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Résumé long en Français Introduction

Ces travaux de thèse ont été réalisés au sein de l'équipe MIV, laboratoire ICube et sont financés par l'institut Carnot et la Région Alsace. Ils s'inscrivent dans le projet Kal-Haïti qui vise à construire une base de données d'images de télédétection et de données complémentaires relatives au séisme de janvier 2010 en Haïti. L'un des objectifs du projet Kal-Haïti est de créer et mettre à jour la base de données concernant l'état des bâtiments. La mise à jour est très coûteuse car elle s'effectue manuellement et commence par l'investigation des images. En conséquence, il y a un besoin réel pour développer une méthode automatique de mise à jour et de détection des changements dans la base de données des bâtiments.

Le processus de mise à jour est décrit ci-après. À partir d'une image prise au temps n, les bâtiments sont détectés puis classifiés parmi les trois états suivants :

• bâtiment construit, qui correspond à un bâtiment apparemment achevé et en bon état;

• bâtiment en construction, qui indique un bâtiment inachevé au temps n;

• bâtiment en ruine, qui fait référence à un bâtiment manifestement inhabitable et/ou gravement endommagé.

En utilisant une nouvelle image au temps n + 1, les emprises des bâtiments et leur état sont mis à jour. Pour maintenir la cohérence dans la base de données, un état "inexistant" est ajouté, car si un nouveau bâtiment apparaît au temps n + 1, alors il est identifié comme inexistant aux temps précédents. De même, il sera identifié comme inexistant aux temps suivants après une disparition complète (déblaiement). Ainsi, à chaque nouvelle image, les bâtiments sont détectés et leur état est déterminé. Enfin, en comparant l'état des bâtiments aux temps n et n + 1, le changement de la base de données est classé comme: nouvelle construction, rasé, pas d'évolution, en reconstruction, détruit, construction achevée, construction abandonnée, etc.

Image Détection de l'ombre et de la végétation

Détection des bâtiments

Classification des bâtiments Détection de changement Figure 1: Chaîne de traitement: mise à jour de la base des données des bâtiments. Les blocs en vert sont étudiés dans le cadre de cette thèse.

La chaîne de traitement proposée est représentée figure 1.3. L'ombre portée est l'indice le plus important pour détecter les bâtiments. En outre, l'ombre et la végétation permettent d'obtenir des iv indices géométriques et sémantiques sur l'état des bâtiments. C'est pourquoi une première étape de la chaîne de traitement consiste à détecter l'ombre et la végétation. Plusieurs indices de détection de l'ombre et de la végétation proposés dans la littérature ont été comparés, puis ces informations sont fusionnées grâce à la théorie de Dempster-Shafer (DS) [START_REF] Arthur | A generalization of Bayesian inference[END_REF], Shafer 1976] pour prendre en compte les incertitudes intrinsèques sur les données. Par ailleurs, une modélisation par champ de Markov permet de régulariser la solution. La deuxième étape de la chaîne de traitement consiste en la détection des bâtiments. L'image est tout d'abord segmentée en superpixels homogènes ce qui redéfinit la grille d'échantillonnage d'origine sur un nouveau graphe. Les bâtiments détectés sont les super-pixels vérifiant certaines règles, comme par exemple la présence d'une ombre portée (détectée dans la première partie de la chaîne de traitement), la rectangularité, etc.

Détection de l'ombre et la végétation

Il existe une littérature abondante concernant la détection de l'ombre et de la végétation (par exemple [Adeline 2013, Tian 2012, Shorter 2009]). Cependant, la détection séparée de l'ombre et de la végétation ne nous semble toutefois pas optimale. En effet, un pixel de végétation ombragée sera classé comme étant de la végétation par l'algorithme de détection de végétation et comme une ombre par l'algorithme de détection de l'ombre. Dès lors, l'utilisation des approches classiques de la littérature n'est pas conseillée pour la détection simultanée de l'ombre et la végétation. Une inspection visuelle aboutira au même problème car l'information du pixel est imprécise et incertaine. Nous proposons une méthode originale, appelé SSVD ("simultaneous shadow vegetation detection"), pour détecter simultanément les zones d'ombres et de végétation. En d'autres termes, nous proposons une méthode de segmentation des images en trois classes : "ombre", "végétation" et "autre". La méthode proposée est résumée dans la figure 4.1.

En comparant les différents indices d'ombre de la littérature (notamment [Adeline 2013]), nous obtenons les meilleurs résultats avec l'indice c 3 de l'espace de couleur c 1 c 2 c 3 [START_REF][END_REF]] :

c 3 = arctan B max(R, V) (1) 
où R, V et B représentent respectivement les composantes rouge, verte et bleue de l'image. De même, il existe plusieurs indices pour détecter la végétation [Shorter 2009, Woebbecke 1995a]. Nous avons constaté que l'indice ExG est le plus performant [Woebbecke 1995a] :

ExG = 2 × V -R -B R + V + B . ( 2 
)
Par ailleurs, il est apparu que le résultat de la détection était amélioré en prenant en compte la luminance L :

L = R + V + B 3 (3) 
Chacun des trois indices ci-dessous permet de construire l'une des images caractéristiques Y (1) , Y (2) , Y (3) . La suite de la méthode consiste à segmenter l'observation en trois classes ω 1 , ω 2 et ω 3 (correspondant à l'ombre, la végétation et le reste) à partir des images caractéristiques. Tout d'abord, un seuillage automatique d'Otsu [Otsu 1975] est appliqué aux images Y (1) , Y (2) et Y (3) Calcul de la fonction de masse: m (1) Calcul de la fonction de masse: m (2) Calcul de la fonction de masse: m (3) Classification DS vi zones sombres (qui inclut les zones d'ombre et de végétation). La méthode d'Otsu est d'ailleurs très utilisée pour détecter l'ombre [START_REF] Tsai | [END_REF]] pour la qualité de ses résultats. Ainsi, l'image Y (1) est segmentée en deux classes ω 1 et {ω 2 , ω 3 }. De même, Y (2) est segmentée en les classes ω 2 et {ω 1 , ω 3 } et Y (3) en les classes ω 3 et {ω 1 , ω 2 }. La théorie DS appliquée à la segmentation d'image permet alors de fusionner un par un les pixels provenant des trois segmentations et d'inférer sur les hypothèses (simples) H i représentant les groupes simples : H i = {ω i }. Le cadre de discernement Θ regroupe l'ensemble des classes : Θ = {{ω 1 }, {ω 2 }, {ω 3 }}. Une fois que toutes les fonctions de masse des hypothèses simples et composées d'un pixel s sont déterminées, nous avons besoin d'un critère de décision pour décider quelle hypothèse est la plus réaliste. Pour la règle de combinaison prudente de Denoeux, la décision s'effectue au niveau dit pignistique qui impose une transformation des fonctions de masses en distributions de probabilité:

ICM

Betp(H i ) = {A:H i ∈A} m(A) |A| (4) 
où |A| est le cardinal de l'ensemble des éléments de A. La décision consiste à choisir l'hypothèse simple de plus grande probabilité pignistique. Un exemple de la classification est représenté figure 4.5.e.

Or, la fusion des informations se place au niveau du pixel : cela suppose implicitement que chaque pixel ne dépend pas de ses voisins, ce qui implique que la procédure est très sensible au bruit. Pour cette raison, une régularisation par champ de Markov [Geman 1984] de la classification est introduite dans la fusion de DS pour gérer au mieux la forte corrélation spatiale des pixels. L'utilisation conjointe de ces deux techniques a fait l'objet de plusieurs travaux en classification à partir d'observations multisource [Bentabet 2008]. Alors que le cadre probabiliste attribue une vraisemblance aux classes ω i , la théorie DS remplace cette vraisemblance par une fonction de masse sur l'hypothèse simple H xs = {ω i }. Le terme de régularisation du champ de Markov peut alors être généralisé pour traiter l'hypothèse composée. Considérant la vraisemblance m s (A p ) et vii la probabilité a priori m s (A q |x Vs ) comme deux sources d'information évidentielles, la probabilité a posteriori est remplacée par la somme orthogonale de DS de ces deux sources:

M s (A|x Vs ) = 1 1 -K Ap∩Aq=A m s (A p )m s (A q |x Vs ) (5) 
où K = Ap∩Aq=∅ m s (A p )m s (A q |x Vs ).

Une fois les fonctions de masse des hypothèses simples et composées déterminées, la classe de chaque pixel est estimée en maximisant la fonction de plausibilité sur l'information jointe: Une illustration de ces étapes est donnée figure 4.5. Par simple comparaison visuelle, on constate que les zones d'ombre et les zones de végétation sont obtenues avec une grande précision grâce à la régularisation spatiale : les petites zones isolées d'ombre et de végétation sont supprimées et la forme de l'ombre est préservée. De plus, nous évaluons la méthode proposée à la fois qualitativement mais aussi quantitativement. Pour l'évaluation quantitative, nous adoptons les mêmes métrique et table de précision que ceux proposés dans [START_REF] Prati | [END_REF]] (table 3.4), en calculant le taux de vrais positifs (VP), faux négatifs (FN), faux positifs (FP) et vrais négatifs (VN). La somme VP + FN + FP + VN correspond donc au nombre total de pixels dans l'image. La précision du photointerpréteur indique comment les pixels des catégories connues sont correctement classés. La précision de l'utilisateur indique la probabilité de pixels correctement classés par rapport à la référence qui est ici le photointerpréteur. En combinant ces indices de précision, on obtient la précision générale τ qui permet d'évaluer la performance de l'algorithme. Des valeurs de paramètres élevées correspondent à de bons résultats. De plus, comme le fait [START_REF] Rufenacht | [END_REF]], on calcule le coefficient de corrélation de Matthews (MCC) [Matthews 1975], qui est une mesure plus équilibrée si les deux classes ont des tailles différentes. La valeur de la MCC est entre [-1, 1], où des valeurs élevées indiquent une meilleure prédiction. Les résultats donnés dans le table 2 montrent clairement que notre approche possède de très bonnes performances globales tant pour la détection d'ombre que pour la détection de végétation. Les précisions générales τ sont élévées (95.66% pour la détection de l'ombre et 98.38% pour la détection de végétation). De plus, une comparaison quantitative entre notre méthode et les méthodes de [Tian 2012] (pour la détection de l'ombre) et [Shorter 2009] (pour la détection de En conclusion, notre travail apporte trois contributions. Premièrement, il introduit un nouveau schéma pour détecter simultanément les zones d'ombre et de végétation. Deuxièmement, l'utilisation de la théorie DS permet de combiner différents indices d'ombre et de végétation afin d'obtenir une segmentation fiable et plus précise. Troisièmement, la modélisation par champ de Markov permet d'exploiter les informations de voisinage géométrique de l'image ; cette idée est largement utilisée en segmentation d'image, mais rarement dans le contexte de la détection de l'ombre et de la végétation.

Détection des bâtiments

Beaucoup de méthodes ont été proposées pour détecter les bâtiments à partir d'une image de télédétection [Ozgun Ok 2013, Femiani 2014, Li 2015]. Dans notre cas, la détection doit être utilisable sur des zones de densités très hétérogènes (de l'urbain au rural). Cela impose les hypothèses suivantes sur l'apparence des bâtiments :

1. les bâtiments ont une couleur homogène (en pratique, c'est cette hypothèse qui permet de séparer les bâtiments dans les zones très denses) ;

2. les bâtiments créent une ombre portée (d'où l'importance de l'heure de prise de vue et de la qualité de la détection de l'ombre) ;

3. les bâtiments ont une géométrie simple à angles droits (en forme de rectangle, de L, de U ou de I).

Ces hypothèses ont conduit à une méthode originale, appelé SBBD ("shadow-based building detection"), décrite ci-après. Le schéma de la méthode est représenté figure 5.3.

Tout d'abord, la carte des zones d'ombres obtenue dans la première partie de la thèse est nettoyée afin de supprimer les ombres générées par autre chose que les bâtiments : les ombres dues à la végétation sont supprimées à l'aide de la carte des zones de végétation, et les ombres très petites (dues à des objets de petite taille telle que les véhicules ou rochers) sont également éliminées. Ensuite, l'image est sur-segmentée en régions homogènes à l'aide de la méthode SLIC [START_REF] Achanta | [END_REF]] permettant de remplacer avantageusement la structure rigide de la grille de pixels par un graphe de régions. Puis, une méthode de classification-fusion itérative est appliquée sur l'ensemble des régions. L'étape de classification affecte une classe à chaque région et les regroupe ensuite en groupes. Selon la position des ombres, une fusion permet de regrouper certaines régions d'un même groupe et de produire des régions de forme à peu près rectangulaire. Un exemple de la première itération de la segmentation par croissance de région est représenté figure 6.

Ces deux étapes de classification et de fusion sont répétées jusqu'à ce qu'aucune fusion ne soit possible. Enfin, les bâtiments sont déduits en approximant les régions fusionnées par un rectangle (un exemple est représenté figure 5.20).

La performance finale de la méthode SBBD est évaluée en comparant les résultats de la méthode avec la vérité terrain. Nous effectuons une évaluation quantitative au niveau pixellique xii et au niveau d'objet. Nous adoptons les mêmes métrique et table de précision que ceux proposés dans [Ozgun Ok 2013]. La précision P, le rappel R et la F-mesure F 1 sont utilisés pour la précision au niveau de pixel:

P = VP VP + FP R = VP VP + FN F 1 = 2 × P × R P + R (7)
VP est le nombre de pixels de bâtiments correctement identifiés, FN est le nombre de pixels de bâtiments considérés comme n'étant pas des bâtiments, FP est le nombre de pixels hors des bâtiments considérés comme étant des bâtiments et VN est le nombre de pixels hors des bâtiments correctement identifiés. D'autre part, la performance peut être mesurée au niveau des objets eux-mêmes (et non des pixels), en utilisant également les mesures définies dans l'équation 6.1 : un bâtiment est un VP s'il a au minimum 60 % des pixels en commun avec le bâtiment de la vérité terrain ; un bâtiment est un FP s'il ne coïncide pas avec l'un des bâtiments de la vérité terrain ; un bâtiment est FN s'il correspond au bâtiment avec une quantité limitée de recouvrement (< 60%). Les résultats présentés tableaux 3, 4, 5 montrent clairement que la méthode SBBD a de très bonnes performances globales pour la détection de bâtiments, tant au niveau de pixel qu'au niveau d'objet. De plus, une comparaison quantitative avec trois méthodes de l'état de l'art ( [Ozgun Ok 2013, Femiani 2014, Li 2015], qui utilisent également l'ombre), indique que la méthode SBBD donne de meilleurs résultats. De plus, la méthode SBBD est capable de distinguer les bâtiments même s'ils sont côte-à-côte, comme en milieu urbain où la densité des xiii bâtiments est importante.

Performance au niveau pixel(%) Méthode de [Femiani 2014 [Li 2015] Méthode SBBD 89.9 79.7 84.5 97.5 86.81 91.9

Table 5: Qualité de la détection pour l'image de la figure 6.9 de la thèse.

La méthode SBBD est paramétrée par plusieurs variables. Il n'existe pas de valeurs absolues de ces variables car celles-ci dépendent de la résolution de l'image, de la taille des bâtiments, de la densité d'ombre, etc. Ainsi, les paramètres ayant une signification physique peuvent être facilement fixés, alors que les autres paramètres doivent être déterminés par essai-erreur. Ces expérimentations sont détaillées dans le manuscrit. 

Glossary

Context

On January 12, 2010, a devastating earthquake with a magnitude of 7.3 struck Haiti. This massive earthquake, the biggest the region had seen in 200 years, lead more than 200 000 lives lost, tens of thousands injured, leaving close to 2 million people homeless and the whole country to be rebuilt. The response of the international community has been unprecedented. Hundreds of data were acquired during the emergency phase: optical and radar satellite images covering various spatial resolutions, aerial photography and in situ measurements. After photo-interpretation, these images were used by the civil protection agencies and rescue teams on the scene. The French Agence Nationale de la Recherche (ANR) has funded a project named KAL-Haiti which aims at gathering remote sensing imagery completed as possible with in-situ measurements and exogenous data into a knowledge base. This geo-referenced database, seen as a shareable resource, can serve as a basis for helping the reconstruction of the country, but also as a reference for scientific studies devoted to all phases of risk management.

Before the earthquake, the Sertit (SErvice Régional de Traitement d'Image et de Télédétection) was aware of the links between the urban community of Strasbourg (its home town), and Jacmel in Haiti, with which it was twinned. The historic city of Jacmel was largely destroyed by the earthquake. Construction and reconstruction of buildings after the disaster is one of the major challenges facing the Haitian nation and the international community. A lot of initiatives have been carried out: destroyed buildings have been removed or reconstructed, new buildings have been erected, etc. The town council of Jacmel thus used its connections with the University of Strasbourg to monitor this rapidly evolving situation, which would enable them to establish the criteria for taxation, the economy planning, health care, etc. However, updating the building database is very time-consuming and expensive since it is generally carried out manually, by visual inspection of images. This work was estimated to require up to 40% of the costs necessary to generate it from scratch [START_REF] Champion | 2D building change detection from high resolution satellite imagery: A two-step hierarchical method based on 3D invariant primitives[END_REF]]. As a consequence, there is a growing need to automate this process, that is to propose an automatic method for detecting changes in a 2D building database. As a partner of the KAL-Haiti project, Sertit wants to develop an automatic system to detect changes in building database. This PhD project, conducted at the MIV team of the ICube laboratory, is a part of the effort devoted to the study of 2D building database updating. The updating process is described in Fig. 1.1. Buildings are first detected from images of time n and then, classified into three states:

• constructed building, which is apparently completed and in good condition;

• building under construction, which is not yet completed;

• building in ruin, which is clearly inhabitable and/or invaded by vegetation.

At time n + 1, using new images, the new building footprints are estimated and the building state is updated. Moreover, new buildings are detected. Thus, to keep the consistency in the database, a 4 th state corresponds to "non-existent" building is added: if at time n + 1, a new building is detected, it is identified as "non-existent" building of time n. In the same way, the building will be identified as "non-existent" building of time n+1 after a completed disappearance.

Finally, by comparing the state of buildings at time n and time n + 1, the changes on building database would be classified into different categories: new construction, building under construction, no evolution, completed construction, abandoned construction, building under reconstruction, destroyed building, damaged building. An example of building database update is shown in Fig. 1.2.

Problem Statement

This work takes place in the framework of high resolution remote sensing image analysis. The goal is to build a generic processing chain to create or update a cartographic building databases. Our work differs from the existing work in some respects as follows. First, it is designed to deal with optical images without any a priori knowledge such as DSM, DTM [START_REF] Champion | Détection de changement 2D à partir d'imagerie satellitaire: Application à la mise à jour des bases de données géographiques[END_REF]] or SAR sensors [Poulain 2010]. Second, since a building database is not available at the input of the chain, the goal of this work is precisely to create one building database (building vector). Third, the state of buildings must be classified into different states (building description). The changes between two images of different time are not only the building footprints, but also their corresponding states. Thus, we propose a processing chain as shown in Fig. 1 To create the building database, an automatic algorithm for detecting buildings from single optical images is required. Moreover, shadows are valuable sources since a cast shadow is notably strong evidence of an existence of a building structure. Besides, according to cartographic experts, shadows and vegetation can provide additional geometric and semantic clue about the state of buildings (constructed building, building under construction, or building in ruin). That is why we found it necessary to detect shadows and vegetation. These two issues are studied and presented in this thesis.

Thesis Contributions

Current shadow/vegetation detection methods in the literature detect separately shadow regions and vegetation regions [Shorter 2009], [Ozgun Ok 2013]. The first contribution of the thesis introduces a new algorithm that detects simultaneously shadows and vegetation from an high resolution optical image. In this thesis, several shadow and vegetation indices were investigated and merged using the Dempster-Shafer (DS) evidence theory so as to increase the reliability and accuracy of the segmentation. The principal advantage of this theory is its ability to take into account ignorance of the information by affecting a degree of confidence which is called a mass function to all simple and compound hypotheses. However, since the DS fusion processes at a pixel-level, the performance of the DS fusion is sensitive to noise. The Markov random field (MRF) is thus employed to model spatial information within the image. In short, the main contribution of this part is twofold.

• First, to the best of our knowledge, this is the first work on detecting simultaneously shadow regions and vegetation regions from optical (RGB aerial or satellite) image, by the use of Dempster-Shafer evidence theory.

• Second, Dempster-Shafer fusion is incorporated with a Markov random field, so that the image geometric information (spatial correlation) is taken into account.

Building detection from single image is, in general, a very difficult task due to the large scene complexity and irregular nature of the scenes [Izadi 2010], [Karadag 2015]. The second contribution of the thesis introduces a novel approach for the automated detection of buildings. Shadow analysis has been considered to be one of the most important clues of building objects in monocular image processing. In this thesis, from the shadow/vegetation mask detected in the previous part, boundaries between shadows and their corresponding buildings are detected by eliminating shadow regions generated by vegetation objects and other non-building objects. A novel region growing segmentation technique is then proposed. Image is first over-segmented into smaller homogeneous regions (superpixels) which can be used to replace the rigid structure of the pixel grid. An iterative region classification-merging is then applied over this set of regions. At each iteration, regions are first classified using a region-level MRF-based image segmentation. According to the position of shadows, a merging process is then performed over regions having the same class to produce regions whose shapes are appropriate to rectangles. In the third stage, from the results of region growing image segmentation, the final building regions are determined. In short, the main contribution of this part is threefold.

• The method requires only reasonably high resolution aerial image (≃ 50 cm per pixel). Not required are multiple views, additional information such as near-infrared (NIR), lidar or any elevation data.

Thesis Structure

• The method does not require (a large amount of) prelabeled data as would be needed by a supervised learning.

• A novel Markov random field region growing technique for building detection is proposed, in which the radiometric and geometric information of building are combined.

These two algorithms have been tested on a variety of image datasets and demonstrates their efficiency.

Thesis Structure

The chapters of this thesis reflect the contributions stated in Section 1.3. The thesis is structured as shown below.

Chapter 2 outlines the Jacmel remote sensing dataset and three additional datasets used to evaluate the performance of the proposed algorithms in the thesis. The discussion concentrates on the image specification and ground truth generations of the datasets.

In Chapter 3, we review shortly the existing methods on shadow/vegetation detection. Then, among different shadow indices and vegetation indices proposed in the literature, we carry out the test to determine what indices are the most relevant regarding shadow detection task and vegetation detection task. Moreover, we explain what motivate us to propose a novel method detecting simultaneously shadows/vegetation from a high resolution optical image, instead of detecting sequentially shadows, then vegetation like other existing methods. Based on the indices chosen in Chapter 3, Chapter 4 develops a novel simultaneous shadow/vegetation detection method. The basic concepts of DS evidence theory and its applications for combining different shadow indices and vegetation indices are described. The DS fusion is carried out pixel by pixel and is incorporated in the Markovian context while obtaining the optimal segmentation with the energy minimization scheme associated with the MRF. The experimental results and discussion are also reported in the end of this chapter.

Coming now to the second part of the thesis, in Chapter 5, a novel approach for the automated detection of buildings from monocular VHR optical images is introduced. From the shadow/vegetation mask detected in the previous part, boundaries between shadows and their corresponding buildings are detected by eliminating shadow regions generated by vegetation objects and other non-building objects. In order to effectively extract building objects from image, an novel MRF region growing image segmentation is proposed. From the segmentation results, an algorithm for determining the final building objects is proposed. In Chapter 6, we first analyze the sensitivity of important parameters used in our algorithm. Then, we validate our method on multiple datasets described in Chapter 2 and compare to other existing methods in the literature. The advantages and the limitations of the proposed method are also discussed in the end of this chapter.

Finally, Chapter 7 gives concluding remarks on the proposed techniques, with some open issues and future research works.

Introduction

This chapter introduces data used in this thesis, including the Jacmel remote sensing dataset and three additional evaluation datasets. We will discuss about the image specification (spectral band, spatial resolution) and the ground truth generations of each dataset. These datasets with different image specifications and environmental settings are used to demonstrate the flexibility of the proposed algorithms.

Jacmel Remote Sensing Dataset

Project Motivation Taking into account the strong demand for helping reconstruction following the 12th January 2010 earthquake in Haiti, the principal aim of KAL-Haiti project is to produce and promote the use of a database of Earth observation data, in support of research and development activities for global risk management and sustainable reconstruction in Haiti. During the immediate response to the disaster, tens of satellite images, both optical and radar, covering various spatial resolutions were acquired by satellite operators whether they are national space agencies or private companies [Giros 2012]. Two images over the Jacmel area are studied in this thesis:

• a NOAA aerial image, acquired on 24th January 2010 (12 days after the earthquake);

• a Worldview-2 satellite image, acquired on 17th July 2011 (18 months after the earthquake).

These images represent respectively the image of state n and of state n + 1 in Diagram 1.1 of Chapter 1. Ground Truth Concerning the reconstruction monitoring in Jacmel area (as shown in Fig. 2.1), the KAL-Haiti project has produced a set of vector layers built from satellite and aerial imagery, and showing the buildings footprints at different periods. Three layers showing the footprints and states of 22 257 buildings over the Jacmel area (50 km 2 ) have been produced by photointerpretation [START_REF] Sertit | Mise à Jour d'une base de données du bâti avec des images satellitaires[END_REF]]. The set of building footprints produced by photo-interpretation is used as the ground truth to evaluate the performance of proposed building detection method. For shadow/vegetation detection method, the segmentation map with three classes (shadow, vegetation, other) is manually produced with the validation of the cartographic expert (Sertit).

NOAA Aerial Image

NOAA is an abbreviation of National Oceanic and Atmospheric Administration, scientific agency within the United States Department of Commerce focused on the conditions of the oceans and the atmosphere. For the Haiti earthquake disaster, the NOAA aerial images are acquired by the Cessna Citation II, a versatile twin-engine jet aircraft which is equipped with high-resolution digital cameras and other sensors that support a wide variety of remote sensing configurations, including large-format aerial photography as well as data collection for digital cameras, hyperspectral, multispectral and LIDAR systems.

Image Specification

The NOAA aerial image provided for this thesis conveys 3 spectral bands (red, green, blue) and is characterized by a spatial resolution of 24 cm. Sample location is shown in Fig. 2.2. 

WorldView-2 Satellite Image

WorldView-2 is a commercial Earth observation satellite owned by DigitalGlobe, an American commercial vendor of space imagery and geospatial content, and operator of civilian remote sensing spacecraft. For the Haiti earthquake disaster, DigitalGlobe provided a free-of-charge high resolution images to aid the extensive relief and recovery efforts.

Image Specification

The WorldView-2 satellite image provided for this thesis conveys 4 spectral bands (red, green, blue, near-infrared) and is characterized by a spatial resolution of 50 cm. Sample location is shown in Fig. 2.3.

Additional Dataset

These dataset were provided in the end of the PhD project and used to demonstrate the flexibility and the efficiency of proposed methods. The reference data (both for shadow/vegetation detection and building detection algorithm) are manually produced with the validation of the cartographic expert (Sertit). 

BD ORTHO Dataset

The Departmental Orthophotography of IGN (BD ORTHO ) is a database of the Digital aerial georeferenced photography, produced by the French national mapping agency (Institut national de l'information géographique et forestière, IGN France). The BD ORTHO covers part of the French territory with Orthophotographs (aerial photographs in which all distortions are corrected).

It is generated at a ground sample distance of 50 cm. The coverage by "département" (French administrative unit, mean area of around 6500 km 2 ) is renewed every 3 to 4 years.

Image Specification

The BD ORTHO image provided for this thesis represents a part of Strasbourg city and is shown in Fig. 2.4. It conveys 3 spectral bands (red, green, blue) and is characterized by a spatial resolution of 50 cm.

Pléiades-HR Satellite Image

Pléiades is the CNES (French national space agency) program designed as the follow-on to its highly successful SPOT series of low Earth orbit multi-mission observation satellites, which has operated an uninterrupted service since 1986. The Pléiades constellation is composed of two very-high-resolution optical Earth-imaging satellites. Pléiades 1A and Pléiades 1B provide the coverage of Earth's surface with a repeat cycle of 26 days. Designed as a dual civil/military system, Pléiades will meet the space imagery requirements of European defence as well as civil and commercial needs. 

SZTAKI-INRIA Building Detection Benchmark

The SZTAKI-INRIA Benchmark [Benedek 2012] is an excellent resource for benchmarking building extraction algorithms. It contains the rectangular footprints of 665 buildings in 9 aerial or satellite images taken from Budapest and Szada (both in Hungary), Manchester (U.K.), Bodensee (Germany), Normandy and Côte d'Azur (both in France), as well as manually annotated ground truth data. Two datasets (Budapest and Szada) are aerial images, and the remaining four datasets are satellite images acquired from Google Earth. This benchmark is free for scientific use. 

Image Specification

Conclusions

In this work, four datasets will be used. They can be categorized into two groups in function of their spectral specification as follows:

• RGB image: NOAA image, BD ORTHO image, SZTAKI-INRIA image;

• RGB-NIR image: Worldview-2 image, Pléiades-HR image.

These image datasets that cover different scenes and have different environmental settings, different specifications, different resolutions allow to demonstrate the reliability and flexibility of the proposed algorithms. 

Introduction

Shadows and vegetation in remote sensing images often result in problems for many applications, such as land-cover classification, change detection and damage detection in disasters. In recent years, research on these two issues has become very popular. In this chapter, we first review shortly the existing methods on shadow/vegetation detection. Among different shadow indices and vegetation indices proposed in the literature, we then run the test to determine what indices are the most relevant regarding shadow detection task and vegetation detection task. Moreover, we explain our motivation for a novel simultaneous shadow/vegetation detection method.

Shadow Detection in Remote Sensing Image

Related Works

Automatic shadow detection is a very important preprocessing step for many remote sensing applications, particularly for images acquired with high spatial resolution. Shadows can provide geometric and semantic information contained in images, including cues about the height, the shape [Kim 2007] and/or the position of buildings [Ozgun Ok 2013]. However, the existence of shadows also cause some undesirable problems. For example, shadows may cause objects to merge or shapes to distort, thus resulting in information loss or distortion of objects [Chung 2009]. Hence, detecting shadows is still a current topic and discussed widely in remote sensing literature.

Normally, shadows appear when objects occlude the direct light from the illumination source, usually the sun. But shadows are not all the same, they can be divided in two different classes: cast and self shadows (as illustrated in Fig. 3.1). The former is caused by the projection of the light source in the direction of the object. The latter is still a shadow but represents the part of the object that is not illuminated directly by the light source. Consequently, in this thesis, we only focus on the detection of cast shadow, and we do not consider self shadow as shadow for detection. For the sake of simplicity, in the rest of the thesis, we use the word shadow to mean the cast shadow unless otherwise noted.

In the literature, different approaches have been proposed regarding shadow detection. They can loosely be classified into two categories, namely model-based [Tolt 2011, Nakajima 2002] and properties-based approaches [START_REF] Arévalo | [END_REF], Chen 2010, Cucchiara 2003[START_REF] Tsai | [END_REF][START_REF][END_REF][START_REF] Sun | Moving cast shadow detection of vehicle using combined color models[END_REF]]. The former has limited applicability because they rely on some prior information like illumination conditions and 3D scene geometry. 3D models can be acquired using aerial or satellite photogrammetry (multi-view aerial images, stereoscopic pair of satellite images, etc.), airborne or terrestrial laser scanning, interferometric SAR (Synthetic Aperture Radar) or even from topographic data [Adeline 2013]. However, since usually such knowledge is not available, most of the detection algorithms are based on shadow properties, such as the fact that shadow areas have lower brightness, higher saturation and greater hue values. These shadow properties are exploited by different shadow indices (SIs) proposed in the literature.

For instance, in [START_REF][END_REF]], a hypothesis is applied on the fact that cast shadows darken the surface which they are cast upon, and the validity of detected regions as shadows is further verified using the color feature c 3 of the c 1 c 2 c 3 color space (proposed by [Gevers 1999]), with geometric properties of shadows. Considering the atmospheric Rayleigh scattering effect, [M. Polidorio 2003] found that shadow areas in images have higher saturation and lower luminance, thus, they propose thresholding the difference image of the saturation and the intensity components for each pixel in a normalized HSI color space. Based on Phong illumination model [Phong 1975], [Huang 2004] presented a new imaging model of shadows, and employed thresholding on the hue, blue, and green-blue difference components sequentially to detect shadowed areas, which were then compensated by applying the Retinex technique to both shadowed and non-shadowed area separately. [START_REF] Tsai | [END_REF]] uses different color spaces (HSV, HSI, HCV, YIQ, YCbCr) for shadow detection from aerial images where different ratio maps for each of these color spaces are calculated and then, Otsu method is used to segment shadow. But this method tends to misclassify the dark blue and dark green color surfaces as shadow regions.

Inspired by this method, a better approach was developed, which is based on a novel successive thresholding scheme [Chung 2009]. A recent paper from [Tian 2012] proposes an alternative method for shadow detection using a tri-color attenuation model (TAM). TAM describes the attenuation relationship between shadows and their non-shadow backgrounds in the three color channels. Finally, physical properties (e.g., temperature) of a blackbody radiator have been exploited in a recent method to detect shadows [START_REF] Makarau | [END_REF]]. But since this method needs the prior measurement of the color temperature or the center wavelength for the sensors of each channel, it is not automatic enough for general data.

Our shadow detection method is devoted to the high resolution optical image without any prior information. Inspired of the existing methods, our approach exploits shadow properties through use of SIs. The question is now what indices are the most effective for shadow detection task. In the following, we investigate some SIs proposed in the literature over our image database.

Choice of Shadow Index

The main issue of this section is to give an experimental comparison of different indices regarding shadow detection on high resolution optical image. These SIs are produced from different color space models: RGB-NIR, c 1 c 2 c 3 , HSI, HSV, HCV, YIQ, YC b C r , and presented in Table 3.1 

SI 2 H + 1 I + 1 HSI [Tsai 2006] SI 3 Q + 1 Y + 1 YIQ [Tsai 2006] SI 4 C r + 1 Y + 1 YC b C r [Tsai 2006]
Table 3.1: Different shadow indices that are tested in this section. Among six color spaces used in [START_REF] Tsai | [END_REF]], we test only three color spaces HSI, YIQ, YC b C r that are demonstrated in the author's work as the best for shadow detection task.

We have tested these SIs over all image datasets presented in Chapter 2. An example of three test images and their manually shadow masks is shown in Fig. 3.2. The efficiency of each shadow index can be observed in Table 3.2, where we plot the one dimensional marginal histograms of the shadow index values for manually marked shadowed and non-shadowed points. We observe that the c 3 and SI 1 are the most appropriate for a shadow detection method based on histogram thresholding, since the overlaps between the shadow and non-shadow histogram are less significant than others. In properties-based shadow detection method, shadow regions can be extracted by simply choosing an appropriate threshold. The search of that threshold in the histogram is usually based on some assumptions on the histogram: bimodal, Gaussian mixture model, the number of peaks and valleys, etc [Adeline 2013]. In this section, we apply Otsu's method [Otsu 1975] for automatically determining the threshold. The details of Otsu's method can be found in Appendix A. Resulting shadow masks are shown in Table 3.3. By comparing with the reference data (manually shadow masks) in Fig. 3.2, we visually find that c 3 is the best for shadow detection task.

Besides, the performance of each shadow index is also assessed by comparing the resulting shadow masks with the manually shadow masks. The evaluation metrics are defined based on true positive (TP), false negative (FN), false positive (FP), true negative (TN) (as shown in Table 3.4). Concerning shadow detection, TP is the number of shadow pixels correctly identified, FN is the number of shadow pixels identified as non-shadow, FP is the number of non-shadow pixels identified as shadows and TN is the number of non-shadow pixels correctly identified. Among these metrics, the producer's accuracies (also known as recall) indicate how well pixels of known categories are correctly classified. The user's accuracies (also known as precision) indicate the probabilities of pixels been correctly classified into actual categories on the ground. Combining the accuracies of the user and the producer, the overall accuracy (Acc) can be used to evaluate the correctness of the algorithm. These measures are given in percentage. For a good algorithm, values of these metrics should be high. Beside the overall accuracy, similar to [START_REF] Rufenacht | [END_REF]], we compute Matthews Correlation Coefficient (MCC) [Matthews 1975], which is a more balanced 3.5 shows the shadow detection accuracy measurements for images in Fig. 3.2 when we apply the Otsu thresholding method on different shadow indices. It is shown that the best result is obtained with shadow index c 3 (overall accuracy are 92%, 81% and 94%). Three indices proposed by [START_REF] Tsai | [END_REF]] (denoted as SI 2 , SI 3 , SI 4 ) perform well for the first and third image but they perform badly for the second image. In [Adeline 2013], the authors concluded that since sensor radiance received from shadowed regions decreases from short to long wavelengths due to scattering, so it is easier to distinguish shadows from non-shadows with NIR band rather than visible bands. But our test demonstrates that NIR band (overall accuracy 73.29%) outperforms other shadow indices but it is not better than shadow indice c 3 . Besides, NIR band is not available for aerial images. These shadow indices are also tested for other image datasets and similar results are obtained. As a result, in the following, we will use index c 3 for shadow detection task.

Vegetation Detection in Remoted Sensing Image

Related Works

Vegetation is of particular interest as it presents a versatile resource for effectively managing and moderating a variety of problems associated with urbanization, such as urban planning, disaster management or telecommunication planning. In the context of this thesis, the spatial distribution of vegetation can also provide the semantic information about the state of buildings. However, the detection of vegetation is a considerable challenge due to their complex nature and their interaction with other objects, such as buildings or shadows.

Previous studies document a variety of approaches for measuring the vegetation cover by image analysis techniques. Color/tone was intensively used to distinguish between vegetation and non vegetation. Since objects, including vegetation have their unique spectral signature, they can be identified according to their spectral characteristics, mostly by vegetation indices (VIs). VIs are spectral transformations of two or more bands designed to enhance the contribution of vegetation properties. As a simple transformation of spectral bands, they are computed directly without any bias or assumptions regarding land cover class, soil type, or climatic conditions [START_REF] Huete | [END_REF]]. According to [START_REF][END_REF]], the ideal vegetation index should be particularly sensitive to vegetative covers, insensitive to soil color and to soil brightness, little affected by atmospheric effects, environmental effects, solar illumination geometry and sensor viewing conditions. Numerous VIs have been proposed in the literature [START_REF] Bannari | [END_REF]]: vegetation index number (VIN), normalized different vegetation index (NDVI), transformed vegetation index (TVI), to name a few. However, most of these VIs require the near-infrared band. Since our developed algorithm must be applicable in RGB color images, we focus on the VIs which utilized only the red, green and blue spectral bands. Among them, color index of vegetation extraction (CIVE) [Kataoka 2003], excess green index (ExG) [Woebbecke 1995b], redness index (RI) [Huete 1994] and excess green minus excess red (ExGR) [START_REF] Neto | [END_REF]], are used. The advantages of using these indices is that they accentuate a particular color such as plant greenness, which should be intuitive for human comparison [Meyer 2008]. Moreover, they do not require the near-infrared band, which is not available for RGB color images.

Besides VIs, other classification algorithms have been applied on spectral features to classify 3.3. Vegetation Detection in Remoted Sensing Image 29 vegetation. They can be divided into supervised and unsupervised classification approaches. The most widely used supervised classification algorithm for satellite imagery is the Maximum Likelihood Classifier (MLC) [Xu 2005]. Methods for unsupervised classification most frequently used are the K-means and the ISODATA (Iterative Self-Organizing Data Analysis Technique) clustering algorithms [Xie 2008]. In the context of land-cover classification with multispectral satellite data, [Duda 2002] investigated several unsupervised classification (clustering) algorithms and compared with regard to their ability to reproduce ground data in a complex landscape. The clustering algorithms examined are K-means, extended K-means, agglomerative hierarchical, fuzzy K-means and fuzzy maximum likelihood and fuzzy clustering is found to perform best on satellite image. In more recent years, hyperspectral imagery is increasingly studied to extract vegetation cover as its wider spectral bands allow a better differentiation of individual species than multispectral data [Xie 2008, Wania 2007]. Note that these methods are mainly designed for land-cover classification (vegetation, sol, street, water, etc). To detect only vegetation, most used method is to exploit the NDVI index and employ a clustering algorithm such as K-means, Otsu's thresholding method, like [Ok 2013].

Our aim is to design a new unsupervised algorithm to detect vegetation, from optical high resolution image. Inspired of the existing methods, our approach exploits the spectral characteristics of vegetation through use of VIs. In the following, we investigate different VIs proposed in the literature over our image database to determine the most effective VI regarding vegetation detection. Rouse, JW 1974] Table 3.6: Different vegetation indices that are tested in this section.

Choice of Vegetation Index

Index Abbreviation Formula Author Excess Green ExG 2G -R -B R + G + B [Woebbecke 1995b] Excess Green minus Excess Red ExGR 3G -2.4R -B R + G + B [Neto 2006] Color Index of Vegetation Extraction CIVE 0.411R -0.811G + 0.385B R + G + B + 18.787 [Kataoka 2003] Redness Index RI R -G R + G [Huete 1994] Normalized Difference Vegetation Index NDVI NIR -R NIR + R [
The main issue of this section is to give an experimental comparison of different indices regarding vegetation detection on high resolution optical image. Table 3.6 gives the most used VIs that are considered in this section. The first four indices employ only three bands R, G, B. The fifth index is the most frequently used vegetation index for vegetation detection: the Normalized Difference Vegetation Index (NDVI). But it requires the NIR band, which is not available in NOAA aerial image. We have tested these VIs over all image datasets presented in Chapter 2. An example of three test images and their manually vegetation masks is shown in Fig. 3.3. The efficiency of each vegetation index can be observed in Table 3.7, where we plot the one dimensional marginal histograms of the vegetation index values for manually marked vegetative and non-vegetative points. We observe that vegetation index ExG and NDVI (in case the NIR band is available) are the most appropriate for a vegetation detection method based on histogram thresholding, since their overlaps between the vegetation and non-vegetation histogram are less significant than others.

Similar to Section 3.2.2 in selecting the best shadow index, we apply the Otsu's thresholding method over the feature images computed from these VIs. Resulting vegetation masks are shown in Table 3.8. By comparing the resulting vegetation masks with the manually vegetation masks, we find visually that index ExG and NDVI (in case the NIR band is available) are the best. This observation can be confirmed by the quantitative evaluation. We evaluate quantitatively each detected vegetation mask by applying the same evaluation metric as described in Section 3.2.2. As shown in Table 3.9, for index ExG, the Acc (and MCC) is 92.88 (and 0.84) for Jacmel aerial image and 69.31 (and 0.34) for BD ORTHO image. In case the NIR band is available, the NDVI is the most appropriate index (the Acc and MCC are 89.35 and 0.75 respectively). These vegetation indices are also tested for other image datasets and similar results are obtained. As a result, in the following, we use index ExG and index NDVI for vegetation detection task. Table 3.9: Vegetation detection accuracy measurements for images in Fig. 3.3

Motivation for simultaneous Shadow/Vegetation Detection

Current shadow/vegetation detection methods in the literature detect separately shadow regions and vegetation regions [Shorter 2009], [Ozgun Ok 2013]. In this section, we first demonstrate that sometimes these methods might not provide a sufficiently good segmentation map (shadow, vegetation, other). Then, we propose to use also the luminance L for shadow/vegetation detection task. ) and a vegetation detection algorithm (method of [Shorter 2009]) are applied on a test image. In these figures, the black areas correspond to shadows, the green areas correspond to vegetation and the white areas correspond to other. The methods of [Tian 2012] and [Shorter 2009] are detailed in Chapter 4 (Section 4.6). We observe that the method of [Tian 2012] detect quite well shadow regions (Figs. 3.4c and 3.5c). But it classifies some vegetation regions as shadows, for example, the region marked by blue circle. This region is correctly classified as vegetation region by the method of [Shorter 2009] (Figs. 3.4d and 3.5d). Again, the region marked by red circle is wrongly classified as vegetation region by [Shorter 2009], but [Tian 2012] detects correctly this region as shadow region. This observation is also obtained when we use index c 3 combined with Otsu's thresholding method for shadow detection (Figs. In fact, the drawback of the sequential shadow/vegetation detection methods is that, for example, a vegetated pixel covered by shadow can be classified as vegetation (by a vegetation detection algorithm), and at the same time as shadow (by a shadow detection algorithm). So, depending on how dark these regions are, they will be classified as shadow or vegetation. In fact, visual inspection also has a similar problem. Because shadow and vegetation have the equally important effect on building classification task (see Chapter 1), we are motivated in developing a simultaneous shadow/vegetation detection algorithm, that allows to obtain a sufficiently good segmentation map with three classes: "shadow", "vegetation" and "other".

In the previous sections, we investigate different shadow indices (and vegetation indices) in order to choose the best index for shadow detection task (and vegetation detection task). Eventually, shadow index c 3 and vegetation index ExG (or NDVI in case the NIR band is available) are chosen for their best performance (visual and quantitative evaluation) comparing to other indices. However, one of the problems when using index c 3 is its instability for certain color values that lead to the misclassification of non-shadow pixels as shadow (false positives). As reported in [Gevers 1999[START_REF][END_REF], this occurs for pixels with extreme intensity values (as shown in Fig. 3.6, red circle). On the other hand, using only vegetation index ExG leads to classify all regions that are green and bright as vegetation (as shown in Fig. 3.7, blue circle). To solve these problems, we employ the luminance L, from the color space HSL, as proposed in [Yao 2006]. Shadow and vegetation regions are considered as having lower luminance than other regions [M. Polidorio 2003]. Similar to the previous section, we test this index by first computing the luminance image and then applying the Otsu method to determine the appropriate threshold. As shown in Figs. 3.6, 3.7 and 3.8, index L allows to detect well shadow regions and vegetation regions (dark green area).

Conclusions

In this chapter, after reviewing the existing methods in shadow detection and vegetation detection from the remote sensing images in the literature, we test some most used shadow indices and vegetation indices on our image database. Index c 3 (resp. ExG (or NDVI)) is demonstrated as the most appropriate for shadow (resp. vegetation) detection task. Moreover, the false alarm due to the instability of these indices can be avoided by using the luminance L. Besides, we demonstrated that sometimes detecting separately shadows and vegetation might not provide a sufficient good result. Starting from these observation, a novel simultaneous shadow/vegetation detection is presented and detailed in the next chapter.

Introduction

In this chapter, we present our method for simultaneously detecting shadows and vegetation in remote sensing images. The main framework of the proposed method is summarized in Fig. 4.1. This method is based on Otsu's thresholding method and Dempster-Shafer (DS) fusion which aims at combining different indices: c 3 , ExG, and luminance L; which are investigated in the previous chapter. Note that ExG is replaced with NDVI when the NIR band is available. However, for clarity of the proposed approach, we only consider the ExG in the following. The DS fusion processes at a pixel-level, assumes that each pixel in the image is independent of its neighbors and does not take into account spatial dependencies. Thus, the performance of the DS fusion is highly sensitive to noise. To overcome this shortcoming, a Markov Random Field (MRF) model [Geman 1984] may be employed. This chapter will firstly presents the application of DS fusion in shadow/vegetation detection, and then the link between MRF and DS fusion. The comparison to some existing shadow detection methods and vegetation detection methods is also reported at the end of the chapter. 

Basic Concepts of Dempster-Shafer Evidence Theory

Dempster-Shafer (DS) evidence theory [START_REF] Arthur | A generalization of Bayesian inference[END_REF], Shafer 1976] makes inferences from incomplete and uncertain knowledge, provided by different independent knowledge sources. The theory allows strengthening or erosion of beliefs by combining additional sources of confidence, even in the presence of partly contradictory sensors. In DS evidence theory, there is a fixed set of N mutually exclusive and exhaustive elements, called the frame of discernment, which is symbolised by

Θ = {H 1 , H 2 , . . . , H N } = {H i }, 1 ≤ i ≤ N .
The frame of discernment Θ defines the working space for the desired application since it consists of all propositions for which the information sources can provide confidence. Information sources can distribute mass values on subsets of the frame of discernment, A ⊂ Θ. An information source assigns mass values only to those hypotheses, for which it has direct confidence. That is, if an information source can not distinguish between two propositions A and B, it assigns a mass value to the set including both propositions (A ∪ B). The mass distribution for all the hypotheses has to fulfill the following conditions:

∀A ⊂ Θ, 0 ≤ m(A) ≤ 1 A⊂Θ m(A) = 1 m(∅) = 0 (4.1) If m(A) > 0, A is called a focal element.
The DS evidence theory provides a representation of both imprecision and uncertainty through the definition of two functions: plausibility (Pls) and belief (Bel). They are defined as follows:

Bel(A) = B⊆A m(B) (4.2) Pls(A) = B∩A =∅ m(B) (4.3)
In the Bayesian theory, uncertainty about an event is measured by a single value (probability) and imprecision about uncertainty measurement is assumed to be null. But in the DS theory, the belief value of hypothesis may be interpreted as the minimum uncertainty value about A, and its plausibility may be interpreted as the maximum uncertainty value of A. In other words, uncertainty about A is represented by the values of the interval [Bel(A), Pls(A)], so-called "belief interval". The length of this interval measures the imprecision about the uncertainty value.

Another great advantage of DS theory is its robustness of combining information coming from various sources with the DS orthogonal sum. For m (j) being the mass function associated with source j, (j = 1, 2, . . . , n), this rule is written, for all non-empty subset A of Θ:

(m (1) ⊕ m (2) ⊕ . . . ⊕ m (n) )(A) = 1 1 -K B 1 ∩...∩Bn=A m (1) (B 1 )m (2) (B 2 ) . . . m (n) (B n ) (m (1) ⊕ m (2) ⊕ . . . ⊕ m (n) )(∅) = 0 (4.4) where 0 ≤ K = B 1 ∩...∩Bn=∅ m (1) (B 1 )m (2) (B 2 ) . . . m (n) (B n ) < 1 (4.5)
To some extent, K can be interpreted as a measure of conflict between the sources and is directly taken into account in the combination as a normalization factor. It represents the mass which would be assigned to the empty set if masses were not normalized. The larger K is, the more the sources are conflicting and the less sense has their combination. Finally, the orthogonal sum does not exist when K is equal to 1. In this case, the sources are said to be totally or flatly contradictory, and it is no longer possible to combine them.

Use of DS Evidence Theory for Shadow/Vegetation Detection 4.3.1 DS Fusion Framework

Given the (R,G,B) color representation of a pixel, we use c 3 to build Y (1)1 , ExG to build Y (2) , L to build Y (3) . Let us denote ω 1 , ω 2 , ω 3 , three clusters representing respectively "shadow", "vegetation" and "other". Our algorithm takes three feature images Y (1) , Y (2) , Y (3) as the input, and the output is a segmented image x. The value of x at pixel s, denoted as Each feature image Y (j) , j ∈ {1, 2, 3} can be considered as an information source. In this context, source Y (1) is able to distinguish ω 1 from the two other classes but not ω 2 from ω 3 . Source Y (2) is able to distinguish ω 2 from the two other classes but not ω 1 from ω 3 . Similarly, source Y (3) is able to distinguish ω 3 from the two other classes but not ω 1 from ω 2 . As illustrated in Fig. 4.2, we apply the Otsu's thresholding method over the images Y (1) , Y (2) , Y (3) to extract respectively shadow regions, vegetation regions and dark regions. After thresholding, image Y (1) (resp. Y (2) ; Y (3) ) is segmented into two classes ω 1 and{ω 2 , ω 3 } (resp. ω 2 and{ω 1 , ω 3 }; {ω 1 , ω 2 } andω 3 ). Only the fusion of these three sources makes it possible to distinguish these three classes.

x s , is in Ω = {ω 1 , ω 2 , ω 3 }.
Image Y (1) The three main numerical approaches to data fusion are the probabilistic method, fuzzy set theory, and DS evidence theory [Le Hegarat-Mascle 1997]. The fuzzy set theory provides a lot of combination operators, which allows the user to adapt the fusion scheme to the specificity of the data at hand but these operators are always selected in a supervised way. For Bayesian inference, the main limitation is that it fails to model imprecision about uncertainty measurement. An event is said to be uncertain if its probability is not equal to one or zero. However, there may be an imprecision on probability measurement. DS evidence theory allows to deal with ignorance and missing information by affecting a degree of confidence which is called a mass function to all simple and compound hypotheses. Another major advantage of DS evidence theory is that it can deal with any union of classes, in our context, {ω 2 , ω 3 } (or {ω 1 , ω 3 } or {ω 1 , ω 2 }). Because of these advantages, we choose the DS evidence theory for the data fusion task.

: c 3 ω 1 , {ω 2 , ω 3 } Image Y (2) : ExG ω 2 , {ω 1 , ω 3 } Image Y (3) : L {ω 1 , ω 2 }, ω 3 RGB image Feature image 2-class segmentation map
The use of DS evidence theory for shadow/vegetation detection is detailed in the following. In our application context, the frame of discernment Θ is the set of hypotheses about pixel class: Θ = {{ω 1 }, {ω 2 }, {ω 3 }}. In DS theory, not only single classes (also called singletons), but also any union of classes can be represented. In the following, hypotheses about singletons and hypotheses about union of classes are respectively called simple hypothesis (H i = {ω i }, i ∈ {1, 2, 3}) and compound hypotheses.

Mass Function Determination

The derivation of the mass function is the most crucial step since it represents the knowledge about the actual application as well as the uncertainty incorporated in the selected information source.

However, there are no generic methods to determine the mass functions. Some existing methods can be cited here: method derived from probabilities [Le Hegarat-Mascle 1997, Vannoorenberghe 1999, Ben Chaabane 2008], fuzzy logic [Zhu 2002, Chaabane 2009], neural network classifier [Denoeux 2000], . . . .

In [Vannoorenberghe 1999], authors have shown through empirical studies that a good model of the mass functions is based on the assumption of Gaussian distributions and histogram thresholding. This method is used in our model to determine the mass function of each feature image in Diagram 4.2. The estimation of mass functions is detailed as follows. As shown in Fig. 4.2, the Otsu's thresholding method first partitions the feature image into two regions, denoted as A 1 and A 2 . For image Y (1) ,

A 1 = {ω 1 }, A 2 = {{ω 2 }, {ω 3 }}. The mass function m (1)
s for each pixel s ∈ S of pixels, defining on {∅, A 1 , A 2 , Θ}, is then estimated as follows:

m (1) s (∅) = 0

m (1) s (A i ) = 1 σ (1) i √ 2π exp   - (y (1) 
s -µ (1) i ) 2 2σ (1) i 2   , i ∈ {1, 2} m (1) s (Θ) = 1 σ (1) Θ √ 2π exp   - (y (1) s -µ (1) Θ ) 2 2σ (1) Θ 2   (4.6)
These mass functions are then normalized so that their sum is equal to 1. Here, y [START_REF] Ngo | Détection simultanée de l'ombre et la végétation sur des images aériennes couleur en haute résolution[END_REF] s is the value of the considered pixel s (of image Y (1) ). µ Shadow/Vegetation Detection of pixels with hypothesis A i present in Y (1) . They are respectively estimated as follows:

µ (1) i = 1 |A i | s∈A i y (1) s , i ∈ {1, 2} σ (1) i = 1 |A i | -1 s∈A i (y (1) s -µ (1) i ) 2 , i ∈ {1, 2} µ (1) Θ = µ (1) 1 + µ (1) 2 2 σ (1) Θ = max(σ (1) 1 , σ (1) 2 ) (4.7)
where |A i | denotes the number of pixels verifying A i .

The mass functions m (2) s for each pixel s of image Y (2) , defining on {∅, A 1 , A 2 , Θ} where A 1 = {ω 2 } and A 2 = {{ω 1 }, {ω 3 }}; and the mass functions m [START_REF] Ngo | MRF and Dempster-Shafer theory for simultaneous shadow/vegetation detection on high resolution aerial color images[END_REF] s for each pixel s of image Y (3) , defining on {∅, A 1 , A 2 , Θ} where A 1 = {{ω 1 }, {ω 2 }} and A 2 = {ω 3 }; are estimated in the same way. Once the mass function of the three images are estimated, their combination is performed using the DS orthogonal sum. However, the DS combination assumes the independence of combined sources. In our context, the feature images are computed from the R, G ,B bands. So, they are dependent sources. In [Denoeux 2006[START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence[END_REF]], Denoeux introduced the cautious rule of combination (denoted by ∧ ) to combine dependent data. This rule has the advantage of avoiding double-counting of common evidence when combining non distinct mass functions. Diagram of data fusion for shadow/vegetation detection is illustrated in Fig. 4.3. From the mass functions m s , for all A ⊂ Θ, two functions can be derived as follows [Dempster 1968]:

m (1) s ({ω 1 }), m (1) s ({{ω 2 }, {ω 3 }}), m (1) s (Θ) m (2) s ({ω 2 }), m (2) s ({{ω 1 }, {ω 3 }}), m (2) s (Θ) m (3) s ({ω 3 }), m (3) s ({{ω 1 }, {ω 2 }}), m (3) s (Θ) ∧ m s (A) = m (1) s ∧ m (2) s ∧ m (3) s s ∈ S, A ⊂ Θ
Bel s (A) = B⊆A m s (B) (4.8) Pls s (A) = B∩A =∅ m(B) (4.9) (4.10)

Decision Making

Having computed the mass, plausibility, belief values for each simple and compound hypothesis, we need a criterion, which is called "decision rule", to decide which hypothesis is the more "realistic". Nowadays, the choice of this criterion remains application dependent. Several decision rules have been proposed [Le Hegarat-Mascle 1997, Denoeux 1997]. For the cautious rule of combination, the decision making is carried out at the pignistic level, that maps the mass functions to probability measures:

Betp(H i ) = {A:H i ∈A} m(A) |A| (4.11)
where |A| denotes the number of elements in A. And the decisional procedure is to choose the simple hypothesis that maximizes the pignistic probability. An example is shown in Fig. 4.4. 

DS Theory in Markovian Context

Markov Random Field Modeling

The DS fusion processes at a pixel-level, assumes that each pixel in the image is independent of its neighbors and does not take into account spatial dependencies. To overcome this shortcoming, a Markov Random Field (MRF) model [Geman 1984] may be employed, to consider not only the measurements at the pixel location, but also the class values among its closest neighbors.

Let X be a random field over the set S of pixels, taking its values from a finite set of classes Ω = {ω 1 , ω 2 , ω 3 } and x a realization of X. x s denotes the value of x at the pixel s ∈ S. x s is a realization of the random variable X s . x is estimated using the observed images y. y s denotes the value of y at the pixel s. y (resp. y s ) is a realization of the observation field Y (resp. Y s ).

In our shadow/vegetation framework, y s is a 3-dimensional feature vector:

y s = {y (1) s , y (2) 
s , y

s }, where y (j) s (j ∈ {1, 2, 3}) is the pixel value of the feature image Y (j) .

In MRF model, the segmented image x can be obtained using the MAP estimate of X. Thus, xMAP = arg max x P (X = x|Y = y) (4.12) This problem can be solved by the iterated conditional modes (ICM) algorithm [Besag 1986]. In this method, a raster scan is used to iteratively visit all the pixels in field X. We denote xS-{s} as a provisional estimate of the segmentation field everywhere except at pixel s. Given the data y and the current segmentation xS-{s} , the algorithm updates the current segmentation xs at pixel s, and replaces it with the new value xs which maximizes P (X s = x s |Y s = y s , X S-{s} = xS-{s} ) Since we consider X as an MRF, the latter follows from Bayes' theorem that

P (X s = x s |Y s = y s , X S-{s} = xS-{s} ) ∝ P (Y s = y s |X s = x s )P (X s = x s |X S-{s} = xS-{s} ) (4.
13) We adopt a second-order (eight neighbors) neighborhood system. Let X Vs represent the set of labels assigned to the neighbors of s and x Vs its realization. xVs is the proximal estimate of x Vs . The prior probability term in Eq. 4.13 can be written:

P (X s = x s |X S-{s} = xS-{s} ) = P (X s = x s |X Vs = xVs ) = exp   -β l∈Vs {1 -δ(x s , xl )}   ω k ∈Ω exp   -β l∈Vs {1 -δ(ω k , xl )}   (4.14)
where δ(•) stands for the Kronecker's delta function:

δ(x s , x l ) =    1 si x s = x l 0 otherwise. (4.15)
and β is a regularized parameter, which represents the trade-off between fidelity to the observed image and the smoothness of the segmented image.

Estimation of β:

The MRF parameter estimation method described in this section has been proposed by [Derin 1987]. But, unlike the MRF model in the paper of [Derin 1987], we restrict our attention to MRF's whose clique potentials involve pairs of neighboring nodes and we do not distinguish the different types of cliques (horizontal, vertical, diagonal), thus simplify the estimator. Referring to the prior term in Eq. 4.14, we can write:

P (X s = x s |X Vs = x Vs ) ∝ exp   -β l∈Vs {1 -δ(x s , x l )}   (4.16)
For any two distinct values of x s , e.g., x s = ω 1 and x s = ω 2 , with the same configuration of neighbors x Vs , we have:

exp   -β   l∈Vs {1 -δ(ω 1 , x l )} - l∈Vs {1 -δ(ω 2 , x l )}     = P (X s = ω 1 |X Vs = x Vs ) P (X s = ω 2 |X Vs = x Vs ) (4.17)
Taking the natural logarithm of Eq. 4.17, we obtain:

  l∈Vs {1 -δ(ω 2 , x l )} - l∈Vs {1 -δ(ω 1 , x l )}   β = log P (X s = ω 1 |X Vs = x Vs ) P (X s = ω 2 |X Vs = x Vs ) (4.18)
Assuming the right-hand side of Eq. 4.18 is estimated, for each distinct pair (ω 1 , ω 2 ) and all possible values of x Vs , Eq. 4.18 simply reduces to a set of linear equations. For all pixel s, P (X s = ω i |X Vs = x Vs ) is estimated by use of histogram technique. Let us denote N (x s , x Vs ) is the number of appearances of a particular 3 × 3 configuration (x s , x Vs ). We have :

P (X s = ω 1 |X Vs = x Vs ) P (X s = ω 2 |X Vs = x Vs ) = N (ω 1 , x Vs ) N (ω 2 , x Vs ) (4.19)
For a system of 8-nearest neighbors, there are 6561 (= 3 8 ) different configurations of x Vs , so we obtain 6561 equations. Applying 4.18 for all of the pixels in image, a linear equation can be obtained as:

Aβ = b (4.20)
The least square method allows to find β so that Aβb is minimum. And the result is:

β = (A T A) -1 A T b (4.21)
where A T is the transposed matrix of A.

Incorporation of MRF and DS evidence theory

In a Bayesian context, the interest of MRF which allows one to take contextual information into account, has been well known for more than 30 years. In recent years, both the MRF and DS evidence theory have been incorporated into more general methods for scene classification, often involving multisource analysis [START_REF] Bendjebbour | Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context[END_REF], Foucher 2002, Bentabet 2008]. In fact, a major difference between the probabilistic framework and the DS evidence theory is the ability of the latter to quantify the imprecision through the assignment of confidence levels (by mass function value) to the union of hypotheses. The probabilistic framework assigns likelihood values p(y s |x s ) only for each class ω i ∈ Ω. From the view of evidence theory, the likelihood can be assimilated to a mass function which charges the singleton H xs = {ω i }. In [Bentabet 2008], authors propose to extend the likelihood term p(y s |x s ) by defining mass values m s (A) for every A ⊂ Θ. So, the new likelihood term is: m s (A) = m (1) s ∧ m (2) s ∧ m (3) s (4.22) for all A ⊂ Θ. These mass functions are computed in the previous section (diagram 4.3).

Besides, the prior probability term P (X s = x s |X Vs = xVs ), defined in Eq. 4.14, which assigns values only to single hypothesis, can be generalized to deal with the compound hypotheses:

m s (A|x Vs ) = exp   - {ω k }∩A =∅ β l∈Vs {1 -δ(ω k , xl )}   B⊂Θ exp   - {ω k }∩B =∅ β l∈Vs {1 -δ(ω k , xl )}   (4.23)
for all A ⊂ Θ. Finally, considering the likelihood and the conditional membership components in Eqs. 4.22 and 4.23 as two "evidential" sources of information, the DS orthogonal sum is used to combine these two sources of information. The posterior probability in Eq. 4.13 can be replaced by the orthogonal sum M s (.), which carries the joint information: 

M s (A) = 1 1 -K Ap∩Aq=A m s (A p )m s (A q |x Vs ) ( 4 

Overall Algorithm

The proposed iterative data fusion method is denoted as SSVD (simultaneous shadow/vegetation detection) method in the next. SSVD method takes as input the RGB image, and the output is a segmented image x with labels taking the value in Ω = {ω 1 , ω 2 , ω 3 }. The global scheme of SSVD method for shadow/vegetation detection is presented in Fig. 4.1 and detailed in Algorithm 1. The ICM labeling process is alternatively operated until the percentage of replacement between two consecutive iterations or the number of iterations reach preset values (ε and τ max respectively). For all images in our database, the preset value is chosen as 0.2 % for the percentage of replacement and 100 for the maximum number of iterations.

An example of shadow/vegetation detection by DS fusion incorporated with MRF regularization is shown in Fig. 4.5. The quantitative results shown in Table 4.2 demonstrate the efficacy of MRF regularization. A more detailed evaluation of the proposed method is presented in the following section. -Maximum number of iterations τ max .

-Residual error ε.

/* Initalization */ -Compute c 3 , ExG, L which respectively correspond to Y (1) , Y (2) , Y (3) .

-Apply Otsu thresholding method [Otsu 1975] for Y (1) , Y (2) , Y (3) .

-For each Y (j) , j ∈ {1, 2, 3}, compute µ

(j) i , σ (j)
i , i ∈ {1, 2} using Eq. 4.7.

for each pixel s ∈ S do -For j ∈ {1, 2, 3}, and i ∈ {1, 2}, compute m • Update µ

(j) i , σ (j) i , µ (j) Θ , σ (j) 
Θ for j ∈ {1, 2, 3}, i ∈ {1, 2} from Y (1) , Y (2) , Y (3) , x [k] using Eq. 4.7.

• Update β using Eq. 4.21. [k+1] from x [k] : for each pixel s ∈ S do /* We scan all sites s (by a zig-zag parcours) */

Compute x

• For j ∈ {1, 2, 3}, and i ∈ {1, 2}, compute m

(j) s (A i ), m (j)
s (Θ) using Eq. 4.6.

• Compute m s (A); ∀A ⊂ Θ (see Fig. 4.3).

• Compute m s (A|x Vs ); ∀A ⊂ Θ using Eq. 4.23.

• Compute M s (A); ∀A ⊂ Θ using Eq. 4.24.

• Estimate: xs = arg max xs A∩Hx s =∅ M s (A)

x [k+1] ←- x k ←-k + 1 until (|x [k] -x [k-1] | ≤ ε) ∨ (k ≥ τ max ); /* Output */ -segmented image x ←-x [k]
4.6. Experiments 51

Experiments

Experiments are performed using multiple datasets described in Chapter 2. The wide range of test images takes into account different factors including lighting conditions, concentration of vegetation, size of vegetation, shadow orientation and shape of the shadow projection. Different comparative experiment results for shadow/vegetation detection are shown, in which black pixels correspond to what the algorithms classify as shadow, the green pixels as vegetation, the white pixels as others. A quantitative evaluation is also presented. We categorize this section in function of spectral characteristics of test images: RGB image (without NIR band) and RGB-NIR image (with NIR band). The strategy for accuracy assessment is presented in Chapter 3.

State-of-the-art Methods for Further Comparison

Shadow Detection

As described in the review paper [Adeline 2013], the shadow chromaticity can be exploited by making use of RGB combinations, like our method with the use of c 3 feature, or working with shadow invariant images, like the tri-color attenuation (TAM) [START_REF] Tian | [END_REF]]. TAM describes the attenuation relationship between shadows and their non-shadow backgrounds in the three color channels (R, G, B), and combines with intensity image (I from HSI color space) to detect shadows. In [START_REF] Tian | [END_REF]], the authors first oversegment the image, and then apply the TAM model to decide whether a segment is in the shadow or not. The use of several thresholds, however, makes this approach fairly unstable. In [Tian 2012], they improve the TAM model, no longer use segmentation and only compute a single threshold, which yields much improved results.

In case the NIR band is available, we compare our SSVD method with the method of [START_REF] Rufenacht | [END_REF]]. Starting from the observation that shadows are generally darker than their surroundings, in both the visible and the NIR, an the dark objects, which confound many shadow detection algorithms, often have much higher reflectance in the NIR, authors build an shadow candidate map based on image pixels that are dark both in the visible and NIR representations. The shadow map is further refined by incorporating ratios of the visible to the NIR image, based on the observation that commonly encountered light sources have very distinct spectra in the NIR band. It should be noted that both methods ( [Tian 2012] and [START_REF] Rufenacht | [END_REF]) are designed to deal with shadow detection in different scenes (indoor, outdoor photographs, remote sensing), whereas SSVD method focus only on detecting shadows from remote sensing images. Index c 3 is demonstrated among other shadow indices as the most appropriate for shadow detection task (see Chapter 3) and employed in our method together with index ExG and luminance L. It is successfully used by [Salvador 2001[START_REF] Arévalo | [END_REF], Yao 2006] to extract shadows from single RGB image. In this section, we use index c 3 to detect only shadow regions. For a fair comparison, we take into account spatial information by employing MRF model. The Otsu thresholding method is used to classify image into two classes: "shadow" and "non-shadow". The resulting classification map is then regularized by a MRF model, in which the likelihood term is modelled by a Gaussian distribution. For the prior term, we use the second-order neighborhood system. The Gaussian distribution is appropriate to model the likelihood since as observed in Fig. 3.2 (Chapter 3, histogram of radiance for different shadow indices), the realization of the observed field can be approximated by the mixture of two Gaussian distributions. The ICM Chapter 4. MRF and Dempster-Shafer Theory for simultaneous Shadow/Vegetation Detection algorithm is used to optimize the MRF energy. The parameters are estimated at each iteration of ICM (µ and σ are easily estimated from the classification map and β is estimated using the method of [Derin 1987]). We denote this method as c 3 -ICM in the rest of the section.

Vegetation Detection

The chosen vegetation detection method for comparison is the method of [Shorter 2009]. In their work, image is first segmented using a color quantization technique. Vegetation candidate pixels are identified by Otsu thresholding and a color invariant model. Then, if 60% of a given region, identified via the aforementioned color segmentation algorithm, contains vegetation candidate pixels, then that entire region is labeled as a vegetation region.

In case the NIR band is available, we can compute the NDVI, the most-used vegetation index in the literature. NDVI is used with the Otsu thresholding method for unsupervised vegetation detection [Ozgun Ok 2013]. In this section, similar to what is done with index c 3 , we use the Otsu thresholding method over the NDVI feature image to classify image into two classes : "vegetation" and "non-vegetation". The resulting classification map is then regularized by MRF model (with the same assumption for likelihood and the prior probability). This method of vegetation detection is denoted as NDVI-ICM method. The NDVI index is replaced by the ExG index in case the NIR band is not available. This method is denoted as ExG-ICM for further comparison.

Shadow/vegetation detection

To the best of our knowledge, there exists some methods that focus on classifying the remote sensing image into different classes: shadow, vegetation, soil, water, street, etc [Xu 2005], but there is no other method that detect simultaneously shadows/vegetation. Through the histogram of radiance for index c 3 and ExG (chapter 3), we observed that if these indices are linearly stretched out into the interval [0, 1], shadowed pixels have high c 3 value (near to 1) and low ExG value; vegetative pixels have high ExG value (near to 1) and low c 3 value. Therefore, a new index, called as SVI (shadow-vegetation index ) is proposed: SVI = c 3 -ExG. Pixels having high SVI values (near to 1) correspond to shadow regions and pixels having low SVI values (near to -1) correspond to vegetation regions. The K-means clustering method is used to classify into three classes: "shadow", "vegetation" and "other". The resulting classification map is then regularized by a MRF model, in which the likelihood term is modelled by a Gaussian distribution and for the prior term, we use the second-order neighborhood system. The MRF model is used, in which the number of classes K is equal to 3. For the image in which the NIR band is available, EXG is replaced by NDVI. This new method of shadow/vegetation detection is denoted as SVI-ICM method for further comparison.

Experimental Results

Without NIR

Three examples of shadow/vegetation detection from RGB images are shown in Figs. 4.6, 4.7, 4.8 4.4, 4.5). We observe that most of shadow regions are detected by the method of [Tian 2012] (the producer's accuracies are 99.14, 96.43). However, this method classifies vegetation regions as shadows (e.g. the region marked by red circle, Fig. 4.6.c and Fig. 4.7.c). The method using index c 3 and MRF regularization (c 3 -ICM) detect well shadow regions. But it classifies some non-shadowed regions (which have the similar c 3 response as shadows) as shadows (e.g. the region marked by violet circle, Fig. 4.6.d). The method of [Shorter 2009] detects well vegetation regions (especially for image in Fig. 4.8). But it classifies some shadow regions as vegetation (e.g. the region marked by blue circle, Fig. 4.6.d and Fig. 4.7.d). The SVI-ICM method detect well shadows and vegetation for image in Fig. 4.6, but it performs badly for image in Fig. 

Conclusions

This chapter presents a novel shadow/vegetation detection strategy based on DS fusion procedure and MRF regularization. The fusion procedure makes it possible to combine different shadow index c 3 , vegetation index ExG (or NDVI when the NIR band is available) and the luminance L. The spatial correlation between neighboring pixels is also taken into account using the MRF modelling in order to finally obtain a more reliable and efficient segmentation map with good accuracy, which is demonstrated in the experimental results. This is the first contribution of this PhD and has been published in [Ngo 2014a] and [Ngo 2014b]. In the next part, we use the shadow/vegetation detection results for the automatic building detection from single optical image.

Introduction

Automatic detection of buildings in very high spatial resolution (VHR) remotely sensed imagery is of great practical interest for a number of applications; including urban monitoring, change detection, estimation of human population, among others. Researches in this domain started in the late 1980s, but due to the complexity and irregular nature of the scenes, building detection remains a difficult task. Since the initial research, building detection has been propelled by the development of new data sources and methods in the fields of photogrammetry and computer vision.

In this chapter, a novel approach for the automated detection of buildings from monocular VHR optical images is introduced. In Section 5.2, we review some related works in building detection. The workflow of the proposed method is presented in Section 5.3. The remaining sections detail our approach. The experimental results and discussion are presented in Chapter 6.

Related Works

There have been a significant amount of work on building detection from remote sensing images in the literature. The existing studies can be classified in different ways, with respect to:

• Degree of automation: automatic [Ok 2013], semi-automatic [START_REF] Henricsson | 3-d building reconstruction with aruba: a qualitative and quantitative evaluation[END_REF]], interactive [START_REF] Gulch | [END_REF]].

• Input data: stereoscopic synthetic aperture radar (SAR) images [Tupin 2005], Li-DAR images [Sahar 2010], multi-view image (from the same geographical area [Fradkin 2001, Benedek 2012]), Digital Surface Models (DSM) [Lafarge 2010], grayscale image [START_REF] Müller | [END_REF]], optical satellite and aerial images [Akcay 2010, Ok 2013[START_REF] Katartzis | [END_REF]], hyperspectral image [McKeown Jr 1999].

• A priori knowledge: none, cadastral plan [Haala 2010], Laser Scanner Data [Rottensteiner 2007], topographic map [START_REF] Hofmann | [END_REF]].

• Image features: points, edges, lines, regions [Huertas 1988, Lin 1998].

On the other hand, extensive reviews on building detection can be found in [Mayer 1999], [START_REF] Baltsavias | Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems[END_REF]], [Brenner 2005]. [Mayer 1999] discussed previous work published until the mid-1990s in an exceptional review in which the models and strategies of the developed approaches were deeply investigated and summarized. [START_REF] Baltsavias | Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems[END_REF]] presented results on buildings within the broader topic of object extraction using image analysis. More recently, [Ozgun Ok 2013] considered the previous studies aimed at automatically detecting buildings from monocular optical VHR image datasets.

Our aim is to develop an automatic building detection from single optical image without any a priori knowledge, using shadows and image segmentation. In this section, we limit the literature survey and discuss only the previous studies that involved in the proposed building detection framework, since it is impossible to mention all because of the variety of the developed methods.

Building Detection using Shadows

Several authors use shadows for rooftop segmentation from optical images. Shadows can be used in two ways. In the first hand, shadows are used after an initial building detection step, for building hypothesis verification and height estimation [Huertas 1988, Lin 1998, Sirmacek 2008]. For example, [Huertas 1988] utilized cast shadows to interpret the sides and corners of buildings. [Lin 1998] detected building roofs from oblique aerial images by assuming that the building shapes were rectilinear, and hypothesized rectangular buildings were verified both with shadow and wall evidences. In different study, [Sirmacek 2008] employed color invariant features and shadow information in a feature-and area-based approach. The shadows are detected by using the blue channel. Red roofs are identified by using the red channel. They first identify building candidate regions with searching shadow regions. If shadow regions are found, the regions, which are in opposite side of the shadowed regions with the illumination angle, are selected as candidate regions. Finally, a rectangle fitting method is used to align a rectangle with the Canny edges of the image.

In the other hand, if shadow regions can be accurately extracted from the images, they can support directly the detection steps. [Akcay 2010] detected candidate building regions using both shadow information and directional spatial constraints. The directional spatial relationship between buildings and their shadows are modeled by a probabilistic landscape approach. The final buildings were determined after clustering the candidate regions using minimum spanning trees. Recently, [Ozgun Ok 2013] used grabcut and shadows to segment rooftops from high-resolution imagery. Shadows were first detected and foreground (rooftop) pixels were labeled adjacent to them based on light direction. This was followed by iterative graph cuts (a modified version of the grabcut algorithm) on a region of interest (ROI) for each shadow. They employed an ROI determined by dilation of the shadow component with flat kernels opposite to the direction of light. Foreground pixels are determined by double thresholding a fuzzy region extended from shadows opposite to light direction. Then, they run grabcut in each ROI to label pixels inside it as rooftops or non-rooftops. Unlike the approach we propose, they required an additional near-infrared (NIR) band of data in order to locate shadows in the imagery.

More recently, inspired from the work of [Ozgun Ok 2013], the grabcut segmentation is also used in the work of [Femiani 2014]. But they run grabcut on the entire image (or overlapping tiles from the original image if the image is big) and not on an ROI for each shadow. Besides, they implement a self-correcting scheme that identifies falsely labeled pixels by analyzing the contours of buildings identified by the first pass of grabcut. The image is resegmented until a set of rooftops are extracted that are consistent with visible shadows. Their method requires only three-band RGB input data. In another study of [Li 2015], the input image is first segmented into perceptually homogeneous regions using the Gaussian mixture model (GMM) clustering method. Shadows and vegetation are then extracted from GMM labels. Remaining unlabeled regions are classified into probable rooftops and probable nonrooftops depending on shape, size, compactness and shadows. At last, a higher order multilabel conditional random field (CRF) segmentation is performed to get final results. These three methods ( [Ozgun Ok 2013, Femiani 2014, Li 2015]) will be evaluated to compare with the proposed method.

Building Detection using Image Segmentation

In order to effectively retrieve objects from images, many methodologies partition image into smaller, usually homogeneous regions to enable region-based rather than global extraction. Image segmentation become a subsequent step in many object extraction algorithm, especially in building detection [START_REF] Müller | [END_REF], Liu 2005, Izadi 2010, Ozgun Ok 2013, Femiani 2014, Li 2015]. For example, [Liu 2005] used a probability function for detection of building regions. They first perform image segmentation by a multi-windows thresholding method. Afterwards, they extract features, e.g. shadow ratios, region entropy, contour edges and shape features in each region. Then, a confidence value is calculated by the probability function, which uses eight different features including distance to the straight lines, contour region entropy, contour including edges, grey level average value and standard deviation, shape, shadow ratio to define the region if it corresponds to a building. Some of the parameters are identified by manual interaction. The problems in the results, according to the authors, are mainly caused by shadows.

[ [START_REF] Müller | [END_REF]]'s method is based on implementation of an area-based and feature-based algorithm for building detection from aerial imagery. They first convert the original image to a grayscale image. Then, a region-growing process is applied for segmentation. A linear regression classifier detects the building regions using extracted features. However, their method works well only with buildings which have red roof.

In different study of [Izadi 2010], the input images are segmented at several levels. The line segments are detected in original images, and they are combined to generate roof hypotheses. The evidence of correct building is computed with a probability score for each hypothesis. They report that the proposed method is capable of detecting small gabled, residential roofs. [Karadag 2015] proposed a domain-specific segmentation method for building detection, which integrates information related to the building detection problem into the detection system during the segmentation step. Buildings in a remotely sensed image are distinguished from the highly cluttered background, mostly, by their rectangular shapes, roofing material and associated shadows. The proposed method fuses the information extracted from a set of unsupervised segmentation outputs together with this a priori information about the building object, called domain-specific information (DSI), during the segmentation process. Finally, the segmentation output is provided to a two-layer decision fusion algorithm for building detection.

Building Detection using Shape Descriptors

Because of different materials of building rooftops, it is not easy to distinguish buildings from backgrounds using only spectral-based classification. In this case, shape analysis can be explored for extracting building rooftops. It is observed that the most common shape is naturally a rectangle or a combination of rectangles which are comprised of right-angled corners. Indeed, this building structure is often used because it needs less engineering effort in design, material and construction to achieve an equivalent or even an acceptable level of seismic performance [START_REF] Lopez | [END_REF]]. [Cui 2011] used the Hough transform to extract the structure of buildings and then constructed a graph from those region information. A cycle detection on the graph is utilized finally to extract the boundary of buildings. [Benedek 2012] constructed a hierarchical framework to create various building appearance models from different elementary feature-based modules. The interaction between object extraction and local textural image-similarity information in their framework was exploited in a unified probabilistic model.

Another approach to deal with regular buildings is to use rectangular boundary fitting. Several rectangularity measures [Rosin 1999, Rosin 2003] are designed to evaluate, on their specific way, how much the object considered differs from a perfect rectangle. The standard method for calculating rectangularity is using the Minimum Bounding Rectangle (MBR) of the object [START_REF] Toussaint | [END_REF][START_REF] Chaudhuri | [END_REF], Chaudhuri 2012]. To the best of our knowledge, most of these approaches have been proposed for LiDAR images [Sahar 2010[START_REF] Kwak | [END_REF], Seo 2014], only two studies [Korting 2008[START_REF] Korting | [END_REF] have exploited the rectangularity measures to detect rectangular buildings in optical images.

Workflow of the Proposed

Workflow of the Proposed Method

In this chapter, we present an original method for the automated detection of buildings from a single VHR optical image. We are motivated to develop a method that is applicable in various areas as shown in Fig. 5.1. This obliges us to follow certain assumptions about the appearance of the 3-D building objects:

1. We consider that buildings have a homogeneous color. Roof homogeneity have been exploited for building region detection in the literature [START_REF] Müller | [END_REF], Benedek 2012]. In practice, in high dense area, we separate the attached buildings based on their spectral features.

2. Our method is based on the fact that a 3D building structure should cast a shadow under suitable imaging conditions. Therefore, shadows generated from buildings must be detected. The images must be acquired in nadir views, and the time of acquisition favors the formation of shadows. Besides, correctness and precision of the shadow detection are strongly required.

3. Buildings may have similar spectral responses with their neighboring objects (e.g. street). Shape analysis is therefore used to distinguish buildings from backgrounds. In this study, we focus on the buildings with right-angled corners, such as: rectangular, L-shaped, U-shaped, I-shaped buildings (as shown in Fig. 5.

2).

Starting from these assumptions, an original method for building detection task is designed and can be summarized as follows. The methodology begins with the detection and post-processing of shadow areas. For shadow detection, we employ our shadow/vegetation detection method presented in Chapter 4, that allows to divide the image into three distinct classes: shadow, vegetation, and others with good precision. The boundaries between shadows and their corresponding buildings are detected by eliminating shadow regions generated by vegetation objects and other non-building objects. In the second stage, a novel MRF region growing segmentation technique is proposed. Image is first over-segmented into smaller homogeneous regions (superpixels) which can be used to replace the rigid structure of the pixel grid. An iterative classification-merging is then applied over this set of regions. In region classification step, regions are classified into different classes and grouped into clusters. According to the position of shadows, a merging process is then performed to merge building segments with their neighboring regions which obtain the same class label in the classification stage to produce regions whose shapes are appropriate to rectangles. In the third stage, from the results of region growing image segmentation, the final building regions are determined using a recursive Minimum Bounding Rectangle (RMBR), proposed by [START_REF] Kwak | [END_REF]]. The whole method is described in the flowchart in Fig. 5.3 . Details of the algorithm are presented in the following sections. 

Building-Shadow Boundary Detection

A common feature that buildings possess is that they cast shadows on the ground. If shadows are present in the image, they can be used to identify the existence of buildings and to distinguish between buildings from flat, ground surface features. That is why our methodology begins with the detection of shadows and vegetation (Part I of the thesis). The shadow/vegetation detection step yields a vegetation mask M V and a shadow mask M S . Therefore, since building sides are usually surrounded by a variety of objects such as rock, vehicle, vegetation, the shadow may be cast by the building itself or by nearby objects (as shown in Fig. 5.4, red and blue circles). That is why it is essential for a building detection task to eliminate the shadow regions that occur due to non-building objects. In reality, the detection of shadows cast by buildings is rather impossible since the only priori knowledge is the illumination angle (without any knowledge about the height of buildings or the zenith angle). However, as will be discussed in Subsection 5.5.3.1, what interests us is the boundary between buildings and their corresponding shadows. Therefore, the postprocessing step of shadow mask can be carried out as follows.

Elimination of Shadows cast by Vegetation

We suppose that the illumination angle θ is supplied. Otherwise, it can be empirically estimated from an image by counting the number of pixels horizontally and vertically from one corner of a rooftop (or from a corner of the footprint if lean is an issue), to the corresponding corner of a building shadow. To select shadows generated by distinct vegetation objects, we investigate, for each vegetation object of the vegetation mask M V , the shadow evidence within the close neighborhoods of the vegetation object. To do that, binary morphological dilation is used, which allows expanding the shape of a vegetation object (as illustrated in Fig. 5.5b). The direction of the structuring element is determined by the illumination angle θ and its length l se is empirically chosen. Once this expansion region is defined, we check for shadow evidence within the defined region with the help of the pre-computed binary shadow mask M S . If there is more than one shadow region occurring in this expansion region, we select the shadow region that have a border with vegetation object (as shown in Fig. 5.5c). 

Elimination of Shadows cast by other non-Building Objects

Furthermore, shadows can be cast by other non-building objects as vehicles, rocks, . . . that are generally short objects. Thus, to to eliminate these shadow regions, we found it necessary to compute the length of boundary between each shadow object and their corresponding building and then filter out those building-shadow boundaries whose length is below the predefined threshold d sh . Potential boundaries between each shadow object and their corresponding building are detected as follows. The opposite direction of the illumination angle is quantized into one of eight directions (north (N), northeast (NE), east (E), southeast (SE), south (S), southwest (SW), west (W), and northwest) because we are working on a digital image grid. For example, for the illumination angle shown in Fig. 5.4c, the direction is southeast (SE). The contour of shadow objects are first detected. For each pixel on the contour, if it's pixel on the southeast is shadow, it will be removed from the contour. The remaining contour is considered as the potential building-shadow boundary (as shown in Fig. 5.6.b). Potential building-shadow boundaries whose length is below the predefined threshold d sh are eliminated. The remaining shadow-building boundary is shown in Fig. 5.6c and denoted as M SB . The result achieved indicates that after the post-processing, all cast shadows except those that correspond to the main body of the building are successfully eliminated.

The objective now is that for each building-shadow boundary object, we identify the casting building region. In addition, when one shadow object is generated from a group of attached buildings, the developed algorithm must be capable to separate these attached buildings. To do that, we propose a novel region growing image segmentation, whose details are presented in the next section.

Region Growing Image Segmentation

Segmentation of remote sensing images is a difficult problem due to mixed pixels, spectral similarity, and the textured appearance of many land-cover types. A variety of segmentation techniques have been applied to remote sensing imagery with varying degrees of success [Dey 2010]. Among them, the region growing method is widely used for analyzing remote sensing imagery [Yu 2007, Qin 2010, Huang 2014]. In region growing technique, the input image is first tessellated into a set of homogeneous primitive regions (or superpixels), and an image segmentation is performed by iteratively merging the similar neighboring regions such that a certain homogeneity criterion is satisfied. In previous works, there are region-merging algorithms based on statistical properties [START_REF] Nock | [END_REF], Calderero 2010], graph properties [START_REF][END_REF], Haris 1998], and spatio-temporal similarity [START_REF] Moscheni | [END_REF]].

Our proposed region growing image segmentation method consists of two main stages: region classification and region merging, as shown in Fig. 5.3. An example of the first iteration of this iterative process is shown in Fig. 5.7 and can be summarized as follows. Image is first decomposed into different homogeneous regions by the oversegmentation algorithm SLIC [START_REF] Achanta | [END_REF]] which allows to generate regular-sized regions with good boundary adherence. This algorithm is carried in the image in which shadow regions M S and vegetation regions M V are masked out. An iterative classification-merging is then applied over this set of regions. Regions are grouped into different clusters by the MRF-based region classification algorithm (Fig. 5.7.c). Building-Shadow boundary M SB (Fig. 5.7.d) is used to determine the building segments (Fig. 5.7.e, the regions that are supposed to be a part of building) and a merging process is then performed to merge building segments with their neighboring regions which obtain the same class label in the classification stage to produce regions whose shapes are appropriate to rectangles (Fig. 5.7.f). This iterative classification-merging stops when no merging happens. The proposed algorithm is detailed as follows.

Oversegmentation SLIC

Oversegmentation occurs when image is segmented into smaller regions, each referred to as a "superpixel". A superpixel is a spatially-coherent, homogeneous, structure which preserves information over scales or sampling resolution [Moore 2009]. Superpixel algorithm allows us to capture image redundancy, provide a convenient primitive from which to compute image features, and greatly reduce the complexity of subsequent image processing tasks. Thus, they have become a common preprocessing step for many computer vision algorithms, for example, in image segmentation [Yang 2008, Wang 2008[START_REF] Ding | [END_REF].

Different methods can be used to oversegment an image, including mean shift segmentation [Comaniciu 2002], watershed segmentation [START_REF] Vincent | [END_REF]], turbopixel method [Levinshtein 2009], constrained Delaunay triangulation (CDT) method [Ren 2005], graph-based methods such as normalized cuts [START_REF] Shi | [END_REF]] and efficient graph-based image segmentation [Felzenszwalb 2004]. In our proposed method, the oversegmentation algorithm SLIC [START_REF] Achanta | [END_REF]] is employed. It is a simple and efficient method to decompose an image in visually homogeneous regions, based on the color similarity and proximity of pixels in the image plane. The SLIC is summarized in Algorithm 2 and is presented in the following.

Distance measure

The SLIC superpixel segmentation algorithm is a K-means-based local clustering of pixels in the 5-D [Labxy] space defined by the L, a, b values of the CIELAB color space and the x, y pixel coordinates. CIELAB color space is chosen because it is perceptually uniform for small color distance. The SLIC algorithm takes as input a desired number of approximately equally-sized superpixels K, then for a image with N pixels, the approximate size of each su- . perpixel is N/K. To produce roughly equally sized superpixels, the grid interval is S

= N/K. Let [l i , a i , b i , x i , y i ] be the 5-D point of pixel i, cluster center C k is represented by the same form [l k , a k , b k , x k , y k ].
Instead of directly using the Euclidean distance in the 5-D [Labxy] space, SLIC introduce a new distance measure that considers superpixel size. For example, the distance D k between pixel i and cluster center C k is defined as follows:

d lab = (l i -l k ) 2 + (a i -a k ) 2 + (b i -b k ) 2 d xy = (x i -x k ) 2 + (y i -y k ) 2 D k = d 2 lab + m N s 2 d 2 xy (5.1)
where D k is the sum of the lab distance and the xy plane distance normalized by the grid interval S. The parameter N s is the maximum spatial distance expected within a given cluster, N S = S = N/K. The parameter m is introduced to control the compactness of superpixels. When m is large, spatial proximity is more important and the resulting superpixels are more compact (i.e., they have a lower area to perimeter ratio). When m is small, the resulting superpixels adhere more tighly to image boundaries, but have less regular size and shape.

Algorithm 2: SLIC superpixel segmentation [START_REF] Achanta | [END_REF]] /* Initalization */ Initialize cluster centers

C k = [l k , a k , b k , x k , y k ]
by sampling pixels at regular grid steps S.

Move cluster centers to the lowest gradient position in a 3 × 3 neighborhood (Eq. 5.2). Set label l(i) = -1 for each pixel i.

Set distance d(i) = ∞ for each pixel i. repeat /* Assignment */ for each cluster center C k do for each pixel i in a 2S × 2S region around C k do Compute the distance D k between C k and i. if D k < d(i) then set d(i) = D k set l(i) = k /* Update */ Compute new cluster centers. Compute residual error E. until E ≤ threshold;
Algorithm: The SLIC superpixel algorithm is summarized in Algorithm 2. It begins by sampling K regularly spaced cluster centers and moving them to seed locations corresponding to the lowest gradient position in a 3 × 3 neighborhood. This is done to avoid placing them at an edge and to reduce the chances of choosing a noisy pixel. Image gradients are computed as:

G(x, y) = I(x + 1, y) -I(x -1, y) 2 + I(x, y + 1) -I(x, y -1) 2 (5.2)
where I(x, y) is the lab vector corresponding to the pixel at position (x, y), and . is the L 2 norm. Next, in the assignment step, each pixel i is associated with the nearest cluster center whose search region overlaps this pixel. Since the expected spatial extent of a superpixel is a region of approximate size S × S, the search for similar pixels is done in a region 2S × 2S around the superpixel center. Once each pixel has been associated to the nearest cluster center, the cluster centers are updated as the [l, a, b, x, y] T vector of all the pixels belonging to the cluster. The assignment and update steps are repeated iteratively until the stop criteria is fulfilled: a residual error E (L 2 norm) between the cluster center locations and previous cluster center locations is inferior to a predefined threshold. In the implementation, the processing stops when a predefined number of iteration is achieved. According to [START_REF] Achanta | [END_REF]], 10 iterations are sufficient for most images.

Since the SLIC method does not enforce connectivity between pixels, there can be small and isolated segments resulted at the end of the clustering procedure. To obtain relatively uniform superpixels for further applications, the SLIC method adopts a post-processing which merges the isolated clusters with its largest neighbor. The stray segments whose size is smaller than a threshold (50 pixels) are eliminated (relabelled as the label of its nearest cluster).

In our implementation, the SLIC algorithm is applied on the image in which shadow regions M S and vegetation regions M V are masked out. The two parameters in SLIC are set as follows. The weighting factor m between colour and spatial differences is set to 10, as recommended by the authors, which can sufficiently preserve the boundaries of objects and the number of superpixels is set so as to have the superpixel size η sup . Fig. 6.1 shows the examples of oversegmentation with different values of η sup . We observe that oversegmentation generates regular-sized regions with high boundary adherence. 

Region Classification

MRF model [Besag 1986] provides a basis for modeling contextual constraints in visual processing and interpretation. Although MRF is mostly used on the pixel graph [Geman 1984], it is also proved to be a powerful model for feature-based graph (such as region adjacency graph (RAG) [Tupin 2005, Qin 2010] or line segment graph [Krishnamachari 1995]). In the proposed approach, a MRF model defined over a RAG is proposed as follows.

RAG's Construction

It is assumed that the image is initially over-segmented into a set R of disjoint regions. A RAG G = (S, E) is defined over the set R of regions obtained from the oversegmentation step. Each node s ∈ S represents each region R s ∈ R. The relationship between two regions is given by their adjacency, defining a set E of edges, as illustrated in Fig. 5.9. Suppose image is to be segmented into K classes. Let Ω = {ω 1 , . . . , ω K } denote the set of class labels. x s is a realization of the label X s of region R s . Also, let X = (X s ) s∈S denote the joint random variable and the realization (configuration) x = (x s ) s∈S of X. x is estimated using y = (y s ) s∈S where y s is the observation of all pixels in region R s , and therefore y s = {y s (i), i ∈ R s }. For input images, y i (s) is a 3-dimensional feature vector (red, green, blue representation). y (resp. y s ) is a realization of the observation field Y (resp. Y s ). 

MRF's Framework

We want to find an assignment xs of all sites (nodes) s ∈ S to Ω. To introduce contextual knowledge, X is supposed to be a MRF for the neighborhood defined by RAG. In MRF model, the optimal configuration x = {x s , s ∈ S} which we are interested is the one that will be a maximum a posteriori probability (MAP) under the observation Y. That is:

x = arg max x P (X = x|Y = y) (5.3)
From Bayes'rule, we have:

x = arg max x P (X = x, Y = y) P (Y = y) (5.4)
When the image is designed, P (Y = y) is constant. To maximize the a posteriori probability leads to minimize the posterior energy function:

U (x, y) = -log (P (X = x, Y = y)) = -log (P (Y = y|X = x)P (X = x)) = -log (P (Y = y|X = x)) -log (P (X = x)) = U (y|x) + U (x) (5.5) 
The first term U (y|x) in Eq. (5.5) is the likelihood term, describing the probability of region R s with its observation Y s at the given region label x s . Due to the independence assumption of the regions, the likelihood term can be written: U (y|x) = s∈S U s (y s |x s ). As Gaussian distribution is a usual and effective distribution for color images, this distribution is adopted to describe the image model. So, in cases where x s takes the class label ω k :

U s (y s |x s ) = i∈Rs 1 2 × (log(|Σ k |) + [y i (s) -µ k ] T Σ -1 k [y i (s) -µ k ])
where µ k , Σ k are mean and covariance matrix of class ω k .

The second term U (x) in Eq. ( 5.5) is the prior term, describing what the likely labelings x should be like. Inside a building, the different parts should have a rather homogeneous color. This knowledge is introduced in the definition of the clique potential of the RAG. In order to reduce the computational complexity, we will restrict our attention to MRF's whose clique potentials involve pairs of neighboring nodes (<s, t> ∈ E). The prior term is defined as follows:

U (x) = s∈S U s (x s ) = s∈S t∈Vs |R s | × b st b s × β |ȳ s -ȳt | × (1 -δ(x s -x t )) (5.6) 
where:

• δ(•) : the Kronecker's delta function,

• V s ⊂ S : the neighbors of the node s,

• |R s | : the number of pixels in region R s ,

• b s : the length of boundary of region R s ,

• b st : the length of common boundary of region R i and region R j ,

• ȳs : the mean intensity (taking values from 0 to 255) of region R s .

Two constraints are introduced in the prior term: the normalized edge weight b st /b s and the inversed difference |ȳ sȳt | -1 . They mean that if two regions share a long boundary and have similar mean intensity, they have high probability to obtain the same class label. β represents the tradeoff between fidelity to the observed image and the smoothness of the segmented image.

In practice, the parameter β is empirically chosen.

Energy minimization: Finding a solution for for Eq. ( 5.5) represents a combinatorial optimization problem. Various combinatorial optimization techniques are known, including iterated conditional mode (ICM) [Besag 1986], simulated annealing (SA) [Geman 1984], graph cuts [START_REF] Kolmogorov | [END_REF]], loopy belief propagation [Yedidia 2005], and tree-reweighted message passing [Kolmogorov 2006]. The ICM [Besag 1986], the simplest among all of these, will be employed here. Each node is updated by choosing the class label x s which minimize the local energy:

U s (y s , x s ) = U s (y s |x s ) + U s (x s ) (5.7)
This algorithm does not guarantee the convergence toward the optimal solution (only a local optimum depending on the chosen initialization is reached).

Parameter estimation:

The parameters of MRF model are estimated at each iteration of ICM algorithm as follows:

µ k = s∈S k i∈Rs y s (i) s∈S k |R s | (5.8) Σ k = s∈S k i∈Rs (y s (i) -µ k )(y s (i) -µ k ) T s∈S k |R s | (5.9)
where S k denotes the set of nodes whose class label is ω k . Initialization: Similar to the RKM method of [Qin 2010], our method seeks a set of optimal class mean vector µ k , k = 1, . . . , K to minimize the following energy function:

E init = K k=1 s∈S k i∈Rs (y s (i) -µ k )(y s (i) -µ k ) T
(5.10)

The first classification S k , k = 1, . . . , K is obtained by applying the K-means clustering on the mean values of regions: ȳs = i∈Rs y s (i) |R s | . The class mean vectors µ k , k = 1, . . . , K are computed by Eq. 5.8. An iterative process is carried out. At each iteration, the label field x is updated using the current class mean vectors according to the nearest center rule:

x s = arg min ω k ∈Ω i∈Rs (y s (i) -µ k )(y s (i) -µ k ) (5.11) µ k , k = 1, .
. . , K is then recomputed using by Eq. 5.8. The energy E init is updated using 5.10. The iterative procedure is terminated once the ratio of the absolute energy difference between consecutive iterations over the energy at the former iteration is below 10 -6 or the number of iterations exceeds 100, to ensure that we obtain the best initialization as possible.

An example of region classification is shown in Fig. 5.10, in which regions are separated by cyan lines. After classification, connected regions that have similar spectral characteristics are grouped into clusters. In Fig. 5.10, clusters are separated by red lines.

Region Merging

The region merging procedure is designed based on three assumptions about the targeted buildings. First, buildings cast shadows on the ground, so regions to be merged have at least one region that is next to shadows in the opposite direction of the illumination angle. Second, we focus only on detecting the buildings with right-angled corners, a merging procedure is designed to produce new regions whose shapes are appropriate to rectangles. Third, we assume that building has a homogeneous color, so the regions to be merged need to have similar spectral characteristics. Hence, merging is only done between regions with the same class label. Starting from these three constraints, different steps of merging are designed and detailed in the following. We observe that each targeted building has one or several building segments.

Determination of Building Segments

The term "building segment" refers to regions that border with shadows cast by building, which are detected in Section 5.4, in the opposite direction of the illumination angle (as shown in Fig. 5.11, building segments are delineated by violet lines). To detect building segments, we measure the boundary between regions and the building-shadow boundary M SB . Since region that shares a larger border with shadows is more likely to be a building segment, only regions whose boundary with M SB is larger than a predefined threshold T S is flagged as a building segment.

Measure the rectangularity

Minimum Bounding Rectangle (MBR) Several rectangularity measures already exist in literature. Basically, all of them are designed to evaluate, on their specific way, how much the shape considered differs from a perfect rectangle. The standard method for calculating rectangularity is using the MBR (Minimum Bounding Rectangle) of the segment. A well-known algorithm for finding the MBR is presented in [START_REF] Toussaint | [END_REF]]. For an object, this technique first computes its convex hull, which can be done in O(n log n) time, and then find the minimal rectangle in O(n) time (n is the number of edges of the convex hull). This depends on the observation that one side of the minimal rectangle must coincide with one edge of the convex polygon it must contain [START_REF] Toussaint | [END_REF]]. Thus, one only has to consider the orientations given by edges of the convex polygon. For each orientation, we determine the minimum rectangle containing the corresponding edge of the convex polygon. We repeat this task for all orientations and the rectangle with the minimum area is chosen as the Minimum Bounding Rectangle. The illustration of the method is shown in Fig. (5.12). The rectangularity score of each segment is then computed as follows:

R B = A 0 A MBR (5.12)
where A 0 is the region's area and A MBR is the area of the MBR.

Rectangular Discrepancy A weakness of using the MBR is that it is very sensitive to protrusions from the region (as shown in Fig. 5.13). A narrow spike out of the region can vastly inflate the area of the MBR, and thereby produce very poor rectangularity estimates. Three new methods for measuring the rectangularity of regions are developed by Rosin [Rosin 1999]. They are tested together with the standard minimum bounding rectangle method on synthetic and real data. It is concluded that, while all the methods have their drawbacks, the best two are the bounding rectangle and discrepancy methods. In the discrepancy method, a rectangle is fitted to the region based on its moment. One way to measure the sides of rectangle is to find the best ellipse that corresponds to the region. This is an ellipse with the same first-and second-order moments as the region. From the semi-major and semi-minor axes α and β of the ellipse, the rectangle's measurement a and b are estimated as follows:

a = √ 3α = 6 µ 02 + µ 20 + (µ 20 -µ 02 ) 2 + 4µ 2 11 µ 00 b = √ 3β = 6 µ 02 + µ 20 -(µ 20 -µ 02 ) 2 + 4µ 2 11
µ 00

(5.13)

The centroid (x, ȳ) and orientation θ of the rectangle are estimated as follows:

x = m 10 m 00 , ȳ = m 01 m 00 , θ = 1 2 tan -1 2µ 11 2µ 20 -2µ 02 (5.14) where µ pq and m pq are respectively the central moments and the raw moment of the region [Prokop 1992].

Rectangularity is then measured as the normalised discrepancies between the areas of the rectangle and the region. More precisely, given the following area: A 1 the difference between the rectangle and the region, A 2 the difference between the region and the rectangle, and A 3 the rectangle's area. The rectangularity score is computed as follows:

R D = A 1 + A 2 A 3 (5.15)
We test these two rectangularity measures for a building with protrusion (as shown in Fig. 5.13). The obtained rectangular score is R B = 0.59 for the bounding box method and R D = 0.67 for the discrepancy method. The discrepancy measure method ranks this building more rectangular than the standard MBR method. As a result, it is less sensitive to protrusions from the region than the MBR method and will be used in the next to measure the rectangularity of a shape. For the building with instrusion (as shown in Fig. 5.14), we found that these two rectangularity measure are not sensitive to intrusion. The obtained rectangular score for both bounding box measure and discrepancy measure are respectively 0.83 and 0.85. In the next, we choose the discrepancy measure as the rectangularity measure to accomplish region merging. 

Region merging procedure

Since merging is only done between regions with the same class label, we deal with each cluster (group of connected regions having the same class label) independently. Some notations are defined as follows. For each cluster, BdS denotes the list of building segments that are not "visited" (not merged with its neighbors) in cluster. We define a possible merging as a group of connected regions that includes at least one building segment. Lp denotes the list of possible merging.

T R is the predefined minimum rectangularity degree. The merging procedure is described in Algorithm 3. The criteria of merging is to merge building segments with their neighboring regions while increasing the rectangularity degree of building segments. After merging, the new building segments are obtained and used in the next iteration. An example of the result of merging process is shown in Fig. 5.15.e, in which some cyan lines that separate the regions are disappeared.

Algorithm 3: Merging procedure for each cluster Input:

-BdS: list of building segments that are not "visited" in cluster.

-Lp: list of possible merging in cluster.

-L: list of regions to be merged. For initialization, L ← ∅.

while BdS = ∅ do 1. i * ← arg max i R D [Lp(i)]. / * best of possible merging * / if R D [Lp(i * )] ≥ T R then 1. Bd = Lp(i * ) ∩ BdS. / * building segments in Lp(i * ) * / 2. if R D [Lp(i * )] ≥ max(R D [Bd]) then Add Lp(i * ) to L. 3. Update: BdS = BdS \ Bd. else break ;
Merge regions in L.

Output: new building segments 

Iterative Classification and Merging

The main idea of our iterative classification-merging in respect to building detection is to increase the rectangularity degree R D of building segments by merging them with their neighboring regions while the region classification helps to avoid merging between parts of different objects (e.g. two adjoining rectangle buildings). In the end of this iterative process, the building segments are expected to converge toward their full building object outlines. After merging, the RAG is updated. The graph node labels do not change since the previous merging procedure is only done between regions having the same class label. As a result, the feature model class statistics (µ and Σ) do not change. The parameter β of prior term is kept constant. The ICM process continues with this new RAG topology to search for its new suboptimal solution of MRF energy minimization. The merging procedure starts when the ICM stops, and so on. This iterative segmentation merging ends when there is no merging happens. Fig. 5.16 illustrates the first two iterations of the iterative classification-merging process. SLIC over-segmentation decomposes image into different regions (boundaries between different regions are delineated using cyan lines) and the MRF-based region classification group these regions into different clusters (boundaries between clusters are delineated using red lines), as shown in Fig. 5.16b. Within each cluster, region merging procedure merge regions to generate rectangular shapes (Fig. 5.16c, some cyan lines are disappeared). The ICM continues with this new configuration. When the ICM stops (as illustrated in Fig. 5.16d, some red lines become cyan), the merging procedure merges region to increase the rectangularity degree of building segments (Fig. 5.16e).

Determination of Final Building Regions

The proposed iterative region growing results in a segmentation map, in which the building segments have the best possible rectangular score. But it is not evident that these building segments are the final buildings. First, because of the strict constraint of merging, a building segment whose form is very close to a perfect rectangle can not to be merged with its neighboring regions (the other parts of the same building), as shown in Fig. 5.17a. Second, we focus on the buildings with right-angled corners, which are characterized as a collection of rectangles (e.g: L-shape, U-shape, T-shape, gable roofs, and more complex building shapes which are combinations of the aforementioned shapes), not only the rectangular buildings. These types of buildings are partitioned into different part in the segmentation map, as shown in Fig. 5.17b-c. In this section, we describe how to determine the final building regions from the results of region growing image segmentation. 

Recursive MBR

In a recent paper [START_REF] Kwak | [END_REF]], the authors introduce a new framework for automatically detecting and reconstructing accurate right-angle corner building models from LiDAR data. In their approach, building boundaries are first approximated by LiDAR data and then regularized using rectangular model through a Recursive Minimum Bounding Rectangle (RMBR) process. Given a boundary shape, we apply the RMBR algorithm in the way as follows:

1. Apply the MBR algorithm to the boundary shape and the generated MBR is denoted as MBR [START_REF] Ngo | Détection simultanée de l'ombre et la végétation sur des images aériennes couleur en haute résolution[END_REF] , as illustrated in Fig. 5.18b and 5.19b.

2. Track the non-overlapping boundary segments with MBR (1) (Fig. 5.18c and 5.19c).

3. If the length of the detected non-overlapping segments is larger than 20 pixels, apply MBR algorithm again on the non-overlapping segments and their projection onto the MBR sides (Fig. 5.18d and 5.19d) to derive MBR (2) (Fig. 5.18e and 5.19e).

4. Track the non-overlapping boundary segments with MBR (2) .

5. If the length of the detected non-overlapping segments is larger than 20 pixels, apply MBR algorithm again on the non-overlapping segments and their projection onto the MBR sides to derive MBR [START_REF] Ngo | MRF and Dempster-Shafer theory for simultaneous shadow/vegetation detection on high resolution aerial color images[END_REF] .

In our method, we limit the level of recursive MBR to 3. The final shape, denoted as RMBR, is determined as follows:

RMBR = 3 k=1
(-1) k+1 MBR (k) (5.16) Note that if the condition in step 3 (step 5) is not satisfied, we have MBR (2) (MBR [START_REF] Ngo | MRF and Dempster-Shafer theory for simultaneous shadow/vegetation detection on high resolution aerial color images[END_REF] ) is an empty set. Based on this notation, Fig. 5.18f and 5.19f show a RMBR with 2 levels of details (RMBR = MBR (1) -MBR (2) ).

Procedure of Determining Final Building Regions

For the sake of simplicity, we denote RMBR as an operator to measure how much the object considered differs from its RMBR approximation. This operator is defined as follows: RMBR = Area of object Area of RMBR (5.17) Similar to the merging algorithm (Algorithm 3), the determination of final buildings is done within the limit of each cluster, obtained from the results of iterative classification-merging process. The main idea is to check the possibility of having a building with right-angled corners in the cluster. For each cluster, we denote a candidate building as a group of connected regions that includes all building segments. Then, we verify if the candidate building is a building with right-angled corners by measuring its RMBR score. The procedure of determining final building regions is described in Algorithm 4. An example of determining final building regions from the image segmentation results is shown in Fig. 5.20. -T B : minimum RMBR-score.

-BdS: list of building segments in cluster.

- 

Conclusions

In this chapter, we review some existing building detection methods that are related to the proposed method. The methodology begins with the detection and post-processing of shadow areas.

For shadow detection, we employ our shadow/vegetation detection method presented in Chapter 4, that allows to divide the image into three distinct classes: shadow, vegetation, and others with good precision. The boundaries between shadows and their corresponding buildings are detected by eliminating shadow regions generated by vegetation objects and other non-building objects from shadow mask. A novel region-growing image segmentation algorithm is then proposed. This segmentation algorithm consists of two main stages: a MRF-based region classification, and a region merging procedure that exploits the position of shadows and the rectangularity measure. Final buildings are extracted from the obtained iterative classification-merging result. The evaluation of the proposed method will be presented in the next chapter.

Introduction

This chapter presents the experimental evaluation of the proposed building detection method. This method will be denoted as SBBD, that stands for shadow-based building detection. The strategy for accuracy assessment is first introduced. Then, we analyse the sensitivity of important parameters used in SBBD method, which will be tested on the Jacmel dataset and the SZTAKI-INRIA Building Detection Benchmark [Benedek 2012]. At last, we discuss the advantages and the limitations of SBBD method.

Strategy for Accuracy Assessment

The final performance of the proposed approach is assessed by comparing the results of the proposed approach with the ground truth. We perform quantitative evaluation both at object and pixel levels. The buildings that are partially visible at image boundaries are also included in the analysis. In this work, we use the same metrics and accuracy table from [Ozgun Ok 2013]. The common measures of precision (i.e., P), recall (i.e., R), and the F 1 -score (i.e., F 1 ) are used to measure pixel level accuracy, where:

P = TP TP + FP R = TP TP + FN F 1 = 2 × P × R P + R (6.1)
Here, TP stands for true positives and refers to the number of pixels assigned as rooftop in both ground truth and segmentation result. FP stands for false positives and refers to the number of pixels assigned as building in result but not in the ground truth. FN stands for false negatives and refers to the number of pixels assigned as building in ground truth but not in result. Among these metrics, the producer's accuracies (also known as recall) indicate how well pixels of known categories are correctly classified. The user's accuracies (also known as precision) indicate the probabilities of pixels been correctly classified into actual categories on the ground truth. The F-score (F 1 ) captures both precision and recall as single metric that gives each equal importance.

On the other hand, the object-based performance can also be evaluated with the measures given in Eq. 6.1, similar to [Ok 2013] . An output building object is labeled as TP if it has at least a 60% pixel overlap ratio with a building object in the ground truth. However, we label an output building object as FP if it does not coincide with any of the building objects in the ground truth, and we label an output building object as FN if it corresponds to a reference object with a limited amount of overlap (< 60%). Thus, it is possible to compute Precision (P), Recall (R) and F 1 -score (F 1 ) for object-based performance measurement.

Parameters

To initialise SBBD method, different parameters are required. However, there are no parameter setting that can be applicable for all images since these images have different building sizes, different shadow density, etc. Table 6.1 lists the default settings of the parameters used in SBBD method for NOAA aerial image of Jacmel dataset. Some parameters have physical meaning and can be intuitively defined. Otherwise, other parameters need to be determined by test and trial. Fig. 6.2 illustrates the effects of choosing different values for detecting building rooftops. We performed a large number of tests on different parameters and investigated the effects of each parameter on the detection performance using the quality measures given in Eq. 6.1.

Detection of Shadows cast by Buildings

Two parameters (l se , d sh ) are required for post-processing of the building-shadow boundary mask M SB (c.f. Section 5.4). The first parameter l se is the length of structuring element of the directional binary morphological dilation. This parameter is used to define the size of the That is why parameter l se is not important and just need to be set large enough. In our algorithm, we choose l se as 60 pixels.

The second parameter is the minimum length of the boundary between building objects and their corresponding shadows d sh . 10 different values of d sh (2.5 meters -7 meters) are tested. The effects of these values on the computed performances are shown in Fig. 6.2a. The results indicate improvements as the d sh values increase for pixel-based precision ratios, whereas at the same time, performance decreases are observed for the recall ratios. When d sh gets low values, shadows from non-building objects are also detected. The non-building objects having the rectangular form are detected and considered as buildings. As a result, the FP pixels are high and the precision ratio is therefore low. Conversely, when d sh is high, we do not detect some building shadows and therefore miss some buildings, the FN pixels are high and the recall ratio is low. In view of the computed performance measures, we select the value of d sh as 5 meters (that corresponds to 21 pixels for NOAA aerial image of 24cm resolution), which maximizes the F 1 -score computed for the pixel-based case.

Oversegmentation SLIC

Since oversegmentation SLIC [START_REF] Achanta | [END_REF]] is considered as a preprocessing step of the region classification task, it is important to reduce error propagation from this step to the final building validation. In this step, the parameter m controls the tradeoff between superpixel compactness and boundary adherence. The greater the value of m, the more spatial proximity is emphasized and the more compact the cluster. In our algorithm, m is set as 10, as recommended by the authors, that allows to regularize regular-sized regions with good boundary adherence. The sole parameter of SLIC is the number of desired superpixels. This parameter is set so that the initial superpixel size is η sup . The effects of different values of η sup are shown in Fig. 6.2b. Both precision and recall ratios do not significantly change for the low values of η sup . However, when η sup is high, the number of FP pixels and FN pixels increase since the oversegmentation does not adhere well to building boundaries. An example of oversegmentation SLIC with different values of η sup is shown in Fig. 6.1. If the initial superpixel size η sup is low (Fig. 6.1a), the image is segmented into more regions and we can not benefit from the interest of oversegmentation. The number of superpixels increase and therefore the computation time increases. However, the image is under-segmented (Fig. 6.1c, red circle) when η sup is high. Since the oversegmentation SLIC is fast, the good choice of this parameter can be obtained by varying its value on some test images and observing the oversegmentation results. In our algorithm, η sup is set to 175, which maximizes the F 1 -score as shown in Fig 6 .2b and can sufficiently preserve the boundaries of objects and structures without under-segmentation errors in natural images. 

Region Classification

In this study, one major task is to consider the parameters used for region classification. The two most important parameters are the number of classes K and the coefficient of regularization β. To select K, we first ignore the MRF regularization model. It means that the region growing image segmentation is reduced as the initialization of region classification followed by a merging process. For initialization, the iterative procedure is terminated once the ratio of the absolute energy difference between consecutive iterations over the energy at the former iteration is below 10 -6 or the number of iterations exceeds 100 to ensure that we obtain the best initialization as possible. The effects of different values of K are shown in Fig. 6.2c. When K is small, we can not distinguish building regions and their neighboring soil. As a result, the number of FP pixels is high and the precision ratio is low. Conversely, when K is high, building is segmented into two or more regions. Only the region neighboring shadows is detected as building. As a result, the number of TP and FN pixels are both low. As shown in Fig. 6.2c, we choose K as 12 for the best performance.

The parameters of ICM algorithm are chosen as follows. Maximum number of iterations τ max is set to 500, which is normally not exhausted since the early stopping criterion is met with the stopping criteria ε is set to 0.01. The effect of different values of the coefficient parameter β are shown in Fig. 6.2d. The general rule for selecting β is that it should be set to a large value for In each plot, the nonvarying coefficients are kept at their optimal settings (Table 6.1).

simple scenes and small for complex scenes. The results indicate improvements as β increases for both the precision and recall ratio. But when β is high, the neighboring regions of building are classified the same class label as building. This causes more FP pixels and the precision ratio decreases. β is therefore chosen as 150, which maximizes the F 1 -score computed for the pixel-based case.

Region Merging

Two parameters are required for the region merging step of the iterative region growing image segmentation. The first parameter is the minimum length of boundary T S between region (superpixel), produced by the oversegmentation, and the building-shadow boundaries M SB to determine what region is building segment. The effects of different values of T S on the computed performances are shown in Fig. 6.2e. The results indicate that low values of T S significantly reduce the computed precision ratio since FP pixels are high. The false positive building segments cause the false positive buildings. The larger values of T S do not significantly change the results since if we can detect one building segment, we can detect the completed building. We found that the optimal value of T S is 15 pixels.

The second parameter is the minimum rectangularity degree T R . The effects of different values of T R are shown in Fig. 6.2f. The results indicate performance decrease are observed for both the precision and recall ratios as the T R values increases. Indeed, large values of T R prevent the merging and therefore reduce the number of TP pixels and increase the number of FN pixels. It should be noted that this parameter take effects for only the first iteration of the region growing algorithm. Then, the merging is decided in order to increase the rectangularity degree of building segments. In view of the computed performance measures, we select the value of T R as 0.65, which maximizes the F 1 -score computed for the pixel-based case.

Final Determination of Buildings

For the determination of final building regions from the segmentation results, the minimum RMBR-score T B is required. The effects of different values of T B are shown in Fig. 6.2g. For the low value of T B , we detect the maximum number of TP pixels, minimum number of FN pixels, but get lots of FP pixels, therefore, the precision ratio is low and the recall ration achieves the maximum. Conversely, if T B is high, some buildings will be missed. As a result, all three measures are low. Thus, we select the value of T B as 0.8, which maximizes the F 1 -score computed for the pixel-based case.

Experiments

NOAA Aerial Image

We first compare our SBBD method with the method proposed by [Femiani 2014]. The authors have processed their algorithm on our NOAA aerial images. An example is shown in Fig. 6.3, in which true positives (TP) are tinted green, false negatives (FN) are tinted red, and false positives (FP) are tinted blue. Table 6.2 shows precision, recall and F 1 -score for three test images shown in Figs. 6.3, 6.4, 6.5 based on manually entered ground truth. For the image in Fig. 6.3, SBBD method gives a highly competitive result with precision 74.0%, recall 61.9% and F 1 -score 67.4% compared with precision 60.7%, recall 62.6% and F 1 -score 61.6% concerning pixel-level performance. Concerning object-level performance, the method of [Femiani 2014] produces more false positives (small red patches) than SBBD method and therefore have lower object-level performance. These false positives are due to the bad performance of their shadow detection algorithm. If we remove all false negative objects that are bigger than 80 pixels, the new precision, recall and F 1 -score for object-level performance are respectively 17.0%, 11.3% and 13.6%. Regarding SBBD method, the false positives (tinted blue) are due to the missing shadows (blue circle). Besides, in red circle, a long wall generates a long shadow patch, which can not be eliminated in the detection of building shadow step, and cause a false positive patch.

Image

Pixel level performance

Object level performance [Femiani 2014] SBBD method [Femiani 2014] SBBD method [Femiani 2014] and our method on Jacmel aerial images, shown in Figs. 6.3,6.4,and 6.5. Fig. 6.4 shows the building detection results of [Femiani 2014]'s method and SBBD method on rural areas. As shown in Table 6.2, concerning pixel-level performance, SBBD method has better results with precision 61.7%, recall 58.0% and F 1 -score 59.8% compared with precision 38.7%, recall 66.3% and F 1 -score 48.8%. In this high vegetation density area, [Femiani 2014]'s method produces lots of false positives, that make their method very low in object-level performance. Regarding SBBD method, lots of buildings are dismissed because their shadows can not be detected. In particular, in the high dense building area (half below of the image), [Femiani 2014]'s method detects mostly all buildings, whereas SBBD method dismiss some buildings. An another example is shown in Fig. 6.5. Similar conclusions can be drawn for the method of [Femiani 2014] (many false positive patch). SBBD method detects most buildings but some false positives are produced (red circle), because there are the soils that are higher than others and generate some shadow regions. These shadow regions make our method classify these soils as buildings.
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Worldview-2 Satellite Image

We also compare SBBD method with the automated rooftop detection method proposed by [Ozgun Ok 2013] on Worldview-2 images of Jacmel dataset as shown in Figs. 6.6 and 6.7. The Worldview-2 satellite images have four bands: red, green, blue, and NIR, which allows Ok's method to be compared. For the image in Fig. 6.6, we visually observe that Ok's method produces more false positive pixels but less false negatives pixels than SBBD method. Concerning pixel-level performance, as shown in Table 6.3, Ok's method is slightly better than ours with precision 67.3%, recall 80.0% and F 1 -score 73.1% compared with precision 76.5%, recall 62.5% and F 1 -score 68.8%. However, concerning object-level performance, SBBD method is better than Ok's method (F 1 -score 73.5% for Ok's method and F 1 -score 83.8% for SBBD method). An another example is given in Fig. 6.7. As shown in 

SZTAKI-INRIA Building Detection Benchmark

Besides, we compare SBBD method with the rooftop extraction method using higher order CRF proposed by [Li 2015 Table 6.4: Numerical pixel-level and object-level building detection evaluation of applying the method of [Li 2015] and our method on SZTAKI-INRIA Building Detection Benchmark, shown in Fig. 6.8 and Fig. 6.9 . Table 6.4 shows the quantitative evaluation of both methods. On the Normandy site, the method of [Li 2015] gives a slightly better results with precision 77.9%, recall 66.3% and F 1 -score 71.7% compared with precision 74.2%, recall 68.4% and F 1 -score 71.2% concerning pixel-level performance. This method also detects more buildings than SBBD method. SBBD method dismiss a lot of dark building rooftops, which are classified as shows by shadow/vegetation detection method (an example is shown in Fig. 6.10).

On the Manchester site, SBBD method surpasses the method of [Li 2015] (precision 78.7%, recall 69.9% and F 1 -score 74.0% compared with precision 81.6%, recall 66.4% and F 1 -score 73.2%) in term of pixel-level evaluation. SBBD method detect most of buildings on the site (precision 97.5%, recall 86.81% and F 1 -score 91.9% compared with precision 89.9%, recall 79.7% and F 1 -score 84.5% in term of object-level evaluation) than the method of [Li 2015]. 6.5 Discussion

Advantages

The advantages of the proposed building detection method are stated as follows:

• In an urban environment, buildings are generally dense and complex. A shadow region can be cast by a group of connected buildings. The results prove that the approach has the ability to separate these attached buildings since it takes into account the spectral features through the image segmentation stage. An example of detected building in a dense urban area is shown in Fig. 6.11. • The approach is not limited to urban areas but can also be used for building detection in rural environments (as shown in Fig. 6.5). Provided that the shadows cast by buildings are not completely occluded, the approach can recover building regions located in relatively dense vegetation canopies.

• The method requires only reasonably high resolution aerial image. Not required are multiple views, additional information such as near-infrared (NIR), lidar or any elevation data. Users must only estimate the illumination angle and supply the parameters. The determination of these parameters is simple (as explained in Section 6.3). The method does not require a large amount of prelabeled data as would be needed by a supervised learning.

• The decision-making is robust and powerful. Since each cluster obtained from the region classification step is independently treated, large number of image data sets can be utilized and evaluated in the same manner. The parallel computing can be used. As a result, the computation time can be reduced.

Limitation and Failures Cases

In spite of those advantages, the proposed approach still contains some major limitations. Since shadow regions are used to support directly the building detection step, this approach can not detect buildings whose shadow is not visible or missing (as shown in Fig. 6.12), similar to the limitations exist in some state-of-the-art methods like [Femiani 2014, Li 2015, Ozgun Ok 2013].

Besides, under oblique lighting, a gabled rooftop may exhibit significantly different intensities on the sloped portions of the roof, so the proposed method may lose its efficiency as it detects only one side of the rooftop as is shown in Fig. 6.13. In an extreme case, an entire face of the rooftop may be in shadow. Our approach is designed based on the assumption that buildings have a homogeneous color. If the rooftop contains several components with different colors then our method will fail to obtain the entire rooftops. Only the homogeneous part bordering the corresponding shadow region is detected (as shown in Fig. 6.14).

Conclusions

This chapter presents the experimental evaluation of the proposed building detection method, in which both pixel-level and object-level performances are considered. The SBBD method requires some parameters to be specified by a user. In Section 6.3, the sensitivity of important parameters are analyzed. Performances performed on Jacmel dataset and the SZTAKI-INRIA Building Detection Benchmark demonstrate that SBBD method detects the building regions with a high success rate in comparison with some building detection method in the literature. Besides, the advantages and limitations of SBBD method are discussed. In general, the experiment shows that SBBD method is reliable and robust. This is the second contribution of this PhD and has been published in [START_REF] Ngo | [END_REF]]. The aim of this thesis was to develop a system capable of detecting shadow/vegetation and building from single high resolution optical images. This chapter gives a review of what has been accomplished in this thesis (cf. Section 7.1). Besides, perspectives and future directions will be drawn in Section 7.2.

Conclusions

First, this thesis presents SSVD method, a novel shadow/vegetation detection method based on Dempster-Shafer fusion and Markov random fields modelling. Current shadow/vegetation detection methods in the literature detect separately shadow regions and vegetation regions. In some cases, these methods might not provide a sufficiently good segmentation map (shadow, vegetation, other). For example, a vegetated pixel covered by shadow can be classified as vegetation (by a vegetation detection algorithm), and at the same time as shadow (by a shadow detection algorithm). Therefore, we are motivated for a simultaneous shadow/vegetation detection. Different shadow indices and vegetation indices are investigated. Shadow index c 3 , vegetation index ExG (or NDVI if the NIR is available) and the luminance L are chosen. Each feature image computed from these indices can be considered as an information source. In this context, DS fusion that aims at merging different data sources is employed. The principal advantage of this theory is its ability to take into account ignorance of the information by affecting a degree of confidence which is called a mass function to all simple and compound hypotheses. Moreover, the spatial correlation between neighboring pixels is also taken into account using the MRF modelling in order to finally obtain a more reliable and efficient segmentation map with good accuracy. SSVD method is tested on a variety of image datasets and demonstrates its efficiency [Ngo 2014a, Ngo 2014b].

Second, a novel approach is developed for the detection of buildings from a single optical image. This SBBD method does not require any elevation or other additional data. In this method, we focus on buildings with right-angled corners, that can be characterized as a collection of rectangles, with the assumption that shadows cast by building objects can be detected and buildings have a homogeneous color. From the shadow/vegetation mask detected in the previous part, boundaries between shadows and their corresponding buildings are detected. In order to effectively extract building objects from image, an novel MRF region growing image segmentation is proposed. The input image is first decomposed into a set of homogeneous primitive regions. Regions are then grouped into different clusters by a MRF-based region classification. According to the position of the shadows, a merging procedure is performed over regions that belongs to the same cluster to produce regions whose shapes are appropriate to rectangles. This iterative classification-merging stops when no merging happens. From the resulting segmentation, an algorithm for determining the final building objects is proposed. The experimental results prove that SBBD method is applicable in various areas (high dense urban, sub-urban, and rural) and is highly robust and reliable [START_REF] Ngo | [END_REF]].

Perspectives

Shadow/Vegetation Detection

Conventional image classification techniques assume that all the pixels within the image are pure, that they represent an area of homogeneous cover of a single class. This assumption is often untenable with pixels of mixed composition abundant in an image. Future work on shadow/vegetation detection can consider not only pure class (shadow or vegetation) but also mixed class (shadow and vegetation). Moreover, since DS evidence theory can deal with any union of classes, it is particularly useful to represent the "mixed" pixels in classification problems. We have run the test on this new model, in which the DS data fusion diagram (Fig. 4.3, Chapter 4) is modified as shown in Fig. 7.1 and other steps of the proposed method (Algorithm 1) are kept the same. Fig. 7.2 shows a preliminary result of 4-class segmentation. We observe that shadows and vegetation are very well detected. There are no false alarm on the mixed class (shadow-vegetation). However, some mixed class regions are not detected. Two possible avenues to improve the performance are replacing the Otsu method by other thresholding methods [Mehmet Sezgin 2004] or investigating other methods for determining the mass function, such as fuzzy logic [Zhu 2002, Chaabane 2009], neural network classifier [Denoeux 2000]. 

Building Detection

There are several directions in which one could take to further the research on building detection.

For a prior MRF model, we intend to express the input data in different color spaces (HSV, LUV, YIQ, XYZ and LAB) and then combine the set of color values to obtain the multidimensional feature descriptor vector. In fact, each color space has an interesting property, which can efficiently be taken into account in order to render image segmentation more reliable [Banks 1991].

Moreover, inspired from [Yu 2007], we are interested in defining a MRF energy function in which three terms: data term, regularization term and form are included. The neighboring regions are classified as the same class if they have similar spectral information and their fusion are appropriate to rectangles. As a result, the segmentation performance may be improved. The merging may be done between two regions having the same class label so as to increase the MRF energy. Instead of merging regions at the end of segmentation and repeating the region classification-merging like our method, the merging is run at each iteration of ICM. This may make the algorithm faster than our method.

Building Classification

Another stage of the processing chain for building database updating described in Chapter 1 should be studied: building classification. In order to do a good job of building classification, we need to select the appropriate set of features. An example of rules to distinguish between constructed building and building under construction is shown in Table 7.1.

Constructed building

Building under construction Proportion of shadow pixels inside the building Few or none Many Shadows (of wall inside) are parallel with the building boundaries No Yes Table 7.1: Distinguish between a building under construction and a constructed building A preliminary result is shown in Fig. 7.3 in which we use only the proportion of shadow pixels. More rules to classify buildings need to be defined. For example, the high density of vegetation regions inside the building footprint is a good index to classify a building as the building in ruin.

Input image

Shadow/Vegetation detection

Detected building and its classification Abstract: This PhD thesis is devoted to the detection of shadows, vegetation and buildings from single high resolution optical remote sensing images. The first part introduces a new method for simultaneously detecting shadows and vegetation. Several shadow and vegetation indices were investigated and merged using the Dempster-Shafer evidence theory so as to obtain a segmentation map with three classes : "shadow", "vegetation" and "other". However, the performance of the fusion is sensitive to noise since it processes at a pixel-level. A Markov random field (MRF) is thus integrated to model spatial information within the image. In the second part, a novel region growing segmentation technique is proposed. The image is oversegmented into smaller homogeneous regions which replace the rigid structure of the pixel grid. An iterative region classification-merging is then applied over these regions. At each iteration, regions are classified using a MRF-based image segmentation, then, according to the position of shadows, regions having the same class are merged to produce shapes appropriate to rectangles. The final buildings are estimated using the recursive minimum bounding rectangle method from the final classification. These two algorithms have been validated on a variety of image datasets and demonstrate their efficiency.

Keywords: remote sensing, Dempster-Shafer evidence theory, Markov Random Fields, pattern recognition, image segmentation, rectangularity measure, building detection, region growing.

Résumé: Cette thèse est dédiée à la détection de l'ombre, de la végétation et des bâtiments à partir d'une unique image optique très haute résolution. La première partie présente une nouvelle méthode pour détecter simultanément les ombres et la végétation : plusieurs indices d'ombre et de végétation sont comparés puis fusionnés grâce à la théorie de l'évidence de Dempster-Shafer afin d'obtenir une segmentation en trois classes : "ombre", "végétation" et "autre". Comme la fusion est une méthode pixellique, elle est incorporée dans un contexte markovien pour régulariser la segmentation. Dans la deuxième partie, une nouvelle technique de segmentation d'images par croissance de region est proposée. L'image est tout d'abord sur-segmentée en régions homogènes afin de remplacer la structure rigide de la grille de pixels. Une classification-fusion itérative est ensuite appliquée sur ces régions. À chaque itération, les régions sont classées en utilisant une segmentation markovienne, puis regroupées entre elles en fonction de la position des ombres, de leur classe, et de la rectangularité de la forme fusionnée. Les bâtiments sont estimés à partir de la classification finale comme étant les rectangles d'emprise minimale. Ces deux algorithmes ont été validés sur plusieurs images de télédétection et ont permis de démontrer leur efficacité.

Mots-clefs: télédétection, théorie de Dempster-Shafer, champ de Markov, reconnaissance de forme, segmentation, mesure de rectangularité, détection de bâtiment, croissance de région.

  afin d'obtenir une segmentation initiale des zones d'ombre, des zones de végétation et des

Figure 2 :

 2 Figure 2: Schéma pour détecter simultanément les zones d'ombre et de végétation.
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 3 Figure 3: Diagramme de fusion (S représente l'ensemble des pixels de l'image, A représente une hypothèse simple ou une union d'hypothèses simples).
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 4 Figure 4: Segmentation des ombres (en noir), de la végétation (en vert) et du reste (en blanc)
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 56 Figure 5: Schéma de la méthode SBBD.
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 7 Figure 7: Détection de bâtiment à partir d'une image RVB.
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 8 Figure 8: Résultat de détection des bâtiments de la méthode de [Femiani 2014] et de la méthode SBBD dans la zone péri-urbaine (les VP, FP et FN apparaissent respectivement en vert, rouge et bleu).
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 1112 Figure 1.1: Updating the building database of time n using new images of time n + 1
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 13 Figure 1.3: The workflow of building database update. The blocks in green are studied in the limit of this thesis.
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 21 Figure 2.1: Survey area: the city of Jacmel
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 22 Figure 2.2: A sub-image (of size 600 × 720 pixels) of NOAA aerial image that covers a part of Jacmel
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 23 Figure 2.3: A sub-image (of size 420 × 504 pixels) of Worldview-2 satellite image that covers a part of Jacmel
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 24 Figure 2.4: BD ORTHO image of size 2563 × 2563 pixels that covers the part of Strasbourg

  All of the images in the SZTAKI-INRIA Building Detection Benchmark used in this thesis, with authors' acceptance, convey 3 spectral bands (red, green, blue). Sample locations are shown in Fig. 2.6.
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 25 Figure 2.5: Pléiades-HR Satellite Image of size 2563 × 2563 pixels that covers the part of Strasbourg
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 26 Figure 2.6: Images from the SZTAKI-INRIA Building Detection Benchmark
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 31 Figure 3.1: Illustration of cast and self shadows [Luca 2012].

  . The symbols stand for: R = Red, G = Green, B = Blue, NIR = Near Infrared, H = Hue, C = Chroma, S = Saturation, V = Value, I = Intensity; c 1 , c 2 , c 3 represent first, second and third chrominance respectively; in YIQ, Y stands for luminance, I for in-phase and Q for quadrature; in YC b C r , Y represents luminance and C b , C r represent chrominance. An overview of these color space models are presented in Appendix B.
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 32 Figure 3.2: First line: RGB composition images, (a) NOAA aerial image, (b) Satellite Worldview-2 image, (c) BD ORTHO aerial image. Second line: manually interpreted shadow masks (black area) as ground truth of shadow regions. These images have the size of 200 x 210 pixels.
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 432 Different shadow indices (first column) and histogram of radiance for shadow indices for images in Fig. 3.2. The black curve corresponds to shadow, the red curve corresponds to non-shadow. The overlaps between the shadow and non-shadow histogram of c 3 and SI 1 are less significant than others. SI Detected shadows (Fig. 3.2a) Detected shadows (Fig. 3.2b) Detected shadows (Fig. 3
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 33 Figure 3.3: First line: RGB composition images, (a) NOAA aerial image, (b) Worldview-2 satellite image, (c) BD ORTHO aerial image. Second line: corresponding manually interpreted vegetation masks (green area) as ground truth. These images have the size of 200 x 210 pixels.

  Different VIs (first column) and histogram of radiance for vegetation indices for image in Fig. 3.3. The green curve corresponds to vegetation, the red curve corresponds to non-vegetation. The overlaps between the vegetation and non-vegetation histogram of ExG and NDVI are less significant than others.

  Figure 3.4: Sequential shadow/vegetation detection from a Jacmel aerial image

  3.4e and 3.5e) and index ExG combined with Otsu's thresholding method for vegetation detection (Figs.3.4f and 3.5f).
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 35 Figure 3.5: Sequential shadow/vegetation detection from a BD ORTHO image.

  Figure 3.6: Otsu's thresholding method applied on image c 3 and luminance L: (c) using only index c 3 leads to classify a very bright object as shadow; (d) shadow regions and vegetation regions (dark green area) are well detected.

  Figure 3.7: Otsu's thresholding method applied on image ExG and luminance L: (c) using only index ExG leads to classify a green and bright object as vegetation; (d) shadow regions and vegetation regions (dark green area) are well detected.

  Figure 3.8: Illustration of shadow/vegetation detection using the luminance with two images from Jacmel dataset
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 41 Figure 4.1: Global data fusion algorithm
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 4 Figure 4.2: 2-class segmentation of each feature using Otsu thresholding method [Otsu 1975]..
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 43 Figure 4.3: Data fusion diagram.

Figure 4 . 4 :

 44 Figure 4.4: Decision making: (a) input image, (b) ground truth, (c) detected shadow/vegetation by maximizing the pignistic probability function.
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 4 MRF and Dempster-Shafer Theory for simultaneous Shadow/Vegetation Detection with respect to x s .

Figure 4 . 5 :

 45 Figure 4.5: DS segmentation result with MRF regularization: (a) input image, (b) ground truth, (c) initialization (DS fusion), (d) after MRF regularization. We observe that the proposed method solves the problem of false dismissals, and improves the accuracy of segmentation. The MRF regularization removes the small objects in segmentation and preserves the shape of shadow region.
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  Input image (b) Ground truth (c) [Tian 2012]'s method (d) [Shorter 2009]'s method(e) c 3 -ICM method (f) ExG-ICM method (g) SVI-ICM method (h) SSVD method
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 46 Figure 4.6: Shadow/vegetation detection from NOAA aerial image (Jacmel dataset)

  Input image (b) Ground truth (c) [Tian 2012]'s method (d) [Shorter 2009]'s method(e) c 3 -ICM method (f) ExG-ICM method (g) SVI-ICM method (h) SSVD method
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 4 Figure 4.8: Shadow/vegetation detection from a RGB image (SZTAKI-INRIA benchmark) that covers a part of Normandy

  Visible image (b) NIR image (c) Ground truth (d)[Rufenacht 2014]'s method (e) c 3 -ICM method (f) NDVI-ICM method (g) SVI-ICM method (h) SSVD method
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 4 Figure 4.9: Shadow/vegetation detection from worldview-2 satellite image (Jacmel dataset)
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 5152 Figure 5.1: Different study areas: high dense urban area with very high population density and attached buildings, suburban area with residential trip and detached buildings, rural area with very low population density, detached buildings and high vegetation density
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 53 Figure 5.3: Flowchart of the proposed method and related sections

Figure 5 . 4 :

 54 Figure 5.4: Shadow/vegetation detection: (a) input image, (b) detected shadow mask (black) and vegetation mask (green), (c) manually estimated illumination direction. Shadow is occluded by vehicles (red circle) or by vegetation (blue circle)
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 55 Figure 5.5: Removing shadows due to vegetation. (a) RGB aerial image, (b) The expansion regions (pink color) generated after the dilation of the vegetation objects overlaid with the shadow/vegetation map, (c) the shadow mask after eliminating shadows generated by vegetation

Figure 5 . 6 :

 56 Figure 5.6: Removing shadows due to other non-building objects. (a) the shadow mask after eliminating shadows generated by vegetation, (b) potential building-shadow boundaries of (a), (c) final building-shadow boundary mask M SB (black)

Figure 5 . 7 :

 57 Figure 5.7: An example of the first iteration of the region growing image segmentation method: (a) input image, (b) SLIC oversegmentation (regions are separated by cyan lines) of the image in which shadow regions M S and vegetation regions M v are masked out, (c) MRF-based classification (clusters are separated by red lines), (d) Building-Shadow boundary mask M SB (see Section 5.4), (e) detected building segments (boundaries are delineated by violet lines), (f) after merging (some cyan lines are disappeared)..
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 5 Figure 5.8: An example of oversegmentation SLIC with different values of η sup and the weighting factor m is chosen as 10.
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 59 Figure 5.9: Example of RAG: (a) segmented image and (b) the corresponding RAG representation

Figure 5 .

 5 Figure 5.10: Experimental results of MRF-based region classification. Regions are separated by cyan lines and clusters are separated by red lines.

Figure 5 .

 5 Figure 5.11: An example of building segments detection. We observe that each targeted building has one or several building segments.

Figure 5 .

 5 Figure 5.12: Illustration of the MBR estimation [Toussaint 1983]: (a) Object and its boundary (in blue), (b) convex hull and one bounding rectangle test (in red), (c) bounding rectangle with minimum area (in red), (d) object and its MBR

Figure 5 .

 5 Figure 5.13: Building with protrusion artifact: (a) Building region (whose boundary is delineated by blue line) and its minimum bounding rectangle (red line). (b) Building region and the fitted rectangle estimated by discrepancy method.

Figure 5 .

 5 Figure 5.14: Building with intrusion artifact: (a) Building region (whose boundary is delineated by blue line) and its minimum bounding rectangle (red line). (b) Building region and the fitted rectangle estimated by discrepancy method.

Figure 5 .

 5 Figure 5.15: An example of region merging. Building segments are delineated by violet lines. Regions are separated by cyan lines and clusters are separated by red lines.

Figure 5 .

 5 Figure 5.16: Examples of the first two iterations.

Figure 5 .

 5 Figure 5.17: Results of region growing image segmentation: (a) a rectangular building can not achieve its final shape, (b) and (c) L-shaped and U-shaped buildings are partitioned into different regions.
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 554 Figure 5.18: The step-by-step illustration of L-shaped bounding box estimation

Figure 5 .

 5 Figure 5.20: Determination of final buildings from the region growing image segmentation result: 5 buildings are detected, in which 3 buildings (left) are approximated by the recursive MBR of level 2 and other 2 buildings (right) are rectangular. These detected buildings have RMBR-scores of 0.87, 0.91, 0.84, 0.93, 0.81 respectively (from left to right). The value of T B is chosen as 0.8.
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 61 Figure 6.1: An example of oversegmentation SLIC with different values of η sup . Low value of η sup produces lots of regions and high value of η sup makes the oversegmentation not adhere well to building boundaries.
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 62 Figure 6.2: Pixel-based performance in the case of different parameter settings.In each plot, the nonvarying coefficients are kept at their optimal settings (Table6.1).
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 63 Figure 6.3: Comparisons with method in [Femiani 2014] on NOAA aerial images of Jacmel dataset.
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 64 Figure 6.4: Comparisons with method in[Femiani 2014] on NOAA aerial images of Jacmel dataset.
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 65 Figure 6.5: Comparisons with method in [Femiani 2014] on NOAA aerial images of Jacmel dataset.
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 66 Figure 6.6: Comparisons with method in [Ozgun Ok 2013] on Worldview-2 images of Jacmel dataset.
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 67 Figure 6.7: Comparisons with method in [Ozgun Ok 2013] on Worldview-2 images of Jacmel dataset.

  (a) Input image (b) Method of [Li 2015] (c) SBBD method

Figure 6 .

 6 Figure 6.8: Comparisons with method in [Li 2015] on Normandy image. True positives are tinted green, false negatives are tinted red, and false positives are tinted blue.

Figure 6 .

 6 Figure 6.9: Comparisons with method in [Li 2015] on Manchester image. True positives are tinted green, false negatives are tinted red, and false positives are tinted blue.

Figure 6 .

 6 Figure 6.10: An entire face of the building rooftop is classified as shadows.

Figure 6 .

 6 Figure 6.11: Detected building in a dense urban area. Attached buildings are separated by blue lines.

Figure 6 .

 6 Figure 6.12: A building is not detected since its shadow can not be detected.

Figure 6 .

 6 Figure 6.13: (Self-) occlusion occurs on the shadow areas.

Figure 6 .

 6 Figure 6.14: A part of building can not be recovered since building rooftop contains several components with different colors.
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Figure 7 . 1 :

 71 Figure 7.1: DS data fusion diagram for 4-class image segmentation. ω 4 denotes the new class ("shadow-vegetation")

Figure 7 . 2 :

 72 Figure 7.2: Results of segmentation into four classes: shadow (black), vegetation (green), shadowvegetation (cyan) and other (white).

Figure 7 . 3 :c 2 c 3 model

 733 Figure 7.3: Change detection on building states: the first line represents a constructed building detected from NOAA aerial image (of time n); the second line represents the same building under construction detected from Worldview-2 satellite image (of time n + 1) of Jacmel datasets. Hence, this building is classified as building under reconstruction between two different times.

Table 1 :

 1 Métrique et table de précision.

	Précision du photointerpréteur			Précision de l'utilisateur
	Ombre (rappel)	Non-ombre	Ombre (précision)	Non-ombre
	P s =	VP VP + FN	P n =	VN VN + FP	U s =	VP VP + FP	U n =	VN VN + FN
			Précision totale			Coefficient de corrélation de Matthews
	τ =	VP + VN VP + VN + FP + FN	MCC =	VP × VN -FP × FN (VP + FP)(VP + FN)(VN + FP)(VN + FN)

Table 2 :

 2 Qualité de la segmentation pour l'image représentée dans la figure4.5. 

	Détection des ombres

ix végétation) montre que la méthode SSVD a la meilleure précision globale.

Table 3 :

 3 Qualité de la détection pour l'image de la figure8.

			]		Méthode SBBD	
	P	R	F 1	P	R	F 1
	60.7	62.6	61.6	74.0	61.9	67.4
		Performance au niveau objet (%)	
	Méthode de [Femiani 2014]		Méthode SBBD	
	6.2	12.8	8.3	63.8	56.6	60.0
		Performance au niveau pixel(%)	
	Méthode de [Ozgun Ok 2013]		Méthode SBBD	
	P	R	F 1	P	R	F 1
	67.3	80.0	73.1	76.5	62.5	68.8
		Performance au niveau objet (%)	
	Méthode de [Ozgun Ok 2013]		Méthode SBBD	
	78.4	69.2	73.5	93.5	76.3	84.1

Table 4 :

 4 Qualité de la détection pour l'image de la figure6.6 de la thèse.

		Performance au niveau pixel(%)	
	Méthode de [Li 2015]		Méthode SBBD	
	P	R	F 1	P	R	F 1
	81.6	66.4	73.2	78.7	69.9	74.0
		Performance au niveau objet (%)	
	Méthode de				
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Table 3 .

 3 

		Producer's accuracies		User's accuracies
	Shadow (recall rate)	Non-shadow	Shadow (precision rate)	Non-shadow
	P s =	TP TP + FN	P n =	TN TN + FP	U s =	TP TP + FP	U n =	TN TN + FN
		Overall accuracy			Matthews correlation coefficient
	Acc =	TP + TN TP + TN + FP + FN	MCC =	TP × TN -FP × FN (TP + FP)(TP + FN)(TN + FP)(TN + FN)

3: Resulting shadow masks by Otsu thresholding method from different SIs for images in Fig. 3.2 measure if the two classes have different sizes. The value of the MCC is between [-1, 1], where larger values indicate better prediction.

Table 3 .

 3 4: Accuracy table and metrics for experimental evaluation.

			Shadow detection for image in Fig. 3.2a	
	SI	Producer's accuracies	User's accuracies	Overall accuracy	Matthews correlation coefficient
		Shadow	Non-shadow	Shadow	Non-shadow	Acc	MCC
	c 3	93.33	91.69	72.70	98.30	92.00	0.77
	NIR	-	-	-	-	-	-
	SI 1	97.98	64.69	39.69	99.26	71.07	0.49
	SI 2	56.35	99.24	94.64	90.55	91.02	0.68
	SI 3	49.41	99.32	94.56	89.22	89.75	0.63
	SI 4	47.49	99.33	94.40	88.86	89.39	0.62
			Shadow detection for image in Fig. 3.2b	
	Method	Producer's accuracies	User's accuracies	Overall accuracy	Matthews correlation coefficient
		Shadow	Non-shadow	Shadow	Non-shadow	Acc	MCC
	c 3	98.09	76.40	58.21	99.17	81.84	0.67
	NIR	99.08	65.39	46.71	99.57	73.29	0.54
	SI 1	99.06	54.30	39.89	99.47	64.79	0.45
	SI 2	34.81	60.75	21.35	75.27	54.67	-0.03
	SI 3	30.04	74.42	26.45	77.65	64.02	0.04
	SI 4	6.94	99.68	87.01	77.76	77.94	0.20
			Shadow detection for image in Fig. 3.2c	
	Method	Producer's accuracies	User's accuracies	Overall accuracy	Matthews correlation coefficient
		Shadow	Non-shadow	Shadow	Non-shadow	Acc	MCC
	c 3	93.80	95.48	93.81	95.47	94.77	0.89
	NIR	-	-	-	-	-	-
	SI 1	88.69	94.38	92.02	91.96	91.98	0.83
	SI 2	77.61	98.66	97.69	85.80	89.78	0.79
	SI 3	81.95	98.28	97.21	88.18	91.39	0.82
	SI 4	77.31	97.78	96.21	85.52	89.14	0.78

Table 3 .

 3 

5: Shadow detection accuracy measurements for images in Fig. 3.2 Table

Table 3 .

 3 

			Vegetation detection for image in Fig. 3.3a	
	VI	Producer's accuracies	User's accuracies	Overall accuracy	Matthews correlation coefficient
		Vegetation	Non-vegetation	Vegetation	Non-vegetation	Acc	MCC
	ExG	99	91.27	77.82	99.32	92.88	0.84
	NDVI	-	-	-	-	-	-
	ExGR	88.48	57.01	38.65	94.17	64.38	0.38
	CIVE	88.48	57.01	38.65	94.17	64.38	0.38
	RI	96.14	57.30	40.80	97.98	66.40	0.45
			Vegetation detection for image in Fig. 3.3b	
	VI	Producer's accuracies	User's accuracies	Overall accuracy	Matthews correlation coefficient
		Vegetation	Non-vegetation	Vegetation	Non-vegetation	Acc	MCC
	ExG	83.64	91.02	80.14	92.78	88.79	0.73
	NDVI	84.29	91.54	81.18	93.08	89.35	0.75
	ExGR	28.71	98.60	89.93	76.15	77.48	0.42
	CIVE	36.19	98.00	88.73	78.00	79.33	0.47
	RI	15.83	87.66	35.74	70.63	65.96	0.04
			Vegetation detection for image in Fig. 3.3c	
	VI	Producer's accuracies	User's accuracies	Overall accuracy	Matthews correlation coefficient
		Vegetation	Non-vegetation	Vegetation	Non-vegetation	Acc	MCC
	ExG	72.12	68.49	40.02	89.39	69.31	0.34
	NDVI	-	-	-	-	-	-
	ExGR	67.37	52.37	29.19	84.63	55.76	0.16
	CIVE	51.94	27.78	17.33	66.48	33.23	-0.18
	RI	51.60	46.18	21.84	76.60	47.40	-0.01

8: Resulting vegetation masks by Otsu's method from different VIs for image in Fig. 3.3
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  .24) (A p )m s (A q |x Vs ).Once all of the mass function of the single and compound hypotheses related to pixel s are determined, the estimation of xs is obtained by maximizing the plausibility function, derived from the mass function M s :

	where K =				
						
		xs = arg max xs	Pls s (H xs ) = arg max xs		A∩Hx s =∅	M s (A) 
	Likelihood term Prior term Posterior term	Probabilistic MRF, x s ∈ Ω p(y s |x s ) p(x s |x Vs ) P (x s |y, xS-{s} )		M	Evidential MRF, A ⊂ Θ m s (A) m s (A|x Vs )

Ap∩Aq=∅ m s s (A) = m s (A) ⊕ m s (A|x Vs ) Decision xs = arg max xs P (x s |y, xS-{s} ) xs = arg max xs A∩Hx s =∅ M s (A)

Table 4 .

 4 1: Extension of the classical ICM algorithm

Table 4 .

 4 1 summarizes the extension of the classical ICM method to deal with the evidential case for every pixel s ∈ S.

Table 4 .

 4 2: Shadow/vegetation detection accuracy measurements for images in Fig.4.5. With MRF regularization, the performance of the method is improved (both overall accuracy and MCC are higher than the method without MRF).

	Shadow detection

  . These images of size 256 x 256 are selected from three different image datasets: Jacmel, BD ORTHO and SZTAKI-INRIA benchmark, that covers different scenes: Jacmel city, Strasbourg and Normandy. Each example is accompanied by a table of accuracy measurement (table4.3, 
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	Method Method [Tian 2012] c 3 -ICM [Tian 2012] SVI-ICM c 3 -ICM SSVD method SVI-ICM SSVD method	Shadow detection User's accuracies Shadow detection Shadow Non-shadow User's accuracies 47.76 99.23 Non-shadow Producer's accuracies Shadow Non-shadow Producer's accuracies 99.14 50.47 Shadow Shadow Non-shadow accuracy Overall Acc Overall accuracy correlation Matthews coefficient Matthews correlation coefficient MCC 65.73 Acc MCC 0.48 76.44 89.69 77.22 89.29 85.54 96.43 46.19 52.98 95.37 65.58 0.45 0.66 66.29 97.16 91.44 86.32 87.48 71.05 81.29 70.48 81.71 77.34 0.52 0.70 80.61 99.89 99.70 91.85 93.84 73.81 46.63 46.51 73.91 57.12 0.20 0.85 77.96 85.50 77.17 86.05 82.59 0.63
	Method Method [Shorter 2009] ExG-ICM [Shorter 2009] SVI-ICM ExG-ICM SSVD method SVI-ICM SSVD method	Vegetation detection User's accuracies Vegetation detection Vegetation User's accuracies Non-vegetation 31.66 98.16 vegetation Producer's accuracies Vegetation Non-vegetation Producer's accuracies 86.71 79.17 Vegetation Non-Vegetation Non-vegetation 82.35 74.49 26.43 97.43 25.86 73.67 22.55 77.02 78.39 95.18 64.45 97.53 41.89 68.76 28.44 79.97 99.25 93.72 63.94 99.94 27.26 98.44 83.89 82.03 61.25 91.52 68.17 88.85	Overall accuracy Overall accuracy correlation Matthews coefficient Matthews correlation coefficient Acc MCC 79.93 Acc MCC 0.44 75.27 62.74 0 0.36 93.50 62.62 0.09 0.67 94.35 82.17 0.41 0.77 84.60 0.54
	Table 4.3: Shadow/vegetation detection accuracy measurements of Fig. 4.6.

(a) Input image (b) Ground truth (c) [Tian 2012]'s method (d) [Shorter 2009]'s method (e) c 3 -ICM method (f) ExG-ICM method (g) SVI-ICM method (h) SSVD method

Figure 4.7: Shadow/vegetation detection from a RGB image (BD ORTHO dataset) that covers a part of Strasbourg

Table 4 .

 4 

4: Shadow/vegetation detection accuracy measurements of Fig. 4.7.

Table 4 .

 4 

	Shadow detection

5: Shadow/vegetation detection accuracy measurements of the image in Fig. 4.8.
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  Two examples of shadow/vegetation from RGB-NIR images are shown inFigs 4.9, 4.10. These two images of size 256 x 256 are selected from two datasets: Worldview-2 and Pleiades, that covers respectively a part of Jacmel city and Strasbourg. Figs. 4.9, 4.10 show that the c 3 index and the NDVI index are very appropriate for shadow detection and vegetation detection. The overall accuracy of the combination of these indices with MRF regularization are high (above 80

	4.7 and
	Fig. 4.8. SSVD method outperforms all other methods, with high overall accuracy and have the
	best Matthews correlation coeeficient.
	4.6.2.2 With NIR

%). We observe that the method of

[START_REF] Rufenacht | [END_REF]

] performs well in two examples (Fig.

4.9.d and 4.10.d)

. Especially, for image in fig.

4

.10, this method outperforms our method (Acc/MCC: 83.49%/0.55 versus 82.45%/0.46). That demonstrate the efficiency of using NIR band for shadow detection task. However, SSVD method performs well for these two examples, with the overall accuracies are above 80%.
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	Shadow detection User's accuracies Shadow detection Shadow Non-shadow User's accuracies 72.74 94.03 Non-shadow Producer's accuracies Shadow Non-shadow Producer's accuracies 86.36 86.92 Shadow Shadow Non-shadow accuracy Overall Acc Overall accuracy correlation Matthews coefficient Matthews correlation coefficient MCC 86.76 Acc MCC 0.70 79.16 82.95 65.24 90.78 81.86 [Rufenacht 2014] Method Method [Rufenacht 2014] c 3 -ICM 70.76 87.12 61.10 91.25 83.49 0.55 0.59 SVI-ICM 46.05 93.34 73.66 81.06 79.73 c 3 -ICM 92.80 58.58 39.03 96.60 66.19 0.42 0.46 SSVD method 96.34 94.38 87.39 98.46 94.94 SVI-ICM 32.06 75.24 27.01 79.49 65.64 0.07 0.88 SSVD method 51.15 91.40 62.95 86.75 82.45 0.46
	Method Method NDVI-ICM SVI-ICM NDVI-ICM SSVD method SVI-ICM SSVD method	Vegetation detection User's accuracies Vegetation detection Vegetation User's accuracies Non-vegetation 42.44 99.54 vegetation Producer's accuracies Vegetation Non-vegetation Producer's accuracies 94.91 89.56 Vegetation Non-Vegetation Non-vegetation 73.28 92.79 45.18 97.71 77.03 80.76 52.38 92.75 57.88 99.48 90.03 96.68 25.38 83.69 29.94 80.32 64.39 87.59 58.78 89.95	Overall accuracy Overall accuracy correlation Matthews coefficient Matthews correlation coefficient Acc MCC 89.96 Acc MCC 0.60 91.32 79.96 0.51 0.53 96.36 71.12 0.09 0.70 82.59 0.50
	Table 4.6: Shadow/vegetation detection accuracy measurements of Fig. 4.9.

(a) Visible image (b) NIR image (c) Ground truth (d)[Rufenacht 2014]'s method (e) c 3 -ICM method (f) NDVI-ICM method (g) SVI-ICM method (h) SSVD method

Figure 4.10: Shadow/vegetation detection from a pleiades satellite image that covers a part of Strasbourg

Table 4

 4 

	4.7. Conclusions

.7: Shadow/vegetation detection accuracy measurements of Fig.

4

.10.

  N : number of regions in cluster. for k ← N to |BdS| do 1. Determine L k : list of candidate buildings merged from k regions. L k (j) is the j-th element in L k . 2. j * ← arg max * best of candidate building * / if RMBR[L k (j * )] ≥ T B then 1. Merge regions in L k (j * ) and get the final building region of cluster. 2. Break ;

	j	RMBR[L k (j)].
	Output: final building region

/

Table 6 .

 6 1: Parameter settings of the proposed approach for NOAA aerial image expansion region, starting from each vegetation object. If there is more than one shadow regions occur in this expansion region, we select the shadow region that have a border with vegetation object.

	Step	Parameter	Value
	Detection of Shadows Cast by Buildings	l se	60
	(cf. Section 5.4.2)	d sh	5m
	Oversegmentation SLIC [Achanta 2012]	η sup m	175 10
		K	12
	ICM optimization -Region Classification	β τ max	150 500
		ε	0.01
	Region Merging	T S T R	15 0.65
	Determination of Final Building	T B	0.8

Table 6 .

 6 2: Numerical pixel-level and object-level building detection evaluation of applying the method of

	3	60.7 62.6 61.6 74.0 61.9 67.4	6.2 12.8 8.3 63.8 56.6 60.0
	Fig. 6.4	38.7 66.3 48.8 61.7 58.0 59.8	2.5 10.9 4.1 67.0 75.3 70.9
	Fig. 6.5	57.2 65.2 60.9 72.0 71.4 71.7 12.7 51.9 20.5 62.8 57.4 60.0

Table 6 .

 6 3, both methods have equally high F 1 -scores for pixel-and object-level performance. Visually, we observe that most of buildings are partially or fully detected.

			Pixel level performance			Object level performance
	Image	[Ozgun Ok 2013]	SBBD method	[Ozgun Ok 2013]	SBBD method
		P	R	F 1	P	R	F 1	P	R	F 1	P	R	F 1
	Fig. 6.6 67.3 80.0 73.1 76.5 62.5 68.8	78.4 69.2 73.5 93.5 76.3 84.1
	Fig. 6.7 63.0 81.8 71.2 71.3 71.6 71.4	78.1 73.2 75.5 86.3 82.6 84.4

Table 6 .

 6 3: Numerical pixel-level and object-level building detection evaluation of applying the method of[Ozgun Ok 2013] and our method on Worldview-2 images of Jacmel dataset, shown in Figs.6.6 and 6.7. 

  ]. The experiments are carried out on SZTAKI-INRIA Building Detection Benchmark. The results on Manchester and Normandy images are provided by the authors.

			Pixel level performance			Object level performance	
	Image		[Li 2015]		SBBD method		[Li 2015]		SBBD method
		P	R	F1	P	R	F1	P	R	F1	P	R	F1
	Normandy	77.9	66.3	71.7	74.2	68.4	71.2	89.3	78.3	83.4	95.1	68.3	79.5
	Manchester 81.6	66.4	73.2	78.7	69.9	74.0	89.9	79.7	84.5	97.5	86.81	91.9

We use the uppercase letters (j) for all notations related to image Y(j) , j ∈ {1,

2, 3}

(a) Input image (b) Method of [Li 2015] (c) SBBD method
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Otsu Thresholding Method

Thresholding is an important technique in image segmentation applications. The basic idea of thresholding is to select an optimal gray-level threshold value for separating objects of interest in an image from the background based on their gray-level distribution. Thresholding creates binary images from gray-level ones by turning all pixels below some threshold to zero and all pixels about that threshold to one. If g(x, y) is a thresholded version of I(x, y) at some global threshold t:

Otsu method [Otsu 1975] is a global thresholding selection method, proposed by Nobuyuki Otsu in 1975. This method is represented as follows. Assuming image I(x, y) is represented in L gray levels [0,1,. . . ,L -1]. The number of pixels at level i is denoted by n i , and the total number of pixels is denoted by N = n 0 + n 1 + . . . + n L-1 . The probability of gray level i is denoted by:

In the bi-level thresholding method, suppose that the pixels of image are divided into two classes C 0 and C 1 by a threshold at level t; C 0 denotes pixels with levels [0, 1, . . . , t] and C 1 denotes pixels with levels [t + 1, . . . , L -1] by the threshold t. The gray level probability distributions for the two classes are :

The means of class C 0 and C 1 are:

The total mean of gray levels is denoted by u t

Appendix A. Otsu Thresholding Method

The class variances are:

The within-class variance is:

The between-class variance is:

So, the algorithm is for each potential threshold t:

1. Separate the pixels into two clusters according to the threshold.

2. Find the mean of each cluster (u 0 , u 1 ).

3. Square the difference between the means.

4. Multiply by the number of pixels in one cluster times the number in the other (eq. A.7).

This depends only on the difference between the means of the two clusters, thus avoiding having to calculate differences between individual intensities and the cluster means. The optimal threshold is the one that maximizes the between-class variance σ B 2 (t) (or, conversely, minimizes the within-class variance σ W 2 (t) because the total variance of gray levels

Color Space Transformation

The use of color in image processing is motivated by two principal factors. First, color is a powerful descriptor that often simplifies object identification and extraction from a scene. Second, humans can discern thousands of color shades and intensities, compared to few shades of gray. All colors are seen as variable combination of the three primaries in the RGB color model, which is usually used in representing and displaying images. Besides, several color models that decouple luminance and chromaticity are briefly described in the following in terms of their relations with the RGB model.

RGB Model

In this model, each color appears in its primary spectral components of red (R), green (G) and blue (B). This model is based on Cartesian coordinate system.

HSI Model

When humans view a color object, the object is described by its hue, saturation and brightness. Hue (H) is a color attribute that describes a pure color (rainbow color). Saturation (S) gives a measure of the degree to which a pure color is diluted by white light. The intensity (gray level) (I) is a most useful descriptor of monochromatic images. The HSI model manipulates color images with the following transformation from the RGB model [Gonzalez 2004]:

HSV model The HSV model describes colors in terms of hue (H), saturation (S), and value (V). Hue (H) represents the wavelength of a color and varies from 0 to 1 when color goes from red to green then to blue and back to red (H is defined modulo 1). Saturation (S) represents the amount of white color mixed with the monochromatic color. Value (V) represents the brightness.

Appendix B. Color Space Transformation [START_REF] Smith | [END_REF]] describes a triangle-based HSV model in the following relations with the RGB model:

HCV model The HCV model describes the dominant frequency, the amount of color, and luminance, respectively, in the following relations with the RGB model [Gonzalez 2004]: