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Résumé long en Français

Introduction

Ces travaux de thèse ont été réalisés au sein de l’équipe MIV, laboratoire ICube et sont financés

par l’institut Carnot et la Région Alsace. Ils s’inscrivent dans le projet Kal-Häıti qui vise à

construire une base de données d’images de télédétection et de données complémentaires relatives

au séisme de janvier 2010 en Häıti. L’un des objectifs du projet Kal-Häıti est de créer et mettre

à jour la base de données concernant l’état des bâtiments. La mise à jour est très coûteuse car

elle s’effectue manuellement et commence par l’investigation des images. En conséquence, il y

a un besoin réel pour développer une méthode automatique de mise à jour et de détection des

changements dans la base de données des bâtiments.

Le processus de mise à jour est décrit ci-après. À partir d’une image prise au temps n, les

bâtiments sont détectés puis classifiés parmi les trois états suivants :

• bâtiment construit, qui correspond à un bâtiment apparemment achevé et en bon état;

• bâtiment en construction, qui indique un bâtiment inachevé au temps n;

• bâtiment en ruine, qui fait référence à un bâtiment manifestement inhabitable et/ou grave-

ment endommagé.

En utilisant une nouvelle image au temps n + 1, les emprises des bâtiments et leur état sont mis

à jour. Pour maintenir la cohérence dans la base de données, un état “inexistant” est ajouté,

car si un nouveau bâtiment apparâıt au temps n + 1, alors il est identifié comme inexistant aux

temps précédents. De même, il sera identifié comme inexistant aux temps suivants après une

disparition complète (déblaiement). Ainsi, à chaque nouvelle image, les bâtiments sont détectés

et leur état est déterminé. Enfin, en comparant l’état des bâtiments aux temps n et n + 1, le

changement de la base de données est classé comme: nouvelle construction, rasé, pas d’évolution,

en reconstruction, détruit, construction achevée, construction abandonnée, etc.

Image

Détection de l’ombre

et de la végétation

Détection des bâtiments

Classification des bâtiments Détection de changement

Figure 1: Châıne de traitement: mise à jour de la base des données des bâtiments. Les blocs en

vert sont étudiés dans le cadre de cette thèse.

La châıne de traitement proposée est représentée figure 1.3. L’ombre portée est l’indice le plus

important pour détecter les bâtiments. En outre, l’ombre et la végétation permettent d’obtenir des
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indices géométriques et sémantiques sur l’état des bâtiments. C’est pourquoi une première étape de

la châıne de traitement consiste à détecter l’ombre et la végétation. Plusieurs indices de détection

de l’ombre et de la végétation proposés dans la littérature ont été comparés, puis ces informations

sont fusionnées grâce à la théorie de Dempster-Shafer (DS) [Dempster 1968, Shafer 1976] pour

prendre en compte les incertitudes intrinsèques sur les données. Par ailleurs, une modélisation

par champ de Markov permet de régulariser la solution. La deuxième étape de la châıne de

traitement consiste en la détection des bâtiments. L’image est tout d’abord segmentée en super-

pixels homogènes ce qui redéfinit la grille d’échantillonnage d’origine sur un nouveau graphe. Les

bâtiments détectés sont les super-pixels vérifiant certaines règles, comme par exemple la présence

d’une ombre portée (détectée dans la première partie de la châıne de traitement), la rectangularité,

etc.

Détection de l’ombre et la végétation

Il existe une littérature abondante concernant la détection de l’ombre et de la végétation (par

exemple [Adeline 2013, Tian 2012, Shorter 2009]). Cependant, la détection séparée de l’ombre

et de la végétation ne nous semble toutefois pas optimale. En effet, un pixel de végétation

ombragée sera classé comme étant de la végétation par l’algorithme de détection de végétation et

comme une ombre par l’algorithme de détection de l’ombre. Dès lors, l’utilisation des approches

classiques de la littérature n’est pas conseillée pour la détection simultanée de l’ombre et la

végétation. Une inspection visuelle aboutira au même problème car l’information du pixel est

imprécise et incertaine. Nous proposons une méthode originale, appelé SSVD (“simultaneous

shadow vegetation detection”), pour détecter simultanément les zones d’ombres et de végétation.

En d’autres termes, nous proposons une méthode de segmentation des images en trois classes :

“ombre”, “végétation” et “autre”. La méthode proposée est résumée dans la figure 4.1.

En comparant les différents indices d’ombre de la littérature (notamment [Adeline 2013]), nous

obtenons les meilleurs résultats avec l’indice c3 de l’espace de couleur c1c2c3 [Salvador 2004] :

c3 = arctan

(

B

max(R,V)

)

(1)

où R, V et B représentent respectivement les composantes rouge, verte et bleue de l’image. De

même, il existe plusieurs indices pour détecter la végétation [Shorter 2009, Woebbecke 1995a].

Nous avons constaté que l’indice ExG est le plus performant [Woebbecke 1995a] :

ExG =
2 × V − R − B

R+V+ B
. (2)

Par ailleurs, il est apparu que le résultat de la détection était amélioré en prenant en compte

la luminance L :

L =
R +V+ B

3
(3)

Chacun des trois indices ci-dessous permet de construire l’une des images caractéristiques

Y (1), Y (2), Y (3). La suite de la méthode consiste à segmenter l’observation en trois classes ω1,

ω2 et ω3 (correspondant à l’ombre, la végétation et le reste) à partir des images caractéristiques.

Tout d’abord, un seuillage automatique d’Otsu [Otsu 1975] est appliqué aux images Y (1), Y (2) et

Y (3) afin d’obtenir une segmentation initiale des zones d’ombre, des zones de végétation et des
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Figure 2: Schéma pour détecter simultanément les zones d’ombre et de végétation.
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zones sombres (qui inclut les zones d’ombre et de végétation). La méthode d’Otsu est d’ailleurs

très utilisée pour détecter l’ombre [Tsai 2006] pour la qualité de ses résultats. Ainsi, l’image

Y (1) est segmentée en deux classes ω1 et {ω2, ω3}. De même, Y (2) est segmentée en les classes

ω2 et {ω1, ω3} et Y (3) en les classes ω3 et {ω1, ω2}. La théorie DS appliquée à la segmentation

d’image permet alors de fusionner un par un les pixels provenant des trois segmentations et

d’inférer sur les hypothèses (simples) Hi représentant les groupes simples : Hi = {ωi}. Le cadre

de discernement Θ regroupe l’ensemble des classes : Θ = {{ω1}, {ω2}, {ω3}}.

Ensuite, les fonctions de masse m
(1)
s , m

(2)
s , m

(3)
s de la théorie DS sont estimées en faisant

l’hypothèse de distributions gaussiennes. Leur combinaison est réalisée en utilisant la règle

conjonctive prudente (notée ∧ ) de Denœux [Denœux 2006, Denœux 2008], qui permet de

combiner des données dépendantes. La fusion des données est illustrée figure 3.

m
(1)
s ({ω1}), m

(1)
s ({{ω2}, {ω3}}), m

(1)
s (Θ)

m
(2)
s ({ω2}), m

(2)
s ({{ω1}, {ω3}}), m

(2)
s (Θ)

m
(3)
s ({ω3}), m

(3)
s ({{ω1}, {ω2}}), m

(3)
s (Θ)

∧ ms(A) = m
(1)
s ∧ m

(2)
s ∧ m

(3)
s

s ∈ S, A ⊂ Θ

Figure 3: Diagramme de fusion (S représente l’ensemble des pixels de l’image, A représente une

hypothèse simple ou une union d’hypothèses simples).

Une fois que toutes les fonctions de masse des hypothèses simples et composées d’un pixel s

sont déterminées, nous avons besoin d’un critère de décision pour décider quelle hypothèse est

la plus réaliste. Pour la règle de combinaison prudente de Denoeux, la décision s’effectue au

niveau dit pignistique qui impose une transformation des fonctions de masses en distributions de

probabilité:

Betp(Hi) =
∑

{A:Hi∈A}

m(A)

|A| (4)

où |A| est le cardinal de l’ensemble des éléments de A. La décision consiste à choisir l’hypothèse

simple de plus grande probabilité pignistique. Un exemple de la classification est représenté

figure 4.5.e.

Or, la fusion des informations se place au niveau du pixel : cela suppose implicitement que

chaque pixel ne dépend pas de ses voisins, ce qui implique que la procédure est très sensible au

bruit. Pour cette raison, une régularisation par champ de Markov [Geman 1984] de la classification

est introduite dans la fusion de DS pour gérer au mieux la forte corrélation spatiale des pixels.

L’utilisation conjointe de ces deux techniques a fait l’objet de plusieurs travaux en classification

à partir d’observations multisource [Bentabet 2008]. Alors que le cadre probabiliste attribue une

vraisemblance aux classes ωi, la théorie DS remplace cette vraisemblance par une fonction de

masse sur l’hypothèse simple Hxs = {ωi}. Le terme de régularisation du champ de Markov peut

alors être généralisé pour traiter l’hypothèse composée. Considérant la vraisemblance ms(Ap) et
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la probabilité a priori ms(Aq|x̂Vs) comme deux sources d’information évidentielles, la probabilité

a posteriori est remplacée par la somme orthogonale de DS de ces deux sources:

Ms(A|x̂Vs) =
1

1 − K
∑

Ap∩Aq=A

ms(Ap)ms(Aq|x̂Vs) (5)

où K =
∑

Ap∩Aq=∅

ms(Ap)ms(Aq|x̂Vs).

Une fois les fonctions de masse des hypothèses simples et composées déterminées, la classe de

chaque pixel est estimée en maximisant la fonction de plausibilité sur l’information jointe:

x̂s = argmax
xs

Pls(Hxs) = argmax
xs





∑

A∩Hxs Ó=∅

Ms(A|x̂Vs)



 (6)

Une illustration de ces étapes est donnée figure 4.5. Par simple comparaison visuelle, on

constate que les zones d’ombre et les zones de végétation sont obtenues avec une grande précision

grâce à la régularisation spatiale : les petites zones isolées d’ombre et de végétation sont

supprimées et la forme de l’ombre est préservée. De plus, nous évaluons la méthode proposée

à la fois qualitativement mais aussi quantitativement. Pour l’évaluation quantitative, nous

adoptons les mêmes métrique et table de précision que ceux proposés dans [Prati 2003] (table

3.4), en calculant le taux de vrais positifs (VP), faux négatifs (FN), faux positifs (FP) et vrais

négatifs (VN). La somme VP + FN + FP + VN correspond donc au nombre total de pixels dans

l’image. La précision du photointerpréteur indique comment les pixels des catégories connues sont

correctement classés. La précision de l’utilisateur indique la probabilité de pixels correctement

classés par rapport à la référence qui est ici le photointerpréteur. En combinant ces indices de

précision, on obtient la précision générale τ qui permet d’évaluer la performance de l’algorithme.

Des valeurs de paramètres élevées correspondent à de bons résultats. De plus, comme le fait

[Rufenacht 2014], on calcule le coefficient de corrélation de Matthews (MCC) [Matthews 1975],

qui est une mesure plus équilibrée si les deux classes ont des tailles différentes. La valeur de la

MCC est entre [−1, 1], où des valeurs élevées indiquent une meilleure prédiction.

Précision du photointerpréteur Précision de l’utilisateur

Ombre (rappel) Non-ombre Ombre (précision) Non-ombre

Ps =
VP

VP+ FN
Pn =

VN

VN+ FP
Us =

VP

VP+ FP
Un =

VN

VN+ FN

Précision totale Coefficient de corrélation de Matthews

τ =
VP+VN

VP+VN+ FP + FN
MCC =

VP × VN − FP × FN
√

(VP + FP)(VP + FN)(VN + FP)(VN + FN)

Table 1: Métrique et table de précision.

Les résultats donnés dans le table 2 montrent clairement que notre approche possède de très

bonnes performances globales tant pour la détection d’ombre que pour la détection de végétation.

Les précisions générales τ sont élévées (95.66% pour la détection de l’ombre et 98.38% pour

la détection de végétation). De plus, une comparaison quantitative entre notre méthode et les

méthodes de [Tian 2012] (pour la détection de l’ombre) et [Shorter 2009] (pour la détection de
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(a) Observation RVB (b) Segmentation manuelle (c) Détection de l’ombre avec

la méthode de [Tian 2012]

(d) Détection de la végétation

avec la méthode de

[Shorter 2009]

(e) Initialisation (f) Méthode SSVD

Figure 4: Segmentation des ombres (en noir), de la végétation (en vert) et du reste (en blanc)

Détection des ombres

Méthode Précision du photointerpréeur Précision de l’utilisateur
Précision
totale

Coefficient
de

corrélation
de Matthews

Ombre Non-ombre Ombre Non-ombre τ MCC
Méthode de
[Tian 2012]

95.70 49.99 49.32 95.80 65.40 0.52

Initialisation 88.44 88.32 77.85 94.27 88.36 0.74
Méthode
SSVD

89.13 98.98 97.81 94.71 95.66 0.90

Détection de la végétation

Méthode Précision du photointerpréeur Précision de l’utilisateur
Précision
totale

Coefficient
de

corrélation
de Matthews

Végétation
Non-

végétation
Végétation

Non-
végétation

τ MCC

Méthode de
[Shorter 2009]

85.03 80.77 36.28 97.66 81.25 0.78

Initialisation 81.20 97.26 89.41 94.79 93.71 0.81
Méthode
SSVD

93.25 99.04 92.60 99.13 98.38 0.93

Table 2: Qualité de la segmentation pour l’image représentée dans la figure 4.5.
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végétation) montre que la méthode SSVD a la meilleure précision globale.

En conclusion, notre travail apporte trois contributions. Premièrement, il introduit un nou-

veau schéma pour détecter simultanément les zones d’ombre et de végétation. Deuxièmement,

l’utilisation de la théorie DS permet de combiner différents indices d’ombre et de végétation afin

d’obtenir une segmentation fiable et plus précise. Troisièmement, la modélisation par champ de

Markov permet d’exploiter les informations de voisinage géométrique de l’image ; cette idée est

largement utilisée en segmentation d’image, mais rarement dans le contexte de la détection de

l’ombre et de la végétation.

Détection des bâtiments

Beaucoup de méthodes ont été proposées pour détecter les bâtiments à partir d’une image de

télédétection [Ozgun Ok 2013, Femiani 2014, Li 2015]. Dans notre cas, la détection doit être util-

isable sur des zones de densités très hétérogènes (de l’urbain au rural). Cela impose les hypothèses

suivantes sur l’apparence des bâtiments :

1. les bâtiments ont une couleur homogène (en pratique, c’est cette hypothèse qui permet de

séparer les bâtiments dans les zones très denses) ;

2. les bâtiments créent une ombre portée (d’où l’importance de l’heure de prise de vue et de la

qualité de la détection de l’ombre) ;

3. les bâtiments ont une géométrie simple à angles droits (en forme de rectangle, de L, de U

ou de I).

Ces hypothèses ont conduit à une méthode originale, appelé SBBD (“shadow-based building

detection”), décrite ci-après. Le schéma de la méthode est représenté figure 5.3.

Tout d’abord, la carte des zones d’ombres obtenue dans la première partie de la thèse est

nettoyée afin de supprimer les ombres générées par autre chose que les bâtiments : les ombres

dues à la végétation sont supprimées à l’aide de la carte des zones de végétation, et les ombres

très petites (dues à des objets de petite taille telle que les véhicules ou rochers) sont également

éliminées. Ensuite, l’image est sur-segmentée en régions homogènes à l’aide de la méthode

SLIC [Achanta 2012] permettant de remplacer avantageusement la structure rigide de la grille de

pixels par un graphe de régions. Puis, une méthode de classification–fusion itérative est appliquée

sur l’ensemble des régions. L’étape de classification affecte une classe à chaque région et les

regroupe ensuite en groupes. Selon la position des ombres, une fusion permet de regrouper cer-

taines régions d’un même groupe et de produire des régions de forme à peu près rectangulaire. Un

exemple de la première itération de la segmentation par croissance de région est représenté figure 6.

Ces deux étapes de classification et de fusion sont répétées jusqu’à ce qu’aucune fusion ne soit

possible. Enfin, les bâtiments sont déduits en approximant les régions fusionnées par un rectangle

(un exemple est représenté figure 5.20).

La performance finale de la méthode SBBD est évaluée en comparant les résultats de la

méthode avec la vérité terrain. Nous effectuons une évaluation quantitative au niveau pixellique
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Image d’entrée

Détection de l’ombre
et de la végétation

Détection de la fontière
ombre-bâtiment

Sursegmentation SLIC

Construction du RAG

Détection de région-bâtiment

Initialisation

Régularisation par MRF

Fusionner les régions
pour avoir les rectangles

Mise à jour du RAGFusion ?

Détermination des bâtiments finaux

Bâtiments détectés

Oui

Non
Fusion des régions

Classification

des régions

Figure 5: Schéma de la méthode SBBD.
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(a) Image originale (b) Sur-segmentation SLIC (c) Classification des régions

(d) Fontière ombre-bâtiment (e) Région bâtiment détectés (f) Fusion des régions

Fusion ?

Stop

Oui

Non

Première

itération

Figure 6: Un exemple de la première itération de la segmentation par croissance de région: (a)

image originale, (b) sur-segmentation SLIC (les régions sont séparées par les lignes cyan), (c)

classification de régions (les groupes sont séparés par les lignes rouges), (d) Frontière ombre-

bâtiment, (e) région bâtiment détectés (les frontières sont délimitées par des lignes de violettes) ,

(f) Fusion de régions (quelques lignes cyan ont disparu).

(a) Observation RVB (b) Segmentation d’image (c) Bâtiments détectés

Figure 7: Détection de bâtiment à partir d’une image RVB.
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et au niveau d’objet. Nous adoptons les mêmes métrique et table de précision que ceux proposés

dans [Ozgun Ok 2013]. La précision P, le rappel R et la F-mesure F1 sont utilisés pour la précision

au niveau de pixel:

P =
VP

VP + FP

R =
VP

VP+ FN

F1 =
2 × P × R

P+ R

(7)

VP est le nombre de pixels de bâtiments correctement identifiés, FN est le nombre de pixels

de bâtiments considérés comme n’étant pas des bâtiments, FP est le nombre de pixels hors

des bâtiments considérés comme étant des bâtiments et VN est le nombre de pixels hors des

bâtiments correctement identifiés. D’autre part, la performance peut être mesurée au niveau des

objets eux-mêmes (et non des pixels), en utilisant également les mesures définies dans l’équation

6.1 : un bâtiment est un VP s’il a au minimum 60 % des pixels en commun avec le bâtiment

de la vérité terrain ; un bâtiment est un FP s’il ne cöıncide pas avec l’un des bâtiments de la

vérité terrain ; un bâtiment est FN s’il correspond au bâtiment avec une quantité limitée de

recouvrement (< 60%).

(a) Observation RVB (b) Méthode de [Femiani 2014] (c) Méthode SBBD

Figure 8: Résultat de détection des bâtiments de la méthode de [Femiani 2014] et de la méthode

SBBD dans la zone péri-urbaine (les VP, FP et FN apparaissent respectivement en vert, rouge et

bleu).

Les résultats présentés tableaux 3, 4, 5 montrent clairement que la méthode SBBD a de

très bonnes performances globales pour la détection de bâtiments, tant au niveau de pixel

qu’au niveau d’objet. De plus, une comparaison quantitative avec trois méthodes de l’état de

l’art ([Ozgun Ok 2013, Femiani 2014, Li 2015], qui utilisent également l’ombre), indique que

la méthode SBBD donne de meilleurs résultats. De plus, la méthode SBBD est capable de

distinguer les bâtiments même s’ils sont côte-à-côte, comme en milieu urbain où la densité des
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bâtiments est importante.

Performance au niveau pixel(%)

Méthode de [Femiani 2014] Méthode SBBD

P R F1 P R F1
60.7 62.6 61.6 74.0 61.9 67.4

Performance au niveau objet (%)

Méthode de [Femiani 2014] Méthode SBBD

6.2 12.8 8.3 63.8 56.6 60.0

Table 3: Qualité de la détection pour l’image de la figure 8.

Performance au niveau pixel(%)

Méthode de [Ozgun Ok 2013] Méthode SBBD

P R F1 P R F1
67.3 80.0 73.1 76.5 62.5 68.8

Performance au niveau objet (%)

Méthode de [Ozgun Ok 2013] Méthode SBBD

78.4 69.2 73.5 93.5 76.3 84.1

Table 4: Qualité de la détection pour l’image de la figure 6.6 de la thèse.

Performance au niveau pixel(%)

Méthode de [Li 2015] Méthode SBBD

P R F1 P R F1
81.6 66.4 73.2 78.7 69.9 74.0

Performance au niveau objet (%)

Méthode de [Li 2015] Méthode SBBD

89.9 79.7 84.5 97.5 86.81 91.9

Table 5: Qualité de la détection pour l’image de la figure 6.9 de la thèse.

La méthode SBBD est paramétrée par plusieurs variables. Il n’existe pas de valeurs absolues

de ces variables car celles-ci dépendent de la résolution de l’image, de la taille des bâtiments,

de la densité d’ombre, etc. Ainsi, les paramètres ayant une signification physique peuvent être

facilement fixés, alors que les autres paramètres doivent être déterminés par essai–erreur. Ces

expérimentations sont détaillées dans le manuscrit.

En conclusion, notre travail apporte trois contributions. Premièrement, la méthode proposée

a besoin d’une unique image (en haute résolution soit environ 50 cm par pixel). Les informa-

tions comme le proche-infrarouge, le lidar ou les données d’altitude ne sont pas nécessaires.

Deuxièmement, la méthode est non supervisée, c’est-à-dire qu’elle ne nécessite pas de données

pré-classifiées. Troisièmement, la méthode de segmentation de croissance de région prend en

compte l’information radiométrique et géométrique du bâtiment.
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Conclusions

Cette thèse est dédiée à la détection de l’ombre, de la végétation et des bâtiments à partir d’une

unique image optique très haute résolution. La première partie présente la méthode SSVD pour

détecter simultanément les ombres et la végétation : plusieurs indices d’ombre et de végétation

sont comparés puis fusionnés grâce à la théorie de l’évidence de Dempster-Shafer afin d’obtenir

une segmentation en trois classes : “ombre”, “végétation” et “autre”. Comme la fusion est une

méthode pixellique, une modélisation par champ de Markov est utilisée pour mieux gérer la forte

corrélation spatiale générique dans les images. Dans la deuxième partie, la méthode SBBD permet

de détecter des bâtiments à partir d’une image optique monoculaire. L’ombre portée est un indice

important pour détecter le bâtiment. Aussi, à partir de la carte de ombre/végétation obtenue

dans la partie précédente, la frontière entre l’ombre et le bâtiment correspondant est détectée.

Une nouvelle technique de segmentation d’images par croissance de région est ensuite proposée.

Les bâtiments sont déterminés à partir du résultat de segmentation en utilisant une approximation

par le rectangle à limite minimum. Les comparaisons quantitatives entre ces deux méthodes et les

méthodes de l’état de l’art sur différents images avec différent caractéristiques (bande spectrale,

résolution) montrent clairement que ces méthodes sont très robustes et précises.
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RMBR(∗) . . . . . . . . . . . . . . . . . . . Best approximation by a RMBR.

β . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter of regularization term

τmax . . . . . . . . . . . . . . . . . . . . . . . . Maximum number of iterations (ICM algorithm)

ε . . . . . . . . . . . . . . . . . . . . . . . . . . . The percentage of the changed labels between two consecutive

iterations have to be lower than this threshold (ICM algorithm)
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1.1 Context

On January 12, 2010, a devastating earthquake with a magnitude of 7.3 struck Haiti. This massive

earthquake, the biggest the region had seen in 200 years, lead more than 200 000 lives lost, tens

of thousands injured, leaving close to 2 million people homeless and the whole country to be

rebuilt. The response of the international community has been unprecedented. Hundreds of data

were acquired during the emergency phase: optical and radar satellite images covering various

spatial resolutions, aerial photography and in situ measurements. After photo-interpretation,

these images were used by the civil protection agencies and rescue teams on the scene. The

French Agence Nationale de la Recherche (ANR) has funded a project named KAL-Haiti which

aims at gathering remote sensing imagery completed as possible with in-situ measurements

and exogenous data into a knowledge base. This geo-referenced database, seen as a shareable

resource, can serve as a basis for helping the reconstruction of the country, but also as a reference

for scientific studies devoted to all phases of risk management.

Before the earthquake, the Sertit (SErvice Régional de Traitement d’Image et de Télédétection)

was aware of the links between the urban community of Strasbourg (its home town), and Jacmel

in Haiti, with which it was twinned. The historic city of Jacmel was largely destroyed by the

earthquake. Construction and reconstruction of buildings after the disaster is one of the major

challenges facing the Haitian nation and the international community. A lot of initiatives have

been carried out: destroyed buildings have been removed or reconstructed, new buildings have

been erected, etc. The town council of Jacmel thus used its connections with the University of

Strasbourg to monitor this rapidly evolving situation, which would enable them to establish the

criteria for taxation, the economy planning, health care, etc. However, updating the building

database is very time-consuming and expensive since it is generally carried out manually, by

visual inspection of images. This work was estimated to require up to 40% of the costs necessary

to generate it from scratch [Champion 2010]. As a consequence, there is a growing need to

automate this process, that is to propose an automatic method for detecting changes in a 2D
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building database. As a partner of the KAL-Haiti project, Sertit wants to develop an automatic

system to detect changes in building database. This PhD project, conducted at the MIV team of

the ICube laboratory, is a part of the effort devoted to the study of 2D building database updating.

Figure 1.1: Updating the building database of time n using new images of time n + 1

Time n

Constructed building

Building under reconstruction

Time n + 1

Building under construction

Building Vector Building Description Change detection

Figure 1.2: An example of building database update (image credit: Sertit).

.



1.2. Problem Statement 7

The updating process is described in Fig. 1.1. Buildings are first detected from images of time

n and then, classified into three states:

• constructed building, which is apparently completed and in good condition;

• building under construction, which is not yet completed;

• building in ruin, which is clearly inhabitable and/or invaded by vegetation.

At time n + 1, using new images, the new building footprints are estimated and the building

state is updated. Moreover, new buildings are detected. Thus, to keep the consistency in the

database, a 4th state corresponds to “non-existent” building is added: if at time n + 1, a new

building is detected, it is identified as “non-existent” building of time n. In the same way, the

building will be identified as “non-existent” building of time n+1 after a completed disappearance.

Finally, by comparing the state of buildings at time n and time n+1, the changes on building

database would be classified into different categories: new construction, building under construc-

tion, no evolution, completed construction, abandoned construction, building under reconstruc-

tion, destroyed building, damaged building. An example of building database update is shown in

Fig. 1.2.

1.2 Problem Statement

This work takes place in the framework of high resolution remote sensing image analysis. The

goal is to build a generic processing chain to create or update a cartographic building databases.

Our work differs from the existing work in some respects as follows. First, it is designed to deal

with optical images without any a priori knowledge such as DSM, DTM [Champion 2011] or

SAR sensors [Poulain 2010]. Second, since a building database is not available at the input of

the chain, the goal of this work is precisely to create one building database (building vector).

Third, the state of buildings must be classified into different states (building description). The

changes between two images of different time are not only the building footprints, but also their

corresponding states. Thus, we propose a processing chain as shown in Fig. 1.3.

Input Image

Shadow/Vegetation

Detection

Part I

Building Detection

Part II

Building

Classification

Change

Detection

Figure 1.3: The workflow of building database update. The blocks in green are studied in the

limit of this thesis.

To create the building database, an automatic algorithm for detecting buildings from single

optical images is required. Moreover, shadows are valuable sources since a cast shadow is notably
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strong evidence of an existence of a building structure. Besides, according to cartographic experts,

shadows and vegetation can provide additional geometric and semantic clue about the state of

buildings (constructed building, building under construction, or building in ruin). That is why we

found it necessary to detect shadows and vegetation. These two issues are studied and presented

in this thesis.

1.3 Thesis Contributions

Current shadow/vegetation detection methods in the literature detect separately shadow regions

and vegetation regions [Shorter 2009], [Ozgun Ok 2013]. The first contribution of the thesis intro-

duces a new algorithm that detects simultaneously shadows and vegetation from an high resolution

optical image. In this thesis, several shadow and vegetation indices were investigated and merged

using the Dempster-Shafer (DS) evidence theory so as to increase the reliability and accuracy

of the segmentation. The principal advantage of this theory is its ability to take into account

ignorance of the information by affecting a degree of confidence which is called a mass function

to all simple and compound hypotheses. However, since the DS fusion processes at a pixel-level,

the performance of the DS fusion is sensitive to noise. The Markov random field (MRF) is thus

employed to model spatial information within the image. In short, the main contribution of this

part is twofold.

• First, to the best of our knowledge, this is the first work on detecting simultaneously shadow

regions and vegetation regions from optical (RGB aerial or satellite) image, by the use of

Dempster-Shafer evidence theory.

• Second, Dempster-Shafer fusion is incorporated with a Markov random field, so that the

image geometric information (spatial correlation) is taken into account.

Building detection from single image is, in general, a very difficult task due to the large

scene complexity and irregular nature of the scenes [Izadi 2010], [Karadag 2015]. The second

contribution of the thesis introduces a novel approach for the automated detection of buildings.

Shadow analysis has been considered to be one of the most important clues of building objects

in monocular image processing. In this thesis, from the shadow/vegetation mask detected in the

previous part, boundaries between shadows and their corresponding buildings are detected by

eliminating shadow regions generated by vegetation objects and other non-building objects. A

novel region growing segmentation technique is then proposed. Image is first over-segmented into

smaller homogeneous regions (superpixels) which can be used to replace the rigid structure of

the pixel grid. An iterative region classification-merging is then applied over this set of regions.

At each iteration, regions are first classified using a region-level MRF-based image segmentation.

According to the position of shadows, a merging process is then performed over regions having

the same class to produce regions whose shapes are appropriate to rectangles. In the third stage,

from the results of region growing image segmentation, the final building regions are determined.

In short, the main contribution of this part is threefold.

• The method requires only reasonably high resolution aerial image (≃ 50 cm per pixel). Not

required are multiple views, additional information such as near-infrared (NIR), lidar or any

elevation data.
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• The method does not require (a large amount of) prelabeled data as would be needed by a

supervised learning.

• A novel Markov random field region growing technique for building detection is proposed,

in which the radiometric and geometric information of building are combined.

These two algorithms have been tested on a variety of image datasets and demonstrates their

efficiency.

1.4 Thesis Structure

The chapters of this thesis reflect the contributions stated in Section 1.3. The thesis is structured

as shown below.

Chapter 2 outlines the Jacmel remote sensing dataset and three additional datasets used to

evaluate the performance of the proposed algorithms in the thesis. The discussion concentrates

on the image specification and ground truth generations of the datasets.

In Chapter 3, we review shortly the existing methods on shadow/vegetation detection. Then,

among different shadow indices and vegetation indices proposed in the literature, we carry out

the test to determine what indices are the most relevant regarding shadow detection task and

vegetation detection task. Moreover, we explain what motivate us to propose a novel method

detecting simultaneously shadows/vegetation from a high resolution optical image, instead of

detecting sequentially shadows, then vegetation like other existing methods. Based on the indices

chosen in Chapter 3, Chapter 4 develops a novel simultaneous shadow/vegetation detection

method. The basic concepts of DS evidence theory and its applications for combining different

shadow indices and vegetation indices are described. The DS fusion is carried out pixel by pixel

and is incorporated in the Markovian context while obtaining the optimal segmentation with the

energy minimization scheme associated with the MRF. The experimental results and discussion

are also reported in the end of this chapter.

Coming now to the second part of the thesis, in Chapter 5, a novel approach for the

automated detection of buildings from monocular VHR optical images is introduced. From the

shadow/vegetation mask detected in the previous part, boundaries between shadows and their

corresponding buildings are detected by eliminating shadow regions generated by vegetation

objects and other non-building objects. In order to effectively extract building objects from

image, an novel MRF region growing image segmentation is proposed. From the segmentation

results, an algorithm for determining the final building objects is proposed. In Chapter 6, we

first analyze the sensitivity of important parameters used in our algorithm. Then, we validate

our method on multiple datasets described in Chapter 2 and compare to other existing methods

in the literature. The advantages and the limitations of the proposed method are also discussed

in the end of this chapter.

Finally, Chapter 7 gives concluding remarks on the proposed techniques, with some open issues

and future research works.
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2.1 Introduction

This chapter introduces data used in this thesis, including the Jacmel remote sensing dataset

and three additional evaluation datasets. We will discuss about the image specification (spectral

band, spatial resolution) and the ground truth generations of each dataset. These datasets with

different image specifications and environmental settings are used to demonstrate the flexibility

of the proposed algorithms.

2.2 Jacmel Remote Sensing Dataset

Project Motivation Taking into account the strong demand for helping reconstruction fol-

lowing the 12th January 2010 earthquake in Haiti, the principal aim of KAL-Haiti project is to

produce and promote the use of a database of Earth observation data, in support of research

and development activities for global risk management and sustainable reconstruction in Haiti.

During the immediate response to the disaster, tens of satellite images, both optical and radar,

covering various spatial resolutions were acquired by satellite operators whether they are national

space agencies or private companies [Giros 2012]. Two images over the Jacmel area are studied

in this thesis:

• a NOAA aerial image, acquired on 24th January 2010 (12 days after the earthquake);

• a Worldview-2 satellite image, acquired on 17th July 2011 (18 months after the earthquake).

These images represent respectively the image of state n and of state n + 1 in Diagram 1.1 of

Chapter 1.



12 Chapter 2. Experimental Data

Figure 2.1: Survey area: the city of Jacmel

Ground Truth Concerning the reconstruction monitoring in Jacmel area (as shown in Fig. 2.1),

the KAL-Haiti project has produced a set of vector layers built from satellite and aerial imagery,

and showing the buildings footprints at different periods. Three layers showing the footprints

and states of 22 257 buildings over the Jacmel area (50 km2) have been produced by photo-

interpretation [Sertit 2013]. The set of building footprints produced by photo-interpretation is

used as the ground truth to evaluate the performance of proposed building detection method. For

shadow/vegetation detection method, the segmentation map with three classes (shadow, vegeta-

tion, other) is manually produced with the validation of the cartographic expert (Sertit).

2.2.1 NOAA Aerial Image

NOAA is an abbreviation of National Oceanic and Atmospheric Administration, scientific agency

within the United States Department of Commerce focused on the conditions of the oceans and

the atmosphere. For the Haiti earthquake disaster, the NOAA aerial images are acquired by

the Cessna Citation II, a versatile twin-engine jet aircraft which is equipped with high-resolution

digital cameras and other sensors that support a wide variety of remote sensing configurations,

including large-format aerial photography as well as data collection for digital cameras, hyper-

spectral, multispectral and LIDAR systems.

Image Specification The NOAA aerial image provided for this thesis conveys 3 spectral bands

(red, green, blue) and is characterized by a spatial resolution of 24 cm. Sample location is shown

in Fig. 2.2.
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Figure 2.2: A sub-image (of size 600 × 720 pixels) of NOAA aerial image that covers a part of

Jacmel

2.2.2 WorldView-2 Satellite Image

WorldView-2 is a commercial Earth observation satellite owned by DigitalGlobe, an American

commercial vendor of space imagery and geospatial content, and operator of civilian remote sens-

ing spacecraft. For the Haiti earthquake disaster, DigitalGlobe provided a free-of-charge high

resolution images to aid the extensive relief and recovery efforts.

Image Specification The WorldView-2 satellite image provided for this thesis conveys 4 spec-

tral bands (red, green, blue, near-infrared) and is characterized by a spatial resolution of 50 cm.

Sample location is shown in Fig. 2.3.

2.3 Additional Dataset

These dataset were provided in the end of the PhD project and used to demonstrate the flexibility

and the efficiency of proposed methods. The reference data (both for shadow/vegetation detection

and building detection algorithm) are manually produced with the validation of the cartographic

expert (Sertit).
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(a) Visible RGB image (b) NIR image

Figure 2.3: A sub-image (of size 420 × 504 pixels) of Worldview-2 satellite image that covers a

part of Jacmel

2.3.1 BD ORTHOr Dataset

The Departmental Orthophotography of IGN (BD ORTHOr) is a database of the Digital aerial

georeferenced photography, produced by the French national mapping agency (Institut national

de l’information géographique et forestière, IGN France). The BD ORTHOr covers part of the

French territory with Orthophotographs (aerial photographs in which all distortions are corrected).

It is generated at a ground sample distance of 50 cm. The coverage by “département” (French

administrative unit, mean area of around 6500 km2) is renewed every 3 to 4 years.

Image Specification The BD ORTHOr image provided for this thesis represents a part of

Strasbourg city and is shown in Fig. 2.4. It conveys 3 spectral bands (red, green, blue) and is

characterized by a spatial resolution of 50 cm.

2.3.2 Pléiades-HR Satellite Image

Pléiades is the CNES (French national space agency) program designed as the follow-on to its

highly successful SPOT series of low Earth orbit multi-mission observation satellites, which has

operated an uninterrupted service since 1986. The Pléiades constellation is composed of two

very-high-resolution optical Earth-imaging satellites. Pléiades 1A and Pléiades 1B provide the

coverage of Earth’s surface with a repeat cycle of 26 days. Designed as a dual civil/military

system, Pléiades will meet the space imagery requirements of European defence as well as civil

and commercial needs.
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Figure 2.4: BD ORTHOr image of size 2563 × 2563 pixels that covers the part of Strasbourg

Image Specification The Pléiades-HR Satellite image image provided for this thesis represents

a part of Strasbourg city and is shown in Fig. 2.5. It conveys 4 spectral bands (red, green, blue,

NIR) and is characterized by a spatial resolution of 50 cm.

2.3.3 SZTAKI-INRIA Building Detection Benchmark

The SZTAKI-INRIA Benchmark [Benedek 2012] is an excellent resource for benchmarking build-

ing extraction algorithms. It contains the rectangular footprints of 665 buildings in 9 aerial or

satellite images taken from Budapest and Szada (both in Hungary), Manchester (U.K.), Bodensee

(Germany), Normandy and Côte d’Azur (both in France), as well as manually annotated ground

truth data. Two datasets (Budapest and Szada) are aerial images, and the remaining four datasets

are satellite images acquired from Google Earth. This benchmark is free for scientific use.

Image Specification All of the images in the SZTAKI-INRIA Building Detection Benchmark

used in this thesis, with authors’ acceptance, convey 3 spectral bands (red, green, blue). Sample

locations are shown in Fig. 2.6.
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(a) Visible RGB image (b) NIR image

Figure 2.5: Pléiades-HR Satellite Image of size 2563 × 2563 pixels that covers the part of Stras-

bourg

(a) Manchester area (b) Normandy area

Figure 2.6: Images from the SZTAKI-INRIA Building Detection Benchmark
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2.4 Conclusions

In this work, four datasets will be used. They can be categorized into two groups in function of

their spectral specification as follows:

• RGB image: NOAA image, BD ORTHOr image, SZTAKI-INRIA image;

• RGB-NIR image: Worldview-2 image, Pléiades-HR image.

These image datasets that cover different scenes and have different environmental settings, differ-

ent specifications, different resolutions allow to demonstrate the reliability and flexibility of the

proposed algorithms.
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3.1 Introduction

Shadows and vegetation in remote sensing images often result in problems for many applications,

such as land-cover classification, change detection and damage detection in disasters. In recent

years, research on these two issues has become very popular. In this chapter, we first review

shortly the existing methods on shadow/vegetation detection. Among different shadow indices

and vegetation indices proposed in the literature, we then run the test to determine what indices

are the most relevant regarding shadow detection task and vegetation detection task. Moreover,

we explain our motivation for a novel simultaneous shadow/vegetation detection method.

3.2 Shadow Detection in Remote Sensing Image

3.2.1 Related Works

Automatic shadow detection is a very important preprocessing step for many remote sensing

applications, particularly for images acquired with high spatial resolution. Shadows can provide

geometric and semantic information contained in images, including cues about the height, the

shape [Kim 2007] and/or the position of buildings [Ozgun Ok 2013]. However, the existence of

shadows also cause some undesirable problems. For example, shadows may cause objects to merge

or shapes to distort, thus resulting in information loss or distortion of objects [Chung 2009].

Hence, detecting shadows is still a current topic and discussed widely in remote sensing literature.

Normally, shadows appear when objects occlude the direct light from the illumination source,

usually the sun. But shadows are not all the same, they can be divided in two different classes:
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Figure 3.1: Illustration of cast and self shadows [Luca 2012].

cast and self shadows (as illustrated in Fig. 3.1). The former is caused by the projection of the

light source in the direction of the object. The latter is still a shadow but represents the part of

the object that is not illuminated directly by the light source. Consequently, in this thesis, we

only focus on the detection of cast shadow, and we do not consider self shadow as shadow for

detection. For the sake of simplicity, in the rest of the thesis, we use the word shadow to mean

the cast shadow unless otherwise noted.

In the literature, different approaches have been proposed regarding shadow detection. They

can loosely be classified into two categories, namely model-based [Tolt 2011, Nakajima 2002] and

properties-based approaches [Arévalo 2008, Chen 2010, Cucchiara 2003, Tsai 2006, Salvador 2004,

Sun 2010]. The former has limited applicability because they rely on some prior information

like illumination conditions and 3D scene geometry. 3D models can be acquired using aerial

or satellite photogrammetry (multi-view aerial images, stereoscopic pair of satellite images,

etc.), airborne or terrestrial laser scanning, interferometric SAR (Synthetic Aperture Radar)

or even from topographic data [Adeline 2013]. However, since usually such knowledge is

not available, most of the detection algorithms are based on shadow properties, such as

the fact that shadow areas have lower brightness, higher saturation and greater hue values.

These shadow properties are exploited by different shadow indices (SIs) proposed in the literature.

For instance, in [Salvador 2004], a hypothesis is applied on the fact that cast shadows

darken the surface which they are cast upon, and the validity of detected regions as shadows is

further verified using the color feature c3 of the c1c2c3 color space (proposed by [Gevers 1999]),

with geometric properties of shadows. Considering the atmospheric Rayleigh scattering effect,

[M.Polidorio 2003] found that shadow areas in images have higher saturation and lower lumi-

nance, thus, they propose thresholding the difference image of the saturation and the intensity

components for each pixel in a normalized HSI color space. Based on Phong illumination

model [Phong 1975], [Huang 2004] presented a new imaging model of shadows, and employed

thresholding on the hue, blue, and green-blue difference components sequentially to detect

shadowed areas, which were then compensated by applying the Retinex technique to both

shadowed and non-shadowed area separately. [Tsai 2006] uses different color spaces (HSV, HSI,

HCV, YIQ, YCbCr) for shadow detection from aerial images where different ratio maps for each

of these color spaces are calculated and then, Otsu method is used to segment shadow. But

this method tends to misclassify the dark blue and dark green color surfaces as shadow regions.
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Inspired by this method, a better approach was developed, which is based on a novel successive

thresholding scheme [Chung 2009]. A recent paper from [Tian 2012] proposes an alternative

method for shadow detection using a tri-color attenuation model (TAM). TAM describes the

attenuation relationship between shadows and their non-shadow backgrounds in the three color

channels. Finally, physical properties (e.g., temperature) of a blackbody radiator have been

exploited in a recent method to detect shadows [Makarau 2011]. But since this method needs

the prior measurement of the color temperature or the center wavelength for the sensors of each

channel, it is not automatic enough for general data.

Our shadow detection method is devoted to the high resolution optical image without any prior

information. Inspired of the existing methods, our approach exploits shadow properties through

use of SIs. The question is now what indices are the most effective for shadow detection task. In

the following, we investigate some SIs proposed in the literature over our image database.

3.2.2 Choice of Shadow Index

The main issue of this section is to give an experimental comparison of different indices regarding

shadow detection on high resolution optical image. These SIs are produced from different color

space models: RGB-NIR, c1c2c3, HSI, HSV, HCV, YIQ, YCbCr, and presented in Table 3.1.

The symbols stand for: R = Red, G = Green, B = Blue, NIR = Near Infrared, H = Hue, C =

Chroma, S = Saturation, V = Value, I = Intensity; c1, c2, c3 represent first, second and third

chrominance respectively; in YIQ, Y stands for luminance, I for in-phase and Q for quadrature;

in YCbCr, Y represents luminance and Cb, Cr represent chrominance. An overview of these color

space models are presented in Appendix B.

Index Formula Color model Author

c3 c3 c1c2c3 [Salvador 2004]

NIR NIR RGB-NIR [Nagao 1979]

SI1 I - S HSI [M.Polidorio 2003]

SI2
H+ 1

I + 1
HSI [Tsai 2006]

SI3
Q+ 1

Y + 1
YIQ [Tsai 2006]

SI4
Cr + 1

Y + 1
YCbCr [Tsai 2006]

Table 3.1: Different shadow indices that are tested in this section. Among six color spaces used

in [Tsai 2006], we test only three color spaces HSI, YIQ, YCbCr that are demonstrated in the

author’s work as the best for shadow detection task.

We have tested these SIs over all image datasets presented in Chapter 2. An example of

three test images and their manually shadow masks is shown in Fig. 3.2. The efficiency of

each shadow index can be observed in Table 3.2, where we plot the one dimensional marginal

histograms of the shadow index values for manually marked shadowed and non-shadowed points.

We observe that the c3 and SI1 are the most appropriate for a shadow detection method based

on histogram thresholding, since the overlaps between the shadow and non-shadow histogram are

less significant than others.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: First line: RGB composition images, (a) NOAA aerial image, (b) Satellite Worldview-

2 image, (c) BD ORTHOr aerial image. Second line: manually interpreted shadow masks (black

area) as ground truth of shadow regions. These images have the size of 200 x 210 pixels.

In properties-based shadow detection method, shadow regions can be extracted by simply

choosing an appropriate threshold. The search of that threshold in the histogram is usually

based on some assumptions on the histogram: bimodal, Gaussian mixture model, the number of

peaks and valleys, etc [Adeline 2013]. In this section, we apply Otsu’s method [Otsu 1975] for

automatically determining the threshold. The details of Otsu’s method can be found in Appendix

A. Resulting shadow masks are shown in Table 3.3. By comparing with the reference data

(manually shadow masks) in Fig. 3.2, we visually find that c3 is the best for shadow detection task.

Besides, the performance of each shadow index is also assessed by comparing the resulting

shadow masks with the manually shadow masks. The evaluation metrics are defined based on

true positive (TP), false negative (FN), false positive (FP), true negative (TN) (as shown in Table

3.4). Concerning shadow detection, TP is the number of shadow pixels correctly identified, FN

is the number of shadow pixels identified as non-shadow, FP is the number of non-shadow pixels

identified as shadows and TN is the number of non-shadow pixels correctly identified. Among

these metrics, the producer’s accuracies (also known as recall) indicate how well pixels of known

categories are correctly classified. The user’s accuracies (also known as precision) indicate the

probabilities of pixels been correctly classified into actual categories on the ground. Combining

the accuracies of the user and the producer, the overall accuracy (Acc) can be used to evaluate

the correctness of the algorithm. These measures are given in percentage. For a good algorithm,

values of these metrics should be high. Beside the overall accuracy, similar to [Rufenacht 2014],

we compute Matthews Correlation Coefficient (MCC) [Matthews 1975], which is a more balanced
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SI

Histogram of radiance for

shadow index for image in

Fig. 3.2a

Histogram of radiance for

shadow index for image in

Fig. 3.2b

Histogram of radiance for

shadow index for image in

Fig. 3.2c

c3

NIR Unavailable Unavailable

SI1

SI2

SI3

SI4

Table 3.2: Different shadow indices (first column) and histogram of radiance for shadow indices

for images in Fig. 3.2. The black curve corresponds to shadow, the red curve corresponds to

non-shadow. The overlaps between the shadow and non-shadow histogram of c3 and SI1 are less

significant than others.



26 Chapter 3. Related Research

SI Detected shadows (Fig. 3.2a) Detected shadows (Fig. 3.2b) Detected shadows (Fig. 3.2c)

Ground

truth

c3

NIR Not available Not available

SI1

SI2

SI3

SI4

Table 3.3: Resulting shadow masks by Otsu thresholding method from different SIs for images

in Fig. 3.2
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measure if the two classes have different sizes. The value of the MCC is between [−1, 1], where

larger values indicate better prediction.

Producer’s accuracies User’s accuracies

Shadow (recall rate) Non-shadow Shadow (precision rate) Non-shadow

Ps =
TP

TP + FN
Pn =

TN

TN+ FP
Us =

TP

TP + FP
Un =

TN

TN+ FN

Overall accuracy Matthews correlation coefficient

Acc =
TP + TN

TP+ TN+ FP + FN
MCC =

TP × TN − FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Table 3.4: Accuracy table and metrics for experimental evaluation.

Shadow detection for image in Fig. 3.2a

SI Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC

c3 93.33 91.69 72.70 98.30 92.00 0.77
NIR - - - - - -
SI1 97.98 64.69 39.69 99.26 71.07 0.49
SI2 56.35 99.24 94.64 90.55 91.02 0.68
SI3 49.41 99.32 94.56 89.22 89.75 0.63
SI4 47.49 99.33 94.40 88.86 89.39 0.62

Shadow detection for image in Fig. 3.2b

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC

c3 98.09 76.40 58.21 99.17 81.84 0.67
NIR 99.08 65.39 46.71 99.57 73.29 0.54
SI1 99.06 54.30 39.89 99.47 64.79 0.45
SI2 34.81 60.75 21.35 75.27 54.67 -0.03
SI3 30.04 74.42 26.45 77.65 64.02 0.04
SI4 6.94 99.68 87.01 77.76 77.94 0.20

Shadow detection for image in Fig. 3.2c

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC

c3 93.80 95.48 93.81 95.47 94.77 0.89
NIR - - - - - -
SI1 88.69 94.38 92.02 91.96 91.98 0.83
SI2 77.61 98.66 97.69 85.80 89.78 0.79
SI3 81.95 98.28 97.21 88.18 91.39 0.82
SI4 77.31 97.78 96.21 85.52 89.14 0.78

Table 3.5: Shadow detection accuracy measurements for images in Fig. 3.2

Table 3.5 shows the shadow detection accuracy measurements for images in Fig. 3.2 when
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we apply the Otsu thresholding method on different shadow indices. It is shown that the best

result is obtained with shadow index c3 (overall accuracy are 92%, 81% and 94%). Three indices

proposed by [Tsai 2006] (denoted as SI2, SI3, SI4) perform well for the first and third image but

they perform badly for the second image. In [Adeline 2013], the authors concluded that since

sensor radiance received from shadowed regions decreases from short to long wavelengths due to

scattering, so it is easier to distinguish shadows from non-shadows with NIR band rather than

visible bands. But our test demonstrates that NIR band (overall accuracy 73.29%) outperforms

other shadow indices but it is not better than shadow indice c3. Besides, NIR band is not

available for aerial images. These shadow indices are also tested for other image datasets and

similar results are obtained. As a result, in the following, we will use index c3 for shadow

detection task.

3.3 Vegetation Detection in Remoted Sensing Image

3.3.1 Related Works

Vegetation is of particular interest as it presents a versatile resource for effectively managing

and moderating a variety of problems associated with urbanization, such as urban planning,

disaster management or telecommunication planning. In the context of this thesis, the spatial

distribution of vegetation can also provide the semantic information about the state of buildings.

However, the detection of vegetation is a considerable challenge due to their complex nature and

their interaction with other objects, such as buildings or shadows.

Previous studies document a variety of approaches for measuring the vegetation cover by

image analysis techniques. Color/tone was intensively used to distinguish between vegetation

and non vegetation. Since objects, including vegetation have their unique spectral signa-

ture, they can be identified according to their spectral characteristics, mostly by vegetation

indices (VIs). VIs are spectral transformations of two or more bands designed to enhance

the contribution of vegetation properties. As a simple transformation of spectral bands,

they are computed directly without any bias or assumptions regarding land cover class, soil

type, or climatic conditions [Huete 2002]. According to [Jackson 1983], the ideal vegetation

index should be particularly sensitive to vegetative covers, insensitive to soil color and to

soil brightness, little affected by atmospheric effects, environmental effects, solar illumination

geometry and sensor viewing conditions. Numerous VIs have been proposed in the literature

[Bannari 1997]: vegetation index number (VIN), normalized different vegetation index (NDVI),

transformed vegetation index (TVI), to name a few. However, most of these VIs require the

near-infrared band. Since our developed algorithm must be applicable in RGB color images,

we focus on the VIs which utilized only the red, green and blue spectral bands. Among

them, color index of vegetation extraction (CIVE) [Kataoka 2003], excess green index (ExG)

[Woebbecke 1995b], redness index (RI) [Huete 1994] and excess green minus excess red (ExGR)

[Neto 2006], are used. The advantages of using these indices is that they accentuate a particular

color such as plant greenness, which should be intuitive for human comparison [Meyer 2008].

Moreover, they do not require the near-infrared band, which is not available for RGB color images.

Besides VIs, other classification algorithms have been applied on spectral features to classify
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vegetation. They can be divided into supervised and unsupervised classification approaches.

The most widely used supervised classification algorithm for satellite imagery is the Maximum

Likelihood Classifier (MLC) [Xu 2005]. Methods for unsupervised classification most frequently

used are the K-means and the ISODATA (Iterative Self-Organizing Data Analysis Technique)

clustering algorithms [Xie 2008]. In the context of land-cover classification with multispectral

satellite data, [Duda 2002] investigated several unsupervised classification (clustering) algorithms

and compared with regard to their ability to reproduce ground data in a complex landscape.

The clustering algorithms examined are K-means, extended K-means, agglomerative hierarchical,

fuzzy K-means and fuzzy maximum likelihood and fuzzy clustering is found to perform best on

satellite image. In more recent years, hyperspectral imagery is increasingly studied to extract

vegetation cover as its wider spectral bands allow a better differentiation of individual species

than multispectral data [Xie 2008, Wania 2007]. Note that these methods are mainly designed

for land-cover classification (vegetation, sol, street, water, etc). To detect only vegetation, most

used method is to exploit the NDVI index and employ a clustering algorithm such as K-means,

Otsu’s thresholding method, like [Ok 2013].

Our aim is to design a new unsupervised algorithm to detect vegetation, from optical high

resolution image. Inspired of the existing methods, our approach exploits the spectral character-

istics of vegetation through use of VIs. In the following, we investigate different VIs proposed in

the literature over our image database to determine the most effective VI regarding vegetation

detection.

3.3.2 Choice of Vegetation Index

Index Abbreviation Formula Author

Excess Green ExG
2G− R − B
R+G+B

[Woebbecke 1995b]

Excess Green minus

Excess Red
ExGR

3G− 2.4R − B
R+G+B

[Neto 2006]

Color Index of

Vegetation

Extraction

CIVE
0.411R − 0.811G + 0.385B

R +G+ B
+18.787 [Kataoka 2003]

Redness Index RI
R −G
R+G

[Huete 1994]

Normalized

Difference

Vegetation Index

NDVI
NIR − R
NIR + R

[Rouse, JW 1974]

Table 3.6: Different vegetation indices that are tested in this section.

The main issue of this section is to give an experimental comparison of different indices

regarding vegetation detection on high resolution optical image. Table 3.6 gives the most used

VIs that are considered in this section. The first four indices employ only three bands R, G,

B. The fifth index is the most frequently used vegetation index for vegetation detection: the

Normalized Difference Vegetation Index (NDVI). But it requires the NIR band, which is not

available in NOAA aerial image.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: First line: RGB composition images, (a) NOAA aerial image, (b) Worldview-2 satellite

image, (c) BD ORTHOr aerial image. Second line: corresponding manually interpreted vegetation

masks (green area) as ground truth. These images have the size of 200 x 210 pixels.

We have tested these VIs over all image datasets presented in Chapter 2. An example of

three test images and their manually vegetation masks is shown in Fig. 3.3. The efficiency of

each vegetation index can be observed in Table 3.7, where we plot the one dimensional marginal

histograms of the vegetation index values for manually marked vegetative and non-vegetative

points. We observe that vegetation index ExG and NDVI (in case the NIR band is available) are

the most appropriate for a vegetation detection method based on histogram thresholding, since

their overlaps between the vegetation and non-vegetation histogram are less significant than others.

Similar to Section 3.2.2 in selecting the best shadow index, we apply the Otsu’s thresholding

method over the feature images computed from these VIs. Resulting vegetation masks are shown

in Table 3.8. By comparing the resulting vegetation masks with the manually vegetation masks,

we find visually that index ExG and NDVI (in case the NIR band is available) are the best. This

observation can be confirmed by the quantitative evaluation. We evaluate quantitatively each

detected vegetation mask by applying the same evaluation metric as described in Section 3.2.2.

As shown in Table 3.9, for index ExG, the Acc (and MCC) is 92.88 (and 0.84) for Jacmel aerial

image and 69.31 (and 0.34) for BD ORTHOr image. In case the NIR band is available, the

NDVI is the most appropriate index (the Acc and MCC are 89.35 and 0.75 respectively). These

vegetation indices are also tested for other image datasets and similar results are obtained. As a

result, in the following, we use index ExG and index NDVI for vegetation detection task.
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VI

Histogram of radiance for

vegetation index for image in

Fig. 3.3a

Histogram of radiance for

vegetation index for image in

Fig. 3.3b

Histogram of radiance for

vegetation index for image in

Fig. 3.3c

ExG

NDVI Not available Not available

ExGR

CIVE

RI

Table 3.7: Different VIs (first column) and histogram of radiance for vegetation indices for image in

Fig. 3.3. The green curve corresponds to vegetation, the red curve corresponds to non-vegetation.

The overlaps between the vegetation and non-vegetation histogram of ExG and NDVI are less

significant than others.
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VI
Detected vegetation (Fig.

3.3a)

Detected vegetation (Fig.

3.3b)

Detected vegetation (Fig.

3.3c)

Ground

truth

ExG

NDVI Not available Not available

ExGR

CIVE

RI

Table 3.8: Resulting vegetation masks by Otsu’s method from different VIs for image in Fig. 3.3
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Vegetation detection for image in Fig. 3.3a

VI
Producer’s accuracies User’s accuracies

Overall
accuracy

Matthews
correlation
coefficient

Vegetation Non-vegetation Vegetation Non-vegetation Acc MCC

ExG 99 91.27 77.82 99.32 92.88 0.84

NDVI - - - - - -
ExGR 88.48 57.01 38.65 94.17 64.38 0.38
CIVE 88.48 57.01 38.65 94.17 64.38 0.38
RI 96.14 57.30 40.80 97.98 66.40 0.45

Vegetation detection for image in Fig. 3.3b

VI
Producer’s accuracies User’s accuracies

Overall
accuracy

Matthews
correlation
coefficient

Vegetation Non-vegetation Vegetation Non-vegetation Acc MCC

ExG 83.64 91.02 80.14 92.78 88.79 0.73
NDVI 84.29 91.54 81.18 93.08 89.35 0.75

ExGR 28.71 98.60 89.93 76.15 77.48 0.42
CIVE 36.19 98.00 88.73 78.00 79.33 0.47
RI 15.83 87.66 35.74 70.63 65.96 0.04

Vegetation detection for image in Fig. 3.3c

VI
Producer’s accuracies User’s accuracies

Overall
accuracy

Matthews
correlation
coefficient

Vegetation Non-vegetation Vegetation Non-vegetation Acc MCC

ExG 72.12 68.49 40.02 89.39 69.31 0.34

NDVI - - - - - -
ExGR 67.37 52.37 29.19 84.63 55.76 0.16
CIVE 51.94 27.78 17.33 66.48 33.23 -0.18
RI 51.60 46.18 21.84 76.60 47.40 -0.01

Table 3.9: Vegetation detection accuracy measurements for images in Fig. 3.3
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3.4 Motivation for simultaneous Shadow/Vegetation Detection

Current shadow/vegetation detection methods in the literature detect separately shadow regions

and vegetation regions [Shorter 2009], [Ozgun Ok 2013]. In this section, we first demonstrate that

sometimes these methods might not provide a sufficiently good segmentation map (shadow, vege-

tation, other). Then, we propose to use also the luminance L for shadow/vegetation detection task.

(a) Input image (c) Shadow detection by

[Tian 2012]’s method

(e) Shadow detection using c3

and Otsu’s method

(b) Manual segmentation (d) Vegetation detection by

[Shorter 2009]’s method

(f) Vegetation detection using

ExG and Otsu’s method

Figure 3.4: Sequential shadow/vegetation detection from a Jacmel aerial image

As shown in Figs. 3.4 and 3.5, a shadow detection algorithm (method of [Tian 2012]) and

a vegetation detection algorithm (method of [Shorter 2009]) are applied on a test image. In

these figures, the black areas correspond to shadows, the green areas correspond to vegetation

and the white areas correspond to other. The methods of [Tian 2012] and [Shorter 2009] are

detailed in Chapter 4 (Section 4.6). We observe that the method of [Tian 2012] detect quite

well shadow regions (Figs. 3.4c and 3.5c). But it classifies some vegetation regions as shadows,

for example, the region marked by blue circle. This region is correctly classified as vegetation

region by the method of [Shorter 2009] (Figs. 3.4d and 3.5d). Again, the region marked by

red circle is wrongly classified as vegetation region by [Shorter 2009], but [Tian 2012] detects

correctly this region as shadow region. This observation is also obtained when we use index c3
combined with Otsu’s thresholding method for shadow detection (Figs. 3.4e and 3.5e) and in-

dex ExG combined with Otsu’s thresholding method for vegetation detection (Figs. 3.4f and 3.5f).
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(a) Input image (c) Shadow detection by

[Tian 2012]’s method

(e) Shadow detection using c3

and Otsu’s method

(b) Manual segmentation (d) Vegetation detection by

[Shorter 2009]’s method

(f) Vegetation detection using

ExG and Otsu’s method

Figure 3.5: Sequential shadow/vegetation detection from a BD ORTHOr image.

In fact, the drawback of the sequential shadow/vegetation detection methods is that, for

example, a vegetated pixel covered by shadow can be classified as vegetation (by a vegetation

detection algorithm), and at the same time as shadow (by a shadow detection algorithm). So,

depending on how dark these regions are, they will be classified as shadow or vegetation. In fact,

visual inspection also has a similar problem. Because shadow and vegetation have the equally

important effect on building classification task (see Chapter 1), we are motivated in developing

a simultaneous shadow/vegetation detection algorithm, that allows to obtain a sufficiently good

segmentation map with three classes: “shadow”, “vegetation” and “other”.

In the previous sections, we investigate different shadow indices (and vegetation indices) in

order to choose the best index for shadow detection task (and vegetation detection task). Even-

tually, shadow index c3 and vegetation index ExG (or NDVI in case the NIR band is available)

are chosen for their best performance (visual and quantitative evaluation) comparing to other

indices. However, one of the problems when using index c3 is its instability for certain color values

that lead to the misclassification of non-shadow pixels as shadow (false positives). As reported in

[Gevers 1999, Salvador 2004], this occurs for pixels with extreme intensity values (as shown in Fig.

3.6, red circle). On the other hand, using only vegetation index ExG leads to classify all regions

that are green and bright as vegetation (as shown in Fig. 3.7, blue circle). To solve these problems,

we employ the luminance L, from the color space HSL, as proposed in [Yao 2006]. Shadow and

vegetation regions are considered as having lower luminance than other regions [M.Polidorio 2003].
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(a) RGB original image (b) Manual segmentation (c) c3 and Otsu’s method (d) L and Otsu’s method

Figure 3.6: Otsu’s thresholding method applied on image c3 and luminance L: (c) using only index

c3 leads to classify a very bright object as shadow; (d) shadow regions and vegetation regions (dark

green area) are well detected.

(a) RGB original image (b) Manual segmentation (c) ExG and Otsu’s method (d) L and Otsu’s method

Figure 3.7: Otsu’s thresholding method applied on image ExG and luminance L: (c) using only

index ExG leads to classify a green and bright object as vegetation; (d) shadow regions and

vegetation regions (dark green area) are well detected.

(a) a NOAA aerial image (b) Shadow and vegetation

(in dark green color)

(c) a Worldview-2 image (d) Shadow and vegetation

(in dark green color)

Figure 3.8: Illustration of shadow/vegetation detection using the luminance with two images from

Jacmel dataset
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Similar to the previous section, we test this index by first computing the luminance image and

then applying the Otsu method to determine the appropriate threshold. As shown in Figs. 3.6,

3.7 and 3.8, index L allows to detect well shadow regions and vegetation regions (dark green area).

3.5 Conclusions

In this chapter, after reviewing the existing methods in shadow detection and vegetation detection

from the remote sensing images in the literature, we test some most used shadow indices and

vegetation indices on our image database. Index c3 (resp. ExG (or NDVI)) is demonstrated as

the most appropriate for shadow (resp. vegetation) detection task. Moreover, the false alarm

due to the instability of these indices can be avoided by using the luminance L. Besides, we

demonstrated that sometimes detecting separately shadows and vegetation might not provide a

sufficient good result. Starting from these observation, a novel simultaneous shadow/vegetation

detection is presented and detailed in the next chapter.
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4.1 Introduction

In this chapter, we present our method for simultaneously detecting shadows and vegetation in

remote sensing images. The main framework of the proposed method is summarized in Fig. 4.1.

This method is based on Otsu’s thresholding method and Dempster-Shafer (DS) fusion which aims

at combining different indices: c3, ExG, and luminance L; which are investigated in the previous

chapter. Note that ExG is replaced with NDVI when the NIR band is available. However, for

clarity of the proposed approach, we only consider the ExG in the following. The DS fusion

processes at a pixel-level, assumes that each pixel in the image is independent of its neighbors

and does not take into account spatial dependencies. Thus, the performance of the DS fusion is

highly sensitive to noise. To overcome this shortcoming, a Markov Random Field (MRF) model

[Geman 1984] may be employed. This chapter will firstly presents the application of DS fusion in

shadow/vegetation detection, and then the link between MRF and DS fusion. The comparison

to some existing shadow detection methods and vegetation detection methods is also reported at

the end of the chapter.
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Figure 4.1: Global data fusion algorithm

4.2 Basic Concepts of Dempster-Shafer Evidence Theory

Dempster-Shafer (DS) evidence theory [Dempster 1968, Shafer 1976] makes inferences from

incomplete and uncertain knowledge, provided by different independent knowledge sources. The

theory allows strengthening or erosion of beliefs by combining additional sources of confidence,

even in the presence of partly contradictory sensors. In DS evidence theory, there is a fixed

set of N mutually exclusive and exhaustive elements, called the frame of discernment, which is

symbolised by Θ = {H1, H2, . . . , HN } = {Hi}, 1 ≤ i ≤ N .

The frame of discernment Θ defines the working space for the desired application since it

consists of all propositions for which the information sources can provide confidence. Information

sources can distribute mass values on subsets of the frame of discernment, A ⊂ Θ. An information
source assigns mass values only to those hypotheses, for which it has direct confidence. That is,

if an information source can not distinguish between two propositions A and B, it assigns a mass

value to the set including both propositions (A ∪ B). The mass distribution for all the hypotheses

has to fulfill the following conditions:

∀A ⊂ Θ, 0 ≤ m(A) ≤ 1
∑

A⊂Θ

m(A) = 1

m(∅) = 0

(4.1)

If m(A) > 0, A is called a focal element.

The DS evidence theory provides a representation of both imprecision and uncertainty through
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the definition of two functions: plausibility (Pls) and belief (Bel). They are defined as follows:

Bel(A) =
∑

B⊆A

m(B) (4.2)

Pls(A) =
∑

B∩AÓ=∅

m(B) (4.3)

In the Bayesian theory, uncertainty about an event is measured by a single value (probability)

and imprecision about uncertainty measurement is assumed to be null. But in the DS theory,

the belief value of hypothesis may be interpreted as the minimum uncertainty value about A,

and its plausibility may be interpreted as the maximum uncertainty value of A. In other words,

uncertainty about A is represented by the values of the interval [Bel(A),Pls(A)], so-called “belief

interval”. The length of this interval measures the imprecision about the uncertainty value.

Another great advantage of DS theory is its robustness of combining information coming from

various sources with the DS orthogonal sum. For m(j) being the mass function associated with

source j, (j = 1, 2, . . . , n), this rule is written, for all non-empty subset A of Θ:

(m(1) ⊕ m(2) ⊕ . . . ⊕ m(n))(A) =
1

1− K
∑

B1∩...∩Bn=A

m(1)(B1)m
(2)(B2) . . . m(n)(Bn)

(m(1) ⊕ m(2) ⊕ . . . ⊕ m(n))(∅) = 0
(4.4)

where

0 ≤ K =
∑

B1∩...∩Bn=∅

m(1)(B1)m
(2)(B2) . . . m(n)(Bn) < 1 (4.5)

To some extent, K can be interpreted as a measure of conflict between the sources and is

directly taken into account in the combination as a normalization factor. It represents the mass

which would be assigned to the empty set if masses were not normalized. The larger K is, the

more the sources are conflicting and the less sense has their combination. Finally, the orthogonal

sum does not exist when K is equal to 1. In this case, the sources are said to be totally or flatly

contradictory, and it is no longer possible to combine them.

4.3 Use of DS Evidence Theory for Shadow/Vegetation Detec-

tion

4.3.1 DS Fusion Framework

Given the (R,G,B) color representation of a pixel, we use c3 to build Y (1)1 , ExG to build Y (2), L

to build Y (3). Let us denote ω1, ω2, ω3, three clusters representing respectively “shadow”, “vege-

tation” and “other”. Our algorithm takes three feature images Y (1), Y (2), Y (3) as the input, and

the output is a segmented image x. The value of x at pixel s, denoted as xs, is in Ω = {ω1, ω2, ω3}.

1We use the uppercase letters (j) for all notations related to image Y (j), j ∈ {1, 2, 3}
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Each feature image Y (j), j ∈ {1, 2, 3} can be considered as an information source. In this
context, source Y (1) is able to distinguish ω1 from the two other classes but not ω2 from ω3.

Source Y (2) is able to distinguish ω2 from the two other classes but not ω1 from ω3. Similarly,

source Y (3) is able to distinguish ω3 from the two other classes but not ω1 from ω2. As illustrated

in Fig. 4.2, we apply the Otsu’s thresholding method over the images Y (1), Y (2), Y (3) to extract

respectively shadow regions, vegetation regions and dark regions. After thresholding, image Y (1)

(resp. Y (2); Y (3)) is segmented into two classes ω1 and {ω2, ω3} (resp. ω2 and {ω1, ω3}; {ω1, ω2}
and ω3). Only the fusion of these three sources makes it possible to distinguish these three classes.

Image Y (1): c3 ω1, {ω2, ω3}

Image Y (2): ExG ω2, {ω1, ω3}

Image Y (3): L {ω1, ω2}, ω3

RGB image Feature image 2-class segmentation map

Figure 4.2: 2-class segmentation of each feature using Otsu thresholding method [Otsu 1975].

.

The three main numerical approaches to data fusion are the probabilistic method, fuzzy set
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theory, and DS evidence theory [Le Hegarat-Mascle 1997]. The fuzzy set theory provides a lot of

combination operators, which allows the user to adapt the fusion scheme to the specificity of the

data at hand but these operators are always selected in a supervised way. For Bayesian inference,

the main limitation is that it fails to model imprecision about uncertainty measurement. An

event is said to be uncertain if its probability is not equal to one or zero. However, there

may be an imprecision on probability measurement. DS evidence theory allows to deal with

ignorance and missing information by affecting a degree of confidence which is called a mass

function to all simple and compound hypotheses. Another major advantage of DS evidence

theory is that it can deal with any union of classes, in our context, {ω2, ω3} (or {ω1, ω3} or
{ω1, ω2}). Because of these advantages, we choose the DS evidence theory for the data fusion task.

The use of DS evidence theory for shadow/vegetation detection is detailed in the following.

In our application context, the frame of discernment Θ is the set of hypotheses about pixel class:

Θ = {{ω1}, {ω2}, {ω3}}. In DS theory, not only single classes (also called singletons), but also any
union of classes can be represented. In the following, hypotheses about singletons and hypotheses

about union of classes are respectively called simple hypothesis (Hi = {ωi}, i ∈ {1, 2, 3}) and
compound hypotheses.

4.3.2 Mass Function Determination

The derivation of the mass function is the most crucial step since it represents the

knowledge about the actual application as well as the uncertainty incorporated in the

selected information source. However, there are no generic methods to determine the

mass functions. Some existing methods can be cited here: method derived from proba-

bilities [Le Hegarat-Mascle 1997, Vannoorenberghe 1999, Ben Chaabane 2008], fuzzy logic

[Zhu 2002, Chaabane 2009], neural network classifier [Denoeux 2000], . . . .

In [Vannoorenberghe 1999], authors have shown through empirical studies that a good model

of the mass functions is based on the assumption of Gaussian distributions and histogram thresh-

olding. This method is used in our model to determine the mass function of each feature image

in Diagram 4.2. The estimation of mass functions is detailed as follows. As shown in Fig. 4.2,

the Otsu’s thresholding method first partitions the feature image into two regions, denoted as A1
and A2. For image Y (1), A1 = {ω1}, A2 = {{ω2}, {ω3}}. The mass function m

(1)
s for each pixel

s ∈ S of pixels, defining on {∅, A1, A2,Θ}, is then estimated as follows:

m(1)
s (∅) = 0

m(1)
s (Ai) =

1

σ
(1)
i

√
2π
exp



−(y
(1)
s − µ

(1)
i )

2

2σ
(1)
i

2



 , i ∈ {1, 2}

m(1)
s (Θ) =

1

σ
(1)
Θ

√
2π
exp



−(y
(1)
s − µ

(1)
Θ )

2

2σ
(1)
Θ

2





(4.6)

These mass functions are then normalized so that their sum is equal to 1. Here, y
(1)
s is the value of

the considered pixel s (of image Y (1)). µ
(1)
i (resp. σ

(1)
i

2
) represents the mean (resp. the variance)



44
Chapter 4. MRF and Dempster-Shafer Theory for simultaneous

Shadow/Vegetation Detection

of pixels with hypothesis Ai present in Y (1). They are respectively estimated as follows:

µ
(1)
i =

1

|Ai|
∑

s∈Ai

y(1)s , i ∈ {1, 2}

σ
(1)
i =

√

√

√

√

1

|Ai| − 1
∑

s∈Ai

(y
(1)
s − µ

(1)
i )

2, i ∈ {1, 2}

µ
(1)
Θ =

µ
(1)
1 + µ

(1)
2

2

σ
(1)
Θ = max(σ

(1)
1 , σ

(1)
2 )

(4.7)

where |Ai| denotes the number of pixels verifying Ai.

The mass functions m
(2)
s for each pixel s of image Y (2), defining on {∅, A1, A2,Θ} where

A1 = {ω2} and A2 = {{ω1}, {ω3}}; and the mass functions m
(3)
s for each pixel s of image Y (3),

defining on {∅, A1, A2,Θ} where A1 = {{ω1}, {ω2}} and A2 = {ω3}; are estimated in the same
way. Once the mass function of the three images are estimated, their combination is performed

using the DS orthogonal sum. However, the DS combination assumes the independence of

combined sources. In our context, the feature images are computed from the R, G ,B bands. So,

they are dependent sources. In [Denœux 2006, Denœux 2008], Denoeux introduced the cautious

rule of combination (denoted by ∧ ) to combine dependent data. This rule has the advantage
of avoiding double-counting of common evidence when combining non distinct mass functions.

Diagram of data fusion for shadow/vegetation detection is illustrated in Fig. 4.3.

m
(1)
s ({ω1}), m

(1)
s ({{ω2}, {ω3}}), m

(1)
s (Θ)

m
(2)
s ({ω2}), m

(2)
s ({{ω1}, {ω3}}), m

(2)
s (Θ)

m
(3)
s ({ω3}), m

(3)
s ({{ω1}, {ω2}}), m

(3)
s (Θ)

∧ ms(A) = m
(1)
s ∧ m

(2)
s ∧ m

(3)
s

s ∈ S, A ⊂ Θ

Figure 4.3: Data fusion diagram.

From the mass functions ms, for all A ⊂ Θ, two functions can be derived as follows

[Dempster 1968]:

Bels(A) =
∑

B⊆A

ms(B) (4.8)

Plss(A) =
∑

B∩AÓ=∅

m(B) (4.9)

(4.10)

4.3.3 Decision Making

Having computed the mass, plausibility, belief values for each simple and compound hypothesis, we

need a criterion, which is called “decision rule”, to decide which hypothesis is the more “realistic”.

Nowadays, the choice of this criterion remains application dependent. Several decision rules have
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been proposed [Le Hegarat-Mascle 1997, Denoeux 1997]. For the cautious rule of combination, the

decision making is carried out at the pignistic level, that maps the mass functions to probability

measures:

Betp(Hi) =
∑

{A:Hi∈A}

m(A)

|A| (4.11)

where |A| denotes the number of elements in A. And the decisional procedure is to choose the

simple hypothesis that maximizes the pignistic probability. An example is shown in Fig. 4.4.

(a) (b) (c)

Figure 4.4: Decision making: (a) input image, (b) ground truth, (c) detected shadow/vegetation

by maximizing the pignistic probability function.

4.4 DS Theory in Markovian Context

4.4.1 Markov Random Field Modeling

The DS fusion processes at a pixel-level, assumes that each pixel in the image is independent of

its neighbors and does not take into account spatial dependencies. To overcome this shortcoming,

a Markov Random Field (MRF) model [Geman 1984] may be employed, to consider not only

the measurements at the pixel location, but also the class values among its closest neighbors.

Let X be a random field over the set S of pixels, taking its values from a finite set of classes

Ω = {ω1, ω2, ω3} and x a realization of X. xs denotes the value of x at the pixel s ∈ S. xs is a

realization of the random variable Xs. x is estimated using the observed images y. ys denotes

the value of y at the pixel s. y (resp. ys) is a realization of the observation field Y (resp. Ys).

In our shadow/vegetation framework, ys is a 3-dimensional feature vector: ys = {y
(1)
s , y

(2)
s , y

(3)
s },

where y
(j)
s (j ∈ {1, 2, 3}) is the pixel value of the feature image Y (j).

In MRF model, the segmented image x can be obtained using the MAP estimate of X. Thus,

x̂MAP = argmax
x

P (X = x|Y = y) (4.12)

This problem can be solved by the iterated conditional modes (ICM) algorithm [Besag 1986].

In this method, a raster scan is used to iteratively visit all the pixels in field X. We denote x̂S−{s}

as a provisional estimate of the segmentation field everywhere except at pixel s. Given the data y

and the current segmentation x̂S−{s}, the algorithm updates the current segmentation x̂s at pixel

s, and replaces it with the new value x̂s which maximizes P (Xs = xs|Ys = ys, XS−{s} = x̂S−{s})
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with respect to xs.

Since we consider X as an MRF, the latter follows from Bayes’ theorem that

P (Xs = xs|Ys = ys, XS−{s} = x̂S−{s}) ∝ P (Ys = ys|Xs = xs)P (Xs = xs|XS−{s} = x̂S−{s})

(4.13)

We adopt a second-order (eight neighbors) neighborhood system. Let XVs represent the set of

labels assigned to the neighbors of s and xVs its realization. x̂Vs is the proximal estimate of xVs .

The prior probability term in Eq. 4.13 can be written:

P (Xs = xs|XS−{s} = x̂S−{s}) = P (Xs = xs|XVs = x̂Vs) =

exp



−β
∑

l∈Vs

{1− δ(xs, x̂l)}




∑

ωk∈Ω

exp



−β
∑

l∈Vs

{1− δ(ωk, x̂l)}




(4.14)

where δ(·) stands for the Kronecker’s delta function:

δ(xs, xl) =







1 si xs = xl

0 otherwise.
(4.15)

and β is a regularized parameter, which represents the trade-off between fidelity to the observed

image and the smoothness of the segmented image.

Estimation of β: The MRF parameter estimation method described in this section has been

proposed by [Derin 1987]. But, unlike the MRF model in the paper of [Derin 1987], we restrict

our attention to MRF’s whose clique potentials involve pairs of neighboring nodes and we do

not distinguish the different types of cliques (horizontal, vertical, diagonal), thus simplify the

estimator. Referring to the prior term in Eq. 4.14, we can write:

P (Xs = xs|XVs = xVs) ∝ exp


−β
∑

l∈Vs

{1− δ(xs, xl)}


 (4.16)

For any two distinct values of xs, e.g., xs = ω1 and xs = ω2, with the same configuration of

neighbors xVs , we have:

exp



−β





∑

l∈Vs

{1− δ(ω1, xl)} −
∑

l∈Vs

{1− δ(ω2, xl)}






 =
P (Xs = ω1|XVs = xVs)

P (Xs = ω2|XVs = xVs)
(4.17)

Taking the natural logarithm of Eq. 4.17, we obtain:





∑

l∈Vs

{1− δ(ω2, xl)} −
∑

l∈Vs

{1− δ(ω1, xl)}


 β = log

(

P (Xs = ω1|XVs = xVs)

P (Xs = ω2|XVs = xVs)

)

(4.18)

Assuming the right-hand side of Eq. 4.18 is estimated, for each distinct pair (ω1, ω2) and all

possible values of xVs , Eq. 4.18 simply reduces to a set of linear equations. For all pixel s,
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P (Xs = ωi|XVs = xVs) is estimated by use of histogram technique. Let us denote N(xs, xVs) is

the number of appearances of a particular 3× 3 configuration (xs, xVs). We have :

P (Xs = ω1|XVs = xVs)

P (Xs = ω2|XVs = xVs)
=

N(ω1, xVs)

N(ω2, xVs)
(4.19)

For a system of 8-nearest neighbors, there are 6561 (= 38) different configurations of xVs , so we

obtain 6561 equations. Applying 4.18 for all of the pixels in image, a linear equation can be

obtained as:

Aβ = b (4.20)

The least square method allows to find β so that ‖Aβ − b‖ is minimum. And the result is:

β = (ATA)−1ATb (4.21)

where AT is the transposed matrix of A.

4.4.2 Incorporation of MRF and DS evidence theory

In a Bayesian context, the interest of MRF which allows one to take contextual information into

account, has been well known for more than 30 years. In recent years, both the MRF and DS

evidence theory have been incorporated into more general methods for scene classification, often

involving multisource analysis [Bendjebbour 2001, Foucher 2002, Bentabet 2008]. In fact, a major

difference between the probabilistic framework and the DS evidence theory is the ability of the

latter to quantify the imprecision through the assignment of confidence levels (by mass function

value) to the union of hypotheses. The probabilistic framework assigns likelihood values p(ys|xs)

only for each class ωi ∈ Ω. From the view of evidence theory, the likelihood can be assimilated to

a mass function which charges the singleton Hxs = {ωi}. In [Bentabet 2008], authors propose to
extend the likelihood term p(ys|xs) by defining mass values ms(A) for every A ⊂ Θ. So, the new

likelihood term is:

ms(A) = m(1)
s ∧ m(2)

s ∧ m(3)
s (4.22)

for all A ⊂ Θ. These mass functions are computed in the previous section (diagram 4.3).

Besides, the prior probability term P (Xs = xs|XVs = x̂Vs), defined in Eq. 4.14, which assigns

values only to single hypothesis, can be generalized to deal with the compound hypotheses:

ms(A|x̂Vs) =

exp



−
∑

{ωk}∩AÓ=∅

β
∑

l∈Vs

{1− δ(ωk, x̂l)}




∑

B⊂Θ

exp



−
∑

{ωk}∩B Ó=∅

β
∑

l∈Vs

{1− δ(ωk, x̂l)}




(4.23)

for all A ⊂ Θ. Finally, considering the likelihood and the conditional membership components in

Eqs. 4.22 and 4.23 as two “evidential” sources of information, the DS orthogonal sum is used to

combine these two sources of information. The posterior probability in Eq. 4.13 can be replaced

by the orthogonal sum Ms(.), which carries the joint information:

Ms(A) =
1

1− K
∑

Ap∩Aq=A

ms(Ap)ms(Aq|x̂Vs) (4.24)
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where K =
∑

Ap∩Aq=∅

ms(Ap)ms(Aq|x̂Vs).

Once all of the mass function of the single and compound hypotheses related to pixel s are

determined, the estimation of x̂s is obtained by maximizing the plausibility function, derived from

the mass function Ms:

x̂s = argmax
xs

Plss(Hxs) = argmax
xs





∑

A∩Hxs Ó=∅

Ms(A)





Probabilistic MRF, xs ∈ Ω Evidential MRF, A ⊂ Θ

Likelihood term p(ys|xs) ms(A)

Prior term p(xs|x̂Vs) ms(A|x̂Vs)

Posterior term P (xs|y, x̂S−{s}) Ms(A) = ms(A)⊕ ms(A|x̂Vs)

Decision x̂s = argmaxxs
P (xs|y, x̂S−{s}) x̂s = argmaxxs

(

∑

A∩Hxs Ó=∅ Ms(A)
)

Table 4.1: Extension of the classical ICM algorithm

Table 4.1 summarizes the extension of the classical ICM method to deal with the evidential

case for every pixel s ∈ S.

4.5 Overall Algorithm

The proposed iterative data fusion method is denoted as SSVD (simultaneous shadow/vegetation

detection) method in the next. SSVD method takes as input the RGB image, and the output

is a segmented image x with labels taking the value in Ω = {ω1, ω2, ω3}. The global scheme of
SSVD method for shadow/vegetation detection is presented in Fig. 4.1 and detailed in Algorithm

1. The ICM labeling process is alternatively operated until the percentage of replacement

between two consecutive iterations or the number of iterations reach preset values (ε and τmax

respectively). For all images in our database, the preset value is chosen as 0.2 % for the percentage

of replacement and 100 for the maximum number of iterations.

An example of shadow/vegetation detection by DS fusion incorporated with MRF regulariza-

tion is shown in Fig. 4.5. The quantitative results shown in Table 4.2 demonstrate the efficacy

of MRF regularization. A more detailed evaluation of the proposed method is presented in the

following section.
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(a) (b)

(c) (d)

Figure 4.5: DS segmentation result with MRF regularization: (a) input image, (b) ground truth,

(c) initialization (DS fusion), (d) after MRF regularization. We observe that the proposed method

solves the problem of false dismissals, and improves the accuracy of segmentation. The MRF

regularization removes the small objects in segmentation and preserves the shape of shadow region.

Shadow detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC

Without
MRF

45.55 77.07 42.75 79.01 68.46 0.2219

With MRF 48.48 78.75 46.18 80.26 70.48 0.2684

Vegetation detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Vegetation
Non-

vegetation
Vegetation

Non-
vegetation

Acc MCC

Without
MRF

62.51 85.55 34.38 94.96 83.05 0.3755

With MRF 54.30 90.57 41.10 94.24 86.65 0.3983

Table 4.2: Shadow/vegetation detection accuracy measurements for images in Fig. 4.5. With

MRF regularization, the performance of the method is improved (both overall accuracy and MCC

are higher than the method without MRF).
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Algorithm 1: SSVD method for simultaneous shadow/vegetation detection

/* Input */

- Input image.

- Maximum number of iterations τmax.

- Residual error ε.

/* Initalization */

- Compute c3, ExG, L which respectively correspond to Y (1), Y (2), Y (3).

- Apply Otsu thresholding method [Otsu 1975] for Y (1), Y (2), Y (3).

- For each Y (j), j ∈ {1, 2, 3}, compute µ
(j)
i , σ

(j)
i , i ∈ {1, 2} using Eq. 4.7.

for each pixel s ∈ S do

- For j ∈ {1, 2, 3}, and i ∈ {1, 2}, compute m
(j)
s (Ai), m

(j)
s (Θ) using Eq. 4.6.

- Compute ms(A), ∀A ⊂ Θ, as shown in Fig. 4.3.

- Decision making: x̂s = argmaxxs

(

∑

A∩Hxs Ó=∅ ms(A)
)

x[0] ←− x̂: initial configuration

/* ICM labeling process */

k = 0; /* number of iterations */

repeat
1. Parameter estimation:

• Update µ
(j)
i , σ

(j)
i , µ

(j)
Θ , σ

(j)
Θ for j ∈ {1, 2, 3}, i ∈ {1, 2} from Y (1), Y (2), Y (3), x[k] using

Eq. 4.7.

• Update β using Eq. 4.21.

2. Compute x[k+1] from x[k]:

for each pixel s ∈ S do
/* We scan all sites s (by a zig-zag parcours) */

• For j ∈ {1, 2, 3}, and i ∈ {1, 2}, compute m
(j)
s (Ai), m

(j)
s (Θ) using Eq. 4.6.

• Compute ms(A); ∀A ⊂ Θ (see Fig. 4.3).

• Compute ms(A|x̂Vs); ∀A ⊂ Θ using Eq. 4.23.

• Compute Ms(A); ∀A ⊂ Θ using Eq. 4.24.

• Estimate: x̂s = argmaxxs

(

∑

A∩Hxs Ó=∅ Ms(A)
)

x[k+1] ←− x̂

k ←− k + 1

until (|x[k] − x[k−1]| ≤ ε) ∨ (k ≥ τmax);

/* Output */

- segmented image x̂ ←− x[k]
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4.6 Experiments

Experiments are performed using multiple datasets described in Chapter 2. The wide range of

test images takes into account different factors including lighting conditions, concentration of

vegetation, size of vegetation, shadow orientation and shape of the shadow projection. Different

comparative experiment results for shadow/vegetation detection are shown, in which black pixels

correspond to what the algorithms classify as shadow, the green pixels as vegetation, the white

pixels as others. A quantitative evaluation is also presented. We categorize this section in function

of spectral characteristics of test images: RGB image (without NIR band) and RGB-NIR image

(with NIR band). The strategy for accuracy assessment is presented in Chapter 3.

4.6.1 State-of-the-art Methods for Further Comparison

4.6.1.1 Shadow Detection

As described in the review paper [Adeline 2013], the shadow chromaticity can be exploited by

making use of RGB combinations, like our method with the use of c3 feature, or working with

shadow invariant images, like the tri-color attenuation (TAM) [Tian 2009]. TAM describes

the attenuation relationship between shadows and their non-shadow backgrounds in the three

color channels (R, G, B), and combines with intensity image (I from HSI color space) to detect

shadows. In [Tian 2009], the authors first oversegment the image, and then apply the TAM

model to decide whether a segment is in the shadow or not. The use of several thresholds,

however, makes this approach fairly unstable. In [Tian 2012], they improve the TAM model, no

longer use segmentation and only compute a single threshold, which yields much improved results.

In case the NIR band is available, we compare our SSVD method with the method of

[Rufenacht 2014]. Starting from the observation that shadows are generally darker than their

surroundings, in both the visible and the NIR, an the dark objects, which confound many shadow

detection algorithms, often have much higher reflectance in the NIR, authors build an shadow

candidate map based on image pixels that are dark both in the visible and NIR representations.

The shadow map is further refined by incorporating ratios of the visible to the NIR image, based

on the observation that commonly encountered light sources have very distinct spectra in the NIR

band. It should be noted that both methods ([Tian 2012] and [Rufenacht 2014]) are designed to

deal with shadow detection in different scenes (indoor, outdoor photographs, remote sensing),

whereas SSVD method focus only on detecting shadows from remote sensing images.

Index c3 is demonstrated among other shadow indices as the most appropriate for shadow

detection task (see Chapter 3) and employed in our method together with index ExG and

luminance L. It is successfully used by [Salvador 2001, Arévalo 2008, Yao 2006] to extract

shadows from single RGB image. In this section, we use index c3 to detect only shadow regions.

For a fair comparison, we take into account spatial information by employing MRF model. The

Otsu thresholding method is used to classify image into two classes: “shadow” and “non-shadow”.

The resulting classification map is then regularized by a MRF model, in which the likelihood term

is modelled by a Gaussian distribution. For the prior term, we use the second-order neighborhood

system. The Gaussian distribution is appropriate to model the likelihood since as observed in

Fig. 3.2 (Chapter 3, histogram of radiance for different shadow indices), the realization of the

observed field can be approximated by the mixture of two Gaussian distributions. The ICM
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algorithm is used to optimize the MRF energy. The parameters are estimated at each iteration

of ICM (µ and σ are easily estimated from the classification map and β is estimated using the

method of [Derin 1987]). We denote this method as c3-ICM in the rest of the section.

4.6.1.2 Vegetation Detection

The chosen vegetation detection method for comparison is the method of [Shorter 2009]. In their

work, image is first segmented using a color quantization technique. Vegetation candidate pixels

are identified by Otsu thresholding and a color invariant model. Then, if 60% of a given region,

identified via the aforementioned color segmentation algorithm, contains vegetation candidate

pixels, then that entire region is labeled as a vegetation region.

In case the NIR band is available, we can compute the NDVI, the most-used vegetation index

in the literature. NDVI is used with the Otsu thresholding method for unsupervised vegetation

detection [Ozgun Ok 2013]. In this section, similar to what is done with index c3, we use the Otsu

thresholding method over the NDVI feature image to classify image into two classes : “vegetation”

and “non-vegetation”. The resulting classification map is then regularized by MRF model (with

the same assumption for likelihood and the prior probability). This method of vegetation detection

is denoted as NDVI-ICM method. The NDVI index is replaced by the ExG index in case the NIR

band is not available. This method is denoted as ExG-ICM for further comparison.

4.6.1.3 Shadow/vegetation detection

To the best of our knowledge, there exists some methods that focus on classifying the remote

sensing image into different classes: shadow, vegetation, soil, water, street, etc [Xu 2005], but

there is no other method that detect simultaneously shadows/vegetation. Through the histogram

of radiance for index c3 and ExG (chapter 3), we observed that if these indices are linearly

stretched out into the interval [0, 1], shadowed pixels have high c3 value (near to 1) and low ExG

value; vegetative pixels have high ExG value (near to 1) and low c3 value. Therefore, a new index,

called as SVI (shadow-vegetation index ) is proposed: SVI = c3 − ExG. Pixels having high SVI

values (near to 1) correspond to shadow regions and pixels having low SVI values (near to −1)
correspond to vegetation regions. The K-means clustering method is used to classify into three

classes: “shadow”, “vegetation” and “other”. The resulting classification map is then regularized

by a MRF model, in which the likelihood term is modelled by a Gaussian distribution and for

the prior term, we use the second-order neighborhood system. The MRF model is used, in which

the number of classes K is equal to 3. For the image in which the NIR band is available, EXG

is replaced by NDVI. This new method of shadow/vegetation detection is denoted as SVI-ICM

method for further comparison.

4.6.2 Experimental Results

4.6.2.1 Without NIR

Three examples of shadow/vegetation detection from RGB images are shown in Figs. 4.6, 4.7,

4.8. These images of size 256 x 256 are selected from three different image datasets: Jacmel, BD

ORTHOr and SZTAKI-INRIA benchmark, that covers different scenes: Jacmel city, Strasbourg

and Normandy. Each example is accompanied by a table of accuracy measurement (table 4.3,
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(a) Input image (b) Ground truth (c) [Tian 2012]’s method (d) [Shorter 2009]’s method

(e) c3-ICM method (f) ExG-ICM method (g) SVI-ICM method (h) SSVD method

Figure 4.6: Shadow/vegetation detection from NOAA aerial image (Jacmel dataset)

Shadow detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC
[Tian 2012] 99.14 50.47 47.76 99.23 65.73 0.48
c3-ICM 76.44 89.69 77.22 89.29 85.54 0.66
SVI-ICM 66.29 97.16 91.44 86.32 87.48 0.70

SSVD method 80.61 99.89 99.70 91.85 93.84 0.85

Vegetation detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Vegetation
Non-

vegetation
Vegetation

Non-
vegetation

Acc MCC

[Shorter 2009] 86.71 79.17 31.66 98.16 79.93 0.44
ExG-ICM 82.35 74.49 26.43 97.43 75.27 0.36
SVI-ICM 78.39 95.18 64.45 97.53 93.50 0.67

SSVD method 99.25 93.72 63.94 99.94 94.35 0.77

Table 4.3: Shadow/vegetation detection accuracy measurements of Fig. 4.6.
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(a) Input image (b) Ground truth (c) [Tian 2012]’s method (d) [Shorter 2009]’s method

(e) c3-ICM method (f) ExG-ICM method (g) SVI-ICM method (h) SSVD method

Figure 4.7: Shadow/vegetation detection from a RGB image (BD ORTHOr dataset) that covers

a part of Strasbourg

Shadow detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC
[Tian 2012] 96.43 46.19 52.98 95.37 65.58 0.45
c3-ICM 71.05 81.29 70.48 81.71 77.34 0.52
SVI-ICM 73.81 46.63 46.51 73.91 57.12 0.20

SSVD method 77.96 85.50 77.17 86.05 82.59 0.63

Vegetation detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Vegetation
Non-

vegetation
Vegetation

Non-
vegetation

Acc MCC

[Shorter 2009] 25.86 73.67 22.55 77.02 62.74 0
ExG-ICM 41.89 68.76 28.44 79.97 62.62 0.09
SVI-ICM 27.26 98.44 83.89 82.03 82.17 0.41

SSVD method 61.25 91.52 68.17 88.85 84.60 0.54

Table 4.4: Shadow/vegetation detection accuracy measurements of Fig. 4.7.



4.6. Experiments 55

(a) Input image (b) Ground truth (c) [Tian 2012]’s method (d) [Shorter 2009]’s method

(e) c3-ICM method (f) ExG-ICM method (g) SVI-ICM method (h) SSVD method

Figure 4.8: Shadow/vegetation detection from a RGB image (SZTAKI-INRIA benchmark) that

covers a part of Normandy

Shadow detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC
[Tian 2012] 56.70 93.86 66.58 90.95 87.26 0.53
c3-ICM 34.19 88.47 39.01 86.17 78.84 0.24
SVI-ICM 33.55 73.31 21.33 83.64 66.26 0.05

SSVD method 59.17 93.92 67.75 91.42 87.75 0.56

Vegetation detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Vegetation
Non-

vegetation
Vegetation

Non-
vegetation

Acc MCC

[Shorter 2009] 69.84 83.14 74.67 79.49 77.61 0.53
ExG-ICM 90.38 86.34 82.48 92.66 88.02 0.76
SVI-ICM 55.93 94.82 88.49 75.15 78.66 0.56

SSVD method 91.17 85.88 82.12 93.18 88.08 0.76

Table 4.5: Shadow/vegetation detection accuracy measurements of the image in Fig. 4.8.
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4.4, 4.5). We observe that most of shadow regions are detected by the method of [Tian 2012]

(the producer’s accuracies are 99.14, 96.43). However, this method classifies vegetation regions

as shadows (e.g. the region marked by red circle, Fig. 4.6.c and Fig. 4.7.c). The method using

index c3 and MRF regularization (c3-ICM) detect well shadow regions. But it classifies some

non-shadowed regions (which have the similar c3 response as shadows) as shadows (e.g. the

region marked by violet circle, Fig. 4.6.d). The method of [Shorter 2009] detects well vegetation

regions (especially for image in Fig. 4.8). But it classifies some shadow regions as vegetation (e.g.

the region marked by blue circle, Fig. 4.6.d and Fig. 4.7.d). The SVI-ICM method detect well

shadows and vegetation for image in Fig. 4.6, but it performs badly for image in Fig. 4.7 and

Fig. 4.8. SSVD method outperforms all other methods, with high overall accuracy and have the

best Matthews correlation coeeficient.

4.6.2.2 With NIR

Two examples of shadow/vegetation from RGB-NIR images are shown in Figs 4.9, 4.10. These

two images of size 256 x 256 are selected from two datasets: Worldview-2 and Pleiades, that

covers respectively a part of Jacmel city and Strasbourg. Figs. 4.9, 4.10 show that the c3 index

and the NDVI index are very appropriate for shadow detection and vegetation detection. The

overall accuracy of the combination of these indices with MRF regularization are high (above 80

%). We observe that the method of [Rufenacht 2014] performs well in two examples (Fig. 4.9.d

and 4.10.d). Especially, for image in fig. 4.10, this method outperforms our method (Acc/MCC:

83.49%/0.55 versus 82.45%/0.46). That demonstrate the efficiency of using NIR band for shadow

detection task. However, SSVD method performs well for these two examples, with the overall

accuracies are above 80%.
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(a) Visible image (b) NIR image (c) Ground truth (d)[Rufenacht 2014]’s method

(e) c3-ICM method (f) NDVI-ICM method (g) SVI-ICM method (h) SSVD method

Figure 4.9: Shadow/vegetation detection from worldview-2 satellite image (Jacmel dataset)

Shadow detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC
[Rufenacht 2014] 86.36 86.92 72.74 94.03 86.76 0.70

c3-ICM 79.16 82.95 65.24 90.78 81.86 0.59
SVI-ICM 46.05 93.34 73.66 81.06 79.73 0.46

SSVD method 96.34 94.38 87.39 98.46 94.94 0.88

Vegetation detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Vegetation
Non-

vegetation
Vegetation

Non-
vegetation

Acc MCC

NDVI-ICM 94.91 89.56 42.44 99.54 89.96 0.60
SVI-ICM 73.28 92.79 45.18 97.71 91.32 0.53

SSVD method 57.88 99.48 90.03 96.68 96.36 0.70

Table 4.6: Shadow/vegetation detection accuracy measurements of Fig. 4.9.
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(a) Visible image (b) NIR image (c) Ground truth (d)[Rufenacht 2014]’s method

(e) c3-ICM method (f) NDVI-ICM method (g) SVI-ICM method (h) SSVD method

Figure 4.10: Shadow/vegetation detection from a pleiades satellite image that covers a part of

Strasbourg

Shadow detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Shadow Non-shadow Shadow Non-shadow Acc MCC
[Rufenacht 2014] 70.76 87.12 61.10 91.25 83.49 0.55

c3-ICM 92.80 58.58 39.03 96.60 66.19 0.42
SVI-ICM 32.06 75.24 27.01 79.49 65.64 0.07

SSVD method 51.15 91.40 62.95 86.75 82.45 0.46

Vegetation detection

Method Producer’s accuracies User’s accuracies
Overall
accuracy

Matthews
correlation
coefficient

Vegetation
Non-

vegetation
Vegetation

Non-
vegetation

Acc MCC

NDVI-ICM 77.03 80.76 52.38 92.75 79.96 0.51
SVI-ICM 25.38 83.69 29.94 80.32 71.12 0.09

SSVD method 64.39 87.59 58.78 89.95 82.59 0.50

Table 4.7: Shadow/vegetation detection accuracy measurements of Fig. 4.10.
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4.7 Conclusions

This chapter presents a novel shadow/vegetation detection strategy based on DS fusion procedure

and MRF regularization. The fusion procedure makes it possible to combine different shadow

index c3, vegetation index ExG (or NDVI when the NIR band is available) and the luminance

L. The spatial correlation between neighboring pixels is also taken into account using the MRF

modelling in order to finally obtain a more reliable and efficient segmentation map with good

accuracy, which is demonstrated in the experimental results.

This is the first contribution of this PhD and has been published in [Ngo 2014a] and

[Ngo 2014b]. In the next part, we use the shadow/vegetation detection results for the automatic

building detection from single optical image.





Part II

Building Detection





Chapter 5

Building Detection Using Shadows

and Image Segmentation

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Building Detection using Shadows . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Building Detection using Image Segmentation . . . . . . . . . . . . . . . . . . 65

5.2.3 Building Detection using Shape Descriptors . . . . . . . . . . . . . . . . . . . 66

5.3 Workflow of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Building-Shadow Boundary Detection . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Elimination of Shadows cast by Vegetation . . . . . . . . . . . . . . . . . . . 69

5.4.2 Elimination of Shadows cast by other non-Building Objects . . . . . . . . . . 70

5.5 Region Growing Image Segmentation . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Oversegmentation SLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.2 Region Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.3 Region Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.4 Iterative Classification and Merging . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Determination of Final Building Regions . . . . . . . . . . . . . . . . . . . 83

5.6.1 Recursive MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.2 Procedure of Determining Final Building Regions . . . . . . . . . . . . . . . . 84

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Introduction

Automatic detection of buildings in very high spatial resolution (VHR) remotely sensed imagery

is of great practical interest for a number of applications; including urban monitoring, change

detection, estimation of human population, among others. Researches in this domain started in

the late 1980s, but due to the complexity and irregular nature of the scenes, building detection

remains a difficult task. Since the initial research, building detection has been propelled by the de-

velopment of new data sources and methods in the fields of photogrammetry and computer vision.

In this chapter, a novel approach for the automated detection of buildings from monocular VHR

optical images is introduced. In Section 5.2, we review some related works in building detection.

The workflow of the proposed method is presented in Section 5.3. The remaining sections detail

our approach. The experimental results and discussion are presented in Chapter 6.
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5.2 Related Works

There have been a significant amount of work on building detection from remote sensing images

in the literature. The existing studies can be classified in different ways, with respect to:

• Degree of automation: automatic [Ok 2013], semi-automatic [Henricsson 1997], interactive

[Gulch 1999].

• Input data: stereoscopic synthetic aperture radar (SAR) images [Tupin 2005], Li-

DAR images [Sahar 2010], multi-view image (from the same geographical area

[Fradkin 2001, Benedek 2012]), Digital Surface Models (DSM) [Lafarge 2010], grayscale im-

age [Müller 2005], optical satellite and aerial images [Akcay 2010, Ok 2013, Katartzis 2008],

hyperspectral image [McKeown Jr 1999].

• A priori knowledge: none, cadastral plan [Haala 2010], Laser Scanner Data

[Rottensteiner 2007], topographic map [Hofmann 2002].

• Image features: points, edges, lines, regions [Huertas 1988, Lin 1998].

On the other hand, extensive reviews on building detection can be found in [Mayer 1999],

[Baltsavias 2004], [Brenner 2005]. [Mayer 1999] discussed previous work published until the mid-

1990s in an exceptional review in which the models and strategies of the developed approaches

were deeply investigated and summarized. [Baltsavias 2004] presented results on buildings within

the broader topic of object extraction using image analysis. More recently, [Ozgun Ok 2013]

considered the previous studies aimed at automatically detecting buildings from monocular

optical VHR image datasets.

Our aim is to develop an automatic building detection from single optical image without any

a priori knowledge, using shadows and image segmentation. In this section, we limit the literature

survey and discuss only the previous studies that involved in the proposed building detection

framework, since it is impossible to mention all because of the variety of the developed methods.

5.2.1 Building Detection using Shadows

Several authors use shadows for rooftop segmentation from optical images. Shadows can be used

in two ways. In the first hand, shadows are used after an initial building detection step, for

building hypothesis verification and height estimation [Huertas 1988, Lin 1998, Sirmacek 2008].

For example, [Huertas 1988] utilized cast shadows to interpret the sides and corners of buildings.

[Lin 1998] detected building roofs from oblique aerial images by assuming that the building

shapes were rectilinear, and hypothesized rectangular buildings were verified both with shadow

and wall evidences. In different study, [Sirmacek 2008] employed color invariant features and

shadow information in a feature- and area-based approach. The shadows are detected by using

the blue channel. Red roofs are identified by using the red channel. They first identify building

candidate regions with searching shadow regions. If shadow regions are found, the regions, which

are in opposite side of the shadowed regions with the illumination angle, are selected as candidate

regions. Finally, a rectangle fitting method is used to align a rectangle with the Canny edges of

the image.
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In the other hand, if shadow regions can be accurately extracted from the images, they

can support directly the detection steps. [Akcay 2010] detected candidate building regions

using both shadow information and directional spatial constraints. The directional spatial

relationship between buildings and their shadows are modeled by a probabilistic landscape

approach. The final buildings were determined after clustering the candidate regions using

minimum spanning trees. Recently, [Ozgun Ok 2013] used grabcut and shadows to segment

rooftops from high-resolution imagery. Shadows were first detected and foreground (rooftop)

pixels were labeled adjacent to them based on light direction. This was followed by iterative graph

cuts (a modified version of the grabcut algorithm) on a region of interest (ROI) for each shadow.

They employed an ROI determined by dilation of the shadow component with flat kernels

opposite to the direction of light. Foreground pixels are determined by double thresholding a

fuzzy region extended from shadows opposite to light direction. Then, they run grabcut in each

ROI to label pixels inside it as rooftops or non-rooftops. Unlike the approach we propose, they

required an additional near-infrared (NIR) band of data in order to locate shadows in the imagery.

More recently, inspired from the work of [Ozgun Ok 2013], the grabcut segmentation is also

used in the work of [Femiani 2014]. But they run grabcut on the entire image (or overlapping

tiles from the original image if the image is big) and not on an ROI for each shadow. Besides,

they implement a self-correcting scheme that identifies falsely labeled pixels by analyzing the

contours of buildings identified by the first pass of grabcut. The image is resegmented until a set

of rooftops are extracted that are consistent with visible shadows. Their method requires only

three-band RGB input data. In another study of [Li 2015], the input image is first segmented into

perceptually homogeneous regions using the Gaussian mixture model (GMM) clustering method.

Shadows and vegetation are then extracted from GMM labels. Remaining unlabeled regions are

classified into probable rooftops and probable nonrooftops depending on shape, size, compactness

and shadows. At last, a higher order multilabel conditional random field (CRF) segmentation is

performed to get final results. These three methods ([Ozgun Ok 2013, Femiani 2014, Li 2015])

will be evaluated to compare with the proposed method.

5.2.2 Building Detection using Image Segmentation

In order to effectively retrieve objects from images, many methodologies partition image into

smaller, usually homogeneous regions to enable region-based rather than global extraction.

Image segmentation become a subsequent step in many object extraction algorithm, especially in

building detection [Müller 2005, Liu 2005, Izadi 2010, Ozgun Ok 2013, Femiani 2014, Li 2015].

For example, [Liu 2005] used a probability function for detection of building regions. They first

perform image segmentation by a multi-windows thresholding method. Afterwards, they extract

features, e.g. shadow ratios, region entropy, contour edges and shape features in each region.

Then, a confidence value is calculated by the probability function, which uses eight different

features including distance to the straight lines, contour region entropy, contour including edges,

grey level average value and standard deviation, shape, shadow ratio to define the region if it

corresponds to a building. Some of the parameters are identified by manual interaction. The

problems in the results, according to the authors, are mainly caused by shadows.

[Müller 2005]’s method is based on implementation of an area-based and feature-based

algorithm for building detection from aerial imagery. They first convert the original image to a
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grayscale image. Then, a region-growing process is applied for segmentation. A linear regression

classifier detects the building regions using extracted features. However, their method works well

only with buildings which have red roof.

In different study of [Izadi 2010], the input images are segmented at several levels. The line

segments are detected in original images, and they are combined to generate roof hypotheses.

The evidence of correct building is computed with a probability score for each hypothesis. They

report that the proposed method is capable of detecting small gabled, residential roofs.

[Karadag 2015] proposed a domain-specific segmentation method for building detection, which

integrates information related to the building detection problem into the detection system during

the segmentation step. Buildings in a remotely sensed image are distinguished from the highly clut-

tered background, mostly, by their rectangular shapes, roofing material and associated shadows.

The proposed method fuses the information extracted from a set of unsupervised segmentation

outputs together with this a priori information about the building object, called domain-specific

information (DSI), during the segmentation process. Finally, the segmentation output is provided

to a two-layer decision fusion algorithm for building detection.

5.2.3 Building Detection using Shape Descriptors

Because of different materials of building rooftops, it is not easy to distinguish buildings from

backgrounds using only spectral-based classification. In this case, shape analysis can be explored

for extracting building rooftops. It is observed that the most common shape is naturally a

rectangle or a combination of rectangles which are comprised of right-angled corners. Indeed,

this building structure is often used because it needs less engineering effort in design, material

and construction to achieve an equivalent or even an acceptable level of seismic performance

[Lopez 1999]. [Cui 2011] used the Hough transform to extract the structure of buildings and then

constructed a graph from those region information. A cycle detection on the graph is utilized

finally to extract the boundary of buildings. [Benedek 2012] constructed a hierarchical framework

to create various building appearance models from different elementary feature-based modules.

The interaction between object extraction and local textural image-similarity information in their

framework was exploited in a unified probabilistic model.

Another approach to deal with regular buildings is to use rectangular boundary fitting.

Several rectangularity measures [Rosin 1999, Rosin 2003] are designed to evaluate, on their

specific way, how much the object considered differs from a perfect rectangle. The standard

method for calculating rectangularity is using the Minimum Bounding Rectangle (MBR) of the

object [Toussaint 1983, Chaudhuri 2007, Chaudhuri 2012]. To the best of our knowledge, most of

these approaches have been proposed for LiDAR images [Sahar 2010, Kwak 2014, Seo 2014], only

two studies [Korting 2008, Korting 2011] have exploited the rectangularity measures to detect

rectangular buildings in optical images.
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5.3 Workflow of the Proposed Method

In this chapter, we present an original method for the automated detection of buildings from a

single VHR optical image. We are motivated to develop a method that is applicable in various

areas as shown in Fig. 5.1.

(a) Dense urban area (b) Suburban area (c) Rural area

Figure 5.1: Different study areas: high dense urban area with very high population density and

attached buildings, suburban area with residential trip and detached buildings, rural area with

very low population density, detached buildings and high vegetation density

(a) Rectangular roof (b) L-shaped roof (c) U-shaped roof (d) I-shaped roof

Figure 5.2: Examples of roof shapes that the proposed method can handle

This obliges us to follow certain assumptions about the appearance of the 3-D building objects:

1. We consider that buildings have a homogeneous color. Roof homogeneity have been exploited

for building region detection in the literature [Müller 2005, Benedek 2012]. In practice, in

high dense area, we separate the attached buildings based on their spectral features.

2. Our method is based on the fact that a 3D building structure should cast a shadow under

suitable imaging conditions. Therefore, shadows generated from buildings must be detected.

The images must be acquired in nadir views, and the time of acquisition favors the formation

of shadows. Besides, correctness and precision of the shadow detection are strongly required.

3. Buildings may have similar spectral responses with their neighboring objects (e.g. street).

Shape analysis is therefore used to distinguish buildings from backgrounds. In this study, we

focus on the buildings with right-angled corners, such as: rectangular, L-shaped, U-shaped,

I-shaped buildings (as shown in Fig. 5.2).



68 Chapter 5. Building Detection Using Shadows and Image Segmentation

Starting from these assumptions, an original method for building detection task is designed and

can be summarized as follows. The methodology begins with the detection and post-processing

of shadow areas. For shadow detection, we employ our shadow/vegetation detection method

presented in Chapter 4, that allows to divide the image into three distinct classes: shadow, vege-

tation, and others with good precision. The boundaries between shadows and their corresponding

buildings are detected by eliminating shadow regions generated by vegetation objects and other

non-building objects. In the second stage, a novel MRF region growing segmentation technique

is proposed. Image is first over-segmented into smaller homogeneous regions (superpixels) which

can be used to replace the rigid structure of the pixel grid. An iterative classification-merging

is then applied over this set of regions. In region classification step, regions are classified into

different classes and grouped into clusters. According to the position of shadows, a merging pro-

cess is then performed to merge building segments with their neighboring regions which obtain

the same class label in the classification stage to produce regions whose shapes are appropriate

to rectangles. In the third stage, from the results of region growing image segmentation, the

final building regions are determined using a recursive Minimum Bounding Rectangle (RMBR),

proposed by [Kwak 2014]. The whole method is described in the flowchart in Fig. 5.3 . Details of

the algorithm are presented in the following sections.

Input image

Shadow/vegetation detection

Building-Shadow Boundary Detection
(Section 5.4)

Oversegmentation

RAG’s construction

Building segments
detection

Initialization

MRF regularization

Merge regions
produce rectangles

Update RAG
Merging
happens?

Determination of final building regions
(Section 5.6)

Detected buildings

Yes

No

Region MergingSection 5.5.3

Region Classification

Section 5.5.2

Figure 5.3: Flowchart of the proposed method and related sections
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5.4 Building-Shadow Boundary Detection

A common feature that buildings possess is that they cast shadows on the ground. If shadows are

present in the image, they can be used to identify the existence of buildings and to distinguish

between buildings from flat, ground surface features. That is why our methodology begins with

the detection of shadows and vegetation (Part I of the thesis). The shadow/vegetation detection

step yields a vegetation mask MV and a shadow mask MS . Therefore, since building sides are

usually surrounded by a variety of objects such as rock, vehicle, vegetation, the shadow may be

cast by the building itself or by nearby objects (as shown in Fig. 5.4, red and blue circles). That

is why it is essential for a building detection task to eliminate the shadow regions that occur due

to non-building objects.

(a) (b) (c)

Figure 5.4: Shadow/vegetation detection: (a) input image, (b) detected shadow mask (black) and

vegetation mask (green), (c) manually estimated illumination direction. Shadow is occluded by

vehicles (red circle) or by vegetation (blue circle)

In reality, the detection of shadows cast by buildings is rather impossible since the only priori

knowledge is the illumination angle (without any knowledge about the height of buildings or

the zenith angle). However, as will be discussed in Subsection 5.5.3.1, what interests us is the

boundary between buildings and their corresponding shadows. Therefore, the postprocessing step

of shadow mask can be carried out as follows.

5.4.1 Elimination of Shadows cast by Vegetation

We suppose that the illumination angle θ is supplied. Otherwise, it can be empirically estimated

from an image by counting the number of pixels horizontally and vertically from one corner of

a rooftop (or from a corner of the footprint if lean is an issue), to the corresponding corner of

a building shadow. To select shadows generated by distinct vegetation objects, we investigate,

for each vegetation object of the vegetation mask MV , the shadow evidence within the close

neighborhoods of the vegetation object. To do that, binary morphological dilation is used, which

allows expanding the shape of a vegetation object (as illustrated in Fig. 5.5b). The direction of

the structuring element is determined by the illumination angle θ and its length lse is empirically

chosen. Once this expansion region is defined, we check for shadow evidence within the defined

region with the help of the pre-computed binary shadow mask MS . If there is more than one

shadow region occurring in this expansion region, we select the shadow region that have a border

with vegetation object (as shown in Fig. 5.5c).
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(a) (b) (c)

Figure 5.5: Removing shadows due to vegetation. (a) RGB aerial image, (b) The expansion

regions (pink color) generated after the dilation of the vegetation objects overlaid with the

shadow/vegetation map, (c) the shadow mask after eliminating shadows generated by vegeta-

tion

5.4.2 Elimination of Shadows cast by other non-Building Objects

Furthermore, shadows can be cast by other non-building objects as vehicles, rocks, . . . that are

generally short objects. Thus, to to eliminate these shadow regions, we found it necessary to

compute the length of boundary between each shadow object and their corresponding building

and then filter out those building-shadow boundaries whose length is below the predefined thresh-

old dsh.

(a) (b) (c)

Figure 5.6: Removing shadows due to other non-building objects. (a) the shadow mask after

eliminating shadows generated by vegetation, (b) potential building-shadow boundaries of (a), (c)

final building-shadow boundary mask MSB (black)

Potential boundaries between each shadow object and their corresponding building are

detected as follows. The opposite direction of the illumination angle is quantized into one of

eight directions (north (N), northeast (NE), east (E), southeast (SE), south (S), southwest (SW),

west (W), and northwest) because we are working on a digital image grid. For example, for the

illumination angle shown in Fig. 5.4c, the direction is southeast (SE). The contour of shadow

objects are first detected. For each pixel on the contour, if it’s pixel on the southeast is shadow,

it will be removed from the contour. The remaining contour is considered as the potential

building-shadow boundary (as shown in Fig. 5.6.b). Potential building-shadow boundaries whose

length is below the predefined threshold dsh are eliminated. The remaining shadow-building



5.5. Region Growing Image Segmentation 71

boundary is shown in Fig. 5.6c and denoted as MSB. The result achieved indicates that after the

post-processing, all cast shadows except those that correspond to the main body of the building

are successfully eliminated.

The objective now is that for each building-shadow boundary object, we identify the casting

building region. In addition, when one shadow object is generated from a group of attached

buildings, the developed algorithm must be capable to separate these attached buildings. To do

that, we propose a novel region growing image segmentation, whose details are presented in the

next section.

5.5 Region Growing Image Segmentation

Segmentation of remote sensing images is a difficult problem due to mixed pixels, spectral

similarity, and the textured appearance of many land-cover types. A variety of segmentation

techniques have been applied to remote sensing imagery with varying degrees of success

[Dey 2010]. Among them, the region growing method is widely used for analyzing remote sensing

imagery [Yu 2007, Qin 2010, Huang 2014]. In region growing technique, the input image is first

tessellated into a set of homogeneous primitive regions (or superpixels), and an image segmen-

tation is performed by iteratively merging the similar neighboring regions such that a certain

homogeneity criterion is satisfied. In previous works, there are region-merging algorithms based

on statistical properties [Nock 2004, Calderero 2010], graph properties [Chen 2013, Haris 1998],

and spatio-temporal similarity [Moscheni 1998].

Our proposed region growing image segmentation method consists of two main stages: region

classification and region merging, as shown in Fig. 5.3. An example of the first iteration of this

iterative process is shown in Fig. 5.7 and can be summarized as follows. Image is first decomposed

into different homogeneous regions by the oversegmentation algorithm SLIC [Achanta 2012] which

allows to generate regular-sized regions with good boundary adherence. This algorithm is carried

in the image in which shadow regionsMS and vegetation regionsMV are masked out. An iterative

classification-merging is then applied over this set of regions. Regions are grouped into different

clusters by the MRF-based region classification algorithm (Fig. 5.7.c). Building-Shadow boundary

MSB (Fig. 5.7.d) is used to determine the building segments (Fig. 5.7.e, the regions that are

supposed to be a part of building) and a merging process is then performed to merge building

segments with their neighboring regions which obtain the same class label in the classification

stage to produce regions whose shapes are appropriate to rectangles (Fig. 5.7.f). This iterative

classification-merging stops when no merging happens. The proposed algorithm is detailed as

follows.

5.5.1 Oversegmentation SLIC

Oversegmentation occurs when image is segmented into smaller regions, each referred to as

a “superpixel”. A superpixel is a spatially-coherent, homogeneous, structure which preserves

information over scales or sampling resolution [Moore 2009]. Superpixel algorithm allows us

to capture image redundancy, provide a convenient primitive from which to compute image

features, and greatly reduce the complexity of subsequent image processing tasks. Thus, they

have become a common preprocessing step for many computer vision algorithms, for example, in
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image segmentation [Yang 2008, Wang 2008, Ding 2010].

Different methods can be used to oversegment an image, including mean shift segmentation

[Comaniciu 2002], watershed segmentation [Vincent 1991], turbopixel method [Levinshtein 2009],

constrained Delaunay triangulation (CDT) method [Ren 2005], graph-based methods such as

normalized cuts [Shi 2000] and efficient graph-based image segmentation [Felzenszwalb 2004]. In

our proposed method, the oversegmentation algorithm SLIC [Achanta 2012] is employed. It is

a simple and efficient method to decompose an image in visually homogeneous regions, based

on the color similarity and proximity of pixels in the image plane. The SLIC is summarized in

Algorithm 2 and is presented in the following.

Distance measure The SLIC superpixel segmentation algorithm is a K-means-based local clus-

tering of pixels in the 5-D [Labxy] space defined by the L, a, b values of the CIELAB color space

and the x, y pixel coordinates. CIELAB color space is chosen because it is perceptually uniform

for small color distance. The SLIC algorithm takes as input a desired number of approximately

equally-sized superpixels K, then for a image with N pixels, the approximate size of each su-

(a) Input Image (b) Oversegmentation (c) Region classification

(d) Building-Shadow Boundary MSB (e) Building Segments (f) Region merging

Merging
happens?

Stop

Yes

No

First iteration

Figure 5.7: An example of the first iteration of the region growing image segmentation method:

(a) input image, (b) SLIC oversegmentation (regions are separated by cyan lines) of the image in

which shadow regionsMS and vegetation regionsMv are masked out, (c) MRF-based classification

(clusters are separated by red lines), (d) Building-Shadow boundary mask MSB (see Section 5.4),

(e) detected building segments (boundaries are delineated by violet lines), (f) after merging (some

cyan lines are disappeared).

.
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perpixel is N/K. To produce roughly equally sized superpixels, the grid interval is S =
√

N/K.

Let [li, ai, bi, xi, yi] be the 5-D point of pixel i, cluster center Ck is represented by the same form

[lk, ak, bk, xk, yk]. Instead of directly using the Euclidean distance in the 5-D [Labxy] space, SLIC

introduce a new distance measure that considers superpixel size. For example, the distance Dk

between pixel i and cluster center Ck is defined as follows:

dlab =
√

(li − lk)2 + (ai − ak)2 + (bi − bk)2

dxy =
√

(xi − xk)2 + (yi − yk)2

Dk =

√

d2lab +

(

m

Ns

)2

d2xy

(5.1)

where Dk is the sum of the lab distance and the xy plane distance normalized by the grid

interval S. The parameter Ns is the maximum spatial distance expected within a given

cluster, NS = S =
√

N/K. The parameter m is introduced to control the compactness of

superpixels. When m is large, spatial proximity is more important and the resulting superpix-

els are more compact (i.e., they have a lower area to perimeter ratio). When m is small, the

resulting superpixels adhere more tighly to image boundaries, but have less regular size and shape.

Algorithm 2: SLIC superpixel segmentation [Achanta 2012]

/* Initalization */

Initialize cluster centers Ck = [lk, ak, bk, xk, yk] by sampling pixels at regular grid steps S.

Move cluster centers to the lowest gradient position in a 3× 3 neighborhood (Eq. 5.2).
Set label l(i) = −1 for each pixel i.

Set distance d(i) =∞ for each pixel i.

repeat
/* Assignment */

for each cluster center Ck do

for each pixel i in a 2S× 2S region around Ck do
Compute the distance Dk between Ck and i.

if Dk < d(i) then
set d(i) = Dk

set l(i) = k

/* Update */

Compute new cluster centers.

Compute residual error E.
until E ≤ threshold;

Algorithm: The SLIC superpixel algorithm is summarized in Algorithm 2. It begins by sam-

pling K regularly spaced cluster centers and moving them to seed locations corresponding to the

lowest gradient position in a 3× 3 neighborhood. This is done to avoid placing them at an edge
and to reduce the chances of choosing a noisy pixel. Image gradients are computed as:

G(x, y) = ‖I(x+ 1, y)− I(x − 1, y)‖2 + ‖I(x, y + 1)− I(x, y − 1)‖2 (5.2)
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where I(x, y) is the lab vector corresponding to the pixel at position (x, y), and ‖.‖ is the L2 norm.

Next, in the assignment step, each pixel i is associated with the nearest cluster center whose

search region overlaps this pixel. Since the expected spatial extent of a superpixel is a region

of approximate size S × S, the search for similar pixels is done in a region 2S × 2S around the
superpixel center. Once each pixel has been associated to the nearest cluster center, the cluster

centers are updated as the [l, a, b, x, y]T vector of all the pixels belonging to the cluster. The

assignment and update steps are repeated iteratively until the stop criteria is fulfilled: a residual

error E (L2 norm) between the cluster center locations and previous cluster center locations is

inferior to a predefined threshold. In the implementation, the processing stops when a predefined

number of iteration is achieved. According to [Achanta 2012], 10 iterations are sufficient for most

images.

Since the SLIC method does not enforce connectivity between pixels, there can be small

and isolated segments resulted at the end of the clustering procedure. To obtain relatively

uniform superpixels for further applications, the SLIC method adopts a post-processing

which merges the isolated clusters with its largest neighbor. The stray segments whose size

is smaller than a threshold (50 pixels) are eliminated (relabelled as the label of its nearest cluster).

In our implementation, the SLIC algorithm is applied on the image in which shadow regions

MS and vegetation regions MV are masked out. The two parameters in SLIC are set as follows.

The weighting factor m between colour and spatial differences is set to 10, as recommended by the

authors, which can sufficiently preserve the boundaries of objects and the number of superpixels

is set so as to have the superpixel size ηsup. Fig. 6.1 shows the examples of oversegmentation

with different values of ηsup. We observe that oversegmentation generates regular-sized regions

with high boundary adherence.

(a) ηsup = 100 (b) ηsup = 200 (c) ηsup = 300

Figure 5.8: An example of oversegmentation SLIC with different values of ηsup and the weighting

factor m is chosen as 10.
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5.5.2 Region Classification

MRF model [Besag 1986] provides a basis for modeling contextual constraints in visual processing

and interpretation. Although MRF is mostly used on the pixel graph [Geman 1984], it is also

proved to be a powerful model for feature-based graph (such as region adjacency graph (RAG)

[Tupin 2005, Qin 2010] or line segment graph [Krishnamachari 1995]). In the proposed approach,

a MRF model defined over a RAG is proposed as follows.

RAG’s Construction

It is assumed that the image is initially over-segmented into a set R of disjoint regions. A

RAG G = (S, E) is defined over the set R of regions obtained from the oversegmentation step.

Each node s ∈ S represents each region Rs ∈ R. The relationship between two regions is given
by their adjacency, defining a set E of edges, as illustrated in Fig. 5.9. Suppose image is to be
segmented into K classes. Let Ω = {ω1, . . . , ωK} denote the set of class labels. xs is a realization

of the label Xs of region Rs. Also, let X = (Xs)s∈S denote the joint random variable and the

realization (configuration) x = (xs)s∈S of X. x is estimated using y = (ys)s∈S where ys is the

observation of all pixels in region Rs, and therefore ys = {ys(i), i ∈ Rs}. For input images, yi(s)

is a 3-dimensional feature vector (red, green, blue representation). y (resp. ys) is a realization of

the observation field Y (resp. Ys).

(a) (b)

Figure 5.9: Example of RAG: (a) segmented image and (b) the corresponding RAG representation

MRF’s Framework

We want to find an assignment x̂s of all sites (nodes) s ∈ S to Ω. To introduce contextual

knowledge, X is supposed to be a MRF for the neighborhood defined by RAG. In MRF model, the

optimal configuration x̂ = {x̂s, s ∈ S} which we are interested is the one that will be a maximum

a posteriori probability (MAP) under the observation Y. That is:

x̂ = argmax
x

P (X = x|Y = y) (5.3)

From Bayes’rule, we have:

x̂ = argmax
x

P (X = x,Y = y)

P (Y = y)
(5.4)
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When the image is designed, P (Y = y) is constant. To maximize the a posteriori probability

leads to minimize the posterior energy function:

U(x,y) = − log (P (X = x,Y = y))

= − log (P (Y = y|X = x)P (X = x))

= − log (P (Y = y|X = x)) − log (P (X = x))

= U(y|x) + U(x)

(5.5)

The first term U(y|x) in Eq. (5.5) is the likelihood term, describing the probability of region Rs

with its observation Ys at the given region label xs. Due to the independence assumption of the

regions, the likelihood term can be written: U(y|x) = ∑

s∈S Us(ys|xs). As Gaussian distribution

is a usual and effective distribution for color images, this distribution is adopted to describe the

image model. So, in cases where xs takes the class label ωk:

Us(ys|xs) =
∑

i∈Rs

1

2
× (log(|Σk|) + [yi(s) − µk]

T
Σ−1

k
[yi(s) − µk])

where µk, Σk are mean and covariance matrix of class ωk.

The second term U(x) in Eq. (5.5) is the prior term, describing what the likely labelings x

should be like. Inside a building, the different parts should have a rather homogeneous color. This

knowledge is introduced in the definition of the clique potential of the RAG. In order to reduce

the computational complexity, we will restrict our attention to MRF’s whose clique potentials

involve pairs of neighboring nodes (<s, t> ∈ E). The prior term is defined as follows:

U(x) =
∑

s∈S

Us(xs) =
∑

s∈S

∑

t∈Vs

|Rs| × bst

bs

× β

|ȳs − ȳt|
× (1 − δ(xs − xt)) (5.6)

where:

• δ(·) : the Kronecker’s delta function,

• Vs ⊂ S : the neighbors of the node s,

• |Rs| : the number of pixels in region Rs,

• bs : the length of boundary of region Rs,

• bst : the length of common boundary of region Ri and region Rj ,

• ȳs : the mean intensity (taking values from 0 to 255) of region Rs.

Two constraints are introduced in the prior term: the normalized edge weight bst/bs and the

inversed difference |ȳs − ȳt|−1. They mean that if two regions share a long boundary and have

similar mean intensity, they have high probability to obtain the same class label. β represents

the tradeoff between fidelity to the observed image and the smoothness of the segmented image.

In practice, the parameter β is empirically chosen.

Energy minimization: Finding a solution for for Eq. (5.5) represents a combinatorial

optimization problem. Various combinatorial optimization techniques are known, including iter-

ated conditional mode (ICM) [Besag 1986], simulated annealing (SA) [Geman 1984], graph cuts
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[Kolmogorov 2004], loopy belief propagation [Yedidia 2005], and tree-reweighted message passing

[Kolmogorov 2006]. The ICM [Besag 1986], the simplest among all of these, will be employed

here. Each node is updated by choosing the class label xs which minimize the local energy:

Us(ys, xs) = Us(ys|xs) + Us(xs) (5.7)

This algorithm does not guarantee the convergence toward the optimal solution (only a local

optimum depending on the chosen initialization is reached).

Parameter estimation: The parameters of MRF model are estimated at each iteration of

ICM algorithm as follows:

µk =

∑

s∈Sk

∑

i∈Rs

ys(i)

∑

s∈Sk

|Rs|
(5.8)

Σk =

∑

s∈Sk

∑

i∈Rs

(ys(i) − µk)(ys(i) − µk)
T

∑

s∈Sk

|Rs|
(5.9)

where Sk denotes the set of nodes whose class label is ωk.

(a) Input image (b) Oversegmentation (c) Initialization (d) MRF regularization

Figure 5.10: Experimental results of MRF-based region classification. Regions are separated by

cyan lines and clusters are separated by red lines.

Initialization: Similar to the RKM method of [Qin 2010], our method seeks a set of optimal

class mean vector µk, k = 1, . . . , K to minimize the following energy function:

Einit =
K

∑

k=1

∑

s∈Sk

∑

i∈Rs

(ys(i) − µk)(ys(i) − µk)
T (5.10)

The first classification Sk, k = 1, . . . , K is obtained by applying the K-means clustering on the

mean values of regions: ȳs =

∑

i∈Rs
ys(i)

|Rs| . The class mean vectors µk, k = 1, . . . , K are computed

by Eq. 5.8. An iterative process is carried out. At each iteration, the label field x is updated

using the current class mean vectors according to the nearest center rule:

xs = argmin
ωk∈Ω

∑

i∈Rs

(ys(i) − µk)(ys(i) − µk) (5.11)
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µk, k = 1, . . . , K is then recomputed using by Eq. 5.8. The energy Einit is updated using 5.10.

The iterative procedure is terminated once the ratio of the absolute energy difference between

consecutive iterations over the energy at the former iteration is below 10−6 or the number of

iterations exceeds 100, to ensure that we obtain the best initialization as possible.

An example of region classification is shown in Fig. 5.10, in which regions are separated by

cyan lines. After classification, connected regions that have similar spectral characteristics are

grouped into clusters. In Fig. 5.10, clusters are separated by red lines.

5.5.3 Region Merging

The region merging procedure is designed based on three assumptions about the targeted

buildings. First, buildings cast shadows on the ground, so regions to be merged have at least one

region that is next to shadows in the opposite direction of the illumination angle. Second, we

focus only on detecting the buildings with right-angled corners, a merging procedure is designed

to produce new regions whose shapes are appropriate to rectangles. Third, we assume that

building has a homogeneous color, so the regions to be merged need to have similar spectral

characteristics. Hence, merging is only done between regions with the same class label. Starting

from these three constraints, different steps of merging are designed and detailed in the following.

(a) Input image (b) Oversegmentation (c) Building Boundary

MSB

(d) Building segments

Figure 5.11: An example of building segments detection. We observe that each targeted building

has one or several building segments.

5.5.3.1 Determination of Building Segments

The term “building segment” refers to regions that border with shadows cast by building, which are

detected in Section 5.4, in the opposite direction of the illumination angle (as shown in Fig. 5.11,

building segments are delineated by violet lines). To detect building segments, we measure the

boundary between regions and the building-shadow boundary MSB. Since region that shares a

larger border with shadows is more likely to be a building segment, only regions whose boundary

with MSB is larger than a predefined threshold TS is flagged as a building segment.
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5.5.3.2 Measure the rectangularity

Minimum Bounding Rectangle (MBR) Several rectangularity measures already exist

in literature. Basically, all of them are designed to evaluate, on their specific way, how much

the shape considered differs from a perfect rectangle. The standard method for calculating

rectangularity is using the MBR (Minimum Bounding Rectangle) of the segment. A well-known

algorithm for finding the MBR is presented in [Toussaint 1983]. For an object, this technique

first computes its convex hull, which can be done in O(n logn) time, and then find the minimal

rectangle in O(n) time (n is the number of edges of the convex hull). This depends on the

observation that one side of the minimal rectangle must coincide with one edge of the convex

polygon it must contain [Toussaint 1983]. Thus, one only has to consider the orientations given

by edges of the convex polygon. For each orientation, we determine the minimum rectangle

containing the corresponding edge of the convex polygon. We repeat this task for all orientations

and the rectangle with the minimum area is chosen as the Minimum Bounding Rectangle. The

illustration of the method is shown in Fig. (5.12).

(a) (b) (c) (d)

Figure 5.12: Illustration of the MBR estimation [Toussaint 1983]: (a) Object and its boundary

(in blue), (b) convex hull and one bounding rectangle test (in red), (c) bounding rectangle with

minimum area (in red), (d) object and its MBR

The rectangularity score of each segment is then computed as follows:

RB =
A0

AMBR
(5.12)

where A0 is the region’s area and AMBR is the area of the MBR.

Rectangular Discrepancy A weakness of using the MBR is that it is very sensitive to pro-

trusions from the region (as shown in Fig. 5.13). A narrow spike out of the region can vastly

inflate the area of the MBR, and thereby produce very poor rectangularity estimates. Three new

methods for measuring the rectangularity of regions are developed by Rosin [Rosin 1999]. They

are tested together with the standard minimum bounding rectangle method on synthetic and real

data. It is concluded that, while all the methods have their drawbacks, the best two are the

bounding rectangle and discrepancy methods. In the discrepancy method, a rectangle is fitted to

the region based on its moment. One way to measure the sides of rectangle is to find the best

ellipse that corresponds to the region. This is an ellipse with the same first- and second-order
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(a) (b)

Figure 5.13: Building with protrusion artifact: (a) Building region (whose boundary is delineated

by blue line) and its minimum bounding rectangle (red line). (b) Building region and the fitted

rectangle estimated by discrepancy method.

moments as the region. From the semi-major and semi-minor axes α and β of the ellipse, the

rectangle’s measurement a and b are estimated as follows:

a =
√
3α =

√

√

√

√

√

6

[

µ02 + µ20 +
√

(µ20 − µ02)2 + 4µ2
11

]

µ00

b =
√
3β =

√

√

√

√

√

6

[

µ02 + µ20 −
√

(µ20 − µ02)2 + 4µ2
11

]

µ00

(5.13)

The centroid (x̄, ȳ) and orientation θ of the rectangle are estimated as follows:

x̄ =
m10

m00

, ȳ =
m01

m00

, θ =
1

2
tan−1 2µ11

2µ20 − 2µ02
(5.14)

where µpq and mpq are respectively the central moments and the raw moment of the region

[Prokop 1992].

Rectangularity is then measured as the normalised discrepancies between the areas of the

rectangle and the region. More precisely, given the following area: A1 the difference between

the rectangle and the region, A2 the difference between the region and the rectangle, and A3 the

rectangle’s area. The rectangularity score is computed as follows:

RD =
A1 + A2

A3
(5.15)

We test these two rectangularity measures for a building with protrusion (as shown in

Fig. 5.13). The obtained rectangular score is RB = 0.59 for the bounding box method and

RD = 0.67 for the discrepancy method. The discrepancy measure method ranks this building

more rectangular than the standard MBR method. As a result, it is less sensitive to protrusions

from the region than the MBR method and will be used in the next to measure the rectangularity

of a shape. For the building with instrusion (as shown in Fig. 5.14), we found that these two

rectangularity measure are not sensitive to intrusion. The obtained rectangular score for both

bounding box measure and discrepancy measure are respectively 0.83 and 0.85. In the next, we

choose the discrepancy measure as the rectangularity measure to accomplish region merging.



5.5. Region Growing Image Segmentation 81

(a) (b)

Figure 5.14: Building with intrusion artifact: (a) Building region (whose boundary is delineated

by blue line) and its minimum bounding rectangle (red line). (b) Building region and the fitted

rectangle estimated by discrepancy method.

5.5.3.3 Region merging procedure

Since merging is only done between regions with the same class label, we deal with each cluster

(group of connected regions having the same class label) independently. Some notations are defined

as follows. For each cluster, BdS denotes the list of building segments that are not “visited” (not

merged with its neighbors) in cluster. We define a possible merging as a group of connected

regions that includes at least one building segment. Lp denotes the list of possible merging.

TR is the predefined minimum rectangularity degree. The merging procedure is described in

Algorithm 3. The criteria of merging is to merge building segments with their neighboring regions

while increasing the rectangularity degree of building segments. After merging, the new building

segments are obtained and used in the next iteration. An example of the result of merging process

is shown in Fig. 5.15.e, in which some cyan lines that separate the regions are disappeared.

Algorithm 3: Merging procedure for each cluster

Input:

- BdS: list of building segments that are not “visited” in cluster.

- Lp: list of possible merging in cluster.

- L: list of regions to be merged. For initialization, L ← ∅.
while BdS Ó= ∅ do

1. i∗ ← argmax
i

RD[Lp(i)].

/∗ best of possible merging ∗/

if RD[Lp(i∗)] ≥ TR then
1. Bd = Lp(i∗) ∩ BdS.

/∗ building segments in Lp(i∗) ∗ /

2. if RD[Lp(i∗)] ≥ max(RD[Bd]) then
Add Lp(i∗) to L.

3. Update: BdS = BdS \ Bd.
else

break ;

Merge regions in L.
Output: new building segments
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(a) Oversegmentation (b) Building segments (c) Region classification (d) After merging

Figure 5.15: An example of region merging. Building segments are delineated by violet lines.

Regions are separated by cyan lines and clusters are separated by red lines.

5.5.4 Iterative Classification and Merging

The main idea of our iterative classification-merging in respect to building detection is to increase

the rectangularity degree RD of building segments by merging them with their neighboring

regions while the region classification helps to avoid merging between parts of different objects

(e.g. two adjoining rectangle buildings). In the end of this iterative process, the building segments

are expected to converge toward their full building object outlines.

(a) Input image (b) 1st classification (c) 1st merging (d) 2nd classification (e) 2nd merging

Figure 5.16: Examples of the first two iterations.

After merging, the RAG is updated. The graph node labels do not change since the previous

merging procedure is only done between regions having the same class label. As a result,

the feature model class statistics (µ and Σ) do not change. The parameter β of prior term

is kept constant. The ICM process continues with this new RAG topology to search for its

new suboptimal solution of MRF energy minimization. The merging procedure starts when the
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ICM stops, and so on. This iterative segmentation merging ends when there is no merging happens.

Fig. 5.16 illustrates the first two iterations of the iterative classification-merging process. SLIC

over-segmentation decomposes image into different regions (boundaries between different regions

are delineated using cyan lines) and the MRF-based region classification group these regions into

different clusters (boundaries between clusters are delineated using red lines), as shown in Fig.

5.16b. Within each cluster, region merging procedure merge regions to generate rectangular shapes

(Fig. 5.16c, some cyan lines are disappeared). The ICM continues with this new configuration.

When the ICM stops (as illustrated in Fig. 5.16d, some red lines become cyan), the merging

procedure merges region to increase the rectangularity degree of building segments (Fig. 5.16e).

5.6 Determination of Final Building Regions

The proposed iterative region growing results in a segmentation map, in which the building seg-

ments have the best possible rectangular score. But it is not evident that these building segments

are the final buildings. First, because of the strict constraint of merging, a building segment whose

form is very close to a perfect rectangle can not to be merged with its neighboring regions (the

other parts of the same building), as shown in Fig. 5.17a. Second, we focus on the buildings with

right-angled corners, which are characterized as a collection of rectangles (e.g: L-shape, U-shape,

T-shape, gable roofs, and more complex building shapes which are combinations of the aforemen-

tioned shapes), not only the rectangular buildings. These types of buildings are partitioned into

different part in the segmentation map, as shown in Fig. 5.17b-c. In this section, we describe how

to determine the final building regions from the results of region growing image segmentation.

(a) (b) (c)

Figure 5.17: Results of region growing image segmentation: (a) a rectangular building can not

achieve its final shape, (b) and (c) L-shaped and U-shaped buildings are partitioned into different

regions.

5.6.1 Recursive MBR

In a recent paper [Kwak 2014], the authors introduce a new framework for automatically detect-

ing and reconstructing accurate right-angle corner building models from LiDAR data. In their

approach, building boundaries are first approximated by LiDAR data and then regularized using

rectangular model through a Recursive Minimum Bounding Rectangle (RMBR) process. Given a

boundary shape, we apply the RMBR algorithm in the way as follows:
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1. Apply the MBR algorithm to the boundary shape and the generated MBR is denoted as

MBR(1), as illustrated in Fig. 5.18b and 5.19b.

2. Track the non-overlapping boundary segments with MBR(1) (Fig. 5.18c and 5.19c).

3. If the length of the detected non-overlapping segments is larger than 20 pixels, apply MBR

algorithm again on the non-overlapping segments and their projection onto the MBR sides

(Fig. 5.18d and 5.19d) to derive MBR(2) (Fig. 5.18e and 5.19e).

4. Track the non-overlapping boundary segments with MBR(2).

5. If the length of the detected non-overlapping segments is larger than 20 pixels, apply MBR

algorithm again on the non-overlapping segments and their projection onto the MBR sides

to derive MBR(3).

In our method, we limit the level of recursive MBR to 3. The final shape, denoted as RMBR, is

determined as follows:

RMBR =
3

∑

k=1

(−1)k+1MBR(k) (5.16)

Note that if the condition in step 3 (step 5) is not satisfied, we have MBR(2) (MBR(3)) is an

empty set. Based on this notation, Fig. 5.18f and 5.19f show a RMBR with 2 levels of details

(RMBR = MBR(1) − MBR(2)).

5.6.2 Procedure of Determining Final Building Regions

For the sake of simplicity, we denote RMBR as an operator to measure how much the object

considered differs from its RMBR approximation. This operator is defined as follows:

RMBR =
Area of object

Area of RMBR
(5.17)

Similar to the merging algorithm (Algorithm 3), the determination of final buildings is done

within the limit of each cluster, obtained from the results of iterative classification-merging

process. The main idea is to check the possibility of having a building with right-angled corners

in the cluster. For each cluster, we denote a candidate building as a group of connected regions

that includes all building segments. Then, we verify if the candidate building is a building with

right-angled corners by measuring its RMBR score. The procedure of determining final building

regions is described in Algorithm 4. An example of determining final building regions from the

image segmentation results is shown in Fig. 5.20.
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(a) (b) (c)

(d) (e) (f)

Figure 5.18: The step-by-step illustration of L-shaped bounding box estimation

(a) (b) (c)

(d) (e) (f)

Figure 5.19: The step-by-step illustration of U-shaped bounding box estimation
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Algorithm 4: Determining the final building regions in a cluster

Input:

- TB: minimum RMBR-score.

- BdS: list of building segments in cluster.

- N : number of regions in cluster.

for k ← N to |BdS| do
1. Determine Lk: list of candidate buildings merged from k regions. Lk(j) is the j-th

element in Lk.

2. j∗ ← argmax
j

RMBR[Lk(j)].

/∗ best of candidate building ∗/

if RMBR[Lk(j
∗)] ≥ TB then

1. Merge regions in Lk(j
∗) and get the final building region of cluster.

2. Break ;

Output: final building region

(a) Input image (b) Segmentation result (c) Final building

Figure 5.20: Determination of final buildings from the region growing image segmentation result:

5 buildings are detected, in which 3 buildings (left) are approximated by the recursive MBR of

level 2 and other 2 buildings (right) are rectangular. These detected buildings have RMBR-scores

of 0.87, 0.91, 0.84, 0.93, 0.81 respectively (from left to right). The value of TB is chosen as 0.8.

5.7 Conclusions

In this chapter, we review some existing building detection methods that are related to the pro-

posed method. The methodology begins with the detection and post-processing of shadow areas.

For shadow detection, we employ our shadow/vegetation detection method presented in Chapter

4, that allows to divide the image into three distinct classes: shadow, vegetation, and others with

good precision. The boundaries between shadows and their corresponding buildings are detected

by eliminating shadow regions generated by vegetation objects and other non-building objects from

shadow mask. A novel region-growing image segmentation algorithm is then proposed. This seg-

mentation algorithm consists of two main stages: a MRF- based region classification, and a region

merging procedure that exploits the position of shadows and the rectangularity measure. Final

buildings are extracted from the obtained iterative classification-merging result. The evaluation

of the proposed method will be presented in the next chapter.
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6.1 Introduction

This chapter presents the experimental evaluation of the proposed building detection method.

This method will be denoted as SBBD, that stands for shadow-based building detection. The

strategy for accuracy assessment is first introduced. Then, we analyse the sensitivity of important

parameters used in SBBD method, which will be tested on the Jacmel dataset and the SZTAKI-

INRIA Building Detection Benchmark [Benedek 2012]. At last, we discuss the advantages and

the limitations of SBBD method.

6.2 Strategy for Accuracy Assessment

The final performance of the proposed approach is assessed by comparing the results of the pro-

posed approach with the ground truth. We perform quantitative evaluation both at object and

pixel levels. The buildings that are partially visible at image boundaries are also included in the

analysis. In this work, we use the same metrics and accuracy table from [Ozgun Ok 2013]. The
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common measures of precision (i.e., P), recall (i.e., R), and the F1-score (i.e., F1) are used to

measure pixel level accuracy, where:

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2 × P × R

P+ R

(6.1)

Here, TP stands for true positives and refers to the number of pixels assigned as rooftop

in both ground truth and segmentation result. FP stands for false positives and refers to the

number of pixels assigned as building in result but not in the ground truth. FN stands for false

negatives and refers to the number of pixels assigned as building in ground truth but not in

result. Among these metrics, the producer’s accuracies (also known as recall) indicate how well

pixels of known categories are correctly classified. The user’s accuracies (also known as precision)

indicate the probabilities of pixels been correctly classified into actual categories on the ground

truth. The F-score (F1) captures both precision and recall as single metric that gives each equal

importance.

On the other hand, the object-based performance can also be evaluated with the measures

given in Eq. 6.1, similar to [Ok 2013] . An output building object is labeled as TP if it has at

least a 60% pixel overlap ratio with a building object in the ground truth. However, we label an

output building object as FP if it does not coincide with any of the building objects in the ground

truth, and we label an output building object as FN if it corresponds to a reference object with

a limited amount of overlap (< 60%). Thus, it is possible to compute Precision (P), Recall (R)

and F1-score (F1) for object-based performance measurement.

6.3 Parameters

To initialise SBBD method, different parameters are required. However, there are no parameter

setting that can be applicable for all images since these images have different building sizes,

different shadow density, etc. Table 6.1 lists the default settings of the parameters used in SBBD

method for NOAA aerial image of Jacmel dataset.

Some parameters have physical meaning and can be intuitively defined. Otherwise, other

parameters need to be determined by test and trial. Fig. 6.2 illustrates the effects of choosing

different values for detecting building rooftops. We performed a large number of tests on different

parameters and investigated the effects of each parameter on the detection performance using the

quality measures given in Eq. 6.1.

6.3.1 Detection of Shadows cast by Buildings

Two parameters (lse, dsh) are required for post-processing of the building-shadow boundary

mask MSB (c.f. Section 5.4). The first parameter lse is the length of structuring element of

the directional binary morphological dilation. This parameter is used to define the size of the
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Step Parameter Value

Detection of Shadows Cast by Buildings

(cf. Section 5.4.2)

lse 60

dsh 5m

Oversegmentation SLIC [Achanta 2012]
ηsup 175

m 10

ICM optimization - Region Classification

K 12

β 150

τmax 500

ε 0.01

Region Merging
TS 15

TR 0.65

Determination of Final Building TB 0.8

Table 6.1: Parameter settings of the proposed approach for NOAA aerial image

expansion region, starting from each vegetation object. If there is more than one shadow regions

occur in this expansion region, we select the shadow region that have a border with vegetation

object. That is why parameter lse is not important and just need to be set large enough. In our

algorithm, we choose lse as 60 pixels.

The second parameter is the minimum length of the boundary between building objects and

their corresponding shadows dsh. 10 different values of dsh (2.5 meters - 7 meters) are tested. The

effects of these values on the computed performances are shown in Fig. 6.2a. The results indicate

improvements as the dsh values increase for pixel-based precision ratios, whereas at the same time,

performance decreases are observed for the recall ratios. When dsh gets low values, shadows from

non-building objects are also detected. The non-building objects having the rectangular form

are detected and considered as buildings. As a result, the FP pixels are high and the precision

ratio is therefore low. Conversely, when dsh is high, we do not detect some building shadows and

therefore miss some buildings, the FN pixels are high and the recall ratio is low. In view of the

computed performance measures, we select the value of dsh as 5 meters (that corresponds to 21

pixels for NOAA aerial image of 24cm resolution), which maximizes the F1-score computed for

the pixel-based case.

6.3.2 Oversegmentation SLIC

Since oversegmentation SLIC [Achanta 2012] is considered as a preprocessing step of the region

classification task, it is important to reduce error propagation from this step to the final building

validation. In this step, the parameter m controls the tradeoff between superpixel compactness

and boundary adherence. The greater the value of m, the more spatial proximity is emphasized

and the more compact the cluster. In our algorithm, m is set as 10, as recommended by the

authors, that allows to regularize regular-sized regions with good boundary adherence. The sole

parameter of SLIC is the number of desired superpixels. This parameter is set so that the initial

superpixel size is ηsup. The effects of different values of ηsup are shown in Fig. 6.2b. Both precision

and recall ratios do not significantly change for the low values of ηsup. However, when ηsup is high,

the number of FP pixels and FN pixels increase since the oversegmentation does not adhere well to
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building boundaries. An example of oversegmentation SLIC with different values of ηsup is shown

in Fig. 6.1. If the initial superpixel size ηsup is low (Fig. 6.1a), the image is segmented into more

regions and we can not benefit from the interest of oversegmentation. The number of superpixels

increase and therefore the computation time increases. However, the image is under-segmented

(Fig. 6.1c, red circle) when ηsup is high. Since the oversegmentation SLIC is fast, the good choice

of this parameter can be obtained by varying its value on some test images and observing the

oversegmentation results. In our algorithm, ηsup is set to 175, which maximizes the F1-score as

shown in Fig 6.2b and can sufficiently preserve the boundaries of objects and structures without

under-segmentation errors in natural images.

(a) ηsup = 125 (b) ηsup = 175 (c) ηsup = 225

Figure 6.1: An example of oversegmentation SLIC with different values of ηsup. Low value of ηsup

produces lots of regions and high value of ηsup makes the oversegmentation not adhere well to

building boundaries.

6.3.3 Region Classification

In this study, one major task is to consider the parameters used for region classification. The

two most important parameters are the number of classes K and the coefficient of regularization

β. To select K, we first ignore the MRF regularization model. It means that the region growing

image segmentation is reduced as the initialization of region classification followed by a merging

process. For initialization, the iterative procedure is terminated once the ratio of the absolute

energy difference between consecutive iterations over the energy at the former iteration is below

10−6 or the number of iterations exceeds 100 to ensure that we obtain the best initialization as

possible. The effects of different values of K are shown in Fig. 6.2c. When K is small, we can not

distinguish building regions and their neighboring soil. As a result, the number of FP pixels is high

and the precision ratio is low. Conversely, when K is high, building is segmented into two or more

regions. Only the region neighboring shadows is detected as building. As a result, the number of

TP and FN pixels are both low. As shown in Fig. 6.2c, we choose K as 12 for the best performance.

The parameters of ICM algorithm are chosen as follows. Maximum number of iterations τmax

is set to 500, which is normally not exhausted since the early stopping criterion is met with the

stopping criteria ε is set to 0.01. The effect of different values of the coefficient parameter β are

shown in Fig. 6.2d. The general rule for selecting β is that it should be set to a large value for
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.2: Pixel-based performance in the case of different parameter settings. In each plot, the

nonvarying coefficients are kept at their optimal settings (Table 6.1).
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simple scenes and small for complex scenes. The results indicate improvements as β increases

for both the precision and recall ratio. But when β is high, the neighboring regions of building

are classified the same class label as building. This causes more FP pixels and the precision ratio

decreases. β is therefore chosen as 150, which maximizes the F1-score computed for the pixel-based

case.

6.3.4 Region Merging

Two parameters are required for the region merging step of the iterative region growing image

segmentation. The first parameter is the minimum length of boundary TS between region

(superpixel), produced by the oversegmentation, and the building-shadow boundaries MSB to

determine what region is building segment. The effects of different values of TS on the computed

performances are shown in Fig. 6.2e. The results indicate that low values of TS significantly

reduce the computed precision ratio since FP pixels are high. The false positive building segments

cause the false positive buildings. The larger values of TS do not significantly change the results

since if we can detect one building segment, we can detect the completed building. We found

that the optimal value of TS is 15 pixels.

The second parameter is the minimum rectangularity degree TR. The effects of different values

of TR are shown in Fig. 6.2f. The results indicate performance decrease are observed for both

the precision and recall ratios as the TR values increases. Indeed, large values of TR prevent the

merging and therefore reduce the number of TP pixels and increase the number of FN pixels. It

should be noted that this parameter take effects for only the first iteration of the region growing

algorithm. Then, the merging is decided in order to increase the rectangularity degree of building

segments. In view of the computed performance measures, we select the value of TR as 0.65, which

maximizes the F1-score computed for the pixel-based case.

6.3.5 Final Determination of Buildings

For the determination of final building regions from the segmentation results, the minimum

RMBR-score TB is required. The effects of different values of TB are shown in Fig. 6.2g. For the

low value of TB, we detect the maximum number of TP pixels, minimum number of FN pixels,

but get lots of FP pixels, therefore, the precision ratio is low and the recall ration achieves the

maximum. Conversely, if TB is high, some buildings will be missed. As a result, all three measures

are low. Thus, we select the value of TB as 0.8, which maximizes the F1-score computed for the

pixel-based case.

6.4 Experiments

6.4.1 NOAA Aerial Image

We first compare our SBBD method with the method proposed by [Femiani 2014]. The authors

have processed their algorithm on our NOAA aerial images. An example is shown in Fig. 6.3,

in which true positives (TP) are tinted green, false negatives (FN) are tinted red, and false

positives (FP) are tinted blue. Table 6.2 shows precision, recall and F1-score for three test images

shown in Figs. 6.3, 6.4, 6.5 based on manually entered ground truth. For the image in Fig. 6.3,

SBBD method gives a highly competitive result with precision 74.0%, recall 61.9% and F1-score
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67.4% compared with precision 60.7%, recall 62.6% and F1-score 61.6% concerning pixel-level

performance.

(a) Input image (b) Method of [Femiani 2014] (c) SBBD method

Figure 6.3: Comparisons with method in [Femiani 2014] on NOAA aerial images of Jacmel dataset.

Concerning object-level performance, the method of [Femiani 2014] produces more false posi-

tives (small red patches) than SBBD method and therefore have lower object-level performance.

These false positives are due to the bad performance of their shadow detection algorithm. If we

remove all false negative objects that are bigger than 80 pixels, the new precision, recall and

F1-score for object-level performance are respectively 17.0%, 11.3% and 13.6%. Regarding SBBD

method, the false positives (tinted blue) are due to the missing shadows (blue circle). Besides,

in red circle, a long wall generates a long shadow patch, which can not be eliminated in the

detection of building shadow step, and cause a false positive patch.

Image

Pixel level performance Object level performance

[Femiani 2014] SBBD method [Femiani 2014] SBBD method

P R F1 P R F1 P R F1 P R F1
Fig. 6.3 60.7 62.6 61.6 74.0 61.9 67.4 6.2 12.8 8.3 63.8 56.6 60.0

Fig. 6.4 38.7 66.3 48.8 61.7 58.0 59.8 2.5 10.9 4.1 67.0 75.3 70.9

Fig. 6.5 57.2 65.2 60.9 72.0 71.4 71.7 12.7 51.9 20.5 62.8 57.4 60.0

Table 6.2: Numerical pixel-level and object-level building detection evaluation of applying the

method of [Femiani 2014] and our method on Jacmel aerial images, shown in Figs. 6.3, 6.4, and

6.5.

Fig. 6.4 shows the building detection results of [Femiani 2014]’s method and SBBD method on

rural areas. As shown in Table 6.2, concerning pixel-level performance, SBBD method has better

results with precision 61.7%, recall 58.0% and F1-score 59.8% compared with precision 38.7%,

recall 66.3% and F1-score 48.8%. In this high vegetation density area, [Femiani 2014]’s method

produces lots of false positives, that make their method very low in object-level performance.
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(a) Input image

(b) Method of [Femiani 2014] (c) SBBD method

Figure 6.4: Comparisons with method in [Femiani 2014] on NOAA aerial images of Jacmel dataset.
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Regarding SBBD method, lots of buildings are dismissed because their shadows can not be

detected. In particular, in the high dense building area (half below of the image), [Femiani 2014]’s

method detects mostly all buildings, whereas SBBD method dismiss some buildings.

(a) Input image

(b) Method of [Femiani 2014] (c) SBBD method

Figure 6.5: Comparisons with method in [Femiani 2014] on NOAA aerial images of Jacmel dataset.

An another example is shown in Fig. 6.5. Similar conclusions can be drawn for the method

of [Femiani 2014] (many false positive patch). SBBD method detects most buildings but some

false positives are produced (red circle), because there are the soils that are higher than others

and generate some shadow regions. These shadow regions make our method classify these soils as

buildings.

6.4.2 Worldview-2 Satellite Image

We also compare SBBD method with the automated rooftop detection method proposed by

[Ozgun Ok 2013] on Worldview-2 images of Jacmel dataset as shown in Figs. 6.6 and 6.7. The

Worldview-2 satellite images have four bands: red, green, blue, and NIR, which allows Ok’s
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method to be compared.

(a) Input image (b) Method of [Ozgun Ok 2013] (c) SBBD method

Figure 6.6: Comparisons with method in [Ozgun Ok 2013] on Worldview-2 images of Jacmel

dataset.

(a) Input image (b) Method of [Ozgun Ok 2013] (c) SBBD method

Figure 6.7: Comparisons with method in [Ozgun Ok 2013] on Worldview-2 images of Jacmel

dataset.

For the image in Fig. 6.6, we visually observe that Ok’s method produces more false positive

pixels but less false negatives pixels than SBBD method. Concerning pixel-level performance, as

shown in Table 6.3, Ok’s method is slightly better than ours with precision 67.3%, recall 80.0%

and F1-score 73.1% compared with precision 76.5%, recall 62.5% and F1-score 68.8%. However,

concerning object-level performance, SBBD method is better than Ok’s method (F1-score 73.5%

for Ok’s method and F1-score 83.8% for SBBD method). An another example is given in Fig.

6.7. As shown in Table 6.3, both methods have equally high F1-scores for pixel- and object-level
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performance. Visually, we observe that most of buildings are partially or fully detected.

Image

Pixel level performance Object level performance

[Ozgun Ok 2013] SBBD method [Ozgun Ok 2013] SBBD method

P R F1 P R F1 P R F1 P R F1
Fig. 6.6 67.3 80.0 73.1 76.5 62.5 68.8 78.4 69.2 73.5 93.5 76.3 84.1

Fig. 6.7 63.0 81.8 71.2 71.3 71.6 71.4 78.1 73.2 75.5 86.3 82.6 84.4

Table 6.3: Numerical pixel-level and object-level building detection evaluation of applying the

method of [Ozgun Ok 2013] and our method on Worldview-2 images of Jacmel dataset, shown in

Figs. 6.6 and 6.7.

6.4.3 SZTAKI-INRIA Building Detection Benchmark

Besides, we compare SBBD method with the rooftop extraction method using higher order

CRF proposed by [Li 2015]. The experiments are carried out on SZTAKI-INRIA Building De-

tection Benchmark. The results on Manchester and Normandy images are provided by the authors.

Image
Pixel level performance Object level performance

[Li 2015] SBBD method [Li 2015] SBBD method
P R F1 P R F1 P R F1 P R F1

Normandy 77.9 66.3 71.7 74.2 68.4 71.2 89.3 78.3 83.4 95.1 68.3 79.5
Manchester 81.6 66.4 73.2 78.7 69.9 74.0 89.9 79.7 84.5 97.5 86.81 91.9

Table 6.4: Numerical pixel-level and object-level building detection evaluation of applying the

method of [Li 2015] and our method on SZTAKI-INRIA Building Detection Benchmark, shown

in Fig. 6.8 and Fig. 6.9 .

Table 6.4 shows the quantitative evaluation of both methods. On the Normandy site, the

method of [Li 2015] gives a slightly better results with precision 77.9%, recall 66.3% and F1-score

71.7% compared with precision 74.2%, recall 68.4% and F1-score 71.2% concerning pixel-level

performance. This method also detects more buildings than SBBD method. SBBD method

dismiss a lot of dark building rooftops, which are classified as shows by shadow/vegetation

detection method (an example is shown in Fig. 6.10).

On the Manchester site, SBBD method surpasses the method of [Li 2015] (precision 78.7%,

recall 69.9% and F1-score 74.0% compared with precision 81.6%, recall 66.4% and F1-score

73.2%) in term of pixel-level evaluation. SBBD method detect most of buildings on the site

(precision 97.5%, recall 86.81% and F1-score 91.9% compared with precision 89.9%, recall 79.7%

and F1-score 84.5% in term of object-level evaluation) than the method of [Li 2015].
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(a) Input image

(b) Method of [Li 2015]

(c) SBBD method

Figure 6.8: Comparisons with method in [Li 2015] on Normandy image. True positives are tinted

green, false negatives are tinted red, and false positives are tinted blue.
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(a) Input image

(b) Method of [Li 2015]

(c) SBBD method

Figure 6.9: Comparisons with method in [Li 2015] on Manchester image. True positives are tinted

green, false negatives are tinted red, and false positives are tinted blue.
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(a) Image (b) Final segmentation (c) Detected buildings

Figure 6.10: An entire face of the building rooftop is classified as shadows.

6.5 Discussion

6.5.1 Advantages

The advantages of the proposed building detection method are stated as follows:

• In an urban environment, buildings are generally dense and complex. A shadow region can

be cast by a group of connected buildings. The results prove that the approach has the

ability to separate these attached buildings since it takes into account the spectral features

through the image segmentation stage. An example of detected building in a dense urban

area is shown in Fig. 6.11.

(a) Image (b) Final segmentation (c) Detected buildings

Figure 6.11: Detected building in a dense urban area. Attached buildings are separated by blue

lines.

• The approach is not limited to urban areas but can also be used for building detection in

rural environments (as shown in Fig. 6.5). Provided that the shadows cast by buildings

are not completely occluded, the approach can recover building regions located in relatively

dense vegetation canopies.

• The method requires only reasonably high resolution aerial image. Not required are multiple

views, additional information such as near-infrared (NIR), lidar or any elevation data. Users

must only estimate the illumination angle and supply the parameters. The determination
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of these parameters is simple (as explained in Section 6.3). The method does not require a

large amount of prelabeled data as would be needed by a supervised learning.

• The decision-making is robust and powerful. Since each cluster obtained from the region

classification step is independently treated, large number of image data sets can be utilized

and evaluated in the same manner. The parallel computing can be used. As a result, the

computation time can be reduced.

6.5.2 Limitation and Failures Cases

In spite of those advantages, the proposed approach still contains some major limitations. Since

shadow regions are used to support directly the building detection step, this approach can not

detect buildings whose shadow is not visible or missing (as shown in Fig. 6.12), similar to the

limitations exist in some state-of-the-art methods like [Femiani 2014, Li 2015, Ozgun Ok 2013].

Besides, under oblique lighting, a gabled rooftop may exhibit significantly different intensities on

the sloped portions of the roof, so the proposed method may lose its efficiency as it detects only

one side of the rooftop as is shown in Fig. 6.13. In an extreme case, an entire face of the rooftop

may be in shadow.

(a) Image (b) Shadow/vegetation detec-

tion

(c) Detected buildings

Figure 6.12: A building is not detected since its shadow can not be detected.

(a) Image (b) Shadow/vegetation detec-

tion

(c) Detected building

Figure 6.13: (Self-) occlusion occurs on the shadow areas.
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(a) Image (b) Detected building (c) Evaluation

Figure 6.14: A part of building can not be recovered since building rooftop contains several

components with different colors.

Our approach is designed based on the assumption that buildings have a homogeneous color.

If the rooftop contains several components with different colors then our method will fail to obtain

the entire rooftops. Only the homogeneous part bordering the corresponding shadow region is

detected (as shown in Fig. 6.14).

6.6 Conclusions

This chapter presents the experimental evaluation of the proposed building detection method, in

which both pixel-level and object-level performances are considered. The SBBD method requires

some parameters to be specified by a user. In Section 6.3, the sensitivity of important parame-

ters are analyzed. Performances performed on Jacmel dataset and the SZTAKI-INRIA Building

Detection Benchmark demonstrate that SBBD method detects the building regions with a high

success rate in comparison with some building detection method in the literature. Besides, the

advantages and limitations of SBBD method are discussed. In general, the experiment shows that

SBBD method is reliable and robust. This is the second contribution of this PhD and has been

published in [Ngo 2015].
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The aim of this thesis was to develop a system capable of detecting shadow/vegetation and

building from single high resolution optical images. This chapter gives a review of what has been

accomplished in this thesis (cf. Section 7.1). Besides, perspectives and future directions will be

drawn in Section 7.2.

7.1 Conclusions

First, this thesis presents SSVD method, a novel shadow/vegetation detection method based

on Dempster-Shafer fusion and Markov random fields modelling. Current shadow/vegetation

detection methods in the literature detect separately shadow regions and vegetation regions. In

some cases, these methods might not provide a sufficiently good segmentation map (shadow, veg-

etation, other). For example, a vegetated pixel covered by shadow can be classified as vegetation

(by a vegetation detection algorithm), and at the same time as shadow (by a shadow detection

algorithm). Therefore, we are motivated for a simultaneous shadow/vegetation detection.

Different shadow indices and vegetation indices are investigated. Shadow index c3, vegetation

index ExG (or NDVI if the NIR is available) and the luminance L are chosen. Each feature

image computed from these indices can be considered as an information source. In this context,

DS fusion that aims at merging different data sources is employed. The principal advantage of

this theory is its ability to take into account ignorance of the information by affecting a degree

of confidence which is called a mass function to all simple and compound hypotheses. Moreover,

the spatial correlation between neighboring pixels is also taken into account using the MRF

modelling in order to finally obtain a more reliable and efficient segmentation map with good

accuracy. SSVD method is tested on a variety of image datasets and demonstrates its efficiency

[Ngo 2014a, Ngo 2014b].

Second, a novel approach is developed for the detection of buildings from a single optical image.

This SBBD method does not require any elevation or other additional data. In this method, we



104 Chapter 7. Concluding Remarks and Future Directions

focus on buildings with right-angled corners, that can be characterized as a collection of rectangles,

with the assumption that shadows cast by building objects can be detected and buildings have a

homogeneous color. From the shadow/vegetation mask detected in the previous part, boundaries

between shadows and their corresponding buildings are detected. In order to effectively extract

building objects from image, an novel MRF region growing image segmentation is proposed. The

input image is first decomposed into a set of homogeneous primitive regions. Regions are then

grouped into different clusters by a MRF-based region classification. According to the position of

the shadows, a merging procedure is performed over regions that belongs to the same cluster to

produce regions whose shapes are appropriate to rectangles. This iterative classification-merging

stops when no merging happens. From the resulting segmentation, an algorithm for determining

the final building objects is proposed. The experimental results prove that SBBD method is

applicable in various areas (high dense urban, sub-urban, and rural) and is highly robust and

reliable [Ngo 2015].

7.2 Perspectives

7.2.1 Shadow/Vegetation Detection

Conventional image classification techniques assume that all the pixels within the image are

pure, that they represent an area of homogeneous cover of a single class. This assumption

is often untenable with pixels of mixed composition abundant in an image. Future work on

shadow/vegetation detection can consider not only pure class (shadow or vegetation) but also

mixed class (shadow and vegetation). Moreover, since DS evidence theory can deal with any

union of classes, it is particularly useful to represent the “mixed” pixels in classification problems.

m
(1)
s ({{ω1}, {ω4}}), m

(1)
s ({{ω2}, {ω3}}), m

(1)
s (Θ)

m
(2)
s ({{ω2}, {ω4}}), m

(2)
s ({{ω1}, {ω3}}), m

(2)
s (Θ)

m
(3)
s ({ω3}), m

(3)
s ({{ω1}, {ω2}, {ω4}})), m

(3)
s (Θ)

⊕ ms(A) = m
(1)
s ⊕ m

(2)
s ⊕ m

(3)
s

s ∈ S, A ⊂ Θ

Figure 7.1: DS data fusion diagram for 4-class image segmentation. ω4 denotes the new class

(“shadow-vegetation”)

We have run the test on this new model, in which the DS data fusion diagram (Fig. 4.3,

Chapter 4) is modified as shown in Fig. 7.1 and other steps of the proposed method (Algo-

rithm 1) are kept the same. Fig. 7.2 shows a preliminary result of 4-class segmentation. We

observe that shadows and vegetation are very well detected. There are no false alarm on the

mixed class (shadow-vegetation). However, some mixed class regions are not detected. Two

possible avenues to improve the performance are replacing the Otsu method by other thresh-

olding methods [Mehmet Sezgin 2004] or investigating other methods for determining the mass

function, such as fuzzy logic [Zhu 2002, Chaabane 2009], neural network classifier [Denoeux 2000].
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(a) RGB image (b) Ground truth (c) Our segmentation result

Figure 7.2: Results of segmentation into four classes: shadow (black), vegetation (green), shadow-

vegetation (cyan) and other (white).

7.2.2 Building Detection

There are several directions in which one could take to further the research on building detection.

For a prior MRF model, we intend to express the input data in different color spaces (HSV,

LUV, YIQ, XYZ and LAB) and then combine the set of color values to obtain the multidimen-

sional feature descriptor vector. In fact, each color space has an interesting property, which can

efficiently be taken into account in order to render image segmentation more reliable [Banks 1991].

Moreover, inspired from [Yu 2007], we are interested in defining a MRF energy function

in which three terms: data term, regularization term and form are included. The neighboring

regions are classified as the same class if they have similar spectral information and their fusion

are appropriate to rectangles. As a result, the segmentation performance may be improved. The

merging may be done between two regions having the same class label so as to increase the

MRF energy. Instead of merging regions at the end of segmentation and repeating the region

classification-merging like our method, the merging is run at each iteration of ICM. This may

make the algorithm faster than our method.

7.2.3 Building Classification

Another stage of the processing chain for building database updating described in Chapter 1

should be studied: building classification. In order to do a good job of building classification,

we need to select the appropriate set of features. An example of rules to distinguish between

constructed building and building under construction is shown in Table 7.1.

Constructed building
Building under

construction

Proportion of shadow pixels inside

the building
Few or none Many

Shadows (of wall inside) are parallel

with the building boundaries
No Yes

Table 7.1: Distinguish between a building under construction and a constructed building
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A preliminary result is shown in Fig. 7.3 in which we use only the proportion of shadow pixels.

More rules to classify buildings need to be defined. For example, the high density of vegetation

regions inside the building footprint is a good index to classify a building as the building in ruin.

Input image Shadow/Vegetation detec-

tion

Detected building and its

classification

Figure 7.3: Change detection on building states: the first line represents a constructed building

detected from NOAA aerial image (of time n); the second line represents the same building under

construction detected from Worldview-2 satellite image (of time n+1) of Jacmel datasets. Hence,

this building is classified as building under reconstruction between two different times.
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Otsu Thresholding Method

Thresholding is an important technique in image segmentation applications. The basic idea of

thresholding is to select an optimal gray-level threshold value for separating objects of interest in

an image from the background based on their gray-level distribution. Thresholding creates binary

images from gray-level ones by turning all pixels below some threshold to zero and all pixels about

that threshold to one. If g(x, y) is a thresholded version of I(x, y) at some global threshold t:

g(x, y) =







1, if I(x, y) ≥ t

0, otherwise

Otsu method [Otsu 1975] is a global thresholding selection method, proposed by Nobuyuki

Otsu in 1975. This method is represented as follows. Assuming image I(x, y) is represented in L

gray levels [0,1,. . . ,L − 1]. The number of pixels at level i is denoted by ni, and the total number

of pixels is denoted by N = n0 + n1 + . . . + nL−1. The probability of gray level i is denoted by:

pi =
ni

N
, ni ≥ 0,

L−1
∑

i=0

pi = 1 (A.1)

In the bi-level thresholding method, suppose that the pixels of image are divided into two classes

C0 and C1 by a threshold at level t; C0 denotes pixels with levels [0, 1, . . . , t] and C1 denotes pixels

with levels [t + 1, . . . , L − 1] by the threshold t. The gray level probability distributions for the

two classes are :

w0 =
t

∑

i=0

pi

w1 =
L−1
∑

i=t+1

pi

(A.2)

The means of class C0 and C1 are:

u0 =
t

∑

i=0

ipi

w0

u1 =
L−1
∑

i=t+1

ipi

w1

(A.3)

The total mean of gray levels is denoted by ut

ut = w0u0 + w1u1 (A.4)
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The class variances are:

σ0
2 =

t
∑

i=0

(i − u0)
2pi

w0

σ1
2 =

L−1
∑

i=t+1

(i − u1)
2pi

w1

(A.5)

The within-class variance is:

σW
2(t) = w0σ0

2 + w1σ1
2 (A.6)

The between-class variance is:

σB
2(t) = w0(u0 − ut)

2 + w1(u1 − ut)
2 = w0w1(u1 − u0) (A.7)

So, the algorithm is for each potential threshold t:

1. Separate the pixels into two clusters according to the threshold.

2. Find the mean of each cluster (u0, u1).

3. Square the difference between the means.

4. Multiply by the number of pixels in one cluster times the number in the other (eq. A.7).

This depends only on the difference between the means of the two clusters, thus avoiding

having to calculate differences between individual intensities and the cluster means. The optimal

threshold is the one that maximizes the between-class variance σB
2(t) (or, conversely, minimizes

the within-class variance σW
2(t) because the total variance of gray levels σt

2 = σW
2 + σB

2 is

constant for different partitions.)

T = argmax
0≤t≤L−1

σB
2(t) = argmin

0≤t≤L−1
σW

2(t) (A.8)
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Color Space Transformation

The use of color in image processing is motivated by two principal factors. First, color is a powerful

descriptor that often simplifies object identification and extraction from a scene. Second, humans

can discern thousands of color shades and intensities, compared to few shades of gray. All colors

are seen as variable combination of the three primaries in the RGB color model, which is usually

used in representing and displaying images. Besides, several color models that decouple luminance

and chromaticity are briefly described in the following in terms of their relations with the RGB

model.

RGB Model In this model, each color appears in its primary spectral components of red (R),

green (G) and blue (B). This model is based on Cartesian coordinate system.

HSI Model When humans view a color object, the object is described by its hue, saturation and

brightness. Hue (H) is a color attribute that describes a pure color (rainbow color). Saturation

(S) gives a measure of the degree to which a pure color is diluted by white light. The intensity

(gray level) (I) is a most useful descriptor of monochromatic images. The HSI model manipulates

color images with the following transformation from the RGB model [Gonzalez 2004]:

θ = cos−1
[

1
2 [(R − G) + (R − B)]

[(R − G)2 + (R − B)(G − B)]
1
2

]

H =







θ, if B ≤ G

360 − θ, otherwise

S = 1 − 3

R + G + B
[min(R, G, B)]

I =
R + G + B

3

(B.1)

HSV model The HSV model describes colors in terms of hue (H), saturation (S), and value

(V). Hue (H) represents the wavelength of a color and varies from 0 to 1 when color goes from

red to green then to blue and back to red (H is defined modulo 1). Saturation (S) represents the

amount of white color mixed with the monochromatic color. Value (V) represents the brightness.
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[Smith 1978] describes a triangle-based HSV model in the following relations with the RGB model:

V = max(R, G, B)

S =
V − min(R, G, B)

V

H =



























G − B

6S
, if V = R

1
3 +

B − R

6S
, if V = G

2
3 +

R − G

6S
, if V = B

(B.2)

HCV model The HCV model describes the dominant frequency, the amount of color, and

luminance, respectively, in the following relations with the RGB model [Gonzalez 2004]:

V =
R + G + B

3

H = tan−1

[

R − B√
3(V − G)

]

C =















V − G

cosH
, ‖ cosH‖ > 0.2

R − B√
3 sinH

, otherwise

(B.3)

YIQ model In this scheme, Y is proportional to the gamma-corrected luminance, which corre-

sponds roughly with intensity, I and Q jointly describe the chroma, which corresponds with hue

and saturation, of a color image in the following relations with the RGB model [Gonzalez 2004]:







Y

I

Q






=







0.299 0.587 0.114

0.596 −0.275 −0.321

0.212 −0.523 0.311













R

G

B






(B.4)

Y CbCr model This color space is useful in compression applications [Kumar 2002]. It has the

following relations with the RGB model:







Y

Cb

Cr






=







0.257 0.504 0.098

−0.148 −0.291 0.439

0.439 −0.368 −0.071













R

G

B






+







16

128

128






(B.5)

c1c2c3 model The color space c1c2c3 is defined by [Gevers 1999] as follows:

c1 = arctan

(

R

max(G, B)

)

c2 = arctan

(

G

max(R, B)

)

c3 = arctan

(

B

max(G, R)

)

(B.6)
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building detection based on laser scanner data and topographic map information. Interna-

tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

vol. 34, no. 3/A, pages 169–174, 2002. (Cited on page 64.)



Bibliography 115

[Huang 2004] Jianjun Huang, Weixin Xie and Liang Tang. Detection of and compensation for

shadows in colored urban aerial images. Fifth World Congress on Intelligent Control and

Automation, vol. 4, no. l, pages 3098–3100, 2004. (Cited on page 22.)

[Huang 2014] Zhijian Huang, Jinfang Zhang, Xiang Li and Hui Zhang. Remote sensing image

segmentation based on Dynamic Statistical Region Merging. Optik-International Journal

for Light and Electron Optics, vol. 125, no. 2, pages 870–875, 2014. (Cited on page 71.)

[Huertas 1988] Andres Huertas and Ramakant Nevatia. Detecting buildings in aerial images.

Computer Vision, Graphics, and Image Processing, vol. 41, no. 2, pages 131–152, 1988.

(Cited on page 64.)

[Huete 1994] AR Huete, H Liu, GR De Lira, K Batchily and R Escadafal. A soil color index to

adjust for soil and litter noise in vegetation index imagery of arid regions. In Geoscience

and Remote Sensing Symposium, 1994. IGARSS’94. Surface and Atmospheric Remote

Sensing: Technologies, Data Analysis and Interpretation., International, volume 2, pages

1042–1043, 1994. (Cited on pages 28 and 29.)

[Huete 2002] A Huete, Kamel Didan, Tomoaki Miura, E Patricia Rodriguez, Xiang Gao and

Laerte G Ferreira. Overview of the radiometric and biophysical performance of the MODIS

vegetation indices. Remote sensing of environment, vol. 83, no. 1, pages 195–213, 2002.

(Cited on page 28.)

[Izadi 2010] Mohammad Izadi and Parvaneh Saeedi. Automatic building detection in aerial images

using a hierarchical feature based image segmentation. In 20th International Conference

on Pattern Recognition (ICPR), pages 472–475, 2010. (Cited on pages 8, 65 and 66.)

[Jackson 1983] RD Jackson, PN Slater and PJ Pinter. Discrimination of growth and water stress

in wheat by various vegetation indices through clear and turbid atmospheres. Remote sens-

ing of environment, vol. 13, no. 3, pages 187–208, 1983. (Cited on page 28.)

[Karadag 2015] Ozge Oztimur Karadag, Caglar Senaras and Fatos T Yarman Vural. Segmenta-

tion Fusion for Building Detection Using Domain-Specific Information. IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing, pages 1–11, 2015.

(Cited on pages 8 and 66.)

[Kataoka 2003] T. Kataoka, T. Kaneko, H. Okamoto and S. Hata. Crop growth estimation system

using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, pages 1079–1083, 2003. (Cited on pages 28 and 29.)

[Katartzis 2008] Antonis Katartzis and Hichem Sahli. A stochastic framework for the identification

of building rooftops using a single remote sensing image. IEEE Transactions on Geoscience

and Remote Sensing, vol. 46, no. 1, pages 259–271, 2008. (Cited on page 64.)

[Kim 2007] Taejung Kim, Ts Javzandulam and Tae-Yoon Lee. Semiautomatic reconstruction of

building height and footprints from single satellite images. In Geoscience and Remote

Sensing Symposium, IGARSS 2007, pages 4737–4740, 2007. (Cited on page 21.)

[Kolmogorov 2004] Vladimir Kolmogorov and Ramin Zabin. What energy functions can be mini-

mized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 26, no. 2, pages 147–159, 2004. (Cited on page 77.)



116 Bibliography

[Kolmogorov 2006] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy

minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28,

no. 10, pages 1568–1583, 2006. (Cited on page 77.)

[Korting 2008] T.S. Korting, L.M.G. Fonseca, L.V. Dutra and F.C. Da Silva. Image re-

segmentation - A new approach applied to urban imagery. In VISAPP 2008 - 3rd Interna-

tional Conference on Computer Vision Theory and Applications, Proceedings, volume 1,

pages 467–472, 2008. (Cited on page 66.)

[Korting 2011] Thales Sehn Korting, Luciano Vieira Dutra and Leila Maria Garcia Fonseca. A

resegmentation approach for detecting rectangular objects in high-resolution imagery. IEEE

Geoscience and Remote Sensing Letter, vol. 8, no. 4, pages 621–625, 2011. (Cited on

page 66.)

[Krishnamachari 1995] Santhana Krishnamachari and Rama Chellappa. Delineating buildings by

grouping lines with MRFs. IEEE Transactions on Image Processing, vol. 5, no. 1, pages

164–168, 1995. (Cited on page 75.)

[Kumar 2002] Pranaw Kumar, Kuntal Sengupta and Albert Lee. A comparative study of different

color spaces for foreground and shadow detection for traffic monitoring system. In The

IEEE 5th International Conference on Intelligent Transportation Systems, pages 100–105.

IEEE, 2002. (Cited on page 110.)

[Kwak 2014] Eunju Kwak and Ayman Habib. Automatic representation and reconstruction of

DBM from LiDAR data using Recursive Minimum Bounding Rectangle. ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 93, pages 171–191, 2014. (Cited on pages 66,

68 and 83.)

[Lafarge 2010] Florent Lafarge, Xavier Descombes, Josiane Zerubia and Marc Pierrot-Deseilligny.

Structural approach for building reconstruction from a single DSM. IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pages 135–147, 2010. (Cited on

page 64.)

[Le Hegarat-Mascle 1997] S. Le Hegarat-Mascle, I. Bloch and D. Vidal-Madjar. Application of

Dempster-Shafer evidence theory to unsupervised classification in multisource remote sens-

ing. IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 4, pages 1018–1031,

1997. (Cited on pages 43 and 45.)

[Levinshtein 2009] Alex Levinshtein, Adrian Stere, Kiriakos N Kutulakos, David J Fleet, Sven J

Dickinson and Kaleem Siddiqi. Turbopixels: Fast superpixels using geometric flows. IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pages 2290–

2297, 2009. (Cited on page 72.)

[Li 2015] Er Li, John Femiani, Shibiao Xu, Xiaopeng Zhang and Peter Wonka. Robust Rooftop

Extraction From Visible Band Images Using Higher Order CRF. IEEE Transactions on

Geoscience and Remote Sensing, vol. 53, no. 8, pages 4483–4495, 2015. (Cited on pages ix,

xii, xiii, 65, 97, 98, 99 and 101.)

[Lin 1998] Chungan Lin and Ramakant Nevatia. Building detection and description from a single

intensity image. Computer vision and image understanding, vol. 72, no. 2, pages 101–121,

1998. (Cited on page 64.)



Bibliography 117

[Liu 2005] Wei Liu and Véronique Prinet. Building detection from high-resolution satellite image

using probability model. In International Geoscience and Remote Sensing Symposium,

volume 6, page 3888, 2005. (Cited on page 65.)

[Lopez 1999] Oscar A Lopez and Elizabeth Raven. An overall evaluation of irregular-floor-plan-

shaped buildings located in seismic areas. Earthquake spectra, vol. 15, no. 1, pages 105–120,

1999. (Cited on page 66.)

[Luca 2012] Lorenzi Luca. Innovative methods for the reconstruction of new generation satellite

remote sensing images. PhD thesis, University of Trento, 2012. (Cited on page 22.)

[Makarau 2011] Aliaksei Makarau, Rudolf Richter, Rupert Muller and Peter Reinartz. Adaptive

Shadow Detection Using a Blackbody Radiator Model. IEEE Transactions on Geoscience

and Remote Sensing, vol. 49, no. 6, pages 2049–2059, June 2011. (Cited on page 23.)

[Matthews 1975] Brian W Matthews. Comparison of the predicted and observed secondary struc-

ture of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,

vol. 405, no. 2, pages 442–451, 1975. (Cited on pages vii and 24.)

[Mayer 1999] Helmut Mayer. Automatic object extraction from aerial imagery—a survey focusing

on buildings. Computer vision and image understanding, vol. 74, no. 2, pages 138–149,

1999. (Cited on page 64.)

[McKeown Jr 1999] David M McKeown Jr, Steven D Cochran, Stephen J Ford, J Chris Mc-

Glone, Jefferey A Shufelt and Daniel A Yocum. Fusion of HYDICE hyperspectral data

with panchromatic imagery for cartographic feature extraction. IEEE Transactions on Geo-

science and Remote Sensing, vol. 37, no. 3, pages 1261–1277, 1999. (Cited on page 64.)

[Mehmet Sezgin 2004] Bulent Sankur Mehmet Sezgin. Survey over image thresholding techniques

and quantitative performance evaluation. Journal of Electronic Imaging, vol. 13, no. 1,

pages 220–220, January 2004. (Cited on page 104.)

[Meyer 2008] George E. Meyer and João Camargo Neto. Verification of color vegetation indices for

automated crop imaging applications. Computers and Electronics in Agriculture, vol. 63,

no. 2, pages 282–293, October 2008. (Cited on page 28.)

[Moore 2009] Alastair P Moore, Simon JD Prince, Jonathan Warrell, Umar Mohammed and

Graham Jones. Scene shape priors for superpixel segmentation. In 2009 IEEE 12th Inter-

national Conference on Computer Vision, pages 771–778. IEEE, 2009. (Cited on page 71.)

[Moscheni 1998] Fabrice Moscheni, Sushil Bhattacharjee and Murat Kunt. Spatio-temporal seg-

mentation based on region merging. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 9, pages 897–915, 1998. (Cited on page 71.)

[M.Polidorio 2003] Airton M.Polidorio. Automatic Shadow Segmentation in Aerial Color Images.

Computer Graphics and Image Processing, 2003. SIBGRAPI 2003. XVI Brazilian Sympo-

sium, pages 270–277, 2003. (Cited on pages 22, 23 and 35.)

[Müller 2005] Sönke Müller and Daniel Wilhelm Zaum. Robust building detection in aerial images.

International Archives of Photogrammetry and Remote Sensing, vol. 36, no. B2/W24,

pages 143–148, 2005. (Cited on pages 64, 65 and 67.)



118 Bibliography

[Nagao 1979] Makoto Nagao, Takashi Matsuyama and Yoshio Ikeda. Region Extraction and Shape

Analysis in Aerial Photographs. Computer Graphics and Image Processing, 1979. (Cited

on page 23.)

[Nakajima 2002] Takashi Nakajima, Guo Tao and Yoshifumi Yasuoka. Simulated recovery of

information in shadow areas on IKONOS image by combing ALS data. In Proc. Asian

Conference on Remote Sensing, 2002. (Cited on page 22.)

[Neto 2006] J.C. Neto, G.E. Meyer and D.D. Jones. Individual leaf extractions from young canopy

images using Gustafson-Kessel clustering and a genetic algorithm. Computers and Elec-

tronics in Agriculture, vol. 51, pages 66–85, 2006. (Cited on pages 28 and 29.)

[Ngo 2014a] Tran-Thanh Ngo, Christophe Collet and Vincent Mazet. Détection simultanée de
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Tran Thanh NGO

Shadow/Vegetation and Building
detection from single optical

remote sensing image

Abstract: This PhD thesis is devoted to the detection of shadows, vegetation and buildings

from single high resolution optical remote sensing images. The first part introduces a new

method for simultaneously detecting shadows and vegetation. Several shadow and vegetation

indices were investigated and merged using the Dempster-Shafer evidence theory so as to obtain

a segmentation map with three classes : “shadow”, “vegetation” and “other”. However, the

performance of the fusion is sensitive to noise since it processes at a pixel-level. A Markov random

field (MRF) is thus integrated to model spatial information within the image. In the second

part, a novel region growing segmentation technique is proposed. The image is oversegmented

into smaller homogeneous regions which replace the rigid structure of the pixel grid. An iterative

region classification-merging is then applied over these regions. At each iteration, regions are

classified using a MRF-based image segmentation, then, according to the position of shadows,

regions having the same class are merged to produce shapes appropriate to rectangles. The final

buildings are estimated using the recursive minimum bounding rectangle method from the final

classification. These two algorithms have been validated on a variety of image datasets and

demonstrate their efficiency.

Keywords: remote sensing, Dempster-Shafer evidence theory, Markov Random Fields, pattern

recognition, image segmentation, rectangularity measure, building detection, region growing.

Résumé: Cette thèse est dédiée à la détection de l’ombre, de la végétation et des bâtiments à

partir d’une unique image optique très haute résolution. La première partie présente une nouvelle

méthode pour détecter simultanément les ombres et la végétation : plusieurs indices d’ombre et

de végétation sont comparés puis fusionnés grâce à la théorie de l’évidence de Dempster-Shafer

afin d’obtenir une segmentation en trois classes : “ombre”, “végétation” et “autre”. Comme la

fusion est une méthode pixellique, elle est incorporée dans un contexte markovien pour régulariser

la segmentation. Dans la deuxième partie, une nouvelle technique de segmentation d’images par

croissance de region est proposée. L’image est tout d’abord sur-segmentée en régions homogènes

afin de remplacer la structure rigide de la grille de pixels. Une classification-fusion itérative est

ensuite appliquée sur ces régions. À chaque itération, les régions sont classées en utilisant une

segmentation markovienne, puis regroupées entre elles en fonction de la position des ombres, de

leur classe, et de la rectangularité de la forme fusionnée. Les bâtiments sont estimés à partir de

la classification finale comme étant les rectangles d’emprise minimale. Ces deux algorithmes ont

été validés sur plusieurs images de télédétection et ont permis de démontrer leur efficacité.

Mots-clefs: télédétection, théorie de Dempster-Shafer, champ de Markov, reconnaissance de

forme, segmentation, mesure de rectangularité, détection de bâtiment, croissance de région.


