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Résumé

Cette these étudie le raffinement local de maillage & la fois en espace et en temps pour
I’équation de I’elastodynamique du second ordre pour le calcul haute performance. L’ob-
jectif est de mettre en place des méthodes numériques pour traiter des hétérogénéités de
petite taille ayant un impact important sur la propagation des ondes. Nous utilisons une
approche par éléments finis de Galerkin discontinus avec pénalisation pour leur flexibilité
et facilité de parallélisation. La formulation éléments finis que nous proposons a pour
particularité d’étre élasto-acoustique, pour pouvoir prendre en compte des hétérogénéités
acoustiques de petite taille. Par ailleurs, nous proposons un terme de pénalisation opti-
misé qui est mieux adapté a I’équation de I’élastodynamique, conduisant en particulier a
une meilleure condition CFL. Nous avons aussi amélioré une formulation PML du second
ordre pour laquelle nous avons proposé une nouvelle discrétisation temporelle qui rend la
formulation plus stable. En tirant parti de la p-adaptivité et des maillages non-conformes
des méthodes de Galerkin discontinues combiné & une méthode de pas de temps local,
nous avons grandement réduit le cofit du raffinement local. Ces méthodes ont été implé-
mentées en C++, en utilisant des techniques de template metaprogramming, au sein d’un
code paralléle & mémoire distribuée (MPI) et partagée (OpenMP). Enfin, nous montrons
le potentiel de notre approche sur des cas tests de validation et sur des cas plus réalistes
avec des milieux présentant des hydrofractures.

Mots clefs: élastodynamique, Galerkin discontinu, raffinement spatio-temporel, mail-
lage cartésien, non-conforme, pas de temps local, couplage élasto-acoustique, hydrofrac-
ture, hpc, OpenMP, MPI, PML, IPDG, stabilité, schéma hp

Abstract

This thesis studies local mesh refinement both in time and space for the second order elas-
todynamic equation in a high performance computing context. The objective is to develop
numerical methods to treat small heterogeneities that have global impact on wave propa-
gation. We use an internal penalty discontinuous Galerkin finite element approach for its
flexibity and parallelization capabilities. The elasto-acoustic finite element formulation we
discuss is elasto-acoustic in order to handle local acoustic heterogeneities. We also pro-
pose an optimized penalty term more suited to the elastodynamic equation that results in
better CFL condition. We improve a second order PML formulation with an original time
discretization that results in a more stable formulation. Using the p-adaptivity and non-
conforming mesh capabilities of discontinuous Galerkin methods combined with a local
time stepping method, we greatly reduce the high computational cost of local refinements.
These methods have been implemented in C++, using template metaprogramming, in a
distributed memory (MPI) and shared memory (OpenMP) parallel code. Finally, we show
the potential of our methods on validation test cases and on more realistic test cases with
medium including hydrofractures.

Keywords: elastodynamic, discontinuous Galerkin, spatio-temporal refinement, Carte-
sian mesh, non-conforming, local time step, elasto-acoustic coupling, hydrofracture, hpc,
OpendMP, MPI, PML, IPDG, stability, hp scheme
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Introduction

Presentation of the context

Oil exploration began with a mixture of luck and superstition. Prospectors were content
with drilling near seeps or in favorable locations, or just randomly. But the days when
prospectors were throwing their hats in the air and were drilling where their hat fell is
long gone. If we had continued in this way, our reserves would be far to suffice us.

We can decompose the oil exploitation process in three main parts, exploration, drilling
and exploitation. The exploration consist in seeking places where the topography of the
ground can "trap" the black gold. Drilling is the key to oil exploration. This step is the
main and most of the total cost of an oil installation. This is why exploration is crucial,
making a useless drilling is an economical disaster. The final step is the extraction, this
last step can be divided in two repeating sub-steps: estimation and recovery. Once an oil
field is actually detected by a drilling, a step of evaluation by several tests is performed
to determine the amount of oil (volume and porosity of the reservoir) and ease to extract
it (permeability of the rock) and to determine the composition of what is extracted. This
evaluation process is performed to estimate at the end the profitability to exploit the well.
When exploitation is decided comes the step of oil recovery. According to the different
phases in the life of the oil field the techniques to dig out the oil varies. Each step in the
oil exploitation process requires its own scientific methods. However, It is only relatively
late in the history of oil extraction that scientific methods have been used, but modelling
methods are nowadays at the heart of any geophysical interpretation approach. Our work
fall within the exploration phase.

Exploration is a step involving multiple knowledge, geologists, geophysicists, mathe-
maticians, numerical analysts. All bringing their share of knowledge to determine the
constitution of the ground with the limited information available. With the intensive
exploitation of oil fields, it has become increasingly difficult to find new untapped fields.
The vast majority of "easy" to find fields have already been found.

Without obeying to specific physical laws, the existence of oil is based on two basic
criteria:

e Hydrocarbons (oil) must have formed in favourable grounds called bedrock; these
lands necessarily correspond to certain stages of marine sedimentation with deposi-
tion of organic materials whose physico-chemical evolution leads to the formation of
hydrocarbons.

e In order to create an oilfield, oil must have been, after their formation, collected,
and then "trapped" in "reservoirs". The term '"reservoir" stands for a sealed space
at the top, bounded by clay or by an impermeable rock, wherein there is a porous
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rock, comparable to a sponge. This porous rock is impregnated with gas and / or
oil and / or salt water.

Reservoir quality is characterized by its porosity (the more the rock is porous, the greater
the volume of oil content is) and permeability (the ability to extract oil). Exploration
consists of recovering a lot of data to end up with a more or less sophisticated model
of the ground. These data are mainly composed of seismic data, coring and geological
knowledge. On land, the wave generation is done either with explosives or with vibrator
trucks. At sea, a boat towing a device for generating waves compressed air and a network
of pressure sensors divided into lines (streamers) up to 10 km long. Numerical methods
can be useful before the data acquisition to help predicting the quality of the acquisition.
Numerical methods are also the key to accurate ground modeling.

Interpreting geophysical data in complex geological terrains requires solutions of the
partial differential equations (PDE) governing the physics. Since ground modeling is
performed through simulations that seek to match the acquired field data, this problem
is what we call an inverse problem. What we call the direct problem is the simulation of a
wave propagation in a defined ground model. The inverse problem is the opposite problem:
seeking the ground model such that we get the known wave propagation corresponding
to the field acquired data. When solving the inverse problem most approaches require to
solve many direct problems to approximate iteratively the ground model solution.

Our work is focused on the direct problem, among all the numerical methods available,
the most common are: the spectral method [11, 19, 3], very efficient and accurate but
generally restricted to simple earth structures, often layered earth; the pseudo-spectral
[48, 30, 56], finite difference [66, 63, 52] and finite volume methods [43, 44, 51] based
on the strong formulation of the partial differential equations, easy to implement and
usually representing a good compromise between accuracy, efficiency, and flexibility; and
the continuous [69, 10] or discontinuous Galerkin finite-element methods [58, 39] based on
the weak formulation, leading to more accurate earth representations and therefore more
accurate solutions but with a higher computational cost and a more complex usage. The
choice between these different approaches is still difficult and depends on the applications.
Spectral methods are often called with the more general term analytical or semi-analytical
methods, whereas all other methods are numerical methods.

On top of the different numerical methods, different physics models are used according
to the desired cost/accuracy from the simplest to the more realistic we have: the acoustic
model, the isotropic elastodynamic model, the anisotropic elastodynamic model, and we
can even add some porosity physics to these models. The diversity in solving geophysical
modelling may, however, reflect the different challenges in geophysics, and these challenges
may require different practical solutions. One shall not think that the simplest methods
and models are the old ones, a large portion of geophysics codes still use finite differ-
ences and/or acoustic model. For instance, to be economically valuable, the migration of
hundreds of thousand shots of a marine data set to obtain a structural image from com-
pressional waves demands a different implementation of the wave propagation problem
that the precise modelling of surface waves generated by a superficial earthquake. The
methodological effort for years has conducted to sophisticated tools well tuned for specific
purposes.

The increasing difficulty to find reservoirs has bring the need to always render the physic
more accurately. In particular, being capable to render small details that have a consider-



able impact on the wave propagation is becoming mandatory. In the presence of complex
geometry and complex geological models, adaptivity and mesh refinement are key features
for efficient numerical solution of the elastodynamic equation. Refined meshes impose se-
vere stability constraints on explicit time-stepping schemes to respect the CFL condition
to insure the stability of the method. When mesh refinement is restricted to a small area,
the time step defined by the spatially smallest element has to be used. Overcoming this
limitation is crucial for achieving high performance and high numerical accuracy. Decreas-
ing the interpolation order if refinement ratio is low is a practical approach [26, 28] since
the CFL condition is larger for lower interpolation orders. However, when the spatial
refinement becomes to steep local time-stepping schemes with local stability conditions
will be the method of choice.

Collino et al. [16, 17] proposed a second-order local time-stepping method for the wave
equation and for Maxwell’s equations. The approach remains explicit inside the coarse
and fine meshes but requires at every time step the solution of a linear system at the
interface between the two grids. Piperno [53] proposed an explicit local time-stepping
scheme conserving a discrete energy and second-order accurate in time by combining
a symplectic integrator for the Maxwell’s equation while Dumbser et al. [26] combine
both p-adaptivity and local time stepping using the ADER integration scheme which is a
dissipative scheme. Alternatively, Diaz and Grote [23] have proposed a fully explicit local
time-stepping approach with the conservation of a discrete energy with arbitrarily high
accuracy for the scalar wave equation while Dolean et al. [25] have proposed an hybrid
implicit-explicit (or locally implicit) method.

Local time stepping methods bring two main problems. Firstly, their accuracy and
stability cannot always be guarantee. Secondly, they introduce more or less sophisticated
algorithms that lead to difficult parallelization.

Objectives and contributions of the thesis

The objective of this thesis is to develop a numerical method with local mesh refine-
ment both in space and time on Cartesian grids adapted to a high-performance environ-
ment for the elastodynamic equation in isotropic medium.

The targeted average rate of refinement being around 20, which is substantial, the
refinement method must guarantee a priori the stability of such refinements. In addition,
such refinements lead to refined areas with high computational costs. This imbalance
involves having a viable strategy in a high performance environment. Indeed, as we
mentioned earlier, temporal local mesh refinement methods induce a particular treatment
making difficult the load balance. One of the reason to achieve local mesh refinement
is to simulate hydrofractures, this implies to be capable to handle multiphysics media,
typically elastodynamic and acoustic media. The interest is usually not on simulating a
single hydrofracture, but a network of hydrofractures for the cumulated physical effects
they produce, e.g. wave scattering. Besides, the lack of precise information on the ground
and also the tools used on the side, promote a Cartesian grid approach. This means
that space refinements should be non-conforming, see Figure 1 for an illustration of a
non-conforming mesh. These non-conforming meshes induce stability problems on most
numerical methods, or at least require complicated numerical schemes.
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Figure 1: A non-conforming mesh, elements are non-conforming on the red interface.

In the first chapter we introduce the numerical method to discretize our EDP: the in-
terior penalty discontinuous Galerkin methods, with an emphasis on its symmetric version.
Standard approach on Cartesian grids would use finite difference or finite volume meth-
ods for their reduced cost, but all the requirements mentioned in the objectives seemed
unreachable with such methods. Because discontinuous Galerkin methods are local, they
are particularly well-suited for the development of explicit local time-stepping schemes.
Additionally, non-conforming mesh refinements are naturally handled by these methods.
These methods are not commonly used in seismic simulation due to their relative high
cost and difficult implementation compared to finite difference and finite volume methods,
a first preliminary attempt of this method for seismic imaging has been performed by De
la Puente [20] only in 2010. For this reason, we decided to dedicate the first chapter to
a detailed introduction to discontinuous Galerkin method for the second order elastody-
namic equation in the time domain. This introduction presents how this method is built
and recall some properties of it. In particular, we performed a dispersion error analysis
and a study of the stability condition that arise in explicit schemes, also called the CFL
condition.

We also propose a new formulation for the penalty term which is more suited for
the elastodynamic equation due to its vector components. This new formulation leads
to a better stability condition and dispersion error, and paves the way for multiphysics
simulations.

In the second chapter we introduce absorbing layers, called perfectly matched layers
(PML). Indeed, in our context, the simulations are never made on the whole earth, so
there must be absorbing conditions to simulate an unbounded medium. We decided to
choose PML over other absorbing methods for its flexibility and reliability. We based our
PML scheme on Imbo’s formulation [42] due to its second order PDE form contrary to
most other formulations that lead to a system of first order PDE. We proposed an orig-
inal discontinuous Galerkin approximation of this PML formulation. Even though PML
schemes often lead to weakened CFL conditions [8], we found through extensive numerical
experimentations that the choices we made for our discontinuous Galerkin approximation
and for the temporal discretization do not weaken the CFL condition.

In the third chapter we introduce our local time stepping approach, based on Diaz-
Grote’s local time stepping method [23]. Diaz and Grote’s local time stepping method
appears in a high performance computing context as the best suited method for two main
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reasons. Firstly, The stability of the local time-stepping method can be proven through
the conservation of a discrete energy. Secondly, the computational complexity is more
homogeneous for Diaz-Grote’s method than for other methods since the scheme is fully
explicit.

The third chapter can be subdivided in four parts. The first part is dedicated to the
construction of a scheme, which we call the Z-exact scheme. The aim of this scheme is to
give a better insight to Diaz-Grote’s scheme, since this last one is an approximation of the
Z-exact scheme. Contrary to Diaz-Grote’s scheme, the Z-exact scheme does not use a local
time step. Nevertheless, most of the numerical properties of both schemes are the same,
especially the stability condition. Indeed, the stability condition is not impacted by the
area receiving a special treatment which is precisely what is desired from such schemes.

In the second part we introduce Diaz-Grote’s local time stepping algorithm. Diaz-
Grote’s algorithm uses the global stiffness matrix which is usually not assembled. More-
over, writing the local time stepping algorithm in this manner hides the locality of the
algorithm. Using the locality of the operators of the discontinuous Galerkin methods, we
proposed specific local algorithms for elements at either fine or coarse time step.

In the third part we propose an analysis of the optimal computational cost we can
expect for an ideal local time stepping method. To overcome the quick growth in compu-
tational cost of local spatio-temporal mesh refinement we propose some strategies based
on discontinuous Galerkin methods flexibility. The first idea is to use use lower polynomial
orders in refined elements, this uses what is called p-adaptivity, i.e. the ability to change
polynomial orders between elements.

In the fourth part we propose to analyze the numerical behavior of the local time
stepping method and of the non-conforming mesh refinement. In particular, we seek to
observe spurious effects created by these special treatments.

In the fourth chapter we attempt to validate our choices of methods. In a first time,
we introduce our approach to achieve multiphysics, i.e. elasto-acoustic media. This multi-
physics formulation is highly helped by the flexibility of discontinuous Galerkin methods.
Secondly, we validate the different aspects of our methods on canonical test cases. In
particular, we simulate an hydrofracture and we compare our results to reference results.
Finally, we illustrate the capabilities of our methods on illustrative experiments showing
the impact of small heterogeneities.

In the fifth chapter we introduce our implementation and our approach to paral-
lelization. In our implementation we attempt to exploit the industrial constraints to gain
efficiency compared to standard implementation approaches. Our approach is based on
the decomposition of the computational domain into subdomains. These subdomains are
the entities that are distributed to achieve distributed memory parallelism. However, the
size of these subdomains and the polynomial order of approximation of the elements has
an significant impact on the sequential performances. Therefore, we study the sequential
performances according to the size and polynomial orders of the subdomains. Considering
our parallel approach we introduce our shared and distributed strategies. We propose an
asynchronous non-blocking MPI implementation, that shows consistent scalability. The
distributed memory parallel approach showed much better performances than our shared
memory parallel approach.
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Brief introduction to elastodynamic

The linear isotropic elastic model

Mechanical properties of materials have a very complex behavior. Most materials have
a nonlinear elastoplastic behavior, heterogeneity and anisotropy. This means that mechan-
ical properties may vary due to many different aspects, especially deformation and load
history. Depending on the type of targeted applications these behaviors and properties
can be simplified.
In the case of small strain it is reasonable to assume the elastoplastic behavior to be
purely elastic. In the context of seismic wave propagation, materials are often assumed to
be isotropic and locally homogeneous.

Wave types

Seismic waves can be sorted in two categories, body waves and surface waves. As their
name suggests body waves spread over the volume, forming spherical wave-fronts around
the source point. This implies a faster decay of the energy, and hence the displacement
amplitude, for body waves with distance from the source than for surface waves.

Body waves: They propagate inside the earth. Their propagation speed depends on
the medium, which typically, increases with depth.

e P-waves or primary waves, also called compressional waves and longitudinal waves.
They are the fastest waves and therefore the first to be recorded on seismograms.
The particle motion is pure dilatation or pressure. These ground motions are parallel
to the direction of the wave propagation. The P-waves correspond to the acoustic
waves in a fluid, e.g. in air or water. They are responsible for the low rumble that
can be heard at the beginning of an earthquake.

Particle motion
—

Y

Propagation direction

Figure 2: P-wave

e S-waves or secondary waves, also called shear waves and transversal waves, they
arrive after P-waves. The ground motion is perpendicular to the direction of the
wave propagation. These waves do not propagate in fluid media.

Xiv
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Particle motion
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Propagation direction

Figure 3: S-wave

When a wave encounters a free surface, or an interface between two media, a partial
conversion from P-waves to S-waves and vice versa may occur.

Surface waves: They propagate along a free surface, e.g. earth surface, or along an
interface between two media especially fluid-solid interface. Their velocity is lower than
body waves, but their amplitude is often the highest and for this reason they are the most
destructive waves. We introduce here two commonly referred surface waves, but more
types of surface waves exist.

e Rayleigh waves typically run on the Earth surface, but also on fluid-solid interface.
These waves are somewhat slower than S-waves, and contain both pressure and shear
components in the displacement field.

* Fluid-solid interface

Particle motion

Propagation direction

Figure 4: Rayleigh wave

e Love waves may arise due to multiple reflections of S-waves between two interfaces,
they consist of trapped S-waves because reflection on interfaces are total, these shear
waves are polarized normally to the interfaces.
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Chapter 1

Discontinuous Galerkin for
elastodynamic

1.1 Introduction

DG methods were first introduced in 1973 by Reed and Hill [57], and have gain slowly pop-
ularity until twenty years ago when a keen interest began. A large number of variants and
results have slowly emerged since the first formulation [65, 6, 59, 7, 18]. DG methods can
be viewed as finite element methods allowing for discontinuities between elements. These
discontinuities require to introduce numerical fluxes between elements at interfaces as for
finite volume methods. Working with discontinuous discrete spaces offers a substantial
amount of flexibility, e.g. hp-adaptivity, non-conforming meshes, truly explicit schemes,
and also the possibility to achieve multi-physics simulations as shown in Chapter 4.

First of all, we shall recall the various features desired for our software. We want a
method that handle Cartesian non-conforming meshes, local time stepping and elasto-
acoustic media. Without going too much into details, especially on local time-stepping
since it is the subject of Chapter 3, we have to choose a method that can handle non-
conforming meshes and elasto-acoustic interfaces. Both of these features are achievable
with DG finite element methods, non-conforming meshes are naturally handled by DG
methods whereas a small change in the formulation of the DG methods is used to manage
elasto-acoustic interfaces seamlessly to the user.

Geo-science has been widely and mainly using finite difference methods for its ease
of implementation and efficiency on simple simulations. With the increasing complexity
of problems, finite difference had to become more and more complex, making them less
attractive. However, comparing the performances of DG methods and finite difference
methods is not simple, as one can easily build test cases where one method is better
suited than the other. What should be noticed is that DG methods and finite difference
methods should not be used the same way, especially if we consider accuracy and dispersion
aspects.

In this chapter, we mainly focus on the application of the Interior Penalty Discontinuous
Galerkin (IPDG) finite element methods to time-dependent elastic wave propagation,
with an emphasis on the Symmetric Interior Penalty Discontinuous Galerkin method
(SIPDG). In Section 1.2 we introduce the mathematical formulation of our problem, called
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the model problem. Our approach is relatively standard in the sense that we use DG meth-
ods for the discretization in space, and finite difference for the discretization in time. For
this reason, in Section 1.3 we introduce the principal ideas of the construction of the
IPDG approximation for the stationary elasticity operator and why it is built that way.
We also introduce in this section a new penalty better suited for the elastodynamic equa-
tion. In Section 1.4 we briefly give the IPDG formulation of the model problem, that
is the elastodynamic equation in the time domain, and then we discretize in time the
semi-discrete problem with the well known leap-frog finite difference scheme. In Section
1.5 we study through a plane wave analysis the dispersion and stability properties in ho-
mogeneous infinite medium of our DG approximation. In Section 1.6 we study our DG
approximation through an energy analysis the stability properties with heterogeneities,
hp non-conforming mesh, and boundary conditions. This second study is less accurate
than the plane wave analysis, but gives valuable information about the impact of hetero-
geneities, hp-adaptivity, and boundary conditions on the stability.

1.2 Model problem

Let Q be a polygonal domain of R?, d = 1,2 or 3. The sides of the boundary 0
are grouped into two disjoints sets I'p and I'y. Let m be the unit normal vector to
the boundary exterior to 2. We consider the following hyperbolic linear elastodynamic
problem:

Find u : Q x [0,7] — R? such that

0%u . .
Pai — div(o(u)) = f, inQ,
u=020, on I'p,
o(u)-n=0, on I'y, (1.1)
u(x,0) = up(x), Vx € Q,
ou
E(X7 0) = vo(x), Vx € Q,

where o(-) is the Cauchy stress tensor, u(x,t) is the displacement field, p is the mass
density, the vector x is the position in space and ¢ is the time. In homogeneous and
isotropic materials, the Cauchy stress tensor can be written as:

o(u) :=2pe(u) + Atr(e(u))!,

where e(u) = 3(Vu+ Vu?) is the strain tensor, A and y are the Lamé parameters, I the
identity matrix and tr(.) the trace function.

We recall that the Lamé parameters are linked to P- and S- waves velocities by the
relations

A2 =pvl, p=pvl.
Existence and uniqueness of the solution for the elastodynamic equation: We
state now a classical result of existence and uniqueness obtained by semigroup theory [67].
We define the elasticity operator by Au := —div(c(u)). The domain of this operator is
D(A) :={ve H(Q), Av € L*(Q) and o(v)n = 0 on 'y }.

With the theorem of Hille-Yosida [67] we obtain the following classical result:
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Theorem 1.1
Under the hypothesis:

o N\ u,p € L>®(Q), and g, o, po > 0, such that Vo € Q,A(x) > g and p(z) >
to and p(x) > po;
e (ug, vo) € D(A) x H}(Q), where H}(Q) ={ve H'(Q) : v=00nd2NTp};
o fECHRT; L2(Q));
our problem has a unique solution:

ue C3RT; L2(Q) N CHRT; HE(Q)) N CORT ; D(A)). (1.2)

1.3 Discontinuous Galerkin approximations of the
elasticity operator

Building the interior penalty discontinuous Galerkin methods requires two main steps.
The first step is to derive an equivalent formulation called variational formulation. The
second step is to use finite dimension approximation spaces to discretize in space the
variational formulation.

In short, the principle of the variational approach for solving partial differential equa-
tions is to replace the original equation by an equivalent formulation obtained by integrat-
ing the equation multiplied by any function, called test function. The main idea of the
variational approach is to show the existence and uniqueness of the solution of the varia-
tional formulation, leading to the same result for the model problem. However, this theory
does not work unless the space in which we seek the solution and wherein the test functions
are is a Hilbert space. This is not the case for C () with its usual scalar product. This
is why we seek our solution in the Sobolev spaces, in particular H&(Q) which is a Hilbert
space. A brief introduction to Sobolev spaces can be found in Appendix A. However, what
must be remembered is that we use functional spaces of sufficient regularity.

To introduce the discontinuous Galerkin approximation of the elasticity operator A :=
—dive(u), we consider the following stationary problem:
Find u : Q — R? solution of

—dive(u) = finQ,
u = 0OonIp, (1.3)
oclun = OonlIy.

This problem can be written as follows:
Find u € H}(Q) such that

Vv e HHQ), a(u,v) = L((v), (1.4)

where a(u, v) := / o(u) : Vvdx and {(v) := / f-vdx.
Q Q
In particular, under the hypothesis:

e the measure of I'p is non-null,



e feL*Q),

e \, € L>®(Q), and INg, uo > 0, such that Vo € Q, \(x) > g and p(z) > po,
the Lax-Milgram theorem ensures the well-posedness of the problem (1.4).

We shall now present the construction of a discontinuous Galerkin approximation of
the weak solution of (1.4). In this kind of approach, the discrete solution is sought in
a finite dimension space, V},, defined by piece on a subdivision of €. In particular, no

continuity is assumed between the elements of the subdivision and thus V}, is not included
in H}(Q).

1.3.1 Properties of a "good" discontinuous Galerkin approximation

Before explaining the construction of the formulations, we shall clarify what is meant
by "good" discontinuous Galerkin approximation (or other). For this, we consider the
following abstract formulation:

Find uy € V}, such that

Vvy, € Vi, ah(uhavh) = l(Vh)7

where ay, is the bilinear form underlying the selected scheme.
Suppose that:

e ay verifies a uniform inf-sup condition, i.e,

38 > 0 such that

inf  sup an(h, Vh)

— > (>0 1.5
W€V vievy [[unllnllvalln 7 (15)

e There exists a norm || - [[y/(;) on the space V(h) := HY() + V3, (we have to define
V (h) since Vj, might not included in H}(2) and is never included for DG methods),
such that the injections are continuous for the norms ||.|| g1y and |[.|[x,

e We can extend ay, in a continuous bilinear form of V' (h) x V}, (still noted ay), i.e.,

3C > 0 such that Vv € V(h) and Vvp, € V},,

an(v,vi) < Clvllvmllvalln (1.6)

We thus get (we refer to [21] for a proof of these results)

e the stability of the discrete solution according to the data of the problem:

o
lunlln < =1 fllo, (1.7)
B
e the a priori error estimate:
fu—wlve < (1+S) it fu—va (18)
rllviny < 7). hilv(n)- :

In particular, this estimate is used to show the convergence of the scheme and
determine its order (under some hypothesis on the regularity of the exact solution).

In practice, we seek to provide formulations verifying the hypothesis (1.5) and (1.6)
in order to obtain a "good" discontinuous Galerkin approximation, i.e, a stable and con-
verging approximation.



1.3.2 Construction of interior penalty discontinuous Galerkin
approximations

We will introduce now the formal construction of several standard discontinuous Galerkin
formulations called interior penalty discontinuous Galerkin. We refer to [58] for a deeper
insight into these methods.

Let © be subdivided into square elements in 2D and cubes in 3D (they can have more
complex shapes in the general case), we denote this partition by 7. In order to achieve
spatial local mesh refinement, we allow non-conforming elements. We denote by Fj the
set of all faces. A face shared by two elements is called an interior face, we denote by J-",{
the set of all interior faces. Likewise, a boundary face of K € Ty, is 0K N 0f2, we denote
by .7-",? the set of all boundary faces. We also denote by Fx the set of faces of an element
K.

For any piecewise smooth function v, we define the following trace operators. Let
Fe ]:% be an interior face shared by two neighboring elements K; and K. We assume
that the normal vector ng to the face F' is oriented from Kj to Ko, we define the average
and jump of v on F by

V1 = 5l + vl VD= vl — vl

respectively.

Let F' € FP NT'p, we define {v} :=v and [v] := v.

Let F € FP NIy, we define {o(v)n} :=0 and [o(v)n] := 0.

We note |.| the measure of an element or a face, and we note hx or hr the length of the
edges of an element or a face, respectively. Hence, with a Cartesian grid VK € T, |K| =
hd, and for a side F of an element K € Ty, |F| = h% !,

The basic idea of the finite element method is to replace the Sobolev spaces on which
the variational formulation is posed by a subspace V} of finite dimension. The better
approximation the space V}, is, the better the solution u; will approximate the exact
solution u. For DG finite element methods, this subspace is always composed of functions
whose support is only on one element, which is why we call these methods discontinuous.
We usually approximate the space H*(T}) with usual functional spaces.

For a given partition 7 of ), we wish to approximate u in the finite element space
Vi, i={veL?(Q)? : VK € T, v|x € Vi(K)},

where V},(K) is a finite dimension space approximating H*(K).

We begin with the second order form of the elastic wave equation
—div(o(u)) = f. (1.9)
Multiplying (1.9) by a test function v, € V3, we obtain
—div(o(w)) - vy = f - vy
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We integrate (1.3.2) on 2, which gives

f/Qdiv(a(u))-vh de/Qf'Vh dz.

As Q= U K, we have
KeTh

- Y [ ane@) vide= 3 [ 1w

KeTy, KeTy,

If we use the Theorem A.2 on one element K, we have

/K div(o(u)) - vy de = — /K o(u)- Vv, dz + 8K(J(u)n) v ds.

This is now that all the differences between standard finite element and discontinuous
Galerkin finite element methods arise. Standard, or continuous, finite element methods
choose carefully the basis of V},(K) inside each element in such a way that the boundary
terms vanishes by imposing the continuity of the basis functions between elements (two
neighboring elements share mutual degrees of freedom that impose the continuity between
the two elements). DG methods, in contrast, leave these boundary terms, and let the
scheme finds the continuities by itself. Hence, for DG methods the continuity between
elements is only approximated, whereas it is enforced for standard finite element methods.
Enforcing the continuity for standard finite element methods makes it tedious to have
high order polynomial basis functions and even more difficult to have p-adaptivity or
non-conforming meshes, which are needed in our problem.

Let F = 0Kt NOK~, where KT and K~ denotes two neighboring elements, thus, we
have

Z (oc(u)n) - vy ds = Z (c(u™)n) - vi + (c(u )n") - v;, ds.
oK F

KeTy, FeF,

Using the relation ab+ cd = 1(a+¢)(b+d) + 1(a — ¢)(b — d), we have

[ ettty vif + (o) v ds = [ Lot o) (v v;)
1
_l’_ —

(c(uf)nt —o(u)n7) - (vif —v;)ds.

2
(1.10)

The solution u € {Hg(Q)? : div(o(n)) € L*()} implies that [u] = 0 and div(c(u)) €

L%(Q)¢ implies that [o(u)n] = 0. Injecting these relations in (1.10) yields
VVh S Vh,

/F(a(qu)nﬂ v+ (c(u)n7) v, ds = /F %(a(u*)nJr —o(u)n") - (vl — v, ) ds
_ /F fo(wn - [va] ds.

At this point we have the following variational formulation:
Find uy € V}, approximation of the exact solution u such that

Vv € Vi, ap(up,vy) =1(vy),
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where

n(an, vp) Z/ o(up) - Vvy de — Z /{{U up)n} - [vy] ds.

KeTy, FeF,

Unfortunately, this problem is not equivalent to the model problem since the boundary
conditions are not included in this formulation. Moreover, this equation does not verify
the inf-sup condition (1.5) because of the unsigned boundary term [n{o(up)n} - [vs] ds.
A sufficient condition to have the inf-sup condition is the coercivity of the bilinear form
ah(., )

In order to obtain the coercivity of ax(.,.), a penalty term is added. Adding the penalty
term (1.11) appears natural when looking at the coercivity proof (see [58] or Section 1.3.4).
Furthermore, the penalty term imposes weakly the Dirichlet boundary condition. We note
that this penalty term is consistent with the model problem since it is null for the exact
solution.

Z /Ozp uh Vh]]d (1.11)

FeFy,

where ap > 0.

Remark 1.1. The penalty term (1.11) insures the coercivity by enforcing the continuity
of the displacement. There exists a second kind of penalty term (we refer to [58]) that
penalizes the jumps of derivatives of the displacement

r [ [oun) -l [o(vs) -nl,
where &g > 0.

Another term can be added to obtain the class of interior penalty discontinuous
Galerkin (IPDG) methods, which writes as

€ Z / up] - {o(vp)n} ds,

FeFy,
where ¢ € {—1,0,1}. As we shall see this last term has a great impact on the properties

of the method, e.g. stability, convergence rate.

Finally, the IPDG approximation is
Find uy € V3, such that Vv, € Vp,,

Z/ o(up) - Vvp do — Z /{{auhn}} [vi] ds—l—sZ/uh {o(vp)n} ds

KeT, FeFy FeFy,

+ Z /O‘F[[uh]] [vi] ds = /f vy dx.

FeFy, KeTy,
Remark 1.2. The penalty term has been a really cumbersome parameter all along our
work since it has an important impact on the CFL condition.



1.3.3 Properties of interior penalty discontinuous Galerkin
approximations

In this section we first briefly introduce the approximating spaces that are the most com-
monly used in discontinuous Galerkin methods: the polynomial spaces. However, we could
use any other functional spaces, but the convergence of the DG methods would completely
change. Then we recall some classical results of IPDG methods with polynomial approx-
imating spaces.

The two most commonly polynomial spaces used in elastodynamic are the following:

Pi, polynomial spaces: Py (K) the space of polynomial of total degree less or equal to
k on the element K,

d
Py(K) == span{zi'z}...x}{, such that » i; < k}.
j=1

Qr polynomial spaces: Qp(K) the space of polynomial of degree at most k in each
variable on the element K,

Qr(K) = span{x?:ﬂ’f...mfid, such that Vj € 1, ..,d,i; < k}.

Remark 1.3. It is possible to use Py polynomial bases on any shape of element for DG
methods contrary to standard finite element methods. It is especially interesting in our
Cartesian grid case since standard finite element methods need to use Q. basis, and if the
polynomial order k is larger than 4 (k > 4), P, DG methods have less degrees of freedom
than standard finite element methods on the same mesh.

Once we selected the approximate space, we have to select a basis. The choice of the
basis does not influence the properties of the method, but can influence the numerical
behavior, in particular the condition number or the sparsity of the stiffness matrix, but
these are concerns of implicit methods. Furthermore, we recall that orthogonal basis
functions result in a diagonal mass matrix, leading to truly explicit methods.

Remark 1.4. This freedom in the choice of the basis, because of the lack of continuity
constraint, can be exploited to get many interesting properties, e.g. hierarchical bases,
orthogonal bases, etc...

We display in Figure 1.1 and 1.2 a representation of two common bases of ()3, where
the points represent the degrees of freedom of Lagrange polynomial bases. These points
mean that the value of the solution is equal to the value of the degree of freedom, this is

Ng
a special case where we do not need to use up(x) = Z ul of (x).
i=1
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Figure 1.1: Degrees of freedom for )3 Legendre-Gauss basis functions.

----- 0.8611

Figure 1.2: Degrees of freedom for Q3 Legendre-Gauss-Lobatto basis functions.

We now recall the converge results for polynomial approximating spaces. But first we
have to define the norms that appear in these results.
We define the discontinuous Galerkin energy norm as

1

ully, = o(u)-Vu o ul - [Jw ,
full (K%/KU Yy F/FHH)

FeF,

and the broken Sobolev norm as

1/2
VIl z2s(7) = (Z ||V”HS(K)) :

KeTy,

We recall the nomenclature of the IPDG methods according to the values of ¢ and ap:

e Ife = —1, and ap is bounded below by a large enough constant, the resulting method
is called symmetric interior penalty discontinuous Galerkin (SIPDG) method, intro-
duced in the late 1970s by Wheeler [65] and Arnold [6].

o Ife =1, the resulting method is called non-symmetric interior penalty discontinuous
Galerkin (NIPDG) method, introduced in 1999 by Riviere, Wheeler and Girault [59].
The particular case with ap = 0 was introduced in 1998 by Oden, Babuska, and
Baumann [7].

e If ¢ =0, and ap is bounded below by a large enough constant, the resulting method
is called incomplete interior penalty discontinuous Galerkin (IIPDG) method, intro-
duced in 2004 by Dawson, Sun and Wheeler [18].
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Theorem 1.2 - Error estimates in the energy norm.

Assume that the exact solution belongs to H*(7p,) for s > 3/2. Assume also that the
penalty parameter « is large enough for the SIPDG and IIPDG methods and that & > 2
for the NIPDG method with zero penalty. Then, there is a constant C' independent of h
such that the following optimal a priori error estimate holds:

[l =yl < CR™ LI || s, .

Theorem 1.3 - Error estimates in the L? norm.
Assume that Theorem 1.2 holds. There is a constant C' independent of h such that

[ —upl|p20) < Chmm(k“’s)|’\u|’\Hs(n)-

This estimate is valid for the SIPDG method unconditionally. The numerical error for
both the NIPDG and ITPDG methods satisfies the following sub-optimal error estimate:

lla —ap||p20) < Chmm(’”l’s)_l\||u’||Hs(Th)-

We refer to [58] for a proof of these theorems.

1.3.4 New optimized penalty term and coercivity

In this section, we want to introduce a new penalty and study its impact on the discontin-
uous Galerkin approximation of the stationary elasticity operator. The idea is to penalize
differently normal and tangential parts of displacement in order to avoid an over penaliza-
tion. In fact, in a homogeneous isotropic medium we can easily see that the normal part
is associated with P-waves (that controls the divergence) and the tangential part with the
S-waves (that controls the rotational). But the penalization used in the IPDG methods is
usually only a function of the P-wave velocity vp, which is always superior to the velocity
of S-waves vg. Therefore, this causes an "over-penalization" of the tangential part of the
displacement. We propose to restore the dependence in vg for the control of S-waves. This
allows us in particular to significantly improve the temporal stability condition, i.e. the
CFL condition, of the explicit scheme that we will present later in this chapter.

Let the subscripts N and T" denote the normal and tangential component of a vector,
respectively. We denote F? := fff NIp.

First, we state the following lemma, which will help us to reveal the polynomial order
dependency in the coercivity constant, and thus the polynomial dependency of the penalty.

Lemma 1.1 - Inverse estimation.
We have the following inverse estimation:

Let K € T, and I' C 9K.

Vu, € Vi, w22y < Cino(D)[[un]|z2(x),

where p is the polynomial order of the space V,(K) and Ciny(p) = (p + 1)? for square
elements.
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Our new discontinuous Galerkin approximation is:

ap™ " (up, vi) ::/th(m) : Vv dx — /]E fon(an)n} - [va] dy
—c /f%uf;; [un] - {on(vr)n} dy (1.12)

+ / an[up]n[va]n dy + / arfup]rvi]r dy,
FEUFh FFuFh

h

where

ay : FFUF, — R

I' —» an()=0dn {Cmv(p)Zi)\ * QM)}},

(1.13)
ar : FfUF, = R

T aT(r)zéT{{Cim;ff)zu}},

with dx, 07 > 0 two real numbers, hr the measure of the face I'.

Theorem 1.4 states that under the chosen penalty the bilinear form a, " is coercive.
As we mention earlier, there is a close link between the coercivity constant C..., and the
inf-sup constant /5 of the relation (1.5). Indeed, we have the relation:

azew,s (uh’ Vh) azew,z—: (uh’ Uh)
Yu, € V3, sup >
vV [valln [[an |
Using the coercivity result we get
a, " (ap, vp)
vuh € Vh, sup ———— > CcoerHuhHh'
vieVi  valln

Taking the infinimum we get
. ap,™ (ap, vp)
inf sup *—-—"—=

> Clper.
WV v, eV, |[anllnl[Villn o

Thus, with (1.5)
B Z CCOGT‘

new,e

Moreover, if Juy, € V}, such that a, " (up,up) = CCOBTHuhH% then 8 = Ceoer-

This means that the larger the coercivity constant is, the more the method is stable
in the sense of the relation (1.7) and the closer the solution is to the optimal solution in
Vi, according to the relation (1.8).

Theorem 1.4
Given Cioer €]0,1[. If e = 0 or 1 and if we choose the penalty coefficients dy and o7 as
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follows: ( )?
14¢
T * o Sk
oVE € Fjy, ON, 07 2 Oy = 07 = 2(1 — Ceoer)?’

2
oVEF € FU, S, 0p > 8y = 8 = (1(125))2 (1.14)

oVF € F,NT'y, On, Op > 0y = 07 := 0.

Thus,
wne( (1.15)

vvh S Vh7 thl, Vh,Vh) > CcoerHVh”%a

where
”VhH}zl 2:/ Uh(Vh) . thh dX—i—/I ) aN[[Vh]]N[[Vh]]N d’y—i—/z . OCT[[Vh]]T[[Vh]]T d’y.
Q ]—‘hu}‘h ]—‘hu]-‘h

Moreover, if € = —1 then Yoy, o7 > 0,
(1.16)

agew’s(vh,vh) = ||Vh||%p Vv, € Vj.

Proof. In order to prove this result, it suffices to estimate the unsigned term / {on(vy)n}-
r

[vp] dy for T' € Fp,.
e First case: I' = KNT € ]—f . We begin with a decomposition in normal and tangential

part of this term:

[ Aonvn} - il dy = [ {(oavam) - nhivily dr
r r (1.17)
+ [ Konvwm) - Thvilr dv.

Now, using the Cauchy-Schwarz inequality in L*(I'):

1
/F"{Uh(Vh)n}} [valdy < Sll(on(vicn) - a2y [[valw llz2

1 1

+5l(on(vr)n) - nll g2 [[valv 2@y + 5llon(vi)n) - 7ll 2wy 1Tvalz 22
1

+5llon(vr)n) - 7lL2) [valr [lz2w).

(1.18)

Since we work with Cartesian grids (with optional refined areas), we immediately

get:
(o(v)n) - n = Mdivv + 2ud,v, with z = z if n = (+1,0)” and z = y otherwise,

(O’(V)l’l) ST = u(agvl + 61V2).
(1.19)
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Introducing (1.19) in (1.18), we get:

1 .
,/I‘{Uh(Vh)n} . [[Vh]] d’y Si (”)\KdIVVK + ZMKaszKZF ||L2(F)

T Ardivve + 2470: Vs Hm) 1valy Iz
(1.20)

1
+ 3 (H/«LK(aQVK,l + 01V 2)ll L2y

+ lr@avea +0rvea) e ) [val gz,

Using the inverse estimation (Lemma 1.1), (1.20) becomes:

1 Oim)(pK) .
/F{{Jh(vh)n}} vn] dvy §§ WI\AKdlva + 20K 0 Vi op | 22 (K)
T

Cim;(pT) .
T [Ardivvey + 2070z v [ 2(re) JIHIVAIN llz2r)
r

1 (Cn (")

+3 e |px (P2vi,y + 01vi2)ll 2 (k)
Cz'm) pT
+ S v + Oyl ) Il oo
I
(1.21)
Applying a triangular inequality to (1.21) yields:
1 Cl’m} K .
[t -ty <5 (“ENE N vl
r
Cim} pK
+ B o) 2 1) 20w
T
Cz'nv r .
+ Gl )2\ v
hF
Cinv pT
# S o) 2 ) 20y vl i oo
r
1 Cinv pK
(o Il e v orviallisa
Cinv pT
+ Sl 2 ) 2 @avrs + vl ) Il s
r
(1.22)
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If we sum on all faces of ]:,% and use Cauchy-Schwarz inequality in RV we get:

/{{Jh (vi)n} - [vp] dy <

I‘e]—'h
'=KnT
1/2 1/2
1 1/2 4. Cirw pK 2
2( > B leVKH%?(K)) < 3 h())\KH[[Vh]]N 17 2(r)
T e Fy TeFp r
'=KnT I'=KnT
1/2 1/2
1 1/2 ;. Cinv(pT)2
+ 2( Z H)‘T/ leVT”%%T)) ( Z T)\TH[[Vh]]N ”%2@)
r e Frf rerF
'=KnNT '=KnNnT
1/2 1/2
1 Cinv(pK)2
+ 2( Z H(ZMK)1/2£)ZFVK,ZF\I%2(K)> < Z T(QIU,K)”[[V}L]]N ||%2(1“)
rert rerf
I'=KnT '=KnT
1/2 1/2
1 Cinv(pT)2
+ 2( ) H(2MT)1/2azrVT,zrH%%T)) ( > T(QMT)H[[Vh]]N 17 2(r)
rer’ reF
I'=KnT I'=KnNnT
1/2 1/2
1 1/2 Cz'm)(pK 2
+ 2( Z HMK/ (D2vi1 +51VK,2)||2L2(K)> < Z hF)MKH[[VhﬂT H%Z(r)
rert rert
I'=KnT I'=KnT
1/2 1/2
1 1/2 Cimz(pT)z
+ 2( Z HMT/ (avr +81VT,2)H%2(T)> < Z THTH[[WL]]T ||%2(r) :
rerz reFj
I'=KnT '=KnT
(1.23)
. . . . 2 2 Lo
Finally, using Young’s inequality ab < £%a” + @b we get:
Z /{{o'h (vp) n}} Vh dy < <7 Z C(K ||)\}(/2diVVK||%2(K)
rerl KGTh
'=KnT
1/2 2
+ ||HK (O2vi1 + 01Vl 12(x))
Z CUE)(2umr) 201V i |72
KeTh
Z C'(K)I(2u) 200 272 1)
KETh
1 1
t Y 7 ACm @O+ 20 I valw 172y
4¢ ,  hr
I e Ff
I'=KnT
tim Y A @ il I
4‘52 I hl" inv (D) K hlT L2(I)
T e Ff
I'=KnT
(1.24)
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where C(K) < 4 is the cardinal number of K N Ff, C(K) < 2 is the cardinal
number of the set of vertical faces of 0K N and C'(K) < 2 is the cardinal number

of the set of horizontal faces of 9K N fI

e Second case: I' € .7-"}; such that I' C 0K. Proceeding as in the first case, we immedi-

ately get:

> [Hontvam} - [valdy <6 3 CoRO(INE divvc e

rerF KeT,

I C oK

+ g2 @avica + Oviea) 2 o)

+& Z Cy(K

KeTh

+& Y G(K

KeTy,

1
Yig 2
b rer
I C oK

1
tig &
b rer
I C 0K

)(2ux) 2ov, 1172k

) (2ux) 205 vic 2 H%Q(K)

hi{{cmv(p)Q(/\ +20) HIvalw 172y
T

1

- ACm iVl 22,

(1.25)

where Cy(K) < 4 is the cardinal number of K N FP, Cy(K) < 2 is the cardinal
number of the set of vertical faces of 9K NFp and Cb( ) < 2is the cardinal number

of the set of horizontal faces of 0K N F}. b

e Using the definition of the isotropic stress tensor, we get:

/QUh(Vh) tVpvpdx =) (H)‘I/leVVKH%Q(K)

KeTy

+ [1(2ur) 200 |72 1) + 1 (211

(1.26)

b2 (Oavics + v 2)ll72(x)-

new, E

If we look now the coercivity of the form ay,
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Using (1.24), (1.25) et (1.26), we have

A (v, vi) :/Qgh(vh)  Vpvpdx — (14¢) /f {on(vinl}t - [vp] dv

Ly o MmO 20k

e 172y

FE.F}{U]:}L

sz) 1%
S wllﬂ 2
FE]:IU]'—h

> 3 (- 0+ @) + NNl

KeTy
~ 2 ~
F (= (L 2)(@GK) + S OE) ) P0rvieal B
2 ~
S ED @) P orvicallta
2
+ (1= (1+e)(&C(K) + %C(K)))llﬂf(awm + 81VK,2)H%2(K)>

€ inv 2
D R [y

+(1— (1+e)(GCHE) +

+ 2 - (ig(;?)% {C”w ) AT IZ2r)

+ 3 0= >6N{{C”“’<p>,frA 20 il gy

4 Z (1 _ (1 +5))5T{Cinv(p)2M}

2
45?6’]“ hF |H[Vh]]T”L2(F)

(1.27)
Choosing &7 = £2/2, we get

(1= (1 + ) (ECHE) + £ C(K) = 1 - 4(1 + )22,

~ 2 ~
(1 - (1 + )EE) + S CE) =1 - 20+ 9)E%/2,

and

(1 (1 + )G + SO = 1-2(1 + 92

To get a coercivity constant Ceper €]0, 1] when € # —1, we have to choose

N " 1+4¢)?
oI € FF, 6y, 67 > 0% = 05 = 2(1(_0))2
(1+2) (1.28)
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O

Remark 1.5. e Dirichlet boundary condition implies a penalty two times larger on
the faces of }"}bL than on the faces of ]:% (See [58] or the coercivity proof of Theorem

1.4),

e [fe =0 or —1, getting a better coercivity constant implies rising the penalty. More-
over, we have the limit case: Ceper — 17 = dn, 07 — +00,

o Ife=1, Cooer =1 for all Oy, 67 > 0.

Remark 1.6. A priori error results from Section 1.3.3 can easily be extended to this
approzimation with the new penalty.

1.4 The interior penalty discontinuous Galerkin methods
for the elastodynamic equation in the time domain

In this section, we introduce the IPDG approximation for the model problem (1.1), that
is the elastodynamic equation in the time domain. Thus we briefly give the semi-discrete
IPDG approximation in space for the elastodynamic equation in the time domain from
the previous section. Then, we discretize in time the equation with a standard leap-frog
finite difference scheme.

1.4.1 Semi-discrete IPDG approximation

The general semi-discrete IPDG approximation of the model problem (1.1) is

Find Vt € [0, T],up(.,t) € V3, such that

(Ottuh, Vh) + ah(uh, Vh) = (f, Vh), Vv € WV, Vit € [O,T],
uh|t:0 = Hhuo, (1.29)
Oruyli=o = Myvo,

where ITj, denotes the L2-projection onto V}, and the discrete bilinear form ay, on V3, x V3, —
R is given by

ap(u,v) = Z /Kah(u) : Vvdx — Z /F{{ah(u)n}} vl dy+e Z /F[[u]] ~fon(v)n} dy

KeTy FeFy Fer,

+ Z /FOZN[[U]]N[[V]]Nd’)/—F Z /FOZT[[UHT'[[V]]Td'Y-

FeFy FeFy

Let K € T, we dneote by {¢X} a basis of Vj,(K). Let Nx = |{¢X}| be the number

of degrees of freedom on element K and N = Z N is the total number of degrees of
KeTy
freedom.
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The semi-discrete solution can be expanded in the global basis functions by

vt € [0,T], Vo € Q, wup(t,x)= > ZUK ()X (x). (1.30)
KeTy i=1
We note U := (U;)1<i<n. The semi-discrete IPDG formulation (1.29) is equivalent to the
second-order system of ordinary differential equations
2
M— Y + KU=F,

dt?
U(0) = Uy,

dU
)=V
dt() 0,

where M = (M;j);; is the N x N mass matrix, and K = (K;;);; is the N x N stiffness
matrix, and they are defined by

Vi,j € [I,N] M = (¢5,0:)0, Kij = an(d;, d:).

Remark 1.7. Because of the lack of continuity constraints between mesh elements for the
test functions, the basis functions have a support contained in one element. Therefore, the
mass matriz is always block diagonal, and diagonal if we choose orthogonal basis functions.
In contrast, for standard finite element methods the mass matrix has an arbitrary structure
depending on the element indexing in the mesh, preventing these methods to be directly
implemented in a truly explicit way since the mass matrix has to be inverted. This problem
can be circumvented for low polynomial orders by sophisticated techniques of mass lumping.
In our case of quadrilateral meshes mass lumping techniques are well understood for an
arbitrary order, and lead to so-called spectral element methods.

1.4.1.1 Local DG formulation

Here, we introduce a local formulation of the DG approximation. This local formulation
shows why the mass matrix is always block diagonal, and why parallelizing DG methods is
straightforward, this formulation is also useful for some theoretical studies of DG schemes.

We denote by Vp(K) the neighboring element of the element K on a face F. We
introduce the local bilinear form ahK :

alf (u,v) ::/K K(a): Vv|g dz — Z /{{ah mp-vigdy+e Z /B[[u ol (v)np dvy

FeFk FeFi

+ 3 [avluly vixdy+ Y [ arlulr-vix da,
FeFk FeFk
(1.31)
where a,i( := op| Kk, and we have the following relations for
% on .7:,{,
=<1 onF,NTp,
0 on FrNIy.

Thus, we have ap(u,v) = Z af(u,v).
KeTy
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Semi-discrete local DG approximation: We can rewrite the semi-discrete DG ap-
proximation in a local way

VK € To, M¥ouu® + K¥uf + Y FYrOuVrll) = ok
FeFk

where
Nk
)= > uf (el (x), and uf = (uff
and

K K K/ K K Ve (K K K
MY = pr (el o)k, K[ =ap (o, ), FQF():==ah(¢j ;P )s

and
K . K
0 = Lpj ).

1.4.2 Full discretization of the discontinuous Galerkin approximation

After discretizing the equation in space with a discontinuous Galerkin method, we finish
the discretization of the problem using a finite difference method in time. This form
is called the fully discretized IPDG formulation. We note by U™ the approximation of
U(ty,) using the well-known finite difference second-order leap frog scheme for temporal
derivatives. Hence, we get

n+1 _ n n—1
MU 20"+U
At

+ KU" = F". (1.32)

Full discrete local DG approximation: In the same way, we can rewrite the full
discrete DG approximation

kUi —2uf +uf K. K Vi(K), Vi(K) _ 1K
VK €T, MEIRLZCn LK un+F§; FYVrq e = K
€S K

where

. K ._ K
K(t,,x) : Zumgoz ), and wu, := (u"’i)lgigNK'

1.5 Plane wave analysis

The plane wave analysis [33], although based on simplified problems, i.e. infinite ho-
mogeneous medium, provides accurate information about the properties of a numerical
method. This information is precise enough to be used in real simulations. It helps to
apprehend two majors properties: dispersion and stability. The dispersion is a numerical
phenomenon that creates a phase difference between the physical wave and the numerical
wave, i.e. the numerical velocity only approximates the physical velocity. The dispersion
is used to determine the spatial discretization according to the desired precision, 7.e. the
number of elements per wavelength that must be used to achieve the desired accuracy.
Stability is given by a CFL condition which is a relation between the time step At and

At
the space step h of the form T < C, where C'is a constant that depends on physical and

numerical parameters (dimension, polynomial approximation order, velocities).
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The principle of a plane wave analysis is to seek the conditions, in the form of a discrete
dispersion relation, for which a numerical plane wave is a solution of the scheme. Plane
waves provide an accurate analysis because they constitute a basis of solution to the
infinite homogeneous elastodynamic problem.

1.5.1 Dispersion relation formulation

In geoscience, having the correct propagation velocity is a major aspect. Since direct
propagations (the forward problem) are often used in the iterations of an inverse problem
to know the structure of the ground, errors in propagation velocities result in bad ground
imaging. Therefore, having a good control on the dispersion error is critical.

In order to get the dispersion relation, we begin with the local semi-discrete DG ap-
proximation in which we inject plane waves. By doing so, we get simple relations between
all degrees of freedom. After some algebraic manipulations, we get a generalized eigen-
value problem that reveals which modes our numerical method propagates. Since a plane
wave is monotonic our method should propagate only one mode, however the eigenvalue
analysis reveals that more than one mode is propagated.

Ky

Ks

Figure 1.3: Neighboring elements of the element K.

We formulate the dispersion relation in an arbitrary dimension since the process is
identical for any dimension.

The local DG approximation (see Section 1.4.1.1) is

Moyu® + Ku® + Y Flu"7®) =, (1.33)
feFK
where
Nk
uff (6%) = Y uf e (x), with u = (uf)
=1 -
and

K K K/ K K K K
Mij = pr (e, 0oF) k. Kij=ap (o, 08), Ff =af (0,7, o).
Since the displacement is a plane wave, then

K _ g . —ilkx—wpt)
u;y = Aje ,

20



where k is the wavenumber, wj, the pulsation and A; the amplitude.
The plane wave assumption implies that

Vi (K)

u = kXl (1.34)

where
xg = he;, xw = —he;, xy=he,, xg=—he,, xr=—he, xp=he,.

Injecting (1.34) in (1.33) yields the following generalized eigenvalue problem:

wi Mu® + (K+ > eik'fof> u =0.

feFK

A
We choose a space step such that h = N where A is the wavelength and N € N*. Let

k = kd, where d is a unit vector representing the direction of the wave. We introduce
= m, which corresponds to the inverse of points per wavelength, where p is the
p
order of the polynomial space.
We get the relation

kh =2m(p+ 1)

The eigenvalue problem becomes:

—h2? N + <K+ ) eikh(d-ef)pf>u1< 0,
feEFK

where M := 1M K= = K and Ff = = LFf

We rewrlte this problem as a function of s:

—(2m)*(p+1)%5 2khMu + <K+ S ellem ) ef)Ff> _o.
feEFK
2
We note that ﬁ is an eigenvalue of the generalized eigenvalue problem:
Wh
2 MV = AV,
where
1 . A R
A= (K—I— Z 62<27r)(p+1)%(d‘ef)Ff>_
2 2,2
e+ 022\

At this point we need to identify which modes correspond to the P-waves and S-waves,
since the number of eigenvalues exceeds the number of physical modes

Wh
Vp = ?
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We define the dispersion error as follow:

y €s=

where vy, is the numerical velocity of the mode given by the eigenvalue, and v, and v, are
the expected velocities associated to P- and S-waves.

The physical modes are (most of time) the two values for which e, and es are the
closest to zero. Sometimes, a non-physical mode is closer to the physical mode than the
approximated mode, but this happens only for some angles of incidence as we shall see in
the next section.

The dispersions e, and es; depend on the parameters p the polynomial order of the
approximating space, x the number of points per wavelength and d the direction of the
waves.

1.5.2 Dispersion analysis

In this section, we apply a dispersion analysis to show the numerical properties of the
dispersion. We used v, = 2600m.s~1, vs = 1300m.s~* and p = 2300kg.m 3 and a penalty
parameter dy = o = 2.

On Figure 1.4 and 1.5 we display the convergence of the maximal angular dispersion
error (mlzlxx|ep| and mlzlxx\es|) according to the number of points per wavelength L for

different polynomial spaces. We observe that the convergence rates of the dispersion
errors are |e,| = O(h?F) and |es| = O(h?*), where k is the polynomial order of the space

Q-

Remark 1.8. For NIPDG and IIPDG methods the dispersion errors convergence rates
are k+ 1 for odd orders and k for even orders [61].
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orid dispersion lagie )

100 Grid dispersion of P-waves
T T T T T ]

10 10
Murmber of points per wavelength

Figure 1.4: Dispersion convergence for P-waves for different polynomial bases according

to the number of points per wavelength —.
”
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orid dispersion logie 5:'

“ Grid dispersion of 3-waves

10 10’
HMumber of poinks per wavelength

Figure 1.5: Dispersion convergence for S-waves for different polynomial basis according to

the number of points per wavelength —.
»

On Figure 1.6 to 1.10 we display the dispersion for Gauss-Legendre bases with opti-
mized penalty and roughly the same maximal angular dispersion (es ~ 1 x 1072) deduced
from Figure 1.4 and 1.5. As we can see, we need 30 points per wavelength in ()1, 9 points
per wavelength in (2, 6 points per wavelength in (03, 5 points per wavelength in ()4 and
5 points per wavelength in Q5 to achieve a dispersion error of 10~2. Discontinuities that
we can see in Figure 1.9 and 1.10 are due to a non-physical mode being closer to the real
physical mode than the approximated mode in a specific direction. For this reason, these
discontinuities should not be interpreted as a discontinuity in the shape of the dispersion.
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P-waves grid dispersion S-waves grid dispersion

a0 0004 80 0.00%
: 120 ;

120

1]

270 270

Figure 1.6: Dispersion anisotropy for ()1 elements with 30 points per wavelength.

P-wiaves grid dispersion S-weaves grid dispersion
90 0.00% g0 0.00%

120

1]

120 G0

230 270
Figure 1.7: Dispersion anisotropy for (02 elements with 9 points per wavelength.
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P-waves grid dispersion S-waves grid dispetsion

80 0.M 90 0.M

1] 120 1]

120

270 270

Figure 1.8: Dispersion anisotropy for (J3 elements with 6 points per wavelength.

P-waves grid dispersion S-waves grid dispersion

80 0.00% 80 0.m

G0 1210 G0

1210

270 270

Figure 1.9: Dispersion anisotropy for (4 elements with 5 points per wavelength.
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P-waves grid dispersion S-waves grid dispersion

a0 0004 80 0.004
: 120 ;

120

1]

1]

270 270
Figure 1.10: Dispersion anisotropy for ()5 elements with 5 points per wavelength.

On Figure 1.11 we compare the dispersion error for ()3 elements with 10 points per
wavelength with standard and optimized penalty. As we can see the results are almost
the same for the P-waves dispersion and slightly better for the optimized penalty for the
S-waves dispersion.

P-waves grid dispetsion S-waves grid dispersion

g0 0.0004 g0 0.000%
- 120 ;

120

a1

270 270

Figure 1.11: Comparison of the dispersion error with standard (in blue) and optimized
penalty (in red) for Q3 elements with 10 points per wavelength.

1.5.3 Stability condition formulation

We can use the previous analysis to derive the stability condition associated with our fully-
discrete scheme. For that, we have to introduce the time discretization in the definition of
the numerical plane wave. We thus have to inject the plane waves into the fully discretized
DG approximation. By doing so, we get a relation between At and h.
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The fully discrete local DG approximation is

K K K
u —2u u
M1 tg+ L Kk 4+ Y Fluy’ =0

fEFK

Since the displacement is a plane wave we have

K _ 4 'e—i(kxﬁ(—whnAt).

un,j )

Injecting this relation in the DG approximation yields

e—iwhAt — 24 eiwhAt K . K
M A u, + | K+ Zel xr Pl ulf = o.
fEFK
We reformulate the temporal term with some trigonometric relations
e~ WAl _ 9 | giwnp At _ 2(cos(wpAt) — 1) _ _4sin2(—‘“h2m)
At? At? At? '
Hence, we get the following generalized eigenvalue problem
4R?sin?(€eBty . e £ K
—T2Mun + K+ > e E | ulf =0, (1.35)
fE€FK

4h? sinQ(—thAt)
At?

2 . o WAL
eigenvalue of our generalized eigenvalue problem. In order to have stability gh7sin (75)

At?
has to be below all eigenvalues, yielding the following stability relation
At 2

7, S uin min
1<y 0<6<2
SISNi 002w [A (9)

WhereM:%M,f(:ﬁKandﬁf:ﬁFf. We note that A = is an

: (1.36)

where {A;}1<j<n, are the eigenvalues of (1.35) according to the angle of incidence 6. We
recall that N is the number of degrees of freedom per element.

Remark 1.9. This study is done on an infinite medium and therefore do not take into
account the impact on the CFL condition of Dirichlet or Neumann boundary conditions.
It is noteworthy that boundary conditions weaken slightly the CFL condition as we will see
with the energy analysis in Section 1.6.

1.5.4 CFL conditions

The CFL stability condition is a relation of the form

At
UPT < Ccfl(k‘), (137)

where C.f(k) is the CFL constant depending on the polynomial order k of the polynomial

spaces Q.
From the relation (1.36) we immediatly get the value of the CFL constant:

. ) 2
Cepi(k) = U 1< Ny 020257 ’
p 125N 05 ()
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1.5.4.1 Comparing optimized and standard penalties

In this section, we compare the impact on the CFL condition of the optimized penalty
introduced in Section 1.3.4 with the standard penalty. We note on Table 1.1 that the
optimized penalty grants a gain for any polynomial degree of 33% in the CFL condition.
These CFL constants have been calculated with the same velocities and penalty as the
dispersion.

Space Standard Optimized gain
Q1 0.150 0.199 33%
Q2 0.0953 0.121 27%
Q3 0.0420 0.0561 34%
Q4 0.0319 0.0417 31%
Qs 0.0194 0.0259 34%
Qs 0.0158 0.0207 31%
Q7 0.0111 0.0148 33%
Qs 0.00941 0.0123 31%
Q9 0.00724 0.00962  33%
Q1o 0.00622 0.00821  32%

Table 1.1: CFL conditions for different polynomial spaces @ for Gauss-Legendre basis
functions with optimized and standard penalties.

1.5.4.2 Dependency of the CFL condition with the penalty parameter

In this section we want to show the impact of the penalty parameter on the CFL condition;
this result is known for the acoustic equation [2]. We remark on Figure 1.12 that the
dependency of the CFL condition is O(a_%). It is therefore quite interesting to get the
optimal penalty parameter. However, one has to be really careful when trying to find
the optimal value, contrary to a CFL condition unstability which is quick and explosive,
we observed that too low penalty can take a long time before the unstability is revealed,
especially for smooth solutions.
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Figure 1.12: Evolution of the CFL condition according to the penalty parameter . and of
the polynomial order.

1.5.5 Considerations on the computational and memory costs of DG
methods

In this section, we propose to illustrate the effect on the computational and memory costs
of different polynomial order basis functions based on the previous dispersion error and
stability analysis. Indeed, different polynomial orders result in different computational
and memory costs for the same accuracy. The computational cost Ceomp and memory
cost Crpem can be considered as unitary since they do not depend of the size of the
domain, we propose to evaluate these costs by the following formulas

nb3,, (k)
C’com k)= —elts? anO k‘,
o) = TG b )

and
Crmem (k) = ”bglts(k’)”bdof(k)»

where nbg, s is the number of degrees of freedom for one element, C; the CFL constant ,
nbpts(k‘)

the number of elements
k+1

nbps the number of points per wavelength and nbeys(k) =

per wavelength.

We chose these formulas since the computation cost is proportional to the inverse of
the time step (ﬁ o %L?IS) which is proportional to the number of iterations needed per
unit of time, multiplied by the number of points per wavelength power the dimension

which reflects the number of elements needed per unit of space (% X nbeyys ), multiplied
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by the size of the elementary matrices nbg,s X nbg,r. The memory cost is proportional to
the number of degrees of freedom per element multiplied by the number of elements per
wavelength power the dimension. We have

11
Ccomp(k) X Eﬁnb?lo‘)g

and

nbdo
Comem (k) o< =13 L

We report in Table 1.2 for different polynomial spaces Q) the different constants to
calculate the computational and memory costs to achieve a dispersion error of 1072 and
of 1074,

Dispersion error = 1072  Dispersion error = 104

Space nbdof Ccfl nbpts Nbeits nbpts Nbeits
Q1 8 0.199 30 15 250 125
Q2 18 0.121 9 3 28 9.3
Q3 32 0.0561 6 1.5 15 3.75
Q4 50 0.0417 5 1 10 2
Qs 72 0.0259 5 0.85 8 1.3

Table 1.2: Constants to calculate computation and memory costs.

We report in Table 1.3 the different costs for polynomial orders going from 1 to 5. As
we can note, the memory cost decrease substantially with the order, ()1 and Q2 being way
behind. The optimal computational cost for a dispersion error of 1072 is obtained with
Q4 elements and for a dispersion error of 1074 the optimum is obtained with Q5 elements.
We also note that ()1 elements cost a lot more than other elements. There is a factor 18
in computational cost between @1 and @4 elements for a dispersion error of 1072, and a
factor 1400 between Q1 and Qs elements for a dispersion error of 1074, Regarding the
memory cost there is a factor 34 between (); and @4 elements for a dispersion error of
1072, and a factor 1000 between @ and Qs elements for a dispersion error of 10™%.

Therefore, both on computational and memory costs )4 elements is the best choice to
achieve a dispersion error of 1072 and Q5 for a dispersion error of 1074

Dispersion error = 1072 Dispersion error = 10™4
Space Computational cost Memory cost | Computational cost Memory cost
Q1 1085400 1800 628140000 125000
Q2 72298 162 2153800 1557
Qs 61604 72 962570 450
Q4 59952 50 479620 200
Qs 122920 52 439740 122

Table 1.3: Comparison of the computational and memory costs for different polynomial
order basis for the same dispersion error.

The lesson from this is that we should not think that high order means high com-
putational and memory costs, quite the contrary. However, this remark stands only for
smooth solution and smooth medium. But where there are singularities and strong local
heterogeneities we should use space-time local mesh refinement.
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1.6 Stability results for non-conforming heterogeneous
media

In this section we use an energetic approach to establish a general CFL stability condition,
i.e. isotropic hp non-conforming heterogeneous cases, for the SIPDG method. Since
this study makes a great use of upper bounds, it is less accurate than the previous one.
However, its locality gives precious information about the dependencies of the stability in
heterogeneous and hp non-conforming cases.

We remind that for an explicit scheme of the form

n+1 n n—1
<uh —2uy +u,
m,

AL , Vh) + ap(uy, vp) =U(vy), vi € Vi,

with ap, a symmetric positive definite bilinear form, we have the conservation of the discrete

energy

n+1 n n+1 n
5}?+1/2 —m u e e

= ( h
VNN
Using the identity of the parallelogram on ap, the study of stability boils down to finding
a CFL condition on At to ensure the positivity of the form on V}, x Vj:

)+ an(uy ™, up).

At?

bu(Vh, Vi) == my(Vi, Vi) — Tah(vh, Vi)

First, we shall give some inverse estimation results:

Lemma 1.2
Vv, € Vi, VK € T},

K
|div (valx) 2k < K[ [Valrll L2 (k)

Ca(p™)
"8ivh,i’K||L2(K) < ‘K|1/2 ”Vh|KHL2(K)7 (138)

Cra(p™)
101Vl + Ooviilkllz (k) < WHVFL’KHLQ(K)v

where
Cdiv(pK)2 = )\max <M_1/2Rdiv1\7{_1/2>7
Ca(PK)2 = )\max (M1/2R8M1/2)
and
A —1/2A A —1/2
Cra(p™)? = )\max(M / Ri2M / )
with

Raiv = (/ div(@y) - div(@m) dﬁ) :
R

l’ 7m:17"' 72(pK+1)2
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and
L m=l, 2pK 41)2

Proof. Straightforward since the space is of finite dimension. O

We following theorem state sufficient local stability conditions obtained through the
energy analysis:

Theorem 1.5
If At verifies the local CFL conditions:
VK € Ty,
At 2
< 1.39
with
A 2
Ck =3 Kde( ) +4( MK)C%(P )+3“7K012(PK)2
PK PK
PVvi(K) 2 2 K2 | K] (1.40)
+ Y. (0+2)max(l, P {{Cmv( )2 [v, + V5] BT Cino(P) Tz
T

FE]‘—h )

then the explicit scheme (1.32) is L2-stable.

Even though the CFL estimation stated in the following theorem is more pessimistic
than the one obtained with the plane wave analysis, the fact that it takes into account het-
erogeneities, boundary conditions and Ap non-conformities gives us valuable information.
This theorem provides all these information because of the locality of the CFL condition
stated in the theorem. Indeed, instead of having a global CFL condition as in the plane
wave analysis, the following theorem state a local CFL condition for each element.

The first remark we can make concerns how we defined the CFL constant C.f(k) in
(1.37). The dependency of the CFL condition is not linear with v,, and looks to be more

v
of the form /v2 + v2. However, since the ratio —£ ysually lies in the interval [v/2,2], and
Vs

we calculated our CFL constants C.y; in the worst case Where —+ = 2, these constants are
Us
still legitimate but relatively pessimistic.

We see that the dependency of the CFL condition with the penalty in O(a~/?) ob-
served in Section 1.5.4.2 is confirmed by the following theorem since Ck has a linear
dependency with the penalty constant §. We remind that this result was already observed
by Agut and Diaz in [2] for the acoustic equation.

Concerning heterogeneities, in most cases the global CFL condition is the one dictated
by the most restrictive medium. However, in cases of high contrast, we see that the
local CFL conditions might deteriorate the global CFL condition, e.g. same velocities in
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two neighboring elements (we might expect the same local CFL conditions) but different
densities p, then the term

max(1, “ECD) G () [ + 2 e = 222 (07 4 02)

is obviously greater than (v + v2).

K
In the case of h-adaptivity we see that the CFL condition deteriorates since K] >1

hZ =
K h
for non conforming faces. In our Cartesian case, |h2| = ( o 2 = pi, where p; is the spatial
r ps

refinement ratio. Thus, the CFL condition deteriorates linsearly with the space refinement
Ps, this is not a real problem since the refined elements impose the same kind of restriction
on the CFL condition. However, in the case of a local time stepping scheme, the coarse
element right next to the non-conformity should be included in the local time stepping
scheme since its local CFL condition is of the same kind as the small elements.

In the case of p-adaptivity wee see that the CFL condition deteriorates for the elements
next to the non-conformity with the lower degree. Indeed, the dependency in polynomial

C; )2+ C; 2
degree is {{C’mv(p)Q}}p C,-m,(pK )2 = inv (Pmin) ; inv (Pmaz) p?m-n > pﬁnn. Since, in the

Cartesian case Cj,(p)? = (p+ 1)? the CFL condition can be substantially weaken on the
element with @,,... right next to the element with @), ... This is relatively troublesome
since that means that with local time stepping we most likely will not be able to take the
CFL constant C¢;(pmin) in the local time stepping area.

Proof. To show the stability result, we begin with the estimations used in the proof of the
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Theorem 1.4:
ah(vh,vh) :/gzah(Vh) : thh dx — 2/}_ {{ah(vh)n}} . [[Vh]] d’y

vi]n HZLQ(I‘)

rerrur, hr
{Cinu(p ) 0
+ ) 5T7H[[ Vil e
rertur,
1/2
<y <1+4§ VIA Zdivie |22
KeTh

+(1+ 252)H(2MK)1/231VK,1H%2(K)

+ (14 28)1(2nK) " 02v k2l 72 1)
(1.41)

(A Ovica + v

) 2
+ Z 1 {{Cmv(p) ()‘ + 2:“’)} ||[[Vh]]N H%Q(I‘)

rerf 5251\7 hr

+ 3 0+ e o LSy e

+ Z (1+ 1 >5N{02nv(p)2()‘+2:u’)}}”[[v

- I 172y
T

1 Cin’u 2
+ 30 0+ g LS g

Using the inverse estimations of Lemma 1.2, we get

)3 ((1 A€ NP divi |2 ey + (1 + 263 | (2px)
KeTy,

+ (0 28 200 P Oavicallfagry + (1+ 46 i Oovica + vica) e
(1.42)

< <1+4§2 AR G ()2 + 21 + 261 P 3K
Kot PK

HVKH22
+ (1 + 452)WC12(PK)2>PKL(K).
PK |K|

Moreover, using a triangular inequality and an inverse estimation, we get

. 2
DRI Gl GRiLD) 1T NI

2
rert 2650 I
1 Cinv(p 20\ 4+ 20
+ 3 ooy A I e,
reFp N r

2 : E : 0 wa - Cinq; 79 I r—
SKeTh <F€]—‘h(K)a(1 €2y o Cin o PK br v ht )pK K|
(1.43)
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and

S (1t e {{Cm””“}n[[vhﬂzv .

2
reFrf 26%0N

C’ln'U
+> 0 5215N d ( M}}II[[ AREFFRS (1.44)

rerb
5| K| ||VKH%2(K)

I
= Z ( Z (1 525 )07 {Cinv(p )zp?}FCinv(pK) h%>pK|[(

KeT, "TeFp(K

Using (1.42), (1.43) and (1.44), (1.41) becomes:

2
on(nvi) £ 3 ((1+48) 25 Can (K2 + 201+ 26 2 )
KETh PK
+(1+ 452>‘p‘icu<pf<>2
o (A +2p) 2 | K HVK”L%K
(1.45)
Let £ = 1/v/2.
A 2
oniv) < 3 (33502 + 4 CB5) + 515y 2
KeT, PK PK
A+ 2 K vl
+ Z 5 +2 6{{Cmv( ) [i + M]}}F Cinv(pK)2|2|) Kﬂ
reFn(K) PK PK hr ’K|
(1.46)
Finally, we get the following lower bound:
At? [ Ak (2uK)
b , > 1<3(Jiv K2 44 C2(p¥) + 3K ¢
h(Vh, Vi) K;T [ T3 G (") o 5(™) py 12(p™)?
A+ 2 K
£ 04 2Cum e + P2y o o D | vy
PK PK h
TeF,(K) r
(1.47)
where
At?
bu(Vi, Vi) = mp(Vi, Vi) — Tah(vha V). (1.48)
O

1.7 Conclusion

We introduced the standard IPDG methods for the second order elastodynamic equation.
We proposed a penalty term more suited for this equation than the standard penalty
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term. This penalty term grants a gain of roughly 30% in the CFL condition and a slightly
improved dispersion. Our comparative study showed that SIPDG is the most suited IPDG
method for elastodynamic, the main two reasons are, the convergence rate of the error
which is optimal, and the convergence of the dispersion which is two times larger for
SIPDG than for other IPDG methods. The dispersion error is particularly important in
an oil exploration context, since an error on the velocity result in an error in the imaging
process. Moreover, the symmetry of the SIPDG method offers many accurate possibilities
to study the scheme which are not possible with other IPDG schemes. In particular,
we can have a CFL condition in heterogeneous medium, with boundary conditions, non-
conforming meshes and with hp-adaptivity.
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Chapter 2

Perfectly matched layers (PML)
for the second order
elastodynamic equation

2.1 Introduction

Many problems in the simulation of elastic wave propagation have a medium which
is either unbounded or much larger than the area of interest. For reasons of problem
tractability we have to bound the medium in these cases. This raises the question to
know how to artificially bound our medium to simulate an infinite medium. This is a
longstanding problem, many researches have been developed in the past and this still is
an active area. There mainly exists two classes of methods to achieve this: absorbing
cond