution is a multivariate
polynomial approximation.

5.2 Classification of PDEs

When addressing to PDEs of the form in Equation (5.1), as well as PDEs in
more than two variables, there are three main types of PDE depending on the
discriminant AC − B2 [81], as shown in Table 5.1.

A
∂2

∂x2
u(x, y) + 2B

∂2

∂x ∂y
u(xy) + C

∂2

∂y2
u(x, y) =

F

(

x, y, u(x, y),
∂

∂x
u(x, y),

∂

∂x
u(x, y)

)

(5.1)

where A, B, and C are the coefficients of the second order derivative terms.
From the point of view of engineering, this classification is important be-

cause if a type of PDE is identified for a problem that could lead to known
solutions. For the proposed method, the solver scheme used does not make
differences between any of those types.

5.3 Powers matrix

The proposed method is supposed to be generic. Also, the number of inde-
pendent variables, the desired polynomial degree for the approximate solution
and the differential order, those all are known only at execution time. Hence,
a supporting scheme needed to be developed to handle combinatorial degrees
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5.3. Powers matrix

Table 5.1: Types of PDE, adapted from [81].

Type Defining Condition Example

Hyperbolic AC − B2 < 0 Wave equation
Parabolic AC − B2 = 0 Diffusion or heat equation
Elliptic AC − B2 > 0 Laplace equation

and orders to be used in function of the number of variables. As an example,
an arbitrary three-variate differential equation such as:

∂3

∂x3
u(x, y, z)− ∂ ∂

∂x ∂y
u(x, y, z) + u(x, y, z) = 0

has the first derivative term is of order 3 (3 with respect to x, and order 0 for
y and z), the second term of order 2 (1 with respect to x and y, and order 0
for z), and a third term of order 0 (for x, y and z).

This generic scheme was developed using the idea of integer partition, a
form of representing positive integer numbers as a sum of positive integer
numbers. For example, a full partitioning of the number 5 results in the set:

5,

4 + 1,

3 + 2,

3 + 1 + 1,

2 + 2 + 1,

2 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1

Algorithm 2 (adapted from integer partition algorithm ZS1 [82]) presents
a partitioning scheme capable of limiting the number of summands (parts) an
integer could be represented by.

Algorithm 3 uses Algorithm 2 to prepare a list with permutation sequences
from all zeros up to a predetermined degree, respecting the number of con-
sidered variables. Each sequence from that list represents the distribution of
either degrees to polynomials or orders to differentials.

Therefore, multivariate cases could benefit from this limited partitioning
scheme in order to keep track of both degrees in multivariate polynomials and
orders in partial derivatives. Table 5.2 presents an example where there is need
to enlist degrees up to the 3rd with respect to a bivariate domain. The output
of Algorithm 3, those powers (degrees or orders) listed, should be known as
the powers matrix. Note that hereby the powers matrix when identified by
δn,i keeps track of polynomial degrees and when identified by γq,i keeps track
of differential orders.

The formula to learn about the number of all possibilities (lines of the
powers matrix) is given in Equation (5.2).
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Algorithm 2 Integer Partition; enlisted in out are all unique possibilities
of v summands for the integer n, regardless order; adapted from [82]
Require: n > 0 ∧ v > 0
x⇐ {n, 1, . . . 1 } (ensure length: n)
m⇐ 1
h⇐ 1
q ⇐ 0
aux⇐ { x[0 . . .m− 1], 0, . . . 0 } (ensure length: v)
out[q][. . .]⇐ aux
while x[0] ̸= 1 do

if x[h− 1] = 2 then
m⇐ m+ 1
x[h− 1]⇐ 1
h⇐ h− 1

else
r ⇐ x[h− 1]− 1
t⇐ m− h+ 1
x[h− 1]⇐ r
while t ≥ r do
h⇐ h+ 1
x[h− 1]⇐ r
t⇐ t− r

end while
if t = 0 then
m⇐ h

else
m⇐ h+ 1
if t > 1 then
h⇐ h+ 1
x[h− 1]⇐ t

end if
end if

end if
aux⇐ { x[0 . . .m− 1], 0, . . . 0 } (ensure length: v)
q ⇐ q + 1
out[q][. . .]⇐ aux

end while
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5.4. Multivariate adjustments

Algorithm 3 Powers Matrix, enlisted in pows are the multivariate (v vari-
ables) polynomial n-degrees or differential n-orders.
Require: n > 0 ∧ v > 0
q ⇐ 0
ipow ⇐ { 0, 0, . . . 0 } (ensure length: v)
pows[q][. . .]⇐ ipow
q ⇐ q + 1
for p⇐ 1 to n do
ipow ⇐ integer_partition(p, v) /* Algorithm 2 */
r ⇐ 0
for i⇐ 0 to ipow.size()− 1 do
aux⇐ ipow[i][. . .]
pwall[r][. . .]⇐ aux
r ⇐ r + 1
while there is still a valid permutation of aux do
pwall[r][. . .]⇐ next permutation(aux)
r ⇐ r + 1

end while
end for
sort(pwall, reverse_lexicographic)
for i⇐ 0 to r − 1 do
pows[q + i][. . .]⇐ pwall[i][. . .]

end for
q ⇐ q + r

end for

N⋆ =
(n+ v)!

n! v!
(5.2)

where n is the maximum degree or order desired; and v is the number of
variables.

Regarding Table 5.2, this formula could predict the example powers matrix
number of rows: (3+2)!

3! 2!
= 10.

5.4 Multivariate adjustments

In order to expand this work from ordinary to partial LDEs, some concepts
must be revisited. First, a multivariate set of basis functions and a definition
for a proper inner product must be built. Equation (5.3) refers to the inner
product definition which is extended to support multiple integrations. Note
that the use of Legendre polynomials (α = β = 0) simplifies this effort, once
w(x) = 1 whatever the adopted number of variables:

⟨ f(x⃗), g(x⃗) ⟩ =
b0
∫

a0

b1
∫

a1

. . .

bD−1
∫

aD−1

D times

f(x⃗) g(x⃗) dx⃗ (5.3)
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Table 5.2: Examples of integer partition of numbers 0 upto 3 with 2 parts
maximum (Algorithm 2) and 3rd degree polynomials or 3rd order derivatives
with 2 variables (Algorithm 3); this should be called the powers matrix.

Integer Partition Powers of
i[0] i[1] x0 x1

0 0 0 0
1 0 1 0
2 0 0 1
1 1 2 0
3 0 1 1
2 1 0 2

3 0
2 1
1 2
0 3

where D is the number of independent variables (dimension) from the domain
of the problem.

In order to be solved for the unknown coefficients of the expansion, the
GSE is built as shown in Equation (5.4):

⟨ϕn(x⃗), R [û(x⃗)] ⟩|N⋆−1
n=0 =

b0
∫

a0

b1
∫

a1

· · ·
bD−1
∫

aD−1

ϕn(x⃗) · {L [û(x⃗)]− s(x⃗)} dx0 dx1 . . . dxD−1

∣

∣

∣

∣

∣

N⋆−1

n=0

= 0
(5.4)

where this system has N⋆ equations (see Equation (5.2), for n = N and v = D);
x⃗ is the vector of D variables (x0, x1, . . . xD−1)

T ; and ai and bi are the i-th lower
and upper limits of integration, respectively, for i = 0, . . . D − 1.

The TGE must be adjusted as in (5.5):

û(x⃗) =
N⋆−1
∑

i=0

ũi ϕi(x⃗) (5.5)

where ϕi(x⃗) is a multivariate basis function from a finite basis set with a span
of N⋆ functions.

Multivariate mappings follow Equations (3.24) and (3.25) for each dimen-
sion. In other words, linear maps like xi 7→ ξi and ξi 7→ xi are defined in the
same way for each dimension i with respect to their respective inferior and
superior limits ai and bi.

A proper basis set is built based on those linear mappings and on combi-
nations of univariate polynomials, supported by the powers matrix from Al-
gorithm 3. Each one of those mappings and Jacobi-Legendre polynomials are
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5.4. Multivariate adjustments

with respect to each variable that constitutes the domain. This multivariate
basis set is shown in Equation (5.6):

B = {ϕn(x⃗)}|N
⋆−1

n=0 =

{

D−1
∏

i=0

P
(0,0)
δn,i

(ξi(xi))

}∣

∣

∣

∣

∣

N⋆−1

n=0

(5.6)

where δn,i is the element δ located at the nth row and the ith column in the
powers matrix (like the one presented in Table 5.2) evaluated case by case.

As an example, if N = 3 and D = 2, the 8th basis function with reference
to Table 5.2 would be:

ϕ7(x0, x1) = P
(0,0)
2 (ξ0(x0)) · P (0,0)

1 (ξ1(x1)) .

Each basis function is essentially the product of D univariate polynomials
with degrees that sum up to N . This is very handful when analysing multi-
variate derivatives with the product rule. In this way, the multivariate context
could help to define derivatives for those basis functions, as in Equation (5.7):

[

D−1
∏

j=0

∂γq,j

∂x
γq,j
j

]

D−1
∏

i=0

P
(0,0)
δn,i

(ξi(xi)) =
D−1
∏

i=0

∂γq,i

∂x
γq,i
i

P
(0,0)
δn,i

(ξi(xi)) =

D−1
∏

i=0

Γ(δn,i + γq,i + 1)

(bi − ai)γq,iΓ(δn,i + 1)
P

(γq,i,γq,i)
δn,i−γq,i

(ξi(xi)) (5.7)

where δn,i is the element δ located at the nth row and the ith column in the
respective powers matrix; and γq,i is the element γ located at the qth row and
the ith column in the respective powers matrix resulted from Algorithm 3 with
n = Q and v = D. Note that identity in Equation (3.23) is still useful here.

As another example, if N = 3, Q = 3 and D = 2 are adopted, the 7th

multivariate derivative taken over the 8th derivative of the 8th basis function
would be:

∂3

∂x2
0 ∂x1

ϕ7(x0, x1) =
∂2

∂x2
0

P
(0,0)
2 (ξ0(x0)) ·

∂

∂x1

P
(0,0)
1 (ξ1(x1)) .

Multidimensional change of variables should also be considered when ex-
panding the findings from ODEs to PDEs. The multidimensional derivative is
then shown in Equation (5.8):

[

D−1
∏

i=0

∂γq,i

∂x
γq,i
j

]

f(x0, x1, . . . xD−1) =

[

D−1
∏

i=0

(

2

bi − ai

)γq,i ∂γq,i

∂ξγq,i

]

f (x0(ξ0), x1(ξ1), . . . xD−1(ξD−1)) (5.8)

as well as the multidimensional integration is presented in Equation (5.9).
Note that both of those have a role in the new multivariate approach.
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b0
∫

a0

b1
∫

a1

· · ·
bD−1
∫

aD−1

f (x0, x1, . . . xD−1) dx0 dx1 · · · dxD−1 =

D−1
∏

i=0

bi − ai
2

1
∫

−1

1
∫

−1

· · ·
1
∫

−1

f (x0(ξ0), x1(ξ1), . . . xD−1(ξD−1)) dξ0 dξ1 · · · dξD−1

(5.9)

where the determinant of the Jacobian matrix J =
∏D−1

i=0
∂xi

∂ξi
=
∏D−1

i=0
bi−ai

2
is

both constant and the result of the product on the main diagonal of the Jaco-
bian matrix, due to the linear nature of each respective dimensional mapping
ξi 7→ xi.

Updated coefficient matrix

To update the coefficient matrix is the same as to augment its univariate
version. Starting point is the following unidimensional expression excerpt from
Equation 4.3:

N
∑

m=0

ũm

Q
∑

q=0

1

(b− a)q

1
∫

−1

kq(x(ξ)) · P (0,0)
n (ξ) · Γ(m+ q + 1)

Γ(m+ 1)
P

(q,q)
m−q(ξ) dξ

where each line with respect to n = 0 . . . N contributes to the final matrix
representation.

The new expression to build the multivariate coefficient matrix is presented
in Equation (5.10), each row with respect to n = 0 . . . N⋆ − 1.

N⋆−1
∑

m=0

ũm

Q⋆−1
∑

q=0

[

D−1
∏

i=0

1

(bi − ai)
γq,i

] 1
∫

−1

1
∫

−1

· · ·
1
∫

−1

kq(x0(ξ0), . . . xD−1(ξD−1))·

[

D−1
∏

i=0

P
(0,0)
δn,i

(ξi)

]

·
[

D−1
∏

i=0

Γ(δm,i + γq,i + 1)

Γ(δm,i + 1)
P

(γq,i,γq,i)
δm,i−γq,i

(ξi)

]

dξ0 . . . dξD−1 (5.10)

The multivariate coefficient matrix is then built as shown by Equation (5.11).

G1×Q⋆ =

(

1
D−1
∏

i=0

1

(bi − ai)
γ1,i . . .

D−1
∏

i=0

1

(bi − ai)
γQ⋆

−1,i

)

Dq,m(ξ⃗) = kq(x0(ξ0), . . . xD−1(ξD−1)) ·
[

D−1
∏

i=0

Γ(δm,i + γq,i + 1)

Γ(δm,i + 1)
P

(γq,i,γq,i)
δm,i−γq,i

(ξi)

]
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DQ⋆×N⋆ =







D0,0(ξ⃗) · · · D0,N⋆−1(ξ⃗)
... . . . ...

DQ⋆−1,0(ξ⃗) · · · DQ⋆−1,N⋆−1(ξ⃗)







G
(n)
Q⋆×N⋆ =





1
∫

−1

1
∫

−1

· · ·
1
∫

−1

[

D−1
∏

i=0

P
(0,0)
δn,i

(ξi)

]

·
(

DQ⋆×N⋆

)

dξ0 dξ1 . . . dxD−1





S
(n)
1×1 =

1
∫

−1

1
∫

−1

· · ·
1
∫

−1

D−1
∏

i=0

P
(0,0)
δn,i

(ξi) · s(x0(ξ0), . . . xD−1(ξD−1)) dξ0 dξ1 . . . dxD−1





































G1×Q⋆ · G
(0)
Q⋆×N⋆

G1×Q⋆ · G
(1)
Q⋆×N⋆

...

G1×Q⋆ · G
(N⋆−1)
Q⋆×N⋆





































N⋆×N⋆

·













ũ0

ũ1

...
ũN⋆−1













=













S
(0)
1×1

S
(1)
1×1
...

S
(N⋆−1)
1×1













(5.11)

5.5 Solving PDEs

As discussed before, when solving differential equations, the use of Jacobi poly-
nomials as basis functions almost ever fails to respect auxiliary conditions. It
is very unusual to the coefficient matrix of the GSE not being rank deficient
or even ill-conditioned. In the rare cases where the existence of a solution is
verified without further data, specially when dealing with homogeneous differ-
entials, such solution is trivial (all coefficients of the TGE are zero), hence not
of interest. The desired solution must be non-trivial and unique, both by the
necessity of a model and by the fact that, if a real system is modelled by a
differential equation, the solution is observable in reality.

As normally found in the literature about PDEs, auxiliary conditions are
functions by themselves. Even based on Galerkin method, the here proposed
method cannot deal with the existence of undefined independent variables
within boundary conditions respective equations. The proposed method re-
quires scalars evaluated on some points over the domain. The implication
is that all auxiliary conditions need to be discretized over variables they are
functions of.

55



5. Partial Differential Equations

So, instead of using function-like auxiliary conditions, the proposed method
requires a set of known values from those conditions over their respective origi-
nal domains. The here proposed workaround is to define representative points
on the boundary and to evaluate the original conditions there, as if those
conditions were sampled. The required exact number of points is strongly
dependent on the coefficient matrix either rank or condition number. As an
initial guess, an empirical recommendation is to choose 2D points per condi-
tion, where D is the total number of variables, and after start to iteratively
increase that number until the coefficient matrix become full rank. Note that,
if the coefficient matrix is already full ranked and well-conditioned, a minimal
number of points must be chosen anyway to avoid raising a trivial solution.

Keep in mind that this method is supposed to support computer-automated
system modelling for real systems, so the solution is supposed to be observable
in reality. The feasible expectation is that at some step of the iterative aggre-
gation of those points as conditions, solution becomes possible to be found.

Updated auxiliary conditions

Starting from the following excerpt from Equation (4.7):

N
∑

m=0

ũm

W
∑

w=0

1

(b− a)w
hw,c(Xc)

Γ(m+ w + 1)

Γ(m+ 1)
P

(w,w)
m−w (ξ(Xc)) ,

the multivariate version could be derived, as shown in Equation (5.12):

N⋆−1
∑

m=0

ũm

W ⋆−1
∑

w=0

[

D−1
∏

i=0

1

(bi − ai)
γw,i

]

hw,c

(

X
(c)
0 , . . . X

(c)
D−1

)

·
[

D−1
∏

i=0

Γ(δm,i + γw,i + 1)

Γ(δm,i + 1)
P

(γw,i,γw,i)
δm,i−γw,i

(

ξi

(

X
(c)
i

))

]

(5.12)

Finally, from Equations (5.11) and (5.12), the proposed method achieves
the final multidimensional Galerkin-like system as presented in Equation (5.13):

B1×W ⋆ =

(

1
D−1
∏

i=0

1

(bi − ai)
γ1,i . . .

D−1
∏

i=0

1

(bi − ai)
γW⋆

−1,i

)

B(c)
w,m

(

X⃗(c)
)

= hw,c

(

X⃗(c)
)

·
D−1
∏

i=0

Γ(δm,i + γw,i + 1)

Γ(δm,i + 1)
P

(γw,i,γw,i)
δm,i−γw,i

(

ξi

(

X
(c)
i

))

B
(c)
W ⋆×N⋆ =











B0,0

(

X⃗(c)
)

· · · B0,N⋆−1

(

X⃗(c)
)

... . . . ...

BW ⋆−1,0

(

X⃗(c)
)

· · · BW ⋆−1,N⋆−1

(

X⃗(c)
)
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G1×Q⋆ · G
(0)
Q⋆×N⋆

...

G1×Q⋆ · G
(N⋆−1−C)
Q⋆×N⋆

B1×W ⋆ · B
(1)
W ⋆×N⋆

...

B1×W ⋆ · B
(C)
W ⋆×N⋆

























































N⋆×N⋆

·













ũ0

ũ1

...
ũN⋆−1













=























S
(0)
1×1
...

S
(N⋆−1−C)
1×1

V1

...
VC























(5.13)

Examples

In this section, three examples are shown, each one from a different PDE type
as classified in Table 5.1. As can be seen, the same proposed method is applied
to all of those problems.

Hyperbolic equation Starting with a simple dynamic one-dimensional wave
PDE problem:

∂2

∂x2
u(x, t)− ∂2

∂t2
u(x, t) = 0

where u(x, t) is the height of the wave in function of length x and time t. The
domain of calculation is 0 < x < 1, t > 0. Boundary conditions that augment
this PDE are:

[BC]

{

u(0, t) = 0

u(1, t) = 0

[initial value]

{

u(x, 0) = sin(π x)

ut(x, 0) = 0

where ut(x, t) is another way of representing ∂
∂t
u(x, t), utt(x, t) would represent

∂2

∂t2
u(x, t), and so on.
The known solution to this example is:

u(x, t) = sin(π x) cos(π t)

57



5. Partial Differential Equations
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Error [ max abs / mean / std ]: 3.530050e✂03 / ✂1.990212e✂04 / 7.412901e✂04

Figure 5.1: Solution to a dynamic one-dimensional wave problem; approxi-
mate solution adopts a degree 8 bivariate polynomial.

As aforementioned, the proposed method cannot deal with the existence
of undefined independent variables within boundary conditions. Also, due to
characteristics of the proposed method, the initial value problem needs to be
confined in time. To achieve that, the new adopted domain for this example is
0 < x < 1, 0 < t < 1. Also, following the proposed workaround, the boundary
conditions to be considered in this numerical example are:

[BC]























u(0, 0) = 0; u(0, 1
3
) = 0

u(0, 2
3
) = 0; u(0, 1) = 0

u(1, 0) = 0; u(1, 1
3
) = 0

u(1, 2
3
) = 0; u(1, 1) = 0

[IC]































u(0.2, 0) = sin(0.2 π); u(0.4, 0) = sin(0.4 π)

u(0.5, 0) = sin(0.5 π); u(0.6, 0) = sin(0.6 π)

u(0.8, 0) = sin(0.8 π)

ut(0, 0) = 0; ut(
1
3
, 0) = 0

ut(
2
3
, 0) = 0; ut(1, 0) = 0

Note that the option for equidistant points from domain limits was taken,
with variation of t in boundary conditions (where x = 0) and of x in initial
conditions (where t = 0). Also that to evaluate values at boundary, functions
from original conditions were used. Observe that two points that would appear
derived from latter initial conditions — (0, 0) and (1, 0) — could not be used
due to previous appearance in former boundary conditions.

Figure 5.1 shows on top a joint plot of the TGE polynomial approximation
and the known solution, and on bottom the error as the difference from the
approximation to the known solution. Note that error has a mean value of
−2 10−4 and a standard deviation of 7 10−4.

Finally, Equation (5.14) presents the coefficients of the TGE which are re-
sponsible for the approximate solution to this dynamic one-dimensional wave
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problem. Sub-indices relates each coefficient to a product of Jacobi polyno-
mials whose degrees are tracked by the proper row in the respective powers
matrix, as in P

(0,0)
0 (x 7→ ξ0) ·P (0,0)

0 (t 7→ ξ1), P
(0,0)
1 (x 7→ ξ0) ·P (0,0)

0 (t 7→ ξ1), and
so on, up to P

(0,0)
0 (x 7→ ξ0) · P (0,0)

8 (t 7→ ξ1).

(

u0 u1 · · · u44

)T

=
(

−1.615 10−4 0 − 0.774 − 4.018 10−4 0

− 4.018 10−4 0 0.834 0 0.143 − 1.489 10−4 0 − 1.640 10−3

0 − 1.489 10−4 0 − 6.315 10−2 0 − 0.156 0 − 5.750 10−3

1.212 10−4 0 2.115 10−4 0 2.115 10−4 0 1.212 10−4 0 1.929 10−3

0 1.273 10−2 0 7.072 10−3 0 1.484 10−4 7.083 10−6 0 4.604 10−4

0 1.302 10−3 0 4.604 10−4 0 7.083 10−6
)

(5.14)

Simplifying the expanded equation also with the aid of Maxima CAS soft-
ware [79], the polynomial approximation solution is shown in Equation (5.15).

û(x, t) = 9.116 10−2 t8+0.145 t7+2.552 x2 t6−2.552 x t6−0.649 t6+3.035 x2 t5

− 3.035 x t5 + 0.678 t5 + 6.381 x4 t4 − 12.762 x3 t4 − 9.737 x2 t4 + 16.118 x t4

− 0.373 t4 + 5.059 x4 t3 − 10.118 x3 t3 + 6.779 x2 t3 − 1.720 x t3 + 0.128 t3

+ 2.552 x6 t2 − 7.657 x5 t2 − 9.737 x4 t2 + 32.236 x3 t2 − 2.239 x2 t2 − 15.155 x t2

− 1.888 10−2 t2 + 1.012 x6 t− 3.035 x5 t+ 3.389 x4 t− 1.720 x3 t+ 0.383 x2 t

−2.872 10−2 x t+9.116 10−2 x8−0.365 x7−0.649 x6+3.224 x5−0.373 x4−5.052 x3

− 1.888 10−2 x2 + 3.143 x (5.15)

Parabolic equation Here is a diffusion problem, the homogeneous heat con-
duction equation with insulated boundary conditions:

α2 ∂2

∂x2
u(x, t)− ∂

∂t
u(x, t) = 0

where u(x, t) is the temperature distribution function of a wire (with length
L); and the positive constant α2 is the thermo diffusivity constant of the wire.
The domain of calculation is 0 < x < L, t > 0. Boundary conditions that
augment this partial differential equation are:

[BC]

{

ux(0, t) = 0

ux(1, t) = 0

[IC] u(x, 0) = f(x)

A numerical example is presented, with α = 1; L = 1; and f(x) = 1 +
cos(π x) + 0.5 cos(3 π x). The known solution to this example is:

u(x, t) = 1 + e−π2 t cos(π x) + 0.5 e−(3π)2 t cos(3 π x)
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Using degree 11 for polynomial approximation; and 1024 points for Monte Carlo integration
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Known solution

Approximation

Figure 5.2: Solution to a homogeneous heat conduction equation with insu-
lated boundary; approximate solution adopts a degree 11 bivariate polynomial.

Therefore, following the proposed workaround, the adopted domain for this
example is 0 < x < 1, 0 < t < 0.01 and boundary conditions to be considered
in this numerical example are:

[BC]























ux(0, 0) = 0; ux(0,
1

300
) = 0

ux(0,
2

300
) = 0; ux(0, 0.01) = 0

ux(1, 0) = 0; ux(1,
1

300
) = 0

ux(1,
2

300
) = 0; ux(1, 0.01) = 0

[IC]



















u(0, 0) = 1 + cos(π 0) + 0.5 cos(3 π 0) = 2.5

u(1
3
, 0) = 1 + cos(π 1

3
) + 0.5 cos(3 π 1

3
) = 1

u(2
3
, 0) = 1 + cos(π 2

3
) + 0.5 cos(3 π 2

3
) = 1

u(1, 0) = 1 + cos(π 1) + 0.5 cos(3 π 1) = −0.5
Note that the option for equidistant points from domain limits was taken,

with variation of t in insulated boundary conditions and of x in the initial con-
dition. Also, to evaluate values at boundary, functions from original conditions
were used.

Figure 5.2 shows on top a joint plot of the TGE polynomial approximation
and the known solution, and on bottom the error as the difference from the
approximation to the known solution. Note that error has a mean value of ≈ 0
and a standard deviation of 5 10−3.

Finally, Equation (5.16) presents the coefficients of the TGE which are
responsible for the approximate solution to this homogeneous heat conduction
equation with insulated boundary. Sub-indices relates each coefficient to a
product of Jacobi polynomials whose degrees are tracked by the proper row
in the respective powers matrix, as P

(0,0)
0 (x 7→ ξ0) · P (0,0)

0 (t 7→ ξ1), P
(0,0)
1 (x 7→

ξ0) · P (0,0)
0 (t 7→ ξ1), and so on, up to P

(0,0)
0 (x 7→ ξ0) · P11

(0,0)(t 7→ ξ1)
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(

u0 u1 · · · u77

)T

=
(

1 − 1.195 0 7.649 10−2 0 − 3.449 10−1

0 − 3.875 10−3 0 0 2.351 10−1 0 3.015 10−4 0 3.153 10−1

0 − 3.644 10−2 0 − 1.993 10−5 0 0 − 1.390 10−1 0

3.405 10−3 0 − 8.293 10−6 0 − 6.001 10−2 0 1.942 10−2

0 − 2.488 10−4 0 0 0 0 2.365 10−2 0 − 1.382 10−3 0

0 0 0 0 5.036 10−3 0 − 2.416 10−3 0 0 0 0 0 0

0 0 − 1.421 10−3 0 0 0 0 0 0 0 0 0 − 1.781 10−4

0 0 0 0 0 0 0 0 0 0 0) (5.16)

Simplifying the expanded equation, the polynomial approximation solution
is shown in Equation (5.17).

û(x, t) = −4.180 107 x t5 + 2.090 107 t5 − 3.483 107 x3 t4 + 5.225 107 x2 t4

− 2.013 107 x t4 + 1358587.9 t4 − 6966366.3x5 t3 + 1.742 107 x4 t3

− 1.342 107 x3 t3 + 2717175.8 x2 t3 + 414272.4x t3 − 79468.3 t3

− 497597.6 x7 t2 + 1741591.6 x6 t2 − 2013309.2 x5 t2 + 679294.0 x4 t2

+ 207136.2 x3 t2 − 119202.5 x2 t2 − 2553.6 x t2 + 2320.6 t2

− 13822.2 x9 t+ 62199.7 x8 t− 95871.9 x7 t+ 45286.3x6 t+ 20713.6 x5 t

− 19867.1 x4 t− 851.2x3 t+ 2320.6 x2 t+ 4.660 x t− 56.245 t

− 125.656 x11 + 691.11 x10 − 1331.6x9 + 808.68 x8 + 493.18x7

− 662.24 x6 − 42.560 x5 + 193.38 x4 + 0.777 x3 − 28.122 x2 + 2.5 (5.17)

Elliptic equation Here is a problem regarding the steady-state temperature
distribution of a thin plate in the form of Laplace equation:

∇2u(x, y) =
∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = 0

where u(x, y) is the temperature distribution function over the surface of a thin
plate (with width L and height H); The domain of calculation is 0 < x < L
and 0 < y < H. Dirichlet boundary conditions that augment this partial
differential equation are:

[BC]



















u(0, y) = 0

u(L, y) = 0

u(x, 0) = 0

u(x,H) = f(x)

The known solution to this example is:
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u(x, y) =
∞
∑

n=1

Bn sin (µn x) sinh (µn y)

where Bn = 2

L sinh(nπH
L )

∫ L

0
f(x) sin(nπx

L
) dx; and µn = nπ

L
.

As a numerical example, an instance of this problem is achieved when
assuming L = H = 1, turning the domain into 0 < x < 1, 0 < y < 1, and
assuming u(x, 1) = f(x) = sin (πx). Now this very problem has a known
solution, and it is:

u(x, y) =
sin(πx) sinh(πy)

sinh(π)

Following the proposed workaround, the adopted domain for this example
is 0 < x < 1, 0 < t < 1 and the boundary conditions to be considered in this
numerical example are:

[BC]



















































u(0, 0) = 0; u(0, 0.2) = 0; u(0, 0.4) = 0

u(0, 0.6) = 0; u(0, 0.8) = 0; u(0, 1) = 0

u(0.2, 0) = 0; u(0.4, 0) = 0; u(0.6, 0) = 0

u(0.8, 0) = 0; u(1, 0) = 0; u(1, 0.2) = 0

u(1, 0.4) = 0; u(1, 0.6) = 0; u(1, 0.8) = 0

u(1, 1) = 0; u(0.2, 1) = sin(0.2π); u(0.4, 1) = sin(0.4π)

u(0.6, 1) = sin(0.6π); u(0.8, 1) = sin(0.8π)

Note that due to the rank deficiency of the original coefficient matrix, the
number of points to represent Dirichlet conditions needed to be raised in order
to properly define the boundary.

Figure 5.3 shows on top a joint plot of the TGE polynomial approximation
and the known solution, and on bottom the error as the difference from the
approximation to the known solution. Note that error has a mean value of
−8 10−4 and a standard deviation of 3 10−4.

Finally, Equation (5.18) presents the coefficients of the TGE which are
responsible for the approximate solution to this steady-state temperature in a
thin plate problem. Sub-indices relates each coefficient to a product of Jacobi
polynomials whose degrees are tracked by the proper row in the respective
powers matrix, as P (0,0)

0 (x 7→ ξ0) ·P (0,0)
0 (t 7→ ξ1), P

(0,0)
1 (x 7→ ξ0) ·P (0,0)

0 (t 7→ ξ1),
and so on, up to P

(0,0)
0 (x 7→ ξ0) · P (0,0)

9 (t 7→ ξ1)
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Figure 5.3: Solution to a steady-state temperature in a thin plate (Laplace
equation); approximate solution adopts a degree 9 bivariate polynomial.

(

u0 u1 · · · u54

)T

= (0.186 0 0.276 − 0.201 0 0.124 0

− 0.298 0 4.095 10−2 1.512 10−2 0 − 0.134 0 8.218 10−3

0 2.259 10−2 0 − 4.405 10−2 0 1.855 10−3 − 3.821 10−4

0 1.010 10−2 0 − 8.882 10−3 0 1.930 10−4 0 − 3.950 10−4

0 3.498 10−3 0 − 2.320 10−3 0 − 7.386 10−4 3.636 10−6

0 − 2.363 10−4 0 6.685 10−4 0 − 2.363 10−4 0 3.636 10−6

0 − 1.224 10−5 0 1.591 10−4 0 − 2.500 10−4 0 6.120 10−5

0 2.868 10−4
)

(5.18)

Simplifying the expanded equation, the polynomial approximation solution
is shown in Equation (5.19).

û(x, y) = 4.679 10−2 y8 − 2.722 y7 − 1.310 x2 y6 + 1.310 x y6 + 9.138 y6

+ 0.423 x2 y5 − 0.423 x y5 − 12.544 y5 + 3.276 x4 y4 − 6.551 x3 y4

+ 4.785 x2 y4 − 1.509 x y4 + 8.814 y4 − 1.654 x4 y3 + 3.308 x3 y3

− 5.365 x2 y3 + 3.711 x y3 − 3.316 y3 − 1.310 x6 y2 + 3.931 x5 y2

− 3.360 x4 y2 + 0.169 x3 y2 + 1.468 x2 y2 − 0.897 x y2 + 0.631 y2

+ 0.580 x6 y − 1.741 x5 y + 2.903 x4 y − 2.904 x3 y + 0.238 x2 y

+ 0.924 x y − 0.0481 y + 4.679 10−2 x8 − 0.187 x7 + 9.926 10−2 x6

+ 0.357 x5 − 0.592 x4 + 0.371 x3 − 0.106 x2 + 1.136 10−2 x

+ 2.449 10−4 (5.19)

63



5. Partial Differential Equations

5.6 Discussion

As a final discussion in this chapter, there are some issues of the proposed
method to point out. One important issue is the workaround made for con-
ditions that are functions themselves. Polynomials are bounded to inflections
which, in turn, are strongly dependent on their polynomial degrees. Because
of that, when sampling boundary conditions, some “ripples” on boundary are
perceived, specially when analysing error plots. This is the case that could in-
validate dealing with piecewise sub-domains, where values over borders could
be of low confidence. One workaround could be to do overlap sub-domains, but
this is an entire discussion by itself. Though, if the purpose of such polynomial
approximation is to interpolate the solution within boundary, the proposed
method is extremely useful.

Because the use of polynomial approximations for differential solutions, the
considered domain of calculation must be relatively small in order to minimize
the polynomial degree required for a feasible approximation. When dealing
with periodic or trigonometric solutions, the problem worsens. Each point of
inflection of such solutions reflects as an increment to the required polynomial
degree. High polynomial degrees lead to possible floating-point calculation
errors and that should be avoid. A workaround is to consider piecewise sub-
domains. Unfortunately, there are a lot of situations where this is not possible.
In the case of system modelling from data, however, this is a characteristic that
must be exploit, as can be seen in next chapters.

Finally, the rank of coefficient matrix also depends on the chosen polyno-
mial degree for the approximation. The higher it is, the more likely that the
matrix starts to have increased its rank deficiency. The number of sampled
points from boundary conditions needs to compensate this effect. Note that,
specially on homogeneous differential equations, conditions that have non-zero
values are the most useful ones.
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Chapter 6

Evaluating model candidates

6.1 A brief introduction

The main objective of this work is to take the proposed method and exploit it
to support CASM. The decision of using GP to model systems from data has
guided the following developments. To accomplish that intention, the proposed
method needs to be part of a fitness evaluation scheme to support evolution
of models, by solving any LPDE that could be randomly generated by GP
and evaluating how fit its respective approximate solution is to the system
observed data.

In Section 5.6, some issues for the proposed method are addressed. In
special, the ones stating that both small domains of calculation are required to
decrease the required polynomial degree for approximations and the limitation
about the small number of known conditions the PDE has to enable performing
piecewise calculations throughout the desired domain. Those are not concerns
hereby and were exploited to bring up a way to evaluate differential models.

It is a requirement that measurements from the system taken over some
points are saved in a data file containing the observed quantities values (up
to this far, this work considers scalar fields only) and the coordinates where
the quantity to be modelled assumes those values. It is pretty straightforward
to assume that every point in the database is a possible Dirichlet boundary
condition.

By taking groups of closer points within the database, the proposed method
could perform piecewise approximations with a great degree of confidence with
a relative low polynomial degree. If other points are also taken just to enable
comparisons between the approximate solution and their respective database
values, then a metric can be developed to evaluate how close a model is from
the observed data. From these ideas, the derived fitness evaluation scheme is
presented in this chapter.

6.2 A brief description

A brief description presented here about the numerical scheme to compare a
LPDE candidate with observed measurements from a dataset.
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Figure 6.1: Preparation steps for the proposed fitness evaluation method;
dashed border nodes can benefit from parallelism.

i. Dataset constituted of coordinates and respective measurements from the
quantity of interest is then divided into groups of points. Each group con-
tains a number of points which depends on the dimension of the problem
(3× 2D points, where D is the number of independent variables).

ii. One third of those points are used to define a domain of calculation (do-
main set) in order to retrieve the TGE coefficients (as a “training set”).
Other third, named as extras set, is responsible to augment auxiliary con-
ditions whenever the rank of the individual GSE coefficient matrix requires
to. The final third, addressed as the reference set, are used as “targets” to
enable numerical comparison between values found from the approximate
solution to those in the dataset.

iii. For each group, a local polynomial approximation is built using the method
shown in Chapter 5 with respect to points in the domain set, sometimes
augmented by the ones in the extras set.

iv. The numerical difference between the polynomial approximation subject
to the reference points and their respective values retrieved from data is
the base for the fitness evaluation of a model candidate. In the end, an
overall average is performed over all groups and this metric is used as the
model candidate fitness.

6.3 Method, step by step

Figure 6.1 presents the preparation steps and figure 6.2 presents the flowchart
for the proposed method of fitness evaluation. Note that dashed border nodes
are eager to benefit from parallelism.

Following sections explain some details about the flowchart.
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Figure 6.2: Flowchart for the proposed fitness evaluation method; dashed
border nodes can benefit from parallelism.
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Table 6.1: Example of a data file with 3 independent variables and 1 dependent
variable (quantity of interest representing a scalar field).

0.0 0.0 0.2 3.12

0.1 0.3 0.5 -0.13

0.2 0.1 0.1 3.11
...

...
...

...
2.0 1.8 3.1 5.2

User definition

User needs to inform: (a) the polynomial degree to be used in polynomial
approximations; (b) the maximum order for derivatives, based on his feelings
about the system, or a high enough order to uncover something unexpected;
(c) and the name of the data file. If the maximum order informed is greater
than the polynomial degree, the order will be automatically decreased (high
order derivatives applied to low degree polynomials are useless within this
situation). Also, the polynomial degree is responsible for the order of the
coefficient matrix, once it defines the expansion of the TGE. Depending on
the number of variables, this degree is increased to ensure some rows of the
original GSE matrix formulation to be in the final coefficient matrix.

Read data file

A file containing measured data is expected to feed the application. Up to
this far, only scalar fields are supported, so there is no need for a header line
with complementary information. The file could be something as shown in
Table 6.1.

Also, the number of independent variables (D) to be used hereby is auto-
matically retrieved from the data file.

Grouping points from dataset

Before grouping of points, some ideal cluster centroids are calculated based on
the full domain of the data. The number of those centroids is defined as the
total number of points in the dataset divided by the number of points inside
a group. Those centroids are equidistantly spread throughout the domain in
order to ensure that every corner is represented. Then, based on Euclidean
distances, from the original dataset are taken the closest points to each of those
centroids.

After, the scheme performs the grouping of points (coordinates and quan-
tity respective measurements) by finding the closest points to those already
kept in order to define a group. The number of points in each group is based on
the identified number of independent variables (3×2D). The achieved number
of groups in this stage is the number of centroids. There could be same points
in different groups.
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Then, each chosen group has its boundary calculated (for each dimension,
the minimum and the maximum values are found) and its points are divided
into three sets: domain, extras and reference; each one of these contains the
same number of points (2D). The first one, the domain set, has to contain the
closest points to the group limits.

This stage ends with groups containing information about each dimension
boundary, and their respectively points divided into those three sets.

Random chosen points

In order to carry the method out, some discussion about random points must
be addressed. If every time a large set of random points is needed they would
effectively be generated, the final application would suffer with respect to exe-
cution time, perhaps invalidating the whole process. A workaround was delin-
eated though. Once per execution, a large set of random points is generated
from the interval [−1, 1 ]D and saved for future uses.

This may seems odd, once randomness is the core idea for some of the tech-
niques shown in this work. Addressing specifically to Monte Carlo integration,
when using always the same random chosen points (in this case, only random
coordinates are generated), a bias is introduced to the results. In the other
hand, if the set is large enough, the quality of results would be trustful. Also, if
the GSE coefficient matrix is well-conditioned, small variations on integration
results would not be sensed when finding TGE coefficients.

Other argument to reuse the pre-generated large set is that some func-
tions in need to perform Galerkin method could be evaluated once per run —
as orthogonal base functions and respective derivatives —, if some change of
variables are introduced here. Other functions, as the ones introduced by the
process of changing variables, could be performed once per group of points,
regardless the model under evaluation. The rest of functions are always de-
pendent on the differential equation to be evaluated.

Following those ideas, this scheme proposes to generate such large set and
reuses those random points only when a Monte Carlo integration is performed.
Other needs for randomness, as the ones related to the evolutionary algorithm
itself, should be fulfilled by a proper pseudo random number generator. Note
that the quantity for those random points could also be a parameter to the
user.

Definition of orthogonal basis functions

Using the user defined polynomial degree and Equation (5.6) as a guide, with
α = β = 0 (Legendre polynomials), orthogonal base functions are then auto-
matically defined respecting the powers matrix from Algorithm 3.

Those base functions should be evaluated with respect to the large set of
random points previously generated.
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Definition of derivatives for basis functions

Using the user defined differential order and Equation (5.7) as a guide, deriva-
tives for base functions are then automatically defined respecting the powers
matrix from Algorithm 3.

Those derivatives should be evaluated with respect to the large set of ran-
dom points previously generated.

User interface or evolutionary algorithm

This stage is due to capture the differential model to be evaluated.

Start/end of group-based loops

The proposed method is then applied, as seen in Chapter 5. A loop on each
group is then performed. Some notes about the process:

• Matrices from GSE are built using Monte Carlo integration when needed.
Note that basis functions and derivatives are already evaluated with
respect to each of the large set of random points.

• Auxiliary conditions considered here are Dirichlet-like conditions built
from points in the domain set and always inserted in the GSE original
matrix, transforming it in the Gnm matrix from flowchart.

• After building it, the rank of Gnm is verified. If it is rank deficient, one by
one Dirichlet-like conditions built from points in the extra set substitutes
a different row of Gnm until it becomes full rank or the extra set runs
out of points. In this latter case, the partial fitness for this group is
considered invalid.

• When testing for the full rank requirement, a test for the condition of
matrix Gnm is also performed, as shown in Algorithm 1. The effect for
an ill-conditioned matrix is the same as if the matrix was rank deficient,
i.e., the partial fitness for this group is considered invalid as well.

• The partial fitness of each group is then evaluated by averaging the
absolute error between values in dataset and from local approximation,
both with respect to points in the reference set.

When all partial fitness are evaluated for all groups, a global metric is
finally applied ignoring non-valid partial fitness values. This metric penalizes
LPDE individuals that have groups with those non-valid values.

6.4 Examples

Two examples of fitness evaluation are addressed here, one from an under-
damped oscillator problem and the other from a Poisson equation for electro-
statics.
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Expected solution

Piecewise polynomial approximations

Piecewise domain boundary

Figure 6.3: Overlap of solution plot and piecewise approximations for the
under-damped oscillator problem; overall fitness evaluated as 4 10−4. (top) All
13 piecewise domains and approximations. (low left) Approximation over the
2nd considered domain. (low center) Approximation over the 7th considered
domain. (low right) Approximation over the 11th considered domain.

Under-damped oscillator The same under-damped oscillator problem in
Section 4.4 is used here as a numerical example. For this example, Equa-
tion (4.10) has been simulated in order to sample some points (respective
displacements in function of time) to build from scratch a dataset file. A total
of 30 points were sampled. The achieved data file was presented to the im-
plemented fitness scheme. After the preparation stage, a total of 13 groups of
points were evaluated.

Results could be seen in Figure 6.3. Table 6.2 presents the TGE coefficients
for 13 piecewise polynomial approximations of 5th degree. Fitness was evalu-
ated as 3.61 10−4 when adopting 29 = 512 points for Monte Carlo integration.

Poisson electrostatic A second example is the same Poisson equation for
electrostatics problem in Section 4.4. For this example, Equation (4.16) has
been simulated in order to sample some points (respective electrostatic poten-
tial in function of radius) to build from scratch a dataset file. A total of 30
points were sampled. The achieved data file was presented to the implemented
fitness scheme. After the preparation stage, a total of 13 groups of points were
evaluated.

Results could be seen in Figure 6.4. Table 6.3 presents the TGE coefficients
for 13 piecewise polynomial approximations of 5th degree. Fitness was evalu-
ated as 7.44 10−6 when adopting 29 = 512 points for Monte Carlo integration.

72



6.4. Examples

Table 6.2: TGE coefficients retrieved for the under-damped oscillator example,
each set related to one of 13 groups of points.
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ũ
3

ũ
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Table 6.3: TGE coefficients retrieved for the Poisson electrostatics example,
each set related to one of 13 groups of points.

D
om

ai
n

#
In

te
rv

al
φ̃
0

φ̃
1

φ̃
2

φ̃
3

φ̃
4

φ̃
5

1
[0
.2
17
8,

1.
38
61

]
0.
71
22
−
0.
09
81
−
0.
01
55

0.
00
33

8.
06

10
−
5
−
4.
88

10
−
5

2
[0
.8
51
0,

1.
70
56

]
0.
62
43
−
0.
08
94
−
0.
00
13

0.
00
11
−
6.
05

10
−
5
−
5.
14

10
−
6

3
[0
.9
29
8,

2.
36
69

]
0.
54
99
−
0.
14
40

0.
00
64

0.
00
32
−
5.
76

10
−
4
−
8.
09

10
−
7

4
[1
.6
08
5,

3.
18
10

]
0.
41
88
−
0.
12
03

0.
01
60
−
1.
66

10
−
4
−
3.
94

10
−
4

6.
97

10
−
5

5
[1
.7
39
9,

4.
48
25

]
0.
33
93
−
0.
14
73

0.
03
67

−
0.
00
54
−
5.
69

10
−
4

4.
59

10
−
4

6
[2
.7
03
4,

4.
74
70

]
0.
27
52
−
0.
07
64

0.
01
37

−
0.
00
20

1.
81

10
−
4

5.
62

10
−
6

7
[3
.4
37
5,

5.
35
49

]
0.
23
12
−
0.
05
10

0.
00
75
−
9.
65

10
−
4

1.
11

10
−
4
−
9.
64

10
−
6

8
[4
.5
60
4,

5.
73
14

]
0.
19
52
−
0.
02
23

0.
00
17
−
1.
16

10
−
4

7.
58

10
−
6
−
4.
66

10
−
7

9
[5
.3
32
5,

6.
57
54

]
0.
16
86
−
0.
01
76

0.
00
12
−
7.
73

10
−
5

4.
66

10
−
6
−
2.
71

10
−
7

10
[5
.4
29
6,

7.
50
67

]
0.
15
60
−
0.
02
52

0.
00
27
−
2.
63

10
−
4

2.
48

10
−
5
−
2.
23

10
−
6

11
[6
.0
59
6,

7.
96
34

]
0.
14
35
−
0.
01
96

0.
00
18
−
1.
46

10
−
4

1.
15

10
−
5
−
8.
74

10
−
7

12
[6
.9
23
2,

9.
14
20

]
0.
12
53
−
0.
01
74

0.
00
16
−
1.
34

10
−
4

1.
08

10
−
5
−
8.
33

10
−
7

13
[7
.8
13
8,

9.
96
17

]
0.
11
31
−
0.
01
37

0.
00
11
−
8.
07

10
−
5

5.
66

10
−
6
−
3.
82

10
−
7

74



6.5. Discussion

1 2 3 4 5 6 7 8 9 10
✁0.5

0

0.5

1

(a)

Expected solution

Piecewise polynomial approximations
Piecewise domain boundary [a

i
,b

i
]

2 4 6 8 10
✁0.5

0

0.5

1

(b)
2 4 6 8 10

✁0.5

0

0.5

1

(c)
2 4 6 8 10

✁0.5

0

0.5

1

(d)

Figure 6.4: Overlap of solution plot and piecewise approximations for the
Poisson electrostatics problem, overall fitness evaluated as 7.44 10−6. (top) All
13 piecewise domains and approximations. (low left) Approximation over the
2nd considered domain. (low center) Approximation over the 7th considered
domain. (low right) Approximation over the 11th considered domain.

6.5 Discussion

In this section, a fitness evaluation scheme is presented. As shown, some issues
addressed by discussions in the latter chapter are exploited here as advantages
to the proposed scheme.

Domains of calculation tend to be small because of grouping strategy
adopted (closer points to be taken as needed groups), as long as there are
enough points in the database to represent the phenomenon to be modelled.
Being so allows to use small degrees in order to perform a piecewise polynomial
approximation. The existence of the “extra” group allows to deal with defi-
cient matrices with a higher probability of transforming them into well-posed
problems.

Examples shown in this chapter indicate the feasibility of the proposed
scheme. Although presented examples are LODEs, in the next chapters a first
time automate solved LPDE example constitutes an important result to this
thesis.
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Chapter 7

System Modelling program

7.1 Background

In this section, some key subjects for the GP implementation are discussed.
This is a preliminary implementation to investigate how the proposed method
behaves when guiding evolution of LPDE models.

Representing a LPDE

To this project, an individual means a differential model candidate, i.e., a
LPDE in its residual form. In order to evolve models for a system of interest,
a proper representation should be adopted in order to enable an evolution-
ary algorithm to operate on them. Also, as starting from linear differential
equations paradigm, models under analysis here need to be linear. The way
of ensure this requirement is to fix a macro structure to protect an individ-
ual randomly built from being a non-linear PDE (in which case the proposed
method would fail to evaluate). To fit this requirement, a fix-sized vector de-
pendent on the number of independent variables and the maximum order for
the differential of randomly built coefficients is here designed.

Figure 7.1 presents an example of representation that means the differen-
tial equation: [5 cos (πx)] · ∂2

∂y2
u(x, y) + [−2.5] · ∂

∂x
∂
∂y
u(x, y) +

[

exp
(

−y

2

)

+ x
]

·
∂
∂y
u(x, y)+[1]·u(x, y) = sin (πx) cos (πy). Note that each coefficient is an alge-

braic abstract syntax tree (AAST), either a constant, a linear or a non-linear
function, and is supposed to be built at random. Those coefficients populate
a fix-sized vector. This vector has the length of N⋆+1 — from Equation (5.2)
plus 1 element to get the source function s(x⃗) itself — and holds elements
that are mainly coefficients for a set of derivatives whose individual orders are
based on powers matrix up to user’s definition. In this present example, user
has defined models of order 2 with respect to a system whose measurements
covers 2 independent variables (x, y). Those decisions will affect the powers
matrix presented in Algorithm 3 and reflect to the size of the vector.

Therefore, by using this developed representation, allows the proposed
scheme for evaluation of models is allowed to work with any instance of evolu-
tionary algorithms. Some modifications should be applied if the EA in question
does not support variable sized individuals. As an example, if one wants to
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7.1. Background

Figure 7.1: An example of model candidate representation, a vector of
AAST’s. This example represents the LPDE [5 cos (πx)] · ∂2

∂y2
u(x, y) + [−2.5] ·

∂
∂x

∂
∂y
u(x, y) +

[

exp
(

−y

2

)

+ x
]

· ∂
∂y
u(x, y) + [1] · u(x, y) = sin (πx) cos (πy) and

each coefficient (an AAST) is supposed to be built at random for a determin-
istic vector which length and element meanings are based on user’s definition
of order 2 for differentials regarding a system whose measurements covers 2
independent variables (x, y).

use this with classic Genetic Algorithm, it is enough to fix all coefficients as
being constants. This work, however, uses Genetic Programming to show the
full potential of the proposed method.

Genetic Operators

Based on individuals representation, some genetic operators had to be devel-
oped in order to perform individual structural changes at random and generate
a new individual. There are basically two types of operators within an evolu-
tionary cycle, those ones who operate on a single individual (unary) and those
ones who operate multiple individuals. For this project, the latter type was
defined to operate just on two individuals (binary).

Starting from binary operations, this implementation has three equiprob-
able variants here named as type-I recombination, type-II recombination and
type-III recombination. Those are presented in Figure 7.2.

When binary operations is randomly chosen to be applied, two individuals
to be known as “parents” are selected by a proper method. During the opera-
tion, a third individual, named as “offspring”, is then created. Note that if the
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7. System Modelling program

Figure 7.2: Types of binary operators. Shaded elements represent random
chosen points for operations. (left) Type-I recombination. (center) Type-II
recombination. (right) Type-III recombination.

application of binary operators fail to occur, one of the selected individuals is
copied as is to the next generation. This copy operation is called reproduction.

Type-I recombination is based on the classic recombination from GP, here
adapted to the described individual representation. Each allele (element from
the vector of AASTs) is then checked against a proper probability1. If it is
allowed, both AASTs placed on that allele position, one from the first parent
and other from the second one, have to exchange sub-trees. The nodes to
be exchanged are randomly chosen once per parent, with 90% probability of
selection an internal node.

Type-II recombination is based on the classic one from Genetic Algorithms.
Each allele is checked against a proper probability. If it is allowed, both parents
exchange their entire AASTs in the same indicated allele position. Note that
the crossover operator could be mimicked by recombination, if both parents
had their randomly chosen nodes being their respective AAST roots.

1The scheme adopted here has a long term average of one allele chosen per individual.
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7.1. Background

Figure 7.3: Types of unary operations. Shaded elements represent random
chosen points for operations. (left) Classic-like mutation. (center) Mutation
by pruning. (right) Mutation by permutation.

Type-III recombination is a disruptive operator at some level, used here to
raise diversity. Its behaviour is the same as the type-II, but the alleles from
both parents could be different. Note that the type-II recombination operator
could also be mimicked by bartering, once the separated choice of alleles for
both parents ends up to be of the same position.

Note that all binary variants generate two offspring. This project assumes
to discard one of them at random to ensure that every genetic operator, no
matter if binary or unary, generates only one new individual.

As unary operations, this implementation has also three equiprobable vari-
ants: the classic-like mutation, mutation by pruning and mutation by permu-
tation. Those are presented in Figure 7.3.

Classic-like mutation is based on classic mutation from GP. A node from
the AAST in the elected allele is randomly chosen to be replaced by a random
built AAST. The choice of which node is selected to be modified follows the
classic GP probability: 90% of being an internal node and 10% of being a leaf.
Tendency is to the growth of the tree.

Mutation by pruning is similar to mutation, but essentially different. In-
stead of substituting a random chosen node by a new AAST, this operator
substitutes it by the zero terminal (constant). A special case needs to be
delineated when the elected allele is but the two first ones (the ones represent-
ing the source function and the coefficient of the unknown solution without
derivatives). This operator counts how many of the alleles containing deriva-
tive terms are already zero. If all of those alleles are zero, pruning makes the
substitution by the constant 1 instead of 0, to preserve the LPDE nature of
the model.
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7. System Modelling program

Mutation by permutation is similar to type-III recombination, but the two
alleles to exchange AASTs belong to the same individual. The elected allele is
exchanged by another randomly chosen one.

7.2 GP preparation step

This project assumes as the terminal set some useful constants to support a
wide range of problems: {−1, 0, 1, 2, 3, π }. User is also invited to augment
the terminal set with known constants from the system of interest, e.g., accel-
eration of gravity, body mass, Rayleigh factor, spring constant. Note that this
work is limited to real numbers.

The function set has all basic operators: {+, −, ×, ÷}. Some other com-
mon functions are included, some in their unary versions, others encapsulating
more than one function:

• NEG(x) = −1 x

• INV(x) = 1
x

• POW2(x) = x2

• POW3(x) = x3

• EXPn(x) = exp(−x)

• SQRT(x) =
√
x

• CBRT(x) = 3
√
x

The adoption of such set was due to both the need of those functions and
the the numerical instability they bring to automated modelling. For example,
if exp(x) is adopted, a tree as ee

e2 → ∞ becomes undesirably possible. By
user’s discretion, other functions could be joint to this set. Note that all
functions with singular points in the domain has been protected. This means
that every time a function returns an invalid value, the protected function
returns the value 1. No corruption of the final individual is sensible, however,
due to the fact that evolved solutions are simplified before presentation to the
user and the simplification technique was built to incorporate the protected
versions of those functions.

Selection of parents is performing using the tournament method, i.e., some
arbitrary number of individuals (three by default here) are chosen at random
and the one with the best fitness wins, turning himself into the first parent.
This procedure is repeated to retrieve a second parent. From a point of view
of evolution, this method is very useful for tuning evolutionary pressure.

Reduction is performed by two possible methods, chosen at random. The
first method is to discard the entire population of parents and keep the offspring
as the next generation. The best individual is always kept, though. This
method inflicts a very low evolutionary pressure. The second method is to go
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7.3. GP run

through the list of parents side-by-side with the list of offspring and, for each
pair, the best of the two is kept for the next generation. This inflicts a mild
evolutionary pressure.

Initial population strategy for randomly build initial candidates, as classic
GP, is 50% grow and 50% full per each allele.

Parameters for the GP: (a) number of individuals in the population; (b)
probability for binary genetic operations; (c) probability for unary genetic op-
erations; (d) number of individuals to participate a tournament; (e) maximum
depth for initial AASTs; (f) maximum number of generations.

Parameters for CASM: (a) number of Monte Carlo random points for in-
tegration purposes; (b) the desired polynomial degree for approximations; (c)
expected differential order for the solution.

The termination criteria adopted here is a predetermined maximum number
of generations or when the standard deviation for the entire population fitness
keeps unchanged for a significant number of generations.

7.3 GP run

A GP run of the proposed CASM would be:

1. Perform the stages of preparation to fitness (see Chapter 6), i.e., inform
the polynomial degree for approximations, the maximum order for dif-
ferentials and the file name of the dataset; the load the datafile; retrieve
the number of independent variables; separate points from dataset into
groups; identify minima and maxima coordinates for each group; gen-
erate a large set of pseudo random numbers; define and evaluate basis
functions and respective derivatives with respect to the random points.

2. Initialize population at random, generating differential model candidates.

3. Perform the fitness evaluation for the initial population.

4. Initiate the evolutionary cycle.

5. Generate offspring population by applying binary and unary genetic op-
erators to individuals in the parent population.

6. Perform the fitness evaluation for the offspring.

7. Reduce population to its initial number of individuals.

8. Gather control data from the new population.

9. Verify if there is a match for termination criteria; if there is not, return
to item 4.

10. Return the best fitness individual as the proposed differential model to
explain dataset.
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7. System Modelling program

7.4 C++ supporting classes

In order to implement the CASM desired application in C++, some supporting
classes were developed:

• cPRNGXS.h, a class to produce pseudo random number generators, based
on xorshift*64 and xorshift*1024 [83].

• cAAST.h(⋆) and cexpAAST.h(⋄), classes to implement Algebraic Abstract
Syntax Trees (AAST), from scratch. Possible nodes2 are:

– Constants ⋆: arbitrary real numbers;

– Variables ⋆: identified by sub-indices of the x symbol (e.g., x0, x1);

– Operators ⋆: the four arithmetic operators – plus, minus, division,
and product;

– Functions ⋆: trigonometric, mathematical or user defined ones;

– Unknown functions ⋄: this special node represents the multivariate
function (with respect to all related variables) that is the solution
of the desired partial differential model;

– Derivatives ⋄: this node represents a derivative operator of any
order;

– Unknown constant ⋄: represents the coefficients of the TGE, the
unknowns of the custom system of equations.

– Polynomials ⋄: to represent Jacobi polynomials in a nutshell.

• cMatrix.h, a class to implement matrices and linear algebra operations
and operators, based on BLAS and LAPACKE libraries for C++.

• prepareData.h, a class designed to read ASCII data file and prepare
points and measurements to the fitness evaluation procedure.

• cFitness.h, a class to encapsulate the proposed fitness scheme by itself
(see Chapter 6).

• GenProg.h, a simple class to implement dedicated procedures to support
a simple Genetic Programming application based on AASTs.

• myfun.h, a general class to host several supporting functions, as the
pochhammer symbol, integer partition, etc.

All those classes were designed to keep the programmer in control of the
full process. Some of them depends on the others, others are independent
for arbitrary uses. Their hierarchical order is: myfun → prepareData →
cAAST/cexpAAST → cMatrix → cPRNGXS → cFitness → GenProg. So, to
develop a Genetic Programming application to be used as a CASM tool, is
enough to just include GenProg. Note that classes myfun, cAAST, cMatrix
and cPRNGXS could be used independently for purposes other than the original
ones. Also, those classes should be understood as prototypes provided “as is”.

2After changing the calculation strategy to matrices, some of those nodes became useless.
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7.5 Discussion

Results and discussion for the implemented GP subject of this chapter are
presented in the next chapter.
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Chapter 8

Results and Discussion

8.1 Outline

In this chapter, are presented: (a) preliminary results from the GP CASM
tool is presented; (b) electronic address from the repository where one can
find source codes used in this thesis; (c) discussions about contributions; (d)
indications for future works.

8.2 GP for system modelling

In this section, some details on implementation and GP execution are shown,
as well as some preliminary results which indicates the potential of CASM for
LPDE models through GP.

Computational environment

All examples in this thesis were executed in a Intel Core I7-3770 CPU @

3.40GHz machine, 8Gb RAM memory, running Ubuntu 14.04LTS 64bits with
3.16.0-46-generic kernel.

Preliminary results

A simple concentration problem is presented, adapted from [84]:

PDE ux + ut = 0 (8.1)
IC u(x, 0) = cos(x) (8.2)

The known solution for this problem is shown in Equation (8.3).

u(x, t) = cos(x− t) (8.3)

For this example, Equation (8.3) has been simulated in order to sample
some points at random to build a dataset file from scratch. A total of 30 points
were sampled from the domain 0 ≤ x ≤ 3, 0 ≤ t ≤ 3. The achieved data file
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8.2. GP for system modelling

was presented to the implemented fitness scheme. After the preparation stage,
a total of 13 groups of points were evaluated.

Chosen parameters for the GP run:

• number of individuals in the population: 100

• probability for pairwise genetic operations: 90% (10% reproduction)

• probability for oneself genetic operations: 20%

• number of individuals to participate a tournament: 3

• maximum depth for initial AASTs: 7

• maximum number of generations: 30

This simple example has converged to the correct differential model (

D_x0 ( UX ) + D_x1 ( UX ) ) in approximately 18 minutes. The proposed
method to fitness evaluation had to perform 3000 times with little effort be-
cause of the low polynomial degree (3rd degree), a low differential order prob-
lem (1st order) and a relative small set of random points for Monte Carlo
integrations (29 ≈ 500points).

Figure 8.1 shows the register from the best individual fitness for every
generation, i.e., the path for evolution to find the solution. Plot for mean
population fitness is not included due to the high variability presented. Results
could be seen in Figure 8.2. Table 8.1 presents the TGE coefficients for 9
piecewise polynomial approximations of 3rd degree. Fitness was evaluated as
3.36 10−3 when adopting 29 = 512 points for Monte Carlo integration.

A non-convergent example

There was an attempt to model the system described in Equation (4.15), the
Poisson equation for the spherical symmetric electrostatic potential. However,
the Genetic Programming was not successful to converge to a fine solution.
Results achieved a fitness between 5 10−4 and 2 10−3. The correct solution has
a fitness of 7 10−6 (see Figure 6.4).

A test was then performed in order to verify if the proposed method was
compromised. The PDE known to be the solution was inserted into the initial
population to check if it could be either dumped or degenerated over gen-
erations. The result, however, was very promising. The inserted individual
reached the termination criteria as the proposed solution to this model. This
fact points out that the convergence problem lays down on the missing proper
tuning for the Genetic Programming application. Migration to a more robust
Genetic Programming framework, as EASEA (see Appendix C), is predicted
for the near future.
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Figure 8.1: Plot for the best individual fitness through generations. Note that,
in this very example, the convergence to the solution is already stabilized by
the 25th generation.
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Table 8.1: TGE coefficients retrieved for the concentration bi-dimensional
example, each set related to one of 9 groups of points.
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8. Results and Discussion

Figure 8.3: White Gaussian noise (WGN) added to signal. (a) Half-period sine
signal, no noise added. (b) WGN 100dB added to signal; error distribution
with mean ē = 4.25 10−7 and standard deviation s = 4.25 10−7. (c) WGN
50dB; ē = 8.08 10−5, s = 2.24 10−3. (d) WGN 40dB; ē = 1.58 10−3, s =
7.33 10−3. (e) WGN 25dB; ē = −9.21 10−4, s = 3.81 10−2. (f) WGN 10dB;
ē = −3.34 10−2, s = 2.05 10−1.

8.3 Noise added data

This work adopts white Gaussian noise (WGN), defined by its signal-to-noise
ratio (SNR), to be added to all mathematical generated data in order to
simulate tolerated measurement errors. The MATLABR⃝1 software has im-
plemented the awgn command, here used by the author with the argument
’measured’ to generate WGN added data.

Some advantages on this approach relies on the fact that SNR could be
understood by its order of magnitude rather than by its parameters or absolute
values. Also, a normal distribution is ensured. Figure 8.3 presents some plots
where white Gaussian noises with different SNR’s were added to a half-period
sine signal. The noise both mean and the standard deviation are highlighted
for each plot. This approach tends to be very disruptive when dealing with a
small number of points as in the present example, but it could give a fair idea
on how measurement errors could affect the proposed method.

In Table 8.2 the impact of noise added to data can be unveiled. Column
“WGN [dB]” indicates the level of noise in decibels that was added to the sim-
ulated data. Column “Fitness for the known model” presents the evaluated
fitness for the known model ( D_x0 ( UX ) + D_x1 ( UX ) ) when evalu-
ated using both the noise added data and 222 = 4 194 304 random points to
Monte Carlo integration. Column “Possible convergence of GP” indicates if the
GP successfully achieved the known model during performed test runs. Note

1See http://www.mathworks.com/products/matlab/ for more information.
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Table 8.2: Preliminary results for noise added data.

WGN [dB]
Fitness for Possible Known model

the known model GP convergence evolved [%]

100 1.40 10−3 yes 60.0%
50 6.64 10−3 yes 46.7%
40 4.46 10−2 yes 40.0%
25 0.958 no 0.0%
10 0.700 no 0.0%

that this column also reflects the fact that even when GP did not converge to
the known model, it also did not achieve another model with a better fitness
than the one evaluated in the second column. Also, note that GP is supposed
to evolve the residual form of the LPDE, so it is feasible that an evolved model
could present multiples of the known coefficients and actually be the known
model before normalization. For example:

2 x0
d

dx0

u(x0, x1) + 2 x0
d

dx1

u(x0, x1) = 0

is equal to the known model if normalized by dividing all coefficients by a
factor of 2 x0. With this in mind, column “Known model evolved” presents the
percentage in 15 runs that GP actually evolved the known model, even that
the result had to be normalized.

When using 100dB, 50dB or 40dB WGN to add to the original simulated
data, GP is successful in achieving the known model. The 3rd degree poly-
nomial approximation adopted here is part of the explanation, as well as the
scheme to ensure well-conditioned matrices. Both WGN with 25dB and 10dB
examples guided the evolution of expressions with non-zero coefficients for
terms D_x0 ( UX ), D_x1 ( UX ), UX as well as a non-zero source function.
This could be explained as GP trying to model the error as if the error is part
of the phenomenon.

Returning to Figure 8.3, it is fair to understand both mean and standard
deviations as percentages, once the maximum value for the clean signal is the
unity. Regarding preliminary results from Table 8.2, an empirical lower limit
of 40dB is there indicated for the data SNR to enable GP to evolve consistent
models. Analysing both informations together for the case study, it is feasible
here to assume that a tolerance of 0.1% with respect to the maximum value
of measurements (order 10−3 to the unity) would not invalidate the possibility
of evolving a proper model by the implemented GP.

8.4 Repository

All source codes related to this work are available in the following Github
repository: https://github.com/iperetta/system-modelling/. The fol-
lowing resources are available:
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• A MATLAB function to solve LPDEs with a simple text interface to
data input;

• Source files for the Genetic Programming application implemented in
C++;

• Database files (.TXT) used in this thesis, as examples.

To compile the C++ code, download all related files, go to the proper folder
and use the command:

g++ -std=c++0x -o EXECNAME FILENAME.CPP -llapacke -lblas

Note that LAPACK and BLAS must be installed in the host system. Run
the executable with the indicated parameters.

8.5 Discussion on contributions

Recovering contributions in Section 1.4, this work could address to those
through the course of its pages.

About a novel approach to the Ritz-Galerkin method to approximate solve
linear differential equations, Chapters 4 and 5 present the proposed method
first applied to LODEs, then generalized to LPDEs. Some issues are also
addressed and the method is shown to solve linear differential problems of
different types.

About a generic scheme to a computer-automated numerical solver for lin-
ear partial differential equations (ordinary ones included) using polynomial
approximations for the differential solution, the same Chapters 4 and 5 cover
the proposed method and how it can be used as a numerical solver for PDEs
of any order.

Regarding some non-linear differentials, the same proposed method here
could be extended to handle some types of them, in special the ones that
turn out to have polynomial-like unknowns. To explain this idea, note that
terms which have a product of derivatives or a power of the solution define a
non-linear PDE. Examining terms like these:

[ u(x⃗) ]2 or u(x⃗)
∂

∂x
u(x⃗),

it could be demonstrated that the matrix formulation of the proposed method
reflects such terms as multivariate polynomial unknowns

(

ũn
0 , ũn−1

0 ũ1, ũn−2
0 ũ2

1, . . . ũn
1

)

.

There are some widely known strategies and numerical methods to solve sys-
tems of non-linear equations. However, the work of [85] brings up linear algebra
to solve systems of polynomial equations, and that is the case here. Note that
even powers matrix could be useful to control powers of unknowns. More
investigation is needed though.
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8.6. Indications for future works

Finally, a dynamic fitness evaluation scheme to be plugged into evolution-
ary algorithms to automatically solve generic linear differential equations and
evaluate model candidates, Chapter 6 shows the fitness evaluation scheme pro-
posed here. This scheme exploits some characteristics of the proposed method.
Chapter 7 then presents a preliminary application based on GP which uses the
proposed scheme. Promising results show indeed that the proposed method
supports GP to perform CASM.

Throughout this process, all necessary mathematical developments were
done in order to enable the proposed method to benefit from parallelism.

Finally, a list of published works could be found in Appendix A.

8.6 Indications for future works

Those are subjects related to this research still to be explored:

a.) Exploit parallel paradigms in order to benefit from high performance com-
puting (see Appendix B).

b.) Integrate the proposed method to a more robust massively GP platform,
as EASEA-CLOUD (see Appendix C), to benefit from high performance
computing parallelism.

c.) Investigate the impact of exchanging Monte Carlo integration by a similar
one like quasirandom Monte Carlo.

d.) Include in this work and future ones the support for vector fields.

e.) Include support for complex numbers and understand their impact in some
systems.

f.) Regarding the fact that some types of systems requires more than one PDE
(a set of) as models, implement support for those.

g.) Understand how to use Linear Algebra to solve polynomial system of equa-
tions [85] in order to expand the present work to achieve solutions for
certain class of non-linear differential equations, e.g., Navier-Stokes.

h.) Investigate other orthogonal functions to work as complete basis for the
proposed method. For example, Fourier-like series as sin(x) and cos(x)
form a complete orthogonal system over [−π, π ] and could be defined as:

f(x) =
a0
2

+
∞
∑

n=1

an cos(nx) +
∞
∑

n=1

bn sin(nx)

where































a0 = 1
π

π
∫

−π

f(x) dx

an = 1
π

π
∫

−π

f(x) cos(nx) dx

bn = 1
π

π
∫

−π

f(x) sin(nx) dx
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8. Results and Discussion

Besides the fact that trigonometric functions are numerically expansive,
maybe some properties could be found in order to enhance the quality of
approximations.
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Appendix A

Publications

Here is a list of published works related to this thesis:

• Peretta, I. S.; Yamanaka, K.; Bourgine, P. and Collet, P. Proposal and
Preliminary Investigation of a Fitness Function for Partial Differential
Models. In : Genetic Programming, Lecture Notes in Computer Science,
Springer International Publishing, 2015, 9025, 179-191. DOI : 10.1007/
978-3-319-16501-1_15

• Peretta, I. S.; Yamanaka, K. and Collet, P. From Measure Data to Eval-
uation of Models: System Modeling through Custom Galerkin-Jacobi,
IEEE Latin America Transactions, 2015, 13, 1556-1561. DOI : 10.1109/
TLA.2015.7112015

And a list of other works published during doctoral studies:

• Pais, M. S.; Peretta, I. S.; Yamanaka, K. and Pinto, E. R. Factorial design
analysis applied to the performance of parallel evolutionary algorithms,
Journal of the Brazilian Computer Society, 2014, 20:6

• Mendes Lima, G.; Lamounier, E. A.; Barcelos, S.; Cardoso, A.; Peretta,
I. S.; Rigon, E. and Sadaiti Muramoto, W. A TEO-Based Algorithm
to Detect Events Over OTDR Measurements in FTTH PON Networks,
IEEE Latin America Transactions, 2013, 11, 886-891

• Tavares, J. A.; Peretta, I. S.; de Lima, G. F. M.; Yamanaka, K. and
Pais, M. S. SLPTEO e SCORC: abordagens para segmentação de linhas,
palavras e caracteres em textos impressos; Avanços em Visão Computa-
cional, Omnipax, 2012, 239-264
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Appendix B

Massively Parallel Programming

B.1 GPGPU

Historically1, the first GPUs were designed to act as graphics accelerators, sup-
porting only specific fixed-function pipelines. In the late 1990s, the hardware
became increasingly programmable, culminating in 1999 with NVIDIA R⃝’s first
GPU. Less than a year after, the GPGPU movement had dawned: researchers
were exploring the technology in their works, specially due to its floating
point performance. As stated by [86], “modern GPUs now include fully pro-
grammable processing units that support vectorized floating-point operations
on values stored at full IEEE single precision”. Today, there are also GPUs
that have included full IEEE double precision.

Modern NVIDIA R⃝ GPGPUs typically contain up to several hundred cores.
Newer versions released up to 2015 can contain more than five thousands
cores (e.g., Tesla K80 has 4992 CUDA cores, while GTX Titan Z has 5760
cores). Due to the fact that those cores have a size and transistor thinness
comparable to conventional multi-cores processors, the increasing number of
cores is possible through the simplification of the whole processor, e.g. by
the differences on the structuring of cores. Owens et al. [86], in their survey,
explain the reason for graphics hardware performance to increase faster (and
getting faster quickly) than that of CPUs as semiconductor capability increases
at the same rate for both platforms:

The disparity can be attributed to fundamental architectural
differences: CPUs are optimized for high performance on sequential
code, with many transistors dedicated to extracting instruction-
level parallelism with techniques such as branch prediction and
out-of-order execution. On the other hand, the highly data-parallel
nature of graphics computations enables GPUs to use additional
transistors more directly for computation, achieving higher arith-
metic intensity with the same transistor count.

Simply describing, NVIDIAR⃝ GPGPUs use the parallelism principle of
vector computation, where units are grouped around a single instruction unit

1“History of GPU Computing” at http://www.nvidia.com/object/cuda_home_new.

html
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B.2. CUDA platform

[style=example]

void saxpy_serial(int n,

float a,float *x,float *y)

{

for (int i = 0; i < n; ++i)

y[i] += a*x[i];

}

// Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

[style=example]

__global__ void saxpy_serial(int n,

float a,float *x,float *y)

{

int i = blockIdx.x*blockDim.x +

threadIdx.x;

if (i < n) y[i] += a*x[i];

}

// Perform SAXPY on 1M elements

saxpy_serial<<<4096,256>>>(n, 2.0, x, y);

Figure B.1: Example on CUDA C. (left) Standard C Code; (right) Parallel C
Code; adapted from website http://www.nvidia.com

which decodes instructions that the group of cores will execute. This implies
that at most one instruction is decoded at each cycle and is applied to all cores
together, commonly on different data, configuring a SIMD2 architecture in
Flynn’s taxonomy. This is the parallel paradigm when programming GPGPUs.

Inventive uses by developers of an increasing GPGPU’s flexibility scenario
have enabled diverse applications (others than the original ones for which
GPUs were designed) to experience parallelism. Massively parallel program-
ming aims to deal with huge amounts of calculations within a feasible execution
time. GPGPUs have a great performance per cost ratio and a high theoreti-
cal peak computing power, turning them into a very likely choice when going
massively parallel.

B.2 CUDA platform

CUDA is the development framework created by NVIDIAR⃝ in 2006 to inte-
grate their GPGPU hardware to a programming model that extends C/C++
with data-parallel constructs. According to the official website3 “The CUDA
parallel computing platform provides a few simple C and C++ extensions that
enable expressing fine-grained and coarse-grained data and task parallelism.”
Figure B.1 shows an example on programming using CUDA extesions to C.

2Acronym for Single Instruction, Multiple Data.
3http://www.nvidia.com/cuda
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Appendix C

EASEA Platform

When dealing with EAs, one issue permeates all discussions: how fast is this
technique to be applied to a certain type of problem. The fact that EAs are
essentially parallelizable needs to mean something. Obviously, this is not a
simple answer. However, technology has provided some gadgets which allow
the improvement of the speed-up for such heuristics. CUDA framework and
GPGPU card by NVIDIA R⃝ are the technologies to be investigated in the near
future.

EAsy Specification of Evolutionary Algorithms (EASEA) is a platform de-
signed to help with the creation of evolutionary algorithms. It has been devel-
oped since 1998 [87]. EASEA platform is currently supported by the SONIC
(Stochastic Optimisation and Nature Inspired Computing) group of the BFO
team at Université de Strasbourg. The GP framework of EASEA platform is
our current choice to manage EA.

According to its official website1,

EASEA is an Artificial Evolution platform that allows scientists
with only basic skills in computer science to exploit the massive
parallelism of many-core architectures in order to optimize virtu-
ally any real-world problems (continous, discrete, combinatorial,
mixed and more (with Genetic Programming)), typically allowing
for speed-ups up to ×1,000 on a $5,000 machine, depending on the
complexity of the evaluation function of the inverse problem to be
solved.

More details on the scope of the EASEA project can be found in the works
of [88, 89].

The modern version of EASEA was developed for the PhD thesis of Maitre [75],
using CUDA C/C++ programming language. It aims to enable the efficient
use of massively parallel machines equipped with one or several GPGPU cards
for the execution of parallel EAs. Also, the EASEA-CLOUD version[89] is
something to look for.

This work could strongly benefit from EASEA abilities by integrating a
PDE solver that could be used to model complex systems. The GP framework

1http://easea.unistra.fr/easea/index.php/EASEA_platform
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[style=CPP]

\GenomeClass::evaluator :

float Score= 0.0;

Score= Weierstrass(Genome.x, SIZE);

return Score;

\end

Figure C.1: Example of EASEA syntax for specification of a Genome Evaluator

will be handled by EASEA, but a proper individual representation is also
object of studying. Another important subject, the fitness evaluator module
will need to be supported by the solver. The programming language adopted
is a dedicated one, mainly based on C++ templates. The solver must be a
C++ function, though. To work in “modules” allows EASEA to handle them
together. One can find more details about this in [75], or in the official web
site1. Figure C.1 shows an example of a Genome Evaluator specified in EASEA
syntax.
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