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Les minutes, mortel folâtre, sont des gangues Qu'il ne faut pas lâcher sans en extraire l'or ! Souviens-toi que le Temps est un

Les phénomènes de couplage électromagnétique entre les lignes aériennes de transmission d'énergie et des structures voisines sont inévitables, surtout dans les zones densément peuplées. Les effets indésirables découlants de cette proximité sont variés, allant de l'établissement des tensions dangereuses à l'apparition de phénomènes de corrosion dus au courant alternatif. L'étude de cette classe de problèmes est nécessaire pour assurer la sécurité dans les alentours de la zone d'interaction et aussi pour préserver l'intégrité des équipements et des dispositifs présents. Cependant, la modélisation complète de ce type d'application implique la représentation tridimensionnelle de la région d'intérêt et nécessite des méthodes numériques de calcul de champs spéci ques. Dans ces travaux, des problèmes liés à la circulation de courants électriques dans le sol (ou de couplage dit conductif) seront abordés avec la méthode des éléments nis. D'autres problèmes résultants de la variation temporelle des champs électromagnétiques (ou de couplage dit inductif) seront aussi considérés et traités avec la méthode PEEC (Partial Element Equivalent Circuit) généralisée. Plus précisément, une condition limite particulière sur le potentiel électrique est proposée pour tronquer le domaine de calcul dans l'analyse par éléments nis des problèmes de couplage conductif et une formulation PEEC complète pour la modélisation de problèmes de couplage inductif est présentée. Des con gurations tests de complexités croissantes sont considérées pour valider les approches précédentes. Ces travaux visent ainsi à apporter une contribution à la modélisation de cette classe de problèmes, qui tendent à devenir communs avec l'expansion des réseaux électriques.

Mots-clefs : Lignes électriques à haute tension. Couplage électromagnétique. Prise de terre. Méthode des éléments nis (MEF). Méthode PEEC (Partial element equivalent circuit). RESUMO MARTINHO, L. B. Modelagem numérica de fenômenos de acoplamento eletromagnético nas imediações de linhas aéreas de transmissão de energia. 117 p. Tese (Doutorado) Universidade de São Paulo e Université Grenoble Alpes, 2016. Em inglês. Fenômenos de acoplamento eletromagnético entre linhas aéreas de transmissão de energia e outras estruturas vizinhas são inevitáveis, sobretudo em áreas densamente povoadas. Os efeitos indesejados decorrentes desta proximidade são variados, indo desde o estabelecimento de potenciais perigosos até o surgimento de processos de corrosão por corrente alternada. O estudo desta classe de problemas é necessária para a garantia da segurança nas imediações da zona de interação e também para se preservar a integridade de equipamentos e dispositivos ali presentes. Entretanto, a modelagem completa deste tipo de aplicação requer a representação tridimensional da região de interesse e necessita de métodos numéricos de cálculo de campos especí cos. Neste trabalho, serão abordadas as modelagens de problemas decorrentes da circulação de correntes elétricas no solo (ditos de acoplamento condutivo) com o método dos elementos nitos. Também serão considerados problemas produzidos pela variação temporal dos campos eletromagnéticos (ditos de acoplamento indutivo), que serão tratados com o método PEEC (Partial Element Equivalent Circuit) generalizado. Mais especi camente, uma condição de contorno particular sobre o potencial elétrico é proposta para o truncamento do domínio de cálculo na análise de problemas de acoplamento condutivo com o método dos elementos nitos, e uma formulação completa tipo PEEC para a modelagem de problemas de acoplamento indutivo é apresentada. Problemas teste de complexidades crescentes são considerados para a validação das abordagens precedentes. Estes trabalhos visam fornecer desta forma uma contribuição à modelagem desta classe de problemas, que tendem a se tornar comuns com a expansão das redes elétricas.

Palavras-chave: Linhas de transmissão em alta tensão. Acoplamento eletromagnético. Aterramento. Método dos elementos nitos (MEF). Método PEEC (Partial Element Equivalent Circuit Method). 
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A Magnetic vector potential (Wb/m).

a e i i-th edge degree of freedom of element e.

B

Magnetic ux density vector (T).

D

Electric displacement vector (C/m 2 ).

D

Geometric distance (m).

d Geometric distance (m).

E

Electric eld (V/m).

f Frequency (Hz).

H Magnetic intensity vector (A/m).

H Geometric distance (m).

H (1) n Hankel functions of the rst kind and order n.

H (2) n Hankel functions of the second kind and order n.

h Geometric distance (m).

I, I k

Electric current (A).

[I] Vector of branch currents (A).

J

Current density vector (A/m 2 ).

J n

Bessel function of the rst kind and order n. j Imaginary unit, j = √ -1.

[L] Inductance matrix (H).

Electrode length or geometric distance (m).

N e i i-th nodal scalar shape function from element e.

n Normal unit vector.

O (n 2 ) Big O notation for quadratic complexity.

P

Point.

R

Vector residual.

R

Electrode radius or geometrical parameter (m).

[R] Resistance matrix (W).

R i i-th weighted residual.

r Position vector (m).

r Geometrical distance (m). u 1-D zero order shape function.

v Facet vector shape function.

w Facet vector shape function.

x Cartesian coordinate (m).

y Cartesian coordinate (m).

[Z] Impedance matrix (W).

z Cartesian coordinate or axial coordinate of a cylindrical system of coordinates (m).

Γ Domain boundary surface.

Γ e i i-th facet of element e.

[∆ϕ] Vector of branch voltage drops (V).

δ Skin depth (m).

δ i j Kronecker's delta; δ i j = 1 if i = j, δ i j = 0 if i j.

ε Electric permittivity (F/m).

µ Magnetic permeability (H/m). 
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INTRODUCTION

Presentation

The analysis of the electromagnetic coupling between an electric power system and other nearby structures is a complex problem in electrical engineering. Even though the physical phenomena taking part in this interaction may be stated in terms of well-known electromagnetic effects, the practical situations of interest tend to be elaborate.

For instance, a typical scenario of investigation would correspond to a relatively narrow strip of land in which a long overhead power line shares a restricted space with other utilities. Ordinary buildings and other urban structures could be close to the overhead line as well, especially in subtransmission and distribution circuits. Additionally, the right of way could also be approached by working personnel or by other subjects. A real example of this situation is shown in Figure 1.

In the aforementioned problems, the analyst or engineer is most frequently concerned with safety issues arising from the proximity with the transmission system. Another major interest is the investigation of the susceptibility of structures and devices to effects induced by the electromagnetic environment represented by the vicinities of the overhead line.

As a consequence of the complexities of these problems, numerical ap- This work aims to contribute with the numerical modeling of the latter category of problems. In the subsequent sections, an overview of the general electromagnetic coupling problem with a power system will be provided, in order to lay the groundwork for the following chapters. The structure and organization of this document will be presented as well, together with establishing its scope and speci c objectives.

Electromagnetic coupling phenomena in power systems

The disturbances produced by the in uence of a power system in its neighboring structures are often classi ed into three main categories, each associated to a predominant interaction.

The rst group is the one associated to the effects resulting from the timevarying magnetic ux density eld B, which is produced by the electric currents owing in the overhead conductors. These effects are conventionally named inductive coupling phenomena. According to Faraday's law of induction, the time variation of this eld brings about an induced electric eld E in the surroundings of the transmission line and an induced electric potential distribution ϕ. The circulation of transient currents in the line is associated to faster rates of change for B and tends to produce higher induced voltages as a consequence.

On the other hand, the steady state operation of the transmission line leads to lower but sustained levels of induction.

Still during a transient or a fault, current components may be diverted from the power system and drained to the soil. These current injections occur by means of shield wires, metallic towers and their grounding structures, leading to an overall rise of the electric potential in the region beneath the ground surface. The associated electric eld E and current density J distributions lead to interactions that constitute a second group: the category of conductive coupling phenomena.

Moreover, the sources supplying an overhead line contained in a right of way impose both a particular voltage level between its phase conductors and The effects emerging from this ow are commonly categorized as capacitive coupling phenomena.

The electric eld and the rise in the electric potential due to any of the three mechanisms previously described constitute signi cant engineering concerns.

Touch voltages produced in metallic structures by either the inductive, capacitive or conductive coupling with an overhead line may cause the ow of larger than admissible currents through the human body, exceeding the accepted thresholds of protection against electric shock. The same holds true for step voltages arising from conductive coupling effects.

Utilities and other types of equipment may also suffer direct damage from the action of inductive, conductive and capacitive coupling phenomena. Among the structures frequently sheltered in a transmission line right of way and susceptible to electromagnetic coupling phenomena are rails, pipelines (Figure 2) and other devices attached to them such as cathodic protection systems. For instance, high electric potential gradients can deteriorate the protective coating of pipelines and expose their metallic bodies to oxidation. Susceptible electronic apparatus integrating cathodic protection systems may also be directly affected by intense elds. Even AC electrochemical corrosion phenomena of metallic structures may be triggered in this particular environment by the direct action of the elds induced by the overhead line (Figure 3).

Furthermore, insulating ange connections existing between two consecutive pipeline sections may be damaged by high electric elds, causing the transfer of dangerous induced potentials to far away distances. High current densities arising from the intense conductive coupling during a fault may even pierce or perforate the metallic surfaces of underground pipelines buried close to a tower grounding system.

In any case, the quanti cation and the prediction of these effects require the knowledge of the intensities of the electromagnetic elds taking part in the phenomena. However, their direct determination by means of measurements is only seldom feasible. Practical complications connected to establishing a controlled measuring experiment in a live overhead line impose signi cant limitations on the investigation efforts in this domain.

Objectives of this work

Taking into account the scenario previously portrayed, the alternative use of computer models for numerically determining the physical quantities involved in electromagnetic coupling phenomena becomes preeminent.

Nevertheless, the numerical modeling of this class of applications is challenging. The presence of large volumes of inactive air regions, the treatment of semi-in nite domains and the difference in scale between electrodes or phase conductors and the region actually represented in the vicinities of the overhead line are all well-known modeling challenges in the domain of computational electromagnetics.

Therefore, this work aims to contribute with the numerical modeling of this class of applications. More speci cally:

ˆThe analysis of 3-D conductive coupling problems occurring in the vicinities of an overhead line with the use of the Finite Element method (FEM) will be proposed. This method has been successfully employed for analyzing grounding arrangements for computing their equivalent impedances, and will have its application extended to this broader class of problems by the use of a particular boundary condition for treating semi-in nite soil domains.

ˆThe analysis of 3-D inductive coupling problems with the generalized Partial Element Equivalent Circuit (PEEC) method will be proposed as well.

This integral method will be adopted to circumvent some modeling difculties intrinsic to other numerical approaches and that play a signi cant role in this context of applications, such as the discretization of thin conductors and of large inactive air regions.

The analysis of capacitive coupling situations or the account of capacitive effects are not contemplated in this work and are left for future developments.

We expect this work to help to lay the groundwork for the analysis of complex, large scale three-dimensional electromagnetic coupling situations occurring in the outskirts of overhead lines from the point of view of computational electromagnetics.

Electromagnetic model

In order to achieve these objectives, the following chapters will discuss the modeling of coupling phenomena and the solution of the numerical problems arising from the proposed electromagnetic models. This section is devoted to stating the basic relations governing the relevant electromagnetic effects for later reference.

The coupling of an overhead transmission line with an arbitrary adjacent system is governed by Maxwell's equations. This is the case of all electromagnetic phenomena in macroscopic media, and the categorization of coupling effects into the three independent classes stated in section 1.2 is conceived only as an aid to the analyst.

Maxwell's equations relate the electromagnetic elds to their ultimate sources, which are the free electric volume charge density ρ V and the electric current density distribution J. These equations are given below:

∇×E = - ∂B ∂t ; (1.1a) ∇×H = J + ∂D ∂t ; (1.1b) ∇ • B = 0 ; (1.1c) ∇ • D = ρ V . (1.1d)
Each eld occurring in the set of equations given by (1.1) is pairwise related to a counterpart by means of the appropriate constitutive relations of the material media. As usual, the relationship between magnetic ux density B and magnetic intensity H is written as

B = µ H. (1.2) 
For electric ux density D and for electric eld intensity E,

D = ε E. (1.3)
Similarly, Ohm's law establishes the relationship between electric eld E and the current density J:

J = σ E = ρ -1 E. (1.4)
In the most general case, electric permittivity ε, magnetic permeability µ, electric conductivity σ and electric resistivity ρ = σ -1 are tensors re ecting the particular behavior of the media. In the applications later considered in this work, only simple scalar material properties will be taken into account.

The continuity equation for electric currents given by

∇ • J + ∂ρ V ∂t = 0 (1.5)
is implied by (1.1b). Additionally, the absence of free magnetic poles expressed by (1.1c) is consistent with the following de nition of a magnetic vector potential A:

B = ∇×A. (1.6)
Seeing that the order of space and time derivatives may be interchanged, Faraday's induction law (1.1a) may be restated with the aid of (1.6) in the form given below:

∇× E + ∂A ∂t = 0. (1.7)
This leads to the introduction of a scalar electric potential ϕ as well, since the quantity in the left-hand side of (1.7) with a vanishing curl can be expressed as the gradient of some scalar function:

E + ∂A ∂t = -∇ϕ . (1.8)
The foregoing relations will be eventually retaken in the course of the next chapters.

Organization of this document

This introduction will be followed by ve other chapters, and the conceptual separation of coupling phenomena into the categories described in section 1.2 is re ected in their organization.

Chapter 2 begins with a review of the technical literature concerned with electromagnetic coupling phenomena in the context of power systems. Special attention will be dedicated to numerical approaches employed in the analysis of this class of applications.

The next two chapters will be devoted to the nite element analysis of con-ductive coupling phenomena in the vicinities of an overhead line. In chapter 3, a special boundary condition will be proposed, in order to circumvent the modeling dif culties related to the representation of a soil domain with open boundaries. This approach will be tested in chapter 4 in an assortment of cases of application.

Chapter 5 is dedicated to modeling inductive coupling situations with the generalized PEEC method. The solution of a particular inductive coupling problem will be considered, and the results will be confronted with the alternative solutions obtained with the nite element method.

Finally, chapter 6 will conclude this document with a critical evaluation of the developments. The proposition of possible extensions or future works will be outlined as well.

BIBLIOGRAPHIC REVIEW

Introduction

The modeling of electromagnetic coupling phenomena involving overhead lines in power systems has evolved over the course of time. Different approaches have been employed throughout the years, and in this chapter an account of the research dedicated to its modeling will be presented.

This review is organized in three parts. The rst two are mostly concerned with the earliest theoretical developments and with the transition to a later period characterized by the introduction of digital computers in this eld of study.

These are followed by a section dedicated to the use of speci c numerical methods in this domain of applications, with emphasis on the Finite Element Method (FEM) and the Partial Element Equivalent Circuit (PEEC) Method.

Early developments

While the turn of the nineteenth century to the twentieth is characterized by the consolidation of AC polyphase systems as the preferred power transmission method, the ensuing decades observed a wide dissemination of large-scale, high-voltage power grids all over the world. Not by chance, the investigations concerned with the electromagnetic coupling between power transmission systems and nearby structures may be traced back to that time.

In that period, the diffusion of power transmission networks had already resulted in their signi cant proximity with other systems, leading to the hazardous effects discussed in section 1.2. In accordance with the resources then available, the modeling attempts were based on purely analytical techniques.

For instance, classical works such as [START_REF] Carson | Wave propagation in overhead wires with ground return[END_REF] By the mid-twentieth century, the number and variety of systems coexisting with power transmission utilities had grown to the point of being a source of concern. The work by [START_REF] Sunde | Earth conduction effects in transmission systems[END_REF] belongs to this particular period and compiles the methods of analysis available at the time in this domain of applications. Meanwhile, a better quantitative understanding of the risks of electric shock was also attained [START_REF] Dalziel | Effects of electric shock on man[END_REF], reinforcing the care with working personnel in shared rights of way.

The growing concern with electromagnetic coupling problems is manifested in the continuous discussion of related topics in the specialized literature [START_REF] Pohl | In uence of high-voltage overhead lines on covered pipelines[END_REF][START_REF] Favez | Contribution to studies on problems resulting from the proximity of overhead lines with underground metal pipe lines[END_REF][START_REF] Favez | Contribution to studies on problems resulting from the proximity of overhead lines with underground metal pipe lines[END_REF]DAWALIBI;[START_REF] Dawalibi | Optimum design of substation grounding in a two layer earth structure: Part I -Analytical study[END_REF]. The modeling of grounding electrodes and the study of coupling situations between overhead lines and underground parallel pipelines are among the applications most frequently considered. The continued and cumulative discussions on these themes led different institutions to organize special research commissions, which eventually produced an extensive technical documentation composed of reports [START_REF] Frazier | Power Line-Induced AC Potential on Natural Gas Pipelines for Complex Rights-of-Way Con gurations[END_REF][START_REF] Dawalibi | Power Line Fault Current Coupling to Nearby Natural Gas Pipelines[END_REF], engineering guides [START_REF] Cigré | Guide on the in uence of high voltage AC power systems on metallic pipelines[END_REF] and standards (CENELEC, 2012).

The second half of the twentieth century is marked by the advent of the digital computer as well, which in uenced the modeling of this class of problems.

The resulting trends in the development of numerical techniques for analyzing electromagnetic coupling with overhead lines will be covered in the following section.

Trends in computer modeling

A rst modeling trend that bene ted from the increasing availability of computer resources is expressed by the development of special purpose software tools based on semi-analytical procedures. The approaches belonging to this group may be regarded as computer implementations of the well-established analytical techniques previously mentioned, which were frequently too laborious to be of practical use without the aid of a computer.

The software solutions issued from this trend are particularly well suited to the analysis of the inductive coupling between overhead lines and long parallel structures, since they rely on the analytical evaluation of self and mutual inductances. The computations are frequently organized in zones of approximate parallelism and lead to the assembly of a large equivalent network of lumped circuit elements [START_REF] Dawalibi | Ground fault current distribution between soil and neutral conductors[END_REF][START_REF] Sobral | Interferences between faulted power circuits and communication circuits or pipelines -Simpli cation using the decoupled method[END_REF]. The works by (DAWALIBI; SOUTHEY, 1989) stand out in this category, since their contemporary software implementations have become popular in specialized power engineering communities and have found a commercial success [START_REF] Ses | CDEGS -Current Distribution, Electromagnetic Fields, Grounding and Soil Structure Analysis software package[END_REF].

The second recognizable trend corresponds to the use of general numerical techniques to analyze electromagnetic problems. Early examples of efforts in the discipline of computational electromagnetics include the works by [START_REF] Yee | Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[END_REF] with the Finite Difference Method and by [START_REF] Silvester | A general high-order nite-element analysis program waveguide[END_REF][START_REF] Silvester | A general high-order nite-element analysis program waveguide[END_REF][START_REF] Silvester | Finite element solution of saturable magnetic eld problems[END_REF] with the Finite Element Method. The Partial Element Equivalent Circuit technique may be traced back to the work by [START_REF] Ruehli | Equivalent circuit models for three-dimensional multiconductor systems[END_REF].

These pioneering works in the domain of computational electromagnetics were concerned with speci c problems, such as wave propagation, non-linear magnetostatics and equivalent circuit determination. In spite of this, a diversi cation in the use of the corresponding general numerical techniques was eventually attained, reaching the analysis of electromagnetic coupling problems involving overhead lines in power systems. Some relevant applications will be discussed in the following section.

Numerical analysis of conductive and inductive coupling applications

The modeling of conductive coupling problems is closely related to the analysis of grounding systems. Various numerical techniques have been employed

to model this class of problems, ranging from integral approaches to the use of the Finite Element Method.

The rst works based on the FEM for analyzing grounding systems were based on static nodal formulations (CARDOSO, 1994; TRLEP; HAMLER; HRIBERNIK, 1998). Time harmonic formulations still based on nodal elements were introduced by [START_REF] Nekhoul | A nite element method for calculating the electromagnetic elds generated by substation grounding systems[END_REF][START_REF] Nekhoul | A nite element method for calculating the electromagnetic elds generated by substation grounding systems[END_REF], and the use of edge elements was introduced by [START_REF] Silva | Método de elementos nitos aplicado à solução de problemas de aterramento elétrico[END_REF][START_REF] Silva | Determination of frequency-dependent characteristics of substation grounding systems by vector nite-element analysis[END_REF]. A comprehensive account on the development of FEM formulations for the analysis of grounding systems is provided in [START_REF] Silva | Método de elementos nitos aplicado à solução de problemas de aterramento elétrico[END_REF].

The modeling of this class of applications with the FEM has been preferred by some analysts due to some of its intrinsic characteristics. Among the most signi cant ones is that FEM-based approaches lead to the solution of sparse systems of equations, which are much more easily treatable from a numerical point of view. The account of non-homogeneous and non-linear media with this method tends to be simpli ed as well, when compared to integral approaches.

On the other hand, the standard FEM is not well adapted to the 

Chapter summary

This chapter presented a brief and non-exhaustive account of the works available in the technical literature concerned with modeling electromagnetic coupling effects in power systems.

In the case of the nite element analysis of conductive coupling phenomena, most of the applications can be said to be concerned with the analysis of independent grounding systems, for which traditional domain truncation tech-niques are applicable. In the case of inductive coupling problems, the most frequently analyzed situations involve the parallelism of elongated structures with the overhead line along great distances.

The developments discussed from now on in the following chapters are expected to contribute to the numerical modeling of the electromagnetic phenomena involved, as well as to better understanding such coupling interactions.

CONDUCTIVE COUPLING MODELING

Introduction

This chapter analyzes the numerical modeling of conductive coupling problems in transmission line rights of way. As already discussed, this category of problems derives from the injection of electrical currents in the soil, leading to the establishment of an electromagnetic eld beneath the earth surface.

Living subjects roaming the vicinities of the region where the current injection takes place may be exposed to dangerous effects; underground structures and devices may be damaged.

The modeling of such a class of applications is closely related to the analysis of grounding systems, since the electric currents diverted from an overhead line are injected into the earth by means of earthing electrodes. As a consequence, nite element method techniques already employed for modeling that former class of applications may be extended and adapted in the analysis of the latter.

The following sections will describe the problem in detail and will highlight the complications involved in modeling conductive coupling phenomena in comparison with the nite element analysis of a simple grounding system.

As will become clear, these dif culties are mostly concerned with the truncation of the computational domain and with the application of a representative boundary condition to its frontiers.

Distribution of fault currents diverted to the ground during a contingency

Overhead transmission lines provide the interconnection between electric power generation sites and electric power consumers. The length of the transmission system is often considerable, and a great number of towers may be required to span the distances involved. Along the path followed by the line, each tower is anchored to the ground by its foundation and is electrically connected to the earth by means of a grounding network.

While the energized conductors integrating the power transmission circuit are supported by the towers and attached to them by means of insulators, a complementary circuit composed of shield or guard wires is held at a higher level and in direct contact with their metallic structures. These shield wires are expected to protect the energized conductors from direct lightning strikes.

This particular con guration in which the tower structures are interconnected by the shield wires makes an effective path for electric currents to ow towards the earth during a contingency. In case of a lightning strike or during the failure of an insulator in one of the towers, a complicated and non-trivial pattern of electric currents is injected into the ground at the tower footings. Even though this pattern {I k } of injected currents can be predicted or determined, its distribution along the large region traversed by the overhead line makes it dif cult to ascertain a priori the effective extent of the area subjected to their in uences. This represents a major dif culty for modeling this class of electromagnetic phenomena with numerical methods, as will be discussed in the next section.

Modeling the ow of electric currents in the context of conductive coupling phenomena

The ow of electric currents in a three-dimensional domain can be investigated with the aid of analytical and numerical techniques. In this section, the modeling of this class of problems will be rst described in general terms. The adaptions to the analysis of conductive coupling phenomena in the vicinities of a power system will be discussed thereafter.

Formulation of the boundary value problem

Conductive coupling phenomena in transmission line rights of way can be conveniently modeled as steady state electric conduction problems. Under these circumstances, the time derivatives occurring in Maxwell's equations (1.1) are neglected. As a consequence, the continuity equation expressed by (1.5) becomes simply

∇ • J = 0. (3.1)
The relationship between electric eld E and scalar potential ϕ provided by (1.8) is also reduced to

E = -∇ϕ. (3.2)
With the aid of (1.4) and (3.2), (3.1) can be recast in terms of ϕ, leading to the following boundary value problem in a conductive domain Ω: This general de nition of a boundary value problem may be employed to investigate a wide range of applications that include conductive coupling phenomena involving overhead lines in their rights of way. Figure 6 provides a graphical representation of the associations that will be established in the following paragraphs between the abstract general problem depicted in Figure 5 and the situation shown in Figure 4.

∇ • ( -σ ∇ϕ ) = 0 in Ω; (3.3a) ϕ = ϕ 0 in Γ D ; (3.3b) -σ ∇ϕ • n = | J 0 | in Γ N . ( 3 
Indeed, under the circumstances exposed in section 3.2, Ω may be associated to an underground region of soil into which electric currents are fed by means of grounding electrodes. The cross sections of these electrodes at the ground surface are then identi ed with Γ FP and with the non-homogeneous boundary condition (3.3c). The remaining boundary surface required to fully enclose Ω is completely beneath the soil surface. It may be promptly identi ed with Γ D and its corresponding Dirichlet condition (3.3b). The choice of an appropriate electric potential distribution ϕ 0 on Γ D in this case is critical for obtaining a consistent solution for the current ow inside Ω, and this subject will be the focus of the following sections of this chapter.

Imposing a vanishing potential condition at in nity

The physical condition most frequently imposed on the analysis of problems involving the underground ow of electrical currents is that ϕ vanishes at distances suf ciently far away from the current electrodes. Indeed, this condition is either implicitly or explicitly enforced in the analytical solution of simple grounding con gurations.

In the framework of the boundary value problem established in the previous section, the enforcement of this condition corresponds to the assumptions that boundary Γ D is located at in nity and that the Dirichlet constraint in (3.3b) becomes homogeneous with ϕ 0 = 0. As a consequence, domain Ω is reduced to a half-space bounded only by the air-soil interface.

When numerical techniques are considered for dealing with complex but secluded grounding systems, this condition of a vanishing electrical potential may still be emulated. For instance, the nite element method relies upon the discretization of a geometrical model of the region under analysis that must be inevitably limited and nite. As a consequence, it cannot deal directly with a boundary taken to in nity, but suitable techniques can enforce or at least approximate the required physical condition for the potential.

Among the techniques available for circumventing this limitation, the simplest one corresponds to the mere over-dimensioning of the computational domain, which leads to an approximate solution. As seen on chapter 2, more sophisticated methods include the use of spatial transformations [START_REF] Cardoso | Fem modelling of grounded systems with unbounded approach[END_REF], in nite elements (ZIENKIEWICZ; TAYLOR; ZHU, 2006; DHATT; TOUZOT; LEFRANÇOIS, 2007) and of perfectly matched layers (BÁRDI; BÍRÓ; PREIS, 1998).

However, the foregoing procedures are only formally acceptable when applied to the analysis of simple and secluded grounding systems. None of them are strictly suitable for dealing with a transmission line right of way. The reason behind these assertions is that any of these approaches would implicitly neglect the contributions added by the current injections in every tower footing left outside the geometrical model, as represented schematically in Figure 7.

To judge a priori whether or not the neglect of these current injections tak- ing place beyond the truncation boundaries would provide an acceptable approximation in the nite element analysis of a particular conductive coupling problems is a dif cult task. In order to avoid this dilemma, a procedure that tries to take these current contributions into account is proposed in this chapter.

The technique proposed consists in computing a non-homogeneous Dirichlet boundary condition for every point lying on boundary Γ D by means of a conveniently de ned function. The explicit form of this function will arise from the investigation carried out in the following section.

Analytical solution and asymptotic behavior of selected grounding arrangements

In the following subsections, the analytical solution of some selected problems will be considered. The intended objective is to make explicit the asymptotic behavior of the solutions obtained for ϕ at far away distances in different situations. The results will motivate the de nition of a particular function ϕ 0 de ned on Γ D , in order to determine a more convenient version of the boundary condition (3.3b) to analyze conductive coupling problems occurring in the vicinities of a faulted transmission system.

Three particular con gurations will be addressed:

ˆA point current source injecting current into the ground;

ˆA very long horizontal electrode buried deep under the soil surface and ˆA nite vertical grounding rod driven into the soil.

The electric potential of a point current source

Firstly, let the problem of a point current source lying on the earth surface be considered as shown in Figure 8. As discussed in the previous section, in this case domain Ω corresponds to a semi-space bounded only by the interface between the earth and the air, and Γ D is supposed to be far away from the point source at in nity.

The point source is supposed to be located at the origin of a system of coordinates and injects a total current I into Ω. This domain is supposed to be composed by a homogeneous and isotropic soil of conductivity σ S . In this idealized situation, the total electric current I fed by the source into the medium spreads towards in nity with a uniform distribution. Consequently, the geometric loci of constant current densities | J | are semi-spherical shells concentric to the point source.

Any point located on one of these shells may be represented by a position vector r. The current density evaluated at such a point will be accordingly

J (r) = I 2π | r | 2 r | r | . (3.4)
Figure 8: A point current source lying on the soil surface.

The electric eld E distribution associated to this current ow is related to (3.4) by means of Ohm's law (1.4). Since the electric potential at in nity is assumed to be ϕ 0 = 0, the integration of E along a convenient radial path yields the electric potential at r :

ϕ (r) = - r ∞ E (R) • dR = - I 2π σ S r ∞ R | R | 3 • dR = I 2π σ S | r | . (3.5)
This expression may be rewritten with the expansion of | r | into variables ρ and z of a cylindrical system of coordinates centered at the point charge, as shown below:

ϕ = I 2π σ S | r | = I 2π σ S ρ 2 + z 2 . (3.6)
Any of these expressions may be easily shown to satisfy the partial differential equation corresponding to (3.3a) by means of differentiation and direct substitution.

As already emphasized, the previous expressions were obtained for a point current source injecting a current I into a semi-in nite half-space Ω. If the related problem of a point current source inside a homogeneous and isotropic medium unbounded in all directions was considered, an analogous expression

for the resulting electric scalar potential could be obtained by similar proce-dures. The result would be simply

ϕ = I 4π σ S | r | = I 4π σ S ρ 2 + z 2 , (3.7)
which is half of the potential predicted by (3.6).

Both (3.6) and (3.7) show that the potential of a point source varies inversely with the radial distance measured from the source.

The electric potential of a horizontally buried cylindrical electrode

A second analytical problem will be considered in this section, which corresponds to an idealization of a suf ciently long ground wire buried horizontally and deep into the earth. It corresponds to a cylindrical conductor of in nite length and radius R embedded in an unbounded soil domain Ω, as shown in Figure 9.

The conductivities of the soil and of the conductor will be denoted by σ S and σ C respectively. A cylindrical system of coordinates attached to the conductor is also shown in Figure 9 and a direct electrical current I is injected in its origin.

This current travels through the conductor and is drained into the soil, leading to an electric potential distribution ϕ that satis es (3.3a).

Figure 9: The long cylindrical conductor embedded in an in nite medium analyzed by [START_REF] Ollendorff | Der Stromübergang aus langgestreckten Leitern in die Erde[END_REF].

It is convenient in this case to express electric potential ϕ in terms of a piecewise-de ned function, for which the region inside the conductor is distinguished from the soil. More speci cally,

ϕ ( ρ, z) =                ϕ C ( ρ, z) if ρ ≤ R, ϕ S ( ρ, z) if ρ ≥ R.
(3.8)

The functions de ned in the two sub-regions are related to each other at the interface between the conductor and the soil ( ρ = R) by means of the appropriate continuity conditions. Electric potential ϕ and the normal component of current density vector J must be single-valued in the interface. Taking (1.5) into account, these conditions become

ϕ C (R, z) = ϕ S (R, z) , (3.9a) σ C ∂ϕ c ∂ρ (ρ=R) = σ S ∂ϕ S ∂ρ (ρ=R) . (3.9b)
Additionally, these functions are expected to vanish at in nity as follows:

lim z→∞ ϕ C ( ρ, z) = 0 for ρ ≤ R, (3.10a) lim z→∞ ϕ S ( ρ, z) = 0 for ρ ≥ R. (3.10b)
The boundary value problem previously described was investigated in detail by [START_REF] Ollendorff | Der Stromübergang aus langgestreckten Leitern in die Erde[END_REF][START_REF] Ollendorff | Der Stromübergang aus langgestreckten Leitern in die Erde[END_REF]. The analytical solutions obtained are expressed by means of integrals involving Bessel and Hankel functions, as expected in the case of Laplace problems involving symmetries about an axis. In particular, the electric potential in the soil region was shown to be:

ϕ S ( ρ, z) = I 4πσ S R ∞ 0 2 πΛ jH (1) 0 jΛ ρ R cos Λ z R J 0 ( jΛ) H (1) 0 ( jΛ) -σ C σ S J 1 ( jΛ) H (1) 1 ( jΛ)
dΛ.

(3.11)

The asymptotic behavior of this equation for positions far away from the conductor (i.e., ρ /R → ∞) may be obtained by taking the denominator of the previous expression to the limit Λ → 0 [START_REF] Ollendorff | Der Stromübergang aus langgestreckten Leitern in die Erde[END_REF]. This limiting procedure leads to

lim ρ→∞ ϕ S ( ρ, z) = I 4πσ S R ∞ 0 jH (1) 0 jΛ ρ R cos Λ z R dΛ.
(3.12)

The integral representation provided by the previous equation can be restated in terms of simple analytic functions. More speci cally, it may be demonstrated [START_REF] Bolliger | Probleme der Potentialtheorie[END_REF] that

I 4πσ S R ∞ 0 jH (1) 0 jΛ ρ R cos Λ z R dΛ = I 4π σ S ρ 2 + z 2 . (3.13)
The comparison of (3.13), (3.12) and (3.7) lead to the conclusion that the asymptotic behavior of the electric potential produced by the cylindrical conductor at far away distances is equivalent to the one of a point current source.

The electric potential of a vertically buried rod

The last problem analyzed in this series is shown schematically in Figure 10(a). It corresponds to a thin cylindrical conductor that is vertically driven into the soil. This electrode drains a total current I and its length is much longer than its radius R. This soil conductivity is once again represented by σ S .

Among the different approaches for analyzing the behavior of the electric potential arising in this case, the one provided by [START_REF] Rüdenberg | Grounding principles and practice I -fundamental considerations on ground currents[END_REF] is particularly convenient to investigate its asymptotic behavior at distances far away from the electrode. The procedure proposed in that work is partially adapted in what follows to achieve this objective.

Instead of formally solving the boundary value problem in this case, the procedure bases itself on the assumption that the current leaving the electrode 

Domain truncation by non-homogeneous Dirichlet boundary condition

The results compiled in the previous section show that different problems involving the dispersion of currents in the soil resulted in the same asymptotic behavior for the electric potential, when positions far away from the point of current injection are considered. In this sense, both grounding con gurations examined in sections 3.4.2 and 3.4.3 could be replaced by an equivalent point current source injecting the same current into the soil if only outlying regions were considered for evaluating the electric potential.

Additionally, the procedure employed in the analysis of section 3.4.3 introduces the possibility of superposing the effects of point current sources in this context of applications in order to compose or to build the solution of a more complex problem.

These observations regarding the superposition of point current sources suggest that similar concepts may be adopted to address the dif culties highlighted in section 3.3.2. If the foregoing notions are generalized, an alternate 

Solution of conductive coupling problems with the nite element method

Complex conductive coupling problems require numerical solutions of their associated boundary value problem. This section will then discuss the application of the special Dirichlet boundary condition furnished by (3.21) in the context of the nite element method.

Two particular nite element method formulations will be considered.

These formulations will be only brie y outlined in the following subsections, since they are well-known numerical procedures. They are namely the classical electrokinetic formulation for solving the problem given by (3.3) and the A -ϕ formulation. Both of them have been broadly documented in the specialized literature of computational electromagnetics.

Consequently, the reader interested in their full developments is referred to references such as (ZIENKIEWICZ; TAYLOR; ZHU, 2006) and (BÍRÓ, 1999). The reader is also referred to the work by [START_REF] Silva | Método de elementos nitos aplicado à solução de problemas de aterramento elétrico[END_REF], in which specializations of these formulations dedicated to the analysis of secluded grounding systems and to the computation of their equivalent impedances are presented and thoroughly discussed. The incorporation of the specialized boundary condition proposed in this chapter to the framework of this last reference may be regarded as an extension to the treatment of non-secluded grounding arrangements or, equivalently, to the analysis of conductive coupling problems involving a nearby power system.

Details concerning the modeling of the thin conductors in grounding networks and the current excitation of the nite element model will be covered in this section as well, for the sake of completeness.

Incorporation of the specialized non-homogeneous Dirichlet boundary condition

The use of (3.21) is convenient for solving (3.3) by the nite element method. In this general context, a discretization of Ω in nite elements is required, and in the case of the electrokinetic formulation the following nodal approximation for ϕ is adopted:

ϕ e = nn i=1
ϕ e i N e i .

(3.22)

Coef cients ϕ e i are the nodal values of ϕ, and N e i are the nodal shape functions. The application of the Galerkin procedure to (3.3) with this approximation ultimately leads to the assembly of a system of equations that has degrees of freedom ϕ e i as its unknowns.

In this scenario, the application of (3.21) consists in identifying points P j with the mesh nodes lying on boundary Γ D in order to compute their potentials.

The determination of their values allows eliminating the corresponding degrees of freedom ϕ i from the assembled system of equations and its subsequent solution.

Generalization to other nite element formulations

The generalization of this boundary value procedure to other formulations of the nite element method developed in terms of a scalar potential may be proposed as well.

Indeed, even though the discussions carried out in this chapter were based on the steady state hypothesis that led to a Laplace type problem, the ow of electric currents in the soil could also have been described by a full wave model. One of the possible approaches admits the sinusoidal variation of the electromagnetic elds with a frequency ω and employs the magnetic vector potential A in conjunction with electric scalar potential ϕ to establish the following differential equation in Ω:

∇× (ν ∇×A) + σ ( jωA + ∇ϕ) = 0. (3.23)
The potentials in (3.23) are regarded as complex quantities. They are related to each other and to the complex electromagnetic elds E and B by (1.6) and (1.8). The material properties ν and σ = σ + jωε are respectively the reluctivity and the complex conductivity of the media in Ω.

As in section 3.6.1, the nite element analysis of a boundary value problem governed by (3.23) also requires the approximations of A and ϕ inside the elements of the mesh. For the case of the vector potential, this approximation may be written as

A e = ne i=1 a e i ω e i , (3.24) 
with ω e i belonging to the space of vector edge shape functions and with scalars a e i representing degrees of freedom corresponding to the edges of the element.

The scalar electric potential, in turn, can be approximated as before by (3.22).

The application of the Galerkin residual procedure to (3.23) with the discretizations expressed by (3.22) and (3.24) leads to a formulation of the A -ϕ type. As a consequence, the assembled system of equations resulting from the application of the nite element technique to (3.23) will contain both edge degrees of freedom a i and nodal degrees of freedom ϕ i as unknowns.

The presence of the latter category of degrees of freedom allows applying the very same boundary condition scheme previously described for eliminating unknowns ϕ i lying on boundary Γ D . The point source approximation is supposed to remain valid for the substituted grounding electrode in frequency ω.

Besides this assumption, currents I k of (3.21) are supposed to correspond to their complex phasor representations.

As for the magnetic vector potential A, its tangential component is constrained as follows:

n × A = 0 in Γ = Γ D ∪ Γ N . (3.25)
This is equivalent to imposing a null outgoing magnetic ux density on the boundary [START_REF] Silva | Método de elementos nitos aplicado à solução de problemas de aterramento elétrico[END_REF][START_REF] Silva | Determination of frequency-dependent characteristics of substation grounding systems by vector nite-element analysis[END_REF] and corresponds to an homogeneous Dirichlet boundary condition on the edge degrees of freedom a e i .

Modeling of thin wires

According to the discussion of the preceding sections, the proposed substitution of the current-injecting structures with point current sources allows computing a non-homogeneous Dirichlet boundary condition. It should be remarked, however, that no point source substitution is proposed to the actual representation of the grounding electrodes or of any other structure injecting a component of current into the soil, since such an approach would evidently modify the eld solution in Ω at short and intermediate distances from the conductors.

On the other hand, the difference of scale between thin conductors and the large dimensions of the soil domain Ω in conjunction with the large difference between the conductivities of their materials is known to pose a challenge to computations with the nite element method. In order to avoid the dif culties arising in this context, such as the large storage requirements for the mesh and the ill-conditioning of the resulting system of equations, the approach proposed in (SILVA et al., 2011) may be adopted.

In summary, the thin conductors are supposed to behave as perfect con-ductors and are represented by lines in the geometrical model subjected to discretization. As discussed in the previous reference, if the volume of a thin conductor is omitted from the representation and is instead represented by a line, the sizes of the elements in its immediate vicinity result strongly related to the actual thin electrode radius. The setting of a suitable grid size in this region is then employed to recall the proper cross section of the thin conductor. This task may be addressed during the mesh generation step.

Additionally, proper constraints are prescribed for the degrees of freedom linked to the lines representing the conductors. Current excitation by pre-computed I k is accomplished by means of non-homogeneous Neummann conditions applied to boundaries Γ FP shown in Figure 5, as discussed in section 3.3.1. These surfaces are made coincident with mesh nodes representing the input points of the lamentary conductors by a limiting procedure [START_REF] Silva | Método de elementos nitos aplicado à solução de problemas de aterramento elétrico[END_REF][START_REF] Silva | Determination of frequency-dependent characteristics of substation grounding systems by vector nite-element analysis[END_REF]. The perfect conductor behavior for the electrodes is obtained by a oating condition enforced on its nodal degrees of freedom (i.e.

ϕ i constant for every node along the line composing the lamentary conductor).

In the case of the A -ϕ formulation arising from (3.23), a null value for edge-related degrees of freedom a i is imposed along the conductor as well [START_REF] Silva | Método de elementos nitos aplicado à solução de problemas de aterramento elétrico[END_REF][START_REF] Silva | Determination of frequency-dependent characteristics of substation grounding systems by vector nite-element analysis[END_REF].

Chapter summary

This chapter presented the problem of conductive coupling phenomena taking place in the vicinities of a power system. The characteristics intrinsic to this class of applications that hinder its statement as a boundary value problem in a nite and closed domain were emphasized and were shown to be connected with the presence of multiple sites of current injection in the ground.

A procedure to compute a boundary condition for a truncated three-dimensional boundary value problem representing a zone where conductive coupling phenomena take place was then proposed by analyzing the analytical solutions of selected grounding arrangements. The proposed scheme consists in evaluating the electric potential at the underground boundary of the domain by means of the superposition of the effects of point current sources replacing the grounding electrodes actively injecting current in the ground. The potentials obtained can then be employed as a non-homogeneous Dirichlet boundary condition that can be incorporated in the nite element analysis of the corresponding problem.

In the following chapter, several problems will be analyzed with the aid of the technique proposed. The formulations of the nite element method pointed out in section 3.6 and their specializations will be adopted in conjunction with the boundary condition just proposed. The limitations of this approach and its applicability to more complex problems will be investigated as well.

CONDUCTIVE COUPLING APPLICATIONS

Introduction

In the previous chapter, the nite element analysis of conductive coupling phenomena with the use of a special boundary condition was proposed. This chapter now proceeds to the application of this technique.

According to section 3.5, the boundary condition procedure was derived by induction from an assortment of analytical problems. As a consequence, the assumptions adopted are expected to re ect into limitations affecting the general applicability of the technique.

These assumptions will be made explicit and discussed in this chapter.

Some preliminary numerical problems will be proposed, in order to verify their validity in general applications.

Once the impact of those limitations is identi ed, the discussion will move on to the application of the technique to a more realistic situation. An actual transmission line right of way will then be analyzed, so as to show the capabilities of this approach.

It should be remarked that a signi cant part of the developments covered in this chapter has been published in recent journals and conference proceedings [START_REF] Martinho | 3-D nite-element analysis of conductive coupling problems in transmission line rights of way[END_REF][START_REF] Martinho | 3-D nite-element analysis of conductive coupling problems in transmission line rights of way[END_REF][START_REF] Martinho | 3-D nite-element analysis of conductive coupling problems in transmission line rights of way[END_REF][START_REF] Martinho | Effects of external currents and soil heterogeneities on an approximate boundary condition for the 3-D nite element analysis of subsurface conductive coupling problems[END_REF]. This chapter then provides a compilation of these results in a more direct and logical presentation.

Implicit assumptions and other general remarks

The boundary condition on the electric potential given by (3.21) relies upon the asymptotic behavior of the response exhibited by a point current source in steady state at far away distances. It also bears a conceptual dependence upon the principle of superposition of effects and on a hypothesis of homogeneous soil.

In nite element applications, the ful llment of these assumptions are related to the following aspects:

ˆComputational domain Ω is made suf ciently large.
ˆThe eventual existence of buried structures or heterogeneities in the soil does not disturb the distribution of the electric potential at large distances.

ˆAll media involved exhibit linear behavior.

ˆThe time variations of the sources are consistent with a steady state approximation.

The rst two assumptions will be directly investigated in the following two sections. Both the in uence of the size of the computational domain and the impact of buried structures will be examined in detail by means of the analysis of a series of specially conceived conceptual problems. A third section discussing a problem designed to show the advantage of the proposed technique in comparison with standard procedures for the nite element analysis with an open boundary is also included.

The strict satisfaction of the last two remaining aspects previously listed requires the introduction of simpli cations or a restriction on the scope of application. For instance, the linear behavior of materials can only be ensured if effects such as the ferromagnetism of metallic structures or the soil ionization under intense surge currents are disregarded. Additionally, the steady state approximation is incompatible with phenomena characterized by fast rates of change, such as the current injection from a lightning discharge or the transients resulting from switching operations in the power system.

In face of these limitations, the problems analyzed in this chapter will tacitly assume the ful llment of these two particular assumptions by considering simple materials and the ow of currents with the characteristic frequency of the power system (i.e. 60 Hz). It should be remarked, though, that a relaxation of these limitations and the use of concepts similar to the approach here proposed have also been considered by other authors in extended contexts of applications. For instance, (STOLL; CHEN; PILLING, 2004) also assumes a 1-D behavior of the elds beyond the truncation of the 3-D domain to compute the high-frequency impedance of grounding electrodes by the Finite Difference Method.

The last problem to be analyzed in this chapter is dedicated to a more realistic situation involving several buried structures and concerned with the investigation of the shielding effect produced by reinforcement bars sometimes contained within constructions.

All the numerical solutions obtained in this chapter were produced according to the techniques outlined in section 3.6, with software implementations that could be classi ed as experimental or non-optimized. In this sense, no attempt to exhaust the discussion of performance aspects of the numerical solutions is undertaken. Alternatively, the goal of this chapter is to lay the groundwork for 

Domain size and superposition of multiple sources

The rst con guration to be analyzed is shown in Figure 12 (MARTINHO et al., 2011). Several computations involving this con guration were carried out in order to establish a criterion for the dimensioning of the computational domain.

The grounding con guration represented in Figure 12 is composed of the interconnection of three vertical rods, and the ensemble is subjected to a fault current of 1 A and 60 Hz. Current injection takes place at point (0,0,0) in ac- cordance with the system of coordinates attached to the representation. The A -ϕ formulation and the modeling approach for the electrodes described in sections 3.6.2 and 3.6.3 were adopted.

The investigation is based on a parameterization of the computational domain in terms of dimension R, which is also depicted in Figure 12. Several nite element method simulations were executed with different values of this geometrical parameter R. The aim is to verify the in uence of the domain size on the validity of the point source approximation for calculating the non-homogeneous Dirichlet boundary conditions on the electric potential.

The results were compared with the solution given by the Method of Complex Images (MCI) (FILHO; CARDOSO, 1999; CHOW; YANG; SRIVASTAVA, 1992), an integral method that does not rely on domain discretization or truncation.

The behaviors of the electric potential along the line (y = 0, z = 0) on the soil surface were plotted together in Figure 13 for comparison. suf ciently large domain is employed, the electric potential solution accommodates itself into its expected distribution. This is the case in Figure 15(c).

Since the problem contained only a secluded grounding system, the application of the non-homogeneous boundary condition did not involve the superposition of multiple point current sources. In other words, the sum (3.21) contains only one term. Let then a second problem be considered in which two different grounding arrangements coexist in a limited space, as shown in The characteristic dimension for determining the domain size could be taken as either the length of an individual rod or the separation 2D between the two grounding arrangements. This information should be used with care by the analyst to avoid non-physical solutions (in the case of sub-dimensioned domains) or excessively large computational problems (in the case of over-dimensioning).

Effects of buried objects

The investigation conducted in the previous section addressed the appropriate dimensioning of the computational domain that is required by the non-homogeneous Dirichlet boundary condition (NHDBC) approach. This section now proposes an additional investigation, in order to verify the applicability of the alternative NHDBC in situations that do not ful ll another of the basic assumptions implied in its use.

More speci cally, and as already mentioned, a hypothesis of homogeneous and isotropic soil is implicit in (3.21). As a consequence, some error should be expected when the NHDBC is employed in the analysis of conductive coupling problems containing additional structures embedded in soil domain Ω.

Since the existence of underground heterogeneities at shallow depths is quite frequent in transmission line rights of way (as is the case of pipelines, valve boxes or masonry structures), a simpli ed problem following these lines will now be analyzed and discussed in detail (MARTINHO; SILVA, 2015).

The con guration in Figure 18 shows a vertical grounding rod similar to the one considered in section 3.4.3 subjected to a fault current. Two buried structures (a short box and a long cylinder) of the same material are placed in its vicinities. The xy plane cuts both the cylinder and the box in two equal parts.

The relevant dimensions are indicated in Figure 18, along with the various physical properties.

The electric potential on the soil surface was computed along the x axis with two different approaches to truncate the domain: the NHDBC and in nite elements in a scheme analogous to the one represented in Figure 7. For the sake of convenience, both approaches were implemented for an electrokinetic formulation of the FEM. The problem under analysis is not affected by a neglect of additional current sources left outside the computational domain, as discussed in section 3.3.2. Therefore, the nite element analysis with the in nite element technique is taken as the benchmark for validating the NHDBC approach in the case of a soil with buried objects. The following conclusions arise from the data expressed by the plots of Figure 19:

ˆFor a wide range of soil resistivities, the NHDBC approach is still very accurate if highly resistive objects are embedded in the soil. A maximum error below 2.4% for ρ soil = 1000 Ω.m was veri ed.

ˆWhen highly conductive heterogeneities are considered, signi cant errors are veri ed in the surface electric potential distribution computed with the NHDBC approach.

ˆIf heterogeneities of intermediate resistivity are considered, the NHDBC approach may also be very accurate. This will still be the case when their resistivities are in a range that is not far from the resistivity of the surrounding medium. The situation would correspond to practically no heterogeneities.

The results of Figure 19 were obtained with a mesh of tetrahedra and prisms, composed of 37224 nodes. The system of equations could have been solved with any appropriate method, and the BiCGStab algorithm was chosen for convenience. Comparative information about its performance is available in Table 1, for the case of insulating heterogeneities in which both techniques provide similar solutions for the electric potential distribution. It may be veri ed that the NHDBC technique led to a slightly smaller computational effort.

Effects of external currents

The motivation for introducing an alternative approach for dealing with a semi-in nite domain in the context of conductive coupling problems involving overhead lines was discussed in section 3.3.2. It was argued that the widespread techniques employed in addressing this category of problem with the nite element method would inevitably neglect the effects of current injec-tion sites left outside the computational domain.

It may be shown that this neglect leads to a signi cant error in the electric potential computed on the earth surface, which is one of the most relevant physical quantities in this kind of investigation. However, one may verify that better results can be obtained if the NHDBC is applied instead.

To make these assertions explicit, let the con guration of Figure 20 be considered, in which two neighboring vertical grounding rods are represented (MARTINHO; SILVA, 2015).

The soil is supposed to be homogeneous and the rods are subjected to two independent current sources. A full, rigorous electrokinetic FEM model would contain both rods embedded in a semi-in nite soil domain, represented by a layer of in nite elements, as shown in Figure 20(a). Solutions for the electric potential distribution following from this approach will be quoted from now on as being produced by the complete model.

Still, if a detailed analysis of the potential distribution must be limited only to the vicinities of the rst grounding rod, a simpli ed representation could be proposed as well, as depicted in Figure 20(b). This model neglects the existence of the second grounding rod and the soil is also taken as a semi-in nite domain truncated by in nite elements. In opposition to the complete approach previously de ned, this model will be referred to as the reduced one.

The reduced model is conceived in the likeness of the scenario recovered in the beginning of this section, which arises in the modeling of a complex conductive coupling situation with any standard technique dedicated to treating the open boundary that forces the neglect of eld sources left outside the computational domain.

The application of the NHDBC scheme to the problem under analysis yields the situation depicted in Figure 21. Here, the second grounding rod, which lies outside the computational domain, is taken into account by means of an additional point source in the summation given by (3.22), as would be the case for the grounding grids of nearby transmission line towers in a right of way.

In order to compare this third approach with the well-established procedure given by the reduced model, the electric potential distribution provided by the complete model solution was xed as a benchmark. The plot on Figure 22 thereby displays the behavior of the percent error in the electric potential be- tween both the reduced and the NHDBC solutions and this reference. These errors were evaluated along the x axis in the vicinities of the rst grounding rod, with several soil resistivities. The system of coordinates, the relevant geometrical parameters and the material properties employed in the simulations are shown in Figures 20 and21.

The following may be derived from Figure 22: ˆBoth the NHDBC and the reduced model yield low errors (≤ 0.7% in all cases) for the ground potential rise at the point of current injection.

Hence, if only the equivalent grounding resistance during the fault is required, the two approaches provide equivalent results.

ˆIf only positions located at distances of the order of a few times the rod length ( = 3 m) are concerned (|x| ≤ 4 = 12 m), the NHDBC still provides small errors (≤ 6.65%) for the electric potential. This is not the case for the reduced model, which yields much larger errors (≤ 26.2%). ˆThe outskirts of the domain should be interpreted as a region lying halfway to relevant structures left outside the computational domain (as is the second grounding rod at x = 60 m). In this sense, they should be preferably analyzed with the complete model. However, even in this unfavorable region for both single rod approaches, the NHDBC procedure yields smaller errors than the reduced model. At the border of the computational domain the closest to the second grounding rod (x = 30 m), the former leads to errors no greater than 11%, while the latter yields an unacceptable error of almost 62%.

A similar behavior with results even more favorable to the use of the NHDBC is veri ed when the same investigation is repeated for a path along the z axis. It may be concluded then that the NHDBC technique provides a better modeling approach for the problem of Figure 20. Ultimately, the facts previously made explicit also suggest that similar results would also be veri ed in more realistic conductive coupling problems, possibly involving other faulted transmission line towers and their grounding networks.

Application to a conductive coupling problem in a transmission line right of way

In this section, a realistic application will be considered [START_REF] Martinho | 3-D nite-element analysis of conductive coupling problems in transmission line rights of way[END_REF]. The con guration under analysis is depicted in Figure 23. It shows the surroundings of an area spanned by two towers of a transmission line close to an underground pipeline section, which is made accessible to working personnel inside a steel-reinforced masonry structure. The ground networks of the towers have a particular con guration given by long conductors buried in a direction parallel to the overhead line, which is sometimes called counterpoise grounding.

The power system is supposed to be subjected to a fault that results in the injection of components of power frequency current at the foundation of each tower by the mechanism discussed in section 3.2. Their values are known in advance from a previous system-wide computation, and are available together with other relevant data in Figure 23.

The pipeline is buried at a depth of 1.04 m and the masonry structure has the shape of a box with dimensions 4.0 m × 3.35 m × 2.4 m. It should be remarked that the pipeline is represented by a cylinder entirely composed of a very resistive material, as is the case of the coatings normally employed for protecting their metallic structures. This simpli cation together with the other resistivity values employed (available in Figure 23) lead to a model in accordance with the conclusions of section 4.4, as required for using the NHDBC approach.

The aim of this problem is to investigate the mitigatory role played by the embedded steel reinforcements, that is, their ability to modify the electric potential distribution next to the working area and to lessen both touch and step voltages during the contingency.

The problem was solved with the A -ϕ edge formulation. Both the steel reinforcements and the grounding networks were modeled with the aid of the oating boundary condition technique outlined in section 3.6.3. Thus, a geometric model for the right of way represented in Figure 23 was created in compliance with the dimensioning orientations established in section 4.3 and discretized with a mesh of tetrahedra (with 4 nodes and 6 edges per tetrahedron).

The application of the complete numerical scheme previously described to this model yielded an algebraic system of equations with approximately 2 200 000 degrees of freedom. The solution of this system provided the electric potential distribution in domain Ω.

Figure 24 shows a general view of the computational domain after the so- 42.9 V Inner corners only 58.7 V No reinforcements 122.0 V † For a subject stepping on the spot marked with an X in Figure 26(b) and touching a perfectly grounded structure at 0 V. ‡ As depicted in Figure 26(a).

gurations, which differ from each other in the distribution and presence of embedded steel reinforcement bars.

The results gathered in Table 2 con rm the expected in uence of the steel reinforcement bars, that is, their ability to lessen dangerous overvoltages in the working area. The touch voltages quanti ed with the numerical scheme described herein could then be considered for safety measures, or could be employed in the project or design of a shared transmission line right of way.

Chapter summary

This chapter presented a series of conductive coupling problems analyzed with the FEM and the NHDBC. The limiting assumptions brought by the use of this approach were analyzed by solving two test problems. The results allowed ascertaining directives concerning the size of the computational domain and provided the ground rules for determining the nature of the heterogeneities buried in the soil that are compatible with the use of this technique.

A complementary test problem was analyzed as well, in order to con rm the need of an alternative procedure such as the NHDBC to circumvent the dif culties pointed out in section 3.3.2, which result from the use of conventional modeling techniques for representing domains with open boundaries.

The same analysis showed that the use of the NHDBC approach can be advantageous in this context of conductive coupling applications.

Finally, a more practical conductive coupling application was considered, in which the shielding effect provided by reinforcement bars embedded in a buried masonry enclosure was simulated by means of a large-scale FEM computation. This application illustrated the modeling possibilities granted by the use of the NHDBC approach.

In the case of the preliminary applications of the proposed technique, the validation of the computed results was obtained by confrontation with alternative numerical techniques. According to the case, the method of complex images or the nite element method with the in nite element technique were chosen as benchmark solutions.

Ideally, the validation of the results should also be carried out in the case of section 4.6 by comparing them with measurements. However, the setting up for the experimental validation of conductive coupling applications involving high voltage power systems corresponds to an elaborate enterprise and is far beyond the scope of the current work.

The investigation of additional practical conductive coupling problems and further research on numerical aspects of nite element solutions employing the NHDBC approach are left for future works. merical procedures such as the FEM. In situations involving the parallelism of long structures with the transmission line, as is the case of transportation rails or underground pipelines, this method may be ef ciently employed (CHRISTO-FORIDIS; LABRIDIS; DOKOPOULOS, 2005). The shared right of way may be reduced to a representative 2-D model given by one of its cross-sections, leading to numerical problems of reasonable size and complexity, even if large inactive air regions and thin phase conductors need to be discretized.

The general problem is however given by an object of an arbitrary shape and with an arbitrary position relative to the transmission line. The nite element analysis of these problems requires a 3-D model. As a result, both the storage requirements and the computational run times associated to the numerical procedure tend to increase greatly, turning the discretization of inactive air regions and of thin conductors into heavy burdens that cannot be avoided with classical FEM formulations.

In face of these dif culties, an approach based on an integral method is proposed. More speci cally, the use of an adapted version of the generalized Partial Element Equivalent Circuit (PEEC) integral method (NGUYEN et al., 2014) is considered.

Since the use of a PEEC-like method to model inductive coupling phenomena in transmission line rights of way is an unconventional application of this class of techniques, its formulation and the required adaptions will be covered in this chapter. The numerical procedure will then be applied to a problem involving two different orientations of an underground object subjected to the in uence of an overhead line. The results will be confronted with solutions issued from the 2-D and 3-D FEM.

The generalized PEEC integral formulation

The generalized PEEC approach arises from a synthesis of concepts, namely the classic PEEC method [START_REF] Ruehli | Equivalent circuit models for three-dimensional multiconductor systems[END_REF] and the approximation of eld quantities of conservative ux by vector facet elements [START_REF] Bossavit | Whitney forms: a class of nite elements for three-dimensional computations in electromagnetism[END_REF].

The following subsections contain a fairly stand-alone presentation of this integral formulation. For additional details on the generalized PEEC method or on other related formulations, the reader is referred to (NGUYEN et al., 2014;NGUYEN, 2014).

Derivation of the PEEC integral equation

In accordance with section 1.3, electric eld E may be written in terms of magnetic vector potential A and electric scalar potential ϕ. This statement is con rmed by (1.8), which is repeated below for convenience:

E + ∂A ∂t = -∇ϕ.
(5.1)

In order to obtain the integral equation that establishes the basis of the PEEC procedure, the left-hand side of (5.1) must be recast in terms of current density J. The connection between E and J in a medium of conductivity σ is given by Ohm's law, according to (1.4). The dependence between elds A and J is given by

A = µ 0 4π Ω J r dΩ.
(5.2)

In (5.2), Ω is a conductive domain containing the current density J. Distance r is measured between the evaluation point for A and an element of volume dΩ. This expression neglects the time retardation of the magnetic vector potential [START_REF] Stratton | Electromagnetic Theory[END_REF][START_REF] Jackson | Classical Electrodynamics. 3rd[END_REF], assuming quasi-static electro-magnetic elds. Magnetizations and electric polarizations of the media are not taken into account.

From this point onwards, a sinusoidal time dependence with an angular frequency ω will be assumed. The time dependent elds then become complex quantities and the time derivative operator is substituted by jω. This said, the substitution of (1.4) and ( 5.2) into (5.1) gives rise to

J σ + µ 0 4π jω Ω J r dΩ + ∇ϕ = 0, (5.3)
which is an integral equation relating the current density distribution and the electric potential in the frequency domain.

Finite element approximation of the current density eld

Let conductive region Ω be now discretized with a mesh of nite elements in order to approximate the current density distribution. The interpolation scheme adopted is based on vector facet shape functions, to enforce the conservation of the current owing between element interfaces.

Inside a nite element e, the current density is approximated by the linear combination of its facet shape functions w e j given by J e = j w e j I e j , (5.4)

where j spans the total number of facets of the element and the I e j are unknown current values owing through each facet. This physical meaning of the coef cients I e j comes from the basic property of the facet shape functions given by Γ e i w e j • n dΓ e i = δ i j , (5.5)

where indexes i and j are associated to facets; n represents the outward nor-mal vector of a facet Γ e i and δ i j is the Kronecker delta.

The explicit analytical expressions w e j for the shape functions depend on the element type (tetrahedra, hexahedra, etc.) [START_REF] Dular | Mixed nite elements associated with a collection of tetrahedra, hexahedra and prisms[END_REF]. These vector shape functions are de ned to be null outside their corresponding element e, that is, the shape functions from different elements are never overlapping. This allows a global numbering of facets to be considered, so that the current density approximation in the whole of Ω may be simply expressed as (5.6) where index j now spans all the facets from the discretization and where superscript e was dropped.

J = j w j I j ,

Galerkin projection

If (5.3) is rewritten in terms of the nite element approximation of the current density eld given by (5.6), its left-hand side will not be exactly null. The following vector residual will be obtained instead: R = j w j I j σ + µ 0 4π jω Ω j w j I j r dΩ + ∇ϕ 0.

(5.7)

A system of equations in terms of the set of unknown facet currents I j may be assembled by minimizing this residual, in the sense provided by the Galerkin method. The procedure consists in the computation of a set of weighted residuals R i , which are all set to zero. The weighting functions are taken from the set of vector facet shape functions {w i } of the current density approximation in Ω:

R i = Ω R • w i dΩ = 0.
(5.8)

When taken together into account, the residuals R i equaled to zero lead to the aforementioned system of equation. This system acquires the following structure:

[Z] • [I] = ( [R] + jω [L] ) • [I] = ∆ϕ .
(5.9)

In (5.9), [I] is a column vector storing unknown facet currents I j . The general entries of the other matrices in this system are:

R i j = Ω w i • w j σ dΩ , (5.10a 
)

L i j = µ 0 4π Ω w i • Ω w j r dΩ dΩ and
(5.10b)

∆ϕ i = - Ω w i • ∇ϕ dΩ.
(5.10c)

Circuit interpretation

The notation adopted for the matrices in (5.9) and their general terms in (5.10) suggest that an equivalent circuit may be proposed for the numerical procedure just described. This is indeed the case, and this circuit interpretation is obtained as follows:

ˆEach element in the nite element mesh is associated to a circuit node placed in its centroid; the centroids of each facet lying on the boundaries of Ω are associated to a circuit node as well.

ˆA facet i corresponds to a circuit branch of impedance Z ii = R ii + jωL ii , calculated by (5.10a) and (5.10b) with i = j. This branch connects the two nodes associated to the two mesh elements sharing facet i.

ˆA circuit branch is coupled to every other branch of the circuit by means of a mutual inductance. The mutual inductance between a branch (or facet) i and a branch j is calculated by (5.10b) with i j.

Additionally, the right hand-side of (5.9) may be shown to be a vector of av- ˆIf the analysis is carried out by means of a circuit solver, the coupling of the electromagnetic equations to a complementary external network becomes straightforward. Interesting modeling possibilities arise from this fact, as will be clari ed in the application that follows.

Note that the circuit equations (5.9) are stated in terms of unknown branch currents [I]. However, circuit solvers are conceived employing independent loop currents or nodal tensions as unknowns, not branch currents and voltage drops.

In this way, an independent loop search algorithm is employed to convert the problem given by (5.9) into a well-posed form for mesh current analysis [START_REF] Nguyen | An independent loops search algorithm for solving inductive PEEC large problems[END_REF]. Clearly a transformation from independent loop currents to branch currents is required after the solution of the equivalent electric circuit, to evaluate eld quantities during the post-processing stage of the analysis.

Other numerical issues

The assembly of the system given by (5.9) involves the numerical integration of the terms given by (5.10a) and (5.10b) for every facet of the nite element mesh. These terms must be assembled to matrices [R] and [L] and stored ef ciently. This section discusses some related issues that arise in the context of application of an integral method.

Matrix [R] is sparse, since (5.10a) is non-zero only when i and j are facets belonging to the same mesh element. Thus, its terms are integrated and stored in a rather conventional way, as in a traditional FEM code. On the other hand, matrix [L] is dense due to the mutual inductance coupling between every two branches of the equivalent network.

This feature of the PEEC inductance matrix is shared with other integral methods, and leads to some practical implementation dif culties that are addressed in the following paragraphs.

The numerical integration of expressions such as (5.10b) is costly from a computational point of view. These integrations need a large number of Gaussian quadrature points when compared to the numerical integration of a conventional nite element matrix. Moreover, in the former the Gaussian quadrature points must be chosen carefully, in order to prevent singularities of the term G(r) = 1 /r from taking part in the integrand.

In addition, the assembly time of a dense matrix [L] and the memory required for its storage tend to grow as O (n 2 ), where n is the number of unknowns. The time required for solving the system of equations increases as well. These fast-growing complexities end up quickly to make integral methods unfeasible if special techniques are not employed.

Numerical compression techniques such as the Fast Multipole Method (GREENGARD; [START_REF] Greengard | A fast algorithm for particle simulations[END_REF] are available to mitigate these difculties linked to the increased memory required and the long processing times needed during the integration and assembly steps of integral methods. In the present case, a different numerical scheme is adopted: the inductance matrix

[L] is compressed using the H-matrix scheme, and is treated with the Hybrid Cross Approximation (HCA) technique (BÖRM; GRASEDYCK, 2005). A detailed discussion of these numerical procedures is beyond the scope of this work. 

Application to the analysis of inductive couplings with overhead lines

The basic generalized PEEC procedure requires adaptations for treating inductive coupling phenomena in the vicinities of an overhead line.

The need for these adaptations will become clearer in this section, in which a speci c problem of application will be described. This description will be followed by a discussion of the modi cations carried out in the basic numerical procedure for this class of applications.

Problem description

The con guration to be analyzed is shown in Figure 28, the right of way of a three-phase transmission line where a conductive object of prismatic shape is buried under the soil surface. Its phase conductors A, B and C carry a balanced and symmetrical system of three-phase currents, and the relative position between the line and the object is also shown in the gure. Additional relevant physical information is available in Figure 28 as well.

The aim is to determine the current density distribution in the buried object, which is induced by the proximity with the overhead line. The problem depicted in Figure 28 will be considered in two conditions. First, the longest dimension of the buried object will be placed in parallel to the overhead line. In a second analysis, the object will be rotated and positioned with its largest dimension orthogonal to the overhead line.

A discussion about the solutions for this problem will be resumed in section 5.4. The adaptations introduced in the PEEC approach to handle inductive coupling situations involving transmission lines will be now outlined.

Adaptations on the basic procedure

The application of the PEEC formulation presented in section 5.2 to the problem under analysis would require the inclusion of the three phase line conductors into conductive region Ω, together with the soil and the object buried in the right of way. As a consequence, their volume discretization with facet elements would be required as well. This modeling alternative would result in a large number of additional degrees of freedom (or unknown facet currents)

in the system of equation, leading to problems of intractable sizes, according to the discussion contained in section 5.2.5.

An alternative approach is proposed to avoid this, involving the consideration of two separate conductive regions. Figure 29 displays the decomposition of Ω into two sub-regions. The rst corresponds to a suf ciently large soil volume Ω V , bounded by the earth surface and including the embedded underground object. In Ω V , J is approximated by vector facet elements as described in section 5.2.2, which can be associated to a space {v i } of vector facet functions.

The second sub-region is given by transmission line Ω L , which is modeled by line elements, each carrying a constant complex current and with one single long element per phase conductor. This corresponds to adopting a space of zero order interpolation functions {u i } with a pre-de ned direction for describing the current distribution in Ω L , thereby limiting the number of additional degrees of freedom.

This procedure may be formally regarded as a coupling between the generalized PEEC method (applied to the soil and the buried object) and the classical PEEC method (applied to the transmission line), as described in (NGUYEN, 2014).

With two different function spaces {v i } and {u i } for approximating the current density distribution in Ω = Ω V ∪ Ω L , the assembly of the terms (5.10) into (5.9) yields a system matrix partitioned into four blocks, as shown in Figure 30. The terms to be assembled to the global system of equations are still given by (5.10), but with the additional remark that now {w i } = {v i } ∪ {u i }.

The large matrix block [Ω V × Ω V ] corresponds to the soil and object interactions. Therefore, its general terms become:

R i j = Ω v i • v j σ dΩ , (5.11a) L i j = µ 0 4π Ω v i • Ω v j r dΩ dΩ.
(5.11b)

The sparsity properties of the resistive and inductive parts addressed in section 5.2.5 remain valid for this block. Thus, (5.11b) leads to a dense matrix, thereby requiring matrix compression.

Blocks [Ω V × Ω L ] and [Ω V × Ω L ] t are associated to the interactions between the overhead line and the ensemble composed by the soil and its buried object.

Only the computation of one of this blocks needs to be actually carried out, since the other one may be obtained by matrix transposition. The general terms of [Ω V × Ω L ], are then given by:

R i j = Ω v i • u j σ dΩ = 0, (5.12a) L i j = µ 0 4π Ω v i • Ω u j r dΩ dΩ.
(5.12b)

The last block [Ω L × Ω L ] is associated to the interactions involving only the phase conductors of the overhead line. The block may be promptly identi ed with the line impedance matrix, containing the phase conductors self--impedances in its main diagonal and the mutual impedances between phases in the other positions.

For the line shown in Figure 28, this block is reduced to a small 3 × 3 matrix that is particularly prone to the numerical integration dif culties discussed in section 5.2.5, which were related to the evaluation of a singular integrand during the Gaussian quadrature. Therefore, this last block is not integrated numerically, but is instead substituted by an analytical computation of the three-phase line impedance matrix. Details on the analytical computation of the impedance matrix of an overhead line are widely available in reference manuals (LAFOR- EST, 1982) or in power engineering textbooks [START_REF] Stevenson | Elements of Power System Analysis[END_REF].

Figure 29 also shows a three-phase source providing current excitation and the circuit interconnection between Ω V and Ω L . This external network is introduced and treated only at the level of the electric circuit solver employed for the solution. This possibility was previously quoted as one of the motivations for adopting the circuit solver approach for the solution of the system of equations.

Note that the interconnections linking Ω V and Ω L establish an underground path for the ow of zero-sequence current components (if an unbalanced operation condition is to be considered). The remaining facets on the boundary of Ω V not linked to the external circuit are subjected to a homogeneous Dirichlet boundary condition (that is, null facet currents).

Application and Results

The application of the adapted PEEC approach was carried out for two con gurations of the problem of Figure 28, namely two different alignments between the three-phase line and the object.

The difference between these two variants stands in their possibilities of being analyzed by an alternate 2-D model. The case in which the object is placed in parallel to the overhead line belongs to a category of applications that can be somehow reduced to a representative 2-D problem, while the orthogonal variant does not.

Consequently, the 3-D PEEC solution of the former will be confronted with the one issued from a simple and straightforward 2-D FEM approach. On the other hand, the validation of the 3-D PEEC solution of the latter will be accomplished with the aid of a full 3-D FEM model that suffers from some of the complications listed in section 5.1.

For analyzing both cases with the generalized PEEC approach, structured meshes of 5040 hexahedra were adopted for discretizing Ω V . Similarly, the complete equivalent network arising from the PEEC numerical scheme for each con guration had approximately 15000 branches and 9500 independent current loops.

The 2-D and 3-D FEM computations adopted as benchmarks were performed with the commercial FLUX software package [START_REF] Cedrat | Flux 12.0 -Electromagnetic and thermal nite element analysis software package[END_REF]. The implementation of the PEEC software tool was accomplished with the aid of MIPSE, a Java library developed in G2ELAB (Laboratoire de Génie Électrique de Grenoble).

A detailed discussion on the two problems analyzed is given as follows.

For both cases, the efforts are concentrated on demonstrating the relative accuracy of the PEEC approach in comparison with the FEM.

Parallel alignment and 2-D FEM validation

Provided that the length of the buried object (5 = 1 m) is several times longer than its other dimensions ( = 0.2 m) and that its parallel alignment with respect to the overhead line is considered, the PEEC solution obtained in the mid-section of the buried object may be compared with a 2-D FEM computation.

The referred mid-section is highlighted in Figure 28 A pro le of the structured mesh of hexahedra utilized in the 3-D PEEC computations is shown in Figure 31(c). It should be noticed that this mesh is much coarser when compared to the one employed in the 2-D nite element simulation. This difference in the discretization approach is due to the peculiarities of the PEEC method discussed in section 5.2.5, which easily make the treatment of problems with a larger number of degrees of freedom unpractical in terms of The support for the computation of the mean value was arbitrarily chosen as a square patch located in the corner of the object cross-section, as shown in Figure 31. This patch is dimensioned in terms of skin-depth δ of the electromagnetic elds inside the buried object, namely about 0.205 m in the case treated.

Table 3 gives the values assumed by these quantities. The percent deviations of the PEEC solutions with respect to the 2-D nite element values are available in this table as well. The analysis of these deviations shows that a good agreement between the maximum current density | J | max computed with the two different approaches was veri ed, and an even better accord was obtained for the average values | J | mean evaluated over the highlighted 0.25 δ × 0.25 δ patch.

Orthogonal alignment and 3-D FEM validation

The second test case corresponds to the line and the object in an orthogonal alignment. The resulting con guration can be handled by the PEEC technique as before, but the obtained current density distribution inside the object is no longer comparable with the one issued from a 2-D nite element computation.

The spatial distribution of J inside the object resulting from the coupling with the three-phase line and computed with the PEEC approach is shown in Figure 32. Figure 33 The 3-D nite element solution for the problem corresponding to the orthogonal orientation is computationally demanding. A tt 0 -φ, circuit-coupled formulation [START_REF] Meunier | A nonlinear circuit coupled t-t0-phi; formulation for solid conductors[END_REF][START_REF] Floch | Coupled problem computation of 3-d multiply connected magnetic circuits and electrical circuits[END_REF][START_REF] Meunier | A nonlinear circuit coupled t-t0-phi; formulation for solid conductors[END_REF][START_REF] Floch | Coupled problem computation of 3-d multiply connected magnetic circuits and electrical circuits[END_REF] was employed with a similar structured mesh of hexahedra as in the PEEC case, with the remark that the FEM cannot avoid the discretization of the air regions.

With this method, the determination of an induced current distribution in the buried object that remains insensitive to additional re nements in the discretization requires a very dense mesh of hexahedra, long computation times and a large memory capacity. However, the maximum current density value inside the object may be approximated by an asymptotic value of approximately 21.85 A/m 2 . This limiting value is obtained by the 3-D FEM computation of the maximum current density for a series of increasingly re ned meshes and by pared. Table 4 provides this comparison between the two procedures when the maximum current density values developed inside the underground object are evaluated with practical and relatively coarse meshes, both containing a similar number of elements (≈ 5000 hexahedra). For a given mesh size, the PEEC approach is veri ed to be able to provide a more accurate solution than the 3-D FEM.

A systematic performance comparison between the FEM and the generalized PEEC method in this class of applications is left for future works. Even though the PEEC approach was shown to yield more accurate solutions with coarser meshes, in the current state of developments the comparison of computation times still tends to be biased towards the FEM. This is markedly the case when large deviations from the reference value xed in Figure 34 are admissible.

Chapter summary

This chapter presented an approach based on the generalized PEEC method for analyzing inductive coupling phenomena involving an overhead power line and an underground conductive object. Two relative positions between the transmission line and the object have been considered, and the current density distribution developed in the object was determined in each case.

The current density distribution obtained could provide base data for the study of AC corrosion phenomena [START_REF] Revie | Oil and Gas Pipelines Integrity and Safety Handbook[END_REF]CENELEC, 2013). Moreover, the electric potential solution in the domain Ω resulting from the circuit equivalence discussed in section 5.2.4 could also be conveniently employed to evaluate dangerous induced overvoltages.

The solutions computed with the generalized PEEC approach were validated by comparison with 2-D and 3-D FEM models and accurate solutions (i.e a small percent deviation from nite element analysis) were obtained with the use of the PEEC approach. In face of these results, extensions of the basic procedure could be envisaged. For instance, the use of more complex external networks could be exploited in the investigation of other practical problems arising in power engineering, such as the occurrence of a simultaneous fault to earth in the three-phase line. The account of capacitive effects could be introduced at the level of the external network as well, leading to interesting model possibilities that would only became feasible in the context of the FEM with the use of other formulations.

As quoted in section 5.4.2, a systematic performance comparison between the generalized PEEC approach and the FEM is still to be made for this application. Future works on numerical aspects such as improved integration procedures, system assembly techniques and matrix pre-conditioning could be envisioned and are expected to result in signi cant gains in performance.

It should still be remarked that the problems of application of in this chapter considered only the case of a balanced system of three-phase currents owing in the phase conductors of the transmission line. Further work on this subject also intends to investigate the case of unbalanced operation and the consequent superposition of conductive coupling phenomena, resulting from the ow of zero-sequence current components in the soil.

6

CONCLUSIONS AND PERSPECTIVES

General remarks

In the previous chapters, the numerical modeling of electromagnetic coupling phenomena resulting from the proximity with overhead power transmission lines has been addressed. Conductive and inductive phenomena were modeled respectively with the Finite Element Method and with the generalized Partial Element Equivalent Circuit Method. Additionally, problems of application were considered in both cases.

The analyses of these two categories of applications were carried out with the apparently restrictive assumption of a single and homogeneous resistivity for the soil. Moreover, the boundary condition scheme proposed for truncating the domain in conductive coupling applications even relies on this hypothesis, as seen in chapter 3.

In the discussion whether or not this approach provides an adequate representation of the soil, it should be remarked that the actual soil properties are in uenced by a broad range of factors such as moisture content, amount of dissolved salts, grain size and distribution, temperature, season of the year, etc.

This particular behavior turns the accurate modeling of the soil into a complex and frequently unfruitful effort.

As a consequence, in the practice of power engineering, complex soil mod-els for real situations are often unavailable. On the other hand, the direct determination of a single and apparent resistivity of the soil is a simple and straightforward procedure. Typical values are also readily available for the most common soil types. In this sense, the use of single-valued, homogeneous resistivity model imposes itself from a practical point of view, relaxing that apparent constraint.

Nevertheless, the use of more elaborate soil models could be considered.

For instance, the use of a multilayered soil model in the inductive coupling applications of chapter 5 is only a simple matter of representing the various strata of soil in the computational domain. In the case of the conductive coupling applications of chapter 4, an additional modi cation of (3.21) computing the boundary condition on the electric potential would have to be considered as well, and the results provided by (STEFANESCO; SCHLUMBERGER; SCHLUM-BERGER, 1930) could be considered for this purpose.

Additional improvements or extensions to other modeling aspects proposed in this work could be envisioned in a similar way. The investigation of electromagnetic coupling phenomena in transmission line rights of ways is a broad eld of inquiry, and not surprisingly this subject could not be exhausted in this work. This said, the following sections are devoted to recalling the main achievements obtained with this thesis and to accounting new endeavors that could follow from the current state of developments in this domain.

Contributions of this work

The developments achieved in the course of this work converge on providing means of simulating general coupling situations occurring in the vicinities of an overhead line.

The following main contributions could be highlighted among them:

ˆA special boundary condition for nite element formulations based on the approximation of the electric scalar potential was proposed to address the truncation of the computational domain. The numerical scheme allows considering multiple sources of current injection into the soil, as required in the investigation of complex conductive coupling situations taking place in a right of way.

ˆThe conditions of applicability of this boundary condition technique were veri ed and shown to be related to the adequate dimensioning of the computational domain and to the conductive character of buried heterogeneities. The scope of application was veri ed to be wide enough to allow investigating real problems in power engineering, as shown in section 4.6.

ˆThe modeling of inductive coupling phenomena with the generalized PEEC method was proposed. The results from this approach were shown to be in accordance with a well-established nite element models even when relatively coarse meshes are employed.

ˆThe choice of this integral method and its coupling with the classical PEEC method avoided discretizing both inactive air regions and thin phase conductors of the overhead line, which are recognized complications in the development of full 3-D models in computational electromagnetics.

ˆA direct and simpli ed interface with external circuits was provided by the choice of a PEEC-based approach for modeling inductive coupling phenomena, giving rise to the possibility of integrating the 3-D model of a particular right of way with network analysis tools representing large scale power systems.

Topics for later development

The following topics are suggestions for later developments and could be considered for continuing the research carried out:

ˆIncorporation of other soil models in the nite element modeling of conductive coupling problems (multilayered soils, account of soil ionization).

ˆConsideration of fast transient fault currents in conductive coupling phenomena and time-domain simulation.

ˆImproving material modeling both in conductive and inductive coupling applications, allowing the consideration of structures or devices with an arbitrary composition in proximity with an overhead line.

ˆEnhancing the performance of the simulations based on the generalized PEEC method by means of improved matrix compression techniques, numerical integration procedures and matrix solvers. ˆModeling inductive coupling problems with alternative integral methods such as the Boundary Element Method coupled with external circuits.

ˆInvestigation of inductive coupling problems involving transmission lines operating in unbalanced conditions, leading to the ow of zero-sequence current components in the soil.
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µ 0

 0 Magnetic permeability of free space, µ 0 = 4π × 10 -7 H/m. ν Magnetic reluctivity (m/H). ρ Electric resistivity (W.m) or radial coordinate of a cylindrical system of coordinates (m). ρ V Volume electric charge density (C/m 3 ). σ Electric conductivity (S/m). σ Complex conductivity (S/m), σ = σ + jωε. nodal degree of freedom of element e. Ω Volume domain or ohm, the SI unit of electrical resistance.ω Angular frequency (rad/s), ω = 2π f . edge vector shape function from element e.
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Figure 1 :

 1 Figure 1: An overhead line in close proximity with buildings and urban structures. The small yellow pole emerging from the ground surface marks the existence of underground structures.

Figure 2 :

 2 Figure 2: Excavation of a shared right of way for the maintenance of a buried pipeline.

Figure 3 :

 3 Figure 3: Examples of AC corrosion developed from small coating defects in pipelines. Reproduced from (REVIE, 2015) under the permission of John Wiley & Sons, Inc.

  treatment of open boundaries, which occur in the representation of underground regions. As a consequence, several efforts have been undertaken to circumvent these limitations. Simple domain truncation, in nite elements (ZIENKIEWICZ; TAYLOR; ZHU, 2006; DHATT; TOUZOT; LEFRANÇOIS, 2007), coordinate transformations[START_REF] Stohchniol | A general transformation for open boundary nite element method for electromagnetic problems[END_REF][START_REF] Cardoso | Fem modelling of grounded systems with unbounded approach[END_REF] and the use of ctitious absorbers (perfectly matched layers, or PML) on the outer boundaries of the representation[START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF][START_REF] Silva | Método de elementos nitos aplicado à solução de problemas de aterramento elétrico[END_REF] are among the techniques employed together with the FEM in this context. The inadequacy of these techniques to the nite element analysis of complex conductive coupling situations will be discussed in chapter 3, together with the proposal of an alternative scheme adapted to this extended context of applications.The nite element analysis of inductive coupling phenomena has been proposed as well. The speci c problems of application considered tend to be limited to situations involving the parallelism of long structures with overhead lines in a common right of way, in order to pro t from 2-D FEM formulations. Examples can be found in the works by (SATSIOS; LABRIDIS; DOKOPOULOS, 1998) and (CHRISTOFORIDIS; LABRIDIS; DOKOPOULOS, 2005).General 3-D inductive coupling problems involving overhead lines are characterized by large inactive volumes of air separating the phase wires (i.e. the inductor) and the regions or devices subjected to induction. Since the FEM cannot avoid the discretization of these inactive air regions, mesh generation complications, large memory requirements and long computation times are to be expected in this case. On the other hand, integral approaches such as the PEEC method are capable of modeling this kind of interaction without discretizing the air.The classical PEEC method is particularly well-adapted to modeling devices composed of interconnected parts, in which the current density is characterized by a well-de ned direction and by an approximately uniform intensity. This is particularly the case of printed circuit board tracks, integrated circuits interconnections and power electronic devices. Applications belonging to the domain of power systems engineering are rare. Works modeling the transient response of high-voltage towers and grounding systems to lightning strikes by (ANTONINI; CRISTINA; ORLANDI, 1997) and by[START_REF] Yutthagowith | Application of the partial element equivalent circuit method to analysis of transient potential rises in grounding systems[END_REF] are among the few examples of applications of the PEEC method to this area.More recently, generalized versions of the basic PEEC technique were proposed using alternative approximations for the current density(NGUYEN et al., 2014), allowing the treatment of eddy current problems in massive conductors and the penetration of the method into other niches of application. An extensive account of the development and of the use of the PEEC method and other related techniques is provided by(NGUYEN, 2014).

Figure 4

 4 Figure 4 depicts a schematic representation of the situation just portrayed and highlights the fact that the fault current may spread to distances far away from the fault point. Each of the current components I k owing into the earth may be regarded as a possible cause of conductive coupling phenomena in the vicinities of the overhead line. Their intensities may be either determined by a system-wide computation (DAWALIBI; BENSTED; MUKHEDKAR, 1981) or mea-

  .3c) Equation (3.3a) requires boundary conditions to ensure the uniqueness of its solution. These conditions are expressed by constraints (3.3b) and (3.3c), which are de ned upon two complementary surfaces denoted by Γ D and Γ N . These surfaces together enclose the domain completely, and the unit vector pointing outward from Ω on these boundaries is designated by n. These facts are represented schematically in Figure 5. The constraint expressed by (3.3b) is a Dirichlet boundary condition enforcing a prescribed potential ϕ 0 upon Γ D , whereas (3.3c) is a Neumann boundary condition imposing

Figure 5 :

 5 Figure 5: Bounded conductive domain illustrating a steady state current conduction problem, excited by a current source.

Figure 6 :

 6 Figure 6: Sketch of a transmission line right of way pro le, showing the truncated region (dark green) chosen as the conductive domain for modeling steady state conduction phenomena.

Figure 7 :

 7 Figure 7: Conductive domain delimited by the dotted line. The purple region is the one where truncation techniques are to be applied (either PML or in nite element).

Figure 10 :

 10 Figure 10: The grounding rod analyzed by (RÜDENBERG, 1945) (a), its substitution by point current sources (b) and some geometrical relations valid for distant P (c).

Figure 11 :

 11 Figure 11: Schematic representation of domain Ω for computing the proposed non-homogeneous Dirichlet boundary condition on Γ D .

Figure 12 :

 12 Figure 12: The grounding system under analysis and the parameterized domain for FEM computations.

Figure 13 :

 13 Figure 13: Earth surface electric potential for various values of parameter R with the FEM and for the MCI.

Figure 14 :

 14 Figure 14: Error on the earth electric potential in comparison with the MCI.

Figure 13

 13 Figure13shows that for suf ciently large domains the point source approximation leads to results in very good agreement with the MCI. Figure14displays the error in the electric potential of each FEM simulation compared to this reference solution along the same path. For the cases in which R = 10 m and R = 300 m, errors lower than 4.5% were veri ed.

Figure 16 :

 16 Figure 16: Two sets of vertically buried electrodes. The soil was omitted for clarity.

Figure 16 (

 16 Figure 16 (MARTINHO et al., 2014).

Figure 18 :

 18 Figure 18: Con guration to investigate the effects of soil heterogeneities (represented by the buried structures in blue) on the behavior of the NHDBC approach. The resistivity values considered for the soil and for the underground structures are displayed above.

Figure 19 :

 19 Figure 19: Comparison of the NHDBC approach with the use of in nite elements in the investigation of the effects of soil heterogeneities.

Figure 20 :

 20 Figure 20: The complete (a) and reduced (b) models for the FEA of the problem of two neighboring grounding rods.

Figure 21 :

 21 Figure 21: The NHDBC applied to the problem of two neighbouring grounding rods.

Figure 22 :

 22 Figure 22: Comparison of the NHDBC and reduced approaches with the complete model for various values of soil resistivities (rod position: x = 0 m).

Figure 23 :

 23 Figure 23: Underground structures sharing the transmission line right of way.

Figure 24 :

 24 Figure 24: Overview of the solution (a) and its equipotential surfaces (b).

Figure 26 :

 26 Figure 26: Detail of the masonry enclosure (a) and the plane of electric potential evaluation (b).

Figure 27

 27 Figure 27: 2-D representation of the equivalence between the application of the PEEC formulation to a mesh of hexahedra (a) and an electric circuit (b). The mutual inductance couplings L i j are omitted.

Figure 27

 27 Figure27illustrates this circuit equivalence, which also allows the use of electric circuit solver algorithms to solve the system of equations (5.9). The motivations for such an approach are the following:

Figure 28 :

 28 Figure 28: The transmission line right of way (a) and the conductive object underground (b).

Figure 29 :

 29 Figure 29: The computational domain and its connections to the external circuit. The conductive object shown in Figure 28 is embedded inside the green box of soil.

Figure 30 :

 30 Figure 30: Topology of the algebraic system of equations yielded by the modied PEEC formulation to the domain of Figure 29, showing a 4-block partitioning structure.

  (b), and the 2-D nite element solution assumes a buried object of in nite length and current density J parallel to the transmission line. Notwithstanding these assumptions, the interest in adopting a 2-D FEM computation as a benchmark lies in the possibility of employing very ne discretization meshes while keeping the problem tractable from a numerical point of view, which ultimately leads to accurate solutions. Therefore, a magnetodynamic nite element simulation was carried out with a very ne mesh of second order triangular elements, as seen in Figure 31(a). The current density yielded by this approach is given in Figure 31(b).

Figure 31 :

 31 Figure 31: Comparison of the discretization meshes and of the current density distributions in the mid-section of the buried object for the 2-D FEM and the 3-D generalized PEEC method.

  Figure 32. Figure 33 brings a somewhat more quantitative view of the eddy current loops established inside the object by showing the absolute value of

Figure 32 :

 32 Figure 32: Spatial distribution of the induced current density.

Figure 33 :

 33 Figure 33: Current density in the horizontal mid-section of the buried object.

  Figure 34: Determination of the asymptotic value of the maximum current density inside the buried object with the 3D-FEM (orthogonal case).

ˆComparison

  and validation of the results with measures issued from dedicated experimental arrangements in both conductive and inductive coupling applications. ˆInvestigation of capacitive coupling problems or of capacitive effects either by the introduction of capacitances in the external PEEC circuit or by the use of an extended PEEC formulation. ˆSimultaneous modeling of both conductive and inductive coupling phenomena in a single simulation.
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Table 1 :

 1 Performance of the System of Equations Solver † (Insulating buried objects)

	Soil resistivity	NHDBC solution ‡	ZIEs solution ‡
	10 Ω.m	304	340
	100 Ω.m	292	336
	1000 Ω.m	304	326
	† BiCGStab, Jacobi preconditioning, tolerance = 10 -5 .
			

‡ Number of iterations to achieve convergence.

Table 2 :

 2 Touch Potential Inside the Masonry Enclosure Reinforcements con guration Touch Potential † Corners and inner walls ‡

Table 3 :

 3 PEEC and 2-D FEM Comparison (parallel case) Maximum current density in the object cross-section (A/m 2 ). ‡ Computed in the left upper corner patch shown in Figure31 (A/m2 ) . Between the PEEC value and the reference 2-D FEM solution.

				2-D FEM	PEEC	% Deviation *
	| J | max	†		23.9	22.3	6.7
	| J | mean	‡	17.8	17.4	2.2
	†				

* 

Table 4 :

 4 PEEC and 3-D FEM Comparison (orthogonal case) Number of elements in the discretization. ‡ Maximum current density inside buried object (A/m 2 ). Stable solution estimated by Figure 34.

	Method	Mesh size †	| J | max	‡	% Deviation
	Reference *	-	21.85		0
	3-D FEM	5880	19.30		11.67
	PEEC	5040	21.20		2.97
	†				

* 
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INDUCTIVE COUPLING MODELING AND APPLICATION

Introduction

In the two previous chapters, conductive coupling phenomena were considered and analyzed with the nite element method. This chapter proceeds with the investigation of inductive coupling phenomena.

The inductive coupling between an overhead transmission line and other nearby structures arises from the time-varying magnetic eld induced by the electric currents owing in its conductors. If contingencies and transient conditions are disregarded, these currents vary with the power system frequency, which is either 50 Hz or 60 Hz depending on the national standard. In both cases the time variations are suf ciently slow to result in negligible capacitive and propagation effects.

On the other hand, these time rates of change are fast enough to yield relevant inductive phenomena. The electric eld induced by the line time-varying magnetic eld leads to an induced electric potential and to an induced current density that may be dangerous to humans or affect the stability of susceptible structures. The resulting undesired effects are manifold, ranging from the risk of electric shock to the continued alternate current corrosion of metallic structures (CENELEC, 2012;CENELEC, 2013).

The modeling of this class of problems can be attained with well-known nu-